
3. WATER QUALITY ANALYSIS

Quality Standard for Drinking Water in Guatemala by COGUANOR

Quality Standard for Drinking Water in Guatemala by COGUANOR Table A1-1

Physical Quality

Parameter	TYM	TdM
Color	5 U*	n 09
Odor	No detected -1)	No detected
舌	7.0-8.5	
Taste	No detected	No detected
Total solids	500 mg/l	1500 mg/l
Turbidity	2 U**	25 u**
Temperature	18-30 °C	34 . C >

platinum-cobalt scale Note: *

Jackson Turbidity Metrics Unit (J.T.M) or Neferometric Unit (n.t.u.) 1-3 u of Odor in INFOM Standaard

Electric Conductivity: 50 - 1500 uS/cm at 25 °C

Quality Standard for Drinking Water in Guatemala by COGUANOR Table A1-3

(MAL MPL		0.3 - 0.5 mg/l 0.6 - 1.0 m
	Free Residual	Chlorine

WAL in INFOM Standrad: 0.7 mg/l PAL in INFOM Standrad: 0.5 mg/l<

Quality Standard for Drinking Water in Guatemala by COGUANOR Table A1-2

Chemical Quality

Parameter	MAI (mg/1)	MPL (mg/1)
Anionic Detergents*	0.200	1.000
Aluminium (Al) *	0.050	0.100
Barium(Ba) -1)		1.000
Boron (B) ★	1.	1.000
Calcium (Ca)	75,000	200.000
Chlorine (C1-)	200,000	000.009
Copper (Cu) *	0:020	1.500
Fluorine (F-)		1.700
Magensium (Mg)	20.000	150.000
Manganese (Mn)	0.050	0.500
Nickel (Ni) -2)	0.010	0.020
Phenole Substances	0.001	0.002
Sulfate (S04) *	200.000	400.000
Total Hardness	100.000	200.000
(as CaCO3)		
Total Iron (Fe)	0.100	1.000
Zinc (Zn) *	5.000	15,000

*: Not standardized parameters in INFOM Standard 1), 2): Found in Toxic Substances in INFOM Standard

Quality Standard for Drinking Water in Guatemala by COGUANOR Table A1-4

Toxic Substances

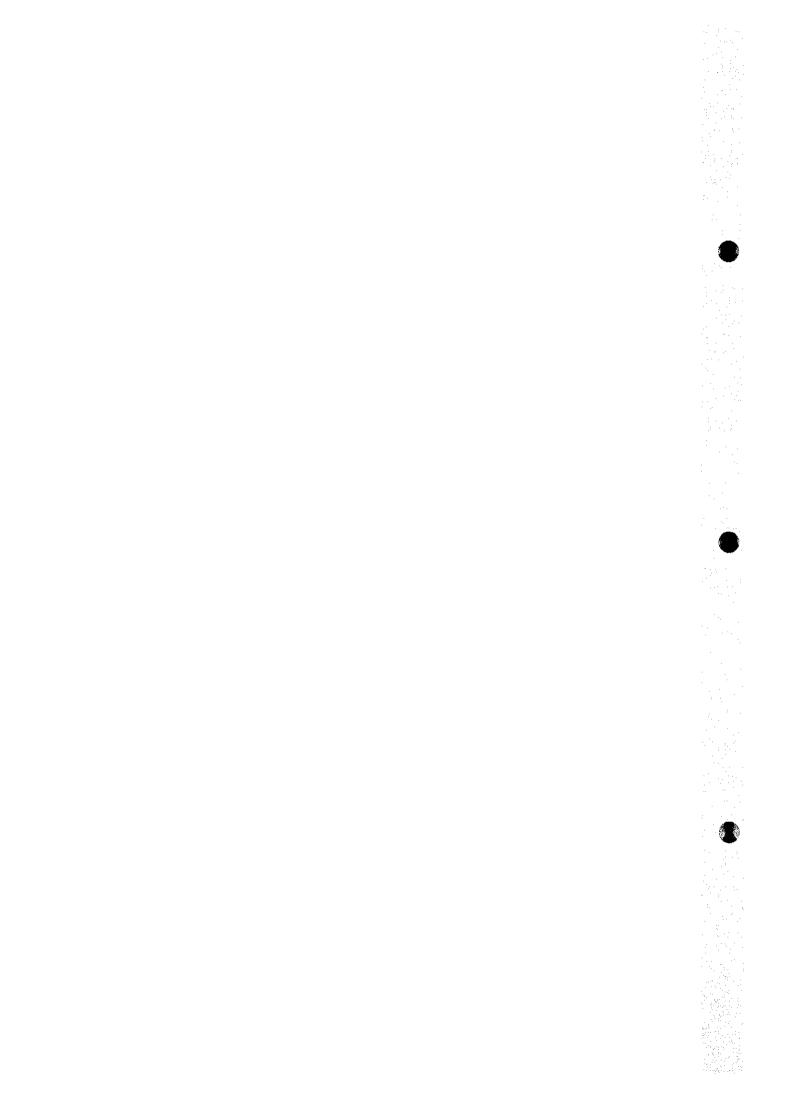
Parameter	MPL (mg/1)
Arsenic (As)	0.050
Cadmium (Cd)	0.010
Chromium (Cr)	0.050
Cyanide (CN-)	0.050
Lead (Pb)	0.100
Mercury (Hg)	0.002
Nitrate (NO3-) -1)	45.000
Nitrite (NO2-) *	0.010
Silver (Ag) *	0.050
Selenium (Se)	0.010

*: Not standardized parameters in INFOM Standard 1): Found in Chemical Substances of INFOM Standard

Quality Standard for Drinking Water in Guatemala by COGUANOR Table A1-6

Bacteriological Quality

General Bacteria 500 CFU/ml Total Coliform 2 MPN/100ml Fecal Coliform		$\overline{\ \ }$	^	
a		O CFU/m	PN/100™	egative
eneral Bacteria otal Coliform ecal Coliform		50	2 M	N
eneral B otal Col ecal Col	ij	acteria	iform	form
	TOT CENT	eneral B	otal Col	ecal Col


Quality Standard for Drinking Water in Guatemala by COCUANOR Table A1-5

Biocide Quality

ene chamate in	Parameter	MAL (mg/1)	MPL (mg/1)
che characte in	Aldrin	0.0010	0.0170
chamate in in ilor ilor chlor are chlor are (1) Tro (2)	Ch1ordene	0.0030	0.0030
thomate in inor ilor setachlor ane whenoxy henoxy ([]) Tro (0)	Organophsphorus		
nlor nlor serachlor se chlor sne henoxy hes: (1)	and Carbamate	0.1000	0.1000
nior sptachlor sptachlor are sne shenoxy ([])	IOO	0.0500	0.0500
nlor sptachlor achlor ane chilor	Dieldrin	0.0010	0.0170
nlor sptachlor chlor ane henoxy ([]) Tru (0)	Endrin	0.0002	0.0010
e chlor chlor ane shenoxy ([]) Tro (0)	Heptachlor	0.0010	0.0180
chlor sne henoxy les: ([])	Epoxyheptachlor	0.0010	0.0180
of the state of th	Lindane	0.0010	0.0560
ne hhenoxy les: (1)	Methoxychlor	0.0040	0.0350
hhenoxy les: (1)	Toxaphene	0.0050	0.0250
Mensoy (1) (1)			
(1) (1)	Chiorophenoxy		
(1)	Hebicides:		
(c) P	[2.4 - D] (1)	0.0200	0.1000
15 (6)	2.4.5 - TP (2)	0.0300	0:1000
[2,4,5-T] (3)	2.4.5 - T (3)	0.0020	0.1000

(1): 2.4-Dichlorophenoxyacetic Acid
(2): 2.4.5-Trichlorophenoxypropanic Acid
(3): 2.4.5-Trichlorophenoxyacetic Acid

Water Quality of the Existing Water Supply Systems by Simple Method

Water Quality of the Exisiting Water Supply Systems by Simple Method (April 13 - 29, 1994) Table A2-1

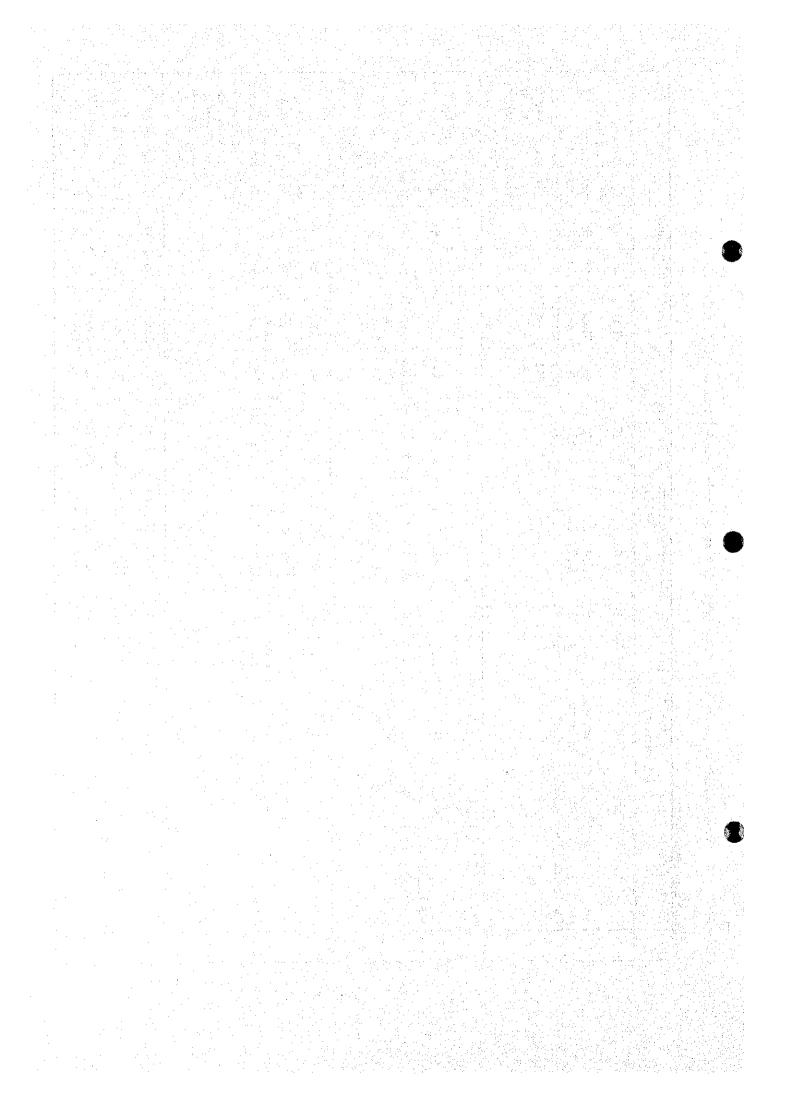
3	١E				l	, , ,					١		•
2	Municipality	Water	Place of	Temp.	晋	EC (US/cm)	.	ᇊ	Inrbid.	Turbid. Color	70 20 20 20 20 20 20 20 20 20 20 20 20 20	Udor laste	Kemarks
		source	source measurement	ဝ		(25° C)	(NO/m1)	(NO/m1)					
ii.		Tank-1	House tap	21.6	9	101.7 231, 21	231, 210.		No	Clear	No	2 N	*Cl gas addition
		(E + S)					358						in the tank
<u> </u>		1.5	Common tap	22.1	9	106.2	0.0.0	12, 16, 4	8	Clear	No.	2	*3-4 hs/day supply
7	San Jose Pinula	Tank-2	Primary	22. 4	9	123.6	0, 0, 0	1	Š	Clear	<u>۷</u>	No.	*1 Q/month pay
		(Tank-1	school										*New tank under
4.4.		A	House tap	21.8	မ	110.9			2	Clear	No	2	construction in
- 1 1		Well-3	House tap	22.3	цЭ	178.8		24.	N S	Clear	No	N S	zona-3
<u> </u>		₩e11-3	House tap	21.8	ف	170.2	0, 0, 0	8, 36, 52	No	Clear	ક	No.	*Turbidity by eyes
1					+		- 1						
		Spring-1	Spring-1	19.0	5.5	163.9		100, 68	No	Clear	£	No	*INFOM advised Cl
			Spring-2	17.5	တ	151.0	0 0	12. 8	2	Clear	S	8	treatment, but not
∞	8 San Pedro		House tap	17.5	6.5	124.6	0,0	16, 20	2	Clear	No.	2	be done, diarrhea
	Sacatepequez	Tank-2	House tap	17.8	co no	124.2	2, 1	28. 20	9	Clear	S	2	happened
			Common tap	18.5	5,5	123.0	6, 3	84, 168	% %	Clear	2	ş	*2-5 hs/day supply
					· ·								*3 Q/month
												-	*Turbidity by eyes
ļ													

Water Quality of the Exisitng Water Supply Systems by Simple Method (April 13 - 29, 1994) Table A2-2

	11
Remarks	*No C1 treatmmet *Common tap-every 2 days supply *No payment *Turbidity by eve
Iaste	
Odor.	8888
Color	Clear Clear Clear Clear
Turbid.	N 0 0 0
G. Bacteria (NO/ml)	199.1 1. 2 0. 4. 13 211.0 0. 0. 0 12. 44 139.9 6. 10 64. 100 291.0 0. 1 44. 20
Coliforns (NO/ml)	1, 1, 2 0, 0, 0 6, 10 0, 1
EC (US/cm) (25°C)	199.1 211.0 139.9 291.0
丟	6.65 7.7 TO 20
Temp. ('C)	22.2 21.7 21.7 21.7 20.4
Place of measurement	Spring-1 Common tap Common tap Spring-2 Common tap Well House tap
Water source	Spring-1 de Jesus Spring-2 Well
Municipality	Santa Maria de Jesus
2	
	Place of Temp. pH EC(US/cm) Coliforms G. Bacteria Turbid. Color Odor Taste urce measurement ('C) (25°C) (NO/m1) (NO/m1)

Table A2-3

Tabl		ter Quality	Water Quality of the Exisitng	ng Wate	r Sup	ply Systems	; by Simple	Water Supply Systems by Simple Wethod (April 13 - 29, 1994)	13 - 23	9, 1994)			
2	No Manicipality	Water source	er Place of source measurement	Temp.	쩐	EC (US/om) (25°C)	Coliforms (NO/ml)	EC(US/cm) Coliforms G. Bacteria (25°C) (NO/m1) (NO/m1)	Turbid.	Turbid. Color	Odor	Odor Taste	Remarks
	Solola	Tank-1 (S-1+2) Tank-1 Tank-2 (S-3)	Tank-1 Common tap Tank-2 House tap	18.1 21.3 17.7 19.7	က် လ လ လ	106.1 106.3 97.1	0 00 0	11. 1 0. 10 7. 1	2 2 2 2	Clear Clear Clear Clear	2 22 2	2 22 2	*!ank-1:01-gas teat treatment *Tank-2:Hypo- chloride treatment *ca.1450 house connections
		Tank-1 Tank-2	House tap House tap	20.6	99	106.1	0, 0	တ က	ର ଓ	Clear Clear	8 8	No No	*ca. 4hs/day supply *Turbidity by eyes
ĸ	Natuala	Tank (S-1, 2, 3) Tank Tank	Tank Common tap House tap	16.0 17.0 17.8	တ မမ	94. 1 94. 7	19. 32 4. 4 2. 3	68, 88 32, 36 15, 8	% % %	Clear Clear Clear	N NO	8 8 8 8 8	*No treatment *Turbidity by eyes *27 Qs/year *Water supply until


Water Quality of the Existing Water Supply Systems by Simple Method (April 13 - 29, 1994)

#ater Flace of lemp, pr EC(US/CM) (NO/ml) (NO/	ુંુ	Table A2-4 Wate	er Quality	Water Quality of the Existing	ng Wat	er Su	pply System	s by Simple	Water Supply Systems by Simple Method (April 13 - 29, 1994)	1 13 - 2 Tarid	9, 1894)	2	Total	Romanic
Tank-1 Tank-1 18.1 6 34.4 1.1 40.44 No Clear No No No Tank-2 Tank-2 20.7 6 91.8 1.1 120, 60 No Clear No No No Tank-1 House tap 16.8 6 35.6 2.5 44.36 No Clear No No Tank-1 Common tan 17.1 6 34.8 1.1 24.16 No Clear No No No Clear No Clear No Clear No		NO Municipality	Water source	Place of measurement		롡	EC (US/CE) (25°C)	(NO/ml)	u. Dacteria (NO/ml)	Turbia.	TOTOS	1005	ומשנת	
Tank-2 20.7 6 91.8 1.1 120, 60 No Clear No No House tap 16.8 6 35.6 2.5 44.36 No Clear No No Clear No No No No No No No N			Tank-1	Tank-1	18.1	ဖ	34.4	1. 1	40, 44	No		Ą	N	*Turbidity by eyes
House tap 16.8 6 35.6 2.5 44.36 No Clear No No Common +an 17.1 6 34.8 1 1 24.16 No Clear No No		Momostenango	(3-172) Tank-2	Tank-2	20.7	9	91.8	Н	120, 60	S.	Clear	2	%	600 houses
	1 m 1 m 1 m		(5-3) Tank-1 Tank-1	House tap	16.8	ယ်	35.6 34.8	1. 1	44. 36 24. 16	22	Clear Clear	22	22	*3hs-dry and 12 hs- wet season supply

Water Quality of the Exisiting Water Supply Systems by Simple Method (April 13 - 29, 1994)

Table A2-5

Gie	Guetzaltenango Department	Tent											
2	Municipality	Water	Place of measurement	Temp. ('C)	强	EC (US/cm) (25°C)	Coliforms (NO/ml)	6. Bacteria	Turbid.	Bacteria Turbid. Color Odor 14 hrs	Odor	Taste	Remarks
ii 			***************************************	122224	 	, , , , , , , , , , , , , , , , , ,	=======================================			H H H H H H		11 11 11 11	
		Tank	Tank	15.0	φ.	48.6	0.8	20. 12	No	Clear	.2	No	*No treatment
		(S-1-3)											*Water supply for
			Common tan	т. Т.	•	7 67		28 40	2	Clear	Ş.	No	*350 houses (100 %
		Tank	House tan	7 7	· ·	47.9		8 32	2	Clear	2	, C	in urban)
*	Con Corloc Ci is		Private-	13	ع د	175.5		36. 64	Looked	Slightly	2	.S	*Private wells and
<u> </u>	ממון המון דומי כד"ום		Spring	() 1	•			-	very	white			springs with water
		0	9						low		-		the supply system
				·		-			İ				*New tank is under-
					- -			-					construction
100		Tank-1	Tank-1	1	1								*No treatment
		T (S)	4		•								*Supply for 102-
10.0 10.0		Tank-2	Tank-2	19.1	9	126.3	0.0	68.88	No	Clear	No.	No No	houses-100 % in
82	San Fransico	(S)											urban area
		Private	(ca. 13 m	15.8	9	536.0	14. 25	36, 100	Looked	Slightly	₽	2	*Every 2days only
			(deeb)						low	white			a.m. supply
_		Private	(ca. 23 m	15.4	တ	186.3	0.0	24, 12	No.	Clear	§.	2	*5 Os/month
		well	(deeb)								_		*Private wells with
										,			water supply system
		Tank	Tank	25.6	'C	91 1	6 01	24 24	Š.	Clear	No	οŅ	*No treatment
		(S-1-7)		,	•								*Water supply for
		Tank	Common tap	30.0	9	91.0	7, 10	24, 32	No.	Clear	2	₽	350 houses (70 %)
_		Tank	House tap	29.4	9	91.3	4. 7	44, 176	No.	Clear	Ş.	No No	*2 hs only a.m.
23	Genova	Private	(ca. 7 m	26.8	9	133.9	18, 17	1118, 1264	No	Clear	No	2	*Private wells with
		well	(deep)										water supply system
						•							*Pipe from springs
				•					-				Ŗ,
					-								to bigger one - 50
						-							% water supply up
<u> </u>		Tank-1	Tank-1	24.3	9	107.1	13, 11	120. 80	No	Clear	No.	S.	*Tank-1 : for 30 ys
		(S-1+2)			 -								
	Flore	Tank-2	Tank-2	25.9	9	201.0	13, 22	72, 108	No	Clear	2 2	2	*Tank-2 : for 1.5 ys
22	Costa Cuca	(T-1+W)		į					1	ξ	- X	1	7 - 0 25 0+
		Tank-2 Private-	House tap (ca. 8 m	25.9	ω ω	1/8.9	8. 10 41. 40	200, 208 256, 200	N S	Clear	22	2 2	*V.75 US/month *Privae well with
·		well											water supply system

Water Quality of the Existing Supply Systems by INFOM

(1990)

Guatemala Department

Municipality	San	Jose del	Golfo	Sta.	Catarina Pi	nula
Date	4-9-90	4-9-90	30-4-91	8-9-92	15-2-93	10-8-93
Place	Munici-	Llena-	Casa N.	Munici-	Casa A.	Casa G. A.
	pality	cantaros	Carrera	pality	Dionisio	Barillas
Parameter		100				
Residual	0.0	0.0	0.0	0.0	0.0	0.0
chloride (mg/1)						
Appearance	Clear	Clear	Clear	Clear	Yellowish	Clear
Temp. (*C)		-	· - ''	-	22.4	-
pH	-	-		- '	6.8	-
True color	-	-	-	-	140	-
0dor	No	No	No	No	No	No
22	1*	1*	2#	1*	3\$	1*.
Turbidity (U.N.T)	-	-		-	22.4	-
Hardness (mg/1)	-	-	-	-	113	- 1
Chlorine (mg/1)	-	-	-	7	25	-
T-Fe (mg/1)	-	-	-	_	2.35	
Man (mg/1)	-	-	-	-	. 2	-
NO3-N (mg/1)	-	-			0.0	+
NO2-N (mg/1)	-	-	-		0.00	•
Sulphide (mg/l)	-	1 7	· -	-	0	-
EC (uS/cm)	-	-		-	1	-
T-S (mg/1)		-	-	-	186	-
General-bacteria	40	60	500	90	5000	200
(NO/m1)						
Total-coliforms	13	17	220	23	220	79
(MPN/100m1)						
Fecal-coliforms	2	2	8	<2	79	⟨2
(MPN/100m1)			1		<u></u>	

Guatemala Deapriment Sacatepéquez Department Municipality San Pedro Sacatepequez Santa Maria de Jesus 19-4-93 13-8-90 Date 28-8-90 28-9-93 8-5-91 24-8-92 Place Disri. Munici-Park Iglrsia Llena-Central Tank pality cantaros Park Parameter Residual 0.0 0.0 0.0 0.0 0.0 0.0 chloride (mg/l) Appearance Clear Clear Clear Clear Clear Clear Temp. (°C) 19.7 22.6 18 pΗ 7.1 7.2 True color 10 5 5 0dor Ò 2 No No No 1 SS 3\$ 2* 2* 1* 1* 0.5 0.25 Turbidity (U.N.T) 0.3 Hardness (mg/1) 76 45 48 23 28 Chlorine (mg/1) 36 0.00 0.00T-Fe (mg/1) 0.01 Mn (mg/1) 0.1 0.0 0.1 NO3-N (mg/1)1.8 1.4 0.7NO2-N (mg/1) 0.002 0.001 0.003 Sulphide (mg/1) 1.0 0.00.0 EC (uS/cm) 143.7 171.8 1.6 86.1 T-S (mg/1) 72.0 20 10000 General-bacteria 300 400 80 (NO/m1)2 8 70 34 Total-coliforms 11 (MPN/100m1) <2 2 Fecal-coliforms <2 <2 22 (MPN/100m1)

Table A2-7

(MPN/100m1)

(MPN/100m1)

Fecal-coliforms

Sacatepéques Department Chimaltenango Department Municipality Ciudad Vieja San Juan Comalana 10-1-90 24-11-92 10-8-92 2-8-93 1-6-93 25-11-91 Date Llena-Place Munici-Pozo Pozo Munici-N. el pality Nuevo Fluyente pality cantaros Cojol Parameter 0.0 0.0 Residual 0.0 0.1 0.0 chloride (mg/1) Appearance Clear Clear Clear Clear Clear Temp. ('C) 21.5 24.3 7.2 рH 7.4 True color 10 40 No 0 0dor 1 No No SS 2# 1* 1* 1+ Turbidity (U.N.T) 4.0 0.3 120 Hardness (mg/1) 123 Chlorine (mg/1) 31 28 T-Fe (mg/1) 0.020.02Wn (mg/1) 0.2 0.0 NO3-N (mg/1) 3.7 0.3 NO2-N (mg/1) 0.0040.001Sulphide (mg/1) 14.0 0.0 EC (uS/cm) 156.7 169.9 T-S (mg/1) 1 General-bacteria 20 60000 40 600 10000 (NO/m1)Total-coliforms <2 >1600 7 79 5

<2

<2

23

2

	Sololá De	partment		Totonicap	an Departme	nt
Municipality	Sol		Nahuala	Momosten		
Date Place	22-7-91 Hospital Nacional	31-8-93 Munici- pality	2-7-90 Centro de Salud	17-4-90 Llena-		
Parameter Residual chloride (mg/l)	1.0	1.0	0.0			
Appearance Temp. (*C)	Clear	Clear	Clear	18.7		
pH (0)	-	_	-	6.6		
True color	-	-	3 - 24,	10		
0dor	No	No	No	0		
SS	1*	1*	1*			
Turbidity (U.N.T)	-	-	-	0.4		
Hardness (mg/1)	-	-	-	•		
Chlorine (mg/l)	-	-	-	30		
T-Fe (mg/1)	-	-	-	0.02		
Mn (mg/1)	-	-		0.0		
NO3-N (mg/1)	~		-	1.0		
NO2-N (mg/1)	-	-	-	0,003		
Sulphide (mg/1)	_	- ' -	:	1.0		
EC (uS/cm)	-	-	-	16.4		130
T-S (mg/1)	1	-	~	33, 1		146 NJAN
General-bacteria	1	1	1000			
(NO/m1)						
Total-coliforms	<2	<2	8	-		
(MPN/100m1)						Particular de
Fecal-coliforms (MPN/100m1)	-		4			

Table A2-8 Water Quality of the Existing Supply System analysed by INFOM since 1990

Quetzaltenango Department

	4-4-1-4	PO DOPOT O	antott o			
Municipality	Génova Cos	ta Cuca	F. C. C.	Sa	n Carlos S	ijá
Date	27-8-90	7-10-91	7-10-91	27-3-90	27-3-90	27-3-90
Place	Casa de	Tank	Casa de	Casa de	Market	Casa de
	M. Escobal	Lavadero	F. V.	F. R. G		F. Ramon
Parameter				[
Residual	0.0	0.0	0.0	0.0	0.0	0.0
chloride (mg/l)				ļ		
Appearance	Clear	Clear	Clear	Clear	Clear	Clear
Temp. ('C)	-	· -	-	-		17.6
pH	-	6.6		-	-	7.3
True color	-	10	10	- '	-	10
0dor	No	0	0	No	No	1
22	3*	1* .	1*	1*	2#	1*
Turbidity (U.N.T)	-	0.55	1.3	-	-	0.45
Hardness (mg/l)	-	-	÷	_	-	22
Chlorine (mg/1)	-	27	29	- :	- ·	39
T-Fe (mg/1)	: -	0.01	0.03] -	-	0.01
Mn (mg/1)	~	-		- .	·	0.3
NO3-N (mg/1)	-	3.2	8.0	-	-	1.5
NO2-N (mg/1)		0.003	0.007	} -	_	0.003
Sulphide (mg/l)	-	0.0	0.0	-		0.0
EC (u.S/cm)		82.2	96.0	-	-	47.7
T-S (mg/1)	-	41.1	48.1	-		23.8
General-bacteria	59000	3	600	. 180	700	200
(NO/m1)			1.			i
Total-coliforms	2	⟨2	350	8	49	79
(NMP/100m1)						
Fecal-coliforms	2	-	33	<2	49	<2
(NMP/100m1)	<u> </u>					

Quetzaltenango Department

Municipality	San Fco. 1	a Unión	Cajola			
Date	28-8-90		26-2-90			
Place	Munici-		Munici-			
	pality		pality			•
Parameter	-					
Residual	0.0		0.0			
chloride (mg/1)						
Appearance	Yellowish		Clear			
Temp. ('C)	16,7		17.1			
pH	7.4		7.3			
True color	30		20			
0dor	1		2			
SS	2#		1*.	-		
Turbidity (U.N.T)	0.94		3.0			
Hardness (mg/1)	75		162			
Chlorine (mg/1)	32		28			
T-Fe (mg/1)	0.79		0.04			
Mn (mg/1)	0.3		0.2			
NO3-N (mg/1)	1.2		1.6	·		
NO2-N (mg/1)	0.001		0.002			
Sulphide (mg/l)	5.0		9.0			
EC (uS/cm)	170.7		143.0			
T-S (mg/1)	86.0		71.5		<u> </u>	
General-bacteria	150		60			
(NO/m1)						
Total-coliforms] 2		8]
(NMP/100m1)						
Fecal-coliforms	-		2			
(NMP/100m1)			<u> </u>			

Quality of Drinking Water from Distribution Tank

Table A3-1 Quality of Drinking Water from Distribution Tank

Municipality: San José Pinula

Tank No. 1

Date: October 8, 1994

Appearance: Clear

Odor: No

Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. (C)	20.0	T-Fe (mg/l)	0.12	Pb (mg/1)	0.0
pH	6.6	T-Hardness	94 19	T-Residual	1.
EC (uS/cm)	65.0	(mg/l as CaCO3)	32.54	(mg/1 at 104'C)	142.40
Color (u)	5.0	Cr(6+) (mg/1)	0.0	General bacteria	
Turbid. (mg/1)	0.0	Chloride (mg/l)	13.25	(CFU/m1)	33
Residual Clorine	0.0	Mn (mg/1)	0.0	Total coliforms	
$COD(Mn) \pmod{1}$		Zn (mg/1)	0.0	(MPN/100m1)	2>
NO3-N (mg/1)	0	Cu (mg/1)	0.0	Fecal coliforms	N
NO2-N (mg/1)	0.0	As (mg/1)	0.0		147
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0		

Table A3-2 Quality of Drinking Water from Distribution Tank

Municipality: San Pedro Sacatepéquez

Tank No. 2

Date: October 13, 1994

Appearance: Clear

Odor: No Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	21.0	T-Fe (mg/1)	0.04	Pb (mg/1)	0.0
pH	6.9	T-Hardness		T-Residual	
EC (uS/cm)	340.0	(mg/1 as CaCO3)	52.88	(mg/1 at 104°C)	159.6
Color (u)	10.0	Cr (6+) (mg/1)	0.0	General bacteria	
Turbid. (mg/1)	0.0	Chloride (mg/l)	8.37	(CFU/m1)	1450
Residual Clorine	a ala otwali	Mn (mg/1)	0.0	Total coliforms	* 1 - 1 - 1 - 1
COD (Mn) (mg/1)	0.0	Zn (mg/1)	0.01	(MPN/100m1)	93
NO3-N (mg/1)	5	Cu (mg/1)	0.0	Fecal coliforms	N
NO2-N (mg/1)	0.0	As (mg/l)	0.0		1000
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0		14 (1 14 <u>) (1</u>

Table A3-3 Quality of Drinking Water from Distribution Tank

Municipality: Santa María de Jusús

Tank No. 2

Date: November 5, 1994

Appearance: Clear

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	20.0	T-Fe (mg/1)	0.01	Pb (mg/1)	0.0
pH	7.2	T-Hardness		T-Residual	•
EC (uS/cm)	200	(mg/l as CaCO3)	138.30	(mg/l at 104°C)	250.8
Color (u)	5.0	Cr (6+) (mg/1)	0.0	General bacteria	10
Turbid. (mg/1)	0.0	Chloride (mg/l)	11.16	(CFU/m1)	4610
Residual Clorine		Mn (mg/1)	0.0	Total coliforms	
COD (Mn) (mg/1)	0.0	Zn (mg/1)	0.03	(MPN/100m1)	110
NO3-N (mg/1)	10	Cu (mg/1)	0.0	Fecal coliforms	N
NO2-N (mg/1)	0.0	As (mg/l)	0.0		
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0		

Table A3-4 Quality of Drinking Water from Distribution Tank

Municipality: San Martin Jilotepeque

Tank No.

Date: October 29, 1994

Appearance: Clear

Odor: No

Taste: No

Parameter	Value	Parameter	Value	Parameter Value
Temp. (°C)	22.0	T-Fe (mg/1)	0.39	Pb (mg/1) 0.0
pH	7.0	T-Hardness		T-Residual
EC (uS/cm)	130.0	(mg/l as CaCO3)	63.05	(mg/l at 104°C) 179.2
Color (u)	5.0	Cr (6+) (mg/1)	0.0	General bacteria
Turbid. (mg/1)	0.0	Chloride (mg/1)	9.76	(CFU/m1) 1030
Residual Clorine	Santa 🛨 San	Vin (mg/1)	0.0	Total coliforms
COD (Mn) (mg/1)		Zn (mg/1)	0.08	(MPN/100m1) 1100
NO3-N (mg/1)	0	Cu (mg/1)	0.0	Fecal coliforms N
NO2-N (mg/1)	0.0	As (mg/l)	0.0	[[기급리] [[기급하다 등급 취급하
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0	

Table A3-5 Quality of Drinking Water from Distribution Tank

Municipality: San Juan Comalapa

Tank No. 1

Date: November 10, 1994

Appearance: Clear

Odor: No Taste: No

Parameter	Value	Parameter Value Parameter Value
Temp. ('C)	17.0	T-Fe (mg/1) 0.11 Pb (mg/1) 0.0
pH	7.2	T-Hardness T-Residual
EC (uS/cm)	55	(mg/l as CaCO3) 32.54 (mg/l at 104°C) 92.8
Color (u)	5.0	Cr (6+) (mg/1) 0.0 General bacteria
Turbid. (mg/1)	0.0	Chloride (mg/1) 9.07 (CFU/ml) 21
Residual Clorine	0.0	Mn (mg/1) 0.0 Total coliforms
COD (Mn) (mg/1)	0.0	Zn (mg/1) 0.03 (MPN/100m1) 2>
NO3-N (mg/1)	0	Cu (mg/1) 0.0 Fecal coliforms N
NO2-N (mg/1)	0.0	As (mg/1). 0.0
NH4-N (mg/1)	0.0	Cd (mg/1) 0.0

Quality of Drinking Water from Distribution Tank Table A3-6

Municipality: Sololá

Tank No. 1

Appearance: Clear

Odor: No

Date: November 10, 1994 Taste: No

Parameter	Value	Parameter	Value	Parameter Value
Temp. ('C)	16.0	T-Fe (mg/1)	0.0	Pb (mg/1) 0.0
pH	7.1	T-Hardness		T-Residual
EC (uS/cm)	75	(mg/1 as CaCO3)	44.76	(mg/1 at 104°C) 140.4
Color (u)	0.0	Cr(6+) (mg/1)	0.0	General bacteria
Turbid. (mg/1)	0.0	Chloride (mg/1)	9.76	(CFU/m1) 4
Residual Clorine	1.0	Mn (mg/1)	0.0	Total coliforms
COD (Mn) (mg/1)	0.0	Zn (mg/1)	0.0	(MPN/100m1) 2>
NO3-N (mg/1)	5	Cu (mg/1)	0.0	Fecal coliforms N
NO2-N (mg/1)	0.0	As (mg/1)	0.0	
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0	

Table A3-7 Quality of

Quality of Drinking Water from Distribution Tank

Municipality: Santa Lucía Utatlán

Tank No.1

Date: November 10, 1994

Appearance: Clear

Odor: No Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	15.0	T-Fe (mg/1)	0.0	Pb (mg/1)	0.0
Hq	6.8	T-Hardness		T-Residual	
EC (uS/cm)	50	(mg/l as CaCO3)	30.52	(mg/1 at 104°C)	109.6
Color (u)	5.0	Cr (6+) (mg/1)	0.0	General bacteria	
Turbid. (mg/1)	0.0	Chloride (mg/l)	11.16	(CFU/ml)	10
Residual Clorine	us til t	Mn (mg/1)	0.0	Total coliforms	
COD (Mn) (mg/1)	0.0	Zn (mg/1)	0.01	(MPN/100m1)	2>
NO3-N (mg/1)	0	Cu (mg/1)	0.0	Fecal coliforms	N
NO2-N (mg/1)	0.0	As (mg/1)	0.0		
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0		

Table A3-8

Quality of Drinking Water from Distribution Tank

Municipality: Momostenango

Tank No. 1

1801 100.1

Date: November 17, 1994

Appearance: Clear

Odor: No Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. (°C)	18.0	T-Fe (mg/1)	0.0	Pb (mg/1)	0.0
pH	7.0	T-Hardness		T-Residual	
EC (uS/cm)	90	(mg/1 as CaCO3)	24.41	(mg/l at 104°C)	112.0
Color (u)	5	Cr (6+) (mg/1)	0.0	General bacteria	
Turbid. (mg/l)	0,0	Chloride (mg/1)	7,67	(CFU/ml)	616
Residual Clorine		Mn (mg/1)	0.0	Total coliforms	
COD (Mn) (mg/1)	0.0	Zn (mg/1)	0.01	(MPN/100m1)	460
NO3-N (mg/1)	0	Cu (mg/1)	0.0	Fecal coliforms	N
NO2-N (mg/1)	0.0	As (mg/1)	0.0		
NH4-N (mg/1)	0.0	Cd (mg/1)	0.0		

Table A3-9

Quality of Drinking Water from Distribution Tank

Municipality: San Francisco La Unión

Tank No. 1

Date: November 17, 1994

Appearance: Clear

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	16.0	T-Fe (mg/l)	0.18	Pb (mg/1)	0.0
pH	7.3	T-Hardness		T-Residual	
EC (uS/cm)	175	(mg/1 as CaCO3)	54.97	(mg/1 at 104°C)	128.8
Color (u)	0	Cr (6+) (mg/1)	0.0	General bacteria	
Turbid. (mg/1)	0	Chloride (mg/1)	9.07	(CFU/ml)	1336
Residual Clorine		Mn (mg/1)	0.16	Total coliforms	
COD (Mn) (mg/1)	0.0	Zn (mg/1)	0.02	(MPN/100m1)	290
NO3-N (mg/1)	0, 0, 0,	Cu (mg/1)	0.0	Fecal coliforms	N
NO2-N (mg/1)	0.0	As (mg/1)	0.0		
NH4-N (mg/1)	0,0	Cd (mg/1)	0.0	· · · · · · · · · · · · · · · · · · ·	

Table A3-10 Quality of Drinking Water from Distribution Tank

Municipality: Génova

Tank No. 1

Date: November 18, 1994

Appearance: Clear

Odor: No Taste: No

Parameter	Value	Parameter Value	Parameter Value
Temp. ('C)	24.0	T-Fe (mg/1) 0.04	Pb (mg/1) 0.0
Hq	6.8	T-Hardness	T-Residual
EC (uS/cm)	70	(mg/l as CaCO3) 32.54	(mg/l at 104 °C) 77.2
Color (u)	0	Cr (6+) (mg/1) 0.0	General bacteria
Turbid. (mg/1)	0	Chloride (mg/1) 13.25	(CFU/m1) 63
Residual Clorine	15-14-1	Mn (mg/1) 0.16	Total coliforms
COD (Mn) (mg/1)	0.0	Zn (mg/1) 0.0	(MPN/100m1) 29
NO3-N (mg/1)	10	Cu (mg/1) 0.0	Fecal coliforms P
NO2-N (mg/1)	0.0	As $(mg/1)$ 0.0	

Table A3-11 Quality for Drinking Water from Test Well

Municipality: San José Pinula

Date: October 8, 1994

Appearnce: Clear

Odor: No Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	23.0	T-Fe (mg/1)	0.10	Cd (mg/1)	0.0
Hq	6.7	T-llardness		Pb (mg/1)	0.0
EC (uS/cm)	240	(mg/1 as CaCO3)	152.54	T-Residual	
Color (u)	0	Cr (6+) (mg/1)	0.0	(mg/1 at 104°C)	309.2
Turbid. (mg/1)	4 0 1 0 T	Chloride (mg/l)	18.83	General bacteria	i grafisaj:
COD (Mn) (mg/1)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Mri (mg/1)	0.0	(CFU/ml)	2200
NO3-N (mg/1)	10	Zn (mg/1)	0.05	Total coliforms	
NO2-N (mg/1)	0.0	Cu (mg/1)	0.0	(MPN/100m1)	3
NH4-N (mg/1)	0.0	As (mg/1)	0.0	Fecal coiliforms	<u> </u>

Table A3-12 Quality for Drinking Water from Test Well

Municipality: San Pedro Sacatepequez

Date: October 13, 1994

Appearnce: Clear

Parameter	Value	Parameter	Value	Parameter Valu	ie.
Temp. ('C)	20.0	T-Fe (mg/1)	0.06	Cd (mg/1) 0.	0
рH	6.8	T-Hardness		Pb (mg/1) 0.	0
EC (uS/cm)	380	(mg/1 as CaCO3)	44.74	T-Residual	1 44
Color (u)	5	Cr(6+) (mg/1)	0.0	(mg/1 at 104 C) 198,	0
Turbid. (mg/l)	0	Chloride (mg/l)	8.37	General bacteria	
COD(Mn) (mg/1)	0.0	Mn (mg/1)	0.0	(CFU/ml) 2300	
NO3-N (mg/1)	0	Zn (mg/1)	0.12	Total coliforms	Mil
NO2-N (mg/1)	0.0	Cu (mg/1)	0.0	(MPN/100m1) 1100	
NH4-N (mg/1)	0,0	As (mg/1)	0.0	Fecal coiliforms N	¥. 5

Table A3-13

Quality for Drinking Water from Test Well

Municipality: Santa María de Jusús

Appearnce: Clear

Date: November 5, 1994

Odor: No Taste: No

Parameter	Value	Parameter Value	Parameter	Value
Temp. ('C)	19.5	T-Fe (mg/1) 0.02	Cd (mg/1)	0.0
pli	7.0	T-llardness	Pb (mg/1)	0.0
EC (uS/cm)	180	(mg/l as CaCO3) 128.13	T-Residual	
Color (u)	5	Cr (6+) (mg/1) 0.0	(mg/l at 104°C)	230.4
Turbid. (mg/1)	0	Chloride (mg/1) 9.76	General bacteria	
COD (Mn) (mg/1)	0.0	Mn (mg/1) 0.01	(CFU/ml)	460
NO3-N (mg/1)	5	Zn (mg/1) 0.10	Total coliforms	
NO2-N (mg/1)	0.0	Cu (mg/1) 0.0	(MPN/100m1)	3
NH4-N (mg/1)	0.0	As (mg/1) 0.0	Fecal coiliforms	N

Table A3-14

Quality for Drinking Water from Test Well

Municipality: San Martín Jilotepeque

Appearnce: Clear

Date: October 29, 1994

Odor: No Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	21.0	T-Fe (mg/l)	0.01	Cd (mg/1)	0,0
llq	7.2	T-Hardness		Pb (mg/1)	0.0
EC (uS/cm)	160.0	(mg/1 as CaCO3)	63.05	T-Residual	
Color (u)	5	Cr (6+) (mg/1)	0.0	(mg/l at 104°C)	223.6
Turbid. (mg/1)	0	Chloride (mg/1)	8.37	General bacteria	
COD (Mn) (mg/1)	0.0	Mn (mg/1)	0.0	(CFU/ml)	2250
NO3-N (mg/1)	0	2n (mg/1)	0.02	Total coliforms	
NO2-N (mg/1)	0.0	Cu (mg/l)	0.0	(MPN/100m1)	23
NH4-N (mg/1)	0.0	As (mg/1)	0.0	Fecal coiliforms	N

Table A3-15

Quality for Drinking Water from Test Well

Municipality: San Juan Comalapa

Appearnce: Clear

Date: December 1, 1994

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	19.8	T-Fe (mg/1)	0.03	Cd (mg/1)	0.0
pH	6.6	T-llardness		Pb (mg/1)	0.0
EC (uS/cm)	92	(mg/l as CaCO3)	40.68	T-Residual	
Color (u)	0	Cr(6+) (mg/1)	0.0	(mg/l at 104°C)	182.0
Turbid. (mg/1)	0	Chloride (mg/l)	7,67	General bacteria	
COD (Mn) (mg/1)	0.0	Mn (mg/1)	0.0	(CFU/m1)	1400
NO3-N (mg/1)	0	Zn (mg/1)	0.0	Total coliforms	
NO2-N (mg/1)	0.0	Cu (mg/1)	0,0	(MPN/100m1)	39
NH4-N (mg/1)	0.0	As (mg/l)	0.0	Fecal colliforms	N.

Table A3-16 Quality for Drinking Water from Test Well

Municipality: Sololá Appearnce: Clear Date: November 11, 1994

Odor: No Taste: No

Parameter	Value	Parameter Value	Parameter Value
Temp.: (*C)	21.8	T-Fe (mg/1) 0.04	Cd (mg/1) 0.0
ρĤ	7.2	T-Hardness	Pb (mg/1) 0.0
EC (uS/cm)	710	(mg/l as CaCO3) 48.81	T-Residual
Color (u)	0	Cr (6+) (mg/1) 0.0	(mg/l at 104°C) 168.8
Turbid. (mg/1)	0	Chloride (mg/1) 8.37	General bacteria
OOD (Mn) (mg/1)	0.0	Mn (mg/1) 0.0	(CFU/m1) 4353
NO3-N (mg/1)	0	Zn (mg/1) 0.11	Total colifors
NO2-N (mg/1)	0,0	Cu (mg/1) 0.0	(MPN/100m1) 14
NH4-N (mg/1)	0.0	As (mg/1) 0.0	

Table A3-17 Quality for Drinking Water from Test Well

Municipality: Santa Lucía Utatlan Appearnce: Clear

Date: November 26, 1994 Odor: No Taste: No

Parameter	Value	Parameter Value	Parameter Value
Temp. ('C)	15.0	T-Fe (mg/1) 0.01	Cd (mg/1) 0.0
p₩	7.0	T-Hardness	Pb (mg/1) 0.0
EC (uS/cm)	98	(mg/l as CaCO3) 54.19	T-Residual
Color (u)	5	Cr (6+) (mg/1) 0.0	(mg/1 at 104°C) 158,8
Turbid. (mg/1)	0		General bacteria
COD (Mn) (mg/1)	0.0		(CFU/m1) 1680
NO3-N (mg/1)	0	Zn (mg/1) 0.03	Total coliforms
NO2-N (mg/1)	0.0	Cu (mg/1) 0.0	(MPN/100m1) 9.1
NH4-N (mg/1)	0.0	As (mg/1) 0.0	Fecal coiliforms N

Table A3-18 Quality for Drinking Water from Test Well

Municipality: Momostenango Appearnce: Clear

Date: December 9, 1994 Odor: No Taste: No

Parameter	Value	Parameter	Value	Parameter Value
Temp. ('C)	20.0	T-Fe (mg/1)	0.03	Cd (mg/1) 0.0
рН	7.0	T-Hardness		Pb (mg/1) 0.0
EC (uS/cm)	53	(mg/1 as CaCO3)	22.37	T-Residual
Color (u)	0	Cr (6+) (mg/1)	0.0	(mg/l at 104°C) 139.6
Turbid. (mg/1)	0	Chloride (mg/1)	4.88	General bacteria
COD (Mn) (mg/1)	0.0	Mn (mg/1)	0.00	(CFU/m1) 2130
NO3-N (mg/1)	0	Zn (mg/1)	0.0	Total coliforms
NO2~N (mg/1)	0.0	Cu (mg/1)	0.0	(MPN/100m1) 11
NH4-N (mg/1)	0.0	As (mg/1)	0.0	Fecal coiliforms N

Table A3-19 Quality for Drinking Water from Test Well

Municipality: San Francisco La Unión

Appearnce: Clear Odor: No

Date: December 9, 1994

Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)		T-Fe (mg/1)		Cd (mg/1)	
pli		T-Hardness		Pb (mg/1)	
EC (uS/cm)		(mg/1 as CaCO3)		T-Residual	
Color (u)		Cr (6+) (mg/1)		(mg/l at 104°C)	
Turbid. (mg/1)		Chloride (mg/1)		General bacteria	
COD (Mn) (mg/1)		Mn (mg/1)	-	(CFU/m1)	
NO3-N (mg/1)		Zn (mg/1)		Total coliforms	
NO2-N (mg/1)		Cu (mg/1)		(MPN/100m1)	
NH4-N (mg/1)		As (mg/1)		Fecal coiliforms	

Table A3-20 Quality for Drinking Water from Test Well

Municipality: Génova

Appearnce: Clear

Date: December 9, 1994

Odor: No

Taste: No

Parameter	Value	Parameter	Value	Parameter	Value
Temp. ('C)	21.5	T-Fe (mg/1)	0.09	Cd (mg/1)	0.0
Hq	8.0	T-Hardness		Pb (mg/1)	0.0
EC (uS/cm)	182	(mg/1 as CaCO3)	71.18	T-Residual	
Color (u)	0	Cr (6+) (mg/1)	0.0	(mg/1 at 104 C)	199, 2
Turbid. (mg/1)	0	Chloride (mg/l)	13.25	General bacteria	
COD (Mn) (mg/1)	0.0	Mn (mg/1)	0.0	(CFU/m1)	2500
NO3-N (mg/1)	0	Zn (mg/1)	0.0	Total coliforms	
NO2-N (mg/1)	0.0	Cu (mg/1)	0.0	(MPN/100m1)	3
NH4-N (mg/1)	0.0	As (mg/1)	0.0	Fecal colliforms	N

Result of Water Quality Analysis (Original Data)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

ingreso №:

9.040

Nº laboratorio: 24,753

Municipio: San José Pinula

Departamento: Guatemala

identificación de la muestra: Test Vell

Reconocable de la toma de muestra :

Carlos R. Moi no

LATER COLUMN TO THE PARTY OF TH		
	fecha	Hora
Toma de Muestras	8/10/94	14:00
Ingreso de Laboratorio	8/10/94	17:51
Reporte:	15/10/94	_

Parimetra	Dimensionales	Resultado	LMA	LMP
pH	Unidades	6,7	7,0-8,5	6,5-9,2
Conductividad eléctrica	¡¡Siemens/cm	240	500	1500
Temperatura	℃ .	23	18-30	No > 34
Salimidad	0/00	0		
Apartencia		Cristalina		
Olor		incloro	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	-	0,3-0,5	0,6-1,0

Norma COGUANOR NGO 29001

Parámetro	Dimensionales_	Resultado	LMA	IMP
Alcabinidad pH 4.0	ppm	146,55		
Alcalinidad pH 8.3	ppm	0		
Calcio	ppm	52,12	75	200
Cloruros	ppm	18,83	200	600
Magnesio	ppm	24,5	50	150
Potasio	ppm	12,12		
Sodio	ppm	11,36		
Sulfatos	ppm	0	200	400

UFC= Unidades formadoras de colonia NMP= Número más probale PPM= Partes Por Millón MA= Limite móximo admisible LMP= Limite móximo permisible Utn= Limidades nefelométricas

Result of Water quality analysis (San José Pinula-①-1: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso N≌:

9,040

№ laboratorio: 24,754

Municipio: San José Pinula

Departamento: Quatemala

Identificación de la muestra:

Spring No. 1

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	8/10/94	14.00
Ingreso de Laboratorio	8/10/94	17:51
Reporte :	15/10/94	-

Resultados de Campo:

<u>• </u>			
<u>Dimensionales</u>	Resultado	LMA	LMP
Unidades	6,7	7,0-8,5	6,5-9,2
μSiemens/cm	80	500	1500
°C,	20	18-30	No > 34
0/00	0		
	Cristalina		
	No rechazable	No rechazable	No rechazable
	No rechazable	No rechazable	No rechazable
ppm	0	0,3-0,5	0,6-1,0
	μSiemens/om °C, 0/00	Dimensionales Resultado Unidades 6,7 μSiemens/cm 80 °C, 20 0/00 0 - Cristalina - No rechazable	DimensionalesResultadoLMAUnidades6,77,0-8,5μSiemens/cm80500°C,2018-300/000CristalinaNo rechazable-No rechazableNo rechazable

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

C			
<u>Dimensionales</u>	Resultado	LMA	LMP
ppm	48,85		
ppm	0		
ppm	13,03	75	200
ppro	8,37	200	600
ppm	5,75	50	150
ppm	0,86		a y dina di kamanaya.
ppm	5,13		
ppm	0	200	400
	ppm ppm ppm ppm ppm ppm	ppm 48,85 ppm 0 ppm 13,03 ppm 8,37 ppm 5,75 ppm 0,86 ppm 5,13	ppm 48,85 ppm 0 ppm 13,03 75 ppm 8,37 200 ppm 5,75 50 ppm 0,86 ppm 5,13

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas

F. responsable

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso Nº:

9,040

№ laboratorio: 24,756

Municipio : San José Pinula

Departamento: Guatemala

Identificación de la muestra:

Spring No. 2

Responsable de la toma de muestra:

Carlos R. Moino

Toma de Muestras

Ingreso de Laboratorio

Fecha Hora 8/10/94 14:00 8/10/94 17:51

Reporte:

15/10/94

ultados do Caman

· ···
LMP
6,5-9,2
1500
No > 34
·
No rechazable
No rechazable
0,6-1,0

Resultados de Laboratorio:

Norma COGUAÑOR NGO 29001

Parómetro	Dimensionales	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppm	84,55		
Alcalinidad pH 8.3	ppm	0		and the second
Calcio	ppm	42,35	75	200
Cloruros	bbw	36,26	200	600
Magnesio	ppm	20,44	50	150
Potasio	ppm	11,03		
Sodio	ppm	15,1		
Sulfatos	ppm	0	200	400

Momenclatura:

UFC= Unidades formadoras de colonia | NMP= Número más probale | PPM= Partes Por Millón LMA= Límite máximo admisible | LMP= Límite máximo permisible | Utn= Unidades nefelométricas

F. responsable

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso №:

9,040

Nº laboratorio: 24,757

Municipio: San José Pinula

Departamento: Guatemala

Identificación de la muestra:

Spring No. 3

Responsable de la toma de muestra:

Carlos R. Moino

	· · · · · · · · · · · · · · · · · · ·	OM NO IV. I WAN.
	Fecha	Hora
Toma de Muestras	8/10/94	14:00
Ingreso de Laboratorio	8/10/94	17:51
Reporte:	15/10/94	-

Resultados de Campo;

•		되었다. 보이노를 모두는	
<u>Dimensionales</u>	Resultado	LMA	LMP
Unidades	6,8	7,0-8,5	6,5-9,2
μSiemens/cm	150	500	1500
°C.	19	18-30	No > 34
0/00	0		
	Cristalina		Augusta de la compansión de la compansió
	No rechazable	No rechazable	No rechazable
-	No rechazable	No rechazable	No rechazable
ppm	0	0,3-0,5	0,6-1,0
	Dimensionales Unidades μSiemens/cm °C. 0/00	Dimensionales Resultado Unidades 6,8 μSiemens/cm 150 °C. 19 0/00 0 - Cristalina No rechazable - No rechazable	Dimensionales Resultado LMA Unidades 6,8 7,0-8,5 μSiemens/cm 150 500 °C 19 18-30 0/00 0 - Cristalina No rechazable No rechazable

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

Parómetro	<u>Dimensionales</u>	Résultado	LMA	LMP
Alcalinidad pH 4.0	ppm	46,97		
8.3 Hq babinifaol A	ppm	0		
Calcio	ppm	19,55	75	200
Chruros	b btu	22,32	200	600
Magnesio	ppm	8,63	50	150
Potasio	t-b.u.	12,3		
Sodio	ppm.	12		
Sulfatos	ppm	0	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale - PPM= Partes Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas

f. responsable

Result of Water quality analysis (San Jose Pinula-10-4: Spring No.3)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso №:

Municipio: San José Pinula

Nº laboratorio: 24,758

Departamento: Guatemala

Identificación de la muestra:

Spring No. 4

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	8/10/94	14:00
Ingreso de Laboratorio	8/10/94	17:51
Reporte :	15/10/94	

Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
pH	Unidades	6,5	7,0-8,5	6,5-9,2
Conductividad eléctrica	µSiemens/cm	110	500	1500
Temperatura	°C.	20	18-30	No > 34
Salinidad	0/00	0		
Apariencia	-	Cristalina		<u> </u>
0 lor		No rechazable	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGLIANOR NGO 2900 t

		HOLING COCOLUCK HOO Z 2001	
<u>Dimensionales</u>	Resultado	LMA	LMP
ppm	56,36		
ppm	0		
ppm	16,29	75	200
ppm	11,16	200	600
ppm	8,43	50	150
ppm	1,35		
ppm	11,1		
ppm	0	200	400
	ppm ppm ppm ppm	ppm 56,36 ppm 0 ppm 16,29 ppm 11,16 ppm 8,43 ppm 1,35 ppm 11,1	Dimensionales Resultado LMA ppm 56,36 ppm 0 ppm 16,29 75 ppm 11,16 200 ppm 8,43 50 ppm 1,35 ppm 11,1

UFC= Unidades formadoras de colonia NMP= Número más probale PPM= Partes Por Millón LMA= Limite móximo admisible LMP= Limite móximo permisible. Utn= Unidades nefelométricas

Result of Water quality analysis (San Jose Pinula-10-5: Spring No.4)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso №:

9,040

....

Municipio: San José Pinula

№ laboratorio: 24,755 Departamento: Guatemala

Identificación de la muestra:

Dug Yell

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	8/10/94	14:00
Ingreso de Laboratorio	8/10/94	17:51
Reporte :	15/10/94	

Resultados de Campo:

		<u> </u>		그 [문화중학자 시회 및 회사 회회기
Parámetro	Dimensionales	Resultado	LMA	LIMP
рН	Unidades	6,3	7,0-8,5	6,5-9,2
Conductividad eléctrica	µSiernens/crn	320	500	1500
Temperatura	°C.	21	18-30	No > 34
Salinidad	0/00	0		Billian Street
Apartiencia	•	Cristalina		
0lor		No rechazable	No rechazable	No rechazable
Sabor	# # # # # # # # # # # # # # # # # # #	No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

		THE THE CONTRACT TOO TOO!		
Parámetro	Dimensionales	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppm	92,06		
Alcalinidad pH 8.3	ppm	0		
Calcio	ppm	50,49	75	200
Cloruros	ppm	65,55	200	600
Magnesio	ppm.	31,81	50	150
Potasio	ppm	3,9	A SAME AND	
Sodio	ppm	18,7	48 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Sulfatos	ppm	0	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (San Jose Pinula-10-6: Dug Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso Nº:

9.085

Nº laboratorio: 24,866

Municipio:San Pedro Sacatepequez

Departamento: Guatemala

Identificación de la muestra:

Test Well No. 1

Responsable de la toma de muestra:

Carlos R. Moine.

	Fecha	Hora
Toma de Muestras	13/10/94	10:00
Ingreso de Laboratorio	13/10/94	12:51
Reporte:	20/10/94	-

Resultados de Campo:

Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
pH		6,8	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	380	500	1500
Temperatura	°C.	20	18-30	No > 34
Salinidad	0/00	0		
Apariencia	3 % - 1 7 % # * *	Cristalina		
Olor	- <u>-</u>	No rechazable	No rechazable	No rechazable
Sabor	-	No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

Parámetro	Dimensionales	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppm	97,7		
Alcalinidad pH 8.3	pprn	0		
Calcio	ppm	16,29	75	200
Cloruros	ppm	8,37	200	600
Magnesio	ppm	6,94	50	150
Potasio	ppm	8,67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sodio	ppm	21,8		
Sulfatos	bbw	0	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas

F. responsable

JICA / INFOM

15 Calle A 14-40 Zone 10 Telefax: 680383 y 335459

Tipo de Amélists: Hidrogeológico

ingreso Nº:

9,149

№ laboratorio: 25,172

Municipio: Santa María de Jesús

Departamento: Sacatepéquez.

Identificación de la muestra: Test Well

Personcable de la toma de muestra :

Carlos R. Moi no

	Feoha	Hora
Toma de Muestras	5/11/94	10:00
Ingreso de Laboratorio	5/11/94	13:31
Reporte:	21/11/94	

K628149862 as remba		<u>(1871) Burner Sparserson</u>		
Parémetre	Dimensionales	Resultado	LMA	TH8.
pH	Unidades	7	7,0-8,5	6,5 - 9,2
Conductividad eléctrica	µSiemens/cm	190	500	1500
Temperatura	° C,	19,5	19-30	No > 34
Saltinidad	0/00	0		
Apariencia		Cristalina		
Olor		No rechazable	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechatable
Cloro Residual	ppm		0,3-0,5	0,6-1,0

Norma COGUANOR NGO 29001

Parámetro	Dimensionales	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppm	140,91		
Alcalinidad pH 8.3	ppm	0		
Calcio	ppm	44,79	75	200
Cloruros	ppm	9,76	200	600
Magnesio	ppm -	20,33	50	150
Potasio		6;18		
Bodio	ppm	17,11		
Sulfatos		0	200	400

NHP= Húmero más probale PPH= Partes Por Millón LFC= Unidades formadoras de colonia LMA= Limite móximo admisible LMP= Limite móximo permisible Uto= Unidades nefelométricas

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso Nº:

9,128

№ laboratorio: 25,093

Municipio San Martin Jilotepeque

Departamento: Chimaltenango

Identificación de la muestra:

Test Well

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	29/10/94	08:30
Ingreso de Laboratorio	29/10/94	11:30
Reporte:	5/11/94	

icesaitanas ac cambo	<u>•</u>			and the second of the second of
Parámetro	Dimensionales	Resultado	LMA	LMP
рH	Unidades	7,2	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiernens/cm	150	500	1500
Temperatura	°C.	21	18-30	No.>34
Salinidad	0/00	0		
Apariencia		Cristalina		
Olor	-	No rechazable	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

	· · · · · · · · · · · · · · · · · · ·			
Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppm	112,73		
Alcalinidad pH 8.3	ppm	0		
Calcio	ppm	22,8	75	200
Cloruros	bbw	8,37	200	600
Magnesio	ppm	9,82	50	150
Potasio	ppm	7,92		
Sodio	ppm	17,1		
Sulfatos	ppm	0	200	400

UFC= Unidades formadoras de colonia | NMP= Número más probale | PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (San Martin Jilotepeque-①: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 u 335459

Tipo de Análisis: Hidrogeológico

Ingreso Nº:

9,259

Nº laboratorio: 25,783

Municipio: Comalapa

Departamento: Chimaltenango

Identificación de la muestra: Test Well

Responsable de la toma de muestra:

Lie, Juan Mario Dary

	Fecha	Hora
Toma de Muestras	1/12/94	09:35
Ingreso de Laboratorio	1/12/94	12:05
Reporte:	12/12/94	

Resultados de Campo:

Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Hq	Unidades	6,7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	92	500	1500
Temperatura	°C.	19,8	18~30	No > 34
Salinidad	0/00	0		
Apariencia	-	Cristalina		
Olor		No Rechazable	No rechazable	No rechazable
Sabor		No Rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Norma COGUANOR NGO 29001

Parómetro	Dimensionales	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppro	74,09		
Alcalinidad pH 8.3	ppm	0		돌보는 항 현실
Calcio	bbw	14,66	75	200
Clorunos	ppm	7,67	200	600
Magnesio	ppm	6,35	50	150
Potasio	ppm	3,11		
Sedio	ppm	9,16		
Sulfatos	ppm	0	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia NMP= Número más probale PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

JICA / INFOM

15 Calle A 14-40 Zona 10 Telefax: 680383 u 335459

Tipo de Análisis: Hidrogeológico

Ingreso Nº:

9,228

№ laboratorio: 25,571

Municipio: Solola

Departamento: Sololó

Identificación de la muestra: Test Well

Responsable de la toma de muestra:

Lic. Juan Marrio Dang

	Fecha	Hora
Toma de Muestras	21/11/94	11:30
Ingreso de Laboratorio	21/11/94	17:47
Reporte:	5/12/94	- -

Resultados de Campo:

	and the second s		
<u>Dimensionales</u>	Resultado	LMA	LMP
Unidades	7,2	7,0-8,5	6,5~9,2
μSiemens/cm	710	500	1500
°C.	21,8	18-30	No > 34
0/00	0		
- 4	Cristalina		
<u>-</u>	No Rechazable	No rechazable	No rechazable
	No Rechazable	No rechazable	No rechazable
ppm	0	0,3-0,5	0,6-1,0
	μSiernens/cm °C 0/00	Unidades 7,2 µSiernens/cm 710 °C 21,8 0/00 0 - Cristalina - No Rechazable - No Rechazable	Unidades 7,2 7,0-8,5 μSiernens/cm 710 500 °C. 21,8 18-30 0/00 0 - - Cristalina No rechazable - No Rechazable No rechazable

Norma COGUANOR NGO 29001

Parámetro	Dimensionales	Resultado	LMA	LIMP
Alcalinidad pH 4.0	ppm	111,13		
Alcalinidad pH 8.3	ppm	0		
Calcie	ppm	16,29	75	200
Clorunos	ppm	8,37	200	600
Magnesio	ppm	7,93	50	150
Potasio	ppm	7,21		
Sodio	ppm	16,23		
Sultatos	ppm	Û	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia NMP= Número mós probale PPM= Partes Por Millón LMA= Limite máximo admisible LMP= Limite máximo permisible. Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (Sololá-1): JICA Test Well)

Interesado: UICA / INFORT

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso Nº:

9.241

Nº laboratorio: 25,642

Municipio: Santa Lucía Utatión.

Departamento: Sololó

Identificación de la muestra: Test Well

Responsable de la toma de muestra:

Lic. Juan Marrio Darry

Contained of the settle of	CIO. COMMITTION TO		
<i>(</i>	Fecha	Hora	
Toma de Muestras	26/11/94	13:18	
Ingreso de Laboratorio	26/11/94	18:27	
Reporte:	5/12/94		

Resultados de Campo

Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
рН	Unidades	7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	98	500	1500
Temperatura	°C.	15	18-30	No > 34
Salinidad	0/00	Ö		
Apariencia	.	Cristalina		
Ülor		No Rechazable	No rechazable	No rechazable
Sabor	-	No Rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratório

Norma COGUANOR NGO 29001

**** ********		Treating processing the Experi	
Dimensionales	Resultado	LMA	LMP
ppm	76,15		
ppm	0		
ppm	20,36	75	200
bbw	6,28	200	600
ppro	8,43	50	150
ppm	4,16		
ppm	12,32		
ppm	0	200	400
	ppro ppro ppro ppro ppro ppro ppro	pprn 76,15 ppm 0 ppm 20,36 ppm 6,28 ppm 8,43 ppm 4,16 ppm 12,32	ppm 76,15 ppm 0 ppm 20,36 75 ppm 6,28 200 ppm 8,43 50 ppm 4,16 ppm ppm 12,32

Nomenclatura:

UFC= Unidades formadoras de colonia - MMP= Número más probale-PPM= Partes Por Millón LIMA= Limite máximo admisible - LMF= Límite máximo permisible- Utn= Unidades nefelométricas

F. responsable

monno.

Result of Water quality analysis (Santa Lucia Utatlán-①: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Hidrogeológico

ingreso Nº:

9,288

№ laboratorio: 25.951

Municipio: Momostenango

Departamento: Totonicapón

Identificación de la muestra: Test Well

Responsable de la toma de muestra:

Lie: Juan Mario Dary

	Fecha	Hora
Toma de Muestras	9/12/94	09:30
Ingreso de Laboratorio	9/12/94	16:43
Reporte:	15/12/94	_

Resultados de Campo

Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMP
рH	Unidades	7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	53	500	1500
Temperatura	°C.	20	18-30	No > 34
Salinidad	0/00	0		
Apartencia		Cristalina		
Olor		No Rechazable	No nechazable	No rechazable
Sabor		No Rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0.	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

Parómetro	<u>Dimensionales</u>	Resultado	UMA.	LMP
Alcalinidad pH 4.0	ppro	53,51	10000	
Alcalinidad pH 8.3	ppm	0		
Calcio	ppm	13,03	75	200
Cloruros	ppm	4,88	200	600
Magnesio	ppm	2,28	50	150
Potasio	ppm	5,66		
Sodio	ppm	7,92		
Sulfatos	ppm	0	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas

F: responsable

"Moma

Result of Water quality analysis (Momostenango-1); JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax; 680383 y 335459

Tipo de Análisis: Hidrogeológico

Ingreso N2;

9,298

Nº laboratorio: 26.005

Municipio: Génova

Departamento: Quetzaltenango

Identificación de la muestra: Test Well

Responsable de la toma de muestra:

Lie, Juan Marrio Darry

	Fecha	Hora
Toma de l'luestras	12/12/94	09:40
Ingreso de Laboratorio	12/12/94	15:17
Reporte:	15/10/94	-

Resultados de Campo

	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second secon	and the second of the second o	医生物性神经病的 医二甲基二氏 医抗毒素
Parámetro	Dimensionales	Resultado	LMA	LMP
Hq	Unidades	8	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	182	500	1500
Temperatura	°C.	21,5	18-30	No > 34
Salinidad	0/00	0		
Apartiencia	=	Cristalina		
Olor	de de la composición	No Rechazable	No rechazable	No rechazable
Sabor		No Rechazable	No rechazable	No rechazable
Cloro Residual	ppm		0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGUANOR NGO 29001.

Parámetro	Dimensionales	Resultado	LMA	LMP
Alcalinidad pH 4.0	ppm	158,47		
Alcalinidad pH 8.3	bbtu	12,35		
Calcio	ppro	19,55	75	200
Cloruros	ppm	13,25	200	600
Magnesio	ppm	12,6	50	150
Potasio	ppro	16,11		
Sodio	ppm	22,36		
Sulfatos	ppm	0	200	400

Nomenclatura:

UFC= Unidades formadoras de colonia ... NME= Número más probale FPM= Partes For Millón. LMA= Limite máximo admisible - LMP= Limite máximo permisible - Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (Génova-Q: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

ingreso Nº:

9,040

№ laboratorio: 24,753 San José Pinula Departamento: Guatemala

Municipie: Identificación:

Test Well

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	8/10/94	14:00
Ingreso de Laboratorio	8/10/94	17:51
Reporte :	15/10/94	-

Resultados de Campo:

Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
рН	Unidades	6,7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	240	500	1500
Temperatura	°C.	23	18-30	No > 34
Salinidad	0/00	0		
Apariencia	,	Cristalina		
0 kor		Inoloro	No rechazable	No rechazable
Sabor		.No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

VERRITAGOS DE CADAL 4			Norma CUGUANU	K NGU 29001
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Arsénico	ppm	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	18,83	200	600
Cobre	ppm	0	0,05	1,5
Color	Unidades	Ū	5	50
Cromo 16	ppm	O		0,05
Dureza total	mg CaCO3/L	152,54	100	500
Hierro Total	ppm	0,1	0,1	1
Hanganeso	ppm	0	0,05	0,5
Nitratos	ppm	10		45
Nitritos	ppro	0		0,01
Nitrógeno Amoniacal	ppro	0		,
Ortofosfatos	bbtu	0,14		
Plomo	ppm	Ō		0,1
Res. Tot 104	ppm	309,2	500	1500
Turbidez	Utn	0	5	25
Zinc	ppro	0,05	5	15
		7**		

Exámen microbiológico:

Resultado Límites permisibles

. !	Recuento Aeróbico Total	UFC/mL	2200	Hasta 500
	Coliformes totales	NMP/100 mL	3	Hasta 2
	E. coli	PoN	Negativo	Negativo

Nomenciatura:

UFC= Unidades formadoras de colonia | NMP= Número más probale PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (San José Pinula-2: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº:

9,085

Nº laboratorio: 24,866

Departamento: Guatemala

Municipio: San Pedro Sacatepéquez. Identificación :

Test Well No. 1

Responsable de la toma de muestra;

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	13/10/94	10:00
Ingreso de Laboratorio	13/10/94	12.51
Reporte:	20/10/94	

		化二二二烷二二甲烷二烷二甲二烷二甲二烷二甲二烷二甲二烷二烷二烷二烷二烷二烷二烷二	20 C P 1 C A	the factor of a contraction
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
pH	Unidades	6,8	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	380	500	1500
Temperatura	°C.	20	18-30	No > 34
Salinidad	0/00	0		
Apariencia		Cristalina		
0kr		inolora	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

		storio:

	JANOR		

Kesultados de Laboratorio:		Norma COGUANOR NGO 29001			
Parómetro	<u>Dirnensionales</u>	Resultado	LMA	LMP	
Arsénico	ppm	0		0,05	
Cadmio	ppm	0		0,01	
Cloruros	ppm .	8,37	200	600	
Cobre	bbw	0	0,05	1,5	
Color	Unidades	5	5	50	
Cromo +6	ppm	0		0,05	
Dureza total	mg CaCO3/L	44,74	100	500	
Hierro Total	ppm	0,06	0,1		
Manganeso	ppm	Ũ	0,05	0,5	
Nitratos	ppm	0		45	
Hitritos	ppm	0		0,01	
Nitrógeno Amoniacal	pprn	0			
Ortofosfatos	bbw	0,24			
Plomo	pprn	0		0,1	
Res. Tot 104	ppm	198	500	1500	
Turbidez	Utn	Û	5	25	
Zinc	ppm	0,12	5	(5	

Exámen microbiológico: Resultado Limites permisibles

Recuento Aeróbico Total	UFC/mL	2300	Hasta 500
Coliformes totales	NMP/100 mL	1100	Hasta 2
E. coli	PoN	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia NMP= Número más probale PPM= Partes Por Millón LMA= Limite máximo admisible LMP= Limite máximo permisible Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (San Pedro Sacatepéquez-2: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 u 335459

Tipo de Análisis: Agua para bebida

Ingreso №:

9,149

Municipio: Santa María de Jesus

Nº laboratorio: 25,172

Identificación : Test Well

Departamento: Sacatepéquez.

Responsable de la toma de muestra:

Carlos R. Moino,

	Fecha	Hora
Toma de Muestras	5/11/94	10:00
Ingreso de Laboratorio	5/11/94	13:31
Reporte :	21/11/94	_

Resultados de Campo:

Parómetro	Dimensionales	Resultado	LMA	LMP
pΗ	Unidades	7	7,0-8,5	6,5-9,2
Conductividad eléctrica	µSiemens/cm	180	500	1500
Temperatura	°C.	19,5	18-30	No > 34
Cloro Residual.	ppm	-	0,3-0,5	0,6-1,0
Apartencia	-	Cristalina		
Olor		No rechazable	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
COD	pprn	0		

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

			Tro ma coophilor floo 25001		
Dimensionales	Resultado	LMA	LMP		
ppm	0	1	0,05		
ppm	0		0,01		
pprn	9,76	200	600		
ppm	0	0,05	1,5		
Unidades	5	5	50		
ppm	0		0,05		
rng CaCO3/L	128,13	100	500		
ppm	0,02	0,1	1		
ppm	0,01	0,05	0,5		
ppm -	5		45		
ppro	0		0,01		
ppm	0				
ppm	0,4	y T			
ppro	0		0,1		
ppm	230,4	500	1500		
Utn	0	5	25		
ppm	0,1	5	15		
	ppm ppm unidades ppm rng CaCO3/L ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	opm 0 opm 0 opm 9,76 opm 0 Unidades 5 opm 0 tng CaC03/L 128,13 opm 0,02 opm 5 opm 5 opm 0 opm 0 opm 0,4 opm 0 opm 0 opm 0,4 opm 0 opm 0	Dimensionales Resultado LMA ppm 0 ppm 0 ppm 9,76 200 ppm 0 0,05 Unidades 5 5 ppm 0 0 rng CaC03/L 128,13 100 ppm 0,02 0,1 ppm 0,01 0,05 ppm 5 0 ppm 0 0 ppm 0,4 0 ppm 0,4 0 ppm 230,4 500 Utn 0 5		

Exámen microbiológico:

Resultado Limites permisibles

	Recuento Aeróbico Total	UFC/mL	460	Hasta 500
Ì	Coliformes totales	MMP/100 mL	3	Hasta 2
Į	E. coli	PoN	Negatiyo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LPIA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

romo.

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº:

9,128

Nº laboratorio: 25,093

Municipio: San Martin Jilotepeque

Depar tamento: Chimaltenango

Identificación:

Test Well

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	29/10/94	08:30
Ingreso de Laboratorio	29/10/94	11:30
Reporte:	5/11/94	

160

Resultados de Campo:

Parómetro	Dimensionales	Resultado	/ LMA	LMP
pH	Unidades	7,2 /	7,0-8,5	6,5-9,2
Conductividad eléctrica	µSiemens/cm	150 /	500	1500
Temperatura	°C.	21	18-30	No > 34
Salinidad	0/00	0		
Apariencia	a di d i tajudi	Cristalina		
Olor		Inolore	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
Cloro Residual	ppm .	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

VERNITAROS DE L'ADOLATOLIO.		norma Cudu Anuk Nou 29001			
Parámetro	Oimensionales -	Resultado	LMA	LMP	
Arsénico	ppro	0		0,05	
Cadmio	ppm	0		0,01	
Cloruros	ppm	8,37	200	600	
Cobre	ppm	0	0,05	1,5	
Color	Unidades	5	5	50	
Cromo +6	ppm	0		0,05	
Dureza total	mg CaCO3/L	63,05	100	500	
Hierro Total	ppm	0,01	0,1	78 g 1 1 1 1 1 1	
Manganeso	ppro	0	0,05	0,5	
Nitratos	ppm	0		45	
Nitritos	ppm	Û		0,01	
Nitrógeno Amoniacal	ppm	0			
Ortofosfatos	pprn	, 0,18			
Piomo	ppm	0		0,1	
Res. Tot 104	ppm	223,6	500	1500	
Turbidez	Utn	0	5	25	
Zino	ppm	0,02	5	15	

Exámen microbiológico: Resultado Límites permisibles

Recuento Aeróbico Total	UFC/mL	2250	Hasta 500
Coliformes totales	NMP/100 mL	23	Hasta 2
E. coli	PaN	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Límite máximo admisible . LMP= Límite máximo permisible . Utn= Unidades nefelométricas

AICSA / Ing. Roberto Guillén.

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

ingreso Nº:

9,259

№ laboratorio: 25,783

Lugar : Comalapa

Departamento: Chimaltenango

Identificación: Test Well

Responsable de la toma de muestra:

Lic. Juan Mario Dary

	Fecha	Hora
Toma de Muestras Barask na hakkirakkirak Reporte :	1/12/ 94 1/12/94 12/12/94	09:35 12:ศร

Resultados de Campo:

Parómetro	<u>Dimensionales</u>	Resultado	LMA	LIMP
pH	Umdades	6,6	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiernens/cm	92	500	1500
Temperatura	°C.	19,8	18-30	No > 34
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0
Apar iencia	-	Cristalina		
Olor	-	No Rechazable	No rechazable	No rechazable
Sabor		No Rechazable	No rechazable	No rechazable
COD	ppro	0		

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

TESTITUTES AT LUDO. C		HOLING COOCHITON HOC 2 200			
Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMF	
Arsénico	ppm	Q		0,05	
Cadrojo	ppm	0		0,01	
Cloruros	ppm	7,67	200	600	
Cobre	ppm	0	0,05	1,5	
Color	Unidades	0	5	50	
Cromo +6	ppro	0		0,05	
Dureza total	mg CaCO3/L	40,68	100	500	
Hierro Total	ppm	0,03	0,1	1	
Manganeso	ppm	0	0,05	0,5	
Nitratos	ppm	0		45	
Nitritos	ppm	0		0,01	
Nitrógeno Amoniacal	ppro	0			
Ortofosfatos	ppm	0,24			
Plomo	ppm	0		0,1	
Res. Tot 104	ррго	182	500	1500	
Turbidez	Utn	0	5	25	
Zinc	ppm	0	5	15	
			~·		

Exámen microbiológico:

Resultado Límites permisibles

	Recuento Aeróbico Total	UFC/mL	1400	Hasta 500
ļ	Coliformes totales	NMP/100 mL	39	Hasta 2
1	E. coli	PoN	Negativo	Negativo

Nomenclatura:

LFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Limite móximo admisible - LMP= Limite móximo permisible - Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (San Juan Comalapa-@: JICA Test Well)

AICSA / Ing. Roberto Guillén.

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº;

9,228

Nº laboratorio: 25,571

Lugar : Sololó

Departamento: Sololó

Identificación : Test Well

Responsable de la toma de muestra:

Lie, Juan Mario Dany

	Fecha	Hora
Toma de Muestras	21/11/94	11:30
Ingreso de Laboratorio	21/11/94	17.47
Reporte:	5/12/94	

Resultados de Campo

Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMP
₩ H	Unidades	7,2	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	710	500	1500
Temperatura	°C.	21,8	18-30	No. > 34
Cloro Residual	₽₽ſſſ	O.	0,3-0,5	0,6-1,0
Apartiencia	-	Cristalina		
Olor	a 4 - 4	No Rechazable	No rechazable	No rechazable
Sabor	= 1	No Rechazable	No rechazable	No rechazable
000	ppm	0		

D				
YACH	173605	de Lab	10 T 31	OFIA .

Norma	COGI	AMIND.	MGO	2900	1
		- T- T- T- T-	1000	A 7 L M 1	t

SULLANDS HE LABOR &	(FI ID .	THE THE COOCERNOR THOU ZOUGT		
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Arsénico	ppro	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	8,37	200	600
Cobre	ppm	0,01	0,05	1,5
Color	Unidades	0	5	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	48,81	100	500
Hierro Total	ppm	0,04	0,1	1
l*langaneso	ppm	v 10 1 0 1 13428	0,05	0,5
Nitratos	ppro	0	ga dalam eda	45
Nitritos	bbw	0		0,01
Nitrógeno Amoniada)	ppm	0		
Ortofosfatos	ppm	0,4		
Plomo	bbw	0		0,1
Res. Tot 104		168,8	500	1500
Turbidez	Utn	0.0	5	25
Zinc	ppm	0,11	5 (5)	15

Exámen microbiológico:

Resultado Limites permisibles

Recuento Aeróbico Total	UFC/mL	4353	Hasta 500
Coliformes totales	NMP/100 mL	14	Hasta 2
E. coli	PoN	Negativo	Negativo

Momenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale. PPM= Partes Por Millón UMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (Sololá-2: JICA Test Well)

AICSA / Ing. Roberto Guillén.

15 Calle A 14-40 Zona 10 Telefax: 680383 u 335459

Tipo de Análisis: Aqua para bebida

ingreso №:

9,241

Nº laboratorio: 25,642

Lugar : Santa Lucia Utatlón

Departamento: Sololó

Identificación : Test Well

Responsable de la toma de muestra:

Lie, Juan Marrio Darry

	Fecha	Hora
Toma de Muestras	26/11/94	13:18
Ingreso de Laboratorio	26/11/94	18:27
Reporte:	5/12/94	_

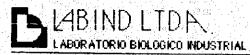
Resultados de Campo:

CERCITATES AL COMPO				
Parámetro	Dimensionales	Resultado	LMA	LIMP
pH		7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	98	500	1500
Temperatura	°C.	15	18-30	No > 34
Cloro Residual	bbw	0	0,3-0,5	0,6-1,0
Apariencia		Cristalina		
Olor		No Rechazable	No nechazable	No nechazable
Sabor	- 1,1 1,1 - 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,	No Rechazable	No rechazable	No rechazable
000	bbw	ū		

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

			HOLINE COSCINIO	A CONTRACTOR
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Arsénico	ppm	Ü		0,05
Cadmio	ppm	0		0,01
Cloruros	ppro	6,28	200	-600
Cobre	ppm	0	0,05	1,5
Color	Unidades	5	5	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	54,19	100	500
Hierro Total	ppm	0,01	0,1	1
Manganeso	ppm	0	0,05	0,5
Nitratos	ppm	0		45
Nitritos	bbw	0		0,01
Nitrógeno Amoniacal	ppro	0		
Ortofosfatos	ppm	0,02		
Plome	ppm	0	100	0,1
Res. Tot 104	bbw	158,8	500	1500
Turbidez	Utn	0	15	25
Zinc	ppro	0,03	5	15


Exámen microbiológico: Resultado Límites permisibles
Recuento Aeróbico Total UFC/mL 1680 Hasta 500
Coliformes totales NMP/100 mL 9,1 Hasta 2
E. coli P.o.N. Negativo Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale. PPM= Partes Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible - Utn= Unidades nefelométricas:

F. responsable

Result of Water quality analysis (Santa Lucia Utațlán-2: JICA Test Well)

AICSA / Ing. Rober to Guillen.

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

ingreso N2:

9,288

Nº laboratorio: 25,951

Lugar: Momostenango

Departamento: Totonicapón

Identificación : Test Vell

Responsable de la toma de muestra:

Lie, Juan Mario Daru

	Fecha	Hora
Toma de Muestras	9/12/94	09:30
Ingreso de Laboratorio	9/12/94	16:43
Reporte :	15/12/94	-

Parómetro	Dirnensionales	Resultado	LMA	LMP
pH .	Unidades	7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	53	500	1500
Temperatura	°C.	20	18-30	No > 34
Cloro Residual	ppro	8	0,3-0,5	0,6-1,0
Apariencia	-	Cristalina		
		No Rechazable	No rechazable	No rechazable
Sabor	in sit	No Rechazable	No rechazable	No rechazable
COD	ppm	0		

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

			1404 LITE OFFICE PRINC	11 1100 ZJ001
Parómetro	Dimensionales	<u>Resultado</u>	LMA	LMP
Arsénico	ppm	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	4,88	200	600
Cobre	ppn)	0	0,05	1,5
Color	Unidades	0	5	50
Cromo +6	ppm	0	an iwi yalimada	0,05
Dureza total	mg CaCO3/L	22,37	100	500
Hierro Total	ppm	0,03	0,1	
Manganeso	ppm	0	0,05	0,5
Nitratos	bbw	0		45
Nitritos	ppro	0		0,01
Nitrógeno Amoniacal	ppm	0		
Ortofosfatos	l -bw	0,14		
Plomo	ppm	0		0,1
Res. Tot 104	ppm	139,6	500	1500
Türbidez	Ultn	0	5	25
Zine	ppro	0	5	15
		4	E 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. A Street of The Control of the Control

Exámen microbiológico: Resultado Limites permisibles Recuento Aeróbico Total UFC/mL 2130 Hasta 500 Coliformes totales NMP/100 mL 11 Hasta 2 E. coli PoN Negativo Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Parites Por Millón LMA= Límite máximo admisible - LMP= Límite máximo permisible. Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (Momostenango-2): JICA Test Well)

AICSA / Ing. Roberto Guillén.

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

:Tipo de Análisis: Agua para bebida

Ingreso N2: Lugar : Génova 9,298

Nº laboratorio: 26.005

Departamento: Quetzaltenango

Identificación: Test Well

Responsable de la toma de muestra:

Lie, Juan Mario Dary

	Fecha	Hora
Toma de Muestras	12/12/94	09:40
Ingreso de Laboratorio	12/12/94	15:17
Peporte:	15/12/94	_

Resultados de Campo:

Wind of Course		_ 42		
Parómetro	Dimensionales	Resultado	LMA	LMP
рH	Unidades	8	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	182	500	1500
Temperatura	°C.	21,5	18-30	No > 34
Cloro Residual	ppm	Ü	0,3-0,5	0,6-1,0
Apartencia		Cristalina		
Olor		No Rechazable	No rechazable	No nechazable
Sabor	-	No Rechazable	No rechazable	No nechazable
COD	bbw	0		

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

		in the same and the same and the same and same a		
Parómetro	Dimensionales	Resultado	LIMA	LIMP
Ansémico	ppro	0		0,05
Cadmio	ppro	0		. 0,01
Cloruros	ppm	13,25	200	600
Cobre	ppm	0	0,05	1,5
Color	Unidades	0	5	50
Oromo +6	ppm -	0		0,05
Dureza total	rng CaCO3/L	71,18	100	500
Hierro Total	ppm	0,09	0,1	1
i 1anganeso	pprn	0	0,05	. 0,5
Nitratos	ppm	0		45
Mitritos	ppm	0		0,01
Nitrógeno Amoniacal	ppm	0		
Ortofosfatos	ppm	0,24		
Plomo	btw	0		0,1
Res. Tot 104	ppm	199,2	500	1500
Turbidez	Utn	O.	5	25
Zinc	ppm	Û	5	15

Exámen microbiológico:

Resultado Limites permisibles

Recuento Aeróbico Total	UFC/mL	2500	Hasta 500
Coliformes totales	NMP/100 mL	3	Hasta 2
£. coli	PoN	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (Génova-2: JICA Test Well)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingresa Nº:

9,040

№ laboratorio: 24,752

Municipio:

San José Pinula Departamento: Guaternala

Identificación:

Tanque de Distribución

Responsable de la toma de muestra: Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	8/10/94	14:00
Ingreso de Laboratorio	8/10/94	17:51
Reporte:	15/10/94	

Resultados de Campo:

Parámetro	<u>Dimensionales</u>	Resultado	LMA /	LMP
рН	Unidades	6,6	7,0-8,5 /	6,5-9.2
Conductividad eléctrica	μSiemens/cm	(80,65)	500-	1500
Temperatura	°C.	20	16-30	No > 34
Salinidad	0/00	0		e in region and the second sec
Apariencia		Cristalina		
0lor	.	Inclore	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio: Norma COGUANOR NGO 29001

	1101 III COCONITOR 1100 25001			
<u>Dirnensionales</u>	Resultado	LMA	LMP	
ppm	0		0,05	
bbw	0		0,01	
pprn .	13,25	200	600	
ppm	0	0,05	1,5	
Unidades	5	5	50	
ppm	0		0,05	
rng CaCO3/L	32,54	100	500	
ррm		-		
ppro	0		0,5	
ppm	0		45	
ppm	0		0,01	
ppm	Q		-,-	
ppm	0.18			
ppm	Ō		0,1	
ppm	142,4	500	1500	
Uto	0	+	25	
	0		15	
	ppm ppm Unidades ppm rng CaCO3/L ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	ppm 0	Dimensionales Resultado LMA ppm 0 13,25 200 ppm 0 0,05 200 ppm 0 0,05 0,05 Unidades 5 5 5 ppm 0 0 0 ppm 0,12 0,1 0 ppm 0 0,05 0 ppm 0 0 0 ppm 0 0	

Exámen microbiológico: Resultado Limites permisibles

		VESALIENO:	rimites permi
Recuento Aeróbico Total	UFC/mL	33	Hasta 500
Coliformes totales	NMP/100 mL	<2	Hasta 2
E. coli	PON	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NH-IF= Número más probale PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

ingreso Nº:

9.085

№ laboratorio: 24,865

Municipio: San Pedro Sacatepéquez.

Departamento: Guatemala

Identificación:

Tanque Distribución.

Responsable de la toma de muestra:

Carlos R. Moino

	Fecha	Hora
Toma de Muestras	13/10/94	10:00
Ingreso de Laboratorio	13/10/94	12:51
Reporte:	20/10/94	-

Resultados de Campo:

	<u> </u>		and the second second second	and the second second
Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Hq	Unidades	6,9	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	340	500	1500
Temperatura	°C.	21	18-30	No > 34
Salinidad	0/00	0		
Apariencia	• • • ·	Cristalina		
0 kor	-	Inclore	No rechazable	No rechazable
Sabor	-	No rechazable	No rechazable	No rechazable
Cloro Residual	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGLIANOR NGO 29001

esaltados de Cabbi a			NOT THE CUGUNNU	K NGU ZYUUT
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LIMP
Arsénico	ppm	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	8,37	200	600
Cobre	ppm	0	0,05	1,5
Color	Unidades	10	5	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	52,88	100	500
Hierro Total	ppm	0,04	0,1	1
Manganeso	ppm	0	0,05	0,5
Nitratos	ppm	5		45
Nitritos		0		0,01
Nitrógeno Amoniacal		0		
Ortofosfatos	ppm	0,14		
Plomo		0		0,1
Res. Tot 104	ppm	159,6	500	1500
Turbidez		0	5	25
Zinc		0,01	5	15

Exámen microbiológico: Resultado Límites permisibles

Recuento Aeróbico Total	UFC/mL	1450	Hasta 500
Coliformes totales	NMP/100 mL	93	Hasta 2
E. coli	PoN	Negatiyo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - NMP= Número más probale-PPM= Partes Por Millón LMA= Limite máximo admisible-LMP= Límite máximo permisible-Utn= Unidades nefelométricas

F. responsable

Moino

JICA / INFOM

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº:

9,149

H2 laboratorio: 25,173

Municipio: Santa María de Jesus

Departamento: Sacatepéquez.

Identificación : Después del Tanque de Distribución

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	5/11/94	10:00
Ingreso de Laboratorio	5/11/94	13:31
Reporte:	21/11/94	

THE STATE OF THE S				
Parómetro	Dimensionales	Resultado	LMA	LMP
Hajirin	Unidades	7,2	7,0-8,5	6,5-9,2
Conductividad eléctrica	µSiemens /cm	200	500	1500
Temperatura	°C.	20	18-30	No > 34
Cloro Residua).	ppm	.	0,3-0,5	0,6-1,0
Apartienota .	<u> </u>	Cristalina		
Olor		No rechazable	No rechazable	No rechazable
Sation		No rechazable	No rechazable	No rechazable
COD	ppro	0		

esultados de Laboratorio:		Norma COGUANOR NGO 29001			
Parómetro	<u>Dimensionales</u>	Resultado	LIMA	LIMP	
Arsénico	ppm	0		0,05	
Cadmio	ppm	0		0,01	
Cloruros	ppm	11,16	200	600	
Cobre	ppro	0	0,05	1,5	
Color	Unidades	5	5	50	
Cromo +6	pptn	0		0,05	
Dureza total	mg CaCO3/L	138,3	100	500	
Hierro Total	गव्द	0,01	0,1		
Manganeso	ppm	0	0,05	0,5	
Nitratos	ppm	10		45	
Mitritos	bbw	0		0,01	
Mitrógeno Amoniacal	ppro	0			
Ortofosfatos	ppm	0.4			
Plorno	ppro	Q	4.0	0,1	
Res. Tet 104	bbw	250,8	500	1500	
Turbidez	Utn	0	5	25	
Zinc	ppm	0,14	5	15	

Exámen microbiológico:

Resultado Limites permisibles

	Recuento Aeróbico Total	UFC/mL	4610	Hasta 500
L	Coliformes totales	MMP/100 mL	110	Hasta 2
	E, coli	PON	Negativo	Negatiyo

Nomenclatura:

UFC= Unidades formadoras de colonia | NMP= Húmero más probale PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas:

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº:

9,128

Nº laboratorio: 25,092

Municipio: San Martin Jilotepeque

Departamento: Chimaltenango

Mentificación:

Despues del Tanque de Distribución

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	29/10/94	08:30
Ingreso de Laboratorio	29/10/94	11:30
Reporte:	5/11/94	_

Resultados de Campo:

Parámetro	Dimensionales	Resultado	LMA	LMP
pH		7	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	130	500	1500
Temperatura	° C.	22	18-30	No > 34
Salinidad	0/00	0		
Apariencia	-	Cristalina		
Olor	<u>.</u>	holoro	No rechazable	No rechazable
Sabor	in Service of the	No rechazable	No rechazable	No rechazable
Cloro Residual	ррго	0	0,3-0,5	0,6-1,0

Kesultados de Labora			Norma COGUANO	R NGO 29001
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Arsénico	ppm	0		0,05
→ Cadmio	ρþm	0		0,01
Cloruros	ppm	9,76	200	600
Cobre	bbw	0	0,05	1,5
Čolor	Unidades	5	5	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	63,05	100	500
Hierro Total	, bbw	0,39	0,1	1
Manganeso	ppm -	0	0,05	0,5
Nitratos	bbw	0	<u> </u>	45
Nitritos	ppro	0		0,01
Nitrógeno Amoniacal	ppm	0		
Ortofosfatos	ppm	0,1		
Plomo	ppro	Ó		0,1
Res. Tot 104	ppm	179,2	500	1500
Turbidez	Utn	0	5	25
Zinc	ppm	0,08	5	15
· · · · · · · · · · · · · · · · · · ·				

Exámen microbiológico: Resultado Límites permisibles

	Recuento Aeróbico Total	UFC/mL	1030	Hasta 500
	Coliformes totales	NMP/100 mL	1100	Hasta 2
İ	E. coli	PoN	Negativo	Negatiyo

Nomenclatura:

UFC= Unidades formadoras de colonia : HMP= Número más probale PPM= Partes Por Millón

LMA= Limite máximo admisible LMP= Limite máximo permisible Utn= Unidades nefelométricas

F. responsable

Result of Water quality analysis (San Martin Jilotepeque-3: Distribution Tank)

JICA / INFOM

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº:

9,166

Municipio: Comalapa

Nº laboratorio: 25,310 Departamento: Chimaltenango

Identificación : Tanque de Distribución Nº 1.

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	10/11/94	15:00
Ingreso de Laboratorio	10/11/94	18:01
Reporte:	21/11/94	_

Resultados de Campo:

Parémetro	<u>Dimensionales</u>	Resultado	LMA	LMP
М	Unidades	7,2	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	55	500	1500
Temperatura	°C.	17	18-30	No > 34
Cloro Residual.	ppm	-	0,3-0,5	0,6-1,0
Apartienoia	.	Cristalina		
Olor		No rechazable	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
000	bbw	0		

Resultados de Laboratorio:

Horma COGUANOR NGO 29001

		100 ma account (100 2700)			
Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMP	
Arsénico	ppm	0		0,05	
Cadmio	ppm	0		0,01	
Cloruros	ppm	9,07	200	600	
Cobre	ppm	0	0,05	1,5	
Color	Unidades	5	5	50	
Cromo +6	ppm	0		0,05	
Dureza total	mg CaCO3/L	32,54	100	500	
Hierro Total	ρφm	0,11	0,1	1	
Manganeso	ppm	0	0,05	0,5	
Nitratos	ppm	0		45	
Nitritos	ppm	0	444 168	0,01	
Mitrógeno Amoniacal	ppm	0			
Ūrtofosfatos	ppm	0,07	i i i i i i i i i i i i i i i i i i i		
Plome	ppm	0		0,1	
Res. Tot 104	ppm	92,8	500	1500	
Turbidez	Utn	0	5	25	
Zine) ppm	0,03	5 5 5 S	15	
		The state of the s			

Exámen microbiológico: Limites permisibles Resultado

Recuento Aeróbico Total	UFC/mL	21	Hasta 500
Coliformes totales	NMP/100 mL	۲2	Hasta 2
E. coli	PoN	Negativo	Negatiyo

Nomenclatura:

UFC= Unidades formadoras de colonia ... NHIP= Número mós probale PPM= Partes Por Millón LMA= Limite máximo admisible. LMP= Limite máximo permisible. Utn= Unidades nefelométricas

Result of Water quality analysis (San Juan Comalapa-3: Distribution Tank)

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Tipo de Análisis: Agua para bebida

Ingreso Nº:

9,168 № laboratorio: 25,312

Municipio: Solola

Departamento: Soloiá

Identificación: Tanque de Distribución Nº 1.

Responsable de la toma de muestra:

Carlos R. Moino.

	Fecha	Hora
Toma de Muestras	10/11/94	12:15
Ingreso de Laboratorio	10/11/94	18:01
Reporte:	21/11/94	-

vezatranos de cambo				(天) 新なき しょくけい
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Hq	Unidades	7,1	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	75	500	1500
Temperatura	°C.	16	18-30	No > 34
Cloro Residual.	pprn	i i	0,3-0,5	0,6-1,0
Apariencia	- ·	Cristalina		
Olor		No rechazable	No rechazable	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
COD	ppm	0		

Resultados de Laboratorio:

Norma COGUANOR NGO 29001

			1100 22001	
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
Arsénico	ppro	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	9,76	200	600
Cobre	ррго	0	0,05	1,5
Color	Unidades	0	5	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	44,76	100	500
Hierro Total	ppm	0	0,1	1
Manganeso	ppm	0.	0,05	0,5
Nitratos	ppm	5		45
Nitritos	ppro	Θ.		0,01
Nitrógeno Amoniacal		0		
Ortofosfatos		0,18		1.44
Plomo	ppm	0		0,1
Res. Tot 104	ppm	140,4	500	1500
Turbidez	Utn	0	5	25
Zinc	ppm	Ü	5	15

Exámen microbiológico: Limites permisibles Resultado

	Recuento Aeróbico Total	UFC/mL	4	Hasta 500
	Coliformes totales	MMP/100 mL	< 2	Hastá 2
٠,	E. coli	PoN	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia - HMP= Número más probale- PPM= Partes Por Millón LMA= Limite máximo admisible LMP= Limite máximo permisible Utn= Unidades nefelométricas

JICA / INFOM

15 Calle A 14-40 Zona 10 Telefax: 680363 y 335459

Tipo de Análisis: Agua para bebida

Ingreso N2:

9,167

№ laboratorio: 25,311

Municipio: Santa Lucia Utatión

Departamento: Sololó

Identificación : Tanque de Distribución Nº 1.

Responsable de la toma de muestra:

Carlos R. Moino.

	- ··· ·· - ·	
	Fecha	Hora
Toma de Muestras	10/11/94	10:20
Ingreso de Laboratorio	10/11/94	18:01
Reporte:	21/11/94	-

Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP
рН	Unidades	6,8	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiernens/crn	50	500	1500
Temperatura	*C	15	18-30	No > 34
Cloro Residual.	ppm		0,3-0,5	0,6-1,0
Apariencia		Cristalina		
Oìor.		No rechazable	No rechazable.	No rechazable
Sabor		No rechazable	No rechazable	No rechazable
COD	ppm	0		

Norma COGLIANOR MGO 29001

Kesuitados de Laboratorio:			Norma CUGUANUR NGU 29001	
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LIMP
Arsenico	ppm	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	11,16	200	600
Cobre	ppm	0	0,05	1,5
Color	Unidades	5	5	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	30,52	100	500
Hierro Total	ppro	0	0,1	
Manganeso	ppro	0	0,05	0,5
Nitratos	ppm	0		45
Nitritos	ppm	0		0,01
Nitrógeno Amoniacal	ppm	0		
Ortofosfatos	ppm	0,02		Contraction in
Plomo	ppro	0		0,1
Res. Tot 104	ppm	109,6	500	1500
Turbidez	Utn	0-	5	25
Zino	ppro	0,01	5 2	15

Exámen microbiológico:

Resultado Limites permisibles

L	Recuento Aeróbico Total	UFC/mL	10	Hasta 500
	Coliformes totales	NMP/100 mL	₹2	Hasta 2
	E, coli	PoN	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia. Ill IP= Número más probale PPM= Partes Por Millón LMA= Limite móximo admisible. LMP= Limite móximo permisible. Utn= Unidades nefelométricas

15 Celle A 14-40 Zone 10 Telefex: 680383 y 335459

9,218

Tipo de Análisis: Agua para bebida

Ingreso №:

Nº laboratorio: 25,489

Municipio: Momostenango

Departamento: Totonicapón

identificación : Tanque de Distribución.

Responsable de la toma de muestra:

Carlos R. Moino

		AM IAA 1711 IANIA
	Fecha	Hora
Toma de Muestras	17/11/94	12:30
Ingreso de Laboratorio	17/11/94	19:45
Reporte:	28/10/94	_

Resultados de Campo:

<u>• </u>	1.	1.7	
Dimensionales	Resultado	LMA	LMP
Unidades	7	7,0-8,5	6,5-9,2
μSiemens/cm	90	500	1500
° C.	18	18-30	No > 34
ppm	0		
-	Cristalina		
.	No Rechazable	No rechazable	No rechazable
	No Rechazable	No rechazable	No rechazable
ppm	0	0,3-0,5	0,6-1,0
	Unidades µSiemens/cm °C. ppm -	Unidades 7 μSiemens/cm 90 °C: 18 ppm 0 - Cristalina - No Rechazable - No Rechazable	Unidades 7 7,0-8,5 μSiemens/cm 90 500 °C. 18 18-30 ppm 0 - — Cristalina - — No Rechazable No rechazable — No Rechazable No rechazable

	ter ie .		Norma CUGU ANO	K NGU 29UU1
Parámetra	Dimensionales	Resultado	LMA	LMP
Arsénico	ppm	0		0,05
Cadmio	ppm	0		0,01
Cloruros	ppm	7,67	200	600
Cobre	ppm	0	0,05	1,5
Color	Unidades	5	5	50
Cromo +6	ppm	0	100	0,05
Dureza total	mg CaCO3/L	24,41	100	500
Hierro Total	ppm	0 .	0,1	1
Manganeso	ppm	0	0,05	0,5
Nitratos	ppm	0		45
Nitritos		0		0,01
Nitrógeno Amoniacal	ppm	0		
Ortofosfatos	ppm	0,1		
Piomo	ppm	0		0,1
Res. Tot 104	ppm	112	500	1500
Turbidez	Utn	0	5	25
Zinc	ppm	0,01	5	15

Exámen microbiológico:

Exémen microbiológic	:	Resultade	Limites permi	
Recuento Aeróbico Total	UFC/mL	616	Hasta 500	
Coliformes totales	NMP/100 mL	460	Hasta 2	
E. coli	PoN	Negativo	Negativo	

Nomenclatura:

UFC= Unidades formadoras de colonia NMP= Número más probale PPM= Partes Por Millón LMA= Limite máximo admisible LMP= Limite máximo permisible Utn= Unidades nefelométricas

	_
Interesade: JICA / INFOM	

15 Calle A 14-40 Zona 10 Telefax: 680383 y 335459

Ingreso Nº:

9.216

Nº laboratorio: 25,486

Municipio: San Francisco La Unión.

Departamento: Quezaltenango

identificación : Tanque de Distribución

Responsable de la toma de muestra:

Carlos R. Moino

	Fecha	Hora
Toma de Muestras	17/11/94	15:15
Ingreso de Laboratorio	17/11/94	19:45
Reporte:	28/10/94	

Parámetro	Dimensionales	Resultado	LMA	LMP
рН	Unidades	7,3	7,0-8,5	6,5-9,2
Conductividad eléctrica	μSiemens/cm	175	500	1500
Temperatura		16	18-30	No > 34
Cloro Residual	ppm	0		
Apariencia		Cristalina		
0lor		No Rechazable	No rechazable	No rechazable
Sabor		No Rechazable	No rechazable	No rechazable
C00	ppm	0	0,3-0,5	0,6-1,0

KEZNIKSOOZ GE FSDOLS	tur io .	A CONTRACT OF SERVICE	MOLIUS COCONING	M MUU 27UU I
Parémetro	Dimensionales	Resultado	LMA	LMP
Arsénico	ppm	0		0,05
Cadmio	ppm	0		0,01
Cloruros		9,07	200	600
Cobre	ppm	0	0,05	1,5
Color		0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50
Cromo +6	ppm	0		0,05
Dureza total	mg CaCO3/L	54,97	100	500
Hierro Total	ppm	0,18	0,1	
Manganeso	ppm	0,16	0,05	0,5
Hitratos	· · · · · · · · · · · · · · · · · · ·	0		45
Nitritos	ppm	0		0,01
Nitrógeno Amoniaca	ppm	0		
Ortofosfatos		0,02		
Plomo	ppm	Ō		0,1
Res. Tot 104	· · · · · · · · · · · · · · · · · · ·	128,8	500	1500
Turbidez	·	0	5	25
Zinc	· • · · · · · · · · · · · · · · · · · ·	0,02	3 3	15

Exámen microbiológico:

Recuento Aeróbico Total	UFC/mL	1336	Hasta 500
Coliformes totales	NMP/100 mL	290	Hasta 2
E. colf	PoN	Negativo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia : NMP= Número más probale PPM= Partes Por Millón LMA= Limite móximo admisible LMP= Limite móximo permisible Utn= Unidades nefelométricas

mouro.

Result of Water quality analysis (San Francisco La Unión-3: Distribution Tank)

15 Celle A 14-40 Zone 10 Telefex: 680383 u 335459

Tipo de Análisis: Agua para bebida

ingreso Nº:

9,217

Nº laboratorio: 25,488

Municipio: Génova

Departamento: Quezaltenango

Identificación : Tanque de Distribución, Salida,

Responsable de la toma de muestra:

Carlos R. Moino

	Fecha	Hora
Toma de Muestras	18/11/94	10:30
Ingreso de Laboratorio	18/11/94	15:10
Reporte:	28/10/94	-

Resultados de Campo:

Parómetro	<u>Dimensionales</u>	Resultado	LMA	LMP
pH	Unidades	6,8	7,0-8,5	6,5-9,2
Conductividad eléctrica	µSiemens/cm	70	500	1500
Temperatura	°C.	24	18-30	No > 34
Cloro Residual	ppm	0		
Apartenoia	= -	Cristalina		
Olor		No Rechazable	No rechazable	No rechazable
Sabor		No Rechazable	No rechazable	No rechazable
COD	ppm	0	0,3-0,5	0,6-1,0

Resultados de Laboratorio:

Norma COGLIANOR NGO 29001

cantinges at rubbles as in the			HOPINA COOUNNUK NOO 29001		
Parámetro	<u>Dimensionales</u>	Resultado	LMA	LMP	
Arsénico	ppm	0		0,05	
Cadmio	ppm	0		0,01	
Cloruros	ppm ppm	13,25	200	600	
Cobre	ppm	0	0,05	1,5	
Color	Unidades	0	5	50	
Cromo +6	ppm	0		0,05	
Dureza total	mg CaCO3/L	32,54	100	500	
Hierro Total	ppm	0,04	0,1	1	
Manganeso	ppm	0,16	0,05	0,5	
Nitratos		10		45	
Nitritos		0		0,01	
Nitrógeno Amoniacal		0			
Ortofosfatos		0,02			
Piomo		0		0,1	
Res. Tot 104	ppm	77,2	500	1500	
Turbidez		0	5	25	
Zino	ppm	0	5	15	

Exámen microbiológico:

Resultado Limites permisibles

	Recuento Aeróbico Total	UFC/mL	63	Hasta 500
,	Coliformes totales	NMP/100 mL	29	lasta 2
	E. coli	PoN	Positivo	Negativo

Nomenclatura:

UFC= Unidades formadoras de colonia NMP= Número más probale PPM= Partes Por Millón LMA= Límite máximo admisible LMP= Límite máximo permisible. Utn= Unidades nefelométricas

F. responsable

CONTRACT AGREEMENT

ON

WATER QUALITY ANALYSIS

FOR

THE STUDY ON GROUNDWATER DEVELOPMENT

IN THE CENTRAL PLATEAU AREA

IN

THE REPUBLIC OF GUATEMALA

September, 1994

JICA STUDY TEAM

AND

LABIND. LTDA.

叫了

4

AGREEMENT
ON
WATER QUALITY ANALYSIS
FOR
THE GROUNDWATER DEVELOPMENT STUDY
IN
THE CENTRAL PLATEAU AREA
IN
THE REPUBLIC OF GUATEMALA

This contract made and entered into this 9th day of September 1994 by and between the JICA Study Team (hereinafter referred to as "The Engineer" which shall include its legal successors and assigns), having its Office at c/o INFOM, Guatemala and LABIND. LTDA. (hereinafter referred to as "the Contractor" which shall include its legal successors and assigns), having its principal office at 15 Calle A, 14-40, Zona 10, Guatemala

WITNESSETH:

WHEREAS, the Engineer is to execute the Groundwater Development Study to be undertaken based on the Implementing Arrangement agreed upon between the Instituto Nacional de Fomento Municipal (INFOM) and the Japan International Cooperation Agency (JICA) in September, 1993.

WHEREAS, the contractor is ready and willing to undertake the Water Quality Analysis, a part of the Study, in accordance with the terms and conditions hereinafter set forth;

NOW, THEREFORE, for and in consideration of the foregoing premises and of mutual covenants, both parties hereby agrees as follows:

- (1) The Contractor agrees to do and complete all the work of the Water Quality Analysis including Sample Collection (hereinafter referred to as "the WQA"), in accordance with the Terms of Reference attached with here.
- (2) The Engineer agrees to pay the Contractor in consideration of the fulfillment of the WQA, the contract price of Fourty one thousand and one hundred eighty four Quetzales Only (Q\$ 41,184.00) in accordance with the terms and conditions.
- (3) The manner of payment by the Engineer to the Contractor shall be in accordance with the following payment schedule:

of

- (a) The first payment: Sixteen thousand and four hundred Quetzales only (QS.16,400.00)
 About fourty percent (40%) of the Contract amount:
 Within one week after the Agreement has been signed.
- (b) The second payment: Twelve thousand and three hundred Quetzales only (Q\$.12,300.00) About thirty percent (30%) of the contract amount: Upon 50% completion of the WQA.
- (c) The final payment: Twelve thousand and four hundred eighty four Quetzales only (Q\$.12,484.00)

 The remaining about thirty percent (30%) or the balance of payment in (a) and (b) above:

 Within one week after the Engineer receiving the final analysis report from the Contractor.
- (4) All of the equipment, apparatus, materials, regent and labors to be used for the WQA shall be provided by the Contractor.
- (5) The Engineer retains the right to terminate this Contract without any more payment to the Contractor in the following cases:
 - (a) The contractor does not commence the WQA or suspends the work without justified reasons after the effective date of this Contract; and
 - (b) The Contractor violates any provision of this Contract and does not cure it within I week after delivery of written notice of breach from the Engineer.
- (6) Any failure of the Contractor to carry out any of its obligations under this contract shall not be deemed a breach of the contract if such failure is caused by force majeure or reasons beyond party's reasonable control. For purposes of this contract, force majeure shall include wars, insurrections, civil disturbances, blockades, embargoes, strikes and other labor conflicts, riots, epidemics, earthquakes, storms, floods, explosions, fires, lightning, orders or directions of any government of instrumentality or subdivision thereof, acts of god or the public enemy, fuel shortage, and any other causes over

-4/

at

which the Contractor has no reasonable control. In this event the Contractor shall notify the Engineer in writing, stating the cause. If the Contractor is unable to continue its obligations due to the force majeure, wholly or in part to perform its obligations and meet its responsibilities of the Contractor under this Contract shall be suspended to the extent of its inability to perform them, and for as long as such inability continues.

- (7) The Engineer and the Contractor mutually agrees to perform, fulfill, abide by and submit to any or all of the previous requirements and all matters and things contained or expressed herein, or reasonable to be inferred from the Contract Documents.
- (8) All disputes arising in connection with this Contract shall be finally decided under the Rules of Conciliation and Arbitration of the International Chamber of Commerce by one or more arbitrators appointed in accordance with the Rules.

It is agreed that the terms, conditions and requirements of the Contract shall prevail except to the extent that they are expressly modified or altered by this Contract.

IN WITNESS WHEREOF, each of the parties hereto has caused this Contract to be executed in duplicate, as of the date first above written, by its duly authorized representative.

The Contractor

Juan Mario Dary Manager

Labind.Ltda.

Japan International Cooperation Agency (JICA)

Atsuo Kanda Co-Team Leader, JICA Study Team

TERMS OF REFERENCE

ON

WATER QUALITY ANALYSIS

FOR

THE STUDY ON GROUNDWATER DEVELOPMENT

IN THE CENTRAL PLATEAU AREA

IN

THE REPUBLIC OF GUATEMALA

August 1994

JICA STUDY TEAM

本

At-

1. General

The water quality analysis is one component of the Study on Groundwater Development in the Central Plateau Area in Guatemala requested by INFOM and being executed by the Jica Study Team entrusted by the Japan International Cooperation Agency (JICA).

The water sample collection and analysis work are to be contracted out to a local firm of Guatemala, which has a specialty in water quality analysis.

Objectives of the Water Quality Analysis (WQA)

The WQA in the Study has two objectives;

One is to check the potability of the water source for water supply in accordance with the water quality criteria for drinking water (ie, analysis for drinking water), and the other is for evaluation of the groundwater flow system (ie, analysis for water quality component).

3. Scope of the WQA

The scope of the work shall comprise the following;

 Collection of water samples including the sample fixing and the site analysis on the items of temperature, pH, EC, turbidity, color and taste:

The samples to be collected are 20 samples for analysis on drinking water from the existing source (10) and from the newly drilled wells (10), and 20 samples for analysis on water quality component from the newly drilled wells (10) and their nearby springs or rivers (10).

2) The water quality analysis for drinking water:

The following 20 items shall be tested in the laboratory:

pН

Hardness

EC

Chloride

Turbidity

General Bacteria

COD (Mn)

Coliforms

-___

at

3) The water quality analysis for quality component:

The following 10 items shall be tested in the laboratory:

pH SO₄
EC K
HCO₃ Na
Co₃ Ca
Cl Mg

4) Reporting

The test results shall be tabulated by samples and by above 2 purposes, that is, 20 sheets of tables with 20 parameters for potability and 20 sheets of tables with 10 parameters for quality component. As for the results of drinking water analysis, the comments on the suitability for water supply should be added in each of the table in accordance with the criteria of COGUANOR (Guatemala Standard Commission).

4. Sampling Points

The points of water sampling are the points directed by the Engineer in the following 10 municipalities;

W

4

Department		prox. distance Guatemala (km)
Guatemala	San José Pinula	20
Guatemala	San Pedro sacatepéquez	15
Sacatepéquez	Santa María de Jesús	45
Chimaltenango	San Juan Comalapa	60
Chimaltenango	San Martin Jilotepeque	55
Sololá	Sololá	140
Sololá	Santa Lucia Utatlán	155
Totonicapan	Momostenango	210
Quetzaltenango	Génova	265
Quetzaltenango	San Francisco La Unión	215

5. Work Schedule

The water sampling and quality analysis shall be done within a period of 4 months, that is from September to December 1994. Since the samples will be taken from the new wells which will be constructed in the period between August and November, the schedule for the sample collection shall be in accordance with the schedule of the drilling works.

Other samples of a nearby river, shallow wells or springs from the wells are to be collected at the same time as the collection from the well, once the well has been completed. The analysis work shall be completed within 10 days after the last sample collection. The time of the sample collection will be informed by the Engineer at least 3 days beforehand.

6. Equipment, Material and Personnel

All of the equipment, material and labor necessary for the water sample collection and the quality analysis shall be provided by the contractor.

7. Financial Proposal

The firm of the WQA shall submit the financial proposal to the Engineer within 1 week, in accordance with the attached quotation form.

#1

at

15 Calle A 14-40 Z-10 Telefax: 680383 y 335459

Guatemala, C.A.

Quotation Form for Water Quality Analysis

	ltem		Unit	Unit Cost	Number	Cost
Water Sample	Sample collection in sample fixing and si analysis on temp.,	ite	Sample	160.00	40	6,400.00
Collection	Transportation		Km	1.35	1200	1,620.00
	Sub-total					8,020.00
	One set of popular for potability. (2) of: pH, Color, E.C.,	items				
	Residuos totales a N-NO3, PO4, T-Fe	104°C, N-NO2,	Set	257.00	20	5,140.00
Analysis						
of .	Microbiological set:				-	
	General Bacteria, C	oliforms	Set	80.00	20	1,600.00
Potability			Unit	255.00	20	5,100.00
·	,	As	Unit	255.00	20	5,100.00
	Special	Cd	Unit	255.00	20	5,100.00
	Parameters	Cr	Unit	255.00	20	5,100.00
		N-NH4	Unit	250.00	20	5,000.00
	Sub-total					32,140.00
Analysis on Water	Na		Unit	140.00	20	2,800.00
Quality Component	K		Unit	140.00	20	2,800.00
	Sub-total				<u> </u>	5,600.00
	GRAND SUB-TOTAL					45,760.00
	SPECIAL DIS	COUNT (10%)				4,576.00
		GRAND TOTAL				41,184.00

Grand Total expresed in local courrency (Quetzales)

Date: (Lugust. 22, 1994)

Por LABIND. LTDA .:

Juan Maylo Dary General Manager

数

at