2.9 Environment Situation of PPSA

2.9.1 Environmental administrative structures

The environmental administrative structures in Poland are divided into the following three levels of management.

- (1) Central (National)
- (2) Provincial

1

(3) Local (Town, village, commune)

PPSA is under direct supervision of a state inspectorate as well as a provincial inspector with regard to environmental management.

For implementation of environmental regulations, PPSA is first to abide by the national legislations, then to follow the regulations by the provincial and local authorities, which are commonly much more stringent taking into account the special local environmental circumstances.

The major activities of the state environmental protection inspectorate are to control emission of pollutants by taking individual measurements and through monitoring (usually parallel measurement and monitoring are conducted by the companies to be inspected for mutual data comparison), who also have authority to punish with infringement of fines against the environment violations or send a motion to the public prosecutor's office and ask for opening an inquiry.

They also calculate and collect fees and fines, control the observation of environmental regulations, prepare plans of tasks in the field of environmental protection in the province, including investments and the management of the provincial environmental protection fund.

If the enterprises emit the pollutants more than the allowable values into the air, the following penalty are imposed.

- Payment of fines (for the amount exceeding the defined quantities) which are ten times higher than normal fees.
- (2) Close down of the plant or a part of it

Since 1991, the environmental activities are reorganized on a double structure as shown in the followings.

- (1) The chief inspector of environmental protection assisted by the office of the state environmental inspectorate.
 - (2) The provincial inspector of environmental protection assisted by the provincial environmental inspectorate.

Figure 2.9-1 shows organization of provincial environmental protection

Figure 2.9-1 ORGANIZATION OF PROVINCIAL ENVIRONMENTAL PROTECTION

2	Provincial Committee for Natural
	Protection
••••••••••••••••••••••••••••••••••••••	Provincial Committee for Flood Control
Department of Environ Protection	omental Examination & Control Center
· · · · · · · · · · · · · · · · · · ·	
Provincial Natural Co	onservator

Source: OECC

2.9.2 Legislation and regulations

(1) National legislation

The allowable concentrations and allowable downfall to the earth of polluting substances are legislated by the decree of Ministry of Environmental Protection, Natural Resources and Forestry, (Quality & emission standards).

(2) Provincial regulations

 (\mathbf{b})

ژ**ا**د

The allowable amount of the emitted substances is regulated by provincial government, (Emission standards).

Corporate bodies or people engaged in economic activities are obliged to obtain from the local provincial authority for environmental protection "Allowable emission values". The revised regulations will be enacted on 1994 and on and after 1998, in which the further reductions of allowable emission levels are projected.

The following tables show the agreements between PPSA and Plock province for allowable pollutant emissions and the real emission values including noise.

Table 2.9-1 General Agreement Between PPSA & Plock for Total Allowable Pollutant Emission Values

Table 2.9-2 Air Pollution Emission of Different Emission Sources of PPSA (1993)

Table 2.9-3 Facility-Wise Contribution to Emissions of PPSA (1993)

Table 2.9-4 Noise Limit and Emission Value in PPSA

Table 2.9-1 shows that SO_2 , H_2S , benzene, methanol, aliphatic and aromatic H/C exceeded allowable emission values in respect to air and no infringement items except Phenol in respect to water in 1993. Table 2.9-2 and Table 2.9-3 show pollutant emission quantities in each equipment and each emission ratio to total emission, so that the contribution to the environmental effects of each unit can be estimated in view of environmental management.

CENERAL AGREEMENT BETWEEN PPSA & PLOCK FOR TOTAL Table 2.9-1

ALLOWABLE POLLUTION EMISSION VALUES

(1) Air

	Allowable E	Emission Value	Real	Emission Value	
	-+end of 1993	Jan. 1.1994-	1991	1992	1993
S02	53, 209	35, 082	58, 650, 13	48.113.86	43.144.23
N02	9,108	7, 857	5, 404. 52	5, 867. 28	6. 616. 39
8	42, 870	2, 630	9, 586, 17	7.354.07	3.002.64
Dust	1,468	483	489.26	411.09	376. 49
Silicon Dust	662	632	288.26	452.90	507.71
H2 S	101	19	83. 84	65, 36	48.95
Benzene	32.		23.95	47,52	26.24
Ethylene Oxide	32	32	12.77	10.36	12.18
Сишеле	16	16	NA	NA	30.74
Phenol	8		14.05	1.20	2.06
Toluene	44	37	10.47	29, 75	35.12
Ethylene Glycol	61	60	31.56	18.99	18.37
Methanol	0.1			10.01	10-67
Ethylene+Propylene	975	066	NA	NA	718.54
CS ₂	18	20	33.49	14.11	5.74
Aliphatic E/C	6, 446	3, 188	7:003.45.	6, 172. 30	5, 200, 90
4+0ma+10 H/C	300	988	846.19	784.32	1.019.26

(Note) Desulfurization unit for a feed line on FCC and for exhaust gas of Power Station will be installed in near future shows substances exceeding allowable emission value

(2) Water

1) Allowable and real Pollutant Emission Values in PPSA (1993)

		Allowable	Allowable Value			
	Item	Winter season (11/1-3/31)	Summer season (4/1-10/31)	Real Value		
1	Flow(m ³ /d)	87,000	87,000	51,192		
2	COD(mg/l)	230	210	122		
3	SS (mg/l)	80	75	58		
4	Phenol(mg/l)	0.3	0.2	0.02		
5	Ether extract(mg/1)	16	14	3.8		
6	рН	6.3-9.0	6.5-9.0	7.6-8.2		

2) Allowable and Real Pollutant Emission Values of Industrial Sewage System-1 & 2 at Inlet of the Treatment System (1993)

	Sewage	Ite	em	Allowable Value	Real value
		рН		6.8-8.7	5.6-9.8
	Industrial	COD	(mgO ₂ /1)	180-760	576
	sewage	Sulfides	(mgS/1)	1.1-510	9.8
L,	system-l	Phenol	(mg/l)	0.1-1.5	16.5
		Hydrocarbor	n (mg/1)	10-1847	137
		SS	(mg/1)	60-409	139
		Total flow	(m ³ /h)	1300-2000	1148
		рН		7.2-9.0	6.2-10.2
i	Industrial	COD	(mg0,/1)	180-8600	2780
	sewage	Sulfates	(mgS/l)	2.8-308	34
2	system-2	Phenol	(mg/l)	1.4-42	9.4
		Hydrocarbon	n (mg/l)	43-550	68.0
		SS	(mg/1)	63-160	86
		Total flow	(m^{3}/h)	250-320	248

Note) shows substances exceeding allowable emission value

Table 2.9-2 AIR POLLUTION SOURCES OF DIFFERENT EMISSION SOURCES OF PPSA (1993)

			·					ton/yea
		soz	NOR	co	^H 2 ^S	^{CS} 2	Dust	Total
Refinery Processes								
1 Fuels Operations	i i	• •						
Distillation unit I		1078.7	87.2	3.4	.7.2			1,176.5
Distillation unit II		2094.7	214.2	30.4	7.9			2,347.2
Distillation unit III		2665.8	232.7	31.9	15			2,945.4
Distillation unit IV		626	60.6	5.8	3			695.4
Slop oil distill. unit		0.1	0.5	0.05	0.05			0.7
Cat. cracker unit I		383.8	204.8	577.2	· 1		180.1	1,346.9
Cat. cracker unit II		3360	778	1539			327.6	6,004.6
RF alkylation unit			1.7					. 1.7
Reformer unit 1		416.9	46.4	19.7				474.0
		571.7	10.3	33.8				615.8
Reformer unit II		560.3	3.8	28.6				592.7
Reformer unit III		513.6	72.2	19.9				605.7
Reformer unit IV		513.0						
Arom. extraction unit		23.6	3.5	4.7				31.8
P-xylene unit		6.2	Ò.9	1.2				8.3
Sulphur recovery unit		738.3	2.8	25.8	10.7	5.7		783.3
.2 Lube Oil Operations								
		35 6 6	38.3	25				318.8
Futural extraction unit		255.5	30.3	23				0.0
Dewaxing unit			-					55.2
Hydro finishing unit		46.9	7	1.3 64.2				107.1
Asphalt blowing unit		40.4	2.5		····· ·			
. Petrochemical Works								
								ó. o
Polyethylene units I+II				· ·		· .		0.0
Polypropylene units I	•	in the second						0.0
Polypropylene units 11					÷			0.0
Ethylene oxide/Glycol unit								0.0
Ethylene oxide/Glycol unit	. 11							
Ethylene cracker unit I			30	191.5				221.5 435.1
Ethylene cracker unit II		0.3	253.2	181.6				
Phenol/Acetone unit	: 					···-		0.0
(Sub total 1+2)	•	(13,382.8)	(2,050.6	6) (2,777.0	5) (44.85)	+ · •	(5.7) (507.	7) (18,768.
3. Utilities	·							
Power plant		29392.8	4497.4	190.8		•	277.25	34,358.25
Cooling towers	1							0.0
Waste water treatment		349	69.5	37.4			99.2	546.1
1. Offsites								
			N. A.					0.0
Gasoline blending								
Lube oil blending								0.0
Railway exp. ref. prod. &	crude c	51						0.0
Export tasc. ethylene							1.1	0.a
Olefin/LFO export		1. A.			1990 - A.		÷.,	Ó.Q
Pyrol. gasoline								0.0
Benzene/Butadiene	- i t	*****	7.5		· · ·	·		7.5

Source: PPSA

P

1

Table 2.9-3	FACILITY-WISE CONTRIBUTION	тo
	EMISSIONS OF PPSA(1993)	

		Contribution to emissions (%)					
÷.	Area/Process	so ₂	NOx	СО	H ₂ S	Dust	
1.1	Crude oil distillation 1	2.51	1.32	0.12	16.06	.	
1.2	Crude oil distillation 2	4.86	3.24	1.02	17.62	· · · · ·	
1.3	Crude oil distillation 3	6.19	3.52	1.07	33.45	_	
1.4	Crude oil distillation 4	1.46	0.92	0.23	6.69	-	
2.1	Reformer 1	0.97	0.71	0.36	0.0	-	
2.2	Reformer 2	1.33	0.16	1.13	0.0		
2.3	Reformer 3	1.30	0.06	0.96	0.0	·	
2.4	Reformer 4	1.19	1.1	0.67	0.0	· _	
3.1	FCC 1	0.89	3.1	19.21	2.23	20.37	
3.2	FCC 2	7.8	11.76	51.22	0.0	37.06	
4	Sulphur recovery unit	1.7	0.05	0.86	23.86		
5	Waste water treatment plant	0.8	0.92	1.25	0.0	11.22	
6.1	Ethylene cracker 1	0.0	0.46	6,38	0.0	_	
6.2	Ethylene cracker 2	0.0	3.83	6.05	0.0	-	
7	Other	0.9	0.95	3.12	0.09	. 	
8	Total process unit	31.9	32.1	93.65	100.0	· · ·	
9	Power plant	68.1	67.9	6.35	0.0	31.35	
10	Total PPSA	100.0	100.0	100.0	100.0	100.0	
	· · · · · · · · · · · · · · · · · · ·			· · · ·		<u></u>	

Source: PPSA

Note : Emission quantities of heavy metals in PPSA are as follows V:28.0, Ni:9.6, Cr:0.49, Pb:0.07, Cd:0.0043 (tons/year)

NOISE LIMIT & EMISSION VALUE IN PPSA Table 2.9-4

(1) Distillation unit No.1

7		Evaluation	of Noise		Unit:dB) /A
	Measuring point	Calculation	Standard	Actual	per STD
1	Control room	57			
2	Cloak room		7.0		
	Dining room				
- 4	Desalination unit				
5.	Start point of trench		<u></u>		<u></u>
6	Pump station		80	90	85
? .	Bnd point of trench		80	70 69	85
8.	Leaching unit		80 80	69	85
9.	Slop Lank No.14	65	80	68	85
10	Slop tank No.2 4 4		80	.68	85
11	Utility pump station	64	80	69	85
14	Colums & racks	77	80		85
	Foreman, room	54	70	59	75
12	Bxchangers A coolers		80	79	85
16	Reater Pc-1	96	80	101	
17	Vacuum distillation		80	82	85
18		92	80		85
19		86	80	91	85
	Dillity nump station	79	80	84	85

(2)Power plant & Water system-1

		Evaluation	of Noise	dB	/λ
	Measuring point	Calculation	Standard	Actual	per_STD_
	Control room		70	63	
2	Labour roou	60	70		
1	Ion exchangers	66	L		
- 4	Waste neutralization	61	L		
l s	Laboratory	54	Į		
1 6	Receneration, 2 5BH		1		
7	Reated Lanks	84	1		
	Work shop		80		
9	SWD hall, OnH		80		
	Out				
	Cistern loading	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>			
.1.2	SDW hall, 3. 2mH	85	80		<u></u>
.13	Office room		80		
.14	Pumps & tanks		80	89	
15	Reating	<u> </u>	<u> </u>		╏╼┉╍╼╌┖᠊ᡘᠣ᠆ᢍ᠇ᡣ

(3)Boiler unit of power plant

	[)	Byaluation	of Noise	dB	/A
	Measuring point	Calculation		Actual	par STR
. 1	Boiler No.1, OmH	72			
3	Ditto , 7mil		80		
2	Ditto 14mH	78	80		
	Ditto 23mH		80		
5	Boiler No.2. OmH		80		
à	Ditto 7mH	76		81	
7	Ditto 14mH	78	80		85
. 8		82	80		
	Boiler No.5, OnH	71	80		
10		76	80		
l îi		76	80	81	
12		78	80	83	
		76	80	81	
	VentilatorsApumps, 0mH		80		
112	Cleaning stand	76	80		
1.1	Pump_station	80	80		
1 17	Crane car	76	80	81	88
冒續	Communication levels	-	<u> </u>	L	L

(4) Machine department

(Evaluation	of Noise	dB	/A
Measuring point	Calculation	Standard.	Actual	per STO
1 Control room No.1				
2 Control room No. 2				
3 Control room No.3		70		75
4 Control room No. 4		70		
5 Sound proof cabin, 182		70	77	75
6 Sound proof cabin, 3	6 Å	76	69	75
7 Sound proof cabin, 4	82	70	87	75
8 Sound proof cabin, 546. 9 Sound proof cabin, 7	72	70	78	75

Source: PPSA

٩

 \mathbf{I}

2.9.3 Waste water treatment system of PPSA

The existing system was installed and expanded in accordance to the then prevalent national and local regulations up to the current system as shown in the Figure 2.9-2.

Since the quality of waste water is closely related to the inlet water quality of the Vistula River, the current water quality of the river is shown in Table 5.5-4 and summarized in Table 2.9-5.

The outlet water quality after being treated by the water treatment system in PPSA, reportedly, has better quality than the water quality of the inlet water.

Ľ

Iten	Unit	In	let water qu	ality
		Minimum	Maximum	Average
Mudiness		13	55	36
Chromaticity	mgPt/1	19	66	35
рН		7.6	8.9	8.2
Total hardness	mVal/1	9.9	15.8	13. 2
Ca	mg/1	66	116	91.5
Ng	mg/1	6.8	24. 2	12.8
Fe	mg/l	0. 225	0.85	0.56
Nn	mg/l	0.17	0.46	0. 31
Na	mg/l	25	116	55.4
K	mg/1	3	5.7	4.4
Cl	ng/l	45	164	99. 9
NH4	mg/l	0.13	5. 9	1. 73
COD (Cr)	mg/1	28	89.6	58.8
Oily substance	mg/l	0.15	1.1	0.45
SS	mg/l	15. 3	36. 9	25.2
Residue on evaporation	mg/l	355	702	468

Table 2.9-5 INLET WATER QUALITY OF PPSA

Source: PPSA

(**]**)

1

2.9.4 Monitoring system

Since very near to PPSA there is Plock city in the southeast side as well as specially protected area in both side of the Vistula River in the south-west side, the environmental authority in Plock province imposes the strict environmental regulations on PPSA.

For the purpose of monitoring environmental conditions around PPSA, there are 10 monitoring points controlled and managed by PPSA and Plock province as shown in Figure 2.9-3, among them there are two automatic stations for the measurement of instantaneous pollution concentration connected by telephone cable to a central monitoring station as shown in Figure 2.9-4.

Average daily results of measurement of SO_2 were below allowable limit at all of the measuring points in 1992 and except No.4 location (Company's Dispensary) in 1993 as shown in Table 2.9-6 and average daily H_2S concentration sometimes exceed allowable standard value as shown in Table 2.9-7.

As shown in Table 2.9-6, 2.9-7 and Figure 2.9-6(1), the annual trend of environmental pollution in Plock city has shown steady improvement during these several years, and it is believed that all of the environmental quality standards including H_2S will be perfectly cleared in Plock city in the near future. AVERAGE DAILY SO2 CONCENTRATION IN 1992 & 1993 Table 2.9-6

•

L		ф С								Me	Measurement	ant						
2	location	Measur	asurement		0-10%NDS	SONS	10-209	SONS	20-509	-50%NDS	50-75%NDS	SUNS	75-10	SOUNDS	V	100%NDS	ģ	
		1990	1992	1993	1992	1993	1992	1993 [1992	1993	1992	1993	1992	1993	1990	199	Ъ́Г Г	S
Ŀ	I MUTZVIDOWO	319	357	290	300	278	36	ġ	ക	ġ	-	0	ഹ	0	20	0		0
(¢	Chel bowo	244	360	294	292	237	54	34	12	22	~	1	0	0	0	0		0
	Residential District	359	231	293	222	251	ø	22	7- 4	<u>8</u>	0	2	0	0	0	0		0
	Company's Dispensary	358	359	355	261	247	69	39 39	83	54	1	თ	0	3	5	0		0
ſ	Stara Biara	324	362	295	280	244	62	30	20	20	0	0	0	-4	0			0
e co	Trzepowo	358	258	295	234	252	ല	27	ഗ	16	0	0	0	0	0	0	_	
<u>-</u>	Nieglosy	355	221		221		0		0		0		0		0			
òo	Scoczewka	243	356	233	306	205	36	10	14	14	0	4	-		~		1	_
1	Total	2570	2504	2055	2116	1714	284	168	89	150	10	16	ŝ	4	-7	⊃ 		
Ø	source) PPSA																	
-	(Note) NDS: Maximum allowable concentration by regulations	owable	conce	ntrati	on by	regula	tions											
	75 microgram/m ³	a∕a t	for loc	location	188													
	200 microgra		for loc	ocation	2-1													

Table 2.9-7 AVERAGE DAILY H₂S CONCENTRATION IN 1990, 1992 & 1993

Kd Location	1990	1992	1993	1990	1992	1993
I Chelpowo	244	359	295	13.5	6.7	8.1
2 Residential District	359	231	295	15.6	2.6	3.7
3 Company's Dispensary	358	360	357	15.6	2.2	5.3

(Note) NDS: Maximum allowable concentration by regulations 5 microgram/m³ for location 1&3

2.9-15

1

.

.

.

Figure 2.9-4 MONITORING SYSTEM FOR AMBIENT AIR

2.9-19

Ð

()

2.9.5 Environment measurement procedure

 $(1) SO_2$

As for sampling methods, there are no problems on sampling position, collecting tube and duct in view of comparison with JIS.

On analyzing method, MADUR GA-60, an equipment made in Poland, is used. Although this method is good at measuring several items during the shorter time, it is necessary to confirm the accuracy of the measured values by conducting the parallel measurement either with manual analysis such as Titration Method or Absorption Method, or with continuous analysis by employing an equipment to be calibrated by standard gas.

In the case of JIS, the following methods are employed.

- Neutralization Titration Method

- Precipitation Titration Method

- Tubimetric Method

(2) NOx

As in the case of SO_2 , there are no problems on sampling position, collecting tube and duct in view of comparison with JIS.

Regarding analyzing method, MADUR GA-60 is also used. Similar to the case of SO_2 , it is necessary to confirm the accuracy of the measured values by employing either manual analysis or continuous analysis.

In the case of JIS, the following methods are employed.

- Zn-MEDA Method

- PDS Method

There are no problems on sampling position, collecting tube and duct in view of comparison with JIS.

MADUR GA-60 is also used for analyzing procedure.

It is also necessary to confirm the accuracy of the measured values by employing either manual analysis such as Gas-Chromatography or continuous analysis. Since GC-TCD is equipped in the laboratory, several times of parallel measurement using this equipment will be good enough to confirm accuracy of the measured values.

2.9.6 Environmental management system

Around the end of 1992, environmental evaluation and its protection action were the main subject for discussion on the board of PPSA. After detailed evaluation for environmental protection task and duty, they have decided the new organization consisting of Environment Inspection Section and Environment Protection Section as shown in Figure 2.9-5.

Duty of Environment Inspection Section is to evaluate influence of production units against environment, which will be conducted by direct measurement and analytical investigation, while Environment Protection Section assembles experts who are responsible for advancement in the following environmental protection.

- Air

- Soil and underground water

- Greens and waste management

Environment Protection Section is also responsible for preparing the balance sheets of economic outcome of environmental activities. Table 2.9-8 shows 17.2 billion zl for fines of emission excess produced by PPSA in 1992, while fees are approx 93 billions in 1992, so that PPSA paid 110 billion zl. (¥550 million) as penalty for emission of pollutants.

The total quantity of pollution emission as well as pollutant per unit of crude oil in PPSA has a reducing trend as shown in Figure 2.9-6(1) & (2), accordingly with result of very slight increase of total fees as illustrated in Figure 2.9-7. Table 2.9-8 FINES OF EMISSION EXCESS FOR PPSA

(1) Air

(Unit: Zloty)

			Amount		
NO	. Unit	1990	1991	1992	
1	FCC 1	17,314,379.3			
2	FCC 2	10,355,865.0	12,271,234,780	16,210.790.200	
3	Reforming 1	-	804,427,488	494,151,800	
4	Reforming 2	355.6	-	-	
5	Reforming 3	5,161,612.0		· -	
6	Reforming 4	6,249,120.0	·	-	
7	HF Alkylation	· _	434,016	-	
8	Phenol & Acetone		807,840	464,227,200	
9	Power Plant	· -	· · · –	33,628,800	
10	Noise	_		65,887,800	
	Total	39,081,311.9	13,076,904,124	17,268,685,800	

Source: PPSA

(2) Water

)

 (\mathbf{J})

1990 : 210,297,600 21 1991 : 726,723,000 2L

Source: PPSA

Ð

1

Source: PPSA

Source: PPSA

R

Values for 1992 are assumed only - there aren't data for 4th quarter

Chapter 3

Diagnostic Review of the No.1 Crude Oil **Distillation Unit**

C

: : : : :

Contents of Chapter 3

9

.

	Page
Chapter 3 Diagnostic Review of the No.1 Crude Oil	
Distillation Unit	3.1-1
3.1 Outline of No.1 Crude Oil Distillation Unit	
and Modernization Plan of PPSA	3.1-1
3.1.1 Process of No.1 crude oil distillation unit	3.1-1
3.1.2 Current situation of waste water treatment	3.1-2
3.1.3 Current situation of flue gas	3.1-3
3.1.4 PPSA's Modernization plan of No.1	
crude oil distillation unit	3.1-4
3.2 Simulation of the Existing No.1	
Crude Oil Distillation Unit	3.2-1
3.2.1 Purpose of the simulation of the	
existing No.1 crude oil distillation unit	3.2-1
3.2.2 Design of the simulation model of the	
existing No.1 crude oil distillation unit	3.2-1
3.2.3 Procedure for designing the simulation model	
of the current No.1 crude oil distillation unit	3.2-6
3.2.4 The Result of the Simulation	3.2-6
3.2.5 Evaluation of the simulation output	3.2-7
3.3 Review of Current Condition of the No.1	
Crude Oil Distillation Unit	3 3-1
	0.0-1
3.3.1 Evaluation for the design of No.1	
crude oil distillation unit	3.3-1
3.3.2 Review of Operation Control	3.3-4
3.3.3 Review of product quality control	3.3-10
3.4 Review of Heat and Material Balance	
(at maximum throughput)	3.4-1
(A
3.4.1 Heat balance	3.4-1
3.4.2 Material Balance	3.4-2

- i -

			v
		Dogo	
<u>э</u> Б - р	eview of Product Quality and Specification	Page	
3.5 R	eview of floudet guarity and opecification	0.0 2	
3.5.1	Product quality	3.5-1	
3.5.2	Product specification (Current)		
3.5.3	Product specification (After the modernization)		
3.5.4	Estimated product properties obtained	i.	
	by the simulation	3.5-6	
3.6 R	eview of Fuel Efficiency in the		
Н	eating Furnace and of Energy Balance	3.6-1	
	(1, 2, 2, 3) is the set of the		
3.6.1	Fuel efficiency in the heating furnace	3.6-1	
3.6.2	Review of energy balance		
	in the No.1 crude oil distillation unit	3.6-3	
3.7 F	eview of Environmental Control Measures	3.7-1	
<u></u> .			Ø
	Measures for reduction of SO ₂ emission		
	Measures for reduction of H ₂ S emission		
3.7.3	Problems on environmental protection	3.7-4	· ·
3 Q S	Review of Environmental Measurement		
	and Monitoring System	3.8-1	
3.8.1	Confirmation on sampling methods	3.8-1	
3.8.2	Confirmation on analysis procedures	3.8-1	
3.8.3	Emission values in flue gas	3.8-3	
3.8.4	Location for measurement in PPSA		
	and the measured values		
	$\mathcal{L}_{\mathrm{exp}}$, where $\mathcal{L}_{\mathrm{exp}}$ is the set of		
3.9 I	Review of Management System		
3.9.1	Operation Management		
3.9.2	Maintenance Management		
3.9.3	Education and training system	3.9-13	
		·	8
		•	
			• .
	- ii -		
		*.	· · · ·

Contents of Table in Chapter 3

•

		Page
	Table 3.2-1	PROPERTIES OF URAL CRUDE OIL (1/2) 3.2-11
	Table 3.2-2	TBP DISTILLATION OF URAL CRUDE OIL 3.2-13
	Table 3.2-3	CURRENT PRODUCT SPECIFICATION (1/2) 3.2-14
	Table 3.2-4	EQUIPMENT DATA (1/3) 3.2-16
	Table 3.2-5	HEAT & MATERIAL BALANCE SHEET(1/5)
		(26 NOVEMBER 1993) 3.2-19
	Table 3.2-6	COMPARISON OF THE DATA AND
		SIMULATED VALUES FOR W-1 OVERHEAD 3.2-7
	Table 3.2-7	COMPARISON OF THE DATA AND
		ESTIMATED VALUES FOR W-2 OVERHEAD 3.2-8
	Table 3.2-8	SIMULATED GAP BETWEEN A16 and AR 3.2-9
	Table 3.2-9	HEAT DUTY FOR HEATERS 3.2-24
	Table 3.3-1	OPERATION DATA OF NO.1 CRUDE OIL
	•	DISTILLATION UNIT (PRESSURE) (1/2) 3.3-13
	Table 3.3-2	OPERATION DATA OF NO.1 CRUDE OIL
		DISTILLATION UNIT (FLOW) 3.3-15
	Table 3.3-3	OPERATION DATA OF NO.1 CRUDE OIL
		DISTILLAITON UNIT (TEMPERATURE) (1/3) 3.3-16
	Table 3.3-4	OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION
		UNIT (HEAT BALANCE OF FURNACE) (1/3) 3.3-19
	Table 3.3-5	ANALYTICAL DATA OF
		CRUDE OIL PROPERTIES (1/2) 3.3-22
	Table 3.3-6	ANALYTICAL DATA OF PRODUCTS OF NO.1
		ATMOSPHERIC DISTILLATION UNIT (1/3) 3.3-24
	Table 3.3-7	ANALYTICAL DATA OF PRODUCTS OF NO.1
		VACUUM DISTILLATION UNIT (1/5) 3.3-27
		an a
•	an a	

- **111** -

Page

Table 3.5-1	COMPARISON OF PRODUCTS PROPERTIES OF
	NO.1 ATMOSPHERIC DISTILLATION UNIT WITH
	ITS SPECIFICATION (1/2)
Table 3.5-2	GAP OF PRODUCTS OF NO.1 ATMOSPHERIC
	DISTILLATION UNIT
Table 3.5-3	COMPARISON OF PRODUCTS PROPERTIES
	OF NO.1 VACUUM DISTILLATION UNIT WITH ITS
	SPECIFICATION (1/2) 3.5-10
Table 3.6-1	ENERGY BALANCE IN EACH SECTION (kw) 3.6-4
Table 3.7-1	AIR POLLUTION LIMIT & EMISSION VALUE OF
	NO.1 CRUDE OIL DISTILLATION UNIT (1993) 3.7-5
Table 3.7-2	CALCULATED EMISSION VALUES
	OF AIR POLLUTANTS (1993) 3.7-6
Table 3.9-1	SHIFT OF EMPLOYEES FOR PRODUCTION OF NO.1
	CRUDE OIL DISTILLATION UNIT 3.9-14
Table 3.9-2	SCHEDULE FOR WORK ON
	THREE EIGHT-HOUR SHIFTS 3.9-14
Table 3.9-3	EMPLOYMENT 3.9-15
Table 3.9-4	EXPECTED OPTIMUM EMPLOYMENT AFTER
	STRUCTURAL AND ENGINEERING IMPROVEMENT 3.9-15
Table 3.9-5	WORKING HOUR FOR EMPLOYEES OF
· ·	MAINTENANCE SECTOR 3.9-20
Table 3.9-6	WAGES OF EMPLOYEES FOR
	MAINTENANCE SECTOR 3.9-20
Table 3.9-7	INSPECTION OF EQUIPMENT
· .	REGULATED BY UDT/ZDT CODES 3.9-22
Table 3.9-8	NUMBER OF OPERATION DAYS 3.9-22
Table 3.9-9	MAINTENANCE COSTS OF NO.1
	CRUDE OIL DISTILLATION UNIT 3.9-23
Table 3.9-10	MAINTENANCE COSTS OF FACILITIES IN
	HEAVY INDUSTRIES IN U.S.A. AND JAPAN

- 'iv' -

Contents of Figure in Chapter 3

		Page_
Figure 3.1-1	PFD OF NO.1 CRUDE OIL DISTILLATION	2 1 10
	UNIT IN MAZOVIAN REFINERY	3.1-19
Figure 3.3-1	POINTS OF OPERATION DATA	
	RECORDED ON 26 NOVEMBER 1993	3,3-33
Figure 3.4-1	NO.1 CRUDE OIL DISTILLATION UNIT	
	MATERIAL BALACNE (26 NOVEMBER 1993)	3.4-3
-	STEAM CONSUMPTION (0.7 MPa STEAM)	3.5-12
Figure 3.5-2	STEAM CONSUMPTION	
	(1.3 MPa & 0.7 MPa STEAM)	3.5-13
Figure 3.6-1	ENERGY BALANCE OF NO.1 CRUDE OIL DISTILLATION UNIT	2 6-15
Figure $3.6-2$	ENERGY BALANCE OF NO.1 CRUDE OIL	510-15
	DISTILLATION UNIT (1989)	3.6-17
Figure 3.9-1	ORGANIZATION CHART OF DRW-1 SECTION	3.9-14
Figure 3.9-2	INSTANCE OF THREE EIGHT-HOUR SHIFT FOR	
	PRODUCTION OF A JAPANESE REFINERY	3.9-15
Figure 3.9-3	ORGANIZATION CHART OF MAINTENANCE SYSTEM	
	AS OF NOVEMBER IN 1990	
+	ORGANIZATION CHART OF WORKSHOP MZB	
Figure 3.9-5	TOTAL MAINTENANCE SYSTEM	3.9-21

٩

J

- v -
Chapter 3 Diagnostic Review of the No.1 Crude Oil Distillation Unit

- 3.1 Outline of No.1 Crude Oil Distillation Unit and Modernization Plan of PPSA
- 3.1.1 Process of No.1 crude oil distillation unit (Refer to Figure 3.1-1)
 - (1) Throughput

T)

No.1 crude oil distillation unit consists of No.1 atmospheric distillation unit and No.1 vacuum distillation unit which is designed to charge 100% Ural crude oil. The design throughput is 308 t/h.

However, No.1 atmospheric distillation unit can be charged 308 t/h by bypassing some atmospheric residue to No.1 vacuum distillation unit, which means the throughput of No.1 vacuum distillation unit is balanced to the throughput of 288 t/h of No.1 atmospheric distillation unit in case of no bypass.

(2) No.1 Atmospheric Distillation Unit

After being fed to heat exchangers where crude oil is heated by products, crude oil is fed to the desalters (Eh-1 and Eh-2) where salt contamination in the crude oil is reduced.

Thereafter, desalted crude oil is heated by heat exchangers and fed to the preflash column (W-1), where AlO containing gas, LPG and naphtha are extracted from the top of W-1. AlO is fed to the other plant for further treatment. Oil from the bottom of W-1 is heated by a heater (Pc-1) to the designated temperature and fed to the atmospheric distillation tower (W-2).

Products such as All, Al2, Al3, Al4, Al5 and Al6 are extracted from the W-2.

A12, A13, A14, A15 and A16 are fed to the stripper (W-3) to

adjust product properties, then run down to product tanks after passing through heat exchangers.

(3) No.1 Vacuum distillation unit

Bottom oil from W-2 is fed to the heater (Pc-2). After being heated to the designated temperature, the bottom oil is fed to the vacuum distillation tower (W-7) which is maintained under vacuum.

Vacuum products such as P11, P12, P13 and P14 are extracted from the W-7.

Pl1 is distillated from the upper part of the W-7 and used as diesel oil for the lighter fraction and lubricant oil for heavier fraction.

P12, P13 and P14 are introduced to the stripper (W-8) to adjust product properties and stored in tanks as feed oil to the lubricant oil plant.

Bottom oil from W-7 is used as feed oil to the asphalt plant and as fuel oil in the refinery.

3.1.2 Current situation of waste water treatment (Refer to Figure 4.6-1)

> The waste water is generated from the following equipment in No.1 crude oil distillation unit:

(1) Desalters (Eh-1 and Eh-2)

(2) W-1 overhead receiver (Od-1)

(3) W-2 overhead receiver (Od-2)

(4) W-7 overhead receiver (0d-8)

(5) Heat exchangers (During periodical maintenance)

(6) Blow down system

This waste water from the blow down system is connected to the refinery waste water treatment system I or to a slop tank (2b-3).

Waste water recovered in Zb-3 is separated in the oil separator (Zm-1, Zm-2 and Zm-3) where water and oil are separated.

Water separated in the oil separator is fed to the refinery waste water treatment system I and the recovered oil is charged to the No.1 crude oil distillation unit.

The waste water is not treated in the area of No.1 crude oil distillation unit and connected to the refinery waste water treatment system II by underground pipe lines. After being treated at the refinery waste water treatment unit, the water is discharged to the Vistula River.

3.1.3 Current situation of flue gas

Flue gas is generated from the following equipment in No.1 crude oil distillation unit:

(1) No.1 Atmospheric distillation unit heater (Pc-1)

(2) No.1 Vacuum distillation unit heater (Pc-2)

(3) No.1 Vacuum distillation tower overhead receiver (Od-8)

(4) Slop tank (Zb-3)

Isoflow type is applied for both Pc-1 and Pc-2 and each heater has its own independent stack.

Refinery gas together with component of heavy fuel oil without vanadium are used as fuel for both heaters. No flue gas desulfurization plant for the heaters exists or is planned so far. 3.1.4 PPSA's Modernization plan of No.1 crude oil distillation unit

PPSA has a modernization plan as follows;

- (1) Increase of No.1 vacuum distillation unit throughput up to the level of No.1 atmospheric distillation unit
- (2) Construction of stabilization unit for A10 fraction
- (3) Construction of rectification unit (Splitter)
- (4) Decreasing of atmospheric distillation product number
- (5) Improvement of heat exchange between product and crude oil
- (6) Improvement of process heaters efficiency by means of utilization of flue gas heat for air preheating

(7) Improvement of vacuum fraction

(8) Revamping of electrodehydrators

(9) Box water coolers liquidation

(10) The liquidation of Od-8 and Zb-3 emissions

(11) Application of DCS

The Refinery's modernization plan above shall be reflected in the JICA Team's study.

In addition to the refinery's original plan, Item (11)application of DCS - was requested for the JICA Team to study during the first field survey.

3.2 Simulation of the Existing No.1 Crude Oil Distillation Unit

For diagnosing the existing No.1 crude oil distillation unit, it is necessary to know the operation conditions of No.1 crude oil distillation unit when it is operated as designed by charging the Ural crude oil.

For this purpose, a simulation model was designed by using a computer simulation program, PROCESS by inputting actual operation data, such as flow rate, temperature, pressure and analysis data of No.1 crude oil distillation unit collected on 26 November 1993 (hereinafter referred to as the DATA).

Many of the process plants in operation today have been designed and commissioned by using PROCESS. PROCESS is presently installed on more than 250 in-house computers with a world-wide user base of over 800 companies.

3.2.1 Purpose of the simulation of the existing No.1 crude oil distillation unit

and when the

1

Ð

The design of a simulation model has the following purposes;

(1) to diagnose the operating conditions of No.1 crude oil distillation Unit.

- (2) to design the simulation model after the modernization by inputting new conditions to be applied after the modernization.
- 3.2.2 Design of the simulation model of the existing No.1 crude oil distillation unit

3.2-1

- (1) Base data used to design the simulation model
 - To design the simulation model of the existing No.1 crude oil distillation unit, the following data were applied:
 - 1) PFD was drawn based on the current P & ID (Refer to Figure 3.1-1.)
- 2) Characteristics and properties of Ural crude oil (Refer to Tables 3.2-1 and 3.2-2)
- 3) Current products specification (Refer to Table 3.2-3)
- 4) Equipment Data (Refer to Table 3.2-4)

(2) Assumptions

In order to design the simulation model, the following assumptions were made:

- Crude oil for the study shall be Ural crude oil only, of which characteristics and properties are indicated in Table 3.2-1 and 3.2-2.
- 2) There is no deterioration of the existing equipment and materials. Namely, the existing equipment and materials shall be able to continue mechanically sound operation with their design characteristics.
- 3) Amended operation DATA

Basically, all the DATA are inputted to the simulation model.

However, as discussed in Paragraph 3.3.2, all the DATA were reviewed and found that there are some discrepancies or inconsistencies in the DATA.

The inputted data for the simulation model were amended where there is discrepancies or inconsistency in the DATA as explained below:

(Refer to Figure 3.3-1 as for the number.)

(a) Inlet and outlet temperature of heat exchangers located from P1 to Eh-1

* DATA inputted to the simulation program

-Temperature : Pl discharge (No.1)

Eh-1 inlet (No.5 and No.7)

Shell inlet of heating liquid

-Flow : Shell side of heating liquid

* Data obtained by the simulation program

-Overall Heat Transfer Coefficient of Heat Exchangers -Outlet temperature of Heating Liquid

(b) Inlet and outlet temperature of heat exchangers located from Eh-2 to W-1

* DATA inputted to the simulation model

-Temperature : Eh-2 outlet (No.12)

W-1 inlet (No.18 and No.29)

Shell inlet of heating liquid

-Flow : Shell side of heating liquid

* Data obtained by the simulation model

Overall Heat Transfer Coefficient of Heat Exchangers Outlet temperature of Heating Liquid

(c) Inlet and outlet temperature of coolers

There are some unreasonable DATA in temperatures for Ch-1 and Ch-7 (Outlet temperature is higher than the inlet one).

For the purpose of the feasibility study, the simulated temperatures for these coolers' inlets are used and the

measured outlet temperature is used for simulation input.

(d) Analysis data for the distillation of W-1 and W-2 bottom oil

Regarding the analysis data of distillation of W-1 and W-2 bottom oil, it seems that these two oils have almost the same property if the test method for the distillation is the same. It never happens in this process.

Since the distillation data of W-2 bottom oil seemed to be based on the data of 10 mmHg of ASTM D 1160 while that of W-1 bottom oil seemed to be based on the data of 760 mmHg of ASTM D 1160, the distillation data of W-2 bottom oil was inputted to the simulation program based on the data of 10 mmHg of ASTM D 1160. As a result, the output of the simulation for the distillation of the other intermediate products is consistent with the analyzed distillation DATA.

Therefore, the distillation data of W-2 bottom oil is regarded as the data based on the 10 mmHg of ASTM D 1160.

During the third field survey, PPSA reported that both data were based on 10 mmHg of ASTM D 1160 and the both oils were sampled at the drain valves of the bottom oil level gauge of W-1 and W-2 since there are no proper sampling points. It is estimated that the similar analysis data would be obtained due to the such improper sampling.

During basic design, it is required to sample the two bottom oils at the right points and design a new simulation model.

- (e) Flow of W-1 bottom oil
 - Flow rate of W-1 bottom oil to W-2 was 230 t/h by the DATA and 247.36 t/h by the calculation of the material balance.
 - The value obtained from the calculation of material balance (247.36 t/h) was applied for the simulation model.
- 4) Assumed data

Since there were some points which were not recorded on 26 November 1993, the following data were assumed and used as the data for the simulation model;

- (a) The Bottom temperature of W-7
 The Bottom temperature of W-7 was assumed to be 340°C
 and was obtained from the simulation model.
- (b) The run down temperature of VR The run down temperature of VR was assumed to be 130°C for fuel oil blend.
- (c) Overall heat transfer coefficient (U value) for Wm-14, Wm-4.4 and Wm-3.3 Since there were no flow of W-2 bottom oil on 26 November 1993, it is impossible to calculate the U value.

U value of 251 x 10^3 J/m² · h · °C was assumed.

(d) Penetration of VR

The penetration of the VR does not indicate the definite value in the DATA. (Refer to Item 5.7.6 in Table 3.3-7.)

Therefore, the VR yield from W-7 was maintained as the same as it is now, that is, the penetration of VR is

the same as the present value.

The penetration of VR will be adjusted at the asphalt blowing unit as processing now.

3.2.3 Procedure for designing the simulation model of the current No.1 crude oil distillation unit

The following procedures are followed to build up the simulation model of the current No.1 crude oil distillation unit.

(1) Calculation of theoretical plate numbers of W-1, W-2 and W-7

Theoretical plate number of W-1, W-2 and W-7 is calculated by the simulation program until the simulated product properties becomes similar to the actual one analyzed on 26 November 1993.

(2) U value for the heat exchangers

Since there are discrepancies and inconsistencies in the DATA, it is impossible to use all the DATA for estimating U value for the heat exchangers. Therefore, the operation data described in 3.2.2 is used. For the run down temperature, the value of DATA was inputted to the simulation model.

3.2.4 The Result of the Simulation

The Result of the simulation is summarized in Table 3.2-5.

3.2.5 Evaluation of the simulation output

The simulation output is evaluated as follows:

(1) W-1 (Preflash column) overhead system pressure

There are unreasonable DATA in the pressure of the W-1 overhead system which means the pressure of Od-1 (W-1 overhead receiver) is higher than that of W-1 top.

The following DATA were inputted to simulate the pressure around W-1.

* Flow rate of A10

 (\mathbf{I})

* Temperature of W-1 top

* Temperature of Od-1

The simulation results are shown in Table 3.2-6.

The simulated values seem to be more reliable because there is no reverse in the pressure of W-1 top and Od-1.

Table 3.2-6 COMPARISON OF THE DATA AND SIMULATED VALUES FOR W-1 OVERHEAD

· · · · ·		The DATA (MPa)	Simulated Values (MPa)
	0d-1	0.29	0.17
	W-1 Top	0.28	0.24
an a	W-1 Bottom	0.37	0.25

(2) W-2 overhead system pressure

There are unreasonable DATA in the pressures of the W-2 overhead system.

If the temperature of Od-2 (W-2 overhead receiver) is 70° C and its pressure is 0.0 MPa as indicated in the DATA, theoretically, it is impossible to control the pressure of

Od-2 because All fraction will vaporize completely.

Therefore Od-2 pressure is assumed to be 0.04 MPa by the simulation model which is more probable.

Table 3.2-7 shows the comparison of the DATA and simulated values.

Judging from the property of All Fraction, the simulated values seem to be more probable.

Table 3.2-7 COMPARISON OF THE DATA AND ESTIMATED VALUES FOR W-2 OVERHEAD

	The DATA (MPa)	Estimated Values (MPa)
0d-2	0.0	0.04
W-2 Тор	0.014	0.051
W-2 Bottom	0.071	0.07

On 30 June 1994, the pressure of Od-2 was 0.03 MPa. It is impossible to compare these data simply because the operating conditions would have been different from that of 26 November 1993.

and the second second

(No.1 crude oil distillation unit was periodically shut down in May/June 1994.)

The pressure would be influenced largely by the temperature of the cooling water used. (3) The outlet temperature of Pc-1

1) The difference between the DATA and the simulation

The DATA indicates that Pc-1 outlet temperature is 330°C. However, the temperature of 320°C which was obtained by the simulation is more probable because of the following reasons:

(a) Gap between A16 and atmospheric residue(AR) (Refer to 3.5.1)

Table 3.2-8 shows the gap between A16 and AR.

Table 3.2-8 SIMULATED GAP BETWEEN A16 and AR

Pc-1 Outlet Temp.	320°C	330°C
Gap	-53°C	-22°C

The gap of -22° C in Table 3.2-8 is not realistic in W-2.

(b) Furthermore, when the outlet temperature of Pc-1 is 320°C, the simulation result for the distillation of 95% of A16 and 5% of AR are near to the actual analysis result.

2) Check of the temperature record

The outlet temperature of Pc-1 is a very important point because of its heat duty, namely, the throughput of the No.1 crude oil distillation unit (Refer to Table 3.2-9). Therefore, it was recommended to check the instrument for

measuring outlet temperature of Pc-1.

During the second field survey, the accuracy of the thermocouple was checked and the result was as follows:

(a) The accuracy of the instrument
 PPSA checked the accuracy of the thermocouple.
 The temperature error was within 1°C.

(b) Review of the record sheet

PPSA and JICA Team reviewed the actual record sheet on 26 November 1993 on which the Pc-1 outlet temperature is recorded.

PPSA and JICA Team reached the conclusion that the outlet temperature of Pc-1 ranged from 319°C to 323°C. An error in reading the temperature would be the main cause for this.

Therefore the temperature of 320°C was applied for the outlet temperature of Pc-1 in the simulation model of the existing No.1 crude oil distillation unit.

Table 3.2-1 PROPERTIES OF URAL CRUDE OIL (1/2)

DESCRIPTION	UNIT	VALUE
1. Density d ²⁰		0.860
•		and the second
API		32.3
2. Water Content	Wt 8	0.23
3. Chloride Contents	mg/1	13
4. Distillation		
IBP	°C	45
Evaporated at 100°C	Vol %	10.5
150°C		19.5
200°C	· · ·	28.0
250°C		30.0
300°C		47.0
350°C		61.0
5. Sulfur Content	Wt %	1.39
6. H.S Content(Dissolved)	Wt %	
at 20 °C		nil
50 °C		nil
7. Viscosity		
at 10°C		20.36
20°C		13.33
37.8°C		7.64
50°C		5.84
8. Freezing Point	°C	-15
9. Pour Point	°C	-12

Analysis of Ural Crude Oil to be used for the Modernization Study of NO.1 Crude Unit and Vacuum Unit

Table 3.2-1 PROPERTIES OF URAL CRUDE OIL (2/2)

.

DESCRIPTION	UNIT	VALUE
10. Conradoson Carbon Residue	Wt. 8	3.80
11. Metal Content		
V	mg/kg	36
Ni		13
Fe		20
Na		2
К		below 0.5
Са		below 0.5
12. Asphaltene	Wt %	1.21
13. Ash	Wt %	0.014
14. Wax Content	Wt %	2.57
Melting Point	°	53
15. Acid Number	KOH/g	0.06
16. Reid Vapor Pressure	Pa (Kg/cm²)	392(0.4)
17. Watson K Factor		11.79

Table 3.2-2 TBP DISTILLATION OF URAL CRUDE OIL

		Yield	on Crude	Yield (on Crude	Density D'°
	твр С	Wt 8	Cum Wt &	Vol %	Cum Vol %	
0		1.52	1.52	2,28	2,28	0.557
1	20 - 32	1.43	2.95	1.93	4.21	0.614
2	32 - 62	1.51	4.46	1.93	6.14	0.650
3	62 - 72	1.58	6.04	1.93	8.07	0.683
4	72 - 87	1.64	7.68	1.91	9.98	0.715
5	87 - 95	1,65	9.33	1.92	11.90	0.715
6	95 - 110	1.68	11.01	1.90	13.00	0.737
7	110 - 120	1.69	12.70	1.93	15.73	0.730
8	120 - 132	1.71	14.42	1.91	17.64	0.748
9	132 - 145	1.72	16.14	1.90	19.54	0.756
10	145 - 155	1.74	17.08	1.91	21,45	0.761
11	145 - 167	1.74	19.62	1,93	23.38	0.775
12	167 - 178	1.76	21.38	1.94	25,32	0.778
13	178 - 190	1.80	23.18	1.97	27.29	0.787
14	190 - 201	1.82	25.00	1.96	29.25	0.798
15	201 - 214	1.84	26.84	1.96	31.21	0,807
16	214 - 225	1.86	28.70	1.97	33.18	0.811
17	225 - 236	1.87	30.57	1.97	35.15	0.817
18	236 - 248	1.88	32.45	1.96	37.11	0.824
19	248 - 260	1,90	34.35	1.95	39.06	0.836
20	260 - 271	1.91	36.26	1.96	41.02	0.838
21	271 - 283	1.92	38.18	1.95	42.97	0.846
22	283 - 295	1.92	40.10	1.95	44.92	0.847
23	295 - 306	1.93	42.03	1.96	46,88	0.848
24	306 - 317	1.94	43.97	1.96	48.84	0.852
25	317 - 328	1,95	45.92	1.95	50.79	0.858
26	328 - 339	1.96	47.60	1.94	52.73	0.860
27	339 - 351	1.96	49.84	1.92	54.65	0.876
28	351 - 363	1.98	51.82	1.93	56.58	0.8841
20	363 - 383	1.97	53.79	1.91	58.49	0.8884
30	383 - 398	1.97	55.76	1.90	60.39	0.8920
31	398 - 414	1.97	57.73	1.89	62.28	0.8958
32	414 - 430	1.98	59.71	1.89	64.17	0.9000
33	430 - 445	1.97	61.68	1.87	66.04	0.9047
34	445 - 460	1.97	63.65	1.86	67.90	0.9094
35	460 - 475	1.95	65.60	1.83	69.73	0.9145
36	475 - 486	2.00	67.60	1.87	71.60	0.9191
37	486 - 500	1.98	69.58	1.84	73.44	0.9236
38	500 - 516	2.01	71.59	1.06	75.30	0.9278
39	516 - 531	2.00	73.59	1.85	77.15	0.9315
40	531 - 552	2.02	75.61	1.86	79.01	0.9363
40	552 - 570	2.02	77.62	1.04	80.05	0.9404
. A.T	> 570	22.38	100.00	19.15	100.00	1.0048

3.2-13

]}

-
•

-3 CURRENT PRODUCT SPECIFICATION (1/2)

·	USE	SPECIFICATION
(1)Gases	Refinery Fuel Gas	C. minimum
(2)LPG	Fuel for Home	$C_1 + C_2$ content vol % max. 1.5 C_3 content vol % max. 0.5
(3)A. 0		Distillation IBP min. 25 °C FBP max. 10 8 °C
(4)A	()Reforming Feed	Distillation IBP 78.5 ± 5 °C FBP 148 ± 5 °C
	@Pyrolysis Feed	Distillation IBP 78.5 ± 5 °C FBP 148 ± 5 °C
(5)Ai ,	()Reforming Feed	Distillation IBP 130 °C FBP 190 °C
	@Pyrolysis Feed (USE)	Distillation IBP 130 °C FBP 200 °C
(6)A ₂ ₃	Diesel Blend	Distillation FBP 220 °C max. (*) % vol evaporated at 200°C 50 % Flash Point min. 55°C Note: (*) Only for Pyrolysis
(7)A₊ ₀	Diesel Blend	Distillation IBP 180 °C min. Density at 20 °C 0.810- 0.835 g/cm ² Plash Point min. 66 °C
(8)A ₂ s	Diesel Blend	Density at 20°C 0.830- 0.850 g/cm % vol evaporated at 350°C min. 87
(9)Ai 6	Diesel Blend	Density at 20 °C 0.850- 0.870 g/cm % vol evaporated at 350 °C min. 80

Table 3.2-3 CURRENT PRODUCT SPECIFICATION (2/2)

T)

	USE	SPECIFICATION
(())P1 0	NO SIDE CUT	
(j))Pi i	Light Fraction Diesel	Density at 20 °C 0.880 - 0.895 g/cm Distillation(ASIM-D 2887-78)
	Heavy Fraction Inblicant Oil	FBP max. 460 °C Flash Point
	Multicane Off	min. 120 °C Freezing Point
· ·		max. +8 °C
([2]Pi 2	Lublicant Oil	Flash Point min. 120 °C Distillation(ASIM-D 2887-78) FBP max. 460 °C
([3]P1)	Iublicant Oil	FBP max. 460 °C Viscosity at 100°C
(J111)		10.5 — 12.5 mm² / s Density at 20 °C 0.910 — 0.925 g/cm²
		Flash Point min. 220 °C Freezing Point
		min. 37 °C Distillation(ASIM-D 2887-78) IBP min. 400 °C
		FBP max. 545 °C FBP-IBP max. 120 °C
(1 0 Ps 4	Fuel Oil Blend	Flash Point 210 °C
(19)Vacuum Residue (Use)	• Refinery Fuel Oil • Asphalt Plant	Softening Point R-B Method 43.6 46.5

Table 3.2-4 EQUIPMENT DATA (1/3)

1. Heaters

ŇŌ	Description	Pc-1	PC-2
1	Duty Gj/h		
	- Product	150	50
	- Steam	1.9	3.6
2	Туре	Cylinder / Vertical	
3	Diameter m	7.6	
4	Shell Height m	29.9	
5	Burners	Vertical 16 pieces	Vertical 8 pieces
6	Flow t/h	350 ~ 420	125~ 150
7	Stack Temperature ° C	350 ~ 500	320~ 450
8	Surface Area m ²		
	1)Radiation Section	860	310
	2)Convection Section		
	- Product	1,820	650
	- Steam	59	650

Table 3.2-4 EQUIPMENT DATA (2/3)

Ð

2. Heat exchangers

		1	Steel	Steel	Steel	Steel	Steel	Steel	Stee1	Steel	Steel	Carbon Steel	Carbon Steel
		Tor Janew	Carbom Steel	Carbon Steel	Carbon Steel	Carbon Steel	Carbon Steel	Carbon Steel	Carbon Steel	Carbom Steel	Carbon Steel	Carbon	Carbon
	Tube Side	Number Number	¢	খ	4	y	9	7	7	4	5	4	
	Gross	Barrie Spacing	460	300	300	450	1	Ĩ	1	300	240	300	
	·	ar/ao	24/20	24/20	24/20	24/20	24/20	24/20 24/20	24/20 24/20	24/20	24/20	24/20	108/100
		8	632	308	408	584	632	800 854	800 854	308	160	108	140
	-	Length (mm)	6,000	6,000	6,000	4,500	6,000	4,500 4,500	4,500 4,500	6,000	6,000	6,000	5,000
	Shell	Diameter	1,000	200	800	1,000	000,T	1,200 1,200	1,200 1,200	200	500	800	6,720X 4,160 ⊟= 2.900
	Unit	Surface Area m'	280	136	181	193	280	248 265	248 265	136	ħ	181	230
	Quantity		17	m	£	ά	N -	m	و	01			4
			Wh 1.1, Wh 1.2, Wh 3.1-Wh 3.3, Wh 4.1-Wh 4.6 Wh 5, Wh 9, Wh 10, Wh 11, Wh 12	win 6, win 7, win 8	Wm 13, Wm 14, Wm 15	Wh 16.1, Wh 16.2, Wh 17.1, Wh 17.2, Wh 18.1, Wh 18.2 Wh 19.1, Wh 19.2	Pd"1.1. Pd 1.2	Sc 3, Sc 4, Sc 5 Top Bottom	sc 10	Ch 1 - 7, Ch 10 - Ch 12	Ch 8	ರಗಿ 9	Ch S Box Type Exchanger
4	<u>I.'</u>				<u>.</u>	3.2-17	:	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	÷	•	<u>.</u>	<u> </u>

(**J**)

Table 3.2-4 EQUIPMENT DATA (3/3)

3. Column

5 Trays x 3 Sections 500 1,500 Stripper I 00 | M Vacuum Distillation 8,000 38,362 750 33 d W - 7 7 Trays x 5 Sections Stripper 2005 1,200 ы С – М ı I Atmospheric Distillation 750 52,700 20 4,500 ശ W = 2 Preflah Column 3,700 31,505 12/13 26 000 M - 1 E E E Number of Trays Tower Diameter Tray Spacing Tower Height Feed Tray

3.2-18

Ŵ

Ð

Table 3.2-5 HEAT & MATERIAL BALANCE SHEET(1/5) (26 NOVEMBER 1993)

٢

D

					-							
Flow No.		~	ကိ	4	S	9	4	×0	5)	- C		7 7
Flow (kg/h)	270 000	135 000	135 000	270 000	270 000	270 000	270 000	270 000	640	22 000	(55 000)	407 360
Temperature(°C)	10 I	104	101	102	96	197	195	261	55	55	55	247
Pressure (MPa)	1.15	0.41	0.41	0.41	2.20	1	1		(0.17)	1.30	1.30	(0.25)
Method	TEBP 760mmHg	TBP 760mmHg	TIBP 760mmHg	TBP 760mHg	TIBP 760mHg	TEP 760mHg	TBP 760mHg	TBP 760mmHg	ł	ASTM D86	ASTM D86	D1160 760mHg
A A A A	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	1	27	27	126
1 \$ 5%	(19))	(19)	(19,01)	(19)	(19)	(19)	(19)	(19)	1	34	34	l
t 10%	(86)	(86)	(86))	(86)	(86)	(86)	(98)	(86)	ł	39	39	175
308	(222)	(222)	(222)	(222)	(222)	(222)	(222)	(222)	. t	53	53	257
a t 50%	(336)	(336)	(336)	(336)	(336)	(336)	(336)	(336)	ł	66	66	372
708	(446)	(446)	(446)	(446)	(446)	(446)	(446)	(446)	1	80	80	462
806 1	(553)	(553)	(553)	(553)	(553)	(553.)	(553)	(223)		93	93	560
С 958	(578)	(578)	(578)	(578)	(578)	(578)	(578)	(578)	I ¹	100	100	580
421	1	1	1	I .	I	1	1	l	ł	102	102	98% 592
Density @20 °C (g/cm ²)	0-860	0.860	0-860	0.860	0.860	0.860	0-860	0-860	I	0.661	0.661	688 ° 0
vis @100°C (cSt)	•	l	1		1	i	I	1	1	1	1	5.45
※ ():simulation value	m value		-		-			· · ·				·

Table 3.2-5 HEAT & MATERIAL BALANCE SHEET(2/5) (26 NOVEMBER 1993)

-													·			ومستند خ	
	24	18 000	ł	1	ASTM D86	152	166	173	185	197	206	221	227	237	0.797	• •	
	2.3	12.000	129	l	ASTM D86	123	133	137	146	153	160	171	176	185	0.764		
	2 2	22 000	167		1	l	1	1		-	1	ł			1	I	
	2 1	58 500	230	0.29	1			1		l	1	1	· · · · · · · · · · · · · · · · · · ·		l	1	
	2 0	63 000	150	1	1	-		l		l		1	-	1			
	1 0	63 000	223	0.48	ŀ	1	1	ĩ	1	1	E L	1	1	1	I	а. 1 Н	
	00 1	65 000	06		I	l	1	1	1	1	L	1	· ·	1	1	l 	
	17	65 000	148	0.54	1	1	а к ¹ к	1	1	1		1			1	1.	
	16	7 600	70	l	ASTM D86	84	- 64	86	90T	114	. 122	139	148	153	0.736		
	15	(18 360)	02	1	ASTM D86	84	94	80 65	106	114	122	681	148	153	0.736	1	
	14	247 360	(320)	0.53	D1160 760mmHg	126	B	175	257	372	462	560	580	98% 592	0.889	5.45	
	13	(230 000)	(320)		760mmBg	126	 	175	257	372	462	560	280	988 592	0.889	5.45	
-	Flow No.	Flow (kg/h)	Temperature(°C)	Pressure(MPa)	Method	đ	28	108	308	50%	708	90%	958	484	Density @20 °C (g/cm ²)	Vis @100°C (cSt)	
		Щ	1 en			<u>م</u>	- 0	+		، ب <i>أ</i>	ч°Ó	q	ې نې		Å	: 5	
									3.2								

3.2-20

※ ():similation value

Ð

J

0

Table 3.2-5 HEAT & MATERIAL BALANCE SHEET(3/5) (26 NOVEMBER 1993)

(C) 15 000 22 000 17 000 1 100 1 (C) 201 245 271 330 (Pa) - - - 0.48 (Pa) - - - - 0.48 (Pa) ASTM ASTM ASTM - D1 (Pa) ASTM ASTM - 0.48 - (Pa) D86 D86 D86 D86 - D1 (Pa) 191 227 238 - - - (Pa) 191 227 238 - - 86 (Pa) 213 213 238 - - 86 (Pa) 226 332 237 237 237 - (Pa) 226 304 858 336 - - (Pa) 223 316 - - - - (Pa) 248 232 328 - - - <	FIOW NO.	2.5	2.6	2.7	2.8	5 9	0 8	3.1	32	33	34	3	3.6
201 245 271 330 300 - 331 152 76 280 63 - - 0.48 0.071 - 0.15 - - 0. Assum Assum Assum Assum Assum - 0.48 0.071 - 0.15 - 0.6 53 - 0. Assum Assum Assum Assum Assum - 1127 250 250 - - - - - - - 0. - 10. - - - - - - - 0. - 0. - - - - - - - - - - - - - -	-	16 000	22 000	17 000	1 100	144 000	I	144 000		82 500	61. 000		24 000
0.48 0.071 0.15 0.68 0 0 0 0 0 0 0 0 0 0 0 0 10.00 ASTM 10.160 ASTM 10.160 ASTM 10.160 ASTM -	_	201	245	172	330	300	. 1	391	152	76	280	83	322
ASTM Toles	7				0.48	T20°0	B	0.15	1	 	0.68	1	0.22
158 178 159 - 127 - 127 - <th< td=""><td>70</td><td>ASTM D86</td><td>ASTM D86</td><td>ASTM D86</td><td>. 1</td><td>D1160 10mHG</td><td>1</td><td>D1160 10mmHg</td><td>ASTM D86</td><td>ASTM D86</td><td>1</td><td>I</td><td>1</td></th<>	70	ASTM D86	ASTM D86	ASTM D86	. 1	D1160 10mHG	1	D1160 10mmHg	ASTM D86	ASTM D86	1	I	1
179 213 228 $ 272$ 272 $ -$		158	178	159	1	127	E.	127	250	250	I	1	I
191 227 258 - 186 - 186 288 - <		179	213	238		8		1	272	272	-	l	I
220 257 297 - 277 - 218 - <th< td=""><td></td><td>191</td><td>227</td><td>258</td><td>I</td><td>186</td><td>ł</td><td>186</td><td>288</td><td>288</td><td>]</td><td>1</td><td>I</td></th<>		191	227	258	I	186	ł	186	288	288]	1	I
236 273 316 368 368 335 335		220	257	297	1	277		277	318	318	1	I	1
248 286 332 480 480 352 352		236	273	316	1	368	ł	368	335	335	-	I	ł
264 304 858 350 - 888 588 - 372 -		248	286	332		480		480	352	352	ł	ł	
271 314 - - - - - 380 380 - - - 282 323 - - - - - - - - - - 282 323 - - - - - - - - - - 0.820 0.836 0.856 - 0.860 - 0.877 0.877 0.877 - - - - - 3.7 - 3.7 2.23 2.23 - -		264	304		1		ł	1	372	372	1		-
282 323 - - - - - - - - 0.820 0.836 0.856 - 0.860 - 0.877 0.877 - - - - - - 3.7 - 3.7 - 3.7 - -		271	314	l	1	1		1	380	380	I	1	-
0.820 0.836 0.856 - 0.860 - 0.877 - - - - 0.860 - 0.877 - - - - - 3.7 - 3.7 2.23 2.23 -		282	323	1			1	I	384	384		-	-
3.7 2.23 2.23 -	°,	0.820	0-836	0.856		0.860	1	0-860	0.877	0.877	1 1	l	
		1		1		3.7	1	3.7	2.23	2.23	1	1	I

Table 3.2-5 HEAT & MATERIAL BALANCE SHEET(4/5) (26 NOVEMBER 1993)

د

9 4 0 4 1 4 2 4 3 4 4 4 4 7	000 30 000 10 000 2 500 22 000 31 000 0 0 0	220 246 254 340 (340) (340)	0.50 0.36 0.37 0.57 1.40 1.40	DI160 D1160 D1160 TBP TBP 760mmEg 760mmEg 760mmEg 760mmEg	372 398 412 - (417) (417)	388 422 435 - (450) (450)	402 442 475 - (464) (464)	422 462 506 - (510) (510)	432 475 532 - (552) (552)	442 498 552 - (609) (609)	452 520 572 - (731) - - -	462 532 585 - (775) (775)	468 545 (832) (832)	0.958 0.958 0.958 0.958 0.914 0.914	
7 3.8 3.8	000 36 000 IS	230		ASTM P11 D36	- 250	- 272	588	318	335	352	- 372	380	- 384	- 0.877 C	
Flow No. 3	Flow (kg/h) 24	Temperature(°C)	Pressure(MPa)	Wethod	age	28 28 28	108	308	2 50%	- - - - - - - - - - - - - - - - - - -	806	° 358	282	Density @20 °C (g/cm ²)	

Table 3.2-5 HEAT & MATERIAL BALANCE SHEET(5/5) (26 NOVEMBER 1993)

1

F		0	1			· · · · · · · · · · · · · · · · · · ·											
	5.2		1	ĺ	•	1	I	I	1	1	Ι	1		1	1	 	
		0	1	ŀ	1		1	l	1			1		I	1	-	
	50	0	1	1		1	1	I	B	1	1	I	I	I	i	1	
	49	0	1	I	1	ŀ	•	1	I	-	1	1	1	- - 		I	n value
	Flow No.	Flow (kg/h)	Temperature (°C)	Pressure(MPa)	wethod	â	5%	\$01	308	50%	208	806	958	dEa	Density @20 °C (g/cm ²)	(cst) (cst)	():simulation value
		<u>ר</u> ביי	Ten			٩		م قمره قبر	-4 4 (л н,	- 01	4	ပ္		a a	Vis	*

HEATER DUTY (absorbed)

Pc-2	(41.13)
Pc-1	(123.80)
ON WELL	DUTY (GJ/h)

Table 3.2-9 HEAT DUTY FOR HEATERS

•

(cj/n)

Modernization	308 t/h		330 °C	144.8	40.0
Stimated)	308 t/h	ature	330 °C	151.8	
Present (Estimated)	308	Pc-1 Outlet Temperature	320 °C	141.2	46.9
Present (26. Nov. 1993)	ų/	PC-1	330 °C	133.04	
Present (2	270 t/h		320°C	173.8	41.13
	Design			<u>1</u> 50	ŝ
		· · · · · · · · · · · · · · · · · · ·		ž	2

:

- 3.3 Review of Current Condition of No.1 Crude Oil Distillation Unit
- 3.3.1 Evaluation for the design of No.1 crude oil distillation unit
 - (1) Imbalance in the throughput of No.1 atmospheric distillation unit and No.1 vacuum distillation unit

As described in 3.1.1, there is an imbalance in the throughput of No.1 atmospheric distillation unit and No.1 vacuum distillation unit. That is, in a case where the throughput of No.1 atmospheric distillation unit is over than 288 t/h, all the atmospheric residue can not be fed to No.1 vacuum distillation unit and some portion of the atmospheric residue shall be bypassed.

Although the bypassed atmospheric residue is used as fuel oil, it is preferable to produce a more profitable product without bypass flow.

(2) The number of side cut from the atmospheric distillation Tower (W-2)

At present there are six (6) side cuts including the overhead product(All).

A clear answer as to why this is so could not be found by the site survey.

The usage of the six (6) side cuts are as follows;

- A11 : Reforming feed, Pyrolysis feedA12 : Reforming feed, Pyrolysis feedA13 : Diesel blendA14 : Diesel blend
- A15 : Diesel blend
- A16 : Diesel blend

It would appear that there is no justification for six (6) side cuts because the usage of the products from A13 to A16 is all the same, i.e., diesel oil blend. There is no reason to distillate 6 fractions because those fractions will then be blended in the tank.

Furthermore, additional train of pumps, heat exchangers and instruments will be required for the extra fractions. Hence, unit costs will increase accordingly.

(3) Switching draw-off tray

The draw-off tray from the distillation tower (W-2) to the stripper (W-3) can be selected from three (3) trays. The draw-off tray from the vacuum tower (W-7) to the stripper (W-8) can be selected among two (2) trays also. Generally speaking, draw-off trays do not contribute to distillation, and such switching of draw-off trays is not common practice in distillation tower design. The purpose of these switching trays seems to adjust the product quality. However, it is possible to adjust it by adjusting operation conditions such as the temperature and draw off flow of the product.

It is estimated that there will be no problem after the modernization because of the reduction of the number of products for No.1 atmospheric distillation unit and milder product specification for No.1 vacuum distillation unit. Therefore, no modification work for these trays was planned in this feasibility study.

(4) Bottom recycle (quench line) of W-7

There is not a quench line at W-7 although the installation of the quench line is common practice for vacuum distillation unit design. The purpose of the quench line is as follows:

(a) To prevent thermal cracking of the bottom oil.

(b) To increase NPSH of vacuum tower bottom pump.

Actually the penetration of the vacuum residue is not at the level that is expected. It is required to increase the bottom temperature of W-7 for improving the penetration. In order to increase W-7 bottom temperature, it is required to raise Pc-2 outlet temperature.

According to PPSA's explanation, it was not possible to raise the W-7 bottom temperature because there would be a possibility of thermal cracking of the bottom oil and the outlet temperature of Pc-2 could not be raised.

In case when the Pc-2 outlet temperature is raised to meet the product specification of VR by installing a quench line, it is necessary to confirm that the heat duty of Pc-2 is within the design value during basic design.

In this feasibility study, as discussed in 3.2.2 of assumed data, no quench line will be installed because the yield of VR is maintained the same before and after the modernization, i.e., the penetration before and after is the same.

(5) Cooler inlet temperature in No.1 vacuum distillation unit

The inlet temperature of the products to the coolers (Ch-8, Chs 1.1, Chs 1.2, Chs 2.1 and Chs 2.2) ranged from 180° C to 210° C.

It is recommended that the inlet temperature of the products to the coolers be set at 150°C as a target in order to save energy.

3.3-3

(6) Usage of box water coolers

There are 2 box water coolers in No.1 crude oil distillation unit. One is for cooling the W-2 bottom oil and the other is for W-7 bottom oil.

The box coolers at the W-2 bottom are used when the throughput of No.1 atmospheric distillation unit is over 288 t/h.

The measurement conducted on 26 November 1993 shows that the inlet temperature of the box water cooler for W-7 bottom oil was 200°C. Furthermore, there was no flow to the box cooler of W-2 bottom oil since the throughput of atmospheric distillation unit was 270 t/h.

These box water coolers are used only to heating water and this is not effective for recovering heat of the products. The heat of the bottom oil should be recovered by heat exchangers as much as possible and box water coolers are not recommended for use.

3.3.2 Review of Operation Control

In order to review the present condition of No.1 crude oil distillation unit, JICA team requested the DATA during stable operation.

PPSA collected the DATA on No.1 crude oil distillation unit from 9:00 to 10:00 on 26 November 1993 and submitted them to JICA Team.

The points where the operation data were collected are shown in Figure 3.3-1 and the the DATA are shown in the following Tables;
Table 3.3-1 Operation data of No.1 crude oil distillation unit (Pressure)

Table 3.3-2 Operation data of No.1 crude oil distillation unit (Flow)

Table 3.3-3 Operation data of No.1 crude oil distillation unit (Temperature)

Table 3.3-4 Operation data of No.1 crude oil distillation unit (Heat balance of furnaces)

And at the same time, No.1 atmospheric and No.1 vacuum distillation products were analyzed as shown in the following Tables:

Table 3.3-5 Analytical data of crude oil properties Table 3.3-6 Analytical data of products of No.1 atmospheric distillation unit

Table 3.3-7 Analytical data of products of No.1 vacuum distillation unit

(1) Reliability of the DATA

(T)

Before taking the DATA of No.1 crude oil distillation unit, JICA Team requested verification of all instruments such as pressure gauges, thermometers and flow meters. However, there were three points which were not recorded on 26 November 1993 because the instruments were out of order.

Also there are unjustifiable and inconsistent data as described below. All these were amended or assumed as described in 3.2.2 and 3.2.5, then inputted into the simulation model.

One of the important points which was not recorded is the bottom temperature of W-7. The temperature is the key to knowing the thermal decomposition of the bottom oil.

It is strongly recommended to repair such an important instrument as soon as possible after malfunction.

The real cause should be investigated and measures should be established with the cooperation of the operation section and the maintenance section.

 Preheating of crude oil before feeding to desalters (from P1 to W-1)

Crude Oil is heated without any heater by passing through heat exchangers with products before being fed to W-1. Therefore, the temperature of the crude oil should be increased gradually as crude oil passes through the heat exchangers.

However, there are some points which are contradictory to the above rationale.

It is clear to see that the temperature cools down at some of the heat exchangers.

Therefore, it is recommended to seek for the real causes and to improve these for the modernization.

2) Outlet temperature of Wm 14 tube side

On 26 November 1993, no flow was confirmed in the shell side of Wm 14 because all the W-2 bottom oil was fed to the vacuum distillation unit. However the crude oil was heated from 175°C to 262°C, although there was no flow of W-2 bottom oil.

PPSA explained that the instrument was out of order on that day during the second site survey.

3) Inlet and outlet temperature of Ch 1 and Ch 7.

The outlet temperatures of these coolers are higher than the inlet temperatures. Refer to 3.2.2 for review.

(2) Review of operation conditions

1) Operation temperature of desalters

There are two desalters in series in No.1 atmospheric distillation unit to remove salts contained in crude oil.

According to the DATA, the inlet temperature of the first desalter was 102°C and the second desalter was 99°C. At the same time, the inlet pressure for the first desalter was 0.41 MPa and the second desalter was 0.35 MPa.

The inlet temperature of the desalter is low, compared to the range of 120°C to 140°C which is commonly used in refineries at present.

It is reported that the reason why the inlet temperature can not be increased is because of a restriction of the design temperature of the insulation, a part of the electrical equipment, which is 105°C.

2) Pressure around W-1 over head

This is discussed in 3.2.5.

3) W-1 bottom oil flow to W-2

T)

This is discussed in 3.4.2.

a (1. 1

- 4) Oxygen content in the flue Gas from Heaters (Pc-1 and Pc-2)
 - Pc-1 and Pc-2 are natural draft and isoflow type heaters. Both Heaters burn fuel oil and gas. The DATA shows that the oxygen content in the flue gas from the Heaters is 9.5% and 6.83% respectively. It is recommended to reduce the oxygen content to as low level as possible to save energy.

5) Flue gas temperature from heaters

The flue gas temperature of the heater were 310°C and 360°C respectively on 26 November 1993. The flue gas temperature reaches about 500°C in summer.

It is often the case that the preheating of combustion air is done by recovering the heat of the flue gas. This should be studied further as one of the modernization plan.

6) Necessity of reducing offensive odor substance in sewage

Waste water is generated from such equipment as desalters, overhead receiver of preflash column and etc. in No.1 crude oil distillation unit as described in 3.1.2. This waste water is transferred to the central waste water treatment unit through the sewer pipe lines, and the treated waste water is poured into Vistula River.

The waste water drain pipes from the equipment in No.1 crude oil distillation unit are connected to the sewer pipe lines by drip funnel.

There is a space between the end of the drain pipe and the drip funnel.

Offensive odor leaks from this space. Since this odor will undermine the operator's health, some

measure should be taken.

7) Necessity of treatment of Od-8 and Zb-3 emissions

There is an offensive odor in the off gases from the vacuum over head receiver (Od-8) and slop tank (Zb-3). Since this odor can be dangerous to the operator's health,

it is required to treat these gases.

At the moment, these gases are introduced into Pc-1. However these gases contain 90% of total H2S emission in No.1 crude oil distillation unit and it is not allowed to burn H₂S in the heater.

For reference, the total H_2S emission from No.1 crude oil distillation unit in 1993 was reported as 7.2 ton/year.

There is the same problem in No.2 crude oil distillation unit but the offensive gases are treated with caustic soda. H_2S is absorbed by caustic soda and becomes Na_2S . PPSA explained that this measure to use caustic soda is not available for No.1 crude oil distillation unit because of the limitation in the capacity of treating Na_2S solution.

(3) Review of the analysis DATA

1) Review of analysis DATA regarding the product quality

Refer to 3.5.

2) Reliability of analysis DATA of the flue gas from the heaters (Refer to Table 3.3-4)

Regarding the analysis DATA of the flue gas from the heaters, the following is pointed out;

- Composition analysis of fuel oil Total of the compositions are not 100%.
- Composition of flue gas analysis
- Total of the compositions are not 100%.
- SO₂ and NOx analysis for Pc-1 flue gas Content of SO₂ is too low (47 ppm).
 Content of NOx is too low (7 ppm).

PPSA explained that the reason why the total of the composition is not 100% is that there are some components which were not analyzed on 26 November 1993.

It is recommended that all the components of the gas should be analyzed once and confirm that there are not components which were not usually analyzed.

3.3.3 Review of product quality control

Review of product quality will be done in Section 3.5. Below are some recommendations for controlling product quality, although it is well known to PPSA.

(1) Review of the analysis report to be done by the operation section

There are some products in the DATA which do not meet the product specification.

The causes must be cleared up and countermeasures should be taken immediately to prevent the same mistakes. The operation section should have the initiative for establishing the measure and should confirm that the

measures taken are pertinent.

(2) Recommended practices

It is also important to confirm periodically that the sampling is performed correctly as described below.

1) When taking a sample,

 (\mathbf{I})

1

- (a) Confirm that the sampling point is correct and that the sample bottle or balloon is clean and not contaminated.
- (b) The person who analyze the sample should check the test result during sampling whenever he can know the analyzed result with a portable type analyzer at the site.

If the result appears to be different when compared to the past data, he should repeat the analysis again.

2) When analysing a sample in the laboratory

Confirm the procedure for analyzing a sample. If there is no procedure for measuring a certain sample, it is recommended to prepare a procedure for analyzing the sample.

3) When reporting the result of analysis

Confirm that there are not any transcription mistakes.

4) When receiving the analysis data at the operation section

The operation section should check the analysis data by comparing the actual operation conditions every day. If there are any data which has discrepancies or inconsistencies found in the analysis data, it is recommended to analyze again.

5) When taking action for a countermeasure

The operation section in cooperation with the relevant sections such as maintenance section and laboratory should take actions immediately to prevent the same kind of error from happening again.

6) After taking action

Analyze the sample again and confirm that the countermeasures are pertinent.

3.3-12

· 1

and the second second

Table 3.3-1OPERATION DATA OF NO.1CRUDE OIL DISTILLATION UNIT (PRESSURE) (1/2)

1. Date : 26 November 1993

2. Time : 9:00 \sim 10:00

3. Crude Oil : URAL CRUDE OIL 100 %

4. Throughput

NO.1 Atmospheric Distillation Unit : 270 t/h

NO.1 Vacuum Distillation Unit : 144 t/h

6. Pressure (MPa)

Number	Press.	Number	Press.	Number	Press.	Number	Press.
1	s 0.11	12	0.29	22	0.48	34	:
	D 1.15	13	1.3	23	0.17	35	_
2	0.72	14	0.37	24	0.44	36	
3	0.79	15	1,35	25	0.53	37	· _
4	0.41	16	0.49	26		38	
~ 5	0.35		0.49	27	· ·	39	0.15
6	0.34		0.51	28		40	·
7	0.25	17	0.014	29	· . 	41	70mmHg {9,33
8	2.2	18	0.0	30		- - -	(J.JJ kPa)
9	_	19	0.29	31	0.48	42	65mmilig (8.67
10	-	20	0.54	32	0.071		(0.07 kPa)
11	0.28	21	0.2	33	1.15	43	

Table 3.3-1OPERATION DATA OF NO.1CRUDE OIL DISTILLATION UNIT (PRESSURE) (2/2)

r		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
Number	Temp.	Number	Temp.	Number	Temp.	Number	Temp.
44		53		62		199 . 71 1	
45	0.68	54	0.9	63	., <u>-</u>	72	0.31
46		55	0.5	64		73	0.03
47	0.22	56	0.36	65		74	0.22
48		57	0.37	66		75	0.12
49	-	58	0.57	67		76	0.61
50	-0.03	59	1.4	68	· · · · ·	77	0.61
51		60	0.73	69		78	_
52		61	-	70			

3.3-14

8

Table 3.3-2 OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION UNIT (FLOW)

- 1. Date : 26 November 1993
- 2. Time : 9:00 \sim 10:00
- 3. Crude Oil : URAL CRUDE OIL 100 %
- 4. Throughput
 - NO.1 Atmospheric Distillation Unit : 270 t/h
 - NO.1 Vacuum Distllation Unit : 144 t/h
- 6. Plow (t/h)

							-
Number	Flow	Number	Flow	Number	Flow	Number	Flow
1	270	12	65	23	61	34	2.5
2		13	63	24	24	35	144
3		14	58.5	25	144	36	22
4	130	15	7.6	26		37	31
5	140	16	18	27	-	38	
6		17	12	28	10	36 + 37	22+31
7		18	18	29	82.5	39	10
8		19	16	- 30	36	40	22
9	390	20	22	31	15	41	0.64
10	160	21	17	32	30		
11	230	22	0 1 1 1 1	33	1.1		

Table 3.3-3 OPERATION DATA OF NO.1

CRUDE OIL DISTILLATION UNIT (TEMPERATURE) (1/3)

- 1. Date : 26 November 1993
- 2. Time : 9:00 ~ 10:00
- 3. Crude Oil : URAL CRUDE OIL 100 %
- 4. Throughput

NO.1 Atmospheric Distillation Unit : 270 t/h

NO.1 Vacuum Distillation Unit : 144 t/h

5. Temperature (°C)

Nmber	Temp.	Number	Temp.	Number	Temp.	Number	Temp.
1	5	13	· · ·	25	143	37	90
2	65	14	136	26	·	38	223
3	* 140	15	:	27	150	· 39	- <u></u>
4	85	16	161	28	150	40	150
5	101	17	* 140	29	195	41	22
6,	100	18	197	30	192	42	
7	104	19	140	31	102	43	230
8	22	20	180	32	55	44	
9	- - - - - -	21	175	33	247	45	167
10	102	22	* 262	34	330	46	22
11	99	23	102	35	148	47	
12	96	24	* 105	36	_	48	94

Nunber	Temp.	Nmber	Tenp.	Number	Temp.	Number	Temp.
49	70	65	27	81	-	95	· · · · · · · · · · · · · · · · · · ·
50	130	66		82	391	96	230
51	182	67	201	83	*2	97	152
52	203	68	135	84	*2	98	76
53	245	69	72	85	*2	99	282
54	278	70	27	86	70, 67	100	318
55	350	71	-	87	*1	101	355
56	300	72	245	88	22	102	*1
57	129	73	145	89	27	103	220
58	* 40	74	58	90	28, 44 42, 80	104	246
59	53	75	27	EJECT.	23, 26	105	254
60	27	76	<u> </u>	LING-	35, 40	106	83
61		77	271	91	280	107	76
62	*1	78	105	92		108	27
63	110	79	49	93	83	109	
64	63	80	27	94	322	110	* 130

Table 3.3-3 OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION UNIT (TEMPERATURE) (2/3)

3.3-17

Table 3.3-3 OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION UNIT (TEMPERATURE) (3/3)

Number	Tenp.	Number	Тепр.	Number	Temp.	Number	Temp.
111	69	119	92	126 Two	I 176	131	-
112	27	120	27	Trains	∏ 167	132	
113		121		127 Two	I 176	133	22
114	80	122	262	Trains	∏ 167	134	22
115	102	123	194	128 Two	I 176	135	
116	27	124	286	Trains	∏ 167	136	
117		125	210	129	340	137	27
118	180		_	130	22		

NOTE : (1) *1 means OUT OF ORDER.

- (2) *2 means NO FLOW.
- (3) Outlet Temperature of all Cooler is roughly 40 °C \sim 45 °C .
- (4) * means OUT OF ORDER(PPSA informed during the second field survey).
- (5) PPSA informed the new data collected on 26 November 1993 during the second field survey as follows:
 No.4 : 101 ° C, No.6 : 104 ° C, No.20 : 152 ° C
 No.62: 157 ° C, No.87: 42,35,37 ° C.

Table 3.3-4 OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION UNIT (HEAT BALANCE OF FURNACE) (1/3)

- 1. Date : 26 November 1993
- 2. Time : 9:00 \sim 10:00
- 3. Crude Oil : URAL CRUDE OIL 100 %
- 4. Throughput
 - NO.1 Atmospheric Distillation Unit : 270 t/h

NO.1 Vacuum Distillation Unit : 144 t/h

5. Meteorological Condition

Temperature : -1.9 °C

Atmospheric Pressure(Hecto-Pascal) : 1,026

6. Poperties of Fuel Oil

		PC1	PC-2
6.1 Fuel Oil Consu	mption (Kg/h)	2,300	1,200
6.2 Fuel Oil Tempe	erature (°C)	67	67
6.3 Specific Gravi	.ty (20 ℃)	1.002	1.002
6.4 Composition	Carbon	87.65	87.65
(wt %)	llydrogen	7.15	7.15
	Sulfer	2,80	2.80
	Nytrogen(Ave.)	700 PPM	700 PPM
6.5 Lower Calorifi (ASIM D-2382	ic Value -83) (kcal/kg)	9,443	9,443

Table 3.3-4OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION UNIT
(HEAT BALANCE OF FURNACE) (2/3)

	:	PC-1	PC-2
7.1 Fuel Gas Cons	amption (Nn [*] /h)	1,000	476
7.2 Fuel Gas Temp	erature (°C)	20	20
7.3 Composition	Сң	26.94	26.94
(vol %)	С2 Щ	} 3.27	3.27
	C2 H4	3.21	} 3.27
	С, Н,	2.99	2,99
	C3 H6	1.74	1.74
	i-С, К₀	1.47	1.47
	n-С, Щ о	1.39	1.39
	C ₄ H ₀	0.36	0.36
	C,	0.61	0.61
	њ	50.70	50.70
	No	3.88	3.88
	H _b S	0.81	0.81
	ω	5.82	5.82
	00,	0.02	0.02
7.4 Lower Calorit	fic Value(kcal/m ³)	8,516	8,516
7.5 Specific Grav	vity (Air= 1)	0.487	0.487

7. Poperties of Fuel Gas

Table 3.3-4OPERATION DATA OF NO.1 CRUDE OIL DISTILLATION UNIT
(HEAT BALANCE OF FURNACE) (3/3)

8. Poperties of Flue Gas from Furnaces

		PC-1	PC-2
8.1 Flue Gas Temp	erature (°C)	310	360
8.2 Flue Gas	ω,	8.12	10.20
Composition - (vol %)	C0	0.0	0.0
	Ċ,	9.5	6.83
	N.	75.24	71.16
	NOX (vol ppm)	47	113
	SO, (vol ppm)	7	495

Table 3.3-5 ANALYTICAL DATA OF CRUDE OIL PROPERTIES (1/2)

- 1. Date : 26 November 1993
- 2. Time : 9:00 \sim 10:00
- 3. Crude Oil : URAL CRUDE OIL 100 %
- 4. Throughput
 - NO.1 Atmospheric Distillation Unit : 270 t/h
 - ND.1 Vacuum Distillation Unit : 144 t/h
- 5. Crude Oil Properties

	Crude Oil	Desalted Crude Oil
5.1 Density (20 ° C)	0.858	0.863
5.2 Cl ⁻ Content Wt % (DIN 51576)	0.0027	< 0.0001
5.3 H.O Content Wt %	0.27	0.09
(ASIM D 9570) (DIN ISO 3733)		
5.4 Conradson Carbon Wt. % (ASIM D 189-81)	3.77	
5.5 Freezing Point (°C)	- 18	
5.6 Asphaltenes Wt %	1.6	
5.7 Sulfur Wt %	1.47	

Table 3.3-5 ANALYTICAL DATA OF CRUDE OIL PROPERTIES (2/2)

÷

	Crude Oil
5.8 Impurities Wt % Indissoluble in Butane	0.003
5.9 Paraffin	2.5
WL 8	
5.10 TBP Distillation	
IBP	42 ° C
75 ° C	2 Vol %
150 ° C	14 Vol %
175 ° C	20 Vol %
200 ° C	26 Vol %
350 ° C	50 Vol %
520 ° C	76 Vol %

6 Waste Water from Desalter

8.1
28.44

 (\mathbf{I})

٢

Table 3.3-6 ANALYTICAL DATA OF PRODUCTS OF NO.1 ATMOSPHERIC DISTILLATION UNIT (1/3)

- 1. Date : 26 November 1993
- 2. Time : 9:00 ~ 10:00
- 3. Crude Oil : URAL CRUDE OIL 100 %
- 4. Throughput
 - NO.1 Atmospheric Distillation Unit: 270 t/h
 - NO.1 Vacuum Distillation Unit : 144 t/h
- 5. Products Properties of Gas

	Dry Gas
5.1 Hydrocabon	
Content (Vol %)	
C,	2.54
C ₂	10.27
C,	39.04
C.	29.47
C,	7.89
њs	1.27
œ	9,38
Ω,	0.14
5.2 Specific	· ·
Gravity	0.874
(Air = 1)	

Table 3.3-6 ANALYTICAL DATA OF PRODUCTS OF NO.1 ATMOSPHERIC DISTILLATION UNIT (2/3)

6. Products Properties of Oil

6.1 Distillation (ASIM D 86-67)

	λ	A. 1	AL 2	A 3	A: 4	Aus	A. 6
IBP	27	84	123	152	158	178	159
5 %	34	94	133	166	179	213	238
10 %	39 [:]	98	137	173	191	227	258
20 %	41	102	142	181	209	243	279
30 %	53	106	146	185	220	257	297
50 %	66	114	153	197	236	273	316
70 %	80	122	160	206	248	286	332
90 %	93	139	171	221	264	304	350 (88 %)
95 %	100	148	176	227	271	314	
FBP	102	153	185	237	282	323	

6.2 Flash Point

(ASIM D 9371)

	A _{t 0}	A. 1	A. 2	Α.,	A ₁ (A ₄ s	A1 6
°C	< 0	< 0	21	47	53	79	94

Table 3.3-6ANALYTICAL DATA OF PRODUCTS OF NO.1ATMOSPHERIC DISTILLATION UNIT (3/3)

6.3 Density

(ASTM D 941-83)

	A	Au	A. ,	A. 3	AL	ALS	A
g/cm²	0.661	0.736	0.764	0.797	0.820	0.836	0.856

6.4 Evapolation

	Ai o	ALI	A12	A ₁₃	A. c	A ₂ s	A ₁₆
at 200 ° C				57	12	2	1
at 350 °C		-				_	88

Table 3.3-7ANALYTICAL DATA OF PRODUCTSOF NO.1VACUUM DISTILLATION UNIT (1/5)

- 1. Date : 26 November 1993
- 2. Time : 9:00 ~ 10:00
- 3. Crude Oil : URAL CRUDE OIL 100 %
- 4. Throughput
 - NO.1 Atmospheric Distillation Unit : 270 t/h
 - NO.1 Vacuum Distillation Unit : 144 t/h
- 5. Products Properties of Oil
- 5.1 Distillation

ASTM	P1 1 D86-67	P ₁ , D-1160	P13 D-1160	Pi , D-1160
IBP	250	372	398	412
5 %	271	388	422	435
10 %	288	402	442	475
20 %	306	415	455	495
30 %	318	422	462	506
50 %	335	432	475	532
70 %	352	442	498	552
90 %	372	452	520	572
95 %	380	462	532	585
FBP	384	468	545	(Crack ing)

Table 3.3-7 ANALYTICAL DATA OF PRODUCTS OF OF NO.1 VACUUM DISTILLATION UNIT (2/5)

5.2 Flash Point

(ASTM D 9317)

	Paa	P1 2	P ₁ ,	Pse	Vacuum Residue
°C	141	205	237	260	

5.3 Density at 20 ° C

(ASTM D 941-83)

	P1 1	P1 2	P1 3	Pı e	Vacuum Residue
g/an	0.877	0.901	0.914	0.938	

5.4 Freezing Point

	Pii	Ρι,	P1 1	Pı i	Vacuum Residue
° C	+6	+ 21	+ 27	+ 37	

Table 3.3-7ANALYTICAL DATA OF PRODUCTSOF NO.1VACUUM DISTILLATION UNIT (3/5)

5.5 Viscosity at 100 ° C

(DIN 51560)

· · · · ·	P1 1	P1 2	Ρ,,	Pit	Vacuum Residue
cSt	2.23	5.26	9.61	18.6	:
° E	1.12	1.42	1.82	2.78	

5.6 Softning Point (Rink and Ball Method) (DIN 1995)

 P1 1	P1 2	P1 3	Pit	Vacuum Residue
_	23	25	29	32

Table 3.3-7 ANALYTICAL DATA OF PRODUCTS OF NO.1 VACUUM DISTILLATION UNIT (4/5)

5.7 W-1 and W-2 Bottoms Oil

5.7.1 Distillation (ASTM D-1160)

°C	W-1 Bottoms Oil	W-2 Bottoms Oil
IBP	126	127
10 %	175	186
30 %	257	277
50 %	372	368
70 %	462	480
90 %	560	588 (88 %)
95 %	580	(Cracking) —
FBP	592 (98 %)	

5.7.2 Specific Gravity at 20 ° C

	W-1 Bottoms Oil	W-2 Bottoms Oil
g/an²	0.889	0.890

Table 3.3-7 ANALYTICAL DATA OF PRODUCTS OF NO.1 VACUUM DISTILLATION UNIT (5/5)

5.7.3 Freezing Point

	W-1 Bottoms Oil	W-2 Bottoms Oil
°C	-1	-4

5.7.4 Flash Point

	W-1 Bottoms Oil	W-2 Bottoms Oil
° c	52	42

5.7.5 Viscosity at 100° C

	W-1 Bottoms Oil	W-2 Bottoms Oil
Cst	5.45	3.7
°E	1.43	1.26

5.7.6 Softning Point (Rink and Ball Method) (DIN 1995)

W-1 Bottans Oil	W-2 Bottoms Oil
impossible	< 0

arta de la transmissión de la companya de la compan La companya de la com La companya de la com

3.4 Review of Heat and Material Balance (at maximum throughput)

3.4.1 Heat balance

(1) Absorbed heat duty of heaters

Based on the simulation for the existing No.1 crude oil distillation unit, actual heat duties of heaters are calculated as shown in Table 3.2-9.

There is allowance in the heat duty of the heaters compared to the design value under the operation condition on 26 November 1993. The reason is the throughput of No.1 atmospheric and No.1 vacuum distillation unit was lower than the design values on that day.

It may be said that there is no problem with heat duty at this moment as long as the throughput is the same as that of the design and the outlet temperature of Pc-1 is kept at 320° C.

(2) Estimated fuel consumption for Pc-1

Estimated fuel consumption for Pc-1 obtained from the simulation model is more than the actual fuel consumption when the fuel consumption is calculated under the following conditions:

Sec. As A

- (a) The throughput of No.1 crude oil distillation unit : 308 t/h
- (b) Heater efficiency : 60%
- (c) Lower calorific value
 - of fuel oil : 9,443 kcal/kg

Refer to Table 4.4-2 for the result.

Based on the actual fuel consumption for both Pc-1 and Pc-2 on 26 November 1993, the fuel oil consumption at the throughput of 308 t/h is estimated to be 5,513 kg/h, while the simulation result is 7,931 kg/h. Refer to 3.6.1 for the estimated cause.

For this feasibility study, this calculated fuel consumption for the current No.1 crude oil distillation unit, 7,931 kg/h, will be used as a standard fuel consumption in order to evaluate the fuel reduction after the modernization.

3.4.2 Material Balance

The material balance of No.1 crude oil distillation unit was calculated based on the DATA as shown in Figure 3.4-1.

There is an anomaly in the flow of W-1 bottom oil, i.e., the DATA indicates 230 t/h while the total of the fractions of W-2 is 247.36 t/h.

247.36 t/h is applied for the simulation because this is a more probable value.

During the second field survey, PPSA explained that the flow meter of W-1 bottoms oil is not correct and this flow has less meaning for the material balance. PPSA also explained that the flows which are marked with a * in Figure 3.4-1 are checked everyday.

3.4-2

3.4-3

. .

3.5 Review of Product Quality and Specification

3.5.1 Product quality

(1) No.1 atmospheric distillation unit (Refer to Table 3.5-1)

1) Gap of products in No.1 atmospheric distillation unit

(a) Definition of gap

A Petroleum Product consists of a certain range of a continuous hydrocarbon fraction which is obtained by the distillation of crude oil. Therefore, it is required to distillate crude oil within the specification without any lighter or heavier fraction in the product.

In order to express the degree of the quality of the product in terms of distillation, the term "Gap" is used.

The gap of petroleum products is defined as follows: The ASTM 5% distillation point of a product minus the ASTM 95% distillation point of the adjacent lighter product.

(b) Actual gap of the products

(])

Confirmation of the gap based on the DATA is as shown Table 3.5-2.
Table 3.5-2 GAP OF PRODUCTS OF NO.1 ATMOSPHERIC DISTILLATION UNIT

ASTM	5% Point	-	ASTM 9	5% Point	=	Gap (°C)
A12	133°C		A11	148°C	=	-15
A13	166°C		A12	176°C	=	-10
A14	179°C	n.	A13	227°C	· · 😑	-48
A15	213°C		A14	271°C	=	-58
A16	238°C		A15	314°C	· ==	-76

Usually, the gap of the lighter fractions is from $+10^{\circ}$ C to $+20^{\circ}$ C.

So, in this case the quality of the product in terms of distillation between All and Al2 may be poor and also the gap for heavier products is poor.

The countermeasure is to increase the number of trays between each product in the atmospheric distillation tower. Such out of standard fractions from No.1 atmospheric distillation unit does not affect quality of the final products from the refinery.

Because those fractions are only mixed with fractions from other atmospheric distillation unit.

2) Lower IBP than the specification for the products of atmospheric distillation unit

For the products of All, Al2, Al3 and Al4, IBP is out of the specification, i.e., lower than the specification.

At present, no stripping steam is used for the stripper in atmospheric distillation unit, even though there is stripping steam connection. (Refer to Figures 3.5-1 and 3.5-2)

3) IBP of A15 and A16

The IBP of A16 is 159°C but should be theoretically higher

than the IBP of A15. However, IBP of A16 is lower than that of A15 according to the DATA.

4) Flash points of A13 and A14

Flash points of A13 and A14 are lower than the specification. This is related to the IBP of A13 and A14 which contains lighter fractions.

Injection of stripping steam will improve the flash points of A13 and A14.

5) Installation of a stabilizer and a splitter

At present, A10 from the overhead of W-1, which contains LPG, is transferred to the other unit where A10 is separated to naphtha and LPG together with A10 from the other unit.

However, A10 from No.1 crude oil distillation unit contains more sulfur than A10 from the other units. It is not good to contaminate the A10 from other units. In order to secure low sulfur A10, it is required to construct a stabilizer and a splitter in the area of No.1 crude oil distillation unit.

(2) No.1 vacuum distillation unit (Refer to Table 3.5-3)

1) W-1 bottom oil and W-2 bottom oil

(a) Flash point

The flash point of W-1 bottom oil is higher than W-2 bottom oil by 10° C.

Theoretically this should never happen.

Because the lighter fraction of W-1 bottom oil is vaporized in W-2, the flash point of W-2 bottom oil should be higher than that of W-1 bottom oil.

(b) Viscosity

The same situation as seen with the flash point is also observed for the viscosity.

Theoretically it also should never happen as in the case of flash point.

2) Specific gravity and freezing point of Pl1

The specific gravity of P11 is 0.877 which is out of the specification range of 0.880 to 0.895.

The actual freezing point of P11 is $+6^{\circ}C$ which is lower than the specification, $+8^{\circ}C$.

More draw-off of lighter portion of P12 to P11 will improve the specific gravity and freezing point.

3) FBP of P12

FBP of P12, 468°C does not satisfy the specification which is 460°C.

Since the flash point fully meets the specification, it is recommended that there be less draw-off of P12 as long as the freezing point satisfies the specification.

4) Quality of P13

According to the DATA, the following items do not meet the product specification:

- Freezing Point of +27°C, is out of the limit of the specification which sets minimum of +37°C.
- Specification of FBP- IBP \leq 120°C is not satisfied, since actual FBP- IBP is 147°C.

- Viscosity of 9.61 does not meet the specification which has a range from 10.5 to 12.5 cSt (at 100°C).

3.5.2 Product specification (Current)

Refer to Table 3.2-3 for the current product specification.

(1) Flash point and FBP of P11 and P12

According to the current specification, the flash point and FBP of P11 and P12 are the same.

Judging from the location of the draw-off tray of P11 and P12, the flash point and FBP of P11 should be lower than that of P12.

This is verified by the actual analysis DATA.

This is not a problem now, because these products meet their present specifications.

However, it seems to be meaningless to specify the same flash point and FBP for different fractions.

3.5.3 Product specification (After the modernization)

Refer to Table 4.2-1 for the product specification to be applied after the modernization.

(1) Standard of the penetration of VR

ASTM D 1321 will be applied to measure the penetration of VR in the new specification.

ASTM D 1321 is used for paraffin Wax, therefore it is better to apply ASTM D 5.

At the second field survey, this turned out to be a simple mistake and PPSA had revised the standard to be applied for measuring penetration of VR to ASTM D 5.

3.5.4 Estimated product properties obtained by the simulation

All of the estimated product properties obtained by the simulation model for both No.1 atmospheric and No.1 vacuum distillation unit were reviewed by comparing with the new product specification to be applied after the modernization.

(1) Flash point of A13

According to the simulation, it is impossible to satisfy the specification of the flash point of A13 which is 80°C. The estimated value is 53°C because no kerosene fraction is withdrawn from the atmospheric distillation unit after the modernization.

It is estimated that the flash point of A13 will be out of the product specification because the IBP of A12 is 180°C. During the second field survey, PPSA explained that there is no problem because of the following reasons:

- It is not necessary to withdraw kerosene fraction in No.1 atmospheric distillation unit because the other atmospheric distillation units can produce kerosene.
- 2) If there is a big problem in flash point of A13 during the operation after the modernization, the new product specification will be revised if necessary.

As a result, no revision of the product specification for the flash point of A13 is made and the flash point of A13 obtained by the simulation model was applied in this feasibility study.

(2) IBP of the products

Among the products which the IBP is to be adjusted by the stripper, A12 is the only one which the IBP is specified in the product specification after the modernization. IBP of A12 almost meets the product specification by injecting stripping steam.

The stripper is regarded as a drum in this simulation model because there was no stripping steam injected on 26 November 1993.

After the modernization, this stripper is to be used without any modification in this feasibility study, although small quantity of stripping steam will be injected.

Therefore, it should be decided during basic design whether all the existing equipment located from the draw-off tray to the tank around the strippers can be used after the modernization by reviewing tray performance and hydraulic check. Necessary actions should be taken accordingly.

Table 3.5-1COMPARISON OF PRODUCTS PROPERTIES OF NO.1 ATMOSPHERICDISTILLATION UNIT WITH ITS SPECIFICATION (1/2)

1. Distillation

	ALO	Au	A.2	Ac ,	A _t e	AL S	ALS
IBP							
Actu.	27	84	123	152	158	178	159
Spec.	Min.25	78.5 <u>+</u> 5	130	220	180	N.A	N.À
50 %							
Actu.	66	114	153	197	236	273	316
Spec.	N.A	N.A	N.A	200	N.A	N.A	N.A
70 % Actu.	80	122	160	206	248	286	332
Spec.	N.A	N.A	N.A	N.A	N.A	87 % 350	80 % 350
90 % Actu.	93	139	171	221	264	304	350 (88 %)
FBP							
Actu.	102	153	185	237	282	323	
spec.	< 108	148 ± 5	190	N.A	N.A	N.A	N.A

Table 3.5-1COMPARISON OF PRODUCTS PROPERTIES OF NO.1 ATMOSPHERICDISTILLATION UNIT WITH ITS SPECIFICATION (2/2)

2. Flash Point (°C)

£

 $\langle \mathbf{I}
angle$

	A _{t o}	A: 1	A. 2	A. ,	At 4	A ₂ s	Ass
Actu,	< 0	< 0	21	47	53	79	94
spec.	N.A	N.A	N.A	Min.55	66	N.A	N.A

3. Density (ASTM D 941-83) (g/cm²)

A_{t 6} ALL A₁s A₁ o ALL. Α., A_t, 0.797 0.836 0.856 0.661 0.736 0.764 0.820 Actu. 0.810 0.830 0.850 N.A N.A N.A Spec. N.A `~ \sim \sim . 0.870 0.850 0.835

Table 3.5-3COMPARISON OF PRODUCTS PROPERTIES OF NO.1 VACUUMDISTILLATION UNIT WITH ITS SPECIFICATION (1/2)

1. Distillation

ASTM	P11 D86-67	P1 1 D-1160	PL3 D-1160	Р., D-1160	Vacuum Residue
IBP Actu.	250	372	398	412	
Spec.	N.A	N.A	400	N.A	
FBP Actu.	384	468	545		
Spec.	< 460	460	545	N.A	N.A
FBP-			Actu. 147		
IBP	N.A	N.A		N.A	• N.A
<120			Spec. 120		

2. Flash Point (ASIM D 9317) (°C)

	P _{1 1}	P1 2	P1 3	Р	Vacuum Residue
Actu.	141	205	237	260	_
Spec.	> 120	> 120	> 220	210	N.A

Table 3.5-3 COMPARISON OF PRODUCTS PROPERTIES OF NO.1 VACUUM DISTILLATION UNIT WITH ITS SPECIFICATION (2/2)

	Pri	P1 2	P1 3	Pit	Vacuum Residue
Actu.	0.877	0.901	0.914	0.938	
Spec.	0.880 ~ 0.895	N.A	0.910 ~ 0.925	Ň.A	N.A

3. Density (ASTM D 941-83) (g/cm²)

4. Freezing Point (° C)

	P1 1	P1 2	P. 3	P1 4	Vacuum Residue
Actu.	+6	+ 21	+ 27	+ 37	
Spec.	+ 8	N.A	> 37	N.A	—

5. Softning Point (Rink and Ball Method) (DIN 1995)

	Pii	P1 1	P1 1	P ₁ (Vacuum Residue
Actu.		23	25	29	32
Spec.	N.A	N.A	N.A	N.A	43.6 ~ 46.3

Figure 3.5-1 STEAM CONSUMPTION (0.7 MPa STEAM)

DATE

: 26 NOVEMBER 1993

TIME : $09:00 \sim 10:00$

PLACE : NO.1 CRUDE OIL DISTILLATION UNIT

STEAM CONSUMPTION : 9.4 t/h

DATE

: 26 NOVEMBER 1993

TIME : 09:00 \sim 10:00

PLACE

D

CE : NO.1 CRUDE OIL DISTILLATION UNIT

SIFAM CONSUMPTION : 1.3 MPa . t/h

0.7 MPa . t/h

3.6 Review of Fuel Efficiency in the Heating Furnace and of Energy Balance

3.6.1 Fuel efficiency in the heating furnace

Fuel efficiency in the heating furnace is calculated as follows:

(1) Pc-1

1) Fuel Consumption

Based on the DATA

126.6 Gj/h

2) Absorbed Heat Duty (Refer to Table 3.2-9)

Simulation of the existing Unit 123.8 Gj/h

3) Fuel Efficiency

 $\frac{123.8}{126.6} \times 100 = 97.8\%$

- 4) Review of Fuel Efficiency of Pc-1
 - Judging from the excess air ratio, the Fuel Efficiency of 97.8% is incredible.

Actual fuel efficiency would be about 60 to 70% when considering the actual fuel efficiency of Pc-2,

- 5) Estimation of the cause of the high fuel efficiency
 - (a) Accuracy of the flow meters During the second field survey, the accuracy of the flow instrument for fuel oil and fuel gas was confirmed.

3.6-1

According to the explanation by PPSA, the flow instruments were inspected in September and October of 1993, therefore, there should be no malfunction for these instruments.

(b) Overhead pressure of W-2

The pressure of W-2 would affect the fuel consumption, i.e., the lower the pressure of W-2, the smaller the fuel consumption.

In the simulation model, the pressure of W-2 was assumed to be higher than that of actual operation (Refer to Table 3.2-7). This means the estimated fuel consumption obtained from the simulation model would be more than the actual one.

This is one of the reason why the fuel efficiency is high.

(c) The wrong sampling place for W-1 bottom oil As discussed in 3.2.2, it was reported that the W-1 bottom oil was sampled at the wrong place.

Through the above discussions, it is estimated that the unreasonable fuel efficiency would have been calculated by the difference with W-2 overhead pressure between the measured one and simulated one and wrong sample of W-1 bottom oil.

During basic design, it is recommended to simulate again by using more accurate actual data of W-2 overhead system and proper analysis DATA for W-1 bottom oil.

(2) Pc-2

1) Fuel Consumption

Based on the DATA

64.37 Gj/h

3.6-2

2) Absorbed Heat Duty (Refer to Table 3.2-9)

Simulation of the existing Unit 41.13 Gj/h

3) Fuel Efficiency

90

 $\frac{41.13}{64.37} \times 100 = 63.9$

4) Review of Fuel Efficiency of Pc-2

This value is reasonable if the excess air ratio is taken into consideration.

3.6.2 Review of energy balance in No.1 crude oil distillation unit

> Energy balance of No.1 crude oil distillation unit submitted by PPSA is shown in Figure 3.6-1.

Although the operation conditions when this energy balance was prepared should be confirmed, this energy balance would be prepared by the data at the maximum throughput because the atmospheric residue was bypassed from the vacuum unit.

(1) Heater efficiency

According to the Energy balance shown in Figure 3.6-1, the efficiency for Pc-1 and Pc-2 is as follows;

Pc-1 : (39,136.6 - 13,261.5) / 39,136.6 = 66.1% Pc-2 : (23,735.2 - 7,634.9) / 23,735.2 = 67.8%

The above efficiencies are probable based on our

3-6-3

(2) Energy Balance for each section in Figure 3.6-1.

Each section in Figure 3.6-1, i.e., heat exchangers, coolers, column W-1, furnace Pc-1, column W-2, furnace Pc-2 and column W-7, should be balanced in terms of energy. Figure 3.6-2 is a simplified one of Figure 3.6-1.

Table 3.6-1 shows the summary of the energy balance in each section of Figure 3.6-2.

It is clear that energy in each section does not balance. Especially, energy input to furnace Pc-1 is 127,136.6 kW and energy output from furnace Pc-1 is 232,596.1 kW.

It is recommended that energy balance should be calculated carefully otherwise it would be difficult to review the energy balance by comparing with past data.

Section	In	Out
Heat Exchangers	138,882.2	137,042.5
Coolers		A second second second second
W-1	95,811.9	95,827.1
Pc-1	127,136.6	232,569.1
W-2	206,302.4	72,389.3
Pc-2	29,635.2	59,631.5
W-7	76,651	77,151

Table 3.6-1 ENERGY BALANCE IN EACH SECTION (kW)

3.6-4

Figure 3.6-1 ENERGY BALANCE OF NO.1 CRUDE OIL DISTILLATION UNIT

Ð

D

1

3.6-7

I

0

্যু

-

3.7 Review of Environmental Control Measures

As shown in Table 2.9-1, the pollutants emitted by PPSA which exceed the emission limits in 1993 are those of Phenol, Methanol and Aromatic HC, but substances directly related to No.1 crude oil distillation unit are SO_2 and HC as shown in Table 3.7-1.

 SO_2 is emitted in flue gas of Pc-1 & Pc-2, while HC is escaped from open exits like an ejector into the atmosphere, seemingly resulting in the major cause of offensive odor together with small amount of leakage of H_2S .

3.7.1 Measures for reduction of SO₂ emission

(1) Current situation of SO2 emission

1

D

SO2 emission can be calculated by the following 3 methods.

- 1) Fuel consumption & sulfur content in fuel
- 2) Flue gas volume & SO2 concentration in flue gas
- 3) Calculation based on heat balance sheet

Table 3.7-2 shows the calculated result by means of above 3 methods. Since there are big difference among the values, it is believed to be attributable to the errors in the measurement. Therefore, it is necessary for PPSA to improve the accuracy of measurement in order to have the same results with calculation.

The major assumptions for calculating SO_2 emission in accordance to the operating conditions set forth for collection of operation data conducted on 26 November, 1993 are as shown below (see Table 3.3-4 for details).

Crude oil : Ural crude oil 100%
Operation rate : 270 t/h in No.1 crude oil distillation unit

- Flue gas composition: The same as Table 3.3-4

Item	Pc-1	Pc-2
Fuel oil (Kg/h) - Sulfur content (wt%) - LHV (Kcal/Kg)	2,300 2.80 9,443	1,200 2.80 9,443
Fuel gas (Nm ³ /h) - H ₂ S content (Vol%) - LHV (Kcal/Nm ³)	1,000 0.81 8,516	476 0.81 8,516
Excess air ratio	1.83	1.48
Dry flue gas (Nm ³ /h)	Appx. 55,000 A	ppx. 22,300

- Flue gas composition: The same as Table 4.2-1

Item		Pc-1	Pc-2
Flue gas temperature (310	360	
Flue gas composition (Vol%)	CO2 CO O2 N2 NOx (Vol ppm) SO2 (Vol ppm)	8.12 0.0 9.5 75.24 47 7	10.20 0.0 6.83 71.16 113 495

Note: Emission values of NOx & SO₂ of Pc-1 are abnormally low. Calculated values of SO₂ are 557ppm for Pc-1 and 710ppm for Pc-2.

- Emission limit (1993) & real emission volume (1992): The same as Table 4.5-2 . .

Item		Emission volume limit (Kg/h)	Real emission volume (Kg/h)	
Pc-1	SO ₂	56.6	97.9	
	NOX	17.4	7.8	
	СО	10.0	0.3	
Pc-2	50 ₂	20.3	50,6	
	NOX	7.7	4.2	
	CO	6.0	0.8	

Note: "50.6" shows that emission volume exceeding the limit

- Heat balance : Refer to Table 3.6-1

(2) Measures for reduction of SO_2 emission

Measures for reduction of SO_2 emission can be generally considered as follows.

1) Measures by means of save-energy

Refer to Section 4.4. It is believed in particular that the effective measures for save-energy are reduction of excess air ratio as well as intensive heat recovery by installation of air preheater on the furnace and rearrangement of heat exchangers around the distillation unit.

2) Measures by use of low sulfur fuel

Fuels which are currently used are mainly vacuum residue with sulfur content of 2.8 wt% and off-gas to be generated in the refinery with H_2S content of 0.81 vol%. Accordingly, it can be expected to have SO_2 reduction effect in proportion to decreased sulfur content in fuel.

3) Installation of desufurization unit

Direct reduction of SO_2 content in flue gas can expected although large amount of investment is needed.

3.7.2 Measures for reduction of H_2S emission

Refer to Section 4.6.

3.7.3 Problems on environmental protection

Measures for environmental protection shall be established on the basis of correct understanding on emission volume of pollutants.

However, as shown in Table 3.7-2, it is not clear how to determine the correct value among the values in the table, since there are big difference in the values obtained by various methods.

The outcome of measurement or calculation might be different according to the mixed ratio of liquid and gas fuels, therefore SO_2 emission is to be calculated based on the average mixed ratio of fuels throughout a year.

 SO_2 emission of Pc-1 as well as Pc-2 exceed the limit value in 1993 as shown in Table 3.7-1.

Therefore, taking into account the schedule that the national legislation for SO_2 emission limit will be far more strengthened on and after 1998, it is indispensable for PPSA to establish more effective measures for reduction of SO_2 emission as soon as possible.

In view of complying to the necessity of above countermeasures, PPSA has already prepared the medium and long term management plan to install an appropriate facility to cope with the environmental enactment.

Table 3.7-1 AIR POLLUTION LIMIT & EMISSION VALUE OF

1

NO.1 CRUDE OIL DISTILLATION UNIT (1993)

Swmbol Econtion H(a) M(a) Follutures (rgs/b)		I Raitter	Emitter	Emitter Dimension		10122103	LIDIT VALUE	100183	DU VALUE
BEN (01 Pc-1 48. 04x6. 35 NOx box 15. 25 282. 9 91.92 (1.1 17.8 (1.1 17.1 18.0 0.03 15.0 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1		Location	$H(m) \times D(m)$	rol lutants	(kg/h)	(ton/y)	\sim	(ton/y)
Nove 10,000 50,0 0,00 0,00 EC-aliph 3,00 10,00 50,0 0,00 EC-aliph 3,00 10,00 50,0 0,00 EC-aliph 3,00 10,00 50,0 0,00 EEM 003 00-8 0,016 0,016 0,016 EEM 003 00-8 00 11,0 0,016 0,016 EEM 003 00-8 00 11,0 0,016 0,016 EEM 003 00-8 00 11,0 0,016 0,016 EEM 003 004-8 000 11,0 0,016 0,016 EEM 003 004-8 10,00 38,4 9,0 0,016 EEM 003 004 10,00 34,4 9,0 0,016 EEM 203 ER-2, Zm-3 11,0 11,0 0,01 0,00 EEM 203 Erv on Stop Tanks 10,26×0,40 EC-acinan 1,30 1,10 EEM 203 Erv on Stop Tanks 10,26×0,28 EC-acinan 0,001 0,01 Zm-1 Zm-1 0,001 0,01 0,01 0,01 Zm-1 Zm-1 0,021 EC-acinan 0,001 0,01 EEM 203 Erv on Sciuti		BEN 001	Pc-I	48. 04x3. 35	S02	56.58	282.9	<u>,</u>	611 55 55 55
BEW 002 Fc2 33.79x1.98 EC-arton. 3.00 18.0 0.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.017 30.010 0.017 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011 30.011		:		-	ý	10.00			55
BEW 002 Fe-2 33. 79x1.98 Fe-arch 0.50 3.0 0.17 $5.0.58$ 50 50.75 50.58 50.75 50.58 50.75 50.58 50.75 50.58 50.75 50.58 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.56 50.75 50.75 50.56 50.75 50.76 50.75 50.76 50.75 50.76 50.75 5		• • • •			EC-alinh.	3,00	18.0		0.6
BEM 002 Pe-2 33.79x1.98 S01 NX 50.55 NX 30.7 T.74 101.5 33.7 50.55 4.18 33.7 33.7 4.18 4.18 33.7 33.7 4.18 4.18 33.7 33.7 4.18 4.18 33.7 3.7 4.18 4.18 33.7 3.7 4.18 4.18 33.7 3.7 4.18 4.18 33.7 3.7 4.18 4.18 33.7 3.016 4.18 0.016 33.7 0.016 4.18 0.016 33.7 0.016 4.18 0.016 33.7 0.01 4.18 0.016 33.7 0.016 4.18 0.016 33.7 0.01 4.18 0.017 30.7 0.01 50.01 0.016 0.011 0.002 BEM 230 RV on Solution 3.32x0.15 RC-aliph. 0.001 0.01 0.001 0.002 BEM 232 RV on Solution 3.32x0.15 RC-aliph. 0.005 0.01 0.001 0.002 BEM 232 RV on Fuel 011 3.04x0.15 RC-aliph. 0.001 0.001 0.002 0.002 2-11.2-12 2-11.2-12 0.04x0.15 RC-aliph. 0.025 0.09 0.01 0.002					EC-aron.	0.50			0.1
NOX 7.74 38.7 4.15 0.76 EEM 003 04-5 C 6.00 30.0 0.76 0.76 EEM 003 04-5 E-aroin 1.0 1.5 0.016 0.76 EEM 003 04-5 E-aroin 1.0 1.5 0.016 0.76 EEM 003 04-5 26.00x0.11 EC-ariph 2.00 1.9 0.016 EEM 003 04-5 200 11.9 0.016 0.016 EEM 003 04-5 20 0.01 1.0 0.016 EEM 204 Er-ariph 0.03 0.2 0.01 0.02 EEM 230 Ervon Slop Tanks 10.28x0.40 E-aron 1.00 7.9 1.0 EEM 230 Ervon Slop Tank 10.28x0.28 EC-aron 0.01 0.01 0.01 EEM 231 Ervon Solution 3.32x0.15 EC-aron 0.001 0.01 0.01 EEM 231 Ervon Fuel 011 3.04x0.15 EC-aron 0.001 0.01 0.002 EEM 232 Ervon Fuel 011 3.04x0.15 EC-aritph 0.001 0.001 0.002 EEM 232 Ervon Fuel 011 3.04x0.15 EC-aron 0.002 0.003 0.002 </td <td>2</td> <td>BEY 002</td> <td>Pc-2</td> <td>79×1</td> <td>S02</td> <td></td> <td></td> <td></td> <td>367.4</td>	2	BEY 002	Pc-2	79×1	S02				367.4
EEM 003 0d-8 0d-8 5.00 EC-entrph. 7.9 EC-entrph. 7.001 EC-entrph. 0.001 EC-entrph. 0.002 EC-entrph. 0.002 EC-entrph.	•				NOX				30.4
BEM 003 06-8 EC-aliph. 2.00 12.0 0.04 26.00x0.11 EC-arcon. 0.25 1.6 0.016 27.9 27.9 0.016 27.9 27.9 0.01 26.00x0.11 EC-arcon. 1.00 7.9 26.00x0.11 EC-arcon. 1.00 7.9 -0 26.00x0.11 EC-arcon. 1.00 7.9 -0 27.9 Zn-3 10.25x0.40 EC-arcon. 0.001 0.01 27.9 Zn-2 1.0 0.01 0.02 0.02 27.1 Zn-12 1.0 25x0.15 EC-arcon. 0.001 0.01 27.1 Zn-12 1.50 1.1.9 1.0 0.01 0.02 28x 231 Ev on Solution 3.32x0.15 EC-aliph. 0.001 0.01 0.01 2.1 Zn-13 Erron. 0.001 0.01 0.01 0.002 2.1 Zn-13 EC-aliph. 0.001 0.01 0.02 2.1 Zn-13 EC-aliph. 0.001 0.01 0.01 2.1 Zn-13 EC-aliph. 0.001 0.01 0.002 2.1 Zn-13 3.04x0.15 EC-aliph.					8				
BEW 003 0d-8 26.00x0.11 EC-aron 0.25 1.55 0.016 6 27-3 Slop Tarks 26.00x0.11 EC-aliph. 44.0 348.4 9.0 6 28.W 003 D4-8 20.050 Tarks 10.25x0.40 E-aron 1.00 1.9 1.9 1.9 1.9 1.9 1.9 1.0		a carrow			HC-aliph.				0.3
BEN 003 Od-8 26.00x0.11 EC-aliph. 44.0 348.4 9.0 6 Zb-3 Slop Tanks 10.26x0.40 H_2.S 1.00 7.9 1.0 7.9 1.0 Zm-2.2m-3 Ex on Slop Tanks 10.26x0.40 H_2.S 0.01 0.12 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 1.0 <td< td=""><td></td><td></td><td></td><td></td><td>EC-arom.</td><td></td><td></td><td></td><td>0.1</td></td<>					EC-arom.				0.1
Zb-3 Slop Tanks EC-aron. 1.00 7.9 7.0 1.50 11.9 1.0 BEW 00.4 Ev on Slop Tanks 10.26x0.40 EC-aron. 0.01 0.2 0.01 0.01 0.01 0.02	~	BEN 003	0d-8		EC-aliph.	44.0	si ₹		64 . b
BEW 004 Fr on Slop Tanks 10.25x0.40 Ha S. EC-aliph. 1.50 11.9 1.0 2z-2.2z-3 Zz-2.2z-3 EC-aliph. 0.031 0.02 0.02 EEM 230 Rv on Slop Tank 40.25x0.28 EC-aliph. 0.001 0.01 - EEM 231 Rv on Slop Tank 40.25x0.15 EC-aliph. 0.001 0.01 - 0.002 EEM 231 Rv on Solution 3.32x0.15 EC-aliph. 0.005 0.01 - 0.002 EEM 231 Rv on Solution 3.32x0.15 EC-aliph. 0.005 0.01 - 0.002 EEM 232 Rv on Fuel 011 3.04x0.15 EC-aliph. 0.025 0.03 0.01 - EEM 232 Rv on Fuel 011 3.04x0.15 EC-aliph. 0.025 0.09 0.02 EIM 232 Rv on Fuel 011 3.04x0.15 EC-aliph. 0.025 0.09 0.002	•		Zb-3 Slop Tanks		HC-aron.	1.00	9		1
BEM 004 Ev on Slop Tanks 10.26×0.40 EC-aliph. 0.03 0.2 0.01 0.006 0.01 0.01 0.01 0.01 0.006 0.01 0.01 0.01 0.006 0.01 0.002 0.01 0.006 0.01 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.006 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002		· · ·			H2 S	1.50	11, 9	1.0	2.1
Zm-2. Zm-3 EC-arom. 0.001 0.01 0.01 Ex S30 Ev on Slop Tank 40.26x0.28 HC-aliph. 0.005 0.01 0.01 Ex Zm-1 3.32x0.15 HC-aliph. 0.005 0.01 0.001 0.001 BEM 231 Ev on Solution 3.32x0.15 HC-aliph. 0.005 0.01 0.01 Ex 232 Ev on Solution 3.32x0.15 HC-arom. 0.005 0.01 0.002 BEM 232 Ev on Fuel 0il 3.04x0.15 HC-arom. 0.025 0.03 0.002 Iank Zm-13 3.04x0.15 HC-aliph. 0.025 0.03 0.002 Zm-13 Zm-13 0.025 0.025 0.03 0.002	4	1 BEN 004	Rv on Slop Tanks		EC-aliph.	0.03		0.02	
BEM 230 Rv on Slop Tank 40.26x0.28 H2.S 0.001 0.01 - - Zm-1 Zm-1 0.005 0.01 0.01 - 0.006 BEM 231 Rv on Solution 3.32x0.15 HC-aliph. 0.005 0.01 0.001 BEM 232 Rv on Fuel 0il 3.04x0.15 HC-aliph. 0.001 0.004 - BEM 232 Rv on Fuel 0il 3.04x0.15 HC-aliph. 0.001 0.004 - Zm-13 Exv on Fuel 0il 3.04x0.15 HC-aliph. 0.025 0.03 Zmrs Z-11.Z-12 0.025 0.05 0.002	ı		Zn-2. Zn-3		HC-aron.	100 0		l v.wz	
BEW 230 Kv on Slop Tank 40.26x0.28 EC-aliph. 0.005 0.01 0.010 Zm-1 Zm-1 Zm-1 0.005 0.01 0.01 0.002 BEW 231 Rv on Solution 3.32x0.15 EC-aliph. 0.005 0.01 0.002 Tank Zm-13 3.04x0.15 EC-aliph. 0.001 0.004 - BEW 232 Rv on Fuel 0il 3.04x0.15 EC-aliph. 0.025 0.09 0.002 Zm11.2-12 2-11.2-12 0.025 0.05 0.02 0.002 0.002			-		H ₂ S	100.0		and the second se	
Lurl Lurl 0.001 0.001 0.001 0.002 BEM 231 Ev on Solution 3.32x0.15 EC-aliph. 0.001 0.001 - Tank Zm-13 EC-arom. 0.001 0.001 - - - EM 232 Ev on Fuel 0il 3.04x0.15 EC-aliph. 0.025 0.09 0.002 Tanks Tanks 2-11.2-12 0.025 0.09 0.002	പ		Rv on Slop Tank		HC-aliph.	0.005		- 400 - 00 - 1	S-7
BEM 231 Rv on Solution 3.32x0.15 EC-aliph. 0.005 0.01 0.01 0.002 Tank Zm-13 EC-arom. 0.001 0.004 - <td></td> <td></td> <td>ľ-#7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			ľ-#7						
Tank EC-arom. 0.001 0.004 - Zm-13 Zm-13 3.04x0.15 EC-aliph. 0.025 0.039 0.002 Zmks Z-11.Z-12 3.04x0.15 EC-aliph. 0.025 0.039 0.002	ŝ	BEX 231	Rv on Solution	÷ .	EC-eliph.	0.005	0.01	0.002	0.012
Zm-13 Zm-13 Start 13 Start	•		Tank		HC-aron.	0.001	0.004	1	
BEM 232 Rv on Fuel 0il 3.04x0.15 EC-aliph. 0.025 0.09 Tanks Z-11.Z-12 2-11.Z-12 0.04x0.15 0.002	. :		Zm-13		****				0 U V
Tanks Z-11.Z-12	2	BEN 232	Rv on Fuel Oil		EC-aliph.	czn.n	0.03	0. 002	770 0
			Tanks	-					
					·····		********	***************************************	*********
							•		
								• • •	

Table 3.7-2 CALCULATED EMISSION VALUES OF AIR POLUUTANTS (1993)

(270t/h throughput of crude oil)

100% gas (Unit: Kg/h) 44. 5 133, 9 S02 emission calculated 247.6 83 83 83 Wixed by heat balance 100% 011 292.3 97.0 100% gas 82.1 41.8 SO2 emission calculated by fuel consumption 78, 2 Mixed 151.9 100% 0il 91.2 179.3 Current emission measured by PPSA (1993) 50, 6 97.9 00 ~ 0.3 4.2 8 0 Emission limit by regulation 56.6 17.4 10.0 20.3 7.7 6.0 (1993) 8 X 8 802 NOX 8 Iten 5 Pc-2

	•	SO2 emission celculated
Iten	E	by concentration
	802	1-1
Pc-1	Ň	5.3 2
	8	
	802 1	31.5
Pc-2	XŎX	
	8	

(Note)

-Mixed ratio between fuel oil and fuel gas is determined by each fuel consumption quantity as shown in Table 3.2-4.

-Values in the table are based on 270t/h throughput of crude oil

- 3.8 Review of Environmental Measurement and Monitoring System
- 3.8.1 Confirmation on sampling methods

There are no noticeable problems on sampling methods including location, position, collection tube, and duct when compared to JIS method except the following items.

- (1) SO_2 : In case of absorbing samples in liquid for manual chemical analysis, a sample tube is to be heated.
- (2) H₂S/RSH : For gathering samples, PVF (Polyvinyl Flvoridi) bag or vacuum glass flask are believed to be more appropriate for use
- (3) HC-Alipha/Aroma : Air evacuated sampling bag made from PVF rather than use of diaphragm pump.

3.8.2 Confirmation on analysis procedures

 $(1) SO_2$

(I)

.

The Polish equipment of MADUR GA-60 is employed, which has the advantage of measuring several elements at relatively shorter time. However, it is necessary to make confirmation on accuracy of the measured value by conducting parallel measurement by means of manual analysis like titration or absorption methods, or by means of continuous measuring equipment with self-proofreading system by using standard gas.

PPSA has assigned ENERGOPOMIAR corporation as outside contractor to conduct measurement and analysis on behalf of PPSA. In this company, UV absorption equipment is used as in the case of JIS, and is believed that this method gives the more accurate values.

3.8-1

UV absorption equipment has the higher reliability since calibration is made at each measurement by use of standard gas, and receives little influence of interference substances.

The analysis methods defined by JIS are as shown below.

- Neutralization Titration Method

- Precipitation Titration Method

- Tubimetric Method

(2) NOx

MADUR GA-60 is used. As mentioned in Item (1) above, it is requisite to confirm accuracy of the measured values by conducting parallel measurement by means of manual analysis like absorption method, or continuous measuring equipment with self-proofreading system by using standard gas.

ENERGOPOMIAR uses chemiluminescence equipment with standard gas made by internationally wellknown AGA corporation in ex-West Germany, leading to the higher reliability. JIS adopts the following methods, either of them has high accuracy although some experiences are necessary to get familiar with these methods.

- Zn-NEDA Method

- PDS Method

(3) CO

MADUR GA-60 is used. It is necessary to confirm accuracy of the measured values by conducting parallel measurement by means of manual analysis with gas-chromatography or continuous measuring equipment with self-proofreading system by using standard gas.

3.8-2

Since PPSA has equipped with GC-TCD, several parallel measurements by use of GC-TCD will be good enough to confirm the accuracy of the measured values. The confirmation on the measured value was made by means of a gas detector tube with appropriate result.

(4) H₂S/RSH

No problem, since analysis is made by GC with FPD.

(5) HC-Alipha/Aroma

Analysis is made by GC with FPD. (HP5890A-FID with Integrator)

No Problem is observed, since accurate operation is conducted with regard to preparation of standard gas, sample injection into GC, etc..

3.8.3 Emission values in flue gas

Emission values measured in flue gas of Pc-1 Furnace (BEM-001) are as shown below.

It	em	MD MADUR GA-60	Gas detector	Brand	name
02	(%)	10.23	17	No.	31
02 HoS	(ppm)	0	ND < (1)		4 L
$H_2^{-S}S$	(ppm)	6	7		1L
S02	(ppm)	201	No measure't		5M
NO2	(ppm)	5	ND < (2.5)	No.	10
NO	(ppm)	64	No measure't	No.	10
co ₂	(8)	7.7	~~		
NOX	(ppm)	70	No measure't		11L
RSH	(ppm)		ND < (0.1)		70L
non	(ppm)	-	50	No.	140
	(ppm)	_	ND < (2)	No.	120

(Note) ND: Not detected

3.8.4 Location for measurement in PPSA and the measured values

Refer to Table 3.7-1.

3.8-3

3.9 Review of Management System

No.1 crude oil distillation unit was reviewed in the aspects of operation and maintenance management. Mechanical- and process-related problems of No.1 unit are already treated in Section 3.3 to 3.7.

3.9.1 Operation Management

(1) organization

The organization chart of PPSA is shown in Figure 2.4-1. PR-3 is a production department of refinery responsible for production control in No.1, 2, 3 and 4 crude oil distillation units, and DRW-I section is in charge of production and partial maintenance management of No.1 crude oil distillation unit under the control of PR-3.

Organization of DRW-I section is given in Figure 3.9-1, which consists of a manager, a process engineer of PR-3 department for production management, each mechanical and electrical engineer in charge of maintenance planning and preparations for repair works, and shift workers for production of No.1 crude oil distillation unit.

(2) Working hours and costs of laborers

and the second second

Operation of No.1 crude oil distillation unit is maintained by three eight-hour shifts of 7 members per shift, as shown in Tables 3.9-1 and 3.9-2.

Wages for rough classification of all job categories are given in Table 3.9-3 and the average basic wage of laborers working for No.1 crude oil distillation unit is 8.3 x 10^6 Zl/month as of October 1993.

3.9-1

(3) Operation Control

The number of employees of DRW-I section is 35 as of December 1993, including a process engineer of PR-3 department. Production is maintained by three eight-hour shifts. Figure 3.9-2, for example, shows structure of three eight-hour shifts for operation of a refinery in Japan. Its processing capacity of an atmospheric distillation unit is 100,000 barrels per stream day (BPSD), and a vacuum distillation unit 50,000 BPSD.

These are modern units with advanced instrumentation, socalled distributed control system (DCS), compared with obsolete facilities of No.1 crude oil distillation unit so that direct comparison of organization is not considered to be meaningful.

Employment of No.1 crude oil distillation unit, however, is considered to be admittedly oversized for operation of a 70,000 BPSD-scale atmospheric and vacuum distillation unit.

The following are possible causes to oversize the structure and need to be taken into consideration in case of restructuring of PPSA.

- Crude oil refining plants comprise four units, and the processing capacity of each unit is relatively small scale of 70,000 BPSD-scale: this causes ineffectiveness in operation management of distillation units.
- Location of No.1 crude oil distillation unit off No.2, 3 and 4 crude oil distillation units obstructs the unification of the units.

3) DRW-I, -II, -III and -IV sections are organized independently. This hinders the union of four sections or the establishment of the mutual support system for start-up, shutdown, and emergency operations.

The study of measures below is requisite to further effective employment of the personnel. It would be expected that implementation of the unit reconstruction below in addition to improvement of the above mentioned matters would optimize employment like that shown in Table 3.9-4.

• • •

4) Adoption of automatic emergency shutdown system.

5) Introduction of automatic control system like DCS.

D

. .