ANNEX 6

ANNEX 6
ENVIRONMENTAL QUALITY STANDARDS

ANNEX 6 ENVIRONMENTAL QUALITY STANDARDS

- 6.1 Environmental Quality Standards for Air Pollutants
- 6.2 Environmental Quality Standards for Air, Water and Noise Pollution

Annex 6-1(1) ENVIRONMENTAL QUALITY STANDARDS FOR AIR POLLUTION (COUNTRY-WISE)

	ia Russia	•	· 1	0.05	,	ا 	,		ا س	- 9	1			1.	ر ا		ပ္	ı	1		1		1	1	1	•	1SP. Total 380		┪		tor stippisted				·	
	Mexico . Romania	0 021	-	0.12 0.00		- 0.26	1	- 0.021	0.05	0.21 0.1	:	•	13	_	•	1	Ozone	ŀ	- 0.015	!	0.11	- 0.05	_	1	1	-	TSP smoke,	other 25	7		stan- 30 minute			Mexico in a column		_
	South New		3 '	0.00	22.0	•	-	0. 144	સ્ સ્	{	ŧ	1		I	:	1	_	ı	0.050		-		-	1	1	ı	Pb,	₽.	Snoke	Ş	3 6	9	0	옾	ప	_
	Maiaysia S	,	•	8		1	0.19)	1 ;	0.17	•	ŧ	o,	ຂ	i	,	Ozone			90.0	0.0	•	20%	0.05	0.15	1	TSP, Pb,	Soot &	SEOKC					بزياسيان		_
	Poland	0.011	•	0.07	t	0.21	•	0,027	80.0	0.27	0	 4	•	•	₹,		Ozone	Þ	0.015	1	i	0.05	-	1	1	٠	TSP			NU, 18 Stipulat-	value for NO.	and annual ave-	rage for CO, but	described in a	column of hourly	
	Peru	0:0:0	2	0:30	1	ı	•	•	0.11	•	1	,	11	ន	(2hr val. +)	ı		1	•	0, 10	1	0.20		1	ı	•	TSP. As. Pb.	saoke	ماندريون المساورين	25 hour average	for SO, and TSP.	No appearance	more than one	tine in a year	for 30 minute	
	Bulgaria	,	1	0.02	0.17	ı	•		0.02	0.05	ľ	က	,	*	!	•	Ozone	ŀ	0.015	,	80.0	•	_	-	1.	1	J.Sp									
	azil	0 014 G	: 1	90	1	•		0.053	1	0, 10	ŧ.	t	တ 	જ્ઞ)	•		l	,	1	8	L	20 5	0.05	0.15	1	TSP, smoke			annua	so appearance one time	!				
•	: ایدا	3	3	0.13	1	1	•	0.053	•	0.17		1	 თ	ង	•	ı	Ozone	1	1	1	8	1	203	0.05	0.15	1	TSP, smoke;	:		ö	average, no nore than o			o la como de la como d		
-	Japan	(810.0)	(00.0)	8	0.1		•	(0.02~0.03)	0.0~0.00	(0.1~0.2)	•	9	ន	•				r	1	ŧ	0.06	F	1001	Ý	0.1	0.2				Desirable standards	protection of human	health. National	policy target.	Evaluation for an-	nual average is to	
		Ammin Limited	Manual average	Zhr av of 11#	I hr. value	30 min. value	10 min. value	Annual average	Zhr av. of line	l hr. value	Annual average	2thr av. of 1ht	8 hr. value	1 hr value	30 min, value	15 min. value	Target subs. ***	Annual average	24hr av. of live	8 hr. value	I hr. value	30 min. value	10 mCut	Annual average	24hr av. of lh*	I hr. value										_
:		Kull fun	Nice: de	2010010	දුල් ලිනු			Nitrogen	NO [Sya]		Nitrogen	Monoxide					Photo-	chenical	Oxidant		(基)			Particulate		SPM [mg/a ²]	Other	Substances		Delinitions	AND NOBALKS					

ine simpler comparison cannot be made due to the difference of methodology for projecting values.

The values in the parentheses in the column of Japan do not mean the environmental quality standard, but the values on which the standards are projected.
 The values of suspended particulates by high volume air sampler are indicated as Total Suspended Particulates.
 In the case that the units are different from the units being used in Japan, they are converted to the units prevalent in Japan.
 * : 24 hour average of one hour value
 * * : Target substances

Source: World Air Pollution Standards and Risk Assessment Today and Tomorrow (1993)

(COUNTRY-WISE) ENVIRONMENTAL QUALITY STANDARDS FOR AIR POLLUTION Annex 6-1(2)

		none	OFF	EC : UK. France	<u> </u>	U.S.A.	Argentina	israci
-				Italy, Belgium	1st Standard	2nd Standard		
Sulfur	Annual average	(0.018)	0.017	0.014~0.021	0:030	•	1 0	0.021
Dioxide	Monthly avera.	•		1 4	1 3		770	0,0
	24hr av.of lh*	5	₹.	0.030~0.033	* 1.0	O OS	(a . i v a i i c)	۱ د
SQ, [ppm]	I hr. value	1.0	77.0	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	 I (3 *	· · · · · · · · · · · · · · · · · · ·	0.26
	30 min. value	•	1 5			1	1	•
	lo min. Value	(A 02-0 A2)	***	0.027	0.053	0.053		
Nitrogen No form	Aminal average	0.04~0.06	80.0	0.07	1	ı	i	•
Taken tour	he value	(0, 1~0.2)	0.21	•	*	•	1	,
Nitrogen	Annual average			1		ı	i	1
Monoride	24hr av. of lh*	10	ı	1	ι	1	1 ;	1 9
and the second	8 hr. value	ន	6	ı	တ်	•	2 (ຊ ຄ
Charles and	1 hr value	•	88	1	x	•	2	70
	30 min. value	•	25		1	•		(
	15 min. value	1			1	1		
Photo-	Target subs. **		Ozone		Ozone	Uzonc	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vzone
	Annual average	* * * * * * * * * * * * * * * * * * * *		1	1	1	i :	1 60
-	24hr av.of lh*	ı	•	•	1	1	1	200.5
	8 hr. value	ľ	0.05~0.06			1 9		1 1
(PDB)	1 hr. value	90.0	0.075~0.1	•	0.12	0.12	01-0	2
	30 min. value	\$	-	•	1 874	ax.		٠٠ تو.
Suspended	Tomout.	% 001	20%		200	800 800	***********	
Particulate	Annual average	1		,		3.05	(1	1 !
Matter	24hr av.of lh*	0.0	0.07	ı	C. 13	CT*A	· •	1
Cay(ac/ar)	I hr. value	0.2	3	•	•		10 H	
Other			24 substances including Cd,	SP by black snoke	£.	£	NOX, ISI	1123, 170X,
Substances		:	Trichloroethylene	method			soot and smoke	SAP FO.
		A	المرابع مناير فرم مرابع المرابع	The velines are used as	The standards	The standards which	Maximin	1
Deinntrons		for mintering	midende on berkemond data	onidelines Mb is	which include	protect welfare of	allowable	ozone, sehe-
and nomarks		notestion of himse			suitable safe-	public people from	limits.	duled to re-
		health National	to establish the standards	of one hour value and	ty allowance	hazardous effects		place 24
			of risk administration. The	98% value. The former	for protecting	anticipated with re-		hour value
		Evaluation for an-	onsidered no	is described in a col-	public health.	lation to air pol-		with 4 to 6
		nual average is to	badly affect human health.	um of annual average		lution.		hour values.
		be made excluding	Almost of above values are	and the latter in a	Stipulated not	Stipulated not exceeding more than		
		highest 2% or 98%	projected by the office of	column of daily ave-	one time in a y	one time in a year except the stan-		
		values	European area.	rage.	dards of annual	averages.		
1	Templer compa	circo cannot be made d	eincien commentation earnest he made due to the difference of methodology for projecting values.	logy for projecting value	8			

Notes: 1. The simpler comparison cannot be made due to the difference of methodology for projecting values.

2. The values in the parentheses in the column of Japan do not mean the environmental quality standard, but the values on which the standards are projected.

3. The values of suspended particulates by high volume air sampler are indicated as Total Suspended Particulates.

4. In the case that the units are different from the units being used in Japan, they are converted to the units prevalent in Japan. 5. *: 24 hour average of one hour value 6. **: Target substances

(COUNTRY-WISE) ENVIRONMENTAL QUALITY STANDARDS FOR AIR POLLUTION Annex 6-1(3)

			4.0000	, L. (-)	4 3 4 4 4 4 4 4	The Merken Control		Canada	
		andre c	miconesta	140	Mustralita	וווכ זוכמולו ומוומס	desirable	acceptable	tolerable
S. I Cure	Annual Comment	(610 0)	,		UQU U		0.00	0.021	ŧ
Surrar District	Aundal average	/oro-o)		1	3	1	· ·		
Dioxide	monthly avera.	100	1 1	, (C	· ·	20 0	ب د د	01.0	0.28
£	Cant av.ot in.	5.0			· ·	2	3 2	2.0	} '
	I nr. value	1.5	2			1	2	•	1
	30 min, value	1	1		•	•	ŧ	1	
	10 min, value		-	•	•	1	1 (
Nitrogen	Annual average	(0.02~0.03)	1		1	1	0.032	5.033	
200 S	24hr av. of lh*	0.04~0.06	t ·	0.10		,		11.0	01-0
	1 hr. value	(0.1~0.2)	•	•	0.15	0.04	,	0.2]	0.53
Nitrogen	Annual average		ŀ	-	1	•	1	,	(.
Monoxide	24hr av. of 1h*	2	1.	~	1	1	,	1	(
	8 hr. value	ន	8	1		•	ഗ	23	
වි	1 hr value		•	1	•	•	33	:: ::	1
	30 min. value	•	ı	ı	ı	ı	,	1	t
	15 min. value	ı	1	,		l	•		_
Photo-	Target subs ##								
chemical	Annia average					4 4 1 4 2 2 4 2 3 4 2 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.015	
المارية المارية	24hr av of 1hm	1	•	i		ı	0.015	0.025	1
	O he in land		. (ı	ı		•	\$	ı
	o or. value					l		2	บั
1 (D) (S)	I hr. value	8	0.10	1	0.16		g S	3	
	30 min. value	-	-	t		_	•	*	_
Suspended	10cmCut	3001	1	1		1			
Particulate	Annual average		1	1	1	1	1	1	
Matter	2thr av. of 1h*	0.1	,	•	,	,		ť.	1
SPM[mx/e ²]	1 hr. value	0.2	!		•		1	•	
()(1)			SP. NOX		Pb. TSP	Benzene	dS.	TSP	TSP
Substances			IC. NH						
			11, S, Pb						
Definitions		Desirable standards			Long term targets		The long term	The standards	The standards for re-
and Nemarks		for maintaining			ಣ	as guidelines. Sti-	target, on	for adequately	quiring immediate ac-
		protection of human			able limits, Sti-	pulated 50, 95, 98%	which the na-	protecting soil,	tions for decreasing
		health. National			pulated not ex-	values of 24 hour	tional assemb-	water, plants,	pollutants in order to
		policy target.			ceeding one time	value as for SO2.	ly will formu-	substances.	protect ambient air from
	-	Evaluation for an-			in a month as for	and 50, 98% values	late environ-	animals, view	setting worse to the de-
		mal average is to			one hour value,	of one hour value as	mental protec-	range and indi-	gree which ultimately
		be made excluding			and one time in a	for NG. The both	tion policy	vidual confort	cause serious risks on
		highest 2% or 98%			year as for 8 hour	values in the table	for not pol-	and welfare.	general style of life
	· :	values.			value.	indicate 98% values.	luted area.		and/or public hygiene.
Notes . Th	COMPA PARTY OF	he eignler comparison cannot be made due to the differ	to the di		ence of methodology for projecting values	projecting values			

Notes: 1. The simpler comparison cannot be made due to the difference of methodology for projecting values.

2. The values in the parentheses in the column of Japan do not mean the environmental quality standard, but the values on which the standards are projected.

3. The values of suspended particulates by high volume air sampler are indicated as Total Suspended Particulates.

4. In the case that the units are different from the units being used in Japan, they are converted to the units prevalent in Japan.

5. * : 24 hour average of one hour value

6. * * : Target substances

ADDEX 6-1(4) ENVIRONMENTAL QUALITY STANDARDS FOR AIR POLLUTION

(COUNTRY-WISE)

ı	Japan	Korea	Kuwait	Slombia	Saudi Arabia	Than land	Taiwan	Class	Class !!	Class 111
Annual average	(0.018)	0.050	0.030	0.030	0.030	0.035	0:030]		
Monthly avera.		E	1	1	1	1	•			1 9
2thr av. of 1h*	20.0	0.15	90.0	0.12	0.15	0.10	0.0	0.05	ර. වි.	S 6
1 hr. value	0.1	:	0.17	1	0.31	1	22	တ	0, 17	0.0
30 min. value	3	1		1		;	1	1	1	1
10 min. value	E .	*		1	1 1	ī	_			•
Annual average	(0.02~0.03)	0.050	1	0.050	0.050	1	0.050	1 3	1 2	1. 8
2thr av. of lh*	0.0~0.06		0.05	ı	•	2	•	0.03	S	90.0
i hr. value	(0.1~0.2)	0.15	•	ì	0.35	0.17	0.25	0.05	0.08	0. 16
Annual average	•	∞	•	1	:	1	1	1	1 (
20hr av. of 1h*	2	1	∞	•		•	1	က	က	ι ·
8 hr. value	ଛ	ន	2	22	6	12	တ	1	1	1
Ca [ppm] 1 hr value	1	1	SS	1	SS	\$	ક્ષ	o,	თ	17
	ı	,	•	1	•	1	•	1	,	•
15 min. value	1	,	1	1		1	1	ı	,	ŧ
Target subs. **			Ozone		Ozone		0zone	Ozone	Ozone	Ozone
Annual average	*******************	0.020	1			1				1
2/hr av. of lh*	1	•	1	ı	ı	•	8	,	1	1
8 hr. value	,	•		ı	•	1	1		,	1
OX [ppm] 1 hr. value	9.0	0, 10	0.08	8.0	0.15	0.03	0.12	8.0	0.080	0.100
	1	,	3	1	•		3	1	1	1
10mCut	100%			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	20%		1	
Particulate Annual average	B ,	1	t	1	1	i		1		•
	0.1	ŧ ·	•	i	:	!	0.13	1	1	• 1
SPM mg/m2] I hr. value	0.2		1	ŧ	: :	ŀ				- 1
		ISP, IK	TSP, H.S. NI,	TSP	TSP, F.	75 25	ISP.	SX, TSP	NOX. TSP	NOX. TSP
			CI2, NAIC, Pb		<u>.</u> .	:	జ్			
Definitions	Desirable standards	Stipulated			Stipulated not			Arca for	Area	Area for
and Remarks	for maintaining	not to ap-	appear more than		to appear nore			Sight	ior	industries
	protection of human	pear more	one time in a year		than one time in			sceing	habita-	and traf-
	health. National	than 3	as for 24 hour	:	a year as for CO			and his-	tion	fic con-
	policy target.	times in a	value of SQ, and		and ozone, and	-		torical	•••	gestion
	Evaluation for an-	year ex-	TSP, and not more		not more than 2			Tuins.	•	
	nual average is to	cept annu-	than 2 times in 30		tincs in a month					•
	be made excluding	al monthly	days at any place		as for H ₂ S and					
	highest 2% or 98%	average	as for one hour		24 hour value of	· :-				:
	values.	values.	value of SU.		30,				-	

Notes: 1. The simpler comparison cannot be made due to the difference of methodology for projecting values.

2. The values in the parentheses in the column of Japan do not mean the environmental quality standard, but the values on which the standards are projected. 3. The values of suspended particulates by high volume air sampler are indicated as Total Suspended Particulates.

4. In the case that the units are different from the units being used in Japan, they are converted to the units prevalent in Japan. 5. * : 24 hour average of one hour value 6. * * : Target substances

(COUNTRY-WI
IR POLLUTION
S FOR AIR
STANDARDS
QUALITY
ENVIRONMENTAL QUALITY STANDARDS FOR AIR POLLUTION
Annex 6-1(5)

		Japan	Germany	Turkey	New Zealand	Hungry	The Philippines	Finland
Sel fer	Annual average	(0.018)	0.050	0.021	(3mo val. 4)	0.024	ı	0.014
Dioxide	Monthly avera.	1	1	. 1	0.02	ı	, 1	1
	Zihr av.of lh*	2.0	:	8.0	8.0	0.05	0. 13	0.07
SO, [ppa]	i hr. value	0.1		0.16	ı		0:30	0.17
	30 min. value	•	0.15	ı	1	0.17	ı	•
	10 min. value		1	1	•	•	,	ı
Nitrogen	Annual average	(0.02~0.03)	0.00			0.037		
No. Copel.	24hr av. of lh*	0.04~0.06	(30mi value 1)	1	0.08	0.05	1	80.0
	I hr. value	(0.1~0.2)	0.11	;		0.05	0, 10	0, 16
Nitrogen	Annual average	1			_	2		1
Monoxide	24hr av. of 1h*	10	•	တ	•	~	•	•
	8 hr. value	23	O)	o	•	c:	6
ල්ථු ජි	I hr value	F	8	1	ห		77	83
	30 min. value		ı	!	ì	တ	t	
	15 min. value	•	ı	ŧ	•	•	•	•
-ptoto-	Target subs.**		Ozone	Ozone		Ozone		
chaical	Annual average			1				
Oxidan:	26hr av.of lh*	i	•	1	1	0.050	i	•
	8 hr. value	,	,)	9.0	i		•
X Code	I hr. value	90.0	ı	0.12	9.0	•	90.0	•
	30 min. value	•	•	ı	•	0.10	•	•
Suspended	10cmCut	%00 1	%0 <u>S</u>	ŧ	•	B	,	1
Particulate	Annual average	ļ	0.1	1	•	ŧ	١	1
Matter	24hr av.of lh*	7.0	(30mi value.)	1	1	1	1	1
SPM [182/187]	I hr. value	0.2	0.2	1	1	1		
Other			TSP, NO, Pb	smoke	snoke, TSP,	TSP, smoke	TSP	TSP, Sulfuric acid
Substances		:			inorganic Pb.			
Definitions		Desirable standards	One of key approval condi-			Stipulated 30 min-		Projected 24 hour
and Remarks		for maintaining	tions for installation and			ute value as for		values by 98% annual
		_	operation of predetermined			NO, and annua!		value, and one hour
		health. National	facilities, Neighboring			average value as	_	value by 90% 30 day
		policy target.	inhabitant cannot request			for CO, which are		value except CO. As
		Evaluation for an-	prohibition of operation			described in a		for SO2, separate
		nual average is to				column of one hour		standards are stipu-
	-	be made excluding				value and monthly		lated except towns
		highest 24 or 98%	of environmental pollutan-			average value.		and big villages.
		values.					:	
1		The city of the property control of the many of	to the difference of marks	40000	the property of the second	1	j .	

Notes: 1. The simpler comparison cannot be made due to the difference of methodology for projecting values.

2. The values in the parentheses in the column of Japan do not mean the environmental quality standard, but the values on which the standards are projected.

3. The values of suspended particulates by high volume air sampler are indicated as Total Suspended Particulates.

4. In the case that the units are different from the units being used in Japan, they are converted to the units prevalent in Japan.

5. * : 24 hour average of one hour value

6. * * : Target substances

mex 6-2 ENVIRONMENTAL QUALITY STANDARDS FOR AIR, WATER AND NOISE POLLUTION

1.1 Environmental quality standards regarding air pollution

Substance	Sulfur dioxide	Carbon monoxide	Suspended Particulate Matter	Photo-chemical oxidant
Environmental conditions	Daily average of hourly values shall be below 0.04 ppm, and one hour value shall be below 0.1 ppm.	Daily average of hourly values shall be below 10 ppm, and eight-hour mean value shall be below 20 ppm.	Daily average of hourly values shall be below 0.10 mg/m ³ , and one hour value shall be below 0.20 mg/m ³ .	Hourly value shall be below 0.06 ppm.
Measuring methods	Conductometric method	Non-dispersive infrared analyzer method	Weight concentration measuring methods based on filtration collection or light scattering method, or Piezo-electric microbalance method or β-ray attenuation method yielding values having a linear relation with the values of the above method.	Absorptiometry using neutral potassium iodide solution, or coulometry.

Notes: 1. Suspended Particulate Matter means airborne particles of 10 microns or less in diameter.

Photo-chemical oxidants are oxidizing substances such as ozone and peroxyacetyl nitrate produced by photo-chemical reactions (only those capable of isolating iodine from neutral potassium iodide, excluding nitrogen dioxide).

1.2 Environmental quality standard for nitrogen dioxide

- (1) The environmental quality standard for nitrogen dioxide shall be as follows:

 The daily average of hourly values shall be within or lower than the range between 0.04 ppm and 0.06 ppm.
- (2) The environmental quality standard mentioned in (1). shall be based on the measured value obtained by the absorptiometry using Saltzman reagent at a place where it is considered to be able to ascertain accurately the state of air pollution by nitrogen dioxide.
- (3) The environmental quality standard mentioned in (1), shall not apply to exclusive industrial districts, roads or other regions or places where the general public do not usually live.

2.1 Environmental quality standards regarding water pollution

2.1.1 Environmental quality standards regarding the protection of the human health (The Environment Agency Notification No. 16, 1993)

Item	Standard value
Cadmium	0.01 mg/l or less
Total cyanide	Not detectable
Lead	0.01 mg/l or less
Chromium (hexavalent)	0.05 mg/l or less
Arsenic	0.01 mg/l or less
Total mercury	0.0005 mg/l or less
Alkyl mercury	Not detectable
PCB	Not detectable
Trichloroethylene	0.03 mg/l or less
Tetrachloroethylene	0.01 mg/l or less
Carbon tetrachloride	0.002 mg/l or less
Dichloromethane.	0.02 mg/l or less
1,2-Dichloroethane	0.004 mg/l or less
1, 1, 1-Trichloroethane	1 mg/l or less
1, 1, 2-Trichloroethane	0.006 mg/l or less
1, 1-Dichloroethylene	0.02 mg/l or less
cis-1,2-Dichloroethylene	0.04 mg/l or less
1, 3-Dichloropropene (D-D)	0.002 mg/l or less
Thiram (TMTD)	0.006 mg/l or tess
(bis (dimethylthiocarbamoyl) disulfide)	
Simazine (CAT)	0.003 mg/lor less
(2-chloro-4, 6 bis (ethylamino)-1, 3, 5-triazine)	· · · · · · · · · · · · · · · · · · ·
Thiobencarb	0.02 mg/l or less
(S-p-chlorobenzyl diethylthiocarbamate)	
Benzene	0.01 mg/l or less
Selenium	0.01 mg/l or less

Environmental quality standards (the Environment Agency Notification No. 59, 1971) was amended by the notification No. 16 on March 8, 1993 which will be followed by the establishment of waste effluent standards soon to be revised.

2.1.2 Environmental quality standards regarding the protection of the human health (The Environment Agency Notification No. 59, 1971)

Item	Standard value!
Cadmium	0.01 mg/l or less
Cyanide	Not detectable
Organic phosphorus ¹⁹	Not desectable
Lead	0.1 mg/l or less
Chromium (hexavalent)	0.05 mg/l or less
Arsenic	0.05 mg/l or less
Total mercury	0.0005 mg/l or less
Alkyl mercury	Not detectable
PCB	Not detectable

- Maximum values. But with regard to Total mercury, standard value is based on the yearly average value.
- Organic phoshorus includes Parathion, Methyl Parathion, Methyl Demeton and EPN.
- "Not detectable" means that the substance is below the level detectable by the specified method.
- The standard for Total mercury is 0.001 mg/h or less in case it is obvious that pollution in rivers is caused by natural factors.

2.2 Environmental quality standards regarding the prevention of the living environment

2.2.1 Rivers (excluding lakes)

	Item			Standard vale	ies ¹	
Category	Purposes of water use	pН	Biochemical Oxygen Demand (BOD)	Suspended Solids (SS)	Dissolved Oxygen (DO)	Number of Coliform Groups
AA	Water supply class 1, conservation of natural environment and uses listed in A-E.	6.5 - 8.5	1 mg/1 or less	25 mg/l or less	7.5 mg/l or more	50 MPN/100ml or less
A	Water supply class 2, Fishery class 1, bathing and uses listed in B.E.	6.5 - 8.5	2 mg/t or less	25 mg/l or less	7.5 mg/l or more	1.000 MPN/100ml or less
8	Water supply class 3, Fishery class 2, and uses listed in C-B.	6.5 - 8.5	3 mg/1 or less	25 mg∕l or less	5 mg/l or more	5,000 MPN/100m1 or less
C	Fishery class 3, Industrial water class 1, and uses listed in D.E.	6.5 - 8.5	5 mg/i or less	50 mg/l or less	5 mg/l or more	·
D	Industrial water class 2, Agricultural water, and uses listed in B.	6.0 - 8.5	8 mg/l or less	100 mg/l or less	2 mg/l or more	
£	Industrial water class 3, Agricultural water, conservation of the environment.	6.0 - 8.5	10 mg/l or less	Floating matter such as garbage should not be observed.	2 mg/l or more	

Notes: 1. The standard value is based on the daily average value. The same applies to the standard values of lakes and coastal waters.

2. At the intake for agriculture, pH shall be between 6.0 and 7.5, and dissolved oxygen shall not be less than 5 ppm. The same applies to the standard values of lakes.

3. Conservation of natural environment: Conservation of scenic spots and other natural resources.

4. Water supply class 1: Water treated by simple cleaning operation, such as filteration.

Water supply class 2: Water treated by normal cleaning operation, such as sedimentation and filteration.

Water supply class 3: Water treated through a highly sophisticated cleaning operation including pretreatment.

5. Fishery class 1: For aquatic life, such as Yamame (Oncorhynchus masou) and Japanese char (Salvelinus

pluvius) inhabiting oligosaprobic water, and those of Fishery class 2 and 3.

Fishery class 2: For aquatic life, such as fish of the salmon family (Salmonidae) and sweetlish (Plecoglossus

altivelis) inhabiting oligosaprobic water, and those of the Fishery class 3.

Fishery class 3: For aquatic life, such as carp (Cyprinus carpio) and crucian carp (Carassius auralus)

inhabiting, β-mesosaprobic water.

6. Industrial water class 1: Water given normal cleaning treatment, such as sedimentation.

Industrial water class 2: Water given sophisticated treatment by chemicals.

Industrial water class 3: Water given special cleaning treatment.

7. Conservation of the environment: Up to the limits at which no unpleasantness is caused to people in their daily life including a

walk by the riverside, etc.

2.2.2 Lakes (natural lakes, reservoirs, marshes and artificial lakes with more than 10 million cubic meters of water)

i)

	liem			Standard valu	ies ^t	
Category	Purposes of water use	ρН	Chemical Oxygen Demand (COD)	Suspended Solids (SS)	Dissolved Öxygen (DO)	Number of Coliform Groups
AA	Water supply class 1, Fishery class 1, conservation of natural environment and uses listed in A-C.	6.5 - 8.5	1 mg/l or less	1 mg/l or less	7.5 mg/l or more	50 MPN/100ml or less
A	Water supply class 2 and 3, Fishery class 2, bathing and uses listed in B - C.	6.5 - 8.5	3 mg/l or less	\$ mg/l or less	7.5 mg/l or more	1,000 MPN/100ml or less
В	Fishery class 3, Industrial water class 1, Agricultural water and uses listed in C.	6.5 - 8.5	5 mg/L or less	15 mg/l or less	5 mg/l or more	
c	Industrial water class 3, conservation of the environment.	6.0 - 8.5	8 mg/l or less	Floating matter such as garbage should not be observed.	2 mg/l or more	

Notes: 1. With regard to Fishery class 1, 2, and 3, the standard value for Suspended Solids shall not be applied for the time being.

2. See notes for nivers.

3. Fishery class 1:

For aquatic life, such as kokanee salmon (Oncorhynchus nerka) inhabiting oligosaprobic lake

type waters, and for those of fishery class 2 and 3.

Fishery class 2:

For aquatic life, such as fish of the salmon group (Salmonidae) and sweetfish (Piecoglossus altivelis) inhabiting oligosaprobic lake type waters, and for those of the Fishery class 3.

Fishery class 3:

For those aquatic fives, such as carp (Cyprinus carpio) and crucian carp (Carassius auratus)

inhabiting eutrophic lake type waters.

4. Industrial water class 1:

Water given normal treatment such as sedimentation.

Industrial water class 2:

Water given sophisticated treatment such as chemical injection or special treatment.

5. Conservation of the environment: Up to the limit at which no unpleasantness is caused to the people in their daily lives including

a walk along the shore.

iil

	lican	Standa	rd values
Category	Purposes of water use	Total nitrogenn	Total phosphorus ¹⁾
7-1	Conservation of natural environment and uses listed in II-V.	0.1 mg/l or less	0.005 mg/l or less
11	Water supply classes 1, 2 and 3 (excluding special types) Fishery class 1, bathing and uses listed in III-V.	0.2 mg/l or less	0.01 mg/l or less
[1]	Water supply class 3 (special types), and uses listed in III-V.	0.4 mg/l or less	0.03 mg/l or less
ΙV	Fishery class 2, and uses listed in V.	0.6 mg/l or less	0.05 mg/l or less
٧	Fishery class 3, Industrial water, Agricultural water, conservation of the living environment.	1 mg/l or less	0.1 mg/l or less

Notes: 1. Standard values are set in terms of annual averages.

2. Standard values for Total nitrogen are applicable to lakes and reservoirs where nitrogen is a causal factor of the growth of phytoplankton.

3. Standard values for Total phosphorus are not applicable to agricultural water uses.

4. Conservation of natural environment: Conservation of scenic points and other natural resources.

5. Water supply class 1:

Water treated by simple cleaning operation, such as filteration.

Water supply class 2: Water supply class 3: Water treated by normal cleaning operation, such as sedimentation and filteration. Water treated through a highly sophisticated cleaning operation including pretreatment.

("special types" mean water treatments by special cleaning operation in which removal of

6. Fishery class 1:

smelling substances is possible). For aquatic life, such as fish of the salmon group (Salmonidae) and sweetlish (Plecoglossus

altivelis), and for those of Fishery class 2 and 3.

Fishery class 2: Fishery class 3: For aquatic life, such as smell and those of Fishery class 3.

7. Conservation of the environment:

For aquatic life, such as earp (Cyprinus carpio) and crucian carp (Carassius auratus). Up to the limits at which no unpleasantness is caused to the people in their daily lives

including a walk along the shore.

2.2.3 Coastal waters

	lican			Standard valu	es¹	<u> </u>
Category	Purposes of water use	рĦ	Chemical Oxygen Demand (COD)	Dissolved Oxygen (DO)	Number of Coliform Groups	N-hexane extracts
A	Fishery class 1, bathing, conservation of natural environment, and uses listed in B-C.	7.8 - 8.3	2 mg/l or less	7.5 mg/l or more	1,000 NPN/100ml or less	Not detectable
В	Fishery class 2, Industrial water and uses listed in C.	7.8 - 8.3	3 mg/l or less	5 mg/l or more	·	Not detectable
c	Conservation of the environment	7.0 - 8.3	8 mg/l or less	2 mg/l or more	•	•

Notes: 1. With regard to the water quality of fishery, class 1 for cultivation of oysters, number of coliform groups shall be less than 70 MPN/100ml.

2. Conservation of natural environment: Conservation of scenic points and other natural resources.

3. Fishery class 1:

For aquatic life, such as red sea bream (Chrysophrys major), yellow tail (Seriola

quinqueradiata), seawood (Undaria pinnatifida) and for those of Fishery class 2. For aquatic life, such as gray multet (Mugil cephalus), faver (Pomhyra tenera), etc.

Fishery class 2:
4. Conservation of the environment:

Up to the limits at which no unpleasantness is caused to the people in their daily lives including a walk along the shore.

3.1 Environmental quality standards for noise

Environmental quality standard values for each type of area and time category shall be as listed in the following table.

Arca	Time calegory			Apolicable areas	
type	Day time	Moming, evening	Night time		
ÄA	45 dB(A)	40 dB(A)	35 dB(A)	Areas designated for each classification of land areas by a prefectural governor based on the provision of Article 2 of the	
A	50 dB(A)	45 dB(A)	40 dB(A)	Cabinet Order relating to the Delegation of Authority to	
В	60 dB(A)	55 dB(A)	50 dB(A)	Designated Water and Land Areas for Environmental Quality Standards (Cabinet Order No. 159, 1971).	

Notes: 1. Areas coming within the AA category are areas where quiet is specially required such as where there is a concentration of convalescent facilities.

2. Areas coming within the A category areas which are used mainly for residential purpose.

3. Areas coming within the B category are areas where are used considerably for residential purposes and which are also used for commercial and industrial purposes.

However, with regard to environmental quality standards for the areas of the following table (hereinafter referred to as "areas facing roads") the values hereinbelow shall be applied instead of the values in the table above.

	Time category			
Area category	Day time	Moming, evening	Night time	
"A" areas facing roads with 2 lanes. "A" areas facing roads with more than 2 lanes. "B" areas facing roads with not more than 2 lanes. "B" areas facing roads with more than 2 lanes.	55 dB(A) 60 dB(A) 65 dB(A) 65 dB(A)	50 dB(A) 55 dB(A) 60 dB(A) 65 dB(A)	45 dB(A) 50 dB(A) 55 dB(A) 60 dB(A)	

Notes: "Lane" refers to a longitudinal strip of road with uniform width requisite to allow a single line of cars to travel there along safely and without hindrance.

ANNEX 7

BOILER FEED WATER TREATMENT SYSTEM

ANNEX 7 BOILER FEED WATER TREATMENT SYSTEM

1. GENERAL

In this Annex, the description is made for the boiler feed water treatment systems (hereinafter called as deminineralizing system) which are designed by the modern technology and able to expect very high water production and regeneration efficiency.

2. DOUBLE FLUIDIZED BED TYPE DEMINERALIZING SYSTEM

The description of this system is based on the technical document of vendor concerned. It is therefore advised that the proper techniques of said vendor are included in this description. In order to readily understand this system, the description is divided into two(2) sections as follow:

- 2.1 Fluidized Bed Type Demineralizing System
- 2.2 Double Fluidized Bed Type Demineralizing System

2.1 Fluidized Bed Type Demineralizing System

2.1.1 Outline of system

This system is 2-bed 1-degasifier demineralizing system consisting of a cation exchanging unit, a degasifier (decarbonator), and an anion exchange unit. Raw water flows through the three units in the stated sequence, and in the process is converted to highly demineralized water as shown in Figure 1. Regeneration and washing operations are carried out in a downward flow through fixed beds, while in the demineralizing process, the flow is upward, with the lower 25 to 75% of the resin in a fluidized state and the rest forming a compact bed at the top of resin bed as shown in Figure 2.

Figure 1 FLOW SHEET OF FLUIDIZED DEMINERALIZING SYSTEM

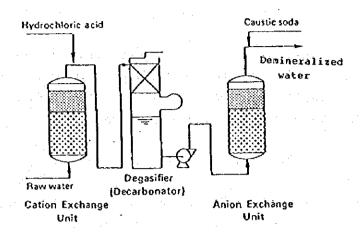
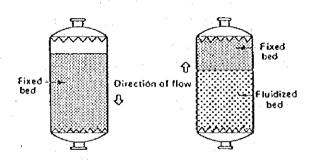
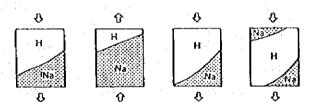



Figure 2 PRINCIPLE OF FLUIDIZED DEMINERALIZING SYSTEM

Regeneration Process Demineralizing Process


2.1.2 Functions and features of system

(1) produces high-purity demineralized water

In conventional systems with co-current regeneration, if a low level of regeneration is employed, the resin remains unregenerated in the lower portion of the bed. When the next demineralizing cycle is started, a few hydrogen ions are released in the upper portion of the bed and are exchanged for the residual ions at the bottom of the bed, thus causing some leakage. This leakage is usually sodium, since this ion is most easily exchanged for hydrogen ions. If the free mineral acidity generated

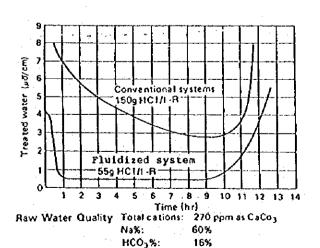

by ion exchange is high enough, magnesium and even calcium may also leak from the unit. Therefore, conventional systems require a high level of regeneration in order that the entire volume of resin may be completely regenerated. This system uses countercurrent regeneration, viz., regeneration is performed with a downflow and demineralization with an upflow. This means that, at the start of upflow service, there is virtually no leakage of cations because all of the exchange occurs at the inlet rather than the outlet end of the unit. Thus, treated water of high purity is continuously produced. This system can operate at a relatively low level of regeneration and its performance is not affected by the ion concentration or composition of the raw water.

Figure 3 STATES OF RESIN BED IN REGENERATION AND DEMINERALIZING PROCESS

Regeneration Demineralizing Regeneration Demineralizing
Fluidized System Conventional System
(Countercurrent regeneration)

Figure 4 PURITY TREATED WATER

A7 - 3

(2) Large savings in regenerant

1) Low level or regeneration

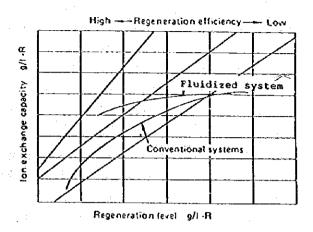
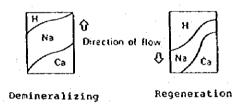
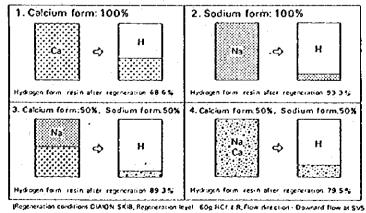

Since countercurrent regeneration is used, high-purity treated water is obtained at a relatively low level of regeneration. Therefore, regeneration efficiency is greatly enhanced.

Figure 5 shows the relationship between regeneration level and the capacity at the breakthrough point of an ion exchange resin. It can be seen that exchange capacity does not increase much even though the regeneration level is raised. In other words, the lower the regeneration level, the higher is the ratio of exchange capacity to a given weight of regenerant, which means the higher the regeneration efficiency.

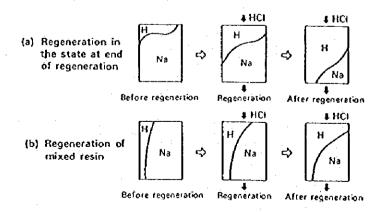

2) Countercurrent regeneration

The state of a cation exchange resin bed at the break-through point of the demineralization is illustrated in Figure 6. It can be seen that ions are adsorbed by the resin in the order of greater selectivity, i.c., starting from the bottom, first calcium, then sodium, and finally hydrogen, there by forming an adsorption zone. During regeneration, i.e., from the top, the hydrogen ion displaces the sodium ion, which in its turn displaces the calcium ion, in what is known as a hookup effect. This hookup effect gives a more complete regeneration and helps boost regeneration efficiency. This is obvious from Figure 7.


REGENERATION LEVEL VS. ION EXCHANGE CAPACITY Figure 5

STATE OF RESIN BED ADSORPTION ZONE AT Figure 6 DEMINERALIZING AND REGENERATION

COMPOSITION OF DIAION SKIB RESIN AND Figure 7 UTILIZATION OF REGENERANT



3) Thorough utilization of resin

regeneration flow are downward, a considerable amount of resin remains unused in the lower portion of the bed at completion of the demineralizing cycle. In the regeneration step, the unused resin is contaminated with downwardly displaced regenerant wastes. Since this system uses an upward service flow, the unused resin remains in the upper portion as shown in Figure And because the regenerant flows downward and passes through the unused resin zone without regenerating, the regenerant power is concentrated fully on the exhausted resin. This means the effective regeneration level is raised relative to the conventional systems. In this system, the entire resin bed is pushed against the upper distributor during service flow. The freeboard space in the resin bed is limited so as not to cause a mixture of exhausted and unused resin during settling resin. This physical set-up does not allow in-place washing, so backwashing to remove accumulated matters on the resin is done in a separate tank. Since the unused resin becomes mixed with the exhausted resin, the amount of regenerant required is twice that used in the normal regeneration steps.

In conventional systems, in which both service and

Figure 8 ADSORPTION ZONE IN REGENERATION PROCESS

However, this external backwashing of the resin is required at a frequency of only once every 30 to 40 cycles for the cation exchange unit and once every year or so for the anion exchange unit. This permits us to take good advantage of the economical operation resulting from the countercurrent regeneration steps.

(3) Small pressure drop in demineralizing process

Pressure drop during the demineralizing process is minimal because about 25 to 75% of the ion exchange resin is in a fluidized state.

(4) Little water needed for washing

Whereas conventional systems require wash water in an amount equivalent to 8 to 12 times the volume of resin, this system uses only 2 or 3 times as much as the resin volume.

(5) Quick regeneration

Regeneration is completed in about an hour, compared to approximately four hours for conventional systems.

(6) Simple and compact equipment

Regeneration, as in conventional systems, is performed in a downward flow. Therefore, no special device is required for preventing fluidization in the demineralizing process. This simplifies the equipment. Moreover, since it comes in a compact 2-bed 1-degasifier arrangement, this system takes a very small space for installation.

Figure 9 FLOW RATE VS. PRESSURE DROP IN CATION EXCHANGE RESIN

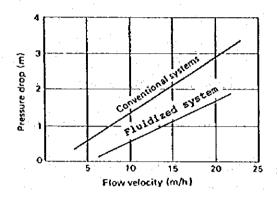
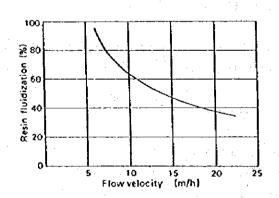
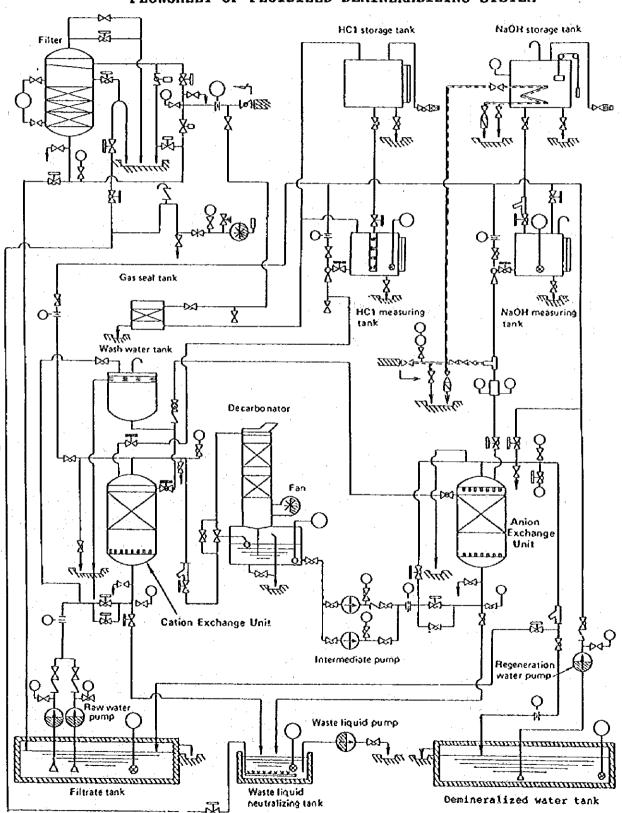




Figure 10 FLOW RATE VS. RESIN FLUIDIZATION RATE IN CATION EXCHANGE RESIN

FLOWSHEET OF FLUIDIZED DEMINERALIZING SYSTEM

EXAMPLE OF PRACTICAL USE OF FLUIDIZED BED TYPE DEMINERALIZING SYSTEM

Table 1 presents the performances of two commercial units in operation, with regard to raw water analysis and treated water quality:

	Example 1	Example 2
Raw water	Total cations	Total cations 113ppm as CaCO ₃ Co + Mg 90ppm as CaCO ₃ Na + K 23ppm as CaCO ₃ HCO ₃ 50ppm as CaCO ₃ C1 + SO ₄ 63ppm as CaCO ₃ SiO ₂ 10ppm as CaCO ₃
Treted water	Breakthrough point conductivity Below 5µU/cm Mean conductivity Below 1µU/cm Silica Below 0.02ppm as SiO ₂	Breakthrough point

Table 1 Analyses of Treated Water and Raw Water

COMPARISONS OF ECONOMICS

Example 1

• Design Standards

Total cation in raw water		275ppn	as CaCO3
Treatment capacity	,,	500m ³ /	cycle
Quality of treated water	Conductivity	Below	5μ ℧/ cm
•	Silica	Below	0.1 ppm

• Economic Comparisons

Conventional 2-bed 1-degasifier sy		asifier systems Fluidized system		system			
Treated water quality	Below 15µU/cm	Below 0.1ppm	Below 0.1ppm as SiO ₂		I/cm	Below 0.1ppm as SiO ₂	
Regenerant requirements	35% HC1 1,3501	g/C 45% NaOH	780kg/C	35% HC1	440kg/C	45% NaOH 380kg/C	
Approximate capital cost	3	¥30,000,000		¥33,000,000		000,000	
Running cost	¥63/m³ treated water		¥23.6/m³ treated water		treated water		

Example 2

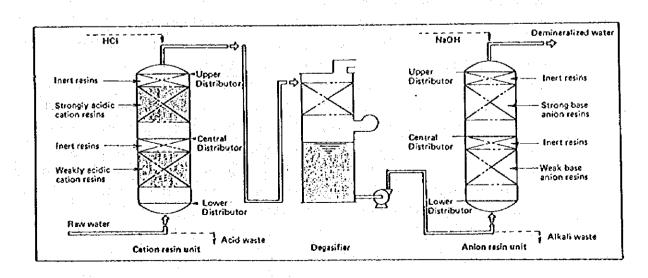
Design Standards

- Booksit Granian			
Treatment capacity		4,000m ³	day
Quality of treated water	: Conductivity	Below	3μU/cm
	Silica	Below	0.1 opm

• Regenerant Requirements

	Conventional 2-bed 1-degasifier systems	Fluidized system
35% HCI	2,170kg/day	1,090kg/day
45%NaOH	1,250kg/day	690kg/day

2.2 Double Fluidized Bed Type Demineralizing System


2.2.1 General

Lately, the application technology of ion exchange resins is making a rapid development. However, the demineralizing system exhibiting a higher regeneration efficiency has long been desired when viewed from the point of resource-saving and pollution control. The double fluidized bed type demineralizing system well meet such requirements, and offer 100 percent regeneration efficiency which has not been accomplished with a conventional demineralizing system.

2.2.2 Outline of system

This system is, as illustrated in the diagram, of 2-bed 1-degasifier type demineralizing system consisting of a cation exchange unit, a degasifier and an anion exchange unit. Raw water flows through the three units in the stated sequence; the cation exchange unit, the degasifier and the anion exchange unit. A distinctive feature of the system is that each exchange unit contains two kinds of ion exchange resins-one strong, the other weak. The cation exchange unit is filled with strongly acidic and weakly acidic cation resins, and with strong base and weak base anion exchange resins in the anion exchange unit. The resins are divided by a central distributor placed between the two compartments.

FLOW DIAGRAM OF FLUIDIZED BED TYPE DEMINERALIZING SYSTEM

2.2.3 Service run and regeneration

(1) Cation exchange unit

Raw water flows from the bottom of the cation exchange unit and contacts first with the weakly acidic resin layer located in the lower compartment, in which the hard composition combined with bicarbonate radical (temporary hardness) will be effectively exchanged while the parmanent hardness and monovalent ions like sodium are exchanged by the strongly acidic exchange resins in the upper compartment. The water flows from the top of the exchange unit.

(2) Anion exchange unit

Acidic water degasified through degasifier flows from the bottom of the anion exchange unit, in which a mineral acidity will be exchanged through the contact with the weak base resins. Residual carbonate and silica will react with the strong base resins and the removal can be accomplished. The demineralized effluent flows the top of the exchange unit.

2.2.4 Regeneration

(1) Regeneration for cation resin unit

Hydrochloric acid (or sulfuric acid) introduced from the top of the cation resin unit is used first for regeneration of the strongly acidic exchange resins in the upper compartment and the regeneration waste water containing still effective hydrochloric acid is used again for the regeneration of the weakly acidic exchange resins in the lower compartment. As stated, the regeneration waste water from the regeneration of the strongly acidic exchange resins is used for the regeneration of the weakly acidic exchange resins. Thus, almost none of the acid may remain in the regeneration waste water.

(2) Regeneration for anion exchange unit

Sodium hydroxide fed from the top of the anion resin unit will be used for regeneration of the strong base resins in the upper compartment, then be used for regeneration of the weak base resins in the lower compartment. Therefore, the regeneration efficiency and the regeneration waste water characteristics could be similer to that of the cation resin unit.

2.2.5 Feature of system

(1) High regeneration efficiency and lower running cost

Nearly 100 percent regeneration efficiency shall be established since the regeneration waste water from the regeneration step of the strongly acidic exchange resins and the strong base exchange resins are used again for the regeneration of the weakly acidic exchange resins and the weak base exchange resins, respectively. As a result, the running cost can be reduced to a half or a quarter when compared with that of 2-bed 1-degasifier demineralizer.

(2) Easy treatment of regeneration waste water

Since the regenerant is used up almost completely in the regeneration step of the ion exchange resins, the regeneration waste water contains almost none of free acid and alkaline. Thus, the regeneration waste water can be treated very easily.

(3) High-purity water production

Since the effluent is finally polished by the completely regenerated ion exchange resins contained in each upper layer of anion and cation resins, the highly purified water can be obtained.

(4) No pressure loss during service run

Pressure loss will be minimal because each ion exchange resin bed is in a fluidized state during the service run.

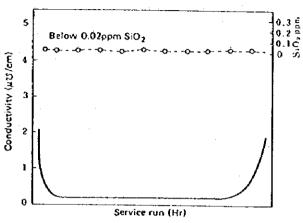
(5) Little water needed for washing

The water needed for washing is as little as a third or a quarter when compared with that of 2-bed 1-degasifier system.

(6) Shorter outage time for regeneration

Only one hour and a half will be required for regeneration.

2.2.6 Operating results of double fluidized


Bed type demineralizing system

*Capacity: 1000m³/day (2-cycle/day)

*Influent

				÷	нсо3	160ppm	as	CaCO3
					C1+SO ₄	160ppm	as	$CaCO_3$
	Ca+Mg	140ppm	as	CaCO ₃	sio ₂	5ppm	as	$caco_3$
	Na+K	180ppm	as	CaCO ₃	co ₂	5ppm	as	CaCP ₃
	T.C.	320ppm	as	CaCO ₃	T.A.	330ppm	as	CaCO3
•				Na+K%	56%			
				нсо3%	50%	100		

Regeneration

	Step	Regenerant injection	Slow rinse	Riose	Regeneration time
-	Hour	20 min.	50 min.	15 min.	85 min.

Regeneration efficiency

Cation	exchanger
Catton	excusinger

Regenerant 35%HCI

427kg/cycle

Deionization 320ppm x 640m³/c 205kgCaCO,/cycle

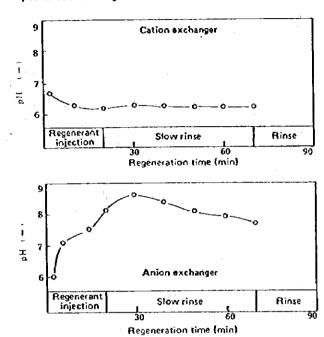
(4.09keq/cycle) (4.1keq/cycle)

Regeneration efficiency

100%

Anion exchanger

Regenerant 45%NaOH


327kg/cycle (3.68keq/cycle)

Deionization 330ppm x 640m3/c 211kgCaCO,/cycle

Regeneration efficiency

(4.22keq/cycle) 114.7%

pH value in the regeneration waste water

Comparisons of chemical requirements 2.2.7

Comparisons of chemical requirements

 Design standard Influent T.C. D.T.A.

Na%

133ppm as CaCO, 140ppm as CaCO, 25%


Operating Capacity Effluent: Conductivity SiO,

2000m³/day 5µti/cm 0.1ppm

MTO Alkalinity 42%

	Unit price	2-bed 1-degasilier demineralizer		Double Fluidized Demineralized	
Regenerant 35%HCI 45%NaOH Neutralizing 35%HCI	¥20/kg ¥45/kg ¥20/kg	1740kg/cycle 1780kg/cycle 496kg/cycle	¥34,800/cycle ¥80,100/cycle ¥ 9,900/cycle	555kg/cycle 498kg/cycle —	¥11,100/cycle ¥22,410/cycle
Per one cycle			¥124,820/cycle		¥33,510/cycle
Annual outlay			¥41,191,00/year		¥11,059,000/yea

Basis: 330 days of operation a year.

