scores are distributed in the area of the Barinad creek. Small scores are located in the Kadlakogod creek and in the upper reaches of the Tabyonan creek.

Second principal component: Zn and S have large factor loading. These element show opposite behavior. High scores are distributed in the gabbro area of the Barinad creek and in the Kadlakogod creek. There are spotted anomalies in the tributaries of the Taganopol river.

Third principal component: Au and As have large factor loading. Au and As show opposite behavior. This component show the gold mineralization. High scores are in the gabbro area at the Barinad creek and in the Kadlakogod creek, Spotted high scores are distributed in the upper reaches of the Taganopol river.

Forth principal component: Pb has large factor loadings. Rather high scores are distributed in the Kadlakogod creek.

Fifth principal component: As and Au have large factor loading. This component show Au and As mineralization. High scores are distributed in the gabbro area, and in the upper reaches of the Taganopol river. In the Kadlakogod creek, high scores are not conspicuous.

In this survey no promising Cu and Au anomalies were found in the gabbro area of the Barinad creek and in Kadlakogod Area.

Table 4	14								
Eigenva	alue			Fac	tor Load	ing			
P.C.	E.V	Con.	Cum.Con.		Z-01	Z-02	Z-03	Z-04	Z-05
Z-01	2.0889	26.1109	26.1109	Fe	0.8056	-0.1976	0.0800	-0.2221	-0.0063
\overline{z} -02	1.4381	$\overline{17.9767}$	44.0876	Cu	$\overline{0.7842}$	0.3311	-0.1012	-0.1177	0.1658
Z-03	$\overline{1.0974}$	13.7174	57.8050	Sb	$\overline{0.6374}$	-0.2511		0.2308	
Z-04	$\overline{1.0377}$	12.9718	70.7769	Zn	$\overline{0.3627}$	0.7449	-0.3040		
Z-05	$\overline{0.9065}$	$\overline{11.3310}$	82.1078	S	0.3554	-0.7173	0.0123	-0.3042	0.1945
Z-06	0.6211	7.7639	89.8718	Au	$\overline{0.2759}$	0.3278		0.1302	<u>0.5656</u>
Z-07	0.5024	6.2803	96.1521	As	-0.2048	0.0002	$-\overline{0.7320}$	-0.0707	0.6257
Z-08	0.3078	3.8479	100.0000	Pb	0.2067	-0.2227	-0.0645	0.8982	0.1224

2-3-5 Discussion

The results of soil geochemical survey has revealed the following areas in their order of importance (1) Carorongan Mineral Occurrence, (2) Taganopol Mineral Occurrence, (3) Barinad Area, (4) Tagbak Area.

In the Carorongan Mineral Occurrence, maximum Au content is 1,870ppb, and mean is 155.9ppb. This figure is large as compared to Clarke number. Other elements except Sb, Hg is below 3 times in average contents. Accordingly main mineralization is gold related.

Monovariant and multivariant analytical data show that gold mineralization is concentrated near the boundary between the green-schist of the Catanduanes Formation and Payo Formation. The results of

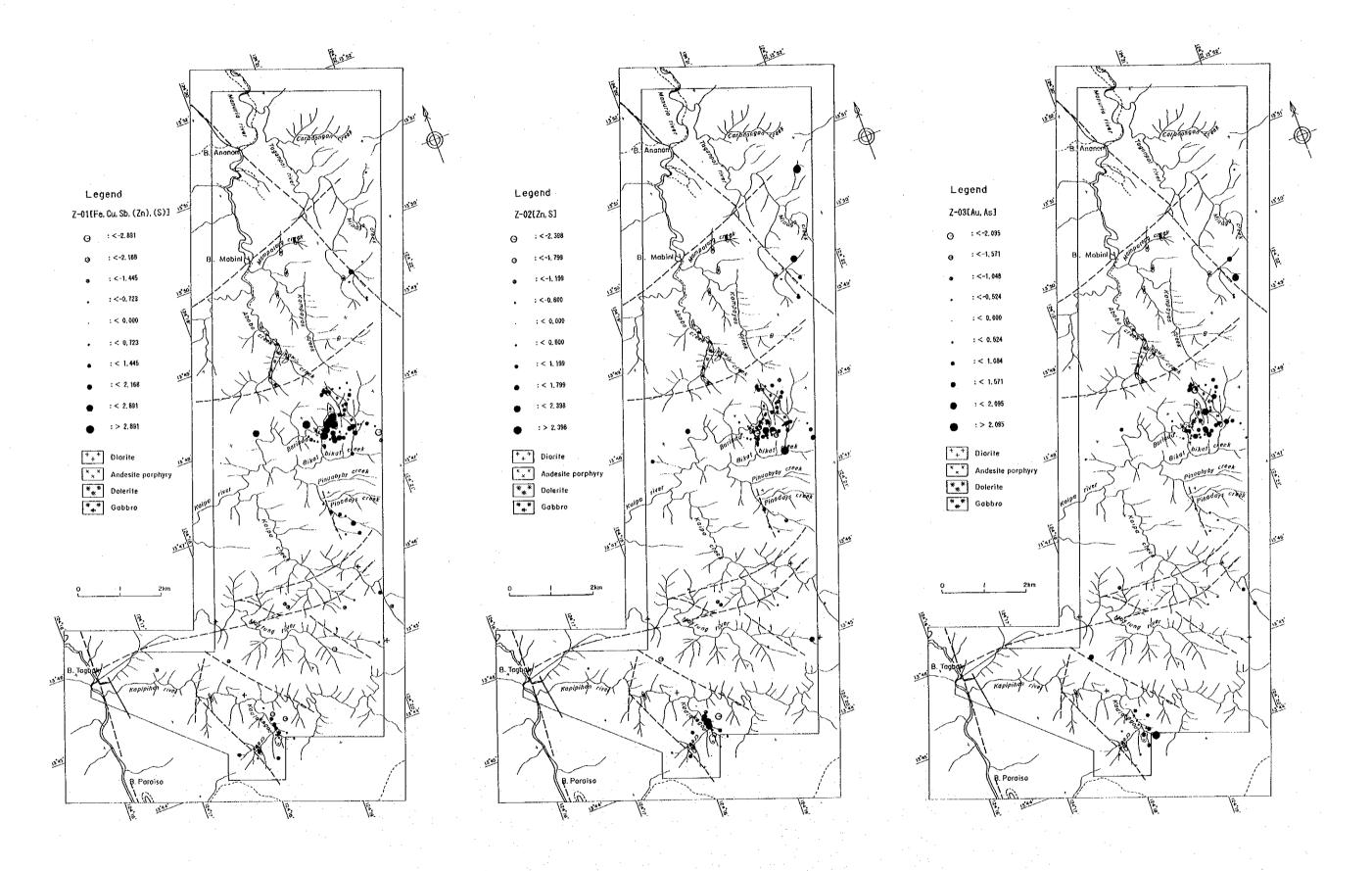


Fig. 50 Distribution of PCA Scores (Soil, Barinad Area) (1)

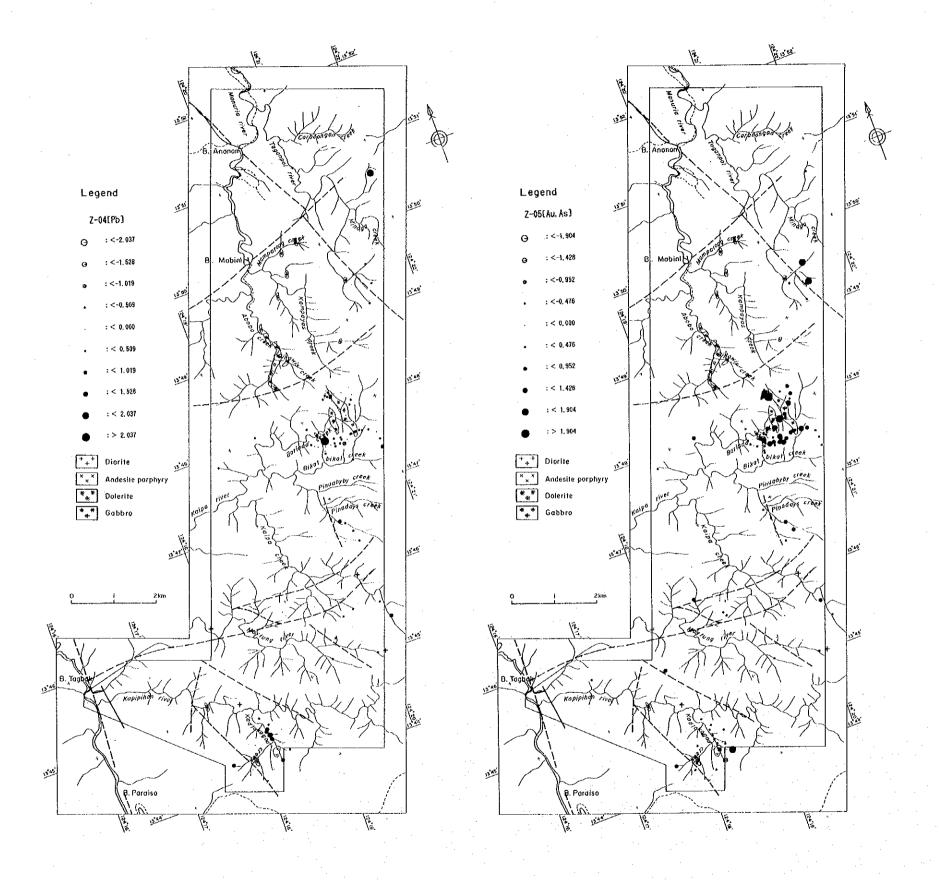


Fig. 50 Distribution of PCA Scores (Soil, Barinad Area) (2)

geochemical survey is concordant with that of the geological survey. Mineralization of Au in the green-schist unit of the Catanduanes Formation can be extended castward where Payo Formation covers the green-schist unit.

In Taganopol Mineral Occurrence, maximum gold content is 504ppb, and average is 50.9ppb and they shown high value compared with Clarke number. Other elements except Sb, mean values are less than 3 times of Clarke number. Accordingly, main mineralization in this occurrence is gold related. In this occurrence, geochemical anomaly cannot be extracted clearly due to mixing two geological units; Catanduanes Formation and Payo Formation. This may be attributed to mixing and disintegration of rocks coming from two Formations which were distributed widely in area and made the original anomaly unclear.

In the Tagbak Area, Au content is very low compared with the former two occurrences. Cu, Pb, Zn content has is 3 times at most compared with Clarke number. Although there are network of quartz veinlets on the surface, possibility of disseminated copper deposit at shallow depth is not likely. Even if there is intrusion below this network it would be located at deeper portions.

In the Barinad Area, geological survey did not indicate workeble copper deposit near the surface. But in gabbro area first principal component shows the factor of mineralization of Fe, Cu, Sb, (Zn), (S). Their mineralization would bring small amount of copper, and this would be the source of native copper as a secondary mineral.

14. 1.17	 1 10 50	Ш	200	A	1. 9. 1. 1.	54 76 65	ala tata da la caracteria de la caracteria	44 50 5 5	400	100	- 2 32 7	 200	 	11.00	 	 	 	•

PART III CONCLUSIONS and RECOMMENDATIONS

Chapter 1 Conclusions

(1) The geology of the survey area is composed of Cretaceous Catanduanes Formation (graywacke, green-schist and andesitic lavas), Oligocene Payo Formation (sandstone, limestone and volcanic rocks), Cretaceous Intrusives (gabbro and dolerite), Oligocene Batalay Intrusives (diorite, andesite porphyry, aplite) and Alluvium.

The Batalay Intrusives occur as small intrusive bodies in the survey area.

- (2) The geological structure is characterized by northwest-southeast trending faults and folding and east-west trending faults. In the northeastern part of the survey area, the Catanduanes Formation underwent dynamo-metamorphism by faults and the graywacke has been metamorphosed into green-schist during Eocene time.
- (3) Except for the segregation quartz veins, the important mineralization and pyritization are also associated with the Batalay Intrusives. The Catanduanes Formation underwent metamorphism in parts, alteration and mineralization, but the overlying Payo Formation underwent none of them.
- (4) The mineralization is divided into the following groups; (i) quartz vein (Au), (ii) silicified zone, (iii) placer gold, (iv) native copper, (v) others. Among them, the most important types are gold bearing quartz vein and placer gold. There are two kinds of quartz vein: one is the segregation veins and the other is hydrothermal ones which are associated with gold mineralization. Many floats of quartz veins are distributed in the Taganopol river basin but both types are not distinguishable in floats. Silicified zone is noted at about 20 localities. All of them underwent medium to weak silicification and weak pyritization. Some of them are possibly showing the surface indication of the deep-seated intrusion and / or related mineralization.

Placer gold are noted in the eastern part of Ananon and in the Kadlakogod creek. Gold grain is observed in Quaternary sediments through panning.

Native copper is found in the small cracks within gabbro of Cretaceous Intrusives and nearby graywacke in the Barinad creek. But the scale is small and the copper grade is very low. Others denote network quartz veinlets in weathered graywacke and so on.

As the results of geological and geochemical surveys disclose, the following areas were picked up as hopeful;

Carorongan Mineral Occurrence: it is located in the northernmost survey area and in the east part of Ananon. Geology is composed of green-schist of the Catanduanes Formation. Mineralization is in the form

of gold-bearing silicified veins, clay veins and silicified vein. Width of the silicified vein is 0.7 to 2 meters. Maximum gold grade were 65.19g/t in the silicified vein (W=5m) and 10.33g/t in the clay vein (W=30cm). In silicified zone, it probably extends 100m by 200m in size.

As the result of geological and geochemical surveys disclose, the mineralized zone extends over the survey area of this year. This area has good indication in geochemical survey and promising primary gold deposit is expected to exist.

Taganopol Mineral Occurrence: it is situated in the southeastern part of Carorongan Mineral Occurrence. Quartz vein of 50cm wide are noted in green-schist of the Catanduanes Formation. This quartz vein accompanies pyrite and maximum gold grade was 10.33g/t (W=50cm). Soil and vegetation cover concealed the continuation of the vein. Geochemical anomaly area is rather small and continuity is rather poor, but bigger scale is expected underneath.

Ananon North Area: it is located in the east of Ananon. Geology is composed of green-schist and Quaternary sediments. There are many of quartz veins along the Taganopol river. There are about 20 pits for placer gold along the river. Maximum 4mm of gold grain was recognized in the pit through panning. Gold content is high in stream sediments along this river and potential of placer gold is expected to be large.

Kadlakogod Area: it is located in the south of the survey area. There is silicified and argillized zone in the Kadlakogod creek caused by andesite porphyry of Batalay Intrusives. There are many pits for placer gold in the lower reaches of the intrusive rock. Though panning of Quaternary sediments, maximum scale of 7mm gold nugget was recognized. The surrounding area has possibility to contain placer gold.

Kampayas Area: it is located in the southeast of Mabini. Small diorite body of Batalay Intrusives was found in the upper stream of the Kampayas river. The sedimentary rocks surrounding the diorite were subjected to silicification and argillization.

In this river area, gold content is high in stream sediments and primary gold deposit related with diorite is expected to exist.

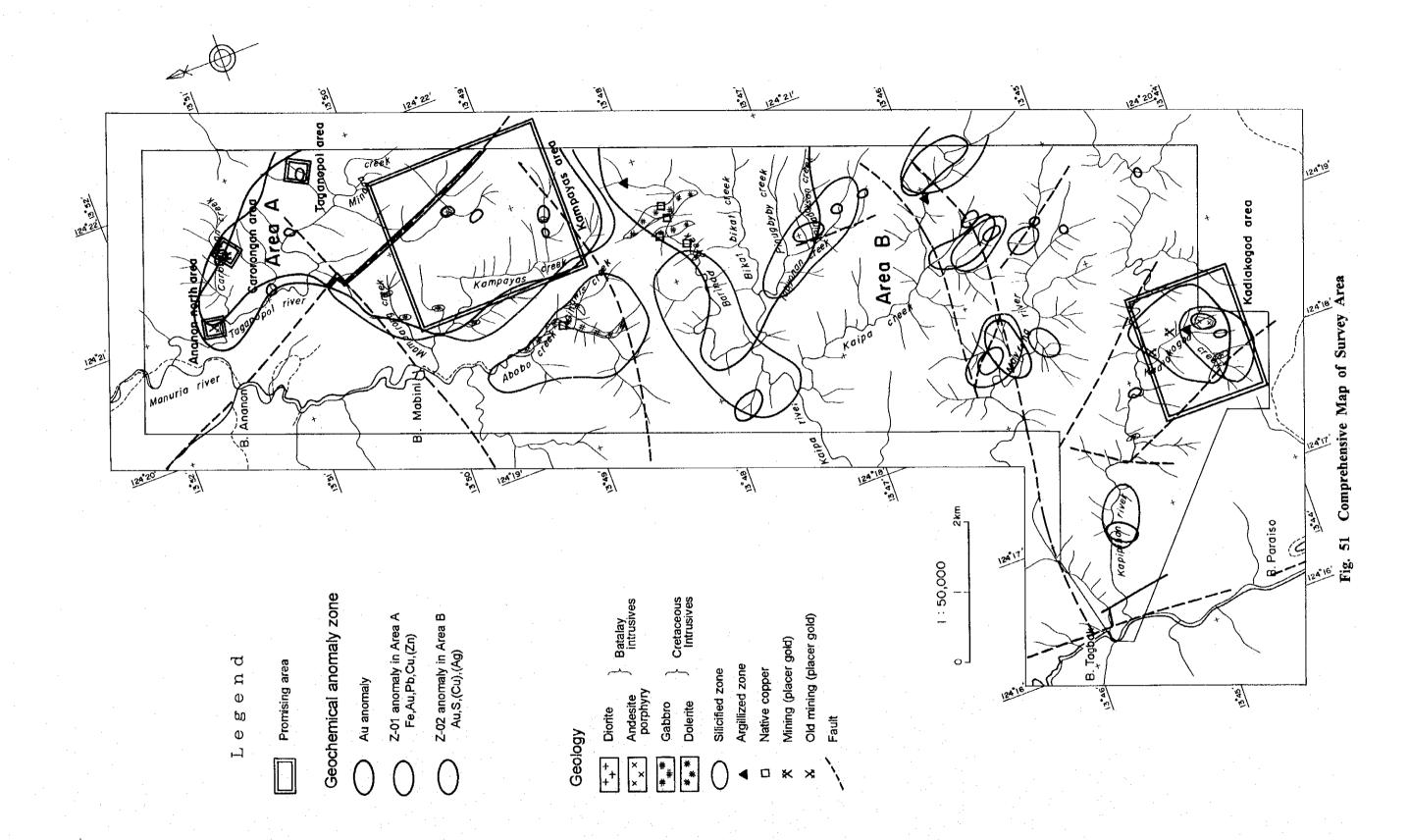

The survey result of this year indicates that the high potential area for gold may quite possibly extend to the eastern area of this survey area. The results of the reconnaissance survey of last year had picked up the hopeful geochemical anomaly areas in the eastern extension area. Accordingly, other than the hopeful area above mentioned, we can expect high potential area in the eastern extension of this year's area to Sicmil.

Table 45 Valuation of Survey Area

Ore Type	Area Name	Rank	Description
	Ananon South Area	В	Many segregation quartz veins associated with dynamo-metamorphism are distributed. Many floats of quartz veins are distributed along the Taganopol river and its tributaries.
Quartz Vein	Carorongan Mineral Occurrence	<u>A</u>	Gold bearing silicified vein. Silicification, argillization and pyritization are noted. Dimension of mineralized area:100×200m, 65.2g/t Au max. Promising vein is expected. Potential is very large.
	Taganopol Mineral Occurrence	A	Gold bearing quartz vein with argillization. 10.3g/t Au max. Vegetation and soil conceal extention of vein. Potential is large.
	Pinadaysan Area	С	Silicified zone with pyrite. Aplite dike occurs along faults and surrounding rock underwent alteration.
Silicified Zone	Maytung Area	В	Silicified zone are distributed along E-W striking faults. No mineralization-related intrusives is found on the surface.
	Kaipa Arca	В	Silicified zone with pyrite. Barren quartz vein with 40cm wide, 16m long occurs in graywacke.
	Ananon North Area	A	About 20 pits were dug before World War II.Gold was observed in samples from pits. Potential of placer gold is large.
Placer Gold	Kadlakogod Area	A	Placer gold had been recovered before World War II. Now still producing gold by panning. Diorite occurs. No primary gold veins are confirmed. Potential of placer gold is large.
Native Copper	Barinad Area	В	Native coper is observed in gabbro and in its vicinity. In addition Cc,Bo,Cp are observed under microscope. Soil geochemical survey resulted in small anomalies.
	Kampayas Area	A	High anomalies of Au in stream sediments are noted. Small diorite occurs in graywacke with silicification and pyritization. No primary vein is found. Potential is very large.
Others	Tagbak Arca	С	Quartz network zone are scattered along mountain trail. No remarkable anomalies in soil geochemical survey.
	Pagsagnahan Area	D	Altered zone associated with andesite body is small and pyritization is not observed. Potential is very small.

Rank

 $\frac{A}{A}$: (potential very large) B: (potential medium) C: (potential small) D: (potential very small)

Chapter 2 Recommendations for the Third Phase Survey

(1) Carorongan Mineral Occurrence: Mineralized zone was found out to extend outside of the second phase target area. Accordingly, it is recommended that a detailed geological survey and soil geochemical survey be conducted in the northern and southern extension of last year's target area.

For the mineralized, silicified and clay veins, it is recommended that drilling be conducted to clarify the character and degree of mineralization.

- (2) Taganopol Mineral Occurrence: it is recommended that test pitting and trenching be conducted to confirm the vein extension.
- (3) Ananon North Area: it is recommend that test pitting be conducted to know the grade and scale of placer gold.
- (4) Kadlakogod Area: it is recommend that test pitting be conducted to know the grade and scale of placer gold.
- (5) Kampayas Area: it is recommended that detailed geological survey and soil geochemical surveys be carried out to delineate geological settings of mineralization and to find primary gold deposit. If the results of the survey is hopeful, drilling surveys will be recommended to clarify the mineralization.

In addition, it is proposed that detailed geological survey and stream sediments geochemical survey be extended in the eastern extension of high gold concentration area of the second phase survey.

FERERENCE

- Angeles, Conrad M. and Teodoro, Levy G.(1980): Detailed Geological/ Geochemical Survey of Tilod and Guiamlong Area in Catanduanes., MGB.
- Angeles, Conrad M. and Teodoro, Levy G.(1983): Statistical Analysis of the Geochemical Data in Kaglatawan, San Miguel, Catanduanes., MGB Region V.
- Berkman, D.A.(1976): Field Geologists' Manual, The Australasian Institute of Mining and Metallurgy.
- Capistrano, P.M.(1951a): Geological reconnaissance of Catanduanes, progressreport, Philippine Bureau of Mines.
- Capistrano, P.M.(1951b): Preliminary Report on the A.A.R. Botelho Coal Claim, Hitoma, Caramoran, Catanduanes., MGB.
- Capistrano, P.M.(1952): Notes on the Mineral Resources of Catanduanes Island., The Philippine Geologist, Vol.VI, No.4., The Geochemical Society of the Philippines, Manila.
- Crispin, O.A., Weller, J. M. and Ibanez, C.B.(1955): Ceology and coal resources of the Panganiban region, Catanduanes: Philippine Bureau of Mines Special ProjectSeries Publication No. 2.
- Govett, G.J.S.(1983): Handbook of exploration geochemistry, Volume 2. Statistics and Data Analysis in Geochemical Prospecting. ELSEVIER SCIENTIFIC PUBLISHING COMPANY, p.437.
- JICA and MMAJ(1994): Report on the cooperative mineral exploration in the Catanduanes area, the republic of the Philippines, phase I; Japan International Cooperation Agency and Metal Mining Agency of Japan.
- Kajitani, Yuji(1993): Environment of Mining Investment in the Philippines (part 2), Mineral Information Center, Metal Mining Agency of Japan.
- LeBas, M. J., LeMaitre, R. W., Streckeisen A., Zanettin, B.(1986): A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27, 745-750.
- Lepeltier, C.(1969): A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol., 64, 538-550.
- Levinson, A.A.(1974): Introduction to Exploration Geochemistry.
- Meek, W. B.(1938): Report on the Geological Survey and Investigation of copper prospect in Agban, Catanduanes: unpublished report, MGB.
- Metal Mining Agency of Japan(1992): Geology and Mineral Resources of Southeasts Asia-Oceanian Islands, 1991 Report of Geology Analysis Committee, Mineral Information Center, Metal Mining Agency of Japan.
- MGB(1982a): Geology and Mineral Resources of Catanduanes Province, Report of Investigation No.108, Map and Mineral Resources Compilation Team, MGB. Region V.
- MGB(1982b): Geology and Mineral Resources of the Philippines, Vol.1.
- MGB(1983a): Geological Map of Nagumbuaya Point Quadrangle, Sheet 3860 I., Bureauof Mines and Geo-Sciences, Ministry of Natural Resources.

- MGB(1983b): Geological Map of Calolbon Quadrangle, Sheet 3860 IV., Bureau of Mines and Geo-Sciences, Ministry of Natural Resources.
- MGB(1983c): Geological Map of Bagamanok Quadrangle, Sheet 3861 I., Bureau of Mines and Geo-Sciences, Ministry of Natural Resources.
- MGB(1983d): Geological Map of Gigmoto Quadrangle, Sheet 3861 II., Bureau of Mines and Geo-Sciences, Ministry of Natural Resources.
- MGB(1983c): Geological Map of Hitoma Quadrangle, Sheet 3861 III., Bureau of Mines and Geo-Sciences, Ministry of Natural Resources.
- MGB(1983f): Geological Map of Caramoran Quadrangle, Sheet 3861 IV., Bureau of Mines and Geo-Sciences, Ministry of Natural Resources.
- MGB(1983g): Geological Map of Pandan Quadrangle, Sheet 3862 III., Bureau of Mines and Geo-Sciences, Ministry of Natural Resources.
- MGB(1985): Geological Map of Gibgos Quadrangle, Sheet 3761 L.,Bureau of Minesand Geo-Sciences, Ministry of Natural Resources.
- Mitchell, A. H. G. and Balce, G. R.(1990): Geological features of some epithermal gold systems, philippines, Epirthermal gold mineralization of the circum-pacific,1, 241-296.
- Nishido, H., Itaya, T. and Ogata, K.(1984): K-Ar age determination method. Bull. Hiruzen Res. Inst., No.9, 19-38.
- Santos, V. de los, et al.(1955): Geology and Coal Resources of the Hitoma- Manambrag Region, Catanduanes, Bureau of Mines, Manila.
- Santos, V. de los, et al. (1959): Memorandum report on the phosphate and manganese deposits, Cataduanes: unpublished report, Bureau of Mines, Manila.
- Sinclair, A.J.(1976): Application of probability graphs in mineral exploration. Special Volume No. 4, The Association of Exploration Geochemists.
- Steiger, R. and Jaeger, E.(1977): Subcommission on geochronology, Convention on the use of decay constants in geo-and cosmo-chronology, Earth Planet. Sci. Lett., 36, 359-362.
- Teodoro, Levy G. et al.(1988): Preliminary Report on the Small-Scale Gold Mining Development Project in Catanduanes for the Period September 19 to December 18, 1988., MGB.
- Teves, J.S. et al.(1949): Report on the investigation of rock phosphate and other mineral possibilities of Bohol: Philippine Geologist, Vol. III, No. 2.
- Tompson, R. N., Morrison, M. A., Hendry, G.L., Parry, S.J.(1984): An assessment of the relative roles of a crust and mantle in magma series; an elemental approach. Phil. Trans. Roy. Soc. London, A310, 549-590.
- Torres, Mario A.(1978): Geologic Investigation of the Gold Property of Rajah Lahuy Mining Company at Gata, Caramoan, Camarines Sur, MGB.
- United Nations(1992): The Philippines, A Prospectus for the International Mining Industry., United Nations Development Programme 1992, United Kingdom.
- Wilson, M.(1989): Igneous petrogenesis-Aglobal tectonic approach. Unwim Hyman, London, 466p.
- Wolfe J. A.(1981): Philippine geochronology. Jour. Soc. Geol. Phil., Vol. 35, 1-30.

APPENDICES

Appendix-1 Microscopic Observation of Polished Thin Sections (1)

						-							Rock f	Rock forming mineral	neral					
2	Sample Rock type	Location			alo	ายาละเอ			-	<u>አ</u> .	Primary minera	neral			Second	Secondary mineral	,,-4	A	10.0	Benarks
			No Co Bo Co Cv		Sp Py Po	Py I Po : Dr Ga	Ht I M	He Mc La	Ge Ru	C Pi Bi	i : Hb Au Di	1 Di 01	Tr Non	Ð	Se Ep C	Ca Fs Ph La	ŗ.	Tr Ac gr	grade	
- A	ER-005 schist	Caronongan creek	0		⊗				0	0			7	0	0	© O			IS.	Silicification, argillization
2	ER-160 silicified schist	st Caronongan creek	4	◁	⊚		٥	٥	0	0			,	0	0	0 0			II Si	Silicification, argillization
6	EOR-010 quartz vein	Carorongan deposit			0			◁	٥	 ©					7	4			ë E	Qtz vein with Py
4	AR-074 altered sandstone	ne Taganopol deposit		4		•	0		,					0	0 4	0			J. No	Volcaniclastic, hydroth. alt.
ر ح	AR-076 quartz vein	Taganopol deposit		0	⊚	◁		0	*	©					0	△			п	Otz vein with abundant Py
9	FR-028 diorite	Taganopol river		0	4			 	1	Ø	0	٥		0	0	(Q)			п	Alteration
£ .	FR-035 coarse grain sa	coarse grain sandstone Minaga creek		٥	0			۷.	•	0			7	0		0			I St	Strong alt., Mon, Se. by X-ray
80	ER-012 dolerite	Mamparong creek		4	0					0	0			0	0	0	4		I St	Strong alteration
6	DR-012 basaltic sandstone	one Abobo creek	4							Ø				0	4	0			II Si	Silicification, Argillization
2	DR-016 dolerite	Abobo creek	٩	4	4		0			0				0	4			©	I St	Strong alteration
11	DR-017 dolerite	Abobo creek	\[\frac{1}{2} \]	4			0			0	0			0	0	0			II Le	Less groundmass
12	GR-016 dolerite	Abobo creek	0	0			6			0		0		0	0				IV Ne	Weak alteration
13	CR-015 dolerite	Abobo creek	•	. 4			0							0	0	(Q)			I St	Strong alteration
7. E	FR-021 dolerite	Kampayas creek	4				0 0		7	@ V		0		0	7 0	۵	, <u>.</u>		III Le	Less groundmass
15 17	FR-052 dionite	Kampayas creek		. 4	◁				7	© \	Ø			0	0	0			III Pc	Porphyritic tex.
16 A	AR-029 gabbro	Barinad creek	0				0			0	4			©	□ □				I St	Strong argillization
1.7 A	AE-036 andestic sandstone	one Barinad creek			·			٥		Ø	٥		7	0 0	0	0			II Pec	Mon. by X-ray, volcaniclastic
E 81	ER-118 acidic tuff	Barinad creek					0	0	4	©				0	0	0	0		п	Intesive alt., Se. by X-ray
13	EM-119 andestic sandstone	me Barinad creek	♥ 0				٥			(a)				0	7 0 0	⊚			1 ×8	Mative copper, volcaniclastic
20 8	EE-120 gabbro	Barinad creek	•	•			- ✓ ⊚	4		<u>o</u>	٥	0	•	0	O	0			1 A3	Alteration, Bo-Cc assemblage
21 EB	ER-121 gabbro	Barinad creek	•				0		7	®				0	0		9	0	I At	Ateration, Pl→Se
22	ER-122 bassit (lava)	Barinad creek	· 4 0				ò	0		0		0		0	4		7	4	III Na	Native copper, volcanic tex.

[Swibols] © standant O :common A :fer · :rare
[Alteration] I :strong II :medium III :weak IV :fresh
[Alteration] I :strong II :medium III :weak IV :fresh
[Alteration] I :strong II :medium III :weak IV :fresh
[Alteration] I :strong II :medium III :weak IV :fresh
[Alteration] I :medium II :weak IV :fresh
[Alteration] I :medium IV :medium IV

Appendix-1 Microscopic Observation of Polished Thin Sections (2)

ĺ														NO.	-k formin	Book forming mineral				_		
	Sample						Ore mineral	eral			L	Prima	Primary mineral			Š	Secondary minera	ineral		Alte-	Remarks	
8	<u>.c</u>	KOCK 13796	Doca cutor	No. Co.	No Co Bo Co Cv	S	Py i Po ! Dn Ga i Mt		개위	c La Ge	Bu O	P. Bi	Hb Au Di	i 01 Zr	то х :	ChiSe EpiCa Fs Pn	o Ca Fs	Pn La	Pr T	Ac grade	:	
2	HR-028	gabro	Barinad creek	4	4				 •			0	©	4		0				□ □	Holocrystalline	
		— I	Barinad creek	4			4	0	0			0	(e)			0	◁	٥		Ħ	Cc-bo assemblage	
	EB-037	ordes	Barinad creek	4	⊲			4	0	-		√3 ⊚	<u> </u>			0	₫			<u> </u>	Weak alteration, native copper	ive copper
83	AR-045	basaltic andesite	Tabyonan creek	- · -	0		1			ļ	0					4 0	0			П	Volcanic tex., hydroth. alt.	oth. alt.
15	111-日	ER-111 aplite	Pinadaysan creek	-	4	4	4				© 4	Ø				0				2	Phenocryst Qtz, dike(N=5m)	te(N⇔Se)
83	AR-099	andesite porphyry	Kadlakogod creek		⊲		4	0				0	0			0	0			S	Porphyritic tex.	
83	AR-101	basaltic lapilli tuff Kadlakogod creek	Kadlakogod creek		0	·					◁	0	 ⊘			4 0	0			п	Including volcanic fragments	fragments
8	EB-142	dolerite	Kadlakogod creek		0			0		ļ		0	*			٥	◁			ΔI	Fresh	
8	CR-025	aplite	Kadlakogod creek					◁			0					0	<u> </u>			FR	No sulfide, soft rock)Ck
23	CB-627	aplite	Kadlakogod creek					△			0					@ o	⊚ ⊲			1	Strong alt., Wo suifide	lfide
83	FR-064	basalt (lava)	Kadlakogod creek	1	△	△	4				0	©	4			7 0	o ⊚			ĭ	Strong alt., Volcanic tex.	nic tex.
3	E3-022		Kadlakogod creek	4		4		0	0	-	0	Ø				0 0	000			Ħ	Cc-Cv, Mt-He assemblage	blage
ĸ	53-048	coarse grain sandstone Maytung niver	Haytung river	◁	4		٥			-	0					0	0 4 @				Strong alteration	
æ		ER-104 acidic tuff	Bikat bikat creek	-	4			-	0	0	0				٥	0	Ø 4	4		=	Hon by X-ray, abundant Fs	dant Ps
65	ER-105	quartz vein	Tabyonan creek					0	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	4	0		4			0	(P)				Strong alt., including Ep vein	ding Ep vein
8		ER-054 basaltic and. (lava)	Kaipa creek					0	0			0	ō			0				Z	Volcanic tex., Cp-80, 80-Cc	30. 30-Cc
25	ER-061	acidic tuff	Kaipa creek					0	0	0	0		4		٥	4	0			E	Mon by X-ray, Kt→Mh→He	Ð-¥e
육	ER-097	basaltic and. (lava)	Kaipa creek								0	9	0			0	0			iii	Volcanic tex., Cp-Bo assemblage	o assemblage
퓻	CR-016	dolerite	Cihawis creek		4			0					-	· · · · · ·		0	(a)			-	Fine grained Cp-Bo	
함	ER-17.	ER-17: basaltic sandstone	Gihawis creek	7	· ·	<u>.</u>			٥		0	-				<u> </u>	0	©		-	Str.alt., Cv-Cc, Cc-Bo asemblage	Bo asemblage
\$	ER-145	dolenite	Kapipihan river		△		0	4			4	0		 Ø		0	٥			4	No Bo,Cc and Matiwe copper	e copper
2	KR-013	andesite (dike)	pagsagnahan						0			©	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0	٥			Ž.	Fresh, No sulfide	
"													,									

[Symbols] @:abundant O:common A:few ·:rare
[Alteration] :strong II:medium III:weak W :fresh
[Alteration] :strong II:medium III:weak W :fresh
[Anterion] :strong II:medium II:weak W :fresh
[Anterion] :strong II:weak W :fresh
[A

Appendix-2 Chemical Analysis of Ores (1)

			£lement	Au	Au	Ag	As	Си	Fe	llg	Мо	քե	S	Sb	Zn
No.	Sample No.	Location & Sample Type	Unit	g/t	0z/ŧ	ppm	ppm	X	X	ppb	*	X	Total	ppn	X
ı	AOR-001	Τ .Qv-float(φ=40cm)		<0.03	<0.001	<2	1	0.001	0.87	20	<0.001	0.003	0.003	0.4	0.004
2	AOR-003	Τ ,Qv-float(φ=100cm)		<0.03	<0.001	<2	2	0.001	0.57	30	<0.001	0.004	0.004	0.4	0.003
3	A0R-004	Τ ,Qv-float(φ=10cm)		<0.03	<0.001	<2	i	<0.001	0.62	10	<0.001	0.001	0.003	0.4	0.001
4	A0R-005	Γ ,Qv-float(φ=20cm)		<0.03	<0.001	<2	ı	0.010	4.19	20	<0.001	<0.001	0.424	0.2	0.006
5	ADR-DOG	Τ ,Qv-float(φ=15cm)		<0.03	<0.001	<2	1	0.002	0.65	10	<0.001	<0.001	0.003	0.2	0.001
6	AOR-007	T ,Qv-float(φ=60cm)		<0.03	<0.001	<2	4	<0.001	0.56	10	<0.001	0.001	0.002	0.2	0.001
7	AOR-008	Τ .Qv-float(φ=250cm)		<0.03	<0.001	<2	4	<0.001	0.75	20	<0.001	0.001	0.009	0.4	0.001
8	AOR-009	T ,Qv-float(φ=20cm)		<0.03	<0.001	<2	2	<0.001	0.47	10	<0.001	0.001	0.001	0.4	<0.001
9	AOR-010	Τ , Qv-float(φ=2cm)		<0.03	<0.001	<2	1	0.002	1.94	10	<0.001	0,001	100.0>	0.4	0.003
10	AOR-O11	T ,Qv-float(φ=10cm)		<0.03	<0.001	<2	4	<0.001	0.98	10	<0.001	0.002	0.003	0.2	0.002
11	ACR-012	Τ ,Qv-float(φ=150cm)		<0.03	<0.001	<2	2	<0.001	0.46	10	<0.001	0.002	<0.001	0.4	<0.001
12	AOR-013	T ,Qv-float(φ=5cm) with chl		<0.03	<0.001	<2	2	<0.001	0.55	10	<0.001	0.002	0.002	0.2	<0.001
13	AOR-014	T , Qv-float(φ=3cm)		<0.03	<0.001	<2	i	<0.001	0.52	10	<0.001	0.001	<0.001	0.2	0.001
14	AOR-015	T ,Qv-float(Ø=2cm×200cm)		<0.03	<0.001	<2	1	<0.001	0.53	20	<0.001	0.001	0.001	0.2	<0.001
15	AOR-016	T ,Qv-float(φ=40×25×15cm) with	chl	<0.03	<0.001	<2	1	0.016	1.40	30	<0.001	0.001	0.209	<0.2	0.001
16	AOR-017	T ,Qv(W=5cm,L=50cm) with Py		<0.03	<0.001	<2	г	0.008	1.75	20	<0.001	0.003	0.012	0.2	0.002
17	AR-010	Ba, Diorite	,	<0.03	<0.001	<2	4	0.019	7.55	20	0.002	0.003	0.008	<0.2	0.010
18	AR-012	Ba,Silicified vein		<0.03	<0.001	√2	1	0.007	2.71	10	<0.001	0.003	0.007	0.2	0.003
19	AR-014	Ra,Silicified vein(W≃10cm)		<0.03	<0.001	<2	2	0.001	4.07	10	<0.001	0.004	0.003	0.2	0.003
20	AR-016	Ba, Native copper in ss		<0.03	<0.001	<2	1	0.089	7.34	30	<0.001	0.001	0.017	<0.2	0.011
21	AR-017	Ba,Silt veins in ss(W=10cm)		<0.03	<0.001	<2	1	0.021	5.78	40	<0.001	0.001	0.013	0.2	0.008
22	AR-018	Ba,Qv(W=2cm) in brown fine tuff		0.03	0.001	<2	2	0.009	3,14	50	<0.001	0.002	0.003	<0.2	0.003
23	AR-020	Ba,Siliceoms vein in ss(W=20∼30c	m)	<0.03	<0.001	<2	2	<0.001	5.25	20	<0.001	0.002	0.011	0.6	0.007
24	AR-040	Ty,Qv(W=3cm) in Silicified ss		<0.03	<0.001	<2	t	0.011	5.16	10	0.001	0.003	0.289	0.8	0.009
25	AR-044	P Siticified ss with Py		<0.03	<0.001	<2	4	0.014	5.41	10	0.001	0.002	0.221	<0.2	0.010
26	AR-061	C ,Silicified schist with Py		2.27	0.073	<2	2	0.005	4.30	10	<0.001	0.002	1.970	0.6	0.004
27	AR-063	T ,Qv(W=4cm) in green schist		<0.03	<0.001	<2	1	<0.001	0.44	10	<0.001	0.002	0.013	0.2	0.001
28	AR-065	T ,Wilky Qv(W=25cm)		0.22	0.007	<2	2	0.002	2.09	10	<0.001	0.003	0.009	0.2	0.004
- 29	AR-066	T ,Qv(W=30cm) and silicified zone	· · · · · · · · · · · · · · · · · · ·	0.09	0.003	<2	1	0.004	2.84	20	<0.001	0.002	0.184	0.2	0.004
30	AR-067	T ,Qv(W=90cm) in ss		0.06	0.002	<2	1	0.015	6.56	10	0.001	0.001	0.013	0.2	0.009
31	AR-068	1 ,Qv(W=70cm) in schist		0.09	0.003	<2	1	0.015	7.12	10	<0.001	0.001	0.019	0.2	0.010
32	AR-069	T ,Milky Qv(W=30cm)		0.09	0.003	<2	2	0.001	1.24	10	<0.001	0.001	0.003	0.2	0.002
33	AR-070	T ,Qv(W=70em) in schist		0.19	0.006	<2	1	0.009	4.73	20	<0.001	0.002	0.009	0.2	0.008
34	AR-071	T ,Milky Qv(W=30cm)		0.56	0.018	<2	2	0.001	1.56	40	<0.001	0.002	0.190	0.2	0.001
35	AR-075	T ,Qv(W=20cm) with some Py		10.33	0.332	<2	1	0.006	2.02	10	<0.001	0.001	0.261	0.2	0.002
36	AR-076	T ,Qv(W=50cm) with some Py(1~2mm	1)	1.03	ł	<2	1	0.032	7.00	20	<0.001	0.002	0.507	0.2	0.010
37	AR-079	T ,Qv(W=23cm)		0.47		<2	1	0.006	2.18	10	<0.001	0.002	0.034	0.2	0.003
38	AR-095	K ,Milky Qv-float(W=5cm)		<0.03	<0.001	<2	1	0.001	1.38	10	<0.001	0.003	0.002	0.2	0.003
39	AR-098	K ,Andesitic porphyry		<0.03	<0.001	<2	2	0.005	3.30	30	<0.001	0.002	0.018	0.4	0.007
40	AR-099	K ,Andesitic porphyry with some I	у	<0.03	<0.001	<2	10	0.014	6.56	10	<0.001	0.002	0.343	0.6	0.011
41	AR~104	K ,Qv(W=5cm) along andesite dike		<0.03	<0.001	<2	2	<0.001	1.00	10	<0.001	0.001	<0.001	.0.8	0.003
42	AR-105	K ,Qv-float(W=10cm)		<0.03	<0.001	<2	4	0.003	1.90	20	<0.001	0.001	0.014	1.2	0.002
43	AR-106	K ,Milky Qv-float		<0.03	100.0>	<2	2	0.001	1.57	10	<0.001	0.001	0.003	0.6	0.002
44	AR-110	K ,Qv(φ=10cm)		2.92	0.094	- <2	2	<0.001	3.07	10	0.002	0.002	2.010	0.6	0.002
45	BOR-002	T ,Qv(W=10cm) sheared zone		<0.03	<0.001	<5	4	<0.001	0.54	70	<0.001	0.002	0.017	0.4	0.001
46	BOR-003	T ,Qv-float(W=10cm) with Mn		<0.03	<0.001	<2	6	<0.001	0.66	20	<0.001	0.002	0.009	0.6	0.002
47	BOR-004	T ,Qv-float(W=10cm)		0.03	0.001	<2	1	<0.001	0.61	10	<0.001	<0.001	0.002	0.6	<0.001
48	BOR-006	C ,Qv(W=1~3cm)		<0.03	<0.001	<2	. 2	0.006	3.75	30	<0.001	<0.001	0.027	0.2	0.007
49	BOR-008	T ,Qv-float(W=10cm)		<0.03	<0.001	<2	2	<0.001	0.61	20	<0.001	0.001	0.001	0.6	<0.001
50	BOR-009	T ,Qv(W=10~60cm)		1.06	0.034	<2	1	0.001	0.84	40	0.001	0.001	0.093	0.4	<0.001
Abbre	viations)	· · · · · · · · · · · · · · · · · · ·	····		·				•	<u> </u>	' 	<u>'</u>			

[Abbreviations]
A :Ananon Ab:Abobo creek Ag:Agban prospect An:Ananagnon creek Ar:Aroyao prospect B :Bato river Ba:Barinad creek C :Carorongan creek Gu:Guiamlong river Hi:Hilacan river Ht:Hiltoma river K :Kadlakogod creek Ka:Kaina river K :Kampayas creek Kp:Kampiphan river Li:Libjo prospect M :Mamparong creek Ma:Maygnaway prospect M :Hinaga creek Hl:Minaile river Mn:Manuria river Hy:Maytung river P :Pinadaysan creek Pb:Pinugbyby creek Sa:San pedro prospect Sb:Soboc So:Solong prospect Sv:San Vicente T :Taganopol river Tb:Tabugoc Tg:Tagbak area Tu:Tubli river Ty:Tabyonan creek V :Viga area

Appendix-2 Chemical Analysis of Ores (2)

Time	7-
Second T. Q.Y.(**S-Soca) with tinemine	Zn %
1	
Second Control Contr	
Section Topic To	_
Section T. (Prifestic High Py 0.00 0.003 0.001 0.001 7.57 30 0.001 0.002 0.103 0.001 0.002 0.103 0.001 0.002 0.103 0.001 0.002 0.103 0.003	
Section Sect	
50 C. C. C. C. C. C. C. C	
S	
Se Se-001 T, Qeris-Con) in weathered schist	
1	
1	
\$\frac{8}{8}\$ \frac{10}{8}\$ \text{ km,qv in fault } \text{ \$0.03 } \text{ \$0.001 } \$0.0	
50 18 18 18 18 19 18 19 18 19 19	
64 508-00 C C C C C C C C C	
65	
65	
67 EBR-007 C. Q. (V.Y-10ac) in schist	
68 EBR-008 C, QV(Y-40cm) & clay 3.27 0.105	
89 EBR-009 C , Ay(Y-S-30ca) & clay 10.70 0.344	
To	2 0.008
T1	2 0.006
T2 EQR-012 C , QV(M-2cm) in schist 0.65 0.021 C 1 0.004 2.20 20 0.001 0.004 0.004 0.007	6 0.003
T3 ENR-013 T \(\text{QY(W=2cm} \) in schist D \(\text{.0.03} \) \(\text{.0.01} \) \(\text{.2} \) \(\text{.0.001} \) \(\text{.2} \) \(\text{.0.001} \) \	4 0.011
74 E0R-014 T , QV(N=20m) in silicified schist	2 0.004
75 ROR-016	4 0.003
To EOR-OIS T, QV(M=5cm) in schist	2 0.002
To To To To To To To To	2 0.002
78 EOR-020 T , Qv(W=1.5cm) in schist	6 0.006
Toward T	4 0.009
80 E0R-025 T , QV(N=8cm) in schist <0.03 <0.001 <2 2 0.001 0.55 10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0	4 0.002
81 EOR-O26 T,Qv(N=3cm) in schist	2 0.002
82 EOR-028	4 0.002
83 EDR-030 T ,QV(N=2cm) in schist	2 0,000
84 EOR-032 T ,Qv(M=3cm) in schist	.2 0.003
85 EOR-035 T ,Qv(M=30cm) in schist 2.43 0.078 <2 2 0.003 2.02 10 <0.001 0.003 0.078 6	.4 0.002
86 EDR-036	.4 0.000
87 EOR-039 T ,Qtz veinlets (N=2cm) in schist	.6 0.00
88 EOR-042 T ,Qv(M=8cm) in schist	.4 0.00
89 EOR-046 M ,Qv in ss	.4 0.00
90 EOR-051 Km, Qv in dolerite 0.09 0.003 <2 2 0.008 6.13 10 <0.001 0.004 0.038 91 EOR-058 My, Qv-float in ss 0.03 0.001 <2 1 0.001 0.98 20 <0.001 0.002 0.007 92 EOR-059 Ky, Silicified ss with Qv(N=1cm) <0.03 <0.001 <2 12 0.012 5.56 30 <0.001 0.005 0.525 93 EOR-050 My, Qv(N=6cm) in silicified ss 0.03 <0.001 <2 2 0.004 3.54 10 <0.001 0.003 0.002 94 EOR-061 My, Silicified ss with Qtz-Py-Calcite <0.03 <0.001 <2 2 0.007 4.77 f0 <0.001 0.002 0.219 95 EOR-064 My, Silicified ss float (\$\sigma = 20 \cdots m) \text{with Qtz-Py} <0.03 <0.001 <2 12 0.023 5.69 10 <0.001 0.004 0.357 96 EOR-065 My, Silicified ss(N=1cm) with Qtz-Py <0.03 <0.001 <2 10 0.013 4.92 30 <0.001 0.004 0.166 97 EOR-068 My, Silicified ss(N=1cm) with Qtz-Py <0.03 <0.001 <2 16 0.014 6.16 10 <0.001 0.002 0.039 <98 EOR-069 My, Silicified ss(N=1cm) with Qtz-Py <0.03 <0.001 <2 12 0.023 4.59 30 <0.001 0.002 0.032	.2 0.00
91 EOR-058 My, Qv-float in ss	.4 0.00
92 EOR-059 My,Silicified ss with Qv(W=1cm)	.4 0.00
93 EOR-060 My,Qv(W=6cm) in silicified ss	.4 0.00
94 EOR-061 My,Silicified ss with Qtz-Py-Calcite	.6 0.01
95 EOR-064 My,Silicified ss-float(\$\preceded{\	.2 0.00
96 EOR-065 My, Silicified ss(W=1cm) with Qtz-Py <0.03 <0.001 <2 10 0.013 4.92 30 <0.001 0.004 0.166 97 EOR-068 My, Silicified ss(W=1cm) with Qtz-Py <0.03 <0.001 <2 16 0.014 6.16 10 <0.001 0.002 0.039 < 98 EOR-069 My, Silicified ss(W=1cm) with Qtz-Py <0.03 <0.001 <2 12 0.023 4.59 30 <0.001 0.002 0.422	.2 0.00
97 EOR-068 My, Silicified ss(W=1cm) with Qtz-Py	.2 0.01
97 EOR-068 My, Silicified ss(W=1cm) with Qtz-Py <0.03 <0.001 <2 16 0.014 6.16 10 <0.001 0.002 0.039 <	.2 0.01
98 EOR-069 My, Silicified ss(M=lcm) with Qtz-Py <0.03 <0.001 <2 12 0.023 4.59 30 <0.001 0.002 0.422	.2 0.01
	.8 0.01
	0.00
100 EOR-074 My, Qv(M-2cm) in ss <0.03 <0.001 <2 1 0.006 3.76 10 <0.001 0.003 0.017 <	0.00

[Abbreviations]

A Ananon Ab:Abobo creek Ag:Agban prospect An:Ananagnon creek Ar:Aroyao prospect B:Bato river Ba:Barinad creek C:Carorongan creek Gu:Guiaalong river Hi:Hilacan river Ht:Hitoma river K:Kadlakogod creek Ka:Kaipa river Km:Kampayas creek Kp:Kapipihan river Li:Libjo prospect M:Hamparong creek Ha:Haygnaway prospect M:Himaga creek Hi:Hinaile river Hn:Hanuria river Hy:Haytung river P:Pinadayaan creek Pb:Pinugbyby creek Sa:San pedro prospect Sb:Soboc So:Solong prospect Sv:San Vicente T:Taganopol river Tb:Tabugoc Tg:Tagbak area Iu:Tubli river Ty:Tabyonan creek V:Viga area

Appendix-2 Chemical Analysis of Ores (3)

r						,									
No.	Sample No.	Location & Sample Type	Element	Au ~/t	Au On/4	Ag	As	Cu	Fe	lig	Мо	- Ph	S	Sb	2n
101	E0R-083	Ka,Clay vein(W=35cm)	Unit	g/t	0z/t	ppa	ppa	X 0.010	X	ppb	×	*	Total	ppm	Х
102	EOR-085	Ka, Silicified ss-float(φ=25cm)		<0.03	<0.001	<2	18	0.019	7.10	20	<0.001	0.003	1.530	0.4	0.01
103	E0R-086	Ka, Milky Qv clay zone(W=6~30cm)		<0.03	<0.001	<2	. 2	<0.001	1.20	10	<0.001	0.005	0.031	0.4	0.00
103	E0R-088			0.03	0.001	<2	2	0.006	3.02	10	<0.001	0.002	0.011	<0.2	0.004
105	ER 003	Ka, Qv-float(φ=20cm) C ,Clay vein(W=20cm)		<0.03	<0.001 0.074	<2	8	0.021	5.95	10	<0.001	0.004	0.030	2.2	0.01
106	ER-004			2.30	0.074	<2	1	0.030	10.15	40	<0.001	0.004	0.089	<0.2	0.010
107	ER-005	C , Yellow clay vein(W=20cm) T , Silicified schist with Py		1.71			5	0.018	11.75	230	<0.001	0.002	0.064	0.2	0.019
108	ER-006	T ,Schist-float with Py		<0.03	0.002 <0.001	4	60 2	0.012	7.18	10	<0.001	0.004	0.784	16.0	0,016
109	ER-016	M ,ss with fine grain Py		0.06	0.002	2	22	0.020	6.08	10	<0.001	0.006	0.973	0.2	0.00
110	ER-032	My, Weak silicified ss(W=1cm)		<0.03	<0.002	4	1	0.010	5.38	10	<0.001 <0.001	0.004	0.821	0.8	0.01
111	ER-036	Ky.Qv-float		0.03	0.001	<2					ļ	0.003	0.019	<0.2	0.009
112	ER-039	My,Silicified as with Ep		<0.03	<0.001	<2	2	0.008	3.85 6.64	10	<0.001	0.003	0.021	0.2	0.007
113	ER-042	My, Silicified vein(W=7cm)						·		-	<0.001	0.002	0.025	0.2	0.009
114	ER-044			<0.03	<0.001	<2	1	0.002	3.42	10	<0.001	0.005	0.021	0.4	0.002
115	ER-052	My,Silicified ss		<0.03	<0.001	<2	S	0.014	5.26	10	<0.001	0.003	<0.001	0.2	0.007
116	ER-059	Ka, Weak silicified ss with Py		<0.03	<0.001	<2	1	0.013	6.17	10	<0.001	0.003	0.042	<0.2	0.010
117	ER-062	Ka,Silicified as with many Py		<0.03	<0.001	<2	4	0.016	6.72	20	<0.001	0.004	0.119	0.6	0.011
118	ER-094	Ka, Silicified ss-float with Py		<0.03	<0.001	<s< td=""><td>2</td><td>0.013</td><td>7.35</td><td>10</td><td><0.001</td><td>0.003</td><td>0.033</td><td><0.2</td><td>0.010</td></s<>	2	0.013	7.35	10	<0.001	0.003	0.033	<0.2	0.010
119	ER-095	Ka, Silicified as with Py		<0.03	<0.001	<2	110	0.009	2.87	10	<0.001	0.004	0.944	0.6	0.009
		Ka, Qv(W=40cm, L=16m)		<0.03	<0.001	. 2	300	0.008	3.33	10	<0.001	0.004	0.757	0.6	0.006
120	ER-102	Ka,Qv in andesite dike		<0.03	<0.001	2	2	0.007	4.05	20	<0.001	0.004	0.030	<0.2	0.002
121	ER-104	Ty,Silicified vein into ss		<0.03	<0.001	<2	1	0.011	4.10	20	<0.001	0.005	0.011	<0.2	0.007
122	ER-105	Ty,Qv(W=10cm) in ss		<0.03	<0.001	<2	2	0.005	3.83	01	<0.001	0.003	0.008	<0.2	0.000
123	ER-108	Ty,Qv with Ep in clay		<0.03	<0.001	<2	4.	0.029	6.85	10	<0.001	0.003	0.024	<0.2	0.010
124	ER-110	P ,Qv with Py(W=15cm) in silisifi	ed ss	<0.03	<0.001	<s< td=""><td>8</td><td>0.012</td><td>5.66</td><td>10</td><td><0.001</td><td>0.004</td><td>0.283</td><td>0.4</td><td>0.010</td></s<>	8	0.012	5.66	10	<0.001	0.004	0.283	0.4	0.010
125	ER-117	Ba, Native copper in ss		<0.03	<0.001	<2	2	0.038	5.77	10	<0.001	0.003	0.026	<0.2	0.009
126	ER-118	Ba,acidic tuff		<0.03	<0.001	<2	1	0.011	6.35	10.	<0.001	0.004	0.014	<0.2	0.009
127	ER-119	Ba, Native copper in ss		<0.03	<0.001	<2	1	0.111	7.03	50	<0.001	0.004	0.032	<0.2	0.011
128	ER-120	Ba, Diorite		<0.03	<0.001	<2	1	0.023	8.19	10	<0.001	0.004	0.019	<0.2	0.011
129	ER-121	Ba, Dolerite		<0.03	<0.001	<2	2	0.019	7.20	10	<0.001	0.004	0.016	<0.2	0.010
130	ER-122	Ba,ss with native copper		<0.03	<0.001	<2	<1	0.051	7.23	10	<0.001	0.003	0.027	<0.2	0.014
131	ER-123	Ba, Diorite with native copper		<0.03	<0.001	<2	2	0.047	7.99	10	<0.001	0.004	0.020	<0.2	0.010
132	ER-131	Kp,Qv-float		<0.03	<0.001	<2	1	<0.001	0.78	10	<0.001	0.003	0.004	<0.2	0.001
133	ER-133	Kp,Silicified ss		<0.03	<0.001	<2	14	0.006	4.89	10	<0.001	0.007	1.970	0.2	0.004
134	ER-134	Kp,Qv-float		<0.03	<0.001	<2	8	0.006	4.47	10	<0.001	0.006	0,223	<0.2	0.008
135	ER-137	K , Qv-float(W=5cm)		<0.03	<0.001	<2	2	0.004	1.54	01	<0.001	0.003	0.004	0.2	0.002
136	ER-146	Kp,Qv in silicified ss with Py		<0.03	<0.001	<2	1	0.007	6.03	10	<0.001	0.004	0,107	<0.2	0.010
137	ER-147	Kp,Qv(W=3cm)	- 	<0.03	<0.001	<2	2	<0.001	2.60	10	<0.001	0.004	0.001	<0.2	0.001
138	ER-150	Kp,Qv(W=3em)		<0.03	<0.001	<2	1	0.003	2.40	10	<0.001	0.003	0.010	0.2	0.007
139	ER-153	Kp,Qv-float(φ=25cm)		<0.03	<0.001	<2	2	100.0>	0.69	10	<0.001	0.004	<0.001	<0.2	0.001
140	ER-155	C ,Qv in silicified schist		0.12	0.004	<2	1	0.009	4.85	20	<0.001	0.004	0.071	0.2	0.008
141	ER-156	C Limonite vein in schist		0.68	0.022	<2	<1	0.035	12.75	10	<0.001	0.006	0.084	0.2	0.013
142	ER-157	C ,Silicified ss(W=40cm) with Py		0.87	0.028	<2	2	0.002	1.73	10	<0.001	0.002	0.002	<0.2	0.002
143	ER-158	C ,Limonite vcin(W=10cm) in schist	t	1.65	0.053	<2	1	0.015	5.67	10	<0.001	0.003	1.420	<0.2	0.009
	ER-159	C ,Silicified ss(Ø=5cm) with Py		1.09	0.035	<2	2	0.014	7.30	10	<0.001	0.005	1.520	<0.2	0.011
	ER-160	C ,Silicified schist(W=100cm) with		0.75	0.024	<2	1	0.016	5.35	10	<0.001	0.005	1.350	<0.2	0.009
	ER-162	C ,Qv & Clay vein(W=30cm) in schis	st	0.65	0.021	<2	2	0.022	9.93	140	<0.001	0.006	0.073	0.2	0.023
		C ,Qv (W=15cm) in schist		0.81	0.026	<2	2	0.012	6.96	50	<0.001	0.004	0.102	0.2	0.019
		C Silicified schist(W=50cm)		0.19	0.006	<2	2	<0.001	2.97	10	<0.001	0.003	0.063	<0.2	0.006
		C ,Silicified schist(W=50cm) with	Py	2.46	0.079	<2		0.005	8.37	10	100.0>	0.007	3.090	<0.2	0.008
	FR-003	T ,Milky Qv(W=3cm) in schist		<0.03	<0.001	<2	1	0.008	3.46	10	<0.001	0.003	0.032	<0.2	0.005

[Abbreviations]
A :Anenon Ab:Abobo creek Ag:Agban prospect An:Ananagnon creek Ar:Aroyao prospect B :Bato river Ba:Barinad creek C :Carorongan creek Gu:Guiamiong river Hi:Hitacan river Ht:Hitoma river K :Kadlakogod creek Ka:Kaipa river Km:Kampayas creek Kp:Kapipihan river Li:Libjo prospect M :Mamparong creek Ma:Maygnaway prospect Mi:Minaga creek Mi:Minaile river M:Manuria river My:Maytung river P :Pinadaysan creek Pb:Pinugbyby creek Sa:San pedco prospect Sb:Soboc So:Solong prospect Sv:San Vicente T :Taganopol river Tb:Tabugoc Tg:Tagbak area Tu:Tubli river Ty:Tabyonan creek V :Viga area

Appendix-2 Chemical Analysis of Ores (4)

		Appendix-2										1		~ T	
No.	Sample No.	Location & Sample Type	Element	Au	Au	Ag	As	Cu	Fe	llg	Mo	Pb	\$	Sb	2n %
no.	onmbie no:	100001011 2 002710 1010	Unit	g/t	0z/t	ppm	ppa	X	*	ppb	- % 	× 200	Total	*0.2	0.002
151	FR-005	T ,Milky Qv-float		<0.03	<0.001	<2	1	0.003	1.45	10	<0.001	0.003	0.014		0.002
152	FR-006	T , Hilky Qv	<u>.</u>	<0.03	<0.001	<2	<1	0.001	2.40	10	<0.001	0.003	0.016	0.2	0.003
153	FR-007	T ,Milky Qv in schist	·	<0.03	<0.001	<2	1	<0.001	0.63	10	<0.001	0.003	<0.001	<0.2	
154	FR-018	T ,Py stringer in schist		0.06	0.002	<2	2	0.019	8.68	10	<0.001	0.003	0.225	<0.2	0.014
155	FR-025	T , Milky Qv in schist		<0.03	<0.001	<2	1	0.003	2.95	20	<0.001	0.003	<0.001	<0.2	0.006
156	FR-027	T ,Milky white Qv		<0.03	<0.001	<2	2	<0.001	0.64	10	<0.001	0.003	<0.001	<0.2	0.001
157	FR-038	T ,Qv-float with Py		0.03	0.001	<2	2	<0.001	0.78	10	<0.001	0.002	0.015	0.2	0.002
158	GR-002	My,Silicified as with Py		<0.03	<0.001	<2	14	0.011	6.27	10	<0.001	0.003	0.116	<0.2	
159	GR-009	Kp,Qv-flost(W<1cm) in schist		<0.03	<0.001	<2	2	<0.001	2.73	10	<0.001	0.004	0.008	0.2	0.002
160	GR-010	Kp,Qv-float(W<1cm)		<0.03	<0.001	2	1	0.009	5.21	10	<0.001	0.002	0.034	<0.2	0.007
161	GR-011	Kp,Qv(W=5∼10cm) in ss		<0.03	<0.001	. 2	4	0.001	1.45	10	<0.001	0.002	0.003	<0.2	0.002
162	GR-012	Kp,Qv(W<5cm) in ss		<0.03	<0.001	4	2	<0.001	1.35	10	<0.001	0.001	0.011	<0.2	0.002
163	GR-013	Kp,Qv(W=10cm) in ss		<0.03	<0.001	2	1	0.001	1.47	10	<0.001	0.002	0.013	<0.2	0.002
164	GR-014	Ab,Qv(W=1~2cm) in weathered ss		3.95	0.127	2	-	0.001	1.08	10	<0.001	<0.001	<0.001	<0.2	0.002
165	GR-015	V ,Qv(W=3∼5cm) in weathered ss		0.53	0.017	2	<1	0.001	0.75	10	<0.001	<0.001	0.002	<0.2	0.010
166	JR-022	Pb,Silicified ss with Py		<0.03	<0.001	4	, 1	0.010	5.62	30	<0.001	0.002	0.189	<0.2	0.001
167	JOR-001	Kp,Qv-float with Py		<0.03	<0.001	4	1	0.001	0.89	20	<0.001	<0.001	0.010	0.2	0.001
168	JOR-002	K ,Qv-float with Py		<0.03	<0.001	2	2	0.003	2.32	10	<0.001	<0.001	0.016		0.005
169	KTG-018	Mi, Qv-float		1.40	0.045	2	<u> </u>	0.006	4.36	20	<0.001	0.002	0.128	<0.2	0.006
170	KTG-037	Mi,Qy-float		0.28	0.009	2	2	0.008	3.77	20	<0.001	0.001	0.006	<0.2	0.006
171	XACR-021	So, Andestic Porphry with Py(\$\phi=2)	Ост)	<0.03	<0.001	4	1	0.023	3.98.	10	100.0>	0.003	0.141	<0.2	0.006
172	XACR-022	So, Basalt with Py(Ø=20cm)		0.06	0.002	4	1	0.056	5.43	240	<0.001	0.003	0.722	2.6	
173	XACR-027	Tu, malachite-float(φ=30cm)	·	<0.03	<0.001	22	2	2.360	7.35	10	<0.001	0.001	0.083	0.4	0.012
174	XACR-028	Tu, malachite-float(φ=30cm)		<0.03	<0,001	22	<1	1.990	7.49	40	<0.001	0.002	0.045	f	0.010
175	XACR-038	An,Brown carbonate vein(W=15cm)		<0.03	+	8	+	0.018	3.17	10	<0.001	0.004	0.070	<0.2	0.007
176	XACR-039	An,Brown carbonate vein(W=7cm)		<0.03		8	+		2.97	10	<0.001	0.003	0.060	<0.2	0.007
177	XACR-040	Li,Brown carbonate vein(W=10cm)		<0.03		8			3.09	10	<0.001	0.003	0.049	0.2	0.001
178	XACR-059	Sa,Qv-float(φ=20cm) with Py		<0.03		6	- 		0.50	10	<0.001	0.001	0.039	1	0.001
179	XACR-062	Sa, Qv-float(≠=25cm)	~~ ~~~	<0.03	+	6		 	0.47	20	<0.001	0.001	<0.001	1.2	0.001
180	XACR-063	Sa, Qv-float(ϕ =6cm)		<0.03	-	2	+		1.04	10	<0.001	0.003	0.031	<u>-</u>	0.001
181	XACR-071	Li, Limonite with Py(Outcrop W=15		0.40	 	46	· 	+	34.20	10		0.002	7.070	0.4	0.016
182	XACR-073	Li,Limonite with Py(Outerop W=15	Sem)	0.16		16		-	38,10	10		0.005	0.382	4.4	0.010
183	XACR-095	Ag,Qv(φ=10cm)	:	<0.03	}	2	 -		1.70		 	-0.002	- 	<0.2	0.003
184	XACR-096	Ag,Qv-float(φ=20cm) with Py		<0.03		2			3.14			0.001	0.053	<0.2	0.003
185	XACR-102	Ag, Qv-float(φ=12cm) with Py,Cp		<0.03	.	2	- -			-	-}	0.004		∤	
186	- 	Ag, Qv(W=5cm) with malachite, lime	onite	<0.03	 	18			- 					0.2	0.002
187		Ag,Qv(W=140em) with Cp		<0.03		2	-				_ 			0.2	0.002
188		Ag,Qv(W=25cm)		<0.03			-}	0.011						<0.2	0.001
189	 	Ag, Qv(W=15cm)		<0.03			 		+	-}				<0.2	0.001
190		Ag,Qv(W=20cm)		<0.03					+		~			i	1
191		Ag, Qv(W=100cm)		<0.03										+	+
192		Ag, Qv(W=20cm)	/ / 100	<0.0		1		0.027							
193		Ar, Green and garnet skarn-float	(ø≈100cm)	<0.0			+	0.003			 -	+		 	
194	+	Gu,Qv(W=10cm) with limonite		<0.03		-		 	+		- 				+
195		Gu, Brown ss		<0.0	+	 -	~	0.019	 						
196		Ma, silicified basalt		<0.0		1-	+	(0.001		+					
19		Ma, Qv-float(φ=20cm)		0.1											
19		C ,Qv composit samples(φ=10)	· · ·	5.7		+	-	2 0.003	 			-+			
19		C , Qv composit samples(\$\phi = 10)		<0.0			+	2 0.020	- -						
20	XBCR-006	Hi, Qv-float(φ=10cm)		0.0	3 0.001		<u> </u>	0.007	1.90	1 1	, [(0.00)	0.00	0.001	1 .0.2	1 2.00

[Abbreviations]
A :Ananon Ab:Abobo creek Ag:Agban prospect An:Ananagnon creek Ar:Aroyao prospect B :Bato river Ba:Barinad creek C :Carorongan creek Gu:Guiamiong river Hi:Hilacan river Ht:Hiltoma river K :Kadlakogod creek Ka:Kaipa river Km:Kampayas creek Kp:Kapipihan river Li:Libjo prospect H :Hamparong creek Maygnaway prospect Hi:Minaga creek MI:Minaile river Mn:Manuria river My:Maytung river Li:Libjo prospect H :Mamparong creek Maygnaway prospect Sb:Soboc So:Solong prospect Sv:San Vicente T :Taganopol river P :Pinadaysan creek Pb:Pinugbyby creek Sa:San pedro prospect Sb:Soboc So:Solong prospect Sv:San Vicente T :Taganopol river Tb:Tabugoc Tg:Tagbak area

Appendix-2 Chemical Analysis of Ores (5)

		Appendix-2	·	_					(- <i>)</i>						
No.	Sample No.	Location & Sample Type	Element	Au	Au	Ag	As	Cu	Fe	Hg	Мо	Pb	S	ՏՆ	Zn
	CAMPIC NO.	Doctor w compre 1770	Unit	g/t	0z/t	ppm	ppg	X	%	ppb	Х,	X	Total	bbo	7,
201	XBCR-026	Sa,Qv-float(φ=50cm)		<0.03	<0.001	2	2	0.017	1.07	10	<0.001	0.003	0.030	<0.2	100.0
202	XBCR-047	Mn,Qv(W=10cm)		1.84	0.059	<2	1	0.001	1.15	10	<0.001	0.002	<0.001	0.2	0.003
203	XCCR-001	Tb,Qv(W=3cm)		<0.03	<0.001	. 2	1	0.007	2.33	10	<0.001	0.002	0.008	0.2	0.003
204	XDCR-013	Hi,Qv(W=2cm)		<0.03	<0.001	2	2	0.001	2.78	40	<0.001	<0.001	0.005	0.2	0.001
205	XDCR-014	Hi,Qv(W=2cm)		<0.03	<0.001	2	1	0.002	2.94	10	<0.001	0.002	0.013	0.2	0.001
206	XDCR-027	Sb,Qv(W=8cm)		<0.03	<0.001	2	2	0.004	1.91	10	<0.001	<0.001	0.127	<0.2	0.002
207	XDCR-076	Sv,Qv-float(Ø=10cm) with Py		1.00	0.032	2	4	0.007	0.98	1050	<0.001	0.003	0.635	4.2	<0.001
208	XDCR-101	A ,Qv-float(Ø=5cm)		<0.03	<0.001	2	2	0.046	1.95	10	<0.001	0.002	0.172	0.2	0.002
209	XECR-001	M1,Conglomerate(Ø=10cm) with Py		<0.03	<0.001	<2	1	0.010	6.98	io	<0.001	0.003	2.800	0.2	0.013
210	XIICR-002	Ht.Silicified vein(W=3cm) with Py		<0.03	<0.001	4	2	0.009	4.71	10	<0.001	0.003	0.051	0.2	0.001
115	XHCR-003	Ht, Silicified vein(W=2cm) with Py	•	<0.03	<0.001	2	28	0.023	6.89	10	<0.001	0.002	1.730	0.2	0.012
212	KA 0101	K,Panned concentrate		3.85	0.124	2	<2	0.007	42.0	1000	<0.001	0.003	0.003	<0.5	0.027
213	KA 0102	K,Panned concentrate		0.19	0.006	2	<2	0.008	37.1	3600	<0.001	0.004	<0.001	<0.5	0.024
214	KA 0201	K, Panned concentrate		49.39	1.588	2	<2	0.007	42.5	1350	<0.001	0.004	<0.001	<0.5	0.025
215	KA 0202	K,Panned concentrate		>622.1	>20.00	<2	<2	0.007	45.1	1040	<0.001	0.003	<0.001	<0.5	0.020
216	KA 0301	K,Panned concentrate		5.07	0.163	2	<2	0.008	47.8	500	<0.001	0.004	<0.001	<0.5	0.036
217	KA 0401	K,Panned concentrate		-	-	2	<2	0.010	38.1	700	<0.001	0.002	<0.001	<0.5	0.023
218	KA 0402	K,Panned concentrate		0.50	0.016	<2	<2	0.013	24.7	80	<0.001	0.002	<0.001	<0.5	0.018
219	KA 0403	K,Panned concentrate		15.55	0.500	2	<2	0.008	41.6	300	<0.001	0.006	<0.001	<0.5	0.025
220	KA 0501	K,Panned concentrate		12.94	0.416	<2	<2	0.009	27.5	140	<0.001	100.0	<0.001	<0.5	0.022
221	KA 0502	K,Panned concentrate		7.22	0.232	<2	<2	0.007	30.3	300	<0.001	0.004	<0.001	<0.5	0.017
222	KA 0601	K,Panned concentrate		0.90	0.029	- <2	<2	0.010	28.5	200	<0.001	0.002	<0.001	<0.5	0.018
223	KA 0602	K,Panned concentrate		0.90	0.029	<2	<2	0.009	32.2	180	<0.001	0.003	0.001	<0.5	0.019
224	KA 0701	K,Panned concentrate		0.25	0.008	2	<2	0.007	39.5	120	<0.001	0.002	0.004	<0.5	0.024
225	KA 0702	K,Panned concentrate		22.89	0.736	- 2	<2	0.007	33.8	160	<0.001	0.005	0.003	<0.5	0.022
226	KA 0703	K,Panned concentrate		49.05	1.577	2	<2	0.009	28.0	140	<0.001	0.002	0.010	<0.5	0.019
227	KA 0801	K,Panned concentrate		0.62	0.020	2	<2	0.008	34.5	100	<0.001	0.003	0.003	<0.5	0.021
228	KA 0802	K,Panned concentrate		93.56	3.008	14	<2	0.009	44.4	20	<0.001	0.003	0.004	<0.5	0.03
229	KA 0901	K,Panned concentrate		5.35	0.172	2	<2	0.007	39.5	20	<0.001	0.003	0.003	<0.5	0.029
230	KA 1001	K,Panned concentrate		1.24	0.040	<2	<2	0.008	39.6	60	<0.001	0.001	0.005	<0.5	0.023
231	KA 1002	K,Panned concentrate		23.64	0.760	2	<2	0.008	46.3	40	<0.001	0.002	0.001	<0.5	0.031
232	KA 1101	K,Panned concentrate		20.65	0.664	2	<2	0.007	36.5	100	<0.001	0.002	0.006	<0.5	0.021
233	CA 0101	T,Panned concentrate		5.44	0.175	2	<2	0.031	40.5	80	<0.001	<0.001	0.013	<0.5	0.020
234	CA 0102	T, Panned concentrate		12.72	0.409	<2	<2	0.031	31.2	100	100.0>	<0.001	0.014	<0.5	0.01
235	CA 0103	T, Panned concentrate		47.28	1.520	<2	<2	0.016	14.0	60	<0.001	<0.001	0.004	<0.5	0.009
236	CA 0201	T,Panned concentrate		52.25	1.680	2	<2	0.022	>50.0	180	<0.001	0.001	0.013	<0.5	0.031
237	CA 0202	T,Panned concentrate		10.95	0.352	4	<2	0.023	>50.0	80	<0.001	0.003	0.015	<0.5	0.030
238	CA 0203	T,Panned concentrate		12.81	0.412	2	<2	0.018	>50.0	60	<0.001	100.0>	0.013	<0.5	0.03
239	CA 0301	T,Panned concentrate		2.24	0.072	2	<2	0.025	49.6	120	<0.001	0.002	0.013	<0.5	0.023
240	CA 0302	T,Panned concentrate		14.18	0.456	<2	<2	0.029	36.9	40	<0.001	0.001	0.011	<0.5	0.014
241	CA 0303	T,Panned concentrate	-	11.70	0.376	2	<2	0.029	40.5	20	<0.001	<0.001	0.010	<0.5	0.019

A:Ananon Ab;Abobo creek Ag;Agban prospect An;Ananagnon creek Ar;Aroyao prospect B :Bato river Ba:Barinad creek C :Carorongan creek Gu:Guiamlong river Hi:Hilacan river Ht:Hiltoma river K :Kadlakogod creek Ka:Kaipa river Km:Kampayas creek Kp:Kapipihan river Li:Libo prospect M :Mamparong creek Ma:Maygnaway prospect M:Hinaile river Mm:Manuria river My:Maytung river P :Pinadaysan creek Pb:Pinugbyby creek Sa:San pedro prospect Sb:Soboc So:Solong prospect Sv:San Vicente T :Taganopol river Tb:Tabugoc Tg:Tagbak area Tu:Tubli river Ty:Tabyonan creek V :Viga area

Appendix-3 X-ray Powder Diffraction Analysis (1)

C	.)	Alteration		Cla	у М	ine	ra	. l			T	h e	0 t	h e	r s	Мi	n e	гa	l	
2am1	ole No.	Locality Rock Type	Mon	Chl /Mon	Se /Mon	Ch	Se	Ka	Ph	ľ.a	Q	Fs	Ca	Ер	Pn	Нb	Ru	Mh	Не	Ру
1	AR-033	Ba,ss or igneous rock				0	Δ				0	0							Δ	
2	AR-034	Ba,ss				Δ	Δ				0	0	Δ							
3	AR-036	Ba,andestic ss,alteration				Δ					0	0	Δ			0				
4	AR-037	Ba, silicified rock				0					0	0	0						Δ	
5	AR-039	Ty, silicified ss				Δ	Δ				0	0	0						Δ	
6	AR-040	Ty, silicified ss	Δ			Δ						0	Δ							
7	AR-041	Ty, green grey as or igneous rock				Δ					Δ	0	0							Γ
8	AR-044	Ty, silicified as with Py	Δ			Δ					Δ	0	0							
9	AR-045	Ty, basaltic andesite, hydrothermal alteration				0	Δ				0	0	0	_						
10	AR-055	Bi,gabbro				Δ		Δ		Δ	0	0	Δ						Δ	
11	AR-061	C ,silicified rock with Py					0				Δ	0								
12	AR-067	T ,paie brown clay	Δ			0	0				0	0								
13	AR-072	T ,white clay				Δ	0				0	0								
14	AR-073	T ,white clay with Qtz veinlet				Δ	Δ	Δ			0	0								
15	AR-095	K ,milky Qv-float									0			Δ						
16	AR-100	K ,white fine tuff(?)				0					0	0	Δ							
17	XACR-098	Ag,clay				Δ		Δ				Δ				0				
18	XACR-114	Ag, silicified vein	Δ				Δ				0	0								
19	BR-003	K , veinlet of black clay in fracture zone				Δ	Δ		<u> </u>		0	Δ								
20	BR-004	K ,white altered clay,W=40cm				Δ	Δ			ŀ	0	0			_					
21	CR-005	T ,white tuff				0	Δ			<u> </u>	0	0		0		Δ				
22	CR-016	Gi, dolerite, strong alteration	Δ			Δ					Δ	0	L		Δ	<u> </u>		<u> </u>		
23	CR-025	K ,white aplite,no sulfide				Δ	0				0	0					l_	_		
24	CR-027	K ,white aplite,no sulfide				Δ	0				0	0				_	<u> </u>		_	
25	DR-001	T ,clay vein with Py	•	_		0	Δ				0	0	<u> </u>	_			_		_	
26	DR-015	Km,ehloritized ss in fracture zone				0				_	0	0	0		_	<u> </u>	_		-	
27	ER-003	C ,clay vein of Carorongan deposit					Δ		_		ŀ	Δ					Δ		_	
28	ER-004	C , schist of Carorongan deposit					. 🛆				0	0								

previations] Mon:Montmorillonite Ch:Chlorite Se:Sericite Ka:Kaolinite Ph:Pyrophyllite La:Laumontite Q:Quartz Ps:Feldspar Ca:Calcite Ep:Epidote Pn:Prelmite Ho:Hornblende Ru:Butile Mh:Maghemite He:Hematite Py:Pyrite Ag:Aghan prospect Ba:Barinad creek Bi:bikat bikat creek C:Carorongan creek Gi:Gihawis creek K:Kadlakogod creek Ka:Kaipa river Km:Kampayas creek M:Mamparong creek My:Maytung river P:Pinadays creek T:Taganopol river Ty:Tabyonan creek

Appendix-3 X-ray Powder Diffraction Analysis (2)

Com-	ple No.	Alteration Mineral		Cla	y M	i n e	era	1		The Others Mineral										
oawj	pie no.	Locality Rock Type	Mon	Chl /Mon	Se /Mon	Ch	Se	Ka	Ph	La	Q	Ps	Ca	Еp	Pń	Hb	Ru	Mh	He	P
29	ER-005	T ,silicified and argillized schist	Δ			0	Δ				0	0	0							2
30	ER-007	T ,schist beside Qv				0	Δ				0	0	Δ							
31	ER-010	M ,ss with Qv				Δ	Δ				0	0	0							
32	ER-012	M ,dolerite,strong alteration				0	Δ		Δ		0	0	Δ			0		-		
33	ER-013	M ,fracture zone beside dolerite				0	Δ				0	0	0							
34	ER-015	M ,green ss	Δ			0	Δ				Δ	0	0		-					
35	ER-017	M ,alterated ss				Δ	Δ			Δ	0	0	0	Δ					Δ	
36	ER-019	M ,clay vein				0	Δ				0		0							
37	ER-026	Km, white clay in fracture zone				·					0	0		0		Δ				-
38	ER-041	My, calcite vein in silicified ss				0					Δ	0		Δ						Ī
39	ER-042	My,silicified vein(W=7cm)				Δ	Δ				0	Δ		Δ						
40	ER-061	Ka, reddish acidic tuff	Δ								Δ	Δ							Δ	
41	ER-064	Ka,clay in fracture zone				Δ					•	0	Δ							Ī
42	ER-065	Ka, light green clay vein in ss(W=4cm)				Δ					0	0		Δ		Δ				
43	ER-083	Ka, brown clay vein				Δ	Δ				0	0								Ī
44	ER-088	Ka, weathering silicified ss with black vein		Δ		Δ	Δ				0	Δ	Δ						Δ	
45	ER-090	Ka,clay along fault		Δ		Δ	Δ				0	0							Δ	
46	ER-091	Ka,ss of fracture zone				0	Δ				0	0	Δ							
47	ER-092	Ka, silicified ss	Δ			0	Δ				0	0	0							-
48	ER-093	Ka, silicified ss with Py				Δ	Δ				0	0	0							
49	ER-094	Ka, silicified ss with Py				Δ	Δ				0		Δ							
50	ER-102	Ka,Qv within basaltic andesite							Δ		0		Δ	Δ	0				Δ	
51	ER-104	Ty,silicified acidic tuff	·			Δ					0	0	Δ	Δ					Δ	
52	ER-105	Ty, Qv and Ep vein, atrong alteration				Δ					0	0		Δ				Δ	Δ	
53	ER-109	Ty,Qv with clay				Δ	Δ				0	0	0	Δ					Δ	
54	ER-110	P ,pyritized Qv beside aplite dike	Δ			Δ					0	0	Δ							
55	ER-112	P ,clay of fault				0	Δ				0	0	0							
56	ER-115	P , silicified white ss					Δ				0	0								ſ

[Symbols] ⊚:abundant ○:common △:few :rare

Abbreviations] Mon:Montmorillonite Ch:Chlorite Se:Sericite Ka:Kaolinite Ph:Pyrophyllite La:Laumontite Q:Quartz Fs:Feldspar Ca:Calcite Ep:Epídote Pn:Prehnite Hb:Hornblende Ru:Rutile Mh:Maghemite He:Hematite Py:Pyrite Ag:Agban prospect Ba:Barinad creek Bi:bikat bikat creek C:Carorongan creek Gi:Gihawis creek K:Kadlakogod creek Ka:Kaipa river Km:Kampayas creek M:Mamparong creek My:Maytung river P:Pinadays creek T:Taganopol river Ty:Tabyonan creek

Appendix-3 X-ray Powder Diffraction Analysis (3)

		Alteration		Cla	y M	ine	era	1			T	h e	0 1	t h e	r s	Мi	n e	eral			
Samj	ole No.	Locality Rock Type	Mon	Chl /Mon	Se /Mon	Ch	Se	Ка	Ph	La	Q	Fs	Ca	Ep	Ρ'n	llb	Ru	Mh	He	Ру	
57	ER-118	Ba, reddish acidic tuff, strong alteration				Δ				Δ	0	0	Δ	Δ				Δ			
58	ER-133	Kp,silicified ss with Qv(W=1cm)				Δ					0	Δ	Δ	Δ	0						
59	ER-138	K ,silicified and epidotized ss		Δ		Δ					0	0	·	•							
60	ER-139	K ,siliccous veim along small fault	Δ			Δ	Δ				0	Δ									
61	E0R-064	My, silicified ss-float(d=20cm) with Qtz-Py				Δ	Δ				0	0	Δ								
62	EOR-065	My,silicified ss with Qtz-Py				0	Δ				0	0	Δ								
63	EOR-066	My, silicified ss with Qtz-Py	Δ			0	Δ				Δ	©	0								
64	EOR-067	My,silicified lapilli tuff with Qtz				0	Δ				0	0	0								
65	EOR-068	My, silicified so with Qtz-Py	Ī			Δ	Δ				0	0			Δ						
66	EOR-069	My, silicified ss with Qtz-Py				Δ	Δ				0	0	Δ						<u> </u>	Δ	
67	EOR-083	Ka,light gray clay vein(W=35cm)				Δ	Δ				©	,o									
68	EOR-086	Ka,milky Qv in clay zone						Δ	Δ		0	Δ			0						
69	EOR-088	Ka,Qtz and Ep vein-float(φ=20cm)				Δ					0	0		0					Δ		
70	FR-002	C ,ss with Ch vein		Δ		0	Δ				0	Δ	Δ								
71	FR-014	T , brown tuff	Δ			0	ŀ				0	Δ								_	
72	FR-017	T , schist with Py				0	•		L		Δ	0								<u> </u>	
73	FR-018	T , schist with Py				0					0	0					<u> </u> _			_	
74	FR-028	T , diorite, alteration				0					0	0					_			_	
75	FR-035	T ,ss,strong alteration				Δ	<u> </u>	<u> </u>			0	0	0				<u> </u>				
76	FR-047	Km, diorite with Py	·				Ŀ				0	0	0			Δ			Ĺ		
77	FR-048	Km, diorite		_				١			Δ	0	_	_		<u> </u>		ļ	_		
78	FR-049	Km,diolite,argillized fracture zone	Δ.	<u> </u>		Δ	Ŀ	1_			Δ	0				-		ļ		_	
79	FR-050	Km,silicified tuff		Δ		0	Δ	١		<u> </u>	0	0							ŀ	1	
80	FR-051	Km,diorite-float			ļ		<u>\</u>	_		_	Δ	0	0			1.	-		L		
81	FR-058	K ,andesite porphyry with argillization				4	. 4	۷	_	Δ	0	0		<u> </u>		_			_	_	
82	FR-059	K ,silicified tuff					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_			0	0	Δ	<u>, </u>	_		_	ļ	-		
83	FR-060	K ,silicified rock with limonite	_		\\		4	7			0	0	-		_	_		_	\perp	\perp	
8/1	FR-061	K ,silicified ss				4	٠ ١				△	0									

[Symbols] \odot : abundant \bigcirc : common \triangle : few \cdot : rare

[Abbreviations] Mon:Montmorillonite Ch:Chlorite Se:Sericite Ka:Kaolinite Ph:Pyrophyllite La:Laumontite Q:Quartz Fs:Foldspar Ca:Calcite Ep:Epidote Pn:Prehnite Hb:Hornblende Ru:Rutile Mn:Maghemite He:Hematite Py:Pyrite Ag:Agban prospect Ba:Barinad creek Bi:bikat bikat creek C:Carorongan creek Gi:Gihawis creek K:Kadlakogod creek Ka:Kaipa river Km:Kampayas creek M:Mamparong creek My:Maytung river P:Pinadays creek T:Taganopol river Ty:Tabyonan creek

Appendix-3 X-ray Powder Diffraction Analysis (4)

Sample No.		Alteration	T	Clay Mineral The Others Mineral Mon Chl Se Ka Ph La Q Fs Ca Ep Pn IIb Ru Mh .								r a	l							
Sami	ore no.	Locality Rock Type	Mon			Ch	Se	Ка	Ph	La	Q	Fs	Ca	Ep	Pn	lb	Ru	Mh	He	Py
85	FR-062	K ,lapilli tuff		İ		Δ					0	0								
86	HR-015	P ,ss of fracture zone				Δ	Δ	•				0		Δ						
87	HR-016	Ty,silicified ss with Py				0					0	0		Δ					Δ	
88	HR-017	Ty, silicified andesite with Py	Δ			Δ	Δ					0	Δ	Δ						
89	HR-027	Ba,reddish acidic tuff				Δ					0	0							Δ	
90	ifR-029	Ba,gabbro with thin Qv				Δ	Δ				Δ	0	Δ							
91	HR-035	Ba, silicified ss with He	Δ			Δ			Δ		0	0	0		Δ					
92	JR-015	P ,greenish ss				Δ					•	0		Δ					Δ	
93	JR-016	P ,greenish ss				Δ	Δ			Ī	0	0	Δ						Δ	Γ
94	JR-017	P ,greenish ss				Δ	Δ				Δ	0							Δ	
95	JR-018	P ,greenish ss		Δ		Δ					Δ	0								Γ
96	JR-019	P ,greenish ss		Δ		Δ	Δ				Δ	0			Γ					
97	JR-020	P ,silt with FeO/MnO stains				Δ	Δ				Δ	0		Δ						
98	JR-021	P ,ss with FeO/MnO stains				Δ	Δ				0	0	Δ							
99	JR-022	P ,ss with FcO/AmO stains		1		Δ	,		1		0	0	Δ			1				-
100	JR-023	P ,greenish ss					Δ	Δ			Δ	0								
101	JR-024	P ,greenish ss	Δ			Δ	Δ				Δ	0	Δ							
102	JR-025	P ,silt with Qtz veinlet				Δ	Δ		1	T	Δ	0								
103	JR-027	P ,slightly chloritized silt				Δ	Δ				Δ	0								
104	JR-042	Ba, silicified ss with Qv and Ep vein				Δ			Δ		Δ	0	Γ	Δ	Δ					
105	JR-046	Ba,ss with FeO/MnO stains	Δ				Δ				Δ	0								
106	JR-047	Ba, hydrothemaly altered white clay		Δ	Δ	Δ	Δ				0	Δ		1			1			

[Symbols] ⊚:abundant O:common △:few ·:rare

[Abbreviations] Mon:Montmorillonite Ch:Chlorite Se:Sericite Ka:Kaolinite Ph:Pyrophyllite La:Lammontite Q:Quartz Fs:Feldspar Ca:Calcite Ep:Epidote Pn:Prehnite Ib:Hornblende Ru:Rutile Mh:Maghemite He:Hematite Py:Pyrite Ag:Agban prospect Ba:Barinad creek Bi:bikat bikat creek C:Carorongan creek G:Gihawis creek K:Kadlakogod creek Ka:Kaipa river Km:Kampayas creek M:Mamparong creek My:Maytung river P:Pinadays creek T:Taganopol river Ty:Tabyonan creek

Appendix-4 Chemical Analysis of Stream Sediments and Soil Samples (1)

	·
	N+
10000000000000000000000000000000000000	o. Element Units Detection
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Au Ag ppb ppm 1 1.0 0.2
\$	As PPM 2.0
00000000000000000000000000000000000000	Cu ppm 1.0
931-974-5967-855504530050050055453055-563005-665008-7-5729-585005507-7-865005-7-0329-1-2-6-7-655005-8-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	Fe 0.01
	Hg ppm 1.0
**************************************	Mo PPM 1.0
OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	Pb Ppm 2.0
77-100-100-100-100-100-100-100-100-100-1	S % Total 0.010
ŶŎĸŶŎŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶ	Sb ppm 2.0
00000000000000000000000000000000000000	Zn 2Pm 2.0

ppendix-4	Chemical	Analysis of	Stream	Sedimen	ts and Soil	Samples (2
No. Element 101 CS-090 102 CS-0801 103 CS-0801 104 CS-0802 105 CS-0804 107 CS-0805 108 CS-0805 1106 CS-0805 1109 CS-0805 1109 CS-0807 1100 CS-0806 1111 CS-0901 113 CS-0901 114 CS-0903 116 CS-0906 117 CS-0906 118 CS-0906 119 CS-0907 1100 CS-0808 111 CS-0901 113 CS-0901 113 CS-0901 114 CS-0903 116 CS-0906 117 CS-0906 119 CS-0907 1100 CS-0808 1100 CS-0808 1111 CS-0907 1120 CS-101 113 CS-0901 113 CS-0901 114 CS-0901 115 CS-0901 115 CS-0901 116 CS-0901 117 CS-0906 119 CS-0906 119 CS-0907 1100 CS-0906 119 CS-0907 1100 CS-0906	Agg 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analysis of Ass 133.0 181	\$\\ 050000000000000000000000000000000000	Monococococococococococococococococococo	\$\frac{\frac	XPMO000000000000000000000000000000000000

Appendix-4 Chemical Analysis of Stream Sediments and Soil Samples (3) No. Element Units 201 DS-017 202 DS-018 203 DS-019 204 DS-020 205 DS-021 206 DS-022 207 DS-023 DS-025 210 DS-026 DS-025 210 DS-026 DS-026 DS-026 DS-026 DS-026 DS-026 DS-026 DS-026 DS-030 215 DS-031 216 DS-031 216 DS-031 217 DS-033 217 DS-033 217 DS-034 220 DS-036 221 DS-037 Au BPb 31.0 31.0 276.0 193.0 92.0 146.0 7.0 3.0 462.0 462.0 39.0 1740.0 90.0 29.0 S % Total <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ppm 141.0 167.0 180.0 184.0 186.0 PPm 86.0 104.0 110.0 106.0 108.0 110.0 180.0 161.0 180.0 100.0 104.0 90.0 119.0 165.0 ıŏă.ö <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 154.0 122.0 91.0 131.0 <0.001 <0.001 0.017 0.065 84.0 102.0 84.0 80.0 106.0 113.0 112.0 211.0 0.065 0.044 0.005 <0.005 0.004 0.005 <0.001 195.0 217.0 108.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 8.85 10.10 7.96 8.85 6.42 7.43 6.29 7.56 7.56 206.0 188.0 181.0 183.0 198.0 126.0 7830.0 7930.0 1510.0 59.0 204.0 80.0 132.0 2540.0 1340.0 2540.0 105.0 244.0 945.0 1380.0 1490.0 1590.0 110.0 10.0 <2.0 <2.0 221 DS-037 222 DS-038 223 DS-039 224 DS-040 225 DS-041 <2.0 <2.0 <2.0 <2.0 <2.0 <0.001 <0.001 <0.001 88.0 92.0 104.0 4.0 2.0 6.0 4.0 2.0 4.0 4.0 0.002 100.0 DS-042 DS-043 DS-044 <1.0 <1.0 <1.0 0.006 98.0 0.001 98.0 96.0 227 DS-043 228 DS-044 229 DS-045 230 DS-046 231 DS-047 232 DS-048 233 DS-049 234 DS-051 180.0 230.0 169.0 181.0 181.0 185.0 0.003 0.004 0.004 0.003 0.001 <1.0 <1.0 <1.0 <1.0 100.0 94.0 88.0 106.0 2.0 4.0 4.0 4.0 8.0 4.0 DS-048 DS-049 DS-050 DS-051 DS-052 DS-053 90.0 98.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.001 201.0 198.0 152.0 115.0 116.0 116.0 118.0 98 0 236 0.005 0.010 0.002 0.006 2.0 98 0 237 BS-053 238 DS-054 239 DS-056 241 DS-056 241 DS-058 242 DS-058 243 DS-059 244 DS-060 245 DS-062 247 DS-063 248 DS-064 249 DS-066 251 DS-066 251 DS-066 96.0 84.0 94.0 0.006 108.0 <0.001 <0.001 118.0 <0.001 0.005 108.0 108.0 104.0 114.0 100.0 144.0 100.0 0.006 247 DS-063 248 DS-064 249 DS-066 250 DS-066 251 DS-067 252 DS-068 253 DS-070 255 DS-071 256 DS-072 257 DS-073 258 DS-075 259 DS-076 261 DS-077 261 DS-077 262 DS-078 263 DS-078 263 DS-078 264 DS-078 265 DS-078 0.003 0.004 0.002 8.44 8.7.265 5.555 4.565 5.565 4.565 6.565 6.565 6.565 6.565 6.565 6.565 6.665 7.7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 21.0 21.0 22.0 22.0 22.0 22.0 22.0 6.0 6.0 0.002 102.0 0.005 92.0 86.0 0.009 0.003 0.003 0.002 0.005 0.002 <1.0 <1.0 128.0 130.0 174.0 105.0 <1.0 <1.0 <1.0 <1.0 <1.0 100.0 Ř Ď 142.0 6.0 120.0 1.0 1.0 5.0 1.0 5.0 1.0 3.0 1.0 4.0 20.0 1260.0 1260.0 <0.001 <0.001 <0.001 6.0 265 DS - 081 266 DS - 082 267 DS - 083 268 DS - 084 269 DS - 085 270 DS - 086 271 DS - 087 272 DS - 088 273 DS - 089 274 DS - 090 275 DS - 091 276 DS - 092 277 DS - 093 278 DS - 094 279 DS - 095 280 DS - 096 281 DS - 097 282 DS - 098 283 DS - 090 284 DS - 100 285 DS - 101 286 DS - 102 287 DS - 104 289 DS - 104 289 DS - 104 289 DS - 104 289 DS - 106 291 FS - 001 <1.0 <1.0 <1.0 <1.0 <1.0 143.0 144.0 121.0 133.0 133.0 153.0 155.0 1548.0 154.0 120.0 132.0 120.0 100.0 6.0 <0.001

75.0 213.0 1500.0 3680.0

3680.0 1570.0 10.0 <1.0 <1.0 178.0 2.0 2.0 2.0

28.0 28.0 15.0 75.0

116.0

288 DS-104 289 DS-105 290 DS-166 291 FS-001 292 FS-003 293 FS-003 294 FS-005 295 FS-006 297 FS-006 297 FS-008 298 FS-008 298 FS-008

<1.0 <1.0 <1.0

<1.0 <1.0 <1.0 <1.0

<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

<1.0 <1.0 <1.0

<1.0 <1.0 <1.0 <1.0 <1.0 <1.0

<1.0 <1.0 <1.0 <1.0 <1.0 <1.0

<0.001 0.006

0.002

<0.001 0.002 0.006 0.013 0.003 0.006 0.007 <0.001 <0.001 <0.006 0.007 0.006 0.007 0.008 <0.001

<0.001 <0.001 0.003

<0.001 <0.001

<0.001

< 0.001 <0.001 <0.001 <0.001 <0.001

< 0.001

6.0 8.0

6.0 4.0 4.0 2.0 8.0 2.0 2.0 4.0 4.0 4.0 6.0

8.0

6.0 6.0 2.0 8.0

 $\begin{array}{c} 4.0 \\ 6.0 \\ 4.0 \\ 2.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 6.0 \end{array}$

116.0 88.0 90.0

100.0 108.0 94.0 90.0

88.0 88.0 82.0

106.0 98.0 92.0 96.0

90.0

86.0 78.0 98.0 92.0 102.0

		Analysis of	Stream S	ediments an	d Soil	Samples (4)	
307 FS-016 307 FS-0117 308 FS-0118 309 FS-0119 310 FS-021 310 FS-021 311 FS-022 311 FS-022 311 FS-022 312 FS-023 314 FS-023 315 FS-026 317 FS-023 318 FS-033 317 FS-033 318 FS-033 321 FS-033 322 FS-033 323 FS-044 323 FS-033 324 FS-033 325 FS-045 327 FS-033 328 FS-046 327 FS-047 328 FS-047 338 FS-048 339 FS-048 330 FS-048 331 FS-048 331 FS-048 332 FS-048 3331 FS-048 3331 FS-048 3332 FS-048 3333 FS-048 3334 FS-053 3354 FS-056 3355 FS-066 3356 FS-067 3357 FS-068 3357 FS-068 3357 FS-068 3357 FS-068 3357 FS-078 3358 FS-078 3358 FS-078 3368 FS-078 3369 FS-078 3369 FS-078 3369 FS-078 3369 FS-078 3378 FS-088 3378 FS-088 3378 FS-088 3378 FS-088 3378 FS-088 3378 FS-088	ABBO	<2.0	Hgm000000000000000000000000000000000000	Pp.000000000000000000000000000000000000	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\begin{array}{llllllllllllllllllllllllllllllllllll	

Appendix-4 Chemical Analysis of Stream Sediments and Soil Samples (5) S % Total 0.016 0.013 0.011 0.012 0.008 Element Units FS-112 FS-113 FS-114 FS-115 FS-116 FS-117 FS-118 FS-119 Au 137.0 121.0 24.0 156.0 225.0 452.0 90.0 90.0 86.0 92.0 86.0 90.0 134.0 124.0 188.0 127.0 135.0 0.1> (1.0) 402 FS-113 403 FS-114 404 FS-116 405 FS-116 406 FS-117 407 FS-129 410 FS-120 410 FS-121 411 FS-122 412 FS-123 413 FS-124 416 FS-125 416 FS-127 417 FS-126 417 FS-127 418 FS-128 418 FS-129 419 FS-131 421 FS-132 0.013 0.011 0.015 74.0 64.0 76.0 98.0 4.0 52.0 52.0 60.0 60.0 15.0 4.0 4.0 54.0 542.0 542.0 542.0 91.0 145.0 115.0 164.0 121.0 116.0 120.0 0.068 0.0080.008 <0.001 0.008 0.010 100.0 96.0 100.0 102.0 98.0 120.0 122.0 136.0 165.0 121.0 136.0 111.0 88.0 109.0 0.011 0.020 0.011 0.008 0.010 0.017 0.017 0.017 0.015 0.002 0.016 0.016 0.015 90.0 102.0 80.0 จีก ก 120 FS 131 421 FS 132 422 FS 134 423 FS 135 424 FS 135 425 FS 137 426 FS 139 427 FS 141 430 FS 141 431 FS 142 432 FS 144 434 FS 144 435 FS 144 436 FS 144 437 FS 144 438 FS 144 438 FS 154 440 FS 156 441 FS 156 442 FS 156 441 FS 156 442 FS 156 445 FS 156 447 FS 157 447 FS 158 80.0 92.0 94.0 94.0 72.0 70.0 72.0 96.0 100.0 68.0 96.0 111.0 97.0 93.0 101.0 <1.0 <1.0 <1.0 <1.0 <!:00</pre> < <1.0 1.0 <1.0 <1.0 0.024 0.023 0.026 0.022 0.023 0.031 0.029 0.025 0.029 0.021 0.027 0.032 0.032 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.0 <2.0 <1.0 4.0 <1.0 <1.0 <1.0 17.0 5.0 101.0 60.0 98.0 106.0 101.0 76.0 1173.0 159.0 95.0 116.0 107.0 115.0 83.0 117.0 117.0 58.0 40.0 84.0 66.0 34.0 2.0 <1.0 120.0 40.0 2.0 121.0 177.0 667.0 74.0 19.0 <1.0 <1.0 <1.0 60.0 0.031 0.021 0.029 48.0 62.0 72.0 76.0 56.0 0.029 0.031 0.034 0.027 <0.001 <0.001 <0.001 <0.001 418 FS 159 449 FS 160 450 FS 1601 451 FS 1601 452 FS 1601 452 FS 1604 454 FS 1605 456 FS 1005 457 FS 1007 458 FS 1008 459 FS 1010 461 FS 1011 462 FS 1011 462 FS 1013 464 FS 1016 465 FS 1016 466 FS 1016 467 FS 1017 468 FS 1017 469 FS 1017 469 FS 1017 469 FS 1017 471 FS 1020 471 FS 1020 471 FS 1020 477 FS 1020 478 FS 1020 478 FS 1020 480 FS 1020 480 FS 1020 480 FS 1020 19.0 4.0 3.0 <1.0 <1.0 <1.0 <1.0 <1.0 (0.001 (0 118.0 106.0 117.0 141.0 111.0 112.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 106.0 107.0 107.0 108.0 109.0 10 64.0 122.0 1.0 1.0 <1.0 <1.0 64.0 88.0 <2.0 <2.0 136.0 72.0 64.0 60.0 60.0 <1.0 <1.0 <1.0 <1.0 54.0 64.0 54.0 64.0 58.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 58.0 54.0 162.0 88.0 74.0 92.0 82.0 <1.0 -1.0 <1.0 <1.0 80.0 78.0 72.0 88.0

84.0 77.0 101.0 94.0 101.0 78.0

0.6 6.6 0.4 0.6 0.4 0.4 0.4

4.0 6.0 <2.0 4.0 <2.0 6.0 14.0 <2.0

7.13 13.15 6.74 6.55 7.74 6.76 7.01 7.29

6.25 6.37 6.52 6.78 6.50 7.14

492 GS 493 GS 494 GS 495 GS GS-042

494 GS -044 495 GS -045 496 GS -046 497 GS -047 498 GS -048 499 GS -049 500 GS -050

68-031 68-032 68-033 68-034 68-035

GS-036 GS-037

GS-038 GS-039 -040 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001

<0.001 0.006 0.009

<ŏ.öŏĭ

<0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 0.017 0.003

<1.0

<1.0 <1.0 <1.0 <1.0 <1.0 <1.0

šš.ö

86.0 90.0 92.0

56.0 70.0

94.0 96.0 92.0

108.0 126.0 92.0

No. Element Au Ag As Cu Fe Hg Mo Pb S % Sb Zi 501 GS-051 1.0 0.4 <2.0 90.0 6.91 <1.0 <2.0 0.010 <2.0 106.6 503 GS-053 1.0 0.4 6.0 83.0 7.29 <1.0 <1.0 <2.0 0.001 <2.0 114.6 504 GS-054 25.0 0.4 6.0 91.0 7.67 <1.0 <1.0 <2.0 <0.001 <2.0 114.6 504 GS-055 <1.0 0.4 <6.0 91.0 7.67 <1.0 <1.0 <2.0 <0.001 <2.0 106.6 505 GS-055 <1.0 0.4 <6.0 91.0 7.67 <1.0 <1.0 <2.0 <0.001 <2.0 100.6 505 GS-055 <1.0 0.4 <2.0 92.0 5.85 <1.0 <1.0 <2.0 <0.001 <2.0 100.6 506 GS-055 <1.0 0.4 <2.0 92.0 5.85 <1.0 <1.0 <2.0 <0.001 <2.0 108.6 506 GS-055 <1.0 0.4 <2.0 86.0 5.42 <1.0 <1.0 <2.0 <0.001 <2.0 108.6 507 GS-057 535.0 0.4 8.0 133.0 7.20 <1.0 1.0 <2.0 <0.001 <2.0 106.6 507 GS-057 535.0 0.4 8.0 133.0 7.20 <1.0 1.0 <2.0 <0.001 <2.0 116.6
Section Sect

Appendix-4	Chemical	Analysis of	Stream	Sedimen	ts and Soil	Samples (7)
No. Blanch State S	ABB 22222222222222222222222222222222222	As PPM (22.0 129.0 129.0 126.0 (2.0 113.0 0 126.0 (2.0 113.0 0 127.0 127.0 (2.0 140.0 138.0 122.0 (2.0 138.0 122.0 (2.0 138.0 122.0 (2.0 138.0	\$\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Ph	Zn ph. 0

Appendix-4 Chemic	al Analysis o	f Stream	Sediments	and Soil	Samples (8)
No. Element	18.0	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	0	Ph	4.0 100.0 0 100.0 0 118.0 0 118.0 0 100.0 0 118.0 0 100.0 0 118.0 0 118.0 0 100.0 0 118.0 0 100.0 0 118.0 0 100.0 0 118.0 0 118.0 0 100.0 0 10

Appendix-4	Chemical	Analysis	of	Stream	Sediments	and	Soil	Samples	(9)
Appendia-4	Circinicax	2 x man y 3 m	G,	STEE CHAIR	Scamments	*****	5011	Sempres	()

No. Energy 1	Au ppb (22.22.22.22.22.22.22.22.22.22.22.22.22.	4.0 16.0 12.0 10.0 1	121.0 106.0 117.0 127.0 127.0 128.0 121.0 124.0 124.0 124.0 124.0 124.0 124.0 124.0 124.0 124.0 125.0 126.0 129.0 120.0 12	ex440406652220066643133692666856667755577779011165566676688210978875071111156888811777666977566655545	Hpp:00000000000000000000000000000000000	Mpm000000000000000000000000000000000000	$\begin{array}{c} 8.00\\ 0.00\\$	\$ \\ \colored{\color	94200044649988000238847075000000000000000000000000000000000	.0
873 KS - 103 874 KS - 104 875 KS - 105 876 KS - 106 877 KS - 107 878 KS - 108 879 KS - 109 880 KS - 110 881 KS - 111 882 KS - 112	1.0 <0.2 <1.0 <0.2 3.0 <0.2 1.0 <0.2 70.0 <0.2 7.0 <0.2 12.0 <0.2 <1.0 <0.2 <1.0 <0.2	2.0 2.0 4.0 2.0 6.0 2.0 14.0 <2.0	82.0 93.0 78.0 68.0 67.0 80.0 69.0 87.0 80.0 93.0	6.52	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0	12.0	<0.001 <0.001	2.0 2.0 4.0 <2.0 2.0 2.0 2.0 2.0 2.0	74.0 74.0 72.0 70.0 80.0 72.0 82.0 78.0 92.0

Appendix-4 Chemical Analysis of Stream Sediments and Soil Samples (10)

Appendix-4	Chemical Anal	ysis of Stream	Sediments and	Soil Samples	(11)
------------	---------------	----------------	---------------	--------------	------

No. Element 101 DSL-60 102 DSL-61 103 DSL-62 104 DSL-62 105 ESL-01 106 ESL-02 107 ESL-04 109 ESL-06 110 ESL-07 112 ESL-11 114 ESL-12 115 ESL-14 117 ESL-15 118 ESL-17 120 ESL-17 120 ESL-17 120 ESL-18 121 ESL-19	Au ppb <1.00 <1.00 <1.00 2.00 3.00 <1.00 2.00 2.00 1.00 <1.00 1.00 <1.00 <1.00 1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00	App. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	As B000000000000000000000000000000000000	Cu 1097.0 1277.0 1277.0 1243.0 145.0 145.0 1151.0 1216.0 109.0 204.0 2024.0 217.0 217.0 217.0 2182.0 1882.0 1683.0	F .523442744585858585877787338997	Hg ppin (1.00 (1.0	Mo PPEM C1.00 C1.0	Phm0.000.000.000.000.000.000.000.000.000.	% 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1	Sp#0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	2nm 760.00 822.00 118.00 582.00 558.00 558.00 558.00 558.00 558.00 568.00 576.00 764.00
123 ESL-21 124 ESL-23 126 ESL-23 126 ESL-24 127 ESL-26 129 ESL-26 129 ESL-27 130 ESL-29 131 ESL-30 132 ESL-30 133 ESL-31 136 ESL-33 136 ESL-34 137 ESL-36 139 ESL-36 141 ESL-41 144 ESL-42 145 ESL-41 144 ESL-45 148 FSL-02	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	000000000000000000000000000000000000000	\$2.000000000000000000000000000000000000	226.0 17784.0 12849.0 12849.0 1466.0 16649.0 15772.0 16649.0 15976.0 1497.0	02451900303168839353333600344295 08.56898777778887766766777886688	<pre><!--.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!!.0 <!</td--><td><pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre></td><td>000000000000000000000000000000000000000</td><td>0.032 0.028 0.036 0.034 0.019 0.029 0.036 0.042 0.036 0.040 0.056 0.032 0.032 0.024 0.015 0.027 0.027 0.027</td><td>\$</td><td>766.00000000000000000000000000000000000</td></pre>	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	000000000000000000000000000000000000000	0.032 0.028 0.036 0.034 0.019 0.029 0.036 0.042 0.036 0.040 0.056 0.032 0.032 0.024 0.015 0.027 0.027 0.027	\$	766.00000000000000000000000000000000000
150 FSL-03 151 FSL-10 152 FSL-11 153 FSL-13 154 FSL-13 155 FSL-14 157 FSL-16 159 FSL-16 159 FSL-18 160 FSL-19 162 FSL-20 163 FSL-20 164 FSL-20 165 FSL-21 165 FSL-21 166 FSL-21	<pre><1.0 2.0 2.0 3.0 2.0 3.0 6.0 <1.0 6.0 3.0 6.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6</pre>	0.0.2222222222222222222222222222222222	<22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <20.00 <2	197.0 1564.0 1049.0 104	\$6656776555566776666665557c	<pre><!---O <!-O <!-O <!-O <!-O <!-O <!-O <!-O</td--><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>0.022 0.018 0.001 0.001 0.001 0.006 0.009 0.009 0.014 0.022 0.030 0.013 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020</td><td>\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>98.0 92.0 84.0 104.0 104.0 108.0 108.0 108.0 108.0 108.0 109.0</td></pre>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.022 0.018 0.001 0.001 0.001 0.006 0.009 0.009 0.014 0.022 0.030 0.013 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	98.0 92.0 84.0 104.0 104.0 108.0 108.0 108.0 108.0 108.0 109.0
171 FSL-29 172 FSL-30 173 FSL-31 174 FSL-32 175 FSL-34 176 FSL-35 178 FSL-35 178 FSL-37 180 FSL-37 180 FSL-38 181 FSL-40 183 FSL-41 184 FSL-44 185 FSL-44 187 FSL-44 187 FSL-45 188 FSL-44 187 FSL-45 199 FSL-47 190 FSL-49 192 FSL-50 194 GSL-01 195 GSL-02 197 HSL-01 198 HSL-01 198 HSL-01 198 HSL-02	4.0 3.0 5.0 (1.0 3.0 4.0 1.0 2.0 2.0 4.0 (1.0 4.0 (1.0 4.0 (1.0 1.0 4.0 1.0 1.0	\$2224222222222222222222222222222222222	000000000000000000000000000000000000000	172.0 177.0 1779.0 160.0 171.0 160.0 171.0 160.0 120.0 162.0 138.0 121.0 114.0 121.0	094345616208827893505554999580765776655566555555556657878787	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	<pre><!--.0 <!.0 <!.0 <!.0 <!.0 <!.0 <!.0 <!.0</td--><td>\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>0.024 0.014 0.022 0.017 0.018 0.001 0.012 0.017 0.001 0.003 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.</td><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>64.0 94.0 62.0 82.0 84.0 84.0 74.0 74.0 75.0 92.0 92.0 86.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78</td></pre>	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.024 0.014 0.022 0.017 0.018 0.001 0.012 0.017 0.001 0.003 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	64.0 94.0 62.0 82.0 84.0 84.0 74.0 74.0 75.0 92.0 92.0 86.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78

Appendix-4 Chemical Analysis of Stream Sediments and Soil Samples (12)

				•							F-144 (2
No. Flement Units 201 HSL-05	Ap ppb	Ag PPM <0.2	AS <2.0	Cu ppm 242.0	Fe 8.60	Hg Sppm <1.0	Mo oppm <1.0	Pb Reg	S (X) To tal 0.017	Sb Reg	Zn ppm 82.0
202 HSL-06	41.0 1.0	<0.2	2.0	169.0	6.50	<1.0	1.0	22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00 <22.00	0.012	2.0 2.0 2.0	74.0
203 HSL-07 204 HSL-08	2.0 15.0	<0.2 <0.2 <0.2 <0.2	<2.0 <2.0	$239.0 \\ 204.0$	$\frac{5.57}{8.05}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.021 0.031	2.0	$\frac{82.0}{52.0}$
205 HSL-09 206 HSL-10	8.0 <1.0	<0.2 <0.2	<2.0 <2.0 <2.0	$\frac{207.0}{193.0}$	$\frac{7.69}{6.61}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.029 \\ 0.019$	4.0 <2.0	58.0 96.0
207 HSL-11 208 HSL-12	<1.0 4.0	<0.2	<2.0	99.0 144.0	5.54 5.94	<1.0	<1.0	14.0	0.032 0.015	<2.0	44.0 112.0
209 JSL-01	28.0	0.2	<2.0 <2.0	216.0	0.72	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0	0.024	<2.0 <2.0 <2.0	100.0
210 JSL-02 211 JSL-03	$\frac{4.0}{2.0}$	<0.2 <0.2 0.2 <0.2 <0.2	<2.0 <2.0	277.0 208.0	8.13 8.68	<1.0 <1.0	<1.0 <1.0 3.0	<2.0	$0.029 \\ 0.043$	4 ()	$\frac{118.0}{44.0}$
212 JSL-04 213 JSL-05	$\frac{4.0}{2.0}$	0.4 0.2 <0.2	<2.0 <2.0	$193.0 \\ 248.0$	$\substack{10.60\\8.84}$	<1.0 <1.0	<1.0	<2.0 <2.0 <2.0	$0.035 \\ 0.029$	<2.0 <2.0 <2.0	$\frac{38.0}{110.0}$
214 JSL-06 215 KSL-01	3.0 6.0	<0.2	<2.0	$\frac{192.0}{185.0}$	$\frac{8.23}{7.36}$	<1.0 <1.0	<1.0 <1.0	72 11	0.042 0.031	<2.0	$64.0 \\ 80.0$
216 KSL-02 217 KSL-03	<1.0 <1.0	0.2	₹2.ŏ ₹2.ŏ	$\frac{106.0}{110.0}$	$\frac{6.03}{6.08}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0 <2.0	$0.026 \\ 0.020$	<2.0 <2.0	$\frac{60.0}{98.0}$
218 KSL-04 219 KSL-05	₹1.0 1.0	0.2	<2.0 <2.0	179.0 191.0	$\frac{5.50}{5.03}$	<1.0 <1.0	1.0 <1.0	<2.0	0.030 0.031	<2.0 2.0	116.0 98.0
220 KSL-06	2.0	0.2	$^{2.0}$	182.0	6.05	<1.0	<1.0	₹2.0	0.026	<2.0	116.0
221 KSL-07 222 KSL-08	<1.0 3.0	0.2 0.2 <0.2 <0.2	<2.0 <2.0	$\substack{68.0\\165.0}$	$\frac{3.60}{7.90}$	<1.0 <1.0	<1.0 1.0	<2.0 <2.0 <2.0	$0.031 \\ 0.027$	<2.0 <2.0	$\begin{array}{c}48.0\\62.0\end{array}$
223 KSL-09 224 KSL-10	$\frac{1.0}{2.0}$	<0.2 <0.2 <0.2	$\substack{16.0 \\ 8.0}$	141.0 209.0	$\frac{7.59}{7.13}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0	0.029 0.026	<2.0 <2.0 <2.0	$\frac{62.0}{72.0}$
225 KSL-11 226 KSL-12	$\frac{2.0}{3.0}$	<0.2	<2.0 <2.0	$\frac{181.0}{159.0}$	$\frac{7.28}{7.38}$	<1.0 <1.0	<1.0 <1.0	<2.0	$\begin{array}{c} 0.021 \\ 0.027 \end{array}$	<2 N	$\frac{90.0}{62.0}$
227 KSL-13	$\substack{1.0\\13.0}$	0.2 <0.2 <0.2 <0.2	<2.0 <2.0	156.0 141.0	$\substack{7.75\\8.04}$	<1.0 <1.0	<1.0 <1.0	72 N	$0.029 \\ 0.035$	<2.0 <2.0	$\frac{56.0}{36.0}$
228 JTA-01 229 JTA-02 230 JTA-03	13.0 8.0	<0.2	<2.0 <2.0	$145.0 \\ 150.0$	8.05 8.38	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0 <2.0	0.026 0.027	<2.0 <2.0	34.0 36.0
231 JTA-04	7.0	₹0.2	<2.0	135 0	7.99	<1.0	<1.0	2.0	0.033	<2.0	34.0
232 JTA-05 233 JTA-06	$\begin{smallmatrix} 5.0\\1 0.0\\\end{smallmatrix}$	<0.2 <0.2 <0.2 <0.2	<2.0 <2.0	153.0 187.0	$\frac{8.44}{7.94}$	<1.0 <1.0	<1.0	2.0 2.0	0.029 0.022	<2.0 <2.0	$\begin{array}{c} 34.0 \\ 124.0 \end{array}$
234 JTA-07 235 JTA-08	13.0 20.0	<0.2 <0.2	<2.0 <2.0	$\substack{146.0\\161.0}$	$\frac{7.97}{8.09}$	<1.0 <1.0	<1.0 1.0	<2.0 4.0	$0.022 \\ 0.027$	<2.0 <2.0 <2.0	36.0 50.0
236 JTA-09 237 JTA-10	$\frac{12.0}{2.0}$	<0.2 <0.2 <0.2 <0.2	<2.0 <2.0	$\frac{139.0}{185.0}$	$\frac{8.05}{8.12}$	1.0 <1.0	$\frac{1.0}{1.0}$	$\frac{4.0}{2.0}$	$0.025 \\ 0.024$	<2.0 <2.0	36.0 46.0
237 JTA-10 238 JTA-11 239 JTA-12	8.0 42.0	<0.2 <0.2	<2.0 <2.0 <2.0	$177.0 \\ 139.0$	8.12 7.93 8.01	<1.0 <1.0	<1.0 1.0	2.0 <2.0 2.0	$\begin{array}{c} 0.023 \\ 0.024 \end{array}$	<2.0 <2.0 <2.0	46.0 30.0
240 JTA-13 241 JTA-14	4.0	<0.2 <0.2 <0.2	<2.0 <2.0	127.0 195.0	7.90 8.03	<1.0 <1.0	1.0 2.0	2.0 2.0 6.0	$0.024 \\ 0.030$	<2.0 <2.0	28.0 56.0
242 JTA-15	34.0	<0.2	<2.0	174.0	8.79	1.0	1.0	4.0	0.025	(2 N	44.0
243 JTA-16 244 JTA-17	$\frac{64.0}{97.0}$	<0.2 <0.2 <0.2 <0.2	<2.0 <2.0	$\frac{209.0}{166.0}$	$\frac{8.91}{8.81}$	1.0 <1.0	$\frac{1.0}{1.0}$	$\frac{2.0}{4.0}$	$0.026 \\ 0.031$	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0	76.0 68.0
245 JTA-18 246 JTA-19	$\frac{79.0}{53.0}$	<0.2 <0.2	<2.0 <2.0	$\frac{167.0}{161.0}$	$\substack{8.81\\8.47}$	<1.0 <1.0	1.0 <1.0	<2.0 <2.0 <2.0	$0.028 \\ 0.026$	<2.0 <2.0	$88.0 \\ 134.0$
247 JTA-20 248 JTA-21	57.0 8.0	0.2	<2.0 <2.0	$\frac{197.0}{193.0}$	$\substack{8.86 \\ 8.51}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.022 \\ 0.013$	<2.0 4.0	$\frac{98.0}{110.0}$
248 JTA-21 249 JTA-22 250 JTA-23	$\frac{39.0}{36.0}$	$\frac{0.2}{0.2}$	2.0 <2.0	236.0 224.0	$\frac{7.87}{8.45}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0	$0.013 \\ 0.021$	2.0 <2.0	138.0 122.0
251 JTA-24	53.0 60.0	0.2 <0.2 <0.2 <0.2	<2.0	230.0 215.0	7.79	<1.0 <1.0	<1.0 <1.0	<2.0	0.019 0.019	<2.0	140.0
252 JTA-25 253 JTA-26 254 JTA-27	56.0 53.0	<0.2	<2.0 <2.0 <2.0	163.0 165.0	8.03 8.26 8.29	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0	0.019 0.021	2.0 <2.0 <2.0	34.0
255 JTA-28	97.0	<0.2	<2.0	162.0 165.0	8.42	<1.0	<1.0	<2.0	0.023	<2.0 2.0 2.0	$\frac{36.0}{38.0}$
255 JTA-28 256 JTA-29 257 JTA-30	85.0 78.0	<0.2 <0.2	<2.0 <2.0	153.0	$\frac{9.66}{8.99}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0	0.024 0.021	<2.0	38.0 38.0
258 JTA-31 259 JTA-32	$\substack{44.0 \\ 56.0}$	<0.2 <0.2 <0.2 <0.2 <0.2	<2.0 <2.0 <2.0 <2.0	$168.0 \\ 219.0$	$\frac{9.88}{9.78}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.026 0.005	<2.0 2.0 2.0	$\begin{array}{c} 46.0 \\ 98.0 \end{array}$
260 JTA-33 261 JTA-34	$\frac{247.0}{252.0}$	<0.2 <0.2	<2.0 <2.0	$\frac{243.0}{143.0}$	$\frac{8.96}{8.84}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.021 \\ 0.021$	2.0 <2.0	$\begin{array}{c} 92.0 \\ 38.0 \end{array}$
262 JTA-35	$\frac{222.0}{298.0}$	<0.2 <0.2	<2.0	$\frac{147.0}{165.0}$	$8.54 \\ 8.86$	<1.0 <1.0	<1.0 <1.0	2.0 <2.0	0.025 0.020	<2.0 2.0 <2.0	52.0 42.0 34.0
264 JTA 37 265 JTA-38 266 JTA-39 267 JTA-40	$\substack{169.0\\148.0}$	<0.2	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	151.0	7.78 9.39 10.05 11.05	<1.0 <1.0	<1.0 <1.0 <1.0	<2.0	0.025	2.0 2.0 2.0 2.0 2.0 2.0 2.0	34.0
266 JTA-39 267 JTA-40	138 0	<0.2	<2.0	160.0	10.05	<1.0 <1.0	₹1.0	<2.0	0.019	<2.0	30.0 32.0 36.0
268 JTA-41 269 JTB-01 270 JTB-02	115.0 152.0 <1.0	<0.2	₹2.0	177.0	11.00	<1.0 <1.0	₹1.0 0.1}	₹2.0	0.010	2.0	36.0
270 JTB-02 271 JTB-03	<1.0	<0.2	4.0	175.0	7.90	<1.0	<1.0	<2.0	$0.029 \\ 0.026$	4.0	148.0 80.0
272 JTR-04	6.0	<0.2	<2.0 4.0	138.0	8.03	<1.0 <1.0	<1.0	4.0	0.027	4.0 2.0 4.0	44.0
273 JTB-05 274 JTB-06	2.0	<0.2	<2.0	111.0	$\frac{7.53}{7.07}$	<1.0	<1.0	<2.0	0.020 0.026 0.021	4.0 2.0	$\begin{array}{c} 132.0 \\ 36.0 \end{array}$
275 JTB-07 276 JTB-08 277 JTB-09 278 JTB-10	2.0 2.0 <1.0 36.0	<0.2 <0.2	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0	123.0 123.0	$\frac{7.97}{7.88}$	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.021 <0.001 <0.001	$\frac{4.0}{2.0}$	50.0 44.0 132.0 36.0 32.0 30.0
277 JTB-09 278 JTB-10	128.0 113.0	<0.2 <0.2	<2.0 <2.0	$\frac{127.0}{149.0}$	8.13 7.80	· 1.0	<1.0 <1.0	<2.0 <2.0	<0.001 <0.001	$\frac{2.0}{2.0}$	$\frac{34.0}{36.0}$
279 JTB-11 280 JTB-12	107.0 181.0	<0.2 <0.2	<2.0	151.0 161.0 181.0 177.0 175.0 175.0 1378.0 123.0 123.0 123.0 123.0 123.0	11.00 77.690 77.887.507 77.887.507 77.887.77.88.30 77.88.30 88.77.88.87 88.77.88.87 88.443	<1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	000000000000000000000000000000000000000	ስ ስያ፣	2.0000000000000000000000000000000000000	-50.0
281 JTB-13 282 JTR-14	<1.0 100.0	<0.2 <0.2	<2.0 <2.0	170.0 166.0	8.38	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0	2.0	0.018 0.021 0.022 0.024 0.024 0.025	<2.0	66.0
283 JTB-15	106.0	<0.2	<2.0	166.0 157.0 167.0 158.0	7.92	<1.0 <1.0	<1.0 ∠1.0	<2.0	0.024	2.0	62.0
284 JTB-16 285 JTB-17 286 JTB-18	32.0 76.0 59.0	0.2	4.0 <2.0 4.0	158.0 171.0	8.43	<1.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.0	0.025	4.0	44.0
287 JTB-19 288 JTB-20	51.0	<0.2	2.0 6.0	163.0	8.36	<1.0 <1.0	<1.0	<2.0	$0.026 \\ 0.016$	4.0	52.0
289 JTB-21	85.0 4.0	0.2	<2.0 2.0 2.0	196.0 180.0	8.43 9.06 8.36 7.77 7.98 9.67 8.61	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	10.0	0.016 0.021 0.006 0.012 0.023 0.027 0.028	4.U <2.0	42.0 66.0 52.0 62.0 62.0 44.0 52.0 130.0 144.0 82.0 146.0
289 JTB-21 290 JTB-21 290 JTB-22 291 JTB-23 292 JTB-24 293 JTB-25 294 JTB-26	45.0 4.0 19.0 29.0 44.0	<0.2 0.2	6.0	$\frac{282.0}{179.0}$	$\begin{array}{c} 9.67 \\ 8.61 \end{array}$	<1.0 <1.0	<1.0 <1.0	8 0 4.0	$0.012 \\ 0.023$	<2.0 4.0 4.0	144.0 82.0
292 JTB-24 293 JTB-25	29.0 29.0	<0.2 <0.2	8.0 <2.0 <2.0	$\frac{273.0}{288.0}$	10.85 12.10 10.45	<1.0	<1.0	4.0 <2.0	$0.027 \\ 0.028$	$\frac{4.0}{2.0}$	$138.0 \\ 146.0$
294 JTB-26 295 JTB-27	20.0	<0.2 <0.2	<2.0	190.0 180.0 282.0 179.0 273.0 288.0 247.0 200.0	9.15	<1.0 <1.0	<1.0 <1.0	2.0 <2.0	0.017	4.0 2.0 2.0 2.0	142.0 132.0
295 JTB-27 296 JTB-28 297 JTB-29	$\frac{70.0}{90.0}$	<0.2 <0.2	6.0 <2.0		8.90 8.41	<1.0 <1.0	<1.0 <1.0 <1.0	<2.0 <2.0	0.021 0.022 0.015	$\frac{4.0}{2.0}$	142.0 132.0 78.0 156.0
298 JTB-30 299 JTB-31	$\begin{array}{c} 47.0 \\ 214.0 \\ 62.0 \end{array}$	22222222222222222222222222222222222222	$\frac{4.0}{6.0}$	230.0 275.0 191.0	8.69	<1.0 <1.0	<1.0	10.0 8.0 4.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	$0.015 \\ 0.017$	4.0 2.0 2.0 2.0 2.0	200.0
300 JTB-32	62.0	<0.2	<2.0	172.0	$9.25 \\ 8.33$	<1.0	<1.0	<2.0	0.016	2.0	62.0 72.0

	Appendix-4	Chemical	Analysis of	f Stream	Sediments	and Soil	Samples (13)
-	No Flement	An Ag	As Cu	Pe	Hg Mo	Pb \$.%,	Sh 2n

No. Fights 34 3014 JTB-34 302 JTB-34 303 JTB-34 303 JTB-36 304 JTB-36 307 JTB-38 308 JTB-38 309 JTB-38 309 JTB-31 310 JTC-02 312 JTC-04 312 JTC-05 312 JTC-15 312 JTC-15 313 JTC-22 313 JTC-12 314 JTC-22 315 JTC-22 316 JTC-22 317 JTC-22 317 JTC-22 318 JTC-22 327 JTC-22 328 JTC-23 328 JTC-33 339 JTC-33 337 JTC	App. 0	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	1.0 <1.0 <1.0 <1.0 1.0 <1.0 <1.0 <1.0 <1.0 <1.0	\$\\ \bar{\}_{\text{ppm}} \\ \bar{\}_{\text{ool}} \\ \b	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	
378 UTD -28 379 DTD -29 380 DTD -30 381 DTD -31 382 DTD -32 383 DTD -33 384 DTD -36 386 DTD -36 387 DTD -37 388 DTD -37 388 DTD -38 390 DTD -40 391 DTD -41 392 DTE -01 393 DTE -04 396 DTE -05 397 DTE -06 398 DTE -07 399 DTE -08	104.0	0 176.0 8.93 0 178.0 8.27 0 159.0 7.65 0 139.0 7.65 0 157.0 8.27 0 144.0 8.07 0 149.0 7.47 0 219.0 8.37 0 154.0 8.37 0 154.0 8.37 0 154.0 8.37 0 154.0 8.88 0 154.0 8.88 0 154.0 8.88 0 154.0 8.88 0 154.0 8.88 0 154.0 7.88 0 154.0 8.88 0 157.0 7.88 0 167.0 7.78 0 163.0 8.33 0 157.0 7.89	1.0	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	6.0 66.0 4.0 54.0 60 58.0 4.0 36.0 6.0 50.0 4.0 112.0 6.0 80.0 4.0 46.0 4.0 52.0 4.0 52.0 6.0 40.0 4.0 38.0 6.0 40.0 4.0 38.0 6.0 40.0 4.0 38.0 6.0 34.0 6.0 34.0 6.0 34.0 6.0 34.0 6.0 38.0 6.0 34.0 6.0 38.0 6.0 38.0	

Appendix-4	Chemical	Analysis	of Stream	Sediments	and	Soil	Samples (1	4)	
						-			

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.1 DTE-123 0.1 DTE-123 0.1 DTE-123 0.2 DTE-123 0.3 DTE-123 0.4 DTE-123 0.5 DTE-123 0.6 DTE-123 0.7 DT	App	#0000000000000000000000000000000000000	Cpp.00000000000000000000000000000000000	#4676912792314816976271261068316985777777769888778878878878877888877888767888887788887787897779		<pre></pre>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\ \begin{align*} \times \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2nm000000000000000000000000000000000000	
	466 DTF - 37 467 DTF - 38 468 DTF - 39 169 DTF - 40 470 DTF - 40 470 DTF - 40 477 KTG - 01 472 KTG - 02 473 KTG - 03 474 KTG - 07 475 KTG - 07 478 KTG - 07 478 KTG - 07 478 KTG - 07 478 KTG - 10 481 KTG - 11 482 KTG - 12 483 KTG - 12 483 KTG - 12 483 KTG - 12 484 KTG - 14 485 KTG - 16 487 KTG - 19 490 KTG - 20 491 KTG - 21 492 KTG - 22 493 KTG - 24 494 KTG - 24 495 KTG - 24 496 KTG - 24 497 KTG - 27 498 KTG - 28 499 KTG - 29 500 KTG - 30	08.0 <0. 99.0 <0. 33.0 <0. 35.0 <0. 35.0 <0. 82.0 <0. 82.0 <0. 82.0 <0. 33.0 <0. 33.0 <0. 46.0 <0. 47.0 <0. 41.0 <0. 41.0 <0. 41.0 <0. 40.0 <0. 15.0 <0. 15.0 <0. 7.0 <0.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	178.0 148.0 148.0 155.0 167.0 155.0 168.0 173.0 217.0 159.0 172.0 159.0 172.0 180.0 2147.0 180.0 174.0 160.0 174.0 183.0 174.0 185.0 178.0 128.0 178.0 189.0 178.0 189.0 179.0 189.0 179.0 189.0 179.0 189.0 179.0 189.0 179.0 189.0 179.0 189.0 179.0 189.0 189.0 199.0	88.85.77.87.8.97.77.9.01.10.8.87.8.8.99.99.8.8.8.98.8.99.99.8.8.8.99.99.	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	<pre><!--.0 </pre--> <pre></pre> <pre><pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre><pre></pre> <pre></pre> <</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	U.U32 0.029 0.029 0.028 0.021 0.021 0.015 0.015 0.015 0.015 0.015 0.016 0.020 0.021 0.021 0.021 0.021 0.022 0.016 0.022 0.023 0.023 0.023 0.024 0.025	2.000000000000000000000000000000000000	78.0 96.0 96.0 118.0 98.0 102.0 102.0 104.0 104.0 104.0 106.0	

Appendix-4	Chemical	Analysis	of	Stream	Sediments	and	Soil	Samples	(1:	5)
------------	----------	----------	----	--------	-----------	-----	------	---------	-----	----

506 KTG-36 507 KTG-37 508 KTG-38 509 KTG-39 510 KTG-41 511 KTG-41 512 KTH-01 513 KTH-02 514 KTH-03 515 KTH-06 518 KTH-06 518 KTH-06 518 KTH-08 520 KTH-09 521 KTH-11 523 KTH-12 524 KTH-15 525 KTH-14 526 KTH-15 527 KTH-15 528 KTH-15 528 KTH-15 528 KTH-15 528 KTH-15 528 KTH-15 528 KTH-16 528 KTH-17 529 KTH-18 530 KTH-19 531 KTH-20 531 KTH-21	Au Pho Co. 2	<pre><2.0 1: <2.0 1: <2.0 1: <2.0 0 /pre>	75.0 7.7.7.7.7.7.7.7.7.7.7.7.6.0 88.6.7.7.6.0 7.7.6.0 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	Hg PP 0	Mo PP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\\\ 2.000000000000000000000000000000000000	\$\\ \tau_1 \\ \tau_2 \\ \tau_1 \\ \tau_2 \\ \t	4.000000000000000000000000000000000000	Zn m
538 KTH-27 538 KTH-28 539 KTH-28 540 KTH-20 541 KTH-30 542 KTH-31 543 KTH-32 544 KTH-33 546 KTH-35 547 KTH-36 548 KTH-38 550 KTH-38 550 KTH-40 552 KTH-10 553 KTI-02 555 KTI-04 555 KTI-04 556 KTI-08 550 KTI-08	7.0	00000000000000000000000000000000000000	29.0 0 0 1440.0 7 140.0 7 140.0 7 140.0 7 151.0 8 164.0 177.0 149.0 1777.0 1339.0 7 121.0	1.00	\$1.000000000000000000000000000000000000	\frac{1}{2}\cdot \cdot	0.029 0.027 0.027 0.031 0.031 0.031 0.024 0.024 0.024 0.025 0.0224 0.0224 0.0221 0.0224 0.0221 0.0224 0.0221 0.0224 0.0221 0.0224 0.0221 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0223 0.0224 0.0223 0.0223 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.0223 0.0223 0.0224 0.0223 0.0224 0.0223 0.0224 0.022	4424684424126444222222222222442222244222224422222442222	88.0 904.0 904.0 904.0 905
570 KTI - 18 571 KTI - 19 572 KTI - 20 573 KTI - 21 574 KTI - 22 575 KTI - 24 577 KTI - 24 577 KTI - 26 578 KTI - 26 579 KTI - 27 580 KTI - 28 581 KTI - 32 582 KTI - 33 583 KTI - 33 584 KTI - 33 585 KTI - 33 586 KTI - 36 589 KTI - 37 580 KTI - 37 580 KTI - 37 581 KTI - 37 582 KTI - 36 583 KTI - 37 584 KTI - 37 595 KTI - 37 592 KTI - 38 591 KTI - 37 592 KTI - 41 594 KYA - 01 595 KYA - 02 596 KYA - 03 597 KYA - 04 598 KYA - 05 599 KYA - 06 600 KYA - 07	13.0	\$2.000000000000000000000000000000000000	128.0 142.0 142.0 138.0 197.0 142.0 174.0 177.0 220.0 130.0 174.0 130.0 174.0 152.0 166.0 172.0 159.0 159.0 159.0 159.0 159.0 143.0 14	9.62 <1.0 9.62 <1.0 9.50 <1.0 9.51 <1.0 9.52 <1.0 9.58 9.28 <1.0 9.61 <1.0 9.78 <1.0 9.61 <1.0 9.63 <1.0 9.64 <1.0 9.64 <1.0 9.64 <1.0 9.65 <1.0 9.75 <1.0 9.75 <1.0 9.75 <1.0 9.75 <1.0 9.75 <1.0 9.77 <1.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.028 0.035 0.033 0.038 0.035 0.039 0.023 0.023 0.023 0.023 0.022 0.023 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023	*4.000.000.000.000.000.000.000.000.000.0	52.0 44.0 46.0 64.0 160.0 112.0 24.0 110.0 130.0 100.0

Appendix-4 Chemic	al Analysis of		ediments and S	Soil Sa	mples (16)
No. Flement Au	Cumpo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hg 0.000.000.000.000.000.000.000.000.000.	<pre><1.0</pre>	181 181 181 181 181 181 181 181	26.0 26.0 26.0 26.0 30.0

Appendix-4	Chemical	Analysis of	Stream	Sediments	and Soil	Samples (17)
No. Element Units	Au Ag	As Cu	Fe P	Hg Mo	Ph S %	Sb Zn gpm ppm

766 EYE 05 88.0 (0.2 < 2.0 140.0 8.80

Appendix-4 Chemical Analysis of Stream Sediments and Soil Samples (18)

No.	lement Inits	An daa	Ag	As	Cu	Fe	Hg	Mo	Pb	S	de	Zn mag
	lnits IYF-03 IYF-04	66.0 171.0	(0.2 (0.2 (0.2	PPⅢ <2.0 <2.0	131.0 73.0	7.85 7.56	ορή <1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.026 0.025	ррд 4 0 4 0	30.0 10.0
803 J	JÝF-05 JÝF-06	176.0 236.0	<0.2	<2.0 <2.0	70.0 131.0	$7.79 \\ 8.23$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.023 0.026	4.0 8.0	10.0 24.0
805 J	/	103.0	30.2	<2.0	119.0	8.53	<1.0	<1.0	10.0	0.030	8.0	32.0
807 J	JYF-09	$\frac{40.0}{49.0}$	<0.2	<2.0 <2.0	158.0 129.0	$\frac{8.69}{7.77}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.027 0.031	2.0 4.0	28.0 22.0
809 J	JYF-10 JYF-11	$95.0 \\ 104.0$	<0.2 <0.2	<2.0 <2.0	120.0 145.0	$\begin{array}{c} 8.86 \\ 7.93 \\ 7.42 \end{array}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.025 \\ 0.033$	4.0 <2.0	$\substack{14.0\\28.0}$
	JYF - 12 JYF - 13	$149.0 \\ 164.0$	<0.2 <0.2	<2.0 <2.0	137.0 149.0	$\frac{7.42}{8.42}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.034 \\ 0.036$	$\frac{2.0}{4.0}$	$\begin{array}{c} 24.0 \\ 26.0 \end{array}$
812 J	JÝF - 14 JÝF - 15	163.0 142.0	<0.2	<2.0 <2.0	163.0 181.0	$\frac{9.14}{9.47}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	$0.036 \\ 0.034$	2.0 2.0	$\frac{26.0}{30.0}$
814 J	JYF-16	199.0	₹0.2	<2.0	161.0 149.0	9.38	<1.0	<1.0	<2.0	0.039	4.0	28.0
816 J	JYF - 17 JYF - 18	214.0	₹0.2	<2.0 <2.0 <2.0	141.0	8.36 7.00	<1.0 <1.0	<1.0 <1.0 <1.0	<2.0	$0.030 \\ 0.038$	2.0 <2.0	34.0 58.0
818 J	JYF - 19 JYF - 20	86.0 83.0	<0.2	<2.0	184.0 182.0	$\frac{8.21}{8.12}$	<1.0 <1.0	<1.0	<2.0	$0.031 \\ 0.043$	10.0 4.0	$\frac{60.0}{62.0}$
820 1	JYF-21 JYF-22	51.0 45.0	<0.2 <0.2	<2.0 <2.0	186.0 189.0	$\frac{8.07}{8.01}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.034 \\ 0.026$	$\frac{4.0}{4.0}$	$\frac{70.0}{92.0}$
821 J 822 J	JÝR-23 JÝF-24	$\frac{19.0}{9.0}$		<2.0 <2.0	182.0 177.0	$\frac{7.67}{7.18}$	<1.0 <1.0	<1.0 <1.0	00000000000000000000000000000000000000	$0.029 \\ 0.025$	$\frac{2.0}{4.0}$	88.0 104.0
823 J	JÝF - 25 JÝF - 26	22.0	<0.2	<2.0	182.0 174.0	6.92 6.88	<1.0	<1.0	<2.0	0.029	2.0 2.0 2.0	98.0
825 J	JYF-27	$\frac{19.0}{36.0}$	₹0.2	<2.0 <2.0	163.0	6.64	<1.0 <1.0	<1.0 <1.0	₹2.0	$0.027 \\ 0.031 \\ 0.015$	2.0	86.0 88.0
827 J	JYF -28 JYF -29	$\frac{11.0}{13.0}$	<0.2	<2.0 <2.0	200.0 160.0	$7.87 \\ 7.15 \\ 7.35$	<1.0 <1.0 <1.0	<1.0 <1.0	<2.0	$0.015 \\ 0.024$	4.0 4.0 4.0	114.0 100.0
829 J	JYF-30 JYF-31	$\frac{7.0}{9.0}$	<0.2 <0.2	<2.0 <2.0 <2.0	162.0 168.0	$\frac{7.35}{7.24}$	<1.0	<1.0 <1.0	<2.0 <2.0	0.024 0.023 0.027	4.0	104.0 108.0
830 3	JYF-32 JYF-33	$\frac{9.0}{9.0}$	<0.2 <0.2	<2.0 <2.0	$\frac{169.0}{202.0}$	$8.08 \\ 8.64$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.036 \\ 0.034$	$\frac{6.0}{4.0}$	$\begin{array}{c} 90.0 \\ 124.0 \end{array}$
832	JÝF - 34 JÝF - 35	9.0 7.0 7.0	<0.2	<2.0 <2.0	178.0 195.0	$\frac{8.22}{7.69}$	<1.0 <1.0	<1.0 <1.0	<2.0	0.031 0.019	4.ŏ 8.0	144.0
834 J	JYF - 36	9.0	<0.2	<2.0	195.0	8:46	<1.0	<1.0	₹2.0	0.031	6.0	150.0 86.0
836 J	JYF-37 JYF-38	7.0 <1.0	<0.2	<2.0 <2.0	168.0 183.0	$\frac{8.28}{8.23}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.024 0.031	$\frac{4.0}{2.0}$	78.0 82.0
	JYF - 39 JYF - 40	<1.0 <1.0	<0.2 <0.2	<2.0 <2.0	$\frac{189.0}{177.0}$	$\begin{array}{c} 8.68 \\ 8.43 \\ 7.55 \end{array}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.025 0.027	$\frac{8.0}{2.0}$	$\substack{64.0\\66.0}$
	JYF-41 EYG-01	$\substack{1.0 \\ 693.0}$	<0.2 <0.2	<2.0 <2.0	170.0 126.0	$7.55 \\ 8.89$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.020 \\ 0.024$	2.0 2.0 2.0	120.0 18.0
841 E	ĔŸĞ~Ö2 EYG-O3	828.0 303.0	0.2	<2.0 <2.0	121.0 154.0	7.71 8.73	<1.0 <1.0	⟨î.ŏ ⟨1.ŏ	<2.0	0.024 0.023	2.0 8.0	20.0 30.0
843 F	EYG-04	174.0	0.2	<2.0 <2.0	153.0	8.55	₹1.0 ₹1.0	₹1.0 ₹1.0	<2.0 <2.0	0.029	4.0	34.0
845 E	EYG - 05 EYG - 06	115.0 111.0	<0.2	<2.0	148.0 158.0	8.17	<1.0	<1.0	<2.0	$0.031 \\ 0.029$	$\frac{4.0}{4.0}$	$\frac{42.0}{40.0}$
	EYG-07 EYG-08	$\frac{83.0}{33.0}$	<0.2 <0.2	<2.0 <2.0	125.0 110.0	$\frac{7.35}{6.66}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	0.026 0.026	$\frac{4.0}{4.0}$	$\frac{24.0}{20.0}$
848 H 849 H	EYG-09 EYG-10	$\frac{18.0}{14.0}$	<0.2 <0.2	<2.0 <2.0	145.0 168.0	$\frac{7.06}{7.25}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.034 \\ 0.031$	$\frac{6.0}{6.0}$	$\frac{36.0}{54.0}$
850 I	ĒŶĠ-Ī1 EYG-12	$\frac{100.0}{39.0}$	<0.2 <0.2	<2.0 <2.0	137.0 130.0	$\substack{6.35 \\ 6.25}$	<1.0 <1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.031 0.029	4.0 6.0	48.0 50.0
852 853	EYG - 13 EYG - 14	85.0 126.0	<0.2	<2.0 <2.0	133.0 140.0	$\begin{array}{c} 6.55 \\ 6.64 \end{array}$	<1.0 <1.0	<1.0 <1.0	₹2.0	0.035 0.034	<2.0 2.0	50.0 70.0
854	EYG-15	72.0	<0.2	<2.0	172.0	7.59 7.43	<1.0	<1.0	\$2.5000000000000000000000000000000000000	0.033	2.0	94.0
856	EYG-16 EYG-17	35.0 8.0	<0.2	<2.0 <2.0	163.0 172.0	7.96	<1.0 <1.0	<1.0 <1.0	<2.0	$0.030 \\ 0.041$	$\frac{4.0}{4.0}$	114.0 110.0
858	EYG-18 EYG-19	1.0 <1.0	0.2	<2.0 <2.0	188.0 188.0	$8.09 \\ 8.08$	<1.0 <1.0	0.1> (1.0	<2.0 <2.0	$0.033 \\ 0.031$	8.0 <2.0	126.0 120.0
859 B 860 B	EYG-20 EYG-21 EYG-22	2.0 <1.0	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<2.0 <2.0	173.0 184.0	$\frac{7.85}{8.23}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	$0.035 \\ 0.040$	$\frac{6.0}{2.0}$	$\frac{92.0}{92.0}$
861 H 862 H	EÝG~22 RYG-23	$\frac{3.0}{6.0}$	0.2	<2.0 <2.0	$192.0 \\ 209.0$	$\frac{8.17}{8.69}$	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.040 0.030	2.0 <2.0	108.0
863	EÝG-23 EÝG-24 EÝG-25	2.0 1.0	<0.2	<2.0 <2.0	179.0 182.0	7.15 7.59	⟨1,0 ⟨1,0	<1.0 <1.0	₹2.0	0.040	6.0	122.0 122.0 122.0
865	EYG-26	<1.0	₹0.2	<2.0 <2.0	175.0		<1.0 <1.0	<1.0 <1.0	₹2.0	0.024 0.023	<2.0	106.0
866 B	E10-21 EYG-28	<1.0 4.0 6.0	<0.2	<2.0	177.0	7.79	<1 n	<1.0	<2.0 <2.0	0.023	2.0	138.0
867 868 869 870	EYĞ - 26 EYG - 27 EYG - 28 EYG - 29 EYG - 30 EYG - 31	3.0	<0.2	<2.0 <2.0	175.0 179.0 177.0 189.0	8.17 8.42	<1.0 <1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.006 0.024 0.025	262248262	106.0 112.0 138.0 118.0 114.0 132.0 50.0 612.0
870 I 871 I	EYG-31 EYG-32	3.0 5.0 7.0	<0.2 <0.2	<2.0 <2.0	208.0	$\frac{8.49}{7.79}$	<1.0 <1.0 <1.0	<1.0 <1.0	<2.0 <2.0	0.037 0.037 0.036	$\frac{8.0}{2.0}$	$\frac{132.0}{50.0}$
871 872 873 874 875 876 877 878 879 879	EYG-32 EYG-33 EYG-34	$\frac{6.0}{6.0}$	<0.2 <0.2	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	149.0 148.0 173.0	67778.8887777777777777789888777777777777	<1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<2.0 <2.0	$0.036 \\ 0.012$	6.0 <2.0	$64.0 \\ 112.0$
874 I	EYG-35 EYG-36 EYG-37 EYG-38 EYG-39	15.0	<0.2	\$2.000000000000000000000000000000000000	149.0 148.0	7.32	<1.0 <1.0		<2.0	0.042	2.0	112.0 70.0 78.0 116.0 96.0 112.0 114.0 132.0 132.0 54.0
876	EYĞ 37	7.0 2.0 3.0	<0.2	<2.0	164.0	7.66	₹1.0 1.0	<1.0 1.0 1.0 <1.0 <1.0 <1.0	<2.0	0.053 0.056	<2.0	116.0
878	EYG-39	<1.0	<0.2	₹2.0	161.0 164.0	7.67	<1.0 <1.0 <1.0	į Ö	<2.0	0 046	<2.0	112.0
880 1	676-40 EYG-41	<1.0 3.0 5.0 329.0 325.0	<0.2	<2.0	169.0 186.0 104.0	7.75	<1.0 <1.0 <1.0	<1.0	<2.0	0.051 0.037	(2.0 (2.0	132.0
881 1 882 1 883 1	EYG - 41 EYH - 01 EYH - 02	329.0 325.0	<0.2 <0.2	<2.0 <2.0	133.0	$\frac{7.37}{8.12}$	<1.0	<1.0 <1.0	<2.0 <2.0	0.041 0.027	<2.0 <2.0	$\frac{18.0}{32.0}$
883 884	ËYH - 03 EYH - 04	189.0	<0.2 <0.2	<2.0 <2.0	163.0 123.0	$9.02 \\ 8.44$	<1.0 <1.0	1.0 <1.0	<2.0 <2.0	0.032	<2.0 <2.0	54.0 30.0
884 885 886	EYH-04 EYH-05 EYH-06	66.0	<0.2	<2.0	131.0	8.10	<1.0 <1.0 <1.0	<1.0 <1.0	<2.0	0.031	<2.0 <2.0	28.0 34.0
887	EYH-06 EYH-07 EYH-08	37.0 9.0 25.0 17.0 136.0	<0.2	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	123.0 131.0 131.0 153.0 180.0	8.84 9.12 7.96	<1.0 <1.0 <1.0	<1.0 1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<2.0	0.041 0.027 0.032 0.039 0.031 0.034 0.030 0.027	<2.0	30.0 28.0 34.0 66.0 98.0 72.0 80.0 86.0 58.0
889	EYH-09	25.0	<0.2	ζ <u>2</u> .0	165.0 157.0	8.41	ረነ በ	ζį.ŏ.	ξ <u>2.0</u>	0.031	\$2.0	72.0
891	EYH - 09 EYH - 10 EYH - 11 EYH - 12	136.0	<0.2	₹2.0 22.0	180.0 163.0	7.07	<1.0 <1.0 <1.0	<1.0 1.0 1.0	<2.0	0.035 0.025 0.034	<2.0 <2.0	86.0
693	P. I II - I - S	148.0 203.0	<0.2 <0.2	<2.0	182.0 185.0	8.47	<1.0	i 0 i 0	<2.0 <2.0	0.034 0.032 0.032	(2.0	42.0
894 895	EYH-14 EYH-15	203.0 503.0 526.0	<0.2	<2.0 <2.0	135.0 140.0 147.0	$\frac{8.28}{7.74}$	<1.0 <1.0	<1.0	<2.0 <2.0	0 032	<2.0 <2.0	26.0 30.0
896 897	EYII-16 EYII-17	$\frac{710.0}{489.0}$	\$2222222222222222222222222222222222222	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	163.0	8.41 7.07 7.61 8.27 8.27 8.37 8.35 8.71	<1.0 <1.0	<1.0 1.0 <1.0	0.000000000000000000000000000000000000	0.037 0.032 0.035 0.037	\$2.4\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	42.0 26.0 30.0 42.0 34.0 32.0
898 899	EYH-18 EYH-19	$\frac{287.0}{243.0}$	<0.2 <0.2	<2.0 <2.0	152.0 149.0	8.35 8.71	<1.0 <1.0	<1.0 2.0 <1.0	<2.0 <2.0	0.035 0.037	<2.0 <2.0	32.0
9ŏŏ	ĔŶĤ-2Ö	93.0	<0.2	<2.0	193.0	8.48	₹i.ŏ	<Ĩ.ŏ	<2.ŏ	Ŏ. Ŏ35	₹ž ŏ	42.0

Appendix-4	Chen	nical	Analy	sis of	Stream	Sed	liments	and	Soil	Sample	es (19)
No. Flement 901 EVH-21 902 EVH-23 903 EVH-23 904 EVH-25 905 EVH-26 907 EVH-26 907 EVH-28 909 EVH-29 910 EVH-30 911 EVH-31 912 EVH-31 913 EVH-34 915 EVH-34 916 EVH-38 919 EVH-38	Au 105.0 147.0 161.0 162.0 86.0 74.0 207.0 2291.0 248.0 1129.0 129.0 129.0 129.0 11.0 129.0	App. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	Asm.000000000000000000000000000000000000	Cu 180.0 191.0 223.0 225.0 197.0 182.0 187.0 205.0 145.0 145.0 145.0 158.0 166.0 172.0 189.0 189.0 189.0	9.00 9.39 9.39 9.39 8.84 8.75 8.14 7.12 8.25 7.98 7.94	Hgmov<1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.0	Mo PPW 1.00	Pb pp	\$\\ \text{7}\text{ot} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sbpp	Zn ppm 444.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36

