Appendices

3

8

Tablell－1－5 Results of drilling（MJ7M－1）

Tablell－1－6 Results of drilling（MJZM－2）

Drilling Period Corking Days				
Class	Torking Period		Specifications of Torking Days	
	Startins Date \sim fi	inishing Date	irue iorking	Ootal forkers
Preparation	84／08／08 ~ 9	$4 / 08711$	7－－＞	$4-12$
Drillitg	94708／15 ~ 9	$3 / 11 / 15$	93 －-78	15 －
Tithdrar	$94 / 11 / 16 \sim 9$	4／11／18	3 － $03-3$	0
Tolal	91／08／08 ~ 9	4／11／18	103 － 81	$19 \quad 335$
Solal－Drilling Depth			Core Recovery par each 1009	
Planned Depth	400.00	Over burden	（a）Core R	overy
Additional Depth	0.60 －	Core leasth 380．00	$0.00 \sim 97.80$	80.06 － 80.06
Total Depth	400.60	Recovery 94.86 x	$97.80 \sim 193.80$	100.00 x ${ }^{00} 24$
brilling Tige	Torkins tice		$\frac{193}{292} 80 \sim 292.60 \sim 91.70$	$\frac{98.81}{100.00} \times \frac{92.36}{94.85} \times$
	341.0 \％	47.6 d 43.1	$292.60 \sim 100.60$－	
Trip	52.0 h	$7.3 \times 1-6.1$	－－．－－－－－－－－－－	－－－－．．－－－－－－－
	175.0 h	24．1 $\frac{22.1}{2}$	－Drilling Edr	Eacy
Dora Tire	18.0 h	$2.5-\frac{2}{x}-\frac{1}{8}$	Total Depth（a）Tolal Dorkina Cays	389 a／Days
Fishing Job	130.0 b	$18.2 \times 16.7 \times$	Total Depth（s）／True Torking Days	4.11 tDays
Others．	0.0	00.000		
Sub－Tota！	716.0 h	100.0 － 31.8	Total Depth（o）／Total Drilims oays	1．31－d／Days
	Hoyed Oul and in		Tolal Depith（n）／True Orilling Days	5.14 e／Days
Ris Up	$\frac{35.0}{28.0} \frac{\mathrm{~b}}{6}$	$\frac{4.6}{3.6} \frac{x}{x}$	Tolal Deplh（0）／Total Torkers	1． 19 T／orker
$\begin{aligned} & \text { Tear Dopa } \\ & \text { Total } \end{aligned}$	$\underline{88.0 .0} \mathrm{~h}$	$\underline{100.0}$		
	Casing		Drilling Torkers／Total Deplh（0）	0.78 Iorker／a
Casitig Depth and Size	Casing Ratio	Casing Pipe Recovery		
（a）	（\％）	（o）（v）		
86 ma 27．00	－－6．7	$24.00 \quad 83.9$		
10－365．10－	－ 91.1	$365.10 \quad 100.0$		

Tablell-1-7 Results of drilling (MJZM-3)

TableII-1-8 Results of drilling (MJZM-4)

Tablell-1-9 Results of drilling (MJZM-5)

Tablell-1-10 Results of dilling (MJZM-6)

Table3I-1-11 Results of drilling (MJZM-7)

Class	Orilling Period						
	Torkiss Period			Speciflcations of Torting oays			
	Starting Date - Finishins Date			Total Torkins Days	frue Torking Days		Total Nusber of torkers
Preparation	84/03/08 -	$94 / 09 / 10$		3			$1 \overline{1}$
Drlling	9 $4 / 09 / 11 \sim$	$94 / 10 / 07$		21	21	6	84
Iilbdras	$94110108 \sim$	$34 / 10 / 11$		1	3	1	12
Tolal	98709/03 $\sim 94 / 10 / 11$			31	27	1	108
P---mblins deplh				Core Recovery par each 100a			
Plameed defth	$1-600.00$	Overburden		(0) Core Recovery			Cumalaitye Total
Additional Depth	0.09	Core lengls	589.59				- $\frac{\text { Total }}{88.19}$
Total DCpth	600.00	Recovery	88.25	$89.90 \sim 224.40$	135.50	100.00	95.32
Torking Tise	Torking Tise			$224.40 \sim 301.40$	11.00	100.00 \%	98.52
Drillins Tine	158.0 h	73.1	61.78	$301.40 \sim 413.20$	111.80	100.00	91.46
				$113.20 \sim 494.20$	81.00	100.00	97.88
Trip	1.0 h	$3.2 \times$	$2.7 \times$	$494.20 \sim 600.00$	105.80	100.00^{-8}	98.25
Core Recoyer	- 35.0 h	16.2 *	13.7	- Drillias dfficiency			
Dorn Time	8.0 h	3.7	3.1	Total Depth(s)/Total orking Days		17.65 E/Days	
Eishing job	- 8.0 h	3.7 *	$3.1 \times$	Total Depth(b)/True Vorking Dass		22.22 s/Days	
Otbers	- 0.0 b	0.0	0.0				
Sub-Tolal	--2i6.0	100.0×1	84.1 x	Totsl Deph(a)/Total Driling bays		22.22 E/Days	
	Moped 0ut and In						
Ris Cl	24.0 h		9.18	Total Depth(s)/True Drillios Days		28.57 - Days	
Tear Dors	16.0 b		6.3 \%	Total Depth(a)/Total loriers		$5.5 \overline{6}$ a/Torker	
Tolal	256.0 b		100.0	Drilling lorkers/Total Depth(s)			
	Casing					0.11 lorker/s	
Casing Depth and Size	Caslag Ralio	Casing Pipe	Recovery				
(a)	(1)	(a)					
868933	5.5	30.20	91.0				
0 \% 0.00	0.0	0.00					

Tablelf-1-12 Results of drilling (MJZM-8)

- Drillins Period			
	- Torkins Period - .-.-.	Tolat Specificalions of Torking Days	
Class		Total orkins Days frue torking	Day Olf tolal Number
	Slarling Date \sim finistins Date		of Porkers -
Preparalion	14/07/31 $\sim 31 / 08 / 04$	5 -	20
Drilling	91/09/05 - $91 / 03 / 09$	$36-\cdots \cdots$	$8{ }^{-}-112^{-}$
Tithrar	$3 \sqrt{3 / 09 / 10} \cdots$	4 -- 3	$1-12$
Total	01/07/31 $\sim 94 / 09 / 13$	45 - 3	$9{ }^{9}-144$
	Drilling Depth	Core Recovery par each 100 m	
Planmed Depth	500.00 overburden \mid-----	Depih (n) ${ }_{\text {(}}$ Coreten	ath and covery
Additional Depth	0.00 - Core length 483.20	0.00 \sim (1) 96.80 Core 8	covery ${ }^{84.50}$ - $-\frac{\text { Total }}{81.50}$
Tolal Depla	500.00 Recorery 96.61 x	$96.80 \sim 193.30-96.508$	100.00×7 x 92.24
Orililig Fice Trip	Torking Tine	$193.30 \sim 301.30$ 106.20	98.33 .84 .12
		$301.30 \sim 112.80$-11.50	100.00×95.93
	-- - - - - -	$412.80-500.00-87.20$	100.00×98
	--1.0 9.0 \% 2.6		
Core Recover	45.0 K $16.0 \times$ $13.0 \times$	Orilling Erficiency	
Dozn TiEe	- 5.0618	Total Deotb(o) Total Porting dass	II. 11 dojs
Fishing dob		Total Deplh(0)/True Torkiog Dass	13.89 /Days
Olbers	0.0000800	Tolal Degh (a)/Total Drilling Dass	13.89 a/Days
Sub-Tolal			
$\text { Rig } p$	hoved out and la		17.86 \qquad d/Days
Tear Dota	24.0 h $\cdots \cdots \cdots \cdots$	Tolal Deplt(a)/True Drilling Days Tolal Devin(a) Total Torkers	
Total	3150 h - 100.0	Orilling Iorkers/Total Depth(n)	
	Casing		0.22 forker/a
Casing Deplh and Size	Casing Ratio Casing Pipe Recovery		
....... ${ }^{(1)}$	(\%) (0) (k)		
8680	5.6 24.80 89.2		
000000	$00^{-0} 0$		

Tablell-1-13 Results of drilling (MJZM-9)

Tablell-1-14 Results of drilling (MJZM-10)

Tablell-1-17 Results of chemical analysis of ore samples (1)

lole No.	roin((1m)	Remark	A. No.	du(ppm)	/g(ppmin)	$\mathrm{Cu}(\mathrm{ppm})$	Ni(ppm)	Co(ppa)	Fe(\%)	Pl(ppb)
523-1	41. 00	45.00	Ark Bo, Cc	OA-50	0.03	0.61	2	51	17	2.14	10
WI7\%-1	15.00	46.00	Ark Bo, Cc	04-51	0.01	0.50	4	62	15	2.02	240
W729-1	46.00	47.00	Ak Bo, Cc	94-52	0.02	0.55	4	68	15	2.07	370
WJTM-1	47.00	48.00	Ark, Bo, Cc	04-53	<0.01	0.60	8	59	10	1.45	610
072x-1	48.00	49.00	irk, Bo, C	04-54	<0.01	0.60	1	90	9	1.45	<10
(12\%-1	43.00	50.00	Ark Bo, CC	D-55	<0.01	0.81	4	47	9	1. 52	1221
MJ2x-1	50.00	51.00	ark, Bo, Cc	0.1-56	0.01	0.50	2.	120	12	1.86	130
MJ2M-1	51.00	52.00	Ark, Bo, Cc	01-57	<0.01	0.84	3	37	11	1.64	180
MJPM-1	62.00	63.00	Ark, Bo, Cc	0-58	<0.01	0.89	4	61.	5	1.17	90
NJT, 1 - 1	63.00	64.00	ark, Bo, Cc	ba- 59	<0.01	0.10	5	22	3	1.10	240
(1724-1	64.00	65.00	Ark, Bo, Cc	04-60.	<0.01	0.50	4	34	5	1.57	50
122x-1	196.80	97.80	ark, BO, CC	01-61	0.03	0.69	6	62	6	1. 26	10
U12M-1	197.80	98.80	Ar, Bo, Cc	64-62	<0.01	0.84	4	41	6	1.21	510
[JZ9-1	198.80	99.80	Ark Bo, Cc	04-63	<0.01	0.50	5	52	9	1.42	
(1/2M-1	199.80	200.50	Ark, Bo, C	04-61	<0.01	0.79	5	24	3	1.22	230
VIE - 2	111.50	112.50	Henazone	at 39	0.05	0.1	8	11	2	0.72	563
WZX-2	140.00	141.20	Hemazone	bat-40	0.02	0.1	29	11	13	1.05	274
U3X-2	165.00	166.00	Hemazone	0-41	0.06	0.1	23	15	3	0.72	878
UZM-2	166.00	167.00	Jemazone	OA-42	0.05	0.1	11	8	6	0.60	151
(129-2	92.00	193.00	lemazone	Dat-43	0.04	0.1	6	22	4	0.72	11
4774-2	193.00	191.00	lemazone	Da-44	0.07	0.1	5	21	2	0.55	<10
$412 Y$ - 2	191.00	195.00	Ilemazone	0, ${ }^{\text {a }} 45$	0.03	0.1	12	39	3	0.68	23
WITM-2	205.00	206.00	lemazone	at-16	0.08	0.1	7	35	3	0.61	11
4JZM-2	206. 00	207.00	lemazone	04-17	0.03	0.1	7	11	3	0.74	11
UZY- 2	207.00	207.50	Qtzvein	01-48	0.12	0.1	7	89	4	0.98	11
H2M-2	210.00	210.30	Qtzucia	0.-49	0.08	0.1	27.	13	4	6.51	23
WIZM- 2	217.20	218.00	Grallemptz	04-65	0.02	0.94	16	11	5	0.57	90
VI7M-2	236.00	239.00	Grnlcmetz	04-66	<0.01	0.64	14	8	7	0.63	120
H7Y-2	242.00	243.50	GrnlemQtz	01-67	0.01	0.79	25	12	15	0.98	80
WJM-2	288.00	249.30	Grnlemetz	01-68	<0.01	0.79	16	10	10	1.37	100
NTM-2	261.00	268.00	ornfemptz	04-69	<0.01	0.79	55	27	10	2.80	40
U $2 \mathrm{~N}-2$	307.00	310.00	Grnilcmplz	0.70	<0.01	0.64	16	10.	1	1.39	20
$\mathrm{NJZH}-2$	323.00	326.20	Grnllemptz	0A-71	<0.01	0.60	11	36	2	0.86	10
WZW-2	329.00	332.00	Gralienpl2	pa-72	0.02	0.81	18	35	13	8.73	90
WIM-2	333.00	337.60	GrallenQ	0.73	<0.01	0.79	11	25	10	1. 46	60
172\%-5	80.10	80.30	$1010 t z C p P y$	bi-12	0.06	0.1	134	110	47	5.51	
(1)24-5	87.27	88.27	Bsicqappy	Ot-13	0.09	4.7	1990	89	36	5.50	<10
(174-5	88.27	89.27	bstroz ${ }^{\text {dity }}$	0.-11	0.03	0.1	243	131	12	5.01	<10
MJ78-5	89.27	90.00	Bstigacpry	01-15	<0.01	0.7	3220	53	14	2.00	
HLCM 5	90.00	90.72	Istigacpry	0.-16	0.07	0.9	1880	81	26	3.12	<10
MJZM 5	90.72	91.62	BstiqzCDHy	0A-17	<0.01	0.1	289	111	14	1.12	
MJZ - 5	128.20	128.70	Ahoqzuein	01-18	0.06	0.3	234	56	6	1.09	<10
MJTS-6	161.70	163.00	s-dyke	x-1	0.03	0.60	17	71	26	4.02	40
MJTM-6	463.00	165.00	B dyke	x^{x-2}	<0.01	0.60	18	10	15	3.96	30
MJZn-6	165.00	167.00	3-dyke	$\mathrm{X}-3$	0.01	0.64	47	52	39	7.87	460
MJM-6	167.00	169.00	B-dyke		0.01	0.94	47	91	37	8.01	220
MJZM - 6	169.00	171.00	B-dyke	X 5	<0.01	0.99	18	76	35	7.41	60
MIEN 6	171.00	173.00	-dyke	x-6	0.01	0.81	46	57	37	8.19	20
134-6	173.00	175.00	B dyke	- -7	0.02	0.14	31	71	28	5.01	30
M32M-6	475.00	177.00	3 dyke	$x-8$	0.02	0.19	81	57	31	8.76	640
MIZX - 6	177.00	179.00	B-dyke	$x-9$	60.01	0.24	13	101	31	8.00	60
MJTM 6	479.00	181.00	B-dyke	(-10	0.01	0.39	19	56	36	8.76	20
NJTX-6	181.00	183.00	B-dyke	- 11	<0.01	0.31	50	71	38	9.21	50
MJEX 6	183.00	185.00	B-dyhe	$x-12$	<0.01	0.39	18	55	36	8.71	50
4J28-6	185.00	187. 00	B-dyke	X-13	<0.01	0.61	69	57	32	8.01	10
WIM - 6	187.00	189.00	B-dyke	x-11	<0.01	0.59	15	57	36	8.15	170
MJ\% 6	189.00	191.00	B-dyke	$x-15$	<0.01	0.59	51	11	36	8.58	10

Tablell-1-17 Results of chemical analysis of ore samples (2)

Hole No.	from(a) ${ }^{\prime}$		Remark	A. 8.	Lu(ppm)	g (ppa)	$\mathrm{Cu}(\mathrm{ppm})$	pin)	a ppm)	Fe(\%)	t(ppb)
513, 6	191.00	193.00	B-dyke	k-16	0.02	0.78	46	56	35	8.35	30
W2Y-6	193.00	495.00	arkose	x-17	0.03	0.54	10	26	1	1.83	220
(3) $24-6$	195.00	197.00	Arkose	x-18	<0.01	0.39	4	29	3	1.58	40
(1) $324-6$	197.00	189.00	Arkose	- 19	0.06	0.14	6	30	8	1.51	80
4J2n-6	199.00	501.00	Arkose	K-20	0.04	0.68	37	28	6	1.71	530
M2x-6 5	501.005	503.00	arkose	K-21	0.10	0.64	3	23	3	1.27	50
M 28.6	503.005	505.00	irkose	$\overline{\mathrm{K}}$ - 22	0.03	0.39	5	27	4	1.56	40
UIZ ${ }^{\text {a }}$ - 6	505.00	507.00	Arkose	$x-23$	(0.01	0.49	5	100	8	1.51	90
(1J24-65	507.008	509.00	Arkose	X-24	(0.01	0.88	15	65	7	1. 16	60
UJTM-6	509.005	511.00	Arkose	k-25	0.01	0.61	7	65	12	1.91	70
MJ\%-6	511.005	513.00	arkose	k-26	0.04	0.73	3	78	15	2.38	70
MJTV-6	637.37	639.53	irkose	र-27	<0.01	0.25	7	26	5	4.19	< 10
NI2M-6	510.53	612.00	B-dyke	X-28	50.01	0.30	52	62	35	5.22	20
NJZM-6	512.00	\$14.00	B-dyke	(-29	<0.01	0.35	49	90	12	5.20	
(1) $2 \mathrm{M}-6$	514.00	516.00	β-dyke	k-30	0.01	0.50	57	65	37	6.04	<10
M $\mathrm{Z} \mathrm{N}-6$	546.00	548.00	B-dyke	k-31	0.01	0.35	50	76	37.	5.91	<10
MJZ 6	548.00	550.00	B-dyke	N-32	<0.01	0.30	45	77.	40	5.96	<10
NJCM- 6	650.00	652. 00	b-dyke	- -33	<0. 01	0.40	76	99	48	5.81	< 10
TI24-6	652.00	554.00	3-dyke	x-34	<0.01	0.35	61	83	41	6.08	<10
4324-6	554.00	556.00	B-dyke	(1-35	0.01	0.40	55	141	12	6.03	<10
MJ2M- 6	556.00	658.00	B-dyke	X-36	<0.01	0.30	47	82	37	6.15	<10
M 12×-6	658.00	660.00	B-dyke	X-37	<0.01	0.30	17	61	35	5.26	<10
(124-6	560.00	562.00	B-dyke	X-38	<0.01	0.35	55	72	39	6.01	<10
(12Y-6	562.00	561.00	3 dyke	x-39	0.02	0.35	47	118	39	5.65	<10
MJTM-6	561.00	566.00	3-dyke	X-40	(0. 01	0.45	49	63	31	6.06	$\leqslant 10$
($12 \mathrm{M}-6$	566.00	568.00	3 -dyke	K-41	0.04	0.15	52	120	41	5.95	10
MJ2M-6	568.00	870.00	B-dyke	K- 42	<0.01	0.61	51	75	38	6.06	$\leqslant 10$
M $2 \mathrm{M}-6$	570.00	572.00	3 -dyke	K-13	0.04	0.45	32	63	32	5.50	<10
MIZM-6	572.00	574.00	3 -dyke	x-11	<0.01	0.15	56	71	37	6.11	-10
WZM-6	574.00	1576.00	3-dyke	$x-15$	0.02	0.35	53	81	39	5.95	20
WJ2M-6	576.00	578.30	8-dyke	x-16	0.01	0.15	55	71	12	6.04	-10
WJ2M-7	46.80	47.80	BstfPydiss	0 al	0.01	0.1	28	120	10	4.35	<10
-1520-7	47.80	18.10	BsifPydiss	OA-2	0.04	0.1	31	111	32	3.69	10
NJ2M-7	48.10	49.00	BsifPyoiss	0-3	0.02	0.1	16	93	29	3.61	325
(120-7	49.00	49.95	BstiPyoiss	09-1	<0.01	0.1	43	117	29	3.79	<10
WI28- 7	49.95	50.85	BstfPydiss	0i-5	0.01	0.1	91	181	63	6.75	<10
MJ2S-7	50.85	51.85	Bstipydiss	04-6	<0.01	0.1	12	151	$3 \overline{6}$	4.21	<10
(172M-7	51.85	52.85	Bstrydiss	0,	0.02	0.1	39	118	39	4.41	- 23
(172M- 7	52.85	53.85	Bstipydiss	0- 8	0.01	0.1	73	143	36	4.21	<10
(152x-7	90.77	91.32	BstfPydiss	bt-9	0.01	0.1	27	89	32	3.52	<10
M20-7	118.40	119.60	Bstrpydiss	pa-10	0.02	0.1	18	179	19	4.60	< 10
M $2 \mathrm{CN}-7$	119.06	120.06	BstfPydiss	at-11	0.06	0.1	18	189	16	4.94	38
$\mathrm{HCM}-7$	272.70	273.20	ArkoQzPyCp	at-19	0.07	1.2	366	37	6	2.52	$\leqslant 10$
MEM- 7	275.70	276.10	ArkoQzPy	01-20	<0. 01	0.1	117	51	5	1.36	<10
N2M-7	276.60	276.85	ArkoQzPyCp	Da-21	0.03	0.1	15	20		0.75	$\leqslant 10$
-1\% - ?	280.50	281. 10	TrkoQzPyCp	01-22	0.05	0.1	19	22	3	0.93	$\leqslant 10$
OEX - 7	285.10	285.50	ArkoqzPyCp	0.-23	0.03	0.2	19	30	3	0.94	<10
(13Z - 7	285.50	286. 10	A kopzPyCp	OL-21	0.05	0.1	13	87	26	3.68	370
1224-7	300.00	301.00	Prkoqap ${ }^{\text {a }}$	OA-25	<0.01	0.1	14	43	1	0.89	108
M $7 \mathrm{FM}-7$	301.00	301.30	AKOQzPyCp	Ot-26	<0.01	0.1	6	38	万	1.04	9.12
M12M-7	306.35	307.25	AKoQzPYCp	01-27	0.01	0.1	16	$\frac{26}{50}$	$\frac{2}{6}$	0.90	- 11
MJ2M-7	30980	310.20	Arkoqz'lCp	ba-28	<0.01	0.2	10.	50	6	1. 10	<10
404-7	311.55	312.45	CrkoQzPYP	OT-29	0.01	0.1	40	39	6	1.13	< 10
128.7	313.82	314.52	4 kOQ 2 PCp	pa-30	0.08	0.1	51	$\frac{23}{25}$	$\frac{1}{9}$	0.98 1.31	98 $-\quad 10$
132M-7	318.00	319. 00	Arkoqz PYCp	04-31	0.01	0.1	27	25	8	1.34	-10
W2M-7	114.00	115.00	A KOQ 2 PyCp	pl-32	0.03	0.1	- 4	57	8	1.65	116
W2x-7	115.00	115.	arkoqzPyC	01-33	0.01	0.1	1	57	10	2.21	146

Tablell-1-17 Results of chemical analysis of ore samples (3)

Wle No.	from(m)to(m)	Pemark	A. No.	hu(ppm)	$\mathrm{Hg}(\mathrm{ppm})$	$\mathrm{Cu}(\mathrm{ppm})$	(ifppin)	Co(ppm)	c(8)	Pt(pgb)
4J/M- 7	119.50120 .50	ArkoqzPyCp	01-31	0.02	0.1	5	29	6	1.33	33
MJ2M- 7	1221.701422 .60	ArkopzPyP	08-35	0.02	0.1	7	31	7	1.51	196
v124-7	122.60423 .50	AroQzPyCp	OA-36	0.01	0.1	3	27	6	1.43	<10
MJ2M-7	128.501288 .90	ArkoQzPyCp	0t-37	0.04	0.1	3	35	4	1.51	14
M $2 \mathrm{M}-7$	131.801132 .10	HrkodzPyCp	04-38	0.03	0.1	5	50	5	1.26	11
1U2M-8	159.00 [161.00	Arkose	K- 47	0.03	0.15	7	87	11	5.59	<10
W2M. 8	161.00163 .00	Arkose	$\mathrm{K}-18$	0.02	0.35	6	26	4	3. 55	$\leqslant 10$
W7M-8	163.00165 .00	Arkose	K-49	<0.01	0.35	6	55	7	4.92	<10
U7Y-8	165.00167 .00	brkose	$\mathrm{k}-50$	<0.01	0.40	6	36	9	3.92	<10
M29-8	167.00169 .00	Arkose	(-51	0.02	0.45	8	27	5	3.19	$\leqslant 10$
429-8	169.00171 .00	hroso	- x -52	0.01	0.35	8	39	6	3.41	20
137-8	171.00173 .00	Arkose	x-53	0.01	0.50	10	56	6	3.57	20
WZ 2 - 8	173.0017500	hikose	K-51	<0.01	0.50	11	26	4	2.91	20
MOM-8	175.00177 .00	Arkose	x-55	<0.01	0.50	7	23	5	3.30	30
MJTM-8	177.00179 .00	Arkose	x-56	0.01	0.15	8	28	5	3.22	50
$\sqrt{3} \%$ - 8	179.00181 .00	Arkose	\%-57	0.02	0.30	6	29	4	2.85	20
472M-8	181.00183 .00	arkose	x-58	0.01	0.10	5	28	6	3.17	20
MJT- 8	183.00185 .00	Arkose	X-59	0.03	0.10	5	30	4	3.55	20
47M-8	185.00 187.00	Ariose	X-60	0.02	0.15	6	31	11	3.85	<10
MJT-8	187.00189 .00	Arkose	X-61	0.01	0.30	38	29	5	3.28	<10
W2M-8	189.00191 .00	Arkose	k-62	0.03	0.10	7	38	8	3.95	10
M $2 \mathrm{LW}-8$	191.00193 .00	Arkose	k-63	<0.01	0.10	5	91	22	6.00	50
MIZM-8	193.001195 .00	Arkose	k-61	0.04	0.05	8	36	10	4.26	
WJ2\%-8	195.00197 .00	Arkose	R-65	0.05	0.35	11	32.	6	3.51	<10
423-8	197.00 199.00	Arkose	x-66	0.03	0.05	16	40	5	3.12	<10
MJT- 8	199.00.201.00	Arkose	K-67	<0.01	0.15	6	53	9	4.28	40
MJTV-8	201.00203 .00	Arkose	-68	0.05	0.10	5	114	23	6.17	<10
WIM-8	203.00205 .00	Arosos	- $\mathrm{C}-69$	0.03	0.05	7	35	6	3.75	$\leqslant 10$
MJTM-8	205.00207 .00	dikose	x-70	<0.01	0.05	10	56	13	4.21	$\leqslant 10$
NJZM-8	207.0020900	Aikose	K 71	0.02	0.10	10	33	1	3.51	<10
WTM-8	209.00211 .00	trkose	<-72	0.02	0.10	13	24	-	2.99	<10
MICM 8	211.00213 .00	Hrkose	k-73	0.01	0.35	7	65	14	5.21	<10
42\% - 8	213.00 .215 .00	Ankose	- -71	0.02	0.15	9	37	4.	3.05	<10
1724-8	215.00217 .00	arkose	- 75	0.01	<0. 01	6	84	14	4.33	<10
WI2M-8	217.00219 .00	frose	x-76	0.02	0.20	7	31	4	3.81	20
WIZ - 8	219.00221 .00	fikose	x-77	0.02	0.05	8	25	5	1.59	30
Hza-8	221.00223 .00	frkose	- 78	0.02	0.10	4	58	11	2.09	10
WIZX - 8	223. 00225.00	prixose	(-79	<0. 01	0.34	18	71	16	3.90	10
(129-8	225.00227 .00	Arkose	-80	0.06	0.25	10	59	5	1.17	$\frac{10}{50}$
4J20-8	227.00229 .00	frose	- 81	<0.01	0.30	10	10	6	1.19	50
WJZS-9	113.00115 .00	friose	KA^{-1}	0.03	0.25	19	12	5	1.08	60
6J29-9	115.001177 .00	friose	A-2	0.03	0.10	26	14	7	1.35	60
-128-9	117.00 .119 .00	frkose	KA-3	<0.01	0.34	13	31	5	1.00	80
WJZV-9	119.00121 .00	Arhose	AA-4	0.02	0.31	14	31	8	1.42	40
BJZ - 9	121.001423 .00	Arkose	AB^{-5}	0.03	0.34	9	54	8	1. 52	50
6J24-9	123.00 .125 .00	Arkose	A $A-6$	0.03	0.51	15	28	6	1. 10	10
UJTM-9	146.00 118.00	Arkose	(A-7	0.01	0.19	11	32	5	1. 25	40
MJZ-9	118.00500 .00	Arkose	A-8	<0.01	0.51	11	26	5	1.01	60
WJza-10	201.73203 .23	trkose	(A- 9	0.02	1.03	86	28	1	1.09	60
U3z-10	203. 23201.73	prinose	人A-10	0.01	0.78	147	26	6	1.59	60
4J $724-10$	201. 73 206. 23	firkose	A A-11	0.01	5.13	1867	39	7	1. 79	40
452 - 10	206. 23.207 .73	fitose	XA-12	0.02	0.88	556	73	6	1.53	60
MJ73-10	207.73209 .23	ariose	XA-13	0.03	0.20	89	18	9	1.88	60
- $52 x-10$	215.00216 .50	Arkose	X ${ }^{1} 11$	0.01	0.34	13	30	1	1.65	10
NJZM-10	216.50217 .00	priose	x-15	0.03	0.15	52	11	8	1.75	10
-1379-10	217.00218 .50	hikose	K1-16	0.01	0.10	57	32	6	3.18	30
MJ24-10	218.50220 .00	Arkose	KA-17	0.02	0.15	26	42	- 9	2.05	60

Tabley-1-17 Results of chemical analysis of ore samples (4)

Hole No. from(m)to(m)	Remark	A. No.	Hu(ppm)	Ag(ppm)	Cu(ppn)	Ni(ppm)	Co(ppm)	$\mathrm{Fc}(8)$	Pt(ppb)
1123-10 220.00221 .50	Arkose	KA-18	0.02	0.41	62	51	12	2.72	70
M $2 \mathrm{~F}-10221.50223 .00$	Arkose	XA-19	0.03	0.31	17	53	7	1.62	60
MJTM-10 223.00224 .50	Arkose	(A-20	0.07	0.31	20	31	6	1.47	<10
NJTV-10 224.50 226.00	triose	(A-21	0.02	0.51	12	61	6	1.38	10
MJZ W-10 255.00256 .50	arkose	(A-22	0.03	0.51	23	82	3	1.54	10
MJ7. 10256.50258 .00	trkose	(A-23	0.03	0.41	29	59	5	1.35	60
MJZ W-10 258.00259 .50	Arkose	(A-21	0.02	0.41	32	113	11	2.70	100
MJZW-10 259.50 261.00	Arkose	(A-25	0.02	0.39	39	56	8	1.65	40
MJZX-10 261.00262 .50	Arkose	人 λ-26	<0.01	0.24	42	25	3	1.58	70
MJ2S-10 262.50264 .00	Arkose	KA 27	0.05	0.24	23	17	5	1.34	70
MJZV-10 261.00 265.50	Arkase	KA-28	<0. 01	0.34	10	40	10	2.38	20.
MJZ4-10 265.50267 .00	Arkose	KA-29	0.01	0.29	52	40	5	1.31	60

Tablell-1-19 list of drill hole and number of samples for phygical test (1)

Tablell-1-19 List of drill hole and number of samples for phygical test (2)

		Rem	,						рpm				
$\overline{6} 2$	95.00	Granile	Ct-191	<1	0.1)	12	\bigcirc	15			$\bigcirc 10$	0.16
-3) 5	99.00	Granite	Ci-192	<1	0.1	18	3		79	-			0.71
\%2	205.00	bran	6a-193	<1	001	8	16	1	13	2			0.47
13-2	210.00	Gran	6-191		$\overline{1}$	2 i	19	5	20	5			0.60
7-2	21500	Granile	6a-195		<0.1	10	15	- 8	19	3			0.83
\%	220.00	Sranito	6a-196		<0.1		13	<- 2	31	1			36
1 J 2	225.00	Gran	6i-197		<0.1	7	14	<2	26	2			0.15
-27-2	230.00	Gran	65-198		<0.1	5	15		27				0.39
H2	35.00	Gran	61199		$\leqslant 0.1$	8	19	- . 2	24	10			0.57
H2x	40.00	Gran	6a- 200		02	15	20	1	71	1			0.82
157	45.00	Gran	ai 201		0.2	8	13	2	12	5	\bigcirc		0.35
H2M	50.00	Gran	CA- 202		0.2		-		13	2			0.76
(13)-2	255.00	Gran	CA-203		<0.1		17		20	...			257
-10)-2	256.70	Amprephy	69204		0.1		41	99	205	59			5.28
jiz	260.00	brcoran	as 205		1.5		30		51	85		10	6.02
H2i	265.0	brchran	61-206		0.3	12	16	3	31	---3		310	5.45
(i323	270.00	basic dyke	61-207		0.9	1080	60	126	33	51		8700	6.01
- $\overline{3}$	275.00	basic dyke	ca 208		<0. 1	68	38	137	62	36		20	5.98
Mis - 2	80.00	basic dy	6i 209		(0) 1	60	13	141	17	11		10	-
-100	285.00	basic dyk	CA 210	-	<0. 1	60	18	133	51	37			5.86
(1329	99.00	basic	ca 211		40.1	11	9	5	10	31		10	5.87
532	295.00	basic dyke	Ca 212		0.1	11	- 7	136	61	36		0	5.86
Midim	300.00	basic dyke	6a-213		<0. 1	27	11	12	29	30			5.96
2	305.00	basic	Ca 214		<0 1	76	51	160	71	51		0	5.89
(123-2	311.00	Qtzeran	6a 215	---2	0.1		- 6		7				57
c丁20-2	315.00	Qtzaran	6A 216	17	0.1	18	12	-- 5	41			10	2.71
\%	319.0	Qtzar	Ca 217	$\bigcirc 1$	0.1	22	- 2	--7 2	12	- 3		10	3.67
158-2	323.00	DtzCrani	6a-218		0.1	7		-- 5	28				1.20
5	329.20	U2Gm	6-219		02	16	- 9		13	- 6			6.03
U22	335.	clay	Ca 220		40.1		- 8		28	-3	\bigcirc	10	3. 13
visi	310.0	basic	6- 221		<0.		10.	52	12	22	< 2		6.23
MJ2M.	34500	Granite	61-222		-0.1		-	176	51	13	19		6.01
Mija - 2	350.0	kasic dy	6a-223		<0. 1		- 2	154	91	22			5.80
-120	360.0	Granite	ai-		0.1		15	13	18	- 2	$\bigcirc 2$		3.11
ME2	370.00	Gran	25		(0) 1		16	16	10			10	2.15
(124- ${ }^{2}$	379.70	6	26		0.1		21	25	16			10	3.32
U32	390.00	Grani	27		60.1		20	16	15			10	2.81
(124-2	100.00	-	228		c 0.1		20	12	17			10	2.71
(JZM-5	15.00	btzi		- -1	0.3			16	17				0.11
	19.50				0.1		17	283	97				1.11
(0) 2 - 5	30.00	BSIf			0.1		27	111	127	15			1.71
- 5 2m-5	35.00	Bsly			0.1		32	109	119	12			5.24
-124-5	40.00	Do1?		- 1	0.6		23	88	127				5.05
-152-5	45.00	Bstif			0.5	30	21	107	96	8			. 21
4, 2 H	50.00	Esi			0.3		28	111	103	13			. 56
H2M	55.00				0.5	124	33	48	16	13	< 2		6.63
-12il- 5				-8	08	230	27.	121	11	1	35		1. 36
4jzia-5	70.00		9-11		0.5	181	26	113	130	15	2		1.97
- 5 IV-5	79.50	101	64-15	- 4	0.6	236	37	109	111	- 17	21		1.90
13-5	90.00	BStI PYC	68-46	147	3.9	4151	36	291	105			2	4.74
(122-5	93.00	Bsconglo	6A-47	11	0.1	54	31	106	79	12	2		2.37
123-5	97.00	ptzvein	1- 48	$\bigcirc 1$	<0. 1	12	-8	18.	26.	--- $\frac{2}{2}$	6		0.78
(12)-5	100.00	irkose	A- 49		0.2	11	18	46	23				1.13
172-5	109.20	Arkose	CA- 50	-1	0.1	11	19		51	- 5		10	1. 12
43 za	1120.00	arkose	6, A^{-1}		0.3	0	21	52	12		2		1.22
2I-5	130.00	Arkose	ci- 52	1	0.1	10	11						1.01
2	180.00	hikos	6i- 53		0.1	---5	-21		52			<10	1.

TableII-1-19 List of drill hole and number of samples for phygical test (3)

Hole No. rrom(m)	Remalk	A. No.	(10 (ppb)	g(ppo)	Cupon)	b(ppm)	2n(ppa)	Ni (ppa)	co(ppmi		$1 \mathrm{l}(\mathrm{ppb})$	c(\%)
H27-5 150.00	likose	P1 51	<1	0.2	5	17	50	33	6	- 2	$\bigcirc 10$	1.11
-13 20.5160 .00	arkose	Ca. 55	$\bigcirc 1$	0.2	6	19	52	90	8	< 2	$\bigcirc 10$	1.06
(12M-5 5170.00	bitose	Ca 56	<1	0.3	5	19	55	19	- ?	< 2	< 10	1.01
-137-5 180.20	Arkose	6a- 57	1	0.3	5	27	103	17	3	$\bigcirc 2$	<10	0.99
(JZM- 519000	Arkuse	19. 58	$\bigcirc 1$	0.3	7	19	72	35	9	<2	<10	1.51
85\% 5000.00	arkase	19-59	$\bigcirc 1$	0.3	$?$	23	59	32	7	$\bigcirc 2$	<10	1.57
[J\#M-7 10.00	3siv.	6i-1	2	0.8	113	33	93	171	38	31	20	3. 98
(1) $2 \mathrm{M}-715.00$	3siv.	Ga 2	2	0.3	26	31	87.	172	15	39	<10	4.25
(1)7- 720.00	Isly.	64-3	$\bigcirc 1$	0.2	50	28	93	158	19	3	$\leqslant 10$	1.21
(0120 7 - 25.00	islv.	61	d	0.1	36	30	77	169	11	2	$\leqslant 10$	1.39
4J24-7 29.90	Bsly	PI 5	2	0.1	113	30	73	158		2	<10	1.05
M124-7 35.00	bsiv.	A- 6	3	0.1	51	32	75	201	41	< 2	$\leqslant 10$	1.18
-180-7 70.00	isiv.	Ai - 7	3	0.3	77	24	71	14	43	¢	<10	4.29
M29-7 75.00	Hsly.	6a-8	1	0.2	22	20	75	140	12	\bigcirc	<10	4.00
M $12 \mathrm{CW}-750.00$	Dslv.Pydis	6- 9	5	0.2	52	$2 \overline{6}$	72	145	31	<	<10	3.90
M $2 \mathrm{NW}-755.7$	Esiv.Pydis	1i- 10	2	0.3	68	20	69	106	11	<2	<10	3.76
$4 \mathrm{Ba}-760.00$	EsIv.	ai- 11	3	0.1	60	39	73	158	11	<2	20	1.09
M27-7 765.00	Bsiv.	ai 12	2	0.3	23	31	97	178	57	- 2	10	1.81
112M 710.00	Bsiv.	a 13	,	0.2	10	29	81	170	15	- 2	$\bigcirc 10$	4.39
M $2 x-785$	Bsiv:	$61-14$	2	03	29	37	72	175	41	3	<10	1.21
(1)72- 780.00	ksiv.	61 15	2	0.3	21	32	72	253	44	3	<10	3.91
	Bsiv.	6a-16	3	0.7	75	39	75	228	17.	2	<10	4.28
1J2M 90.00	Bslv.	$64-17$	2	0.3	22	23	76	151	39	$\bigcirc 2$	<10	4.13
M 525 - 7 - 95.00	usly.	6a-18	$\overline{3}$	0.2	67	39	61	137	10	21	20	3.86
M $2 \mathrm{Zs}-7100.00$	islv.	CA 19	2	0.6	56	10	71	216	- 16	,	< 10	4. 39
1320-7 105.00	ESIV.	$61-20$		0.5	59	45	77	361	16	3	< 10	1.52
(152M- 7110.00	Esiv.	Ca- 21	$\overline{2}$	0.6	68	116	61	137	36	- 2	20	136
132M- 7115.00	Esiv.	6a 22	12	0.8	242	57	66	396	11	\bigcirc	<10	4. 26
$432 \mathrm{c}-7120.00$	islv, sili	BA - 23	1	0.2	19	43	116	241	11	10	$\bigcirc 10$	- 1.30
4320-7125.00	Espyroclas	64-21	9	0.2	12	27	153	146	29	3	<10	2.53
(120-7 730.00	Pspyroclas	ca. 25	2	0.1	10	31	132	142	24	2	$\leqslant 10$	2.21
112\%. 71135.00	Ispyroclas	64. 26	8	0.2	16	13	226	152	81	1	$\bigcirc 10$	366
(J2)-710.00	pspyroclas	ca 27	$\bigcirc 1$	0.2	11	32	136	116	27	3	<10	2.51
172-7115.00	Ispyroclas	64.28	-1	0.3	12	33	164	203	29	3	<10	2.71
Mix-7150.00	Bspyroclas	$61-29$	2	0.3	13	17	117	210	30	-- 2	<10	2.88
(1020-7 155.00	Pspyroclas	69:30	2	03		12	220	176	31	- - - 3	$\leqslant 10$	3.16
(1)20-7] 160.00	Bspyroclas	04-31	3	0.2	16	27	315	223	13	- -3	$\bigcirc 10$	3.51
(13-7 165.00	Bspyroclas	64. 32	$\bigcirc 1$	0.2	6	21	84	91	12	3	<10	1.37
1724-7170.00	Espyroclas	64. 33	8	0.3		39	225	191	32	11	<10	2.98
NJ2M-7 175.00	Bspyroclas	6a-31	3	$0 . \overline{3}$		31	289	188	10	- 3	<10	3. 11
W2\%-7 180.00	-spyroclas	6a- 60	$\bigcirc 1$	0.5		40	199	211	30	2	$\bigcirc 10$	2.12
832-7 785.00	Bspyroclas	69.61	,	0.1		52	245	151	35	- -- 5	10	4.57
-52\%-7 190.00	Bspyroclas	64-62	< 1	0.1		37	176	181	24	- 3	<10	2.32
132\% - 7195.00	Bspyroclas	6a-63	7	0.3	10	13	191	187	25	- 2	$\bigcirc 10$	2.52
132N- 7200.00	Espyroclas	ca 61	$\bigcirc 1$	0.3	10	15.	243	189	29	-	<10	2.49
36M- 7805.00	Bspyroclas	64. 65	$\bigcirc 1$	0.2		12	292	167	27	3	20	2.52
(12) 7210.00	Espyroclas	$69-66$	81	0.2	11	35	209	205	25	2	10	2.17
1728-7 715.00	Sspyroclas	Ci- 67	5	0.3	19	37	1052	138	17	-2		2.23
1321 720.00	Espyroclas	6968	10	0.5		59	188	61	16	- 6	<10	4.25
-15x-7225.00	Bspyroclas	6a. 69	$\bigcirc 1$	0.3		48	355	238	31	3	<10	3.23
-120-7 730.00	Bspyroclas	Ca - 70	<1	0.3		39	251	150		$\bigcirc 2$	-10	2.09
(1) 7 - 235.00	Bspyroclas	60^{-71}	$\bigcirc 1$	0.3		27	300	- 222	28	<2	$\bigcirc 10$	256
- $727 \mathrm{~N}-724000$	Bspyroclas	$64-72$	<1	0.3		24	251	200	30	3	$\bigcirc 10$	2.08
107M-7 ${ }^{2} 245.00$	Ispyroclas.	CA- 73	\bigcirc	0.2		25	229	162	26	1	$\bigcirc 10$	1.90
[j2\% 7250.00	Jspyroclas	6-71	-1	$\bigcirc 0.1$		32	331	175	31	2	20	3.10
132-725.00	Esproclas	$6 a^{-75}$		0.3	12	31.	306	145	33	< 2	20	3.05
1728-7260.00	pol?	ba. 76	1.3	0.1	13	27	229	11	37		$\bigcirc 10$	3. 17

Tablell-1-19 List of drill hole and number of samples for phygical test (4)

,

- '.' Ore Andiysis

Rrkose
Bosalite tuff
Limestone - Doiomite
Granite
Dolerite
Basal: laua
Basaliic pyroclastics

DEFTH (m)

[^0]

DEPTH (m)

DEPTH (m)

Drilling Logs

L E GEND

Arkose

Conslomerate

Dolonite, Lime stone

Basaltic Tuff, Muscovite schist

Basaltic pyroclastics

Basalt lava

Dolerite

Granite
3

8

景

翣

蠋
6
蓖

䜌

Photomicrographs Of Thin Sections

Abbreviations of mineral names in the plate
Ca:calcite
Ch:chloritoid
Mt:magnetite
Pl:plagioclase
Qz:quartzite
Se:sericite
Sp:sphene
Do:dolerite

Sample No. TS-4
formation Dencras Groug
Rock name Calcarcous pebble congionerate
locality $\quad 3 \mathrm{~J} / \mathrm{y}-7.160 \mathrm{~m}$

Sasple io. is-14
Forcation Deveras Croup
Rock name calcalcous arkose
locality yoze 7. 275m

娄数

Photomicrographs Of Polished Sections

Abbreviations of mineral names in the plate

Bo:bornite
Ce:chalcocite
Cp:chalcopyrite
Cv:covelline
Hm:hematite
Mh: maghemite
Mt:magnetite
Py:pyrite
Qz:quartz
Sph:sphalerite

open nicol
0.50 ma

Sample So. PS-1

Formation	Deveras Group
Rock nane	Basalt lava
Locality	yJzy 7. 48.5 m
Remarks	Py dissenination

Sanple lo. IS-2
formation Deveras Group
Rock name Basaltic Pyroclastics
Lacality vjew 5. 89.3n
Remarks Co dissemination

Open nicol
$-0.59 \mathrm{~m}$
Sample Mo. PS-5
Formation Deveras Group
Rock name Arkose
Locality 45ze.7. 301.0in
Remarks Py dissemination

Sample So. PS-7
Sormation Quartz tein in Younger Granite
sock nane puartz magnetile rein
locality WJZ-2, 210. Im
Remarks Xt-Hea ore

Remarks We-flea ore
-

Suaple to. PS 6

Formation Deveras Group
Rock nase Athose
Locality yJZN-7,314.1at
Renarks Euhedral fritegrains

[^0]: OEPTH (B)

