	Ap	pendix D-3	(1) List (of the obse	rved IP data from	profile I
	*	Current Ele Frequency	ctrodes: 3 ; 0	700 - 800 125[Hz]	Current: 210[m	: • • • • • • • • • • • • • • • • • • •
		N 1	Potential Electrodes 900 - 1000	[mV]	Resistivirity [Ω·m] 173.08	[mV/V]
Community of the local division of the local			ctrodes: 6 : 0		Current: 120[m	nA]
Д.Г.		1	Electrodes	[mV]	Resistivirity [Ω·m] 174.57	Chargeability [mV/V] 3.23
	: .	2	900 - 1000	2,30	144.40	2.68
			ctrodes: 5 : 0		Current: 280[m	1A]
	·	N	Potential Electrodes 700 – 800		Resistivirity [Ω·m] 178.95	Chargeability [mV/V]
		1 2 3	700 - 800 800 - 900 900 - 1000	4.50	178.95 121.08 121.53	3.43 4.69 13.49
			ctrodes: 4 : 0		Current: 280(m)A]
Ó		N 1	Potential Electrodes 600 - 700	Voltage [mV] 31.63		Chargeability [mV/V] 3.55
		2 3 4	700 - 800 800 - 900 900 - 1000	3.75	100.98 82.13 109.96	6.35 9.73 22.29
			ctrodes: 3 : 0.		Current: 240[m	A]
÷.,		N -	Potential Electrodes 500 - 600	Voltage [mV] 26.54	Resistivirity [Ω·m] 208.46	Chargeability [mV/V] 3.35
		2	600 - 700 700 - 800	3.14 0.81	98.59 63.37	5.33
		4	800 - 900	0.49	77.58	13.56
		Current Ele Frequency		200 - 300 125[Hz]	Current: 210[m	NA]
		N	Potential Electrodes	Voltage [mV]	Resistivirity [Ω·m]	Chargeability [mV/V]
		1 2 3 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ 19.75 \\ 3.19 \\ 0.68 \\ 0.36 $	$177.32 \\ 114.39 \\ 61.15 \\ 65.01$	4.23 6.15 18.21 67.09

D – 9

,

Appendix D-3(2) List of the observed IP data from profile I

* Current Electrodes: 100 - 200
Frequency : 0.125[Hz] Current: 300[mA]

N	Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	[Ω·m]	[mV/V]
1	300 - 400	31.39	197.26	2.89
2	400 - 500	3.88	97.54	8.21
3	500 - 600	1.20	75.57	12.31
4	600 - 700	0.47	58.69	2,79

* Current Electrodes: 0 - 100
Frequency : 0.125[Hz] Current: 640[mA]

			and the second	
N	Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	[Ω·m]	[mV/V]
1	200 - 300	93.63	275.75	3.88
2	300 - 400	12.48	146.96	6.36
3	400 - 500	2.89	85.01	8.45
4	500 - 600	1.54	91.00	6.35

Ò

()

()

Appendix D-3(3) List of the observed IP data from profile H

	*	Curront F	lectrodes : 8(000		
				00 - 900	a 1	
		rrequency	• • • • •	l25[Hz]	Current: 200[m	AJ
	1.1	N	Potential	**	Resistivirity	Chargeability
	-		Electrodes	[mV]	[Ω + m]	[mV/V]
	· 11	1	1000 - 1100	3.01	28.33	1.73
		2	1100 - 1200	0.00	0.00	0.00
		3	1200 - 1300	0.00	0.00	0.00
		4	1300 - 1400	0.00	0.00	0.00
-0						0.00
e 2	*	Current E	lectrodes: 70	00 - 800		
			0.1		Current: 100[m	A]
					current: 100[m	AJ
		N	Potential	Voltage	Resistivirity	01
		- IX -	Electrodes			Chargeability
		1	900 - 1000	[mV]		[mV/V]
-		1		0.59	11.12	1.54
	· ·	2	1000 - 1100	0.41	31.12	20.17
		. 3	1100 - 1200	0.00		0.00
		4	1200 - 1300	0.00	0.00	0.00
	*		lectrodes: 60			
		Frequency	: 0.1	25[Hz]	Current: 110[m	A]
		·				
		N		Voltage	Resistivirity	Chargeability
			Electrodes	[mV]	[Ω · m]	[mV/V]
		1	800 - 900	0.28	7.43	8.23
		2	900 - 1000	0.14	14.52	6.65
		3	1000 - 1100	0.09	23.15	18.95
4)		4	1100 - 1200	0,00	0.00	0.00
		~				
	*			0 600		
		Frequency	: 0.1	25[Hz]	Current: 800[m.	A]
			.			
		N	Potential	Voltage	Resistivirity	Chargeability
			Electrodes	[mV]	[Ω · m]	[mV/V]
		· 1	700 800	4.87	11.47	1.31
		2	800 - 900	1.25	11.75	3.42
	•	3	900 - 1000	0.75	17.70	6.85
		4	1000 - 1100	0.91	42.97	3.37
	*	Current E	lectrodes: 40	0 - 500		
		Frequency	: 0,1	25[Hz]	Current: 500[m.	A]
	-	N	Potential	Voltage	Resistivirity	Chargeability
			Electrodes	[mV]	$[\Omega \cdot m]$	[mV/V]
		1	600 - 700	2.77	10.46	3.61
		2	700 - 800	0.71	10.40	6.59
Ð		3	800 - 900	0.48	18.25	12.09
	÷	· · · 4	900 - 1000	0.43	30.87	22.81
			000 1000	V.41	30.07	10.35

D-11

Ì

Appendix D-3(4) List of the observed IP data from profile II

*	Current R1	ectrodes: 30	00 - 400			
				Current: 700[m	A 1	
	riequency	• •••	restuel	Current Toola		
	N	Potential	Voltage	Resistivirity.	Chargeability	
	**	Electrodes	[mV]	$\left[\Omega \cdot \mathbf{m} \right]$		
	1	500 - 600	2.74	7.38		
	$\hat{2}$	600 - 700	0.91	9.83		
	3	700 - 800	0.53	14.36	9.46	
	4	800 ~ 900	0.48	26.06		
	4	000 - 900	0.40	20.00	18.65	()
×	Current R1	ectrodes: 20	10 - 300			\mathbf{O}
Ŧ				Current: 1000[m	A 1	
	riequency	: 0.	100[10]			
	N	Potential	Voltado	Resistivirity	Chabraahilitu	
		Electrodes	[mV]	$\{\Omega \cdot \mathbf{m}\}$	[mV/V]	
	1	400 - 500	3.73		3.82	
	2	500 - 600	1.20			
	3	600 - 700	0.64	9.05	3.74	
	3 4				5.94	
	4	700 - 800	0.45	17.13	7.85	
*	Current El	ectrodes: 10	10 - 200			
				Current: 1200[m	A]	
	rrequency	• • • •	[20[[[2]]			
	N .	Potential	Voltage	Resistivirity	Chargeability	
	· · · · · · · · · · · · · · · · · · ·	Electrodes	[mV]	$[\Omega \cdot m]$	[mV/V]	·
	í	300 - 400	5.14		2.39	
	2	400 - 500	1.39		3.36	
	3	500 - 600	0.63			
	4	600 - 700	0.40	12.56	5.51	0
	*2	000 - 100	0.40	12.00	5.51	0
*	Current El	ectrodes:	0 - 100		4	
				Current : 1500[m	A]	
		••••				
1	N	Potential	Voltage	Resistivirity	Chargeability	
		Electrodes	[mV]		[mV/V]	
- : · · ·	1	200 - 300	12 40	15.59	5.51	
	2	300 - 400	2.65	13.31	1.63	
	3	400 - 500	1.14	14.28	2.74	
	4	500 - 600	0.65	16.29	0.71	
		·				
*	Current El	ectrodes: 110	00 - 1200	·		
	Frequency	: 0, :	l25[Hz]	Current: 120[m	A]	
	N	Potential	Voltage	Resistivirity	Chargeability	
	;	Electrodes	[mV]	[Ω m]	[mV/V]	
	1	900 ~ 1000	3.15	49.43	13.14	
	2	800 - 900	0.52	32.94	8.28	
	3	700 - 800	0.16	25.27	14.14	()
	4	600 - 700	0.09	28.21	20.67	
	-					
*	Current El	ectrodes: 120	00 - 1300		· · · · · · · · · · · · · · · · · · ·	
	Frequency	: 0.1	125[Hz]	Current: 200[m	A]	
					-	
	N	Potential	Voltage	Resistivirity	Chargeability	
		Electrodes	[mŬ]	[Ω·m]	[mV/V]	•
	1 .	1000 - 1100	9.44	88.93	11.13	
	1 2	1000 - 1100 900 - 1000	$9.44 \\ 1.82$	88.93 68.44	$11.13 \\ 18.74$	
				68.44	18.74	
	2	900 - 1000	1.82			

D-12

	Annendler P	0 (r)		1		
	Appenaix D	-3(5) List of	the obser	ved IP data	from p	rofile II
	* Current E	lectrodes: 130	0 - 1400			
	Frequency	: 0.1	25[Hz] 👘 🕤	Current :	44[mA]	
		Potential	Voltage	Resistiviri	ty	Chargeability
		Electrodes 1100 - 1200	[mV]	. [Ω.•n	n }	[mV/V]
		1100 - 1200	2.04	87.		
	2 3	$\frac{1000}{900} - \frac{1100}{1000}$	1.49	220.		20.78
		800 - 900				22.60
)		000 - 300	0.15	114,	94	8.03
	* Current E	lectrodes: 140	0 - 1500			
	Frequency	: 0.1	25[Hz]	Current:	50[mA]	·
	200 - N - 0	Potential	Voltage	Resistiviri	ty (Chargeability
	· · · ·	Electrodes	[mV]	[Ω · n	n] 👘 👘	
	1	1200 - 1300	3.08	120.	83	20.87
	2		0.69	114.		34.00
			0.63			53.90
	4	900 - 1000	0.23			48.57
	* Current El	lectrodes: 1500	0 - 1600			· · · · · · · · · · · · · · · · · · ·
	Frequency		25[Hz]	Current: 1	00[mA]	
	N	Potential				Chargeability
2		Electrodes	[mV]	[Ω·m	1]	[mV/V]
		1300 - 1400	10.41			13.76
	2	1200 - 1300	1.79	125.		37.61
)	3 4	$\begin{array}{rrrr} 1100 & - & 1200 \\ 1000 & - & 1100 \end{array}$		97. 154.	U1.	44.72
7	• • •	1000 - 1100	0.07	104.	1 ()	39.21
		ectrodes: 1600				
	Frequency	: 0.12	85[Hz]	Current :	32[mA]	
	N	Potential	Voltage	Resistiviri	ty (Chargeability
		Electrodes	[mV]	[Ω · m		(mV/V)
	1	1400 - 1500	2.47	145.		16.29
	2	1300 - 1400	0.74	191.		28.18
÷	3	1200 - 1300	0.20	106.		38.92
	4	1100 - 1200	0.08	78.	04	26.35
	* Current El) - 1800	-		
	Frequency	: 0.12	25[Hz]	Current :	56[mA]	
	N	Potential	Voltage	Resistiviri	ty (Chargeability
		Electrodes	[mV]	[Ω - m	1]	[mV/V]
	1	1500 - 1600	4.16	140.		14.74
)	2	1400 - 1500	1.75	236.		29.03
÷	3 4	1300 - 1400 1200 - 1300	0.70	265.		35.78
	4	1800 - 1900	0.22	105.1	66	34.35
·	* Current El		-1900	6		
	Frequency	: 0.12	5[Hz]	Current :	84[mA]	
	N	Potential	Voltage	Resistiviri	ty C	Chargeability
		Electrodes	[mV]	[Ω · m	Ĵ	[mV/V]
	1	1600 - 1700	5.64	126.		9.81
	2	1500 - 1600	1.99	178.9		32.96
	3 4	1400 - 1500 1300 - 1400	$1.11 \\ 0.59$	249.2 306.4		38.20
	4	1000 - 1400	u. 59	306.4	÷ 1	40.70

Appendix D-3(6) List of the observed IP data from profile II

* Current Electrodes : 1900 - 2000 Frequency : 0.125[Hz] Current: 44[mA] Ν Potential Voltage Resistivirity Chargeability [Ω • m] Electrodes [mV] [mV/V]1700 - 18001600 - 17002,18 93.35 17.58 1 125.24 2 0.73 30.16 0.35 3 1500 - 1600151.42 39.54 1400 - 15004 0.25 216.05 32.94 * Current Electrodes: 2000 - 2100 Frequency : 0.125[Hz] Current: 78[mA] Potential Voltage Resistivirity N Chargeability Electrodes [mV] [Ω·m] [mV/V] 45.00 1800 - 19004.38 105.89 1 1700 - 1800 2 1.31 126.92 65.66 3 1600 - 17000.57 137.15 67.78 1500 - 16004 0.33 157.39 39.78 * Current Electrodes : 2100 - 2200
Frequency : 0.125[Hz] Current: 300[mA] Potential Voltage Resistivirity Ν Chargeability Electrodes [mV] [Ω · m] [mV/V] 57.37 65.62 1900 - 2000 9.13 1 1800 - 19001700 - 180061.51 2.45 71.10 2 1.20 75.06 77.39 3 1600 - 1700 0.68 85.84 78.35 1

()

()

()

D-14

	Appendix D-3(7) List of	f the obser	ved IP data fro	m profile III
	* Current Electrodes : 15(Frequency : 0.1			mA]
	N Potential	Voltage	Resistivirity	Chargeability
	Electrodes	fmV)	[Ω · m]	[mV/V]
	1 1700 - 1800	212.95	1672.50	17.06
	* Current Electrodes: 140			
Ð	Frequency : 0.1	125[Hz]	Current : 38[mA]
	N Potential	Voltage	Resistivirity	Chargeability
	Electrodes 1 1600 - 1700	[mV]	[Ω · m]	[mV/V]
			419.72 1233.19	
	2 1100 - 1800	0,22	1200.19	61.13
	* Current Electrodes: 130			
	Frequency : 0.1	L25[Hz]	Current: 44[mA]
	N Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[Vm]	[Ω m]	[mV/V]
	1 1500 - 1600	15.02	643.30	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
	3 1700 - 1800	1.80	770.58	38.66
	* Current Electrodes: 120	00 - 1300	· · · · · · · · · · · · · · · · · · ·	
	Frequency : 0.1	25[Hz]	Current: 120[mA]
	N Potential	Voltage	Resistivirity	Chargeability
0	Electrodes	[mV]	[Ω·m]	[mV/V]
	1 1400 - 1500	30.27	475.44	
	2 1500 - 1600	10.94	687.55	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.08	327.00 657.38	36.76 43.87
	4 1100 - 1800	2.05	001.30	43.01
	* Current Electrodes: 110			
	Frequency : 0.1	25[Hz]	Current: 110[mA]
	N Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	[Ω · m]	[mV/V]
	1 1300 - 1400	33.36	571.64	22.91
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.61	658.97	31.98
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.19	718.54 305.68	23.41 35.79
	1 1000 1100	0.00	000.00	00.10
		0 - 1100		
	Frequency : 0.1	25[Hz]	Current: 100[mA]
0	N Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	[Ω · m]	[mV/V]
•	1 1200 - 1300	52.92	997.50	15.09
	2 1300 - 1400	11.36	856.82	30.36
	3 1400 - 1500	4.00	753.90	36.75
	4 1500 - 1600	2.06	777.69	30.97

D - 15

ĩ

				•	· · · ·	
A	ppendlx D-	•3(8) List o	f the obser	ved IP data from	n profile III	
					:	
*	Current El	ectrodes: 9	00 - 1000	~		
	Frequency	: 0.	125[Hz]	Current: 40(n	n A J ana ang Kabupatèn ang Kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabupatèn kabu	
	· N	Potential	Voltage	Resistivirity	Chargeability	
	· · ·	Electrodes	[mV]			
	1	1100 - 1200	25.31	1192.59	48.76	
	2	1200 - 1300	9.07	1710.56		
	3	1300 - 1400	2.15			
	4	1400 - 1500		853.49	61.91	
	-		0102			0
*	Current El	ectrodes: 8	00 - 900			
÷	Frequency	: 0.	125[Hz]	Current: 74[n	nA]	
	N .	Potential	Voltage		Chargeability	
		Electrodes	[mV]	[Ω·m]	[mV/V] 2.05	
	1	1000 - 1100	5.36	136.58	2.05	
	2	1100 - 1200	2.21	225.23 275.85	12.07	
	3	1200 - 1300		275.85	22.65	
	4 · ·	1300 - 1400	0.30	153.79	62.42	
	· · · ·			and the second second		
*		ectrodes: 7			3	
	Frequency	: 0.	125[Hz]	Current: 44[n	0A]	
	N	Potential		Resistivirity	Chargeability	
		Electrodes	[mV]	[Ω · m]	[mV/V]	
	· 1	900 - 1000			7.64	
	2	1000 - 1100	2.40		8.16	
	3	1100 - 1200		449.67	8.16 22.08	\sim
	4	1200 - 1300	0.56	476.50	40.22	0
ىد	0				•	
茶		ectrodes: 6		G 1. 100		
	rrequency		1 Z Ə [HZ]	Current: 40(n	nA J	
	N	Potontial	Voltogo	Resistivirity	Chargeability	
	11	Electrodes	[mV]	$\left[\Omega \cdot m\right]$		
	1				(mV/V)	
	2	900 - 1000		66.73	0.03	
	3	1000 - 1100	$\begin{array}{c} 2.12 \\ 1.21 \end{array}$	399.70 571.35	12.92	
	4	1100 - 1200	0.57	533.09		
	4	1100 - 1200	0.07	000.09	31,43	
*	Current El	ectrodes: 50	00 - 600			
•		: 0.		Current: 200[m	n A 1	
	rioquono,		190(191			
	И	Potential	Voltage	Resistivirity	Chargeability	
	i v	Electrodes	[mV]	$[\Omega \cdot m]$	[mV/V]	
	· 1	700 - 800	9.73	91.69	3.66	
	2	800 - 900	1.86	20.04		
	3	900 - 1000		70.04 423.75	4.34	()
	4	1000 - 1100	2.91	423.15	13.01	<u></u>
	4	1000 - 1100	2.91	047.10	17.08	
*	Current Fl	ectrodes: 40	00 - 500	·	а. — — — — — — — — — — — — — — — — — — —	
·r	Frequency			Current: 400[m	Å	
	er equency	· · · ·	realuel	ourrent, 400[#	ne i	
	N	Potential	Voltage	Resistivirity	Chargeability	
	11	Electrodes	(mV)	$[\Omega \cdot m]$	[mV/V]	
	1	600 - 700				
	1 2	700 - 800	$\begin{array}{c} 11.65 \\ 3.36 \end{array}$	54.89	2.43	
	3	800 - 900	1.10	$\begin{array}{c} 63.31 \\ 52.04 \end{array}$	2.45 2.82	
	3 4	900 - 1000	3.69	347.86	2.82	
	4	300 - 1000	3.09	041.00	9.10	

D-16

	Appendix D	D-3(9) List of the observed IP data from profi	le III
	* Current E Frequency	Clectrodes: 300 - 400 : 0.125[Hz] Current: 290[mA]	
	N	Potential Voltage Resistivirity Char	geability
		Electrodes $[mV]$ $[\Omega \cdot m]$	[mV/V]
	1	500 - 600 9.94 64.61	3.88
	2	600 - 700 3.08 79.98	2.72
	3		3.92
()	4	800 - 900 0.34 43.70	2.53
	* Current E	llectrodes: 200 - 300	
	Frequency	: 0.125[Hz] Current: 300[mA]	
	N	Potential Voltage Resistivirity Char	
		Electrodes $[mV]$ $[\Omega \cdot m]$	geability
	1	400 - 500 5.43 34.13	[mV/V] 2.93
1	2	500 - 600 2.00 50.36	2.93
	3	600 - 700 1.08 67.73	2.51
	4	700 - 800 0.56 70.60	10.93
	* Chunnant D		
		lectrodes: 100 - 200 : 0.125[Hz] Current: 210[mA]	
	rrequency	: 0.125[Hz] Current: 210[mA]	
	N	Potential Voltage Resistivirity Char	
		Dischard full	geability
	1	300 - 400 6.51 58.42	[mV/V] 8.78
	2	400 - 500 1.62 58.16	5.12
\sim	3	500 - 600 1.02 91.77	3.39
0	4	600 - 700 0.60 107.51	6.17
	* Current E	lectrodes: 0 - 100	
	Frequency		
		Current. 120[mA]	
	N s	Potential Voltage Resistivirity Char	geability
		Electrodes $[mV]$ $[\Omega \cdot m]$	[mV/V]
	1	200 - 300 7.49 117.63	8.41
	2	300 - 400 3.03 190.19	8.27
	3	400 - 500 1.02 160.93	10.15
	4	500 - 600 0.79 249.03	10.62
	• .		

Ð

Appendix D	-3(10) List of	f the obse	rved IP data from	profile W	
	lectrodes: 250 : 0.1		Current: 170[m	анан (Маландаран) А. (Маландаран) А. (Маландаран)	
N 1	Potential Electrodes 2700 - 2800	Voltage [mV] 7.92	Resistivirity [Ω·m] 87.78	Chargeability [mV/V] 4.95	
	lectrodes: 240 : 0.1		Current: 180(m	A]	0
• N	Potential Electrodes 2600 - 2700		Resistivirity [Ω·m]	Chargeability [mV/V]	
2	2700 - 2800	2.88	$119.90 \\ 120.60$	3.71 5.21	
* Current E Frequency	lectrodes: 230 : 0.1		Current: 60[m	A]	
N 1	Potential Electrodes 2500 - 2600	Voltage [mV] 1.68	Resistivirity [Ω m] 52.85	Chargeability [mV/V] 2.32	
23	2600 - 2700 2700 - 2800		130.53 131.66	4.58 7.61	·
	lectrodes: 220 : 0.1		Current: 43[m	A]	
N	Potential Electrodes	Voltage [mV]	[Ω · m]	Chargeability [mV/V]	Ο
1 2 3	2400 - 2500 2500 - 2600 2600 - 2700	$\begin{array}{c}1.80\\0.41\\0.31\end{array}$	79.09 71.97 138.06	5.90 7.36 11.10	
4 * Current E	2700 - 2800 lectrodes: 210	0.18 00 - 2200	159.66	12.75	
Frequency		25[Hz]	Current: 90[m		
1	Electrodes 2300 - 2400	Voltage [mV] 1.35	Resistivirity [Ω ·m] 28.23	Chargeability [mV/V] 3.15	
2 3 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$0.52 \\ 0.16 \\ 0.17$	43.54 32.72 70.62	7.72 12.32 22.48	
* Current E Frequency		0 - 2100 25[Hz]	Current: 300[m	A]	
N	Potential Electrodes	Voltage [mV]	Resistivirity [Ω·m]	Chargeability [mV/V]	()
1 2 3	2200 - 2300 2300 - 2400 2400 - 2500	6.26 1.87 0.92	39.34 46.96 58.06	4.45 4.93 7.92	
4	2500 - 2600	0.31	39.44	5.06	

D -- 18

ł	Appendix	D-3(11) List o	f the obse	rved IP data from	n profile W
3	Current Frequence	Electrodes: 19 y : 0.		Current: 500[n	nA]
			· · · ·		-
	N	Potential Electrodes	Voltage [mV]	Resistivirity [Ω·m]	Chargeabilit
	1	2100 - 2200	5.37	20.26	(mV/V 3.5
	2	2200 - 2300	2.67	40.29	6.3
	3	2300 - 2400		47.88	5.6
	4	2400 - 2500	0.75	56.78	5.2
ł		Electrodes: 180 y : 0.		Current: 74[n	A I
	N	Electrodes	Voltage [mV]	Resistivirity [Ω·m]	
	·· 1	2000 - 2100	0.95		(mV/V 3.8
	2	2100 - 2200			1.6
	3		0.35		4.1
	4	2300 - 2400	0.19	99.59	1.5
*	Current Frequenc	Electrodes: 170 y : 0.1	00 - 1800 L25[Hz]	Current: 70[m	iA]
	N N	Potential	Voltage	Resistivirity	Chargeabilit
		Electrodes	[Wm]	[Ω·m]	(mV/V
	1	1900 - 2000	5,68	152.96	6.1
	3	2000 - 2100 2100 - 2200	0.46	49.17 61.98	5.7
	4	2200 - 2300	0.28	149.50	4.3
*		Electrodes: 160 y : 0.1	00 - 1700 25[Hz]	Current: 90[m	A]
		Potential	Voltage	Resistivirity	Chargeabilit
	· · · · · ·	Electrodes	[mV]	[Ω · m]	[mV/V
	1 2	1800 - 1900 1900 - 2000	$\begin{array}{r} 18.64 \\ 1.75 \end{array}$	390.44	7.8
	3	2000 - 2100	0.36	146.51 74.91	6.24 5.03
	4	2100 - 2200	0.19	80.96	23.80
*	Current Frequency		00 - 1600 25[Hz]	Current: 70[m	A]
	N	Potential	Voltage	Resistivirity	Chargeabilit
		Electrodes	[mV]	$[\Omega \cdot m]$	
	1	1700 - 1800	14.02	377.41	10.80
	23	1800 - 1900 1900 - 2000	0.00	423.70	12.70
	3 4	1900 - 2000 2000 - 2100	0.65 0.19	173.87 102.61	9.09 2.94
*			0 - 1500 25[Hz]	Current: 42[m	
	 N			-	-
	74	Potential Electrodes	Voltage [mV]	Resistivirity [Ω·m]	Chargeability [mV/V]
	· · 1	1600 - 1700	4.75	213.08	9,88
	2	1700 - 1800	1.80	322.65	8.90
	3 4	1800 - 1900 1900 - 2000	$0.78 \\ 0.15$	349.35	5.28
	4	1000 - 2000	D-19	131.60	2.02

■ PTM THE PERSON AND A STATE OF A STATE

				ч.
Appendix	D-3(12) List o	f the obser	ved IP data from pro	ofile N
* Curnont	Flootnadaa: 12	00 1400		
Frequen	cy : 0.	125[Hz]	Current: 92[mA]	un an Arthur A
N	Potential	Voltage	Resistivirity Cl	hargeability
· 1			[Ω·m] 215.85	[mv/v]
2	1600 - 1700	2 65		14.90
	1700 - 1800	1.27	260 98	9.35
· 4	1800 - 1900	0.64	$\begin{array}{c} 217.00 \\ 260.98 \\ 261.26 \end{array}$	8.59
Current	Electrodes: 12	00 - 1300	· · · · · · · · · · · · · · · · · · ·	
Frequen	су : 0.	125[Hz]	Current: 90[mA]	
N	Potential	Voltage	Resistivirity Cl [Ω · m] 64.05 127.91 136.60 154.70	nargeability
· · ·	Electrodes	{ mV }	[Ω · m]	[mV/V]
. 1	1400 - 1500	3.06	64.05	8.64
. 2	1500 - 1600	1.53	127.91	7.53
3	1600 - 1700	0.65	136 60	9.16
: 4	1700 - 1800	0.37	154.70	11.32
Current Frequen	Electrodes: 11 cy : 0.	00 - 1200 125[Hz]	Current: 70[mA]	il en station Li entre des st
			Resistivirity Cl	
IN IN	Flectrodes	fmVl		In geautity
1	1300 - 1400	1 2 1	32 68	Emv7v] 8.78
2	1400 - 1500	0.81	87 05	12.54
3	1500 - 1600	0 65	174 25	12.09
4	1600 - 1700	0.34	$\begin{bmatrix} \Omega & \cdot m \end{bmatrix} \\ 32.68 \\ 87.05 \\ 174.25 \\ 180.56 \end{bmatrix}$	12.75
			Current: 50[mA]	
Frequen	су : О.	125[Hz]	Current: 50[mA]	and the state
N	Potential	Voltage	Resistivirity Cl	nargeability
			[Ω · m]	[mV/V]
1			30.86	4.53
2				1.56
3		0.34		2.04
4	1500 - 1600	0.33	246.12	7.79
	Electrodes: 9			
Frequen	cy : 0,	125[Hz]	Current: 100[mA]	· ·
N		Voltage	Resistivirity Cl	
	Electrodes			
1			21.71	1.42
2				4.21
3			52.40	6.09
4	1400 - 1500	0.34	126.34	5.34
	Electrodes: 8		Current: 000[m4]	· · · ·
r requen	cy : U.	1201421	Current: 900[mA]	
N	· · · · · · · · · · · · · · · · · · ·		Resistivirity Cl	argeability
-	Electrodes	[mV]	[Ω·m]	[mV/V]
1		14.28	29.90	1.43
2		7.26	60.79	2.00
3		3.53	74.02	4.00
4	1300 - 1400	3.26	136.39	6.95

.26 D-20 (

ţ

.

	Appendix D	-3(13) List o	f the obse	rved IP data from	aprofile IV
	* Current R	lectrodes: 7	00 000	· ·	
	Frequency		125[Hz]	Current: 44[n	nA]
	· · ·				-
		Flootmode	voltage	Resistivirity	
	1	Electrodes		[Ω · m]	[mV/V]
	2	900 - 1000	0.38	16.24	
	2	1000 - 1100 1100 - 1200	0.24		7.43
		1100 - 1200	0.15		7.23
()	- 4	1200 - 1300	0.09	76.31	10.62
	* Current E Frequency	lectrodes: 60 ; 0,	00 - 700 125[Hz]	Current: 100(a	A]
	Second News	Potential	Voltage	Resistivirity	Chargeability
	and the second	Electrodes	[mV]	[Ω·m]	[mV/V]
	1 - 1 - 1 - 1	800 - 900	1.38	25.98	6.22
	2	900 - 1000	0.14	10.65	4.52
	3	1000 - 1100	0.13	23.86	8.44
	4	1100 - 1200	0.17	62.89	11.04
	* Current R	lectrodes: 5(0		
÷	Frequency		10 - 800 125[Hz]	Current: 48[m	4
	• • • • • •			ourrenet 40(m	A J
	N	Potential	Voltage	Resistivirity	Chargeability
•		Electrodes	[mV]	[Ω · m]	[mV/V]
	1	700 - 800	0.79	31.05	2.65
	2	800 - 900	0.32	50.36	3.70
()	3	900 - 1000	0.09	33.79	2.48
\mathbf{V}	4	1000 - 1100	0.09	73.04	4.26
		lectrodes: 40 ; 0.1		Current: 58[m	A]
	N	Potential	Voltage	Dogiativizity	
		Electrodes	[mV]	Resistivirity	Chargeability
	1	600 - 700	0.73		[mV/V]
	2	700 - 800	0.50	40.10	3.49
	3	800 - 900	0.30	65.61	4.77
	4	900 - 1000	0.08	85.33	9.93
		000 1000	0.08	51.18	11.76
	* Current El		0 - 400		
	Frequency	: 0.1	25[Hz]	Current: 56[m	A]
	N	Potential	Voltage	Resistivirity	Chargeability
		Electrodes	(mV)	$[\Omega \cdot m]$	
	1	500 - 600	1.41	47.56	[mV/V]
~	2	600 - 700	0.48	64.81	9.76
0^{-}	3	700 - 800	0.38	126.97	9.07
	4	800 - 900	0.21	141.00	18.68 14.78
	* Current El	ectrodes · · · · ·	0 - 300		~
	Frequency		25[Hz]	Current: 54[m/	A]
	N	Potential	Voltage	Resistivirity	Chargeability.
		Electrodes	{mV}	[Ω · m]	[mV/V]
	1	400 - 500	1.58	54.97	15,81
	2	500 - 600	0.55	76.47	5.31
	3	600 - 700	0.23	79.57	6.66
	4	700 - 800	0.20	138.68	6.16
			D _ 91	-	

D – 21

•

Appendix D-3(14) List of the observed IP data from profile \mathbb{N}

* Current Electrodes: 100 - 200 Frequency : 0.125[Hz] Current: 210[mA] Potential Voltage Electrodes [mV] Resistivirity Chargeability Ν [mV] [Ω · m] Electrodes [mV/V]300 -400 -400 5.16 46.36 12.29 1 2 500 1.12 40.02 20.85 500 -3 600 0.52 47.06 24.53 4 600 -700 0.24 43.15 20.50 * Current Electrodes: 0 - 100 Frequency : 0.125[Hz] Current: 700[mA] N Potential Voltage Resistivirity Chargeability

	Electrodes	[mV]	[Ω · m]	[mV/V]
1	200 - 300	20.93	56.36	10.94
2	300 - 400	5.72	61.63	18.70
3	400 - 500	2.01	54.24	27.20
4	500 - 600	1.10	59.08	19.16

()

()

 $\left(\right)$

. *	Appendix D-3(15) List of the obser	rved IP data from profile V
· .	<pre>* Current Electrodes : 1400 - 1500 Frequency : 0.125[Hz]</pre>	
	N Potential Voltage	Resistivirity Chargeability
	Electrodes [mV]	$[\Omega \cdot m]$ $[mV/V]$
	1 1600 - 1700 0.65	30.82 8.84
()	<pre>* Current Electrodes : 1300 - 1400 Frequency : 0.125[Hz]</pre>	Current: 40(mA)
02	N Potential Voltage	
	Electrodes [mV]	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.98 10.26
	2 1600 - 1700 0.19	35.73 19.05
	* Current Electrodes: 1200 - 1300 Frequency : 0.125[Hz]	Current: 150[mA]
	N Potential Voltage	Resistivirity Chargeability
	Electrodes [mV]	$[\Omega \cdot m]$ $[mV/V]$
	1 1400 - 1500 5.94	74.69 4.44
•	2 1500 - 1600 1.52	76.20 12.10
	3 1600 - 1700 0.30	37.49 19.01
	* Current Electrodes: 1100 - 1200	
	Frequency : 0.125[Hz]	Current: 820[mA]
<i>i</i>	N Potential Voltage	Resistivirity Chargeability
()	Electrodes (mV)	$[\Omega \cdot m]$ $[mV/V]$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.99 9.96 97.38 14.18
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.38 14.18 85.75 21.59
	4 1600 - 1700 0.95	43.62 27.00
	* Current Electrodes: 1000 - 1100	
	Frequency : 0.125[Hz]	Current: 270[mA]
	N Potential Voltage	Resistivirity Chargeability
	Electrodes [mV]	$\begin{bmatrix} \Omega & m \end{bmatrix}$ $\begin{bmatrix} mV/V \end{bmatrix}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.82 4.99 51.69 4.56
	3 1400 - 1500 1.22	85.37 3.98
	4 1500 - 1600 0.49	68.78 6.57
2	<pre>* Current Electrodes: 900 - 1000 Frequency : 0.125[Hz]</pre>	Current: 300[mA]
\mathbf{O}		
3. /	N Potential Voltage	Resistivirity Chargeability
	Electrodes [mV]	$\begin{bmatrix} \Omega \cdot \mathbf{m} \end{bmatrix}$ $\begin{bmatrix} \mathbf{m} \mathbf{V} / \mathbf{V} \end{bmatrix}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.78 $2.3531.41$ 4.53
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.41 4.53 51.27 11.38
	4 1400 - 1500 0.62	77.56 7.90
	· · ·	

Appendix D-	-3(16) List o	f the obse	rved IP data from	profile V
	· .			
			Current: 700[m	
N			Resistivirity	Chargeability
м	Electrodes		[Ω · m]	[mV/V]
1	1000 - 1100	11.62		4.17
2	1100 - 1200	$4.85 \\ 2.50$		
3	1200 - 1300 1300 - 1400	1.93		2.67
* Current El	lectrodes: 7	00 ~ 800		
	: 0.		Current: 400[m	A]
N	Potential	Voltage	Resistivirity	Chargeability
· -	Electrodes	[mV]	[Ω·m]	[mV/V]
1	900 - 1000	6.23	29.36	6 52
2	1000 - 1100	4.29	80.85	7.42
3	1100 - 1200	2.86	134.92	
4	1200 - 1300	1.74	164.22	13.12
* Current El		00 - 700		
Frequency	: 0.	125[Hz]	Current: 150(m	A]
N	Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	fΩ·m]	[mV/V]
1	800 - 900	4.93	62.01	8.68
2	900 - 1000	12.91		11.63
- 3	1000 - 1100	5. 1.42	178.33	12.14
4	1100 - 1200	18.53	232.84	14.45
* Current El	lectrodes: 5	00 - 600		
		125(Hz]	Current: 150[m.	A]
N	Potential	Voltage	Resistivirity	Chargeability
		[mV]	[Ω·m]	[mV/V]
. 1	700 - 800	8.78	[Ω·m] 110.40	10.87
2	800 - 900	2.30	115.46	12.16
3	900 - 1000	1.94	243.65	15.67
4	1000 - 1100	1.48	371.83	17.37
* Current El		00 - 500		2
Frequency	: 0.	125[Hz]	Current: 250[m	A]
N	Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	[Ω·m]	[mV/V]
1	600 - 700	17.17	129.49	14.75
2	700 - 800	5.92	178.64	17.94
3	800 - 900	1.88	141.98	18.32
4	900 - 1000	1.68	253.58	14.94
* Current El		00 - 400	Current 1 1001	A A
Frequency	: 0.	125[Hz]	Current: 180[m	R.] .
N	Potential	Voltage	Resistivirity	Chargeability
	Electrodes	[mV]	[Ω · m]	[mV/V]
1	500 - 600	16.64	174.24	11.15
2	600 - 700	1.99	83.41	19.23
3	700 - 800	0.87	90.98	21.81
4	800 - 900	0.31	65.57	16.79
		D - 24		

D-24

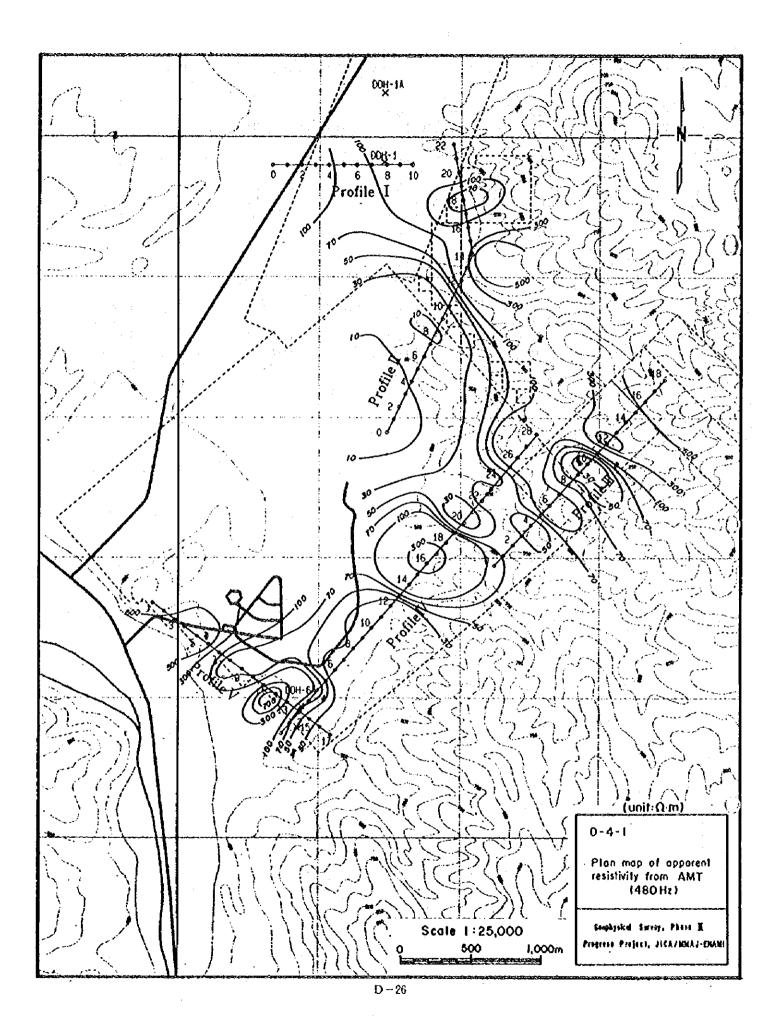
.

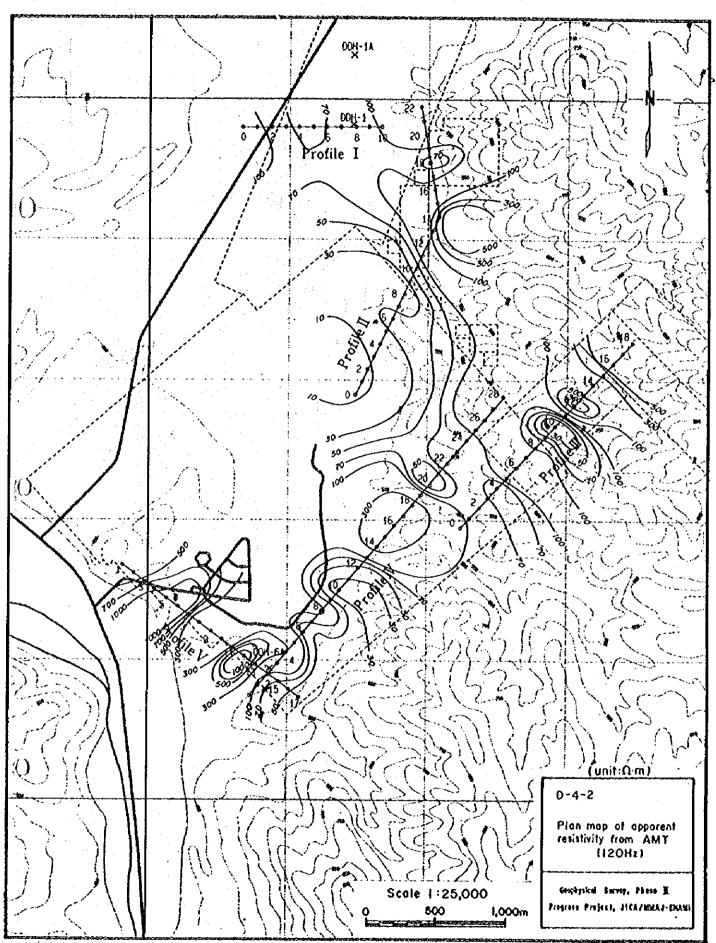
U

()

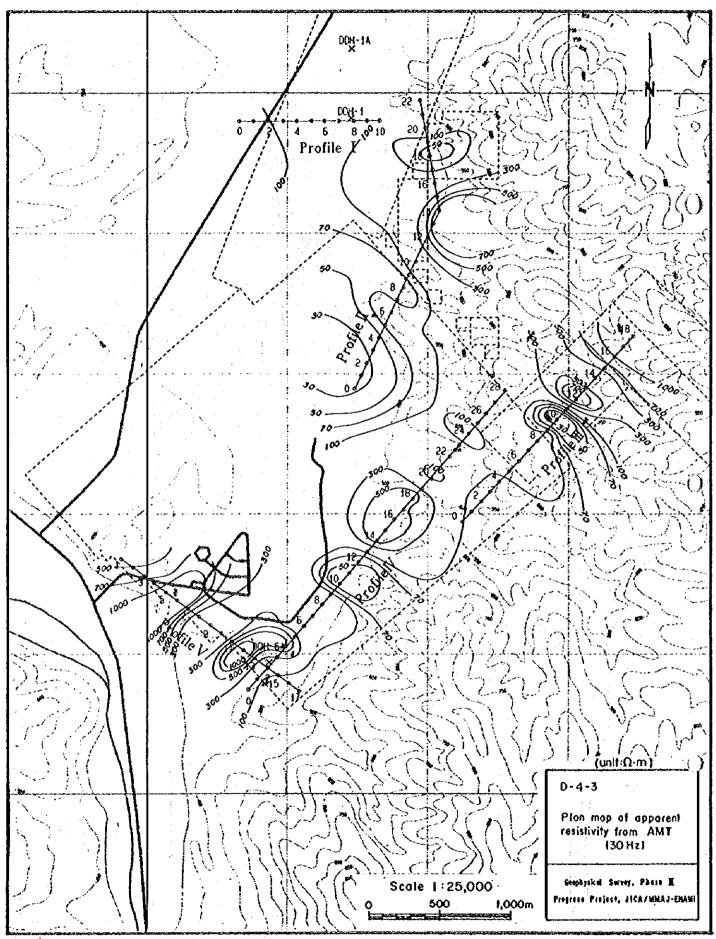
Û

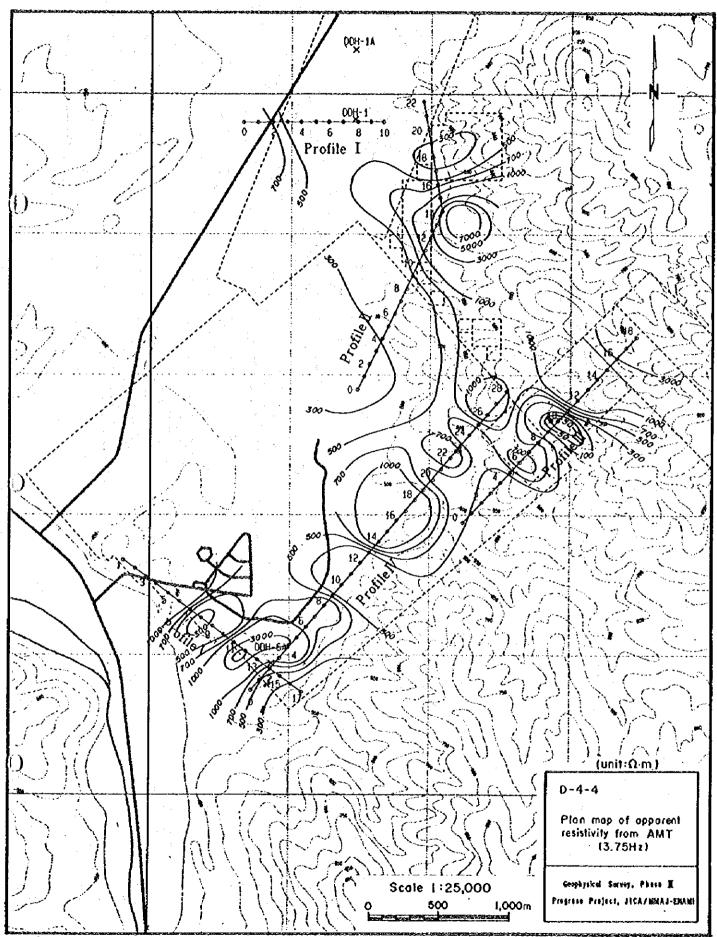
Appendi	Ix D~	3(17) List	of the obse	rved IP data from	profile V
	ent El Jency		200 - 300).125[Hz]	Current: 700[m	A]
	N	Potential	Voltage	Resistivirity	Chargeability
		Electrodes	s [mV]	[Ω • m]	[mV/V]
	1	400 - 500		169.29	14.02
	2	500 - 600		92.55	19.87
	3	600 - 700) 1,71	45.95	23.02
	4	700 - 800	0.97	52.16	24.47
* Curre	ent El	ectrodes:	100 - 200		
	lency			Current: 150[m	A]
н	N	Potential	Voltage	Resistivirity	Chargeability
		Electrodes	[Vm]	[Ω·m]	[mV/V]
	1 - 3	300 - 400		164.98	12.52
	2	400 - 500		203.94	14.96
	3	500 - 600		385.26	24.37
	4	600 - 700		195.43	23.50

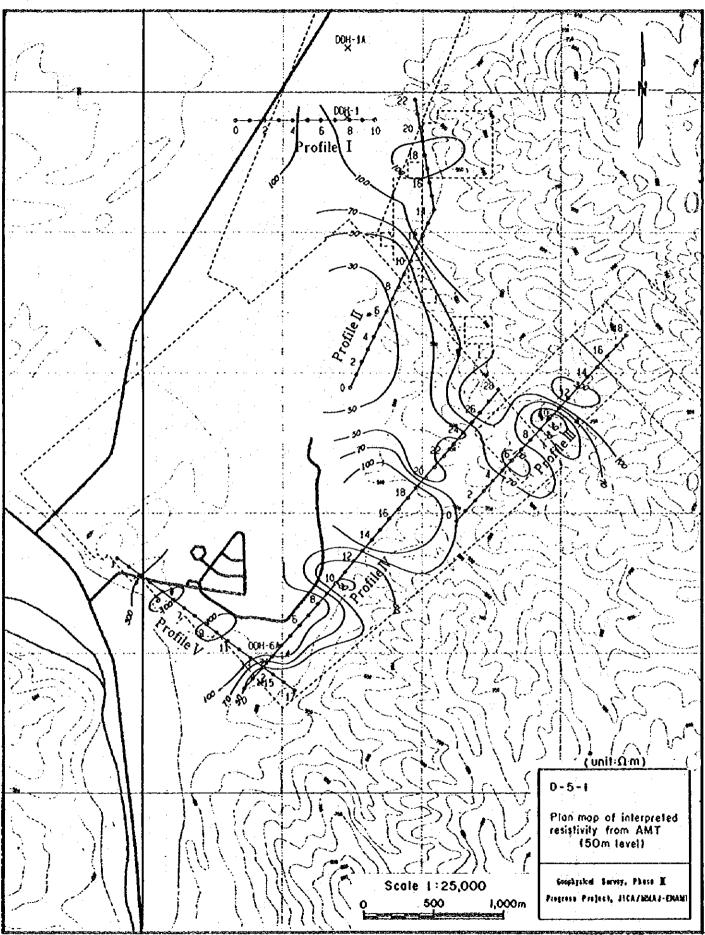

0

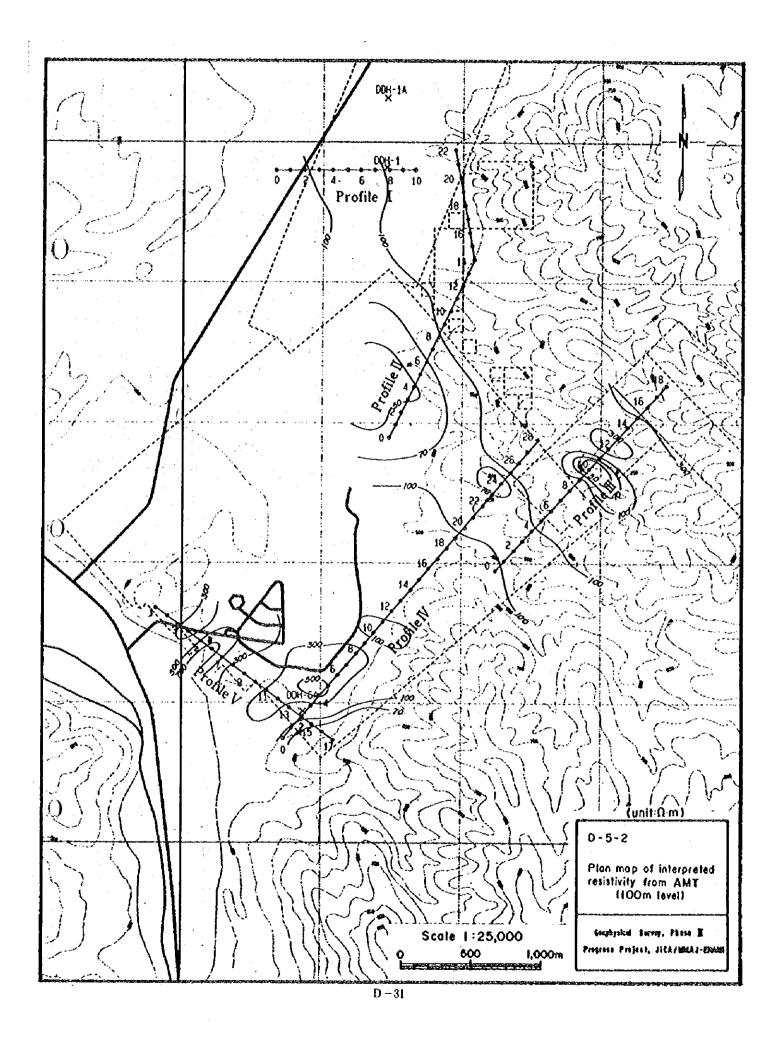

O

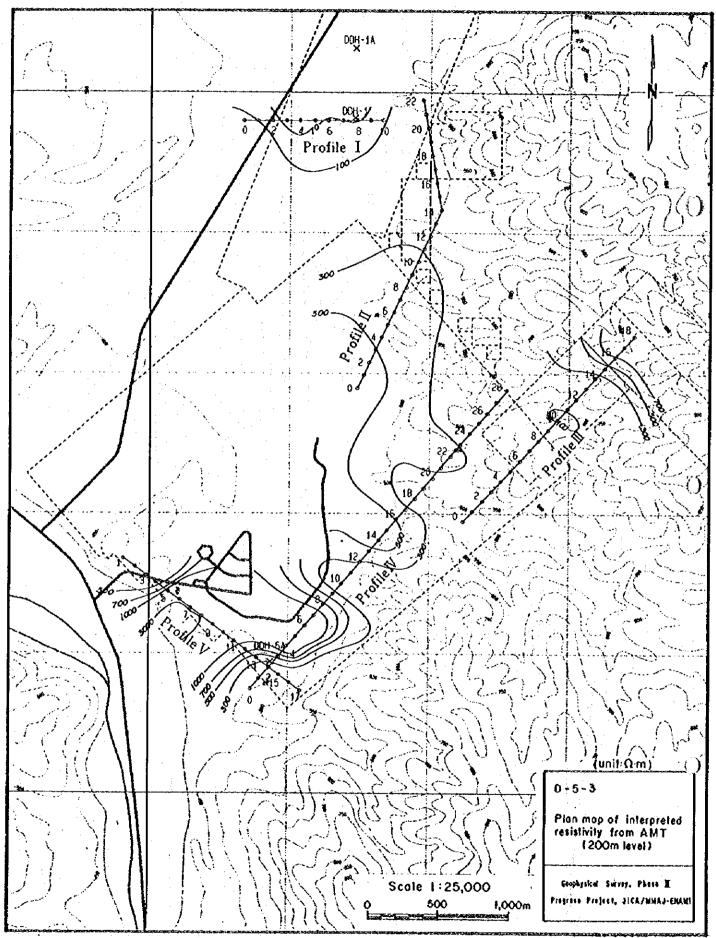
O

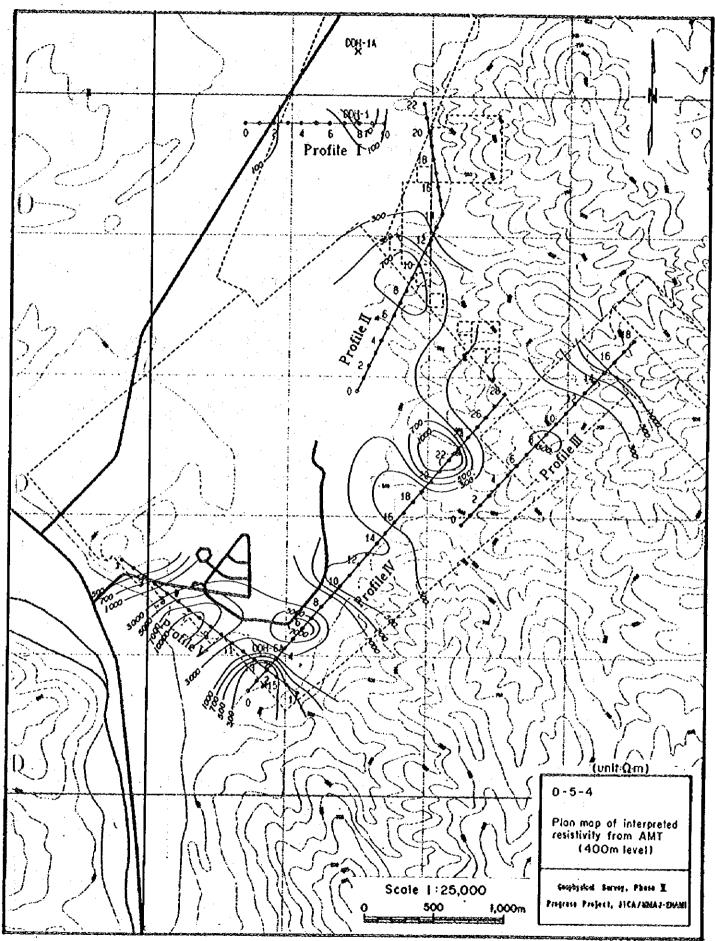

1

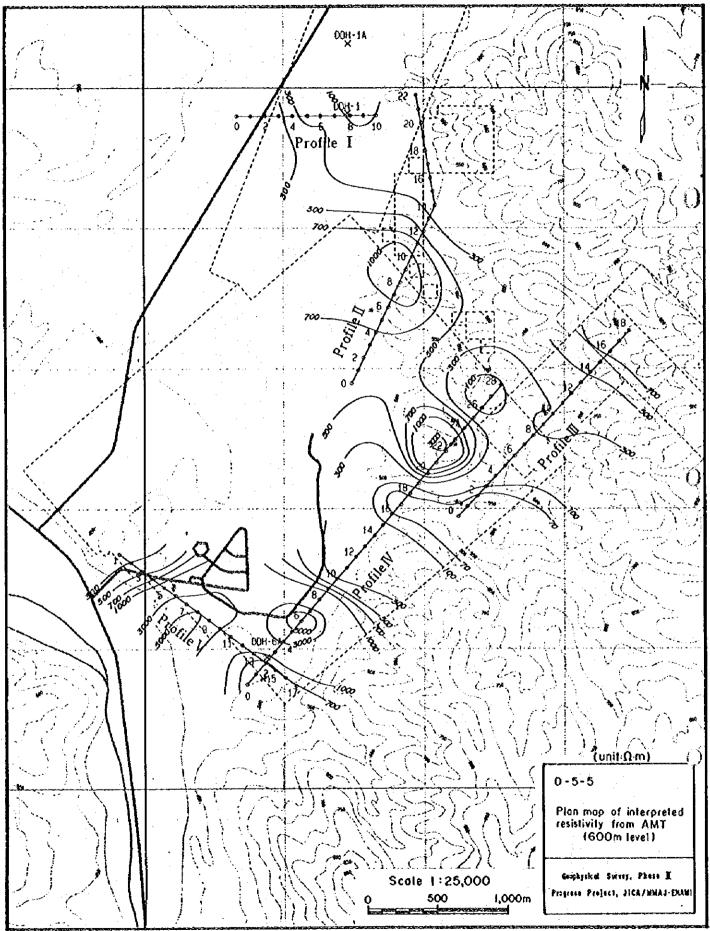

.

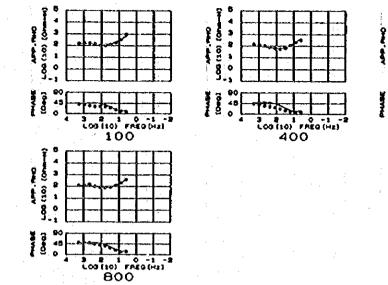



Ð - 27



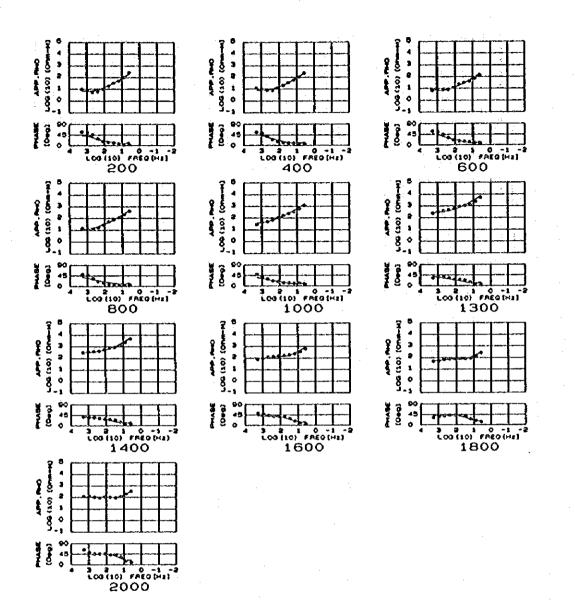



D-30



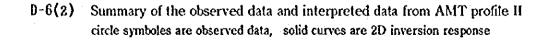
D -- 32

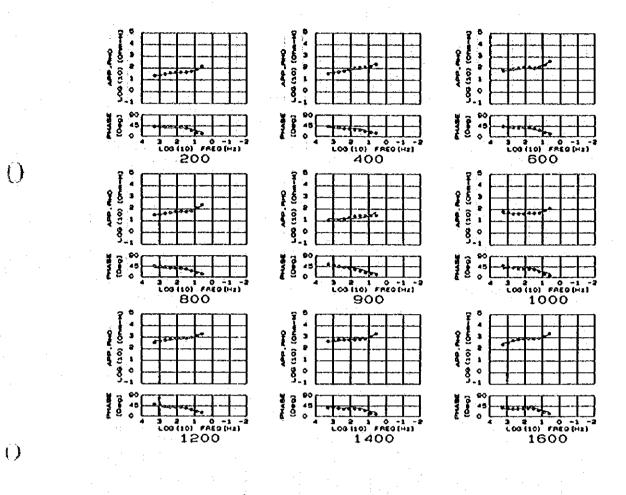
D-34


ė.

Ô

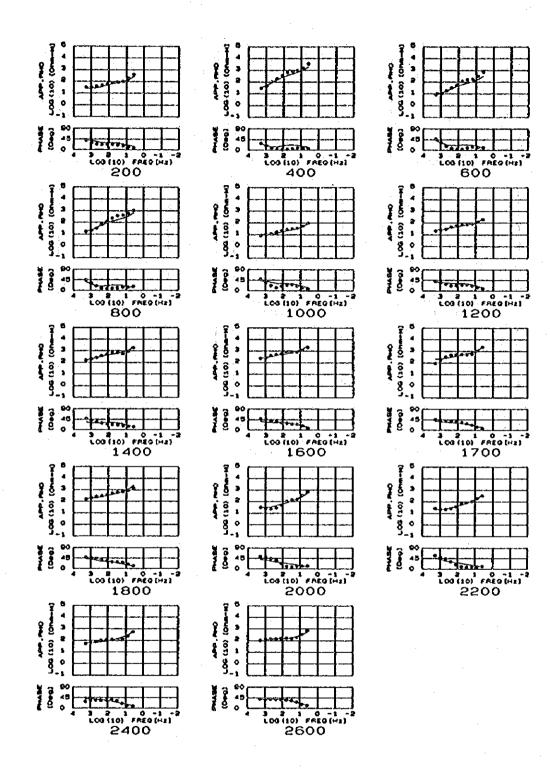
0


()


D-6(1) Summary of the observed data and interpreted data from AMT profile I circle symboles are observed data, solid curves are 2D inversion response

()

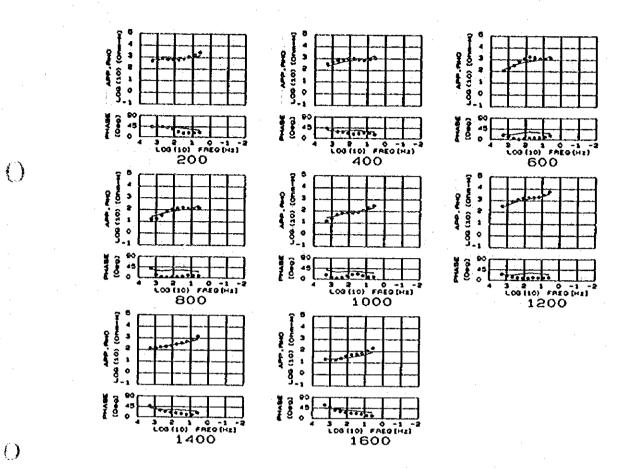
()



D-6(3) Summary of the observed data and interpreted data from AMT profile III circle symboles are observed data, solid curves are 2D inversion response

()

£

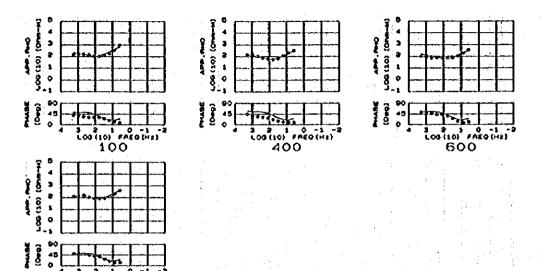

, MENUL

(

ł

D-6(4)

) Summary of the observed data and interpreted data from AMT profile IV circle symboles are observed data, solid curves are 2D inversion response

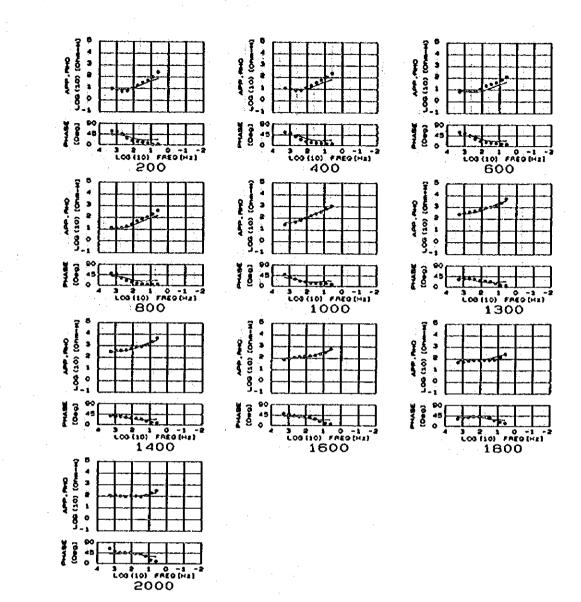


D-6(5)

Summary of the observed data and interpreted data from AMT profile V circle symboles are observed data, solid curves are 2D inversion response

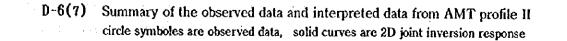
I

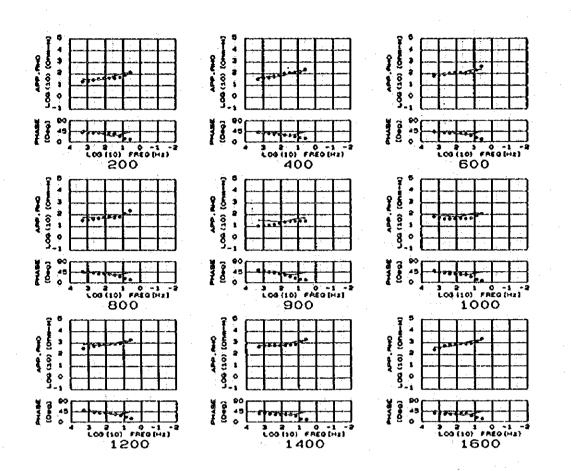
()


110) FAE 800

-1 0 [H ()

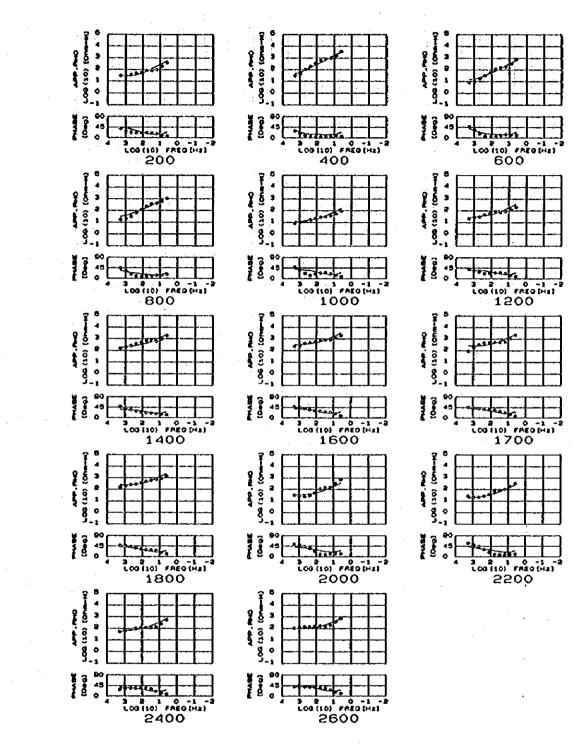
()


0


D-6(6) Summary of the observed data and interpreted data from AMT profile I circle symboles are observed data, solid curves are 2D joint inversion response

()

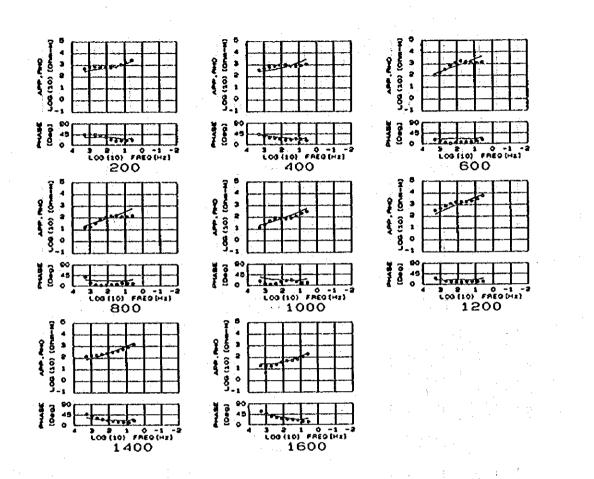
()

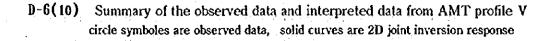


Ö

()

D-6(8) Summary of the observed data and interpreted data from AMT profile III circle symboles are observed data, solid curves are 2D joint inversion response


0


O

į

D-6(9)

Summary of the observed data and interpreted data from AMT profile IV circle symboles are observed data, solid curves are 2D joint inversion response

0

()

Appendix D-7(1) List of the observed AMT data from profile I

Frequency	ρχγ	ργχ	φxy	фух
10000.0000	101.88	90.30	40.26	-133.81
7500.0000	100.89	95.35	41.44	-134.19
5000.0000	96.30	118.02	43.63	-135.09
3750.0000	95.05	128.03	44.85	-135,50
2560.0000	87.36	145.30	45.07	-136.55
1920.0000	85.23	151.37	43,92	-138.66
1280.0000	81,61	167.27	43.54	-140.06
960.0000	78.19	168.55	43.15	-141.09
640.0000	74.75	163,67	40.18	-145.59
480.0000	72.80	161.94	38.81	-146.44
320.0000	66.06	151,66	36.95	-147.81
240.0000	63.85	143.23	35.09	-148.83
160.0000	63.53	115.49	32.44	-149.71
120.0000	62,99	107.40	31.33	-149.39
80.0000	60.35	102.11	28,28	-149.63
60.0000	59,45	103.81	27.25	-150.15
40.0000	59.04	118.36	26.13	-152.88
30.0000	59.41	123.87	25.62	-154.45
20.0000	62.84	149.73	23.30	-159,42
15,0000	70.56	171.45	20.89	-162.07
10.0000	118.42	268.30	15.85	-165.91
7.5000	150.93	347.75	13.04	-167.72
5.0000	238.88	756.11	10.16	-171.81
3.7500	275.33	926.49	9.69	-172.51
2.5000	355.32	1354.52	9.92	-172.02
1.8750	394.18	1483.16	10.47	-170.90
1.2500	464.68	1719.94	11.80	-168.78
0.9375	485.76	1756.15	12.81	-168.21

Profile I site 400

morner site 400	<u>, </u>			
Frequency	ρχγ	рух	фxy	фух
10000.0000	98.03	140.69	54.65	-128.75
7500.0000	90.55	141.58	54.54	-129.10
5000.0000	79.41	142.76	54.06	-130.13
3750.0000	74.05	142.45	53.92	-130.92
2560.0000	65.41	140.73	53.22	-133.02
1920.0000	61.79	139.10	52.50	-134.62
1280.0000	56.72	131.20	50.63	-138.73
960.0000	55.25	125.66	49.79	-140.18
640.0000	53,85	109.49	47.43	-144.39
480.0000	54,63	102,52	45.85	-145.45
320.0000	56.18	84.88	38,41	-147.34
240.0000	56.43	80.00	35.06	-147.97
160.0000	57.66	68.64	30.70	-150.40
120.0000	57.78	65,11	28.96	-152.03
80.0000	58.16	57.90	23.50	-155.48
60.0000	59.60	57.66	21.37	-157.50
40.0000	70,11	62.12	17,51	-163.10
30.0000	79,21	67.47	16.06	-164.47
20.0000	106.41	96.03	11.84	-166.78
15.0000	122.61	113.02	10.48	-167.66
10.0000	186.85	179.74	9.58	-169.94
7.5000	216.61	204.98	9.24	-170.46
5.0000	258.98	290.12	9.21	-170.94
3,7500	277.49	320,36	9.70	-170.68
2.5000	356.40	383.72	13.01	-168.19
1.8750	386.86	402.06	15.16	-166.58
1.2500	446.31	430.79	22.44	-161.57
0.9375	453,51	433.92	23.79	-160.49

()

()

()

.

1 · · · · · ·

D-45

Appendix D-7(2) List of the observed ANT data from profile I

Profile I site	600			· · · · · · · · · · · · · · · · · · ·
Frequency	Оху	ργχ	фxy	фух
10000.0000	92.04	119.20	55.68	-124,14
7500.0000	91.92	119.23	55.05	-124.42
5000.0000		121.44	54.08	-125,53
3750.0000		120.27	52,79	-125.79
2560.0000		109.34	51.43	-126.71
1920.0000	79.37	102.39	49.95	-126.90
1280.0000		88.88	44,29	-128.15
960.0000	65.91	85.21	42.55	-129.67
640.0000	58.58	75.89	41.12	-131.82
480.0000	56.06	75.59	40.24	-132.82
320.0000		79.90	38.15	-135.66
240.0000	55.47	79.08	36.88	-136.67
160.0000	62.81	74.20	35.02	-137.57
120.0000		72.56	34.12	-138.34
80:0000	78.61	71.34	31.15	-141.61
60.0000		72.04	29.10	-143.66
40.0000		76.90	24.72	-148.63
30.0000		80.46	23.09	-152.86
20.0000	120.03	94.62	20.65	-162.14
15.0000	134.78	107.66	19.26	-165.79
10.0000		155.89	13.90	-170.46
7.5000	225.05	190.26	11.30	-170.71
5.0000	354.15	300.71	8.34	-169.10
3.7500	439.56	370.05	7.91	-168.16
2.5000	680.41	554.72	8.05	-165.44
1.8750	801.40	649.01	9.03	-164.03
1.2500	1019.99	830.37	9,97	-160.90
0.9375	1079.03	891.88	9.99	-159.58

. .

()

C

(

Profile I site 800

Profile 1 SI	te_800			
Frequence	ογ ρχγ	ργχ	φxy	фух
10000.000	0 132.66	225.69	56.00	-121.80
7500.000	0 161.09	226.27	55.79	-122.50
5000,000	0 197.94	204.58	56.15	-123.75
3750.000	0 212.10	156.60	55,97	-124.50
2560.000	0 195.30	138.33	54.79	-127.79
1920.000	0 173.39	126.65	-53.23	-128.87
1280.000	0 168.50	122.60	50.40	-129.62
960.000	0 161.75	127,39	47.99	-130.18
640.000	0 142.43	150.10	43.80	-130.65
480.000	0 114.01	161.39	42.64	-131,14
320.000	0 103.73	130.54	40.00	-133,17
240.000	0 101.56	106.37	39.02	-134.77
160.000	0 103,51	91.30	36.51	-137.60
120.000		86,95	35.15	-139.95
.80,000	0 115.19	83.69	31,45	-141.22
60.000	0 131,65	83.24	29.61	-142.66
40.000	0 145.06	84.93	25,87	-148.68
30.000	0 150.76	89.63	24.01	-151.83
20.000	0 162.63	105.28	21.73	-158.53
15.000		124.38	20.64	-161.37
10.000	0 228.31	163.34	15.58	-166.24
7.500	0 287.53	207.41	12.17	-167.49
5.000		307.93	7.80	-167.39
3.750	0 543.04	394.26	7.41	-166.88
2.500	0 761.82	499.90	8.67	-164.74
1.875		610.27	9.79	-162.76
1.250		771.16	13.42	-159.87
0.937	5 1602.78	850.72	14,97	-159.06

Appendix D-7(3) List of the observed AMT data from profile II

ProfileII	site 2	00			-
Freq	uency	ρχγ	рух	фxy	фух
10000.	0000	12.69	14.07	62.80	-120.13
7500.	0000	12,58	14.29	62.69	-120.39
5000.		12.03	13.24	61.24	-122.48
3750.		11.71	11.81	60.84	-122,84
2560.		11.03	9,99	60.20	-123.55
1920.		10.18	9.46	58.47	-124.25
1280.0		8.43	8.19	57.24	-127.59
960.0		7.77	7.76	56.50	-128.65
640.		6.19	5.68	50.84	-131.32
480.0		5.89	5.38	46.41	-134.23
320.0		6.12	5.35	33,35	-141.48
240.(6.52	5.69	28,96	-145.47
160.0		8.66	7.76	20.14	-152.59
120.0		10.43	9.04	17.88	-154.24
80.(16.14	12.34	14.63	-157.13
60.0		19.32	13.71	14.08	-158.39
40.(27.74	16.65	13.02	-159.51
30.0		33.03	18.13	12.28	-159.69
20.0		43.35	20.94	9.96	-160.33
15.0		49.99	22.86	8.39	-160.77
10.0		78.38	29.64	4.54	-161.15
	5000	101.86	33.74	3.23	-161.09
	0000	196.61	44.90	3.45	-160.54
	500	265.26	50.66	4.10	-159.83
	000	375.72	59.94	5.80	-155.02
	1750	399.88	60.93	7.13	-152.94
	500	425.36	60.05	10.57	-147.67
0.9	375	419.50	59.67	11,85	-145.09

Profilell site 400

Profile II Site 400				
Frequency	ρχγ	рух	φxy	фух
10000.0000	13.96	13.93	52.17	-114.66
7500.0000	14,05	13.93	52.66	-114.94
5000,0000	13.90	13.55	54.56	-116.12
3750.0000	13.70	13.26	55,47	-116.81
2560.0000	12.46	13.08	56.00	-121.47
1920.0000	12.17	12.84	55.61	-122.31
1280,0000	11.06	12.30	54,23	-125.16
960.0000	10.18	11.15	53,05	-126.84
640.0000	8.53	9.71	43.79	-131.18
480.0000	8.21	9.17	39.24	-132.57
320.0000	8.03	8.37	29.23	-135.73
240.0000	8.25	8.32	25,89	-138.63
160,0000	10.35	9.01	19,59	-145.62
120.0000	12.51	10.00	17.35	-147.81
80.0000	18.11	12.57	13.96	-151.90
60.0000	21.27	13.97	12.72	-154.27
40.0000	30.40	16.66	11.69	-157.14
30.0000	35.94	17.39	11.29	-157.69
20.0000	49.36	20.00	10.97	-157.82
15.0000	58.23	21,77	10.46	-157.93
10.0000	86.66	26.07	8.88	-158.85
7.5000	107.65	29.15	7.82	-159.14
5.0000	178.67	38.80	7.30	-160.42
3.7500	225.25	42.54	7.67	-160.98
2.5000	349.39	47.70	9.70	-162.19
1.8750	408.30	48.18	11.76	-161.91
1,2500	484.38	47.01	17.10	-160.21
0.9375	493.63	46.98	19.04	-160.04

.

0

Ō

0

Appendix	D-7(4)	List of	f the	observed	ANT	data	from	profile	Ц
								i.	

ofilell site 600				<u> </u>	
Frequency	ρχγ	рух	ø xy	<u> </u>	÷
10000.0000	5.53	8.08	58.08	-139.84	÷ .
7500.0000	5.60	8.11	58.06	-138.89	
5000.0000	5.71	8.27	57.94	-136.69	
3750.0000	5,91	8.44	58.26	-132.00	
2560.0000	6.48	8,93	59.26	-128.98	
1920.0000	6.86	9.16	59.13	-128.11	
1280.0000	7.72	9.14	57.20	-126.57	
960.0000	7.98	9.05	56.19	-126.56	
640,0000	8.10	8.98	49.13	-128.75	
480,0000	8.03	9.03	45.22	-130.97	
320.0000	8.01	9.34	35.41	-136.08	
240.0000	8.26	9.64	31.02	-137.93	
160.0000	10.23	11.41	24,05	-142.39	· · · ·
120,0000	11.96	12.18	21.54	-144.88	
80.0000	18.74	14.12	18.21	-149.88	
60.0000	22.83	14.85	17.09	-151.36	
40.0000	29.84	17.30	15.72	-154.40	
30.0000	32.04	18.57	15.37	-156.38	
20.0000	36.02	22.78	14.19	-159.71	
15,0000	40.96	25.03	13.36	-161.06	
10,0000	61.00	33.92	10.66	-164.72	
7,5000	73.31	38.86	9.85	-167.36	
5.0000	111.34	58.25	8.19	-170.55	
3.7500	134.51	67.01	8.01	-170.96	
2.5000	189.05	92.73	9.66	-170.57	
1.8750	214.67	101.04	11.70	-170.08	
1.2500	259.61	125.36	17.67	-167.21	
0.9375	273.29	131.90	19.40	-166.02	

Frequency	ОХУ	ОУХ	фху	фух	
10000.0000	15.89	11.93	54.67	-120.94	
7500.0000	15.91	11.89	54.54	-121.32	
5000.0000	15.25	11.70	53.50	-122.22	
3750.0000	14.87	11,59	53.07	-122.93	
2560.0000	13.87	11.26	51.37	-125.35	
1920.0000	13.58	11.02	50.75	-126.29	
1280.0000	12.94	9.92	49.50	-129.47	
960.0000	12.59	9,38	47.81	-130.42	
640.0000	12.56	8.13	38.70	-134.48	
480.0000	12.93	8.08	32.71	-136.18	
320.0000	15.31	8.73	22.98	-139.86	
240.0000	17.03	9.31	20.78	-142.31	
160.0000	23.36	11.58	17.16	-145.57	
120.0000	27.95	12.21	15.00	-145.59	
80.0000	43.08	13.16	10.52	-143.75	
60.0000	53.39	13,36	9.29	-143.69	
40.0000	70.78	13.54	6.81	-144.48	
30.0000	74.75	13.56	6.13	-145.79	
20.0000	93.68	13,81	4.40	-149.40	
15.0000	116,31	14.67	4.63	-151.10	
10.0000	172.72	20,98	5.26	-153.59	
7,5000	211.84	24,36	5.36	-154.66	
5.0000	342.22	36.55	5.91	-155.22	
3,7500	422.35	39.84	6.24	-153.91	
2,5000	558.55	44.17	7.28	-150.67	
1,8750	574.94	45.19	8.69	-149.85	
1.2500	591.26	45,98	9.93	-147.84	
0.9375	592.52	45.88	9,99	-147.36	

ł

10

Appendix D-7(5) List of the observed ANT data from profile II

ProfileII etta 1000

ProfileII	site	1000			and the second second
Freq	uency	ρχγ	рух	фxy	фух
10000.	0000	24.52	23,19	69.41	-128.53
7500.	0000	23.71	23.21	68.60	-128.98
5000.	0000	23.03	23.59	64,91	-131.90
3750.	0000	24.58	23.95	62.31	-133.54
2560.	0000	26.57	24.76	53,81	-136.85
1920.	0000	29.02	25.32	49.01	-138.30
1280.	0000	39.87	27.88	41.51	-141.00
960.	0000	43.67	29.29	39.30	-141.55
640,	0000	48.38	34.45	32,34	-142.40
480.	0000	50.65	36.40	29.71	-142.70
320.		61.17	40.33	23.97	-143.60
240.	0000	68.74	41.56	22.16	-143.83
160.		91.50	44.29	19.54	-143.34
120.		106.73	44.94	18.67	-142,68
	0000	149.60	45.93	14.88	-139.92
	0000	174,18	45.84	14.25	-139.23
	0000	228.64	43.94	12.73	-139.65
	0000	256.87	43.06	12.66	-140.54
	0000	309.59	42.43	12.02	-144.80
15.		340.52	44.14	11.34	-146.75
	0000	515.83	54.86	12.02	-152.53
	5000	639.53	61.75	11.76	-155.08
	0000	936.61	88.36	8.09	-161.54
	7500	1127.72	97.03	7.72	-162.96
-	5000	1412.70	114.19	8.53	-165.16
	8750	1502.17	119.27	9.19	-165.61
	2500	1581.67	124.84	12.00	-165.16
0.	9375	1584.72	125.67	12.69	-164.59

Profi	lell	site	1300
	_		

ProfileII site I	.300			
Frequency	ρху	рух	φxy	фух
10000.0000	138.67	94.45	49.70	-128.91
7500.0000	144.16	94.47	47.70	-129.00
5000.0000	157.66	87.46	42.21	-129.28
3750.0000	176.27	81.85	39.91	-129.71
2560.0000	216.26	75.13	34.93	-130.93
1920.0000	246,25	72.71	33.07	-131.42
1280.0000	311.85	74.75	34.24	-132.66
960.0000	331.36	81.30	35,57	-132.87
640.0000	370.19	98.42	35.75	-132.34
480.0000	395.68	105.30	35.84	-132.37
320.0000	451.22	112.58	34.80	-135.99
240.0000	478.25	113.12	32.73	-136.01
160.0000	561.82	110.54	27.38	-135.32
120.0000	620,68	109.31	26.67	-134.64
80.0000	826.04	104.79	26.20	-133.27
60.0000	906.60	97.92	25.92	-133.34
40.0000	1039,21	85,77	24.56	-135.03
30.0000	1095.90	83.55	23.11	-136.17
20.0000	1232.48	80.68	18.40	-140.62
15.0000	1326.72	81.22	15.77	-143.46
10.0000	1895.90	92.62	11.19	-148.90
7.5000	2447.26	109.97	9.39	-153.00
5.0000	4546.42	146.86	6.76	-157.13
3.7500	5491.87	180.30	6.74	-158.06
2.5000	8893.03	276.71	8,83	-157.96
1.8750	10143.19	324.60	10.68	-156.27
1,2500	12353.67	459.58	16.16	-150.61
0.9375	13543.78	520.52	18.42	-148.29

()

()

-

i

Appendix D-7(6) List of the observed ANT data from profile H

ProfileII si	te 1400			
Frequen	ο φχή	ρух	Øxy	Øyx
10000.000		117,86	54.64	-145.14
7500.000	0 162.39	121.60	54,39	-145.03
5000.000	0 188.24	134.08	51.79	-143.73
3750.000			49.05	-143.20
2560.000	0 240,98	141.48	43.24	-142.34
1920.000	0 259,27	140.32	40.02	-141.81
1280,000	0 310.78	141,24	35.83	-140.34
960.000	0 334.30	144.14	35.28	-139.61
640.000	0 357.93	149.98	34.92	-136.27
480.000	0 368.38	153.09	34.46	-135.32
320.000	0 387.13	160.98	31.57	-133.32
240.000			30.48	-131.40
160.000			28.44	-130.85
120.000	0 574.13	152.98	28,25	-130.39
80.000	0 719.74	132.80	27.94	-129.91
60.000			27.44	-130.54
40.000	0 866.31	106.02	25.40	-132.64
30.000		102.62	23.79	-134.24
20.000			18.71	-139.88
15.000	0 1234.70	102.27	16.09	-142.88
10.000			11.07	-147.74
7.500		120.72	9.52	-149.19
5.000		186.15	8.00	-149.85
3.750			7.89	-149.42
2,500			8.21	-147.34
1.875			8.72	-146.35
1.250	0 10953.73		10.73	-143.45
0.937	12051.24	478.39	11.58	-141.87

ProfileII site 1600

Profilell site le	00			· · · · · · · · · · · · · · · · · · ·
Frequency	ρху	ρух	фxy	фух
10000.0000	65.80	60.85	52.21	-121.24
7500.0000	66.06	60.81	52.46	-120.91
5000.0000	68.59	63.02	52.79	-119.43
3750.0000	70.36	64.42	52.66	-118.26
2560.0000	75.28	67.09	51.98	-118.05
1920.0000	78.79	67.93	51.52	-118.18
1280.0000	88.91	72.95	49.91	-118.90
960.0000	94.75	74.35	49.08	-119.49
640.0000	113.61	76.72	44.85	-122.59
480.0000	120.24	75.85	43.41	-123.98
320.0000	132.95	66,19	39.62	-130.18
240.0000	137.39	60.87	38.91	-131.42
160.0000	151.15	52.95	38.38	-131,94
120.0000	155.03	50.55	37.80	-132.05
80.0000	161.09	48.91	37.19	-132.56
60.0000	163.98	47.82	36.48	133.08
40.0000	180.00	46.90	32.56	-137.49
30.0000	191,21	47.32	29.13	-141.37
20.0000	226.03	50.54	21.72	-148.28
15.0000	239.00	54.44	18.87	-152.05
10.0000	303.19	73.67	13.00	-158.30
7.5000	342.94	87.00	11.17	-161.48
5.0000	527.00	122.26	7.75	-165.33
3.7500	643.70	141.65	7.32	-165.61
2.5000	872.33	198.82	7.55	-164.75
1.8750	974.36	220.59	8.16	-163.54
1.2500	1198.96	267.70	11.82	-159.81
0.9375	1260.85	281.30	12.87	-158.36

D - 50

O

()

()

Appendix D-7(7) List of the observed ANT data from profile II

Frequency	ОХУ	ОУХ	φxy	фух
10000.0000	56.30	57.73	24.96	-118.0
7500.0000	56.30	57.44	26,29	-118.0
5000.0000	55.40	54.12	27.71	-117.1
3750.0000	54.13	53.55	28.50	-117.7
2560.0000	50,22	52.61	31.44	-120.6
1920:0000	49.27	52.39	32.31	-123.1
1280.0000	50.55	53.29	34.39	-129.9
960.0000	53.08	54.64	35.78	-133.2
640.0000	62,81	58.83	38.36	-137.6
480,0000	68.81	59.86	39.16	-138.84
320.0000	75.92	62.49	41.26	-140 4
240.0000	78.92	62.73	42.01	-140.92
160.0000	81.21	64.16	42.26	-141.1
120.0000	81.82	64.11	42.13	-141.00
80.0000	82.29	61.16	41.45	-139.74
60.0000	82.26	59.88	40.93	-139.77
40.0000	81.84	58.10	39.09	-142.24
30.0000	81.56	58,51	37.82	-144.52
20.0000	83,92	66.38	29.07	-152.16
15.0000	88.22	74.26	26.42	-156.38
10.0000	119,75	104.02	20,63	-164.15
7.5000	147.81	124.05	18.15	-166.58
5,0000	221.15	197.60	14.49	-168.91
3.7500	258.74	243.93	13.00	-168.63
2.5000	358.54	375.58	11.48	-163.89
1.8750	391.36	447.54	12.33	-160.13
1.2500	396.13	651.15	14,17	-150.52
0.9375	388.48	731.39	15.83	-146.36

ProfileII site 2000

Profile II site 200	<u>.</u>			
Frequency	ρχγ	<i>р</i> ух	фху	фух
10000.0000	105.50	111.91	74.37	-125.49
7500.0000	107.27	114.56	74.32	-125.44
5000,0000	114.23	115.73	72.75	-124.89
3750.0000	117.74	115.22	70,79	-124.84
2560.0000	119.20	116.12	66.88	-125.09
1920.0000	119.26	116.16	63.90	-124.66
1280.0000	120.25	116.16	55.48	-124.88
960.0000	119.08	115.94	52.11	-125.28
640.0000	113.53	107.71	47.06	-127.89
480.0000	106.76	107.79	46.31	-128.82
320.0000	95.48	110.24	45.89	-134.99
240.0000	96.39	110.41	45.90	-138.13
160.0000	108.44	103.59	46.02	-142.11
120.0000	113.34	100.81	45.67	-142,71
80.0000	111.22	98.15	43.43	-142.99
60.0000	106.91	98.70	42.44	-143.23
40.0000	99.33	105.31	41.57	-145.03
30.0000	97.68	112.20	40.64	146,78
20.0000	104.78	136.51	35.57	-152.01
15.0000	117.85	154.00	31.84	-156.12
10,0000	168.39	222.85	19.12	-165.11
7.5000	197.56	271.19	15.09	-168.60
5,0000	289.56	427.10	10.31	-172.51
3.7500	327.21	530.35	9.69	-173.03
2.5000	423.45	791.19	9.25	-172.96
1.8750	492.95	882.42	9.43	-172.49
1.2500	616.49	1084.74	11.06	-171.21
0.9375	623.98	1102.26	12.14	-170.78

D - 51

(**)**

()

Ð

1

Appendix D-7(8) List of the observed AMT data from profile III

ProfileIII site 200				· · · · · · · · · · · · · · · · · · ·
Frequency	Оху	рух	фxy	фух
10000.0000	17.09	35.79	63.16	-144.47
7500.0000	17.19	37.58	61.23	-141.86
5000.0000	17.88	50.52	53.07	-140.27
3750,0000	18.74	58.14	50.73	-142,30
2560.0000	22.07	77.97	47.53	-145.14
1920.0000	23.22	84.97	46.55	-148.33
1280.0000	25.32	106.34	43.73	-154,57
960,0000	26.22	123.22	.42.56	-158.56
640,0000	30.17	176.43	40.83	-159.81
480,0000	31.86	193,46	40.17	-159.63
320.0000	37.29	246.99	38.32	-158.90
240.0000	39.02	280.46	37.96	-157.62
160.0000	43.33	363.34	37.96	-156.81
120.0000	44.34	401.03	38.21	-156.61
80.0000	46.03	483.68	39,28	-156.28
60.0000	46.25	523.00	39.45	-156.36
40,0000	46.06	617.56	38.80	-158.28
30.0000	46.57	676.02	37.37	-160.20
20.0000	50.51	882.50	30.06	-162.77
15.0000	54.01	1036.97	26.80	-165.20
10.0000	72.50	1569.73	18.45	-168.73
7.5000	82,50	1934.42	16.27	-170.01
5.0000	124.77	3112.38	12.74	-169.07
3.7500	145.63	3821.33	11.83	-167.38
2.5000	225.66	5587.66	10.13	-164.69
1.8750	264.74	6345.97	9,91	-161.52
1.2500	379.64	7675.25	9.84	-157.47
0.9375	397.62	8060.08	9.83	-154.41

()

 \mathbb{C}

()

ProfileIII site 400

Profile ill site	400		·	· · · · ·
Frequency	<i>р</i> ху	рух	фху	фух
10000.0000		113.72	44.56	-140.07
7500.0000	29.02	111.89	44.48	-141.43
5000.0000	29.66	100.83	43.92	-146.01
3750.0000	30.45	97.05	43.33	-148.08
2560.0000	32.85	91.67	42.02	-153.33
1920.0000	34.25	91.13	41.65	-155.91
1280.0000	40.42	93.92	40.74	-158.96
960.0000	42.83	97.69	40.37	-159.31
640.0000	46.54	119.81	38.72	-159.37
480.0000	47.68	132.75	. 37.78	-159.35
320.0000	53.17	180.30	34.80	-159.12
240,0000	57.08	212.60	34.20	-158.94
160.0000	69.86	284.18	33.39	-158.32
120.0000	75,35	310.81	32.89	-158-40
80:0000	95.51	407.93	30.76	-160.17
60.0000	103.42	494.40	30.31	-161.26
40,0000	118.79	671.81	29.24	-164.93
30,0000	121,70	943.82	28.47	-165.53
20.0000	127.57	1321.02	25.15	-166.98
15,0000	131.17	1802.96	23.30	-167.73
10.0000	147.14	3027.32	19.12	-169,20
7.5000	159.26	4017.06	18.05	-169.44
5.0000	206.82	5421.15	16.04	-169.37
3.7500	229.39	6235.34	15.69	-168.99
2,5000	287.08	8102.45	15.89	-168.24
1.8750	302.65	9431.48	16.23	-168.17
1.2500	320.69	13499.76	17.71	-168.14
0.9375	322.40	14431.21	18.08	-168.14

Appendix D-7(9) List of the observed ANT data from profile III

ProfileIII site 600

Profilell site	000			
Frequency	ρχγ	ργχ	φxy	фух
10000,0000	119,43	124,47	51.99	-138.32
7500.0000	97.50	124.04	51,99	-138,00
5000.0000	71.06	124.10	49.28	-137.87
3750.0000	67.48	126.29	46.57	-138.43
2560.0000	64.08	134.06	45.21	-140.33
1920,0000	67.48	141.45	43.86	-141.24
1280.0000	74.83	180,52	43.18	-145.31
960.0000	78.80	203.09	40,69	-146.66
640.0000	90.86	284.82	40.34	-149.42
480,0000	93.00	315.36	39.83	-151.60
320.0000	97.87	412.15	38.35	-152.05
240.0000	105.08	450.70	38.24	-152,25
160,0000	118.48	562.51	39.00	-152.37
120,0000	127.44	591.92	39.35	-152.58
80.0000	133.34	650.15	39.51	-153.27
60.0000	128.57	672.44	38.02	-154.11
40.0000	118.66	760.82	35.79	-156.43
30.0000	111.58	812.15	34 17	-157.51
20.0000	110,18	996.59	30,99	-159.22
15,0000	119.38	1105.22	26.85	-159.98
10,0000	154.97	1589.81	21.35	-162.12
7,5000	204.00	1863.59	17.49	-163.96
5,0000	317.73	2864.03	13.56	-166.86
3.7500	407.78	3275.40	12.08	-167.04
2,5000	592.52	4481.91	12.90	-164.11
1.8750	674.02	4858.96	16.32	-162.34
1,2500	943.82	5512.09	21.77	-158.35
0.9375	1019.96	5642.56	27.40	-158.01

. .

ProfileIII site 800

From Site out	<u>}</u>		· · ·	· · · · · · · · · · · · · · · · · · ·
Frequency	рху	рух	фxy	фух
10000.0000	30.58	40.65	45.29	-127.48
7500.0000	30.64	41.49	45.62	-128.18
5000.0000	31.04	45,20	46.24	-131.28
3750.0000	31.42	46.34	47.54	-132.31
2560.0000	32.71	49.41	47.29	-135.35
1920.0000	33.29	51.33	47.44	-137.34
1280,0000	35.02	57.41	46.70	-141.64
960.0000	- 36.10	59.91	46.19	-142.98
640.0000	41.02	70.58	43.26	-147.27
480.0000	42.89	75.58	42.61	-147.95
320.0000	49.01	94.34	39.63	-148.33
240.0000	51.04	101,10	38.59	-148.40
160.0000	56.90	121.23	38.03	-148.48
120.0000	59.18	126.69	37.96	-148.62
80,0000	65.23	138.99	37.56	-149.55
60.0000	66.28	142.63	36.68	-150.19
40.0000	62.84	153.78	34.00	-152.70
30.0000	60.58	159.62	32.63	-153.89
20.0000	62.04	187.17	28.16	-157.51
15.0000	66.64	205.26	25.46	-159.01
10.0000	95.11	292.72	19.62	-162.91
7.5000	117.91	336.03	17.70	-164.10
5.0000	193.02	501.94	14.59	-166.42
3.7500	225.13	562.68	12.86	-166.87
2.5000	321.74	760.64	10.82	-166.91
1.8750	364.99	830.41	10.64	-166.64
1.2500	459.82	1018.50	10.40	-165.15
0.9375	477.40	1050.50	10.33	-164.85

Ο

ł

0

0

Appendix D-7(10)	List	of th	e observed	TKA I	data	from	profile	П

ProfileIII	site	900					
Frequ	ency		<i>р</i> ху	ργ	x Øx	y Ø	ух
10000.0	000	1.5	16.99	35.5	8 56.0	07 -128	.20
7500.0	000		16.53	35.8			.20
5000.0	000		13.84	37,1	8 55.4	49 -128	.66
3750.0	000		12.77	37.7			.21
2560.0			11.12	39.8	2 54.9	52 -130	. 97
1920.0			10.81	40.9			
1280.0			10.99	46.8			
960.0			11.28	49.2			
640.0			12.41	53.3			.73
480.0			12.67	54.5			
320.0			13.92	56.3			
240.0			15.06	57.7			
160.0			17.43	67.1			
120.0		• •	19.40	72.8			
80.0			23.33	89.8			
60.0			25.32	93.9			
40.0		. 1	28.12	101.4			
30.0			28.48	103.8			
20.0			28.79	112.0			
15.0			29.32	118.6			
10.0			30.15	149.7			
	000		30.49	168.1			
	000		30.97	238.5			
	500		30.78	270.5			
2.5		1 - F	28.72	361.0			
1.8			27.34	388.6			
	500		24.23	438.6			
0.9	375		23.63	447.5	6 16.7	70 -149	.61
ProfileIII	site	1000				· · · · ·	- 1
Frequ		~~~~	ρχγ	ру	x øx	y d	ух
10000.0		·····	126.17	134.5			
7500.0			119.98	125.3			
5000.0			97.50	103.1			
3750.0			87.26	89.4			
2560.0			72.16	73.7	9 50.		
1920.0			65.78	67.7			
1280.0			57.57	60.1			
			0	~~.1		-i -ióo	

. .)

0

O

()

TOTTEN SICE	1000			1 / 1 / 1 / 1 / 1 / 1 / 1
Frequency	ρχγ	<i>р</i> ух	фxy	фух
10000.0000	126.17	134.57	55.86	-127.60
7500.0000	119.98	125.35	55.43	-128.83
5000.0000	97.50	103.10	53.79	-130.27
3750.0000	87.26	89.44	52.76	-132.82
2560.0000	72.16	73.79	50.70	-134.81
1920.0000	65,78	67.77	49.84	-135.99
1280.0000	57.57	60.11	46.17	-138.21
960.0000	55.05	54.49	44.48	-138,83
640.0000	47.34	48.76	42.74	-141.44
480.0000	44.09	46.77	41.49	-141.72
320,0000	42.46	43.95	38.34	-142.83
240.0000	42.69	43.47	37.14	-143.11
160.0000	44.30	43.47	35.64	-143.11
80.0000	49.79	50,77	35.27	-141.22
60.0000	49.55	50.80	35.29	-141.67
40.0000	48.15	51.88	34.75	-144.46
30.0000	47.71	53.08	33.74	-146.45
20.0000	48.01	56.04	27.97	-151.88
15.0000	50.83	60.24	25.17	-154.80
10.0000	70.87	78.37	16.34	-161.68
7.5000	82.29	89.65	13.17	-163.65
5.0000	111.86	118.36	8.49	-162.82
3.7500	119,40	127.12	7.89	-161.50
2.5000	140.53	138.76	7.45	-158.60
1.8750	146.63	143.51	7.43	-157.50
1.2500	155.05	164.10	7.67	-155.13
0.9375	156,70	166.39	7.82	-154.32

D-54

Appendix D-7(11) List of	the observed ANT data from profile	IÌI ^{Ser} a ann an
Doofilall atta 1000		

		· · · · · ·		
ProfileIII site 1200				
Frequency	Оху	ОУХ	Øxy	фух
10000.0000	325.68	466.53	54.70	-120.14
7500.0000	314.88	460.68	- 54.68	-121.48
5000.0000	299.00	439,21	54.07	-123.07
3750.0000	309.40	434.42	53.64	-124.27
2560.0000	341.49	445.97	52,61	-128.90
1920.0000	366.14	474,21	51.26	-132.15
1280.0000	426.60	544.59	49.33	-138.49
960.0000	467.55	580.46	47.70	-141.69
640.0000	539.44	643.07	44.08	-147.40
480.0000	588.70	702.46	42.36	-149.08
320,0000	655.75	890.90	40.22	-150.25
240.0000	700.57	970.89	39.78	-149.54
160.0000	793.18	1154.28	39.38	-147.30
120.0000	821.80	1206.92	39.60	-146.09
80.0000	873.11	1313.49	39.52	-144.42
60.0000	886.44	1342.21	38.71	-144.47
40.0000	889.35	1392.65	35.95	-146.26
30.0000	878.29	1421,11	34.39	-147.57
20.0000	901.18	1568.20	30.27	-152.26
15.0000	960.30	1678.65	28.09	-154.54
10.0000	1228.33	2215.68	23.36	-159.65
7.5000	1390.32	2534.61	21.01	-161.23
5.0000	1772.93	3752.66	16.70	-161.45
3.7500	1959.41	4281.78	16.16	-160.54
2.5000	2111.54	5541.84	17.85	-156.25
	2090.92	5960.23	18,49	-153.65
	1900.68	6714.65	19.53	-149.49
0.9375	1775.94	6892.49	19.95	-149.06

ProfileIII site 1400

FIOLITEII SILE 14	00			
Frequency	<i>р</i> ху	ργχ	фxy	фух
10000.0000	279.87	799.02	26.31	-139.72
7500.0000	284.51	826.33	27.82	-139.86
5000.0000	337.61	918.25	30.93	-140.44
3750.0000	364.05	955.94	31,73	-140.62
2560.0000	440.88	1098.53	34,46	-140.69
1920.0000	482.60	1165.25	36.73	-141.08
1280.0000	553.57	1410.16	37.78	-141.70
960.0000	599.93	1519.75	37.73	-141.83
640.0000	654.92	1746.98	36.36	-143.36
480.0000	657.22	1838.08	34.94	-144.40
320.0000	625.29	1914.22	32.89	-145.30
240.0000	620.85	1945.20	32.33	-145.26
160.0000	629.33	2041.61	32.01	-144.49
120.0000	635.54	2121.27	32.04	-144.12
80.0000	647.52	2326.27	32.37	-143.92
60.0000	653.32	2346.98	32.78	-144.10
40.0000	672.49	2355.93	32.69	~145.30
30.0000	722.84	2371.14	31.99	-146,23
20.0000	763.22	2439.46	28.52	-148.16
15.0000	776.95	2536,96	25.51	-149.87
10.0000	969.57	3386.92	15.99	-155.07
7.5000	1184.72	4180.83	12.94	-156.79
5.0000	1787.52	6071.92	10.75	-158.63
3.7500	2121.03	6590.26	10.57	-159.07
2.5000	2816.33	7802.41	10.31	-159.03
1.8750	3175.95	8475.11	10.23	-158.73
1.2500	3815.25	9513.56	10.12	-158.18
0.9375	3993.14	9682.25	10.01	-157.21

()

0

0

ł

Appendix D-7(12) List of t	ho observed A	VIT data from	profile III	(1.)
Profilell	site 1600				

ProfileIII site	1600				1 () (a
Frequency		рху	<i>р</i> ух	фху	фух
10000.0000		210,18	505,96	46.99	-124.33
7500.0000		207.70	493,23	45.28	-124.87
5000.0000		206.61	472.83	42.27	-127.64
3750.0000		212.56	484.57	40.03	-128.63
2560.0000		242.71	541.58	38.45	-130.14
1920.0000	1	262.12	577.46	37.43	-131.70
1280.0000		313.57	608.81	35.75	-135.22
960.0000		358.96	653.09	35.40	-139,18
640,0000		517.54	822.50	33.58	-145.64
480.0000		583.27	911.98	33.44	-146.31
320.0000		691.66	1144.61	33.18	-145.85
240.0000		723.89	1232.70	33.06	-145.50
160.0000		795.88	1369.55	33.52	-145.44
120.0000		825.81	1416.03	34.00	-145.96
80.0000		875.18	1488.68	35.33	-146.45
60.0000	1.1	883.58	1515.84	35.69	-146.49
40.0000		880.03	1568.73	35.22	-146.95
30.0000		870.68	1590.76	33.94	-147.33
20.0000		882.36	1733.00	29.02	-149.08
15.0000		911.38	1866.18	26.34	-150.54
10.0000		1108.56	2340.46	20,10	-155.80
7.5000		1294.68	2613.19	17.84	-159,18
5.0000	۱.	1918.88	3355.14	14.16	-162.43
3.7500		2283.49	3755.70	13.05	-162.71
2.5000		3164.04	4641.12	12.98	-162.20
1,8750		3636.28	5049.63	13.33	-161.06
1.2500		4811.70	5667.22	13.06	-158.00
0.9375		5246.14	5837.98	12.75	-156.23

1. e. .

Ĺ.

ŧ,

Ł

D-56

Appendix D-7(13) List of	the observed	MT data fr	on profile	IV : :	· · :	
ProfilelV	site 400				. ·.	· • .	

÷ 1	ProfileN site	400			
	Frequency	ρχγ	рух	фxy	фух
	10000.0000	54.87	28.43	51.20	-118.81
	7500.0000	43.47	27,02	49.80	-118,98
	5000.0000	33.32	23.05	43.48	-120.28
	3750.0000	31.58	22,19	40.17	-122.09
	2560,0000	30.36	21.64	32.80	-128.54
	1920.0000	30.69	21.98	29,43	-132.40
	1280.0000	36.58	25.91	21.89	-145.50
	960.0000	45.41	30.46	19.14	-150,92
	640.0000	80.48	55.54	12.18	-163.51
	480.0000	102.53	72.52	9.49	-166.25
	320,0000	160.34	136.04	6.69	-171.72
	240.0000	191.98	165.42	5.22	-173.49
	160.0000	288.40	249.57	3.23	-176.14
	120.0000	356.69	282.03	3.33	-176.84
	80.0000	555.28	370.72	3,61	-177.25
	60.0000	659.57	378.51	3.92	-176.57
	40.0000	817.39	362.23	4.85	-175.49
	30.0000	842.40	354.66	5.86	-175.08
	20.0000	911.19	318.69	8.97	-172.69
	15.0000	953.40	328.03	9.28	-171.56
	10.0000	1283.01	487.12	8.27	-168.94
	7.5000	1569.42	635.48	7.64	-168.49
	5.0000	2578.22	1299.99	6.74	-168.51
	3,7500	3622.24	1848.98	7,26	-168.66
	2.5000	5131.19	2447.61	13.04	-169.08
	1.8750	5829.76	2743.78	15.57	-169.17
	1.2500	6459.25	3405.56	20.32	-169.15
	0.9375	6551.88	3558.08	21.62	-169.10

Frequency	ρχγ	рух	фхy	фух
10000.0000	11.68	13.78	62.17	-111.97
7500.0000	11,22	12.63	61.77	-111.99
5000.0000	10.33	10.50	59.15	-112,94
3750.0000	9.81	9,97	57.47	-113.69
2560.0000	9.09	9.07	51.83	-118.66
1920.0000	8.87	8.42	48.46	-124.89
1280,0000	9.13	7.92	37.74	-138.83
960.0000	10.11	9.26		-145.25
640.0000	14.86	17.57	21.24	-162.54
480.0000	18.13	23.13	17.77	-167.30
320.0000	27.93	40.44	9.84	-173.33
240.0000	33.27	51.08	6.99	-174.76
160.0000	47.17	76.73	5.30	-175.56
120.0000	57.86	90.11	4.99	-174.32
80.0000	102.54	112.96	4.75	-172.94
60.0000	121.04	128.58	5.37	-172.89
40.0000	151.28	151.74	9.11	-172.60
30.0000	159.97	154.04	10.70	-172.17
20.0000	173.40	155.41	12.91	-170.22
15.0000	182.93	159.63	13.69	-169.42
10.0000	256.74	204.93	13.78	-167.49
7.5000	322.98	262.28	13.31	-167.24
5.0000	585.56	429.11	11.84	-167.49
3.7500	771,51	505.97	11.81	-167.75
2.5000	1460,91	634.89	13.05	-167.94
1.8750	1937.96	652.68	13.93	-167.83
1.2500	3185.69	619.44	15.85	-166.98
0.9375	3504.21	595.51	16.05	-166.69

Ó

0

O

Appendix	D-7(14)	List	of	the	observed	AXIT	data	frog	profile	Ń

Frequency	ρχγ	ОУХ	<i>φ</i> χγ <i>φ</i> γχ
10000.0000	17.96	87.84	62.25 -125.1
7500,0000	17.55	83.84	61.68 -126.0
5000,0000	16.02	73.89	58.42 -128.
3750.0000	16.12	72.88	55.51 -130.
2560.0000	16.50	74.76	47.46 -133.1
1920,0000	17.03	75.17	43.53 -136.9
1280,0000	18.91	79.89	36.98 -143.
960.0000	20.47	84.93	32,53 -145.3
640,0000	27.18	113,56	23.10 -151.4
480:0000	32.35	136.59	18.69 -155.2
320.0000	52.28	207.36	12.45 -162.4
240.0000	65.53	237.15	10.25 -163.1
160.0000	104.34	332,98	7.30 -163.9
120.0000	126.26	395.58	7.41 -162.2
80.0000	186.55	560.08	8.34 -160.2
60.0000	224.47	594.20	8.81 -160.3
40.0000	338.15	618.16	10.66 -161.7
30.0000	372.62	614.07	11.17 -162.5
20.0000	409.95	620.97	11.95 -164.0
15.0000	419.36	662.50	12.76 -164.0
10.0000	516.22	927.01	13.55 -166.1
7.5000	597.85	1080.23	14.05 -166.7
5,0000	879.69	1568.45	16.08 -167.1
3.7500	1063.70	1925.12	16.76 -166.9
2.5000	1496.75	2821.98	18.62 -165.1
1.8750	1663.32	3152.33	18.96 -163.3
1.2500	1898.00	3495.15	21.17 -160.5
0.9375	1966.60	3640.78	22.30 -159.3

ProfileIV site 1000

Profilely site	1000			<u> </u>
Frequency	ρχγ	рух	фху	фух
10000.0000	7.67	6.28	61.28	-111.83
7500.0000	7.54	6.06	60,79	-112.96
5000.0000	7.30	5.63	58.59	-115.51
3750.0000	7.37	5.06	57.12	-116.67
2560.0000	7.98	4.83	51,78	-119.75
1920.0000	8.44	4.80	48.89	-121.93
1280.0000	9.89	4.82	40.85	-128.04
960.0000	10.41	4.84	36.53	-129.67
640.0000	11.60	5.02	26.12	-135.38
480,0000	12.26	5.25	21.80	-138.26
320.0000	15.19	6.38	14.76	-147.71
240.0000	16.66	7.10	14.36	-150.38
160,0000	20.93	9,24	16.97	-151.10
120.0000	22.03	10.14	18.84	-150.89
80.0000	25.23	10,80	22.47	-151.72
60.0000	27.02	11.23	23.69	-152.80
40.0000	31.31	12.72	26.05	-156.74
30.0000	32.16	13.64	26.03	-158.44
20,0000	33.87	16.63	23.09	-162.05
15.0000	35.48	19.02	20.54	-163.73
10.0000	47.41	28,51	14.81	-166.62
7.5000	55.87	35.45	12.98	-167.31
5.0000	84.82	56.48	9,50	-167.69
3.7500	96.28	66.31	9.20	-167.22
2.5000	116.43	86.21	9.11	-166.12
1.8750	127.76	93.00	8.67	-165.21
1.2500	187.52	99.77	8.14	-159.64
0.9375	212.45	101.35	8.45	-157.59

D - 58

()

()

0

ofileIV site 120	0		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Frequency	ρχγ	ργχ	фху	фух
10000.0000	10.44	16.19	46.28	-123,13
7500.0000	10.98	15.47	46.01	-123,57
5000.0000	13,38	13.88	44.75	-125.84
3750.0000	15.23	13.63	44.06	-127.06
2560.0000	19.38	14.26	42.46	-131.88
1920.0000	21.64	15.42	40.47	~134.41
1280.0000	25.19	19.93	36.69	-138.77
960.0000	25.99	21.47	35.45	-140.79
640.0000	28.41	23,53	31,45	-146.39
480.0000	30.44	25.81	28.92	-149.27
320.0000	40.43	34.20	23.94	-157.37
240.0000	46.09	39.08	22.46	-160.21
160.0000	58.46	46.91	21.79	-160.92
120.0000	60.46	49.17	22.12	-159.99
80.0000	67,88	51.25	24.34	-157.60
60.0000	70.94	52.41	25.12	-157.34
40.0000	73.69	62.10	25.77	-158.45
30.0000	76.22	71.40	25.46	-159.52
20.0000	80.40	96.15	23.61	-163.27
15.0000	86.52	109.42	21.70	-165.72
10.0000	112.19	162.58	15.66	-171.00
7.5000	127.18	200.90	13,95	-171.67
5.0000	171.84	313.69	11.19	-170.65
3.7500	197.14	365.34	10.51	-168.79
2.5000	272.61	485.38	9.10	-164.39
1.8750	320.70	542.56	9.22	-162.00
1.2500	437.30	632.02	10.66	-156.84
0.9375	473.33	645.73	11.16	-155.05

Appendix D-7(15) List of the observed ANT data from profile IV

(**)**

 (\mathbf{D})

ProfileIV site 1400

ProfileIV	site 1	400			
Frequ	iency	ρχγ	ρух	φxy	фух
10000.0	0000	139.21	254.18	57.07	-115.59
.7500.0	0000	142.86	258.46	56.65	-117.64
5000.0	0000	146.60	275.23	54.08	-123.86
3750.0	0000	146.60	290.15	52.79	-126.64
2560.0	0000	154.39	354.39	49.19	-132.64
1920.0	0000	158.43	404.32	47.55	-135.48
1280.0	0000	185.03	533.66	43,10	-139.22
960.0	0000	210.57	593.01	41,43	-141.63
640.0	0000	233.52	704.00	35.75	-145.25
480.0	0000	265.76	751:79	34.02	-146.44
320.0	0000	335.42	804.75	30.00	-150.62
240.0	0000	381.72	815.93	28.68	-153.03
160.0	0000	456.65	916.89	25,46	-155.70
120.0	0000	506.77	1003.73	24.54	-157.06
80.0	0000	615.74	1416.89	22.57	-160.22
.60.0	0000	696.20	1584.51	21,92	-161.00
40.0	0000	710.69	1867.88	20.85	-162.03
30.0	0000	684.11	1964.91	20.38	-162.19
20.0	0000	610.13	2088.64	17.98	-161.63
. 15.0	0000	582,70	2251.66	17.39	-161.16
10.0	0000	747.82	3440.54	16.08	-162.41
7.9	5000	919.72	4613.21	15.45	-163.44
5.0	0000	1583.21	8892.08	13.20	-164.83
3.1	7500	1864.31	10876.02	12.85	-165.12
2.5	5000	2037.54	14870.94	12.47	-164.02
1.8	3750	2050.51	16427.13	12.26	-162.55
1.2	2500	1998.16	19823.37	11.96	-159.86
0.9	9375	1947.14	20346.69	11.94	-159.61

Ð-59

0

ţ

Appendix D-7(16) List of the observed ANT data from profile IV to Back Add at a second

ProfileN site	1600			
Frequency	ОХУ	ργχ	φxy	фух
10000.0000	254.18	296.85	39.21	-129.77
7500.0000	257.31	301,17	40,26	-130.59
5000.0000	259.20	313.87	44,67	-133.75
3750.0000		322.38	45,97	-135.02
2560.0000		314.92	47.57	-139.72
1920.0000	241.30	306.63	47.77	-143.21
1280.0000		294.95	46.61	-151.35
960.0000		297.03	44.88	-154.02
640.0000		335.43	40.65	-160.33
480.0000		386.07	39.57	-161.42
320.0000		451,91	35.50	-162.09
240.0000		480.91	34,59	-162.58
160.0000		661.51	31.58	-163.22
120.0000		745.41	30.98	-164.23
80.0000		888.52	29.05	-170.06
60.0000		943.10	28.66	-171.78
40.0000		990.81	27.04	-173.50
30.0000	••••	1057.05	25.66	-173.55
20.0000		1214.32	23.94	-172.22
15.0000	833.57	1411.02	23.47	-171.85
10.0000		2101.78	20.19	-171.44
7.5000		2431.30	17.73	-171.16
5.0000		3439.70	11.16	-169.75
3.7500		3981,36	9.22	-169.23
2,5000		5886.77	7.36	-167.58
1.8750		7103.55	6.89	-166.07
1.2500		8952.12	6.44	-161.06
0.9375	3501.46	9300.65	6.56	-159.88

2

ť

ŧ,

ProfileIV site 1700

TIOTIEN SILE	1100			
Frequency	Оху	рух	фху	фух
10000.0000	115,98	37.49	54.70	-122.29
7500,0000	108.40	38.12	54.55	-122.67
5000.0000	85.57	40.88	53.65	-123.75
3750.0000	82.67	43.82	52.53	-124.56
2560.0000	84.78	54,92	48.23	-125.91
1920.0000	90.46	62.98	45.84	-127.24
1280,0000	138.43	86.22	42.56	-130.35
960.0000	189.15	100.62	42.00	-131.36
640.0000	282.90	144.43	41.49	-133.17
480.0000	327.87	164.79	40.35	-134.30
320.0000	439.01	241.66	38.78	-138.71
240.0000	473.94	268.20	37.51	-140.66
160.0000	504.60	322.04	35.38	-145.10
120.0000	515.30	343.99	35.16	-148.28
80.0000	537.16	407.65	34.52	-158.03
60.0000	557.08	468.44	33.31	-161.48
40.0000	570.27	708.05	30.01	-165.85
30.0000	557.27	798.36	28.11	-168.05
20,0000	553.85	946.54	23.84	-171.82
15.0000	587.06	1130.98	21.64	-172.68
10.0000	835.87	1624.29	16.09	-174.04
7.5000	1078.26	1958.54	13,58	-174.04
5.0000	1710.94	2997.20	9.21	-171.78
3.7500	2290.24	3615.88	8.14	-170.18
2.5000	2930.27	5178.05	7,64	-165.44
1.8750	3256.05	5961.70	8.57	-162.19
1,2500	4370.75	7629,49	. 12.76	-155,00
0.9375	4684.11	8210.17	14.96	~152.55

Appendix D-7(17) List of the observed ANT data from profile IV

P -----

ProfileN site	1800		(<u>}</u>	
Frequency	ρχγ	ργχ	φxy	фух
10000.0000	201.70	142.86	61.57	-127.97
7500.0000		142.86	58.17	-128.80
5000.0000	166.16	138.34	50.73	-132.66
3750.0000		134.89	49.17	-134.19
2560.0000		125.79	48.38	-141.28
1920.0000		117.38	48.31	-145.68
1280.0000		106.50	47.70	-150.85
960.0000		105.66	46.47	-153,94
640.0000		120.91	44.20	-160.38
480.0000		139.87	43.20	-161.24
320.0000		167.39	39.00	-164.08
240.0000		173.50	37.14	-164.64
160.0000		187.66	34.22	-163.37
120.0000		203.08	33.19	-162.92
80.0000		221.83	30.64	-162.75
60.0000		254.32	29.41	-162.75
40.0000 30.0000		419.42 498.01	28.16 27.66	-164.03 -165.23
20.0000		498.01 647.33	26.30	-169.47
15.0000		760.18	25.85	-170.54
10.0000		1013.73	22.01	-172.70
7.5000		1206.91	18.09	-173.04
5.0000		1905.51	12.38	-172.39
3.7500		2316.80	11.66	-171.89
2.5000		3070.11	11.39	-171.68
1,8750		3233.25	11.63	-171.82
1.2500		3553.93	12.56	-171.38
0.9375		3665.58	12.67	-171.07

Frequency	ОХУ	<i>р</i> ух	фxy	фух
0000.0000	58.88	38.14	49.16	-118.43
7500.0000	57.47	35.77	50.34	-117.12
5000.0000	48.65	28.41	53,28	-113.88
3750.0000	43,91	25.45	53.83	-113.29
2560.0000	34.64	19.80	53.63	-113.17
1920.0000	31.71	18.44	53,22	-114.00
1280.0000	28.16	18.16	51.43	-119.66
960.0000	26.50	18.79	49.79	-123.18
640.0000	24.09	23.36	46.21	-133.19
480.0000	24.08	25.92	44.24	-136.55
320.0000	26,35	30.89	38.36	-145.10
240.0000	28.86	33.42	35.25	-149.64
160.0000	39,02	42.42	27.10	-154.41
120.0000	49.40	49.06	22.53	-156.39
80.0000	89.43	68.69	13.03	-159,34
60.0000	110.06	81.00	10.40	-160.17
40.0000	139.78	97.32	8.12	-164.05
30.0000	144.73	102.20	8.22	-164.83
20.0000	145.00	118.57	10.61	-167.24
15.0000	155.11	131.90	11.17	-168.00
10.0000	257.23	239.89	11,86	-170.08
7.5000	352.70	346.92	11.54	-170.58
5.0000	600.13	581.28	11.71	-170.89
3,7500	709.07	648.80	12.52	-170.71
2.5000	914.03	798.36	15,58	169.06
1.8750	990.99	861.77	18,11	-167.84
1.2500	1051.37	983.86	23.54	~163.26
0.9375	1066.57	. 993,92	25.80	-161.99

 \mathbf{O}

O

-

ļ

Ŧ

Appendix D-7(18)	List of	the observed	AHT data	from profile	N.	ata a la

ProfileN site	2200			<u>, and an and a</u>
Frequency	ρχγ	ργχ	фху	фух
10000.0000	41.22	40.16	70.30	-128.20
7500.0000	38.94	37.80	70.25	-126.17
5000.0000	33.90	31.34	68.74	-124,82
3750.0000	31.54	28.44	66.71	-126.17
2560.0000	27.84	24.16	61.49	-128,88
1920.0000	26.18	23,27	58,27	-131.59
1280.0000	22,89	22.73	52.86	-137.01
960.0000	22.34	22.00	51.17	141.04
640.0000	21.74	22.53	46.51	-148.42
480.0000	21.88	24.02	44.38	-155.83
320.0000	24.27	32.77	35.29	-166.13
240.0000	25.93	38.87		-172,58
160.0000	32.74	57.35	21.06	-175,57
120.0000	-38.00	69.37	18.38	-175.11
80.0000	63.93	105.09	11.99	-174.09
60.0000	73,86	121.83	10.39	-172.64
40.0000	85.03	149.61	8.38	-170.66
30.0000	87.31	158.80	8.27	-168.63
20.0000	94.29	183.20	8,69	-168.29
15,0000	102.64	207.38	8,85	-168.57
10.0000	159.42	314.53	9.77	-169.98
7.5000	190.41	394.41	9.98	-171,47
5.0000	292.40	642.87	10.57	-172.53
3.7500	331.93	754.96	10.98	-171.76
2.5000	418.44	949.16	12.55	-170.20
1,8750	440.10	1021.55	13.38	-168.85
1.2500	460.71	1146.43	16.40	-162.75
0.9375	464.61	1176.95	16.93	-158.01

(

(

ProfileN	site	2400	

Profilely site 24	100			
Frequency	ρху	ργχ	фxy	фух
10000.0000	34.44	14.16	35.05	-131.52
7500.0000	31.06	14.15	33.69	-131.01
5000.0000	31.06	13.56	31.78	-129.56
3750.0000	34.18	12.91	28.40	-128,20
2560.0000	43.05	11.45	27.15	-127.53
1920.0000	52.10	11.24	27.80	-128.88
1280.0000	62.69	13.76	30.70	-132,95
960.0000	66.82	17.03	33.06	-144.12
640.0000	74.60	31,91	34.47	-152.27
480.0000	81.86	40.46	34.24	-156,55
320.0000	91.97	68.42	33,55	-160.32
240.0000	99.10	89.02	33.26	-162.53
160.0000	109.72	123.83	33,99	-162.18
120.0000	116.22	132.17	34.44	-162.90
80.0000	121.09	149,91	34.82	-164.05
60.0000	117,91	158.14	34.61	-164.10
40.0000	114.65	164.36	33.88	-161.70
30.0000	115.27	160.02	30.65	-160.57
20.0000	122.05	168.36	25,65	-160.10
15.0000	137.44	195.26	20.48	-161.06
10.0000	176.38	317,55	15,17	-163.04
7,5000	239.64	370.42	11.67	-166.71
5.0000	384.26	498.77	9.52	-166.82
3.7500	546.93	555.96	9.17	-164.55
2,5000	762.80	702.10	9.97	-161.43
1.8750	926.22	783.21	11.45	-159.84
1,2500	1112.58	935.14	13.71	-158.75
0.9375	1294.04	942.07	16.74	-158.15

Appendix D-7(19)	List of	the observed	ANT data	from profile IV	

ProfileN site	2600		- -	: .
Frequency	Оху	ОУХ	фxy	фух
10000,0000	87.86	50.21	48.62	-124.63
7500.0000	90.02	46.63	48.71	-124.31
5000.0000	96.37	39.43	47.68	-123.97
3750.0000	96.92	35,96	45.65	-123.64
2560,0000	99.50	29,95	41.71	-123.36
1920.0000	105.88	27,46	40.33	-123.51
1280.0000	119.33	25.95	38.64	-124.94
960.0000	125.90	25.99	38.42	-127.01
640.0000	135.15	27.27	38.46	-131.84
480.0000	134.97	27.67	38.55	-133.48
320,0000	138.68	31.92	38.38	-137.22
240.0000	139.56	33,98	38.35	-141,51
160.0000	148.48	43,20	37.47	-152.66
120.0000	156.57	45,37	37.13	-156.40
80.0000	166.09	52.10	36.47	-162.30
60.0000	165,92	53.33	35.41	-163.36
40.0000	158.78	52.74	33.59	-162.30
30.0000	159.15	51.34	32.67	-161.06
20.0000	172.21	49.49	29.60	-158.88
15.0000	189.67	50,59	26.80	-158.65
10.0000	273.16	63.97	19.83	-160.14
7.5000	339.87	78.88	16.71	-162.03
5.0000	567.08	135.66	12.98	-164.13
3,7500	703.15	166.84	12.24	-163.53
2.5000	1030.29	210.57	12.05	-157.94
1.8750	1148.92	245.92	13.31	-155.38
1.2500	1290.08	279.87	17.88	-150.78
0.9375	1317.11	302.45	19.67	-148.84

0

()

,

Appendix D-7(20) List of the observed ANT data from profile V

rofileV site:	200			and the state of
Frequency	ρχγ	ργχ	<u> фху</u>	фух
10000.0000	285.12	196.65	44.47	-129.93
7500.0000	. 311.04	210.37	45.79	-130.74
5000,0000	407.62	285.73	49.18	-132,95
3750.0000	459,49	330.26	49.87	-133.77
2560.0000	570.53	448.03	50.57	-135,96
1920.0000	629.84	509.91	50.91	-136.40
1280.0000	736.62	675.22	50.91	-134.23
960.0000	753.19	707.55	50.24	-134.43
640.0000	756.30	756.47	48.74	-135.71
480.0000	749.14	756.66	47.47	-136.16
320.0000	703.90	724.37	43.97	-137.04
240.0000	642.91	702.79	43.12	-139.30
160.0000	508.41	637.90	40.35	-142.34
120.0000	437.63	627.72	39.48	-145.19
80.0000	376.47	636.75	38.76	-153.56
60.0000	344.74	665.57	37.79	-157.39
40.0000	335.02	794.00	36.54	-161.31
30.0000	329.11	850.68	35.17	-162.09
20,0000	327.98	1002.59	29.85	-161,94
15.0000	349.42	1080.67	27.15	-161.17
10,0000	428.77	1475.60	19.07	-160,91
7.5000	485.60	1668.61	16.03	-160.91
5,0000	636.77	2377.69	10.55	-159.88
3,7500	720.16	2677.87	8,92	-159.31
2,5000	991.29	3776.40	6.19	-155.86
1.8750	1155.63	4177.50	6.09	-153.16
1.2500	1524.65	5281.24	7.62	-146.94
0,9375	1670.42	5482.18	8.24	-145.20

0

()

ProfileV site 400

TIOTITO TO DICC TO	······			
Frequency	ρχγ	ργχ	фxy	фух
10000.0000	245.92	125.17	29.26	-128.20
7500.0000	310,38	139.39	28.63	-128.20
5000.0000	412.52	185.59	23.29	-128.88
3750.0000	494.40	223.31	18.89	-129.56
2560.0000	691.99	305.41	10.38	-133.58
1920.0000	879.70	345.50	7.36	-137.01
1280.0000	1184.34	455.90	3.20	-142.66
960.0000	1517.34	495.14	2.27	-145.44
640.0000	1938,68	610.11	1.17	-148.31
480.0000	2457.48	665.48	1.68	-150.84
320.0000	3022.39	799.85	6.38	-153.14
240.0000	3266.24	832,30	8.40	-153.42
160.0000	3439.64	924.66	10.18	-156.04
120.0000	3182.84	947.88	11.47	-156.87
80.0000	3022.39	997.80	12.74	-159.86
60.0000	2768.83	993.82	13.31	-161.36
40.0000	2333.59	869,56	14.03	-160.49
30.0000	2017.20	819.64	13.90	-159.18
20.0000	1897.43	725.50	12.85	-156.88
15.0000	1848.98	717.88	12.70	-156.46
10.0000	1947.14	802.70	12.07	-157.45
7.5000	2394.73	859.65	11.65	-158.26
5.0000	3504.71	1001.60	11.22	-161.92
3.7500	4542.94	1105.98	11.32	-163.43
2.5000	6014.06	1371.29	12.09	-162.07
1.8750	6398.72	1543.31	13.61	-160.04
1.2500	6235.34	1937.26	15.17	-157.66
0.9375	5769.83	2087.29	15.68	-155.74

D-64

Appendix D-7(21) List of	the observed ANT	data from profile	V second a consec	
	100 C			

ofileV site (· · · · · · · · · · · · · · · · · · ·		
Frequency	ρχ	<i>р</i> ух	ØXY	фух
10000.0000	52.22	62.44	47.74	-130.00
7500.0000	53.50	64.08	47.31	-132.66
5000.0000	61.05	74.83	44.81	-143,77
3750.0000	66.70	85,17	41.38	-150.74
2560.0000	84.73	102.07	32.26	-159.26
1920.0000	97.64	113.19	27.19	-162.17
1280.0000	139.21	139.21	17.59	-166.81
960.0000	174.82	185,03	14.23	-168.50
640.0000	252,36	265.76	9.31	-173.39
480.0000	317.66	326.85	7.82	-174.59
320.0000	482.29	481.77	2.60	-177.32
240.0000	640.32	728,72	1.94	-177.68
160.0000	1015.83	943.82	1.25	-176,53
120.0000	1355,63	1254.43	0.89	-174.94
80.0000	2025.82	1542.78	1.41	-173.04
60.0000	2296.34	1755.77	1.84	-172.79
40.0000	2759.35	1710.94	3.01	-173.53
30.0000	2899.01	1542.78	4.56	-173.33
20.0000	3373.37	1287,29	6.38	-172.32
15.0000	3707.10	1222.40	7.41	-172.32
10.0000	5371.35	1160.77	8.02	-169.66
7 5000	6080.19	1191.19	7.56	-168.50
5.0000	7767.48	1222.40	5.73	-164.80
3.7500	8142.62	1355.63	4.92	-163.17
2.5000	8108.71	1503.39	3.92	-158.47
1.8750	7886.38	1583.21	4.01	-158.47 -156.82
1.2500	6790.30	1710.94	5.47	
0.9375	6379.28	2050.51	6.23	-154.84 -154.65

0

ProfileV site 800

مرجع محادية والمتحد والمتحج والمتحج المحاد المحاد

TIVITIE V SILE &	JU			· · · · · · · · · · · · · · · · · · ·
Frequency	<i>рху</i>	рух	фху	фух
10000.0000	11.51	20.01	51.43	-119.89
7500.0000	11.60	19.70	50.99	-119.58
5000.0000	12.04	18.27	47.77	-121.52
3750,0000	12.38	17.66	45.23	-124.21
2560.0000	13,97	16.44	36.52	-133.69
1920.0000	15,79	15,96	31.16	-140,70
1280.0000	20.01	15,91	18.17	-161.01
960.0000	31.79	17.32	14.01	-168,36
640.0000	58.27	26.86	5.18	-175.23
480.0000	74.83	35.10	3.09	-176.92
320.0000	110.99	58.88	2.09	-177.77
240.0000	146.60	68.26	1.89	-177.68
160.0000	205.20	96.99	1.26	-177.48
120.0000	287.20	113.73	1.31	-177.15
80.0000	418.76	138.01	1.75	-176.37
60.0000	472.45	147.38	1,84	-175.56
40.0000	592.52	157.71	2.70	-174.77
30.0000	629.13	157.46	4.06	-174.21
20.0000	703.95	144.66	5.80	-171.02
15.0000	796.48	134.63	5.89	-169.35
10.0000	1131.14	125.17	4.89	-169.33
7.5000	1534.43	126.04	4,25	-169.95
5,0000	1947.14	136.24	3.63	-170.97
3.7500	2215.95	147.95	4.01	-171.39
2.5000	2457.48	177.17	6.94	-172.63
1.8750	2587.95	187.58	7.78	-172.03
1.2500	2790.46	211.06	9.37	-172.77 -170.99
0.9375	2795,93	225.73	9.80	
· · · •		220.10	2100	-169.59

(**)**

-

•

Appendix D-7(22) List of the observed ANT data from profile V

Frequency	ρху	рух	фxy	фух
10000.0000	31.01	19.00	53,92	-149.86
7500.0000	29.47	16.70	53.56	-150.05
5000.0000	28.04	14.17	50.93	-151.77
3750.0000	27.79	13.19	48.90	-153.31
2560.0000	28.82	13.07	43.59	-158.63
1920.0000	. 30.73	13.68	41.47	-161.85
1280.0000	36.84	18.58	35.98	-169.02
960.0000	.39.60	23.87	33.74	-172.97
640.0000	44.54	41.17	28.20	-175.52
480.0000	45.69	49.62	26.47	-175.85
320.0000	48.57	63.35	23.16	-174.71
240.0000	50.20	68.03	22.24	-172.92
160.0000	54.14	74.87	22.05	-169.18
120.0000	55.06	76.30	23.08	-166.32
80.0000	59.21	76.87	24.33	-161.21
60.0000	62.11	77.28	24.70	-159.68
40.0000	72.67	84.10	24.04	-157.53
30.0000	78.30	87.65	23.29	-158.00
20.0000	97.42	106,16	20,20	-162.24
15.0000	112.97	119.73	18.01	-164.70
10.0000	196.21	176.65	13.65	-169.24
7.5000	241.40	208.32	12.06	-169.72
5.0000	360.54	272.89	9.78	-170.34
3.7500	409.54	302.75	9.48	-169.81
2.5000	523.93	354.38	10.25	-165.62
1.8750	570.10	366.91	10.64	-163.03
1.2500 0.9375	715.05 751.35	365.52 361.04	13.47 14.36	-155.66 -153.61

()

 \mathbf{O}

 \cdot ()

ProfileV site 1200

FIDITIEV SILE	1200			
Frequency	<i>р</i> ху	ργχ	фxy	фух
10000.0000	25.00	365.09	40.47	-144.36
7500.0000	25.16	369.39	39,79	-144.87
5000.0000	25.25	354.56	36.35	-146.93
3750.0000	25.57	344.64	35.66	-148.14
2560.0000	28.25	329.02	33.27	-151.71
1920.0000	30.12	334.43	31.27	-153.94
1280.0000	35,89	419.39	26.13	-157.27
960.0000	38.88	486.39	24.16	-159.29
640.0000	47.97	683.75	17.32	-163.83
480.0000	52.72	778.35	15.24	-165.52
320.0000	64.95	1037.64	12.89	-168.39
240.0000	70.48	1175.42	12.97	-169.06
160.0000	86.26	1523.12	15.52	-170.14
120.0000	93.51	1672.10	17.39	-170.33
80.0000	114.67	1806.17	20.15	-170.05
60.0000	123.03	1853.62	20.64	-169.76
40.0000	137.00	1825.37	19.99	-168.54
30.0000	139.29	1813.62	19.44	-168.38
20.0000	150.57	1917.75	18.33	-168.56
15.0000	168.37	2074.73	17.15	-168.76
10.0000	233.52	2633.21	12.77	-169.35
7.5000	307.32	3078.10	11,80	-169.38
5,0000	450.03	4819.66	11,12	-168.92
3.7500	562.65	5776.32	11.09	-168.14
2.5000	775.94	7559.90	11.95	-163.65
1.8750	862.62	8542.57	11,99	-161.27
1.2500	1100.97	11019.16	10.55	-151.57
0.9375	1149.89	12019,20	10.08	-148.38
	· •	• • •	= • • • •	110100

· · ·	Appendix D-7(23) List of the observed AMT data from profile V	
н н торотория н	ProfileV site 1400	

ProfileV site 1400

		titev site i	100			
	***	Frequency	Оху	рух	фху	фух
		0000.0000	36.89	99.96	61.59	-125.68
		7500.0000	36.81	102.46	60.34	-126.06
		5000.0000	35.78	112.03	55,99	-126.96
		3750.0000	34.69	115.78	52.81	-127.59
		2560.0000	32.88	132.64	44.57	-129,99
		1920.0000	31.80	141.13	40,03	-131.98
	•	1280.0000	30,48	155.49	31.60	-137.30
5		960.0000	31.22	160.52	29.41	-139.60
)		640.0000	35.71	164.76	25.62	-146.95
		480.0000	37,92	170.19	23.65	-149.65
		320.0000	44.23	188.96	22.23	-152.87
		240.0000	47.34	201.49	22.06	-155.20
1		160.0000	52.84	226.47	22.33	-157.72
	· ·	120.0000	56.63	242.66	21.71	-158.62
		80.0000	74.62	288.44	21.84	-161.13
		60.0000	81.91	316.22	21.70	-162.34
		40.0000	89.01	366.85	20.94	-164.06
		30.0000	88.41	402.47	20.33	-164.96
		20.0000	91.19	489.57	18,35	-167.25
	· .	15.0000	100.77	537.75	17.12	-168.04
	· · · ·	10.0000	148.62	710.84	12.95	-168.86
		7.5000	189.91	836.76	11.21	-168.58
		5.0000	330.31	1257.39	8.60	-164.74
		3.7500	407.07	1504 95	8.37	-161.08
		2.5000	554.09	2088.16	9.77	-157.18
	•	1.8750	626.28	2306.49	9.88	-156.85
		1.2500	756.30	2574.63	8.89	-157.76
x .		0.9375	792.32	2614.51	8.31	-158.72

	1.2500	266 20		2.00	-130.85
		756.30	2574.63	8.89	-157.76
()	0.9375	792.32	2614.51	8.31	-158.72
.,	·				
	ProfileV site 16	00	. ·		
	Frequency	ρχγ	рух	фxy	фух
	10000.0000	49.40	36.71	54.51	-112.51
	7500.0000	45.95	35.15	54.19	-113.69
	5000.0000	32.43	26.97	53.31	-116.63
	3750.0000	28.17	24.00	51.52	-117.51
	2560.0000	23.67	20.60	50.10	-120.26
	1920.0000	22,93	19.72	48.66	-121.93
	1280.0000	22.68	18.72	42,44	-127.71
	960.0000	23.24	18.08	39.13	-132.31
	640.0000	27,90	17.67	31.51	-141.07
	480.0000	31.15	18.00	28.10	-144.10
	320.0000	43.75	20.81	20,95	-147.25
	240.0000	49.79	23.52	18.86	-148.64
	160.0000	56.67	32.92	16.46	-151.74
	120.0000	. 57.05	38,30	15.98	-153.56
	80.0000	54.86	47.45	14.85	-156.30
	60,0000	54.55	49.92	14.78	-156.76
	40.0000	55.05	52.33	16.06	-157.13
· ·	30.0000	55.01	53.84	16.55	-158.30
	20.0000	56.67	60.57	16.73	-159.90
	15.0000	60.90	66.82	15.99	-161.22
	10.0000	94.55	90.95	13.98	-165.18
	7.5000	119.73	108.71	13.44	-167.23
	5.0000	180.91	162.90	14.01	-169.46
	3.7500	214.58	192.81	15.20	-168.20
	2.5000	270.14	252.79	19.13	-165.92
	1.8750	290.55	271.84	21.58	-165.63
	1,2500	315.51	287.62	27.19	-166.60
	0.9375	319.21	289.07	29.09	-167.06

£

CRONE GEOPHYSICS & EXPLORATION LTD

1

Ę

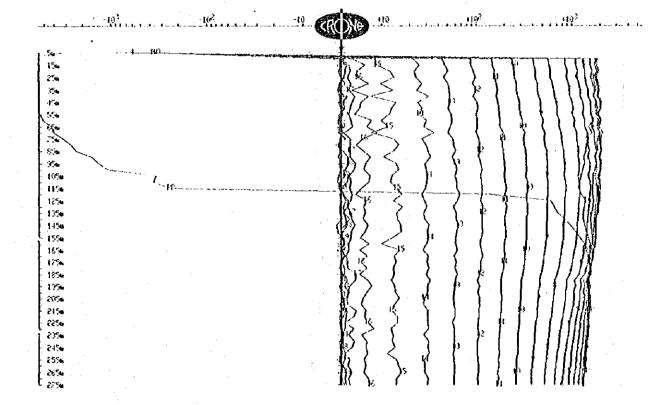
Ċ

Client Grid Date	: ENAMI : PROGRESO : Nov 11, 19	Hole : DDH1A Tx Loop : C File name : DDH1AZC.PEM
ZC	COMPONENT dB2/	/dt nanoTesla/sec - 20 channels and PP
-10 ³	-10 ²	
:		$\frac{1}{5}$
· .		
	:	報父: くう カ いいい いいい
		- * * 2 越り さんどう もしももももも
		= 1
		$\frac{1}{10} \frac{1}{10} \frac$
		$1 12 \leq 2 \leq 12 \leq 12 \leq 12 \leq 12 \leq 12 \leq 12$
		11日本 11日本 11日本 11日本
	·	
		$= \overline{W}\left(\left(\left$
		静心
-		
•		$\mathbb{E}(p \times 1) = \{ 1 \in \mathbb{N} \mid 1 \in $

D-8(1)

PEM observed data for DDH-1A,

Central loop Z component


D ~ 68

.

Client	: ENAMI	
Grid	: PROGRESO	
Date	: Nov 12, 1994	

Hole : DDH1A Tx Loop : : N File name : DDHIAZN.PEM

Data Scaled by Factor of -1.00 2 COMPONENT dBz/dt nanoTesia/sec - 20 channels and PP

0

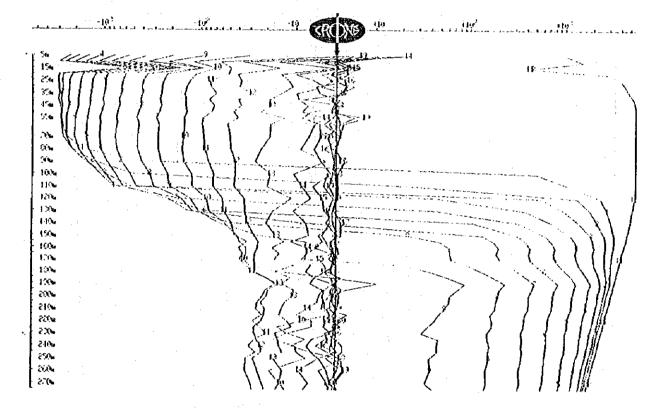
Į

()

()

D-8(2)

PEM observed data for DDH-1A, North loop Z component


Client		:	ENAMI
Grid	1	:	PROGRESO
Date			Nov 11_21994

llofe : DDH1A Tx Loop : N File name : DDHIAXYN.PEM and the second sec

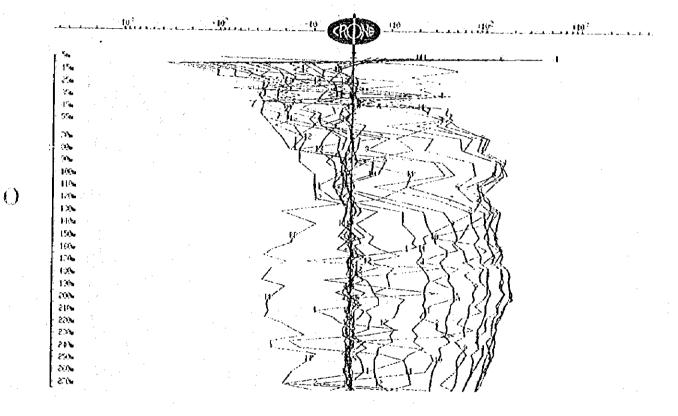
C

(

Data Corrected for Probe Rotation using Cleaned PP X COMPONENT dBx/dt nanoTesia/sec - 20 channels and PP

D-8(3) PEM observed data for DDH-1A,

North toop X component


CRONE GEOPHYSICS & EXPLORATION LTD

()

Client: De	:	ENAMI
Grid	;	PROGRESO
Date	:	Nov 11, 1994

Hole : DDH1A Tx Loop : N File name : DDH1AXYN.PEM

Data Corrected for Probe Rotation using Cleaned PP Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

0

D-8(4) PEM observed data for DDH-1A, North loop Y component

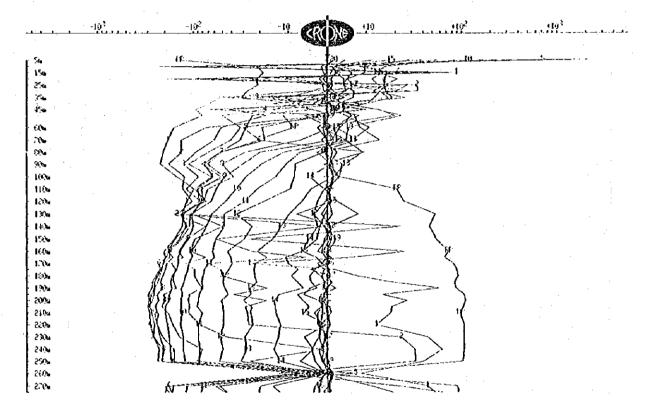
Client	· · ·	:	ENAMI	
Grid		:	PROGRESO	
Date		:	Nov 12; 1994	

Hole : DDH1A Tx Loop : E File name : DDH1AZE.PEM

()

()

Data Scaled by Factor of -1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP


D-8(5) PEM observed data for DDH-1A, East loop Z component

D-72

Client 🛸	:	ENAMI
Grid	:	PROGRESO
Date	÷.	Nov 11, 1994

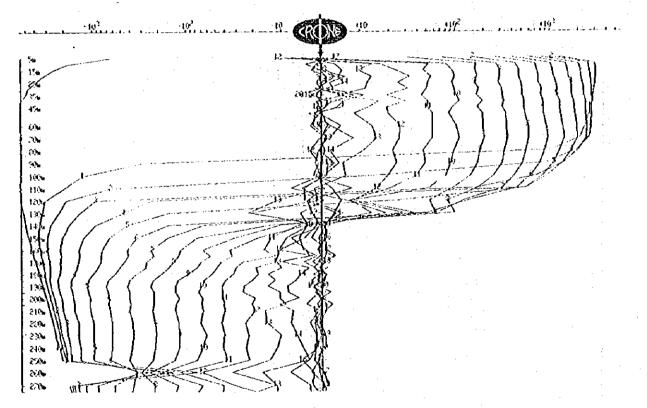
Hole : DDH1A Tx Loop : E File name : DDH1AXYE.PEM

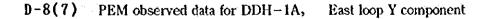
Data Corrected for Probe Rotation using Cleaned PP X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

0

ş

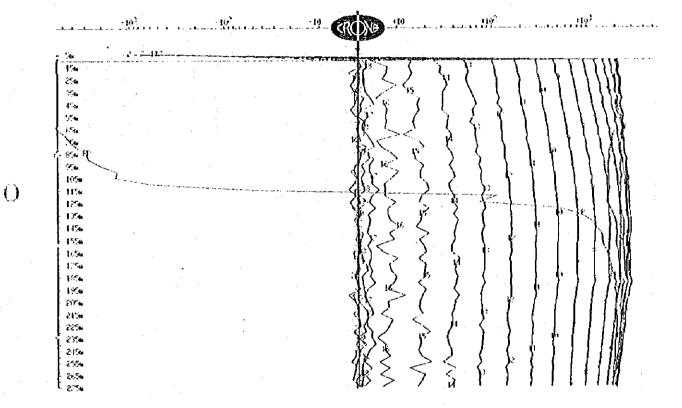
)




PEM observed data for DDH-1A,

East loop X component

Client : ENAMI Grid : PROGRESO Date : Nov 11, 1994 Hole : DDH1A Tx Loop : E File name : DDH1AXYE.PEM 4

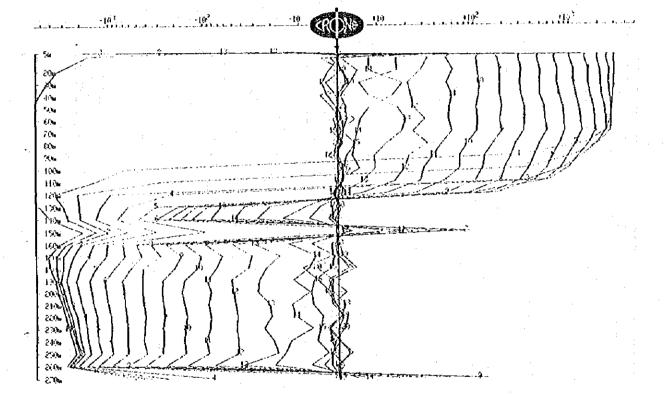

Data Corrected for Probe Rotation using Cleaned PP Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

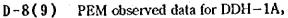
Client ENAMI Grid : PROGRESO Date : Nov 11, 1994 Hole : DDHIA Tx Loop : S File name : DDH1AZS.PEM

Data Scaled by Factor of -1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

()

;

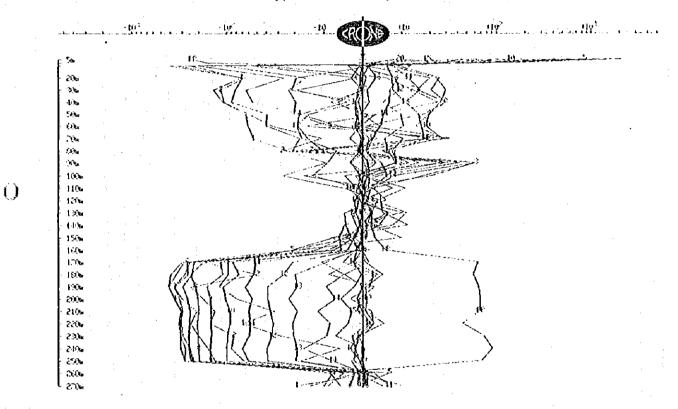

()


D-8(8) PEM observed data for DDH-1A, South loop Z component

Client	· •	ENAMI
Grid	:	PROGRESO
Date	:	Nov 11, 1994

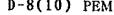
Hole : DDH1A Tx Loop : S File name : DDH1AXYS.PEN

Data Corrected for Probe Rotation using Cleaned PP X COMPONENT dBx/dt nanoTesia/sec - 20 channels and PP



South loop X component

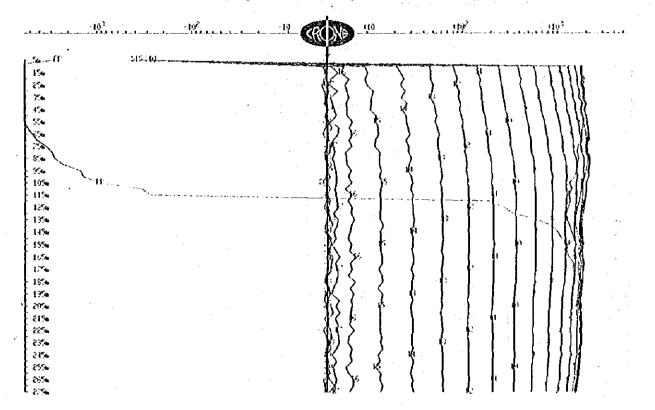
Client	:	ENAMI
Grid	:	PROGRESO
Date	:	Nov 11, 1994


: DDH1A llole Tx Loop : S File name : DDHIAXYS.PEM

Data Corrected for Probe Rotation using Cleaned PP Y COMPONENT dBy/dt nanoTesia/sec - 20 channels and PP

ł

()


D-8(10) PEM observed data for DDH-1A, South loop Y component

Client : ENAMI Grid : PROGRESO Date : Nov 13, 1994 Hole : DDH1A Tx Loop : W File name : DDH1AZW.PEM

Ť.

ĺ

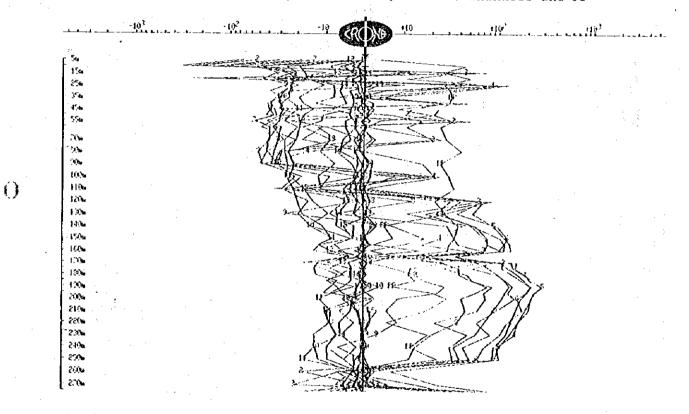
Data Scaled by Factor of -1.00Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

D-8(11) PEM observed data for DDH-1A,

West loop Z component

Client	. 10	ENAMI	
Grid	:	PROGRESO	ł
Date	:	Nov 13, 199	94
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			

()


()

Ì

л.

Hole : DDH1A Tx Loop : W File name : DDH1AXYW.PEM

Data Corrected for Probe Rotation using Cleaned PP X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

D-8(12) PEM observed data for DDH-1A, West loop X component

D-79

EXPLORATION LTD CRONE ĊS & GEOPH ΥSΤ BOREHOLE PEM

. **.** .

Ô

é,

Client Grid Date	: ENAMI : PROGRESO : Nov 13, 1994	Hole : DDH1A Tx Loop : W File name : DDH1AXYW.PEM	
	Data Corrected for Probe	Rotation using Cleaned PP sla/sec - 20 channels and PP	
<u></u>	19 [°] 111 11 11 11 11 11 11 11 11 11 11 11 1		
156 256 256 256 256 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 2706			C

BOREHOLE PEM

Time Base Ramp Time # Channels Sync Type	: PROGRBSO : Nov 11, 1 : 20.00 ms : 1.50 ms : 20 : Cable : 200m X				# Rea Stn U Coil Polar Recei	op name ding nits Area ity .ver	: DDH: s: 55 : Met:	1AZC.P ric D sq m ital #	
1. Om, O	inates (X,Y m, Om 200m, Om	,Z)			200m, Om, 20				
llole Coord 1. 100m,	inates (X,Y 100m, 0m	,2) o	r (Az)ip,Len Odeg,			ħ	• •
Ch Start	mes (usec) Bnd Center -99 -149	Ch 1	Start 76	End (104	Senter 90		Start 104		Center 117
3 131	171 151	4	171	225	198	5	225	292	259
6 292	378 335	· · 7·,	378	490	434	8	490	639	565
9 639	828 733	10	828	1075	952	11	1075	1395	1235
12 1395	1809 1602	13	1809	2348	2078	14	2348	3046	2697
15 3046	3951 3498	16	3951		4536		5121		
18 6646	8617 7632	19	8617				11170		

 $O_{\rm eff}$

ŧ

()

0

D-9(1) PEM recorded data for Central loop

BOREHOLE PEM

ĺ

	1. A	: BNA					Hole	- -	: DDH	18	17 19	
Gri	Grid : PROGRESO						TX LOOP : N					
Dat	Date : Nov 11, 1994						File name : DDHAXYNR.PBM					
Tin	e Base	: 30.	00 ms	1.1						en de la composition. En la composition		
Ram	p Time	: 1.5	0 ms	•					; Met		81. 1	
		s: 20					Coil	Area	: 2800	n pa (17.	
. Syn	с Туре	: Càb	10						1 4			· ·
Loo	p Size	: 200	m X 3	200m						ltál #1	10	
Cur	rent	: 20	Amps		•				: B.C			
		*					-			1.4		
Loo	p Coor	dinate	в (X,Y	,Z)								
1	. Om,	200m,	Ôm		· .	2.	200m,	200m	, Om	•		
3	. 200m	, 400m	, Om		•	4.	0m, 40	Om, C)m			
										÷		1
Hol	e Coor	dinate	6 (X,Y	,Z) a	r (Az	imuth, l	Dip,Len	gth)		a sector in i		Į
1	. 100m	i, 100m	, Om 👘	:		2.	Odeg,	90deg	1, 279	น	• <u>:</u>	
		imes (•			• •		ъ.		÷ .		
Ch	Start	End C	enter	Ch	Start	Bnd (Center	- Ch	Start	End (Center	
PP	-198	-99	-149	1	76	104	90	2	104	131	117	
	•	. • •						1				
3	131	171	151	4	171	225	198	5	225	292	.259	
	1	· .								• •		
6	292	378	335	7	378	490	434	8	490	639	565	
.'												
9	639	828	733	10	828	1075	952	11	1075	1395	1235	
12	1395	1809	1602	13	1809	2348	2078	14	2348	3046	2697	
												į
15	3046	3951	3498	16	3951	51 21	4536	17	5121	6646	5884	(_
18	6646	8617	7632	19	8617	11170	9894	20	11170	14490	12830	

D-9(2) PEM recorded data for North loop

()

()

BOREHOLE PEM

Client : BNAHI	Hole : DDH1A
Grid : PROGRESO	TX LOOP : B
Date : Nov 11, 1994	File name : DDHAXYBR.PBM
Time Base : 20.00 ms	# Readings: 76
Ramp Time : 1.50 ms	Stn Units : Metric
# Channels: 20	Coll Area : 2800 sg m
Synd Type : Cable	Polarity : +
Loop Size : 200m X 200m	Receiver : Digital #110
Current : 20 Amps	Operator : E.C.
Loop Coordinates (X,Y,Z)	
1. 200m, 0m, 0m	2. 400m, 0m, 0m
3. 400m, 200m, 0m	4. 200m, 200m, 0m
Hole Coordinates (X,Y,Z) or (Azim	nuth,Dip,Length)
1. 100m, 100m, 0m	2. Odeg, 90deg, 279m

Auc	annot t		1100/071	1.1	•						
Ch			(usec) Center	Ch	Start	End C	enter	Ch	Start	End (Center
PP	-198	-99	-149	1	76	104	90	2	104	131	117
3	131	171	151	4	171	225	198	5	225	292	259
6	292	378	335	7	378	490	434	8	490	639	565
9	639	828	733	10	828	1075	952	11	1075	1395	1235
12	1395	1809	1602	13	1809	2348	2078	14	2348	3046	2697
15	3046	3951	3498	16	3951	5121	4536	17	5121	6646	5884
18	6646	8617	7632	19	8617	11170	9894	20	11170	14490	12830
	PP 3 6 9 12 15	 3 131 6 292 9 639 12 1395 15 3046 	PP -198 -99 3 131 171 6 292 378 9 639 828 12 1395 1809 15 3046 3951	PP -198 -99 -149 3 131 171 151 6 292 378 335 9 639 828 733 12 1395 1809 1602 15 3046 3951 3498	PP -198 -99 -149 1 3 131 171 151 4 6 292 378 335 7 9 639 828 733 10 12 1395 1809 1602 13 15 3046 3951 3498 16	PP -198 -99 -149 1 76 3 131 171 151 4 171 6 292 378 335 7 378 9 639 828 733 10 828 12 1395 1809 1602 13 1809 15 3046 3951 3498 16 3951	PP -198 -99 -149 1 76 104 3 131 171 151 4 171 225 6 292 378 335 7 378 490 9 639 828 733 10 828 1075 12 1395 1809 1602 13 1809 2348 15 3046 3951 3498 16 3951 5121	PP -198 -99 -149 1 76 104 90 3 131 171 151 4 171 225 198 6 292 378 335 7 378 490 434 9 639 828 733 10 828 1075 952 12 1395 1809 1602 13 1809 2348 2078 15 3046 3951 3498 16 3951 5121 4536	PP -198 -99 -149 1 76 104 90 2 3 131 171 151 4 171 225 198 5 6 292 378 335 7 378 490 434 8 9 639 828 733 10 828 1075 952 11 12 1395 1809 1602 13 1809 2348 2078 14 15 3046 3951 3498 16 3951 5121 4536 17	PP -198 -99 -149 1 76 104 90 2 104 3 131 171 151 4 171 225 198 5 225 6 292 378 335 7 378 490 434 8 490 9 639 828 733 10 828 1075 952 11 1075 12 1395 1809 1602 13 1809 2348 2078 14 2348 15 3046 3951 3498 16 3951 5121 4536 17 5121	PP -198 -99 -149 1 76 104 90 2 104 131 3 131 171 151 4 171 225 198 5 225 292 6 292 378 335 7 378 490 434 8 490 639 9 639 828 733 10 828 1075 952 11 1075 1395 12 1395 1809 1602 13 1809 2348 2078 14 2348 3046 15 3046 3951 3498 16 3951 5121 4536 17 5121 6646

Ó

D-9(3) PEM recorded data for East toop

BOREHOLE PEM

Ĺ

()

 \bigcirc

1.1.4

				1.1.1.1.1			1.71				
	lent	; BN					Kole		: DDH	I1λ	
			OGRESO	· · ·			TX LC	op	1.8		
Da	te	t No	v 11, 1	L994			File	name	: DDH	AXYSR.	PBM
Ti	me Bas	e : 20	.00 mm	÷.,			# Rea	dinc	18: 58		
Ra	mp Tim	o : 1.	50 ms				Stn L	Inite	Het	ric	· · ·
		18: 20					Coll	Area	: 280	а D а 0	L.
		e : Ca					Polar	ity	: +		•
			Om X	200m					: Dig	ital #	110
Cu	rrent	: 20	Атра	1997 - 19			Opera	tor	. Б.	C.	
_							- · ·	• •			$\{b_i \in V_i^{(i)} : i \in V_i$
600	pp Coa:	rdinat	ea (X,Y	, Z) –						:	
		0m, 01					0m, -2				
•	3. 200	m, -200	Om, Om			- 4.	200m,	Om,	0m	1. 1.1.1	· · ·
4.				:						e stra	11 - 12 - 14 - 14
HO.	Le Coo:	rdinate	es∶(X,Y	;Z):(or (Az						200
_	1. 100	m, 1001	m, Om			2.	Odeg,	90de	g, 279	m	
<u> </u>						· .			- 14		an S
			(usec)	~ •	 				1.11		
		Bnd (Center	Ch	Start	End	Center
PP	-139	-99	-149	1	76	104	90	- 2	104	131	117
3	131	171	151	<u>.</u>							
5	131	1/1	191	4	171	225	198	5	225	292	259
6	292	378	335	7	040			_			
v	636	310	335	1	378	490	434	8	490	639	565
9	639	828	733	10	840	1075					
· •	0.5.3	040	100	τŲ	828	1075	952	11	1075	1395	1235
12	1395	1809	1602	4.5	4 4 4 4		· . 				
× 4	1323	1063	1002	13	1809	2348	2078	14	2348	3046	2697
15	3046	3951	3498	16	2054	C 4 0 4				· · · ·	
	~~~~	TOCO	9420	10	3951	5121	4536	17	5121	6646	5884
18	6646	8617	7632	19	0617	44470			ана андар С <b>ала</b> андар	•	·. ·
	4444	0011	1934	*7	001/	11170	9894	20	11170	14490	12830
	2	· * · · ·	•	-	1.5.1		14 		•	ti i i	х Т. с.

. .

D-9(4) PEM recorded data for South loop

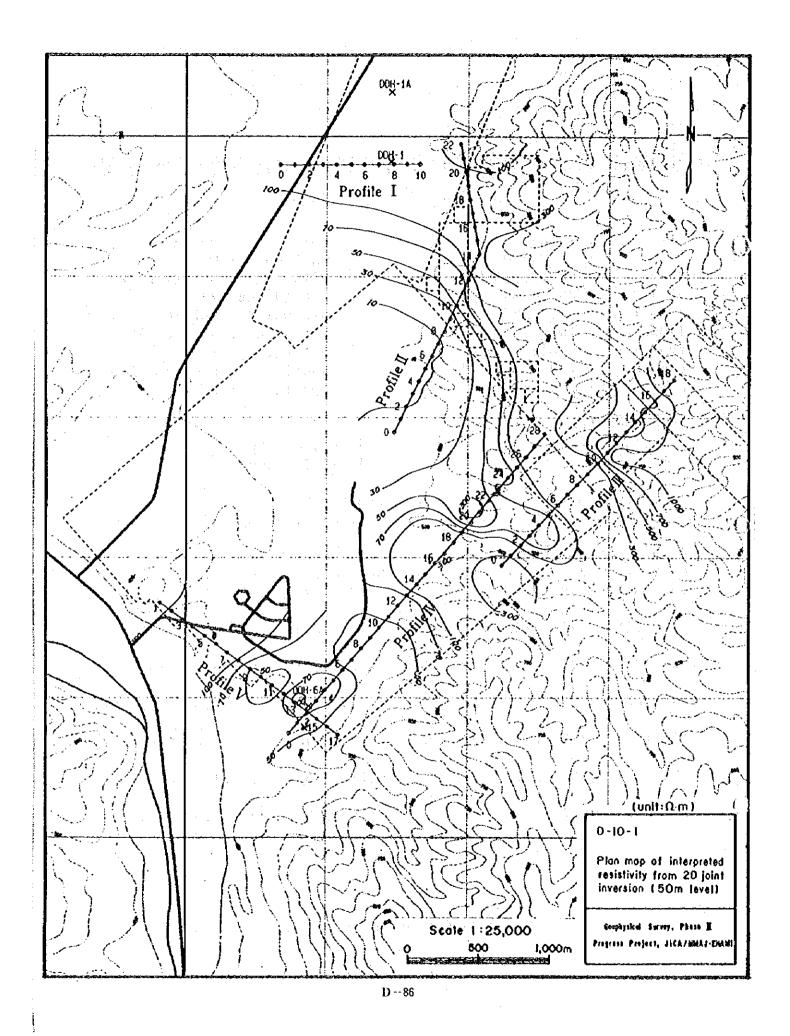
production and products of the second

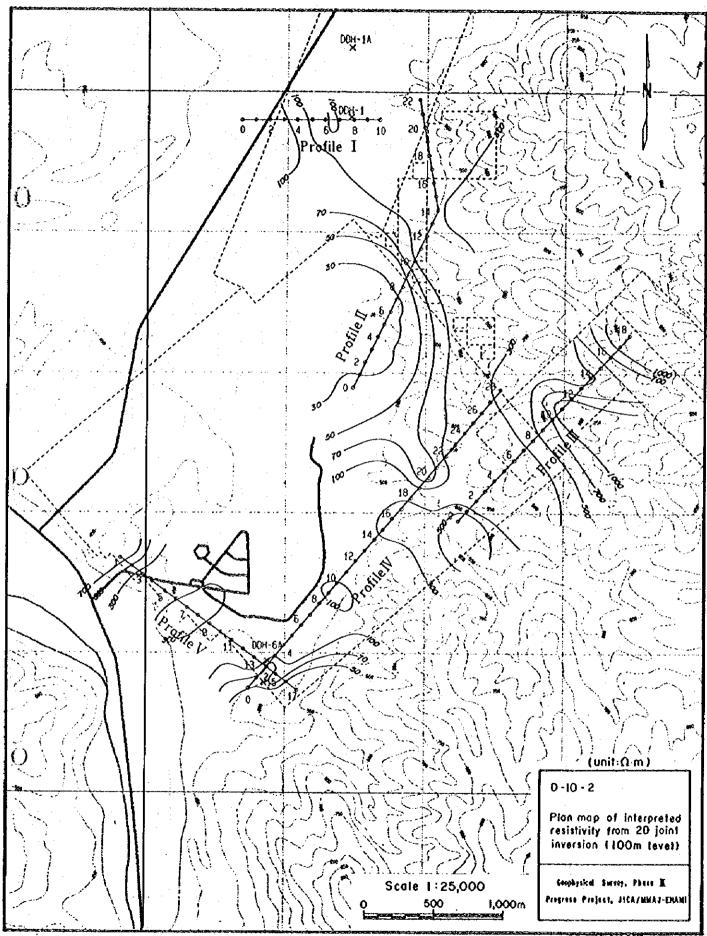
1. S. A.

• • • •

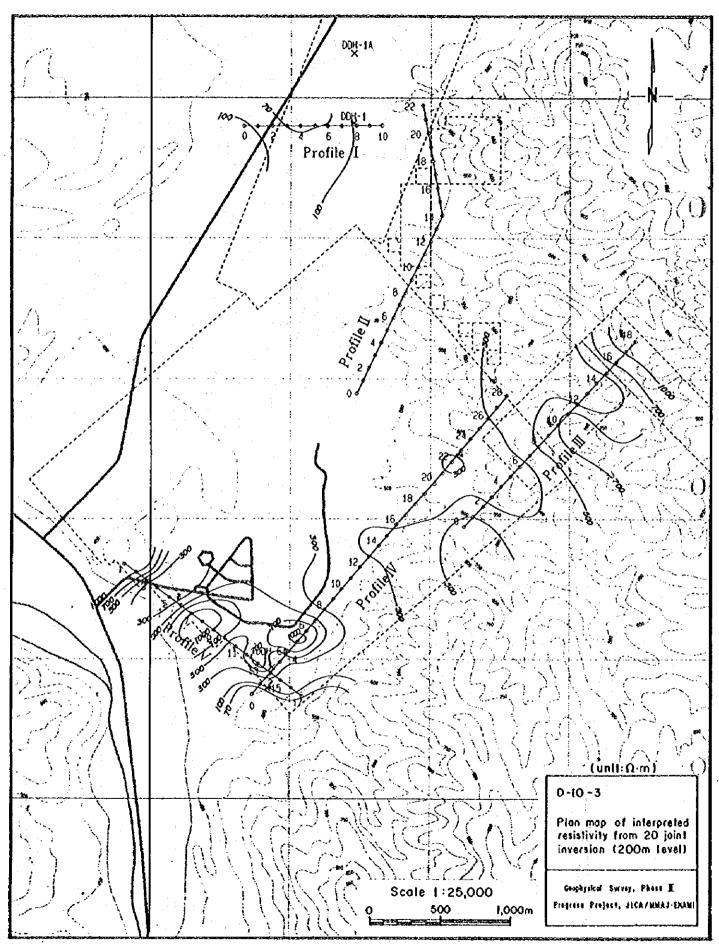
## BOREHOLE PEM

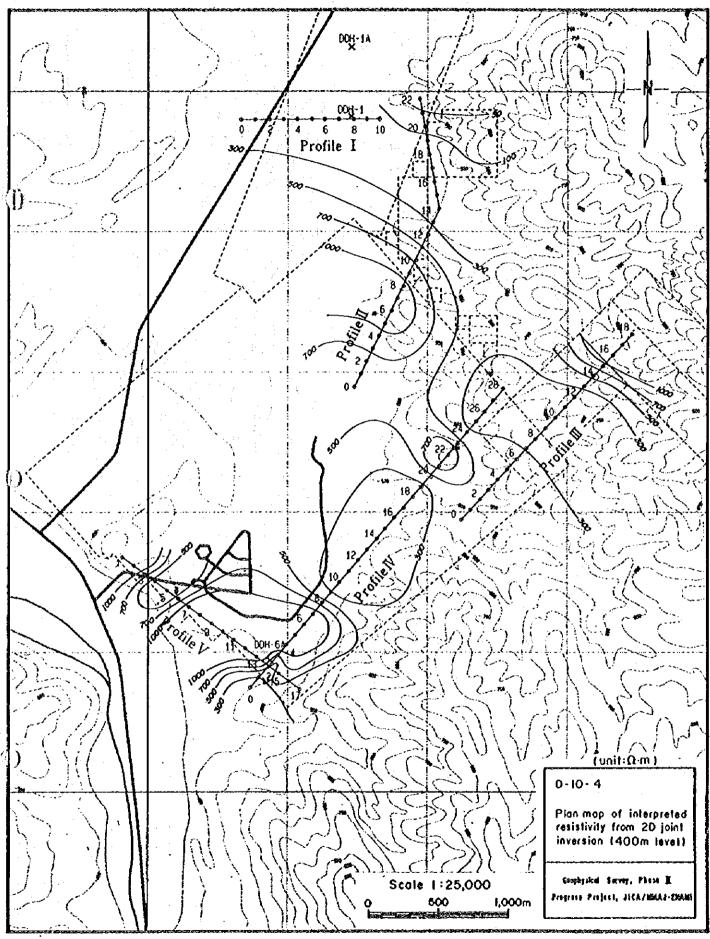
0

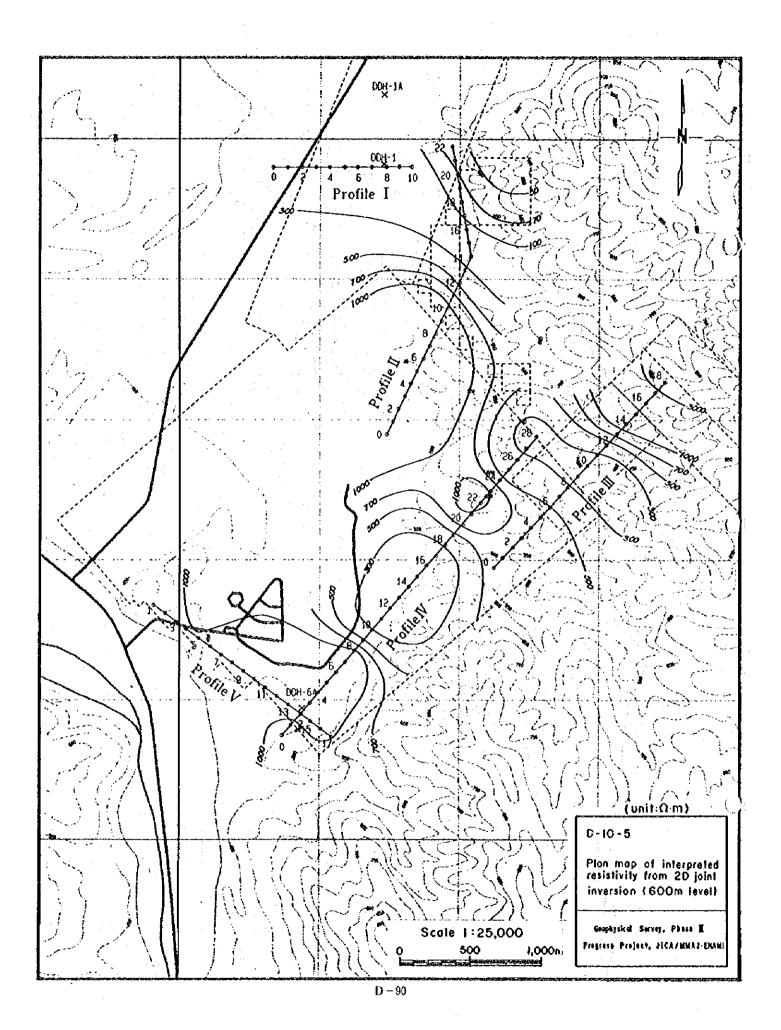

()

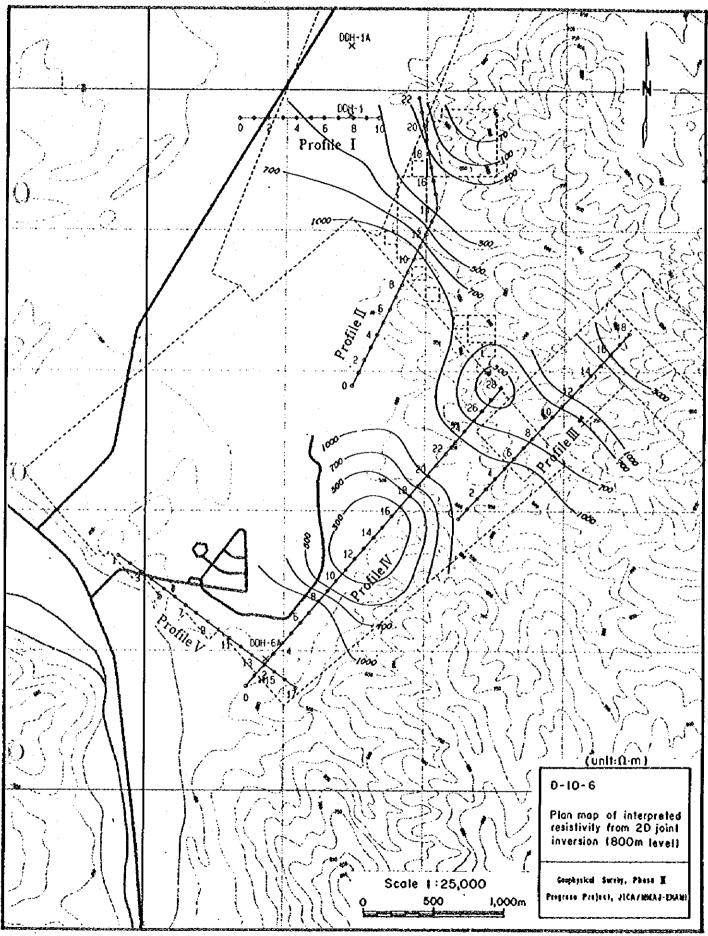

 $(\mathbf{D})$ 

3


		: 81	IANI				Hole		: DD	: 111 A	
	id		OGRESO				Tx L			HTU	
Da	te .	: No	v 13, :	1994					e : DDI	I A V V U D	עעמ
Ti	Me Bas	e : 20	.00 ms	·· · · ;			# Ro	Adin	38; 78	11111	• FAN
Ra	mp Tim	e : 1.	50 ms		-1. j	1			3 : Net		
		1s: 20							1 : 28(		
Sy	пс Түр	e : Ca	ble	1					1 ; 20( ; +		n
			Om X	200m							
Cu	rrent	: 20	Amps		1. T	· -			: Dig		110
							oberg	tor	: R.C	•	
Loc	op Coo	rdinat	68 (X,Y	1.23							
t d	120	Óm, Om	. Om				0m 0m	. o			
3	3. Om,	200m,	Oin				Om, On				
				5		ч,	-200m,	200	m, vm		
UOI	TA COO!	cainat	96 (X,Y	(,2) (	or (Az	imuth,	Dip,Len	igth)			
1	L. 100r	n, 1001	m, Om	÷.			Odeg,	90de	g, 279	ជា	
ز	r. Tool	n, 100	n; Om	s.			Odeg,	90de	g, 279 (	m	
ر Cha	annel 1	n, 1901 Fimes	m, Om (usec)	т.		2,			t		
Cha Ch	annel 1 Start	n, 100 Fimes End (	m, Om (usec) Center	Ch	Start	2. End	Center	Ch	start	End	
Cha Ch	annel 1 Start	n, 1901 Fimes	m, Om (usec) Center	т.	Start	2. End	Center		start	End	
Cha Ch	annel 9 Start -198	n, 100 Fimes End ( -99	m, Om (usec) Center ~149	Ch 1	Start 76	2, End 104	Center 90	Ch 2	Start	End 131	11
Cha Ch PP	annel 1 Start	n, 100 Fimes End ( -99	m, Om (usec) Center ~149	Ch	Start	2, End 104	Center 90	Ch 2	start	End 131	11
Cha Ch PP	annel 1 Start -198 .131	n, 100) Fimes End ( -99 171	m, Om (usec) Center ~149 151	Ch 1	Start 76 171	2. End 104 225	Center 90 198	Ch 2 5	start 104 225	End 131 292	11 259
Cha Ch PP 3	annel 1 Start -198 .131	n, 100 Fimes End ( -99	m, Om (usec) Center ~149 151	Ch 1	Start 76	2, End 104	Center 90 198	Ch 2	start 104 225	End 131 292	11 259
Cha Ch PP 3	annel 1 Start -198 131 292	n, 100) Fimes Bnd ( -99 171 378	m, Om (usec) Center -149 151 335	Ch 1 4 7	Start 76 171 378	2, End 104 225 490	Center 90 198 434	Ch 2 5 8	start 104 225 490	End 131 292 639	11 259 561
Cha Ch PP 3 6	annel 1 Start -198 131 292	n, 100) Fimes Bnd ( -99 171 378	m, Om (usec) Center ~149 151	Ch 1	Start 76 171 378	2. End 104 225	Center 90 198 434	Ch 2 5	start 104 225 490	End 131 292	11 25 56
Cha Ch PP 3 6	annel 1 Start -198 131 292 639	n, 100 Fimes End ( -99 171 378 828	m, Om (usec) Center -149 151 335 733	Ch 1 4 7 10	Start 76 171 378 828	2. End 104 225 490 1075	Center 90 198 434 952	Ch 2 5 8 11	start 104 225 490 1075	End 131 292 639 1395	11 259 561 1231
Cha Ch PP 3 6 9	annel 1 Start -198 131 292 639	n, 100) Fimes Bnd ( -99 171 378	m, Om (usec) Center -149 151 335 733	Ch 1 4 7	Start 76 171 378 828	2, End 104 225 490	Center 90 198 434 952	Ch 2 5 8	start 104 225 490	End 131 292 639 1395	11 25 56 123
Cha Ch PP 3 6 9	annel 1 Start -198 131 292 639 1395	n, 100 Fimes End ( -99 171 378 828 1809	m, Om (usec) Center -149 151 335 733 1602	Ch 1 4 7 10 13	Start 76 171 378 828 1809	2. End 104 225 490 1075 2348	Center 90 198 434 952 2078	Ch 2 5 8 11	start 104 225 490 1075 2348	End 131 292 639 1395 3046	11 259 569 1239 2697
Cha Ch PP 3 6 9	annel 1 Start -198 131 292 639	n, 100 Fimes End ( -99 171 378 828 1809	m, Om (usec) Center -149 151 335 733 1602	Ch 1 4 7 10	Start 76 171 378 828	2. End 104 225 490 1075 2348	Center 90 198 434 952	Ch 2 5 8 11	start 104 225 490 1075	End 131 292 639 1395 3046	11 259 569 1239 2697
Cha Ch PP 3 6 9 12	annel 7 Start -198 131 292 639 1395 3046	n, 100 Fimes End ( -99 171 378 828 1809	m, Om (usec) Center -149 151 335 733 1602 3498	Ch 1 4 7 10 13	Start 76 171 378 828 1809 3951	2. End 104 225 490 1075 2348	Center 90 198 434 952 2078 4536	Ch 2 5 8 11 14 17	start 104 225 490 1075 2348	End 131 292 639 1395 3046 6646	11: 259 565 1235 2697 5884

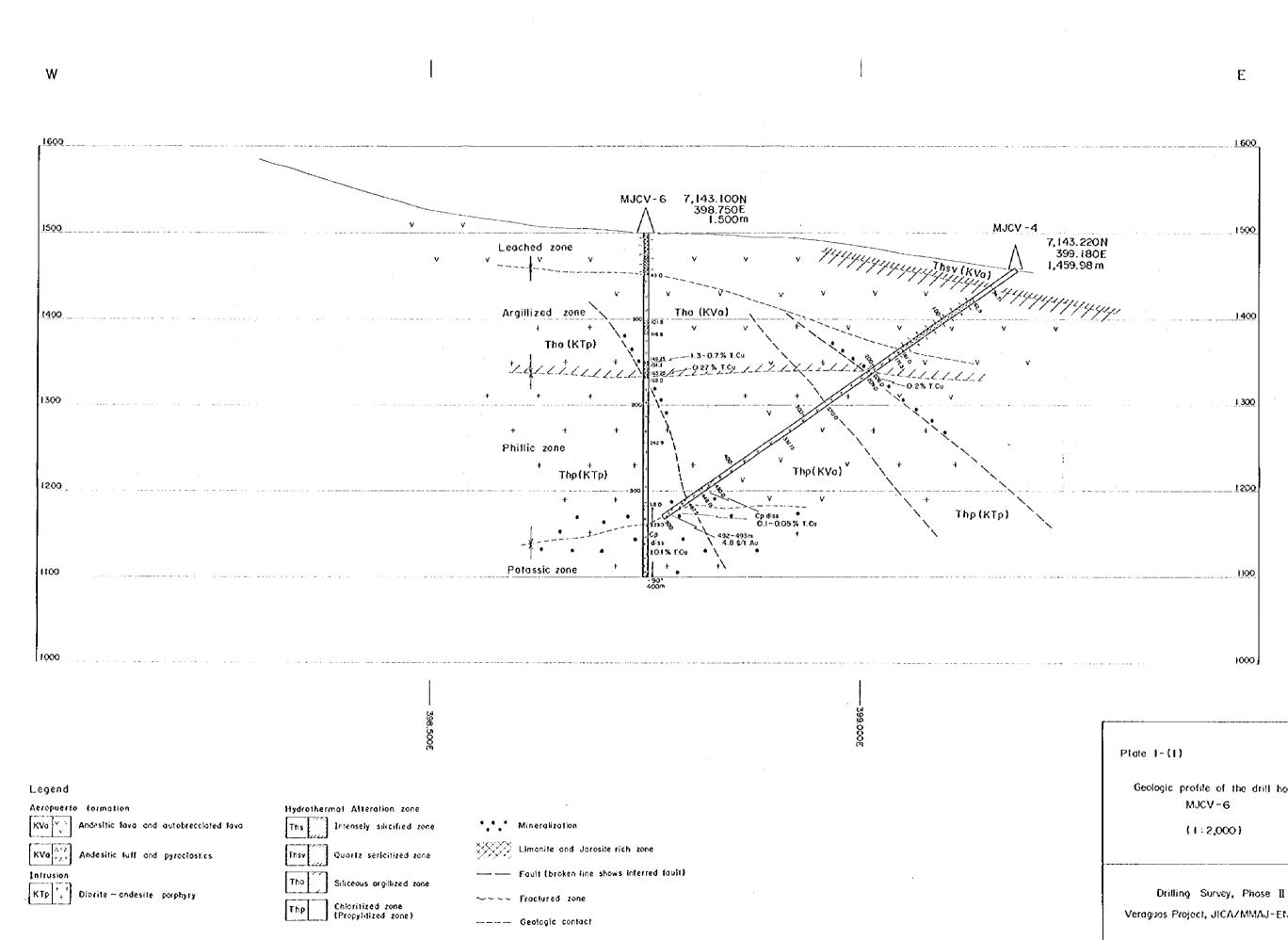

D-9(5) PEM recorded data for West loop




D-87

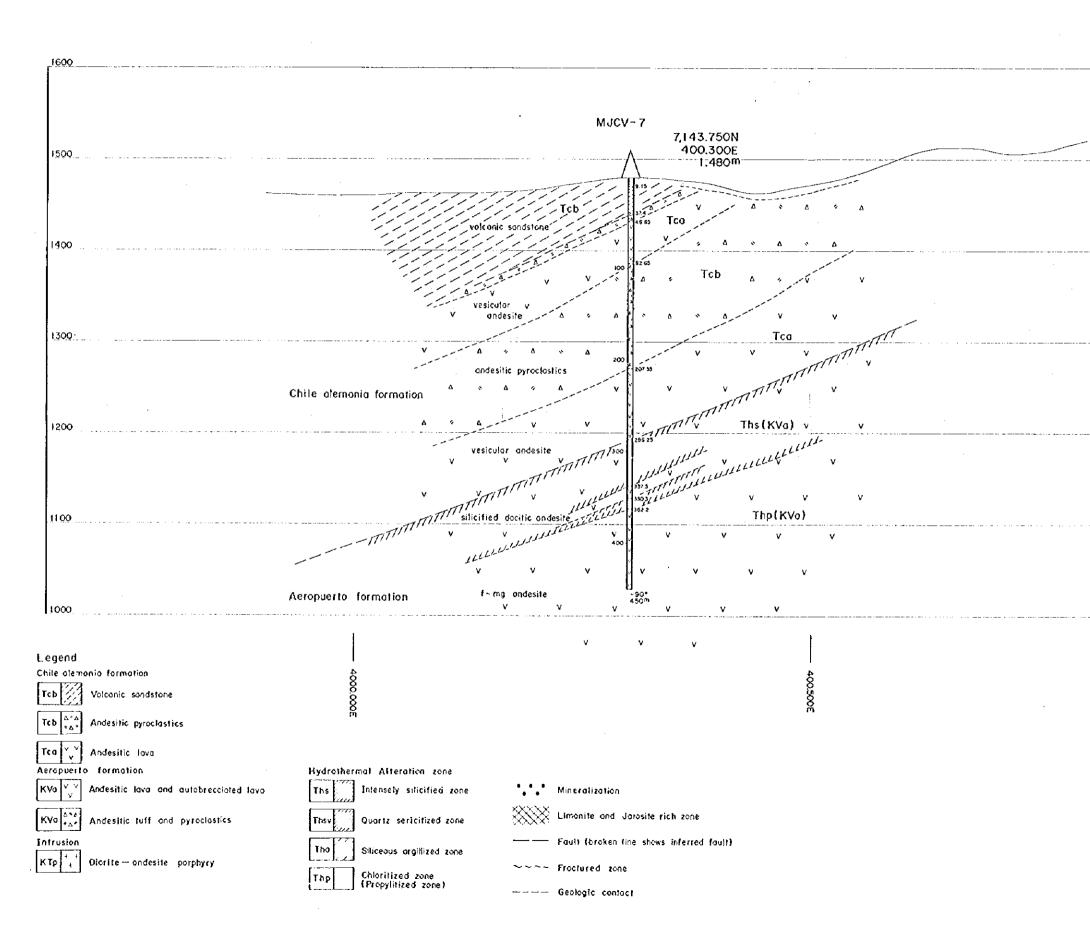









D - 91


. .



1

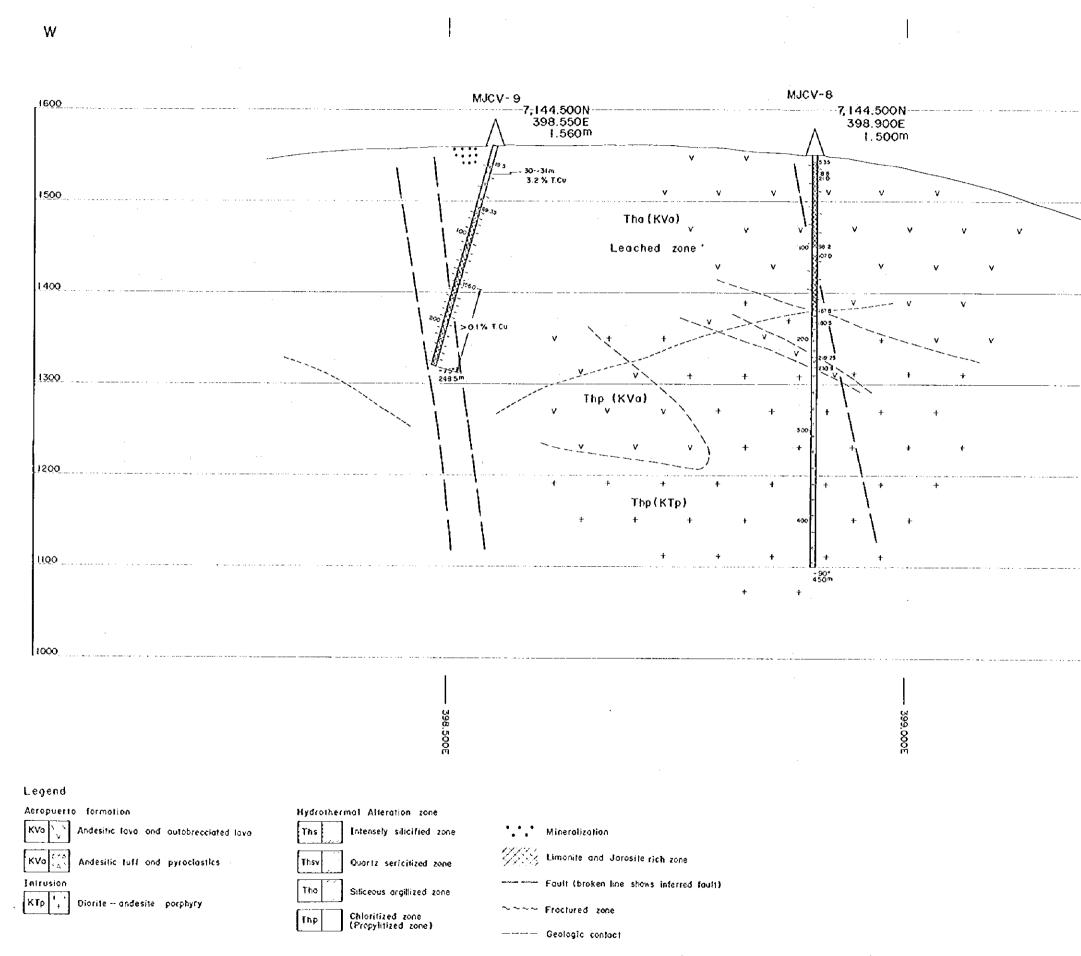
Geologic profile of the drill hole

Veraguos Project, JICA/MMAJ-ENAMI



.

W


Plote 1-(2)

Geologic profile of the drill hole MJCV-7

(1:2,000)

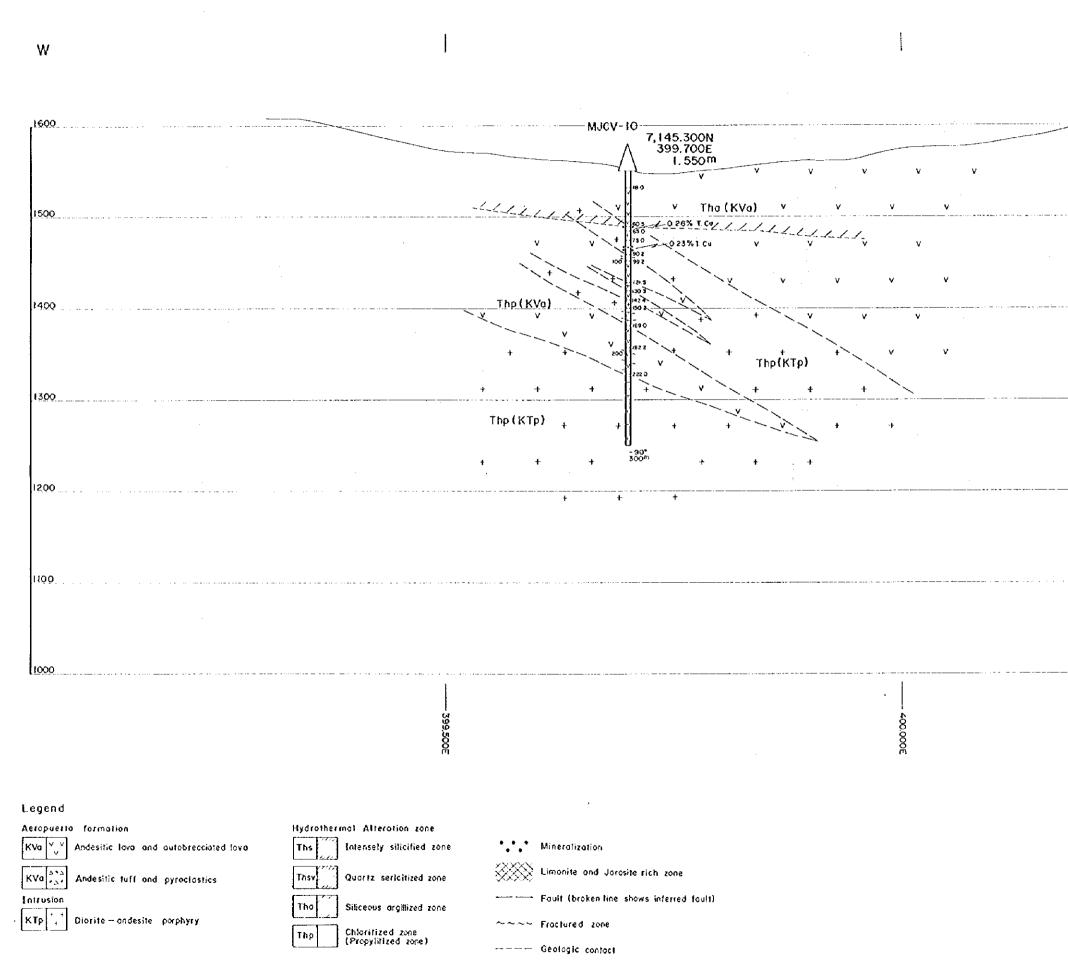
Drilling Survey, Phase II Veraguas Project, JICA/MMAJ-ENAMI

1600



.

i


Plote 1-(3)

Geologic profile of the drill hole MJCV-8 & 9

(1:2,000)

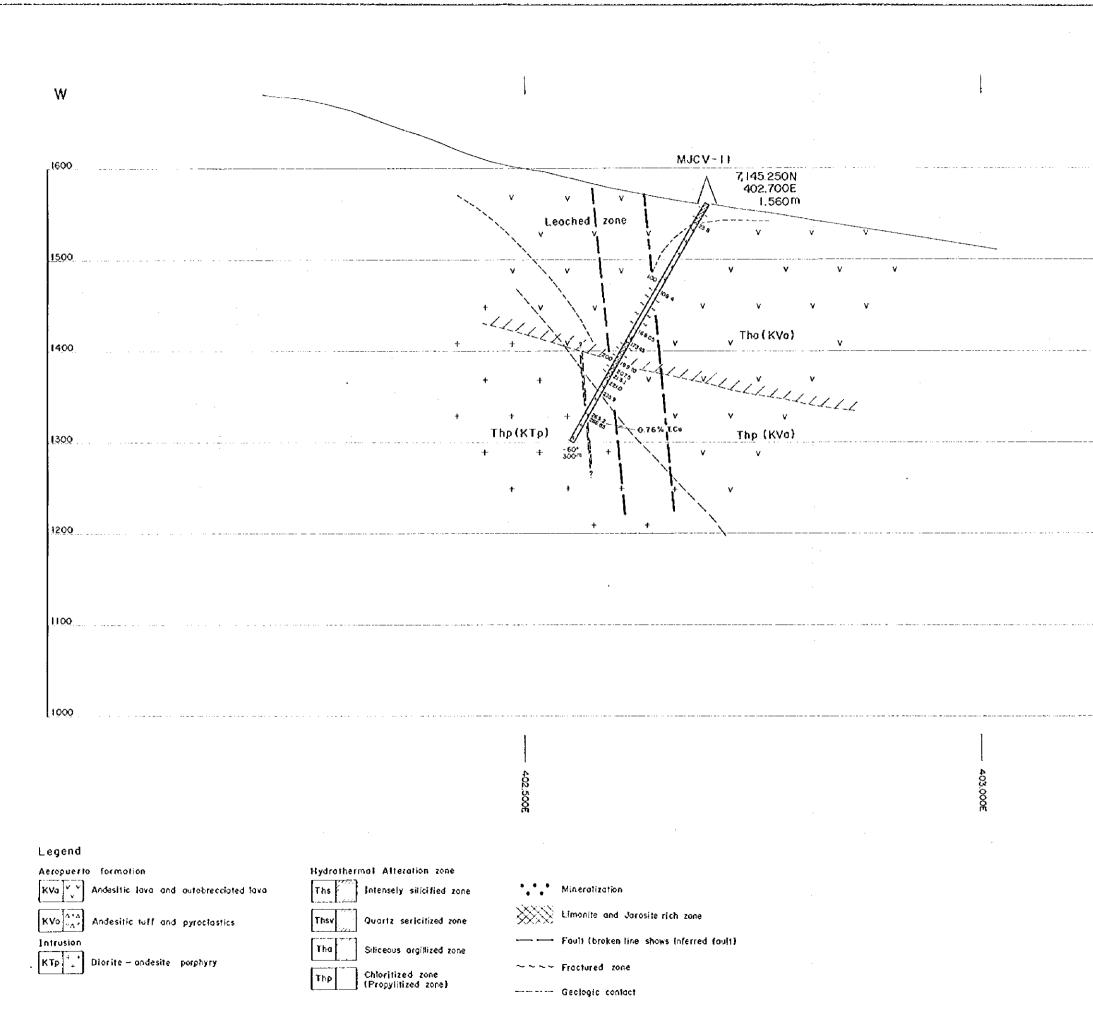
Drilling Survey, Phase II Veroguas Project, JICA/MMAJ-ENAMI

E



i

Ε


1600

Plote 1-(4)

Geologic profile of the drill hole MJCV-10

(1:2,000)

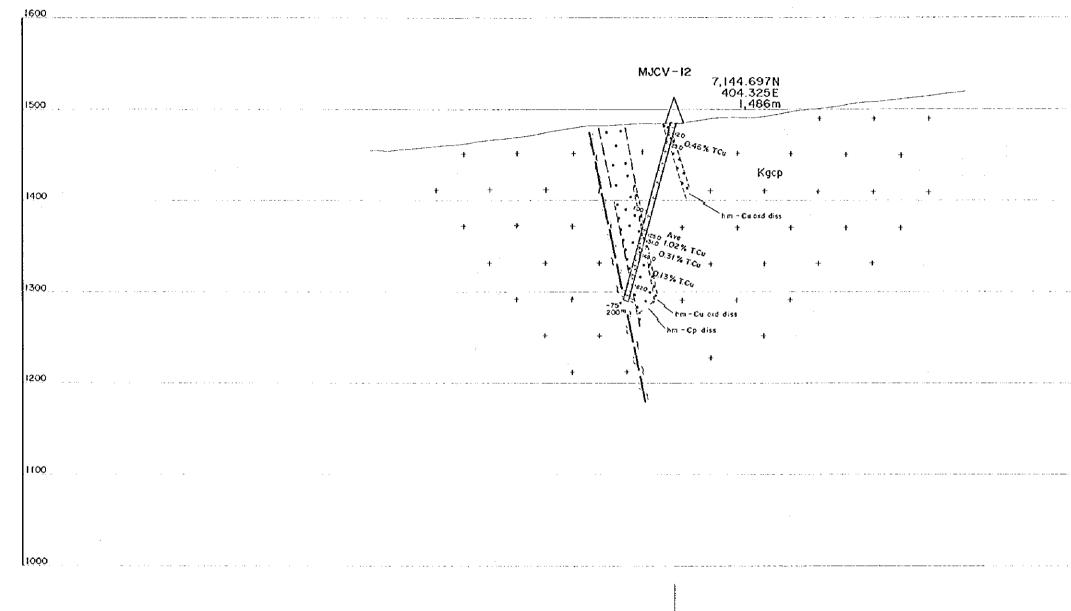
Drilling Survey, Phose I Veraguas Project, JICA/MMAJ-ENAMI



.

E

1600


Plate 1-(5)

Geologic profile of the drill hole  $\label{eq:matrix} MJCV \simeq 1 \ I$ 

(1:2,000)

Dritting Survey, Phase B Veraguas Project, JTCA/MMAJ-ENAMI





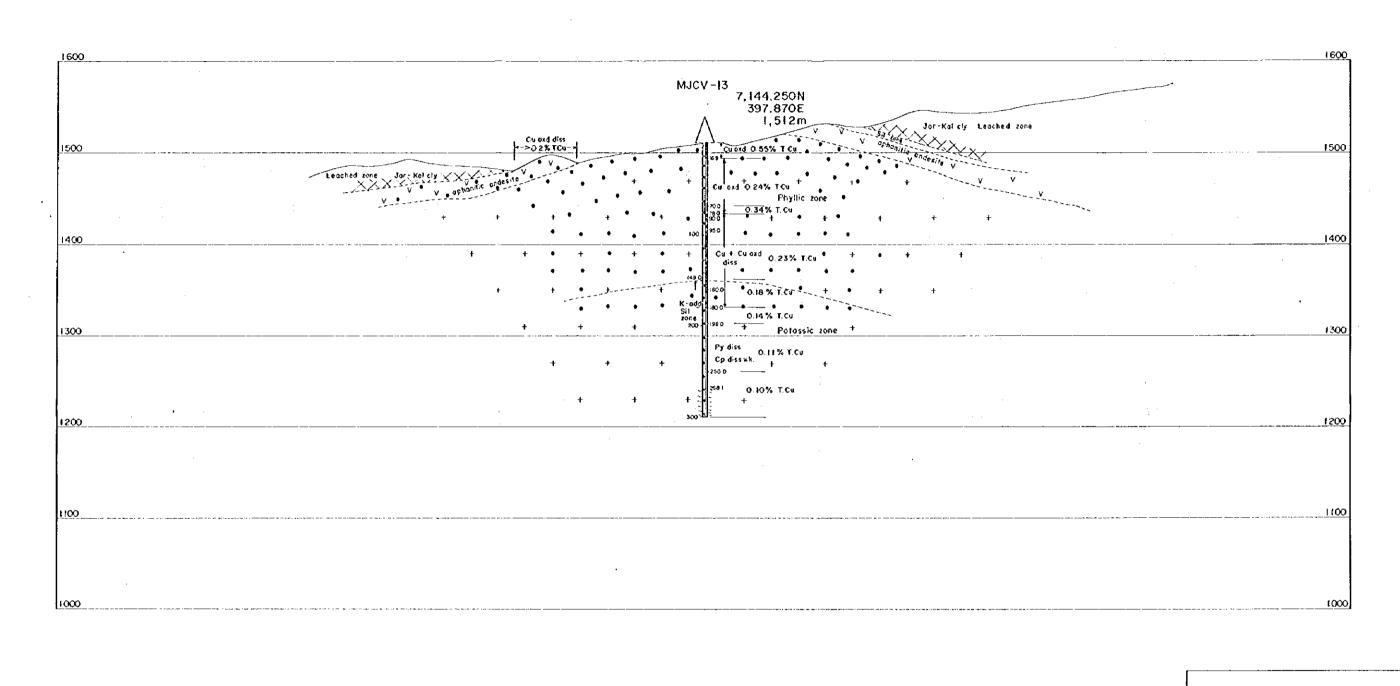
1

1000E

#### Legend

Aeropuerto formation	Hydrothermal Alteration zone	
$\left[ \frac{V_{\rm c}}{V} \right]_{\rm V}^{\rm V}$ Andesitic lova and autobrecciated fava	Ths Intensely silicified zone	Minerolization
$KVa\begin{bmatrix} A \cdot a \\ -A \cdot 2 \end{bmatrix}$ Andesitic tuff and pyroclastics	They Quartz sericitized zone	Contract Limonite and Jarosile rich zone
Intrusion Kgcp + + Quartz diarite	Tha Siliceous orgillized zone	Foult (broken line shows inferred fault)
(kgcp) , Uuarra sionte	Thp Chloritized zone (Propylitized zone)	~~~~ Fractured zone
		———— Geologic contact

S 45 W


N 45 E

Ptote 1-(6)

Geologic profile of the drill hole MJCV - 12

(1:2,000)

Drilling Survey, Phase II Veroguos Project, JICA/MMAJ-ENAMI



i

Legend

Aeropuerto formation Hydrothermal Alteration zone KVa  $\bigvee_{v} \bigvee_{v}$  Andesitic tava and autobrecolated tava •••• Mineralization Tās Intensely silicified zone Limonite and Jarosite rich zone KVo Andesitic tuff and pyroclastics Quartz sericifized zone Fault (broken line shows inferred fault) Intrusion Tho Siliceous orgilized zone KTp + + Diorite - andesite porphyry ~~~~ Fractured zone Chloritized zone (Propylitized zone) Thp ----- Geologic contact

W

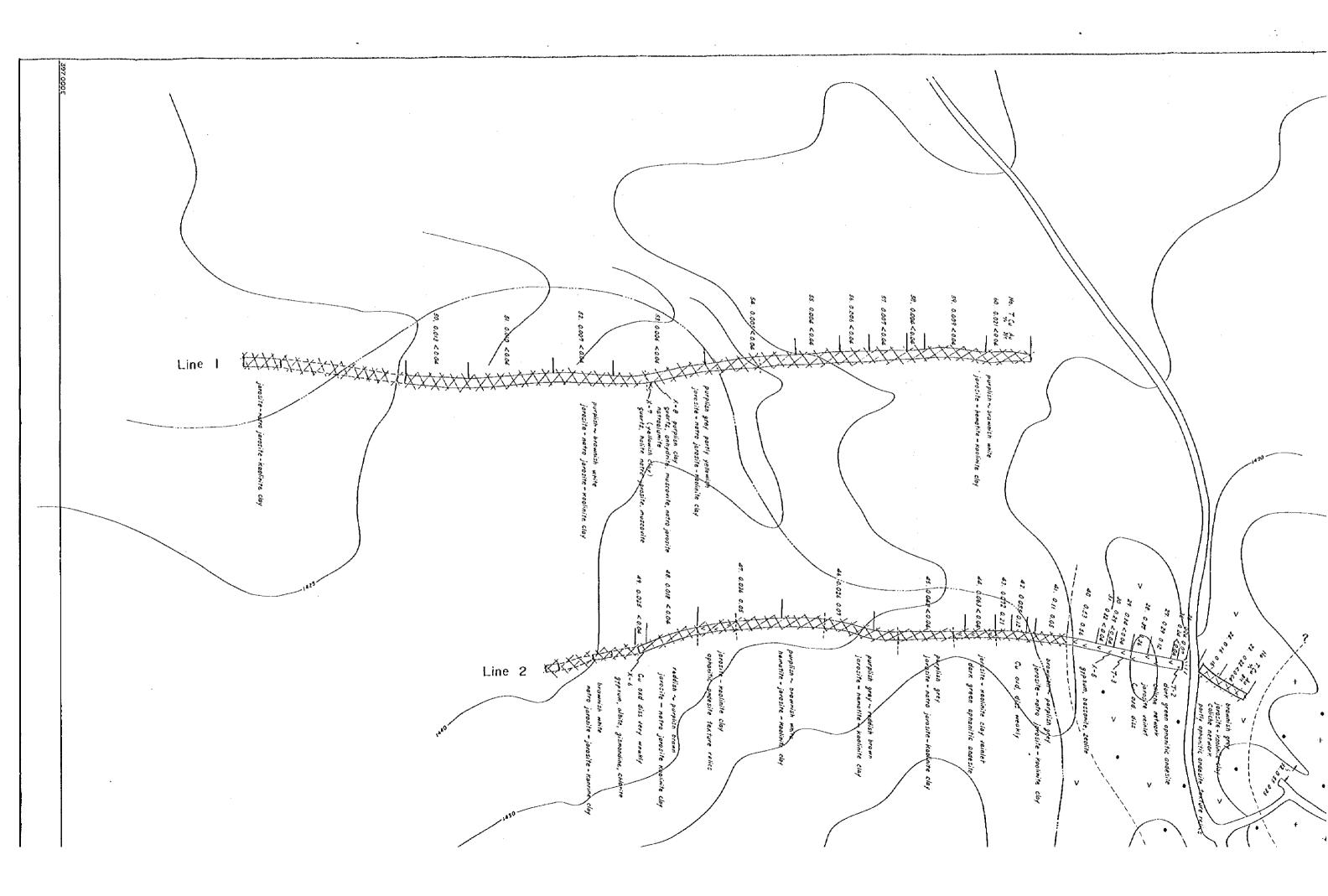
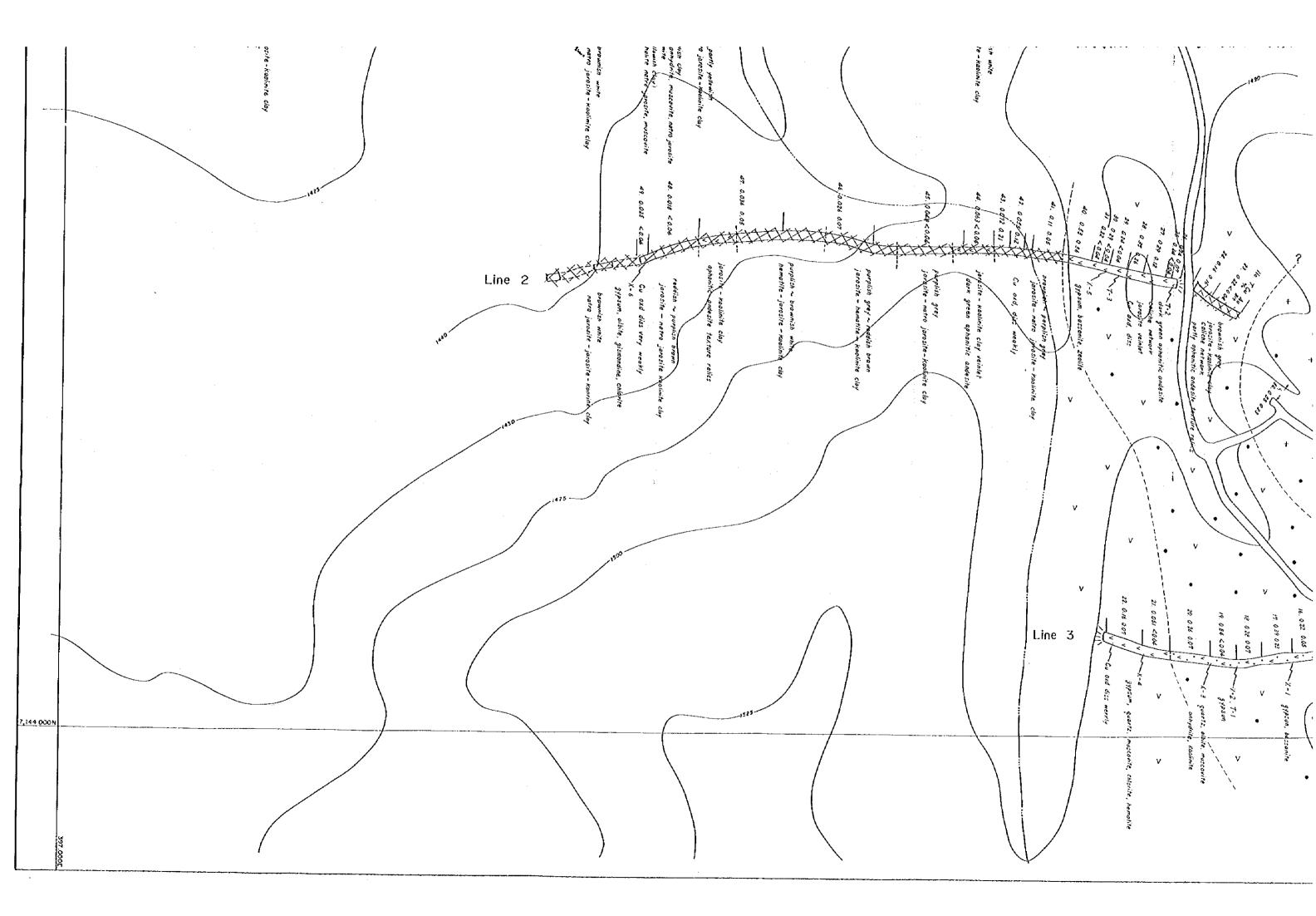
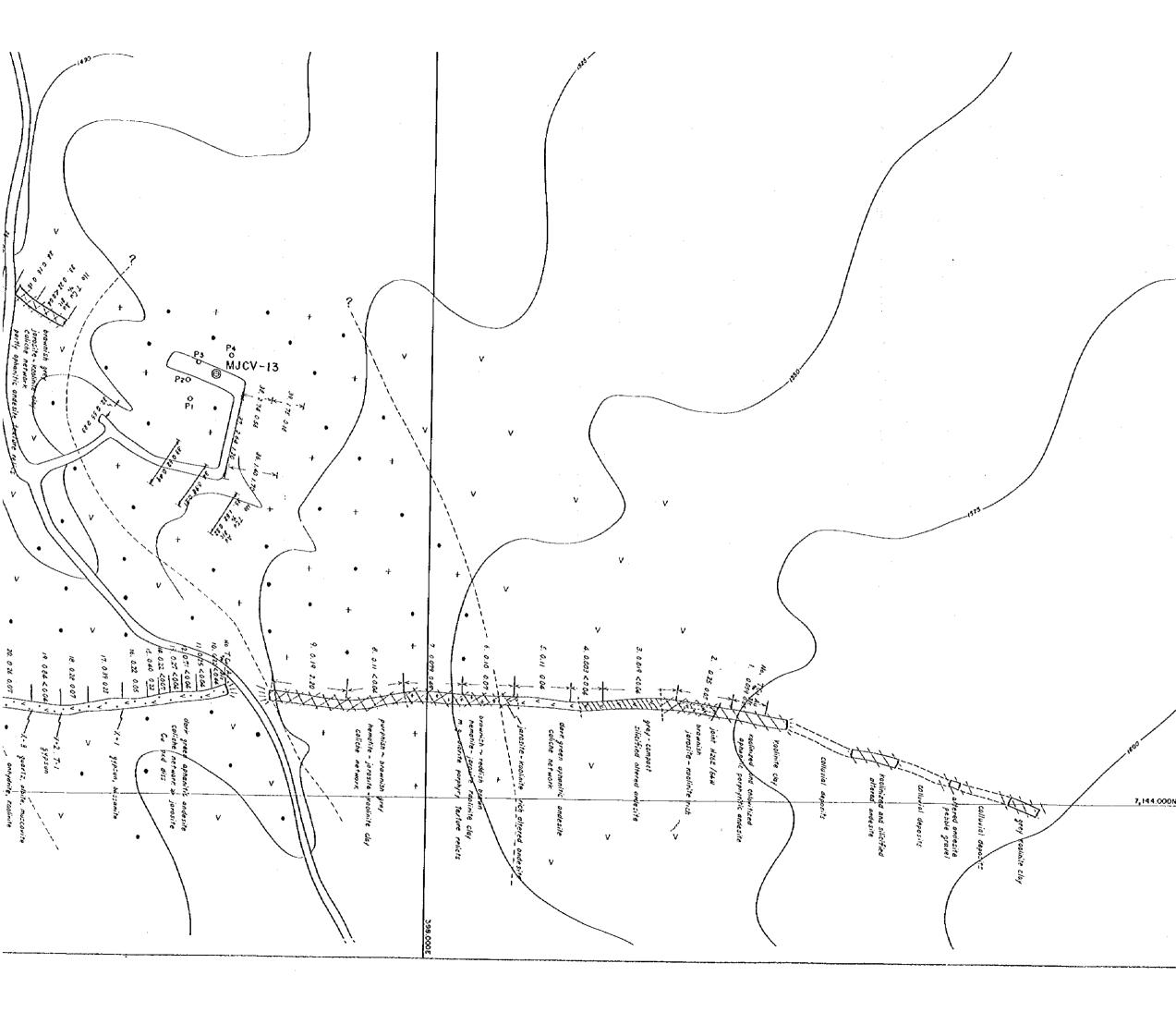

Ε

Plate |-{7}

Geologic profile of the drill hole MJCV-13

(1:2,000)

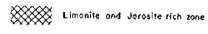

Drilling Survey, Phase E Veraguas Project, JICA/MMAJ-ENAMI






### Legend

	o formation Andesitic lava
Intrusion KTp + +	Diorite porphyry
Hydrotheri	mal Alteration zone
Ths	Intensely silicified zone
Thsv	Quartz sericitized zone
Tha	Siticeous argillized zone
Thp	Chlorifized zone
•••	Mineralization
	Limonite and Jarasite rich zone
	Geologic contact






#### Legend

Aeropuerto formation KVa v Andesitic tavo Intrusion KTp + + Diorite porphyry Hydrothermal Alteration zone Ths Intensely silicified zone Quartz sericitized zone Thsv Tho Siliceous argillized zone Thp Chloritized zone

•••• Minerolization



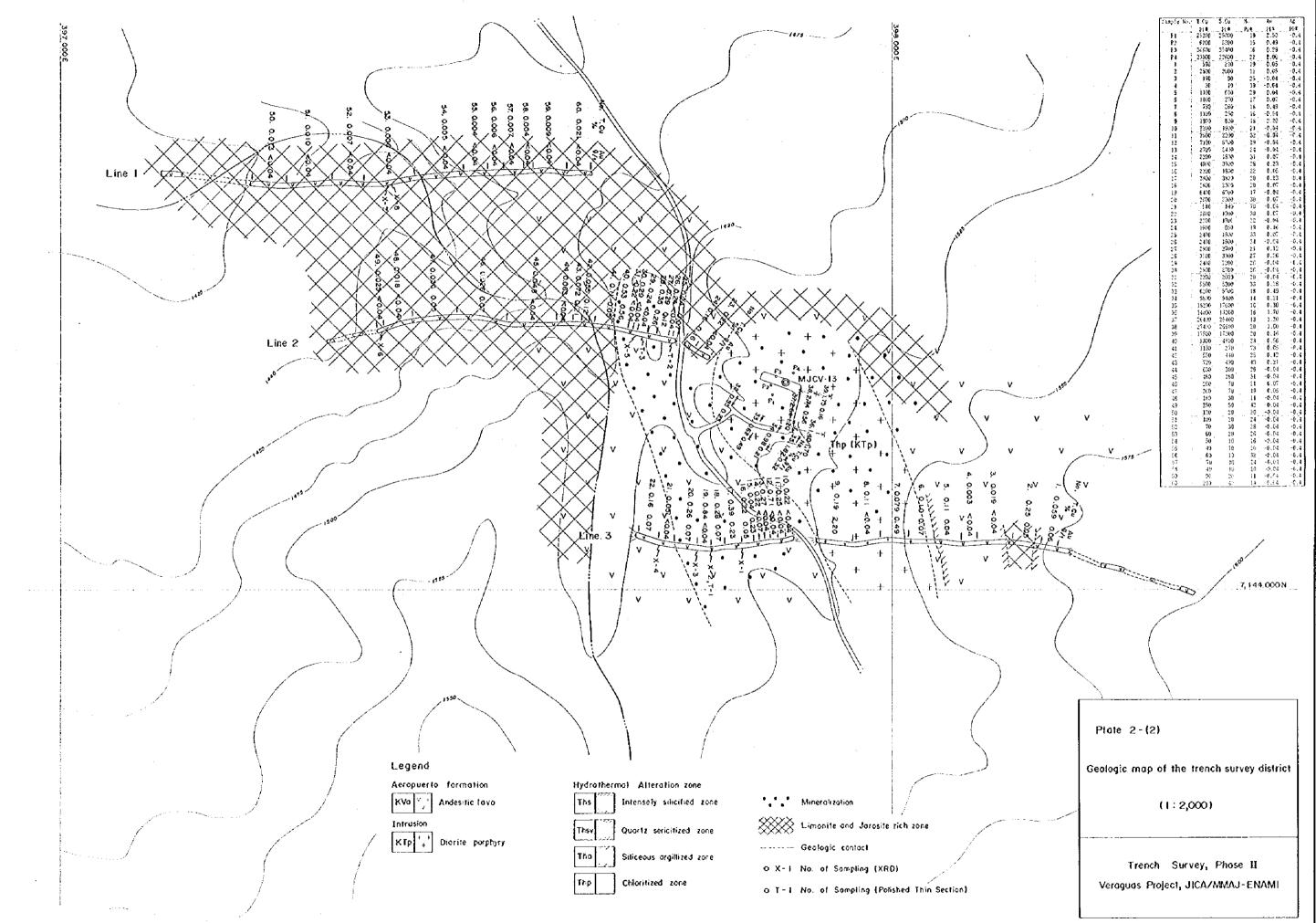
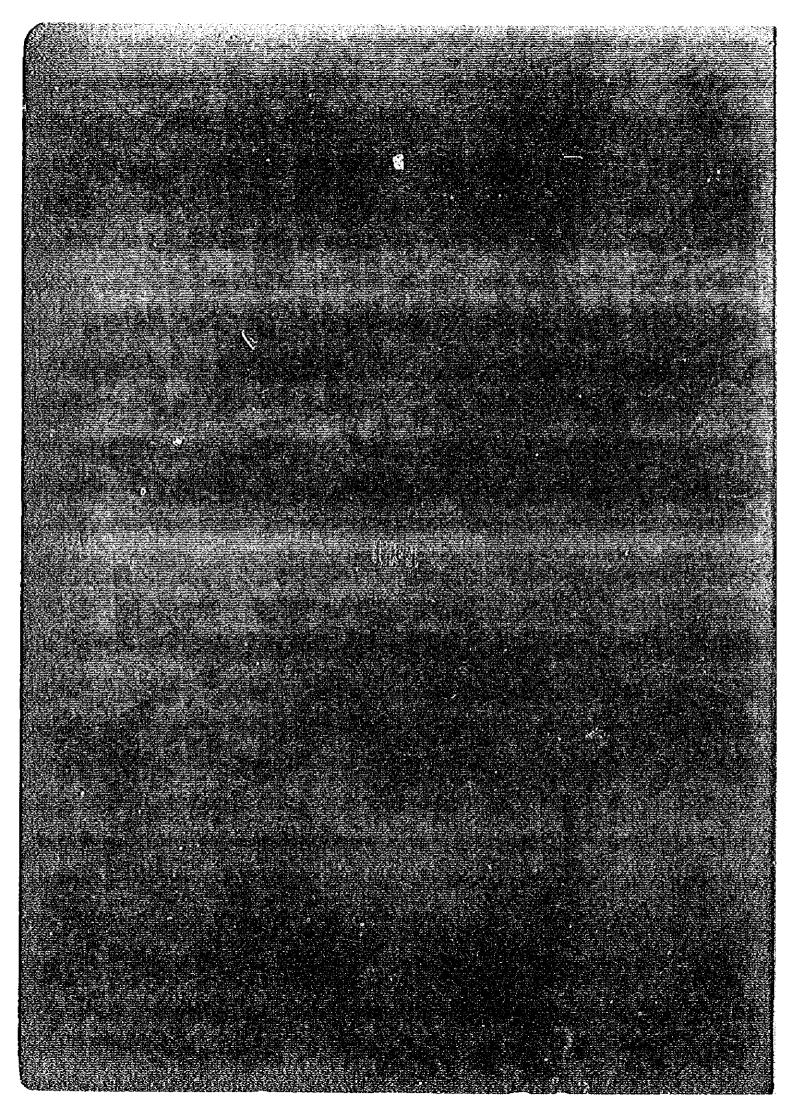

----- Geologic contact

Plate 2-(1)

Sketch of the trench survey district


(1:1,000)

Trench Survey, Phose II Veraguos Project, JICA/MMAJ-ENAMI



. . .

____

