APPENDICES

Appendix 1 Microscopic observation of rock thin section

Saxple no.	Rock nase	λ xes name	- zexture																															Secondary mineras										Reerask	
	orphytize andesice	Chranq, <rong	2atexectal, posphyrita																																								Premenatisecd		
]	anderatec yelded cotct	Chants Xnons	eutax202c																																										
$3 \times \mathrm{CB}$-923	Dilivine basme	Chatang moons	intercganular						O												\triangle	\triangle																							
- 1 CRF 032	bioht granita	${ }_{\text {chinang Kmons }}$																					1-																						
-5. $\operatorname{scx-0.09}$	andessitic eut anate	${ }^{\text {chinagag Koiong }}$	elytaxtic																				O													O	O		-			,	\triangle	rmol metanorphic	
7 l	Ixporeme andegite	Chinat Mhens	intersaetat deatusate																																										
	degeite foroxem andemete	Chhenag xnong	$\frac{\text { sphaiz2cic }}{\text { intersextal }}$		-			1 -																										.				-						qx-ch1-carb ve:	
	Terraxericice outs	Chand Krong																																	\bigcirc		0		\triangle					devatritication	
$12 \mathrm{cck}-012$	pyrroxene andesite	Chanag krong	calone coopohuritic		\bigcirc			\triangle										-											\triangle								-								
$\frac{12.0 C R}{20008}$	pyoxene andesiso	${ }_{\text {ching }}$ Chinge Lemong	incesazanular		(a)	1										O \triangle	10				0			.																					
	arkose Sendstort.	Chi inat Mancos																					(1)						\triangle									0							
	dendesitie curt	${ }^{\text {chinas }}$ Chinas Mong	arons:c		156	\%			0																									$\triangle 0$	0		O		$\stackrel{-}{4}$						
-17 717 CeR 8.007	pyroxener andosise	chanse K coong	Hval 2 peinitic		0													O																\triangle			\triangle								
1. $1 . \operatorname{ccch}$-01	Ancestice		Entersoeral ${ }^{\text {arani }}$			\triangle			10												.														O									akornzeed	
(19.cish-003	diohb ytanse	Doi chong																																(1)		-	O	-						ortive the crat elfected	
	bearemy	Dos chong								\triangle											,	,															$\stackrel{\square}{6}$				A			ancondary muscovite, mexmerat	
-	Ste-nve qranite	${ }^{\text {Oor }}$ Choono	poombeceitic											O																							-		\triangle					rekico	
	bea-hb-taus) qrante	Doz chong.	qaranitic		-	-																	\bigcirc	\bigcirc				Q	\triangle															tseurnator	
	calcaresu sandeos	${ }^{\text {Por Chang }}$	Porphusicte		O-	\triangle				$\stackrel{\square}{\square}$															0			¢																Oniy cranise compenemis	
	jranule conslognate	100: Chong																																										arcuysate?	
	1 2euco-aranite	Eoi criong	granmic																																										
	lisanite porthry		Posphytitac		0°	+						\wedge																						\triangle		-	,		,			\triangle			
31 EOP -020	diorneic mylonite	jor chong	mytonicic																																										
3z P908-002	mus-biogranice	$\frac{1}{\text { jor chena }}$			\%									0				\triangle																											
34, 3 H0R-0934	j20-hb grante	Oos, Chong	gramaxis																															\triangle											
$35.1428-005$	Sranite myionjitn	Dos. Shors	mylenitic																																										
36 Jjop-002			$\frac{\text { granneze }}{\text { granicie }}$		10 ${ }^{\circ}$				$\stackrel{1}{4}$																																				
39 P2-002	boomin crante	Parchaburi	frani ixic			C			-																																				
	Dioums cranice	Preachapur:	$\frac{\text { granti2s }}{\text { graniese }}$							\triangle																																			
		Restshabur				$1{ }^{\text {a }}$			\triangle					0						\triangle	, \triangle																								
	bio dranite	Ratechaburi	fisantic						Δ																							0												Unik phyy 12 2ece	
-63.CR-CO1	arkost sands	$\frac{\text { Patechayer }}{\text { Rater }}$									\triangle										$1 \cdot$																							say casaciastie	
	four-Tus eranit		haranitic																																										
	biocmus asante	P Ratchabusi	${ }_{\text {cranitle }}$			Q																																						xehy	
		- Ratechauri	Satanisic						,																														-						
	biso-nus-cour aranite.	$\frac{\text { Prechaburs }}{\text { Prechabue }}$	istanitac							10,			\triangle																															20r3tyrocaseje	
	-mus-mita senist				गी1	10		 umilimonive Hm:hematito ex:prehnity																																					
	SMreots: abundart	\bigcirc comion \triangle	rare - tiny	Abbrwa																																									

A-1
(1)

	Sample	Rock Type	Location	Ore Mineral																		Gangue Mineral												Remaks
No	No.			E1	H0	C_{P}	Cv	cc	80	1	Sp	Pe	Mg	Py	Po	Mc	II	He	[a	Ge	Bu	Ch	Mu	8p	Ab	P1	W	St	92	DP	Ze	Bi	Cb	
1	ACP-015	Quartz Vein	Chiang Yhong Area															Δ	-	©									(6)					Oxidation
2	AC8-017	Oartz Yein	Chiang Khong Area			-								\triangle			Δ				\bigcirc		\triangle	0		Δ		-	-					
3	ACL-018	Quartz Vein	Chiang Khong Ares											Δ			0				\bigcirc	Δ	-	Δ					-		\triangle			
4	ACR-020	Andesite with Prxite	Chiang Xhong Area			.								Δ	0	-	\bigcirc				Δ	Δ	\bigcirc			Δ	\triangle	-	-	\bigcirc			Δ	Skarnization?
5	ECR-007	Epidote - Ouartz Vein	Chiang Xhong Arca																					0					-					
6	BCR-010	Quartz Vein	Criang Xhong area											.						\bigcirc	Δ	-	0						(1)					
7	BCR-014	Andesite with Sulfide	Chiang Xhong area			.								\bigcirc	-		0				Δ	0	Δ			0			-	\bigcirc				Skarnization?
8	BCL-020	Andesite with Sulfide	Chiang Xhong area			\triangle					-			©		-					\bigcirc	\bigcirc	\triangle			-		-	©				-	
9	CCI-002	Andesite with Sulfide	Chiang Xhong area															(3)	(a)	©		Δ							\bigcirc					
10	CCR-019	Quartz Vein	Chiang khong Area																			\cdot							*					
11	CCR-020	Ouartz Vein	Chiang Khong area			-	-							-	-		Δ	\bigcirc			Δ		\bigcirc				\bigcirc		©					
12	DCR-001	Andesite with Pyrite	Chiang Khong Area											Δ				0	Δ			\bigcirc	\bigcirc	-		-			©					Silicification
13	ECR-023	Quartz Yein	Chiang Xhong Area											-	.			0	-	©	Δ	0	Δ						-					
14	ECR-024	Quarts Vein	Chiang Xhoug Area											-				0	-	-	0	\triangle	Δ						-					
15	ECR-025	Quartz Vein	Chiang Xhong Ares											-				-	0	\bigcirc	-	,	-						-					
16	ECB-030	Altered Andesite	Chiang Xhions Area											©				Δ	(1)	(2)			0						*					Silicification
17	PCA-004	Andesitic Tuff	Chiang Ethong Area															0	\triangle		\bigcirc		\bigcirc			-		.	©					Silicification
18	HCR-002	Quarts Yein	Chiang khoug Area											-							.								(6)					
19	ADR-007	Quartz Vein	Doi Chong tree											-					0	Δ	\bigcirc	0	0			0		.	©					
20	ADR-010	Diorite with Sulfide	Doi Chong area		Δ	.						-		-							\bigcirc	\bigcirc	-			Δ		.	©					

 ze: Zeolite Bi: Biotite Cb : Carbonate,

	Saaple$\mathrm{Mc} .$	zock 1ype	Lecation	Ore Mineral																		Gangue Minersl												lemiks
\%o				81	HO_{0}	C_{P}	Cv	cc	Bo	61	Sp	Pe	M8	Py	Po	Mc	11	He	5	Ge	Bu	Ch	M	Ep	Ab	P1	飴	Sh	Qz	Dp	Ze	Bi	Cb	
21	C08-003	Guarts Yein	Doi Chong Area		\bigcirc										-						\triangle	Δ	\bigcirc				-	-	-					
22	DDR-009	Ouartz Vein	Doil Chong Area											-	,				Δ		Δ	-	\cdot					-	-					
23.	DDE-012	Guarts Vein	Doi Chong Area											-					0	\bigcirc		Δ							-					
24	D08-018	Quartz Yein	Doit Chang Area											-				.	Δ			*	-						-					
25	BDR-005	Quarts Vein	Doi Chong Ares											-				\bigcirc	-	Δ	0	Δ	\bigcirc						-					
28	808-006	Quarts Vein	Doi Chong Area											?	?								-						-					
27	308-011	Diorite with Mematite	Doi Chong Area										-					Δ			0	\bigcirc	Δ		Δ	-			-				-	
28	GDir-001	Quartz Vein	Doi Chong Area											-							Δ	Δ	\bigcirc				-	-	-					
29	AR-001	Quarta Vein	Batchaburi Ares																			?							-					
30	AR-009	Quarts Yein	Ratchaburi Area											?	?						0		\bigcirc		\triangle				-					
31.	3R-003	Quartsite	Batchaburi Ares.		\triangle	-	-							Δ		-					Δ	0	0		Δ			-	-					
32	C8-601	Altered Shale	3atchaburi Area			Δ	.	-	-					0		-			-		Δ	Δ	0					-	-				\bigcirc	
33	DR-006	Quartz Yein	gatchaburi Ares.											-	-				Δ	-	-	Δ						-	-					
34	Di-008	Quartz Vein	natchaburi Area			\triangle				Δ				0					0		-		0			Δ			-					
35	DR-010	Quartz Vein	Matchaburi Area					.						-	-				\triangle				\bigcirc						-					
36	DR-013	guarts Yein	Ratchaburi Area			.								-	Δ				-		Δ		-						-					
37	B1-014	Quartz Vein	Ratchaburi Area											-							-	?	0			-		-	-					
38	DB-018	Ouertz Yein	Ratchaburi Area											?					0				0						(1)					
39	ER-002	Altered Andesite	Matchaburi Area	-		-	-							0	?						Δ	0	0						©	-		-		Alteration Perfeet
40	ER-008	Cusrtz Vein	Matchaburi Area	.										-					-	0		Δ			?				\bullet					
41	8R-009	Homblende Quartz Rock	Ratchaburi Area											\cdot							0	-					-	Δ	-	-				

 II: Mnenite, he: Henatite, is: Limonite
$\mathrm{Ze}_{\mathrm{e}}:$ Zeolite $\mathrm{Bi}:$ Biotite $\mathrm{CD}:$ Carbonate,
Appendix $3 \quad$ Results of X-ray diffraction

	Area Name	Sample No.	Qz	Pi	Kf	Px	Amp	CH	Ep	Mus	Mon	M 1	Ce	Kao	Gyp	Ha	Py	Hem	Goe
1	Chiang Khong	ACR-009	\bigcirc		?			.		?			\bigcirc						
2		BCR-007	0						©										
3		BCR-016	\bigcirc					©		\triangle									
4		CCR-017	\bigcirc	?				\triangle		\triangle				\triangle					
5		DCR-010	\bigcirc					\triangle		\bigcirc	\triangle				?				?
6		ECR-003	\bigcirc							\bigcirc									
7		ECR-022	\bigcirc	?						\triangle				©					
8		ECR-026	0									\bigcirc				\bigcirc			
9		ECR-028	\bigcirc	-								\triangle				\bigcirc			
10		ECR-029	\bigcirc					-		-									
11		ECR-030	\bigcirc					-		?	-								
12	Doi Chong	BDR-003	\bigcirc		?			©		©									
13		CDR-003	(2)					-											
14		CDR-004	©							-									
15.		CDR-007	\triangle	\triangle		\bigcirc						-		\bigcirc					\triangle
16		EDR-014	0					?		?									
17		GDR-001	(0)					-		-									
18	Ratchaburi	AR-003	0	©	\bigcirc		?			\bigcirc									
19		AR-005	\bigcirc	\bigcirc	\bigcirc			?		\bigcirc									
20		AR-006	©							©							?		
21		AR-009	©							\bigcirc									
22		BR-014	0					?		\bigcirc								-	
23		CR-003	©																
24.		ER-017	©							\triangle									
25		ER-027	\bigcirc	\bigcirc	O		?	?		©									

© : Abundant \bigcirc : Coman $\Delta:$ Rare \cdot : Tiny ?: Uncertain

Appendix 4 Chemical data of stream sediments in Chiang Khong area (1)

Element
Dotectio Detect ．

Au	Ag	Cu	Pb
ppb	ppq	ppm	ppm
1	0.2	1	2

$7 n$ pp

Woicoucoos
 00 Sapple No －2x
As
p pm
2
－が
8%
rotal
0.01
$\stackrel{H}{9} \stackrel{\sim}{0}$
它 ppm CS－018
CS－020 $\substack { \mathrm{BC} \\ \begin{subarray}{c}{\mathrm{BC} \\ \mathrm{BC} \\ \hline{ \mathrm { BC } \\ \begin{subarray} { c } { \mathrm { BC } \\ \mathrm { BC } \\ \hline } } \\{\hline} \end{subarray}$ asion づヘ ヘヘヘ ヘヘヘヘヘヘヘヘーー

A－6

Uneme Unit
 0. Sample No. Cos- and and

 201 nunnin 02 cc04 CC
05 CC
06
07
08
08
08
0 CC
10 cc
10

3

Blement
Unit
Detectio
Samite No
BCS 029
 \rightarrow に年 $\mathrm{Al} \quad \mathrm{Ag}$乐 に ロ～0氷家
S^{∞}
so
rota
0.0風㞓 Sb
pp Pp明
2 $\ln _{5}$ 솟人̂̀

－ivisiovi
－000000
10

Blement Unit
Ditectio
Dinit No. sample Ro
 -500 N 오웅

?ひ

$\stackrel{\rightharpoonup}{\rho}$ ernos $\overrightarrow{0}$

[^0]
\bullet

－

Rlement
Unit
0etectio

为草
－
\square

Nロッ気
AS
Pp男
2
Fe
0.01
s
Total
0.01
W
$p \stackrel{m}{0}$
0 Sb
PFM
2
Mn
ppq
5 Sample No． enercion－
 $C S-027$
$C S-028$
$C S-029$
$C S-030$
$C S-031$
$C S-032$
$C S-034$
$C S-03$
$C S-03$
$C S-03$
$C S-038$ \cdots

A－10

Unit Detection inimit

No． Sample No．
ás－001 1 p p 3 ADS－00 ADS－0
ADS－ 0 ADS－0 ADS－0
19 ADS－0
12
13
14
15
15 5 ADS－0 16 7 ADS－0
8 ADS－ 19 20
2
2

$$
\begin{aligned}
& 24 \\
& 25 \\
& 26
\end{aligned}
$$ 28

29
30
31 30
31
32
33 33
33
34 34
35
35
36 35
35
37
38
38 37
38
39 38
39
40
Co 40 ADS－040 （4） なば象
 シin రథw ine：

 い

Pb
pym
$2 n$
ppm
2

我荡

AS
PP品
2
$\underbrace{\circ}$
$\mathrm{TOL}_{0}^{\mathrm{S}}$ Tota

䉣皆
N皆
＂品
刻름

 Rorrico

N－NmmanNo

$\stackrel{\square}{V}$
N ＜2 2 어어
3.4
1.7

pa
ppm
20

Element
Unit
Detecti Detection limit

$\begin{array}{llll}A l l & A g & C u & \mathrm{~Pb} \\ \mathrm{ppb} & \mathrm{pq} \mathrm{\|} & \mathrm{ppa} & \mathrm{ppa} \\ 1 & 0.2 & 1 & 2\end{array}$亯合 N百 웅 Nos

－ S_{0}
0.0 Mpm
10 N量 $\begin{array}{rr}\mathrm{Spm} \\ 2 & \mathrm{ppt} \\ 20\end{array}$ N

谉登 수스

 V V V

\qquad 1 DD
 20200 204
205
200
20
20
20
2
 20980
2010
200
20

 ${ }_{2}^{216}$ DDD 5

 N
Elemo Detecti
－
Ag
ppm
0.2
pm
－ $\stackrel{\mathrm{Pb}}{\mathrm{pp}} \mathrm{p}$
$\stackrel{2 \mathrm{n}}{\mathrm{ppg}}$
N 을菖棇 － Tota tal 1 H が荡饼兵 N皆暄亩
ppm
p
5 $\stackrel{\infty}{\infty}$
 \because 四

四 いいいいいv ン ํㅜ

[^1]$\begin{array}{lllllll} & 1 & <0.2 & 70 & 6 & 74 & <10\end{array}<2$
nencra S－049

－

$\stackrel{0}{0} 0$かったのかった。
anôné

$$
2090
$$

Plement Dotection binit

 ${ }_{40}{ }_{40}{ }_{1}$ ${ }^{305}$ ${ }_{402}^{402}$ 1046 c | 407 |
| :--- |
| $\begin{array}{l}408 \\ 409 \\ 409\end{array}$ |

？
－⿹ㅜㄹ
Ag
0.2 $\xrightarrow{\text { ppu }}$ －苞 을 Hg
ppb
10
为

－

Nô̂̂́n

Clesit

 ${ }^{\mathrm{No}} \mathrm{O}$ ample No. -

w 0

$7 n$
ppm
2

28
32
24
28
34
28
34
48
80
62
44
50
54
42
56
64
50
56
44
22
8
10
20
10
10
10
20
20
30
20
30
20
20
20
20
10
10
10
10
10
20
10
80
10

 S
Total
0.01

0.01
0.0
<0.0
0.0
0.0
0.0
0.0
0.0
0.01
0.0
0.0
0.02
0.0
<0.01
0.01
<0.0
<0.01
<0.01
0.01
0.01 0.01
0.01
<0.01
0.01
0.01
0.01
<0.01
0.03
0.01
0.02
0.01
0.01
0.02
0.01
<0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
0.03
0.01

 200
250
250
190
250
230
270
270
300
280
210
220
240
200
850
270
300
330
390
360
340
340
320 जiocincunonnon

Appendix 6 Chemical data of stream sediments in Ratchaburi area
．．．．

ヘ̂બ
0 or

－

 VVNVMNNNoかか－00
N－～MMMN

No．

Unit Detectio
0.

Al
pp
1
Ag
ppm
Cu
ppm Pb
pp

品
ppa
$\stackrel{\mathrm{Hg}}{\mathrm{p}} \mathrm{p}$ AS
pp

N
－80\％

 10 A－010 12
13
14

w
$p p 10$ N ～皆象泡 ppo
5 014 A
16
18 $18 \mathrm{~A}-0$
$18 \mathrm{~A}-0$
19
20

Element
Unit
Detect o No
101 ople No． le Ko． ヘ
 が皆家 N家
Fe
$\%$
0.01

 Sn
ppn
2心药 F
ppm
20 Ta
2.0 Nb
ppm
5

$20 \quad 2$
290
<23
70.0

 －0000

and

$\begin{array}{ll}\text { Element } & \mathrm{Au} \\ \text { Unitectio } & \mathrm{pp} \\ \text { Detectio } & \end{array}$
Ag
ppm
0.2 Pb
pma
2 Zn
ppm
2 Hg
ppb
10 As
ppa
2 s
2 $\stackrel{9}{\mathrm{e}}$
$\%$
0.01 5%
Total
0.01 W
ppo

10 | Sn |
| :---: |
| PPG |
| 2 | $\stackrel{\mathrm{Sb}}{\mathrm{ppm}}$ 8

900

20 | Ta |
| :---: |
| ppg |
| p | Nb

ppm
5

<10
180
2
<2
1300
740
800
880
690
520
770
480
380
300
280
330
650
540
2
250
2300
${ }_{3}^{63.0}$

and
而
\＆lement
Unit
Detectio
limit
Samp No．
K－009
 028
030 030
031
032
033 0

品品 － NOCO気 $\underset{10}{\mathrm{HPD}_{1}^{\mathrm{pg}}}$葛家 Fe
$\%$
0.01 8
Tota
0.01 $\underset{\substack{n \\ p .0}}{\substack{n \\ 10}}$ $\underset{2}{\mathrm{Sn}} \underset{2}{\mathrm{Sp}}$
\square Sb
$\mathrm{Pp} \mathrm{g}_{2}$䒬为 Ta 2. $\stackrel{\mathrm{Nb}}{\mathrm{p} p \mathrm{~m}} \mathrm{5}$

NANNNÂANG

 500 T－0 le No．

 －

 잉ㅇㅇㅇ
$\hat{\hat{0}} \hat{6}$
 ヘVNONNNO Munvinnwn －x மM－N゙ざN
 ペーO ＠onconturnoontion Toesoceconnmun （5）
Nb
ppm
5 がーが，

＊

-
Ag
ppm
0.2
Cu
ppqin
1 Pb
PpH
2 $2 n$
ppat
2
 Hg
ppb
10 AS
ppg
2 N白宿 Pe
$\%$
0.01
 $S . \%$
$T 0.191$
0.01
0.01
0.02
0.02
0.01
0.01
0.01
<0.01
0.02
<0.01
<0.01
<0.01
0.01
<0.01
0.01
<0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
0.01
<0.01
<0.01
<0.01
<0.01 H
p pm
in
0 $\underset{\substack{\mathrm{ppig} \\ 2}}{\mathrm{Sn}}$ $\begin{array}{lr}\mathrm{Sb} & \mathrm{F} \\ \mathrm{ppm} & \mathrm{pg} \\ 2\end{array}$ Ta
2.0 Nb
pp
5

 0.74
1.16
0.94
0.89
0.82
0.90
0.89
1.94
1.06
1.68
0.97
0.79
1.38
2.15
1.43
0.08
0.29
0.14
0.08
0.20
0.07
0.22
0.16
0.15
0.28
0.29
0.23
0.25
0.23
0.28
 9
19
230
97
110
13
6
4
43
9
11
17
15
19
15
160
73
145
99
670
2000
50
190
580
77
175
340
410
32
26
 170
200
200
180
160
160
200
500
350
520
290
220
220
270
190
600
1200
830
950
1200
1050
880
780
580
580
830
570
610
830
380

Appendix 7 Ore assay data of rock samples in Chiang Khong area

Ho S	Sample No.	Rock Type	Elewent	Au	Au	Ag	Cu	Pb	7n	w_{3}	Sn	的	Ta	Nb
			Dnit	g / t 02	0z/t	ppa	\%	\%	\%	\%	\%	\%	\%	\%
1.	ACS-002	Quartz Vein		$<0.03<$	< 0.001	2	<0.001	0.012	< 0.001	<0.01	< 0.01	0.004	<0.001	< 0.001
2 A	ACR-007	Quartz Vein		$<0.03<$	< 0.001	2	<0.001	0.002	0.009	<0.01	<0.01	0.112	<0.001	0.002
3 A	ACR-011	Tuff Breccia		$<0.03<$	<0.001	2	<0.001	0.002	0.012	<0.01	< 0.01	0.102	<0.001	0.003
4 A	АСР-012	Quartz Vein		$<0.03<$	<0.001	<2	<0.001	< 0.001	<0.001	<0.01	<0.01	0.021	<0.001	<0.001
5 A	ACB-014	Quartz Vein		$<0.03<$	< 0.001	<2	< 0.001	<0.001	<0.001	<0.01	<0.01	0.003	< 0.001	<0.001
6	ACR-015	Quartz Vein		$<0.03<$	<0.001	6	0.052	0.004	0.022	<0.01	<0.01	1.360	<0.001	< 0.001
7	ACR-017	Guartz Yein		<0.03 <	<0.001	4	<0.001	0.005	0.008	0.01	<0.01	0.045	<0.001	0.001
8	ACR-018	Skarnized Rock		$<0.03<$	<0.001	4	<0.001	0.003	0.041	0.01	<0.01	0.093	<0.001	0.001
9	ACR-020	Andesite with Pyrite		$<0.03<$	<0.001	4	< 0.001	0.002	0.013	0.02	<0.01	0.062	<0.001	0.001
10	ACR-023	Sandstone with green C	opyriet	$<0.03<$	< 0.001	8	1.565	0.023	0.004	0.02	<0.01	0.131	<0.001	0.001
11	BCR-005	Cilicified Rhyolite		<0.03	<0.001	2	0.013	0.006	0.002	0.01	<0.01	0.043	< 0.001	0.002
12	BCR-007	Epidopte - Quartz Vein		0.03	0.001	2	0.006	0.010	<0.001	0.02	<0.01	0.104	<0.001	< 0.001
13	BCR-010	Quartz Vein		0.03	0.001	<2	<0.001	0.004	<0.001	<0.01	<0.01	0.015	< 0.001	0.003
14	BCR-011	quartz Vein		0.03	0.001	<2	<0.001	0.001	< 0.001	0.01	< 0.01	0.235	< 0.001	< 0.001
15	BCR-014	Andesite rith Sulfide		<0.03	<0.001	2	0.001	0.002	0.002	0.01	<0.01	0.114	<0.001	0.001
16	RCR-017	Altered Andesite		0.12	0.004	<2	< 0.001	0.004	0.001	0.01	<0.01	0.016	<0.001	< 0.001
17	BCR-620	Andesite with Sulfide		<0.03	< 0.001	2	< 0.001	0.003	0.007	0.01	<0.01	0.064	< 0.001	0.002
18	CCB-002	Andesite with Sulphide		<0.03	<0.001	2	0.003	0.004	0.018	0.03	<0.01	0.016	< 0.001	< 0.001
19	CCR-006	grartz Vein		< 0.03	<0.001	<2	<0.001	<0.001	<0.001	<0.01	<0.01	0.001	<0.001	< 0.001
20	CCR-008	quartz Vein		0.03	0.001	<2	<0.001	0.001	<0.001	< 0.01	< 0.01	0.003	<0.001	< 0.001
21	CCR-009	Quartz Vein		< 0.03	< 0.001	2	< 0.001	0.002	<0.001	< 0.01	< 0.01	0.002	<0.001	0.003
22	CCR-017	Quartz Yein		<0.03	<0.001	<2	0.001	0.001	0.005	<0.01	<0.01	0.027	<0.001	0.001
23	CCR-018	Quartz Vein		0.03	0.001	<2	0.001	0.003	<0.001	<0.01	<0.01	0.001	<0.001	0.001
24	CCR-019	quartz Vein		0.03	0.001	<2	<0.001	<0.001	<0.001	< 0.01	< 0.01	0.003	<0.001	<0.001
25	CCB-020	quartz Yein		< 0.03	<0.001	2	<0.001	0.006	< 0.001	<0.01	<0.01	0.004	<0.001	0.001
26	DCR-001	Andesite with Pyrite		<0.03	< 0.001	2	<0.001	0.003	0.002	< 0.01	< 0.01	0.040	< 0.001	0.001
27	DCB-005	quartz Vein		<0.03	< 0.001	<2	<0.001	<0.001	<0.001	<0.01	<0.01	0.004	<0.001	<0.001
28	DCR-006	Quartz Vein		< 0.03	<0.001	4	≤ 0.001	0.001	< 0.001	0.01	<0.01	0.079	<0.001	<0.001
29	DCR-007	quartz Vein		< 0.03	< 0.001	2	<0.001	0.001	<0.001	0.01	<0.01	0.033	<0.001	<0.001
30	DCR-013	Andesite		<0.03	<0.001	2	<0.001	0.006	0.005	0.01	<0.01	0.038	<0.001.	0.002
31	DCR-015	Aplite with Pyrite		0.03	0.001	4	0.001	0.002	< 0.001	0.01	<0.01	0.005	< 0.001 .	0.002
32.	DCR-016	Quartz Vein		0.16	0.005	2	<0.001	0.001	< 0.001	0.01	< 0.01	0.004	< 0.001	<0.001
33	ECR-001	Quartz Vein		<0.03	< 0.001	<2	<0.001	0.001	< 0.001	0.01	<0.01	0.009	< 0.001	<0.001
34	ECR-607	Quartz Yein		<0.03	<0.001	<2	<0.001	0.003	0.002	0.01	<0.01	0.018	< 0.001	0.002
35	ECB-015	quartz Vein		0.03	0.001	2	0.002	0.001	0.001	0.02	<0.01	0.034	<0.001	0.001
36	ECR-017	quartz Yein		<0.03	< <0.001	2	0.001	0.006	< 0.001	<0.01	< 0.01	0.005	<0.001	<0.001
37	ECR-020	Quartz Vein		<0.03	<0.001	2	<0.001	0.002	< 0.001	< 0.01	<0.01	0.008	< 0.001	<0.001
38	ECR-023	Quartz Yein		0.03	0.001	2	0.002	< 0.001	0.001	<0.01	<0.01	0.008	<0.001	<0.001
39	ECR-024	quartz Yein		0.03	0.001	2	0.003	0.002	$\bigcirc 0.001$	0.01	<0.01	0.002	< 0.001	0.001
40	ECR-025	Quartz Vein		<0.03	<0.001	2	0.004	0.001	0.001	0.01	<0.01	0.003	<0,001	<0.001
41	1 ECR-026	White Clay		<0.03	<0.001	2	<0.001	0.001	0.001	0.02	<0.01	0.001	< 0.001	0.001
42	ECR-027.	Slate with Graphite		< 0.03	3 < 0.001	<2	0.002	0.004	< 0.001	< 0.01	<0.01	0.001	<0.001	0.001
43	3 ECR-029	Altered Andesite		<0.03	< 0.001	<2	<0.001	0.003	0.008	0.01	<0.01	0.004	< 0.001	0.002
44	4 ECR-030	Altered Andesite		0.03	0.001	2	0.002	0.014	0.012	0.01	<0.01	0.003	< 0.001	<0.001
45	5 FCB-004	Andesitic Tuff nith Cla		< 0.03	< 0.001	4	<0.001	0.002	0.006	< 0.01	<0.01	0.024	<0.001	0.001
46	6. HCR-001	Quartz Vein		< 0.03	< 0.001	<2	< 0.001	0.006	0.001	0.01	<0.01	0.025	< 0.001	0.001
47.	$7.1 \mathrm{CCP}-002$	Quartz Vein		<0.03	$3<0.001$	2	<0.001	<0.001	<0.001	<0.01	<0.01	0.002	<0.001	<0.001
48	8 HCR-003	Quartz Yein		<0.03	$3<0.001$	2	< 0.001	0.001	<0.001	0.01	<0.01	0.003	< 0.001	< 0.001
49	9 HCP-005	puartz Vein		< 0.03	3 <0.001	2	< 0.001	<0.001	<0.001	< 0.01	<0.01	0.019	< 0.001	<0.001
50	$0 \cdot$ JCE-001	Andesite with Clay and	Pyrite	< 0.03	$3<0.001$	4	< 0.001	0.008	0.005	0.02	<0.01	0.016	<0.001	0.002

Appendix 8 Ore assay data of rock samples in Doi Chong area

No	Sample No.	Rock Type ${ }^{\text {E }}$ Elewent	Au	Au	Ag	Cu	Pb	2 n	W0,	Sn	血	Ta	Mb
		th	g / t	02/t	ppe	\%	\%	\%	\%	\%	\%	\%	\%
1	ADR-601	Aplite with Salfide	<0.03	<0.001	<2	<0.001	0.004	0.004	0.01	< 0.01	0.020	< 0.001	0.002
2	ADE-003	Silicified Rock	< 0.03	<0.001	2	0.001	0.001	0.002	0.02	< 0.01	0.015	<0.001	< 0.001
3	ADR-004	Jasperoid Bock	< 0.03	<0.001	2	<0.001	< 0.001	< 0.001	0.02	< 0.01	0.001	<0.001	<0.001
4	ADS-005	Aplite with Quartz Vein	< 0.03	<0.001	<2	<0.001	0.003	0.002	0.01	<0.01	0.030	< 0.001	0.002
5	ADS-006	Quartz Vein	<0.03	<0.001	<2	0.001	0.003	0.003	<0.01	<0.01	0.036	<0.001	<0.001
6	ADR-007	Quartz Yein	< 0.03	<0.001	<2	<0.002	0.003	0.004	0.03	<0.01	0.015	<0.001	0.002
7	ADR-008	Diopside Skarn	< 0.03	<0.001	<2	<0.001	< 0.001	0.004	<0.01	<0.01	0.049	<0.001	<0.001
8	ADR-010	Diorite with	< 0.03	< 0.001	<2	0.002	0.001	0.011	<0.01	<0.01	0.034	<0.001	0.001
9	ADR-013	Quartz Yein	< 0.03	<0.001	<2	<0.001	0.001	< 0.001	<0.01	<0.01	0.013	< 0.001	< 0.001
10	ADR-014	Quartz Vein	<0.03	< 0.001	<2	< 0.001	0.001	<0.001	0.01	< 0.01	0.003	< 0.001	< 0.001
11	ADR-017	Quartz Vein	<0.03	<0.001	<2	<0.001	0.001	< 0.001	<0.01	<0.01	0.002	< 0.001	<0.001
12	BDR-003	Quartz Phyllite xith Pyrite	<0.03	< 0.001	<2	0.001	0.002	0.021	0.03	< 0.01	0.091	<0.001	0.001
13	B D_{R}-004	Phyllite with Pyrite	<0.03	<0.001	<2	<0.001	0.001	0.001	0.01	<0.01	0.012	<0.001	0.001
14	BDR-006	Granite with Quartz Vein	<0.03	< 0.001	<2	<0.001	0.006	0.004	0.02	<0.01	0.053	01	0.002
15	BDR-007	Quartz Vein	< 0.03	<0.001	<2	< 0.001	0.002	0.001	0.01	<0.01	0.002	<0.001	< 0.001
16	BDP-011	Quartz Yein	<0.03	<0.001	<2	<0.001	0.001	0.001	0.01	< 0.01	0.001	<0.001	< 0.001
17	BDR-015	Quartz Vein	<0.03	<0.001	<2	< 0.001	0.002	0.001	0.01	< 0.01	0.002	<0.001	< 0.001
18	COR-003	Quartz Yein	<0.03	<0.001	<2	< 0.001	0.002	0.001	0.01	<0.01	0.002	< 0.001	0.001
19	CDR-004	Quartz Yein	<0.03	<0.001	<2	<0.001	0.001	0.003	< 0.01	<0.01	0.005	< 0.001	< 0.001
20	CDR-010	Quartz Yein	<0.03	<0.001	<2	< 0.001	0.001	0.001	<0.01	<0.01	0.002	<0.001	<0.001
21	CDR-012	Quartz	< 0.03	<0,001	<2	<0.001	0.001	0.001	< 0.01	< 0.01	0.001	0.001	1
22	CDE-013	Quartz Vein	<0.03	<0.001	<2	<0.001	0.001	0.002	<0.01	< 0.01	0.001	<0.001	<0.001
23	DDR-001	Quartz Schist	<0.03	<0.001	<2	<0.001	0.006	0.003	0.01	<0.01	0.020	<0.001	< 0.001
24	DDB-008	Quartz Vein	<0.03	<0.001	<2	0.001	<0.001	0.012	< 0.01	<0.01	0.113	<0.001	0.001
25	DIB-009	Quartz Yein	<0.03	<0.001	<2	<0.001	<0.001	0.006	< 0.01	<0.01	0.017	< 0.001	0.001
26	DDR-010	Granite with Quartz Yein	<0.03	<0.001	2	< 0.001	0.030	0.001	0.03	< 0.01	0.023	0.001	0.004
27	DDR-012	Quartz Vein	<0.03	<0.001	2	0.003	0.001	<0.001	0.05	<0.01	0.033	< 0.001	0.001
28	DDR-013	Quartz Veín	< 0.03	< 0.001	2	<0.001	0.003	0.002	0.01	<0.01	0.039	0.001	0.005
29	DDR-015	Quartz Vein	0.12	0.004	<2	< 0.001	0.001	0.001	< 0.01	<0.01	0.004	<0.001	<0.001
30	DDR-016	Siliceous Conglomerate	<0.03	<0.001	<2	0.001	0.001	0.001	<0.01	<0.01	0.008	<0.001	<0.001
31	DDA-018	Guartz Vein	<0.03	< 0.001	<2	< 0.001	0.001	< 0.001	< 0.01	<0.01	0.001	<0.001	<0.001
32	DDR-021	Quartz Vein	<0.03	< 0.001	<2	< 0.001	< 0.001	< 0.001	<0.01	<0.01	0.001	< 0.001	< 0.001
33	EDR-001	Quartz Vein	<0.03	< 0.001	<2	< 0.001	0.002	0.003	0.03	< 0.01	0.007	< 0.001	0.001
34	EDR-003	Quartz Yein	<0.03	< 0.001	<2	< 0.001	0.001	0.001	0.04	<0.01	0.008	< 0.001	0.001
35	coR-004	Diorite with Quartz Yein	<0.03	< 0.001	2	<0.001	0.001	0.001	0.06	<0.01	0.086	<0.001	0.002
36	EDR-006	Quartz Vein	<0.03	<0.001	<2	<0.001	<0.001	<0.001	<0.01	<0.01	0.002	< 0.001	< 0.001
37	EDR-00?	Quartz Vein	<0.03	< 0.001	<2	< 0.001	< 0.001	< 0.001	0.01	<0.01	0.003	<0.001	0.002
38	EOR-010	Quartz Vein	<0.03	< 0.001	<2	< 0.001	0.007	0.003	0.01	<0.01	0.020	< 0.001 .	0.001
39	CDR-011	Diorite with Sulfide	<0.03	< 0.001	<2	< 0.001	<0.001	0.003	0.02	< 0.01	0.059	< 0.001	< 0.001
40	ROR-012	Skarnized Limestone	<0.03	< 0.001	<2	<0.001	< 0.001	0.001	0.01	<0.01	0.021	<0.001	<0.001
41	EDR-014	Quartz Yein	not/ss	not/ss	24	0.004	0.006	0.012	0.02	<0.01	> 2.500	<0.001	< 0.001
42	ERR-017	Guartz Yein	<0.03	< 0.001	≤ 2	< 0.001	< 0.001	<0.001	<0.01	<0.01	0.001	<0.001	< 0.001
43	EDR-018	Quartz Yein	<0.03	< 0.001	<2	<0.001	<0.001	< 0.001	<0.01	<0.01	0.001	< 0.001	<0.001
44	FDR-004	Quartz Vein	< 0.03	< 0.001	<2	<0.001	0.001	< 0.001	0.04	<0.01	0.019	< 0.001	< 0,001
45	GDR-001	Quartz Vein	<0.03	<0.001	<2	<0.001	0.001	<0.001	0.05	<0.01	0.005	<0.001	0.001
46	HDR-002	Quartz Vein	<0.03	< 0.001	<2	<0.001	0.001	< 0.001	0.10	<0.01	0.014	<0.001	<0.001
47	SR-001	Quartz Yein	<0.03	<0.001	<2	<0.001	0.010	0.004	0.06	<0.01	0.026	<0.001	0.002
48	KDR-001	Quartz Vein	<0.03	< 0.001	<2	<0,001	0.001	<0.001	0.04	< 0.01	0.036	< 0.001	0.001
49	$\mathrm{K} 3 \mathrm{R}-002$	Quartz Yein	<0.03	< 0.001	<2	0.002	0.001	0.001	0.04	<0.01	0.036	< 0.001	<0.001

Appendix 9 Ore assay data of rock samples in Ratchaburi area

No	Sample No.	Lock Type	Elerent	Au	Au	Ag	Cu	Pb	2 n	\% 0	Sn	彻	12	Nb
			Init	g / t	0z/t	pp	\%	\%	\%	\%	\%	\%	\%	\%
1	AB-001	Quartz Vein		< 0.03	<0.001	<2	<0.001	0.001	<0.001	0.02	<0.01	0.002	<0.001	< 0.001
2	AR-007	Quartz Yein		< 0.03	<0.001	<2	< 0.001	0.001	0.010	0.02	0.48	0.100	0.013	0.006
3	AR-008	Quartz Vein		< 0.03	<0.001	<2	<0.001	< 0.001	0.001	0.01	< 0.01	0.020	< 0.001	0.001
4	AR-009	Quartz Vein		< 0.03	< 0.001	<2	< 0.001	0.002	0.001	0.01	<0.01	0.005	<0.001	0.002
5	BR-003	Quartzite with Pyrite		< 0.03	< 0.001	<2	<0.001	0.003	<0.001	0.01	<0.01	0.003	<0.001	0.001
6	BR-008	Quartz Vein		<0.03	<0.001	<2	<0.001	0.088	<0.001	0.01	<0.01	0.001	<0.001	0.001
7	BR-013	guartz Vein		<0.03	<0.001	<2	< 0.001	0.007	0.004	0.01	<0.01	0.071	<0.001	< 0.001
8	BR-014	Altered Tuff		<0.03	<0.001	<2	0.001	0.002	0.006	0.01	<0.01	0.012	<0.001	0.001
9	CR-001	Altered Shale		<0.03	<0.001	<2	0.001	0.001	0.006	0.01	<0.01	0.045	<0.001	0.001
10	CR-002	Granite with Sulfide		<0.03	<0.001	<2	< 0.001	0.006	0.001	0.01	<0.01	0.013	<0.001	<0.001
11	C7-004	vuartz Vein		<0.03	< 0.001	<2	< 0.001	0.001	0.003	0.03	<0.01	0.023	0.004	0.009
12	DR-001	Quartz Vein		<0.03	< 0.001	<2	< 0.001	0.001	0.001	0.02	<0.01	0.019	< 0.001	0.001
13	DR-006	Quartz Yein		<0.03	<0.001	<2	<0.001	0.001	<0.001	0.01	<0.01	0.029	<0.001	< 0.001
14	DR-007	Quarta Yein		<0.03	<0.001	<2	<0.001	0.001	< 0.001	0.01	<0.01	0.021	0.001	0.001
15	DR-008	Quartz Vein		0.03	0.001	2	0.017	0.010	0.001	< 0.01	<0.01	0.012	< 0.001	0.001
16	DR-009	Quartz Vein		< 0.03	<0.001	<2	< 0.001	0.020	0.002	<0.01	<0.01	0.003	<0.001	<0.001
17	DR-010	Quarts Vein		< 0.03	< 0.001	<2	<0.001	0.002	<0.001	<0.01	<0.01	0.002	≤ 0.001	< 0.001
18	DR-011	Quartz Vein		<0.03	< 0.001	<2	<0.001	< 0.001	<0.001	<0.01	< 0.01	0.002	< 0.001	0.001
19	DR-012	Quartz Vein		< 0.03	< 0.001	<2	<0.001	0.002	<0.001	0.01	<0.01	0.001	<0.001	0.001
20	DR-013	Quartz Vein		<0.03	<0.001	2	0.008	0.046	0.002	0.01	<0.01	0.010	<0.001	0.001
21	DR-014	Quartz Yein		<0.03	<0.001	2	0.001	0.002	0.002	< 0.01	<0.01	0.007	<0.001	0.001
22	DR-016	Quartz Vein		<0.03	<0.001	<2	<0.001	0.001	< 0.001	<0.01	<0.01	0.003	<0.001	< 0.001
23	DR-018	Quartz Vein		< 0.03	< 0.001	<2	< 0.001	0.001	< 0.001	<0.01	0.06	0.005	<0.001	< 0.001
24	ER-002	Altered Andesite		< 0.03	<0.001	2	<0.001	0.003	0.005	0.01	<0.01	0.051	<0.001	0.001
25	ER-003	Silicified Kornfels		< 0.03	< 0.001	2	0.001	0.002	0.006	0.02	<0.01	0.044	<0.001	0.001
26	ER-007	Quartz Vein		<0.03	<0.001	<2	< 0.001	0.002	0.001	0.05	<0.01	0.010	<0.001	0.001
27	ER-008	Quartz Vein		<0.03	<0.001	<2	0.002	<0.001	<0.001	0.05	<0.01	0.002	< 0.001	<0.001
28	ER-009	Hornblend Quartz Rock		<0.03	<0.001	<2	<0.001	0.001	0.015	0.01	<0.01	0.026	0.003	0.007
29	88-014	Quartz Vein		< 0.03	< 0.001	<2	< 0.001	0.003	0.001	0.01	<0.01	0.019	< 0.001	0.001
30	ER-012	Quartz Yein		<0.03	< 0.001	4	0.008	0.012	0.006	0.02	<0.01	0.019	<0.001	0.001
31	兓-014	Quartz Vein		<0.03	< 0.001	10	0.001	0.359	0.003	0.07	< 0.01	0.004	< 0.001	0,001
32	ER-015	Quartz Vein		<0.03	<0.001	<2	0.002	0.008	0.010	0.30	<0.01	0.086	0.002	0.001
33	ER-016	guartz Vein		<0.03	<0.001	<2	0.001	0.054	0.001	0.02	<0.01	0.004	<0.001	<0.001
34	ER-017	quartz Vein		0.03	0.001	2	<0.001	0.002	<0.001	0.01	< 0.01	0.012	<0.001	<0.001
35	ER-018	Quartz Yein		< 0.03	<0.001	<2	<0.001	0.003	< 0.001	0.01	< 0.01	0.007	< 0.001	0.001
36	ER-019	Quartz Vein		< 0.03	< 0.001	<2	<0.001	0.003	<0.001	0.02	< 0.01	0.008	<0.001	0.001
37	ER-020	Quartz Vein		<0.03	<0.001	<2	<0.001	0.002	<0.001	0.01	<0.01	0.004	<0.001	0.001
38	ER-021	Quartz Vein		0.03	0.001	<2	<0.001	< 0.001	< 0.001	0.02	<0.01	0.006	< 0.001	0.001
39	ER-022	Siliceous Tuff		<0.03	<0.001	<2	< 0.001	0.002	0.003	0.02	<0.01	0.059	0.004	0.006
40	ER-023	Muartz Yein		< 0.03	< 0.001	<2	$\bigcirc 0.001$	0.005	0.003	0.09	<0.01	0.019	< 0.001	0.001
41	ES-024	Quartz Yein		<0.03	<0.001	<2	< 0.001	<0.002	< 0.001	0.02	<0.01	0.008	< 0.001	< 0.001
42	[B -025	Quartz Vein		<0.03	<0.001	2	<0.001	0.002	0.001	0.04	<0.01	0.010	0.001	0.002
43	ER-026	Quartz Vein		<0.03	< 0.001	2	< 0.001	0.001	0.001	0.23	<0.01	0.037	<0.001	0.001
44	ER-029	Quartz Yein		< 0.03	< 0.001	<2	0.001	0.002	<0.001	0.05	<0.01	0.004	<0.001	<0.001
45	ER-030	Quartz Yein		<0.03	< 0.001	2	< 0.001	0.001	0.001	0.02	<0.01	0.017	<0.001	0.001
46	ER-032	quartz Vein		<0.03	< 0.001	<2	< 0.001	< 0.001	< 0.001	0.02	< 0.01	0.008	<0.001	0.001
47.	EP-033	Quartz Vein		0.03	0.001	2	<0.001	0.003	<0.001	0.01	<0.01	0.006	<0.001	0.001
48.	KR-001	Quartz Vein		<0.03	<0.001	2	<0.001	0.003	0.001	0.02	<0.01	0.018	<0.001	0.002
49	KR-002	Quartz Vein		< 0.03	< 0.001	2.	< 0.001	0.001	0.002	0.02	< 0.01	0.033	<0.001	0.001
50	KR-003	Aplite with quartz Vein		<0.03	< 0.001	<2	< 0.001	0.003	0.001	0.03	<0.01	0.017	<0.001	0.001
51.	IR-003	Quartz Yein		<0.03	<0.001	<2	<0.001	<0.001	< 0.001	0.04	<0.01	0.002	< 0.001	<0.001
52	TB-004	Quartz Vein		< 0.03	<0.001	<2	< 0.001	<0.001	0.001	0.01	<0.01	0.009	0.001	0.002

Appendix 10 Chemical and normative compositions of rock samples in Chiang Khong area

	mix wisin! $\dot{\infty}_{\infty} \infty_{1}^{\prime}, \infty, \infty, \infty, \infty, \infty, \infty, \infty, \cdots$	－		ס＇心．めioiol 	\＃	$\stackrel{\circ}{6}$		
喈		$\stackrel{8}{8}$			瘑	$\stackrel{\square}{\infty}$		
		$\underline{\square}$		 \qquad	名	$\stackrel{\square}{\infty}$		\cdots
\％		－				$\begin{aligned} & \stackrel{8}{0} \\ & \infty \\ & \infty \end{aligned}$		
颜	$\left\lvert\, \begin{array}{ll} \infty & \infty \\ \infty & \infty \\ \infty & \infty \\ \infty & \infty \\ \infty & \infty, \\ \infty & \infty \\ \infty & \infty \\ \infty \end{array}\right.$	$\stackrel{\oplus}{\circ}$		 	$\begin{gathered} \overrightarrow{0} \\ \dot{0} \\ \text { 心. } \end{gathered}$	－		
$\begin{aligned} & \text { 등 } \\ & i \\ & \text { B } \end{aligned}$	 ∞ ：	$\left(\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \end{array}\right.$				$\begin{aligned} & \varnothing \\ & \infty \\ & \infty \\ & \infty \end{aligned}$		
		$\left\{\left.\begin{array}{l} \infty \\ \infty \\ \infty \end{array} \right\rvert\,\right.$		 \qquad		$\stackrel{\infty}{\infty}$		8
	श्ञाふioisioisimioióo	$\begin{gathered} \infty \\ \substack{0 \\ \infty \\ \infty \\ \infty} \end{gathered}$				－		\％
帚		$\stackrel{8}{8}$						
¢		（						
1080	 \qquad	－						
－	 चiかiniosidinminisio $\omega_{1}^{\infty} 1_{1+1}^{\infty} 1:$							\cdots
N	 	（		 				－
		：			\％	？		8
	 	i		 	－	年		N
	 	8						

Appendix 11 Chemical and normative compositions of rock samples in Doi Chong area

是		－				안	＋19
－	 	－		ぶ心总心灾	宕	N－0	号
$\begin{aligned} & 8 \\ & 0 \\ & \stackrel{0}{1} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{array}{c:c} \infty \\ \infty & 0 \\ \cdots \end{array}$	$\stackrel{M}{\square}$		がল্NiNiか： 		$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \underset{\alpha}{\infty} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{8}{8} \\ & \end{aligned}\right.$
$\begin{aligned} & 0.0 \\ & 0 \\ & \hline 0 \end{aligned}$	 	感			－	¢	$\stackrel{0}{2}$
$\stackrel{8}{0}$	 上： $1 \begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	号			－	－	$\stackrel{+}{8}$
	 	$\left\|\begin{array}{l} \dot{0} \\ \dot{8} \end{array}\right\|$				$\begin{aligned} & \vec{N} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\xrightarrow{\text { W }}$
		－		 			－
		N					－
	ゆioinioisisiolmioisio 	－		ふiか＇miol 			－
$\overrightarrow{0}$ \vdots \vdots	 1 子 1	－		 $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1:$	$\left\lvert\, \begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}\right.$		－
		－				$\begin{gathered} 8 \\ \infty \\ \infty \end{gathered}$	－
		$\stackrel{\infty}{\square}$				4	¢
	 N： $\begin{array}{rllllll}-1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1\end{array}$	W W ¢			$\begin{aligned} & \mathbf{~} \\ & \stackrel{y}{\circ} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{8}{+}$	$\stackrel{0}{\sim}$
迢		$\stackrel{3}{8}$			$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	F	¢
䍃	 	\％		 \qquad	$\stackrel{\sim}{\square}$	：	∞
¢		\％		 	$\stackrel{3}{8}$		
－	ミioiviniósiónioisinio	尔			$\begin{aligned} & \stackrel{9}{5} \\ & \stackrel{y}{6} \end{aligned}$	$\underset{~ s i x}{s}$	呙
	かoimiaioiósimiónio0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	－			\％	号	－
			页		$\begin{aligned} & \text { تِ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		

Appendix 12 Chemical and normative compositions of rock samples in Ratchaburi area

$\begin{gathered} 0 \\ \hline \end{gathered}$	सiolyiololololommioloio	$\stackrel{\square}{4}$					－
¢	 	＋		Sighoinix iol iongigis 		\％	＋
蒿	miomionosiolominidolo	筞				－	\％
蒿		－		 		8	¢
\％	लisidioisioimuniolo	－					\％
－		菏					
¢	 	$\stackrel{\sim}{\square}$		 			
，		（1）		 			
it	Niominimoiominimiois	－					
产	 	－		 			
宮	aiominioiolmmioiolo	（1）				S	\bigcirc
容	мinisioigioisimimisioisio 	－		 			
$\dot{\sim}$		？				－	

Appendix 13 Soil geochemical data of the east Ban Na Ban Rai gold occurrence

| Element | Au | Ag | Cu | Pb | Zn | Hg | As | Fe | H | Sn | Sb | F | Ta | Nb |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Init | ppb | ppa | ppm | ppm | ppm | ppb | ppm | $\%$ | ppma | ppm | ppm | ppm | ppm | ppH |
| Detection | 1 | 0.2 | 1 | 2 | 2 | 10 | 2 | 0.01 | 10 | 2 | 2 | 20 | 2 | 5 | limit

No. Sample No.

1	A-001	20	-0.2	29	90	22	20	56	7.70	-10	-2	2	210	-1.0	10
2	A-002	16	-0.2	27	66	16	10	56	8.21	-10	-2	2	180	1.0	12
3	A-003	8	-0.2	18	68	16	30	34	4.61	-10	-2	2	100	1.2	10
4	A-004	17	-0.2	27	56	16	10	58	7.84	-10	-2	2	260	-1.0	10
5	A-005	13	-0.2	36	66	30	20	78	11.20	-10	-2	-2	210	-1.0	10
6	A-006	13	-0.2	27	48	20	10	56	7.19	-10	-2	2	270	-1.0	12
7	A-007	477	-0.2	28	54	22	10	72	9.35	-10	-2	2	280	-1.0	10
8	A-008	12	-0.2	19	34	18	30	42	6.54	-10	-2	2	150	-1.0	12
9	A-009	12	-0.2	18	40	18	20	40	5.24	-10	-2	2	150	-1.0	12
10	A-010	11	-0.2	17	34	16	20	38	5.00	-10	-2	2	150	-1.0	14
11	A-011	12	-0.2	19	26	18	20	34	4.00	-10	-2	2	260	1.0	14
12	B-001	32	-0.2	26	52	18	30	24	5.49	-10	-2	-2	250	-1.0	12
13	B-002	19	-0.2	25	52	18	10	30	4.86	-10	-2	2	390	-1.0	10
14	B-003	12	-0.2	24	56	18	10	40	5.32	-10	-2	-2	370	-1.0	12
15.	8-004	14	-0.2	22	56	18	10	26	4.94	10	-2	-2	320	-1.0	12
16	B-005	27	-0.2	29	54	20	20	56	7.44	-10	-2	2	390	-1.0	10
17	B-006	13	-0.2	32	46	20	10	60	8.94	10	-2	2	480	1.1	10
18	B-007	6	0.2	19	28	12	20	42	5.82	10	-2	-2	240	-1.0	16
19	B-008	9	-0.2	19	30	16	10	44	5.56	-10	-2	-2	250	1.0	14
20	B-009	8	0.4	19	34	20	20	32	5.55	20	-2	-2	260	-1.0	12
21	B-010	14	-0.2	26	32	20	20	34	5.07	30	-2	2	540	-1.0	12
22	B-011	9	-0.2	19	24	20	20	40	3.51	50	-2	-2	330	-1.0	14
23	C-001	13	-0.2	24.	68	26	20	18	3.17	10	-2	-2	470	-1.0	8
24	C-002	27.	-0.2	36	42	20	20	28	6.78	10	-2	-2	360	-1.0	8
25	C-003	60	-0.2	39	56	56	10	32	7.07	10	-2	-2	460	-1.0	8
26	C-004	25	-0.2	34	58	24	20	64	8.29	20	-2	-2	480	-1.0	8
27	C-005	15	-0.2	31	70	22	20	66	8.80	20	-2	4	380	-1.0	12
28	C-006	52	-0.2	35	46	22	20	80	10.75	-10	-2	-2	450	-1.0	8
29	C-007	25	-0.2	36	58	30	20	62	8.67	-10	-2	-2	490	-1.0	8
30	C-008	16	-0.2	42	54	36	20	60	9.48	-10	-2	6	550	-1.0	10
31	C-009	14	-0.2	41	42	38	30	30	8.09	-10.	-2	4	880	-1.0	8
32	C-010	13	-0.2	42	34	38	30	20	5.16	60	-2	2	780	-1.0	8
33	c-011	16	-0.2	28	34	34	30	28	3.59	50	-2	-2	390	-1.0	10

-
-

JII|CR

[^0]:

 -

[^1]: No

