Since the main season paddy uses a basin irrigation system, the irrigation operation is designed to be 24 hours. Design irrigation water requirement for the facilities is estimated at 1.34 lit/ sec/ha.

To irrigate each 10 ha of vegetable cultivation area, a drip and pipe line system with a pump station, and an other pipe line using gravity flow from the farm pond are designed. Each irrigation area for vegetables is divided into two (2) irrigation blocks. Irrigation water is to be supplied to one (1) irrigation block for 12 hours and the other one (1) for the other 12 hours, during the peak requirement. Therefore, each 10 ha of vegetable area has two (2) irrigation rotation blocks.

Under the conditions of the irrigation rotation system mentioned above, the design irrigation water requirement for the facilities is 0.43 lit/ sec /ha, and the design discharge of all main pipe lines is 4.6 lit / sec.

2.2.4 Reservoir Capacity

Reservoir operations of the Lembu pond and Ketapang dam are calculated for monthly periods based on the estimated runoff at the proposed pond and dam sites, irrigation requirements and water loss from the reservoir such as seepage and evaporation. Runoff of 30 years from 1961 to 1990 is applied in the reservoir operation calculation.

As a result of these calculations, the following reservoir capacities designed to cope with a drought year with a return period of 5 years, is clarified for the Project.

Pilot Project/Reservoir	Type of Reservoir	Capacities(1,000 m3)
Lembu	Excavated Pond in a Depr	ession 120
Ketapang	Homogenous Earthfill Da	m <u>150</u>

Detailed calculations of the reservoir operations are described in Tables.3.2.2 and 3.2.3.

2.2.5 Drainage Water Requirement

The drainage water requirement is computed under the condition of 3 consecutive days rainfall with an exceeding probability of 80 %, and 3 days of drainage period. The 3 consecutive days rainfall with a return period of 5 years is adopted based on 39 years of rainfall data from Langkawi station.

The 3 consecutive days rainfall with a return period of 5 years is 236 mm, and the design discharge of the drainage canals is estimated at 9.1 lit/sec/ha.

2.2.6 Water Resource Development Facilities

Water resource development facilities are basically designed using a draft design standard discussed between the DID and the JICA Study Team during the Feasibility Study and design standards issued by the Ministry of Agriculture, Forestry and Fishery, Government of Japan.

(1) Lembu excavated pond

The general lay out of water resources development is shown in DWG 2001 and DWG 2006

The area to be excavated is 7.8 ha, and delineation of this area is done considering the location of existing irrigation and drainage facilities, topographical conditions, and excavated depth.

The area to be excavated is lower than EL 5.0 m, because the lowest elevation of the bund axis is around EL 4.0 m, and the area ranging in elevation from EL 4.0 m to EL 5.0 m expands in the upper reaches of bund axis. The area to be excavated is divided into 2 areas depending on the excavated depth, EL 3.5 m with an excavation depth of nearly 1.5 m and EL 4.0 m with an excavation depth of nearly 1.0 m. This is done in order to save costs. Therefore, the total excavated area consists 4.2 ha to be excavated at EL 3.5 m and 3.6 ha to be excavated at EL 4.0 m.

The bund has a crest width of 5 m and 3 m wide laterite pavement. Since 0.5 m of top soils is stripped, the average height of the bund is 2.0 m from the bottom of the original ground, and the slope of bund is 1 : 1.5. Crest elevation of the bund is EL 6.5 m.

The bund of the pond has an emergency spillway to release a design flood discharge of 18.4 m³ / sec and an intake structure for the irrigation water supply.

The design water level for gravity irrigation to the main season paddy field is EL 5.5.m at the intake gate. The useful water level in the pond is designed to be EL 4.0 m, because irrigation water level of the downstream sustains the required water level at the turnout by gate and/or stop log operation. The intake structure is a gate structure with a measuring devices, and a head race of 38 m is designed to connect to the existing canal courses.

Storage water in a pond of less than EL 4.0 m is designed for vegetable cultivation by using pump and pipe lines.

The type of emergency spillway is a broad crest weir with a width of 24 m and height of 2.5 m. The emergency spillway also has 2 gate structures to be used for maintenance of the pond. Since the foundation of the spillway site is weak, concrete piles of about 5 m long are designed to be driven to a depth at EL - 3.0 m.

Design of the major structures are illustrated in DWG.2006 to DWG. 2007, and their salient features of are described below.

Lembu Excavated Pond

Excavated pond in depression Total storage capacity Effective storage capacity Dead storage capacity Excavated area	130,000 m3 120,000 m3 10,000 m3 7.8 ha
Bund of pond Crest elevation of bund Crest width of bund Length of bund Height of bund	EL 6.5 m 5 m 546 m 1.5 m
Excavated depth of pond	1.5 m - 1.0 m
Emergency spillway Type of spillway Design flood discharge Width of spillway	broad crest weir with gate structures 18.4 m3/sec 27.2 m

(2) Ketapang Dam and reservoir

The general lay out of the water resources development is shown in DWG 2001 and DWG 2002.

Dead storage of the reservoir is designed to be about 10,000 m3 which is the sedimentation volume for 30 years.

Based on the reservoir storage volume curve, the designed low water level (L.W.L.), which is the surface elevation of sedimentation is EL 17.5 m. The reservoir storage volume curve is shown in Fig.3.2.1. Since effective storage of the reservoir is 150,000 m3, the normal high water level (N.H.W.L.) is EL 25.70 m.

The dam has a culvert spillway and an emergency spillway. The design flood discharge of the spillway is estimated as half of the probable maximum flood in accordance with the Engineer Guidelines US Army Corps, because the proposed dam has a storage capacity of less than 1.0 million m3 and a height of less than 15 m, furthermore, a potential hazard down stream from the dam exists as there are a few houses and a small scale paddy fields.

The design flood discharge of both spillways is estimated at 13.2 m3 /sec, based on PMF of the Sg. Malut dam located in the neigbouring river basin. The flood discharge is shared by both spillways, 5.3 m3 /sec for the culvert spillway and 7.9 m3/ sec for the emergency spillway. The design flood water level (D.F.W.L.) is EL 26.49 m.

The freeboard of the dam and teh thickness of the pavement at the crest of the dam are 1.0 m and 0.3 m respectively, and the crest elevation of the dam is EL 27.80 m.

As a foundation treatment of dam, based on the geological information, the top soils will be excavated to a depth of 2 m. The lowest elevation of the excavation is EL 13.00 m. Therefore dam height is 14.8 m.

The dam is homogenous earth fill type with a horizontal drain of 1.5 m thick laid at EL 13.00 m.

Slopes of the dam are designed to be 1 : 3.0 upstream and 1 : 2.5 downstream. Stability analysis of the dam slope is made using geological data obtained through the boring survey and soil mechanical test. The analyses are made for three (3) cases, (i) full water storage case with normal high water level, (ii) sudden draw down case from N.H.W.L. to L.W.L. and (iii) no storage case. The result of the stability analyses are shown below (Figures 3.2.2 to 3.2.4).

Case / Slope	Type of Stress	Min.S.F.
Full Water Storage		
upstream	effective stress	1.5
downstream	effective stress	2.36
Sudden draw down		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
upstream	effective stress	1.76
No Storaged	al a grad de persona	
upstream	effective stress	2.29
downstream	effective stress	1.94

The stability analyses are made as sample calculations for the dam design based on the current geological data obtained in the feasibility study. The geological data are still insufficient for the detailed design of the dam.

Therefore, further geological investigations, especially obtaining data from the foundation layer of the dam, and soil mechanical tests shall be necessary for future design.

Stone covering with a thickness of 0.8 m on the upstream slope of the dam, sod facing on the downstream slope and laterite pavement at the crest of the dam are designed to prevent erosion.

Seepage water loss from the dam body and foundation are also examined using geological data of the dam foundation. Daily seepage loss from the reservoir is estimated at about 130 m3/ day, equivalent to 0.09 % of the storage capacity of the reservoir.

Therefore, a blanket of impervious soils is designed for the bottom of reservoir to decease seepage loss to 0.04 % of the storage capacity. The blankets are divided into two (2) types, the bottom blanket which is placed from EL 16 m to the bottom of the reservoir, and the slope blanket with a thickness of 1 m, which covers the hill slope from EL 16 m to EL. 18 m.

The emergency spillway is a grass spillway designed to be placed 7 m apart on the original hill portion of the dam embankment body. The spillway has a low channel rectangular section. Height and width of the low channel are 1 m and 8 m, respectively, and the inside slope is 1: 1.5.

The culvert spillway has drop type inlet in tower section and one box type barrel. The barrel is designed to be placed on, and varied in, the original hill slope. At the outlet of the box section, a concrete box with a drop is designed to off take irrigation water through the pipe line. The culvert spillway also functions as an outlet, It has an operation bridge which is designed to give access from the right bank of the dam. It is a T beam bridge, 18 m in length.

An access road to the dam is laid in the hill slope of the right bank. It is designed to have laterite pavement 3-m wide, and the maximum longitudinal slope of the road is 5 %. Total length of the access road is 400 m.

Designs of the major structures are illustrated in DWG.2002 to DWG. 2005, and the salient features of these facilities are described below.

Ketapang Dam and Reservoir

	0,000 m3 ,000 m3
Dam	
	omogenous earthfill and
	orizontal & toe drain .8 m
Crest width of dam 5 r	
Length of dam including	
	5 m
Dam slope	
	: 3.0
	2.5
Crest elevation of dam EI	 27.80 m

Design flood water level Normal water level Low water level EL 26.49 m EL 25.70 m EL 17.50 m

3 m

Thickness of blanket

Emergency spillway

Type of spillwayGrass spillwDesign flood discharge7.9 m3/secBase elevation of chute channelEL 26.06 mTotal length129 mBase width of spillway13 mInside slope of lower channel1 : 1.5Gradient of channel1 / 200Height of lower channel1 m

area of EL 16 - 18 m, 1 m

area of less than EL. 16 m, 1 m to

Grass spillway (trapizoidal, chute type) 7.9 m3/sec EL 26.06 m 129 m 13 m 1 : 1.5 1 / 200 1 m

Culvert spillway

Type of spillway Design flood discharge Crest elevation of spillway Height of spillway Type of barrel Total length of barrel Incident l facilities Tower type (box type) 5.3 m3/sec EL 25.70 m 9 m box barrel 1.8 m x 1.5 m x 1 no. 91 m Operation bridge, total length 18 m of 3 spans

Access road Type of road Total length Width of road

Pavement road with laterite (w = 3 m) 400 m 5 m

2.2.7 Irrigation and Drainage Facilities

Irrigation and drainage development facilities are basically designed using the draft design standard discussed between the DID and the JICA Study Team during the Feasibility Study and design standards issued by the Ministry of Agriculture, Forestry and Fishery, Government of Japan.

(1) Lembu Project area

The general lay out of the irrigation and drainage development is shown in DWG 2001 and DWG 2008.

(a) Irrigation facilities

The irrigation and drainage system in the Project area is basically separated, except for the recycling system which uses return flow from paddy fields totalling nearly half of the Lembu Project area.

The irrigation system is divided into a gravity irrigation canal system for the main season paddy down stream from the Lembu excavated pond and a pump and pipe line system for vegetable cultivation in the upper reaches of the pond.

The gravity irrigation system uses earth canals with trapezoidal sections, designed to cover an area of 146 ha. The system consists of one (1) head race at the section from the intake structure to the existing irrigation canal, 6 earth canals and 38 related structures. The design discharge of the canals ranges from 0.3 m3/sec to about 0.2 m3/sec, and the total length is 9.5 km.

The recycling system has one (1) intake structure at the main drain section, 15 m downstream from the existing state road, as shown in DWG. 2010. The design flood discharge at the intake structure is estimated at 19.3 m3/sec. There is a movable weir with 10 hard wooden gates driven by motors. Height and width of the gate is 2.5 m and 1.2 m respecively. Since the intake foundation is weak, a concrete pile, 7 m in length, is planned.

Since the suction head of the pumps range from 2 m to 3 m and the design discharge is 0.26 m3/min, an ordinary volute pump is adopted for vegetable cultivation. Two pumps are required including one (1) standby pump.

Since the water head of the pipe line is about 6 m to 10 m, and the majority of the area has topographically flat., PVC pipes are selected. Design velocity in the pipe is designed with a range from 0.8 m/sec to 0.9 m/sec, and the diameter of the pipe is 60 mm.

(b) Drainage facilities

The drainage system in the Project area consists of 5.5 km of main drains and 10 drop structures.

The design discharge of the main drains ranges from 0.1 m3/sec to 20 m3/sec, and the main drain divides into a large drain, which has a design discharge of more than 5.0 m3/sec, and a smaller drain. All main drain are designed with a trapezoidal section with an inside slope of 1 : 1.5. The base width of the main drain is designed to range from 0.5 m to 0.8 m in the smaller drains and from 6 m to 10 m of bigger drains.

(c) Land levelling

Land levelling work in the paddy field will total about 35 ha based on local requests obtained during the field survey.

Design of the typical structures are illustrated in DWG.2009 to DWG.2011, and salient features of these facilities are described below.

Lembu Project area

Irrigation area

Pump station Pump

Pipeline

Irrigation canal Related structures Intake structure Turnout Siphon 110 ha (paddy 100 ha in main season and vegetable 10 ha in all seasons) 1 site 20 m2 Volute pump 1.5 kw (h=10 m) 2 units.

PVC pipe line, 1.85 km

8.0 km of 6 nos.

2 nos.

4 nos.

3 nos.

Cross drain Demolishing of existing structures

Drainage canals Related structures Drop structure On farm facilities 25 nos.

3 nos.

5.5 km of 8 nos.

10 nos. Drip and / or micro jet sprinkler irrigation facilities 10 ha

Land levelling

35 ha of paddy field

(2) Ketapang Project area

The general lay out of irrigation and drainage development is shown in DWG 2001.

(a) Irrigation facilities

The irrigation and drainage system in the Project area is the same as the Lembu Project. The system is divided into a gravity irrigation canal system for the main season paddy and a pipe line system for vegetable cultivation.

Earth irrigation canals with trapezoidal sections are designed to cover 60 ha. The system consists of 2 earth canals and 5 related structures. The design discharge of the canals is about 0.03 m3/sec, and the total length of the canals is 2.8 km.

Irrigation water for vegetable cultivation is directly supplied from the farm pond designed at outlet portion of culvert spillway. Since the difference of topographical elevation is more than 15 m, a booster pump station is not required.

Since the water head of the pipe line is about 15 m, and topographical condition from the farm pond to the irrigation area has a gentle slope with a small undulation of less than 4 m, water hammer is not assumed to occur, and PVC pipes are selected. The design velocity in the pipes is designed with a ranges from 0.8 m/sec to 0.9 m/sec, and the diameter of the pipe is selected 60 mm.

(b) Drainage facilities

Drainage system in the Project area consists of 2.8 km of main drains and 2 drop structures.

The design discharge of the main drain ranges from 5.8 m3/sec to 6.1 m3/sec, and drain is designed to have trapezoidal section with a inside slope of 1: 1.5. Base width of the main drain is 6 m.

(c) Land levelling

Land levelling work in the paddy field will total about 13 ha based on local requests obtained during the field survey.

Design of the typical structures are illustrated in DWG.2008 to DWG.2009 and DWG.2011, and salient features of these facilities are described below.

Ketapang Project area

Irrigation area

Pipeline

Irrigation canal Related structures Intake structure Cross drain

Drainage canals Related structures Drop structure

On farm facilities

70 ha (paddy 60 ha in main season and vegetable 10 ha in all seasons)

PVC pipe line, 2.4 km

2.8 km of 2 nos.

1 nos. 6 nos.

2.8 km of 1 no.

2 nos.

Drip and/or micro jet sprinkler irrigation facilities 10 ha

Land levelling

13 ha of paddy field

2.2.8 Construction Plan

Mechanical construction methods will be applied. Main structures of construction are the dam and related structures, the excavated pond and related facilities to the pond.

Diversion works of river flow during construction of the Ketapang dam will be entrusted to the culvert spillway. Prior to the commencement of the embankment of the dam, construction of the barrel portion of culvert spillway shall be completed. The construction program of the dam body is scheduled to start from both hillsides to the centre of the dam.

Diversion works during the excavation of the Lembu pond and bund, will be entrusted to the DB-2 main drain for the pond and to the gate structures of the emergency spillway for the bund. Therefore, construction of main drain and emergency spillway shall be given priority in the construction schedule.

Main construction works include the embankment of the Ketapang dam and the Lembu pond bund, excavation of the pond, the main drain and emergency spillway of the Ketapang dam, and concrete work and piling works of the Lembu emergency spillway etc. The volume of these works are estimated at about 122,000 m3 of embankment, about 226,000 m3 of excavation, about 1,400 m3 of concrete works, and about 950 m of piling works.

Taking the above into consideration, the construction schedule is assumed at 11 months, consisting of 2 months for mobilisation, preparatory work and demobilisation periods, and 9 months for the construction period.

2.3 Estimate of Project Cost

2.3.1 Unit Price Analyses

Unit prices of the respective works of the project are estimated by up-dating the bidding prices of similar works in the Langkawi, and using the Government price schedule issued in 1993, and the annual inflation rate of commodity issued by

the Central Bank of Malaysia. The unit prices of these works are estimated at 1994 price levels.

Reference data of bidding prices for silimar works of other projects are as follows:

1) Sng. Kuala Melaka Bridge project 1990, Langkawi

2) Membina dan Menyiapkan project 1990, Langkawi

3) Pekan Kuah Drainage project 1992, Langkawi

4) Irrigation project 1994, Langkawi

The updated unit prices of the respective works are shown in Table 3.2.4.

2.3.2 Estimate of Quantity

All quantities are estimated, based on designed mentioned above. The quantities estimated are shown in Table 3.2.5 to Table 3.2.6.

2.3.3 Estimate of Construction Cost

Total construction cost consisting of direct construction cost, land acquisition cost and physical contingency is estimated at about RM 10,616,800 for the Lembu Project and at about RM 5,222,300 for Ketapang Project, at 1994 price levels, as shown below.

	Description		Cost (RM)
		Lembu	Ketapang
1	Direct construction cost	4,541,400	3,486,300
2	Land Acquisition	4,713,000	689,700
3	Physical Contingency	681,200	523,000
4	Engineering cost	454,200	349,000
: <u>5</u> .	Administration cost	227,000	174,300
	Total	10,616,800	5,222,300

Physical contingency is estimated at 15 % of direct construction cost.

The detailed costs are shown in Tables 3.2.5 to 3.2.6.

Table 3.2.1 Irrigation Water Requirement (Kedawang Project KH4&5)

	TIRC	reo	Mar.	ЧЫ	May	ame	Amr	Aug	Sept	5	NOV	Dec	Total	
Do di Articano de Carto de Car														
								100000						
									7	Presaturation	e			
Horticulture													-	. :
Monthly Rainfall (1977)	13.5	0.0	0.0	85.5	217.5	189.5	219.0	474.0	447.0	469.0	77.0	5.0	2,197	
Potential Evapotranspiration	127.2	118.7	131.1	121.5	108.5	107.1	104.8	106.6	91.1	99.2	106.8	121.2	1343.9	÷ .
Percolation	93.0	0.0	155.0	150.0	124.0	120.0	124.0	124.0	150.0	93.0	0.06	93.0	1316.0	
														÷
Paddy (off season)			-											
												- C2	200	
Gross Irrigation Requirement								360	157	797	407	52	I** 002.1	
Horticulture														
Rozeile					~~~~									
Crop coefficient (Kc)	0.85	0.85	0.85	0.85	0.85	0:85	0.85	0.85	0.85	0.85	0.85	0.85		
Crop Evapotranspiration (ETcrop)	97.3	90.8	100.3	92.9	83.0	81.9	80:2	81.6	69.7	75.9	81.7	92.7	1.028	
Effective Rainfall	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	
Net Irrigation Requirement	16	16	100	93	83	82	80	82	70	76	82	93	1,028	
	_													
Irrigation Efficiency	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85		
Conveyance efficiency														
Application Efficiency				· ·										
Gross Irrigation Requirement	114	107	118	109	98	96	94	96	82	89	96	109	1,210	
Total Gross Irrigation Requirement	114	107	118	109	86	96	94	456	319	351	350	202	2,416	

and a short that

·	
	Reservoir paddy)
	Table 3.2.2 Water Balance Calculation of Lembu Reservoir (10ha of horticulture and 100ha of main season paddy)
	Water Balance horticulture and
	Table 3.2.2 (10ha of

DEC	120	118	58	120	120	120	120	28	105	112	120	120	120	120	67	120	103	39	26	35	120	120	120	111	50	- 120	120	120	. 120	30
NON		120	120		120	120	120	120	120	120	120	120	120	120	120	120	120	120	117	120	120	120	120	120	55	120	120	120	120	120
OCT		120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
SEP	н 1	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	- 120	120	120	120	120	120	120	120	120	120	120
AUG		120	120	120	120	120	120	120	120	120	120	120	70	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
JUL		120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
		120	120	19	120	8	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
MAY		120	120	4	120	2	120	120	120	120	120	120	73	120	120	120	120	51	120	32	120	120	120	120	120	120	120	120	120	120
APR		120	8	14	82	80	120	113	17	[9	12	114	. 83	68	87	69	120	19	9	61-	99	120	120	87	120	81	120	62	120	85
MAR		33	16	25	63	6	120	86	9-	72	82	120	63	100	86	35	120	72	5	8-	2	86	26	8	81	61	8	8	66	96
FEB		105	102	36		102	108	110	9	83	\$	120	105	111	110	47	110	83	17	4	13	110	104	110	6	28	105	102	110	108
JANI		1151	113	47	112	113	118	120	16	Ż	2	120	116	120	120	58	120	8	28	15	24	120	114	120	104	39		113	120	118
YEAR		Idel	1961	1063	1064	1065	9901	1967	1968	1969	1970	1021	1972	1973	1974	1975	1976	1077	8/61	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989

Table 3.2.3 Water Balance Calculation of Ketapang Reservoir (10ha of horticulture and 60ha of main season paddy cultivation)

Table 3.2.4 Unite Price Analysis (KH-4&5)

Description	ED.	lender Price	•			Data DMN	Data cources
			Year	(%)	Price (HM)		
1 Dam and Reservoirs							
Ketapang Dam							
							100 Diret List 1000 Automate scine *
Land creating	BA	900:00	1991	1.131	1,017.9	1,2/2,1	UPO FIIOE LISU 1980 AVERAGE PINE
Freevation	m3	15.6	1990	1.166	18.2	1	Shq. Kuala Melaka Brioge project, Lariyyawi
		6.9	1993	1.035	9.6	15.1	JPS Schedule of Rate 1993
Emborkment	ŝ	46.0	1990	. 1.166	53.6		Membina dan Menyiapkan Project. Langkawi
		27.5	1992	1,084	29.8	41.7	Pekan Kuah Drainage Project, Langkawi
State Canadata	¢ E	40.0	1991	1,131	45.2	45.0	JPS Price List 1993 Average price
Storie Covering		30.0	1991	1.131	33.9	34.0	JPS Price List 1993 Average price
		0.05	1991	1.131	33.9	34.0	JPS Price List 1993 Average price
	2 C	ο α •	1 992	1 084	2.0	2.0	Pekari Kuah Drainage Project, Langkawi
	V E	- u	1991	1.131	7.4	9.2	JPS Price List 1993 July
Excavation for storaged load	2	2					
including dumping of < 5 km							
Lembu Reservoir	•				((Son Kusla Metaka Bridge project angkawi
Excavation	m3 .	10.5	1990	1.166	2.2	1 (1	Ung Catadria of Data 1000
		9.3	1993	1.035	9.6	1.2.1	JPS Schedule of hate 1933
Embankment	8. E	46.0	1990	1,166	53.6	1	Membina dan Menyiapkan Project, Langkawi
		27.5	1992	1.084	29.8	41.7	Pekan Kuah Drainage Project, Langkawi
Bainforced Concrete	e E	455.9	1990	1.166	531.6	531.6	Sng. Kuala Melaka Bridge project. Langkawi
Diain Concrete	e M	300.8	1992	1.084	326.1		Pekan Kuah Drainage Project, Langkawi
	Ē	240.0	1991	1.131	271.4	332.7	JPS Price List 1993
			1001	1 131	90.5	113.1	JPS Price List 1993
Foundation Concrete	5E	00.0	1001		a 101	107 5	. IPS Price List 1993
Concrete Pile dia. 200	ε	90.0	1991	10.1	0.121	· · · · · · · · · · · · · · · · · · ·	
Slide Gate					0.000	0 000 1	DE Britter 1000
1m x 1.2m	nos.	1,140.0	1991	1.131	1,289.3	4,028.3	UPO FILOB LISE 1993
Gabion	m3	250.0	1994	1.000	250.0		Irrigation project Langader, 1994
		90.06	1991	1.131	101.8	188.6	JPS Price List 1993 Average price)
Demolishing of existing str.	m3	90.06	1991	1.131	101.8	127.3	JPS Price List 1993 Average price)
Truting	щ2	1.8	1992	1 084	2.0	2.0	Pekan Kuan Urainage Project, Langkawi
subtotal							
Culver Snilway & Operation Bridge	idae						
Strinning	m3	2.0	1993	1.035	2.1	2.6	JPS Schedule of Hale 1993
Evention	E E	10.5	1990	1.166	12.2		Sng. Kuala Melaka Bridge project. Langkawi
		0.0	1993	1.035	9.6	12.1	JPS Schedule of Rate 1993
Daabhill	СШ СШ	15.0	1991	1.131	17.0	21.3	JPS Price List 1993
Emboria	e e	46.0	1990	1.166	53.6		
		27.5	1992	1.084	29.8		
	6	7 474 7	0001	1 166	553.5	553.5	Sno, Kuala Melaka Bridge project, Langkawi

Foundation concrete	θE	80.0	1991	1.131	90.5	112.5	JPS Price List 1993
Concrete Pile dia. 200		0.06	1991	1.131	101.8	127.5	JPS Price List 1993
Gabion	e E	0.06	1991	1.131	101.8		JPS Price List 1993 Average price)
		250.0	1994	1.000	250.0	188.6	Irrigation project Langkawi, 1994
Steel slide gate							
2m x 2m	nos.	3,800.0	1991	1.131	4.297.8	5,372.3	JPS Price List 1993 Average price)
0.4m x 0.4m	nos.	105.0	1991	1.131	118.8	148.4	JPS Price List 1993 Average price)
Other steel arressarv/hand rail)	٤	35.0	1990	1.166	40.8	40.8	Sng, Kuala Melaka Bridge project, Langkawi
subtotal							
Emotoport Snithiov						-	
Entergency Opinical	۶w	101	1990	1.166	12.2		Sng. Kuala Melaka Bridge project, Lanckawi
Excavator	011		0001	0.95	4	101	JPS Schedule of Rate 1993
		0.0	0,0,0,1	1001	0 0 0	1 1	100 Drive List 1003 Average prices
Gabion	88 B	60.0	1991	151.1	101.0	0.001	UND FILCE LIST 1990 AVELAGE DILLET
		250.0	1994	1.000	0.062	188.0	Irrigation project Langkawi, 1994
subtotal							
Access Road							
Stripping	Ш3	2.0	1993	1.035	2 1	2.6	JPS Schedule of Rate 1993
Excavation	БЩ	9 E	1990	1.166	4 2		Membina dan Menyiapkan Project, Langkawi
	-	5.2	1990	1.166	6.1		Sng. Kuala Melaka Bridge project, Langkawi
		4.0	1992	1.084	4.3	4	Pekan Kuah Drainage Project, Langkawi
Embackment	m3	6 2	1990	1.166	9.2		Sng. Kuala Melaka Bridge project, Langkawi
		6.6	1992	1.084	10.7		Pekan Kuah Drainage Project, Langkawi
		15.0	1991	1.131	17.0	13.7	JPS Price List 1993
l iterite navement	ε	8.0	1990	1,166	6.6		Membina dan Menyiapkan Project, Langkawi
		6.6	1992	1.084	10.7	10.0	Pekan Kuah Drainage Project, Langkawi
subtotal							
Pumo Station							
Striboina	ВШ	2.0	1993	1.035	2.1	2.6	JPS Schedule of Rate 1993
Excavation	сш	3.6	1990	1.166	4.2		Membina dan Menyiapkan Project, Langkaw
		4.8	1990	1.166	5.6		Membina dan Menyiapkan Project, Langkaw
		5.2	1990	1.166	6.1		Sng. Kuala Melaka Bridge project, Langkawi
		4,0	1992	1.084	4.3		Pekan Kuah Drainage Project, Langkawi
		. 4.5	1992	1.084	4.9	5.0	Pekan Kuah Drainage Project, Langkawi
Embankment	СE	6.7	1990.	1.166	9.2		Sng. Kuala Melaka Bridge project, Langkawi
		6.6	1992	1.084	10.7		Pekan Kuah Drainage Project, Langkawi
		15.0	1991	1.131	17.0	12.3	JPS Price List 1993
Backfill	ШЭ	15.0	1991	1,131	17.0	11.9	JPS Price List 1993
Reinforced concrete	щ3	474.7	1990	1.166	553.5	553.5	Sng. Kuala Melaka Bridge project, Langkawi
Foundation concrete	m3	0.08	1991.	1.131	90.5	113.1	JPS Price List 1993
Gabion	m3	- 0°06	1991	1.131	101.8	:	JPS Price List 1993 Average price)
		250.0	1994	1,000	250.0	188.6	Irrigation project Langkawi, 1994
Trash screen	2 11 12	560.0	1990	1.166	653.0		Membina dan Menyiapkan Project, Langkawi
			0007		0 010		Detras Viich Disingas Brajast Landlaud

E02 7 508 4 .PS Price List 1993		4,000.0 4,000.0 Supplyers' price	1 000 0			u o Mombina dan Menviankan Project Landkawi	A & Dekan Kilah Drainage Project. Lanokawi	5		0	17.0 11.9 JPS FILCE LIST 1933	28.6		113.1		326.1 332.7 Pekan Kuah Drainage Project, Langkawi	4 0 1		9.05	0.0			o t o k IDS Schedule of Bate 1993		A.2 Membina dan Menviaokan Project. Lanokawi	ļ	ļ	0.0	1	10.7 10.0 Pekan Kuali Uralitaye riojeci, Laliywani			6 t 6 f Sno Kuala Melaka Bridge project, Langkawi			208.7	113	101.8 127.5 JPS Price List 1993				
***	1011 1001	1994 1.000		1994 1.000		:						1990 1.166	1990 1.166	1991 1131	1991 1.131	1992 1.084			1991 1.131											1992 1.084		1990 1.166	1 166	001-1			1991 1.131	1991 1.131		1991 1.131		
	444.4	A 000 0		1 000 0		·		4.5		5.2		24.5	437.1 1	İ		300.8 1			22.5 1											9.9		15.6 1		2.6		437.1				120.0		
			E	Pump House m2	subtotal	Pipe line	Excavation for pipe line m3		Excavation for anchor block m3		Backfill m3		ed Concrete				PVC pipe	dia, less than 75 mm m	dia. 150 mm m	Sluice valve	subtotal	Canal & Drain	Canai	Stripping m3	Excavation m3				Embankment m3		Drain	Excavation for big drain B > 5 m m3		Excavation for small drain B < 5 1 m3	Related Structures	Reinforced Concrete			Concrete Pile dia. 200 III	8	dia 400	Sulice Gate

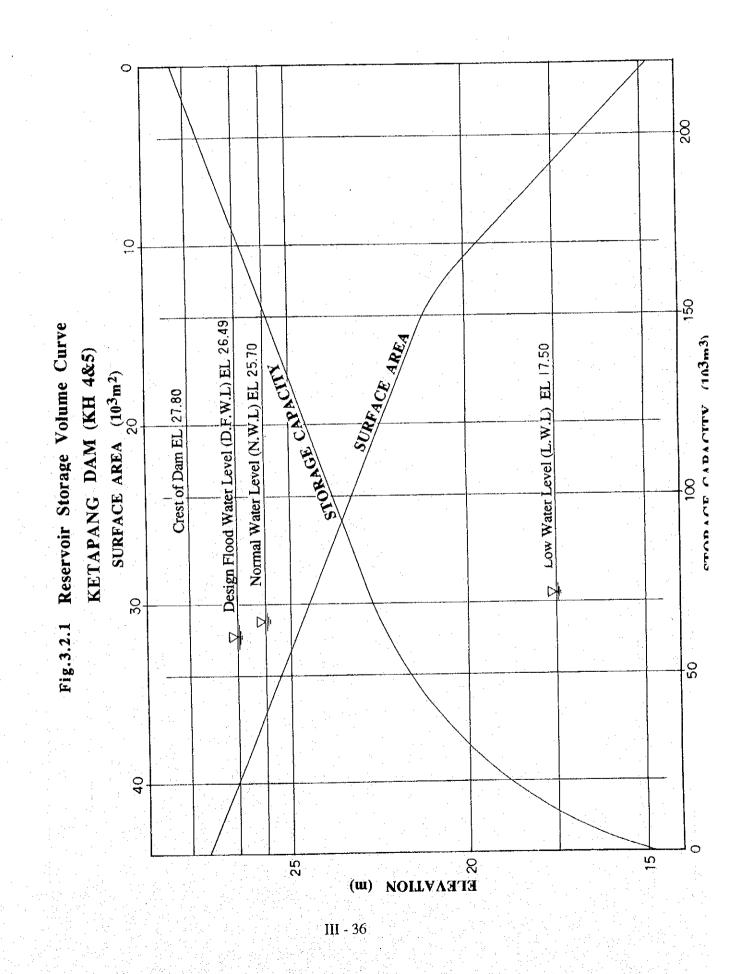
0.3m x 0.9m	ROS.	175.0	0	1991	1.131	197.9	247.4	JPS Price List 1993
0.5m x 1.3m	nos.	533.0	0.	1991	1,131	602.8	753.5	JPS Price List 1993
1.0m x 1.3m	nos.	1,070.0	0	1991	1.131	1,210.2	1,512.7	JPS Price List 1993
Trush Screen	ш2	560.0	0	1990	1.166	653.0		Membina dan Menyiapkan Project, Langkawi
		225.0	0	1992	1.084	243.9	I	Pekan Kuah Drainage Project, Langkawi
		444.4	4	1991	1,131	502.7	508.4	JPS Price List 1993
Hand rail	Ē	35.0	0	1990	1.166	40.8	40.8	Sng. Kuala Melaka Bridge project, Langkawi
Hard wooden gate								
2.5m x 1.5m	nos.	881,3	3	1991	1.131	996.7	1,245.9	JPS Price List 1993
subtotal								
					-			
On-farm irrigation facilities	1							
(drip & Sprinkler facilities)								
Upper Lembu area	R	4,300.0	0	1994	1.000	4,300.0	5,375.0	Supplyers' price
Ketapang area	ВЦ	4,300.0	0	199.4	1.000	4,300.0	5 375.0	Supplyers' price
Land Leveling	ц	4,200.0	0	1993	1.035	4,347.0	4,347.0	JPS & DOA Langkawi information
subtotal								
				-			Р	
Rain shelter				1 1 1			-	
Upper Lembu area	ert.					0.0		
Ketapang area	ę				•	0.0		
subtotal								
	.*							
SUBTOTAL								
		•						
Land acquisition cost	Raf Bar	550,000.0	0	1994	1.000	550,000.0	550,000.0	JPS Langkawi information

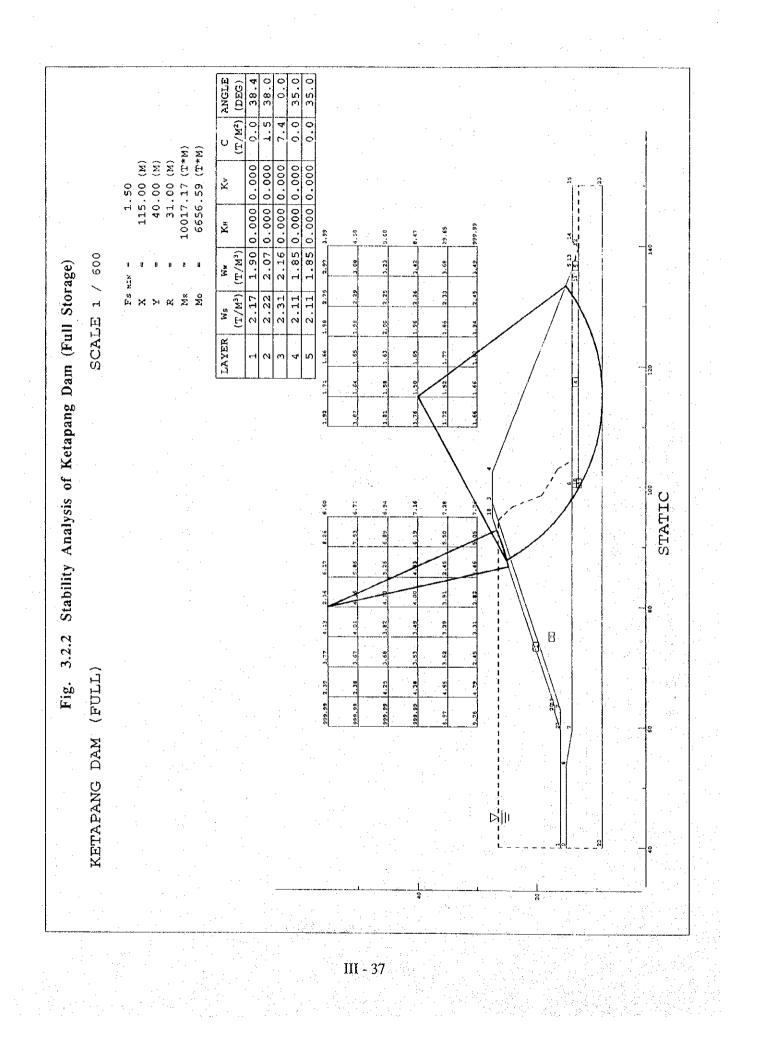
Langkawi information 200 찣 acquisition cos

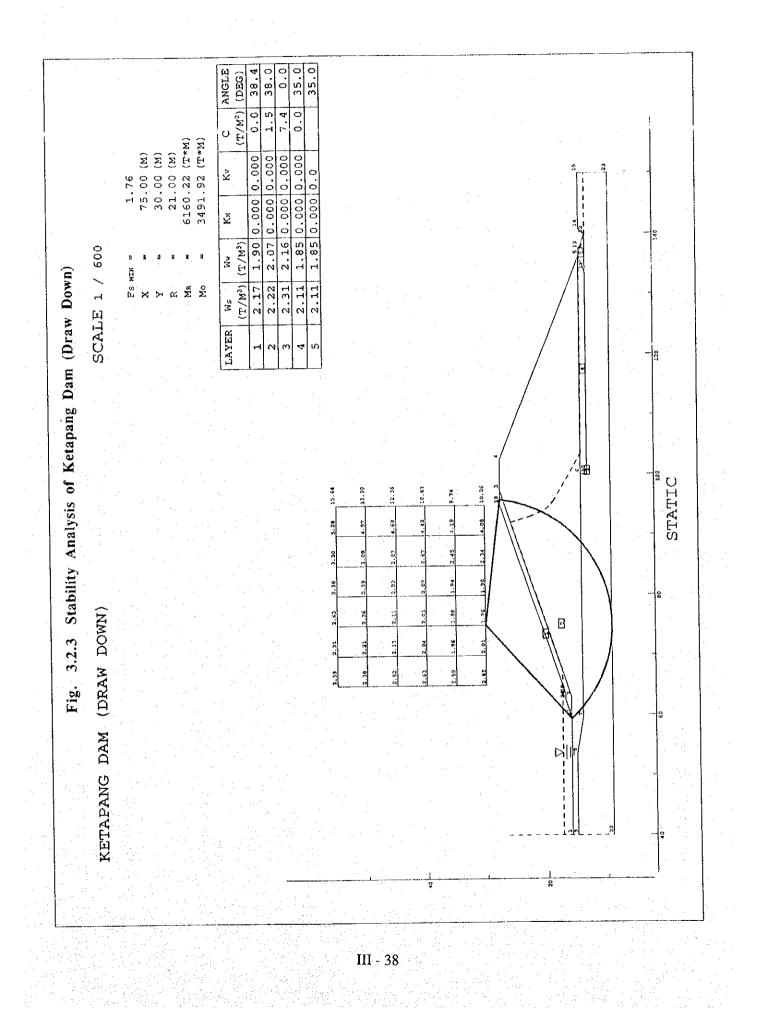
Table 5.2.5			uction Cost	
Work Item	Unit	Quantity	Unit Price(RM)	Amount(RM)
Dam and Reservoirs			<u>. </u>	
Ketapang Dam				
Land crearing	ha	·	1,272.4	0.0
Excavation	m3		15.1	0.0
Embankment	m3		41.7	0.0
Stone Covering	m3		45.0	0.0
Horizontal Drain Filter &			34.0	
Trufing	m2		2.0	0.0
subtotal				0.0
Lembu Reservoir				
Excavation	<u>m3</u>	130,047.7	12.1	1,573,577.4
Embankment	<u>m3</u>	8,266.0	41.7	344,690.1
Trufing	m2	1,356.5	2.0	2,713.0
Reinforced Concrete	m3	129.8	531.6	69,001.7
Plain Concrete	m3	267.6	332.7	89,040.5
Foundation Concrete	m3	37.0	113.1	4,186.4
Concrete Pile dia. 200	m	702.2	127.5	89,535.6
Slide Gate				
1m x 1.2m	nos.	2.0	4,029.3	
Gabion	m3	209.4		
Demolishing of existing	str. m3	46.2	127.3	
subtotal				2,226,172.
Outrat California & Opera	ation Drideo		· · · · · · · · · · · · · · · · · · ·	
Culvert Spillway & Open	m3		2.6	0.0
Stripping			12.1	
Excavation	<u>m3</u>		21.3	
Backfill	<u>m3</u>		41.7	
Embankment	m3			
Reinforced concrete	m3		553.5	
Foundation concrete	m3_		112.5	
Concrete Pile dia, 200	m	· · · · · · · · · · · · · · · · · · ·	127.5	
Gabion	<u>m3</u>		188.6	0.
Steel slide gate				
2m x 2m	nos.		4,297.8	
0.4m x 0.4m	nos.		118.8	
Other steel accessary(h	and ra m	· · · · · · · · · · · · · · · · · · ·	40.8	
subtotal	· · · · · ·			0.
Emergency Spillway	· · · · ·		<u></u>	
Excavation	m3	· · · · · ·	12.1	0.
Gabion	m3		188.6	
subtotal				0.
		·		
Access Road			~ ~ ~	<u>.</u>
Stripping	m?			· · · · · · · · · · · · · · · · · · ·
Stripping Excevation	m3	n an franciska se	2.6	
Excavation	m3		4.9) 0.
Excavation Embankment	<u>m3</u> m3		4.9) <u>0.</u> 7 <u>0</u> .
Excavation Embankment Literite pavement	m3		4.9) 0. 7 0.) 0.
Excavation Embankment	<u>m3</u> m3		4.9) 0. 7 0.) 0.
Excavation Embankment Literite pavement subtotal	<u>m3</u> m3		4.9) 0. 7 0.) 0.
Excavation Embankment Literite pavement subtotal Pump Station	<u>m3</u> m3	19.8	4.5 13.7 10.0) 0. 7 0. 9 0. 0.
Excavation Embankment Literite pavement subtotal Pump Station Stripping	<u>m3</u> m3 m3 m3	19.6	4.5 13.7 10.0) 0. 7 0. 0 0. 0. 3 51.
Excavation Embankment Literite pavement subtotal Pump Station Stripping Excavation	m3 m3 m3 m3 m3 m3	19.6	4.5 13.7 10.0 10.0 10.0 10.0	0 0. 7 0. 0 0. 0 0. 5. 51. 0 0.
Excavation Embankment Literite pavement subtotal Pump Station Stripping Excavation Embankment	m3 m3 m3 m3 m3 m3 m3	19.6	4.5 13.7 10.0	0 0. 7 0. 0 0. 0 0. 5. 51. 0 0. 0 0.
Excavation Embankment Literite pavement subtotal Pump Station Stripping Excavation Embankment Backfill	m3 m3 m3 m3 m3 m3 m3 m3 m3		4.5 13.7 10.0 2.6 5.0 10.0 11.5	0 0. 0 0. 0 0. 3 51. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0.
Excavation Embankment Literite pavement subtotal Pump Station Stripping Excavation Embankment	m3 m3 m3 m3 m3 m3 m3	19.8 11.5 0.7	4.5 13.7 10.0 2.6 5.0 10.0 11.5 553.0	a) 0. b) 0. c) 6.575.

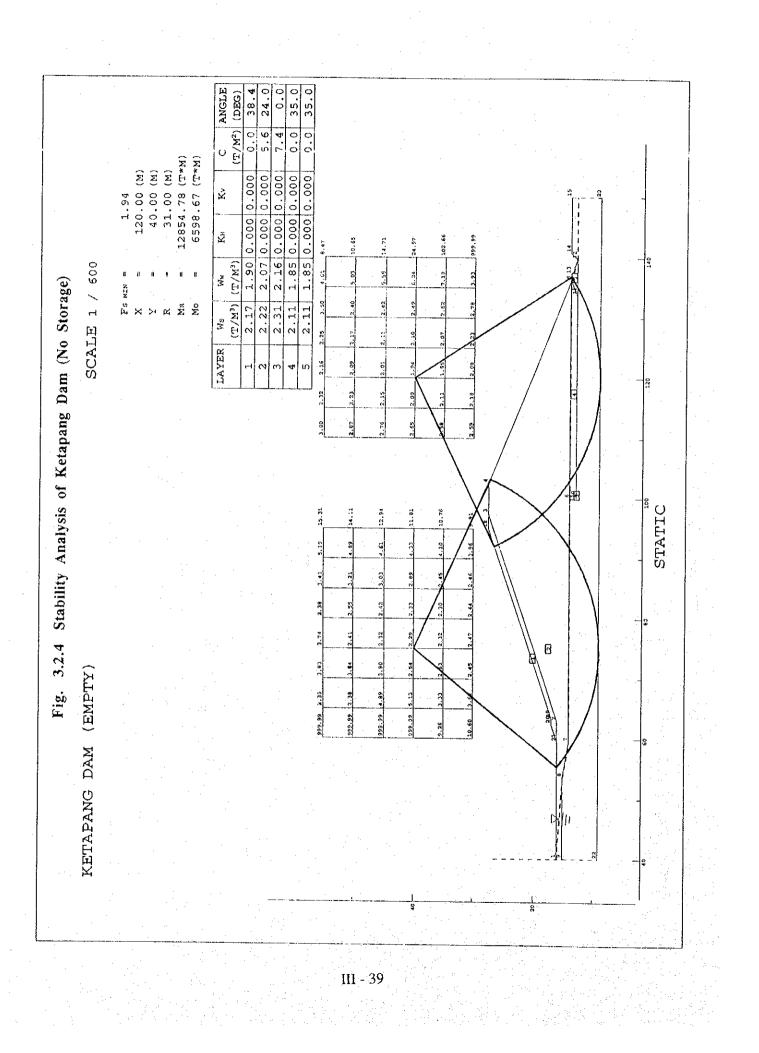
Table 3.2.5 Estimate of Construction Cost (Lembu)

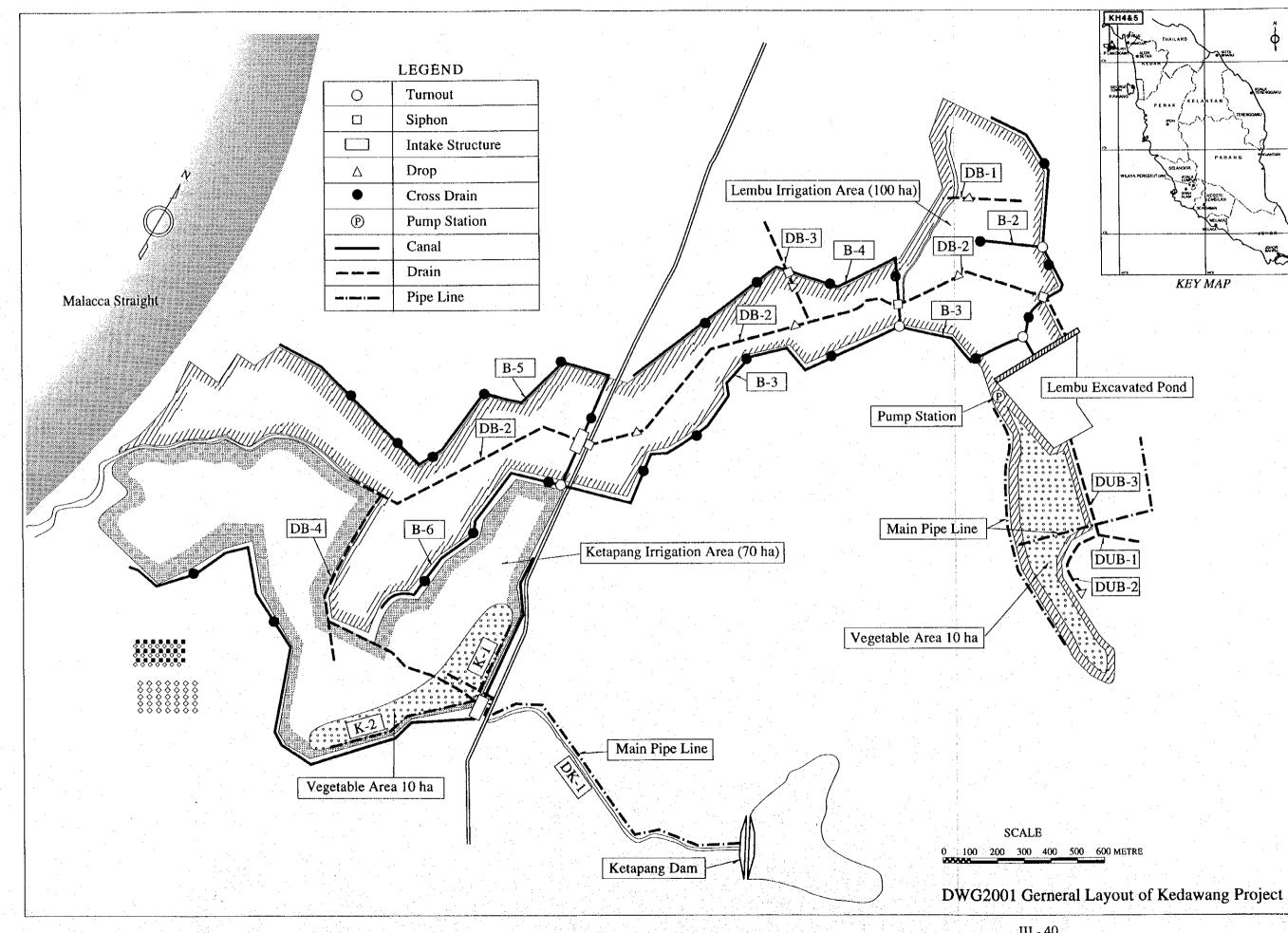
rash screen	m2	8.0	508.4	4,067.2
olute pump				
1.5 kw H 10 m	nos.	2.0	4,000.0	8,000.0
ump House	m2	19.8	1,000.0	19,800.0
subtotal				46,348.7
Pipe line				
Excavation for pipe line	m3	244.2	4.5	1,098.9
Backfill	<u>m3</u>	183.7	11.9	2,186.0
Sand bed	<u>m3</u>	61.6	28.6	1,761.8
Reinforced Concrete	<u>m3</u>	0.3	509.7	157.0
Foundation Concrete	<u>m3</u>	0.1	113.1	6.0
dia, less than 75 mm	m	2,035.0	18.8	38,258.0
Sluice valve	nos.	· · · · · · · · · · · · · · · · · · ·		0.0
subtotal				43,467.6
Canal & Drain		<u>.</u>		
Canal				
Stripping	 	9,795.8	2.6	25,469.2
Excavation	<u>m3 : .</u>	1,869.3	5.0	9,346.7
Embankment	m3	54,536.5	10.0	545,364.6
Drain	· · · · ·	<u>la de la de la de</u> la definitación de la definitación de la definitación de la definitación de la definitación de La definitación de la definitación d		
Excavation B>5 m	m3	55,012.1	18.2	1,001,220.2
Excavation B<5 m	m3	1,060.4	6.1	6,468.4
Related Structures				·····
Reinforeced Concrete	m3	443.3	509.7	225,964.0
Foundation Concrete	m3	67.5	113.1	7,635.7
Concrete Pile dia, 200	m	231.0	127.5	29,452.5
Concrete Pipe	<u></u>			
dia. 300	<u>m</u>	157.1	169.7	26,656.5
dia. 400 Sulice Gate	m	159.1	190.9	30,364.6
0.3m x 0.9m	nos,	3.0	247,4	742.2
0.5m x 1.3m for TO	nos.	3.0	753.5	2,260.5
1.0m x 1.3m	nos.	4.0	1,512.7	6,050.8
0.5m x 1.5m	nos.	1.0	869.5	869,5
dia.0.5m	nos.	2.0	229.0	458.0
Trush Screen	m2	19.0	508.4	9,646.9
Hand rail	m	111.5	40,8	4,550.8
Hard Wooden Gate 2.5m x 1.5m		10.0	1.045.0	40 450 0
Gabion	nos, m3	<u>10.0</u>	1,245.9	<u>12,459.0</u> 74,063.2
subtotal		V3C.1	100.0	2,019,043.3
	• • • • • • • •			
On-farm irrigation facilities (drip & Sprinkler facilities)				
Upper Lembu area	ha	10.0	5,375.0	69 760 0
Ketapang area	ha	0.0	5,375.0	<u>53,750.0</u> 0.0
Land leveling	ha	35.1	4,347.0	152,579.7
subtotal				206,329.7
Rain shelter	<u> </u>			
Upper Lembu area	ha	<u>na serie da serie</u> Desta series da Señel		0.0
Ketapang area	ha			0.0
subtotal				0.0
SUBTOTAL		<u> </u>	<u>a a tanàn</u> Aona amin'ny desira	4,541,361.8
Land acquisition cost	ha	8.6	550,000.0	4,712,950.0
		an an an Araba. Chairte an Araba		
	III	- 31		

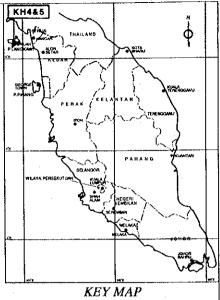

7 Physical Contingency (15 % of Subtotal)		 681,204.3
8 Engineering Cost (10 % of Subtotal)		454,136.2
• • • • • • • • • • • • • • • • • •		
9 Administration cost (5 % of Subtotal)		227,068.1
	· · · · · · · · · · · · · · · · · · ·	 10.616.720.4

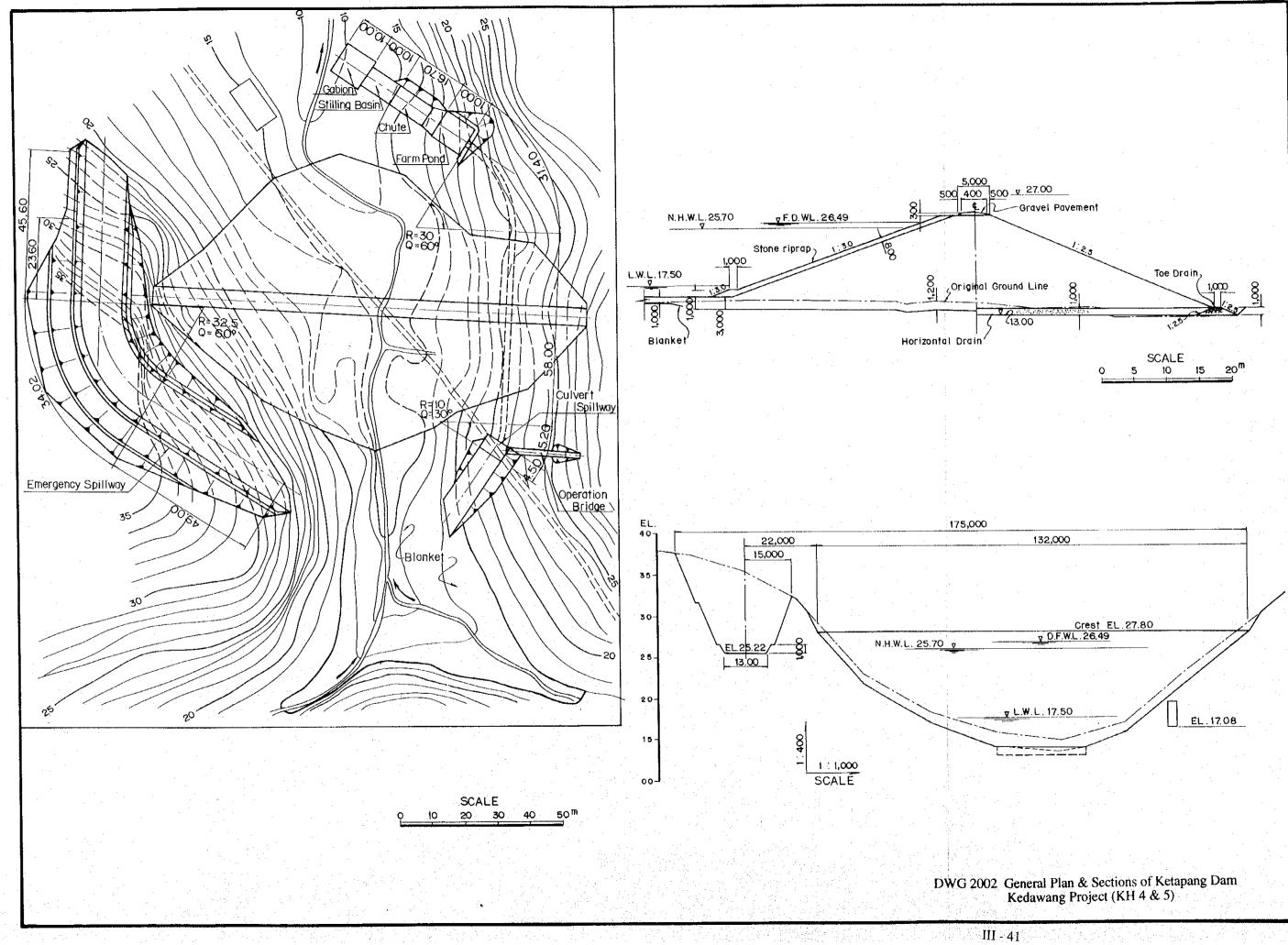

Table 3.2.0 Estili	late	of Constru	ction Cost ()	Ketapang)
Work Item	Unit	Quantity	Unit Price(RM)	Amount(RM)
Dam and Reservoirs				· · · · · ·
Ketapang Dam				
	h. 1	· · · · · · · · · · · · · · · · · · ·		
Land crearing	hà	1.9	1,272.4	2,417.6
Excavation	<u>m3</u>	9,651.8	15.1	145,742.8
Embankment	<u>m3</u>	49,454.6	41.7	2,062,255.0
Stone Covering	m3	2,775.9	45.0	124,913.3
Horizontal Drain Filter & Toe di		264.7	34.0	8,998,4
Trufing	<u>m2</u>	4,345.0	2.0	8,690.0
subtotal			·	2,353,017.6
Lembu Reservoir	·			· · · · · · · · · · · · · · · · · · ·
Excavation	m3		40.4	
Embankment			12.1	0.0
Truting	<u>m3</u>		41.7	0.0
Reinforced Concrete	m2	· · · · · · · · · · · · · · · · · · ·	2.0	0.0
	<u>m3</u>	· · · · · · · · · · · · · · · · · · ·	531.6	0.0
Plain Concrete	<u>m3</u>		332.7	0.0
Foundation Concrete	<u>m3</u>		113.1	0.0
Concrete Pile dia. 200	m		127.5	0.0
Slide Gate				
<u>1m x 1.2m</u>	nos.		4,029.3	0.0
Gabion	<u>m3</u>		188.6	0.0
Demolishing of existing str.	m3		127.3	0.0
subtotal			······································	0.0
		·		
Culvert Spillway & Operation B		·····		· · · · · · · · · · · · · · · · · · ·
Stripping	_m3	178.8	2.6	464.8
Excavation	m3	1,041.3	12.1	12,599.2
Backfill	<u>m3</u>	55.1	21.3	1,173.8
Embankment	<u>m3</u>	34.3	41.7	1,431.1
Reinforced concrete	m3	442.6	553.5	244,982.7
Foundation concrete	т3	114.3	112.5	12,856.4
Concrete Pile dia. 200	m	20.0	127.5	2,550.0
Gabion	т3	16.4	188.6	3,091.2
Steel slide gate	<u> </u>			
2m x 2m	nos.	2.0	4,297.8	8,595.6
0.4m x 0.4m	nos,	2.0	118.8	237.6
Other steel accessary(hand ra	m	90.0	40.8	3,672.0
subtotal				291,654.4
Emergency Spillway			· · · · · · · · · · · · · · · · · · ·	
Excavation	m3	12,401.4	12.1	150,056.9
Gabion	m3	200.0	188.6	37,720.0
subtotal			······································	187,776.9
			1	
Access Road			······································	
Stripping	m3	205.8	2.6	535.0
Excavation	_m3	216.3	4.9	1,059.9
Embankment	m3	1,431.0	13.7	19,605.3
Literite pavement	m3	60.0	10.0	600.0
subtotal				21,800.2
		· · ·		21,000.2
Pump Station				and the second
Stripping	m3		2.6	0.0
Excavation	m3		5.0	0.0
Embankment	m3		10.0	
Backfill	m3		11.9	0.0
Reinforced concrete	m3		553.5	0.0
Foundation concrete	m3		113,1	0.0
Gabion	m3	· · · · · · · · · · · · · · · · · · ·	188.6	0.0


Table 3.2.6 Estimate of Construction Cost (Ketapang)

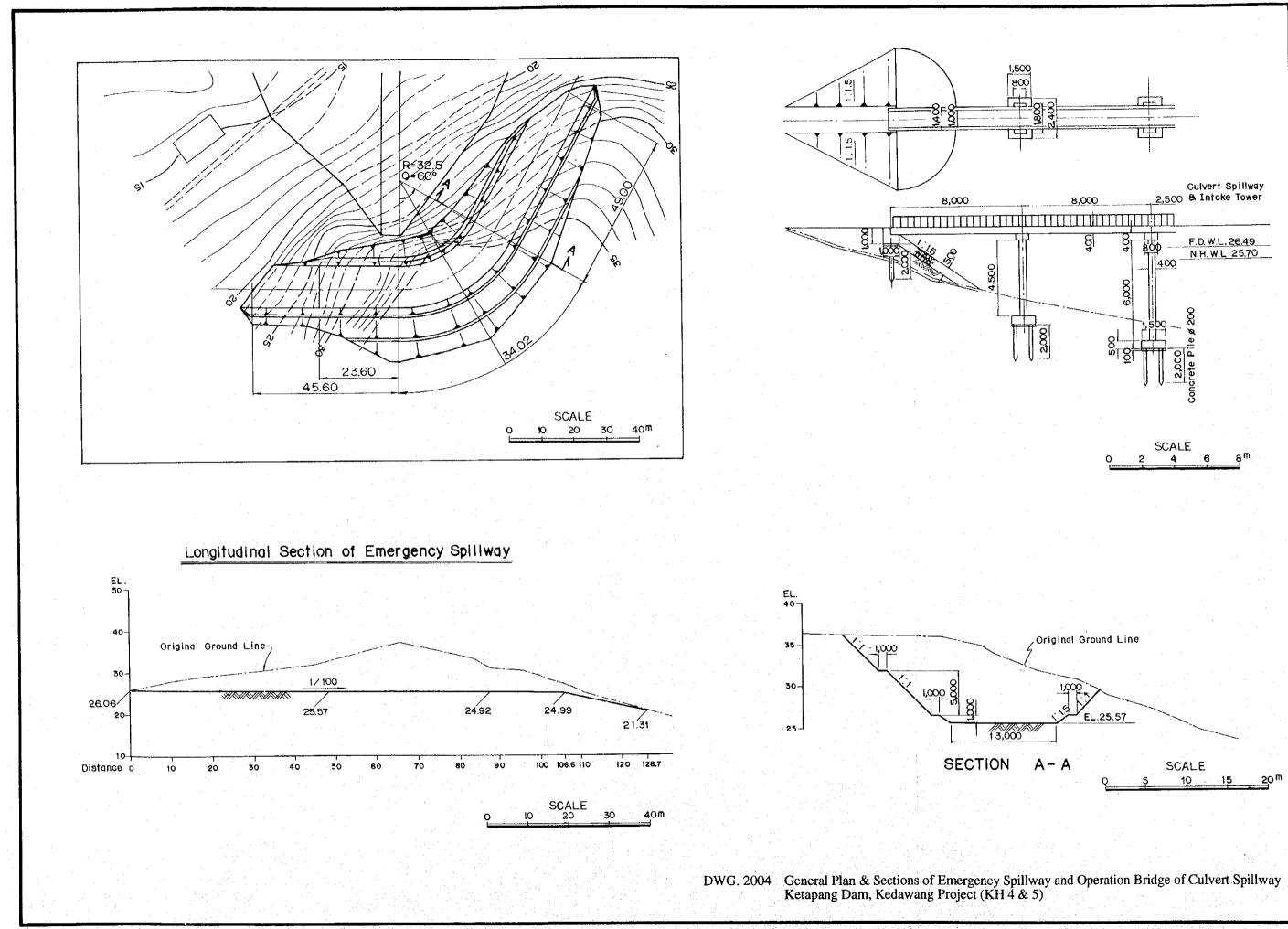

Trash screen	m2		508,4	0.0
Volute pump		 	4 000 0	<u> </u>
1.5 kw H 10 m Pump House	nos. m2		4,000.0	0.0
subtotal	1112		1,000.0	0.0
	· · · ·			
6 Pipe line	~ 2	216.0	4.5	1,425.6
Excavation for pipe line Backfill	<u>m3</u> m3	<u>316.8</u> 238.3	11.9	2,835.9
Sand bed		79.9	28.6	2,285.5
Reinforced Concrete	m3	0.4	509.7	203.7
Foundation Concrete	m3	0,1	113.1	7.7
PVC pipe				
dia. less than 75 mm	m	2,640.0	18.8	49,632.0
Sluice valve	nos.			0.0
subtotal				56,390.5
7 Canal & Drain Canal	. <u>.</u>	· · · · · · · · · · · · · · · · · · ·		
Stripping	m3	1,600.1	2.6	4,160.2
Excavation	m3	306.5	5.0	1,532.3
Embankment	m3	8,936.2	10.0	89,361.8
Drain		······		
Excavation B>5 m	m3	15,950,0	18.2	290,290.0
Excavation B<5 m	m3	0.0	6.1	0.0
Palated Structures				
Related Structures Reinforeced Concrete	m3	122.1	509.7	62,220.4
Foundation Concrete	m3	33.4	113.1	3,772.7
Concrete Pile dia. 200	m	0.0	127.5	0.0
Concrete Pipe			·····	n an
dia. 300	m	22.4	169.7	3,808.1
dia. 400	m	0.0	190.9	0.0
Sulice Gate	P 00	0.0	247.4	0.0
0.3m x 0.9m 0.5m x 1.3m	nos. nos.	1.0	753.5	753.5
1.0m x 1.3m	nos.	0.0	1,512.7	0.0
0.5m x 1.5m	nos.	0.0	869.5	0.0
dia.0.5m	nos.	0.0	229.0	0.0
Trush Screen	m2	0.0	508.4	0.0
Hand rail	m	0.0	40.8	0.0
Hard Wooden Gate	· · · · · · · · · · · · · · · · · · ·		1.045.0	<u> </u>
2.5m x 1.5m	nos.	0.0	1,245.9	0.0
Gabion subtotal	<u>m3</u>	66.4	188.6	468,429.5
συνισιαι		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
8 On-farm irrigation facilities				
(drip & Sprinkler facilities)	· .			
Upper Lembu area	ha	0.0	5,375.0	0.0
Ketapang area Land leveling	ha	10.0	5,375.0 4,347.0	53,750.0 53,468.1
Land leveling subtotal	ha	12.3	7,047.0	107,218.1
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
9 Rain shelter				0.0
Upper Lembu area	ha			0.0
Ketapang area subtotal	ha			0.0
SUPLOT		<u> </u>		
SUBTOTAL				3,486,287.2
Land acquisition cost	ha	2.1	330,000.0	689,700.0
			e o toto e professor Secondo e esta	
	Ш	- 34		

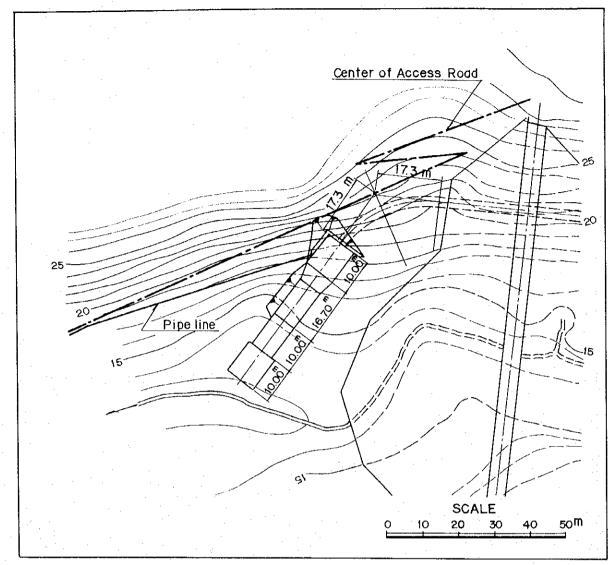

7 Physical Contingency		·
(15 % of Subtotal)		522,943.1
8 Engineering Cost		
(10 % of Subtotal)		348,628.7
9 Administration cost		
(5 % of Subtotal)	· · · · · · · · · · · · · · · · · · ·	174,314.4
TOTAL		5,221,873.4

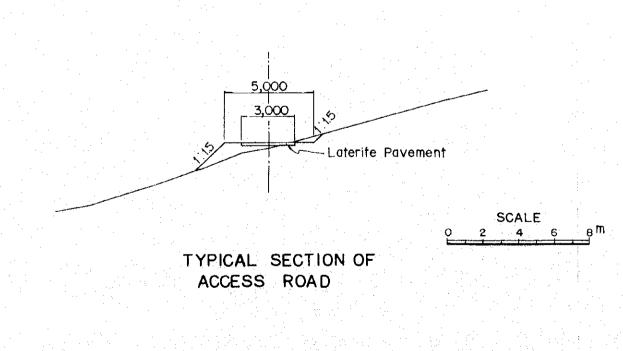




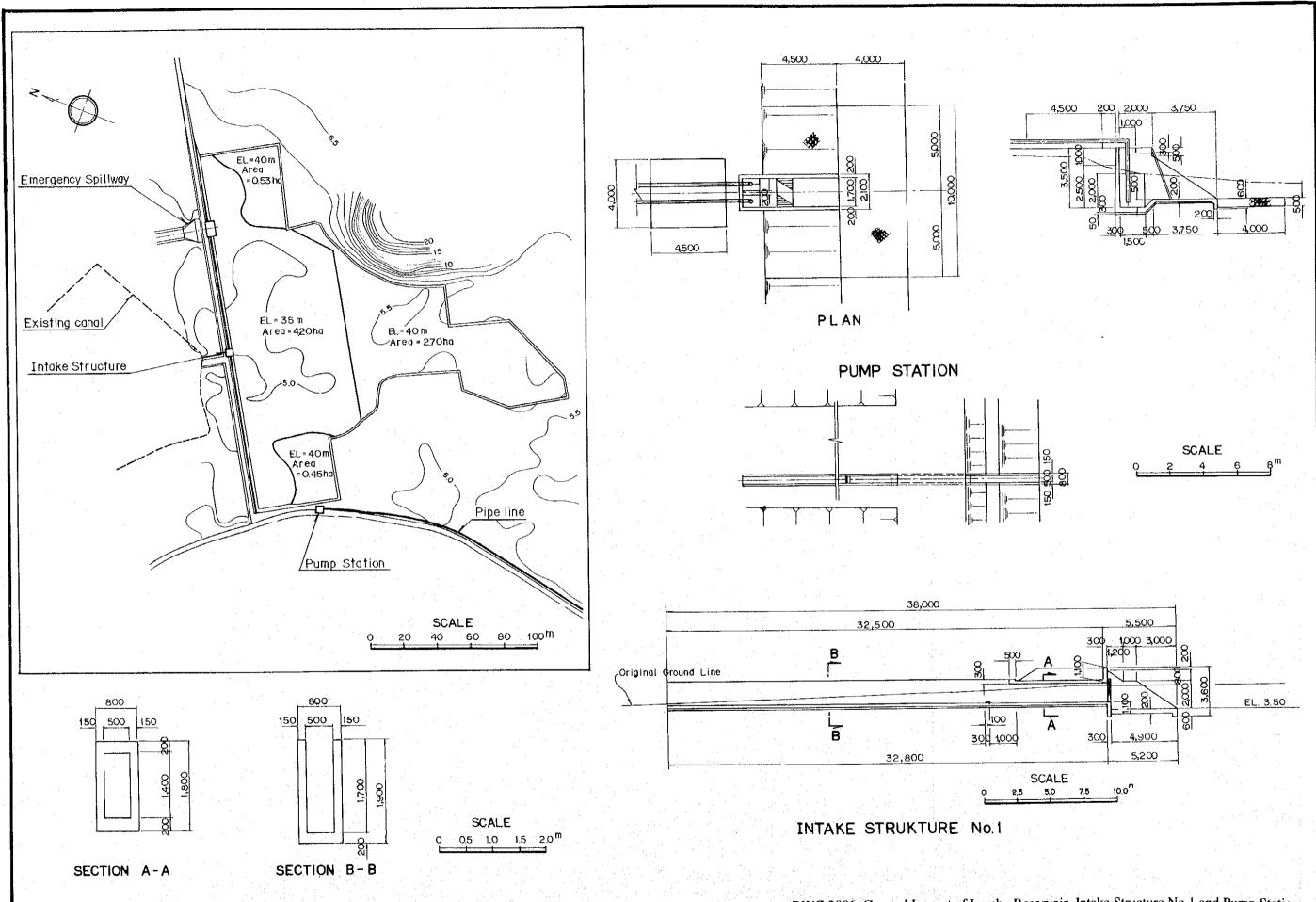


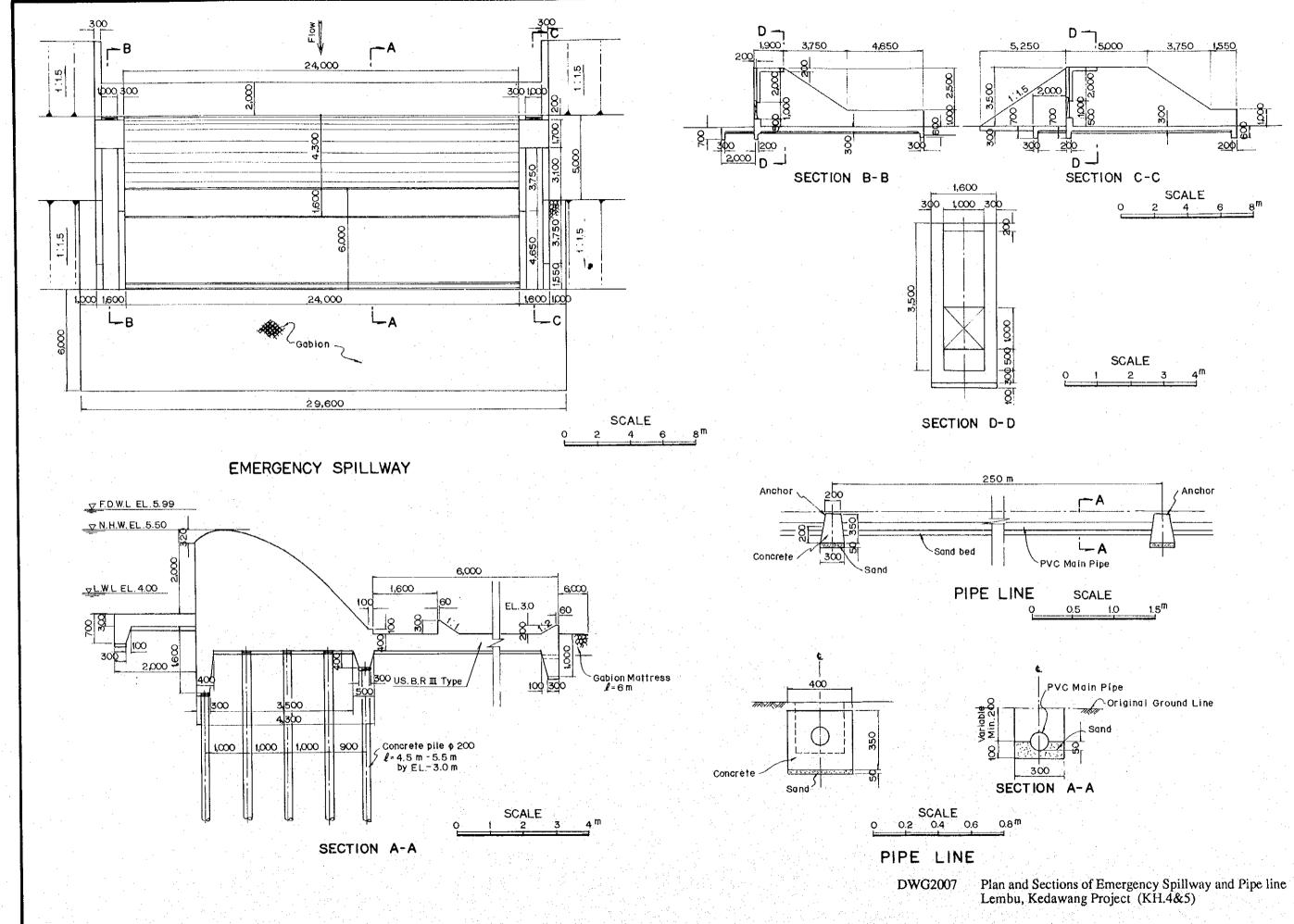


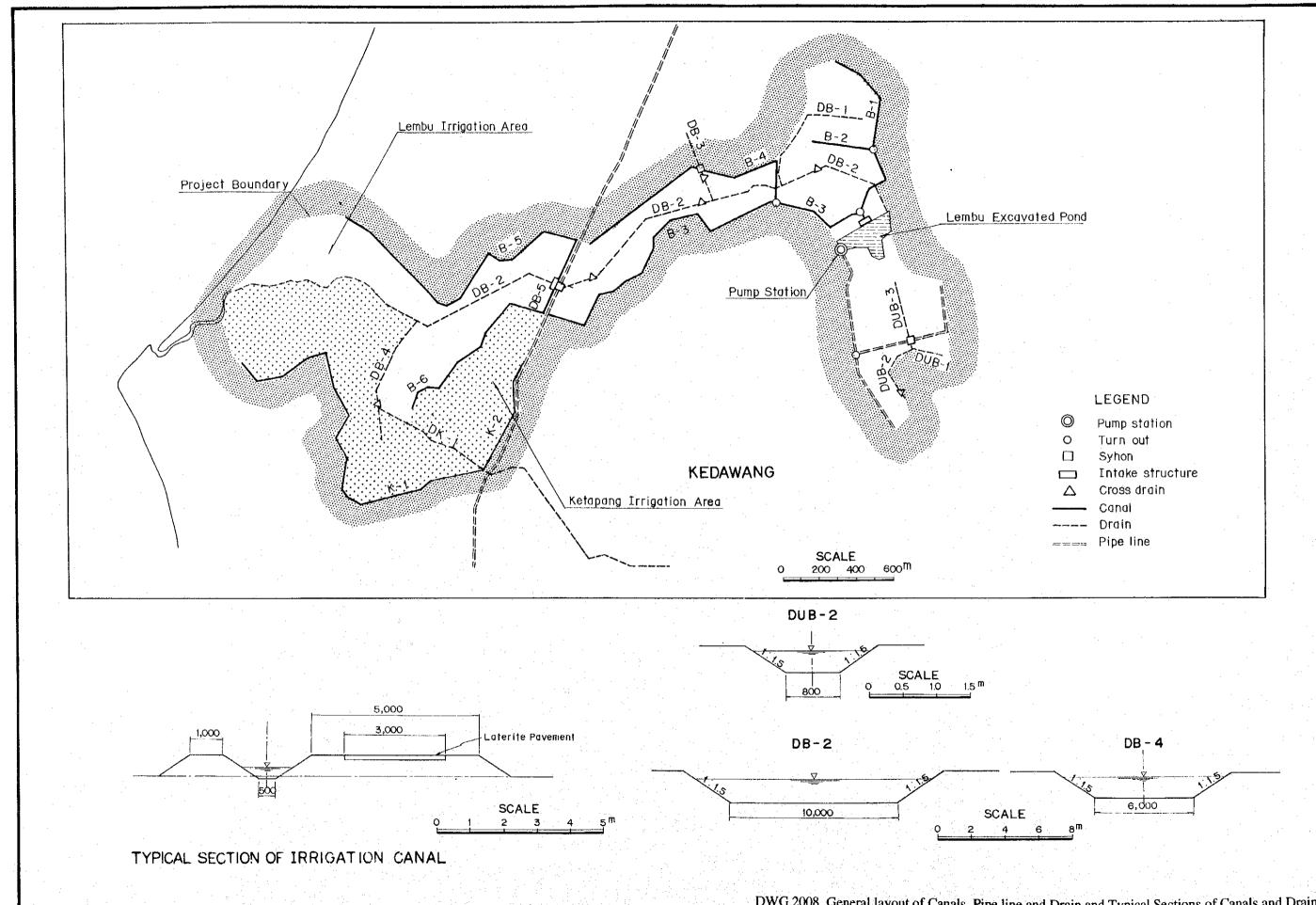




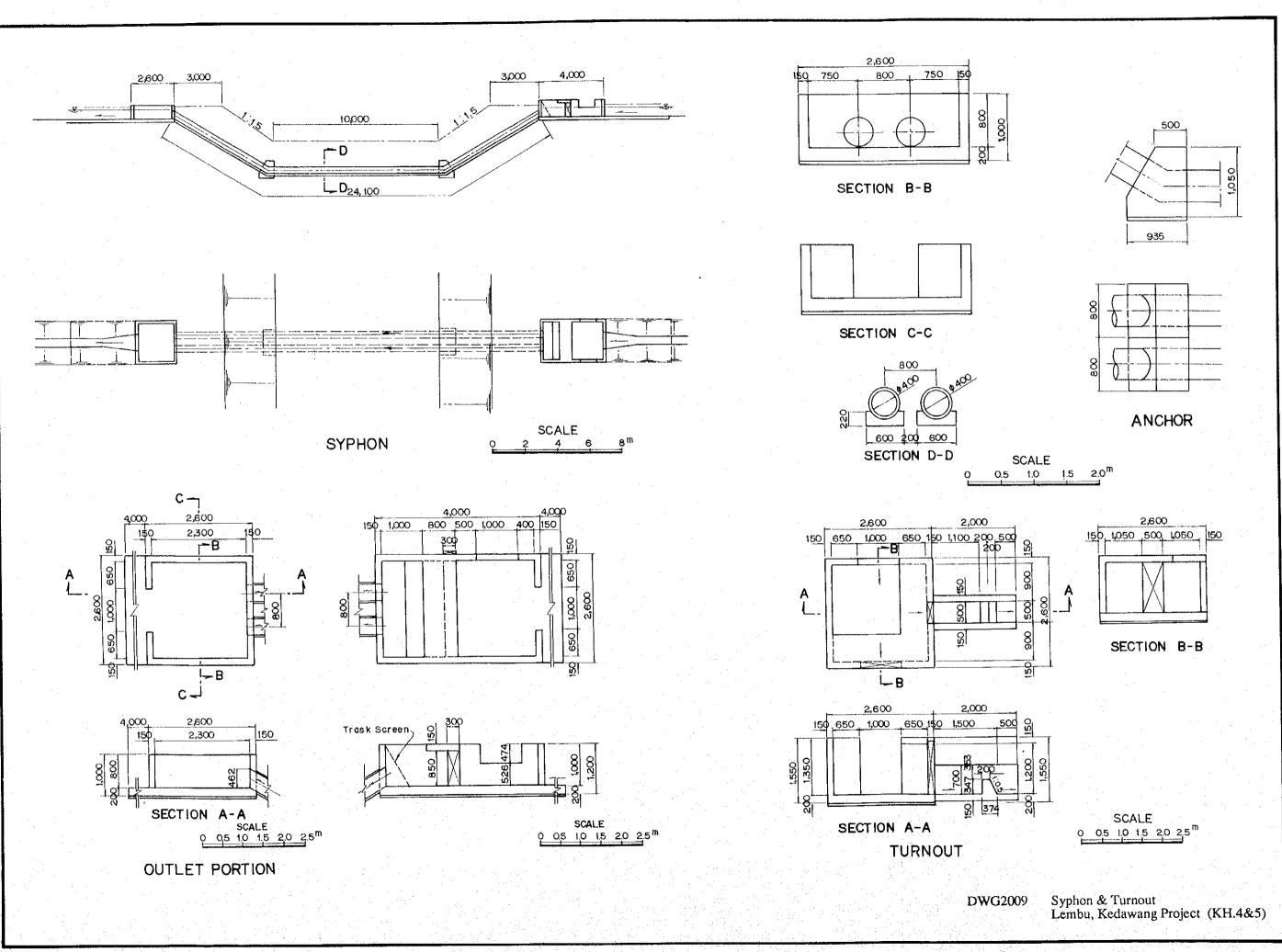
tiko solo tilo Toto

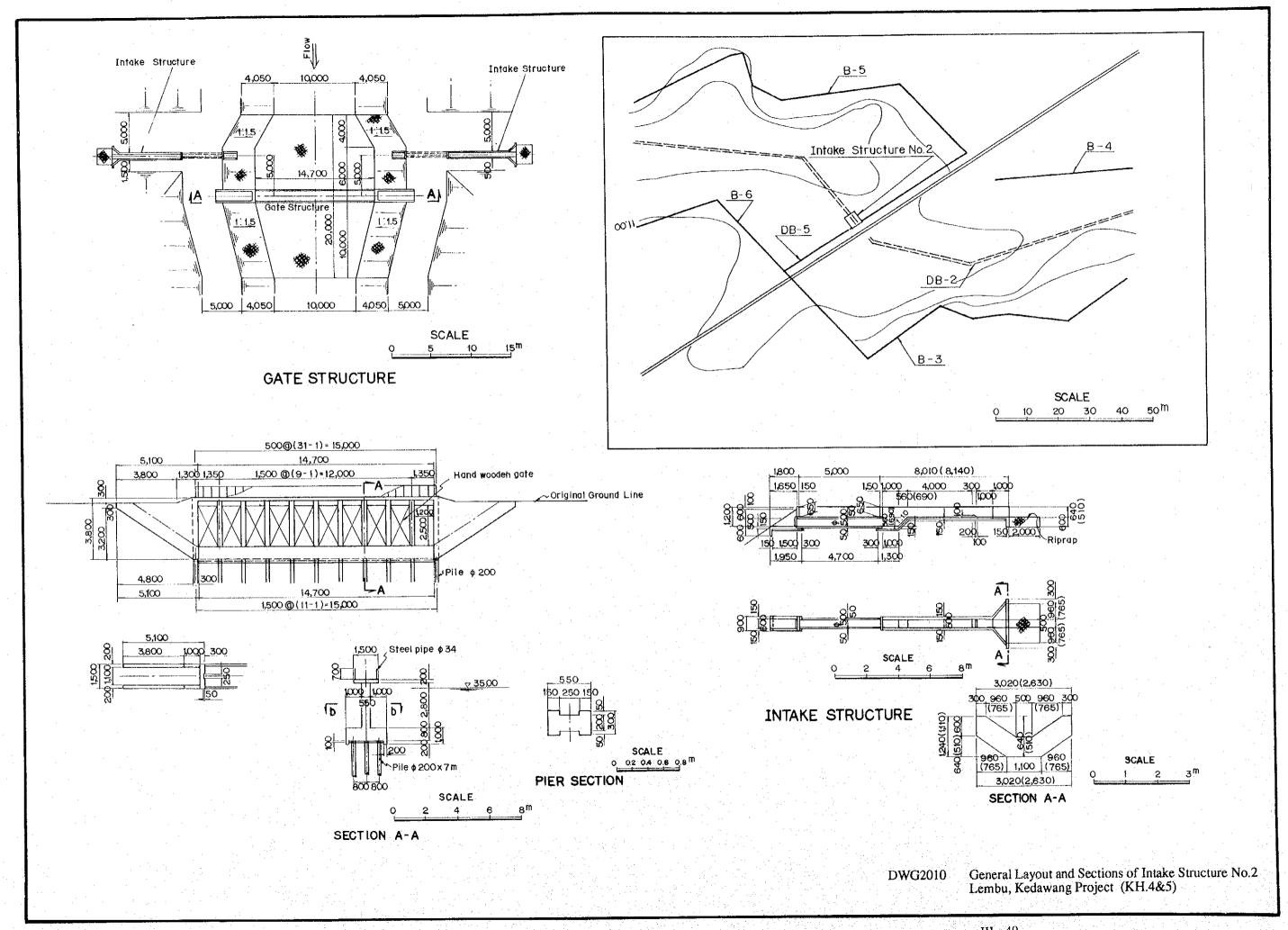


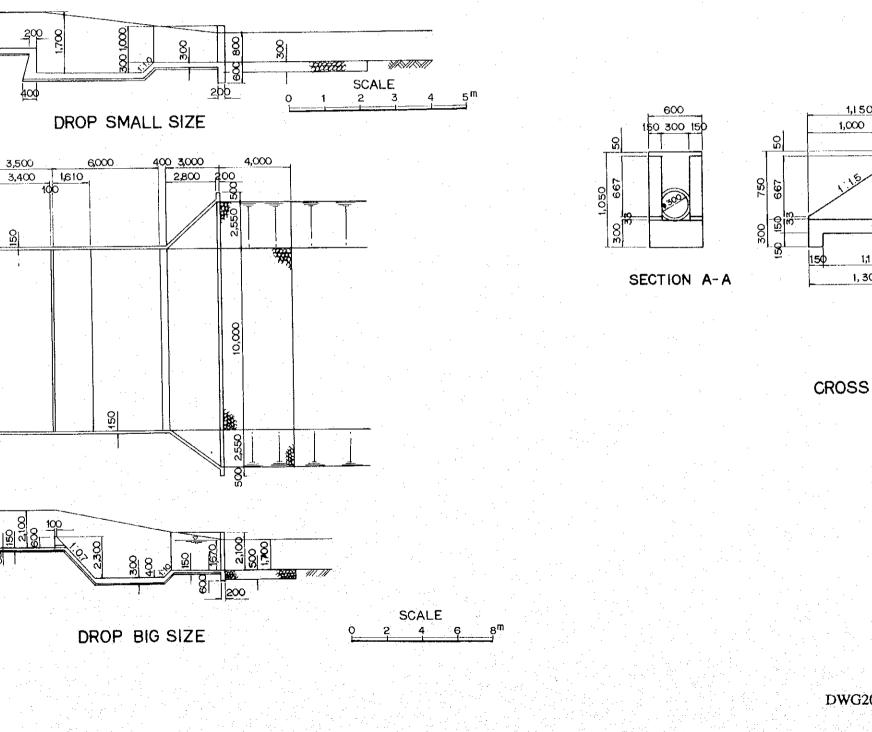

DWG2005

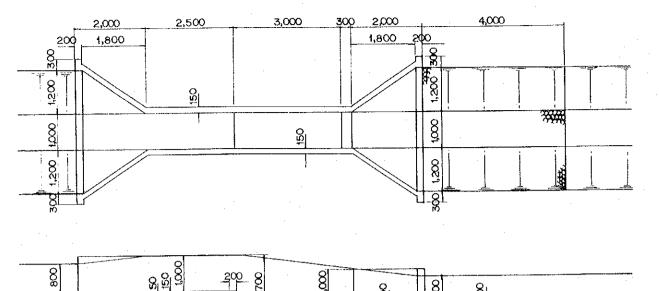

3 - 44

General Layout and Typical Section of Access Road of Ketapang Dam Kedawang Project (KH.4&5)


DWG 2006 General Layout of Lembu Reservoir, Intake Structure No.1 and Pump Station Lembu, Kedawang Project (KH.4&5)




DWG.2008 General layout of Canals, Pipe line and Drain and Typical Sections of Canals and Drains Lembu, Kedawang Project (KH 4 & 5)


Ô	Pump station
0	Turn out
	Syhon
	Intake structure
\triangle	Cross drain
<u> </u>	Canal
	Drain
	Pipe line

III - 49

8

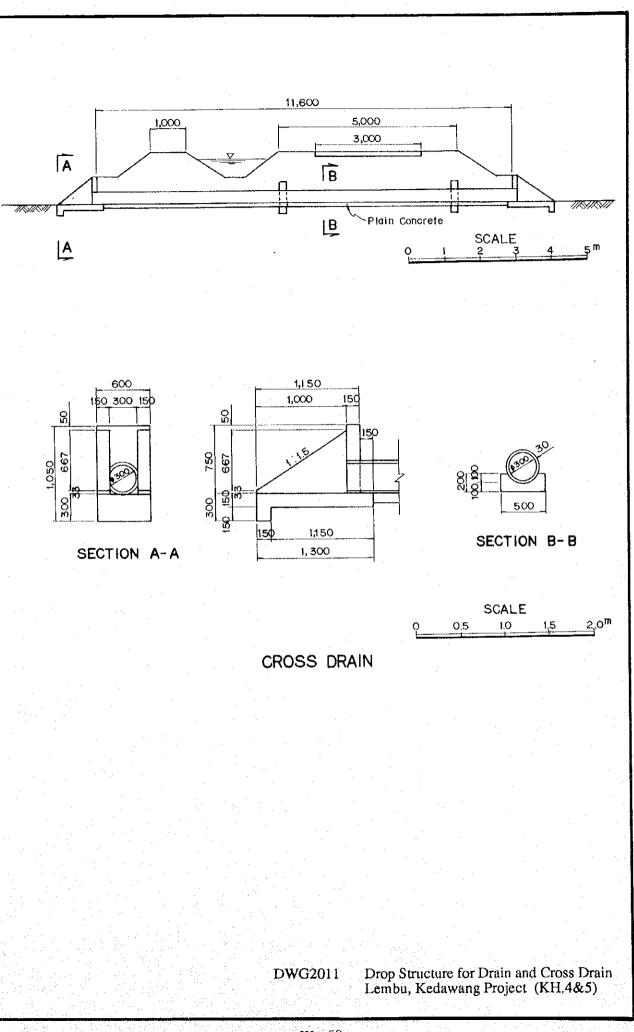
zdo

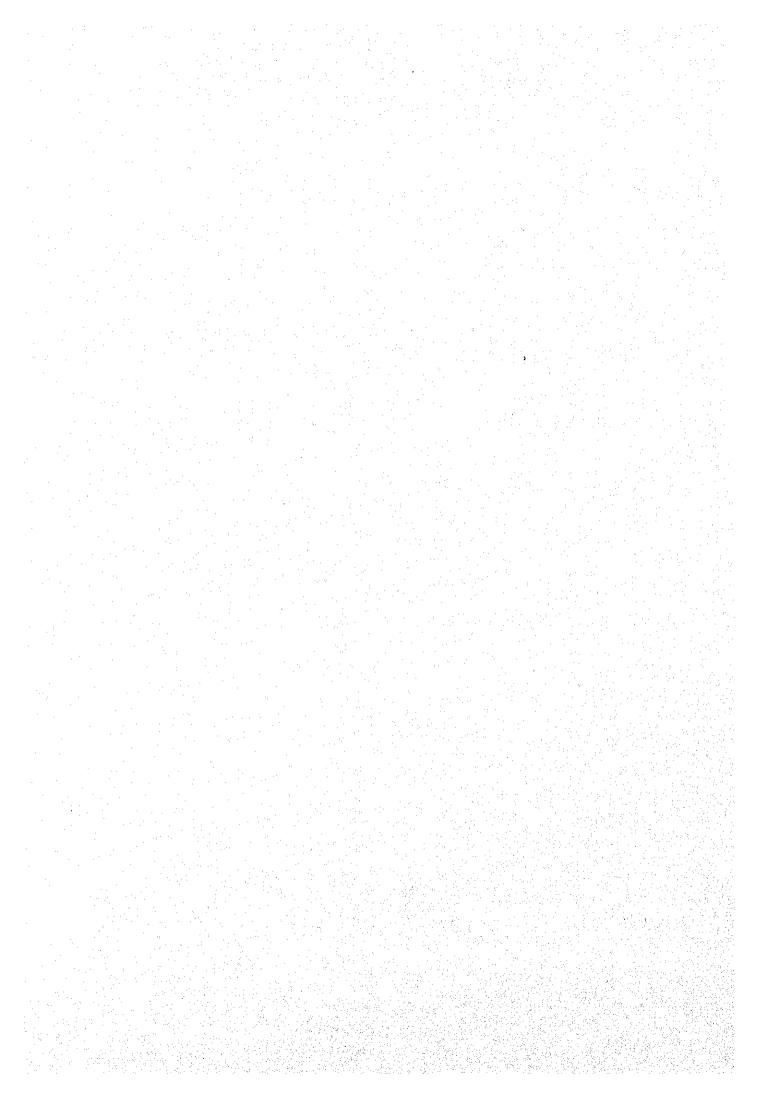
3,000

ß

0

2,550


10,000


2,550

<u>]</u>[200

20

¥//\$// ŝ

3 Bukit Sedanan Project (MA-16)

3.1 Present Condition

3.1.1. Project Area

The Project area is located in hilly areas with undulation about 10 km Northwest from Jasin town. Mentangor river, with a small watershed of about 2.4 km² flows out in a valley surrounded by irrigation areas. The irrigation areas are divided into FELCRA and MIADP areas and expand in the hilly slopes with a range from 10 ° to 30 °.

A resettlement program for sea fishermen is being implemented in the FELCRA area, and the MIADP area of about 240 ha is scheduled to implement a new agro tourism development program under the State Government's supervision. The FELCRA area is covered by an orchard experimental farm of 97 ha, and some areas are irrigated by the existing farm pond, a simple pipe line system, and a simple drip irrigation system. However, the majority of the areas require irrigation water to sustain the fine growth of orchard.

3.1.2 Irrigation and Drainage Facilities

The FELCRA area has existing irrigation facilities such as a mini-dam with a height of 7 m, a small reservoir of about 20, 000 m³, and a pump and simple pipe line system for a few hectares. On-farm irrigation is also carried out in some orchard areas and orchid house using drip irrigation system.

The MIADP area has no existing irrigation facilities.

3.1.3 Social Facilities

Since the resettlement project for sea fishermen has been implemented in the FELCRA area, social infrastructures in and around the FELCRA area, such as access and farm roads, electric distribution lines, domestic water supply facilities, and accommodation, have been constructed and are well maintained.

3.2 The Project

3.2.1 Background of the Project

FELCRA is currently implementing a resettlement program for fishermen and intends to up-grade the implementation program through the rehabilitation of existing irrigation facilities and the new development of an irrigation system and irrigation area, including a new water resources development, in order to successfully achieve the goals of the implementation program.

In the line with FELCRA' implementation program, Malacca Agriculture Integration Development Project (MAIDP) has a schedule to develop an agro tourism area on the oposite bank of FELCRA area. MAIDP 's agro tourism development program includes a new horticulture area, a deer farm, and a demonstration farm for agriculture research centres and/or institutes.

New water resource development for irrigation in both areas are requested.

3.2.2 Proposed Irrigation Area

FELCRA has planned an alternative program and schedule for its crop area, and detailed subjects are still being discussed at present. Therefore, the crop area for the water resources development is 36.9 ha of durian farm based on discussions among FELCRA, State DID and JICA Study Team during the Feasibility Study.

The proposed areas for durian cultivation are separated in 2 hilly areas 15.5 ha upstream from reservoir and 21.4 ha downstream of the reservoir, as shown in DWG 3001. Both areas expand in hill slope and have a more higher elevation than the surface water elevation of the reservoir.

MIADP is a horticulture area of 25 ha, and located on the left bank of the reservoir. The area expands in a hill slope with a higher elevation than the surface water elevation of the reservoir.

3.2.3 Irrigation Water Requirement

(1) Seasonal irrigation water requirement of durian and vegetable

Based on discussions with FELCRA, the State DID and JICA Study Team during the Feasibility Study, durian is adopted as typical type and /or kind of orchard for calculation of irrigation water requirement. Horticulture cultivation in MIADP area consists of general types and / kinds of vegetables for all seasons.

The irrigation water requirement for durian and vegetables are basically calculated following the procedure of FAO Irrigation and Drainage Paper No. 24, and the requirement for durian is also calculated to refer to MARDI's paper "Estimated water requirement of some Malaysian commercial fruit crops" in Prosiding Sinposium Buah-buahan Kebangsaan 1991. Potential evapo transpiration (ETo) is estimated at 1,354 mm / year by the modified Penman method, using meteorological data from Malacca airport station. The potential evapo transpiration for vegetable cultivation is estimated at 90 % of the above, because the cultivation method uses a rain shelter.

The crop coefficient of durian in FELCRA area is adopted as the highest figure during the mature growing stage, and vegetable crop coefficient is also high because the forecast of the selective type and kind of vegetable and cropping pattern will be difficult. Cropping patterns of vegetables are assumed as all season cultivation throughout each year.

Effective rainfall for durian is estimated by the USDA SCS method, using monthly rainfall. The effective rainfall for vegetable cultivation is not required because rain shelter facilities are used.

Irrigation methods are designed as drip irrigation for durian and drip and/or micro jet sprinkler irrigation for both the crops, and the overall irrigation efficiency adopted is 85 %.

The seasonal irrigation water requirement is 492 mm/year for durian under the drought year with a return period of 5 years, and 483 mm/year for vegetables. Detailed calculations of the irrigation water requirement are described in Table.3.3.1.

(2) Design irrigation water requirement for facilities

The design irrigation water requirement for durian is adopted as the peak irrigation water requirement based on the seasonal irrigation water requirement for

crops using a probable rainfall with a return period of 5 years. The requirement for vegetables is also the peak irrigation water requirement.

The peak irrigation water requirement for both Projects are calculated at 0.39 lit / sec / ha of durian and 0.42 lit./ sec / ha of vegetable, as shown in Table 3.3.1.

The design irrigation water requirements for irrigation facilities are calculated as follows, taking into consideration rotation of the irrigation water supply and the design conditions of the facilities.

The proposed irrigation areas of FELCRA are separately located in the 2 hilly slopes. Irrigation water supply for the 2 areas is applied the rotation system. For rotation of water supply, irrigation areas is broadly divided into two (2) sub irrigation areas, (i) the sub irrigation area located between EL 55 m and EL 70 m, and (ii) the other area between EL 70 m and EL 100 m.

The sub irrigation areas are further divided into unit irrigation blocks to be served by main pipeline lines, and the hectares of unit irrigation blocks range from 5.9 ha to 8.2 ha.

Irrigation water is scheduled to be supplied to one (1) sub irrigation area for 12 hours and the other sub irrigation area for the other 12 hours, during the peak requirement of irrigation water.

Using the above irrigation rotation system, the design irrigation water requirement for the facilities is 0.76 lit / sec /ha. The design discharge is 6.4 lit / sec of the main pipe line in the upstream area and 4.6 lit / sec to 10 6 lit / sec of 3 main pipe lines in the downstream area.

Since the location of the irrigation area is still being discussed in the MIADP area, the design concept for water supply is only to supply irrigation water to the farm pond located near the top of the hill by pump and pipe line. Therefore, design irrigation requirement for facilities is 0.42 lit / sec /ha, and the design discharge of main pipe line is 10.5 lit / sec.

3.2.4 Reservoir Operation Calculation

The reservoir operations of the Mentangor dam are calculated forhalf month periods based on the estimated runoff of the proposed dam site, the irrigation requirement, and water loss from the reservoir by seepage and evaporation, involving the effective storage of the existing farm pond in the FELCRA area. Reservoir operation calculations are made using runoff data from 1960 to 1990.

As a result of these calculations, the reservoir capacity to cope with the drought year with a return period of 5 years is clarified as follows :

Pilot Project/Reservoir	Type of Reservoir	Capacities(1,000 m3)
Montangor	Homogenous Earth fill D	Dam 230

The detailed calculation and explanation of reservoir operations are described in Table 3.3.2.

3.2.5 Water Resource Development Facilities

Water resources development facilities are basically designed using the draft design standard discussed between DID and JICA Study Team during Feasibility

Study, and design standards issued by the Ministry of Agriculture, Forestry and Fishery, Government of Japan.

The general lay out of the water resources development is shown in DWG 3001 and DWG 3002.

Dead storage of the reservoir is designed to be about 20,000 m3 which is the sedimentation volume for 30 years.

Based on reservoir storage volume curve, the low water level (L.W.L.), which is the surface elevation of sedimentation is determined EL 49.00 m. The reservoir storage volume curve is shown in Fig.3.3.1. Since the effective storage of the reservoir is 230,000 m3, normal high water level (N.H.W.L.) is EL 54.00 m.

The dam has a culvert spillway and an emergency spillway. The design flood discharge of the spillways is 12.7 m3 /sec of the 100-year flood, and the flood discharge is shared by both spillwayss, 4.3 m3 /sec of the 20-year flood discharge for the culvert spillway and the remaining 8.4 m3/ sec for the emergency spillway. The design flood water level (D.F.W.L.) is EL 55.20 m.

The freeboard of the dam and the thickness of the pavement at the crest of the dam are given 1.0 m and 0.3 m respectively, and the crest elevation of the dam is EL 56.50 m.

The top soils is designed to excavate to a depth of 1.0 m, based on geological information. The lowest elevation of the dam is EL 45.00 m. Therefore, the dam height is 11.5 m.

The dam is homogenous earth fill type with a horizontal drain of 1.5 m thick laid at EL 45.00 m.

Slopes of the dam are designed to be 1 : 3.0 upstream and 1 : 2.5 downstream. Stability analysis of the dam slope is made using geological data obtained through the boring and soil mechanical test. The analyses are made for the three (3) cases, (i) full water storage case with normal hight water level, (ii) sudden draw down case from N.H.W.L. to L.W.L and (iii) no storaged case. The result of the stability analyses are shown below (refer to Fig. 3.3.2 to Fig. 3.3.4).

Case / Slope	Type of Stress	Min.S.F.
Full Water Storag	e	
upstream	effective stress	2.35
downstream	effective stress	1.45
Sudden draw dov	<u>nv</u>	and the second
upstream	effective stress	1.85
No storaged		- -
upstream	effective stress	2.12
downstream	effective stress	1.89

The stability analyses are made as sample calculations for the dam design based on the current geological data obtained in the feasibility study. The geological data are still insufficient for the detailed design of the dam.

On the other hand, since the proposed dam site could be subject to landsliding in regard to the topography, further geological investigation, especially data & information of the foundation layer and soil mechanical tests, shall be carried out for future design of the dam. Stone covering with a thickness of 0.8 m at the upstream slope of the dam, sod facing on the downstream slope, and laterite pavement at the crest of the dam, are designed to prevent erosion.

Seepage water loss from the dam body and foundation are also examined using geological data of the foundation. Daily seepage loss from the reservoir is estimated at about 100 m3/ day, equivalent to 0.045 % of the storage capacity of the reservoir. Since daily seepage loss is less than the allowable ratio of 0.05 %, a blanket of impervious soils is not designed in the bottom of the reservoir.

The emergency spillway is a grass spillway designed to be placed 10 m apart on the original hill portion of the dam embankment body. The spillway has a low channel of rectangular section. Height and width of the low channel are 1 m and 8 m, respectively, and the inside slope is 1 : 1.5.

The culvert spillway has a drop type inlet in the tower section and one (1) box type barrel. The barrel is designed to be placed on, and varied in, the original hill slope. The culvert spillway has an operation bridge which is designed to give the access from the right bank side of the dam. It is a T beam bridge, 20 m in length.

An access road to the dam is laid in the hill slope of the left bank. It is designed to have laterite pavement 3-m wide, and the maximum longitudinal slope of the road is 5 %. Total length of the access road is 260 m.

Design of major structures are illustrated in DWG.3002 to DWG. 3005, and salient features of these facilities are described below.

Montangor Dam and Reservoir

Reservoir

Total storage capacity Effective storage capacity Dead storage capacity 250,000 m3 230,000 m3 20,000 m3

Dam

Type of dam

Height of dam Crest width of dam Length of dam including grass spillway Dam slope upstream downstream Crest elevation of dam Deign flood water level Normal water level Low water level Homogenous earth fill and Horizontal & toe drain 11.5 m 5.0 m

246 m

1 : 3.0 1 : 2.5 EL 56.50 m EL 55.20 m EL 54.00 m EL 49.00 m Emergency spillway Type of spillway Design flood discharge Base elevation of chute channel Total length Base width of spillway Inside slope of lower channel Gradient of channel Height of lower channel

Culvert spillway Type of spillway Design flood discharge Crest elevation of spillway Height of spillway Type of barrel Total length Incidental facilities Grass spillway (trapizoidal, chute type) 8.4 m3/sec

EL 54.54 m 212 m 8 m 1 : 1.5 1 / 200 1 m

Tower type (box type) 4.3 m3/sec EL 54.00 m 9 m box barrel 1.8 m x 1.5 m x 1 no. 88.5 m Operation bridge, total length 20 m of 3 spans

Access road Type of road Total length Width of road

Pavement road with laterite (w =3 m) 260 m 5 m

3.2.6 Irrigation Development Facilities

Irrigation development facilities are basically designed using the draft design standard discussed between DID and the JICA Study Team during the Feasibility Study, and design standards issued by the Ministry of Agriculture, Forestry and Fishery, Government of Japan.

The general lay out of irrigation development is shown in DWG 3001 and DWG 3006.

Irrigation areas of durian and horticulture are expanded in the hill slope with an average slope of about 10 °, and the areas are covered by agriculture forest and virgin forest. These hill slopes also have many natural streams which function as drains during heavy rainfall, and orchard trees are planted apart from these stream. Therefore, evacuation of exceeding rain water from the irrigation area is entrusted to natural steam, and a special drainage system is not designed.

The irrigation system in the Project area is a pump and pipe line system for durian & vegetable cultivation. Since irrigation areas are scattered in the 3 hill slope areas, 3 irrigation systems consisting of pump, main pipe line and/or farm pond are designed.

For durian areas, FELCRA use the pump and main pipe line system, and irrigation rotation is made 2 times/day during the peak irrigation as mentioned above. MAIDP area has a pump, main pipe line, and farm pond system, and rotation irrigation is entrusted to the operation method of the farm pond.

Since the irrigation area of durian and horticulture are expanded on hill slopes with a wide range of elevation, from EL 55.00 m to EL 100.00 m, the required water head of pump including suction head of pumps vary also widely.

The design discharge of the pumps and main pipes vary from 0.36 m3/min to 0.64 m3/min, and the maximum sunction head of the pump is about 8 m, by the L.W.L of the reservoir.

Taking into consideration the elevation of the irrigation area and the design discharge & suction head of the pumps, a submergible pump is selected for the Project. The required number of pumps are as follows, including one (1) unit for standby.

Pump Station	D.discharge (m3/min)	Max. Head (m)	Unit of pump (nos.)
FELCRA area			
Upstream/			
Station No.1	0.39	50	
	0.35	20	1
Downstream/		1	
Station No.3	0.64	30	2
	0.36	20	1
MAIDP area	1. 1.	· .	
Station No.2	0.62	30	2

Since the water head of the pipe line is about 20m to 60 m, and the majority area has a gentle topographical slope of about 10 °, high quality grade PVC pipe is designed. The design velocity of the pipe ranges from 0.7 m/sec to 1.1 m/sec, and diameter of pipe is selected from 60 mm to 120 mm.

The occurrence of water hammer in the main pipe line is not studied because the topographical maps are not sufficient scale, but since hill slope is less than 10° , and there is little radical undulation, water hammer in the pipe line is not expected to occur.

Design of typical structures are illustrated in DWG.3007 to DWG.3008, and salient features of these facilities are described below.

Irrigation area

Pump station

Pump(Submergible pump) 2.5 kw (h=20 m) 4.0 kw (h=30 m) 7.0 kw (h=50 m)

Pipeline

Farm pond On farm facilities 61.9 ha (durian 36.9 ha in the FELCRA area, and vegetable 25 ha in the MIADP area)

3 sites (FELCRA area 2 sites, MAIDP area site)

2 units 4 units 2 units

PVC pipe line, FELCRA area 3.6 km and MIADP area 0.2 km I site (MIADP area), 300 m3 Drip irrigation facilities 61.9 ha

3.2.7 Necessary Infrastructures for the Project

The state road located about 500 m down stream from the Mentangor dam has a small culvert. In the line with the construction of the dam, a new culvert with a capacity to release flood discharge of 12.7 m3/sec is designed.

Demolishing and reconstruction of existing culvert

1 no. new box culvert of 9 barrels H 1.5 m x W 1.5 m x W 8 m

3.2.8 Construction Plan

A mechanical construction method will be applied to the construction of the Project. Major structures for construction are the Mentangor dam and related structures, a pump station, and a farm pond.

Diversion works of river flow during construction of dam will be entrusted to the culvert spillway. Prior to the commencement of the embankment of the dam, construction of the barrel portion of the culvert spillway shall be completed. The construction program of the dam body is scheduled to start from both hillsides to the centre of the dam.

The main construction volume for the embankment of the dam body and the excavation of the emergency spillway of the Mentangor dam and concrete work of the culvert spillway. are roughly estimated at about 55,000 m3 of embankment, about 33,000 m3 of excavation, and about 500 m3 of concrete works.

Taking into consideration the above construction volume, the construction schedule is assumed at 9 months, consisting of 1 month for mobilisation, preparatory work, and demobilisation periods, and 8 months for the construction period.

3.3 Estimate of Project Cost

3.3.1 Unit Price Analysis

Unit prices of the respective works of the project are estimated by up-dating the bidding prices of similar works in Malacca, and using the Government price schedule issued in 1993, and the annual inflation rate of commodity issued by the Central Bank of Malaysia. The unit prices of these works are estimated at 1994 price levels.

Reference data of bidding prices for similar works of other projects are as follows:

- 1) Sng. Melaka Flood Alleviation project 1992,
- 2) Pipe line project Tannga Batu 1990,
- 3) Bkt Bakul Melaka Pindah Pipe line project 1994
- 4) Bkt Asu reservoir -Petronas Pipe line 1990

The updated unit prices of the respective works are shown in Table 3.3.3.

3.3.2 Estimate of Quantity

All quantities are estimated, based on the design mentioned above. The quantities estimated are shown in Table 3.3.4.

3.3.3 Estimate of Construction Cost

Total construction cost consisting of direct construction cost, land acquisition cost and physical contingency is estimated at about RM 4,795,500 at 1994 price levels, as shown below.

Cost (RM) Bukit Sedanang Description 3,688,800 Direct construction cost 1 Land Acquisition Physical Contingency Engineering cost 2 0 553,300 368,900 <u>184,500</u> 3 4 Administration cost 5 Total 795,500 4

Physical contingency is assumed at 15 % of direct construction cost.

The detailed costs are shown in Table 3.3.4.

Table 3.3.1 Irrigation Water Requirement of Durian and Horticulture

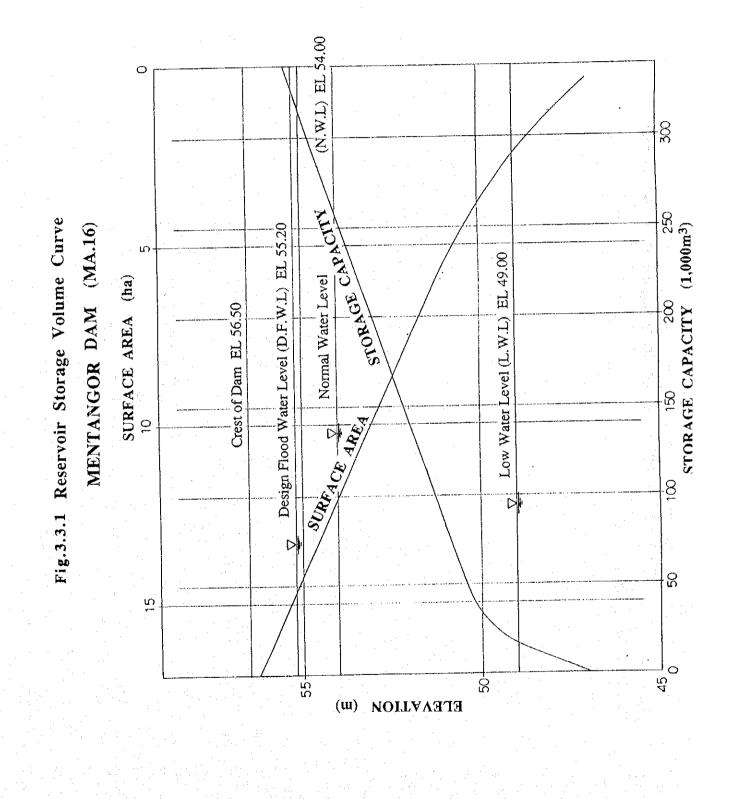
							100 million 100 mi																		
MA-16	(Jan(1)	Jan(1) Jan(2)	Feb(1)		Mar(1)	Mar(2)	Apr(1)	Apr(2)	Teb(2) [Mar(1)] Mar(2)] Apr(2) [May(1)] May(2) [Ume(2) [Ume(2) [Uny(1)] [M1y(2)] Aug(1)] Aug(2) [Sept(1)] Sept(2) [Sept(1)] Oct(2) [Nov(2)] [Nov(2)] [Sec(2)] Sec(2) [Sec(2)]	May(2)	U(L)anu	une(2) J	ıl (I)ylu	uly(2) A	Vug(1) A	ug(2) S	ept(1)Sc	D(2) 0	<u>e(1)</u>	ct (2) Nc	N(1) No	v(2) Dec	e E	ମ୍ମ	
EXISTING RESERVIOR (FELCRA MEM)		Ţ										-				-		+	-	╞		·		-1	
				- 13					~											COLOR COLOR	Concerned and	CODOCIONO CODO	DODOCODOC		
Durlen				러					STREET, STREET					No.					300337200	SAC AND AND					
· · ·															-+	-			_						
Horticulture (orchid & others)		000000000																							
	-			ļ		·				-1	-						-								
Chekin Farm	100000000000000000000000000000000000000	CONSTRUCTION OF					10000								1. S	1. State 1. State 1. State									
					-										-	-		-+	-	-	-				
NEW DEVELOPMENT															_	-							-	-1	
(FELCR A area)																-									
Durlan			10000000	CONSTRUCTION OF	10000000			000000000000000000000000000000000000000		0000000000	1000000000	1000000	an en al de la companya an	10000 200000	ilijaidaa laadusersa. sijusti	Name of Contract o	NEODERAL DE LA COMPANY	STATISTICS OF THE OWNER				Source and	CONTRACTOR OF		
									ſ	-			-	-	 .		-				 				
		Γ		ļ.					†	†-	+	 		-		-		-	-		-	╞		[
			- training		THE OWNER OF THE OWNER			COLORY DE LA CAL								Contraction of the local division of the loc	VALUE AND ADDRESS			Three and the second		The state of the s			
HOTIKUULUTE (OTCHIG & OLIVETS)																-			-						
	20.0	00	85.0	60.0	10.0	\$5.0	210.0	95.0	60.0	55.0	35.0	0.0	35.0	50.0	5.0	40.0	190.0	60.0	65.0	135.0	90.0	65.0] 7	70.0	0.0	1.320
				1	1.				1	Ī	ŀ	$\left \right $		ŀ	-		11	$\left \right $		·	1	1			
Perential Powertranenination	2.2	59.2	60.0	52.0	58.5	624	58.5	58.5	57.0	80.8	55.5	55.5	55.5	59.2	0.25	57.6	51.0	51.0	52.5	56.0	49.5 4	49.5 5	51.0	54.4	1334.6
		1			1	1		1	Ļ	ţ→· ļ	ŀ			╞	-				1		-	 			
Durian																									
Crop Coefficient (Kc)	0.85	0.85	0.85		0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85 0	0.85 0.	0.85 Average Kc 0.85	0.85
Crop Evapotranspiration (ET crop)	47.2	50.3	51.0	0 44.2	49.7	53.0	49.7	49.7	48.5 2.84	51.7	47.2	47.2	47.2	50.3	45.9	49.0		43.4					43.4 41		1134.4
Effective Rainfall	11.8				-	51.0	111.3	50.4	36.0	33.0	73.1	0.0	22.1	31.5	3.2	25.6	98.8		37.1	17.0	35.1 2	25.4 4	45.5	0.0	846
Net Irrigation Requirement	35	50	0	9	4	5	0	0	12	19	\$	47	ห	5	64	8	-	12	8	0	-	5	0	46	뵹
		~											+					-							
Irrigation Efficiency	0.85		0.85		0.85		0.85		0.85	-+	0.85		0.85		0.85	<u>.</u> 	0.85		0.85		0.85	_	0	0.85	
Conveyance Efficiency					_					-															٦
Application Efficiency					_		- - -						-			-		-	-	-	_	-	-		1
Gross Irrigation Requirement (mm)	\$	59	0	88	5	2	ö	0	-15	2	8	ঙ্গ	R	ព	8	a	0	4	~	•		ิล	0	54	518
										-		_	_	_							-	_	-		
Horticulture	1									·	_							Į	. 1	- [· ·]		
Crop coefficient (Kc)	0.80	0.80	0.80		0.80	0.80		1	0.80	080 0	0.80	0.80	0.80	0.80	0.80									Average Xc	<u>چ</u>
Crop Evapotratipitation (ET crop)	44.4	47.4	48.0		46.8	49.9			45.6	48.6	44.4	44.4	44.4	47.4	43.2	. (40.8		- 1		ļ		-		1067.7
Effective Rainfall	11.0	0.0	48.5	34.2	6.0	51.0	105.0	47.5	31.2	28.6	21.7	0.0	21.7	31.0	3.3	26.4		30.0	35.1	72.9	31.5 2	22.8 4	40.6	0.0	795
Net Irrigation Requirement	33	47	•	-			0	0	14	ଷ୍ପ	ព	4	ន	16	4	ล	0	F	7		8	21	0	44	416
									-		-	-		-	_								_		
Irrigation Efficiency	0.75		0.75	-	0.75		0.75		0.75		2.0		0.75		0.75		0.75		0.75	-	0.75	-	0	0.75	
Conveyance Efficiency								T		1	1	-	+	+	-	+	╉	+	-	-	÷	+	-	-	Τ
Application Efficiency	-	_						1		1	+	+	┥	-	-	-+	+	┥			+	+			T
Gross Irrigation Requirement (mm)	4	ŝ	0	101	54	0	0	0	19	27	00	\$	30	22	53	8	0	14	6	0	11	ផ	õ	58	554

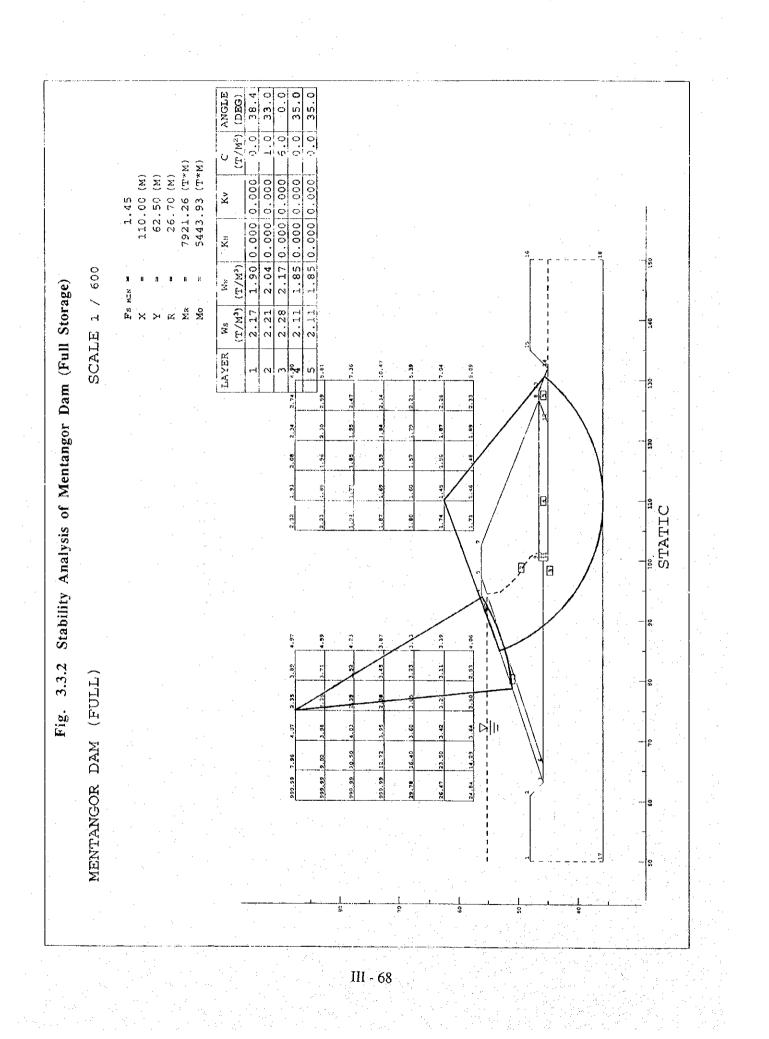
Bukit Sedanan Project

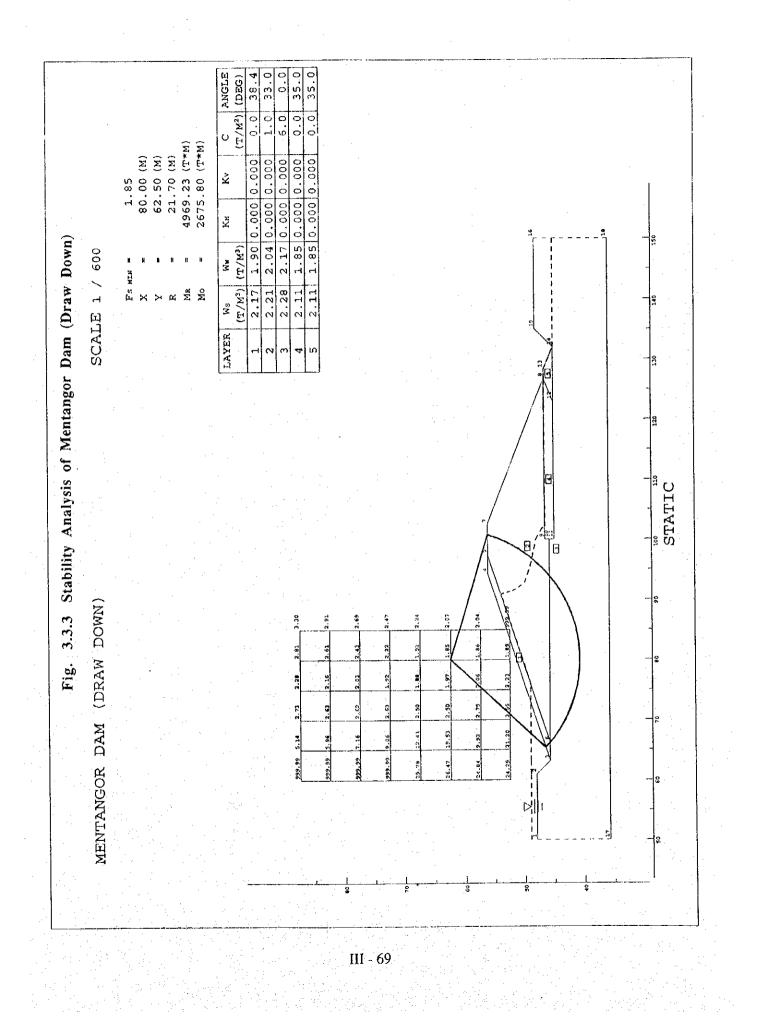
Ļ	ĺ								ĺ																	ı İ	•			1		
-0	(1)	0.052	0.05	230.0	230.0	230.0	230.0	230.0	230.0	230.0	230.0	230.0	230.0	230.0		230.0	7.0.0	230.0	1.84./	0.062	250.0	7 7 6 6	0.422	0.020	0000	0.007	0.067	122.0	221.6	230.0	230.0	
		230.0	1	- 1			230.0	230.0		ļ			1		20.0	230.0	0.052	230.0	078	230.0	230.0	0.000	250.0	230.0		0.002	0.007	2005	2002	0.02	1941	
(C)De		230.0	.	- 1	230.0	230.0	122.7 2	230.0	230.0	1	- 1			- 1			- 1	1	· 1	230.0					1	230.0	0.002	0.062	0.052		1	
NIV.		230.0 2	1		222.5 2	230.0 2	5.9 1	230.0 2	230.0 2		230.0 2	. 1	1		- 1		1	- 1	1			1	230.0	1	220.0	í	1	- 1	0.062		1	2000
-UNIO	011(2)1	230.0 2		230.0 2	163.1 2	230.0 2		230.0 2	Í .	230.0.2	230.0 2	- {	1	230.0		. 1				1	1	220.2	1		1	178.0	- I		1	0.020	1	20.0
<u> </u>	5(1)	230.0 2	152.9 1	230.0 2	107.8	230.0 2	1				155.9 2	J		1	52.8	÷ [1	1	.			. :	1						0.007	-	
-0.07	20(7)	230.0 2	186.7 1	230.0 2	0.8	230.0 2	1	1	ĺ		154.9 I		.]	230.0 2		1	230.0		·	. 1	i	1	- E		ĺ	1			1	0.062		
	or(1)sep	230.0, 2	192.1	230.0 2		230.0: 2	1	1			155.4									1			1	230.0	1	÷.			ł	230.0		
0.01	g(2)Set	230.0 2	218.0 1	223.6 2		230.0 2	1.		1		182.8 1	210.7 2	230.0 2	230.0	93.3	118.5	216.9 2	71.0	1		- 1	1		1		- 1	1	- !	1		6.117	
	g(1)Au	230.0 2	230.0 2				ļ.			1	İ.	ſ	228.3 2	159.1			192.4	30.4	125.0	218.9	1	1		230.0	- 1	- 1		2. L		- L	0.201	
-	y(2)Au	230.0 2		í -	1	1	1.				E.	-	[[117.2		197.5	ŀ I	10601	217.0			_ !	- i	i	1			1	. 1	31.4	
	y(1)Jul	156.5 2	1	· .	ļ.,		1.			1	1	1	1	77.2		114.6	200.1		69.4	230.0		i		_1		1				- 1		12.9
	le(2)Jul	105.1	230.0 2	1.	1	1	·	· .	0.050	1	1	t.	E		1	144.9	222.3	ľ.	67.3	228.1		230.0		212.7		230.0	198.8	Í	1	- 1		40.8
-	ie(1)Jun	45.3 1				Í									· ·	ł.	- I	!	78.6			230.0		230.0		230.0	230.0	228.8	- 1		175.4	517
	Aay(1)May(2)June(1)June(2)July(1)July(2)Aug(1)Aug(2)Sept(1)Sept(2)Oct(1)/Oct(2)INOV(1)NOV(2)Dec(2)De 2)Dec(2	69.4	I				4		1		1.1	T.	11	Ì.,	Ľ	1.		1	83.4		1 .	230.0		230.0					· · ·]	ł	207.3	103.2
	iy(1)Ma	86.7	_		1			1.	0.062				4	1	230.0	1	230.0	i	87.2		230.0	ł					i s	1		Ì		136 K
						0.000	1		-1	C-+17					1		220.0		55.4		1	1_	1	230.0		230.0			78.7	230.0	230.0	4 001
. <u> </u>	r(1)AI	25.9	11.	4.			- in		• 1	2 201			1	1.	1.	1	127 g	· 1	0.92		1.		1	230.0		_		1	1.67	230.0	230.0	0 03 .
	ar(2)Ai	1204 1264 1259		- Ł.		1		1.			107 1				1.		_		1	0.84	187.0	230.0	130.6	124.8	75.9	230.0	201.4	230.0	7.6r	227.3	230.0	
	ar(1)M	1204		10/.01		1	. i .	· } .	1	1	10101		· .	1		21/21	2 200 B CIC	1264	1 1	210		1	132.6	125.8	113.6	230.0	194.9:	230.0	85.0	212.9	230.0	0.001
	eb(2)M	1647		180.9			tel:	÷ I .		1		2004	· · ·		0 121		117.1		÷‡		174.9	179.4	166.1	127.0	153.4	230.01	202 4	225.8	106.4	204.5	149.2 230.0	
	eh(1)F	101 2	- 1 ·	19/0		136.5 114.2	230.0			230.0	0.0/1	6.977			2.24	1/1-2		2.0.0		2 001	1.101	178 4	172.2	143.8			230.0	230.0	139.2	208.5	149.9	
	Ian(1) Ian(2) Feb(1) Feb(2) Mar(1) Mar(2) Apr(1) Apr(2)				31.5	173.7	530.0	<u>: L</u>	225.8	230.0	2112	230.0	0.067			C 117		1	0.707			212 6	4 217	181.5	1.210	2017	0.050	0.050	179.9	207.3		
				14	61.5	196.8	1964 230.0	230.0	1966 230.0 225.8	1967 230.0 230.0	230.0		0.062	0.067	230.0	C-177	0.000	0.052 0.00 230.0	0.007		1.701	226.0	0.022	218.6	230.0	207.0					225.0	
			ŝ	1 8	1962	1963 1963	1961	<u>8</u>	9961	1967	- E		0.61	17/1	1972	5/61 1074		5/91		1/61	1070			1987	1083	1084	1085	1086	1987	1988	1989	
			-	16	m	∙ 4 [اد	v [2	*	6	2	=	2	[]	4	2	2	2[3	8	<u>a</u>	2	37	18	1	4 2	3 7	3 2	20	20	8	
لے : ر		ır.	بلی		<u> </u>		1			<u></u> 		<u></u> .		- - -	1		· · · ·			ा	II	- 6	51		نيم الي ا		-					•

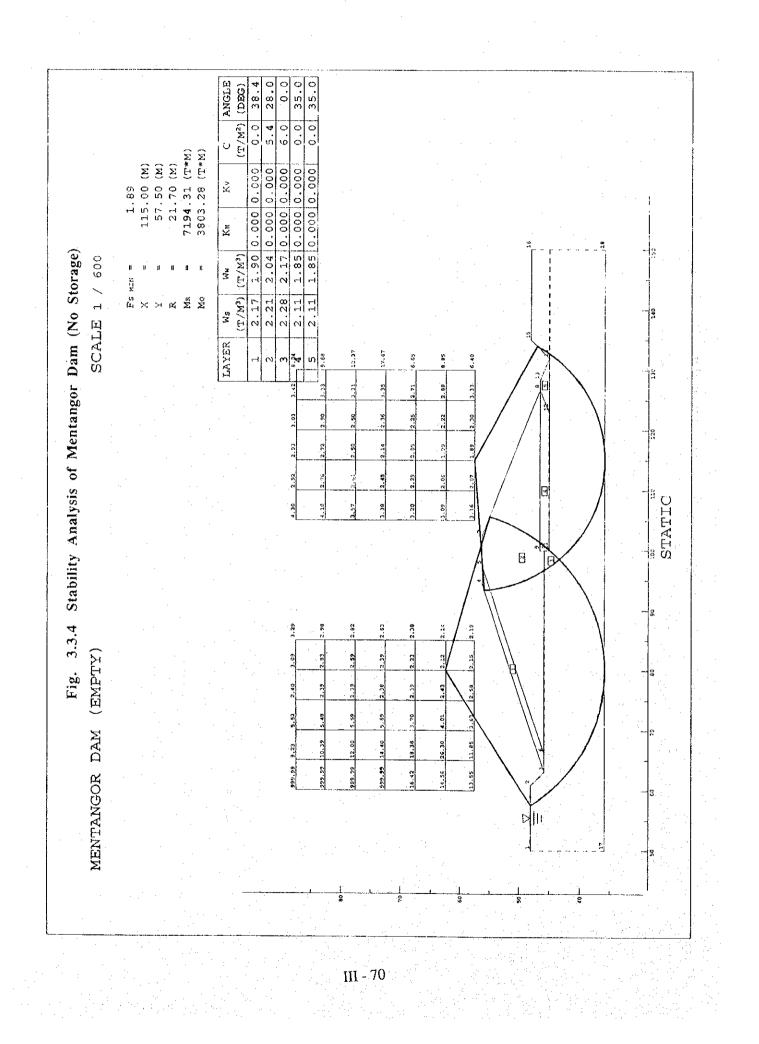
Description	Unit	Tender Price	Tender	Infration Rate	Up-dated	Adopted	Remarks
			Year	(%)	Price (RM)	Price (RM)	Data sources
1 Dam 1 and Floation of Dam Avie	q	1 000 0	1992	1 084	1 084 0		So Melaka Flood Alleviation Project
	5		1991		1.017.9	1.051.0	JPS Price List 1993 Average price
Stripping	m3	2.0	1992	،	2.2		Sg.Melaka Flood Alleviation Project
Excavation	ШЗ	8.0	- 1992	1.084	8.7		Sg.Meiaka Flood Alleviation Project
	m3	13.1	1993	*-	13.6	11 1	JPS Schedule of Rate 1993
Embankment	m3	28.7	1991	1 131	32.5		Sg.Melaka Flood Alleviation Project
Embankment for road	m3	34.0	1991	-	38.5	35.5	JPS Price List 1993
Stone Covering	m3	40.0	1991	1.131	45.2	45.0	JPS Price List 1993 Average price
Horizontal Filter Drain	en 1	30.0	1991	1.131	33.9	34.0	JPS Price List 1993 Average price
Toe Drain	m3	30.0	1991	1 131	33.9	34.0	JPS Price List 1993 Average price
Turfing	m2	2.0	1992		2.2		Sg. Melaka Flood Alleviation Project
		2.8	1991	1.131	3.1	2.6	JPS Price List 1993 Average price
Culvert Spillway & Operation	i Bridge						
	m3	2.0	1992	-	2.2		Sg. Melaka Flood Alleviation Project
		2.0	1993	1	2.1	2.1	JPS Schedule of Rate 1993
Excavation for canal &structures	s m3	13.1	1993	1 035	: 13.6	1	JPS Schedule of Rate 1993
		8.0	1992	1 084	8.7	11.1	Sq.Melaka Flood Alleviation Project
Backfill	m3	15.0	1991		17.0	17.0	JPS Price List 1993
Embankment	m3	10.4	1990	1.166	12.1		Pipe line project Tannga Batu 1990
		15.0	1991		17.0	17.0	JPS Price List 1993
Reinforced Concrete incl. form	m3	380.0	1992	-	411.9		Sg.Melaka Flood Alleviation Project
		470.0	1991	-	531.6		JPS Price List 1993
		490.0	1993		507.2	519.4	JPS Schedule of Rate 1993
Foundation Concrete	ш3 СШ	80.0	1991	-	90.5	90,0	JPS Price List 1993
Plain Concrete ind. form	m3	250.0	1992	-	271.0	. '	Sg.Melaka Flood Alleviation Project
	шЗ	240.0	1991	-	271.4	271.2	JPS Price List 1993
Concrete Pile dia. 200	E	90.0	1991		101.8	102.0	JPS Price List 1993
Gabion	Еш	0.06	1991	1.131	101.8	101.8	JPS Price List 1993 Average price)
Riprap	m2.	25.0	1992	1	27.1	27.1	Sg Melaka Flood Alleviation Project
Steel gate 1.5 x 2.0 m	set	2,850.0	1991	1.131	3,223.4	3,223.4	JPS Price List 1993
Other steel accessary(hand rail)	m.	0.06	1991	1.131	101.8	102.0	JPS Price List 1993
Emergency Spillway							
Evenination	5	0	1000		0.1		So Malaka Flood Alleviation Project

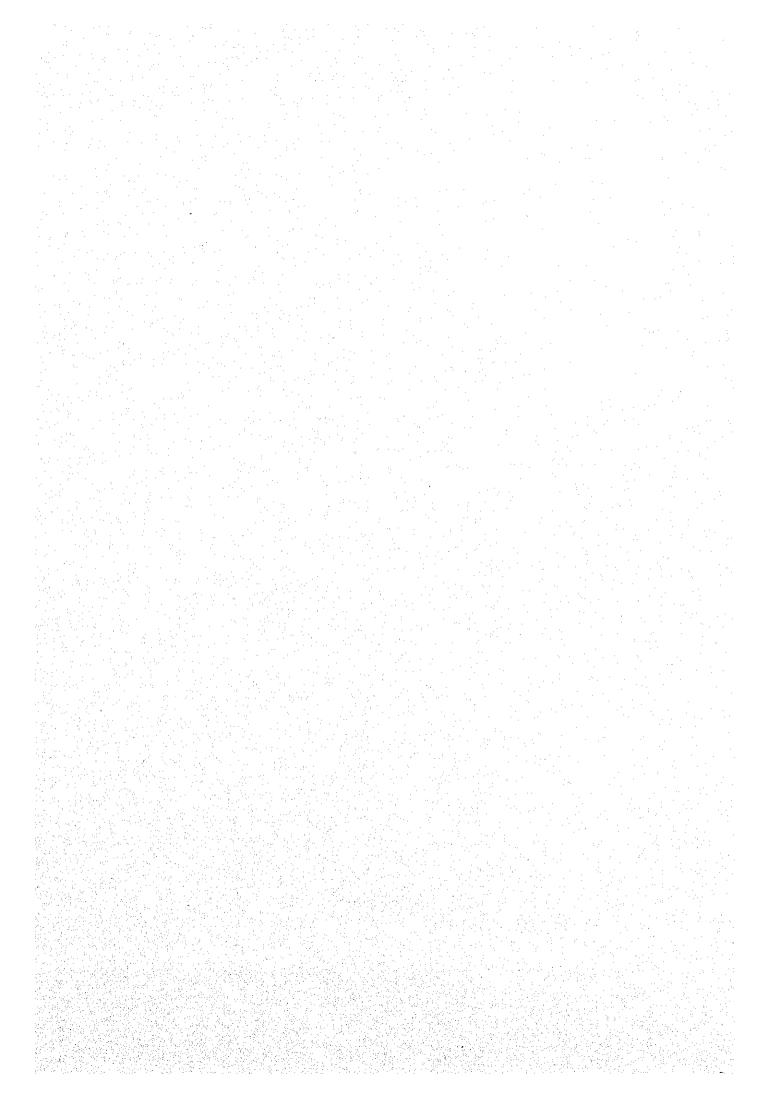
Plain Concrete		13.1	5881	1.035	13.0	~	UPO OCTIBOUIB OI FAIR 1990
	ВШ ВШ	250.0	1992	1.084	271.0		Sg.Melaka Flood Alleviation Project
		240.0	1991	1.131	271.4	271.2	JPS Price List 1993
Gabian	m3	0.06	1991	1.131	101.8	101.8	JPS Price List 1993 Average price)
	Ē	25.0	1992	1.084	27.1	27.1	Sg.Melaka Flood Alleviation Project
Acress Boad							
Excavation	θШ	9.3	1993	1.035	9.6	9.6	JPS Schedule of Rate 1993
Embankment	m3	10.4	1990	1.166	12.1		Pipe line project Tannga Batu 1990
		15.0	1991	1.131	17.0	17.0	JPS Price List 1993
Laterite pavement	m3	28.6	1992	1 084	31.0	31.0	Sg. Melaka Flood Alleviation Project
Pump Station		- 1				c	100 Sabadado at Data 1003
Excavation	шЗ	9.3	1993	1.035	9.6	a.o	
Stripping	m3	2.0	1992	1.084	2.2	2.2	Sq.Melaka Flood Alleviation Project
Embankment	шЗ	10.4	1990	1.166	12.1	!	Pipe line project lannga batu 1990
		15.0	1991	1.131	17.0	17.0	JPS Price List 1993
Backfill	m3	15.0	1991	1.131	17.0	17.0	JPS Price List 1993
Reinforced Concrete incl. form	m3	380.0	1992	1.084	411.9		Sg.Melaka Flood Alleviation Project
		470.0	1991	1.131	531.6	I	JPS Price List 1993
	-	490.0	1993	1.035	507.2	519.4	JPS Schedule of Rate 1993
Equindation Concrete	m3	80.0	1991	1.131	90.5	0.06	JPS Price List 1993
Trash screen	m2	444.4	1991	1:131	502.7	502.7	JPS Price List 1993
Pumos							
Tvoe 2.5 kw H 20 m	nos.	10,000.0	1994	-	10,000.0	11,000.0 *	
	. nos.	12,450.0	199.4	+-	12,450.0		-
	nos.	15,200.0	1994	T	15,200.0	16.720.0*	Supplyer's price
Pipe line							100 0-4 - 4 10 -4 0-4- 4000
Excavation for pipe	m3	6.3	1993	1.035	9.6	0.0	UPS SCREAUE OF ARE 1995
Excavation for anchor block	m3	15.0	1994	-	15.0	0.61	BKI DAXUI-MBIAKA FIRUARI FIPE IILIA FIU.
Backfill	m3	15.0	1991	1.131	17.0	17.0	JPS Price List 1993
Sand bed	е Е	20.0	1992	1.084	21.7	21.7	Sq.Melaka Flood Alleviation Project
Beintorced Concrete of anchor	m3	387.6	1990	1.166	451.9		Bkt Asu reservoir-Petronas Pipe line
		444.0	1991	1.131	502.2	477.0	JPS Price List 1993
PVC Pipe			-				
dia. less than 75 mm	٤	17.0	1992	1.084	18.4	18,8	Sg.Melaka Flood Alleviation Project
dia 100 mm	E	17 0	1991	1.131	19.2	26.9	JPS Price List 1993
dia 150 mm	E	22.5	1991	1.131	25.4	35.6	JPS Price List 1993
		0 80	1991	1.131	31.7	44.2	JPS Price List 1993

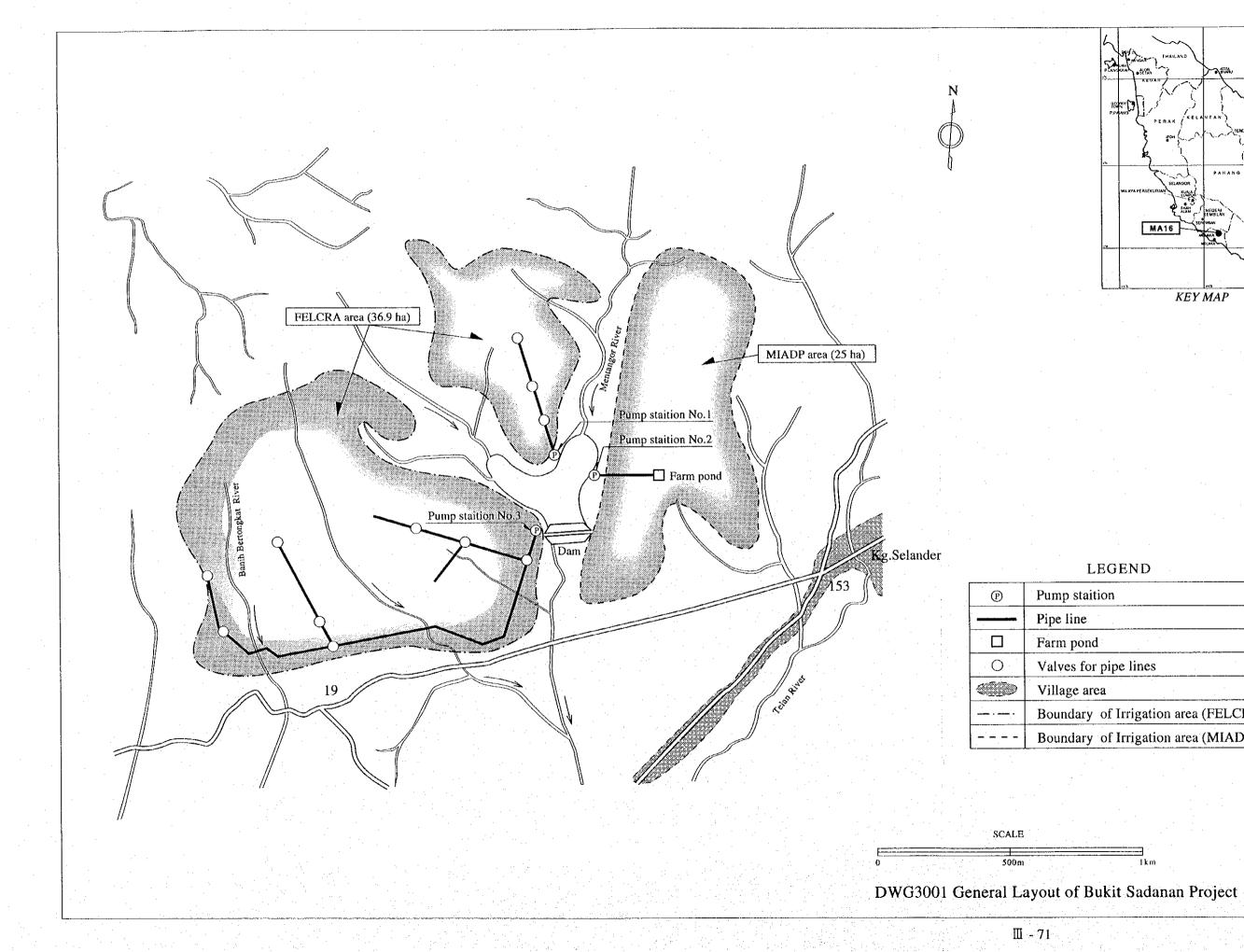

Sluice Valve	nos.	30.0	1990	1.166	35.0	35.0	Bkt Asu reservoir-Petronas Pipe line
Flange & valve	nos.			· · · ·			
		-					
Farm Pond		-					
Excavation	m3	6.9	1993	1 035	9.6	9.9 9.0	JPS Schedule of Rate 1993
Embankment	m3	15.0	1991	1.131	17.0	17.0	JPS Price List 1993
Stripping	m3	2.0	1992	1.084	2.2	2.2	Sq.Melaka Flood Alleviation Project
Reinforced Concrete	E E	436.0	1661	1.131	493.1	. 1	JPS Price List 1993
		464.0	1993	1.035	480.2	486.7	JPS Schedule of Rate 1993
Plain Concrete	e E	250.0	1992	1.084	271.0		Sg.Melaka Flood Alleviation Project
		240.0	1991	1.131	271.4	271.2	JPS Price List 1993
Sand bed	ш3	20.0	1992	1 084	21.7	21.7	Sg.Melaka Flood Alleviation Project
			· ·				ان . موجوع می از این از این از این از این از این از این این این این این این این این این این
Canal & Related Structures		-					
Reinforced Concrete	е Е	453.0	1991	1.131	512.3		JPS Price List 1993
		495.0	1993	1.035	512.3	512.3	JPS Schedule of Rate 1993
Plain Concrete	Em.	250.0	1992	1.084	271.0		Sg. Melaka Flood Alleviation Project
		240.0	1991	1 131	271.4	271.2	JPS Price List 1993
Excavation	m3 -	6.9	1993	1.035	9.6	9.6	JPS Schedule of Rate 1993
Embankment	m3	15.0	1991	1.131	17.0	17.0	JPS Price List 1993
Backfilt	m3	15.0	1991	1.131	17.0	17:0	JPS Price List 1993
Gate							
	-			•			
On-farm development							
Dria irriaation facilities	q	4.300.0	1994	.	4.300.0	4.300.0	4.300.0 ° Supplver's price

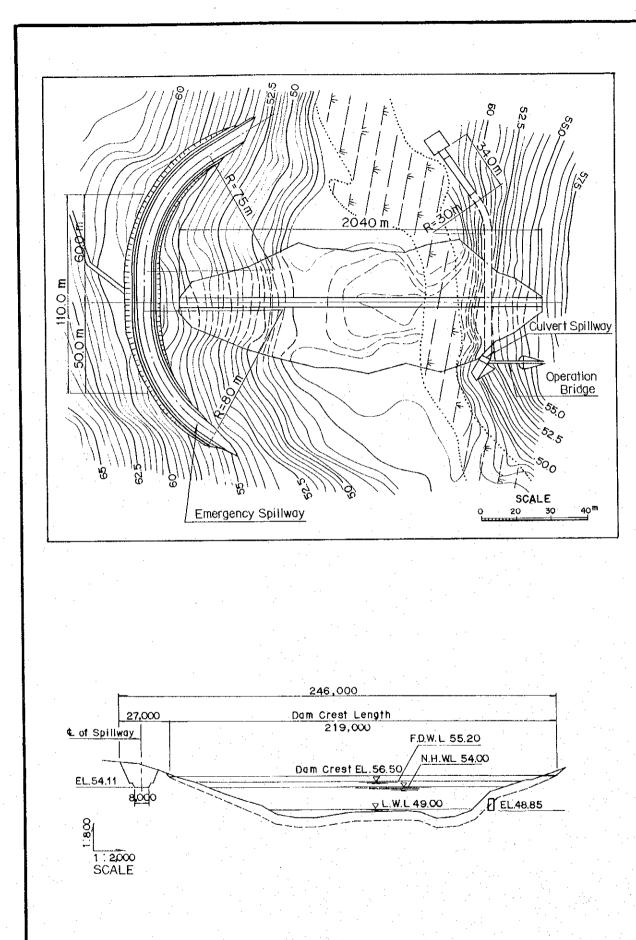

Table 3.3.4	Estimate	or Consti	uction Cost	
Work Item	Unit	Quantity	Unit Price(RM)	Amount(RM)
1 Dam and Reservoirs				· .
Land crearing	ha	3	1,051.0	2,838
Excavation	m3	24,233	11.1	268,986
Embankment	m3	54,934	35.5	1,950,157
Stone Covering	m3	3,600	45.0	162,000
Horizontal Drain Filter & To	oed⊨m3	2,050	34.0	69,700
Truting	m2	2,200	2.6	5,720
subtotal				2,459,401
2 Culvert Spillway & Operati	on Bridge			
Stripping	m3		2.1	
Excavation	m3	1,180	11.1	13,098
Backfill	m3	330	17.0	5,610
Embankment	m3	70	17.0	1,190
Reinforced concrete	m3	490	519.4	254,506
	m3	112	90.0	10,080
Foundation concrete		66	102.0	6,732
Concrete Pile dia, 200	m		101.8	10,180
Gabion	<u>m3</u>	100		6,446
Steel slide gate 1.5m x 2.		2	3,223.0	12,342
Other steel accessary(har	ndra m	121	102.0	
subtotal	· · · · · · · · · · · · · · · · · · ·			320,184
3 Emergency Spillway				·····
Excavation	m3	8,861	11.1	98,352
Plain concrete	m3	40	271.2	10,848
Gabion	m3 -	200	101.2	20,240
subtotal				129,440
4 Assess Dead		<u> </u>		
4 Access Road Excavation	m3	60	9.6	576
		40	and the second se	680
Embankment	m3 m3	900		27,900
Literite pavement subtotal		500	01.0	29,156
5 Pump Station			0.0	10.005
Excavation	m3	1,902		18,255
Stripping	<u>m3</u>	28		
Embankment	m3	220		
Backfill	<u>m3</u>	477		
Reinforced concrete	<u>m3</u>	136		
Foundation concrete	m3	19	90.0	
Trash screen	m2	58	5 502.7	27,498
Submersible pump				· · · · · · · · · · · · · · · · · · ·
2.5 kw H 20 m	nos.		11,000.0	22,000
4.0 kw H 30 m	nos.		13,695.0	54,780
7.0 kw H 50 m	nos.	. 2	2 16,720.0	33,440
Pump House	m2	() 1,000,0	
subtotal				240,016
C Dine line			· · · · · · · · · · · · · · · · · · ·	·
6 Pipe line Excavation for pipe line	m3	58	9.6	5,568
			4 15.0	
Excavation for anchor bl		36		
Backfill	<u>m3</u>			
Sand bed	<u>m3</u>	17		
Plain concrete	<u>m3</u>		3 477.0	1,401
PVC pipe			0 10 1	166.000
día. less than 75 mm	m	8,35		
dia. 150 mm	m	47		
Sluice valve	nos.	3	5 35.0	
subtotal				

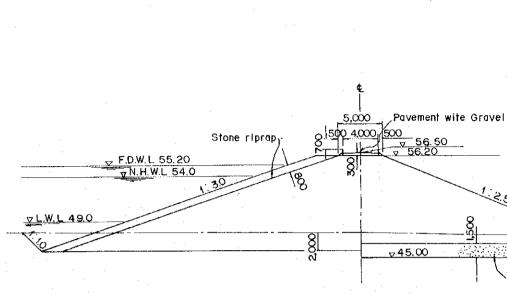

Table 3.3.4 Estimate of Construction Cost (MA-16)

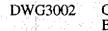

_


· · · · · · · · · · · · · · · · · · ·	1			
Farm Pond				
Excavation	m3	350	9.6	3,360
Embankment	m3	45	17.0	765
Stripping	m3	12	2.2	26
Reinforeced Concrete	m3	35	486.7	17,035
Plain Concrete	m3	13	271.2	3,526
Sand bed	m3	11	21.7	239
subtotal				24,950
On-farm irrigation facilities			· · · · · · · · · · · · · · · · · · ·	
(drip & Sprinkler facilities)	· · ·	1		
FELCRA area				
Durian	ha	44	4,300.0	190,404
MIADP area	ha	25	4,300.0	107,500
subtotal	·····	•		297,904
		· · · · · · · · · · · · · · · · · · ·	and the second	
Rain shelter		· ··· · · · · · · · · · · · · · · · ·		· · · · ·
FELCRA area	nos.	0	0.0	0
MIADP area	nos.	0	0.0	0
subtotal			· · · · · · · · · · · · · · · · · · ·	0
	· · · · ·	···	· · · · · · · · · · · · · · · · · · ·	S
SUBTOTAL			· · · · ·	3,688,767
Land acquisition cost	ha	0		0
Physical Contingency				
(15 % of Subtotal)		· .		553,315
		and the second		
Engineering Cost				
(10 % of Subtotal)				368,877
		· ·		
Administration cost	5 A		- 11	
(5 % of Subtotal)				184,438
	: 1			





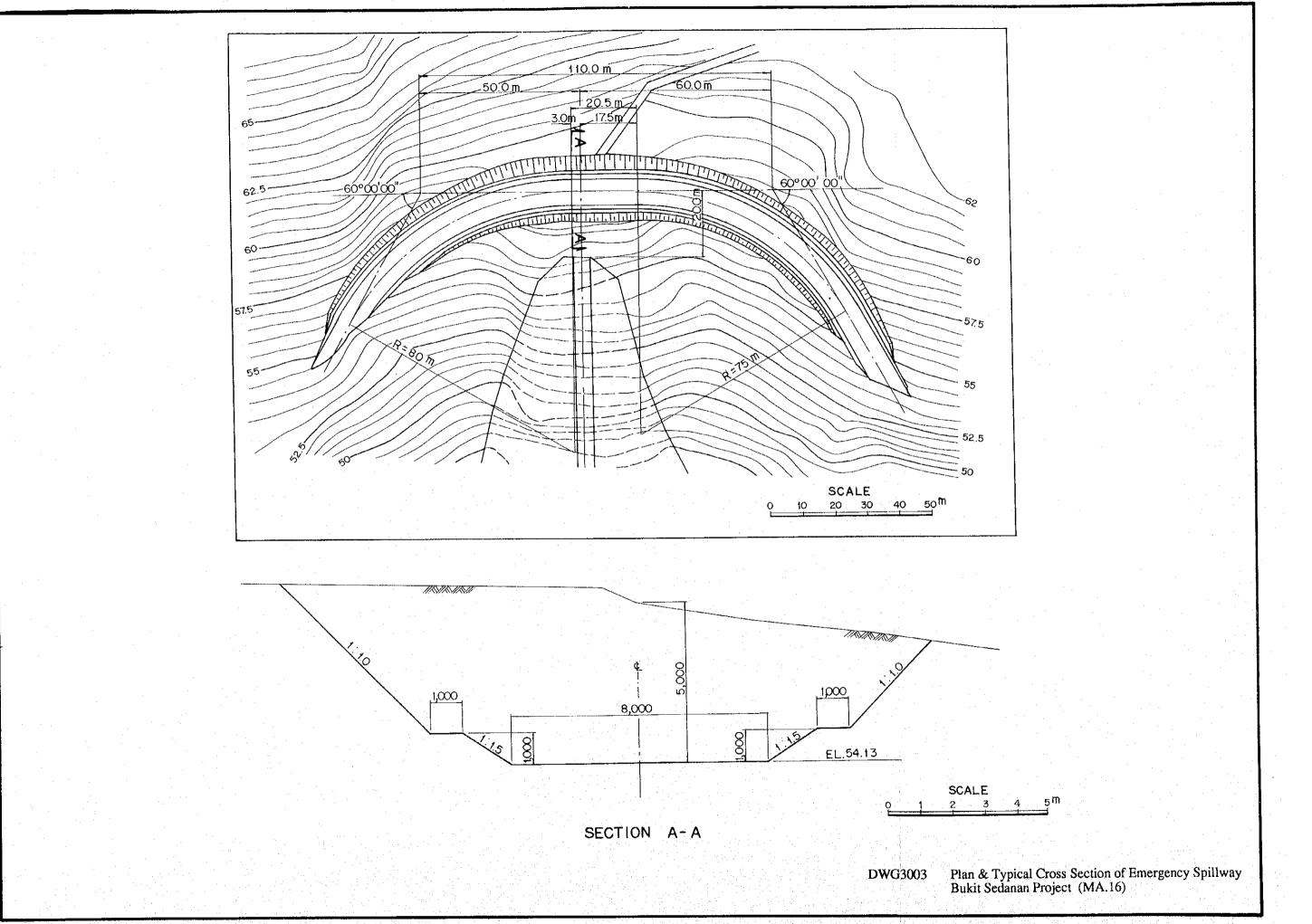


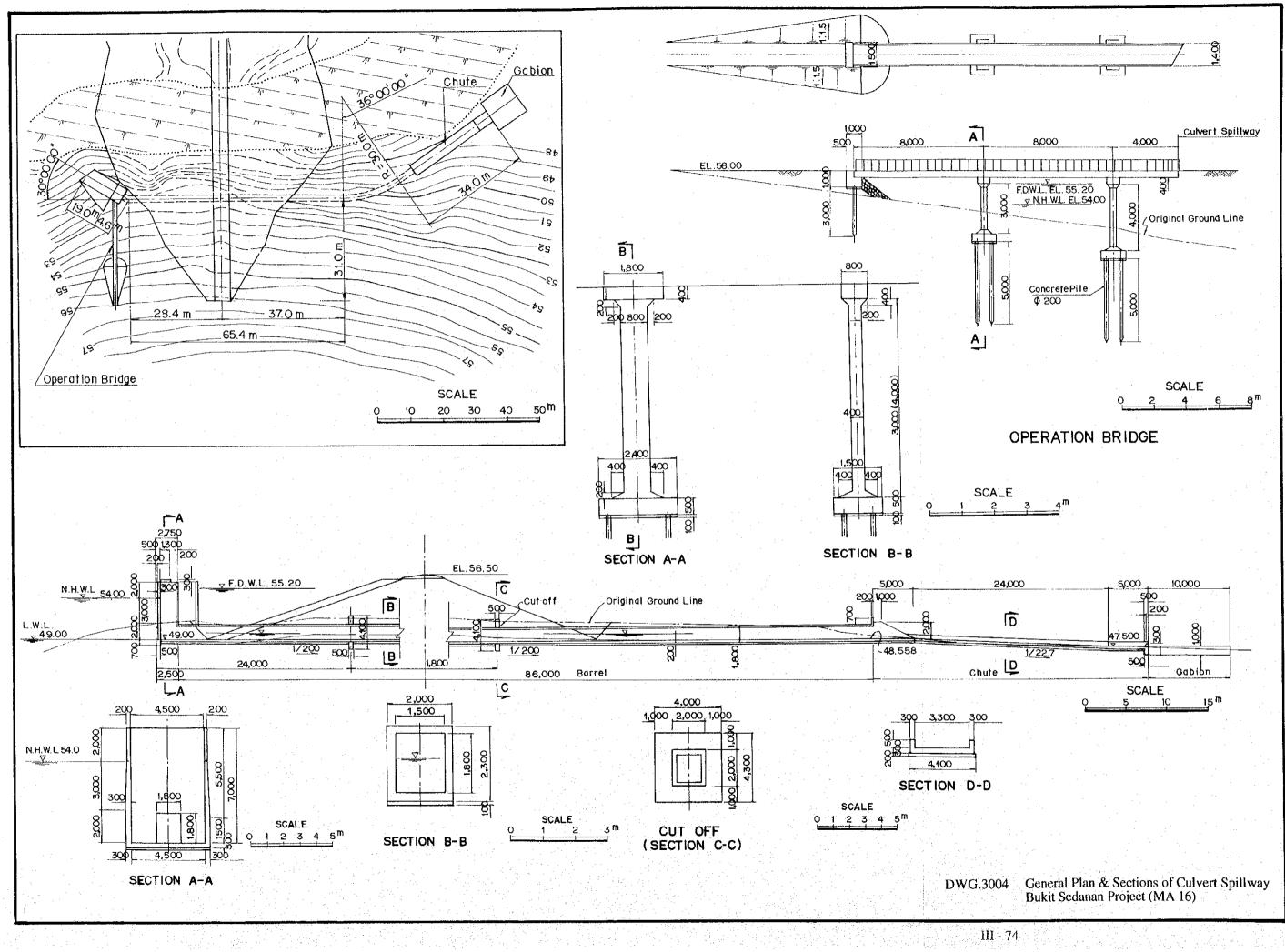

LEGEND

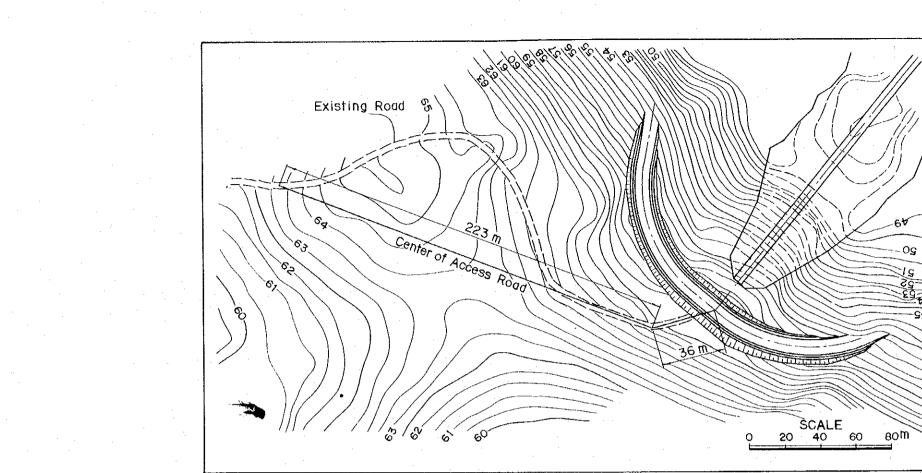
imp staition
pe line
arm pond
alves for pipe lines
illage area
oundary of Irrigation area (FELCRA)
oundary of Irrigation area (MIADP)

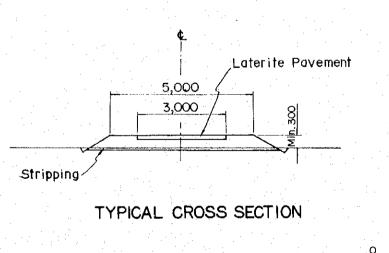
1 km

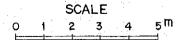
3 - 72

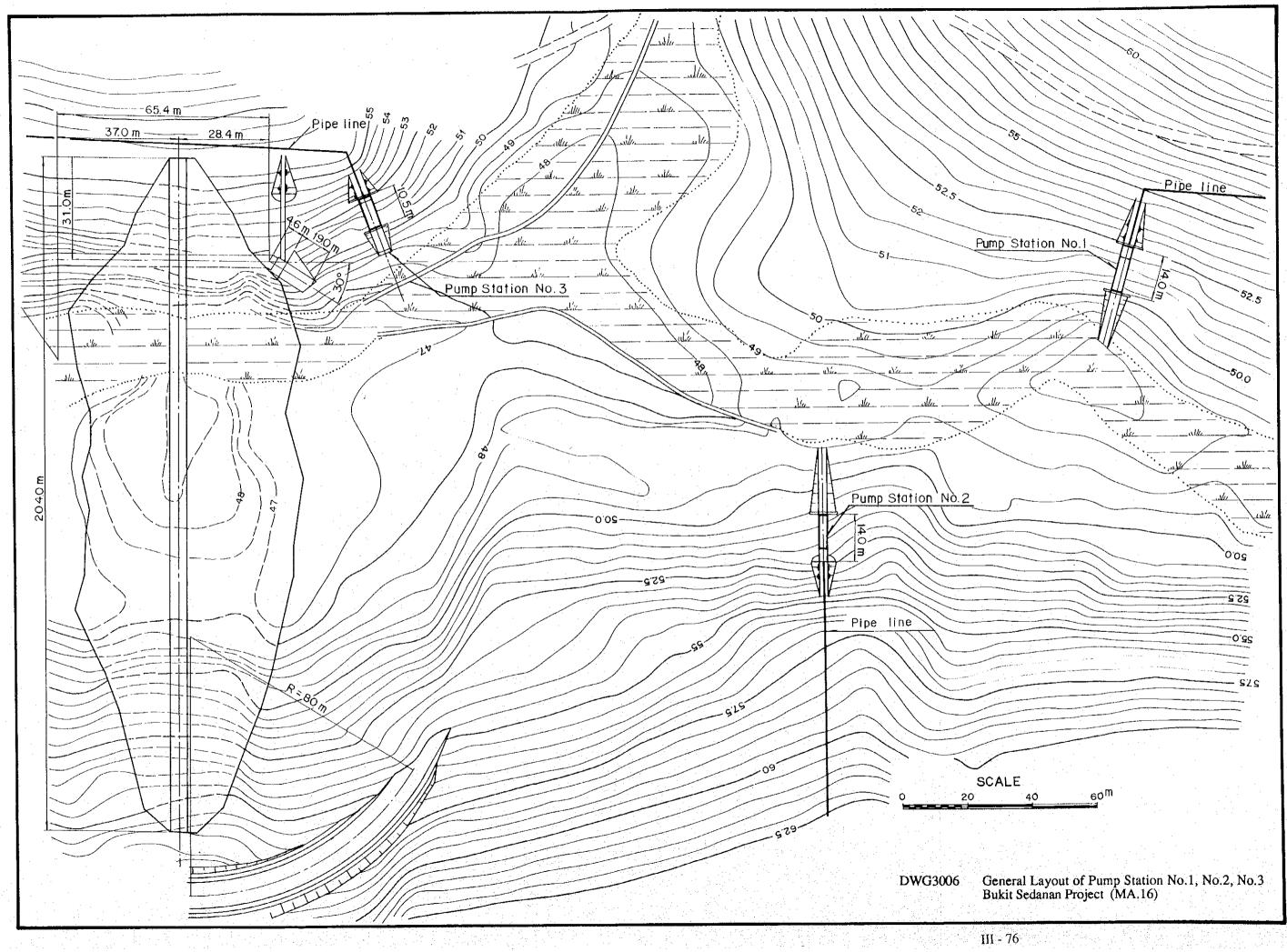

3.5 /Orlginal Ground Line 1,500 `Horizontal Drain Toe Drain SCALE

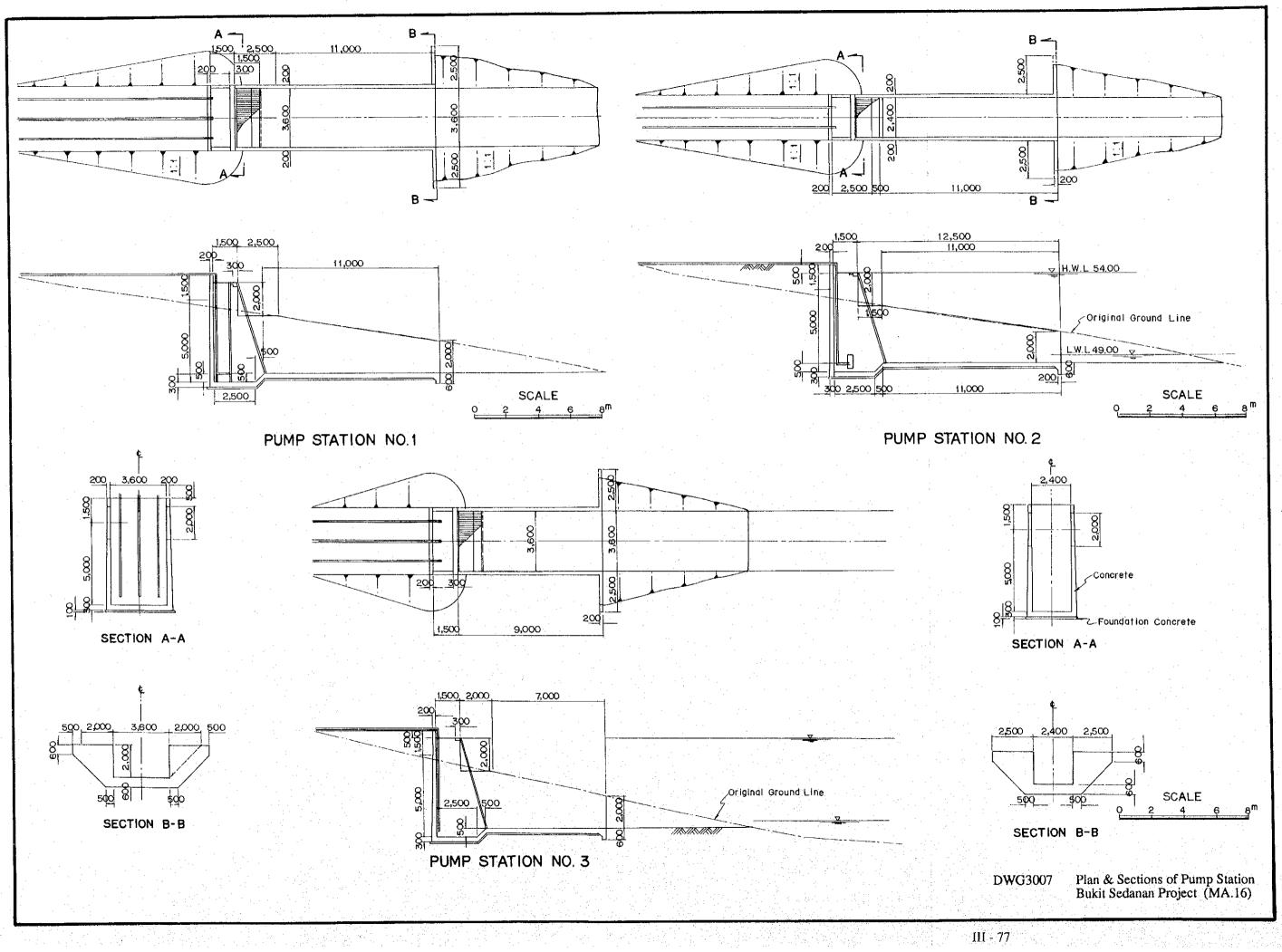

5


10


15 m


General Plan & Typical Section of Mentangor Dam Bukit Sedanan Project (MA.16)




DWG3005

III - 75

General Layout & Section of Access Road Bukit Sedanan Project (MA.16)

Provide States and

