JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
INSTITUTO NACIONAL DE RECURSOS HIDRAULICOS (INDRIII)
THE DOMINICAN REPUBLIC

# THE FEASIBILITY STUDY ON THE LIMON DEL YUNA AREA AGRICULTURAL DEVELOPMENT PROJECT

# FINAL REPORT

VOLUME III; ANNEX II

NOVIEMBRE 1995

PACIFIC CONSULTANTS INTERNATIONAL KOKUSAI KOGYO CO., LTD.

|          | 4 I | À  |   |
|----------|-----|----|---|
| ees<br>V | J   | Ŗ  |   |
|          | )5  | .5 | 8 |

. ✓ . .  JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
INSTITUTO NACIONAL DE RECURSOS HIDRAULICOS (INDRHI)
THE DOMINICAN REPUBLIC

# THE FEASIBILITY STUDY ON THE LIMON DEL YUNA AREA AGRICULTURAL DEVELOPMENT PROJECT

## FINAL REPORT

**VOLUME III: ANNEX II** 

**NOVEMBER 1995** 



PACIFIC CONSULTANTS INTERNATIONAL KOKUSAI KOGYO CO., LTD.

The following foreign exchange rate is applied in the study: US\$1.00=RD\$12.87 (as of March 1995)

# THE FEASIBILITY STUDY ONTHE LIMON DEL YUNA AREA AGRICULTURAL DEVELOPMENT PROJECT

### FINAL REPORT

**VOLUME III: ANNEX II** 

### TABLE OF CONTENTS

ANNEX I: IRRIGATION AND DRAINAGE

ANNEX J: FLOOD MITIGATION

ANNEX K: DESIGN AND COST ESTIMATE

ANNEX L: PROJECT EVALUATION

ANNEX M: ENVIRONMENTAL IMPACT ASSESSMENT

ANNEX N: FORMULATION OF THE ALTERNATIVE PLAN A' AND ITS ECONOMIC ANALYSIS

# ANNEX I : IRRIGATION AND DRAINAGE

### ANNEX I: IRRIGATION AND DRAINAGE

### TABLE OF CONTENTS

| I.1        | General Background                                                 | I | ╼. | . 1 |
|------------|--------------------------------------------------------------------|---|----|-----|
| 1.2        | Irrigation System                                                  | I | -  | 1   |
| 1.2.1      | Irrigation network                                                 | I | -  | 1   |
| I.2,2      | Irrigation Canals and Related Facilities                           | I |    | 3   |
| I.2.3      | Relation of the elevation between water sources and benefited area | I | -  | 5   |
| <b>J.3</b> | Drainage SystemPayabo river                                        | I | -  | 6   |
| 1.3.1      | Payabo river                                                       | I | -  | 6   |
| I.3.2      | Cascarilla drainage canal                                          | I | -  | 6   |
| 1.3.3      | Constraints of the drainage system in the Study area               | I | -  | 6   |
| I.3.4      | Condition of the facility                                          | I | -  | 7   |
| I.4        | Water Resources Development Potentials                             | I | _  | 7   |
| I.4.1      | Western area                                                       | I | -  | 7   |
| I.4.2      | Eastern area                                                       |   |    |     |
| I.4.3      | Other Water Resources                                              | I | -  | 10  |
| 1.5        | Water Intake Plan                                                  |   |    |     |
| 1.6        | Irrigation Plan                                                    | I | _  | 11  |
| 1.6.1      | Meteorological data                                                | I | -  | 11  |
| I.6.2      | Cropping calendar                                                  | Ī | -  | .11 |
| I.6.3      | Unit water requirement                                             | I | -  | 12  |
| 1.6.4      | Irrigation Network                                                 | 1 | -  | 13  |
| I.6.5      | Irrigation Canal                                                   | I | -  | 16  |
|            | (1) Canal anation                                                  | T | _  | 17  |
| . •        | (2) Hydraulic calculation                                          | I | -  | 20  |
| 1.7        | Drainage Plan                                                      | I | -  | 20  |
| 1.7.1      | Drainage Network                                                   | Ŧ | -  | 20  |
| 1.7.2      | Drainage Canal Section                                             | I | -  | 21  |
|            | (1) Hydraulic calculation                                          | I |    | 21  |
|            | (2) Canal section                                                  | I | -  | 21  |
| 1.7.1      | Drainage Plan                                                      | I | -  | 21  |

### List of Tables

| 1.4.1   | Hydrometry of Spring Water at Cano Ponton 1 - 23  The Calculation of Multiple Regression Equation (Input data) 1 - 24  The Calculation of Multiple Regression Equation (Input data) 1 - 24 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.4.2   | The Calculation of Multiple Regression Equation (Input data) 1 - 24                                                                                                                        |
| I.4.3   | The Calculation of Multiple Regression Equation 1 - 26                                                                                                                                     |
| 1.4.4   | The Calculation of Multiple Regression Equation 1 - 26 Rainfall and Effective Rainfall 1 - 27                                                                                              |
| 1.4.5   | Calculation of Guaraguao Spring Discharge 1 - 28                                                                                                                                           |
| I.4.6   | Result of Hydrometry at Guaraguao (1/4)                                                                                                                                                    |
| 1.4.7   | Result of Hydrometry at Springs I - 33                                                                                                                                                     |
| I.4.8   | Relationship between new irrigated area and required storage water - 1 - 34                                                                                                                |
| I.6.1   | Calculation of Reference Crop Evanotranspiration 1 - 35                                                                                                                                    |
| 1.6.2   | Calculation of Unit Water Requirement I - 43                                                                                                                                               |
|         |                                                                                                                                                                                            |
| List of | Figures                                                                                                                                                                                    |
| I.2.1   | Existing Irrigation Networks I - 44                                                                                                                                                        |
| 1.2.2   | Existing Irrigation Area 1 - 45                                                                                                                                                            |
| 1.2.3   | Elevation of Water Sources and Farmland Area I - 46                                                                                                                                        |
| I.3.1   | Existing Drainage System I - 47                                                                                                                                                            |
| I.4.1   | Discharge of Guaraguao Spring by Simulation I - 48                                                                                                                                         |
| 1.4.2   | H-V Curve at Reservoir I - 49 Irrigation Block (Alternative: A) I - 50                                                                                                                     |
| I.6.1-1 | Irrigation Block (Alternative: A) I - 50                                                                                                                                                   |
| 1.6.1-2 | Irrigation Network In Case of Considering  Effective Rainfall (Alternative: A)                                                                                                             |
|         | Effective Rainfall (Alternative: A) 1 - 51                                                                                                                                                 |
| 1.6.2-1 | Irrigation Block (Alternative: B) I - 57                                                                                                                                                   |
| I.6.2-2 | Irrigation Network In Case of Considering                                                                                                                                                  |
|         | Effective Rainfall (Alternative: B) I - 58                                                                                                                                                 |
| I.6.3   | Irrigation Network In Case of Considering Effective Rainfall (Alternative: B)                                                                                                              |
|         | Effective Rainfall (Alternative: A)                                                                                                                                                        |
| I.6.4   | Irrigation Network In Case of Without Considering                                                                                                                                          |
|         | Effective Rainfall (Alternative: B) I - 70                                                                                                                                                 |
|         |                                                                                                                                                                                            |

The state of the s

### ANNEX I: IRRIGATION AND DRAINAGE

### I.1 General background

The irrigation system in the Study area is advanced in comparison with the Aguacate-Guayabo and the former El Poso in the AGLIPO. Almost all the Study area is covered with irrigation canal networks. Around 6,680 ha of paddy fields exist in the Study area and almost all of them can be irrigated using a gravity or pumping system. Some of the main springs in the Study area and the Yuna river and the Payabo river are the main water sources for irrigation water. Especially, the existence of springs has an important meaning for this area, which are placed along the mountain foot in the East-Southern part of the Study area. The irrigated areas of these water sources are as follows:

| Water source | Ponton | Payabo | Guaraguao | La Cueva | Lagunita | Borojol | Total |
|--------------|--------|--------|-----------|----------|----------|---------|-------|
| Area (ha)    | 1,910  | 630    | 2,280     | 330      | 770      | 760     | 6,680 |

One of the characteristics of this area is that it is irrigated under many small pumping stations. Totally 2,470 ha of area is irrigated using small pumping system and this is equivalent as about 37 % of total irrigation area. Almost all the water for irrigation are drawn from the Yuna river.

The Payabo river and the Cascarilla drainage canal are the main drainage canals in the Study area and the area is flooded several times during the year due to their poor drainage capacity. Especially, several occurrences of inundation take place during the year in the area along Payabo river, between Payabo river and the mountain foot and at around downstream of the Cascarilla drainage canal. However, the inundation from the Yuna river has not been identified since the cyclone "David" in the Study area.

and the second of the second o

### 1.2 Irrigation System

### I.2.1 Irrigation network

Irrigation system in the Study area can be classified into two sections which are located in Western and Eastern parts with the line connecting the Payabo river and the Guaraguao river. Totally around 6,680 ha of paddy field is irrigated using existing irrigation facilities and approximately 2,540 ha and 4,140 ha of them are in the Western and Eastern sections respectively. Mainly the irrigation water is taken from the some of main springs and Yuna river in the Eastern section, where the Payabo river is the main water source in the Western section. There are 6 irrigation networks and each of them use different intake site as shown in Fig. 1.2.1. The area irrigated by each water source is shown in Fig 1.2.2. The existing conditions in each irrigation network are as follows:

### (1) Ponton irrigation area: 1,910 ha

Main water sources in this area are Payabo river and springs. Irrigated area is about 1,910 ha. Main irrigation canals are Ponton canal and Arrenquin canal. The Ponton canal run toward the Northeast along the Yuna river with more than seven branch canals. The length

of the main canal is about 9.8 km. The original route of Ponton canal was partially changed in 1980.

The Arrenquin canal run along Payabo river. The canal length is approximately 9.3 km. Water resources are the same as the Ponton canal, however, water from the Ponton canal flows into the Arrenquin canal at the initial point. The route of the original canal also had been partially changed since 1976. The canal had reached to Guaraguao area crossing over Guaraguao drainage canal, however the structure of pipeline does not exist now.

In this area, some pumps are installed and pumping station covers an area of about 980 ha. Main pumping irrigation area the area near Cano Ponton and the northern area. Especially, it is difficult to gain irrigation water at Cano Ponton and Arrenquin canal for its high land.

Main remained structure in this area is an aqueduct crossing over the Payabo river, with a discharge capacity of about 0.3 m<sup>3</sup>/s. Temporary gates are established in Cano Ponton and Arrenquin canal, however function of the facilities are insufficient.

### (2) Payabo irrigation area: 630 ha

This area is located in the south along Payabo river. Main water source is the Payabo river and the irrigated area is approximately 630 ha. The length of the canal is 5.0 km. This canal was designed for connection with the Guaraguao canal. However, the construction was not completed and this canal is not connected yet with the Guaraguao at present. The capacity of this canal is not sufficient compared with the discharge and some water often overflows. Pumping irrigation area in this area is about 240 ha; water source is Cano Azul.

### (3) El Guaraguao irrigation area: 2,280 ha

This area is located in the middle of the Study area. Water source is spring named Guaraguao and this area has 2,280 ha which is the widest irrigated area in the study area. Out of 2,280 ha, 460 ha where are located at the northern part and the eastern part, is irrigated by pump. Therefore, the irrigation network system is complicated with a lot of branch canals. The length of the main canal is 4.75 km. Diversion works is the main structure working now and two main branch canals flow to the east from the west. Water level at the water source keeps around EL. 13.15 m, which goes down about 1 m within 1 km distance.

### (4) La Cueva irrigation area: 330 ha

Water resource is the spring named La Cueva and the irrigated area is about 330 ha. The length of the main canal named La Cueva is 1.25 km. At the water sources, there are two pumping stations installed for the domestic water supply.

A part of this area is irrigated by pump; its area is 30 ha.

### (5) Lagunita Cristal irrigation area: 770 ha

This area is located at the easternmost of the study area. Water source is the spring named Lagunita Cristal. Water directly flows over to the four main canals. Total irrigated area is about 770 ha. There is no pumping irrigation operated either, because the water level of

water source keeps higher than the level of irrigated area and quantity of the spring water is sufficient. At present, the southeast of this area is under the farm land consolidation works.

### (6) Borojol irrigation area: 760 ha

This area is located between the Yuna river and the Cascarilla drainage canal with about 760 ha. Water source is Yuna river, and all of the area is irrigated by many pumps. The number of pumping station are over 30 units. The diameters of suction bulbs are between 6" to 8", and some pumps of 10" are also installed in some places. All of the pumping stations are private. However, these pumps are too old to use, and there is a pump being used since 1968.

### (7) Pumping irrigation area: 2,470 ha

Total pumping irrigation area is 2,470 ha, which occupies 37.0 % of the total area 6,680 ha. Pumping irrigation area of respective water sources is shown below. Total pump discharge capacity is estimated to be equivalent to Q = 2.5 m3/s. Pumping irrigation area is shown in Fig I.2.2.

|   | and the second s |        |        |           |          |          |         |       |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|----------|----------|---------|-------|
| 1 | Water Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ponton | Payabo | Guaraguao | La Cueva | Lagunita | Borojol | Totai |
|   | Area (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 980    | 240    | 460       | 30       | 0        | 760     | 2,470 |
|   | Capacity(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.98   | 0.25   | 0.46      | 0.03     | 0        | 0,76    | 2.47  |

Note: Pump discharge Q is estimated as follows:

Q(m3/s) = Area; A (ha) x Unit Water Requirement; <math>q(1/s/ha) x 1,000q = 1.0 (1/s/ha)

There are in total nine official pumping stations in the Study area. Seven of them are belonging to IAD and two of them are operated by INDRHI. These pumps are larger than the private pumps and two pumping stations are using 12" of suction bulb. These pumps are generally installed at the end of canal. However, these pumping station are also too old.

### 1.2.2 Irrigation Canals and Related Facilities

### (1) Irrigation Canals

Irrigation canals are constructed to cover the great majority of the Study area and paddy fields within area are supplied water through this canal network. All of these canals are unlined canals and serve for both irrigation and drainage purposes except for the main canals. Lateral canals are not worked adequately due to thick growth of weeds and sand sedimentation. Paddy fields located at higher land elevation or near the end of canals take water from canals with aid of pumps. Features of major canals are as described hereinafter.

### Ponton Canal

The Ponton canal (approximately 9.8 km in length-the main canal) runs toward the northeast along the Yuna river in the western part of the Study area and takes water from the Payabo river and springs. This canal benefits a total of 1,420 ha of paddy fields. The original route of the canal was modified partially in 1980. Paddy fields

around the starting point of the canal have higher land elevation as well as those near the end of the canal are irrigated by means of pumps.

### Arrenquin Canal

The Arrenquin canal (approximately 9.3 km in length-the main canal) is placed on the south of the Ponton canal and irrigates 490 ha of lands. Sources of water for this canal are same as the Ponton canal and some portion of the discharge through the Ponton canal deviates to the Arrenquin canal. The original route of this canal was also modified in 1979. Paddy fields around the end of the canal rely irrigation water on pumps because necessary water is distributed up to canal end. The major structure of this canal system is an aqueduct crossing over the Payabo river with discharge capacity of about 0.3 m<sup>3</sup>/s.

### Payabo Canal

This canal (approximately 5.0 km in length-the main canal) passes through southern part of the Study area for irrigating 630 ha of lands. Although this canal was designed to joint with the Guaraguao canal at the planning stage, the construction works have been suspended after completion of half of the designed length. Major source of water is the Payabo river. Without having sufficient cross section, overflow of water is frequently taken place.

### Guaraguao Canal

Water flowing this canal (approximately 4.8 km in length-the main canal) is captured from the Guaraguao river and benefited lands by this canal reach 2,280 ha in total. Intake weir and diversion works installed at 3.2 km from the source of water are main structures of this canal system and from these structures two secondary canals are extended to the east and to the west. Structures are not working properly affected by physical deterioration, so rehabilitation works are required.

### La Cueva Canal

Taking water from La Cueva spring this canal (approximately 2.5 km in length-the main canal) irrigates 330 ha of paddy fields through three lateral canals.

### Lagunita Cristal Canal

This canal (approximately 3 km in length-the main canal) depends irrigation water on Lagnita Cristal. Irrigation water is supplied to 770 ha of lands through three canals.

### (2) Related Structures

Major related structures of irrigation canal in the Study area are intake weir and diversion works. These facilities are concrete structure, but their physical deterioration together with inadequate O/M services has prevented rational distribution of water through canals.

### (3) Constraints of the irrigation system in the Study area

The whole area of pumping irrigation in the Study area amounts to 2,470 ha or 37.0% of the total irrigated area. The fact that a lot of pumps are used for irrigation when there is sufficient water presents some relevant problems to the irrigation system as explained below:

### 1) Imbalance of water supply within area

Generally speaking, lands in the Study area slope down from west to east. Such irrigation blocks as Payabo, Ponton and Guaraguao located to the west of area with higher land elevation have irrigated paddy fields beyond potentials of water resource and are suffered from frequent shortage of water. Irrigation blocks of the eastern sector consists of La Cueva and Lagnita Cristal are supplied irrigation water satisfactorily.

### 2) Absence of necessary structures

It is observed that intake and diversion works are extremely insufficient and most of existing works are not functioning well. Under the circumstances, due to intake of major portion of discharge at upper stream of canal, paddy fields along the lower stream of canal are obliged to use pump in the face of insufficient distribution of water. On the other hand, spillway and stanching gate are not installed at Caño Ponton and Arrenquin canal, water is discharged without any control accelerating shortage of irrigation water within the area.

### 3) Inadequate provision of O/M services

O/M services for irrigation system are not adequately provided due to lower proportion for collection of water charge, insufficient allocation of INDRHI's budget and an absence of water users' association. In addition, major attention of O/M services is paid to excavation of canal by machinery expanding canal section larger than the optimum one. As a result of this unnecessary expansion of canal section, water level tends to lower to such level as make it infeasible to distribute water by gravity and excatated soils are forming small embankment.

### Relation of the elevation between water sources and benefited area 1.2.3

and programme and the second of

The results of topographic survey on the water level at water resources are shown in Fig. 1.2.3. These results show that it is possible to irrigate gravitationally to the whole area. For instance, as to the pumping irrigation area between the Yuna river and Cascarilla canal, the elevation of 3 to 6 m is fully lower than the water resources at Guaraguao or La Cueva.

### 1.3 Drainage System

Drainage network in the Study area is largely divided into two sections by the line connecting the Payabo river and the Guaraguao river just like the irrigation network. Approximate area and main drainage canal of each section are as follows:

| Section | Area (km²) | Main Drainage Canal |
|---------|------------|---------------------|
| Western | 47.7       | Payabo river        |
| Eastern | 70.3       | Cascarilla canal    |

The existing drainage system in the Study area is shown in Fig 1.3.1.

### I.3.1 Payabo river:

The Payabo river flows to the northeast from the southwest of the study area and flows out finally to Yuna river. The main tributary of the Payabo river in the Study area is only the Guaraguao. However, there are other small drainage canals which flow into the Payabo river. The Payabo river has the catchment area of about 340 km2 at the point where the river flows out to the plain from the mountain area and its average river bed slope is 1/3,000.

The river section at upstream is 4 to 5 m in width and 2 m in height and the discharge capacity is around 10 m3/s. That is, flood naturally overflows its river section. Although the river section grows larger and larger as the river shifts downstream, inundation often occurs at the area along river and the lower area between the Payabo river and the mountain. These inundation continue for 2 to 3 days and the maximum depth of inundation is about 1.0 to 1.5 meter. In this area, facilities for drainage do not exist.

### I.3.2 Cascarilla Drainage Canal:

The Cascarilla canal flows from the west to the east along Yuna river and flows out to the Barracote river. Three main drainage canals; Los Caborices, El Cercado and El Vallecito flow into the Cascarilla canal. Its average canal slope is 1/2,000 and its catchment area is over 60 km2. As the canal has been excavated some times since the construction, in general, the canal has enough section for the larger runoff discharge. However, inundation often occurs at downstream of this canal.

### 1.3.3 Constraints of drainage system in the Study area

There are two problems on the drainage system in the Study area. The first is the inundation and the second is the ordinary drainage.

### (1) Inundation

Inundation within the Study area is generally observed at upper stream zone and left margin plains of the Payabo river, at lower lands in the southern part of the area, and at the lower stream of the Cascarrilla drainage canal. left margin zone of the happens in the Study area on the upstream of Payabo river, left flat bank of Payabo river and downstream of Cascarilla canal. Among these areas, the most predominant inundation takes place at the

upper stream of the Payabo river caused by small river section associated with backwater coming from the Yuna river.

### (2) Poor land drainage

Lower lands at the foot of the mountain suffer from poor land drainage, which limits use of these land exclusively to grazing land.

### 1,3.4 Condition of the Facility

Most of the irrigation canals and the drainage canals in the Study area are unlined canals and dualpurpose canal except the main canals. Main irrigation canals are maintained comparatively better than the drainage canals. However, quickly growing weeds and sediments are reducing the capacity of the canals. And there are a lot of the eroded sections by the water dropped directly from the paddy fields, or by the provisional intake facilities installed optionally.

There are a lot of irrigation related facilities such as diversion works, division works and aqueduct, which function to some extent. However, important facilities such as the embankment of the Ponton lake are left as it is broken and almost all the facilities are too old to function well and need to be renewed.

### 1.4. Water Resources Development Potentials

Main water resources in the Study area are Payabo river in the western area and springs in the eastern area. In this section, the development available discharge of water resources is studied.

### I.4.1 Western area

Main water resource in the western area is Payabo river. Cano Ponton, where is located at upstream of the area, reserve discharge water from Payabo river and springs at upstream of this pond. Although Cevicos river located at the west side of Cano Ponton do not flow directly into the Study area, available discharge is studied.

### a. Payabo River

The Payabo River is principal water source that supplies irrigation water to the Study area. The low flow with the return period 1/5 for 24-year observation period 1971-1994 is calculated to be Q = 1.05 m<sup>3</sup>s and multiplying this low flow by the monthly minimum discharge, an available discharge of the Payabo river is obtained as given in the following table.

|     |      |      |      |      |      |      |      |      |      |      | 1    | Unit: m | /s   |
|-----|------|------|------|------|------|------|------|------|------|------|------|---------|------|
| Гм  | onth | IAN  | FFB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP  | OCT  | NOV     | DEC  |
| Δ 7 | MD.  | 2 36 | 207  | 1.70 | 1.58 | 2.46 | 3.96 | 3.83 | 4.22 | 4.56 | 4.43 | 3,78    | 2.96 |
|     | F.   | 1.60 | 1 37 | 1.13 | 1.05 | 1,61 | 2.65 | 2.57 | 2.81 | 3.05 | 3.01 | 2.57    | 1.97 |

Note: A.M.D. - Average Minimum Discharge, L.F. - Low Flow

### b. Springs at Cano Ponton and Cevicos river

Spring discharge at Cano Ponton and discharge of Cevicos river were calculated with hydrometry survey and its analysis. These available irrigation water becomes to the lowest level in April and discharge in April are as follows:

Cano Ponton: 0.500 m3/s; (See Table I.4.1)

Cevicos river: 0.600 m3/s

### c. Total water source in the western section

Water sources of Cano Ponton and Cevicos river are springs same as the El Guaraguao. Therefore, other monthly discharge of Cano Ponton and Cevicos river is calculated with the comparison between the discharge of the El Guaraguao. Monthly discharge of water sources in the western area is shown as follows:

| •   |     |   | 7   | ١. |
|-----|-----|---|-----|----|
| - 1 | 2.5 | ٠ | m   | 74 |
| ·   | 101 |   | 111 | 13 |

|         | T     |       |       |       |       |       |       |       |       |       | 0.0.  | / 0   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Month   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV   | DEC   |
| Payabo  | 1.600 | 1.370 | 1.130 | 1.050 | 1.610 | 2.650 | 2.570 | 2.810 | 3.050 | 3.010 | 2.570 | 1.970 |
| Ponton  | 0.636 | 0.513 | 0.470 | 0.500 | 0.750 | 1.051 | 0.910 | 0.937 | 0.812 | 0.728 | 0.816 | 0.783 |
| Cevicos | 0.764 | 0.615 | 0.563 | 0.600 | 0.900 | 1.261 | 1.092 | 1.124 | 0.975 | 0.873 | 0.980 | 0.939 |
| Total   | 3,000 | 2.498 | 2.163 | 2.150 | 3.260 | 4.962 | 4.572 | 4.871 | 4.837 | 4.611 | 4.366 | 3.692 |

### I.4.2 Eastern area

Water source in the eastern area is springs mainly. Principal springs are El Guaraguao, Lagunita Cristal and La Cueva. The most complete data regarding spring discharge within the Study area coincide with the El. Guaraguao where a total of 110 pieces of record observed for the period of 1975-94 are available, although they are not daily data but are of specific date/period. Other springs have fewer observation records. These existing data give information on seasonal variation of spring discharge, but not available discharge to be used for irrigation purpose is very hard. Facing with this difficulty, the available spring discharge to be taken for irrigation purpose has been calculated processing spring data of the El Guaraguao and rainfall data of the Barraquito station by multiple regressive analysis method.

### a. Spring discharge at El. Guaraguao

Guaraguao spring has two canals of main canal I and secondary canal II as irrigation canal. The multiple regressive analysis is calculated with using actual discharge of Canal. General formula is as follows:

$$Y = a + b_1 * X_1 + b_2 * X_2 + b_3 * X_3 + \dots + b_n * X_n$$
 (Formula 4.2.1)

where,

Y: Guaraguao spring discharge (Canal I) (m³/s)

a, bat coefficient

X<sub>n</sub>: Barraquito rainfall (mm)

Through trial and error with respect to X<sub>n</sub> the following formula was presented as technically reliable and highly correlated one. (Correlated coefficient: 0.78)

$$Y = 0.7756 + 0.0028*X_1 + 0.0074*X_2 + 0.0035*X_3 + 0.0014*X_4 + 0.0040*X_5 + 0.0024*X_6 + 0.0062*X_7 + 0.0071*X_8 + 0.0038*X_9 + 0.0066*X_{10}$$
 (Formula 4.2.2)

Input data and the result of calculation of this formula are shown in Table I.4.2, Table I.4.3 and Fig I.4.1.

In accordance with the following steps, the volume of spring discharge has been estimated subject to the return period 1/5.

- i) To calculate rainfall at the Barraquito station subject to the return period 1/5 (R=1,773mm; See Table I.4.4)
- ii) To select a year which is featured by the representative rainfall pattern among 19 years (the selected year: 1983, R = 2,136.7 mm, Correlated coefficient: 0.906)
- iii) To convert the rainfall of the year 1983 into that of the return period 1/5
- iv) To fix the amount of rainfall calculated in above item iii) into the Formula 4.2.2 to get the volume of the spring discharge of Canal I(See Table 1.4.5).
- v) To calculate total discharge of Guaraguao with the comparison of actual discharge between Canal I and Canal II

  (Discharge of Canal II / Discharge of Canal I = 1.213; See Table I.4.6)

The volume of the spring water calculated above is as given below.

Unit: m<sup>3</sup>/s

| 2.417 | 2.094 | 2.151 | 1.869 | 1.674 | 1.878                                   | 1.800                               |
|-------|-------|-------|-------|-------|-----------------------------------------|-------------------------------------|
|       |       |       |       |       | <del></del>                             |                                     |
| 0.515 | 0.446 | 0.459 | 0.398 | 0.357 | 0.400                                   | 0.383                               |
| 2.932 | 2.540 | 2.613 | 2.267 | 2.031 | 2.278                                   | 2.183                               |
| _     |       |       |       | 0.333 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (7,515) (8,45) (8,45) (8,50) (8,65) |

### b. Monthly discharge in other springs

There are 5 principal springs of Guaraguao, La Cueva, Lagunita Cristal, El Celcado and Laguna Cristal in the eastern area.

Data of hydrometry survey of other springs except Guaraguao are shortage and it is difficult to calculate monthly available discharge with these data. Therefore, monthly discharge of these springs was calculated with the comparison between Guaraguao spring discharge. The result of calculation is as follows:

Unit: m³/s

| Month    | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL.  | AUG     | SEP   | OCT   | NOV      | DEC   |
|----------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|----------|-------|
| La Cueva | 0.519 | 0.418 | 0.383 | 0.407 | 0.611 | 0.856 | 0.742 | 0.763   | 0.662 | 0.593 | 0,665    | 0.638 |
| Lagunita | 1.341 | 1.080 | 0.989 | 1.053 | 1.581 | 2 214 | 1.918 | 1.973   | 1.712 | 1.533 | 1.720    | 1.648 |
|          | 0.584 | 0.471 | 0.431 | 0.459 | 0.689 | 0.965 | 0.836 | 0.860   | 0.746 | 0.668 | 0.749    | 0.718 |
| Laguna   | 0.333 | 0.675 | 0.618 | 0.658 | 0.988 | 1.381 | 1.199 | 1.233   | 1.070 | 0.958 | 1.075    | 1.031 |
| Cercado  | 0.838 | 0.075 | 0.010 | 0.050 | 1     | 1     |       | <u></u> | 1     | J     | - in aba |       |

Note: The detailed data of comparison between Guaraguao and other springs is shown in Table I.4.7.

### 1.4.3 Other Water Resources

In the dry season, constant shortage of irrigation water is foreseen, so development of new water resources would be essential to offset the shortage.

New Water resources will be as follows:

### a. Return flow

Farmlands located between the Yuna River and the Cascarrilla canal are actually irrigated pumping water from the Yuna river. For these farmlands, diversion of water from the Guaraguao spring is the most economical proposal, but water volume of the spring is not sufficient enough to supply water to farmlands in question. Therefore, follows way will be used.

- To distribute the return flow drained to the Payabo River, to realize this proposal by gravity it is required to elevate intake point of the dam.
- To plot an irrigation canal network for each small farmland bloke in view of making use of the return flow and saving water for irrigation.

### b. Construction of a reservoir

There is a suitable spot at the confluence of Laguna Guaraguao and the Payabo river for construction of a reservoir. The construction of a reservoir pretend to store excess water of Laguna Guaraguao at the time of high water period or at the time when less irrigation water is distributed to paddy fields, and to discharge stored water in the dry season. The relation among irrigable area, storage volume and reservoir area is given in the following table. Reservoir with water level higher than 13 meters is not technically recommended.

| Imigable area (ha)        | 300   | 400   | 500   | 600   | 700   | 800   |
|---------------------------|-------|-------|-------|-------|-------|-------|
| Storage volume (m³ x 000) | 1,344 | 1,880 | 2,417 | 2,950 | 3,660 | 4,400 |
| Water level (m)           | 10.9  | 11.3  | 11.6  | 12.0  | 12.5  | 12.9  |
| Reservoir area (ha)       | 120   | 140   | 145   | 152   | 160   | 170   |

Relationship between new irrigation area and required storage water is shown in Table I.4.8. Relationship between water level and active storage is shown in Fig I.4.2.

### Control for unnecessary discharge of water

This plan pretends to use unnecessary discharge of the Cevisco River which comes from the Ponton spring and flows into the Yuna river for irrigating farmlands within the Study area.

### I.5. Water Intake Plan

As explained in I.4. Development Potentials of the Water Resources, the following water resources can be used as sources of irrigation water.

|                   |       |       |       |       |       |       |       |                                         |       | THE RESERVE |       |       |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------|-------|-------------|-------|-------|
| Water Resource    | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug                                     | Sep   | Oct         | Nov   | Dec   |
| 1. Wetern Sector  | 3.000 | 2.498 | 2.163 | 2.150 | 3.260 | 4.962 | 4.572 | 4.871                                   | 4.837 | 4.611       | 4.366 | 3.692 |
| - Payabo River    | 1.600 | 1.370 | 1.130 | 1.050 | 1.610 | 2.650 | 2.570 | 2.810                                   | 3.050 | 3.010       | 2.570 | 1.970 |
| - Cano Ponton     | 0.636 | 0.513 | 0.470 | 0.500 | 0.750 | 1.051 | 0.910 | 0.937                                   | 0.812 | 0.728       | 0.816 | 0.783 |
| - Cevicos River   | 0.764 | 0.615 | 0.563 | 0.600 | 0.900 | 1.261 | 1.092 | 1.124                                   | 0.975 | 0.873       | 0.980 | 0.939 |
| 2. Easter Sector  | 5.058 | 4.074 | 3.731 | 3.972 | 5.963 | 8.351 | 7.235 | 7.442                                   | 6.457 | 5.783       | 6.487 | 6.218 |
| - Guaraguao       | 1.776 | 1.430 | 1.310 | 1.395 | 2.094 | 2.932 | 2.540 | 2.613                                   | 2.267 | 2.031       | 2.278 | 2.183 |
| · La Cueva        | 0.519 | 0.418 | 0.383 | 0.407 | 0.611 | 0.856 | 0.742 | 0.763                                   | 0.662 | 0.593       | 0.665 | 0.638 |
| - Lagnita Cristal | 1.341 | 1.080 | 0.989 | 1.053 | 1.581 | 2.214 | 1.918 | 1.973                                   | 1.712 | 1.533       | 1.720 | 1.648 |
| - Laguna Cristal  | 0.584 | 0.471 | 0.431 | 0.459 | 0.689 | 0.965 | 0.836 | 0.860                                   | 0.746 | 0.668       | 0.749 | 0.718 |
| - El Cercado      | 0.838 |       | 0.618 | 0.658 | 0.988 | 1.384 | 1.199 | 1.233                                   | 1.070 | 0.958       | 1.075 | 1.031 |
| I - DI CCICAGO    |       |       |       |       |       |       |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | L           |       |       |

In addition, the following water resources may be taken to use for irrigation purpose.

- 1. Reservoir: About 800 ha of land will be irrigated with the maximum storage volume of 4 million m<sup>3</sup>
- 2. Yuna River: A maximum of 2 m<sup>3</sup>/s of water is available
- 3. Return flow: Reuse of discharged water into drainage canals

The total amount of available water to be taken form the above sources is not abundant on average, so the irrigation planning will be formulated taken the whole resources cited above into account.

### I.6. Irrigation Plan

### 1.6.1 Meteorological data

The meteorological data used for irrigation planning are those recorded at the Barraquito station, where liable meteorological data such as temperature, humidity, wind velocity, amount of cloud are compiled. Data collected for the period 1975-92 were processed for this purpose.

### I.6.2 Cropping calendar

The cropping calendar proposed in the Crop Production and Farming System Plan is as follows:

| Farming Work           | 1st Cropping        | 2nd Cropping        |
|------------------------|---------------------|---------------------|
| Seeding on nursery bed | Early Dec Mid Jan   | Early Jun - Mid Jul |
| Farming Works          | Early Jan - Mid Feb | Early Jul - Mid Aug |
| Harvesting             | Early May - End Jun | End Oct - Mid Dec   |

### I.6.3 Unit water requirement

### (1) Applied criterion

FAO's "guideline for predicting crop water requirements" was refered for the calculation.

The unit water requirement is calculated using the following formula:

$$UWR = \{Eto \times kc + WRLP + DP - ER\} \times IR$$

where: Eto = reference crop evapotranspiration

kc = crop coefficient

WRLP = water requirement L.P.

DP = deep percolation

ER = effective rainfall

IR = irrigation efficiency

### (2) Reference Crop Evapotranspiration

Reference crop Evapotranspiration was computed with applying the Penman Method.

Eto = 
$$c \times [W \times Rn + (1-W) \times f(u) \times (ea-ed)]$$

where, Eto:

Reference crop evapotranspiration (mm/day)

W:

Temperature-related weighting factor

Rn:

Net radiation in equivalent evaporation (mm/day)

f(u):

Wind-related function

(ea-ed): Difference between the saturation vapour pressure at mean air temperature and the mean actual vapour pressure of the air,

both in mbar

C:

Adjustment factor to compensate for the effect of day and night

weather condition

The calculation of Eto is summarized in Table 1.6.1.

### (3) Effective rainfall

The effective rainfall was estimated processing rainfall data with the return period 1/5 of the Barraquito station. (See Table 1.4.4)

### (4) Irrigation Efficiency

Irrigation efficiency employed to predict the unit water requirement was calculate as follows:

$$E = Ec \times Eb \times Ea = 0.9 \times 0.8 \times 0.8 = 0.58$$

where, E: Irrig

Irrigation Efficiency

Ec:

Conveyance efficiency = 0.9

Eb:

Field canal efficiency = 0.8

Ea:

Field application efficiency = 0.8

### (5) Water requirement for land preparation and nursery

Water requirements for land preparation and nursery are calculated to be 100 mm for both first and second harvests.

### (6) Unit water requirement

The calculation of unit water requirement is shown in Table I.6.2.

The peak unit water requirement falls on April, while less water is required for three months from November to January.

|                        |       |       |       |          |          |          |         |       |       | -      | -        |       |
|------------------------|-------|-------|-------|----------|----------|----------|---------|-------|-------|--------|----------|-------|
|                        | Jan   | Feb   | Mar   | Apr      | May      | Jun      | Jul     | Aug   | Sep   | Oct    | Nov      | Dec   |
|                        |       |       |       |          |          |          |         |       |       |        |          | ~ ~   |
| Hait Water Daniegment  | 0.403 | 0.746 | 0.942 | I 1.0611 | i n 7431 | i 0.4201 | . ก ราว | 0.953 | 0 903 | 0.6881 | L 0.3111 | 0.244 |
| Unit Water Requirement | 0.404 | 0.140 | 0.742 | 1.001    | 0.145    | 0.720    | 0.512   | 0.777 | 0.70  | 4.500  |          |       |

### I.6.4 Irrigation network

### (1) Basic concept on planning canal system

### a. Minimum block

The minimum block for convenience of operation and maintenance of irrigation water is established as around 40 ha (400 m x 1,000 m). This block corresponds to the tertiary unit, in which the "Nucleos de Regantes" formed by 10 or so water users will take charge of operation and maintenance of related gate.

### b. Canal system for operation and maintenance (O/M)

Irrigation water is to be distributed to paddy fields in the order of: main canals, secondary canal and tertiary canals, thus irrigation system to deviate water directly from main canals or secondary canals to paddy fields is avoided. Diversion works equipped with water gate which regulates distribution of water will be installed at the crossing part of canals so that the minimum unit of the water users' association (Junta de Regantes) might be in charge of the tertiary gates.

### (2) Irrigation block

Taking into consideration of the actual irrigation network as well as available water resources, the irrigation network for the project is proposed as illustrated in Fig. I.6.1 and Fig. I.6.2. This proposed irrigation network is summarized in the table below.

### 2-1) Alternative Plan A (See Fig I.6.1)

| Irrigable       | Source of     | Irrigable | Area (ha)   | Intake<br>Volume | Available<br>Return flow |
|-----------------|---------------|-----------|-------------|------------------|--------------------------|
| Blocks          | Water         | Total     | Return Flow | (m3/s)           | (m3/s)                   |
| Payabo          | Payabo River  | 730       | 59          | 0.712            | 0.170                    |
| Ponton          | Payabo River  |           |             |                  |                          |
|                 | Cevicos River |           | ' ·         |                  |                          |
|                 | Springs       | 1630      | 275         | 1.438            | 0,227                    |
| Guaraguao-1     | Springs       | 1632      | 327         | 1.385            | 0.227                    |
| Guaraguao-2     | Reservoir     | 258       | -           | 0.274            | 0.082                    |
| La Cueva        | Springs       | 380       | -           | 0.403            |                          |
| El Cercado      | Springs       | 270       | -           | 0.286            |                          |
| Lagnita Cristal | Springs       | 880       | -           | 0.934            |                          |
| Borojol         | Return flow   |           |             |                  |                          |
|                 | Reservoir     | 870       | 870         | <b>-</b> .       | 0.923                    |
| Total           |               | 6650      | 1531        | 5,432            | 1.629                    |

### a. Payabo block

A headworks will be installed at the Payabo river to take 1.05 m³/s of water; of which 0.719 m³/s will be distributed to the Payabo block and the remaining 0.331 m³/s will de deviated to the Ponton block. Irrigation water through the main canal will flow to the east along the Los Haitises to benefit 730 ha of paddy fields located up to the confluence with the Guaraguao canal. Drained water from this block can be used to irrigate the Borojol block.

### b. Ponton block

Irrigation water to this block will be taken from the Payabo river (0.331 m³/s), the Cevicos river (0.60 m³/s), and springs (0.50 m³/s). Some paddy fields (82 ha) situated at higher land elevation will be irrigated by pumping to comply with their actual situation. Water taken from the Caño Ponton will be regulated by the gate to be installed at the intake point of the Ponton Canal. Irrigation water to flow this Ponton Canal will be diverted to the Arrenquin Canal at 2.5 km downstream from the start of the Ponton Canal. Drained water from this block will irrigate the Borojol block.

Some sections within this block are unable to be irrigated by gravity, which enforces to employ pumping system. These sections are:

Section A: 51 ha (0.054 m<sup>3</sup>/s) Section B: 127 ha (0.135 m<sup>3</sup>/s)

### c. Guaraguao block-1

The Guaraguao Spring offers the most abundant water resource within the Study area, so irrigable area by this spring can be extended to the paddy fields near the Yuna river, which are located to the opposite side of the spring. The main canal will be placed along the river bank which constitutes the western limit of the Study area.

### d. Guaraguao block-2

Although the Guaraguao has an abundant available water to irrigate 1,890 ha of paddy fields, some of these paddy fields are not benefited by water of the spring in March and April if they are planted paddy twice a year. For breaking this bottleneck, it is proposed to construct a reservoir and to arrange the existing irrigation block.

To irrigate 600 ha of paddy fields consist of 258 ha in the Guaraguao block and 342 ha in the Borojol block, a total of 290 million m³ of water (110 m³ for the Guaraguao block and 180 m³ for the Borojol block) should be stored at the reservoir, and to attain this storage the effective minimum and the maximum water levels of the reservoir are designed to be each 9 m.a.s.l. and 12 m.a.s.l. Irrigation water will be supplied from the reservoir through the canal designed exclusively for this system.

### e. La Cueva block and El Cercado block

Spring water taken from La Cueva and El Cercado will be used to compensate shortage of irrigation water at the Guaraguao block-1. Due to lower water level, water of the El Cercado Spring has not been used for irrigation purpose up to date; in this irrigation planning it is proposed to distribute this water to the paddy fields located to lands with lower elevation.

### f. Lagunita Cristal block

This block corresponds to the irrigable area from the Lagunita Cristal. Lagunita Cristal has such sufficient water resource as to benefit irrigable area of this block without relying on other sources, so this block will be the same as the actual situation.

### g. Borojol block

For rational use of irrigation water, this block is divided into two sub-blocks; one is a sub-block which is to be benefited by taking drained water from the Payabo and Ponton blocks by means of the headworks to be installed at the Payabo river and complementing is with water distributed from the reservoir and the other sub-block will be irrigated by return water discharged in the Cascarrilla Canal. The main canal will be placed along the Yuna river.

### 2-2) Alternative Plan B (See Fig 1.6.2)

| Irrigation      | Source of                   | Irrigable | Area (ha)   | Intake<br>Volume | Available<br>Return flow |
|-----------------|-----------------------------|-----------|-------------|------------------|--------------------------|
| Blocks          | Water                       | Total     | Return Flow | (m3/s)           | (m3/s)                   |
| Payabo          | Payabo River<br>Springs     | 1180      | 60          | 1.188            | 0,064                    |
| Ponton          | Yuna River<br>Cevicos River | 1890      | 287         | 1.702            | 0.304                    |
| Guaraguao       | Springs<br>Yuna River       | 2350      | 336         | 2.137            | 0.356                    |
| La Cueva        | Springs                     | 380       |             | 0,403            |                          |
| El Cercado      | Springs                     | 270       | -           | 0.286            |                          |
| Lagnita Cristal | Springs                     | 880       | -           | 0.934            | <del></del>              |
| Borojol         | Return flow                 |           |             |                  |                          |
|                 | Yuna River                  | 910       | 768         | -                | 0.966                    |
| Total           |                             | 7860      | 1451        | 6.650            | 1.690                    |

The Alternative A envisages the following aspects which are different from the alternative A.

a. Intake of water from the Yuna river by means of pumping system is considered. Irrigable area and intake volume proposed for this pumping system are:

| Blocks    | Irrigable Area (ha) | Intake Volume (m³/s) |
|-----------|---------------------|----------------------|
| Ponton    | 697                 | 0.740                |
| Guaraguao | 709                 | 0.752                |
| Borojol   | 142                 | 0.151                |
| Total     | 1,548               | 1.643                |

- b. Construction of a reservoir is not included; this alternative pretends to cover proposed land for this infrastructure into paddy field (approximately ha).
- c. Diversion of spring water flowing into Caño Ponton to the Payabo block is proposed.

### I.6.5 Irrigation Canal

Irrigation canal is divided in 3 routes of main irrigation canal, second irrigation canal and tertiary irrigation canal. These canals are also proposed with two construction style as follows:

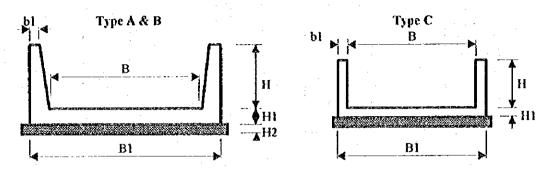
New construction:

Canal proposed in new route

Rehabilitation:

Canal reconstructed existing canal

Total length of canal are as follows:


Unit: m

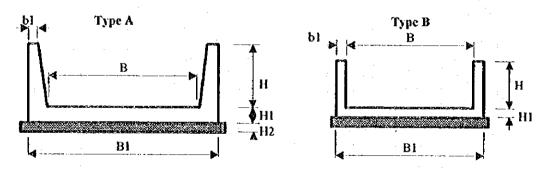
| Canal     |            | Alternative: A |         | Alternative: B |           |         |  |  |
|-----------|------------|----------------|---------|----------------|-----------|---------|--|--|
|           | New Const. | Rehabili.      | Total   | New Const.     | Rehabili. | Total   |  |  |
| Main      | 63,080     | 31,510         | 94,590  | 67,020         | 32,190    | 99,210  |  |  |
| Secondary | 60,500     | 8,360          | 68,860  | 63,280         | 7,200     | 70,480  |  |  |
| Tertiary  | 183,570    | 33,660         | 217,230 | 226,730        | 33,870    | 260,600 |  |  |
| Total     | 307,150    | 73,530         | 380,680 | 357,030        | 73,260    | 430,290 |  |  |

### (1) Canal Section

### a. Main Irrigation canal

In relation to the section of main irrigation canals, concrete lining structure is proposed. Structure of canal are divided in 3 types under design discharge as below.




Length and dimension of each type are presented as follows:

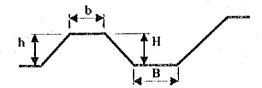
|        | Alternative: A . |          |         |            |                |       |       |        |            |  |  |
|--------|------------------|----------|---------|------------|----------------|-------|-------|--------|------------|--|--|
|        | Ne               | w Consti | ruction |            | Rehabilitation |       |       |        |            |  |  |
| Type   | B (m)            | H (m)    | H1 (m)  | Length (m) | Type           | B (m) | H (m) | Hi (m) | Length (m) |  |  |
| MC-A-1 | 3.00             | 1,10     | 0.20    | -          | MC-A-1         | 3.00  | 1.10  | 0,20   | 2,560      |  |  |
| MC-A-2 | 2.50             | 1.05     | 0.20    | 7,280      | MC-A-2         | 2.50  | 1.05  | 0.20   | 1,860      |  |  |
| MC-A-3 | 2.25             | 1.00     | 0.20    | •          | MC-A-3         | 2.25  | 1.00  | 0.20   | 3,240      |  |  |
| MC-A-4 | 2.00             | 1.00     | 0.20    | 4,000      | MC-A-4         | 2,00  | 1.00  | 0.20   | -          |  |  |
| MC-A-5 | 1.75             | 1.00     | 0.20    | 990        | MC-A-5         | 1.75  | 1.00  | 0.20   | -          |  |  |
| MC-A-6 | 1.50             | 1.00     | 0.20    | 1,030      | MC-A-6         | 1.50  | 1.00  | 0.20   | 1,780      |  |  |
| MC-A-7 | 1.25             | 1.00     | 0.20    | 7,150      | MC-A-7         | 1.25  | 1.00  | 0.20   | 6,910      |  |  |
| MC-A-8 | 1.00             | 1.00     | 0.20    | 5,350      | MC-A-8         | 1.00  | 1.00  | 0.20   | 1,650      |  |  |
| MC-B-1 | 1.50             | 0.65     | 0.15    | 2,520      | MC-B-1         | 1.50  | 0.65  | 0.15   | 960        |  |  |
| MC-B-2 | 1.25             | 0.70     | 0.15    | 4,610      | MC-B-2         | 1.25  | 0.70  | 0.15   | 3,170      |  |  |
| MC-B-3 | 1.00             | 0.70     | 0.15    | 7,850      | MC-B-3         | 1.00  | 0.70  | 0.15   | 1,060      |  |  |
| MC-B-4 | 0.75             | 0.70     | 0.15    | 11,270     | MC-B-4         | 0.75  | 0.70  | 0.15   | 5,330      |  |  |
| MC-B-5 | 0.50             | 0.70     | 0.15    | 5,150      | MC-B-5         | 0.50  | 0.70  | 0.15   | 1,080      |  |  |
| MC-C-1 | 1.00             | 0.45     | 0.15    |            | MC-C-1         | 1.00  | 0.45  | 0.15   | 690        |  |  |
| MC-C-2 | 0.75             | 0.45     | 0.15    | 1,280      | MC-C-2         | 0.75  | 0.45  | 0.15   | 1,220      |  |  |
| MC-C-3 | 0.50             | 0.45     | 0.15    | 4,600      | MC-C-3         | 0.50  | 0.45  | 0.15   | •          |  |  |
| Total  |                  |          |         | 63,080     | Total          |       |       |        | 31,510     |  |  |

|        | Alternative: B |          |          |            |                |       |       |        |            |  |  |
|--------|----------------|----------|----------|------------|----------------|-------|-------|--------|------------|--|--|
|        | Ne             | w Consti | ruction  |            | Rehabilitation |       |       |        |            |  |  |
| Туре   | B (m)          | H (m)    | HI (m)   | Length (m) | Type           | B (m) | H (m) | H1 (m) | Length (m) |  |  |
| MC-A-1 | 4.25           | 1.00     | 0.20     |            | MC-A-I         | 4.25  | 1.00  | 0.20   | 2,560      |  |  |
| MC-A-2 | 3.00           | 1.10     | 0.20     | 1,380      | MC-A-2         | 3.00  | 1.10  | 0.20   | 810        |  |  |
| MC-A-3 | 2.50           | 1.05     | 0.20     | 7,260      | MC-A-3         | 2.50  | 1.05  | 0.20   | 3,240      |  |  |
| MC-A-4 | 2.25           | 1,00     | 0.20     | •          | MC-A-4         | 2.25  | 1.00  | 0.20   | -          |  |  |
| MC-A-5 | 2.00           | 1.00     | 0.20     | 4,830      | MC-A-5         | 2.00  | 1.00  | 0.20   | 6,940      |  |  |
| MC-A-6 | 1.75           | 1.00     | 0.20     | 610        | MC-A-6         | 1.75  | 1.00  | 0.20   | 200        |  |  |
| MC-A-7 | 1.50           | 1.00     | 0.20     | 3,760      | MC-A-7         | 1.50  | 1.00  | 0.20   | 1,780      |  |  |
| MC-A-8 | 1.25           | 1.00     | 0,20     | 8,200      | MC-A-8         | 1.25  | 1.00  | 0.20   | 2,910      |  |  |
| MC-A-9 | 1.00           | 1,00     | 0.20     | 2,350      | MC-A-9         | 1.00  | 1.00  | 0.20   | 730        |  |  |
| MC-B-1 | 1.50           | 0.65     | 0.15     | 3,620      | MC-B-1         | 1.50  | 0.65  | 0.15   | 2,940      |  |  |
| MC·B·2 | 1.25           | 0.70     | 0.15     | 10,470     | MC-B-2         | 1.25  | 0.70  | 0.15   | 660        |  |  |
| MC-B-3 | 1.00           | 0.70     | 0.15     | 4,780      | MC-B-3         | 1.00  | 0.70  | 0.15   | 150        |  |  |
| MC-B-4 | 0.75           | 0.70     | 0.15     | 5,680      | MC-B-4         | 0.75  | 0.70  | 0.15   | 4,950      |  |  |
| MC-B-5 | 0.50           | 0.70     | 0.15     | 3,810      | MC-B-5         | 0.50  | 0.70  | 0.15   | 1,630      |  |  |
| MC-C-1 | 1.00           | 0.45     | 0.15     | 2,890      | MC-C-1         | 1.00  | 0.45  | 0.15   | 330        |  |  |
| MC-C-2 | 0.75           | 0.45     | 0.15     | 2,500      | MC-C-2         | 0.75  | 0.45  | 0.15   | 2,010      |  |  |
| MC-C-3 | 0.50           | 0.45     | 0.15     | 4,880      | MC-C-3         | 0.50  | 0.45  | 0.15   | 350        |  |  |
| Total  |                |          | <u> </u> | 67,020     | Total          |       |       |        | 32,190     |  |  |

### b. Secondary irrigation canal

In relation to the section of secondary irrigation canals, concrete lining structure is proposed. Structure of canal are divided in 2 types under design discharge as below.




Length and dimension of each type are presented as follows

|        | Alternative: A |          |         |            |                |       |       |        |            |  |  |  |
|--------|----------------|----------|---------|------------|----------------|-------|-------|--------|------------|--|--|--|
|        | Ne             | w Consti | ruction |            | Rehabilitation |       |       |        |            |  |  |  |
| Type   | B (m)          | H (m)    | H1 (m)  | Length (m) | Type           | B (m) | H (m) | H1 (m) | Length (m) |  |  |  |
| SC-A-I | 0.75           | 0.70     | 0.15    | 900        | SC-A-I         | 0.75  | 0.70  | 0.15   |            |  |  |  |
| SC-A-2 | 0.75           | 0.65     | 0.15    | 1,770      | SC-A-2         | 0.75  | 0,65  | 0.15   |            |  |  |  |
| SC-A-3 | 0.50           | 0.70     | 0.15    | 450        | SC-A-3         | 0.50  | 0.70  | 0.15   | •          |  |  |  |
| SC-A-1 | 0.50           | 0.65     | 0.15    | 510        | SC-A-4         | 0.50  | 0,65  | 0.15   | 990        |  |  |  |
| SC-B-1 | 0.90           | 0.45     | 0.15    | 1,350      | SC-B-1         | 0.90  | 0.45  | 0.15   | 810        |  |  |  |
| SC-B-2 | 0.80           | 0.45     | 0.15    | 1,350      | SC-B-2         | 0.80  | 0.45  | 0.15   | -          |  |  |  |
| SC-B-3 | 0.70           | 0.45     | 0.15    | 4,950      | SC-B-3         | 0.70  | 0.45  | 0.15   | 2,000      |  |  |  |
| SC-B-4 | 0.60           | 0.45     | 0.15    | 4,570      | SC-B-1         | 0.60  | 0.45  | 0.15   | 580        |  |  |  |
| SC-B-5 | 0.50           | 0.45     | 0.15    | 14,990     | SC-B-5         | 0.50  | 0.45  | 0.15   | 1,470      |  |  |  |
| SC-B-6 | 0.40           | 0.45     | 0.15    | 16,540     | SC-B-6         | 0.40  | 0.45  | 0.15   | 2,140      |  |  |  |
| SC-B-7 | 0.30           | 0.45     | 0.15    | 13,120     | SC-B-7         | 0.30  | 0.45  | 0.15   | 370        |  |  |  |
| Total  |                |          |         | 60,500     | Total          |       |       |        | 8,360      |  |  |  |

|        | Alternative: B |          |         |            |                |       |       |        |            |  |  |  |
|--------|----------------|----------|---------|------------|----------------|-------|-------|--------|------------|--|--|--|
|        | Ne             | w Consti | ruction |            | Rehabilitation |       |       |        |            |  |  |  |
| Туре   | B (m)          | H (m)    | HI (m)  | Length (m) | Туре           | B (m) | H (m) | H1 (m) | Length (m) |  |  |  |
| SC-A-1 | 1.50           | 0.65     | 0.15    | 450        | SC-A-1         | 1.50  | 0.65  | 0.15   | -          |  |  |  |
| SC-A-2 | 1.25           | 0.65     | 0.15    | 900        | SC-A-2         | 1.25  | 0.65  | 0.15   | -          |  |  |  |
| SC-A-3 | 1.00           | 0.65     | 0.15    | 10         | SC-A-3         | 1.00  | 0.65  | 0.15   | -          |  |  |  |
| SC-A-4 | 1.00           | 0.70     | 0.15    | 630        | SC-A-4         | 1.00  | 0.70  | 0.15   | 810        |  |  |  |
| SC-A-5 | 0.75           | 0.70     | 0.15    | 2,450      | SC-A-5         | 0.75  | 0.70  | 0.15   | -          |  |  |  |
| SC-A-6 | 0.75           | 0.65     | 0.15    | 1,710      | SC-A-6         | 0.75  | 0.65  | 0.15   | -          |  |  |  |
| SC-A-7 | 0.50           | 0.70     | 0.15    | 3,080      | SC-A-7         | 0.50  | 0.70  | 0.15   | -          |  |  |  |
| SC-A-8 | 0.50           | 0.65     | 0.15    | 510        | SC-A-8         | 0.50  | 0.65  | 0.15   | 990        |  |  |  |
| SC-B-1 | 0.90           | 0.45     | 0.15    | 430        | SC-B-1         | 0.90  | 0.45  | 0.15   | -          |  |  |  |
| SC-B-2 | 0.80           | 0.45     | 0.15    | 1,350      | SC-B-2         | 0.80  | 0.45  | 0.15   | •          |  |  |  |
| SC-B-3 | 0.70           | 0.45     | 0.15    | 5,040      | SC-I3-3        | 0.70  | 0.45  | 0.15   | •          |  |  |  |
| SC-B-4 | 0.60           | 0.45     | 0.15    | 3,710      | SC-B-4         | 0.60  | 0.45  | 0.15   | 900        |  |  |  |
| SC-B-5 | 0.50           | 0.45     | 0.15    | 10,570     | SC-B-5         | 0.50  | 0.45  | 0.15   | 1,800      |  |  |  |
| SC-B-6 | 0.40           | 0.45     | 0.15    | 24,750     | SC-B-6         | 0.40  | 0.45  | 0.15   | 2,240      |  |  |  |
| SC-B-7 | 0.30           | 0.45     | 0.15    | 7,690      | SC-B-7         | 0.30  | 0.45  | 0.15   | 460        |  |  |  |
| Total  |                |          |         | 63,280     | Total          |       |       |        | 7,200      |  |  |  |

### c. Tertiary irrigation canal

In relation to the section of tertiary irrigation canals, unlined canal structure is proposed. Structure of canal are proposed under to design discharge as below.



| Туре | b(m) | h(m) | B(m) | H(m) |
|------|------|------|------|------|
| TC-1 | 0.30 | 0.30 | 0.30 | 0.30 |
| TC-2 | 0.30 | 0.30 | 0.40 | 0.30 |
| TC-3 | 0.30 | 0.30 | 0.50 | 0.30 |

### (2) Hydraulic calculation

Manning formula was applied to calculate the canal velocity as follows:

 $V = 1/n \times R2/3 \times I1/2$  (m/sec)

 $Q = A \times V$  (m/sec)

where, V: mean velocity (m/sec)

n: coefficient of roughness

concrete lining canal: n= 0.015

nonlining canal: n= 0.035

R: hydraulic mean depth (m)

A: cross sectional area of flow (m2)

P: wetted perimeter (m)

I: hydraulic gradient

Q: discharge (m3/s)

### 1.7 Drainage Plan

The great majority of excess water within the Study area is drained into the Payabo river and the Cascarrilla Canal. These two systems function as a main drainage canal which connects with the remainder of the drainage systems within the Study area. Improvement proposal on the Payabo river and the Cascarrilla Canal will be discussed in the "Flood Mitigation Plan".

The submergence analysis quoted in the section J.2.2 and J.2.3 of this report has disclosed that even intensive rainfall is taken place no serious damage would be brought about over agricultural production due to flooding of paddy fields. This means that flooding caused by intensive rainfall is within limit of allowable submergence. Nevertheless, in view of the fact that some drainage systems pass through populated area, the drainage canals will be designed with a cross-section which enables to drain 24-hour-rainfall within 24 hours under 5-year-return period.

### I.7.1 Drainage network

The principle of drainage planning is to drain excess water to the main drainage canal after passing through small and secondary drainage canals. The existing main drainage system which connect with the Payabo river and the Cascarrilla canal will be improved to function adequately as secondary canal system and, to complete the drainage network throughout the development area, small drainage system will be jointed with these secondary system. On the other hand, a drainage system which makes it possible to function drainage of excess water constantly will be provided at poor drainage lands located at the foot of the Los Haitises National Park.

Drainage canal is divided in 3 routes of main canal, secondary canal and tertiary canal. These canals are also proposed with two construction style as follows:

New construction: Canal proposed in new route

Rehabilitation:

Canal reconstructed existing canal

Total length of canal are as follows:

Unit: m

| Canal     |            | Alternative: A |         | Alternative: B |           |         |  |  |  |
|-----------|------------|----------------|---------|----------------|-----------|---------|--|--|--|
|           | New Const. | Rehabili.      | Total   | New Const.     | Rehabili. | Total   |  |  |  |
| Main      | 5,090      | 3,850          | 8,940   | 6,310          | 3,850     | 10,160  |  |  |  |
| Secondary | 60,320     | 11,640         | 71,960  | 67,350         | 11,340    | 78,690  |  |  |  |
| Tertiary  | 148,330    | 32,480         | 180,810 | 188,760        | 26,720    | 215,480 |  |  |  |
| Total     | 213,740    | 47,970         | 261,710 | 262,420        | 41,910    | 304,330 |  |  |  |

### 1.7.2 Canal section

### (1) Hydraulic calculation

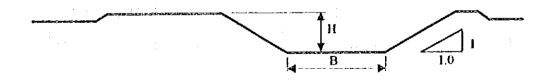
The design runoff is predicted according with the following formula:

$$Q = f \times R \times A/3.6$$

where,  $Q = design nunoff (m^3/s)$ 

f = runoff coefficient (0.75)

R = average rainfall intensity (5.57 mm/hr., 133.7 mm/day)


A = catchment area (km<sup>2</sup>)

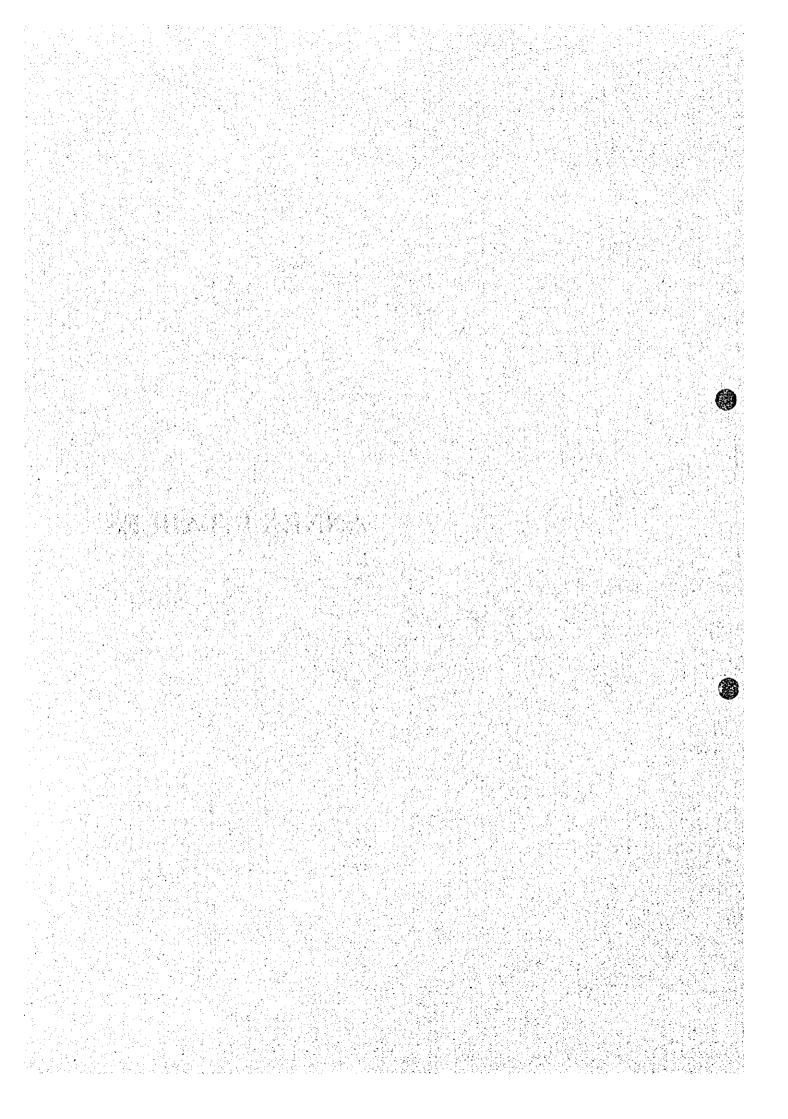
The catchment area of the secondary drainage canal system is estimated to be around 6 km², so the relation between the catchment area and the design runoff becomes as shown below.

| CONTRACTOR |     | en ennere de march | an and an artistance | encontractoristation |     | ······································ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|----------------------|----------------------|-----|----------------------------------------|
| Catchment area (km²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | 2                  | 3 :                  | 4                    | 5   | 6                                      |
| Design runoff (m <sup>3/</sup> s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2 | 2.3                | 3.5                  | 4.6                  | 5.8 | 7.0                                    |

### (2) Canal section

In relation to the section of drainage canal, unlining canal structure is applied. Structure of canal are proposed under design discharge as below.




Alternative:A

| MICHAUNC   | •         |       |       |             |           |         |  |  |  |
|------------|-----------|-------|-------|-------------|-----------|---------|--|--|--|
|            | Type      | Dimer | ision | Length L(m) |           |         |  |  |  |
|            |           | B (m) | H (m) | New Const.  | Rehabili. | Total   |  |  |  |
|            | MC-1      | 10.00 | 2.00  | 1,270       | 2,650     | 3,920   |  |  |  |
|            | MC-2      | 5.00  | 2.00  | 2,540       | 1,200     | 3,740   |  |  |  |
| Main Canal | MC-3      | 3.00  | 2,00  | 1,280       | -         | 1,280   |  |  |  |
|            | MC-4      | 1.50  | 2.00  | -           | •         | -       |  |  |  |
|            | MC-5      | 0.50  | 2.00  | . •         | •         | -       |  |  |  |
|            | Sub-total | 20.00 |       | 5,090       | 3,850     | 8,940   |  |  |  |
|            | SC-1      | 3.00  | 1,50  | 3,960       | 530       | 4,490   |  |  |  |
| Secondary  | SC-2      | 1.50  | 1.50  | 1,030       | 900       | 1,930   |  |  |  |
| Canal      | SC-3      | 1.00  | 1.50  | 2,880       | •         | 2,880   |  |  |  |
|            | SC-4      | 0.50  | -1.50 | 52,450      | 10,210    | 62,660  |  |  |  |
|            | Sub-total | _     |       | 60,320      | 11,640    | 71,960  |  |  |  |
|            | TC-1      | 4.00  | 1.00  | -           | 2,000     | 2,000   |  |  |  |
|            | TC-2      | 2,50  | 1.00  | 3,100       | 6,570     | 9,670   |  |  |  |
| Tertiary   | TC-3      | 2.00  | 1.00  | 2,760       | 1,000     | 3,760   |  |  |  |
| Canal      | TC-4      | 1.50  | 1.00  | 12,430      | 5,880     | 18,310  |  |  |  |
|            | TC-5      | 1.00  | 1.00  | 21,050      | 4,860     | 25,910  |  |  |  |
|            | TC-6      | 0.50  | 1,00  | 108,990     | 12,170    | 121,160 |  |  |  |
|            | Sub-total |       |       | 148,330     | 32,480    | 180,810 |  |  |  |
| Total      |           |       |       | 213,740     | 47,970    | 261,710 |  |  |  |

Alternative:B

|            | Туре      | Dime  | nsion | Length L(m) |           |         |  |  |  |
|------------|-----------|-------|-------|-------------|-----------|---------|--|--|--|
|            |           | B (m) | H (m) | New Const.  | Rehabili. | Total   |  |  |  |
|            | MC-1      | 10.00 | 2.00  | 1,270       | 2,650     | 3,920   |  |  |  |
|            | MC-2      | 5.00  | 2.00  | 3,760       | 1,200     | 4,960   |  |  |  |
| Main Canal | MC-3      | 3.00  | 2.00  | 1,280       | -         | 1,280   |  |  |  |
|            | MC-4      | 1,50  | 2.00  | -           | -         | -       |  |  |  |
|            | MC-5      | 0.50  | 2.00  | -           | -         | •       |  |  |  |
|            | Sub-total | 20.00 |       | 6,310       | 3,850     | 10,160  |  |  |  |
|            | SC-1      | 3.00  | 1.50  | 9,820       | 530       | 10,350  |  |  |  |
| Secondary  | SC-2      | 1.50  | 1.50  | 7,790       | 1,930     | 9,720   |  |  |  |
| Canal      | SC-3      | 1.00  | 1.50  | 45,190      | 4,880     | 50,070  |  |  |  |
|            | SC-4      | 0.50  | 1,50  | 4,550       | 4,000     | 8,550   |  |  |  |
|            | Sub-total |       |       | 67,350      | 11,340    | 78,690  |  |  |  |
|            | TC-1      | 4.00  | 1.00  | 2,970       | 1,490     | 4,460   |  |  |  |
|            | TC-2      | 2.50  | 1.00  |             | 1,930     | 1,930   |  |  |  |
| Tertiary   | TC-3      | 2.00  | 1.00  | 10,870      | 1,330     | 12,200  |  |  |  |
| Canal      | TC-4      | 1.50  | 1.00  | 8,910       | 5,730     | 14,640  |  |  |  |
|            | TC-5      | 1.00  | 1.00  | 34,590      | 5,010     | 39,600  |  |  |  |
|            | TC-6      | 0.50  | 1.00  | 131,420     | 11,230    | 142,650 |  |  |  |
|            | Sub-total |       |       | 188,760     | 26,720    | 215,480 |  |  |  |
| Total      |           |       |       | 262,420     | 41,910    | 304,330 |  |  |  |

**ANNEX I: TABLES** 



# Table I.4.1 Hydrometry of Spring Water at Cano PONTON

### Observation (1) / Date; Feb 7, 1995

| ********** | Location        | Discharge Area | Mean Velocity | Discharge | Total (Qin,Qo) |        |
|------------|-----------------|----------------|---------------|-----------|----------------|--------|
|            | 1               | A (m2)         | V (m/s)       | (m3/s)    | (m3/s)         | (m3/s) |
| Qin        | Payabo River    | 5.503          | 0.202         | 1,112     | 1,112          |        |
| Qol        | Canal A         | 0.000          | 0.000         | 0.000     |                |        |
| 002        | Arrenguin Canal | 1.128          | 0.272         | 0.307     | ]              |        |
| Q03        | Arrenquin Canal | 1.817          | 0.482         | 0.875     | 1.753          | 0.641  |
| Q04        | Ponton Canal    | 1.927          | 0.296         | 0.570     |                | ·      |
| Q05        | Canal B         | *              | *             | 0.001     |                |        |

### Observation (2) / Date; Feb 17, 1995

|     | Location        | Discharge Area | Mean Velocity | Discharge | Total (Qin,Qo) | $Qx = Qo \cdot Qin$ |
|-----|-----------------|----------------|---------------|-----------|----------------|---------------------|
| 1   |                 | A (m2)         | V (m/s)       | (m3/s)    | (m3/s)         | (m3/s)              |
| Qin | Payabo River    | 6.175          | 0.164         | 1.015     | 1.015          |                     |
| Qo1 | Canal A         |                |               | Į.        |                |                     |
| Qo2 | Arrenquin Canal | 0.414          | 0.297         | 0.123     | ]              |                     |
| Q03 | Arrenquin Canal | 0.637          | 0.474         | 0.302     | 1.179          | 0.164               |
|     | Pump            | 0,260          | 0.169         | 0.044     | ]              |                     |
| Qo4 | Ponton Canal    | 2.400          | 0.296         | 0.710     | ]              |                     |
| Q05 | Canal B         | *              | *             | 0.000     |                |                     |

### Observation (3) /Date; Feb 28, 1995

| Parket Market Company | Location        | Discharge Area | Mean Velocity | Discharge | Total (Qin,Qo) |        |
|-----------------------|-----------------|----------------|---------------|-----------|----------------|--------|
|                       |                 | A (m2)         | V (m/s)       | (m3/s)    | (m3/s)         | (m3/s) |
| Qin                   | Payabo River    | 6.364          | 0.188         | 1.195     | 1.195          |        |
| Qol                   | Canal A         |                |               |           |                |        |
| Qo2                   | Arrenquin Canal | 0.769          | 0.384         | 0.295     | <u> </u>       |        |
| Q03                   | Arrenquin Canal | 2.313          | 0.510         | 1.179     | 2.340          | 1.145  |
| Qo4                   | Ponton Canal    | 3.007          | 0.288         | 0.866     | ]              |        |
| Qos                   | Canal B         | *              | *             | 0.000     |                |        |

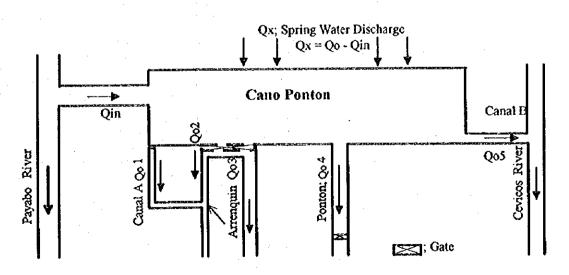



Table I.4.2 The Calculation of Multiple Regression Equation (Input Data: 1/2)

|      |            |      |           |        | (4,14,1 |        |            |             |           |        |        | Unit: mn | 1      |
|------|------------|------|-----------|--------|---------|--------|------------|-------------|-----------|--------|--------|----------|--------|
|      |            |      | Guaraguao |        |         |        | Daily Ra   | infall at l | 3arraquit |        | 1      |          |        |
| Year | Month      | Date | Discharge | ΧI     | X2      | X3     | X4         | X5          | X6 .      | X7     | X8     | X9       | X10    |
|      |            |      | Q (m3/s)  | l days | 3 days  | 3 days | 5 days     | 5 days      | 5 days    | 5 days | 5 days | 5 days   | 5 days |
| 1977 | Jan        | 7    | 1.163     | 0      | 3.1     | 0      | 1          | 5.4         | 0         | 5.2    | 28.7   | 38.7     | 50.6   |
|      | Feb        | 9    | 0.874     | 10     | 2.8     | 0      | . 0        | 0.1         | 18.6      | 3.3    | 0.7    | 3.1      | 5.0    |
|      | Маг        | 4    | 0.823     | 7      | 1.5     | 0.5    | 0          | 6.3         | 0         | 13.1   | 0      | . 0      | 18.3   |
|      | Apr        | 6    | 0.884     | 13     | 0.7     | 0      | 6.8        | 1.1         | 0         | 0.8    | 11,7   | 19.7     | 0.5    |
|      | Jun        | 10   | 1.261     | 0      | 0       | 9.8    | 0          | 54.8        | 65.1      | 83.1   | 0      | 0        | 12.4   |
|      | Jul        | 8    | 1.217     | 10.9   | 2.7     | 68.5   | 29         | 14.9        | 10.9      | 8      | Ö      | 9.8      | 11     |
|      | Aug        | 5    | 1.191     | 8.8    | 26.9    | 18.1   | 141.5      | 0           | 18.5      | 31.1   | 14.3   | 81.9     | 27.3   |
|      | Sep        | 7    | 1.945     | 1.1    | 1.2     | 43.7   | 15         | 97          | 16.2      | 63.8   |        | 73.8     | 128.1  |
|      | Nov        | 15   | 1.874     | 1.1    | 10.2    | 4.3    | 13.2       | 84.3        | 27.8      | 6.2    | 8.2    | 62.8     | 65.4   |
| 1978 | Ian        | 17   | 2.397     | 6      | 0       | 0      | 1.9        | 3.5         | 212.6     | 8.7    | 4.1    | 47.3     | 11.6   |
|      | Feb        | 7    | 2.238     | 27.6   |         | 7.1    | 106.2      | 3.9         | 6.7       |        |        | 2.9      | 213.2  |
|      |            | 6    | 1.869     | 19.5   | 0.8     | 1.1    | 2.4        | 0.0         | 0.7       | 29.9   |        | 93.5     | 22.8   |
|      | Mar        |      | 3.015     | 0.6    |         |        | 5.4<br>6.4 | 12.8        | 81.3      | 114.9  |        | 21.2     | 42.6   |
|      | Jun        | 14   | 2.86      | 1.2    | 18.1    | 1.8    | 60.7       | 65.1        | 18.7      | 8.5    | 27.6   | 16.8     | 8.5    |
|      | Jul        | 13   |           | 26.5   | 1.9     |        | 24.1       | 4.5         | 0         | 43.7   |        |          | 1.1    |
|      | Oct        | 24   | 1.909     | 19.5   | 2.7     |        | 13.2       |             | 7         | 6.4    | 29     |          | - 6.4  |
|      | Nov        | 25   | 2.763     |        |         |        |            | 1.1<br>50.8 | 71.7      | 22.2   | 40.1   | 14.1     | 0.2    |
|      | Dec        | 19   | 1.513     | 13.9   | U       | U      | U          | 30.6        | 71.7      | 26.6   | 40.1   | 1.4.1    | 0.2    |
| 1979 | Jan        | 12   | 1.502     | 1.5    |         | 60.2   |            | 0           | 0.5       |        |        |          | 52.2   |
|      | Feb        | 10   | 1.266     | 0      |         |        |            |             | 0         |        |        |          | 16.3   |
|      | Mar        | 13   | 1.162     | 0      |         |        |            |             | 17.7      | 0.9    |        |          | 0      |
|      | May        | 29   | 5.019     | 70.6   | 37.1    | 3      |            | 83.8        | 94.1      | 89.3   |        | 33.4     | 186.8  |
|      | Oct        | 18   | 3.336     | 0      |         |        |            | 125.2       | 13.5      | 13.5   | 23.7   | 22       | 74.2   |
|      | Nov        | 14   | 3.359     | 0.2    | 104.5   | 57.5   | 44.7       | 45.2        | 40.2      | 11.8   |        |          | 115.1  |
|      | Dec        | 19   | 3.286     | 0      | 0       | 20.1   | 9.3        | 101.4       | 36.9      | 54.5   | 84.8   | 4.3      | 157.9  |
| 1980 | Mar        | 18   | 1.728     | 0      | 1.2     | 1.4    | 5.7        | 49.3        | 38.4      | 35.8   | . 0    | 0.3      | 10.5   |
|      | Apr        | 8    | 1.503     | 0      | 0       | 0      | 0          | 0           | 2.8       | 2.6    | 2.7    | 52.3     | 38.4   |
|      | May        | 14   | 1.467     | 33.4   | 36.9    | 59.2   | 25.1       | . 0         | 27        | 20.3   | 31.7   | 42.5     | •      |
|      | Jun        | 3    | 2.32      | 0      | 0       | 69.7   | 127        | 69.7        | 73.1      | 59.2   | 25.1   | 0        | 27     |
|      | Jul        | 1    | 3.087     | 1      | 12.3    | 48.8   | 8.2        | 37          | 31.6      | 50.9   | 0      | 72       | 128.9  |
|      | Jul        | 22   | 3.156     | 11     |         |        |            | 45.5        | 19.9      | 61.1   | 8.2    | 37       | 31.4   |
|      | Aug        | 4    | 2.591     | 3      |         |        |            | 36.8        | 6.5       | 22.1   | 38.3   | 22.2     | 55.9   |
|      | Sep        | 4    | 2.626     | 0      |         |        | 90.2       | 30.7        |           | 63.8   |        | 26       | 51.6   |
|      | Nov        | 13   | 2.108     | 0      |         |        |            |             |           | 27.6   |        |          | : 58   |
|      | Dec        | 11   | 1.736     | 0      |         |        |            | 1.9         |           | 0.5    |        |          | 9.6    |
| 1981 | Jan        | 20   | 1.658     | 0      | 25.2    | 0.3    | 19         | 53.1        | 35.3      | 0.6    | 18.8   | 6.1      | 10.7   |
|      | Feb        | 17   | 1.895     | 69.2   |         |        |            |             |           | 0.3    |        |          | 25.7   |
|      | Mar        | 16   | 1.279     | 16     |         |        |            |             | 0         |        |        |          | 12.2   |
|      | Λpr        | 10   | 1.93      | 11.6   |         |        |            |             |           |        |        |          | 41.3   |
|      | May        | 9    | 1.914     | 1.5    |         |        |            |             |           | 4.9    |        |          | 13.3   |
|      | Sep        | 21   | 2.323     | 0      |         |        |            |             |           | 7.2    |        |          | 80.2   |
|      | Oct        | 19   | 1.944     | 23.2   |         |        |            |             |           | 0      |        | 71.7     | 11.1   |
|      | Nov        | 23   | 1.566     | 0      |         | 0      |            |             | 26.5      | 26.4   |        | 58.3     | 12.3   |
|      | Dec        | 15   | 1.478     | 7.8    |         |        |            |             |           | 11     | 3.2    |          | 22.3   |
| 1982 | Feb        | 4    | 1.103     | 15.6   | 55.1    | 12.4   | 5.8        | 23          | 2.5       | 4.2    | 8.9    | 26.4     | 44.9   |
|      | Mar        | 18   | 1.114     | 1.2    |         |        |            |             | 9.6       |        |        |          | 61.1   |
|      | ∧рг        | 21   | 0.79      | 0      |         |        |            |             |           | 1.3    |        |          |        |
|      | Jun        | 16   | 3.828     | 49.4   |         |        |            |             |           |        |        |          |        |
|      |            | 20   | 2.156     | 3      |         |        |            |             |           | 37.4   |        |          |        |
|      | 71132      |      |           |        |         | _      |            |             |           |        |        | ** * * * |        |
|      | Aug<br>Nov | 5    | 1.31      | 0.9    |         |        |            |             |           |        | 0      |          | 50     |

Table I.4.2 The Calculation of Multiple Regression Equation (Input Data: 2/2)

|      |       |      |           |        |        |        |        |        |           |        |        | Unit: mo | 1)     |
|------|-------|------|-----------|--------|--------|--------|--------|--------|-----------|--------|--------|----------|--------|
|      |       |      | Guaraguao |        |        |        |        |        | Barraquit |        | 1      |          |        |
| Үсаг | Month | Date | Discharge | XI     | X2     | X3     | X4     | X5     | X6        | X7     | X8     | X9       | X10    |
|      |       |      | Q (m3/s)  | 1 days | 3 days | 3 days | 5 days | 5 days | 5 days    | 5 days | 5 days | 5 days   | 5 days |
| 1983 | Feb   | 1    | 1.399     | 0      | 1      | 0      | 0      | 10.6   | 50.1      | 0      | 23.2   | 19.3     | 39.5   |
|      | Маг   | 7    | 1.151     | 1.7    | 15.2   | 1.7    |        | 24.4   | 0         | 22.2   | 0.4    | 4.6      | 0      |
|      | Aug   | 22   | 2.303     | 10.7   | 3.3    | 66.7   |        | 36.8   | 53.4      | 86.4   | 27.8   | 60.3     | 6.8    |
|      | Oct   | 13   | 1.275     | 14     | 30     |        |        | 45.9   | 22.5      | 42.9   | 44.9   | 9.4      | 3.8    |
|      | Nov   | 18   | 2.087     | 127.2  | 0      |        |        | 23.5   | 68.9      | 9.1    | 49.3   | 22.1     | 31.7   |
|      | Dec   | 1    | 1.265     | 1.5    | 6.3    | 10.1   | 4      | 127.2  | 0         | 48.2   | 63.5   | 28.4     | 9.1    |
| 1984 | Apr   | 10   | 0.893     | 0      | 8.0    | 2.1    | 27.9   | 0      | 74.7      | 2.8    | 7.6    | 4.9      | 2.1    |
| .,,  | Jun   | 8    | 3.001     | 0      | 138.1  | 61     |        | 99.1   | 79        | 15.7   | 1.6    | 19.5     | 1.6    |
|      | Jul   | 25   | 1.558     | 13     | 8.1    | 7.6    |        | 17.3   | 8.4       | 20.8   | 0.5    | 21.6     | 50.5   |
|      | Oct   | 30   | 3.422     | 0.8    | 18.7   |        | 25.2   | 9.4    | 1.2       | 76.5   | 51     | 24.6     | 16.8   |
|      | Dec   | 4    | 2.095     | 0.6    | 1.9    |        |        | 29.6   |           | 75.5   | 46.6   | 19.2     | 39.8   |
| 1988 | 3 հաղ | 6    | 1.308     | 0      | 0      | 0      | 3      | 21.7   | 13.4      | 9.7    | 39.9   | 1        | 6.9    |
| 1989 | ) Feb | 7    | 1.259     | 7      | 33.9   | 24.9   | 18.9   | 2.6    | 6.1       | 0      | 0      | 0.4      | 39.1   |
|      | Mar   | 7    | 1.952     | 0      | 3.8    | 10.9   | 30.1   | 48.7   | 39.5      | 3.1    | 41.9   | 30.1     | 14     |
|      | Apr   | 12   | 2.432     | 7      | 6.1    | 0      |        |        | 7.1       | 71.8   | 40.6   | 17.3     | 14.3   |
|      | Jul   | 10   | 1.43      | 0      | 22.2   | 9.2    | 2.6    | 0.4    | 0.7       | 8.5    | 17.4   | 20.1     | 38.5   |
|      | Aug   | 10   | 1.18      | 0      | 2.6    |        |        | 16.6   | 69        | 8.4    | 33     | 27.3     | 6.7    |
|      | Oct   | 9    | 2.476     | 0      | 0      | 4      | 5      | 34.8   | 16.9      | 21.8   | 46.7   | 27.7     | 27.2   |
|      | Oct   | 24   | 1.909     | 0      | 1.9    | 2.8    | 17.3   | . 0    | 4         | 5      | 34.8   | 16.9     | 21.8   |
|      | Nov   | 6    | 1.669     | 8      | 4.8    | 0.5    | 28.6   | 1.9    | 2.8       | 17.3   | 0      | 4        | 19.9   |
|      | Dec   | 6    | 1.28      | 0.7    | 11.9   |        |        | 0.7    | 6.7       | 7.1    | 33.7   | 1.7      | 28.6   |
| 1990 | ) Feb | 7    | 0.821     | 1      | 5.3    | 24.4   | 19.2   | 15     | 181.8     | 7.7    | 1.4    | 3.7      | 0.6    |
|      | Mar   | 8    | 0.869     | ì      | 2      | 2.7    | 14.1   | 3.4    | 12.8      | 8.4    | 17.6   | 32.3     | 16.6   |
|      | Λpr   | 9    | 0.949     | 0      | 1.3    |        | 17.4   | 1      | 0         | 18.3   | 58.4   | 3        | 16.8   |
|      | May   | 7    | 0.701     | 0      | 2      | 1      | 1.6    | 5      | 10.3      | 43.9   | 1.3    | 0        | 18.4   |
| 1991 | l Apr | 3    | 1.311     | 0      |        |        | 5.5    | 8.1    | 0.2       | 10.7   | 0      | 5        | 23.4   |
|      | Jun   | 7    | 1.863     | 20     | 0.7    | 0      | 50.1   | 28.2   | 9.7       | 13.4   | 5.7    | 28.8     | 21.7   |
|      | Nov   | 12   | 0.875     | 0      | 14.2   | 16.3   | 60.1   | 1.5    | 80.8      | 69.3   | 2.3    | 11.2     | 38.6   |
| 1992 | 2 Mar | 6    | 1.067     | 0      |        | 0      |        | 15     | 4.8       | 9.6    | 2.2    |          | 5.8    |
|      | May   | 12   | 2.154     | 3.6    | 17.1   | 19.8   |        | 40.7   | 3.9       | 69.9   | 74.1   | 38.2     | 0.6    |
|      | Sep   | 8    | 2.135     | 3.8    | 24.1   | 49.5   |        | 11.9   | 0.4       | 60.1   | 64     | 21.2     | 42     |
|      | Nov   | 19   | 1.675     | 0.2    | 5.7    | 0.7    | 2.4    | 18.9   | 0         | 0,     | 69.6   | 1.5      | 0      |
| 199  | 3 Mar | 9    | 1.115     | 0      | 0      | 0      | 9.2    | 5.7    | 19.6      | 61     | 0.2    | 7.5      | 93.4   |
|      |       |      |           |        |        |        | •      |        |           |        |        |          |        |

Source: Guaraguao Discharge; Q(m3/s): INDRHI Rainfall (nun): Barraquito Station

D

# Table I.4.3 The Calculation of Multiple Regression Equation

 $Y=a+b1 \times X1 + b2 \times X2 + .... + bn \times Xn$ 

where, Y; Guaroguao Discharge (m3/s) b1,b2,—,bn; Coefficient X1,X2,—,Xn; Baraquito Rainfall (mm)

| त्र            | 0.77561032<br>0.12669226<br>#N/A<br>#N/A<br>#N/A                                                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| рI             | 0.00278092<br>0.00362291<br>#N/A<br>#N/A<br>#N/A                                                                                                       |
| b2             | 0.00739598 0.00<br>0.00301334 0.00<br>#N/A #<br>#N/A #                                                                                                 |
| <b>b</b> 3     | 5 0.0013636 0.00353242 0.0<br>5 0.00200614 0.00269783 0.0<br>#N/A #N/A #N/A<br>#N/A #N/A #N/A                                                          |
| Þ4             | 0.0013636<br>0.00200614<br>#N/A<br>#N/A<br>#N/A                                                                                                        |
| 92             | 00395546<br>00190758<br>#N/A<br>#N/A<br>#N/A                                                                                                           |
| 9q             | 0.00242199 0.0<br>0.00176823 0.0<br>#N/A<br>#N/A<br>#N/A                                                                                               |
| P2             | 0.00623847<br>0.0024771<br>#N/A<br>#N/A<br>#N/A                                                                                                        |
| 89             | 0.00655538 0.00584172 0.00713282<br>0.00164185 0.00267719 0.00246653<br>0.77921234 0.54560647 #N/A<br>10.9740619 71 #N/A<br>22.6682922 21.1357358 #N/A |
| <del>p</del> 9 | 0.00655538 0.00384172 0.00713282<br>0.00164185 0.00267719 0.00246653<br>0.54560647 #N/A<br>0.9740619 71 #N/A<br>0.26682922 21.1357358 #N/A             |
| b10            | 0.00655538 0.00384172<br>0.00164185 0.00267719<br>0.77921234 0.54560647<br>10.9740619 71<br>32.6682922 21.1357358                                      |

Remark: 0.7762.1234 : Correlation Coefficient

Table 1.4.4 Rainfall and Effective Rainfall

| Annual        |              | 2021.08 | 1737.96 | 2      | 1599.08 | 1599.08 | 1599.08<br>1496.39<br>1388.70 | 1599.08<br>1496.39<br>1388.70<br>1321.13 | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22 | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22                                             | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22  | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22<br>1187.98 | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22<br>1187.98<br>1139.44   | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22<br>1187.98<br>1139.44<br>1108.14 | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22<br>1187.98<br>1139.44<br>1108.14<br>1075.39 | 1599.08<br>1496.39<br>1388.70<br>1321.13<br>1262.22<br>1187.98<br>1139.44<br>1108.14<br>1075.39 |
|---------------|--------------|---------|---------|--------|---------|---------|-------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Dec           |              | 126.71  | 108 64  |        | 100.25  | 100.25  | 100.25<br>93.81<br>87.06      | 100.25<br>93.81<br>87.06<br>82.82        | 100.25<br>93.81<br>87.06<br>82.82<br>79.13          | 100.25<br>93.81<br>87.06<br>82.82<br>79.13                                                      | 100.25<br>87.06<br>87.82<br>79.13                    | 100.25<br>93.81<br>87.06<br>82.82<br>79.13<br>96.13            | 100.25<br>93.81<br>87.06<br>82.82<br>79.13<br>96.13<br>87.64                | 100.25<br>93.81<br>87.06<br>82.82<br>79.13<br>96.13<br>87.64<br>87.64                | 100.25<br>93.81<br>87.06<br>82.82<br>79.13<br>96.13<br>87.64<br>83.45<br>79.26                  | 100.25<br>87.06<br>87.05<br>82.82<br>96.13<br>79.15<br>79.26<br>74.88                           |
| Nov           |              | 188.25  | 161.42  | 140.05 | 140.77  | 139.38  | 139.38                        | 129.35                                   | 139.38<br>129.35<br>123.06<br>117.57                | 139.38<br>129.35<br>123.06<br>117.57                                                            | 139.38<br>129.35<br>123.06<br>117.57                 | 139.38<br>129.35<br>123.06<br>117.57<br>103.90<br>102.56       | 139.38<br>129.35<br>123.06<br>117.57<br>103.90<br>102.56                    | 139.38<br>129.35<br>123.06<br>117.57<br>103.90<br>102.56<br>101.31                   | 139.38<br>129.35<br>123.06<br>117.57<br>103.90<br>102.56<br>101.31<br>99.11                     | 139.38<br>123.06<br>117.57<br>103.90<br>102.56<br>101.31<br>99.11<br>96.81                      |
| ಕ             |              | 174.34  | 149.49  | 137.94 |         | 129.08  | 129.08                        | 119.08                                   | 129.08<br>119.79<br>113.96<br>108.88                | 129.08<br>119.79<br>113.96<br>108.88                                                            | 129.08<br>119.79<br>113.96<br>108.88                 | 129.08<br>113.96<br>113.96<br>108.88<br>103.21                 | 129.08<br>113.96<br>108.88<br>103.21<br>101.44<br>98.78                     | 129.08<br>113.96<br>103.21<br>101.44<br>98.78                                        | 129.08<br>113.96<br>103.21<br>101.44<br>98.78<br>92.88                                          | 129.08<br>113.96<br>103.21<br>101.44<br>98.78<br>96.74<br>90.14                                 |
| Sep           |              | 158.88  | 136.23  | 125.71 |         | 117.64  | 117.64                        | 117.64<br>109.17<br>103.86               | 117.64<br>109.17<br>103.86<br>99.23                 | 117.64<br>109.17<br>103.86<br>99.23                                                             | 117.64<br>109.17<br>103.86<br>99.23                  | 109.17<br>109.17<br>103.86<br>99.23<br>102.43<br>98.39         | 109.17<br>109.17<br>103.86<br>99.23<br>102.43<br>98.39<br>95.66             | 109.17<br>109.17<br>103.86<br>99.23<br>102.43<br>98.39<br>98.39                      | 109.17<br>109.17<br>103.86<br>99.23<br>98.39<br>95.66<br>97.89                                  | 109.17<br>109.17<br>103.86<br>99.23<br>98.39<br>95.66<br>91.87<br>87.89                         |
| Aug           |              | 204.58  | 175.42  | 161.86 |         | 151.47  | 151.47                        | 151.47<br>140.57<br>133.73               | 151.47<br>140.57<br>133.73<br>127.77                | 151.47<br>140.57<br>133.73<br>127.77                                                            | 151.47<br>140.57<br>133.73<br>127.77                 | 151.47<br>140.57<br>133.73<br>127.77<br>104.72                 | 151.47<br>140.57<br>133.73<br>127.77<br>104.72<br>103.26<br>102.58          | 151.47<br>140.57<br>133.73<br>127.77<br>104.72<br>103.26<br>102.58                   | 151.47<br>140.57<br>133.73<br>127.77<br>104.72<br>103.26<br>101.89<br>99.39                     | 151.47<br>140.57<br>135.73<br>127.77<br>104.72<br>103.26<br>101.89<br>99.39                     |
| <b>J</b>      | m)           | 192.77  | 165.29  | 152,52 |         | 142.73  | 142.73                        | 142.73<br>132.45<br>126.01               | 142.73<br>132.45<br>126.01<br>120.39                | 142.73<br>132.45<br>126.01<br>120.39<br>Il (mm)                                                 | 142.73<br>132.45<br>126.01<br>120.39<br>Ill (mm)     | 142.73<br>132.45<br>126.01<br>120.39<br>Ul (mm)<br>104.13      | 142.73<br>132.45<br>126.01<br>120.39<br>104.13<br>104.13<br>102.71          | 142.73<br>132.45<br>126.01<br>120.39<br>104.13<br>102.75<br>102.75                   | 142.73<br>132.45<br>126.01<br>120.39<br>11 (mm)<br>104.13<br>102.75<br>102.71<br>99.88          | 142.73<br>132.45<br>126.01<br>120.39<br>ul (mm)<br>104.13<br>102.71<br>102.11<br>99.88          |
| Jun           | Rainfall (mm | 180.93  | 155.13  | 143.15 |         | 133.96  | 133.96                        | 153.96<br>124.32<br>118.27               | 133.96<br>124.32<br>118.27<br>112.99                | 9 133.96 142.7<br>8 124.32 132.4<br>9 118.27 126.0<br>2 112.99 120.2<br>Effective Rainfall (mm) | 133.96<br>124.32<br>118.27<br>112.99<br>ctive Rainfa | 133.96<br>124.32<br>118.27<br>112.99<br>ctive Rainfa<br>103.53 | 133.96<br>124.32<br>118.27<br>112.99<br>103.53<br>103.53<br>102.24<br>99.98 | 133.96<br>124.32<br>118.27<br>112.99<br>103.53<br>102.24<br>99.98                    | 133.96<br>124.32<br>118.27<br>112.99<br>103.53<br>102.24<br>99.98<br>97.87                      | 133.96<br>124.32<br>118.27<br>112.99<br>102.24<br>102.24<br>99.98<br>97.87<br>95.01             |
| Mav           |              | 307.79  | 263.91  | 243.52 |         | 227.89  | 227.89                        | 227.89 211.48 201.19                     | 227.89<br>211.48<br>201.19<br>192.22                | 227.89<br>201.19<br>192.22<br>Effe                                                              | 227.89<br>201.18<br>201.19<br>192.22<br>107.00       | 227.89<br>211.48<br>201.19<br>192.22<br>107.00<br>107.00       | 227.89<br>211.48<br>201.19<br>192.22<br>107.00<br>107.00                    | 227.89<br>211.48<br>201.19<br>192.22<br>107.00<br>107.00<br>106.66<br>106.88         | 227.89<br>211.48<br>201.19<br>192.22<br>107.00<br>107.00<br>106.66<br>105.66                    | 227.89<br>211.48<br>201.19<br>192.22<br>107.00<br>107.00<br>106.66<br>105.08<br>105.88          |
| Apr           |              | 164.08  | 140.69  | 129.82 |         | 121.48  |                               | ilaile.                                  | 121.48<br>112.74<br>107.26<br>102.47                | 121.48<br>112.74<br>107.26<br>102.47                                                            | 121.48<br>112.74<br>107.26<br>102.47                 | 121.48<br>112.74<br>107.26<br>102.47<br>102.69                 | 12.148<br>112.74<br>107.26<br>102.47<br>102.69<br>99.41<br>96.91            | 121.48<br>112.74<br>107.26<br>102.47<br>102.69<br>99.41<br>96.91                     | 121.48<br>112.74<br>107.26<br>102.47<br>102.69<br>99.41<br>96.91<br>93.67                       |                                                                                                 |
| Mar           |              | 115.42  | 98.96   | 91.32  |         | 85.45   | 79.30                         | 79.30                                    | 79.30<br>75.45<br>72.08                             | 79.30<br>75.45<br>72.08                                                                         | 75.45<br>75.45<br>72.08<br>90.82                     | 85.45<br>79.30<br>75.45<br>72.08<br>90.82                      | 85.45<br>79.30<br>75.45<br>72.08<br>90.82<br>82.61<br>77.65                 | 85.45<br>79.30<br>75.45<br>72.08<br>82.61<br>77.65                                   | 85.45<br>79.30<br>72.08<br>90.82<br>82.61<br>77.65<br>73.83                                     | 85.45<br>79.30<br>75.45<br>72.08<br>82.61<br>77.65<br>73.83<br>69.83                            |
| Fcb           |              | 95.07   | 81.52   | 75.22  | 70.20   | /V.J.V  | 65,32                         | 65.32                                    | 65.32<br>62.14<br>59.37                             | 65.32<br>62.14<br>59.37                                                                         | 65.32 62.14 59.37                                    | 65.32<br>62.14<br>62.14<br>59.37<br>80.08                      | 65.32<br>62.14<br>59.37<br>80.08<br>71.28<br>67.01                          | 65.32<br>62.14<br>59.37<br>80.08<br>71.28<br>67.01<br>63.05                          | 65.32<br>65.32<br>62.14<br>59.37<br>71.28<br>67.01<br>63.05<br>58.90                            | 65.32<br>62.14<br>59.37<br>71.28<br>67.01<br>63.05<br>58.90                                     |
| Jan           |              | 112.26  | 96.26   | 88.82  | 4, 50   | 83,12   | 77.13                         | 77.13                                    | 77.13<br>73.38<br>70.11                             | 77.13                                                                                           | 77.13                                                | 77.13<br>77.13<br>70.11<br>89.34<br>80.86                      | 83.12<br>77.13<br>73.38<br>70.11<br>89.34<br>80.86                          | 83.12<br>77.13<br>73.38<br>70.11<br>89.34<br>80.86<br>76.02                          | 83.12<br>77.13<br>73.38<br>70.11<br>80.86<br>76.02<br>72.32<br>68.42                            | 83.12<br>77.13<br>73.38<br>70.11<br>80.86<br>76.02<br>72.32<br>68.42<br>68.42                   |
| Return Period |              | 1/2     | 1/5     | 1/10   |         | 1/20    | 1/20                          | 1/20                                     | 1/20 1/30 1/200                                     | 1/20<br>1/50<br>1/100<br>1/200                                                                  | 1/20<br>1/50<br>1/100<br>1/200                       | 1/20<br>1/30<br>1/200<br>1/200<br>1/2                          | 1/20<br>1/50<br>1/100<br>1/200<br>1/2<br>1/5                                | 1/20<br>1/50<br>1/100<br>1/200<br>1/2<br>1/5<br>1/10                                 | 1/20<br>1/50<br>1/100<br>1/200<br>1/2<br>1/5<br>1/50                                            | 1/20<br>1/30<br>1/100<br>1/200<br>1/2<br>1/30<br>1/30<br>1/30                                   |

**Table I.4.5 Calculation of Guaraguao Spring Discharge** 

|      |       |       |       |       | 1     |       |       |       |       |       | Unit: m3 |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|
| Date | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV      | DEC   |
|      |       |       |       |       |       |       |       |       |       |       |          |       |
| 1    | 1.908 | 1,318 | 0.936 | 1.207 | 1.272 | 1.866 | 2.314 | 2.208 | 2.244 | 1.610 | 1.805    | 2.007 |
| 2    | 1.882 | 1.278 | 0.906 | 1.204 | 1.298 | 2.092 | 2.161 | 2.178 | 2.032 | 1.691 | 1.852    | 1.936 |
| 3    | 1.769 | 1.197 | 0.883 | 1.142 | 1.332 | 2.139 | 2.186 | 2.091 | 2.033 | 1.601 | 1.761    | 1.919 |
| 4    | 1.616 | 1.155 | 0.991 | 1.077 | 1.346 | 2.331 | 2.132 | 2.234 | 1.985 | 1.567 | 1.765    | 1.953 |
| 5    | 1.545 | 1.157 | 1.032 | 1.051 | 1.314 | 2.591 | 2.190 | 2.026 | 1.939 | 1.605 | 1.848    | 1.782 |
| 6    | 1.686 | 1.237 | 1.082 | 1.035 | 1.296 | 2.731 | 2.122 | 2.078 | 1.934 | 1.636 | 1.782    | 1.749 |
| 7    | 1.700 | 1.275 | 1.084 | 1.078 | 1.249 | 2.881 | 2.093 | 2.040 | 2.135 | 1.564 | 1.791    | 1.829 |
| 8    | 1.637 | 1.242 | 1.107 | 1.104 | 1.207 | 2.915 | 1.947 | 2.150 | 2.116 | 1.535 | 1.786    | 1.876 |
| 9    | 1.612 | 1.201 | 1.086 | 1.151 |       | 2,954 | 1.940 | 2.098 | 1.989 | 1,574 | 1.819    | 1.806 |
| 10   | 1.613 | 1.272 | 1.075 | 1.159 | 1.213 | 2.884 | 2 076 | 2.256 | 1.870 | 1.435 | 1.758    | 2.079 |
| 11   | 1.270 | 1.381 | 1.075 | 1.174 | 1,558 | 2.663 | 2.046 | 2.083 | 1.871 | 1.583 | 1.759    | 2.030 |
| 12   | 1.229 | 1.284 | 1.046 | 1.176 | 1.865 | 2.592 | 2.052 | 2.091 | 1.841 | 1.675 | 1.750    | 1.890 |
| 13   | 1.252 | 1.259 | 1.081 | 1.149 | 2.027 | 2.558 | 2.153 | 2.012 | 1.946 | 1.725 | 1.683    | 1.822 |
| 14   | 1.268 | 1.197 | 1.074 | 1.116 | 2.212 | 2.399 | 2.247 | 2.006 | 1.810 | 1.803 | 1.595    | 1.902 |
| 15   | 1.430 | 1.158 | 1.081 | 1.128 | 2.238 | 2.186 | 2.211 | 1.868 | 1.882 | 1.739 | 1.587    | 2.049 |
| 16   | 1.553 | 1.069 | 1.045 | 1.050 | 2.230 | 2.320 | 2.239 | 1.940 | 1.875 | 1.641 | 1.630    | 2.000 |
| 17   | 1.555 | 1.030 | 1.070 | 1.041 | 2.016 | 2.618 | 2.211 | 2.194 | 1.810 | 1.619 | 1.629    | 2.077 |
| 18   | 1.419 | 1.031 | 1.073 | 1.116 | 1.615 | 2.904 | 1.983 | 2.199 | 1.632 | 1.568 | 1.896    | 2.050 |
| 19   | 1.346 | 1.028 | 1.149 | 1.252 | 1.599 | 3.228 | 1.905 | 2.206 | 1.693 | 1.579 | 2.460    | 1.927 |
| 20   | 1.369 | 1.092 | 1.213 | 1.211 | 1.521 | 3.347 | 1.852 | 2.037 | 1.790 | 1.634 | 2.534    | 1.561 |
| 21   | 1.360 | 1.230 | 1.217 | 1.237 | 1,549 | 3.044 | 1.864 | 2.117 | 1.731 | 1.944 | 2.438    | 1.462 |
| 22   | 1.314 | 1.301 | 1.196 | 1.230 | 1.878 | 2.365 | 1.985 | 2.057 | 1.880 | 1.909 | 1.962    | 1.467 |
| 23   | 1.362 | 1.306 | 1.152 | 1.169 | 2.088 | 2.276 | 1.928 | 2.040 | 1.893 | 1.964 | 2.015    | 1.415 |
| 24   | 1.313 | 1.262 | 1.002 | 1.167 | 2.152 | 1.989 | 1.983 | 1.952 | 1.908 | 1,831 | 1.914    | 1.449 |
| 25   | 1.308 | 1.174 | 0.989 | 1.142 | 2.122 | 1,530 | 2.118 | 2.168 | 1.876 | 1.924 | 1.664    | 1.783 |
| 26   | 1.299 | 0.998 | 0.962 | 1.137 | 2.253 | 1,555 | 2.248 | 2.172 | 1,906 | 1.789 | 1,841    | 1.798 |
| 27   | 1.354 | 0.943 | 1.008 | 1.161 | 2.195 | 1,651 | 2.273 | 2.319 | 1.613 | 1.713 | 1,863    | 1.791 |
| 28   | 1.350 | 0.937 | 1.083 | 1.222 | 2.079 | 1.786 | 2.102 | 2,473 | 1.553 | 1.621 | 1.898    | 1.848 |
| 29   | 1.375 |       | 1.233 | 1.194 | 2.039 | 1.929 | 2.068 | 2.644 | 1.621 | 1.619 | 2.007    | 1.921 |
| 30   | 1.341 |       | 1,264 | 1.228 | 1,906 | 2.182 | 2.026 | 2.457 | 1.656 | 1.613 | 2.255    | 1.298 |
| 31   | 1.349 |       | 1.295 |       | 1.780 |       | 2.265 | 2.358 |       | 1.594 |          | 1.321 |
| Ave  | 1.464 | 1.179 | 1.080 | 1.150 | 1.726 | 2,417 | 2.094 | 2.154 | 1.869 | 1.674 | 1.878    | 1.800 |
| Rank | 9     | 10    | 12    | 11    | 7     | 1     | 3     | 2     | - 5   | 8     | 4        | 6     |

Table I.4.6 Result of Hydrometry at Guaraguao (1/4)

| Date   | Month | Year | Time          | Main Canal | Sub Canal | unit: n<br>Tota |
|--------|-------|------|---------------|------------|-----------|-----------------|
| Date   | Monte | 1(4) | 111110        | wani Cana  | ono Canai | 100             |
| 18     | Aug.  | 91   | 15:47         | 1.349      | 0.277     | 1.62            |
|        |       | 94   | 7:01          | 1.263      |           | 1.58            |
| 19     | Aug.  |      |               |            | 0.318     |                 |
| 19     | Aug.  | 94   | 16:53         | 1.458      | 0.161     | 1.61            |
| 20     | Aug.  | 94   | 7:00          | 1.739      | 0.234     | 1.97            |
| 20     | Aug.  | 94   | 16:52         | 1,564      | 0.486     | 2.05            |
| 21     | Aug.  | 94   | 7:10          | 1,289      | 0.391     | 1.68            |
| 21     | Aug.  | 94   | 15:41         | 1.320      | 0.298     | 1.61            |
| 22     | Aug.  | 94   | 7:24          | 1.284      | 0.392     | 1.67            |
| 22     | Aug.  | 94   | 16:59         | 1.209      | 0.386     | 1.59            |
|        |       |      |               |            |           |                 |
| 23     | Aug.  | 94   | 17:52         | 1.302      | 0.260     | 1.56            |
| 25     | Aug.  | 94   | 7:03          | 1.351      | 0.324     | 1.67            |
| 26     | Aug.  | 94   | 19:31         | 1.401      | 0.316     | 1.71            |
| 27     | Aug.  | 94   | 17:26         | 1,218      | 0.332     | 1.55            |
| 28     | Aug.  | 94   | 7:00          | 1.526      | 0.246     | 1.77            |
| 28     | Aug.  | 94   | 17:00         | 1.364      | 0.275     | 1.63            |
| 29     | Aug.  | 94   | 7:00          | 1.424      | 0.307     | 1.73            |
| 31     | Aug.  | 94   | 7:00          | 1.238      | 0.266     | 1.50            |
| 31     | Aug.  | 34   | 7.00          | 1.236      | 0.200     | 1.50            |
| 1      | Sep.  | 91   | 7:00          | 1.327      | 0.242     | 1.56            |
|        |       | 91   | 17:06         | 1.118      | 0.275     | 1.39            |
| 1      | Sep.  |      |               |            |           |                 |
| 2      | Sep.  | 94   | 7:00          | 1.260      | 0.317     | 1,57            |
| 2<br>3 | Sep.  | 94   | 17.00         | 1.133      | 0.463     | 1.59            |
| 3      | Sep.  | 94   | 7:00          | 1.198      | 0.406     | 1.60            |
| 3      | Sep.  | 94   | 17:00         | 1.172      | 0.249     | 1.42            |
| 4      | Sep.  | 94   | 7:00          | 1.210      | 0.291     | 1.50            |
| 4      | Sep.  | 94   | 17:00         | 1.224      | 0.266     | 1.49            |
| 5      | Sep.  | 94   | 7:00          | 1.666      | 0.362     | 2.02            |
| 6      | Sep.  | 94   | 17:10         | 1.272      | 0.232     | 1.50            |
| 7      |       | 94   |               |            |           |                 |
| 7      | Sep.  |      | 7:05          | 1.414      | 0.217     | 1.63            |
| 1      | Sep.  | 94   | 17:00         | 1.302      | 0.250     | 1,55            |
| 8      | Sep.  | 94   | 7:01          | 1.372      | 0.210     | 1.58            |
| 14     | Sep.  | 94   | <b>7:00</b> . | 1.812      | 0.645     | 2.45            |
| 14     | Sep.  | 94   | 17:00         | 1.602      | 0.393     | 1.99            |
| - 15   | Sep.  | 94   | 7:09          | 1.717      | 0.436     | 2.15            |
| 15     | Sep.  | 94   | 17:00         | 1.572      | 0.439     | 2.01            |
| 16     | Sep.  | 94   | 7:09          | 1.493      | 0.385     | 1.87            |
| 16     | Sep.  | 94   | 17:00         | 1,364      | 0.388     | 1.75            |
| 17     | Sop.  | 94   | 7:23          | 1.534      | 0.366     | 1.90            |
|        | Sep.  |      |               |            |           |                 |
| 17     | Sep.  | 94   | 17:10         | 1.260      | 0.247     | 1.50            |
| 18     | Sep.  | 94   | 7:19          | 1.402      | 0.270     | 1.67            |
| 18     | Sep.  | 94   | 17:00         | 1.193      | 0.348     | 1.54            |
| 19     | Sep.  | 94   | 7:07          | 1.309      | 0.353     | 1,66            |
| 19     | Sep.  | 94   | 17:00         | 1.443      | 0.213     | 1,65            |
| 20     | Sep.  | 94   | 7:14          | 1.328      | 0.190     | 1.51            |
| 20     | Sep.  | 94   | 17:00         | 1.306      | 0.226     | 1.53            |
| 21     | Can   | 94   | 17:00         | 1.213      | 0.354     | 1.56            |
|        | Sep.  |      |               |            |           |                 |
| 23     | Sep.  | 94   | 17:00         | 1.424      | 0.029     | 1.45            |
| 24     | Sep.  | 94   | 17:00         | 1.346      | 0.253     | 1.59            |
| 25     | Sep.  | 94   | 17:00         | 1.641      | 0.426     | 2.06            |
| 26     | Sep.  | 94   | 17:00         | 1.494      | 0.448     | 1.94            |
| 27     | Sep.  | 94   | 17:00         | 1.752      | 0.652     | 2.40            |
| 28     | Sep.  | 94   | 17:00         | 1.481      | 0.429     | 1.910           |
| 29     | Sep.  | 94   | 17:00         | 1.295      | 0.418     | 1.71            |
| 30     | Sep.  | 94   | 17:00         | 1.284      | 0.344     | 1.628           |
| J (    | υcp.  | 7 T  | 17.00         | 2.4UT      | V.377     | 1,024           |

Table I.4.6 Result of Hydrometry at Guaraguao (2/4)

| Date | Month | Year | Time  | Main Canal | Sub Canal | unit: m3/<br>Total |
|------|-------|------|-------|------------|-----------|--------------------|
| . 1  | Oct.  | 94   | 17:00 | 1.114      | 0.316     | 1.430              |
| 2    | Oct.  | 94   | 17:00 | 1.255      | 0.256     | 1.511              |
| 3    | Oct.  | 94   | 17.00 | 1.043      | 0.305     | 1.348              |
| 4    | Oct.  | 94   | 17.00 | 1.092      | 0.321     | 1.413              |
| 5    | Oct.  | 94   | 17:00 | 1.135      | 0.321     | 1.406              |
| 6    | Oct.  | 94   | 17.00 | 1.083      | 0.304     | 1.387              |
| 7    | Oct.  | 91   | 17,00 | 1.285      | 0.311     | 1.596              |
| 8    | Oct.  | 94   | 17.00 | 1.304      | 0.305     | 1,609              |
| 9    | Oct.  | 94   | 17.00 | 1.204      | 0.237     | 1.441              |
| ĺ1   | Oct.  | 94   | 17.00 | 1.540      | 0.322     | 1.862              |
| 14   | Oct.  | 91   | 17.08 | 1.363      | 0.320     | 1.683              |
| 15   | Oct.  | 91   | 17:00 | 1.456      | 0.275     | 1,731              |
| 17   | Oct.  | 94   | 17:00 | 1.446      | 0.315     | 1.761              |
| 18   | Oct.  | 94   | 17:00 | 1.951      | 0.000     | 1.951              |
| 19   | Oct.  | 94   | 17:00 | 1.226      | 0.412     | 1.638              |
| 20   | Oct.  | 94   | 17.00 | 1.675      | 0.321     | 1.996              |
| 21   | Oct.  | 94   | 17:00 | 1.397      | 0.265     | 1.662              |
| 22   | Oct.  | 94   | 17:00 | 1.459      | 0.260     | 1.719              |
| 23   | Oct.  | 94   | 17:00 | 1.398      | 0.229     | 1.627              |
| 25   | Oct.  | 94   | 17:00 | 1,777      | 0.123     | 1,900              |
| 28   | Oct.  | 94   | 17:00 | 1.614      | 0.222     | 1.836              |
| 29   | Oct.  | 94   | 17:00 | 1,290      | 0.233     | 1.523              |
| 30   | Oct.  | 94   | 17:00 | 1.423      | 0.271     | 1.694              |
| 31   | Oct.  | 94   | 17:00 | 1.507      | 0.129     | 1.636              |
| 1    | Nov.  | 94   | 17:00 | 1.465      | 0.268     | 1.733              |
| 2    | Nov.  | 94   | 17:00 | 1.324      | 0.323     | 1.647              |
| 3    | Nov.  | 94   | 17.00 | 1.286      | 0.200     | 1.486              |
| 4    | Nov.  | 94   | 17:00 | 1.321      | 0.124     | 1,445              |
| 5    | Nov.  | 94   | 17:00 | 1.282      | 0.197     | 1.479              |
| 6    | Nov.  | 94   | 17:00 | 1.341      | 0.189     | 1.530              |
| 7    | Nov.  | 94   | 17:00 | 1.663      | 0.164     | 1.827              |
| 9    | Nov.  | 94   | 17.00 | 1,450      | 0.106     | 1.556              |
| 13   | Nov.  | 94   | 17:00 | 1.581      | 0.375     | 1.956              |
| 14   | Nov.  | 94   | 17.00 | 1,569      | 0.286     | 1.855              |
| 15   | Nov.  | 94   | 17:00 | 1.350      | 0.257     | 1.607              |
| 16   | Nov.  | 94   | 17.00 | 1,299      | 0.299     | 1.598              |
| 17   | Nov.  | 94   | 17:00 | 1.577      | 0.309     | 1.886              |
| 18   | Nov.  | 94   | 17:00 | 1.304      | 0.242     | 1.546              |
| 19   | Nov.  | 94   | 17:00 | 1.344      | 0.290     | 1.634              |
| 20   | Nov.  | 94   | 17:00 | 1.387      | 0.233     | 1.620              |
| 21   | Nov.  | 94   | 17:00 | 1,577      | 0.243     | 1.820              |
| 23   | Nov.  | 94   | 17:00 | 1.298      | 0.250     | 1,548              |
| 28   | Nov.  | 94   | 17:00 | 1.276      | 0.280     | 1.556              |
| 29   | Nov.  | 94   | 17:00 | 1.188      | 0.298     | 1.486              |
| 30   | Nov.  | 94   | 17:00 | 1.295      | 0.269     | 1.564              |

Table I.4.6 Result of Hydrometry at Guaraguao (3/4)

|                  |              |          |       |            |           | unit: m |
|------------------|--------------|----------|-------|------------|-----------|---------|
| Date             | Month        | Year     | Time  | Main Canal | Sub Canal | Total   |
| 1                | Dec          | 94       | 17:00 | 1.289      | 0.276     | 1.565   |
| 1                |              | 94<br>94 | 17:00 | 1.597      | 0.304     | 1.901   |
| 2                | Dec          |          | 17:00 | 1.105      | 0.304     | 1.397   |
| 3                | Dec          | 94       |       |            |           |         |
| 2<br>3<br>4<br>5 | Dec          | 94       | 17.00 | 1.429      | 0.257     | 1.686   |
| 5                | Dec          | 94       | 17:00 | 1.445      | 0.283     | 1.728   |
| 6                | Dec          | 94       | 17:00 | 2.059      | 0.306     | 2,365   |
| 7<br>8<br>9      | Dec          | 94       | 17.00 | 1.966      | 0.229     | 2,195   |
| 8                | Dec          | 94       | 17.00 | 1.404      | 0.242     | 1,646   |
|                  | Dec          | 94       | 17:00 | 1.380      | 0.288     | 1.668   |
| 11               | Dec          | 94       | 17:00 | 1.074      | 0.304     | 1.378   |
| 14               | Dec          | 94       | 17:00 | 1.482      | 0.332     | 1.814   |
| 15               | Dec          | 94       | 17.00 | 1.381      | 0.261     | 1,642   |
| 16               | Dec          | 94       | 17:00 | 1.414      | 0.274     | 1.688   |
| 17               | Dec          | 94       | 17:00 | 1.159      | 0.190     | 1.349   |
| 18               | Dec          | 94       | 17:00 | 1.130      | 0.318     | 1,448   |
| 19               | Dec          | 94       | 17:00 | 1.323      | 0.262     | 1.585   |
| 20               | Dec          | 94       | 17:00 | 1.371      | 0.250     | 1.621   |
| 21               | Dec          | 94       | 17:00 | 1.383      | 0.298     | 1.681   |
| 22               | Dec          | 94       | 17:00 | 1.466      | 0.292     | 1.758   |
| 23               | Dec          | 94       | 17:00 | 1.398      | 0.280     | 1.678   |
| 25               | Dec          | 94       | 17:00 | 1.395      | 0.376     | 1.771   |
| 28               | Dec          | 94       | 17:00 | 1.608      | 0.000     | 1,608   |
| 29               | Dec          | 94       | 17:00 | 1,338      | 0.194     | 1.532   |
| 30               | Dec          | 94       | 17:00 | 1.311      | 0.284     | 1,595   |
| 31               | Dec          | 94       | 17:00 | 1.256      | 0.263     | 1,519   |
| 2                | Jan.         | 95       | 17:00 | 1.181      | 0.347     | 1.528   |
| 3                | Jan.         | 95       | 17:00 | 1.117      | 0.210     | 1.327   |
| 4                | Jan.         | 95       | 17:00 | 1,258      | 0.330     | 1.588   |
| 5                | Jan.         | 95       | 17:00 | 1.114      | 0.283     | 1.397   |
| 6                | Jan.         | 95       | 17:00 | 1.252      | 0.262     | 1.514   |
| 7                | Jan.         | 95       | 17:00 | 1,503      | 0.254     | 1.757   |
| 8                | Jan.         | 95       | 17:00 | 1.288      | 0.258     | 1.546   |
| 9                | Jan.         | 95       | 17:00 | 1.433      | 0.215     | 1.648   |
| 10               | Jan.         | 95       | 17:00 | 1.017      | 0.380     | 1.397   |
| 14               | Jan.         | 95       | 17:00 | 1.235      | 0.292     | 1,527   |
| 15               | Jan.         | 95       | 17:00 | 1.332      | 0.344     | 1.676   |
| 16               | Jan.         | 95       | 17:00 | 1.226      | 0.201     | 1.427   |
| 18               | Jan.         | 95       | 17:00 | 1.263      | 0.214     | 1.477   |
| 19               | Jan.         | 95       | 17:00 | 1,262      | 0.456     | 1.718   |
| 20               | Jan.         | 95       | 17.00 | 1.281      | 0.356     | 1.637   |
| 21               | Jan.         | 95       | 17:00 | 1,193      | 0.362     | 1.555   |
| 22               | Jan.         | 95       | 17:00 | 1.439      | 0.143     | 1.582   |
| 23               | Jan.         | 95       | 17:00 | 1,205      | 0.328     | 1.533   |
| 24               | Jan.<br>Jan. | 95       | 17.00 | 1.354      | 0.379     | 1.733   |
| 25               | Jan.<br>Jan. | 95<br>95 | 17:00 | 1.385      | 0.371     | 1.756   |
| 2 <i>3</i><br>26 | Jan.<br>Jan. | 95       | 17:00 | 1.458      | 0.221     | 1.679   |
| 30               | Jan.<br>Jan. | 95       | 17:00 | 1.204      | 0.300     | 1.504   |
| JU               | Jan.         | , ,      | 17,00 | 1.601      | 0,000     | 2.507   |

Table I.4.6 Result of Hydrometry at Guaraguao (4/4) unit: m3/s

|            |             |              |            |              |           | unit: m3/ |
|------------|-------------|--------------|------------|--------------|-----------|-----------|
| Date       | Month       | Year         | Time       | Main Canal   | Sub Canal | Total     |
| . <b>i</b> | Feb         | 95           | . 17:00    | 0.986        | 0.109     | 1.095     |
| 2          | Feb         | 95           | 17:00      | 1.285        | 0.205     | 1.490     |
| 3          | Feb         | 95           | 17:00      | 1.209        | 0.216     | 1.425     |
| 4          | Feb         | 95           | 17:00      | 1.229        | 0.261     | 1,490     |
| 5          | Feb         | 95           | 17.00      | 1,371        | 0.240     | 1.611     |
| 6          | Feb         | 95           | 17:00      | 1.167        | 0.251     | 1.418     |
| 7          | Feb         | 95           | 17:00      | 1.079        | 0.296     | 1,375     |
| 9          | Feb         | 95           | 17:00      | 0.804        | 0.386     | 1.190     |
| 9          | Feb         | 95           | 17.00      | 0.943        | 0.259     | 1.202     |
| 10         | Fcb         | 95           | 17:00      | 0.805        | 0.254     | 1.059     |
| 14         | Feb         | 95           | 17:00      | 1.402        | 0.250     | 1.652     |
| 15         | Feb         | 95           | 17:00      | 1.161        | 0.211     | 1.372     |
| 16         | Feb         | 95           | 17:00      | 1.103        | 0.330     | 1,433     |
| 22         | Feb         | 95           | 17:00      | 1.356        | 0.344     | 1.700     |
| 23         | Feb         | 95           | 17:00      | 1.112        | 0.327     | 1.439     |
| 24         | Feb         | 95           | 17:00      | 1.094        | 0.213     | 1.307     |
| 25         | Feb         | 95           | 17:00      | 1.119        | 0.295     | 1.434     |
| 26         | Feb         | 95           | 17:00      | 1.142        | 0.223     | 1.365     |
| 27         | Feb         | 95           | 17:00      | 1,238        | 0.278     | 1,516     |
| <u> </u>   | Average     |              |            | 1.343        | 0.286     | 1.629     |
|            | Portion = T | otal Average | / Main Can | al Average = |           | 1,213     |

Table I.4.7 Result of Hydrometry at Springs

|            |         |      |           | e e      | -        |        |         | Unit: m3/s |
|------------|---------|------|-----------|----------|----------|--------|---------|------------|
| Year       | Month   | Date | GUARAGUAO | LA CUEVA | LAGUNITA | LAGUNA | CERCADO | Source     |
| 1994       | Aug     | 19   | 2.128     | 0.382    | 1.481    | 0.428  | 0.624   | INDRHI     |
|            | Sep     | 7    | 1.485     | 0.511    | *        | *      | *       | INDRHI     |
|            |         | 16   | 1.429     | 0.654    | 1.156    | 0.446  | 0,538   | INDRHI     |
|            |         | 28   | 1.268     | 0.936    | 1.449    | 0.684  | 0.547   | INDRHI     |
|            | Oct     | 11   | 1.808     | 0.913    | 1.567    | 0.435  | 0.495   | INDRHI     |
|            | Nov     | 17   | 1.51      | 0.678    | 2.062    | 0.541  | 0.67    | INDRHI     |
| •          | Dec     | 6    | 2.246     | 0.598    | 2.353    | 0.756  | 1.048   | INDRHI     |
| 1995       | Jan     | 10   | 1.138     | 0.373    | 1.75     | 0.499  | 0.639   | INDRHI     |
|            | Feb     | 7    | 1.496     | 0.4      | 0.82     | 0.473  | 0,895   | JICA team  |
|            | ,       | 10   | 1,236     | 0.323    | 0.633    | 0.547  | 0.871   | JICA team  |
|            |         | 13   | 1.694     | 0.314    | 0.821    | 0.519  | 0.969   | JICA team  |
|            |         | 16   | 1,629     | 0.323    | 0.654    | 0,546  | 0.831   | IICA team  |
|            |         | 20   | *         | 0.279    | 0.76     | 0.501  | 0.739   | JICA team  |
|            |         | 23   | 1.626     | 0.309    | *        | 0.536  | 0.952   | JICA team  |
|            |         | 27   | 1.688     | 0.356    | *        | 0.51   | 0.766   | JICA team  |
|            | Mar     | 2    | 1.533     | 0.355    | 0.777    | 0.506  | 0.838   | JICA team  |
|            | **      | 6    | 1.863     | 0.286    | 0.742    | 0.528  | 0.752   | JICA team  |
|            |         | 9    | *         | *        | *        | 0.551  | *       | JICA team  |
| _a <u></u> | Average |      | 1.611     | 0.470    | 1.216    | 0.530  | 0.761   |            |
|            | Portion |      | 1.000     | 0.292    | 0,755    | 0.329  | 0.472   | •          |
|            |         |      |           |          |          |        |         |            |

Remark: (\*) Non Observation

Table I.4.8 Relationship between new irrigated area and required storage water

| (10):Lack of vater; (1)-(9)(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A:New irrigated area (ha) =       | 300    |         |         |         |        |        |        |        |        |          |              |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|---------|---------|---------|--------|--------|--------|--------|--------|----------|--------------|--------|
| (9):Unit water(gd/s/hs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Jan.   | Feb.    | Mar.    | Apr.    | Yay.   | Jun    | Ju).   | Aug.   | Sep.   | Oct.     | Nov.         | Dec.   |
| (2):Hird water (cq1/s/ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1):Spring water(m3/s)            | 1.774  | 1. 429  | 1. 309  | 1.391   | 2.092  | 2. 929 | 2 538  | 2.611  | 2. 265 | 2.029    | 2. 276       | 2. 182 |
| (3): Irrigable area(ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 0.402  | 0. 746  | 0.912   | 1. 061  | 0. 743 | 0.42   | 0.512  | 0. 953 | 0.908  | 0.688    | 0.311        | 0. 244 |
| (1):Tater rop. for 1300 ba(cs/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 4412.9 | 1915. 5 | 1389. 6 | 1313. 9 | 2815.6 | 6973.8 | 4957   | 2739.8 | 2491.5 | 2949. 1  | 7318.3       | 8912.6 |
| (g):Pixeter rop, for 1300 ba(cs/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (5)-Excess rater: (1)-(4)(e3/s) (5)-Excess rater: (1)-(4)(e3/s) (5)-Excess rater: (1)-(4)(e3/s) (5)-Excess rater: (1)0003 (5)-(4)-(4) (63/s) (6)-Excess rater: (1)0003 (7)-(4)-(4) (63/s) (8)-(4)-(4) (63/s) (9)-(4)-(4) (63/s) (9)-(4)-(4) (63/s) (10)-Lack of vater: (1)-(9)(e3/s) (                                                                                                                                                                                                                                   | (4): Vater rep. for 1300 ha(m3/s) |        |         |         | 1. 379  | 0.966  | 0.546  | 0. 656 | 1. 239 | 1. 180 | 0.891    | 0.401        | 0.317  |
| (6):Nonthly storage vater(1000e3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |         |         |         |        | 2. 383 | 1.872  | 1. 372 | 1. 085 | 1. 135   | 1.872        | 1.865  |
| (3):Accoss storage vater(1000e3) (3):Across vater reg. for 200ra(ea/s) (1):Beck annihity storage vater (2):Accoss vater reg. for A (ea/s) (3):Across vater reg. for A (ea/s) (3):Across vater reg. for A (ea/s) (4):Across vater reg. for A (ea/s) (5):Across vater reg. for A (ea/s) (4):Across vater reg. for A (ea/s) (4):Across vater reg. for A (ea/s) (5):Across vater reg. for A (ea/s) (5):Across vater reg. for A (ea/s) (6):Across vater reg. for A (ea/s) (6):Ac                                                                                                                                                                                                                                   |                                   |        |         |         |         |        |        |        |        | 2811.3 | 3038. 9  | 4851.4       | 4994.7 |
| (3):New water req. for 200°a(ad/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |         |         |         |        |        |        |        | 20694  |          |              | 33579  |
| (9)·(4)(8) (a3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 0. 121 | 0. 224  | 0. 283  | 0.318   |        |        |        |        |        |          |              |        |
| (10):Lack of water; (1) (9)(a3/a) (11):Req. santhly storage water (12):Accum. storage water(1000a3)  A:New intrigated area (ha): (23) (13):Req. santhly storage water(1000a3)  A:New intrigated area (ha): (23):Coun. storage water(1000a3)  A:New intrigated area (ha): (23):Coun. storage water(1000a3)  A:New intrigated area (ha): (23):Coun. storage water(1000a3)  A:New intrigated area (ha): (24):Coun. storage water(100a3)  A:New intrigated water (ha): (25):Coun. storage water(100a3)  A:New intrigated water (ha): (26):Coun. storage water(100a3)  A:New intrigated water (ha): (27):Coun. storage water(100a3)  A:New intrigated water (ha): (28):Coun. storage water(100a3)  A:New intrigated water (ha): (28):Coun. storage water(100a3)  A:New intrigated water (ha): (29):Coun. storage water(100a3)  A:New intrigated water (ha): (29):Coun. storage water(100a3)  A:New intrigated water (ha): (20):Coun. storage water (wal): (21):Req. manthly storage water (10):Lack of water; (1):(9)(a3/s): (10):Lack of                                                                                                                                                                                                                                   |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (11):Req. aanthly storage rater (12):Recus. storage spater(1000s3)  (8):New patter req. for A (sa/s)  (10):Aloes irrigated area (ha)  238  (8):New patter req. for A (sa/s)  (10):Aloes of vatter req. for A (sa/s)  (10):Aloes of vater (10):Aloes  (10):Aloes  (10):Aloes of vater (10):Aloes  (                                                                                                                                                                                                                                   | 15.7 3.72 3.72 3.73 3.73          |        |         |         |         |        |        |        |        |        |          |              |        |
| \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$317.8   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$39.86   \$ |                                   | 11.102 | 0.200   |         |         |        |        |        |        |        |          |              |        |
| A.New intrigated area (ha)   258   (8).New water req. for A (nd/s)   0.104   0.192   0.293   0.274   0.192   0.108   0.192   0.246   0.234   0.178   0.080   0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (8):New vater req. for A (a3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 258    | L       | 000,00  |         |        |        |        | 7      |        |          |              |        |
| (9)-(4)-(8) (a3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | 7      | 0, 192  | 0. 243  | 0. 274  | 0. 192 | 0. 108 | 0. 132 | 0. 246 | 0. 234 | 0. 178   | 0.080        | 0.063  |
| (10):Lack of vater: (1)-(9)(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (11):Req. manthly storage vater (1000a3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (12):Accum. storage vater (1000m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| A:Nev irrigated area (ha) = 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (8):Ner vater reg. for A (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 400    |         |         |         |        |        |        |        |        |          |              |        |
| (9)-(4)+(8) (a3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        | 0, 298  | 0. 377  | 0. 424  | 0. 297 | 0.168  | 0. 205 | 0.381  | 0.363  | 0.275    | 0. 124       | 0.098  |
| (10):lack of vater; (1)-(9)(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | T      |         |         |         |        |        |        |        | 1.544  | 1. 170   | 0.529        | 0.415  |
| (11):Req. manthly storage vater (1000a3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 1      |         |         |         |        |        |        |        |        |          |              |        |
| [12]:Accum. storage vater(100003)  A:New vater req. for A (m3/s)  0. 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| A:New irrigated area (ha) = 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |        |         |         |         |        |        | ] "    |        | i      |          |              |        |
| (8):New water req. for A (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 500    |         |         |         |        |        |        |        |        |          | l            |        |
| (9)=(4)+(8) (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | T      | 0.373   | 0.471   | 0. 531  | 0.372  | 0. 210 | 0. 256 | 0.477  | 0.451  | 0.311    | 0. 156       | 0. 122 |
| (10):Lack of vater; (1)-(9)(03/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |         |         |         |        |        |        |        |        | 1. 238   |              |        |
| (11):Req. manthly storage water (1000m3) 1035. 5 1337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | 1      | 0.086   |         |         |        | 2. 173 | 1.616  | 0.896  | 0.631  | 0.791    | 1. 716       | 1.743  |
| [12]:Accum. storage vater(1000v3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| A:New irrigated area (ha) = 600  (8):New water req. for A (o3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
| (8):New water req. for A (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 600    |         |         |         |        |        |        |        |        | <b>.</b> |              |        |
| (9)=(4)+(8) (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        | 0. 448  | 0. 565  | 0. 637  | 0. 446 | 0. 252 | 0. 307 | 0. 572 | 0.545  | 0.413    | 0. 187       | 0. 146 |
| (10):Lack of vater; (1)-(9)(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | T      |         |         |         |        |        |        | 1      | 1. 725 |          |              |        |
| (11):Req. manthly storage vater (1000m3) 1287.8 1612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |        | I       | -0.481  | -0.622  | 0. 680 |        |        |        |        | r        | 1. 685       | 1.718  |
| 120:Accum. storage vater(1000m3)   1287.8   2899.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |         | 1287. 8 | 1612    |        |        |        |        |        |          |              |        |
| A:New irrigated area (ha) = 700  (8):New water req. for A (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |        |         | 1287. 8 | 2899. 7 |        |        |        |        | L      |          |              |        |
| (9)=(4)+(8) (m3/s)  0.804 1.492 1.881 2.122 1.486 0.840 1.024 1.906 1.816 1.376 0.622 0.488 (10):Lack of vater; (1)-(9)(m3/s)  0.970 -0.063 -0.575 -0.728 0.606 2.089 1.514 0.705 0.419 0.653 1.654 1.691 (1):Req. manthly storage vater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 700    |         |         |         |        |        |        |        |        |          |              |        |
| (10):tack of vater; (1)-(9)(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (8):New water req. for A (m3/s)   | 0. 281 | 0. 522  | 0.659   | 0.743   | 0.520  | 0. 291 | 0.358  | 0.667  | 0. 636 | 0.482    | 0. 218       | 0. 171 |
| (10):tack of vater; (1)-(9)(m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 0.804  |         |         |         |        |        | 1. 024 | 1. 908 | 1.815  | 1.376    | 0. 622       | 0.488  |
| (11):Req. manthly storage water (1000m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 0. 970 | -0.063  | 0.575   |         |        | 2.089  | 1.514  | 0. 705 | 0.419  | 0.653    | 1.651        | 1. 694 |
| (12):Accum. storage water(1000m3)       1692.5       3579.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |        |         | 1       |         | T      |        |        |        |        |          |              |        |
| A:New irrigated area (ha) = 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |        |         |         |         |        |        |        |        |        | L        |              |        |
| (8):New pater req. for A (m3/s) (9):(4)+(8) (m3/s) (0):4(1)+(8) (m3/s) (10):Lack of vater; (1)-(9)(m3/s) (11):Req. manthly storage vater (13):(4):(4):(6):(4):(6):(6):(6):(6):(6):(6):(6):(6):(6):(6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 800    |         |         |         |        |        |        |        |        |          |              |        |
| (9)=(4)+(8) (03/s) 0.811 1.567 1.978 2.228 1.560 0.882 1.075 2.001 1.907 1.445 0.653 0.512 (10):Lack of vater; (1)-(9)(03/s) 0.930 -0.138 -0.669 -0.831 0.532 2.017 1.463 0.610 0.358 0.584 1.623 1.670 (11):Req. manthly storage vater 332.88 1792.4 2162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |        |         | 0. 751  | 0. 819  | 0.594  | 0.336  | 0.410  | 0. 762 | 0. 726 | 0.550    | 0. 249       | 0. 195 |
| (10):Lack of vater; (1)-(9)(03/s) 0.930 -0.138 -0.669 -0.831 0.532 2.017 1.453 0.610 0.358 0.584 1.623 1.670 (11):Req. manthly storage vater 332.88 1792.4 2162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |        |         |         |         |        |        |        |        |        | 1.415    | <del>,</del> |        |
| (11):Req. manthly storage water 332.88 1792.4 2162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |         |         |         | 1      | 7      |        |        |        | 1        |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |        |         |         |         |        |        |        |        |        |          |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (12):Accum. storage vater(1000m3) |        |         |         |         |        |        |        |        |        |          |              |        |

Table I.6.1 Calculation of Reference Crop Evapotranspiration

1

|                |                 |                                                     |      |      |       | TATE WAY |       | 5     | 100      | 2000 | לבי<br>בי |         |          |                 |
|----------------|-----------------|-----------------------------------------------------|------|------|-------|----------|-------|-------|----------|------|-----------|---------|----------|-----------------|
| (1) Tmean      | ပ               |                                                     | 23.6 | 23.6 | 24.2  | 25.4     | L.,   | 26.9  | 26.9     | 26.9 | 27.0      | 26.5    | 25.5     | 24.1 Table3.4.4 |
| (2) RHmean (%) | 3 (%)           | Mean Relative Humidity                              | 83.6 | 83.3 | 80.4  | 79.4     | 82.5  | 76.8  | 83.7     | 83.7 | 83.8      | 84.4    | 85.2     | 84.8 Table3.4.4 |
| 3              | mbar            | Saturation Vapour Pressure                          | 29.1 | 29.1 | 30.2  | 32.5     | 33.8  | 35.5  | <u> </u> | ļ    | 35.7      | 34.7    | <u> </u> | 30.0 App. 3     |
| (4)            | mbar            | Vapour Pressure; ed $= (2)x(3)$                     | 24.3 | 24.3 | 24.3  | 25.8     | 27.9  | 27.3  | 29.7     | 29.7 | 29.9      | 29.2    | 27.8     | 25.4            |
| (5) ea-ed      | mbar            | Vapour Pressure; ea-ed=(3)-(4)                      | 4.8  | 4.9  | 5.9   | 6.7      | 5.9   | 8.2   | 5.8      | 5.8  | 5.8       | 5.4     | 4.8      | 4.6             |
| (6) U          | km/day          | Wind Speed                                          | 120  | 120  | 127   | 744      | 115   | 104   | 95       | 8    | 156       | 35      | 90       | 98 App. 1       |
| (J) f(u)       |                 | Wind Function; f(u)=0.27(1+U/100)                   | 0.59 | 0.59 | 0.61  | 99.0     | 0.58  | 0.55  | 0.53     | 0.50 | 0.69 (    | 0.52    | 0.51     | 0.53            |
| (8) 11-W       |                 | Weighting Factor                                    | 0.27 | 0.27 | 0.27  | 0.26     | 0.25  | 0.24  | 0.24     | 0.24 | 0.24 (    | 0.25 (  | 0.26 (   | 0.27 App. 5     |
| W (6)          |                 | Weighting Factor                                    | 0.73 | 0.73 | 0.73  | 0.74     | 0.75  | 0.76  | 0.76     | 0.76 | L:        |         | 0.75 (   | 0.73 App. 6     |
| (10) Ra        | mm/day          | Extra Terrestrial Radiation                         | 11.2 | 12.7 | 14.4  | 15.6     | 16.3  | 16.4  | 16.3     | 15.9 | 14.8      | 13.3    | 11.6     | 10.7 App. 7     |
| Na (11)        |                 | II/N Racio                                          | 0.65 | 0.67 | 0.69  | 99.0     | 0.61  | 0.64  | 0.64     |      | 0.64      | 0.65    | 0.64     | 0.64 App. 2     |
| (12)           |                 | Maximum Sunshine Hours; (0.25+0.5n/N)               | 0.58 | 0.59 | 0.60  | 0.58     | 0.56  | 0.57  | 0.57     | 0.57 | 0.57 (    | 0.58    | 0.57 (   | 0.57            |
| (13) Rs        | mm/day          | Solar Radiation; Rs=(0.25+0.50n/N)xRa               | 4.9  | 7.4  | 8.6   | 0.6      | 0.6   | 9.3   | 9.3      | 9.1  | 8,4       | 7.6     | 9.9      | 6.1             |
| (14) Rms       | mm/day          | Net Solar Radiation; Rns=(1-f2)xRs                  | 4.8  | 9,6  | 6.4   | 8.9      | 8.9   | 7.0   | 7.0      | 8.9  | 6.3       | 5.7     | 5.0      | 4.6 1/2=0.25    |
| 35) £(3)       |                 | Effect of Temperature                               | 15.3 | 15.3 | 15.5  | 15.8     | 15.9  | 16.1  | 16.1     | 16.1 | 16.1      | 16.0    | 15.8     | 15.4 App. 9     |
| (pe) I(eq)     |                 | Effect of Vapour Pressure                           | 0.12 | 0.12 | 0.12  | 0.12     | 0.11  | 0.11  | 0.10     | 0.10 | 0.10      | 0.10    | 0.11     | 0.12 App.10     |
| (17) K(a/N)    |                 | Effect of the Ratio Actual and Maximum Bright       | 0.69 | 0.70 | 0.72  | 69.0     | 9.0   | 89.0  | 0.68     | 0.68 | 0.68      | 69.0    | 0.68     | 0.68 App.11     |
|                |                 | Sunshine Hours; f(n/N)=0.1+0.9n/N                   |      |      |       |          |       |       |          |      |           |         |          |                 |
| (18) Rml       | mm/day          | Longwave Radiation; Rnl=f(T)xf(ed)xf(n/N)           | 1.3  | 1.3  | 1.4   | 1.3      | 1.1   | 1.2   | 1.1      | 1.1  | 1.1       | 1.1     | 1.2      | 1.2             |
| (19) Rn        | mm/day          | Net Radiation in Equivalent Evaporation; Rn=Rns-Rnl | 3.5  | 4.2  | 5.1   | 5.5      | 5.7   | 5.8   | 5.9      | 5.7  | 5.2       | 4.6     | 3.8      | 3.3             |
| (20)   C       |                 | Adjustment factor                                   | 1.05 | 1.07 | 1.08  | 1.13     | 1.14  | 1.14  | 1.14     | 1.12 | 1.08      | 1.07    | 1.05     | 1.05 App.12     |
| (21)           | mm/day          | Radiation Term; Wx(Rns-Rnl)                         | 2.57 | 3.08 | 3.70  | 4.10     | 4.26  | 4.4]  | 4.46     | 4.33 | 3.99      | 3.49    | 2.84     | 2.44            |
| (22)           | mm/day          | Aerodynamic Term; (1-W)xf(u)x(ea-ed)                | 0.78 | 0.79 | 0.97  | 1.13     | 98.0  | 1.09  | 0.73     | 0.70 | 96.0      | 69'0    | 0,63     | 99.0            |
| (23)           | mm/day          | W(Rns-Rnl)+(1-W)f(u)(ea-ed)=(21)+(22)               | 3.35 | 3.87 | 4.67  | 5.23     | 5.12  | 5.50  | 5.20     | 5.03 | 4.95      | 4.17    | 3.47     | 3.10            |
| (24) ETo       | mm/day          | Reference Crop Evapotranspiration; ETo=(20)x(23)    | 3.5  | 4.1  | 5.0   | 5.9      | 5.8   | 6.3   | 5.9      | 5.6  | 5.3       | 4.5     | 3.6      | 3.3             |
| (25)           |                 | Adjustment for Project                              | 1.10 | 1.12 | 1.13  | 1.15     | 1.15  | 1.15  | 1.15     | 1.15 | 1.13      | 1.12    | 1.11     | 1.10            |
| (26) ETo       | mm/day          | ETo=(24)x(25)                                       | 3.9  | 4.6  | 5.7   | 8.9      | 6.7   | 7.2   | 8'9      | 6.5  | 0.9       | 5.0     | 4.0      | 3.6             |
| (27) ETo       | mm/month        |                                                     |      |      | 176.7 | 203.8    | 207.9 | 216.5 |          | 4    |           | 155.0 1 | 121.3 1  | 111.0           |
| •              | mm/month Elpozo | Elpozo                                              | 112  | 129  | 111   | 192      | 198   | 192   | 198      | 192  | 171       | 146     | 117      | 109             |
| e15            | mm/month        | A onseate (Sisvabo                                  | 11   | 000  |       | k        |       | ·     | -        | c    | Š         |         |          |                 |

Table I.6.1 Calculation of Reference Crop Evapotranspiration

Appendix 1 Monthly Mean Wind Velocity at Barraquito

|               |     |     |     |      |     |     |     |     |     |     | Unit: m | /s  |
|---------------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|---------|-----|
| YEAR          | JAN | FEB | MAR | APR  | MAY | JUN | JUL | AUG | SEP | OCT | NOV     | DEC |
| 1975          |     |     |     |      |     |     |     |     |     |     | -       | 1.1 |
| 1976          |     | 1.7 |     | 1.9  | 2.1 | 1.6 | 1.4 | 1.3 |     | 1.2 |         | 4.2 |
| 1977          |     |     |     | -117 |     | •   |     |     | •   |     | 1.1     | 1.1 |
| 1978          | 1.3 | 1.4 |     | 1.7  | 1.4 | 1.2 |     |     |     |     | 1.0     |     |
| 1979          |     |     |     |      | ••• |     |     |     |     | •   |         |     |
| 1980          |     |     |     |      |     | 1.8 | 1.8 | 0.2 | 1.4 | 1.5 | 1.3     | 1.4 |
| 1981          | 1.6 | 1.7 | 2.3 | 2.3  | 1.6 | 1.0 | 0.2 | 1.6 | 1.7 | 1,3 | 1.2     | 1.2 |
| 1982          | 2.1 | 2.2 | 2.0 | 2.5  | 1.7 | 1,7 | 1.5 | 1.3 | 1.3 |     | •       |     |
| 1983          |     |     |     |      |     | ٠   |     |     |     |     |         |     |
| 1984          |     |     | 1.5 | 1.8  |     |     | 2.0 |     | 1.5 |     | 1.6     | 1.9 |
| 1985          | 1.4 | 1.4 |     | 1.5  | 1.4 | 1.4 | 1.1 | 1.4 | 1.2 |     |         |     |
| 1986          | 1.3 | ÷   | 1.2 |      |     | 1.3 | 1.1 | 1.0 |     |     | 0.9     | 1.0 |
| 1987          | 1.2 |     | 1.3 |      | 1.2 | 0.9 |     |     | 1.0 | 0.9 |         | 0.9 |
| 1988          |     | 1.0 |     |      | 1.2 |     | 0.9 | 0.9 | 1.0 | 0.7 | 0.8     |     |
| 1989          |     | 1.1 | 1.9 | 1.3  | 1.0 |     | 1,0 |     |     | 0.8 |         |     |
| 1990          |     | 1.2 |     | 1.1  |     | 0.9 | 1.0 |     | 0.7 |     |         |     |
| :             |     |     |     |      |     |     |     |     |     |     |         | •   |
| 1991          | 0.8 |     | 1.0 | 0.9  |     | 0.8 | 0.7 | 0.6 |     |     |         |     |
| 1992          |     | 8.0 | 0.6 |      | 0.4 | 0.6 | 0.5 | 0.6 | 6.4 |     | 0.4     |     |
| 1993          |     |     |     |      |     |     |     |     |     |     |         | 0.5 |
| Mean (nı/s)   | 1.4 | 1.4 | 1.5 | 1.7  | 1.3 | 1.2 | 1.1 | 1.0 | 1.8 | 1.1 | 1.0     | 1.1 |
| Mean (km/day) | 120 | 120 | 127 | 144  | 115 | 104 | 95  | 85  | 156 | 92  | 90      | 98  |

Appendix 2 Monthly Mean Cloudiness Oktas at Barraquito

|      |      |      |      |      |      |      |      |      |      |      | Unit: n | 1/5 |
|------|------|------|------|------|------|------|------|------|------|------|---------|-----|
| YEAR | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP  | OCT  | NOV     | DEC |
| 1975 |      |      | 2    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 3       | 4   |
| 1975 | 2    | 3    | 3    | 3    | 3    | 4    | 3    | 3    | 3    | 4    | 4       | 4   |
| 1973 | 4    | 3    | 3    | 4 -  | .4   | 4    | 4    | 4    | 4    | •    | 4       | 4   |
| 1978 | 4    | 4    | 3    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4       | 3   |
| 1979 | 3    | 2    | 3    | 3    | 4    | 4    | •    | 4    | 4    | 4    | 3       |     |
| 1980 | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2       | 3   |
| 1981 | . 4  | 3    | 3    | 3    | 4    | 3    | 3    | 3    | 3    | 3    | 3       | 3   |
| 1982 | 3    |      | 2    | 3    | 4    | 4    | 4    | 3    | 3    | 3    | 3       | 4   |
| 1983 | 3    | 3    | 3    | 3    | 4    | 3    | 4    | 3    | 3    | 3    | 3       | 3   |
| 1984 | 3    | 3    | 3    | 3    |      |      | 3    | 3    | 3    | 3    |         | 3   |
| 1985 | 3    | 3    | 3    | 3    | 3    | - 3  | 3    | 3    | 3    | 3    | 3       | 3   |
| 1986 | 3    | 2    |      |      | 4    | 3    | 3    | 3    | 3    | 3    | 3       | 2   |
| 1987 | 2    | 2    |      | 2    | 4    | 3    | 2    | 2    |      | 3    | 3       | 3   |
| 1988 | 3    | 3    | 2    | 3    | . 3  | 2    |      | 3    | 3    | 2    | 3       | 3   |
| 1989 |      | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 2    | 3       | 2   |
| 1990 |      | 3    | 3    | 2 .  | 2    | 3    | 3    |      | 2    | 3    | 3       |     |
| 1991 | 2    | 2    | 2    | 3    | 3    | 2    | 3    | 3    | 3    | 3    | 3       | 3   |
| 1992 | 3    | 2    | 2    | 3    | 3    | :    | 3    | 3    | 3    |      | 3       | 3   |
| 1993 | 3    |      |      |      | 4    | 3    |      | 3    | 3    | 2    |         |     |
| Mean | 3.0  | 2.8  | 2.6  | 2.9  | 3.4  | 3.1  | 3.1  | 3.1  | 3.1  | 3.0  | 3.1     | 3,1 |
| n/N  | 0.65 | 0.67 | 0.69 | 0.66 | 0.61 | 0.64 | 0.64 | 0.64 | 0.64 | 0.65 | 0.64    | 0.6 |

Appendix 3 Saturation Vapour Pressure (ea) in mbar as Function of Mean Air Temperature (T) in °C

| r                   | , 1            |                     | 7-        |
|---------------------|----------------|---------------------|-----------|
| 19                  | 6*22.0         | 39                  | 6.69      |
| 38                  | 20.6           | 37 38               | 66.3      |
| 16 17 18            | 19.7           | 37                  | 62.8      |
| 16                  | 18.2           | 35 36               | 59.4      |
| 5                   | 17.0 18.2 19.4 | 1                   | 56.2      |
| 77                  | 16.1           | 35                  | 53.2      |
| 13                  | 14.0 15.0      | 33 3                | S.        |
| 12                  | 17.0           | 31 32               | 47.6 50.3 |
| 11                  | 13.1           | 31                  | 7         |
| or                  | 12.3           | က္က                 | 7.77      |
| Q                   | 11.5           | 29                  | . 40-1    |
| 8                   | 10.7           | 28                  | 37.8* 40. |
| 7                   | 10.0           | 27 28               | 35.7      |
| 9                   | 9.3            | 26                  | 33.6      |
| S                   | 8.7            | 25                  | 31.7      |
| 7                   | 8              | 27                  | 29.8      |
| ဗ                   | 7.6            | 23                  | 28.1      |
| 2                   | 7.1            | 22 -                | 26.4      |
| ed.                 | 9.9            | 21                  | 24.9      |
| 0                   | 6.1            | 20                  | 23.4      |
| Temper-<br>ature °C | ea mbar        | Temper-<br>ature °C | ea mbar   |

1/ Also actual vapour pressure (ed) can be obtained from this table using available Idewpoint data. (Example: Idewpoint is 180C; ed is 20.6 mbar)

Appendix 4 Vapour Pressure (ed) in mbar from Dry and Wet Bulb Temperature Data in °C (Aspirated Psychrometer)

| 78                                         | ອຸນຸລຸ<br>ປັບນຸນ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| E 02                                       | 0,000,40<br>0,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o<br>0                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                          |
| 1 000-2 000<br>16 18                       | 3.5.0<br>4.4.0<br>4.4.0<br>8.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64.0<br>64.0                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| 1600                                       | 22.27.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04640<br>00464                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| altitude<br>12 14                          | 255.05<br>118.15<br>115.05<br>115.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 44<br>700 0.07                                                                                                                                           | 40<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
|                                            | 1828<br>1838<br>1838<br>184<br>184<br>184<br>184<br>184<br>184<br>184<br>184<br>184<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#                                                                   | ພຸທຸພຸດ<br>ພານພາມ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| 10C                                        | 28.13<br>22.12<br>20.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,7,7,0°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°                                                                                                                       | 2.22.05.05<br>0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0                                        |
| st bulb                                    | 2283.20<br>229.20<br>200.20<br>200.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 236.69                                                                                                                                                        | 0 6 9 6<br>0 6 9 6<br>0 6 9 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10                                       |
| Depression wet<br>2 4 6                    | 82488<br>84468<br>84464<br>84464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.7<br>20.00<br>17.2<br>14.3                                                                                                                                 | 950<br>960<br>960<br>960<br>960<br>960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76241                                      |
| ressi<br>4                                 | 1,02,44<br>1,03,44<br>1,03,44<br>1,04,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.5<br>27.5<br>27.5<br>18.3                                                                                                                                  | 25.00<br>20.00<br>20.00<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.0.4.0.4.4<br>0.0.0.0.0.2                 |
| Dep<br>2                                   | 52.25<br>7.25<br>7.17<br>7.13<br>7.13<br>7.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22822<br>25822<br>25052<br>25052                                                                                                                              | 2777<br>2774<br>24.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900001                                     |
| 0                                          | 73.8<br>66.3<br>72.2<br>73.2<br>73.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22032<br>2033<br>2033<br>2033<br>2033<br>2033<br>2033<br>203                                                                                                  | 23.23.<br>18.26.6<br>176.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200.00.00                                  |
| drybulb<br>ToC                             | 33,800<br>32,400<br>32,400<br>32,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22223                                                                                                                                                         | 08977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Öωω440                                     |
| 22                                         | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| 20                                         | 101.7.7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
| 00 m                                       | 77.11<br>7.12.6<br>6.20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| 0-1 000                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| 0                                          | 9555<br>1007<br>1007<br>1007<br>1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40<br>0.40                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| tude<br>14                                 | 26.3<br>20.5<br>17.1<br>17.1<br>12.0<br>11.3<br>7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 867794<br>867794                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| C altitude<br>12 14                        | 29.8 24.3 19.25.6 20.5 15.1 12.1 12.1 12.1 12.1 12.1 12.1 13.7 11.3 7.1 13.7 11.3 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7.1 13.7 7. | 12.6<br>10.2<br>8.0<br>8.0<br>6.0<br>6.0<br>7.7<br>1.4<br>1.4<br>1.4                                                                                          | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| ToC altitude                               | 35.8 29.8 24.3 19.<br>26.9 21.8 17.1 12.<br>23.2 18.4 14.0 10.<br>19.8 15.4 11.3 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.7 12.6 8.8 5.<br>14.0 10.2 6.7 3.<br>11.5 8.0 4.7 1.<br>9.3 6.0 2.9<br>7.4 4.3 1.4                                                                         | 8478 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>5.8</b>                                 |
| bulb TOC altitude<br>8 10 12 14            | 42.2 35.8 29.8 24.3 19.32.5 25.9 25.5 25.5 25.5 25.5 25.5 25.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.1 16.7 12.6 8.8 5.<br>18.0 14.0 10.2 6.7 3.<br>15.3 11.5 8.0 4.7 1.<br>12.8 9.3 6.0 2.9<br>10.6 7.4 4.3 1.4                                                | 8.6.0.4<br>6.0.2.4<br>6.0.2.4<br>6.0.2.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6.0.4<br>6 |                                            |
| sion wet bulb TOC altitude<br>6 8 10 12 14 | 49.2 42.2 35.8 29.8 24.3 19. 43.6 37.1 31.1 25.6 20.5 15. 38.4 32.5 26.9 21.8 17.1 12. 33.8 28.3 23.2 18.4 14.0 10. 29.6 24.5 19.8 15.4 11.3 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.8 21.1 16.7 12.6 8.8 5.<br>22.4 18.0 14.0 10.2 6.7 3.<br>19.4 15.3 11.5 8.0 4.7 1.<br>16.6 12.8 9.3 6.0 2.9 .<br>14.2 10.6 7.4 4.3 1.4                     | 12.00 8.7 5.6 2.65.7 6.7 4.00 1.5 5.4 2.7 1.5 5.3 2.8 5.7 5.6 2.7 5.3 2.8 5.3 5.6 5.7 5.8 5.3 5.8 5.3 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46449<br>44488<br>49                       |
| sion wet bulb TOC altitude<br>6 8 10 12 14 | 56.8 49.2 42.2 35.8 29.8 24.3 19. 42.9 38.4 32.1 25.6 20.5 15. 42.9 38.4 32.5 26.9 21.8 17.1 12. 39.8 33.8 28.3 23.2 18.4 14.0 10. 35.1 29.6 24.5 19.8 15.4 11.3 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.9 25.8 21.1 16.7 12.6 8.8 5.<br>27.2 22.4 18.0 14.0 10.2 6.7 3.<br>23.8 19.4 15.3 11.5 8.0 4.7 1.<br>20.7 16.6 12.8 9.3 6.0 2.9 18.0 14.2 10.6 7.4 4.3 1.4 | 15.5 12.0 8.7 5.6 2.11.2 8.3 5.4 2.7 11.4 8.3 5.4 2.7 1.5 9.6 6.7 4.0 1.5 8.1 5.3 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00.00.00.00.00.00.00.00.00.00.00.00.0    |
| sion wet bulb ToC altitude<br>6 8 10 12 14 | 8 49.2 42.2 35.8 29.8 24.3 19.<br>5 43.6 37.1 31.1 25.6 20.5 15.<br>9 38.4 32.5 26.9 21.8 17.1 12.<br>8 33.8 28.3 23.2 18.4 14.0 10.<br>1 29.6 24.5 19.8 15.4 11.3 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 25.8 21.1 16.7 12.6 8.8 5.<br>2 22.4 18.0 14.0 10.2 6.7 3.<br>8 19.4 15.3 11.5 8.0 4.7 1.<br>716.6 12.8 9.3 6.0 2.9<br>0 14.2 10.6 7.4 4.3 1.4              | 5.5 12.0 8.7 5.6 2.<br>3.3 10.0 6.9 4.1 1.<br>1.4 8.3 5.4 2.7<br>9.6 6.7 4.0 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.0.4480<br>4.0.4480<br>4.0.440<br>4.0.468 |

Appendix 5 Values of Weighting Factor (1-W) for the Effect of Wind and Humidity on ETo at Different Temperatures and Altitudes

| 3              | 21. 22. 13. 12. 11. 12. 11. 11. 11.                           |
|----------------|---------------------------------------------------------------|
| 38             | 115                                                           |
| 36             | 117<br>118<br>118<br>113                                      |
| 35             | 81.<br>71.<br>81.<br>81.                                      |
| 32             | 02.<br>01.<br>081.<br>01.<br>01.<br>01.<br>01.                |
| 8              | 22. 22. 23. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24            |
| 28             | 23.<br>22.<br>12.<br>12.<br>13.<br>16.<br>16.                 |
| 56             | 22. 22. 23. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12            |
| 73             | .27<br>.26<br>.25<br>.23<br>.23<br>.23                        |
| 22             | 29<br>27<br>27<br>25<br>25<br>23<br>23                        |
| 20             | .32<br>.30<br>.29<br>.25<br>.23                               |
| 18             | 26.<br>23.<br>29.<br>72.<br>72.                               |
| 16             | 85.<br>25.<br>15.<br>15.<br>75.                               |
| 77             | 35<br>36<br>37<br>31<br>31                                    |
| 12             | 24.<br>04.<br>39.<br>38.<br>38.<br>18.                        |
| ខ្ព            | 24:<br>24:<br>26:<br>36:<br>36:<br>48:                        |
| 8              | .48<br>.46<br>.45<br>.39<br>.39                               |
| 9              | .51<br>.49<br>.48<br>.45<br>.42<br>.39                        |
| 7              | .51<br>.53<br>.63<br>.63<br>.45                               |
| 8              | 72.0<br>.58<br>.53<br>.13.<br>.64                             |
| Temperature OC | 1-W) at altitude m<br>500<br>1 000<br>2 000<br>3 000<br>4 000 |

Appendix 6 Values of Weighting Factor (W) for the Effect of Radiation on ETo at Different Temperatures and Altitudes

|   | Ś              |                 | 85   | .86  | .87   | 88        | 68       | 8     |
|---|----------------|-----------------|------|------|-------|-----------|----------|-------|
|   | 82             | 3               | 8    | 85   | 8.    | .87       | 88.      | ģ     |
|   | 36             | 3               | 89   | .87  | 85    | 98.       | .87      | 89    |
|   | 15             |                 | . 82 | 82   | 8     | 8.        | 86.      | .87   |
|   | 32             |                 | 8    | 8    | .82   | 8         | 8.       | .86   |
|   | ೪              |                 | .78  | .79  | 8     | 82        | .84      | .85   |
|   | 28             |                 | .77* | .78  | .79   | 8         | .82      | 37    |
|   | 26             |                 | .75  | .76  | .77   | .79       | .83      | .82   |
|   | 77             |                 | .73  | .74  | .75   | .77       | 92.      | .81   |
| ĺ | 22             |                 | .7   | . 72 | .73   | .75       | .77      | .79   |
|   | 50             |                 | 69   |      |       | .73       |          |       |
|   | 18             |                 | 99.  | .67  |       |           | .73      |       |
|   | 16             |                 | 3    |      | 99.   | 69.       | .71      | .73   |
|   | 77             |                 | .61  | .62  | \$    | - 66      | <u>.</u> |       |
|   | 12             |                 | ال   | 8    | .61   | 3         | 99:      | 69.   |
|   | or             |                 | ស្ល  |      | Ŗ     | .61       | 8        | 99.   |
|   | ω              |                 | ķ    | ÿ    | 55    | .58<br>85 | .61      |       |
|   | ġ              |                 | 67.  | ដូ   | 33    | .55       | ß,       | .61   |
|   | 7              | ٩               | 97.  | .48  | 67-   | છું       | .55      | Ŗ     |
|   | 2 4            | E               | 0.43 | 77.  | 97:   | 67:       | 55       | ÿ     |
|   | Temperature °C | W at altitude m | •    | 005  | 1 000 | 2 000     | 3 000    | 7 000 |

Appendix 7 Extra Terrestrial Radiation (Ra) Expressed in Equivalent Evaporation in mm/day

| <u> </u>   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | ွ       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1          | ļΩ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -          | Nov     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1          | ž       | 00000 00000 00000 00000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | ដ       | σάλιο άλρου ωληρι ωρωσω σωνουλ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1          | 0       | ປັດຕິວິດ ກ່ານ ຄຸ້ນ ຄຸ້ນ ຄຸ້ນ ຄຸ້ນ ຄຸ້ນ ຄຸ້ນ ຄຸ້ນ ຄຸ້                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | ept     | שמיטים סארסא ויסטאר שישוטע משסייטש                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | ဟ       | 800000 EEEEgg 46666 64444 440000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1          | Aug     | νουαλ ομανό μλουρ ομοσυ ηγομια                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | <       | 1 20000 Langua 00044 4444 44444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| '          | July    | מסאסא פשמער שפשפט אמאסס ארייאריי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l o        |         | 64440 0000 00000 00000 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5          | ne      | 20040 2000 000 000 0400 04000 04000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8          | ก็      | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| emisph     | Ş.      | arare aerion auras oaren august                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ä          | Σ       | 44พพด คนนดอ อออออ นุนุนุน นุนุนุนุนุ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Ļ<br>p. | ονώνα νουνα ωροωρ ομηνο 44κουμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9          | Ϋ́      | 77700 00000 HANNY WEEKA 444400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Southern   | L.      | อนกอน กลนกล อนนอล อนนน ทุกดดหา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| S          | Σ       | 82226 38000 44444 ლოლო დოლოლი                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | ç       | 120-00 120-04 44400 00440 0-0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i          | 124     | 44ινινι ηνισορο σοσορο σοσορο σοσοιμίζη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | ٠.      | novos sosso svova segvo acondo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Jan     | στουν στουν τουν τουν κουν κουνικό                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b> </b> - |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Į.         | , T     | 088844 088848 88844 08844 088440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| !          | U       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | മ്      | \$557.410 101010 \$5 \$2.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 |
|            | ò       | ממונים ביות החודה                                                                                                                                                                                                                                                                                                                                                      |
|            | ž       | 70000 77mm 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |         | TOOL COURT TO COURT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | ŏ       | 7,000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | CHARA CHARA COMMAN ANDRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | ę,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ere        | ഗ       | TOTAL SHARE SHARE STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| o Va       | S I     | 444440 1010101010 10101010 1010100 1010100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -21        | ۲       | Anne ander heart heart added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ē          | July    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ξ          |         | TOURS MANY TO THE THE THE THE THE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Northern   | June    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 뒴          | Ž       | mmo-marker andere endede                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ş          | May     | MNAMA MANAGO MANAGO MANAGO MANAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1          |         | The state of the s                                                                                                                                                                                                                                                                                                                                                     |
|            | Apr     | <u>Σάμας</u> 44446 υνοιμού κουρο κ                                                                                                                                                                                                                                                                                                                                                 |
|            | 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Mar     | agago da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |         | מחם הההה אמחום החלמם ההההה                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Feb     | corres sousses significations of the sound in the second s                                                                                                                                                                                                                                                                                                                                                     |
|            | 1       | AND TO THE PROPERTY OF THE PRO                                                                                                                                                                                                                                                                                                                                                     |
|            | Jan     | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |         | พางกุญ ดุดุรรุต ตุขุงอุจี นี่นี่มีมีนี้ มีผู้ผู้หี้นี้                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Appendix 8 Conversion Factor for Extra-Terrestrial Radiation (Ra) to Net Solar Radiation (Rns) for a Given Resection of 6.25 and Disferent Ratios of Actual to Maximum Sunshine Hours (1-</b>

| .85 .90 .95 1.0 | .49* .51 .52 .54 .56  |
|-----------------|-----------------------|
| .70 .75 .80     | 77: 57:               |
| .60 .65         | .43                   |
| .45 .50 .55     | .34 .36 .37 .39 .41   |
| 35 .40          | .32 .34 .3            |
| .25 .30         | .28 .30               |
| .10 .15' .20    | .22 .22 .26           |
| 0.0 .05 .1      | 0.19.21.2             |
| <b>_</b>        | (1-x)(0.25 + 0.50n/N) |
| Z               | (1-0)(0.2)            |

Appendix 9 Effect of Temperature f(T) on Longwave Radiation (Rnl)

| TC           | 0    | 7           | 7   | ý    | ထ    | 9    | 12   | 17   | 16 18 | 38   | 20   | 3 20 22 | 77   | 26   | 26 28 | 30 32 34 36 | 32   | 35   | 36                                                                              |
|--------------|------|-------------|-----|------|------|------|------|------|-------|------|------|---------|------|------|-------|-------------|------|------|---------------------------------------------------------------------------------|
| f(T) - 0 Tk4 | 11.0 | 11.0 11.4 1 | 1.7 | 12.0 | 12.2 | 12.7 | 13.1 | 13.5 | 13.18 | 14.2 | 14.6 | 15.0    | 15.4 | 15.9 | 16.3* | 16.7        | 17.2 | 17.7 | 12.0 12.4 12.7 13.1 13.5 13.8 14.2 14.6 15.0 15.4 15.9 16.3*16.7 17.2 17.7 18.1 |
|              |      |             |     |      |      |      |      |      |       |      |      |         |      |      |       |             |      |      |                                                                                 |

Appendix 10 Effect of Vapour Pressure f(ed) on Longwave Radiation (Rnl)

| ed mbar                 |        |      |     |     | •   |     |    |      |       |      |     |     |     |     | İ   |     |     |     |   |
|-------------------------|--------|------|-----|-----|-----|-----|----|------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|---|
|                         | φ      | တ    | 음   | 12  | 7.  | 91  | 18 | 20   | 22    | 77   | 56  | 28  | ဗ္ဂ | 32  | 35  | 36  | 38  | 07  |   |
| -                       |        |      |     |     |     |     |    |      |       |      |     |     |     |     |     |     |     |     | _ |
| f(ed) = 0.34 - 0.044Ved | 1 0.23 | . 22 | .50 | .19 | 81. | .16 | ដូ | . 14 | . 13* | . 12 | .12 | 11. | 8   | 60. | So. | 80. | .07 | 90. |   |

Appendix 11 Effect of the Ratio Actual and Maximum Bright Sunshine Hours f(n/N) on Longwave Radiation (Rnl)

|      | ·                                     |
|------|---------------------------------------|
| 0:1  | 1.0                                   |
| .95  | 96.                                   |
|      | 16.                                   |
| 85   | .82*.87 .91                           |
|      | *28.                                  |
| .75  | %                                     |
| ۲.   | .73                                   |
|      | <u>છ</u>                              |
| ø.   | \$                                    |
| .55  | 8                                     |
|      | 55.                                   |
| .45  | 5.                                    |
| 7.   | 97.                                   |
| .35  | 2                                     |
| ကု   | .37                                   |
| .25  | 8                                     |
| 7    | .28                                   |
| .15  | ä                                     |
| -:   | 91.                                   |
| 50.  | .15                                   |
| 0    | 0.10                                  |
| har. | N) = 0.1 + 0.9 n/N                    |
| 3    | E)                                    |
|      | .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 |

Appendix 12 Adjustment Factor (c) in Presented Penman Equation

|         |        |             |                              |             |                             | -           |                                                                    | -           |                                                             |
|---------|--------|-------------|------------------------------|-------------|-----------------------------|-------------|--------------------------------------------------------------------|-------------|-------------------------------------------------------------|
| 34      | 12     |             | 1.32                         |             | 1.28                        |             | 1.10<br>1.12<br>1.12<br>1.06                                       |             | 1.05*                                                       |
| %06 + × | 0      |             | 1.27<br>1.27<br>1.26<br>1.16 |             | 08299                       |             | 1.10                                                               |             | 1.10<br>1.01<br>\$95<br>.87                                 |
| RHmax   | و      |             | 1.06<br>1.10<br>1.01         |             | 1.06                        |             | 1.06<br>.92<br>.81                                                 |             | 1.06                                                        |
|         | က      |             | 1.02<br>99.<br>88.           |             | 1.02<br>28.<br>788.<br>788. |             |                                                                    |             | 1.02                                                        |
| 60%     | 12     |             | 1.05                         |             | 1.05                        |             | 1.05<br>1.05*<br>1.02                                              |             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |
| ٠       | σ      | 0.7 -       | 1.05                         | t = 3.0     | 1.05                        | 1 - 2.0     | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 1.0         | 1.05<br>.94<br>.84<br>.75                                   |
| RHmax   | 9      | Uday/Unight | 86.1<br>88.<br>88.           | Uday/Unight | 8886                        | Uday/Unight | .98<br>.08<br>.70                                                  | Uday/Unight | 88.08                                                       |
|         | 3      | Uday        | 96.<br>982.<br>76.<br>76.    | Uday        | .96<br>.87<br>.77<br>.67    | Uday        | . 96<br>. 70<br>. 59 .                                             | Uday        | 862.38<br>50.238                                            |
| 30%     | 12     |             | <br>                         |             | 1.00<br>.94<br>.88<br>.82   |             | 1.98<br>.92<br>.78.                                                |             | 2,00                                                        |
| •       | 6      |             | 1.00<br>.92<br>.87           |             | 1.00                        |             | 1.00<br>.85<br>.74<br>.65                                          | :           | 28.88.<br>88.88.                                            |
| RHmax   | 9      |             | 85.<br>17.<br>18.            |             | 85.888                      |             | .61<br>.61<br>.83                                                  |             | 8484                                                        |
|         | ເນ     | :           | 86.<br>88.<br>88.<br>85.     |             | .86<br>.76<br>.61           |             | 86.<br>82.<br>82.<br>83.                                           |             | .25.<br>22.<br>22.<br>22.                                   |
|         | mm/day | m/sec       |                              |             |                             |             |                                                                    |             |                                                             |
|         | Rs mn  | Uday        | onvo                         |             | 0000                        |             | 0000                                                               |             | 0 m v m                                                     |

Table I.6.2 Calculation of Unit Water Requirement

| Z                                     | No.         | Description                                      |            | DEC      | JAN   | JAN FEB MAR |       | APR MAY |                 | NOS      | JUL AUG |             | SEP ( | SEP OCT NOV | <del></del> + | DEC     | Reference       |
|---------------------------------------|-------------|--------------------------------------------------|------------|----------|-------|-------------|-------|---------|-----------------|----------|---------|-------------|-------|-------------|---------------|---------|-----------------|
| <u> </u>                              |             | Cropping Pattern                                 |            |          |       |             |       |         | . <del></del> . |          |         |             |       |             |               |         |                 |
|                                       |             | Note: Sowing                                     |            |          |       | First Crop  | - dor |         |                 |          | Seco_   | Second Crop | ъ.    |             |               |         |                 |
|                                       |             | Land Preparation                                 |            | 10 20 10 | . 0   |             | 115   |         | 25              | 10 20 10 | 0       | <u> </u>    | 105   | 15          | <u>_</u> Ā    | 10 20   |                 |
|                                       | 3           | Transplanting Transplanting                      |            |          |       | -           |       |         |                 |          |         | _           |       |             |               |         |                 |
| · · · · · · · · · · · · · · · · · · · | <del></del> | Growing Period                                   |            |          |       |             |       |         |                 |          |         |             |       |             |               |         |                 |
|                                       |             | Harvesting                                       |            |          |       |             |       |         |                 |          | 4       |             |       |             |               |         |                 |
| ٽا                                    | 8           | ETo:Reference Crop Evapotranspiration (mm/month) | (mm/month) | 111.0    | 119.9 | 130.0       | 176.7 | 203.8   | 207.9           | 216.5    | 211.2   | 200.8       | 181.1 | 155.0       | 121.3         | 111.0   | Table I.6.1(27) |
|                                       | <u>ତ</u>    | ļ                                                |            | 1.10     | 1.10  | 1.10        | 1.05  | 1.05    | 0.95            | 1.10     | 1.10    | 1.10        | 1.05  | 1.05        | 0.95          | 1.10    |                 |
| Ľ                                     | €           | Crop Water Requirement (C.W.R)                   | (mm/month) | 122.1    | 131.9 | 143.0       | 185.5 | 214.0   | 197.5           | 238.2    | 232.3   | 220.9       | 190.2 | 162.8       | 115.2         | 122.1   | (2)x(3)         |
|                                       | ତ           | Area Factor of C.W.R                             |            | 0.075    | 0.300 | 0.867       | 1.000 | 1.000   | 0.792           | 0.208    | 0.300   | 0.867       | 1.000 | 0.992       | 0.600         | 0.075   | (1):Figure      |
|                                       | 9           | Weighted C.W.R                                   | (mm/month) | 9.2      | 39.6  | 124.0       | 185.5 | 214.0   | 156.4           | 49.5     | 69.7    | 191.5       | 190.2 | 161.4       | 69.1          | 9.2 (   | (4)x(5)         |
| <u></u>                               | 6           | Area Factor of Land Preparation                  |            | 0.133    | 0.400 | 0.133       | 0.000 | 0.000   | 0.000           | 0.133    | 0.400   | 0.133       | 0.000 | 0.000       | 0.000         | 0.133 ( | (1):Figure      |
|                                       | 8           |                                                  | (mm/month) | 13.3     | 40.0  | 13.3        | 0.0   | 0.0     | 0.0             | 13.3     | 40.0    | 13.3        | 0.0   | 0.0         | 0.0           | 13.3    | (7)×100mm/M     |
| <u> </u>                              | <u>6</u>    |                                                  | (mm/month) | 31.0     | 31.0  | 28.0        | 31.0  | 30.0    | 31.0            | 30.0     | 31.0    | 31.0        | 30.0  | 31.0        | 30.0          | 31.0    |                 |
| <u> </u>                              | 2           | (10) Field Water Requirement                     | (mm/month) | 53.5     | 110.6 | 165.3       | 216.5 | 244.0   | 187.4           | 92.8     | 140.7   | 235.8       | 220.2 | 192.4       | 99.1          | 53.5    | (6)+(8)+(9)     |
| ب                                     | 11)         | (11) Effective Rainfall                          | (mm/month) | 74.5     | 68.7  | 9.09        | 70.2  | 84.5    | 91.0            | 6.98     | 87.3    | 87.8        | 83.6  | 86.2        | 87.2          | 74.5    | Table 4.4.2     |
| ಀ                                     | (22)        | Area Factor of Effective Rainfall                |            | 0.208    | 0.700 | 1.000       | 1.000 | 1.000   | 0.792           | 0.341    | 0.700   | 1.000       | 1.000 | 0.992       | 0.600         | 0.208   | (1):Figure      |
| <u>ب</u>                              | 2           | (13) Weighted Effective Rainfall                 | (mm/month) | 15.5     | 48.1  | 9.09        | 70.2  | 84.5    | 72.1            | 29.6     | 61.1    | 87.8        | 83.6  | 85.5        | 52.3          | 15.5    | (11)x(12)       |
| ڬڬ                                    | 4           | (14) Net Irrigation Requirement                  | (mm/month) | 38.0     | 62.5  | 104.7       | 146.3 | 159.5   | 115.4           | 63.2     | 79.6    | 148.0       | 136.6 | 106.9       | 46.8          | 38.0    | (10) - (13)     |
| ب                                     | 3           | (15) Irrigation Efficiency                       |            | 0.58     | 0.58  | 0.58        | 0.58  | 0.58    | 0.58            | 0.58     | 0.58    | 0.58        | 0.58  | 0.58        | 0.58          | 0.58    |                 |
| $\stackrel{\smile}{}$                 | 9           | (16) Irrigation Requirement                      | (mm/month) | 65.5     | 107.7 | 180.5       | 252.3 | 275.0   | 198.9           | 109.0    | 137.2   | 255.2       | 235.4 | 184.4       | 80.7          | 65.5    | (14)/(15)       |
| =                                     | 3           | £                                                | (mm/day)   | 2.111    | 3.475 | 6.446       | 8.139 | 9.166   | 6.416           | 3.632    | 4.426   | 8.232       | 7.848 | 5.948       | 2.691         | 2.111   | (16)/days       |
| $\subseteq$                           | (85)        |                                                  | (I/s/ha)   | 0.244    | 0.402 | 0.746       | 0.942 | 1.061   | 0.743           | 0.420    | 0.512   | 0.953       | 806.0 | 0.688       | 0.311         | 0.244   | (17)/8.64       |
| Į                                     |             |                                                  |            |          |       |             |       |         |                 |          |         |             |       |             |               |         |                 |