3.2.3 Production balance

Table II.3-10 shows the balance of sinter product between 1992 and 2002.

In 2002, the plan of producing by only the three large sintering plants, Nos.5 to 7, is selected to raise the efficiency of energy-saving and pollution control effects.

The required quantity of sinter product will increase from 4.332 Mt/y in 1992 to 7.022 Mt/y in 2002. Therefore operational availability should be increased from 70 % to 90 % as in Japan by installing yard stock system for sinter product to avoid unscheduled shutdowns due to unbalance between BF and sintering plant.

It is necessary that max.productivity is 26 t/d/m^2 according to max. production of BF. Therefore quick lime adding system as measures of increasing productivity should be installed to improve the permeability of sintering bed.

3.2.4 Analysis of the problems found

1) Energy balance

As the heat balance in Table II.3-11 shows, the energy consumption in SIDEX was 596 Mcal/t, about 1.4 times the Japanese consumption of 417 Mcal/t in 1992.

In the input column, consumption of coke breeze and COG is high. In the output column, sintered ore sensible heat, waste gas sensible heat, and decomposition heat of lime stone are high.

2) Energy-saving themes

(1) To decrease consumption of coke breeze

To decrease the consumption of coke breeze, a heat pattern should be established to transmit the combustion heat to the sintering bed efficiently, and then optimization of the grain size of coke breeze and coke breeze distribution in the sintering bed are required. The sensible heat of waste gas will lower at the same time.

(2) To decrease consumption of COG

To decrease the consumption of COG, the ignition system of the ignition furnace should be changed from the present atmosphere ignition type to the combination type of atmosphere ignition and flame ignition, thus obtaining quick ignition at high temperature. Together with this revamping of the ignition system, waste heat should be utilized to preheat the combustion air, thus raising the flame temperature, and also to preheat the raw material, all leading to the improvement of ignition efficiency.

(3) To lower sensible heat of sintered ore

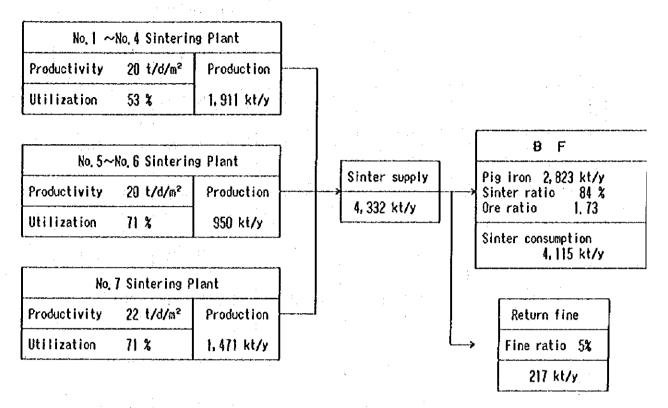
(1, 1, 2)

To lower the sensible heat of sintered ore, the sensible heat escaping to the return fine should be decreased by improving the product yield. This improvement of product yield also decrease consumption of various energies.

(4) To decrease consumption of electric power

As Fig. II.3-7 shows, the unit consumption of electric power changes in reverse proportion to the change of productivity and yield. To decrease the consumption of electric power, therefore, the high air leakage ratio of main exhaust gas, 66%, should be restrained in addition to the improvement of yield, thus decreasing the consumption of electric power for the main blower.

(5) To recover waste heat


The waste heat from the cooler should be recovered efficiently. The cooler for the No.7 sintering plant is of circular bin type and since the temperature of exhaust gas is low, it is not suitable for the recovery of steam and had better be applied to preheating of combustion air and raw materials for the ignition furnace. The cooler for the No.6 sintering plant is of straight-line trough type and can recover the waste heat by steam from the hightemperature waste gas in the upstream in the cooler.

and the second second

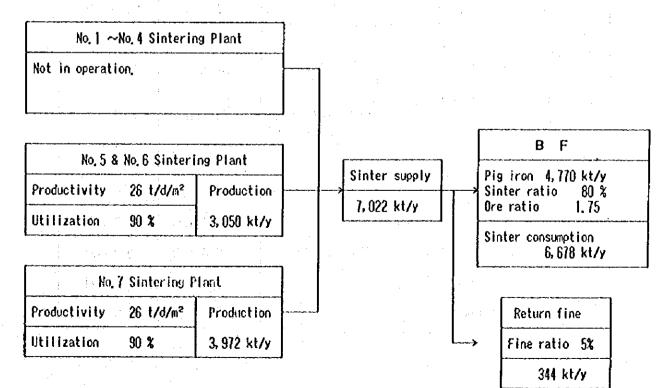
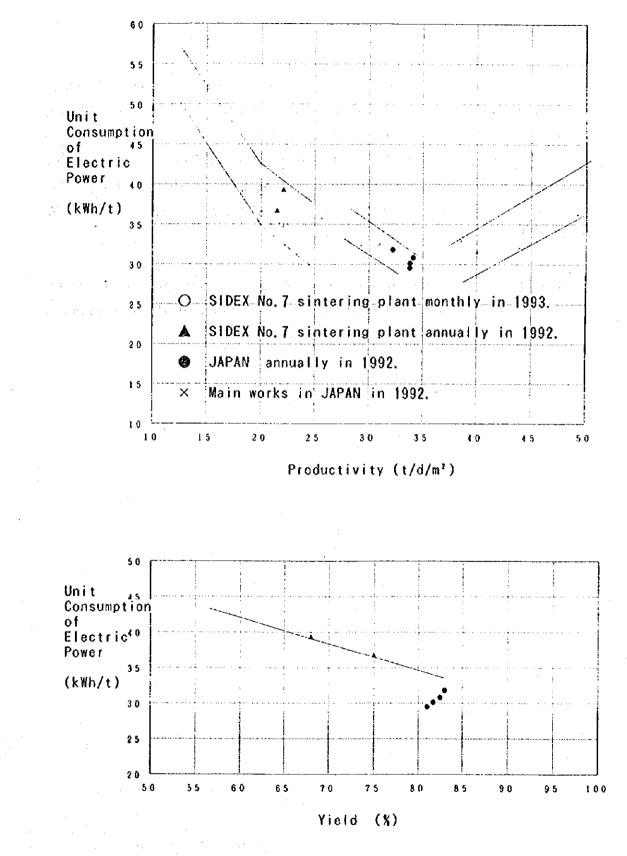

4

Table 11.3-10, Sinter Product Balance

(1) Sinter Product Balance in 1992

(2) Sinter product balance in future (2002)

II-54


Process(1992) Table 11.3-11. Heat Balance for Sintering

٩.

	ltoms	SIDEX		Japan
	110(115	Remarks	Mcal/t-sinter	
	Coke breeze	Coke consumption 67 kg/t Calorific value 6,800 kcal/t	455 Mcal/t	355 Mcal/t
I N D	COG	COG consumption 9 Nm³/t Calorific value 4,250 kcal/Nm³	38 Mcal/t	8 Mcal/t
P U T	Sulfur oxidizing heat	Sulfur unit value 1.1 kg/t-s Calorific value 2,500 kcal/kg	3 Mcal/t	1 Mcal/t
* *	Sensible heat of material	Material volume 1,747 kg/t-s Specific heat 0,22 kcal/kg °C Mean temp 11 °C	4 Mcal/t	4 Mcal/t
•		Total	500 Mcal/t	368 Mcal/t
	Sinter cake sensible heat	Sinter cake 1,470 kg/t Specific heat 0.22 kcal/kg °C Temperatuer 450 °C	146 Mcal/t	119 Mcal/t
0 U T U	Waste gas sensible heat	Waste gas volume 3,000 Nm³/t Specific heat 0.32 kcal/Nm³℃ Waste gas temp 94 ℃	90 Mcal/t	53 Mcal/t
	Resolution heat of limestone			76 Mcal/t
T	Resolution heat of combined water	Combined water 1.5 % Raw material 940 kg/t-s Resolution heat 1,200 kcal/kg	17 Mcal/t	23 Mcal/t
	Latent heat of sinter mix H ₂ O	Moisture in sinter mix 6 % Sinter mix volume 1,747 kg/t-s	57 Mcal/t	46 Mcal/t
	Latent heat of CO waste gas	CO % in waste gas 0.6 % Waste gas volume 3,000 Nm³/t-s CO burning heat 3,000 kcal/Nm³	55 Mcal/t	45 Mcal/t
	Heat los	S	21 Mcal/t	6 Mcal/t
		Ţotal	500 Mcal/t	368 Mcal/t
El	ectric consumption	39, 3 kWh/t× 2, 450 kcal/kWh	96 Mcal/t	79 Mcal/t
He	at recovery	None	0 Mcal/t	-30 Mcal/t
	Total energy consi	unption	596 Mcal/t	417 Mcal/t

II-55

 $\{1, 2\}$

3.2.5 Measures and estimated effects

Table II.3-12 shows the energy-saving measures for the model plant and their estimated effects. Operational measures will save energy by 5Mcal/t, improvement of facilities by 16 Mcal/t, and facilities expansion by 90 Mcal/t, amounting to 111 Mcal/t of energy saved in total. And the energy unit consumption in 2002 is estimated to be about 485 Mcal/t. Though this effect is based on the production quantity of 1992, the similar effect can be expected for 2002.

Table II.3-13 shows the heat balance of the sintering process in 2002, which will be roughly similar to the level in Japan if the raw material conditions are compensated for.

Ranking of measures	Outline of measures	Estimated c	ffects
Improvement of	1. Improvement of burning	Yield 0.2%	(Coke 0.1 kg/t)
operation	 Avoidance of excessive air at the pallet sides ————————————————————————————————————	1 Jen 0.270	$(\Delta E 0.1 \text{ kWh/t})$
I	 Prevention of air leakage (1) Prevention of the air leakage around the pallets Maintenance of the pallet side walls and grate bars 	Air leakage 3% decrease Yield 0.5%	(ΔE 0.6 kWh/t) (Coke 0.2 kg/t) (ΔE 0.3 kWh/t)
	(2) Prevention of the air leakage around the EP Maintenance of the seal portions	Air leakage 2% decrease	(ΔE 0.4 kWh/t)
Partial modification of equipment	1. Improvement of burning Avoidance of excessive air at the pallet sides — Mounting of blind grate bars to the sides	Yield 0.5%	(Coke 0.2 kg/t) ($\Delta E 0.3 \text{ kWh/t}$)
		Air leakage 1% decrease	(ΔE 0.2 kWh/t)
II	2. Improvement of the ignition furnace Prevention of the penetration of cold air into the ignition furnace Improvement of the seal of the ignition furnace Improvement of the control of the air volume sucked under the ignition furnace		(COG 2.0 Nm3/I
	 3. Prevention of air leakage (1) Modification of the pallet seal mechanism Dead plate construction Construction of seals between pallets 	Air leakage 5% decrease	(∆E 1.0 kWh/t)
	(2) Modification of various kinds of valves Main exhaust pipe, EP dust valve, etc.	Air leakage 5% decrease	$(\Delta E 1.0 \text{ kWh/t})$
Expansion and renewal of equipment	 Enhancement of the operation control system (1) Enhancement of the operation control system Measurement of the cold strength of sinter product (2) Partial renewal of each weighing machine Improvement of the weighing-out accuracy of raw materials and fuels 	Yield 2.0% Coke breeze	(Coke 1.0 kg/t) (ΔΕ 1.2 kWh/t) (Coke 2.0 kg/t)
	2. Improvement of burning		
	(1) Improvement of the burden distribution New-type charging device	Yield 3%	(Coke 1.5 kg/t) (ΔE 1.8 kWh/t)
	(2) Enhancement of the sizing of coke breeze Installation of a recrushing system for large coke breeze	Coke breeze	(Coke 3.5 kg/t)
	3. Ignition furnace Great heat loss because of atmosphere ignition Replacement with a small-size ignition furnace	Decrease of COG	(COG 4.0 Nm3/
	4. Recovery of cooler waste heat(1) Preheating of the raw material mix and the combustion air for the ignition furnace	Yield 0.5%	(Coke 0.2 kg/t) (ΔE 0.3 kWh/t)
	(2) Installation of new equipment for recovering the sensible heat of waste gas at about 300°C in the No.6 sintering plant	Decrease of COG	(COG 0.5 Nm3/ (Steam 15 kg/t)
	 (5) Production increase (1) Improvement of operational availability Yard stock system for sinter product 	Production increase	(ΔE 1.4 kWh/t) (Coke 0.6 kg/t)
	(2) Improvement of permeability Quick lime adding system	Yield 1% increase Production increase	(Coke 0.0 kg/t) (Coke 1.0 kg/t) ($\Delta E 2.0$ kWh/t)

Table II.3-12. Energy-Saving Measures for Sintering Plant and Estimated Effects (1/2)

²⁾

n 1. c	•	•		. •
Results of	improvement	10	energy	concumption
	mprovonom	***	vavisj	vvnaumption

		SIC	DEX	
Energy item	Unit	Before the improvement	After the improvement	Japan
Coke breeze	kg/t	67 (72)	56.7 (- 10.3)	50
COG	Nm³/t	9	2.5 (-6.5)	1.5
Electricpower	kW/t	40	29 + 5* (-6)	32
Yield	%	(68)	(76) (+8)	(84)
Air leakage	%	(66)	(50) (-16)	(33)
Energy consumption	Mcal/t	596	485 (-111)	417

Difference between SIDEX after the improvement and Japan

	-	•
Coke breeze	• Difference in calorie	2.8 kg/t
	• Difference in yield	2.4 kg/t
· · · ·	• Difference in scale consumption	2.9 kg/t (Japan 21 kg/t)
Yield	• Difference in slag content of	5% (Sv/T.Fe: 0.6/0.4)
	raw material	. · · · · · ·
	• Difference in quick lime	1% (Japan 13 kg/t)
	consumption	

* Increase due to installation of energy saving and environmental facilities

3) Summary of improvement in energy consumption

	Coke breeze Mcal/t (kg/t)	COG Mcal/t (Nm³/t)	Electricity Mcal/t (kW/t)	Total Mcał/t
Improvement of operation	2.0 (0.3)	· · · · · · · · · · · · · · · · · · ·	3.4 (1.4)	5.4
Partial modification of equipment	1.4 (0.2)	8.5 (2.0)	6.1 (2.5)	16.0
Expansion and renewal of equipment (Increase in electricpower)	66.6 (9.8)	19.1 (4.5)	16.4 (6.7) -12.0	90.1
Total	70.0	27.6	13.9	111.5

Table 11.3-13. Heat Balance for Sintering Process(2002)

: :

4

	Ltomo	SIDEX		Japan
	ltems	Remarks	Mcal/t-sinter	
	Coke breeze	Coke consumption 56.7 kg/t Calorific value 6.800 kcal/t	385 Mcal/t	355 Mcal/t
N	COG	COG consumption 2.5 Nm³/t Calorific value 4.250 kcal/Nm³	10 Mcal/t	8 Mcal/t
P U Ť	Sulfur oxidizing heat	Sulfur unit value 1.0 kg/t-s Calorific value 2,500 kcal/kg	3 Mcal/t	1 Mcal/t
	Sensible heat of material	Material volume 1.747 kg/t-s Specific heat 0.22 kcal/kg °C Mean temp 11 °C	4 Mcal/t	4 Mcal/t
		Total	402 Mcal/t	368 Mcal/t
	Sinter cake sensible heat	Sinter cake 1,313 kg/t Specific heat 0,22 kcal/kg °C Temperatuer 450 °C	130 Mcal/t	119 Mcal/t
0 U	Waste gas sensible heat	Waste gas volume 2,000 Nm³/t Specific heat 0.32 kcal/Nm³°C Waste gas temp 90 °C	58 Mcal/t	53 Mcal/t
T P U	Resolution heat of limestone	Limestone consumption 213 kg/t Resolution heat 426 kcal/kg	91 Mcal/t	76 Mcal/t
Ť	Resolution heat of combined water	Combined water 1.5 % Raw material 987 kg/t-s Resolution heat 1,200 kcal/kg	18 Mcal/t	23 Mcal/t
	Latent heat of sinter mix H ₂ O	Moisture in sinter mix 6 % Sinter mix volume 1.580 kg/t-s	51 Mcal/t	46 Mcal/t
	Latent heat of CO waste gas	CO % in waste gas 0.8 % Waste gas volume 2,000 Nm³/t-s CO burning heat 3,000 kcal/Nm³	48 Mcal/t	45 Mcal/t
	Heat los	S	6 Mcal/t	6 Mcal/t
		Total	402 Mcal/t	368 Mcal/t
EI	ectric consumption	(29 + 5)kWh/t × 2,450 kcai/kWh	83 Mcal/t	79 Mcal/t
He	at recovery	-	(3 Mcal/t)	-30 Mcal/t
	Total energy const	umption	485 Mcal/t	417 Mcal/t

3.3 Blast Furnace

3.3.1 Outline of the facilities and present situation of the energy-saving facilities

The blast furnaces consume the maximum energy in SIDEX, and since the fuel ratio is high compared with that in Japan, energy saving of blast furnaces will bring about the largest energy-saving effect on the whole SIDEX.

The main specifications of the blast furnaces are shown in Table III.3-14. Four small BFs of about 1,800 m^3 , one medium BF of about 3,000 m^3 , and one large BF of about 4,000 m^3 (No.6 BF, model plant). In this No.6 BF, natural gas is blown in as auxiliary fuel.

As energy-saving facilities, top pressure recovery turbines (TRT) are usually installed in Japanese high-pressure large BFs, but not in SIDEX. Hot stove waste gas recovery equipment is not installed in SIDEX, either.

3.3.2 Operational status

්මී

1) Production quantity

and the second second

The annual production of about 6 million tons by six BFs in 1989 has lowered because of the decline of demand to the present 2.5 million tons by three BFs (Nos. 2, 3, and 6).

2) Life of BF

.

BFs started up in succession at intervals of a few years, starting with No.1 BF in 1968 and coming to No.6 BF in 1981. The life of BF is, however, as short as 6 to 7 years, compared with 10 to 16 years of the latest model.

3) Life of hot stoves

No.6 BF is equipped with four hot stoves of DIDIER external combustion type, but the life is as short as 6 to 7 years, compared with more than 20 years of Japanese one. The life of ceramic burners is also as short as 2 to 3 years, compared with about 20 years of Japanese one.

4) Life of tuyeres

The life of tuyeres is as short as 60 to 80 days, compared with about 1 year of Japanese one. To raise the operational availability of BF, elongation of the tuyere life is inevitable.

5) Raw materials for BF

Sintered ore made of mainly the iron ore from Krivoirog in Ukraine occupies about 80%, and the remaining 20% is the oxide pellets from Krivoirog. The purchase of raw materials, however, is presently unstable and the pellet mixing ratio greatly fluctuates between 0% and 40% every month. Furthermore, T.Fe of sintered ore is as low as around 50%, which explains why the BF slag ratio is as high as 450 kg/t, higher than that of Japan by as much as 150 kg/t. To target stable operation of BF, long-term stable procurement of BF raw materials should be secured.

6) Operational parameters

The operational parameters between SIDEX No.6 BF and Japanese one are compared in Table II.3-15.

There are many differences. The parameters that deserve the most careful attention for energy saving are the fuel rate and the productivity.

The fuel rate of No.6 BF is higher than that of Japan by about 60 kg/t. Decrease of this high fuel rate naturally leads to large energy saving and energy cost reduction. Since the high fuel rate increases the BFG recovery as shown in Fig. II.3-8 but at the same time increases the blast air as shown in Fig. II.3-9, decrease of the fuel rate is needed.

The productivity is as low as about a half of that in Japan mainly due to the present reduction of production.

In terms of energy saving, however, this should be avoided as much as possible and efforts should be made to improve the productivity through sufficient study of the operation plan.

聖

9

For high productivity, the furnace top pressure has to be increased. If more than 6,000 t of daily production is desired, the furnace top pressure should be higher than 2 kg/cm^2 as shown in Fig. II.3-10.

	No.1 BF	No.2 BF	No.3 BF	No.4BF	No.5 BF	No.6BF
Present Status	Onerating	Banking	Operating	Relining	Relining	Operating
		6 - Vie +	W-:	1 200	2 200 - 2	3 500m3
Working Volume	1, (WmJ	CH W/	1,001			1100 m
Inner Volume	1.824 m3	1,824 mJ	1,X26 m3	LT 428.1	3, 24 mJ	4,102 70
Hearth Diameter	9.1 m	9.1 m	E : 6	9.1 m	11.6m	13.2 m
Tuvere	ដ	22	24	24	32	36
Tap Hole	1	•	2		2	4
Cast Floor		4	. 2	2	2	2
Twe	Cirder	Girder	Gurder	Cirder	Free-standing	Free-Standing
Fuel Intertion				PCI(1996)	PCI(1996)	Natural Cas
Charging Equipment	2 Bell&Valve seal	2 Bell&Valve seal	2 Bell&Valve seal	2 Bell& Valve seal	2 Bell&Valve seal	Μď
Changing Conveyor	Skip	Stap	Skip	Strip	Skip	Belt Conveyor
Movable Amour	Movable Amour	Moveble Amour	Movable Amour	Movable Amour	Movable Amour	Μď
Top Pressure (kg/cm2)	1.5 (1.2)	1.5 (1.2)	1.5 (1.2)	1.5 (1.2)	2.0 (1.5)	25 (1.7)
TKT	2		-			
Cooling Equipment	Stave Cooler	Surve Cooler	Stave Cooler	Stave Cooler	Stave Cooler	Stave Cooler
Cast House:Main Runner	12×2.6	12 x 2.6	12×2.6	12 x 2:6	14 x 2.8	14×2.8
Slag Treatment	Granulation 98 %	Granulation 98 %	Granulation 98 %	Granulation 98 %	Granulation 98 %	Granulation 98 %
HOT STOVE						
Type						
Pressure (kg/cm2)	3	3	3	9	4	ŝ
Blast Temperature ("C)	1,200	1.350	1,350	1,350	1,350	1,350
Blast Volume (Nm3/min)	3,700	3,700	. 3,700	3.700	5.000	. 6,000 ·
Gitter Brick (t)	3,800	3,600	3.600	3,700	3.800	4,000
Shell	4.4 m2 x 35 m	4,4 m2 x 26 m	4.4 m2 x 26 m	D4.2.1.27 m	D 4.2 x 30.5 m	D4.2 x 35 m
	D90x35m	D9x26m	D9×26m	D8x27m	D 8 x 30.5 m	D 8 x 35 m
Heating Surface (m2/st)	35,000	43,000	43,000	56,420	48,730	56,700
Dome Temperature (°C)	1,300	1,450	1,450	1,550	1.550	1,550
Bumer Type	Cennic	Cennic	Ceramic	Ceramic	Cersmic	Ceramic
Combustion Air Blower	71,000 Nm3/hx1	71.000 Nm3/hx1	71,000 Nm3/hx1	71,000 Nm3/hx1	136,000 Nm3/hx1	136.000 Nm3/hx1
(Pressure: mm/20)	510	510	510	510	850	850
Rocupenter	- · ·				4	
GAS CLEANING EQUIP.				:		
Dust Catcher			1		×	-
Venturi Scrubber	220.000 Nm3/h	220,000 Nm3/h	220,000 Nm3/h	220,000 Nm3/h	-360,000 Nm3/h	720,000 Nm3/h
Electric Precipitator			- t	1		-
COMPUTER CONTROL						
Process Computer			EC881x2	EC881x2	AEC8020	AEG8020
					S D D D D D D D D D D D D D D D D D D D	C. 100 CO

1

Note: The values in parentheses show max. operating data.

6)

Table II. 3-15.	Comparison of Data among SIDEX, J	Japan, and	Kobe Steel in 1992
	(Average Value)		:

		Unit	SIDEX No.6 BF	Japan (Av.)	Kobe Steel (Av.)
Prod	uctivity	t/cum	0.97	1.86	1.82
Coke	Rate	kg/t	539	432	382
Aux.	Fuel Rate	kg/t	39.5 (NG)	81 (PCI)	132 (PCI)
Sinte	r Ratio	%	85	77	54
Pelle	tRatio	%	14	8	31
Blast	Volume	Nm³/min	4,611	4,928	4,812
Blast	Temperature	C	961	1,095	1,097
Blast	Pressure	kg/cm ²	2.46	3.72	3.91
Top F	Pressure	kg/cm²	1.32	2.27	2.28
Slag	Rate	kg/t	455	310	282
Si in	Hot Metal	%	0.89	0.44	0.36
BFG		Nm ³ /t	2,033	1,673	1,680
TRT	Recovery	kWh/t	-	39.8	42.8
HS R	lecovery	Mcal/t	-	17.8	23.5
	BFG	Nm ³ /t	661	384	374
HS	COG	Nm ³ /t	3	19	5
	Other Fuels	Nm ³ /t	14 (NG)	16 (LDG)	59 (LDG)
HS H	leat Efficiency	%	78	85	88

9

.

9

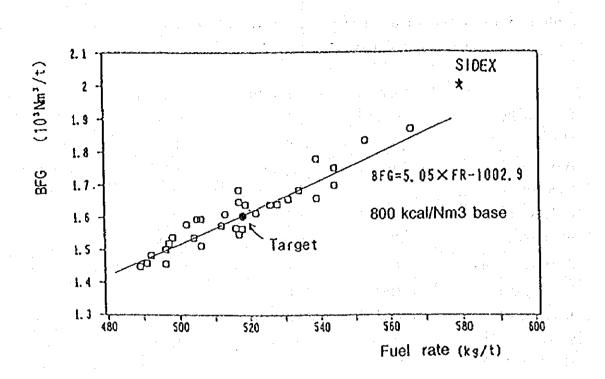


Fig. II.3-8. Relationship between Fuel Rate and BFG

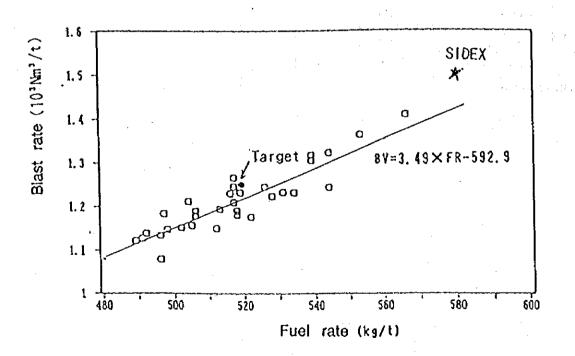
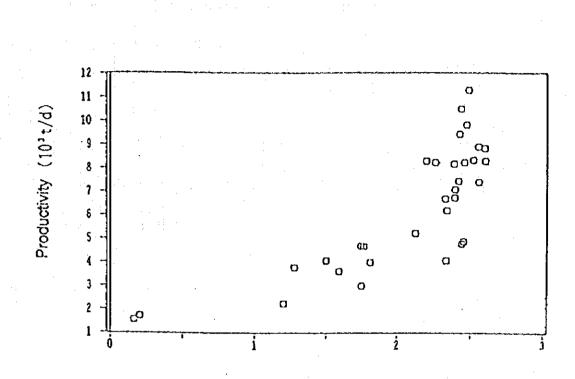



Fig. II.3-9. Relationship between Fuel Rate and Blast Rate

II-66

9

Top pressure (kg/cfl)

Fig. II.3-10. Relationship between Top Pressure and Productivity

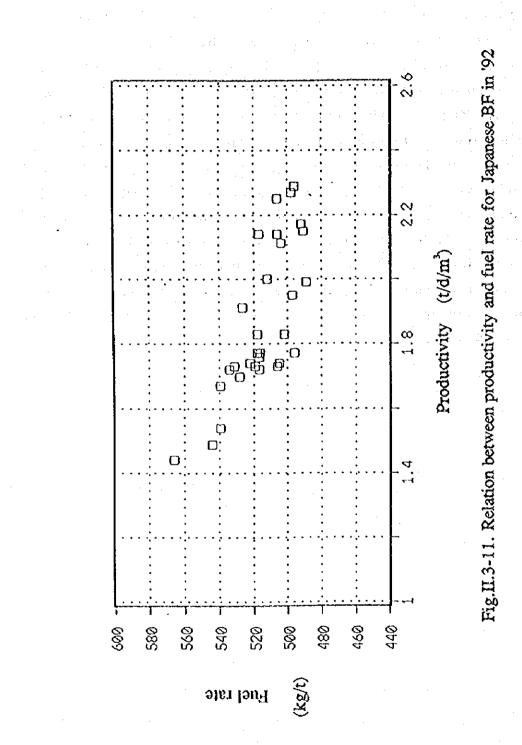
3.3.3 Production balance

The production balance in 2002 as the basis for the study of energy-saving measures is shown in Table II. 3-16.

	Item	No.1 BF	No.2 BF	No.3 BF	No.4 BF	No.5 BF	No.6 BF	Total
	Capacity (m ³)	1,824	1,824	1,824	1,824	3,128	4,102	14,526
1000	Operation Status	Stop	Operating	Operating	Stand-by	Stand-by	Operating	
1992	Productivit y		0.82	0.83			0.97	-
	Operation Status	Stop	Stop	Stand-by	Stand-by	Operating	Operating	· •
2002	Coke Rate PC Ratio	-	_	_		370 kg/t 150 kg/t	370 kg/t 150 kg/t	•
	Productivit y		-	_	-	1.8	1.8	` -
	Production (kt/y)	_			_	2,063	2,707	4,770

Table II.3-16. Production Condition in 1992 and 2002

1) BF fuel rate


SIDEX plans to lower the BF fuel rate from the present 580 kg/t to 480 kg/t in 2002, which may be difficult considering the present operating techniques, raw material conditions, and furnace top pressure.

To be more practicable, after measures such as installation of PCI system, revamping of blowers, and installation of sensors for confirmation of furnace conditions are taken at the relining of No.6 BF in 1996, the fuel rate should aim at 520 kg/t in 2002 (PCI rate 150 kg/t and coke rate 370 kg/t, almost similar to Japanese BF), which is slightly higher than the expected lowest level 510 kg/t. See Section II.3.3.5 for the measures.

2) BF operation plan

Ø

SIDEX plans to use Nos. 4, 5, and 6 BFs for 2002. Because the average productivity is 1.44 (tapped quantity per day/inner volume), which is around the lower limit in Japan, BF operation will be even insufficient compared with other steelworks such as those in the West in terms of productivity and energy saving. The relationship between productivity and fuel rate in Japanese Blast Furnaces is shown in Fig. II.3-11. As shown in this figure, there is an inverse proportion with productivity and fuel rate. For obtaining fuel rate below 520 kg/t, productivity has to be more than 1.7. Therefore, at the average production in 2002, use of large Nos. 5 and 6 BFs at the productivity 1.8 is preferable. However if the present operational availability is maintained, productivity 2.0 has to be attained. Therefore measures for raising the operational availability recommended in Section II.3.3.5 are required.

3.3.4 Analysis of the problems found

3.3.4.1 Analysis of heat loss in the heat balance.

Table II. 3-17 shows the heat balance for the BF and hot stove.

1) BF proper

þ

The input heat in No.6 BF is 4.6 Gcal/t, higher than that of Japan by about 400 Mcal/t, mostly because the fuel rate in SIDEX is higher than that of Japan by about 60 kg/t. Blast input heat is also higher than Japan by about 45 Mcal/t, because the high fuel rate raises the blast air unit consumption higher than that of Japan by about 300 Nm³/t. (The blast air temperature in SIDEX is lower than that of Japan by 130°C.) Because the input heat is higher, the recovery of sensible heat of BFG is larger than that of Japan by 350 Mcal/t, while the heat loss from the BF shell is larger by 90 Mcal/t.

2) Hot stove (HS)

The input heat to the hot stove in No. 6 BF is higher than that of Japan by 110 Mcal/t. As seen in terms of the output heat, the difference 45 Mcal/t is caused by the higher blast air unit consumption, while the difference 85 Mcal/t is caused by the differences of heat loss from waste gas or HS body. The difference 20 Mcal/t is caused by existence/nonexistence of waste gas recovery facilities. The difference in heat loss of waste gas and HS body is possibly caused by (1) excess air combustion as seen in the O2 concentration as high as 4-5% in waste gas, compared with 1-2% in Japan, (2) larger radiation heat from hot stove due to long flame, and (3) no application of heatinsulating material to the hot stove shell.

3.3.4.2 Analysis of the operating data

The most effective energy-saving measure is to decrease the fuel rate as judged from the operating data. The operating condition of the No.6 BF using RIST model is as analyzed below (see Fig. II.3-11):

电子记录 网络小学

- (1) The inclination is larger because of the higher fuel rate. The gas reduction efficiency, shown in point A, is lower, and the input oxygen rate shown in point B is larger.
- (2) The shaft efficiency, shown by the difference between the point W (equilibrium point with Wustite) and the operation line, is as low as 79.2% compared with the Japanese 95.6%, showing a quite low BF reduction efficiency.

Considering the above, since the direct reduction rate shown by point D is high in spite of the high fuel rate, improvement of reducibility of raw materials and BF gas distribution control technique is important.

Based on the above, improvement plan should be framed. The decrease of fuel rate will be as follows compared with that of Japan:

		Method
• Decrease of	29 kg/t	Increase of T.Fe in iron ore
slag ratio	10 kg/t	Decrease of ash content of
· .		ene coke and elements and elements
		$\left[\frac{1}{2} + \frac$
 Decrease of 	- 17 kg/t	

a set a set a set a set (

moisture in blast air

II-72

• Improvement of heat loss

17.5 kg/t

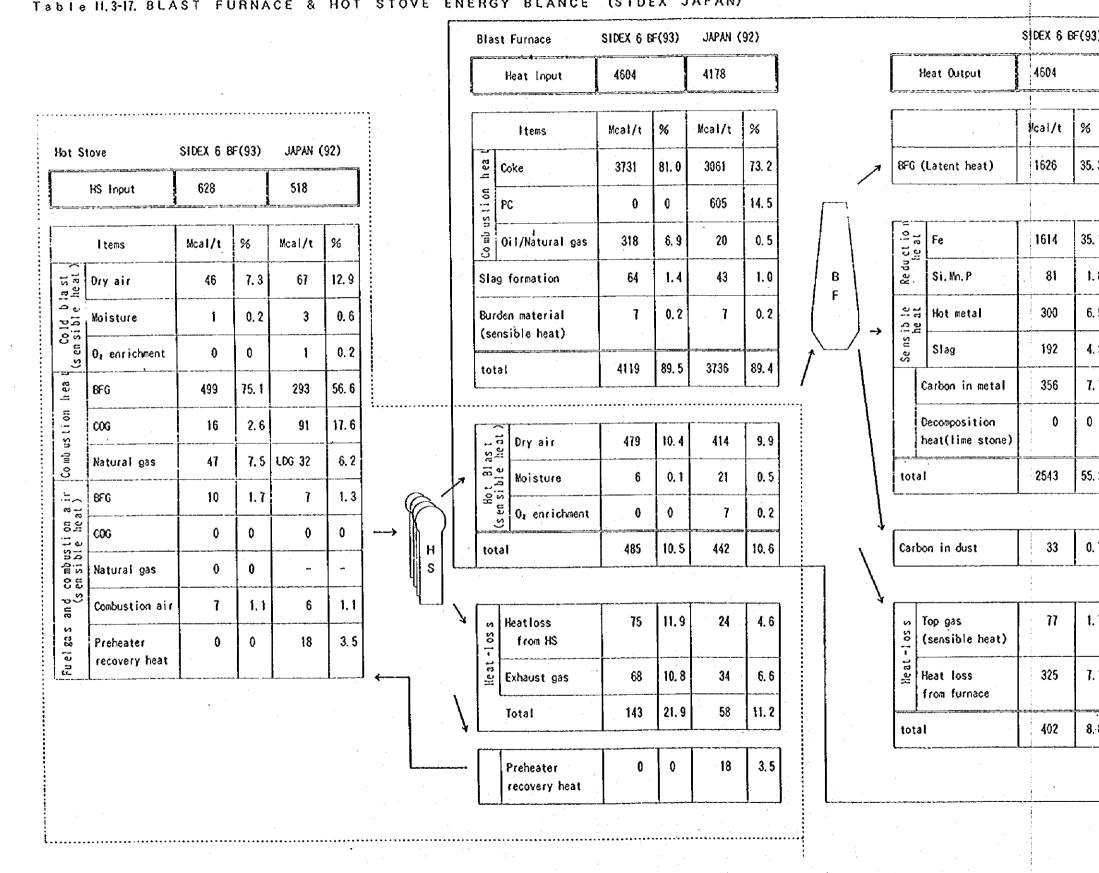
• Optimization of BF gas distribution (improvement of burden distribution and optimization of circumferential blasting condition)

- Improvement of permeability and high pressure operation
- Improvement of reducibility of raw materials

 Improvement of operational 7.6 kg/t

Modification of tuyere

availability


(響

The above improvement of heat loss will lead to the improvement of shaft efficiency from the present 79% to the level as high as in Japan, which will bring about the following decrease of fuel rate:

Item	Decrease of fuel rate
• Increase of	13.9 kg/t
blast air	
temperature	
·	


• Decrease of 10 kg/t Si in hot metal

Conclusively, the target fuel rate of No.6 BF should be around 520 kg/t considering the present situation of SIDEX. This affords operation at the fuel rate 510 kg/t, which decreases the fuel rate by about 70 kg/t.

Table II. 3-17. BLAST FURNACE & HOT STOVE ENERGY BLANCE (SIDEX JAPAN)

-(93)	JAPAN (92)		
	4178	4178		
%	Mcal/t	%		
35. 3	1269	30. 4		
)]		
35. 1	1639	39. 2		
1.8	44	1.1		
6. 5	318	7.6		
4, 2	138	3. 3		
7.7	384	9. 2		
0	1	0		
55. 2	2524	60. 4		
0.7	53	1. 3		
1.7	97	2.3		
7.1	235	5.6		
8, 8	332	8.0		

3.3.5 Countermeasures and estimated effects

3.3.5.1 Philosophy of countermeasures

1) Fuel rate

In order to lower the fuel rate, the stable operation of BF is indispensable for improving the performance of BFs. This can be achieved by increasing the availability of facilities and securing the furnace permeability, and stabilization of the raw material and intensifying of tapping and slagging control. Furthermore it is important to obtain the improvement of reductivity and heat efficiency. For this purpose, it is necessary to check the in-furnace state of the cohesive zone, the gas flow in furnace, the deadman coke by using the daily sensors, and on the base of these information it is inevitable to use the control system adjusting the burden distribution at the throat and blast condition. And it is important not only of the increasing the reliability and replacing of controller and monitor for the operation of BF, but also renewal the cooling equipment of BF body and the cast house equipments and layout to intensify of tapping and slagging at the rebuilding of BF.

2) PCI

After achieving the PCI rate of 150 kg/t, the big energy saving effect will be obtained by stopping the now operating small coke ovens (No. 1-4 CO) on the balance of coke supply. PCI 150 kg/t is not easy to inject, which is rather high even if in Japan. However, before injecting at the No.6 BF, the small BFs No.4, 5 BF is injected. By the experience of PCI operation and below mentioned countermeasures, it will be able to achieved the level of this PC rate.

: Application of above mentioned monitoring and controlling

: Application of the operation and equipment technique (ref. 3)

: Increasing the strength of coke

: Renewing the blower

The capacity of PC injecting at No.6 BF is decided 200 kg/t in order to apply the future capability of increasing the amount of PCI and reduction of the purchased coke in future and decreasing the coke product capacity in future by the life of coke oven.

3) Technique of massive PC injection

-

()))

Fig. II.3-14 shows the phenomenon in the furnace as all coke operation (Left Fig) and PCI operation (Right Fig). This means that increased PC rate changes not only Ore/Coke ratio but also increasing of top gas temperature by decreasing the heat flux ratio, increasing the heat-loss from the furnace body by increasing of peripheral gas flow and inactivation of the deadman coke by increasing of unburnt PC. Therefore, the countermeasures as shown in the right column in Fig. II.3-14 must be necessary. As the concept of the coke center charging method which is the most important countermeasure, is shown in Fig. II.3-15, Kobe Steel, Kakogawa No.1 BF is stably continuing injecting more than 190 kg/t PC by the technique of the center coke charging and the control of PC injecting position. In SIDEX, it is inevitable to apply the operation technique for PCI. And it is able to introduce the center coke charging method by bell-less charging in No.6 BF and by newly installed one in No.5 BF.

4) Renewing the blower for BF

esta esta esta ser esta en a

As shown in Table II.3-18, the capacity of now installed blower is 3.3 kg/cm2 for the design capacity of 5.0 kg/cm2. Therefore, this causes the decreasing the capacity of productivity and the increasing fuel rate by increasing the gas velocity in BF. On the other hand, the blast pressure is predicted to be increased till 4.25 kg/cm2 for future increasing productivity and increasing PC rate. Then it is desired to renew the whole installation.

	Present	Future (2002)	
Productivity (t-p/d)	5,000	8,000	8,000
PCI (kg/t-p)	0	0	200
Blast Press. (kg/cm)	2.6	3.6	4.0
Top Press. (kg/cm²)	1.5	2.0	2.0
△P (kg/cml)	1.1	1.6	2.0
Blower Press. (kg/cn ²)	2.85	3.85	4.25

Table II. 3-18. Blower of Blast Furnace

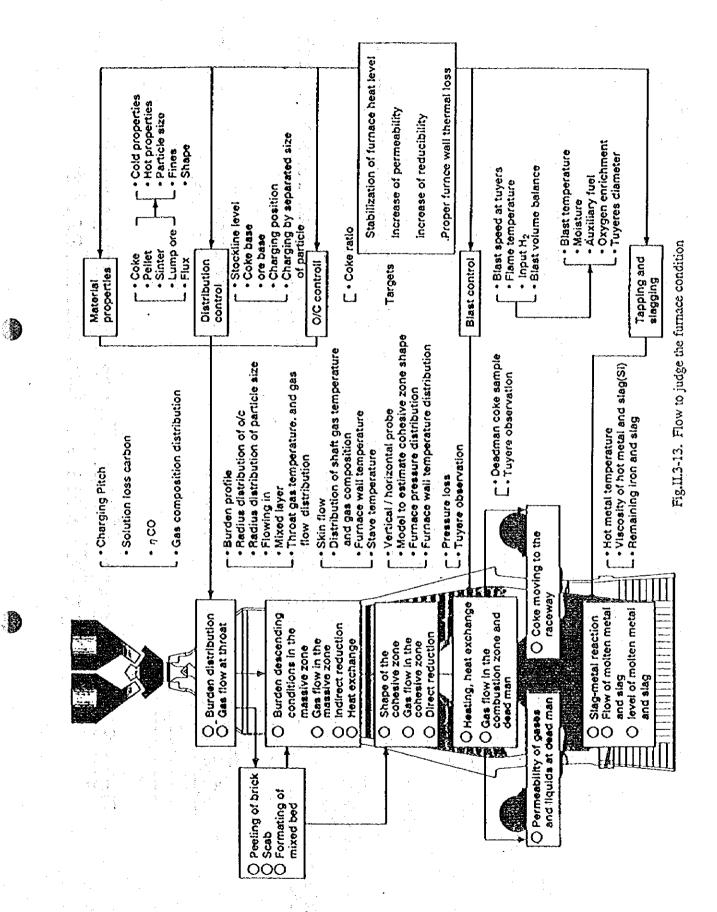
5) Reduction of energy consumption in the hot blast stoves

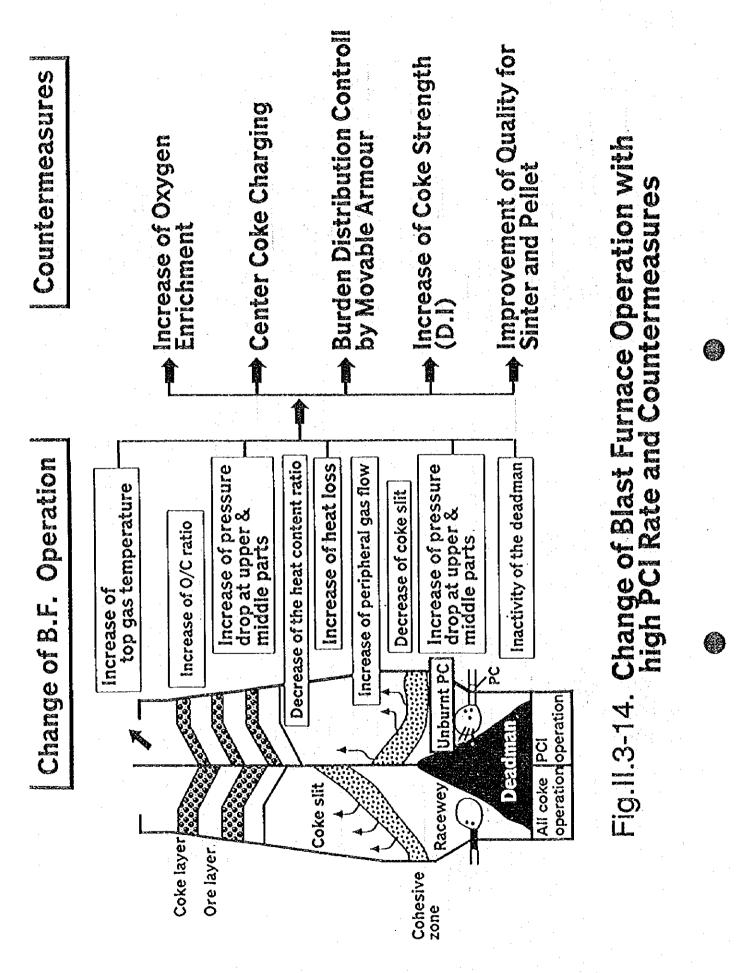
The facilities for the hot blast stoves have outstanding features as given below thanks to the incorporation of regenerative-type heat exchangers, using some refractory material to withstand temperature as high as $1,200^{\circ}$ - 1300° C in its heating blast.

- : Reciprocal operation of heating(combusting) and cooling (blasting) periods.
- : Variation of temperatures in the waste gas and the checker chamber outlet.
- : Some operating temperature limitations imposed according to structural and heat resisting capacity.

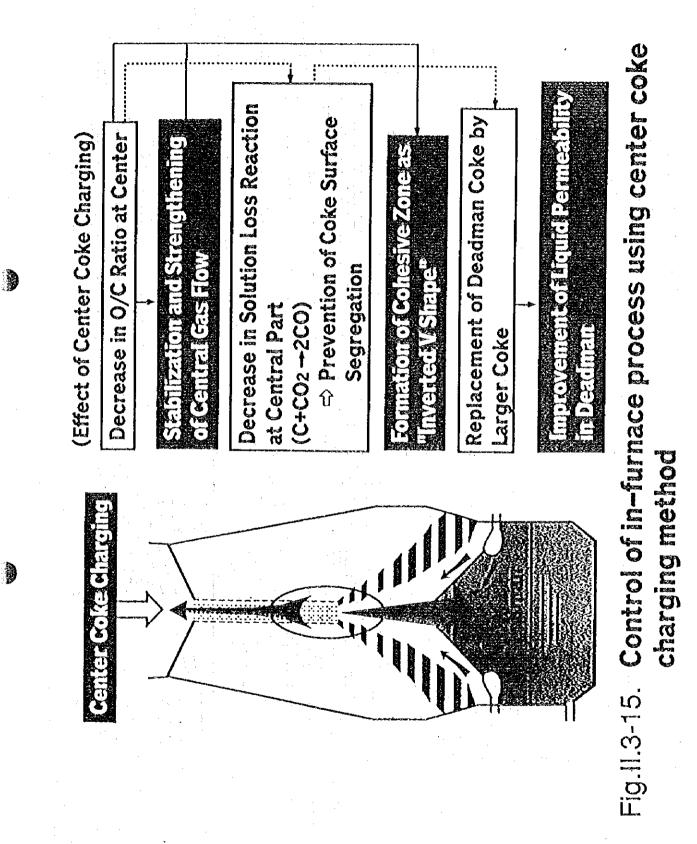
As a result, the above will be enumerated in detail for the sake of planning the facilities of the hot blast stoves, further study of facilities, and general improvement in operation.

As for blast systems in which the blast temperature is to be kept constant against variation of the hot air temperature at the checker chamber outlet, both the single blast system and the staggered parallel blast system are incorporated. Figs. II.3-16, 3-17 give the variation of blast quantity through the checker chamber, variation of outlet blast

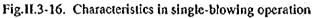

temperature, variation of waste gas temperature, and temperature distribution of checker chamber bricks respectively for each of the blast systems. Since the checker chamber outlet temperature will be gradually lowered, the mixed cold blast quantity will be reduced in the case of a single blast system, eventually letting the quantity of blast through the checker chamber maximized at the end of the blasting period; but in the staggered parallel blast system, the quantity of blast through the checker chamber will be increased up to a specified amount in the former half of the blasting period, and then reduced so as to supplement the blast quantity of the former half when it enters the latter half of the blasting period. The heat accumulation in the combusting period can be maintained uniformly in the overall checker chamber in the single blast system, because of the temperature variation range of the upper part of the checker chamber being kept between the dome temperature and the blast temperature; but in the staggered parallel blast system, a combination of two units of the blast allows the heat accumulation in the upper part of the checker chamber to be utilized at a temperature lower than the blast temperature. Heat accumulation in the bottom part of the chamber will thus be reduced so that the waste gas temperature will also be This naturally lead to improved thermal efficiency. lowered. The blast temperature vs. thermal efficiency is shown in an arranged form, taking the dome temperature as parameter in Fig. II.3-18, where it is noticed that as the differential between the dome temperature and blast temperature increases, so the utilization of accumulated heat on the upper part of the checker chamber also may increase, resulting in decrease of the waste gas temperature, greatly improving thermal efficiency; on the other hand the available range of blast temperature variation will be limited in accordance with factors such as the upper limit of the waste gas temperature being restricted by the thermal resistivity of the brick-supporting metal, the upper limit of dome temperature being decided by the thermal resistivity of the bricks, etc., and the lowest operating temperature of silica brick.

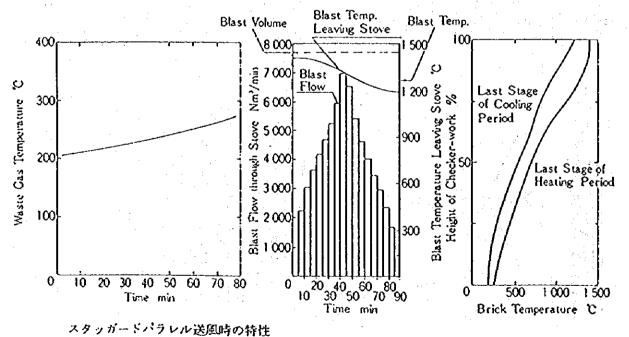

The flow chart of improvement by the fundamental characteristics is

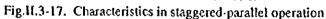
shown in Fig. II.3-19 on the viewpoint from the energy saving in Hot Stove. On the basis of this figure, the improvement of HS in SIDEX is shown below.

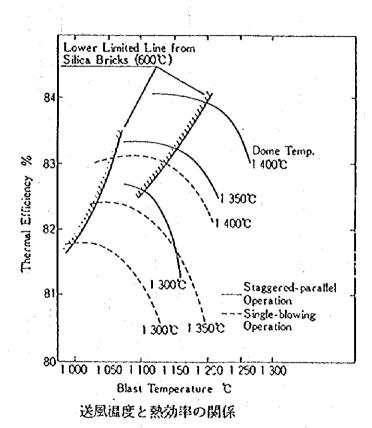

Now the heat efficiency of HS is 78%, but it will increase till 83% by the installation of waste gas recuperator. On the other hand it will be necessary to increase the blast temperature, in order to decrease the fuel rate of BF. Then it must be changed from the single blast system to the parallel blast system or staggered parallel blast system which is high heat-efficiency and is able to blast to high temperature. And in order to increase the heat efficiency for combustion period of HS it is necessary to be installed that the introduction of new control system, the oxygen concentration monitoring sensor for waste gas, the quantity control of combustion fuel gas and air, and the gas holder which decreases the variation of BFG pressure.

11.51 - 11.13

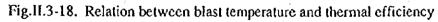

H-82






6

Ŵ



()

(3)

Saving in Steelmaking Works Energy Saving of Hot Stove Total Energy Cost Improvement of Thermal Effective Utilization of Blast Furnace Cas Saving of Input licat to Hot Stove Efficiency by Waste Heat Recovery Increase of Combusion To Prevent Over Heat Transfer Performance of Waste Cas Sensible Effective Utilization & Advanced Recovery Accumulation Pattern Saving of Required Improvement of Heat Accumulated Heat by Optimum Heat Purpose Accumulation Cas Temp. Heat Accumulated Heat Control (Waste Cas Temp. Control) Advanced Heat Insulation Fuel Gas Recuperator Optimum Done Temp. 4-stove Staggered-parallel Operation of Waste Cas Piping Heat Insulation of Cold Blass Piping Low Excess Air Air Recuperator Improvement installation of Installation of Operation Fued Combustion Temp. X Cas Volume is Required Silica Brick, Temp. **Clanges** Continuously Lower Limit in Checker Chamber Temp. Distribution Blast Furnace Cas is Main Fuel. Phenomenon Waste Gas Temp. Upper Limit Combustion Temp. Restriction Upper Limit Regenerative Heat Exchanger Characteristics lleat Transfer Fundamental Convective

法職特益と改造フロー

Combustion

Fig.II.3-19. Fundamental characteristics and improvement flow

II-86

3.3.5.2 Measures and estimated effects

This section shows the energy-saving measures for the model plant and their estimated effects. As explained so far, the most important in energy saving is to lower the fuel rate and to raise the productivity, which require facility improvements and operational optimization. Accordingly, it is inevitable to establish the optimum operation by introduction of proper operating techniques and training for high PCI, high pellet-ratio operation, etc.

Execution of the energy-saving measures will manifest the effects shown in Table II.3-19.

Table II. 3-19.	Estimated	Operation	of	BF	after	Execution	of	Energy-
	Saving Me	asures						

	Present	After measures in 2002
BF input heat	4.6 Gcal/t	4.2 Gcal/t
Productivity	1.0	1.8
Fuel rate	580 kg/t	520 kg/t
Coke rate	580 kg/t	370 kg/t
BFG generation	2,000 Nm³/t	1,570 Nm ³ /t
HS input heat	630 Mcal/t	460 Mcal/t
HS efficiency	78%	85%
TRT recovered electric power	-	29 kWh/t

	Purposes	Measures	Details of Measures
1.	To decrease fuel rate of blast furnace	 To optimize fumace gas distribution by improving the burden distribution (decreasing the heat loss from fumace body and improving the gas utilization efficiency) 	 To secure stable central gas flow by burden distribution control using PW system To install sensors, such as gas sampler and profile meter, for detection of gas radius distribution
		2. To optimize furnace gas distribution by optimizing the blast condition (decreasing the heat loss from furnace body and improving the gas utilization efficiency)	 To secure the raceway depth by optimizing the tuyere wind velocity To secure the balance of circumferentialblast
		3. To increase the reducibility of raw materials	 To stabilize the blending ratio of sinter and pellet To stabilize the basisity of sinter at high level
			 To stabilize the basicity of sinter at high level To stabilize the FeO content of sinter at low level To decrease the size of sinter
			 To blend small coke into iron ore To use flux pellet
		4. To increase furnace permeability	 To increase the cold strength of coke To improve the high-temperature properties of sinter and pellet (such as making the pellet into flux pellet) To decrease the fines of iron ore
		5. To supply high-temperatureblast to BF	
		6. To decrease Si content in hot metal	To increase sensible heat of blast due to decrease of fuel rate
		7. To increase operational availability of equipment	To decrease Si content in hot metal (secondary effect)
		·	To conduct preventive maintenance (utilizing the scheduled BF shutdown)

3.3.5.3 Energy saving by improving the operation (including enhanced control of operation and maintenance)

	Estimated Effects in 2002
S	
	△41.4 kg/t (high-pressure operation base)

	Purposes	Measures	Details of Measures
1.	To decrease fuel rate of blast furnace (Contd.)	8. To decrease the blast humidity	To decrease the blast humidity in order to lower the moisture decomposition heat
		9. To decrease the slag rate	 To purchase and blend iron ore whose Fe content is higher (to blend iron ore whose SiO2 content is lower) To purchase coke whose ash content is lower
2.	To decrease the supply volume of blast to BF		To decrease the fuel rate by the above measures, which increases the productivity, allowing the number of operating BFs to be decreased

Estimated Effects in 2002

- 17 kg/t


△29 kg/t

△10 kg/t

1,500 → 1,200 Nm³/1

	Purposes	Measures	Detailsof Measures	
1.	To decrease the fuel consumption of hot stove	To improve HS control system	To adopt the staggered parallel blasting method	
			• To conduct lower air ratio combustion (to lower the O2 concentration of HS waste gas by adopting the dome temperature control and selecting optimum blending ratio of fuel gas)	
			 To decrease the waste gas temperature by controlling accumulated heat in hot stove To adopt the pressure control of fuel gas 	
	•		• To select optimum dome temperature related to blast temperature	
2.	To increase the operational availability of blast furnace	1. To increase the life of tuyere	 To change the structure of tuyere for increasing the cooling ability (to increase the velocity of cooling water at tuyere nose, to improve water channel inside tuyere, to improve material of tuyere, to apply lining to upper part of tuyere, etc.) To increase supply pressure and volume of cooling water (to increase the water etc.) 	
		2.To increase cooling ability	pressure at tip of tuyere to 20 kg/cm ²)	

3.3.5.4 Energy saving by modifying or improving the equipment (including auxiliary equipment)

3.3.5.5 Energy saving by adding new functions or renewing the equipment

.

	Purposes	Measures	Details of Measures
1.	To lower BF energy cost	To install PCI system	To install PCI system: • Coal injection capacity : 45 t/h • PC rate : 150 kg/t The coke rate can be decreased from 520 kg/t to 370 kg/t and so the coke consumption will be 2.2 milliont/y in 2002, allowing one COB to be shut down. (Introduction of operating technique for PCI system is required.)
2.	To recover top gas pressure	To install TRT	To installaxial flow type TRT with 8.6 MW (2.0 bar) capacity
3.	To increase productivity of blast furnace	To adopt the higher pressure operation	To change to new higher pressure BF blower and to set up the technique of high pressure operation Refer to Section 3.5.
4.	To increase HS efficiency	To install fuel preheater and combustion air preheater	• To install fuel preheater and combustion air preheater in order to recover more sensible heat of waste gas

Esti	nated
Effects	in 2002

- Shutdown of one
 COB
- Decrease of purchased coke
- Decreasedemission of pollutants from COB

Generation of electric power: 29 kWh/t

IIS efficiencyfrom 78% to 83% 25 Mcal/t

3.4 Reheating Furnace

3.4.1 Outline of the facilities and present status of the energy-saving facilities

The main specifications of the reheating furnace No.3 are shown in Table II-3.20. It is a pusher type, not a walking-beam type commonly used in Japan. As energy-saving facilities, recuperators, though the capacity is not sufficient, are installed to preheat combustion air. Fuel gas preheating facilities, however, are not installed. Waste heat boilers are installed to recover waste heat by plant steam. Hot charging or hot direct rolling, as operational energy-saving measures, is not conducted.

Note: No.3 reheating furnace, of the same type and capacity as those of No.1 reheating furnace, was studied this time because the model plant, No.1 reheating furnace, was shut down.

3.4.2 Operational status

4

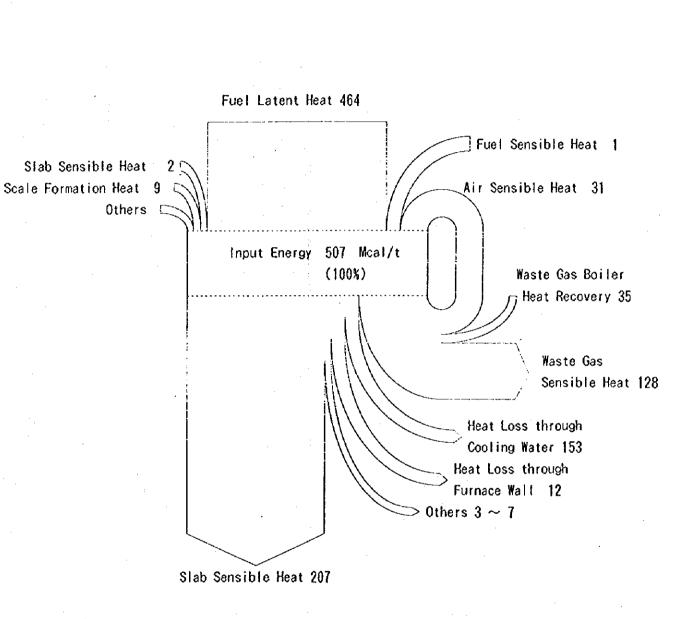
According to the data obtained, the fuel unit consumption in 1992 was 1,059 Mcal/t, four times as high as that of latest Japanese steelworks of 260 Mcal/t. At the time of the first site survey (continuous operation), it was 463 Mcal/t, about 200 kcal/t higher than that of Japan in spite of stable operation. See Table II.3-21.

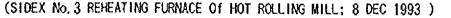
In this table, the heat loss 293 Mcal/t (except latent heat of oxide scale) is diffused during idling time and large amount of lost heat requires combustion of much fuel for idling, which possibly explains this high fuel unit consumption.

The following analysis aims at obtaining expected effects of energy-saving measures at the operational availability in 2002 based on the fuel unit consumption 830 Mcal/t that is before execution of energy-saving measures. The rated capacity 200 t/h seems difficult due to slab sizes and actually, the operation is at around 110 t/h and the maximum will be 160 t/h.

Fumace
f Reheating
Specification o
Table II.3-20.

Table II.3-20. Specification of Reheating Furnace	cheating Furnace		 		
		Unit	Design Data	Actual Data	
Size of Reheated Hot Materials				* .	:
	Length	E E	3,500-9,500-9,500	3,500-9,500-7,500	
	Width	um	700-1,550-1,250	700-1.550-1.250	
	Thickness	mm	130-250-200	150-250-200	
		Low car	Low carbon stock, Low alloy. Si non-onented		
		ç	1,250	1.250-1.320	
		Ch.	200	100-125	
Fuel & Combustion Capacity					
		vol.%	Mixed Gas	Natural Gas	
	Pressure	mmH2O	800	809	
	Temperature	ပံ		20	
	Soalang zone	Mcalh	000*6		
	Heating zone	Mcal/h	52.500		
	Preheating zone	Mcal/h	75.000	Total 64.000	••••
	Pressure	mmH2O	1,400	1,000	
	Temperature	ပ္	5	8	
	Proheated temp.	°C	400 -	140	
Material Transfer System			Pusher, Stock Extractor Type		
Energy Recovery Equipment				(MaxAv.)	
	•				
	Inlet temp.	ç	080	1,100-550	Mar 1
·	Outlet temp.	ပ္	8	850-420	
•	Flow rate	Nm3/h	110,000	170.000-76.000	
	Pressure loss	mmH2O	8	• •	
	Inlet temp.	ွ	50	20-20	
	Outlet temp.	ပ့	400	400-140	
	Flow rate	Nm3/h	2 x 45,000	78,000-75,500	
	Pressure loss	mmH2O	300		
- <i>- 1</i>	Heat transfer area	m2	2 x 146	2×146	
- 1 ₋ 1					
	Steam generation	막기	2×25	2×7	
	Steam pressure	bar	13	5	
	Steam temp.	ΰ	280	190	


Ô


 $(x_1, x_2) = (x_1, x_2) + \frac{1}{2} \sum_{i=1}^{n} (x_i - x_i) + \frac{1}{2} \sum_{i$

11-93

Table II.3-21. Heat Balance for Reheating Furnace

Remarks Mcal/t-slab (X) ltems 463.3 Mcal/t-slab Fuel Latent Heat Fuel Flow Rate 6.330 Nm³/h 8,050 kcal/Nm³ (50.960 Mcal/h) Calorific Value 20 °C 0.4 Mcal/t-slab Fuel Sensible Heat Fuel Temp. 160 °C 20°C 31.4 Mcal/t-slab I Combustion Air Sensible Heat Air Temp. Air Flow Rate 67.840Nm³/h 11.970Nm³/h N : (3,450 Mcal/h) 2.2 Mcal/t-slab 20 °C U | Input of Slab Sensible Heat Charging Temp. 0.7% × 1.335 kcal/kg 9.4 Mcal/t-slab Scale Formation Heat Others 506.7 Mcal/t-slab Total 207.2 Mcal/t-slab Output of Slab Sensible Heat Discharging Temp. 1.276 °C Furnace Outlet Waste Gas Temp, 470 °C, 8 % Waste Waste Gas Flow Rate 86, 140 Nm³/h 127.7 Mcal/t-slab Gas O Sensible Air Recuperator Outlet Waste Gas Temp. U Heat Т _ 190 °C Waste Gas Boiler Outlet Waste Gas Temp, р Heat Loss through Cooling Water Water Temp. (inlet/outlet) ∆12°C 152.7 Mcal/t-slab U Т Water Flow Rate 1.400 t/h Heat Loss through Furnace Wall Furnace Wall Temp. 11.7 Mcal/t-slab Others (Sensible heat of scale) 0.7% 0.215 kcal/kg °C 2.5 Mcal/t-slab 501.8 Mcal/t-slab Total Productivity 110 t/h

3.4.3 Production balance

3

9

The production balance of reheating furnaces in the hot strip mill for 2002 as the basis for the study of energy-saving measures is shown in Table II.3-22.

		1992	2()02
Production ((1,000 t/y)	901	1,880	1,880
	Capacity	160 t/h	160 t/h	250 t/h
Reheating Furnace	Number of operating units	2	2	1 (New)
T difface	Operational availability*	32%	75%	86%

Table II.3-22.Operational Status in 2002

*Production (t/y)/(Total capacity (t/y) x 8,760 h) x 100

Note: As energy-saving measures, modification of the existing 160 t/y x 2 and new installation of 250 t/y are available. Both are shown.

3.4.4 Analysis of the problems found

the second s

3.4.4.1 Analysis of heat loss in the heat balance

 Description of the second se Second se Second s Second se

Heat loss items in the heat balance shown in Table II.3-21 are taken up and analyzed by comparison of design values and those of latest Japanese steelworks. See Fig. II.3-20.

The heat loss is 293 Mcal/t, about 2.4 times as high as that of Japan. Especially, the heat loss by cooling water and excess air occupies most of the total heat loss. Recovery of heat is as low as 65% of that of Japan.

1) Waste gas

(1) Waste gas temperature

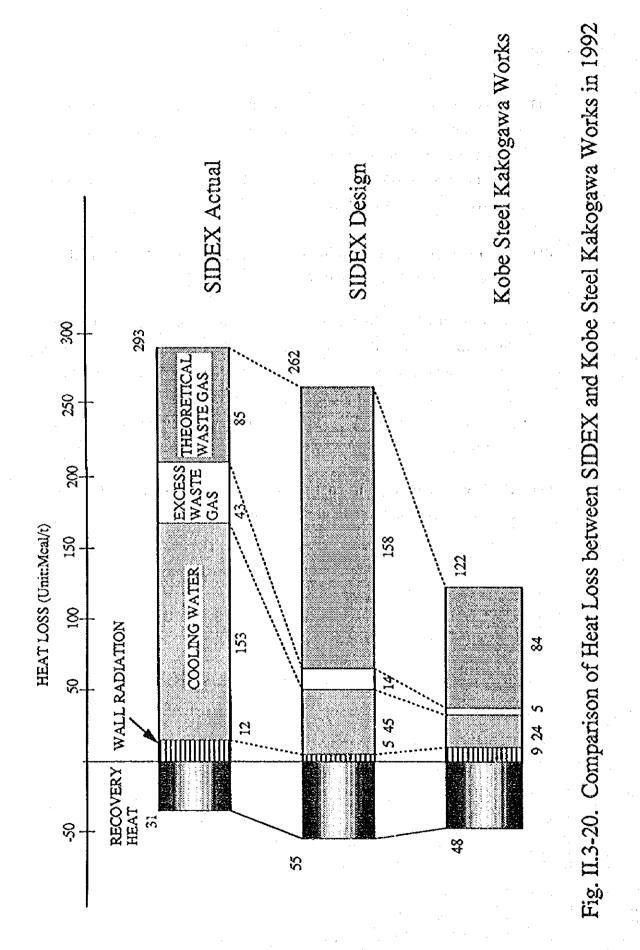
The heat loss by theoretical waste gas volume is about 85 Mcal/t, similar to that of Japan.

(2) Analysis of waste gas

O2 is 4-11%, much larger than the design 2.5%, and fairly high compared with the Japanese 1.1%, showing excess air combustion. This heat loss due to excess air is about 43 Mcal/t. On the other hand, in spite of the excess air combustion, incomplete combustion occurs (CO 0.1% remains). This is because the pressure and calorie fluctuation in fuel gas cannot be followed up by the combustion device and the combustion controller.

2) Cooling water

The heat lost by the cooling water is as large as 153 Mcal/t, the largest in the heat loss items. Also, the flow rate and temperature of cooling water for the in-furnace skid are quite above the design values (design 900 t/h, $\Delta t = 10^{\circ}$ C; actually 1,400 t/h, $\Delta t = 12^{\circ}$ C). The structure and heat insulation of the skid has problems:


3) Radiation heat from furnace body

The furnace shell temperature is 170-370°C, quite high compared with 60-140°C in Japan. There is a possibility of fallen down of refractories in the soaking zone.

- 4) Waste heat recovery system
 - (1) Entry of air into clearances from the furnace body to the waste gas duct is large, which causes the large temperature drop of waste gas at the inlet of recuperator, and so the planned air temperature 400°C is actually as low as 140°C. (In Japan, recovery is at 514°C of air.)
 - (2) The recuperator, of radiation heat transfer type, has a small heat transfer area, giving small recovery of waste heat.

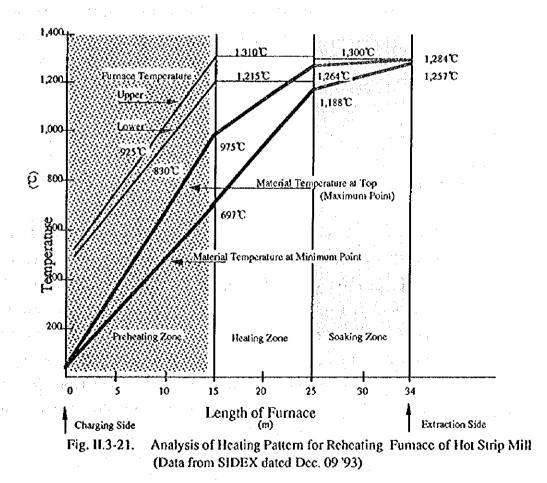
(3) Waste heat boiler, installed in the downstream of the recuperator, does not recover the heat as planned (only 2-3 t/h against the design steam recovery 25 t/h). The recovery steam pressure is also as low as 4-5 kg/cm² against the design 13 kg/cm². The present steam recovery system is not necessarily good. Review is required.

(4) Combustion air for the soaking zone is not preheated. Preheating equipment for fuel gas is not installed.

C

6

11-98


3.4.4.2 Analysis of the operating data

ě,

1) Analysis of heat pattern of slab

The heat pattern of slab, quite related with energy saving of the reheating furnace, was measured during the site survey as follows:

Outlet of	Outlet of	Extraction
preheating zone	heating zone	temperature
Max. 975°C	Max. 1,264°C	Max. 1,284℃
Min. 697°C	Min. 1,188°C	Min. 1,257°C
Av. 836°C	Av. 1,226°C	Av. 1,271°C

As seen from the graph, we can say the following:

- The extraction temperature is as high as average 1,271°C (target of SIDEX is 1,250 °C). Especially, the upper face of slab is 1,284°C and this is excessive.
- (2) The temperature in the lower part of the preheating zone and the heating zone are low, delaying the heating of lower face of slab.
- (3) The temperature of upper face of slab at the outlet of the heating zone is already as high as 1,264°C, which is in excess of the target extraction temperature. Therefore, employment of highload heating at later stage by lowering the temperature of upper part of the heating zone will contribute to the decrease of fuel consumption.
- 2) Other themes
 - (1) To decrease the consumption of natural gas

The reheating furnace is designed with the use of mixed gas (NG + BFG) at 3,000 kcal/Nm³. Because the supply pressure of natural gas fluctuates between 600-1,000 mmH2O and that of BFG between 600-2,000 mmH2O, the present flow rate control cannot cope with the situation, causing much fluctuation of calories. Therefore, the gas mixer is not used and operation depends on the expensive natural gas purchased from the outside. Accordingly, it is necessary to decrease the consumption of natural gas. See Section 3.5.

(2) To study the possibility of hot charging and hot direct rolling

Though hot charging and direct rolling of slab are not employed in SIDEX, the hot charging ratio is as high as 70% and the average charging temperature is 600°C in Japan.

Therefore, the possibility of hot charging and hot direct rolling in SIDEX should be studied.

3.4.5 Measures and estimated effects

This section shows the energy-saving measures and their estimated effects.

The energy-saving measures can broadly be either of the following two:

- To modify the existing two reheating furnaces
- To install a new reheating furnace

Each has advantages and disadvantages. Conclusively, it is recommended to install a new reheating furnace.

	Purposes		Measures				Details of Measu	ires			Ef
1.	To decrease input fuel by optimizing the heat pattern	1.	To decrease fuel consumption by decreasing the discharge temperature	temperatu	reof slab f	rom 1,271	n each zone at fol to 1,250°C to dec	rease fuel o	consumptio	on	Heat ur 14 Mca
	opaninzaigure new parretri		ecoretisme are observed to information	Fumace temp.	Heating zone	Soaking zone		Fumace temp.	Heating zone	Soaking zone	
				Upper (right)	1,310	1,300		Upper (right)	1,290	1,280	
				Lower (left)	1,215	1,255		Lower (left)	1,195	1,255	· ·
				Fuel con- sump- tion	5,380	950		Fuel con- sump- tion	5,138	1,019	
		2.	To intensify heating in the soaking zone and to decrease waste gas by accumulatedheating of slab	zone a 2. Also,	and thus to to increase	decrease to e fumace te	ratureas follows otal fuel consump mperatureat the lo ence between upp	tion ower side o	of heating a	zone and to	g Heat ur 22 Mca
				Fumace temp.	Heating zone	Soaking zone		Fumace temp.	Heating zone	Soaking zone	
				Upper (right)	1,310	1,300		Upper (right)	1,240	1,320	
				Lower (left)	1,215	1,255		Lower (left)	1,210	-	
-				Fuel con- sump- tion	5,380	950		Fuel con- sump- tion	4,155	1,903	
				Max. slat	<u> </u>	1,284	j .	Max. slab	· · · · · · · · · · · · · · · · · · ·	1,289	
		I		Min. slab	temp	1,257		Min. slab	temp	1,270	

3.4.5.1 Energy saving by improving the operation (including enhanced control of operation and maintenance)

_ .

.

Estimated
Effects in 2002
unit consumption:
cal/tdecrease
unit consumption:
cal/tdecrease
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · ·
·

	Purposes	• Measures		Details of Measures	Effe
2.	-	To effectively use sensible heat by applying hot charging of slab	1. 2.	 To establish interface between upstream & downstream technology: High temperature/non-defective asting technology at continuous casting shop Consistent schedule making between continuous casting process and rolling process To establish the technology to make hot charging into reheating furnace possible: Expanding the range of burner combustion control (individual burner, separation of zone, control method) Predicting technology of slab temperature inside the furnace 	Heat uni 45 Mcal
3.	furnace heat control	To enhance heat control as well as trend control by installing and making good use of monitoring instruments of the furnace	2.	 To control constant heat loss by waste gas analysis meters (waste gas O2 meter, CO meter): Decreasing the rate of excessive air and prevention of loss caused by incomplete combustion Optimizing the furnace pressure by trend control over intruding air and implementation of proper maintenance Maintenance of recuperator performance and preventing malfunction such as leak Control of waste gas balance through the right and left fume ducts by monitoring the waste gas temperature To periodically diagnose the heat: Periodic measurement of loss of waste gas, loss of cooling water, heat radiation from fumace, etc. Preventing the deterioration of performance by trend control and also by comparing the measured data with designed values Periodic inspection of temperature distribution and heat pattern of slab 	Heat uni 5 Mcal/t

Estimated Effects in 2002	
unit consumption: cal/tdecrease	
unit consumption: al/tdecrease	

3.4.5.2 Energy saving by modifying or improving the equipment (including auxiliary equipment)

	Purposes		Measures	Details of Measures	Es Effec						
1.	To improve heat unit consumption by decreasing heat loss	1.	To improve the temperature and control accuracy of combustion by modification of combustion control system								
		2.	To decreasing the intruding air by modification of in-furnace pressure system and prevention of blowing out of waste gas	 To modify the present control system (cascade method of differences control of the pressure in two waste gas ducts as well as in-furnace pressure control) into simplified pressure control system and thus to improve the control accuracy of infurnace pressure: Direct control by damper at the outlet of recuperator (to remove inlet damper that causes air penetration) Employing the master-control method to control the balance of waste gas through two waste gas ducts 	Heat unit 5 Mcal/td						
		3.	To decrease the loss of cooling water by reinforcing the insulation for skid pipe	To repair damaged part of insulation on skid pipe, to reinforce insulation, and to decrease cooling water volume in order to decrease heat loss Cooling water 1,400 t/h flow rate 1,400 t/h Temperture 12°C difference 12°C (Installation: ceramic fiber 80 mm)	Heat unit (51 Mcal/t						
		4.	To decrease heat radiation from furnace wall	To repair damaged parts of refractories/insulationmaterial of furnace body and to check specifications of insulating material in terms of material, thickness, etc. to decrease radiation heat from the furnace wall							

Estimated ffects in 2002
nit consumption: l/tdecrease
nit consumption: I/tdecrease
nit consumption: al/tdecrease
-

11-104

.

	Purposes	Measures	Details of Measures						
2.	consumption by modifying	Ine preneating zone Hower part of lumace, thus improving the heat pattern							
	in-furnace heat transfer	2. To expand the heat transfer area in the preheating zone by extending the length	To extend the inlet of preheating zone by 3 m to increase the preheating temperature of slab, thus decreasing the fuel consumption	Heat un 42 Mca					
		of fumace	Preheating zone outlet slab temp772°C925°CFuel comsumption rate6,330 Nm³/hExpanding5,802 Nm³/h						
		3. To review the arrangement and specifications of skid pipes	To review the arrangement and specifications of skid pipes used at the moment and to shift the skid position by 4.5 m at the latter side of heating zone						
		 To optimize the heat pattern by introducing temperature prediction system for slab laid inside the furnace 	To introduce computer to calculateon-line heat transfer based on heat transfer model about slab charged inside the furnace, thus clarifying the difference between the predicted temperature of each slab on the basis of the existing furnace conditions and the target extraction temperature, in order to provide the optimum operational guidance	20 Mca					

•

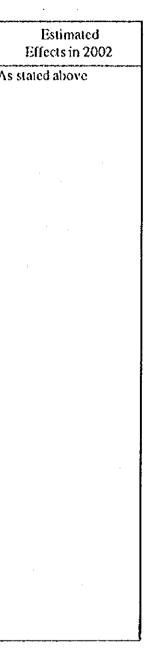
Estimated ffects in 2002
nit consumption: al/t decrease
nit consumption: al/tdecrease
nit consumption: 1/tdecrease
nit consumption: al/tdecrease

y-11-87-87	Purposes		Measures	Details of Measures					
3.	To increase waste heat recovery and thus to decrease heat unit consumption	1.	To increase the recuperator preheating temperature by decreasing the intruding air	Along with modification of control over furnace pressure, to improve scaling performance of furnace door, waste gas duct, etc., and thus to decrease the intruding air in order to increase waste heat recoveryIntruding air rate30 %Recuperator inlet waste gas temp.380°CTemp. of preheating air140°CIntruding air140°C	Heat unit g 5 Mcal/t				
		2.	To utilize preheated air for combustion in the soaking zone	To replace combustion air (room temperature) for soaking zone by preheated air from recuperator	Heat uni 18 Mcal				
	•	3.	To replace with high performance air recuperator	To replace the present radiation type recuperator with convection type, and thus to improve heat transfer performance, leading to the increase of the preheated air temperatureTypeRadiation, 2 setsNo. of passes2Area of heat transfer146 m²Transfer heat coefficient39 kcal/m ²h°CInlet waste gas temp.380°CAir flow rate41,000 Nm ³/hTemp. of preheating air140°C	Heat uni 56 Mcal,				
		4.	To install fuel gas recuperator (stop of waste gas boiler)	To remove the present the waste heat boiler having low performance of heat recovery, and instead to install fuel gas recuperator to preheat the fuel gas (mixed gas) Waste gas temp. 420°C Gias flow rate 68.100 Nm 3/h Evanoration rate 3 t/h x 2 sets Renewing No. of passes 2 Area of heat transfer 785 m ² Transfer heat coefficient 10 kcal/m ² h°C Inlet waste gas temp. 314°C Gas flow rate 68,100 Nm ³ /h Temp. of preheating gas 250°C	Heat uni 6 Mcal/t				

Estimated
ffects in 2002
nit consumption:
Adecrease
nit consumption:
al/idecrease
nit consumption: al/tdecrease
andeciease
nit consumption:
l/t decrease

3.4.5.3 Energy saving by adding new functions or renewing the equipment

	Purposes		Measures	Details of Measures									
1.	To improve performance such as heat unit	1.	To change from the existing pusher type to walking beam type to improve heat primizing the profile including										
	consumption by replacing		extension of furnace length		length	Furnace height	Type			length	Furnace height	Турс	
•	with high performance reheating fumace			Preheating Heating zone	<u>15 m</u> 10 m	<u>3 m</u> 3 m	Axial Axial	Renewi	ng	<u>10 m</u> 9 m 9 m	<u>1 m</u> 2.8 m 2.8 m	Side Side	
				Soaking zone Total	9 m 34 m	1.4 m	Side			8 m 36 m	2 m	Side	
		2.	To improve the heating performance by optimizing the heating method and type	Along with rene increase heating			view the	specifica	fications and position of burner			mers lo	
			& specifications of burners	Prcheating zone		acity) Mcal/h	No. 8+7		Capacity		pacity	No.	
				Heating zone	3,500) Mcal/h	Ical/h 8+7		wing 2,600 M 1,400 M			10+10 10+10	
				Soaking zone450 Mcal/h10+10Total136,500 Mcal/h			390 Mcal/h Total: 87,000 Mc		9+9 al/h				
		3.	To use walking beam and also to optimize location and specifications of walking beam, and thus to obtain	To review specif uniform heating No./diameter	ications	of skid pi ce the hea N		cooling	water Fix	transfer t			
			uniform heating and to decrease the loss				Fiber 4 x 40 i	r		Fiber x 40 t/h			
			of cooling water	Difference of c water temperate	ooling		4 x 40 t 15°C			15°C			


Estimated Effects in 2002
reheating fumace: pacity: 250 t/h at unit nsumption: 2 Mcal/t

Purposes	Measures			Detai	ls of Measure	es	I
1. To improve performance such as heat unit	· · · ·	To intensify insulation on the furnace body, thus to reduce radiation of heat from furnace wall and improve thermal response				As sta	
consumption by replacing	the furnace body			Preheating zone	Heating zone	Soaking zonc	
with high performance reheating furnace (Contd.)		Specification of insulation	Wall & ceiling	Fiber 350 mm	Fiber 350 mm	Fiber 50 mm Plastic 300 mm Brick 115 mm Insulation board 30 mm	
			Floor	Fire brick 180 mm	+ Insulation 200	n brick + Insulation board D num 85 mm	

۰.

Estimated Effects in 2002
ated above

Purposes	Measures	Details of Measures
 To improve performance such as heat unit consumption by replacing with high performance reheating furnace (auxiliary equipment) 	1. To install high efficientair recuperator	To replace the present radiation type recuperator by convection type, and also to improve heat transfer performance and try to increase the preheating air temperatureItemsItemsTypeRadiation, 2 setsNo. of passes2Area of heat transfer146 m²Transfer heat coefficient39 kcal/m²h°CInlet waste gas temp.380°C
		Air flow rate41,000 Nm 3/hTemp. of preheating air140°C614°C
	 To install fuel gas recuperator (stop of waste heat boiler) 	To remove the present waste heat boiler of low recovery rate, and to install a fuel gar recuperator in order to preheat the fuel gas (mixed gas) Waste gas temp. 420°C Gas flow rate 68,100 Nm 3/h Evaporation rate 3 th. 2 sets Renewing No. of passes 2 Area of heat transfer 300 m ² Transfer heat coefficient 10 keal/m ² h°C Inlet waste gas temp. 296°C Gas flow rate 36,400 Nm ³ /h Temp. of preheating gas 252°C
	 3. To renew the instrumentation control system: Combustion temperature control Furnace pressure control 	 To modify the present combustion control system (fuel gas flow rate precedent control) into the control system with cross limit function for fuel and air and thus to improve control accuracy of air-fuel ratio at the change of flow rates To modify the present control system (cascade method of differences control of the pressure in two waste gas ducts as well as in-furnace pressure control) into simplified pressure control system and thus to improve the control accuracy of in-furnace pressure: Direct control by damper at the outlet of recuperator (to remove inlet damper that causes air penetration) Employing the master-control method to control the balance of waste gas

3.4.5.4 Summary of energy-saving measures

To prepare the energy-saving measures for the hot strip mill in SIDEX, the present problems such as fuel supply, heat loss, and heat transfer performance were studied. As a result, measures from viewpoints of heat unit consumption and merit considering investment cost will be:

- To improve the operation (including enhanced control of operation and maintenance)
- To modify or improve the equipment (including auxiliary equipment)
- To add new functions or renew the equipment

The following summarizes the points of the above three:

- 1. As for improving the operation, 14 Mcal/t of energy-saving effect is estimated and the main measures are to improve the heating pattern and to enhance the control of furnace heat.
- 2. As for modifying or improvement the equipment, 149 Mcal/t of energy-saving effect is estimated and the main measures are to decrease the heat loss, to reinforce waste heat recovery, and to improve heat transfer performance.

Because two-furnace operation should be done due to shortage of heating capacity in 2002, the above measures should be done for two furnaces.

In addition to the lower performance of reheating furnace in SIDEX, heat consumption at idle time is also a big problem and heat unit consumption in rated and continuous operation by one furnace is smaller than that in averaging operation by two furnaces.

Consequently, in addition to energy-saving effect, decrease of idling time due to one-furnace operation is required, then,

3. Installation of a new reheating furnace with higher performance is the most effective measure, this will bring about 181 Mcal/t of energy-saving effect.

See Table II.3-23 for the summary.

Table II.3-23. Summary of Energy-Saving Measures for Reheating Furnace

	Item	In 1992	
	Continuous operation	463 McalA	
Heat unit consumption	Yearly average	1,059 McalA	
	Avcrage	110 Vh	
Production	Year	901,000 t	
	Production capacity	160 t/h per furnace	
Operational availability	Operational availability	2 furnaces x 32 %	

ltem		After implementation of energy-saving measures in 2002			
		By improving operation By modifying or improving the equipment		By adding new functions or renewing the equipment	
Heat unit consumptio	Continuou s operation	449 Mcala	314 MealA	282 Mcal/t	
n i	Average	816 McalA	560 Mcal/1	292 McalA	
Energy-savi (continuous base)		14 McalA	149 Mcal/t''	181 Mcal/t	
Operational availability		2 furnaces x 67%	2 furnaces x 67%	1 furnace x 86%	
Measures in detail		 To decrease input fuel by 9 McalA by optimizing the heat pattern³⁰ To decrease heat loss by 5 McalA by enhancing the fumace heat 		fumace	
		control	 To decrease heat unit consumption by 46 Mcalt" by increasing waste heat recovery 		

Notes:

1) Application of these measures can decrease the heat loss during idle time at the same time, and so further decrease can be expected.

2) Probability of heat pattern is estimated at 25%.

3) Decrease of waste gas temperature due to decrease of heat loss is considered.

II-111

3.5 Energy supplying facilities

Stable and efficient supply of energy is essential as the most fundamental measures, besides the promotion of energy saving in each process, in actually taking the measures for energy saving in SIDEX. In this section, stable supply of fuel gas for the model plants and renewal of the blower for No.6 Blast Furnace are especially, out of major important items, described.

Note)

Energy supplying facilities and the blower for blast furnace, initially, were not covered in the scope of site survey. However, in the second site survey, SIDEX claimed "In order to take the suggested measures (improving the air-fuel ratio, raising the productivity in blast furnace, injecting the pulverized coal in much quantity, etc.), facilities of fuel gas supply should be stabilized and the blower for blast furnace should be renewed. Without those realization, the measures for energy saving for the model plants will not be accomplished satisfactorily. Therefore, surveying the facilities and the blower should be covered in the scope of site survey carried out by the investigation committee." The investigation committee also recognized the necessity for achieving the purpose, i.e. saving energy in the model plants, and made out a draft of site survey and of measures to be taken for improvement.

9

1

3.5.1 Improvement in supply of mixed gas and of byproduct gas

Though COG or natural gas is often mixed to efficiently use BFG, the byproduct gas line does not have a gas holder and the piping for connection plays a part of the gas holder at the present. Taking an example of pressure variation of BFG line, the pressure largely varies from 800 mmH2O to 2,000 mmH2O, and the gas mixing device which is separately allotted in plants can not adjust it to assure a certain calorie. Because of such reason, the combustion device in each furnace can not sufficiently work and sometimes burns with too much air and discharges unburnt fuel, and the fuel unit consumption in each burning device is degenerating. Under such circumstances, an expensive natural gas is applied to a part where the mixed gas can be applied by itself.

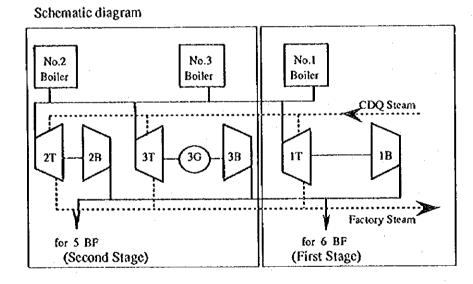
As countermeasures, BFG and COG gas holders should be installed first of all and the variation of gas pressure in BFG pipe should be within 50 mmH2O.

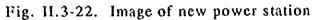
Further, by concentrating the gas mixing facilities which have been separately installed, enlarging them, and installing the gas analyzer so that Wobbe index and the theoretical air amount index can be automatically controlled, the calorie of mixed gas will be stabilized. With this method, the percentage of air excess in each plant will be reduced to approximately 1.1 from $1.6 \sim 1.4$.

3.5.2 Renewal of blower for blast furnace

3.5.2.1 Present status and countermeasure

A great deal of pulverized coal will be injected in No.6 BF in the future, as explained in Section 3.3, and in that case the blowing pressure should be increased. However, the blower for blast furnace, which is installed at the present, can not produce the necessary pressure and some renewal is demanded. While, the current unit consumption of the blower for BF is 0.12 kWh/Nm³, which is high about twice the 0.07 kWh/Nm³ of a Japanese plant, because the capacity of blower is smaller and the efficiency is lower. In addition, since the boiler, turbine, etc. are also small in capacity and the equipment efficiency is unfavorable, the fuel unit consumption (heat rate) of blower is 4,060 kcal/kWh, which is extremely low in efficiency comparing to the Japanese mean value 2,658 kcal/kWh. Taking the above into consideration, renewal of the whole power station of BF blower seems the most efficient way.


II-113


A state of the state of the state of the factor

3.5.2.2 Image of a new power station

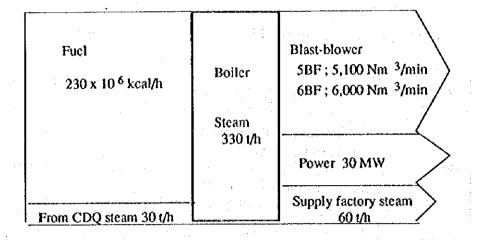
Since construction of a new power station needs a huge investment, it will be recommended to image first the power station that SIDEX should have in the future and to frame the concrete concept by steps. Namely, facilities of BF blower for No.6 BF should be renewed first, and then facilities of BF blower for No.5 BF and the common auxiliary facilities (ordinarily they generate electric power.) should be built up in the second stage of construction. The new power station is imaged as Fig. II.3-22.

	Present		After modernizat	ion
· • • • • • • • • • • • • • • • • • • •		general de la seconda	(Final stage)	
NI- 0.64			ine i espleta del	
No.2 St			New sta	ation
Boiler	7 units		Boiler	3 units
Blower	5 units		Blower	3 units
Generator			Générator	1 units
No.3 St	ation		Features Large-scale-p	lant
Boiler	7 units		High efficient	су
Blower	3 units		High flexibili Combined sys	
Generator	2 units			

3.5.2.3 Introduction of new power station for blower

. . .

D	9	Capacity				
Equipment	Specifications	No.1	No.2	No.3		
Boiler	Main steam; 100 atg, 540°C Fuel; BFG, COG, NG, and Mixed gas, Feed water temperature; 200 °C Boiler efficiency; 89 %	140 t/h	140 t/h	140 t/h		
Turbine	Heater ; 4 stage feed water heater Exhaust pressure ; 0.16 ata	30 MW	30 MW	30 MW		
Blower	Type ; Axial-flow-multi-stage Blower efficiency; 85 %	30 MW	30 MW	(30 MW)		
Generator			"	30 MW		
Factory steam supply	Supply condition; 8 atg, 180 °C (turbine extracted steam)	20 t/h	20 t/h	20 t/h		
CDQ steam usage *	Usage condition; 35 atg, 410 °C	10 t/h	10 t/h	10 t/h		


A new power station for blower is specified as follows:

*: Turbine would supply the steam alternatively when CDQ is stopped.

Items	New power station	Present status
Thermalunit consumption	2,600 ~ 2,900 kcal/kWh	4,060
Electric power unit consumption of blow	0.07 kWh/Nm ³ -air	0.12

II-116

The typical heat balance of a new power station is shown in Fig. 11.3-23.

3.5.3 Summary of measures for energy saving

Measures for energy saving and the effects in relation to energy supplying facilities are summarized in the following table.

II-117

		
Estimated Effects in 2002	1. Decrease of gas diffusion (5 $\% \rightarrow 0.5 \%$) $\Delta NG = 56 \times 10^{6} Nm^{3/y}$	 Blower for No.6 1 unit (7,250 Nm³/min, 4.25 kg/cm²) Steam turbine for blower 1 unit 30MW, 5,180 rpm. Improvement of blowing steam 655 - 290kg/t Improvement of blowing steam 6100 - 2,650-2,950 BFG and combustion of natural gas 12 - 0.07 kWh/Nm³
Detail of Measures	 BFG gas holder 1 unit (100,000 m³) COG gas holder 1 unit (50,000 m³) Gas mixing device 1 set 	 Blower for No.6 Blower for No.6 (7,250 Nm³/min, 4.25 kg/cm²) Steam turbine for blower 1 unit 30MW, 5,180 rpm Boller Boller 140 t/h, 100 ata, 540 °C BFG and combustion of natural gas
Measures	 Install the gas holder in BFG and COG lines, and reduce the pressure variation of byproduct gas. Build the concentrated gas mixing device, and supply the stabilized gas to every plant. 	 Install the steam turbine and boiler which drive the blower, at the same time when relining No.6 BF. Renew the power station by steps.
Purposes	Stabilization of gas supply facilities and use of byproduct gas	Increase of discharging pressure of blower for No.6 BF and of heat efficiency
ρ.	To add new	functions or to renew the equipment

Energy saving measures and estimated effects

9

9

II-118

III. ENVIRONMENTAL POLLUTION CONTROL

1. PRESENT STATUS OF ENVIRONMENTAL POLLUTION CONTROL IN ROMANIA

1.1 General

After the liberalization in 1989, aimed at improvement of the environmental pollution in Romania in line with the EU countries, survey and study were conducted as a joint venture of the Romanian Government, the United States Agency for International Development (US AID), US-EPA for Agency), EU-PHARE (Program (Environmental Protective Restructuring Assistance), WHO, and the World Bank and compiled into the Romanian Environmental Strategy Paper in July 1992. This strategy paper, after review of the present status of the economy, energy consumption, environmental pollution in Romania, and the existing environmental protection laws and regulations, proposes the environmental control measures and strategy that the Romanian Government should take in 10 points of action. Of which, the improvement is the establishment of environmental protection laws and regulations, environmental standards, and wastes restrictions in compliance with the EU Directives. The following 14 industrial areas and the Donau delta are shown in the strategy paper as priority areas for priority execution of pollution control measures, in which SIDEX is not included:

Priority areas

- 1. Copsa Mica (nonferrous)
- 2. Baia Mare (nonferrous)
- 3. Zlatna (nonferrous)
- 4. Ploiesti-Brazi (petrochemical)
- 5. Borzesti-Onesti (petrochemical)
- 6. Bacau (fertilizer)
- 7. Suceava (paper and pulp)

- 8. Pitesti (oil refining)
- 9. Tg. Mures (chemical)
- 10. Turnu Magurele (fertilizer)
 - 11. Tulcea (alumina)
 - 12. Isalnita (alumina)
 - 13. Brasov (chemical)
 - 14. Govora (agricultural medicine)

According to the Romanian Environmental Strategy Paper, new policies are issued mainly by the Ministry of Water, Forestry, and Environmental Protection and are under discussion and establishment.

1.2 New Romanian Environmental Protection Law and Environmental Standards

As the basis of the national environmental protection, there exists the Law of the Environmental Protection established in 1973. Then a new Romanian Environmental Protection Law, has been under discussion in parliament. The outline is as follows.

The New Law consist of 5 sections with 104 articles and has many provisions for general duty imposed on economic enterprises concerning with environment protection.

- (1) to equip facilities with highly efficient processing in order to reduce pollutant, as clean as possible, below the legal limits.
- (2) to find solutions for recovery, recycling and turning to account of useful substances and of residual energy from wastes, resulting from the production processes belonging to their own activities.
- (3) to ensure, through qualified staff and by its own monitoring systems, the control of the treatment processes and of pollutants discharged in the environment and to keep their record
- (4) in the case of important pollution sources, they shall carry out at their own expenses, an ecological analysis of the impact zone through independent experts. The results of the ecological analysis and the countermeasures established shall be submitted to the environmental authorities and they shall be released to mass media.
- (5) to pay the penalties according to the law for discharging NOx into the environment, over the maximum admissible limits.

The implementation for the ecological impact studies and approval procedure for new investments by economic and social activities are prescribed in Articles from 8 to 19. (The procedure is charted in Fig.III. 1-1.)

Articles from 20 to 24 prescribe for toxic substances and hazardous wastes and from 25 to 35 for usage of chemical fertilizer and pesticide.

Chapter 2 prescribe for Air, Water, Soil, Ecosystem and Residential Protection.

It is worthy of note that Article 51 says that the environmental or public health authorities can order the temporary stopping of the activities at the pollution sources or technical measures for abating noxious emissions over the period that the unfavorable meteorological conditions persist if the generation of local accumulation of pollutant substances have been ascertained over maximum admissible limits.

Chapter 3(Art.84~94) prescribes prerogatives and responsibilities of central and local authorities of public administration, Chapter 4(Art.95 ~ 101) does sanctions and Chapter 5(Art.102 ~ 104) does final and transitory provisions.

Atmosphere and river water quality standards are already issued as shown in Tables III. 1-1 and III. 1-2.

1.3 Standards for Waste Gas

. .

Concerning the emission of SOx, NOx, and soot in chimney waste gas that were not restricted, standards were issued in September 1993 as Order 462/1993 on the Technical Conditions for the Approval of Atmospheric Protection and Methodological Regulations for the Emission of Pollutants from Stationary Sources. Outline of this Order 462/1993 is as follows.

- (1) Standards are applicable not only to selected areas but also to all the sources throughout Romania.
- (2) Standards cover stationary sources such as plants.
- (3) Calculation procedure for determining minimum stack height required for emission and technical standards for sampling and analysis methods of waste gas.
- (4) Allowance of 7 years is given to the existing facilities for installations of depollution systems to observe their emissions with the legal limits. It is also obliged to have monitoring systems to ensure their emission is below the limit values, especially big stationary sources affect on their regional atmosphere should carry out continuous measurement by their own monitoring system and inform the results to the local environmental authority.

The standards stipulated in the Order 462/1993 are quite satisfactory compared with the EU Directives as seen from Table III.1-4, and satisfaction of these standards will eventually secure the environment similar to that of the EU countries.

The limit values of the Order 462/1993 are for new facilities, therefore the limit values to the existing facilities, in period until the new limitation will be applied, will be determined within 3 months after enforcing of this Order by discussing about proposal in each sector of industry between its competent authorities and MOE. For metallurgical industry, temporary limit values under discussion will be set in the near future.

1.4 Standards for Waste Water

Different from waste gas, there are no nationwide waste water standards, but restriction is placed through agreement with the Water Resources and Protection of MOE and the Local Environmental Control Agency.

1.5 Standards for Solid Wastes

As standards for landfill using solid wastes, there exists only the Basel Treaty that restricts cross-border transportation of harmful industrial wastes, and there are no detail restrictions on the storage, transportation, and disposal of wastes according to properties. Establishment of corresponding standards are desired in future.

1.6 Environmental Assessment System

This procedure, issued in 1992, needs to obtain approval of the Local Agency for construction and operation, which requires forecast and preliminary assessment of environmental impact due to expansion or new facilities.

Orders and Governmental Decision(G.D) related this matter are as follows.

Order 170/1990 -On the issuance of environmental approval

; It prescribes the Environmental Agreement Values. Order 113/1990 -On the documents to be submitted for obtaining the environmental approval

Order 437/1991 -On the environmental permit

Order 619/1992 -On the issuance of the ecological impact study for the investments

G.D. 435/1992 - Approval for using water

Approval will be issued only when results of the technical report conform to the Environmental Agreement Values in Order 170/1990.

1.7 Tax Reduction for Investment in Environmental Protection Facilities

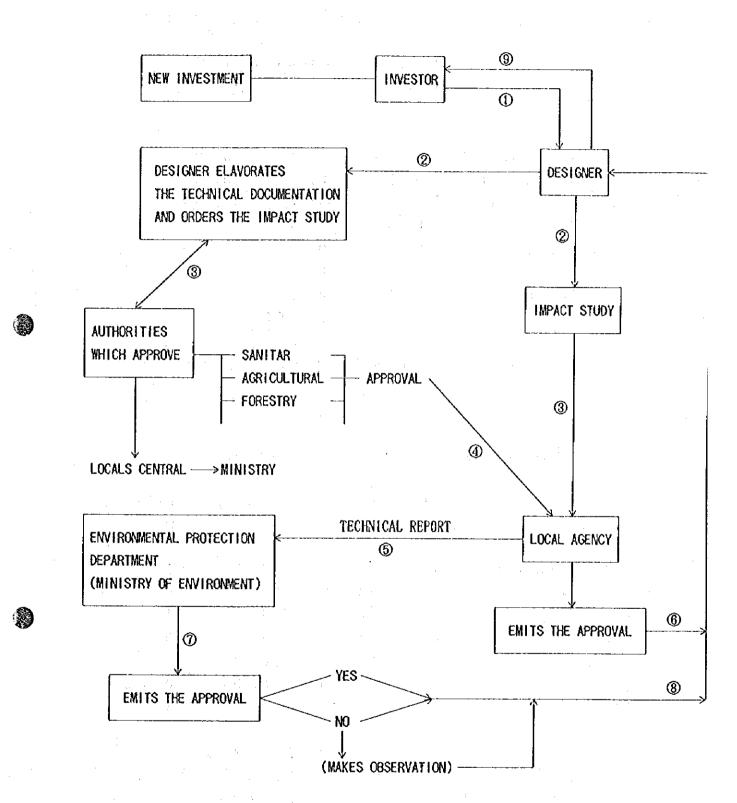
The Order No. 12 enacted in 1991 stipulates the tax reduction in the case of

investment in production facilities and to promote the installation of environmental protection facilities as follows:

In the case of investment for the purpose of expansion or modernization of production facilities, similarly in the case of the investment for the purpose of environmental protection facilities, 50% of tax for the investment cost shall be reduced.

That is, for the environmental protection facilities, 50% of the tax on the investment cost will be cut.

1.8 Monitoring System for Waste Gas and Waste Water


The Ministry of Water, Forestry, and Environmental Protection is promoting a plan for monitoring the general environmental conditions throughout the nation. For the discharges, the company owner will have to measure by himself and report to the Local Agency according to the execution of the New Romanian Environmental Protection Law.

1.9 Execution System of Environmental Pollution Control

The Ministry of Water, Forestry, and Environmental Protection controls overall environmental activities in Romania. All the country is divided into 40 areas and one special area (Bucharest), and its Local Environmental Control Agency in each area takes charge of execution, supervision, and monitoring of the regal activities. Each of these Agencies is authorized to conclude agreements of particular restrictions with the individual enterprises in addition to the national standards.

化自己分配 计分配 化乙烯基苯基

· "你们,你们们是你的你们都是你们的我们们都是我们的我们都是我们都

. '	<u> </u>	<u>Admitted Concentration (mg/m³)</u>							
Pollutants	shor t	term medium	long term	nedium					
		30min,	24hours	Yearly					
Sulfur dioxide	:\$02	0.75	0.25	0.06					
Nitrogén dioxi	ide:NO ₂	0.3	0.1	0.04					
Suspended powe	lers	0.5	0.15	0.075					
00		6.0	2.0						
Ammonia		0.3	0.1	-					
Phenol		0.1	0.03	anoviti 1					
Oxidants(03)		0.1	0.03						
Lead			0.0007	1 -					
Sedimented du	st	179/n	n² /month	h					

Table M. 1-1. Ambient Air Quality Standard (Main Indicators)

Tablell. 1-2. Water Quality Standard (Main Indicators)

Admitte	d Values	<u>s in Quali</u>	ty Ca	ategori	es	(mg/	<u>'1)</u>
Indicator			11	.: .:	· :	 	12 F
Biochemical Oxygen Consumption:CBO ₅	5		7		1	2	
Chemical Oxygen Consumption:CCO	10	1	5		2	5	
Dissolved Oxygen	6		5			4	
Ammonium ion(NH ⁴⁺)	1		3		· 1	0	
Nitrates(NO3 -)	10	3	0				
Phenols	0.	001	0.	0 2		0.	05
Total iron	0.	3	1			1	: .
Н		6.5	~	8.5			
011	÷ · ·	0	. 1				
Free residual chlorine(Cl ₂)		0	. 0	0.5			
Cyanides (CN=)	· · ·	Û	0	1	14.5		÷
Cadmium(Cd ²⁺)		0	. 0	03			
Lead (Pb²+)		C	. 0	5			
Hexavalent Chromium(Cr ⁶⁺)		ſ	. 0	5			. ·

Table III. 1-3. Limit Values of Waste Gas in Romania(Main Indicators)

Pollutants	Limit Values (mg/Nm ³
SUx (as SO ₂)	500
NOx (as NO ₂)	500
Soot	50

ANNEX II

*

1

Liquid Fuel	Unit	Thermal Capacity(NW/t)					
		<100	100 - 300	300 - 500	>500		
Soot	m9/Nm ³	50	50	50	50		
00	mg/Nm ³	170	170	170	170		
SOx (as SO ₂)	mg/Nm ³	1700	1700	400	400		
NOx (as NO ₂)	mg/Nm ³	450	450	450	450		
Oxygen conc.	%, vol	3	3	3	3		
Solid Fuel	Unit	The	ermal Capacity	(MW/t)			
(Coal, Wood)		<100	100 - 300	300 - 500	>500		
Soot	mg/Nm ³	100	100	100	100		
C 0	mg/Nm ³	250	250	250	250		
SOx (as SO ₂)	mg/Nm ³	2000	2000-400(Lin	nearly variatio	on) 400		
NOx (as NO ₂)	mg/Nm ³	500	400	400	400		
Total Carbon (C)	mg/Nm ³	50	50	50	. 50		
Oxygen conc,	%, vol	6	6	6	6		
Natural Gas	Unit	The	ermal Capacity	(MW/t)			
•		<100	100 - 300	300 - 500	>500		
Soot	mg/Nm ³	5	5	5	5		
0.0	mg/Nm ³	100	100	100	100		
SOx (as SO ₂)	mg/Nm ³	35	35	35	35		
NOx (as H0 ₂)	65/Ra ³	359	350	350	350		
Oxygen conc,	%, vol	3	3	3	3		

Note:The limit value is calculated after the following formula when multiple fuels are used: C=∑(Ci*Qi)/∑Qi

Pollu-		RON	A N I	A	ε	C Directive (N	EW PLANT)		
tants	Ty	pe of fuel	Limit(mg/Nm³)		Type	of fuel	Limit(mg/Nm ³)		
SO2	G Natural 35, 0 ₂ 3%				Gaseous	fuel in general	35, 0	3%	
	a \$	gas			Liquefie	d gas	5, 0:	2 3%	
					4	rific gases from n gas,BF gas	800, 0,	3%	
					Gasigasi	fication of coal	not determined		
	Liquid Solid : Coal,Wood Gas : Natural ga Liquid Solid : Coal,Wood		400,	02 3%	Liqu	Liquid fuels		3%	
			400, 0 ₂ 6%		Solio	d fuels	400, 0;	6%	
NO 2			350,	0 ₂ 3%	Gaseous		350, 0,	3%	
			450, 02 3%		Liqu	i d	450, 0,	3%	
			400, 0 ₂ 6%		Solid general	650, 0 ,	6%		
						volatile <10%	1300, 0	2 6%	
DUST IINLA	G	Natural	5,	02 3%	Gaseous	steel industry	50, 0,	3%	
BUUA	as	gas			Gaseous	BF gas	10, 0,	3%	
				. · · ·		as a rule	5, 0;	e 6%	
	Liquid		50,	02 3%	Liquid	ash > 0.06% < 500MW	100, 0;	2 3%	
				-		all plants	50, 0;	2 3%	
		lid Coal,Wood	100,	02 6%	Solid	≧ 500MW	50, 0	e 6%	
						< 500HW	100, 0;	2 6%	
00	6a	\$	100,	02 3%					
	Li	quid	170,	02 3%					
	So	lid	250,	02 6% ··		• •	e National de la composition National de la composition		

Ê

Table 11.1-4. Comparison in Limit Values of Waste Gas, Thermal Capacity >500MW

III-10

2. PRESENT STATUS OF ENVIRONMENTAL POLLUTION IN AND AROUND SIDEX AND MEASURES

2.1 Waste Gas and Dust

In this Report, "soot" refers to the particulate emitted from chimneys and "dust" refers to the particulate emitted from other sources.

2.1.1 Present status of waste gas emitted

1) Standards for emission of SOx, NOx, and soot on SIDEX

The nationwide standards for emission of waste gas are effective by the Order 462/1993. Those limit values, as described above, are for new facilities and the practical values applied to existing facilities of iron and steel industry will be fixed in the near future.

The new expert organization, ECOSIDER has been established in January of 1994, which makes plans and designs depollution systems in order to prevent air, water and soil pollution by iron and steel plants.

The procedure of determination for the limit values of waste gas emitted by existing iron and steel plants is as follows; ECOSIDER makes a proposal for the limitation, then the limit values will be determined through discussion among MOI(Ministry of Industry), ECOSIDER and MOE (Ministry of Environment).

We have set the target values of depollution system for waste gas as the same of the limitation by Order 462/1993 because grace period is 7 years and the production plan of SIDEX is in 2002.

• SOx	: 500 mg/Nm ³ as SO ₂
• NOx	: 500 mg/Nm ³ as NO ₂
Soot	: 50 mg/Nm ³
• O ₂ concentration	: 3%
and the second	

HE-11

It should be noted here that, because the combustion mechanism of the sintering plant is different from that of common combustion facilities, the O₂ concentration in waste gas is $15 \sim 16\%$ on average. Accordingly, application of the same 3% O₂ restriction may not be practical.

If this 15% is tentatively used as the restriction on O_2 concentration, the restriction for SOx and NOx will be :

•	SOx	:	167 mg/Nm ³ as SO ₂
•	NOx	:	167 mg/Nm ³ as NO ₂

These application are too severe compared with western Europe countries as following table.

As for the limitation of soot and dust, the actual concentration of the gas is regulated without conversion of O_2 concentration in western Europe and Japan.

It is expected that the proper limit values will be determined through the discussion among the competent authorities.

Thus, we have assumed that the 15% of O₂ concentration is applied to SOx and NOx, and conversion by O₂ concentration is not applied to soot and dust of the main exhaust gas of sintering plant and investigated the measures for the waste gas on the basis of this assumption.

The emission targets of sintering plant in 2002 are as follows:

SO₂ and NO₂
Soot and dust

: 500 mg/Nm³ (O₂ 15%) : 50 mg/Nm³ (actual)

	SOx as SO2	NOx as NO2	Soot	O2 concentration(actual)
Germany	500 mg/Nm ³	400 mg/Nm ³	50 mg/Nm ³	none (15-16%)
(new plant) French (new plant)	.*	-		none (15-16%)
Japan	K value regulation	450 mg/Nm²	100 mg/Nm ³	15% (NOx limitation)

III-12

Re) K value regulation:

The system to regulate concentration of SOx on the ground and load of SOx emitted from a stack by the following equation. K value is given legally according to the regional atmosphere concentration.

 $q = K \times 10^{-3} + He(Nm^3/hr) = He:effective stack height(m)$

2)

Present emission of waste gas

The instruments and methods used for measurement of waste gas concentrations are shown in Table III.2-1. The measurements in the model plants are shown in Table III.2-2. The soot of waste gas emitted from the coke oven batteries and BF hot stoves could not be measured directly by sampling the real waste gas because of no suitable holes for measuring on the sites, but in case of hot stove it is possible to estimate concentration of the soot by measuring that of BFG, because BFG is mainly used as fuel.

The limit values of waste gas for SO₂ and NO₂ of the sintering plant in Table III.2-2. are calculated on the basis of 15% of O₂ concentration, and the limit value of soot and dust is not converted by O₂ concentration.

SOx and NOx of the reheating furnace were measured for confirmation.

As the measurements show, problems lie in the SOx, NOx and soot of the coke oven batteries, SOx and soot of the sintering plants, and soot of the hot stoves.

For the soot of coke oven batteries, although the actual concentration could not be measured it is necessary to study the measures to improve combustion because black smoke was almost always observed from stacks during the survey and it is clear to be over the limit value 50mg/Nm³. As Table 111.2-3 compares the concentrations between SIDEX and Japan, the concentration of

SOx, NOx, and soot except NOx from hot stoves are a little higher than the averages of Japan but there exist no extreme differences. The concentration of soot at the sintering plant in SIDEX, however, is ten times as high as that of Japan, requiring improvement.

3) Emission rate of SOx and NOx per ton of crude steel

Table III. 2-4 shows the emission rate of SOx and NOx per ton of crude steel in the sintering plants, coke plants, and others in SIDEX. The total emission of SOx in SIDEX is calculated from the estimated content of S in the consumed volume of COG, BFG, and natural gas and from the balance of S in the sintered ore. The volume of NOx is calculated from the multiplication of the combustion waste gas volume obtained from the consumed volume of fuel gas by the measured or estimated NOx concentration and also from the N balance of sintered ore.

According to the calculation, the percentage of the sintering plant in the SOx unit rate of emission is as large as 81% of the whole, and reaches 91% together with the coke plants. For NOx also, the sintering plants occupy 59%, and reaches more than 70% together with the coke plants. That is, decrease of SOx and NOx should be focused on the coke plants and sintering plants.

The situation is compared with that of Japan in Fig. III.2-1. The unit rate of SOx and NOx emission is 1.3 times as high as that of Japan in which no desulfurization or denitration is applied, suggesting the need of improvement in SIDEX.

4) Present status of dust

Generation of dust at charging of coal and discharging from the coke ovens, at discharging of sintered ore in the sintering plant, and at tapping in BF were conspicuous. These are attributable to no installation of dust collectors or not proper functioning of dust collectors and form one of the main improvement items.

III-15

(

1.14

. . .

And it was found that fine ore and dust have been accumulated on the roads and the ground around the sintering plants and severe dispersion of dust usually occurred when automobile has passed. Measures for these secondary dispersion such as pavement and sweep of roads are necessary for the prevention of dust dispersion from SIDEX.

Pollutants	Keasurement	Instruments
SOX, CO	none-dispersive infrared	HORIBA VIA-510
CO2	absorption method	
NOx	chemiluminescent method	HORIBA CLA-510S
02	magnetic method	HOR18A MPA-510
Soot	JIS Z8808	

Table III. 2-1. Measurements and Instruments

JIS: Japan Indusrial Standard

Table III.2-2. Results of Measurements in	n Model F	Plants a	and Limit	Values
---	-----------	----------	-----------	--------

Model Plants	Đ		centration mg/Nm³		:	Limit Values mg/Nm³	
Pol	llutant	s	(as SO2, NO2)	gas:%	converted	(as SO2, NO2)	(%)
no. 5 Coke oven		70~80 170 ''	200~230 350 	8	280~320 480 —	500 500 50	3
No. 7 SINTERING PLANT	SOx NOx Soot	100~130		18	430~ 580 410~ 540 280~ 330	500	5 ³⁾ 5 _
No. 6BF Hot stove	SOx NOx Soot	30~60 1~2 -	86~172 2~4 65 ²	5	97~194 2~5 	500 500 50	3
No. 3 Hot strip Mill R. F.		<10 50	29 103 —	}13	65 232 -	500 500 50	3

Notes: 1) Black smoke is sometimes seen discharging from COB stacks, which suggests the need for improvement of combustion.

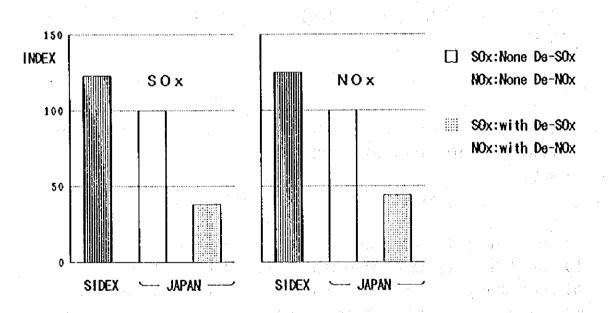
- 2) The concentration of soot emitted from hot stove is estimated from the concentration of soot in $BFG(105mg/Nm^3)$.
- 3) The converted values for SO_2 and NO_2 of No.7 Sintering Plant are calculated under the assumption that O_2 concentration of limitation is 15%, and the values of soot and dust are not converted.

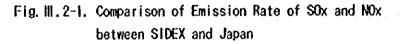
		SO× (ppm)	NOX (ppm)	Soot (mg/Nm ³)	0₂ (%)
	SIDEX data	70~80	170		8
COKE OVEN	$(O_2 \text{ converted})$	75~86	183		7
·	JAPAN	30	150 (70~320)	10	7''
	SIDEX data	75~100	100~130	280~330	18
	(O ₂ converted)	150~200	200~260	560~660	15
PLANT	APAN (not De-SOx)	160 (150~200)	190 (160~220)	50 (25~73) 15 ^{2:}
BLAST FURNACE Hot stove	SIDEX data	30~60	1 ~2		3~5
	JAPAN	20	30	10	4
HOT STRIP MIL	L SIDEX data	<10	50		10~13
	(O ₂ converted)	<13	63	-	11
FURNACE	JAPAN	10	54 (30~120)	10	1]3)

Table III. 2-3. Comparison in Emitted Waste Gas between SIDEX AND JAPAN

1) Limit value of 0_2 concentration of waste gas in NOx and Soot regulations,

2) Limit value of θ_2 concentration of waste gas in NOx regulations,


Ŷ.


3) Limit value of 0_2 concentration of waste gas in NOx and Soot regulations.

Notes: Figures in down line of SIDEX and JAPAN are the converted figures with O₂ concentration of JAPAN's regulation.

	S D E X (kg/t-steel)						
	SOx asSO ₂	NOx asNO₂					
Coke Plant	0, 18(10%)	0. 24(13%)					
Sinter Plant	1. 50(81%)	1. 1 0 (59%)					
Others	0. 1 7 (9%)	0.54(28%)					
Total SIDEX	1.85	1.88					

Tablelli. 2-4. Emission Rate of SOx and NOx in SIDEX

III-18

2.1.2 Analysis of the problems found in the model plants and measures

In the study of the problems and measures, the situation in 2002 should be considered. It is supposed that SIDEX will violate the limitation for waste gas emission or/and discharged effluent and affects severely on the status of sedimented dust in Galati city than now, judging from the present status of operation and emission, if the production only will increase as it is, without measures for pollution prevention.

The items of environmental measures in this study are listed in Table III.2-5. The details in each plant will be mentioned in Section III-3.

1	Plants	Items of Measures
	Coke Oven	(1) Intensive operation by No.5, 6 and 7 COB
	Batteries and	(2) Combustion by mixed gas
	Coke Chemical	(3) Automatic combustion control
	Plants	 (4) Installation of desulfurization equipment for COG of No.7 COB
		(5) Manufacturing plant of sulfuric acid
· · · ·		(6) Dust collector for guide car and CDQ
		(7) Replacement of high pressure pumps for ammonia liqure
		(8) Improvement of ascension pipe sealing
$\mathcal{L}_{\mathcal{A}} = \{ i \in \mathcal{A} \}$	Sintering Plants	(1) Reduction of coke breeze in sintering
	U	(2) Installation of moving electrode EP
er en j		(3) Installation of desulfurization equipment for main exhaust gas
1.1.1.1		(4) Improvement of dust collection at feeding &
:		discharging part of sintering
	Blast Furnaces	(1) Improvement in operation of RSW
		(2) Installation of dust collector for casthouse

Table III.2-5. Items of Measures for Air Pollution Prevention

,t., €sss

 $(1,1) \stackrel{d}{\rightarrow} (1,2) \stackrel{d}{\rightarrow}$

1) Problem of waste gas and measures

In 2002, the following are supposed to exceed the limit values if measures are not taken:

(1)	SOx from coke plant :	$420 \sim 460 \text{mg/Nm}^3 \doteqdot 500 \text{mg/Nm}^3$
		(O ₁ 3%)
(2)	NOx from coke plant :	$665 \sim 810 \text{mg/Nm}^3 > 500 \text{mg/Nm}^3$ (O2 3%)
(3)		$100 \sim 150 \text{ mg/Nm}^3 > 50 \text{ mg/Nm}^3$ (O2 3%)
(4)	SOx from sintering plant :	$950 \text{mg/Nm}^3 > 500 \text{mg/Nm}^3$ (O2 15%)
(5)	Soot from sintering plant :	$280 \sim 330 \text{mg/Nm}^3 > 50 \text{mg/Nm}^3$ (actual)
(6)		$73 \text{mg/Nm}^3 > 50 \text{mg/Nm}^3$ (O2 3%)

Re) O₂ concentration in sintering plant is assumed to be applied 15% in the limitation.

The status after the measures for waste gas is estimated as follows:

The concentration of SOx as SO₂ from the coke plant will lower to $120 \sim 150 \text{ mg/Nm}^3(O_2 3\%)$ for No.5 and 6 batteries, $10\sim 15 \text{ mg/Nm}^3(O_2 3\%)$ for No.7 battery, below the limit value, due to improve desulfurization efficiency of COG from No.5&6 COB caused by stop of No.1 to No.4 COB with consolidation of coke oven batteries, and due to newly installed desulfurization plant for COG from No.7 COB. SOx emission will be also reduced in the other plant in which COG is used as fuel because of these measures for desulfurization.

The NOx concentration from coke oven batteries will lower to $400 \sim 490 \text{mg/Nm}^3$ as NO₂(O₂ 3%), below the limit value, due to lowered furnace temperature because of combustion improvement as energy-saving measures and also due to change of COG to mixed gas with BFG.

The soot from the coke plant will lower below the limit value as the result of measures carried out in COBs such as combustion improvement, fuel change to mixed gas and the consolidation of COB's operation, particularly combustion improvement is main measure.

It will be necessary to install newly desulfurization equipment in the sintering plant for main exhaust gas in order to observe the limit value of SOx. The reason is as follows:

Although the content weight of sulfur will be reduced due to the decrease of coke breeze which will be the result of the energysaving measures, the SOx concentration of waste gas will increase more than the present, due to increase of the conversion rate from sulfur to SOx gas by measures of combustion improvement and reduction of the waste gas volume by a measure for air leakage around sintering machines. (It means the reduction of excess air.)

The SOx concentration of waste gas after the desulfurization will be predicted to be about $240 \text{mg/Nm}^3(O_2 \ 15\%)$ as SO₂ and satisfy the limit value.

For NOx concentration of sintering plants, it will be predicted to satisfy the limit value due to reduction of the content weight of nitrogen which resulted by the decrease of coke breeze unit consumption by energy-saving measures and maintenance of conversion rate from nitrogen to NO(nitrogen monoxide) as same as the present by improvement of ignition, though the waste gas

agen ig a e

volume will be reduced by a measure for air leakage like the measures in SOx.

The future concentration of NOx will be about 460mg/Nm³(O₂ 15%) as NO₂ and be similar as the present(470mg/Nm³, O₂ 15%).

The soot from the sintering plant exceeds the limit value in the concentration even now and thus urgent measures are needed.

It will be necessary to change the existing dust collector of the fixed electrode-type electrostatic precipitator for moving electrode-type one, which is effective for high alkaline dust caused decrease of the efficiency of dust collection in the existing precipitators.

The high concentration of BFG dust is caused by low efficiency in the RSW, therefore, it will be able to satisfy the limit value by lowering the dust concentration in BFG by means of RSW efficiency improvement as judged from the actual situation in Japan.

2) Problems of dust and measures

Though it is difficult to quantitatively grasp the effect of dust, the sedimented dust around SIDEX exceeds the standard value. Contribution of SIDEX in this matter is not certain, but its effect cannot be denied. Therefore, in addition to the decrease of generated soot, strengthened collection of dust mentioned above(installation of dust collector at COB and CDQ, strengthened collection of dust at discharging of sintered ore and renewal of dust collector at BF's casthouse) should be required as soon as possible.

• . .

and the second

1 - E. A. A. A. A.

2.2 Waste Water

2.2.1 Present status of waste water discharged

1) Drainage outlets and volume of waste water

SIDEX has three final drainage outlets (C8, C4, and C7). The waste water at C8 is discharged via Malina Lagoon and that at C4 and C7 is discharged via Catusa Lagoon into the Siret, which combines into the Donau a few kilometers downstream. Flow rate of effluent is 45,900m³/day at outlet C8, 29,900m³/day, 3,200m³/day at C4 and C7, respectively. The present status of waste water discharge at SIDEX is shown in Fig. III.2-2. Water for living in Galati and for industrial use in SIDEX is taken from the Donau in the upstream of the confluence with the Siret.

Industrial water of about 10,000m³/hr is taken from the Donau and supplied to each plant after the treatment of decarbonation and coagulation sedimentation, and also to the power plant of RENEL adjacent to SIDEX.

For drinking water, 1,300m³/hr of raw water is taken from the Donau and supplied after the treatment of sedimentation, filtration and chlorination in the steelworks.

2) Outline of standards for waste water

Different from waste gas, nationwide standards for waste water are not enacted. For the waste water discharged from SIDEX, however, the Agreement on the concentration and discharge loads is concluded per the drainage outlet, reaching a maximum of 18 items per outlet. This Agreement includes the penalty system but this seems not so binding such as ordering of operational stop against exceeding of the Agreement values. The present restriction values were concluded between SIDEX and the National Council for Water before establishment of the Ministry of Water, Forestry, and Environment Protection based on a plan prepared by IPROMET, the planning and design institute for steel plants, in 1986, and are handed over as the Agreement No. 18/1986 with General Department for Water Resources Conservation and Management of MOE and the Environmental Control Agency of Galati.

Accordingly, the quality and volume of waste water are measured by SIDEX once a week at the three final drainage outlets, which provides fairly enough data.

If a discharge load, calculated by multiplying the month average concentration of each pollutant in waste water by the average volume of waste water, exceeds the stipulated value, SIDEX has to pay the penalty, calculated by multiplying the excess volume by the unit price.

The values of the Agreement are quite satisfactory by comparison with those of the EU countries and Japan, proving no problems.

As there is large difference in the steel production between the present and the period when settled the Agreement No.18/1986, the negotiation has been continuing to revise the limit values in the Agreement which will be suited to the present status of the operation.

The draft of the new Agreement has not been opened yet.

3) Concentration of pollutants in waste water

Table III.2-6 compares the measurements in 1992 with the values of the Agreement.

For the average concentration, the values of the following exceed the values of the Agreement:

• At C8 : Dissolved iron, sulfate ion, ammonia, cyanide ion, and phenol

• At C4 : Dissolved iron, ammonia, cyanide ion, phenol, suspended solids (SS), and total sulfur

The result of ammonia, cyanide ion, phenol, and total sulfur seems to be affected by the gas liquid (ammonia liquor) from the coke plant.

The result of sulfate ion, SS, and dissolved iron may be caused also by other water treatment systems. Determination of the causes for exceeding the values of the Agreement requires survey and study of each water treatment system including the model plants.

Outline of water quality at each drainage outlet is as follows:

(1) The water treatment system for the No.2 coke plant area, No.7 and 8 COB located, is connected to C8, but the system is not operated when the survey has carried out, and so the cause for values of ammonia, cyanide ion, and phenol exceeding the Agreement values may be the mixture of drain from the COG san na afri de piping, but its amount and concentration have not investigated by SIDEX.

> (2) The water treated at the water treatment system for the No.1 coke plant area is discharged into C4. Since the concentration 1 of ammonia, cyanide ion, phenol, and total sulfur is 10 to 100 times as high as the value of the Agreement, the efficiency of this water treatment system can be said to have fairly lowered. The main causes are analyzed in Section III.3.1.3.

1.12

(3) For the outlet C7, the flow rate is small, 3,200m³/day due to low operation of plants connected to this outlet and the concentration of pollutants is also low.

4) Discharge loads

The stipulated discharge load (kg/day) of each item is set per drainage outlet as the discharge volume multiplied by concentration and the penalty is calculated per month with the following equation. Actual results and Agreement values are compared in Table III.2-7.

Penalty

= {Av. monthly discharge volume (m³/day) x Av. monthly concentration (mg/lit) x 1,000 - Stipulated discharge load (kg/day)} x Unit price

The penalty seemed to reach about 85,000,000 Lei in 1993, which is about US\$77,000 (US\$1 = 1,100 Lei). Ammonia, cyanide ion, phenol, soluble iron, and total sulfur exceeded the values of the Agreement, of which phenol occupied about 60%.

5) Other pollution

Restriction on discharge of waste water by means of COD or BOD that shows organic pollution is not applied and not measured in SIDEX. But, as these COD and BOD are stipulated in the water quality item in the Environmental Quality Standard for Water and the Environmental Control Agency of Galati checks these in the Siret and in the Donau, they may be placed under restriction in future. And so SIDEX had better measure these voluntarily.

The largest source of organic pollutants is the ammonia liquor. The present concentration after water treatment is about 200 mg/lit. The Japanese average is 100 mg/lit, suggesting the need of

improvement. As another source of pollution, living water, is discharged not only from SIDEX but also from the whole Galati without treatment into the Donau. Accordingly, improvement of river water quality requires measures against discharge from plants and also installation of sewage treatment plants.

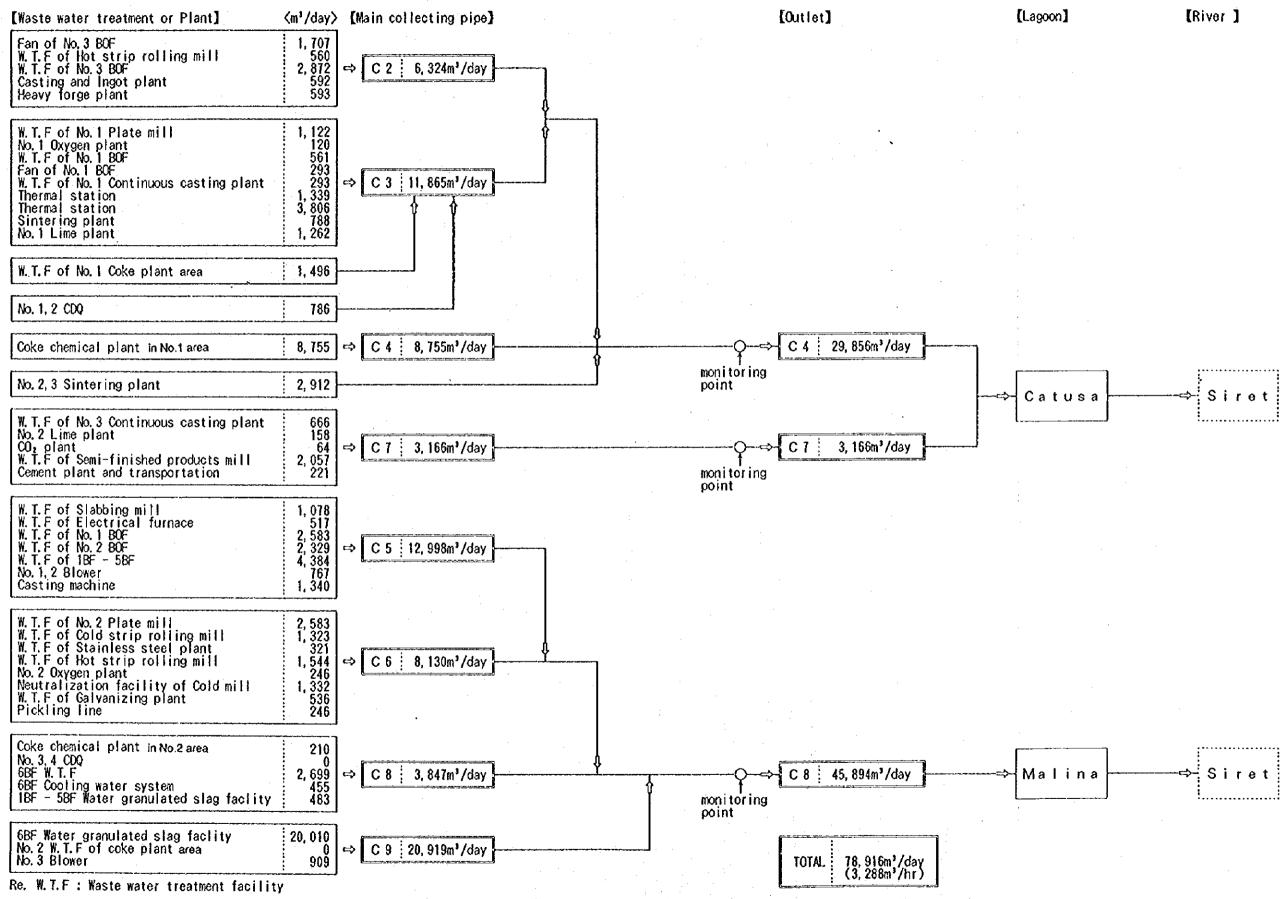


Fig. III.2-2. Flow Diagram of Waste Water in SIDBX

III-28

Indicator		utlet C8 Data (max.)			-			
Quantity (m³/day)	102, 384	45, 894	120, 096	29, 856		239, 328	3, 16	6
1. pH	7~8	7.9 (8.9)	7~8, 5	7.9	(9, 6)	6.5~8		
2, Calon	207	144 (198)	155	59	(100)	134	59	(80)
3. Mg ion	28	21, 2 (58, 4)	36	26	(51)	20	27	(48)
4. Soluble iron	0.3	0, 96 (3, 9)	0.5	2.2	(13)	0, 3		
5. Cl ⁻ ion	320	166 (248)	296	184	(320)	80		
6. \$04 ²⁻ Ion	198	<u>274</u> (379)	152	137	(172)	104	94	(145)
7. NO3 - ion	18	7.1 (14, 5)	5	3,6	(10)	5	4, 6	(5, 6)
8. Ammonium ion	3	3.6 (11.1)	3	31.2	(197, 5)	-	1.6	(3, 3)
9. Cyanides	0.08	0, 23 (3, 02)	0, 03	<u> </u>	(2, 24)	- '	0	(0)
10. Phenols	0. 15	0.87 (4. 16)	0, 14	20.03	(99, 1)	~	0, 048	(0, 09)
11. Suspended solid	30	26 (155)	40	_43	(84)	41	26	(62)
12, Total sulfur	0.3		0.27	<u> </u>	(3, 54)	-		
13. Nation	128		121	÷		25		
14. Total chromium	-		-			2, 8		
15. Cr ⁶⁺	0,006		-			-		
16. Zn ²⁺ ion	0, 009		0, 12			-		
17. Free Cla	0,004	: :	0, 016	:		-		
18, 0il	0.5		0, 4			0, 3		

TableIII. 2-6. Concentration of Effluent and Agreement Values (mg/1)

Re. Blank in each indicator means that SIDEX has not analysed

Table 11.2-7. Discharge Loads and Agreement (kg/day)

Indicator		e Outlet \$8	Drainage C		Outlet C7	Tota	I	Unit Price
over Agreement	Agreemen	nt Data	Agreemen	it Data	Agreement	Agreemen	t Data	(Lei/kg)
4. Soluble iron	35	124	57	129	5	97	253	57.77
6. SD4 ²⁻ ion	20, 100	35, 249	18, 300	8, 014	1, 740	40, 100	43, 263	4.35
8, Annonium ion	300	464	340	1, 823	1 -	ô40	2, 287	173, 30
9. Cyanides	8	30	4	34		12	64	1, 733, 70
10. Phenols	15	112	17	1, 172	-	33	1, 284	2, 889, 52

111-29

9

9

2.2.2 Analysis of the problems found in the model plants and measures

The target of SIDEX for the year 2002 will be not to discharge waste water whose restriction items exceed the values of the Agreement, and thus to decrease the discharge loads and corresponding penalty as much as possible.

Especially, as described later, the urgent measures is necessary for the reduction of phenol which is considered to affect the water quality of the Donau and the Siret. The proposed measures for water pollution prevention are indicated at Table III.2-8.

Table III.2-8. Items of Measures for Water Pollution Prevention

Plants	Items of Measures
Coke Chemical Plants	 (1) Improvement of pH Control in Ammonia Stripping (2) Improvement of Activated Sludge Process (3) Installation of Coagulation Precipitator

1) To clear the values of the Agreement

Urgent measures are needed for the items that now exceed the Agreement values.

If measures would not be carried out, the concentration of pollutants exceeding the values of the Agreement will stay at the present level and the loads of them will increase more than the present according to the production increase.

A large decrease of ammonia, cyanide ion, phenol, and total sulfur can be possible by improvement of the coke plants and recovery of COG drain to or below the Agreement values.

As measures for decreasing sulfate ion, soluble iron, and SS, the causal relation with the plants not within the scope of the Study should be pursued and efforts of SIDEX are desired.

2) To decrease the discharge loads

and the state of the second

4 1

As shown in Fig. 111.2-2., the total flow rate of effluent from SIDEX at the present status of the steel production is 79,000m³/day and its flow rate per ton of crude steel is 9.9m3/t-steel.

Integrated iron and steel works in Japan the average flow rate per ton of crude steel is $4.2m^3/t$ -steel($2.0 \sim 9.1m^3/t$ -steel), and circulation rate of industrial water is over 90%. Therefore, it is generally effective for SIDEX to reuse wastewater still more than now by sedimentation and filtration for the reduction of pollutant loads, because the reduction of discharging effluent means to reduce the loads.

11 14

111-31

2.3 Solid Wastes

2.3.1 Present status of solid wastes discharged

1) Standards for solid wastes

As standards on the disposal of solid wastes such as by landfill, there exists only the Basel Treaty which restricts cross-border transportation of harmful wastes, and no detailed standards for the storage, transportation, and disposal according to the properties of wastes. Correspondingly, there are no special restrictions applied in SIDEX. Establishment of treatment standard, regulation and promotion scheme for solid wastes are desired in the future.

2) Outline of disposal of solid wastes

Solid wastes generated in SIDEX such as slag, dust, and waste refractories are basically thrown away to the special disposal area (slag yard) to the west of the works. Since the start-up of the works, the disposal area is expanding and now it is about 100 hectares, and may reach Marina Lagoon nearby in several years. The slurry and sludge generated at the water treatment are not dehydrated and are simply sent by pressure piping to the slurry ponds next to the disposal area. Three ponds are placed as partitioning off a part of Marina Lagoon.

One is for slurry generated at wastewater treatment facilities in rolling mill plants, the other are in blast furnace and coke chemical plants, respectively.

As seen above, maybe because of more availability of disposal areas compared with Japan, most solid wastes and byproducts except part of slag and dust are disposed of by throwing away.

3) Present recovery and disposal of main solid wastes

The generated volumes of the main solid wastes and recovery for reuse in 1992, shown in Table III.2-9, are as outline below:

(1) BF slag

:::-

翻

۱

SIDEX has six producing facilities for water granulated slag(W.G. slag) in every blast furnaces, but only one in No.6 BF of them has full capacity to produce W.G. slag from all molten slag generated in the blast furnace.

SIDEX sold 0.6 million tons of W.G. slag as a raw material of cement in 1993. In Romania, 2.5 million tons of blast furnace slag cement has been produced, in which W.G. slag is mixed, and the total cement production is 4.7 million tons in 1993. As the average mixture proportion of W.G. slag in blast furnace slag cement is 25%, it is considered that W.G. slag needed in the production of it is almost provided by SIDEX. Regardless of that fact, the recycling ratio of blast furnace slag in SIDEX stays low level, about 50%, and the residue is dumping out to slag yards of SIDEX as air cooled slag.

Romanian standard in cement production prescribes mixture proportion of raw materials in each kind of cement and there is the standard PA35 for blast furnace slag cement production.

For export of cement, 2.5 million tons is produced, and which is produced according to British standard without using W.G. slag.

The utilization status in Japan is shown in Fig. III.2-3.

(2) BOF slag

The generated volume of BOF slag is the next largest to that of BF slag.

The apparent recovery rate is as high as 78% in Table III.2-9 but this is because of recovery of grain iron from slag. And actually, after recovery, it seems to be stored in the yard, then disposed of by throwing away. The recovery situation in Japan is shown in Fig. III.2-4 for reference.

(3) Dust and sludge

All the dry dust is recovered and reused as material. But the analysis system for checking the chemical composition such as alkali and zinc that adversely affects the operation of sintering plants and BF should be reviewed and improved. Most sludge, generated from the waste water treatment systems and thrown away to the slurry ponds, is not recovered and reuse of it as iron source is one requirement. But a trial to reuse sludge dried up by sunshine as iron source of sintering has just started, it is desired that this will be spread to other sludge in the future. The tar sludge, though disposed of by throwing away, can be mixed with coal for use in the coke oven batteries. As shown in Fig. III.2-5, much of collected dust and sludge is reused as raw material for sintering plants in Japan.

The discussion between SIDEX and CEPROCIM(National Institute for Cement) has just started, which aimed collaboration of investigation on the comprehensive utilization of solid wastes like slag and coke dust, and it is desired to progress.

2.3.2 Analysis of the problems found in the model plants and measures

Though SIDEX has a vast disposal area, expansion of the existing disposal area and ponds should be limited in terms of environmental protection. More concretely, the following are recommended:

1) Utilization of air cooled slag

The air cooled slag generated in BF and BOF hardly is reused now, but as shown in the status of Japan, they can be reused as materials in road construction or civil engineering fields.

Therefore, the theme for the utilization of air cooled slag is to reuse widely in this field, although cost competition may happen to occur with natural sand and gravel.

For the wide reuse of water granulated slag, it depends on the demands in the production of blast furnace slag cement, but it should be considered that the wide reuse of water granulated slag can contribute energy saving in cement production. In addition, it can be reused as materials in civil engineering.

The integrated scheme among slag suppliers, users and administrative support by authorities is very important to promote wide utilization of slags as follows :

10.11

1.111.111.111

That is, SIDEX as a supplier of slag must expand the water granulated slag facility, install plant for crushing and screening of air-cooled slag and establish quality management system for slag.

On the other hand, users such as cement producers and constructors for civil engineering are requested to study or reuse for wide utilization of slag, and next for authorities, it is desired to authorize quality standard on slag in each field of utilization and approve or promote to use slag as materials for civil engineering carried out under the admission by authorities.

2) Treatment and reuse of dust and sludge

The theme for dust and sludge is to reuse widely as iron source in sintering process. In Japan, the utilization ratio of dust and sludge(except mill scale) is 1:4% to 3.0% to the production of sintering ore, but SIDEX stays at the level of 1.1%.

Therefore, SIDEX can reuse them more than the present by investigating of influence to operations and analyzing of the chemical components.

and the second second second

a Victoria en est

In addition, SIDEX has to install dehydration equipments in order to limit expansion of the present ponds and retain its long period of dumping area.

3) Control of disposal

Not to allow careless disposal of solid wastes, a control system which requires efforts at recovery and reuse of solid wastes at the generation source should be established. One good starting point is to expand the present system in SIDEX's Modernization and Environmental Control Department, in which the kinds, volume, generation source, the plant in charge, recovery cost, etc. of the waste to be brought into the slag yard are required to be recorded in a card and submitted to the Department.

والمتعادية والمراجع والمراجعات

and a star in the second

111-36

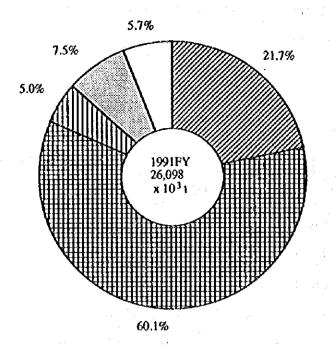
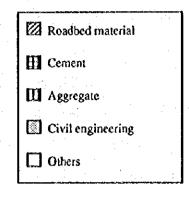
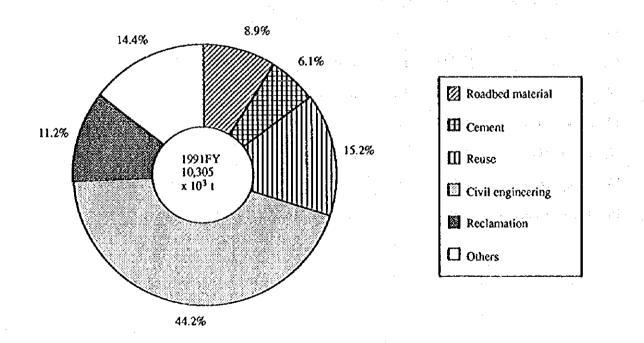
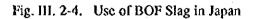
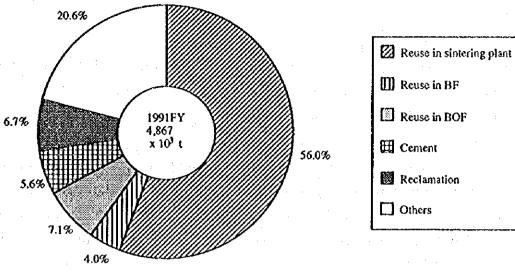

Sol	lid Wastes	Generation (ton/year)	Recovery (%)	Outline of Utilization
۱.	BF slag	1, 632, 024	35	Production of Granulated slag ⇔ Sale to Cement Plant
2.	BOF slag	448, 060	78	Recovery of iron and dump out to slag yard
3.	BF dust(dry)	24,650	100	Reuse as raw material in sinter plant
4.	Sinter dust	24, 611	100	Reuse as raw material in sinter plant
5.	Iron scrap	23, 650	100	Reuse as raw material in 80F
6.	Scale	9, 50 0	100	Reuse as raw material in sinter plant
7.	Sludge	40, 150	0.4	Dump out to north and south slurry pond in Malina Lake
8,	COB sludge	1,065	94	Partial reuse in BF and storage in coal yard
9.	Residue iron	7, 300	100	Reuse as raw material in BOF
10.	COB dust	2, 642	7	
11.	Coal dust	86, 478	100	Reuse as raw material in COB
12.	Lime dust	11, 775	100	Dump out to slag yard
13.	Oily sludge	1,000	0	Dump out to slag yard
14.	Tar sludge	1,200	0	Dump out to slag yard
15.	Acid tar	4,000	0	Dump out to stag yard
16.	Residue nozz	le 1,000	0	Dump out to slag yard

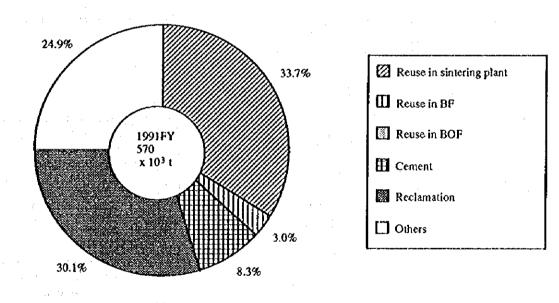
Table M. 2-9. Generation and Utilization of Solid Wastes (1992 FY)

.

9

III-37


Fig. III. 2-3. Use of BF Slag in Japan

Dust collected by dust collector

÷ -

Sludge

2.4 Measures for Incidental Pollution

There are new generations of dust, sulfur and sludge according to installations of dust collectors, desulfurization facilities and dehydration equipments for the environmental protection measures in 2002.

Dust will be reused in sintering process except a small part of it, sulfur will be recovered as hydrosulfuric acid and dehydrated sludge of wastewater treatment facility in coke chemical plants will be incinerated at coke oven batteries mixing with coal. Each solid wastes and their treatment are listed in Table III.2-10.

	U			
Plant	Depollution facilities	Solid wastes	Generation	Utilization or treatment
Coke oven batteries and coke chemical	No.2, 3 CDQ : Dust collector No.5, 7 COB : Dust collector of guide car	Coke dust	(total) 14,500 t/y	Reuse as raw material in sintering plant
plants	No.7 COB : COG- Desulfurization equipment	Sulfur	2,200 t/y	Recover as sulfuric acid of 6,300 t/y
	No.5 & 6 COB, No.7 COB : Sludge from activated sludge process	Dehydrated sludge	(total) 5,400 t/y 85 % hydrated	Incinerate by COB mixing with coat
	No.5 & 6 COB, No.7 COB : Sludge from new precipitator		(total) 5,600 t/y 85 % hydratec	
Sintering plants	No.5 & 6, No.7 : Desulfurization equipments	SOx gas	3,335 kNnt/y	Recover as sulfuric acid with sulfur of COG desulfurization
	No.5 & 6, No.7 : New electric precipitator of main exhaust gas	Collected dust	13,600 t/y	Reuse 12,600 t/y in sintering plant, but the residue(1,000 t/y) is dumpedbecause its high alkalinity
Blast furnace	No.5, 6 BF : Dust collector of casthouse	Collected dust	36,500 t/y	Send as slurry to thickener and precipitato

Table III.2-10. Outline of utilization of dust, sulfur and sludgegenerated from new depollution facilities in 2002

2.5 Management of Environmental Protection in SIDEX

2.5.1 Management system in SIDEX

1 (j. 1

As shown in Fig. III.2-6, under the Board of Management, the Modernization and Environmental Control Department manages the whole of environmental measures, then comes the Environmental Laboratory in charge of analysis and measurement, the Environmental Control Office in charge of managing the nine plants, and the Environmental Police in charge of monitoring. In these nine plants, the chief engineer in charge of machine operation and energy control is authorized as the responsible person for the management of environmental problems in each plant.

The central committee for all the plants is held at intervals of six months and the plant committee every month in each plant. Activities for prevention of atmospheric, water, and soil pollution are reviewed and discussed at the Board of Management quarterly.

Concerning accidents that accompany environmental pollution, the communication route between the environmental departments and the plant and also between SIDEX and the Environmental Control Agency of Galati is established. Education and technical training of the employees are conducted since 1993.

The management system of SIDEX has sufficiently been established. Further excellent activities are therefore expected.

2.5.2 Monitoring system in SIDEX

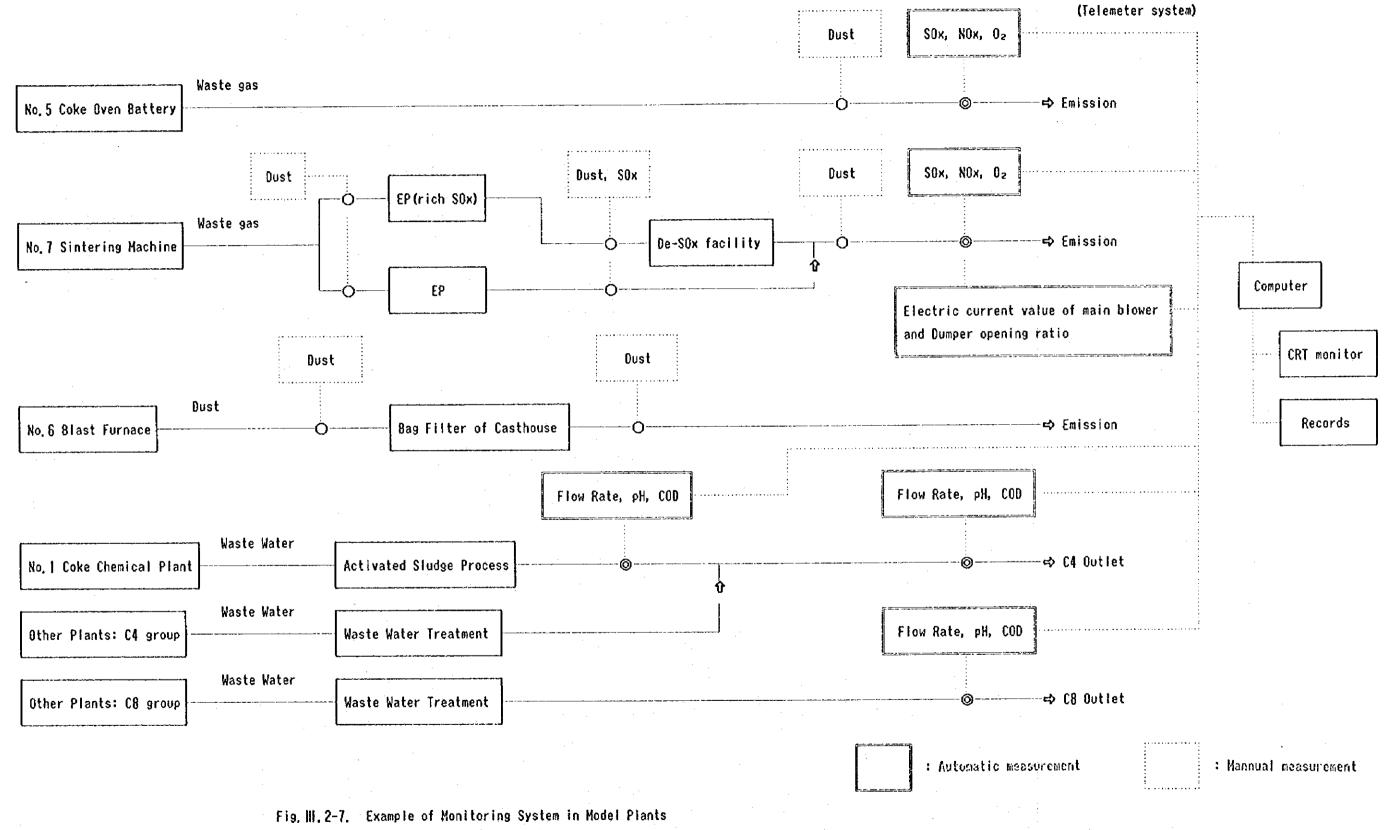
The monitoring system cannot be said to be properly established in SIDEX maybe because the standards are not certain. As described former, in future, an official duty to have monitoring system and report on emission situation toward big stationary sources like SIDEX may be imposed, and so it is desired that SIDEX should install automatic continuous analyzers for main gas emission sources and process measuring data for management such as making hourly, daily and annual report by computer. And it is desirable to measure flow rate and water quality of effluent automatically. Japanese examples are shown in Table III.2-11 for reference. SIDEX will be desired finally to monitor the environmental pollution up to the levels shown in this table. The main measures as the monitoring will be as follows and a example on a monitoring system for the model plants in this study are indicated in Fig. III.2-7.

- (1) To install instruments that can measure SOx, NOx, and O₂ at the main generation sources such as coke plants and sintering plants.
- (2) To establish soot measuring system for the facilities in (1) above.
- (3) To include COD as the control item in the coke waste water treatment system.
- (4) To establish analysis system for chemical composition of dust and sludge.
- (5) To establish analysis system for BOD and COD at the drainage outlets.

en Marine Annager Vitera ang Bara

(6) To expand the checking system for disposal of solid wastes.

1. S. 1. 1. S. 1.


ADMINISTRATIVE DEPARTMENT Mr. D. Croitoru Mr. Gherman --- Mr. M. Micu DEPARTMENT CORRERCIAL Environmental Police **Ms. D.** Iordrache inside SIDEX ···· Mr. M. Chiculita TRANSPORTS WORKS for : Soil & Wastes : Investigation Fig. III.2-6. Environmental Management System in SIDEX : Statistics WORKS for ENERGY PRODUCTION and Modernization and Environmental Control Department erre Mr. 1. Grosu DISTRIBUTION 9 : Water ···· Mr. S. Stavar Mr. A. Florea Ms. C. Jercan : Air : Air Mr. Gh. Pascal in Mr.C.Wihalache Mr. M. Botezatu Environmental Control Office Ms. S. Lupoaie Ms. D. Stefan Mr. C. Zamfir TECHNICAL MANAGEMENT BOARD OF MANAGEMENT SPARE PARTS and REPAIRING WORKS **METALLURGI CAL** Ms. C. Muresan Mr. Gh. Anton 1 ROLL ING MILLS Soil Laboratory 2 assistants 9 **Ms. M. Dobrota** ... Ms. M. Chimet STEELMAKING Mr. D. Anghei PLANT Environment Laboratory Air Laboratory 5 assistants Ms. M. Chimet **BLAST FURNACES and** SINTERING PLANT Mr. C. Barau Water Laboratory 4 assistants Ks, M. Tanase COKE PLANT Hr. G. Chiper 111-43

	Plant, Facility	Automatic Analyser	Outline of Mesurement	
Waste Gas	Sinter Pellet Boiler (No, 1 ~6)	} SOX, NOX, O2	Manual sampling and analysis in a month	
	Slabbing mill R.F Plate mill R.F (Total 10 sources)	analyser) (SOx, NOx, O ₂ , Soot)	
furnace	BF Hot Stove Slabbing mill R.F. Hot strip mill R.F. Lime plant Plate heat-treatment F. Cold annealing furnace CGL annealing furnace (Total 10 sources)	oot installed	Aanual sampling and analysis in a month (SOx,NOx,Oz,Soot)	
Waste Water	Outlet 3points	Flow meter,pHmeter Automatic sampler	Weekly analysis (COD,SS,Fe,oil,N,P)	
=waste water treatme -nt fa-	Cold strip mill W.T.F 80F W.T.F (clarifier) Final W.T.F 8F W.T.F (clarifier) Clarifier of fine ore wash Sewerage in Works (Total 7 sources)	Flow meter pH meter COD meter	} Weekly analysis (COD, SS, Fe, oil, N, P)	
Solid Wastes	Sludge 6kinds Dust 3kinds	-	monthly:Zn,carbon annual:hazardous substances in law	

()

Table III. 2-11. Monitoring of Waste Gas, Waste Water and Solid Wastes(Example)

III-44

