No. 32

SCA PAN-PHILIPPINE HIGHWAY REHABILITATION PROJECT (MINDANAO SECTION)

FINAL REPORT, APPENDIX

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS REPUBLIC OF THE PHILIPPINES

FEASIBILITY STUDY ON PAN-PHILIPPINE HIGHWAY REHABILITATION PROJECT (MINDANAO SECTION)

FINAL REPORT **APPENDIX**

MAY 1995

KATAHIRA & ENGINEERS INTERNATIONAL NIPPON ENGINEERING CONSULTANTS CO., LTD.

SSF JR 95-077(3/4)

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS REPUBLIC OF THE PHILIPPINES

FEASIBILITY STUDY ON PAN-PHILIPPINE HIGHWAY REHABILITATION PROJECT (MINDANAO SECTION)

FINAL REPORT
APPENDIX

MAY 1995

KATAHIRA & ENGINEERS INTERNATIONAL NIPPON ENGINEERING CONSULTANTS CO., LTD.

4.00

国際協力事業団

28634

•

The Committee of the Committee of Committee of the Commit

TABLE OF CONTENTS

CHAPTER	5	
	5.1	Origin-Destination Matrix of Commodity Transport on Study Road
	5.2	Axle Load
CHAPTER	8	
	8.1	Field Survey Forms Used for the Study
CHAPTER	9	
	9.1	Pavement Coring/Soils Tests and Soft Ground Site Geotechnical, Soils Investigation
	9.2	Design Precedents
	9.3	Estimate of Consolidation Settlement
CHAPTER	R 10	
••••	10.1	Bridge Site Geotechnical and Soils Investigation
	10.2	Design Precedents
CHAPTER	R 11	
	11.1	Criteria to Determine High or Low Potential of Slopes
	11.2	Topographic Survey and Geotechnical Survey Undertaken for Slopes
	11.3	Design Precedents of Slope Protection Works
CHAPTER		
	12.1	Present Condition and Proposed Countermeasures of Flood Sections
CHAPTER	₹ 16	
	16.1	Vehicle Operating Costs Calculation System on Actual Road by ECOVAL-S
	16.2	Vehicle Operating Costs on Single Lane
CHAPTER	R 17	
	17.1	Standard Table of Contents in Accordance with Guidelines for the Preparation of Environmental Impact Statement for Major Highway Projects
	17.2	Technical Definitions and Scope of the Environmentally Critical Projects and Area Enumerated in Proclamation 2146
	17.3	List of Exempted Projects in the Procedure of the Environmental
		Impact Statement System
	17.4	Organization Chart of DENR
	17.5	Vegetation along the Project Road
	17.6	Screening/Scoping Format

- 17.7 One-way Operation Road Capacity in Pavement and Bridge Rehabilitation Section
- 17.8 Methodology for Prediction of Air Quality Level
- 17.9 Rehabilitation Works Potentially Affecting Water Quality and Its Classificatioon by River
- 17.10 Methodology for Prediction of Noise Level

CHAPTER 19

- 19.1 Functions of Agencies Related to Road/Bridge Maintenance
- 19.2 Organizational Chart of DEO/CEO Maintenance Section

APPENDICES FOR CHAPTER 5

APPENDIX 5.1 ORIGIN-DESTINATION MATRIX OF COMMODITY TRANSPORT ON STUDY ROAD

TABLE 5.1-1(1) ORIGIN-DESTINATION MATRIX OF TOTAL COMMODITY PASSING STATION C-1

																					Ì.
÷.										Destination	tion										
Origin	-	7	6	4	5	9	7	€0	6 0	10	11	12	ħ	14	15	16	4	2	ا ع	R	D D
1: Metro Marrita	°	ŀ		ŀ	o	٥	٥	Þ	ę.	C	0	0	Þ	0	o	0	0	0	P	e i	Þ
2: Viennas	0	0	0	0	0	0	o	Þ	0	0	O	٥	0	0	6,301	0	0	1,001	ø	Þ	7,301
2: Sudges City		c	- c	0	0	0	9,452	878	0	27,557	78,079	Ф	•	46,864	25,194		0.2	26,284	ф	000	215,989
C. Congress) G		0	0	0	0	•	0	0	0	5,800	Ф	Φ	0	0	0	0	٥	Ф	φ	5,800
5: Placer / Sison	0		0	0	0	0	0	0	.0	2,240	448	0	0	0	0	0	o	0	0	0	2,688
6: Tubod	0	0	0	0	0	0	0	0	Ģ	952	0	0	0	0	0	0	0	c	0	0	852
7: Alegnia	0	,0	22,906	0	0	O	9,395	0	¢	٥	0	0	0	0	0	0	0	0	ò	0	32,303
8; Kitcharao	0	0	4,913	0	0	0	662	0	0	0	0	0	٥	0	0	0	0	0	0	0	5,575
9; Santiago	0	٥	280	0	0	0	0	ø	o	0	0	o	٥	0	0	0	0	o	ø	0	8
10: Cabadbaran	0	0	42,472	0	21,319	0	Φ	o	ø	0	0	o	Q	0	0	0	0	o	ø	0	63,791
11: Butuan City	0	0	75,048	0	25	448	0	a	٥	0	0	0	¢	0	0	0		o	ø	Ó	75,577
12: Naspit	٥	٥	Ģ	0	0	0	0	q	O	٥	0	a	đ	0	0	0	0	0	ø	0	0
13: Bayugan	٥	٥	224	6	0	٥	٥	0	Ö	٥	0	a	٥	٥	٥	0	٥	٥	a	۵	224
14; San Francisco	٥	9,165	1,758	0	٥	0	0	٥	O	٥	0	0	٥	٥	٥	0	٥	0	۵	۵	10,923
15: Cagayan de Oro	٥	4,153	63,753	٥	260	င	0	٥	۵	٥	٥	۵	٥	٥	0	۵	6	o	0	0	99,499
16: Surigao der Sur	0	C	280	0	0	O	۵	0	.0	O	o	o	0	0	٥	۵	0	o	٥	0	780
17: Davao del Norte	0	1,790	6,531	۵	0	0	O	٥	0	0	Ö	O	0	o	0	0	0	a	0	0	8,321
18: Davao City	0	4,648	27,416	0	0	٥	o	o	0	O	٥	0	0	0	Ö	0	0	0	0	O	32,064
19: Davao Oriental	0	o	0	0	0	0	o	o	0	0	0	0	0	0	ø	0	0	o	0	0	0
20; Rest of Mindanao	0	0	0	. 0	0	0	0	0	0	C)	0	O	Ç	0	O	0	٥	٥	٥	0	0
Total	0	19,756 245,863	45,863	0 2	21,961	448	19,508	879	O	30,749	84,327	٥	٥	46,884	31,495	0	0	27,285	٥	1,680	530,815
																					•

Source: Study Team

TABLE 5.1-1(2) O-D MATRIX OF AGRICULTURAL PRODUCTS PASSING C-1

(in kilograms / day) Destination Origin 2 3 7 10 11 18 Total 2: Visayas 0 a o 0 1,001 0 1,001 3: Surigao City 0 0 5,628 3,150 2,667 0 11,446 5: Placer / Sison 0 ٥ 0 0 448 0 448 6: Tubod 0 0 0 952 0 0 952 7: Alegria 0 15.060 5,260 0 0 0 20.320 8: Kitcharao 0 2,464 172 0 0 0 2.636 10: Cabadbaran 0 0 0 σ 0 0 11: Butuan City 0 3,256 0 0 0 0 3,256 13: Bayugan ٥ 224 0 0 0 0 224 14: San Francisco 9,165 0 0 0 0 0 9,165 15: Cagayan de Oro 4,153 11,200 0 0 0 0 15,353 16: Surigao der Sur 0 280 0 0 0 0 280 17: Davao del Norte 1,790 6,531 0 0 0 0 8,321 18: Davao City 4,648 24,408 0 0 29,056 Total 19,756 63,423 11,060 4,102 3,115 1,001 102,457

TABLE 5.1-1(3) O-D MATRIX OF MANUFACTURED FOODSTUFF PASSING C-1

					(in k ilogran	ns / day)
		De	stination			
Origin	3	7	8	11	15	Total
3: Surigao City	0	3,823	879	4,701	716	10,120
7: Alegria	7,849	0	0	0	0	7,849
8: Kitcharao	1,567	0	0	0	0	1,567
11: Butuan City	45,410	0	0	0	0	45,410
15: Cagayan de Oro	36,532	0	0	0	0	36,532
18: Davao City	151	0	0	0	0	151
Total	91,508	3,823	879	4,701	716	101,628

TABLE 5.1-1(4) O-D MATRIX OF MINERAL OIL PRODUCTS
PASSING C-1

				(in kilogram	ıs / day)
		Destina	tion		
Origin	3	5	10	15	Total
2: Visayas	0	0	0	6,301	6,301
3: Surigao City	0	0	2,800	0	2,800
10: Cabadbaran	38,165	21,039	0	0	59,205
11: Butuan City	22,939	0	0	0	22,939
15: Cagayan de Oro	0	0	0	0	0
Total	61,105	21,039	2,800	6,301	91,245

TABLE 5.1-1(5) O-D MATRIX OF CONSTRUCTION MATERIALS PASSING C-1

									(in kilograr	ns / da y)
					Destination)				
Origin	3	5	7		10	11		14	18	Total
3: Surigao City		0	0	0	14,320)	57,520	46,864	25,520	144,224
5: Placer / Sison		0	0	0	2,240)	0	. 0	0	2,240
7: Alegria		0	0	4,135	C)	0	0	. 0	4,135
10: Cabadbaran	2,69	5	0	0	C)	0	. 0	0	2,695
11: Butuan City	56	0	0	0)	0	0	0	560
14: San Francisco		0	0	0	C)	٥	0	o o	0
15: Cagayan de Oro		0	560	0	Ċ)	ō	ō	ŏ	560
Total	3,25	5	560	4,135	16,560	}	57,520	46,864	25,520	154,414

TABLE 5.1-2(1) ORIGIN-DESTINATION MATRIX OF TOTAL COMMODITY PASSING STATION C-2

									Destination	ation								i	
Ongin	-	2	6	*	40	9	^	8	G	9	ŧ	ħ	13	44	15	16	11	ŧ	Total
1: Metro Manila	٥	0	٥	0	٥	0	o	٥	O	o	6	Þ	0	0	0	0	Þ	Þ	0
2: Visayas	0	0	0	Þ	0	O	٥	Ф	a	0	¢	٥	0	538	15,364	o	Þ	0	15,902
3. Surigao City		0		٥	0	0	0	0	0	0	Φ	Φ	14,436	0	0	0	Ф	Ф	14,436
4: Cabadbaran	0	0	0	a	46,925	0	0	0	56,006	63,595	0	19,865	0	0	0	0	Ф	Φ	179,482
5: Butuen City	٥	0	O	26,227	45,734	3,048	0	0	90,032	134,577	14,833	14,454	29,926	120	19,690	0	0	2,134	380,775
6. Nasipit	0	0	0	0	0	٥	٥	0	10,160	0	10,160	0	0	0	308	0	0	0	20,628
7: Cagayan de Oro	٥	0	0	0	0	0	0	0	29,701	3,453	0	73,633	2,366	3,048	38,663	o.	0	ο,	150,864
8: Iligan City	0	o	0	0	0	0	•	0	0	0	0	o	0	0	0	0	0	0	•
9: Bayugan	0	0	0	202,207	156,063	12,287	35,022	17,079	0	0	0	0	O	0	0	0	ø	٥	319,658
10: San Francisco	0	O	0	12,192	12,192 109,086	000	7,218	0	0	0	d	0	0	0	0	0	ø	O)	132,496
11: Trento	O	٥	O	đ	18,270	Ö	Ö	0	٥	0	Ø	0	0	0	0	0	ø	G	19,270
12: Tandag	O	0	404	q	842	10,266	1,016	0	٥	0	ø	0	0	0	0	Ö	a	q	12,525
13: Bislig	0	٥	8,020	۵	16,842	2,032	39,034	٥	٥	O	0	٥	٥	0	0	0	a	0	65,928
14: Davao del Norte	0	19,248	0	0	23,470	4,552	18,632	٥	0	0	0	0	O	0	٥	٥	0	٥	65,901
15: Davao City	7,218	11,449	12,657	0	59,208	23,193	32,546	٥	o	٥	0	٥	٥	0	٥	٥	0	6	146,270
16: Digos	0	0	3,208	0	0	5,080	0	0	o	O	0	٥	Ö	0	O	٥	0	0	8,288
17: Gen. Santos	o	0	0	O	16,226	0	11,495	0	0	۵	0	O	a	o	0	0	0	0	27,721
18: Rest of Mindanso	O	10,000	0	O	6,604	o	6,416	٥	0	0	0	0	٥	0	0	٥	٥	٥	23,020
Total	7,218	40,697	24,286	24,286 137,626 493,368	493,368	64,457	151,379	17,079	185,899	201,625	24,993	107,952	46,728	3,707	74,025	0	0	2,134	1,583,174
i																			

TABLE 5.1-2(2) O-D MATRIX OF UNPROCESSED AGRICULTURAL PRODUCTS PASSING C-2

						Destination	tion	i					
Origin	-	2	3	S	9		8	6	10	13	14	15	Total
1. Metro Manila	. _	c	C	o	a	٥	0	0	0	0	0	o	0
2: Manual	o c	o C		0	0	0	0	0	0	0	538	3,170	3,708
2: Suringo City	oc	, 6	0	0	0	0	0	0	0	0	0	0	0
4. Cahadharan	0) C	0	0	0		0	30	0	٥	0	0	30
5. Butilan City	o c	o c	• 0	19,437	3,048	0	0	4,939	962	2,246	0	228	31,161
6. Nacinit) C	s C	φ	0	Ö	0	0	0	0	0	0	Ф	o.
7. Cacavan de Om	oc	.	0	0	0	0	0	1,767	2,540	842	3,048	10,193	18,390
a. Hoan City) <u>C</u>) C	0	0	0	0	0	0	0	0	0	0	0
o. myan ony	oc) C		65.151	12.287	0	17,079	0	0	0	0	0	94,517
9. Dayugari 40: San Erannisho	o c	o d	G	29.146	4,000	0	0	0	0	o	0	•	33,146
10. Gali rialicisco 42. Dielia	o c	.	6416	16.842	0	31,922	Ó	0	0	0	0	Ф	55,180
13. Dising	o c) (23.470	4.552	0	Ö	0	0	0	0	0	28,021
45. Davao City	7.23	7 439	3 727	29.724	23,193	15,938	0	0	0	0	0	0	87,239
15. Davay Oily 16: Digos	- - - -	2	o i	0	5,080	0	0	0	0	0	0	ø	5,080
10. Digos 17: Gen Santos	o c	.	ф	5.050	0	0	0	0	0	0	0	Φ	5,050
18. Rest of Mindage	0	0	0	6,604	0	6,416	0	0	0	0	٥	0	13,020
Total	7,218	7,439	10,143	195,424	52,160	54,276	17,079	6,736	3,502	3,088	3,586	13,892	374,542
													7.

TABLE 5.1-2(3) O-D MATRIX OF PROCESSED AGRICULTURAL PRODUCTS PASSING C-2

				۵	Destination					
- Unique	2	4	5	7	6	10	11	13	18	Total
2. Visavas	0	0	Q	0	0	0	0	0	0	0
4: Cabadbaran	0	0	5,080	0	0	0	0	0	0	5,080
5: Butuan City	0	26.227	13,153	0	8,020	4,015	922	1,524	2,134	25,996
7: Cagavan de Oro	0	0	0	0	0	0	0	0	0	
9: Bavugan	0		37,430	1,203	0	0	0	0	0	38,633
10: San Francisco	0	ю 	48,895	7,218		0	0	0	0	56,113
11. Trento	0	0	10.426	0	0	٥	0	0	0	10,426
13. Bislio	0	0	0	0	0	0	0	0	0	0
14: Davao del Norte	11,228	· O	0	0	0	0	0	0	0	11,228
15: Davao City	0	0	21,790	0	0	0	0	o ⁱ	0	21,790
18: Rest of Mindanao	0	0	0	0	0	٥	0	0	0	0
Total	11 228	26 227	136 774	8.421	8.020	4,015	922	1,524	2,134	199,266

TABLE 5.1-2(4) O-D MATRIX OF MANUFACTURED CONSUMER GOODS PASSING C-2

					Destination	tion					
Origin	2	8	ß	7	6	10	11	12	13	15	Total
2: Visavas	0	o	0	0	0	0	0	0	0	0	0
3: Surigao City	0	0	0	0	0	0	0	0	0	0	0
5: Butuan City	0	ь	8,628	0	58,278	61,030	13,403	6,438	22,600	17,157	187,534
6: Nasipit	0	0	0	0	0	٥	0	0	0	308	308
7: Cagavan de Oro	0	o	0	0	24,887	913	0	69,061	1,524	17,345	113,729
9: Bavugan	0	0	9,958	0	0	0	0	0	0	0	9,958
10: San Francisco	0	0	4.064	0	0	0	0	0	0	0	4,064
11: Trento	0	0	0	0	0	0	O	0	0	0	0
12: Tandao	0	401	842	1,016	0	0	0	0	0	0	2,259
13: Bislid	0	1,604 400,1	0	0	0	0	0	0	0	0	1,604
14: Davao del Norte	8,020	0	0	0	0	0	0	0	0	0	8,020
15: Davao City	٥	802	3,706	234	0	0	0	0	0	0	4,741
16: Digos	0	3,208	0	0	0	0	0	0	0	0	3,208
Total	8,020	6,015	27,198	1,250	83,165	61,943	13,403	75,498	24,124	34,809	335,425

TABLE 5.1-2(5) O-D MATRIX OF FORESTRY PRODUCTS PASSING C-2

			Destination	ion			
Origin	4	5		6	10	15	Total
4: Cabadbaran	0	0	٥	196	0	0	196
5: Butuan City	0	0	0	2,005	4,064	2,005	8,074
7: Cagayan de Oro	0	0	0	0	0	5,537	5,537
9. Bayugan	87,979	35,729	0	0	0	0	123,708
10: San Francisco	12,192	0	0	0	0	0	12,192
11: Trento	0	8 844	0	0	0	0	8,844
13; Bislig	0	0	7,112	0	0	0	7,112
15: Davao City	0	0	0	0	0		0
17: Gen. Santos	0	11,176	0	0	0	0	11,176
Total	100,171	55,749	7,112	2,201	4,064	7,542	176.840

TABLE 5.1-2(6) O-D MATRIX OF MINERAL OIL PRODUCTS
PASSING C-2

		۵	Destination			
Origin	4	6	10	11	12	Total
4: Cabadbaran	0	6,681	8,017	0	19,865	34,563
5: Butuan City	0	12,403	34,206	0	8,017	54,626
6: Nasipit	0	10,160	0	10,160	٥	20,320
9: Bayugan	11,228	0	0	0	0	11,228
10: San Francisco	0	0	0	0	0	ф Ф
11: Trento	0	0	0	0	0	0
12: Tandag	0	0	0	0	0	0
Total	11,228	29.244	42,223	10,160	27,882	120,737

TABLE 5.1-2(7) O-D MATRIX OF CONSTRUCTION MATERIALS PASSING C-2

) nain					Destination	tion					
	2	3	သ	9	7	0	10	12	13	15	Total
2: Visayas	٥	0	0	0	Ь	0	0	0	O	0	0
3: Surigao City	0	0	0	0	0	0	0	0	14436	0	14,436
4: Cabadbaran	0	0	34,945	0	0	49,099	55,579	0	0	0	139,623
5: Butuan City	0	0	1,604	0	0	1,143	29,333	0	3556	o	35,636
6: Nasipit	0	0	0	0	0	0	0	0	0	0	0
7: Cagayan de Oro	0	0	0	0	0	3,048	0	4,572	٥	5588	13,208
9: Bayugan	0	0	0	0	13,244	0	0	0	0	0	13,244
0: San Francisco	0	0	0	0	0	0	0	0	0	0	0
2: Tandag	0	0	0	10,266	0	0	0	0	0	0	10,266
3: Bislig	0	0	0	0	0	0	0	0	0	0	0
5: Davao City	0	8,128	0	0	16,374	0	0	0	0	0	24,502
8: Rest of Mindanao	10,000	0	0	0	0	0	0	0	0	0	10,000
Total	10,000	8,128	36,549	10,266	29,618	53,290	84,912	4,572	17,992	5,588	260,915

TABLE 5.1-3(1) ORIGIN-DESTINATION MATRIX OF TOTAL COMMODITY PASSING C-3

											Destination	nog											
Origin	-	2	60	4	25	9	7	8	on.	5	=	12	13	14	5	16	18	19	21	Ø	23	24	Total
1: Metro Marrie	-	٥	°	°	٥	l°	0	0	٩	٩	0	°	۵	٥	۰	0	0	0	٥	0	ð	0	
2: Visayas	0	0	٥	ö		0	٥	a	0	0	0	0	a	a	٥	0	0	0	2,298	0	0	a	2,298
3: Surigao City	٥	0	٥	O	0	٥	۵	ဆ	٥	٥	င	0	ò	0	0	0	.0	0	12,618	0	0	٥	12,616
4: Butuan City	0	٥	ø	Ö	c	o	0	0	٥	0	0	0	6	۵	٥	٥	0	872	1,875	0	٥	0	2,747
5: Cagayan de Oro	0	0	0	0	0	0	ø	ь	o	٥	0	•	6	0	0	57,445	•	3,943	75,492	0	66,476	O	203,355
6: Bayugan	0	0	0	0	0	0	0	6	0	0	0	0	ь	0	•	4,360	0	0	0	Þ	0	0	4,360
7: San Francisco	0	0	0	0	0	•	0	0	0	o	0	0	0	٥	•	o	0	0	61,378	₽	Þ	0	61,378
8: Bunawan	0	0	0	0	0	0	0	0	0	0	0	0	9	٥	0	0	0	0	0	•	0	•	
9: Trento	0	0	0	•	9	0	0	0	0	0	0	0	9,136	0	32,590	14,089	0	24,004	127,342	14,928	• •	0	222,090
10: Tandag	0	0	0	٥	a	0	9	٥	0	0	0	0	a	a	0	0	0	0	25,664	. a	a	0	25,064
11: Bislig	o	٥	0	٥	0	0	o	٥	٥	٥	0	0	3,837	0	٥	17,440	0	0	86,013	٥	0	φ	107,290
12: Cateel	O	0	٥	٥	5	0	6	٥	0	o	9	0	0	O	0	٥	0	0	0	0	0	o	
13: Monkayo	0	٥	872	0	Ö	0	916	٥	2,457	0	0	0	12,075	24,120	0	٥	0	0	1,930	0	0	O	42,369
14: Compostela	o	0	0	4,824	ρ	0	0	0	\$	0	0	0	\$0.9	Þ	0	۰	0	0	0	•	0	0	6,432
15: Nabunturan	0	c	0	7,236	6	0	11,936	C	4,316	•	o	0	23,139	6	0	0	•	0	•	Þ	0	٥	46,627
16: Tagum	0	0	0	33,768	17,424	0	85	0	3,276	0	4,020	0	82,321	٥	0	٥	•	0	٥	0	٥	٥	142,728
17: Asuncion	D	0	٥	0	٦	O,	0	0	٥	٥	0	O	0	0	0	0	٥	0	c	•	٠	0	
18: Maco	6	0	0	O	O,	0	0	0	٥	0	Đ	0	8,643	a	0	•	۰	6	•	a	a	0	8,643
19: Panabo	Ö	0	6	•	402	Ö	0	0	4,883	٥	0	985	0	•	0	٥	0	0	o	0	٥	٥	6,270
20: Mati	Ö	0	0		0	0	0	•	0	0	ø	Ö	O	0	٥	٥	•	0	0	0	0	٥	
21: Davao City	0	0	16,119	960'66	42,178	%	37,874	4,824	129,485	24,260	126,029	0	35,513	•	٥	٥	0	0	0	D	0	0	516,182
22: Digos	0	0	17,440	0	0	0	ø	0	0	•	o	O	0	0	•	•	٥	0	0	O	Ð.	•	17,440
23: Gen. Santos	0	2,180	0	8,584	0	0	0	0	0	0	0	0	0	o	0	٥	•	0	0	6	6	0	10,764
24: Rest of Mindanao	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	٥	٥	٥	0	0	٩		.
Total	o	2.180	34 434 152 508		An on	2	52 K44	4.824	4 824 145 222	24 260	24.260 130.049	288	985 175.468	24.120	32,590	93,333	0	28,819 394,607	394,607	14,929	66,476	0	1,439,253

TABLE 5.1-3(2) O-D MATRIX OF AGRICULTURAL PRODUCTS PASSING C-3

							۵	Destination							İ	
Crioin	6	60	4	5	4	6	10	11	13	15	16	19	21	22	23	Total
2. Viscoude	c	C	c	c	C	0	°	0	٥	0	٥	0	2,298	0	0	2,298
2. Curioso City	0 0	> C	o c	o C		0	0	0	0	0	0	0	11,330	٥	0	11,330
S. Sungao City	> C	o c	0	o C	· C	· C	Q	0	0	0	0	0	0	q	0	O,
F. Consult And	o c	0 0) C	o c		· C	0	0	٩	0	1.829	2,616	16,877	٥	33,672	54,995
A. Con Proposition	o c	o c	> C	o c	, c	· C	· c	0	Ф	0			22,392	Ф	0	22,392
7. Sall Flaticisco) c	> c	> (:	O	o C	0	0	0	4 824	32,421	11,810	24,004	64,806	14,929		152,794
9. Telico	o c	o c) C	· c	· c	0	0	0	Ö	0	0	0	0	O	0	0
20. 201000 44. Dietia	o c) C	o C	C	· c	0	C	0	3.837	0	17,440	0	23,352	0	0	44,629
45: Monthain	o c	o C	o C	o C	916	1.825	0	0	2.744	0	0	0	1,930	0	0	7,415
13. Michaelyc	> 0	o C	4 824	o C))	0	0	0	0	0	0	0	0	9	0	4,824
46. Mohintings	o c	o c	7 336	o C	11 936	3 095	0	0	0	0	0	0	0	Ф	Q	22,267
10. Nabuliturali	> c	> C	004, c) C	872	884	· C	4 020	2 195	0	0	0	0	0	0	11,167
10: - aguin	o c	> C	5 ¢	,) 1 C	395	· c	0	i î	0	0	0	O	0		1,395
24. December	o c	14 674	24 573	3 871	3.652	38.511	3 902	37.063	0	0	0		0	0	0	133,243
22: Davad Oily	o c	17.440	, ,	- c))	0	0	Ó	٥	0	0	0	O	٥	0	17,440
22: Can Santos	7 180) -	8 584	, C	· C	0	0	0	0	0	0	0	0	a	0	10,764
Total	2,180	32,111	55,432	3,871	17,375	45,691	3,902	41,083	13,600	32,421	31,079	26,620	142,986	14,929	33,672	496,953

TABLE 5.1-3(3) O-D MATRIX OF MANUFACTURED CONSUMER GOODS PASSING C-3

						Destination	ation						
Origin	3	4	5	9	7	6	19	11	13	16	19	21	Total
3: Surioso City	c	C	a	0	0	0	0	0	a	0	0	1,286	1,286
A: Buthan City	· c) C	· c	0	0	0	0	0	0	0	872	1,875	2,747
5. Cacavan de Oro	o C) C	Ф	0	0	0	0	0	0	4,360	1,327	3,972	9,658
A. Baylinan	9 0	, c	o (c	0		0	0	0	0	4,360	0	0	4,360
7. San Erandisco	· C	c	· c	0	0	0	0	0	0	0	0	1,642	1,642
9. Trento	· C	C		0	0	0	0	0	4,224	2,279	0	1,562	8,065
10. Tandan	· c	· C	C	0	0	0	0	0	0	0	Ö	0	0.
10. rendey) C	· c	0	0	0	0	0	0	0	0	18,848	18,848
13: Montavo	87.	C	ه ٍ ح	. o	0	632	0	0	0	0	0	0	1,504
14: Compostela	5	c	· c	0	0	8	0	0	0	0	0	0	804
15. Nahimtiran		c	· c		0	523	0	0	0	0	0	0	523
16. Tanım		0	0	0	1.046	0	0	0	0	0	0	0	7,046
19: Panaho	C	0	0	0	0	0	0	0	0	0	0	0	0
21: Davao City	· C	13 921	804	80	32,365	5.049	9,102	21,518	0	0	0	0	83,563
Total	872	13,921	804	804	33,412	7,009	9,102	21,518	4,224	10,999	2,199	29,185	134,048

FABLE 5.1-3(4) O.D MATRIX OF FORESTRY	PRODUCTS PASSING C-3	(in kitogram / day)
ABLE 5.1-3(4)		

		Destination	tion		
Origin	5	တ	13	21	Total
5: Cagayan de Oro	0	0	0	872	872
7: San Francisco	0	0	0	23,753	23,753
9: Trento	0	0	0	54,847	54,847
10: Tandag	0	0	Ф	12,369	12,369
11: Bislig	0	0	Ö	37,976	37,976
13; Monkayo	0	0	2,616	0	2,616
15: Nabunturan	٥	869	0	0	698
16: Tagum	0	2,412	0	0	2,412
21: Davao City	5,624	0	852	0	6,476
Total	5.624	3,110	3,468	129,817	129,817 142,019

TABLE 5.1-3(5) O-D MATRIX OF MINERAL OIL PRODUCTS PASSING C-3

	Destination
	5
	0
	0
	0
	0
	0
	0
27,101	8,720 27
27	8 720 27

TABLE 5.1-3(6) O-D MATRIX OF CONSTRUCTION MATERIALS PASSING C-3

								1	
				Destination	ation				
Origin	4	ω	6	10	11	13	15	21	Total
4: Butuan City	0	0	0	0	0	0	0	0	0
5: Cagayan de Oro	0	0	0	0	0	0	0	2,616	2,616
8: Bunawan	0	0	0	0	0	0	0	0	0
9: Trento	0	0	0	0	0	0	169	0	169
10: Tandag	0	0	0	0	0	٥	Ò	0	0
11: Bislig	0	0	0	0	0	0	0	0	0
13: Monkavo	0	0	φ	0	0	6,714	0	0	6,714
15: Nabunturan	0	0	Φ	0	0	23,139	0	0	23,139
16: Tagum	30,552	0	\$	0	0	80,126	0	0	110,678
18: Maco	0	0	O	0	0	8,643	0	0	8,643
19: Panabo	0	0	3,488	0	0	0	0	0	3,488
21: Davao City	44,080	4,824	0	11,256	21,180	32,917	0	0	155,447
Total	74,632	4,824	3,488	11,256	21,180	151,539	169	2,616	310,894

(in kilogram / day) TABLE 5.1-3(7) O-D MATRIX OF MANUFACTURED PRODUCERS GOODS PASSING C-3

				Destination	tion				
- Jrinin	8	4	_	6	11	13	14	21	Total
2. Surioso City	c	٥	C	0	٥	0	0	0	0
4. Dishipp City	s c	· c	· C	· C	0	0	0	0	0
4. Dutuelli Subj	o c	· c	9 G		0	0	0	30,554	30,554
3. Cagayan un Olo	o c	o c	¢		c	0	0	0	0
7. Sali riandscu	0 0	o c	,	· C		0	0	2.412	2,412
9. Herro	o c	o c) E	· c	Ö	0	0	0	Ö
i i disiig	> C	0 0	o c	· C	· a	0	24.120	0	24,120
13. Monkayo	0 0	o C	· C	. 0	0	808	0	0	804
7. Composeda 21. Davao City	1448	, 5g	1.857	58,823	8,720	0	0	0	71,652
Total	1,448	804	1,857	58,823	8,720	804	24,120	32,966	129,541

TABLE 5.1-4(1) ORIGIN-DESTINATION MATRIX OF TOTAL COMMODITY PASSING C-4

									ď	Destination										
Origin	-	2	ю	4	r.	90	7	€0	60	은	11	12	13	14	15	18	17	18	19	Total
1: M. Marrita/Visayas	•	•	•	٥	°	0	°	٥	٥	٥	0	0	o	0	0	0	0	o	0	0
2: Surigeo City	0	0	0	· •	0	0	0	0	9	0	٥	0	0	٥	0	162,700	0	•	P	162,700
3: Butuan City	0	0	0	0	0	٥	•	ø	0	0	۰	0	0	0	0	152,701	•	180,61	Þ	196,285
4: Cagayan de Oro	0	0	٥	٥	0	0	o	0	O	0	0	0	5	0	0	403,356	46,512	100,053	0	549,922
5: San Francisco	•	O	0	٥	0	0	0	0	O	0	0	0	•	0	0	159,335	٥	0	O	159,335
6: Trento	0	o	°	0	0	0	٥	0	0	0	0	٥	0	0	0	142,538	0	•	0	142,538
7: Tandag / Bislig	٥	Ö	0	0	0	0	0	0		٥	o	0	o	•	0	247,385	9,480	•	0	258,885
8: Monkayo	0	0	٥	0	0	0	0	۰	0	0	0	0	0	ο.	0	49,774	•	0	0	40,774
9: Nabunturan	0	0	0	0	0	0	0	٥	0	•	0	9	0	0	0	264,109	٥	9	0	264,109
10: Tagum	0	0	۵	0	0	. •	o	•	6	0	0	a	٥	0	0	0 1,330,301	33,778	a	0	1,364,079
11; Stc. Tomas	0	0	٥	0	0	٥	0	0	0	0	a	9	0	0	0	529,342	0	a	Ö	529,342
12: Maco	0	٥	0	0	0	٥		٥	٥	٥	٥	a	0	•	0	187,933	٥	q	۵	187,933
13: Cateel	9	0	0	٥	٥	٥	٥	0	٥	0	۰	0	0	0	0	11,683	0	9	0	11,683
14: Mati	o	0	٥	٥	Ö	٥	٥	۰	٥	٥	0	o	0	٥	٥	398,930	٥	٥	٥	396,930
15: Panabo	ø	C	٥	0	O	0	0	0	0	C	۰	0	۵	٥	14,220 2,554,885	,554,865	٥	218	28,630	2,597,931
16: Davao City	ø	82,366	247,254	200,932	51,892	39,655	146,410	48,433	486 924	466,924 1,842,779	150,966	72,025	22,363	468,315	810,810	o	٥	٥	o	4,711,124
17: Digos	ø	0	•	0	0	O	0	0	18,960	2,970	0	o	0	0	42,756	0	٥	0	0	989'79
18: Gen. Santos	7.128	0	13,538	66,618	O	٥	O	0	0	19,150	•	O	o	0	25,760	0	٥	0	O	132,184
19: Rest of Mindanao	o	0	•	0	0	0	o	•	O	٥	0	0	0	0	0	0	٥	٥	0	0
Total	7,128	82,366	260,792	267,550	51,892	98,655	146,410	48,433	485,884 1,864,889	1,864,889	150,966	72,025	22,363	468,315	893,546 6,594,953	,594,953	88,770	143,863	28,630	11,779,441

TABLE 5.1-4(2) O-D MATRIX OF UNPROCESSED AGRICULTURAL PRODUCTS PASSING C-4

						Destination	tion						
Origin	2	ю	7	6	10	11	12	13	14	15	16	19	Total
2: Surigao City	0	0	0	٥	٥	٥	b	0	0	o	63,667	0	63,667
3: Butuan City	۵	0	0	0	0	0	0	٥	O	0	14,220	٥	14,220
5: San Francisco	0	٥	٩	٠	C	c	0	0	0	0	43,271	0	43,271
6: Trento	0	0	6	Þ	0	0	0	.0	0	6	35,160	0	35,160
7: Tandag / Bislig	0	o	0	0	0	O	O	0	0	0	114,708	0	114,708
8: Monkayo	٥	o	0	0	0	0	0	0	0	0	40,781	٥	40,781
9: Nabunturan	0	0	0	0	0	٥	0	0	0	Φ	77,819		77,819
10: Tagum	0	0	0	O	0	٥	0	0	٥	0	358,763	0	358,783
11: Sto. Tomas	0	٥	C	0	0	0	٥	0	0	0	391,881	٥	391,881
12: Maco	0	0	Ф	0	0	0	0	0	0	0	161,679	0	161,679
13: Cateel	0	0	0	0	0	0	0	0	0	0	0	0	0
14; Mati	Ģ	٥	0	0	٥	o	0	0	٥	O	127,601	0	127,601
15: Panabo	0	٥	0	ø	0	0	0	0	0	0	439,712	28,440	468,152
16: Davao City	21,384	696'92	3,792	26,127	193,105	6,120	4,740	8,219	53,672	52,704	٥	0	448,821
17: Digos	0	0	D	О	0	0	o	0	0	4,740	Ф	0	4,740
18: Gen, Santos	٥	13,538	٥	a	15,358	6	٥	0	٥	3,982	٥	٥	32,878
19: Rest of Mindanao	0	0	0	0	0	Đ	0	0	0	0	0	0	0
Total	21,384	90,497	3,792	28.127	208,462	6,120	4,740	8,219	53,672	61,425	1,869,262	28,440	2,384,140

TABLE 5.1-4(3) O-D MATRIX OF PROCESSED AGRICULTURAL PRODUCTS PASSING C-4

					Destination	ation					
rigin	5	80	œ	60¢	11	12	4,	15	16	₩.	Total
3: Butuen City	0	O	0	0	0	0	0	0	36,700	43,243	79,943
4: Cagayan de Oro	0	0	0	0	0	0	0	0	79,316	81,163	160,479
5: San Francisco	٥	0	٥	٥	0	0	0	0	0	0	۵
7: Tandag / Bislig	0	0	0	0	0	٥	٥	0	29,436	0	29,436
8: Monkayo	0	0	0	0	o	٥	0	0	0	0	0
9: Nabunturan	0	0	0	Q	0	0	0	0	21,852	O	21,852
O: Tegum	0	0	0	0	0	0	0	0	159,652	0	159,652
1: Sto. Tomas	0	0	0	Ö	0	٥	0	0	46,807	0	46,807
12. Maco	0	0	٥	0	0	٥	9	0	Ö	0	•
4: Mati	0	0	0	0	0	٥	0	0	72,930	0	72,930
5: Panabo	0	٥	0	0	0	٥	0	14,220	126,328	0	140,548
6: Davao City	36,214	10,902	33,916	226,790	33,858	2,929	47,340	102,395	•		494,344
7: Digos	0	0	18,960		0	0		0	်		18,960
18: Gen. Santos	0	0	0	0	0	0	0	0	0	0	1,224,951
Total	36.214	10.902	52.876	226,790	33,858	2.929	47,340	118.615	573.021	124.406	124 406 2 449 903

TABLE 5.1-4(4) O-D MATRIX OF MANUFACTURED CONSUMER GOODS PASSING C-4

								Destination	ion								
i e	-		•	¥	Œ	7	æ	O	10	11	12	14	15	16	17	18	-06
Creation Control	-		2		٥	. 2	ď	c	a	þ	٥	O	٥	8,153	Þ	351	8,504
G. Daktuan City	,	0 4			, (, ,			ς.	c	٥	۵	٥	277,786	48,512	0	324,298
4: Cagayan de Oro	→ •	.	,	> 0	0 0			• •	· c	4		C	6	41,186	•	0	14
5; San Francisco	5	-	> '	э ·	۰ د	3 (0 (•	•	, (, c		16 783	¢	C	16.783
6: Tremto	0	0	0	Þ	0	D (۰ د	o (5 (,		•		1 885			*
8: Monkayo	0	0	¢	0	0	0	0	9	>	>	.	9 1	۰ د	8 1		•	
10: Tegum	o	0	0	Q	0	٥	0	0	٥	o	0	0	0	77,525	a)	3	000
14 Mat	· c	C	¢	¢	0	٥	0	0	0	0	0	0	0	3,018	Ф	0	3.018
15. Denethy	, c) ¢	· c	c		c	O	Q	0	O	0	0	0	102,083	Q	0	102,083
16: Developed	, c	R4 144	24 292	7.362	5.512	52.507	1,711	18,248	593,739	5,948	1,450	88,698	189,275	0	0	0	1,053,667
17: Dione	,	<u> </u>	10	9	0	0	0	0	2,970	0	0	0	38,016	0	0	0	986
18: Gan Sanfos	7 128	· c	66.673		. 0	0	0	0	0	0	0	0	0	٥	0	٥	73.746
Total	7 128	441.48	90.910	7.362	5,512	52,507	1,711	18,248	596,709	5,948	1,450	869'68	227,291	528,359	46,512	351	1,743 841

TABLE 5.1-4(5) O-D MATRIX OF FORESTRY PRODUCTS PASSING C-4

			a	Jestination				
Origin	4	2	11	£	16	17	18	Tota
2: Surigae City	0	0	o	O	11,378	٥	0	11,376
3: Butuan City	0	0	Q	O	31,398	0	0	31,398
6: Trento	0	O	6	0	72,264	O	0	72,264
7: Tandag / Bislig	0	0	0	O	79,255	9,480	٥	88,735
8: Monkayo	0	O	0	Q	7,128	0	0	7,128
9. Nabunturan	0	o	0	ф	163,892	٥	0	163,892
10: Tagum	ö	0	Þ	Ö	45,188	o	0	45,188
13: Catee!	0	0	٥	0	3,792	0	٥	3,792
14; Mati	0	0	0	0	113,305	0	0	113,305
15: Panabo	0	o	0	0	18,925	0	216	19,141
16: Davao City	56,928	5,341	3,564	33,264	0	0	0	99,097
Total	56.928	5.341	3 564	33,264	546,522	9,480	216	655,315

TABLE 5.1-4(6) O-D MATRIX OF MINERAL OIL PRODUCTS PASSING C-4

					Destination	Jo.					
Origin	2	9	7	6	10	11	12	14	15	16	Total
3. Butuan City	٥	٥	٥	0	0	٥	0	٥	0	3,089	3,089
10: Tagum	0	0	0	٥	٥	0	0	0	0	30,650	30,650
15: Panabo	0	0	0	0	٥	0	0	0	O	18,960	18,960
16: Davao City	27.718	31,659	70,022	111,527	320,237	2,851	34,759	140,757	98,749	0	838,274
Total	27,718	31,659	70,022	111,527	320,237	2,851	34,759	140,757	98,749	52,699	890,974

TABLE 5.1-4(7) O-D MATRIX OF CONSTRUCTION MATERIALS PASSING C-4

							Destination	tion							
				4	Œ	7	œ	6	10	11	13	4.	15	16	Total
mgin	7	0		,		. , 	ŕ	٥	c	•	c	c	o	85.536	85,536
2- Surion City	c	a	0	0	9	0	>	>	>	>	,	•	•		
	• •	• •	c	c	c	c	0	٥	0	0	٥	0	0	54,886	54,886
S. Buruan Cary	>	>	>)		•			•	c	c	C	0	431,179	431,179
O: Teouro	0	0	0	0	0	5	.	ɔ	>	•	•	•	•		
			¢	c	C	C	0	0	0	0	0	0	0	26,255	26,235
Z: Maco	>	>	> •	•	•			•	c	c	c	C	0	18.960	18,980
4: Mati	0	0	0	-	-	2	٠ د		۰ د	۰ ۱			•	1740 062	1 710 082
A: Dansho	c	¢	c	0	0	0	0	0	0	0	-	>	>	700'81 /	
2			****	376.0	40.000	20.050	22 752	135 991	204 853	50.345	14.14	133,056	162,066	0	876,637
6: Davao Criy	14.230	40,019	8	200				,	000	27.0	14 544	430 056	182 086	2335 878	3 212 515
Total	14.256	45,619	46,180	8,316	19,008	Z0,050	77,72	188,081	200,477	2000		20,550	2		

4
ن
פַ
Ś
à
Š
8
Ö
'n
ď
\ddot{c}
Ξ
Ō
4
Ω
2
2
Ö
Ŧ
ž
٢
<u>ک</u> اللہ
ō
\succeq
H
4
0
7
TABLE 5.1-4(8) O-D MATRIX OF MANUFACTURED PRODUCERS GOODS PASSING C-4
8
4
Į,
щ
8
7

						Destina	tion						,
	f	r	¥	_	8	6	10	17	12	*	15	16	Lota
<u>.</u>	*	,	,	٥	٥	c	c	٥	0	۵	0	10,391	10,391
4: Cagayan de Oro	5	٠ د	,		• •		· c	c	· c	c	٥	06	96
9: Nabunturan	0 (0 (-	a 6	> 0	-	.			œ	0	8.797	8,797
10: Tagum	0 (,	-	¢ כ	> 0	· c	· c		0	р	0	78,774	78,774
1: Sto. Tomas	0	5	.	.	•	,	•	· c	, ,	r c	c	58.880	56.880
14: Mati	0	0	0	0	>	>	۰ د	.	۰ (•	040.00	04.00
15: Panabo	0	0	0	0	0	0	0	Б	>	ə	>	000	000
16: Dayed City	10 OR	60 532	43.478	99	13,068	104,129	295,605	47,995	27,577	3,792	113,082	0	728,302
10. Carac ony	200		-	0	o	0	3,792	0	0	0	2,771	٥	6,583
Tetel	000	60 630	43.476	38	13.088	104 129	299 397	47.995	27.577	3.792	115,853	239,682	974,546

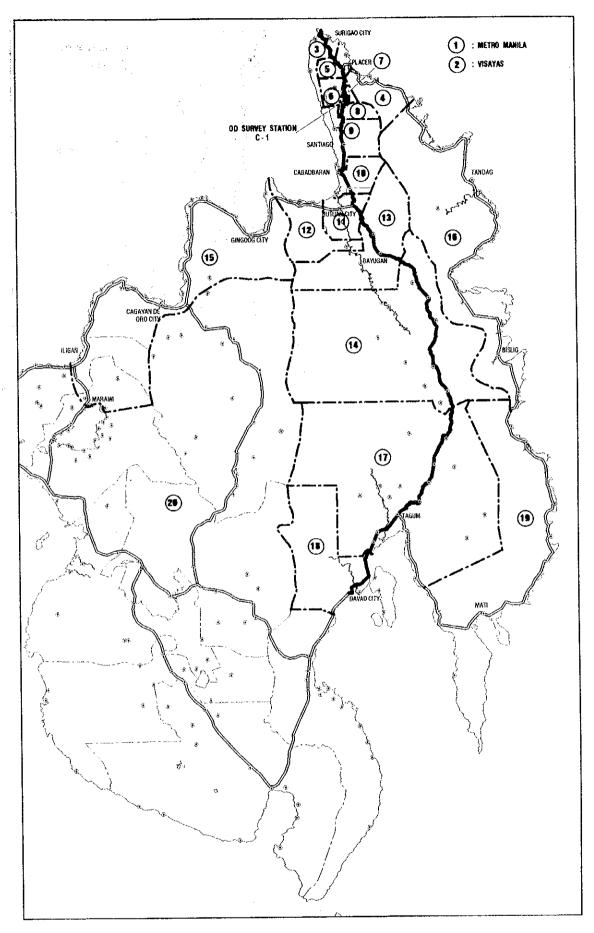


FIGURE 5.1-1 TRAFFIC ZONES
(OD SURVEY STATION C-1)

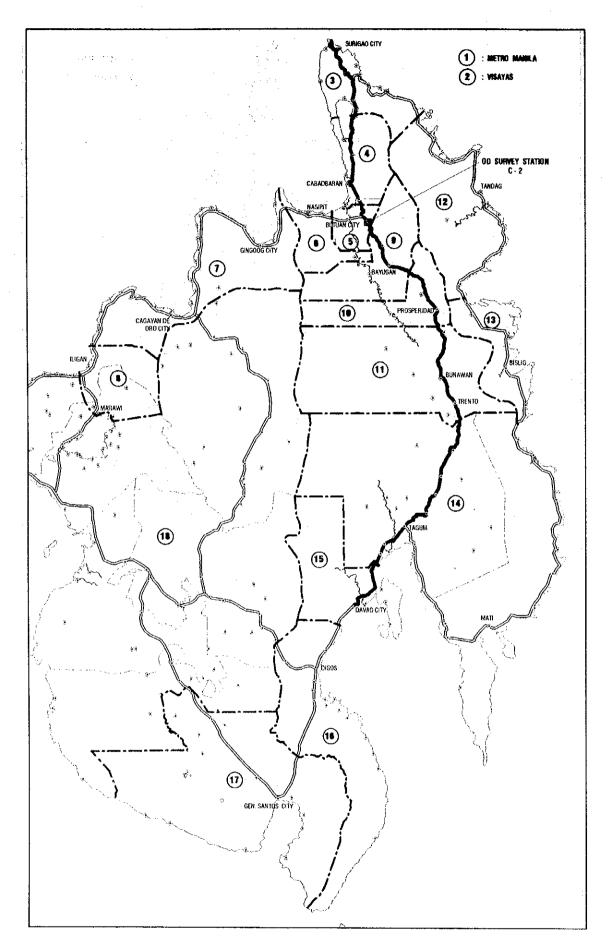


FIGURE 5.1-2 TRAFFIC ZONES (OD SURVEY STATION C-2)

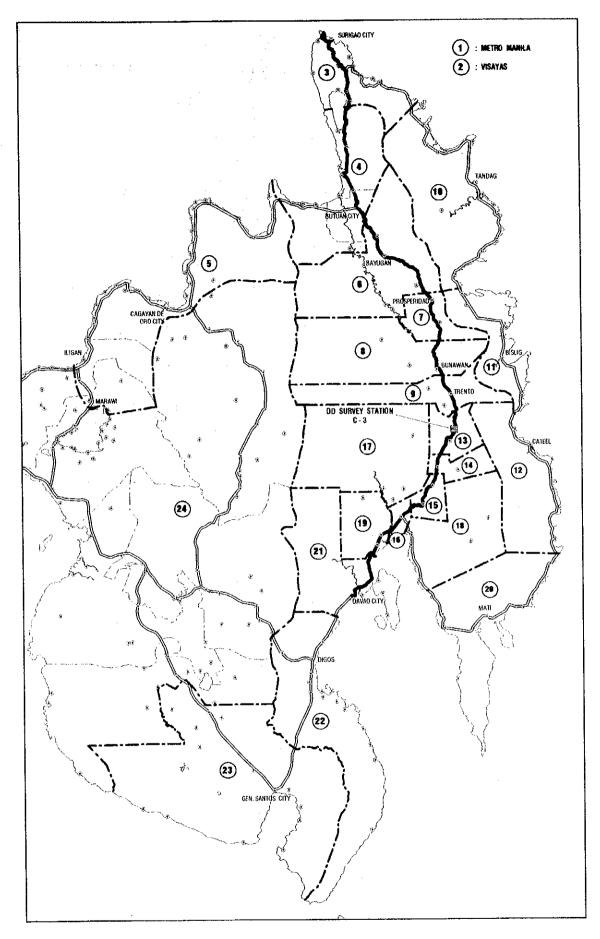


FIGURE 5.1-3 TRAFFIC ZONES
(OD SURVEY STATION C-3)

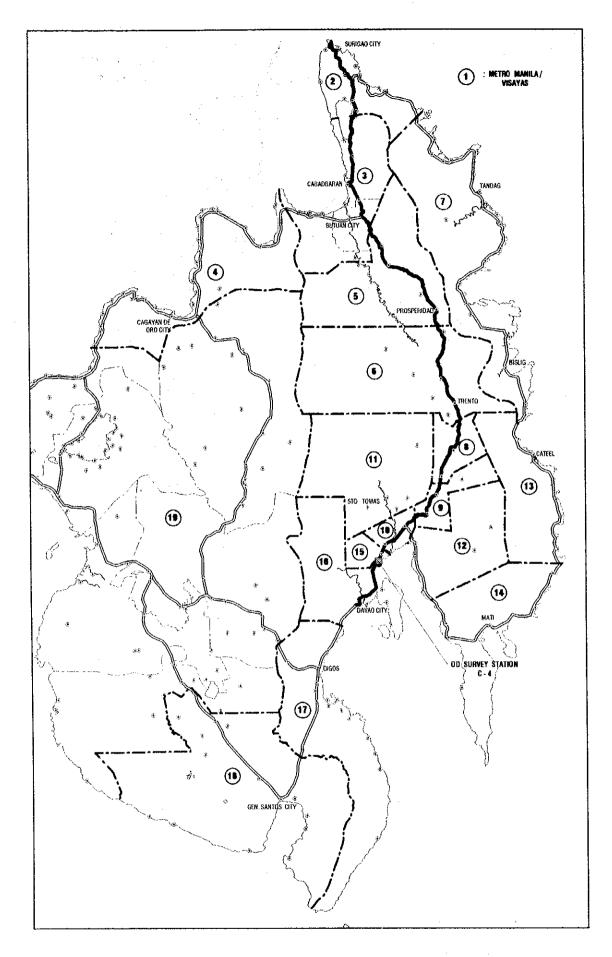


FIGURE 5.1-4 TRAFFIC ZONES (OD SURVEY STATION C-4)

APPENDIX 5.2

AXLE LOAD

1) Number of Vehicles Weighed and Sampling Rate.

Number of trucks and buses weighed at each survey station is shown in Table 5.2-1. Sampling rate at each survey station is shown in Table 5.2-2. Empty truck ratio which was obtained by the commodity OD survey for each survey station is presented in Table 5.2-3. Above results are summarized as follows:

Survey Station	(Boundary	. of Trucks Weighed th Directions)	Samplin Rate (Both Directions)	Empty Truck Ratio (Both Directions)	No.of Buses Weighed (Both Directions)
L - 1	Surigao del Norte/Agusan del Norte	242	93%	35%	79
L - 2	Butuan City/ Agusan del Sur	508	76%	45%	85
L - 3	Agusan del Sur/ Davao del Norte	402	78%	48%	82
L - 4	Davao del Norte/ Davao City	942	42%	32%	58

2) Axle Load Distribution

The axle load distribution of loaded trucks for the survey stations L-1, L-2, L-3 and L-4 is shown in Figures 5.2-1, 5.2-2, 5.2-3 and 5.2-4, respectively.

Maximum axle load observed at each surveys station is as follows:

Survey Station		<u>Load Observed</u> Tandem Axle
L-1	15.8	29.8
L-2	14.0	28.8
L-3	15.4	30.8
L-4	16.5	31.0
Legal Limit	8.0 tons	14.5 tons

TABLE 5.2-1 NUMBER OF VEHICLE WEIGHED

_		So	outh Bound	3	N	orth Bound	3		Total	
Survey Station	Vehicle Type	Empty	Loaded	Total	Empty	Loaded	Total	Empty	Loaded	Total
<u> </u>	Truck (2-Axle)	51	33	84	15	79	94	66	112	178
	Truck (3-Axle)	15	17	32	. 6	14	20 -	21	31	52
L - 1	Truck Trailer	0	. 0	0	0	0	0	. 0	0	0
	Semi Trailer	2	5	7	3	. 2	∂ 5	. 5	7	12
	Total	68	55	123	24	95	119	-92	150	242
	Bus	-	-	38		-	41	-	•	79
-	Truck (2-Axle)	94	107	201	73	96	169	167	203	370
	Truck (3-Axle)	50	21	71	18	26	44	68	47	115
L - 2	Truck Trailer	0	0	0	0	0	0	0	0	0
	Semi Trailer	8	3	·11	2	10	. 12	10	13	23
	Total	152	131	283	93	132	225	245	263	508
	Bus	-		41	-	_	44	-	-	85
	Truck (2-Axle)	62	78	140	63	78	141	125	156	281
	Truck (2-Axle)	18	21	39	14	34	48	32	55	87
L - 3	Truck Trailer	0	0	, 0	0	0	0	0	. 0.	C
	Semi Trailer	9	11	20	10	4	14	19	15	34
	Total	89	110	199	87	116	203	176	226	402
	Bus	•	-	33	*	-	49	-	-	82
	Truck (2-Axle)	51	163	214	70	210	280	121	373	494
	Truck (2-Axle)	38	125	163	105	95	200	143	220	363
L - 4	Truck Trailer	0	0	0	0	0	0	0	0	(
	Semi Trailer	14	27	41	9	35	44	23	62	85
	Total	103	315	418	184	340	524	287	655	942
	Bus	•	-	48	-	-	10	-	-	58

Note: L - 1: Boundary Between Surigao del Norte and Agusan del Norte

L - 2: Boundary Between Butuan City and Agusan del Sur

L - 3: Boundary Between Agusan del Sur and Davao del Norte

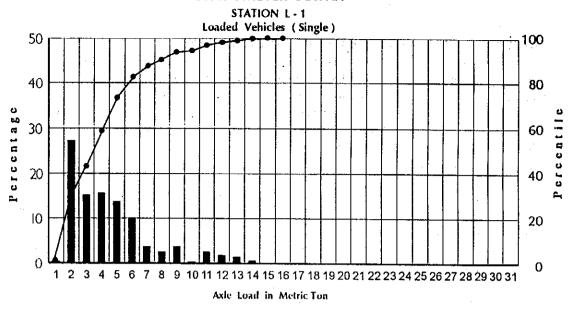

L - 4: Boundary Between Davao del Norte and Davao City

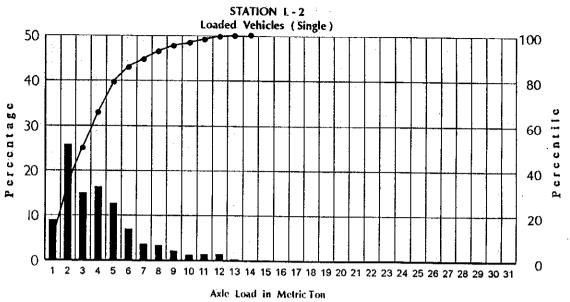
TABLE 5.2-2 SAMPLING RATE OF WEIGHTED VEHICLES

Survey Station	Direction	during 2 d	icles Passed ays between	No. of Vehic during 2 day	s between	Samp	-
	•	6:00 A.M.	and 6:00 P.M.	6:00 A.M. a	nd 6:00 P.M.	Ra	te
		Trucks	Buses	Trucks	Buses	Trucks	Buses
L-1	South Bound	128	57	123	38	96	67
	North Bound	131	67	119	41	91	61
	Total	259	124	242	79	93	64
L-2	South Bound	402	133	283	41	70	31
	North Bound	266	139	225	. 44	85	32
	Total	668	272	508	85	76	31
լ-3	South Bound	289	152	199	33	69	22
	North Bound	228	128	203	49	89	38
	Total	517	280	402	82	78	29
L-4	South Bound	1,074	686	418	48	39	7
	North Bound	1,187	575	524	10	44	2
	Total	2,261	1,261	942	58	42	5

TABLE 5.2-3 EMPTY TRUCK RATIO OBTAINED BY COMMODITY OD SURVEY

Survey	Direction	Nu	umber of Tru	icks	Empty Truck Ratio
Station		Empty	Loaded	Total	(%)
L-1	South Bound	41	36	77	53.2
	North Bound	13	63	76	17.1
	Total	54	99	153	35.3
L-2	South Bound	132	130	262	50.4
	North Bound	77	123	200	38.5
	Total	209	253	462	45.2
L-3	South Bound	95	83	178	53.3
	North Bound	74	103	177	41.8
	Total	169	- 186	355	47.6
L-4	South Bound	289	728	1,017	28.4
	North Bound	395	698	1,093	36.1
	Total	684	1,426	2,110	32.4

% Share of Respective Axle Load


% Share of Respective Axle Load

Cumulative % of Axle Load

Cumulative % of Axle Load

LOADOMETER SURVEY STATION L - 1 Loaded Vehicles (Tandem) 100 50 80 40 Percentage 60 30 40 20 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Axle Load in Metric Ton

FIGURE 5.2-1 AXLE LOAD DISTRIBUTION PATTERN AT SURVEY STATION L-1

% Share of Respective Axie Load


--- Cumulative % of Axle Load

LOADOMETER SURVEY STATION L-2 Loaded Vehicles (Tandem) 50 100 40 80 Percentage 30 60 20 10 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Axle Load in MetricTon

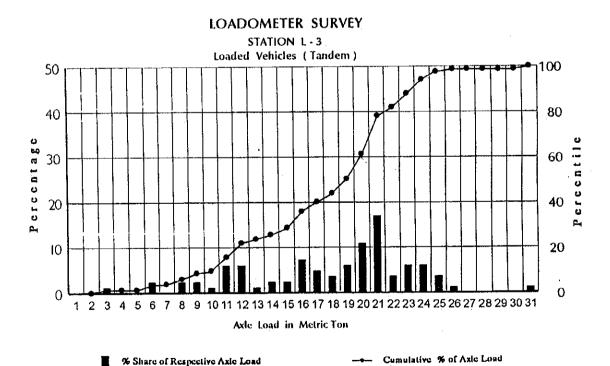
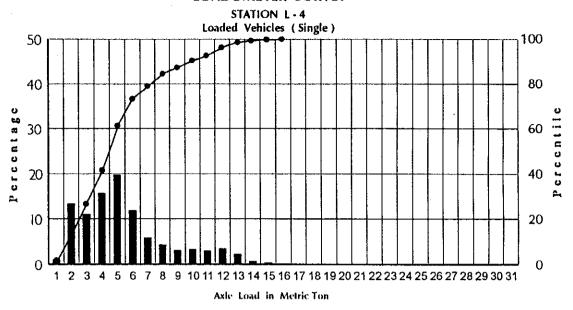
Share of Respective Axie Load

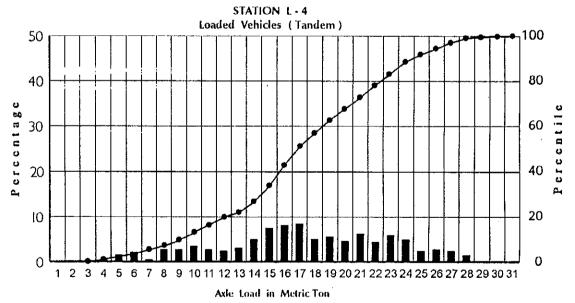
-- Cumulative % of Axle Load

FIGURE 5.2-2 AXLE LOAD DISTRIBUTION PATTERN AT SURVEY STATION L-2

% Share of Respective Axle Load

--- Cumulative % of Axle Load


FIGURE 5.2-3 AXLE LOAD DISTRIBUTION PATTERN AT SURVEY STATION L-3

■ % Share of Respective Axie Load

-- Cumulative % of Axic Load

LOADOMETER SURVEY

% Share of Respective Axle Load

- Cumulative % of Axic Load

FIGURE 5.2-4 AXLE LOAD DISTRIBUTION PATTERN AT SURVEY STATION L-4

APPENDICES FOR CHAPTER 8

APPENDIX 8.1

FIELD SURVEY FORMS USED FOR THE STUDY

.

FEASIBILITY STUDY ON PAN-PHILIPPINE HIGHWAY REHABILITATION PROJECT (MINDANAO SECTION)

ROAD REFERENCING SYSTEM SURVEY

	DESCRIPTIO	<u>N</u>		REAL	OING (Km.)	
			1				
					•	 	-
				_	-		
				-	•	+	
						 	-
				_	 •	 -	+ -
					++	+ -	-
-						1-1-	
				·	<u> </u>		-
					 •	++-	
					-	++	
					1 -		1
				-	1.		
<u> </u>							_J
	ENCE MARKER T	ENCE MARKER TYPE Start Road Link K - Kilom End Road Link I - Road	ENCE MARKER TYPE Start Road Link K - Kilometre Post	ENCE MARKER TYPE Start Road Link K - Kilometre Post R - End Road Link I - Road Intersection P -	ENCE MARKER TYPE Start Road Link K - Kilometre Post R - Reg End Road Link I - Road Intersection P - Prov	ENCE MARKER TYPE Start Road Link K - Kilometre Post R - Regional B End Road Link I - Road Intersection P - Provincial	ENCE MARKER TYPE Start Road Link K - Kilometre Post R - Regional Boundar

SURVEY SHEET NO. 1

VISUAL INSPECTION

7. Residential/Commercial Area (to Lipata Terminal) (m)eteranoo Surface Drainage 6. Swampy Area 3. Coconut Fleid Sheet No. :_ Survey Date: _ 2. Plowed Field 5. Waste Land 1. Rice Field Ki brap(m) Land Use 4. Forest Earth(m) No Ditch(m) Sconica (m) North Bound Drop Off Vor (m) evoeti 2. Gravel 3. Concrete Shoulder Shoulder 1. Earth TO TO TO TO ä ii ÖI öΪ ρÏ Moteriol Width(m) esე թաթղ General Road Condition Survey Vertical Gradient 1. Less than 3% Concrete(m) (to Davao City) Surface Drainage 2.3 to 5% 3.5 to 7% +: Up -: Down Riprop(m) Earth(m) No Ditch (m) South Bound Scomed (m) Drop Off/or (m) Heave(m) (South Bound View) Shoulder **Cross Section Type** TO TO TO TO Material (m) (ttpi/k 1. Flat Vertical Gradient Sharp Curve (No.) General Cross Section Type Ιοδοδιαδρλ 2. Rolling 3. Mountainous Road Link No. Topography 000 400 - 500 100 - 200200 - 300 300 - 400 600 - 700 700 - 800 900 - 900 500 - 600 Section 1, Flat ī - 006 0

esn pubn

App. 8.1-2

Lipata Terminal) Pumping/Water Bleeding (No.) Depression (No.) (Sm) gailes2 Patching (m²) <u>۔</u> **IDIOT** North Bound Cracks (m.) Block / Alligator Corner Longitudinal SURVEY SHEET NO. 2 Trdnsverse Pavement Slab Under (m.) Reconstruction (m.) Uneven Surface(m) Rothole (No.) Pavement Distress Survey AC Overlay Removed (m²) (to Davao City) Pumping \ Water 8 | 6 ed in g (No.) Depression (No) VISUAL INSPECTION Scaling (m²) (Sm)pnldoto9 South Bound IntoT Cracks (m.) Block / Alligator Corner Longitudinal Tronsverse Reconstruction (m.) Pavement Stab Under (m) diblW fremevoq Pavement Type Road Link No. 700 - 800 800 - 900 600 - 700 300 - 400 400 - 500 500 - 600 200 - 300 100-200 0-100 900

> E App. 8.1-3

Pothole, (No.)

AC Overlay (m^S)

Pavement Type PCC ·

. 2. AC Overlayed PCC

3. Gravel

INDIVIDUAL PRESENT SERVICEABILITY RATING

D LINK NO.	SOUTH BOOK		,			NAME OF RATER VEHICLE									
	<u> </u>			SURI	FACE	COND	ITION	BATI	NG .			ACC	EPTAB	E ?	
	SECTION 5	Ver God	xd	G00	d	Fa .0	ir	Po	xor 1		or	0 Yes	No	Un decide	
	0 - 200		:						ļ			,			
	200 - 400				 										
	400 - 600								 		 				
	600 - 800				 				 		1				
•	800 -				 				 		 				
	0 - 200				i					-					
	200 - 400				 		 		1		 				
	400 - 600		-		 		 		 	1	 				
	600 - 800				 		 		 						
٠	800 -			<u> </u>	 		 		1		 				
	0 - 200	-			 	ļ			\vdash	-					
	200 - 400				 		 		1	 -	1				
	400 - 600	ļ	 	 	-	<u> </u>	 		 -	-	 				
					 		-		ļ	-	 	-		ļ	
	600 - 800	ļ			 	<u> </u>	! 	<u> </u>	 	ļ	 				
	800 -					ļ.,.		<u> </u>	 	<u> </u>	!				
	0 - 500	<u> </u>	 	<u> </u>	 		 	<u> </u>	 	ļ	 	 		<u> </u>	
	200 - 400		 		ļ 		1				 	<u> </u>		ļ	
	400 - 600		i 		į —	<u> </u>		<u></u>	1	<u> </u>	<u> </u>	<u> </u>		ļ	
	600 - 800		į		į		į		į		į				
	800 -				i										
	0 - 200	†	1		+	-			1	╁┈	 	1			
	200 400	1-	 	 	 		 	 	 	 	1				
	400 600		 	-	 		 	-		 	1		-	-	
	600 - 800	1-	 		1		 		- 	-	+	1		1	
	600 -	1	 	 	 		 	1	 	1	 	1		 	
\top	0 - 200	╁╾	-	-	-	+-	i -	-	÷	+	-		-	1	
	200 400		 	 		-	 	-	 			1		 	
	400 - 600	╁	 			+	<u> </u>		-	+	 				
	600 - 800	╂─			 		 	 	 	-	-	 		·	
		╂	 	 	-	<u> </u>		╁			-		-		
	800 -	1			1	<u> </u>	ì			<u> </u>	<u> </u>	1			
	Points			Surfac		onditio			· · · · · · · · · · · · · · · · · · ·	•					
	5.0 - 4.0 4.0 - 3.0		Very Good	300d	-	Very Comics	table	i ble							
•	3.0 - 2.0 2.0 - 1.0		Fair Poor			Satisfa Uncon	torabi								
3 No.	1.0 - 0.0		Very I	Poor	_	Very U	ncomfo	xbble	:						

TABLE 8.1-5

INDIVIDUAL REHABILITATION REQUIREMENT RATING

OAD LINK NO.		N	NAME OF RATER											
			1	SUR	FACE	COND	TION	PATH	VG.			ACC	EPTAB	E 7
	SECTION	Ĭ				.0	2.	0		0		0 Yes	No	Un deckie
<u>M</u>	0 - 200	5,0	+ -		 			.0	<u>'</u>	-		165	110	Geckie
البلطيط			\vdash											
·	200 ~ 400	-	!		-								<u></u>	
	400 - 600	╂	-		 				 					
:	600 - 800	- 	-		 				 	ļ <u>.</u>	-			
4 	800 -	╄	-		<u> </u>				! !					
	0 - 200	_	! - 		 				1 		 		<u> </u>	ļ
	200 - 400	_			 				! 					
	400 - 600				<u>i</u>				i 	ļ				
	600 - 800		<u>i</u>		<u>i</u>				<u> </u>		<u> </u>			
M _. .	800 -		į		İ				<u>. </u>		į			
	0 200	Т			İ						İ			
:	200 - 400		i		Ī]			
	400 ~ 600	1	 		 				 		 			
:	600 - 800	-†	1		- 		 		 		 			-
м	800 -	-	 		 		 		<u> </u>	 	 			
"	0 - 200				-				-					-
<u></u>			 		┼-		ļ	-	 	├—	 			ļ
	200 - 400		-		 		! 		 	 	 		<u> </u>	
	400 ~ 600		-		ļ		 		! 	ļ				ļ <u> </u>
	600 - 800	_	 - 		 - 	<u></u>	[ļ	 		ļ.	<u> </u>
м	800		İ		į				1		<u> </u>		l	
	0 - 200		į		İ		İ		į		İ			
	200 - 400				!		ļ							
	400 600		 		1						 			
	600 - B00	1	- 		- 		 		 	1	 			
м	800 ~	_			 	ļ	 		1	 	 	ऻ		1
	0 200	+	+	1	 				 	+	 			-
	200 - 400		- 	 	<u> </u>	-	 	 	i -		 		 	-
•	400 - 600		+	ļ					 		i -	-		
	600 - 800	- -			-	-	 	-	 	 	-	-		
	:	-			- 		 	 	 	 	-		 	-
. M	800 -		<u> </u>		1	<u> </u>	i [<u> </u>		<u></u>	<u> </u>	<u> </u>	<u> </u>	<u>L.,,</u>
	Points	_				Suria	ce C	onditi	on				-	
:	5,0 - 4,0 4,0 - 3,0 3,0 - 2,0 2,0 - 1,0	:	No defit Slight d Conside Conside	eficienc erable d	teticien	les bul	imme	diale t	ealmei ediste	nt is no	t require	ed outlined		

Remarks Sheet No.: __Surveyor: _ Date: Condition at Outlet Пикиоми Slope May Fail Clogged/Silted 0,1/4,1/3,1/2 2/3,3/4,1 Foiled Ппкложп Causing Flood ON X68 Existing (Domoged?) Clogged\ Silted Outlet Facility Damoged 3. Unknown RCPC / RCBC Survey Sheet 1. Yes 2 . No None Existing (Domesed?) Clogged\ Silled Inlet Facility Condition _ [None 2. Insufficient 1. Sufficient Clogged \
betilc Capacity 3. Unknown Culvert Domaged? Capacity Topography Location Culvert Type/Size of Culvert PC: No. + Diameter) BC: No. of Barrel +Size) Name of District Office . oi Location + + + + + + + + + + + + + X E

App. 8.1-6

Pan Philippine Highway - Mindanao Bridge Inventory Sheet No. 1

Bridge No.	;	٠:	
Bridge Name	:		
Inventory Date	:		

<u> 2000 - North Committee C</u>							
A. GENERAL INFORMATION			<u> </u>	<u> </u>			
(1) Bridge No.			(2) Bridge Nam	ne		·	
(2) Station			(4) River Name				
(5) Bridge Type				·			
(6) Length (meter)		<u> </u>					
(7) Width (meter)	Left Sidewal	k=	Pavement =	Right S	idewalk=	Total Width=	
(8)Straight,Curved,Skex(Deg)			(9) Detour Di	istance (km)		<u> </u>	
B. SUPERSTRUCTURE							
			T _ T		5	6	7
Span No.	11	2	3	4	·		
(10) Year Built						 	
(11) Design Load (ton)							
(12) Span Length (meter)	<u> </u>	:					
(13) Type of Bridge							
RCS = Reinforced Concre							
RCBG = Reinforced Concr 18 = Steel I Beam, PG =	Steel Plate	Girder, PT =	Steel Pony Tru	ss, TT = Ste	el Through Tr	uss, LA = Steel	<u>Langer</u>
(14) No. of Main Girders			-				
(15) No. of Stringers							
(16) No.of Cross Beams			.			 	
(17) Girder Condition	ļ <u>.</u>	<u> </u>					
(Concrete)	C = Cracking,	R=Rebar Exp	osed , \$ = Spal Deformation, X=	ling, X=Rep	aired		
	C = Cracking,	K-KUSLY, V-	Delormation, n-	мерин са		E	/aluation
Comment	 						
(18) Painting Condition		D - Duna	. D a Pasting o	or Paglad	<u> </u>		
	Discoloration	, K - KUST)	/, P = Peeling o	70000		E	/aluation
Comment							
(19) Slab Type		L				_	
C = Concrete	A = Concret	e with Aspha	alt Overlay , W	= W000	1		
(20) Slab Span (m)					<u> </u>		
(21) Slab Condition Top		<u> </u>			l		
C = Cracking	R = Rebar Ex	posed, \$ = 5	Spalling, P = Po	othole, X = R	epaired, Y =		b b
Connent		T					valuation
Slab Condition Bottom		<u> </u>					
C = Cracking	R = Rebar Ex	posed, S = 1	Spalling, X = Re	epaired			
Comment	<u> </u>			 -]E [,]	valuation
(22) Railing Type	<u> </u>				<u> </u>		
C = Concrete	, S = Steel			ı	1		
(23) Curb & Railing Condition		<u> </u>					
C = Curb Dam	eged R = Rai	iling Damage	<u>d</u>				
Comment						E	valuation
(24) River Clearance - Bel	ow Superstruct	ture to Rive	r Bed at Center	line Span			
Distance (meter)					<u> </u>		
1							

Pan Philippine Highway - Mindanao Bridge Inventory Sheet No. 2

Bridge	No.	.1				2.
Bridge	N eme	٠, ;		 	5. 7	- 2.
Invento	orv Dat	• •				

1								
C. SUBSTRUCTURE			· · · · · · · · · · · · · · · · · · ·	,	, .		<u> </u>	<u> </u>
Abutment/Pier No.			<u> </u>		·			
(25) Expansion Joint Type		·						
	H = None	, S = Stee	i, D = Dum	my				
(26) Expansion Joint Condition							612	
R = Rusty, L = Loc	ose, U = Uneve	n, N = None,	C = Concr	ete Spalle	d at End o	of Span, S	= Proper Se	eal
Comment							Evaluatio	~
(27) Bearing Type								7.1.
E ≃ Elastomeric Pa	nd, S = Steel	Plate, B =	Steel Mec	hanical Be	aring, N	≐ None, U	= Unknown	-
(28) Bearing Condition								
M = Missing, N =	Not Positione	d property,	D = Defec	tive, R=Ru	sty	:	!	·
Comment							Evaluatio	n .
(29) Bearing Support Condition			[
C = Cracked Below W = Insufficient &	, R = Rebar i Vidth for Supp	Exposed, S = ort Existing	Spalling Beam			:	 	
Comment						T-10	Evaluation	m
(30) Abutment/Pier Type								
(Abutment) AC = Ca (Pier) PW = Pi	nntilever, AP	= Perched a Pier Tee Sh	t Top of S	lope, AB = = Pier Col	Pile Bent	Perched A	t Top of SI	оре
(31) Abutment/Pier Condition								***************************************
C = Cracked, R = R	lebar Exposed,	T = Tilted,	S = Spall	ed on Vert	ical Sides		 -	-
Conment		······································		***			Evaluatio	
(32) Foundation Type							Evaluatio	<u>'' </u>
S = Spread, P = Pi	les, U = Unkno	pwn	!	 	I	.1		
(33) Foundation Condition								
S = Settled, E = P	ile Exposed -	Reight in me	eters. F =	Foundation	Scoured			
Connent					1. 00001.00		Exalestia	
(34A) Wing Wall Type						T	Evaluation	· · · · · · · · · · · · · · · · · · ·
N = None, P = Para	liel to Stream	n S = Skovor	d Abutment		——————————————————————————————————————	I	<u> </u>	
(34B) Wing Wall Condition		S, S SKERC	, nogtinent					
C = Cracked, S = S	ettled, E = Pi	ile Exposed.	W = Wina	Wall Scou	red	 -		
Comment	***************************************				~		Evaluation	.
(35) River Clearance - Below Su	perstructure 1	to River Red	at Pier				Evaluation	"-
Distance							T	
		-4				<u> </u>		

Pan Philippine Highway - Hindanao Bridge Inventory Sheet No. 3

Bridge No.	:	-	<u> </u>	
Bridge Name	:		1 1	•
inventory Date	:			

								
D. RIVER CONDITION								
(36A) Water Width(m)			(368) Ve	locity at Survey				
(37) Flood Level		m below slab	(38) Rive	er Bed Mater <u>i</u> al				
(39) Flow Direction			(40) Degi	ree of Flow to B	ridge	Degrees	to Bridge	
(41) River Condition						······································		
Comme	nts						Evalua	ntion
						.,		
E. RIVER BANK AND	APPROACH	ROAD						
Side		Begin Left	Begin Center	Begin Right	End Lef	t E	nd Center	End Right
(42) River Bank Prot	ection							
<u> </u>		N = None, R =	Riprap (lengt	h in meters), G	= Gabion,	C = Concr	ete (length	in meters)
(43) River Bank Cond	ition							
(43) KIVEL DONE CONS	1,000	D = Damaged,	S = Scoured/	Eroded, E = En	croachment	on Strea	om	
Comme	nt						Evalua	ation
(44) Appr. Road Cond		Begin		End				
(447 Appr. Roda core	1000		aht in cm). A	S=Scour behind A	butment (l	ength in	meters)	
	-		3					<u></u>
Соппе	nt						Evalu	ation
F. SURFACE DRAINAGE								
(45) Surface Orainag	e					···		<u></u>
(46) Surf.Drainage C	ond.							
Соппе	nt						Evalu	ation
47. REMARKS								
48. RECOMMEN	DAT	IONS						
				· · · · · · · · · · · · · · · · · · ·	··	[Bridge Evalu	ation
						1-		
1								

Note : Evaluation

A: Replacement/Urgent repair needed B: Repair needed C: Repair not needed-maintenance only

TABLE 8.1-7(4)

ı Phitippine Highway - Mindanao dge inventory Sheet No. 4 ution :	IADLE	0.1-7	(4)	Bridg Brida	e No. e Name tory Date	<u> </u>	
oge inventory sheet no. 4				Inven	tory Date	:	
ITE PLAN			· · · · · · · · · · · · · · · · · · ·	· · ·			
CIE FLOR			0.00				
					•		
•						•	
		•	•				
		<u> </u>					
IDE VIEW							
CROSS SECTION							
•							

TABLE 8.1-8(1) SLOPE INVENTORY SHEET FOR CUT SLOPE FAILURE

Pan-Philippine Highway - Mindanao Spot No. : Station : Inventory Sheet - Cut Slope Failure Inventory Date : , 15

										miory Date	
i) Nature o	l Slope		(1)	Natural Slope	(2)	Cut Slope					
Occurre	nce/Poten	iai of Disaster	(1)	Occurred	(2)	Potential of Occu	nueuc	0			
	(3) Type	of Fallure	(1)	Surface Failure	(2)	Deep Fallure	(3)				
		re Wickh (m)	Ť								
	· · · · · · · · · · · · · · · · · · ·	re Height (m)									
Fallure	(6) Fallu	re Thickness (m)								• .	
Condition	(7) Date	Occurred	Day		Mon	th	Year				
	(8) Exte	nt of Affection	(1)	Shoulder	(2)	One Lane	(3)	Two Lanes			
	on T										
*	(9) Traff	c interruption	İ	•							
		d (day)	<u> </u>								
į		etermeasure Taken		None		Removal of Ma			(3)		
}	r '	all intonsity	(1)	Below 100	(2)	100-200	(3)	200-300	(4)	Above 300	
	(mm	/day)									
	(12) Slop	a Height (m)	<u> </u>								
	(13) Slop	e Gradient (deg.)								- <u></u>	
Original	<u> </u>	ontal Shape		Protrude		Hollow		Straight			48.6
Siope		cal Shape	(1)	Protrude	(2)	Hollow	(3)	Straight	(4)	Overhung	(5) Complex
Condition	(16) No.		<u> </u>			•	•	11 - d		Mah	
ĺ		ee of Erosion	+	None		Low		Medium	(4)	High	
ļ		e Protection		None		Vegelation	(3)	Bush			
	(19) Veg	Halion	(3)	None	(2)	Grass	(3)	DUSH			
	(20) Male	rial	(-1)	Hard Rock	(2)	Soft Rock	(3)	Gravelly Soll	(4)	Sandy Soll	(5) Cohesive So
	.	(21) Kind	(1)	Granite	(2)	Diorite	(3)	Diabase		Andeste	(5) Schist
			(6)	Dacke	(7)	Slate	(8)	Limestone	(9)	Schalstein	(10) Tuff
			(11)	Tuffbreccia	(12)	Sandstone	(13)	Shale	(14)	Mudstone	(15) Conglomerat
i	Rock		(16)	Masa	(17)	Pyrociastics	(18)				
Geological		(22) Weathering	(1)	Fresh	(2)	Slightly Weather	ed	(3) Highly W	eather	ed	
Condition		(23) Crack	(1)	Sparse	(2)	Regular	(3)	Irregular	(4)	Highly Develope	ed
		(24) Direction of	(1)	inclined to Mount	ain	(2) Inclined to S	lope	(3) irregular			
		Strata	1								
			1-	Tight		Silghtly Loose	(2)	Loose			
		(05) Osmanda asa	7 40	TIGHT							
	Gravelly	(25) Compactness	_								
	Gravelly Soil	(26) Gravel Size	(1)	Below 10 cm	(2)	Above 10 cm					
	1 1		(1)		(2)						
	Soll	(26) Gravel Size (27) Gravel Shape	(1) (1)	Below 10 cm Angular	(2)	Above 10 cm Round	(3)	Looso			
	1 1	(26) Gravel Size (27) Gravel Shape (28) Compactness	(1) (1)	Below 10 cm Angular Tight	(2) (2)	Above 10 cm Round Slightly Loose		Looso 5-10 m	(4)	Above 10 m	
	Soll Soll	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness	(1) (1) (1)	Angular Tight Below 1 m	(2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m	(3)	5-10 m		Above 10 m	
	Soli Soli (30) Surf	(26) Gravel Stape (27) Gravel Shape (28) Compactness (29) Thickness ace Water	(1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m	(2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate	(3) ed	5-10 m (3) Concent		Above 10 m	
Water Condition	Soli Soli (30) Surf (31) Gro	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water	(1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None	(2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed	5-10 m		Above 10 m	
Condition	Soli Soli (30) Suri (31) Grod (32) Drai	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water nage Facilities	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee-	Soli (30) Suri (31) Grod (32) Drai (33) Disa	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water nage Facilities ster Potential	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concent	ated	Above 10 m	
Condition Enginee- ring	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee-	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water nage Facilities ster Potential	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee- ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee- ring	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee – ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	
Condition Enginee— ring Judgement	Soli (30) Surf (31) Gro (32) Drai (33) Disa (34) Cau	(26) Gravel Size (27) Gravel Shape (28) Compactness (29) Thickness ace Water and Water hage Facilities ster Potential se of Disaster	(1) (1) (1) (1) (1)	Below 10 cm Angular Tight Below 1 m None None None	(2) (2) (2) (2) (2) (2) (2)	Above 10 cm Round Slightly Loose 1-5 m Not Concentrate Seepage	(3) ed (3)	5-10 m (3) Concents Spring	ated	Above 10 m	

TABLE 8.1-8(2) SLOPE INVENTORY SHEET FOR EMBANKMENT SLOPE FAILURE

Pan—Philip Stope inv	ppine Highway — Min entory Sheet — Emb	dan anki	ao ment Slope Fa	ilur	•			S	pot No. tation eventory Date	
(1) Nature (of Slope	(1)	Natural Slope	(2)	Embankment Slop	*				
	nce/Potential of Disaster	(1)	Occurred	(2)	Potential of Occurr	ence)	1:		
(3) Location			Inside of Curve Bridge Approach		Mountainside Adjacent to Piver	٠.	Valley Crossing	,		
	(4) Type of Fallure	(1)	Surface Falure	(2)	Deep Fallure	(3)				
	(5) Fallure Width (m) (6) Fallure Helpht (m)	╂──								
Fallure	(7) Faiture Thickness on								· · · · · · · · · · · · · · · · · · ·	
Condition	Top (m) (8) Date Occurred	Day		Моп	ith	Year				· · · · · · · · · · · · · · · · · · ·
	(9) Extent of Affection on Traffic		Shoulder		One Lane		Two Lanes			
	(10) Traffic Interruption Period (day)									
	(11) Countermeasure Taken	(1)	None	(2)	Only FIII	(3)	Riprap	(4)		
	(12) Painfall intensity (mm/day)	-	Below 100		100-200		200-300		Above 300	
	(13) Slope Height (m) (14) Slope Gradient (deg.)									
Original	(15) Slope Condition	(1)	Cracked		Scoured				(4) Nothing Spe	cial
Slope	(15) Foundation Layer	-	Soll		Soft Rock		Hard Rock	(4)	Unknown	
Condition	(17) Surface Water	-	None		Not Concentrated		Concentrated			
	(18) Slope Protection		None None		Vegetation RCPC		Riprap RCBC	(4)	Slope Ditch	(5)
	(19) Drainage Facilities						High Potential	(*/	Crope Ditori	1-1
Enginee-	(20) Disaster Potential (21) Cause of Disaster .		Already Occurred Surface Water due				 	ue to	Insufficient/Sited (Culvert
ring Judgement		(3)	Improper Treatme Scour by River Str	nt of	Culvert Outlet		Ground Water			
ļ	(22) Countermeasures	1								
Sketch										

TABLE 8.1-8(3) SLOPE INVENTORY SHEET FOR DEBRIS FLOW

Pan—Philip Slope ins	peci	e Highway — Mind tion Sheet — Deb	dana ris i	io Flow				٠.	Spot No. Station Inventory Date	, 15
1) Occurre	ncė/l	Potential of Disaster	(1)	Occurred	(2)	Potential of Occ	currenc	•		
		Type of Disaster Flow Width (m)	(1)	Debris Flow	(2)	Mud Flow				
		Flow Length (m)	1-						··	
Debris		Date Occurred	Day		Mon	th	Year			
Flow Condition	(6)	Extent of Affection on Traffic		Shoulder ·		One tane		Two Lanes		
COLORDON .	(7)	Traffic interruption Period (day)	╁						,	
		Countermeasure Taken	T							
	(9)	Rainfall Intensity (mm/day)	(1)	Below 100	(2)	100-200	(3)	200-300	(4) Above 300	
		Average Gradient (deg.) Area of Basin (m2)	1							
		Deposit on Riverbed	(1)	None	(2)	Slight	(3)	Abundant		
		Forest Cover		Selow 50%		Above 50%				
	L				* '.		/ 21	High Polential		
_		Olsaster Polential Cause of Disaster	$\mu \nu$	Aready Occurre	0 (2)	LOW PORTING	(3)	righ Polentai		
_		Countermeasures	┼─	· · ·				,		
Sketch				· · · · · · · · · · · · · · · · · · ·			.,			
		•								
				•						
										·

TABLE 8.1-8(4) SLOPE INVENTORY SHEET FOR FALL

	-Philippine Highway — Mindanao e Inventory Sheet — Fall						٠,	Sta	ot No. ition	=	1004	
									lnv	entory Date	<u>' :-</u>	, 1994
(1) Nature	of Slope		(1)) Natural Slope	(2)) Cut Slope			-			* . * . *
(2) Occurre	ence/Pote	ential of Disaster	(1)) Occurred	(2)) Potential of Occu	леп	ice	_			
	(3) Tyr	pe of Fall	(1)	Debris Fall	(2)) Flock Fall	(3))				
r . u	····	Width (m)	<u></u>				_					
Faii Condition		l Height (m) l Thickness (m)	\vdash	· · ·			—					
V01,4		len Rock Size	(1)	Bolow 20cm	(2)	20-50cm	(3)) Above 50cm				
	(8) Date	e Occurred	Day	у	Mon	nth	Your					: :
i	1	ent of Affection	(1)	Shoulder	(2)	One Lane	(3)) Two Lanes				
ē		Traffic ffic Interruption										
	1	fied (day)										
		untermeasure Taken	(1)	None	(2)	Removal of Mal	erial:	s	(3)			
	I -	niali intensity	(1)	Bolow 100	(2)	100-200	(3)	200-300		Above 300		
	(mm	n/day)	L									
	(13) Slo	pe Height (m)										
I	(14) Slop	pe Gradient (deg.)	匚		_							
Original		Izontal Shape		Protrude		Hotlow) Straight			<u> </u>	
Siope Condition		tical Shape	(1)	Protrude	(2)	Hollow	(3)) Straight	(4)	Overhung	(;	5) Complex
Condition		of Berms pe Protection	1.5	None	(2)	Vegetation	(3)					
	(10)	Ţ	╅┷				(0)					
i I		(19) Matrix Condition	1			Soft	<u> </u>	Loose	(4)	Loose with De	otache	d Cobble
i	Debris	(20) Gully	-	Few		Many		Very Many				
	Fall	(21) Detached Rock/ Cobble	(1)	None/	(2)	Stable	(3)) Unstable				
Geological		(22) Kind of Rock	(1)	Granite	(2)	Diorite	(3)	Diabase	(4)	Andosite	(!	5) Schist
Condition		ļ ,	1	Dacite	(7)	Slate	(8)	Umestone	(9)	Schalstein	(10	o) Tuff
	Rock	1	1	Tuffbreccia) Shale	(14)	Mudstone	(15	5) Conglomerate
!	Fall		1	Masa) Pyroclastics	(18)	·		-		
ļ	•	(23) Weathering	-	Fresh		Silghtly Weathers		(3) Highly We				
	}	(24) Crack (25) Direction of	-	Sparse		Regular		(2) kregular	(4)	Highly Develo	ped	
		Strata	<u> </u>	inclined to Mounta	AID.	(2) Inclined to Sid	ope	(3) Irregular				
Water	· · · · · · · · · · · · · · · · · · ·	face Water	1 —	None	(2)	Not Concentrated	<u>d</u>	(3) Concentra	ated			
Condition	· · · · ·	ound Water		None		Seepage	(3)	Spring	_			
		inage Facilities	ļ.,	None	(2)							
Enginee ~		aster Potential	(1)	Already Occurred	(2)	Low Potential	(3)	High Potential				
dng Judgement		use of Disaster untermeasures										····
	(01) 000	ING Illeasu es	Щ		—							
Sketch												
												:
		•										
		•										

TABLE 8.1-8(5) SLOPE INVENTORY SHEET FOR LANDSLIDE

	ppine Highway — Mine antory Sheet — Land						Spot No. Station inventory Date		, 1994
(1) Occurre	nce/Potential of Disaster	(1) Occurred	(2)	Potential of Occ	urrenc	:0			
	(2) Type of Landside	(1) Rock	(2)	Talus	(0)	Soll			
	(3) Landsikie Width (m)								
	(4) Landslide Height (m)	Day	Mon	th	Year				
Landslide	(5) Date Occurred (6) Extent of Affection	(1) Shoulder		One Lane		Two Lanes			
Condition	on Traffic	(1) 01100100	\-,	5170 2	(•,				
	(7) Impact on Traffic	(1) Low	(2)	Medium	(3)	High			
	(8) Traffic Interruption								
	Period (day)								
	(9) Countermeasure Taken	(1) None	(2)						
	(10) Rainfall Intensity (mm/day)	(1) Below 100	(2)	100-200	(3)	200-300	(3) Above 300		
	(11) Presence of Irregular Surface and CBT	(1) Unnoticed	(2)	Noticed	(3)	Remarkably No	iticed		
Slope	(12) Geology	(1) Sedimentary Ro	ck (2)	Volcanie Rock	(3)	Talus	(4) Soll	(5)	
Condition	(13) Geological Structure	(1) Fault/Weak Zon		Not Fault/Weak					
	(14) Direction of Strata	(1) Inclined to Mou		(2) Inclined to					
	(15) Degree of Saturation	(.1) Dry	(2,	Wet	(3)	Seepage	(4) Spring		
	(16) Stope Gradient (deg.) (17) Continuity of Siide	(1) Unnoticed	(2)	Noticed	(3)	Romarkably No	tiked		······································
	Movement								
Enginee –	(18) Disaster Potential	(1) Already Occurr	ed (2)	Low Polential	(3)	High Potential			
ting	(19) Cause of Disaster								
Judgement	(20) Countermeasures								

APPENDICES FOR CHAPTER 9

APPENDIX 9.1

PAVEMENT CORING/SOILS TESTS AND SOFT GROUND SITE GEOTECHNICAL/SOILS INVESTIGATION

1. Pavement Coring and Soils Tests

Pavement corings were undertaken at selected 20 PCC slabs and test pittings were undertaken at the shoulder of selected PCC slabs (see Figure 9.1-1). For cored slabs, slab thickness was measured and compressive strength was tested. At test pitting site, soil layer thickness was measured and a field density test was conducted for each layer. Soil samples were collected for each layer and following tests were undertaken:

- Soil classification
- Compaction test
- CBR test
- Natural moisture content
- Sieve analysis
- Specific gravity
- Liquid and plastic limits

2. Soft Ground Site Geotechnical and Soils Investigation

Five sites were selected for investigation as shown in Figure 9.1-2

	No. of Bore Holes	Total Drilling Length (m)
5 Soft Ground Sites	5	75.0

Standard Penetration Tests (SPT) were undertaken at 1 meter interval and soil samples were collected. Eight undisturbed samples were collected and consolidation tests were undertaken. Following laboratory tests were undertaken for disturbed soils samples:

- Soil classification
- Natural moisture contents
- Sieve analysis
- Specific gravity
- Liquid and plastic limits

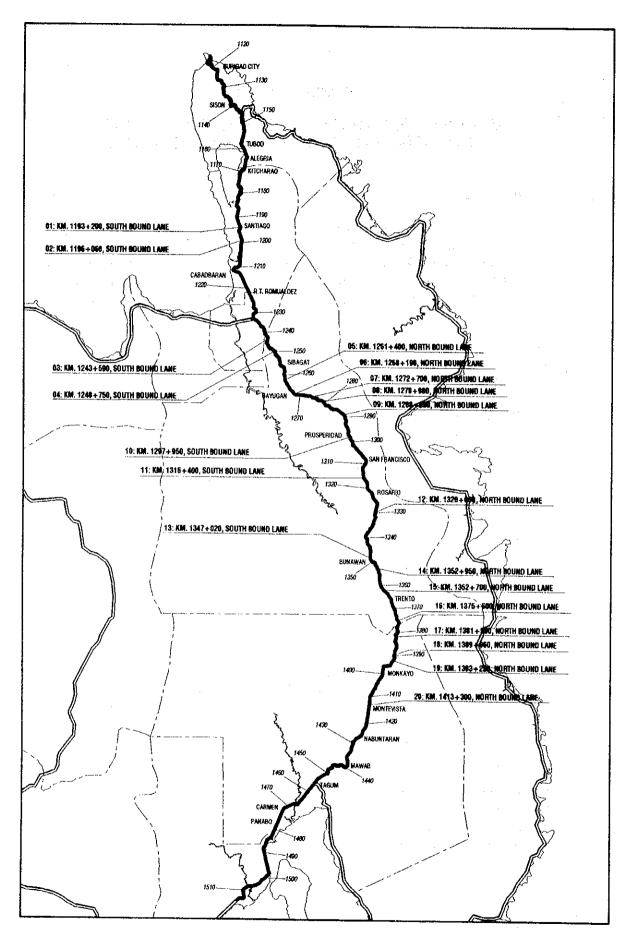


FIGURE 9.1-1 PAVEMENT CORING AND TEST PITTING LOCATION

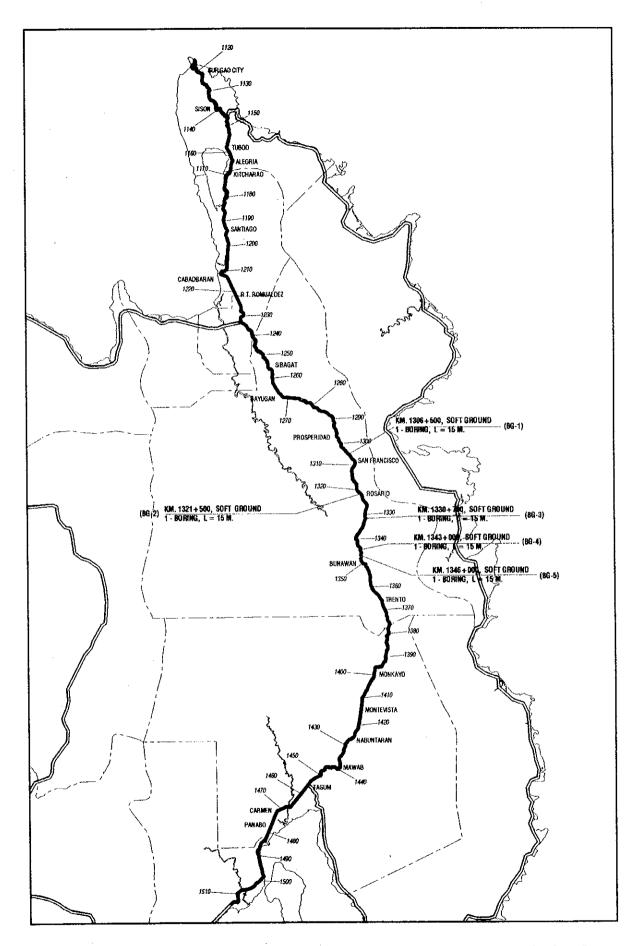


FIGURE 9.1 - 2 GEOTECHNICAL SURVEY LOCATION FOR SOFTGROUND

APPENDIX 9.2

DESIGN PRECEDENTS

This Appendix summarizes the pavement rehabilitation methods selected for Manila North Road and the Pan-Philippine Highway in Luzon and Samar sections.

1. Rehabilitation Projects

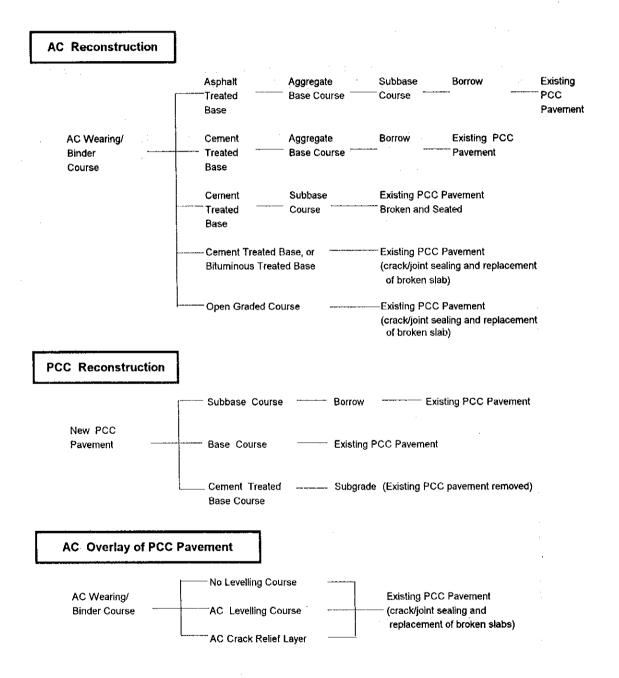
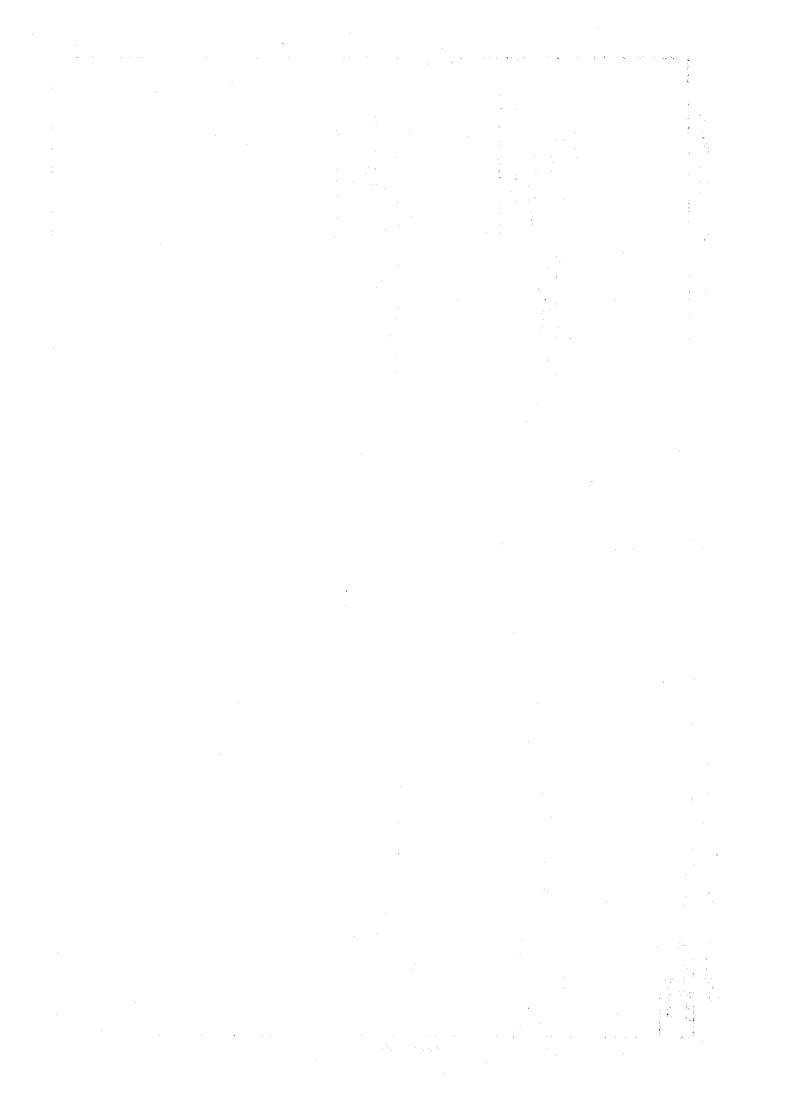

Table 9.2-1 shows the major completed and on-going projects for rehabilitation and improvement of the Pan-Philippine Highway.

TABLE 9.2-1 COMPLETED/ON-GOING REHABILITATION AND IMPROVEMENT PROJECTS ALONG MANILA NORTH ROAD AND PAN-PHILIPPINE HIGHWAY

Project Name	Project Section (Project Status)	Scope of Work
Manila North Road Improvement Project	Rosario-Laoag (completed in 1985)	o Road/Bridge Rehabilitation
Laoag-Allacapan Road Improvement Project	Laoag-Allacapan (completed in 1984)	o Road/Bridge Rehabilitation
The Philippine-Japan Friendship Highway Rehabilitation Project , Section A	Allacapan-Aritao (on-going)	o Slope Protection
The Philippine-Japan Friendship Highway Rehabilitation Project , Section B	Aritao-Sta. Rita (on-going)	
The Philippine-Japan Friendship Highway Rehabilitation Project , Section C	Calamba-Calauag (on-going)	
The Disaster Prevention and Rehabilitation Project (Philippine-Japan Friendship Highway and Naguilian Road)	Calauag-Matnog (on-going) Allen-Calbayog (Proposed for implementation)	

2. Rehabilitation Works


Major rehabilitation/improvement works designed in the above-mentioned projects are shown in Figure 9.2-1, and summarized as follows:

App. 9.2-3

Reconstruction with AC Pavement PAVEMENT REHABILITATION METHODS SELECTED FOR MANILA NORTH ROAD AND PAN-PHILIPPINE HIGHWAY AC Overlay in Urban Area AC Overlay in Rural Area 25cm, AGGREGATE SUBLAKE COURSE 5 - 10cm, AC WEARING COURSE 15cm, Bruainous staigled Aggregate base course 20em, CRUSHED AGGREGATE SASE COURSE — 5cm, A.C., WEARING COURSE — 7.5cm, AC SINDER COURSE Editing PCC PAVEMENT EXISTING PCC PAVEMENT 20cm. CRUSHED AGGREGATE BASE COURSE PAN-PHILIPPINE HIGHWAY Calamba - Calauag Section SURFACE COURSE Dom, AGGREGATE ... SURFACE COURSE BITANINOUS CONCRETE LÉVELING COURSE (HOT LAID), MIN. 4cm, AT ROAD CENTERINE, IF RECHRED AC Overlay on Existing PCC Pavement Mount up Type PCC Pavement Reconstruction PCC Pavement Reconstruction on Existing PCC AC Overlay on Existing PCC RITAMNOUS CONCRETE LEVELLING COURSE, HOT LAD. 4cm, AT ROAD CENTERUNE, # RÉQUIRED Sem BITMAINCUS CONCRETE SUBFACE COURSE, HOT UND 10cm, CRACK RELIEF LAYER (HOT LAID.) 20cm. CRUSHED AGGREGATE BASE COURSE Scm. Bituminous CONCRETE BURRACE COURSE, HOT LAID SEM, BILIMANOUS CONCRETE SURFACE COURSE, HOT LAND Sen, BILMINOUS CONCRETE SURFACE COURSE, HOT LAID 24 - 28cm. PCC PAYEMENT 20cm, CEMENT TEATED PLANT MIX BASE COURSE EXISTING PCC PAVEMENT EXISTING PCC PAYEMENT EXISTING PCC PAVEMENT TO REMAIN 24cm. PCC PAVEMENT FIGURE 9.2-1 (2) AGGREGATE SUBBASE COURSE PAN-PHILIPPINE HIGHWAY Aritao - Sta. Rita Section AGGREGANE SURBANE
COURSE AGGREGATE SUBBASE
COURSE AGGREGATE SUBBASE
COURSE

30cm, CEMENT TREATED AGGREGATE SUBBASE COURSE FIGURE 9.2-1 (3) PAVEMENT REHABILITATION METHODS SELECTED FOR MANILA NORTH ROAD AND PAN-PHILIPPINE HIGHWAY - 10cm OPEN GRADED COURSE 1 Sem AC WEARNG COURSE - Som AC WEARING COURSE - Som AC BINDER COURSE - Som, AC BINDER COURSE EDISTING PCC PANEMENT (CRACKS TO BE SEALED) TYPE - 4 NEW PC PAYEMENT TYPE - 5 Dest WEARING COURSE 5 6 6 BINDER COURSE 5 7 6 - Sem AC BNDER COURSE - Toem, ASPHALT STABILIZED ROAD MK BASE COURSE WEARING COURSE 5 5 BINDER COURSE 5 5 ATS 10 15 - Sem, AC WEARING COURSE Scm. AC WEARING COURSE Sem, AC WEARING COURSE - Scm. AC BINDER COURSE TYPE - 2 EXISTING PCC PAVEMENT (CRACKS TO BE SEALED) TYPE . 3 EXACING PCC PAYEMENT (CRACKS TO BE SEALED) EXISTING PCC PAVEMENT (CRACKS TO BE SEALED.) TYPE - 1 8 8 VARIABLE VARIABLE 1580 1283 PAN-PHILIPPINE HIGHWAY Calaueg - Matnog, Allen - Calbayog Section 10cm SHOULDER MATERAL-10cm, SHOULDER MATERIAL -Som, SHOUDER MATERIAL Арр. 9.2-5

APPENDIX 9.3

ESTIMATE OF CONSOLIDATION SETTLEMENT

- 1. ESTIMATE OF CONSOLIDATION SETTLEMENT AT KM. 1330 + 700
- 1.1 Backcalculation of Coefficient of Volume Compressibility

```
S = mv.H.P
             = Consolidation Settlement
                                                               (cm)
where:S
       my = Coefficient of Volume Compressibility
                                                               (cm<sup>2</sup>/kgf)
                                                               (cm)
              = Depth of weak layer
                                                               (kgf/cm<sup>2</sup>)
             = Consolidation load
        Ρ
S = 120cm
H = 670 + 120 = 790cm
                                                       0.5635 tf/m<sup>2</sup>
        PCC Pavement
                                0.23 \times 2.45 =
                                                       0.2700 tf/m<sup>2</sup>
                                0.15 \times 1.80 =
        Subbase
                                1.82 \times 1.80 =
                                                        3.2760 tff/m<sup>2</sup>
        Embankment
                                                        2.2000 tf/m<sup>2</sup>
        Traffic load
                                                        6.3095 tf/m<sup>2</sup>
                                        Total
                                                        0.631 kgt/cm<sup>2</sup>
```

 $mv = 120/790 \times 0.631 = 0.241$

1.2 Estimate of Consolidation Settlement Based on Backcalculated Coefficient of Volume Compressibility

Assuming that my remains the same as calculated above, consolidation settlement for the sandwich method is estimated as follows:

$$mv = 0.241 \text{ cm}^2/\text{kgf}$$

H = 670 cm

AC Pavement	0.11 x 2.33	=	0.233 tf/m ²
Bituminous Treated Base	0.10 x 2.10	=	0.210 tf/m ²
Base Course	0.25 x 1.8	=	0.450 tf/m ²
Subbase	0.30×1.8	=	0.540 tf/m ²
Common Material	0.44 x 1.8	=	0.792 tf/m ²
Traffic load		=	0.900 tf/m ²
	Total		3.125 tf/m ²
		=	0.313 kgt/cm ²

 $S = 0.241 \times 670 \times 0.313 = 51cm$

1.3 Estimate of Consolidation Settlement Based on Soil Characteristics

$$S = \frac{C_c}{1 + e_o} \times H \times log \frac{P_i + P}{P_i}$$

where:

C_c = Compression index e = Void ratio before loading P_i = Effective pressure before loading (kgt/cm²) P_o = Consolidation load (kgt/cm²)

$$C_c = 1.26$$

 $e_o = 1.72$
 $P_i = 0.631 + 335 \times 0.0014 = 1.100 \text{ kgt/cm}^2$

$$S = \frac{1.26}{1 + 1.72} \times 670 \times \log \frac{1.100 + 0.313}{1.100} = 34cm$$

1.4 Estimated Consolidation Settlement

It is estimated that consolidation settlement will be 35 to 50cm.

2. ESTIMATE OF CONSOLIDATION SETTLEMENT AT KM. 1321 + 500

2.1 Backcalculation of Coefficient of Volume Compressibility

$$mv = 100/720 \times 0.539 = 0.258$$

2.2 Estimate of Consolidation Settlement Based on Backcalculated Coefficient of Volume Compressibility

AC Pavement
 =

$$0.233 \text{ tf/m}^2$$

 Bituminous Treated Base
 =
 0.210 tf/m^2

 Base Course
 =
 0.450 tf/m^2

 Subbase
 =
 0.540 tf/m^2

 Common Material
 0.24×1.8
 =
 0.432 tf/m^2

 Traffic load
 =
 1.000 tf/m^2

 Total
 2.865 tf/m^2

 =
 0.287 kgt/cm^2

$$S = 0.258 \times 620 \times 0.287 = 46cm$$

2.3 Estimate of Consolidation Settlement Based on Soil Characteristics

$$C_c = 3.77$$

 $e = 7.24$
 $P_i = 0.539 + 310 \times 0.0014 = 0.973$
 $P_i = 0.287$

$$S = \frac{3.77}{1 + 7.24} \times 620 \times \log \frac{0.973 + 0.287}{0.973} = 32cm$$

2.4 Estimated Consolidation Settlement

It is estimated that consolidation settlement will be 30 to 45cm.

APPENDICES FOR CHAPTER 10

APPENDIX 10.1

BRIDGE SITE GEOTECHNICAL AND SOILS INVESTIGATION

Geotechnical and soils investigation was undertaken at nine bridge sites (see Figure 10.1-1) as follows:

No. of Bore Holes	Total Drilling Length (m)		
4	91.0		
9	287.0		
13	378.0		
	9		

Standard penetration tests (SPT) were undertaken at 1 meter interval and soil samples were collected at 2 meters interval. Following laboratory tests were undertaken:

- Soil classification
- Natural moisture content
- Sieve analysis
- Specific gravity
- Liquid and plastic limits

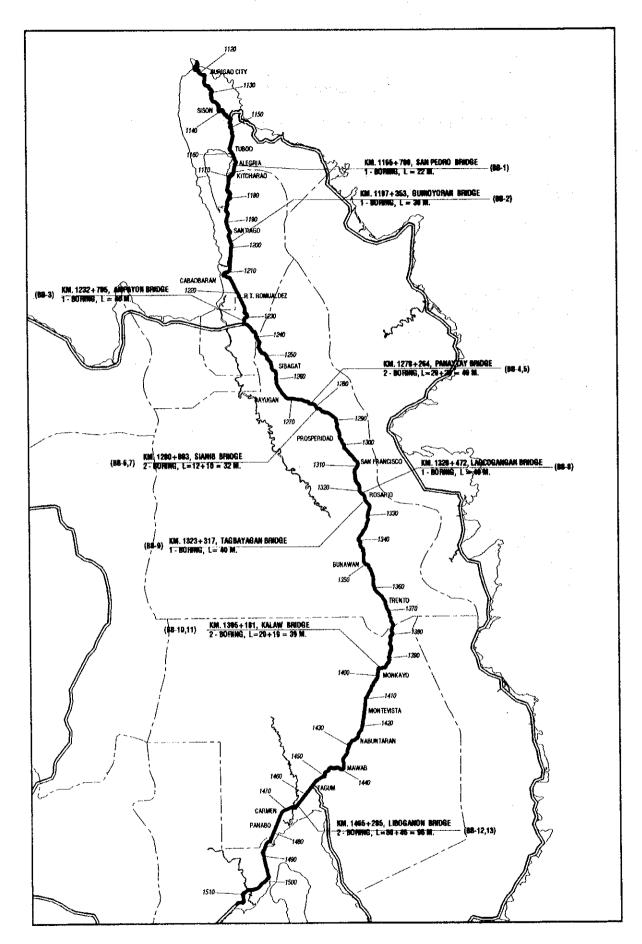


FIGURE 10.1 - 1 GEOTECHNICAL SURVEY LOCATION FOR BRIDGES

APPENDIX 10.2 DESIGN PRECEDENTS

This section summarizes the bridge rehabilitation design in the completed or on-going projects for rehabilitation of Luzon, Samar and Leyte sections of the Pan-Philippine Highway.

Major rehabilitation/improvement works designed in those projects are as follows:

A. Total Reconstruction

B. Partial Reconstruction

- Reconstruction of entire slab of selected or all span(s)
- Reconstruction of all girders of selected or all span(s)
- Reconstruction of substructure

Example: Construction of new abutment and pier of portal type in which columns and piles are located outside the superstructure abutting on the existing abutment/pier (Talolong Bridge in Calamba-Calauag Section).

C. Widening

Widening of carriageway/sidewalk

Example: Widening substructure by adding a column and extending footing, and widening superstructure by adding two girders (Overhead Bridge in Calamba-Calauag Section).

D. Extension

Construction of additional span(s)

E. Major Repair

- Reconstruction of railing
- Partial reconstruction of slab
- Reconstruction of a part of concrete girders
- · Reinforcement of concrete beam

Example: Provision of lateral tie for precast channel beams with steel bar (Anyatam I Bridge in Aritao-Sta. Rita Section).

Repair of shoe

Example: Inserting as many wedge lead sheets (200x200x2mm) as possible between girder and bridge seat, and filling the space with epoxy resin (Darapidap Bridge in Allacapan-Aritao Section).

Example: Attaching steel brace to the pier and placing H-steel thereon to provide additional support of beams (Biga Bridge in Calamba-Calauag Section).

Reinforcement of pier/abutment

Example: Coating pier column with reinforced concrete collar (Iguig II Bridge in Allacapan-Aritao Section).

- Reinforcement of foundation
 Example: Construction of additional piles and widening of footing (Baculud Bridge in Allacapan-Aritao Section).
- Installation of drainage pipe
- Raising superstructure

Example: Jacking up superstructure by about 50cm and capping substructure to increase freeboard (Puncan II Bridge in Aritao-Sta. Rita Section).

F. Minor Repair

- Repair of slab
- Repair of concrete girder
- Repair of steel beam
- Repainting of steel girder/member
- Repair of substructure
- Provision/reconstruction of slab overlay

G. Protection from Scour

- Provision/reconstruction of abutment slope protection
- Provision/reconstruction of pier foundation protection
- Provision/reconstruction of river bank protection

H. Approach Road Protection

- Provision/reconstruction of approach road embankment slope protection
- Provision of approach slab

I. River Control

- Provision of spurdike
- Provision of consolidation

Example: Construction of consolidation made of stone masonry and gabion at downstream of the bridge to prevent scour (Darapidap Bridge in Allacapan-Aritao Section).

J. Aseismatic Protection

- Widening of bridge seat
- Provision of mechanical connection device

Example: Connection of adjacent girders and girder with abutment parapet with steel tie rod to prevent superstructure from falling (Cawayan Bridge in Calauag-Matnog Section).

Table 10.2-1 shows the number of bridges for which rehabilitation/improvement works were designed in the completed or on-going Pan-Philippine Highway rehabilitation projects.

TABLE 10.2-1 NUMBER OF BRIDGES FOR REHABILITATION DESIGN BY TYPE OF WORK

Section			Allaca _l -Ar	oan itao	Aritao -Sta.	Rita	Calam -Cala		Calau -Mai	ag Inog	Allen -Calb	ayog	Calbayog -Tacloban	Total
Project	1)		P1	P5	P2	P5	Р3	P5	P4	P5	P4	P5	P5	
Numbei	r of Bridges		3) 11	4	18	1	16	6	12	10	4	2	1	85
	Total Reconstructi	on	4	4	1		1	6	6	3	1	2	1	29
2)	Partial	Slab	5	-	7	1	4	-	1	6		-	-	24
Туре	Reconstruction	Girder	5	-	1	-	1	-	-		-	-	-	7
		Substructure	-	•	-	1	1	-	-	-	-	-	-	2
of	Widening			-	-	-	1	-		-	-	-	-	1
	Extension		3	-	1	-	-	-	-	•	-	-	-	4
Work	Major Repair		3	-	12	1	6	-	4	6	3	-	-	35
	Minor Repair		-	-	4	-	7	-	6	-	3	-	-	20
	Protection from So	cour	3	-	4	-	4	-	4	7	3	-	-	25
	Approach Road P	rotection		٠	-	-	4	-	2	-	1 -	-		6
	River Control		3	-	-	-	-	•	1	-		-	-	4
	Aseismatic Protec	tion	<u> </u>		1	-	3	-	1	-	-	-		5

Note. 1) P1 = Philippine-Japan Highway Loan Project, Section A

P2 = Philippine-Japan Highway Loan Project, Section B

P3 = Philippine-Japan Highway Loan Project, Section C

P4 = Disaster Prevention and Rehabilitation Project (Philippine-Japan Friendship Highway and Naguilian Road)

P5 = Rehabilitation and Maintenance of Bridges along Arterial Roads Project

- 2) Bridges including more than two types of work are repeatedly counted under each type
- 3) Two bridges (Naguilian Bridge and San Pablo Bridge) designed in the Project P1 were shifted to the Project P5 for their implementation.

APPENDICES FOR CHAPTER 11

APPENDIX 11.1

CRITERIA TO DETERMINE HIGH OR LOW POTENTIAL OF SLOPES

Potential slopes were divided into two; slopes with high disaster potential and slopes with low disaster potential, according to the following criteria which were established based on the findings in the previous studies such as Feasibility Study of the Philippine Road Disaster Prevention Project (JICA assisted), the Joint Research Project on the Road Slope Protection Works in the Philippines (DPWH and Ministry of Construction, Japan), etc.:

1) Cut Slope Failures

Factors closely related to cut slope failure are as follows:

i) slope height: 30 meters or more

ii) slope gradient: 60° or more

- iii) configuration: rectilineal longitudinal shape and overhanging crosssectional shape
- iv) geological composition: sand, sandy soil or weathered sand stone
- v) groundwater: abundant

Slopes which meet three or more of the above five factors are judged to be slopes with high disaster potential. Others fall in slopes with low disaster potential.

2) Embankment Slope Failures

Slopes meeting four or more of the following six factors are evaluated to have high disaster potential. Others are evaluated as slopes with low disaster potential.

- i) slope having a height of more than 7 meters or facing curved portion of river where river flow hits the slope
- ii) fill material: sand or sandy soil
- iii) no vegetation cover
- iv) surface water concentration
- v) slope with deformation
- vi) embankment crossing valley

3) Debris Flows

Slopes meeting three or more of the following five factors are evaluated as slopes with high potential, and others as slopes with low potential.

- i) slope gradient: 15° or more
- ii) abundant stones accumulated on riverbed
- iii) presence of marks of hillside failure

- iv) stream with a basin of more than 5 ha. in area
- v) vegetation covering less than 50% of a total area of slope

Falls

Slopes meeting three or more of the following five factors are evaluated as slopes with high disaster potential, others as slopes with low potential.

- i) slope height: 20 meters or more
 ii) many cracks
 iii) no vegetation cover
 iv) surface water concentration

- v) unstable or unsupported rocks/cobbles/boulders

5) Landslides

No slope with potential of landslide is found along the Study Road.

APPENDIX 11.2

TOPOGRAPHIC SURVEY AND GEO-TECHNICAL SURVEY UNDERTAKEN FOR SLOPES

TOPOGRAPHIC SURVEY

Topographic survey was undertaken at four slope sites as follows:

Type of Slope Failure	Location	Surveyed Length (Along Centerline)
Embankment Slope Failure	Km 1115+800	270m
Cut Slope Failure	Km 1116+200	240m
Landslide	Km 1247+500	440m
Landslide	Km 1249+750	240m
Total		1,190m

Topographic map was prepared for each slope site at a scale of 1 to 500.

SLOPE SITE GEOTECHNICAL AND SOILS INVESTIGATION

Eight slopes were selected for investigation and borings were undertaken as follows (see Figure 11.2-1):

Type of Failure	No. of Bore Holes	Total Drilling Length (m)		
Embankment Slope Failure	5	82.0		
Cut Slope Failure	1	20.0		
Landslide	5	100.7		
Total	11	202.7		

Standard penetration tests (SPT) were undertaken at 1 meter interval and soil samples were collected at 2 meters interval. For rock layers, core boring was undertaken.

FIGURE 11.2 - 1 GEOTECHNICAL SURVEY LOCATION FOR SLOPES

Following laboratory tests were undertaken:

- Soil classification
- Natural moisture content
- Sieve analysis
- Speciffic gravity
- Liquid and plastic limits

APPENDIX 11.3

DESIGN PRECEDENTS OF SLOPE PROTECTION WORKS

The road rehabilitation projects have been/are being implemented for the Luzon, Samar and Leyte sections of the Pan-Philippine Highway. Disaster prevention works were included in their scope of work. Table 11.3-1 shows the slope protection works by type of disaster which were designed in those completed or on-going rehabilitation projects.

TABLE 11.3-1 DESIGN PRECEDENTS OF SLOPE PROTECTION WORKS
IN OTHER SECTIONS OF THE PAN-PHILIPPINE HIGHWAY

Protection Wor	Type of Disaster	Cut Slope Failures	Embankment Stope Failure	Debris Flows	Falls	Remarks
	Gravity Type Stone Masonry Wall Supported Type Stone Masonry Wall	0	0			H = 1~5m H = 1~5m (Cut Slope), 1~7m (Embankment Slope)
Retaining Walls	Gravity Type Concrete Wall Supported Type Concrete Wall	0	0			H = 1~5m
	Cantilever Type Concrete Wall	0	0	į		H = 3~5m
	Gabion Wall	0	0			H = 2∼3m, Mat Gabion
	Seeding Wattling	0 0	0			
Protection Works	Grouted Riprap Concrete Spraying	0	0			t = 0.3m or more t = 0.1m, 0.15m
	Concrete Crib	0	0			Stone pitching, Concrete Lining, Sodding
	Cylinder Gabion Pitching	-			0	dia. = 0.5m
Catch Works	Stone Masonry Catch Wall Concrete Catch Wall Wire Net				0	
Foot Protection	Rock Fence Gabion Foot Protection		0		0	Mat Gabion
Loof Linfection		├		0		
Sabo Dams	Gabion Sabo Dam Stone Masonry Sabo Dam			0		Mat Gabion