B-3 Geochemical Analyses of the Orange Area

B-3 Geochemical Analyses of the Orange Area (1)

T-R203	Edd.	7) [750	293	214	302	3479	1109	354	295	508	343	226	384	153	173	09	217	453	1000	361	1019	484	1907	511	966	1930	29949	26599	426	367	149	314	335	182	148	446	179	595	451	324	261	444	82	428
9 i	, 4	7.01	2.33	9	2.49	5.56	8.61	1.44	4.65	3.40	0.83	5.91	1.73	3.47	1.93	2.62	69.	3.05	5.32	80.	3.00	2.00	2.35	2.62	0.80	1.83	6.36	6.27	1.19	4.11	4.56	4.14	2.57	1.09	0.75	3.72	4.05	4.32	583	4.02	4.18	3.17	2.06	5.52	2.94
ď																																													
Sr	Ed S	1 5	062	382	220	260	1130	0036	969	287	246	202	174	428	200	386	79	313	2560	4440	462	3900	5902	1817	4960 K	5350 K	1639	5574	8702	5790	4922	486	183	26	38	418	3412 K	3360	3942 K	5330	7004	1157 K	6304	458	4126
ž	200	200	101	750	6.4	1450	28800	7530	1460	1450	393	2270	413	1450	424	127	633	1150	2270	1050	4340	1450	409	246	276	312	2420	10231	1035	7819	7958	933	926	297	210	1430	7445	7830	8538	7270	7967	4150	1393	1260	938
77	pbdd oc	8	7 69	368	સ	43	42	6	252	116	37	63	ጀ	127	EE	8	102	243	857	18	80	114	- 29	27	40	158	747	~	17	3	5	292	41	44	51	419	3	က	33	က	က	89	17	1110	38
Ta	٦,	٦,		2 ~	L			١.,		l	l	l	l					Ι.	1	1	l				i	Ι.	Į,						- 1					Į	1	l	ļ				ļ
qN	EGA.	7 6	85	33	31 K	57 K	848	131	235	88	27 K	51 K	27 <	47 K	411	498	% %	8	1030	22	107 <	1930	22 K	098	2 K	5	21	148	15	5 K	30 K	342	42 k	28 28	25 K	599	4 V	92 K	164 K	18 K	4 X	28	533	328	787
T.	E C	216	24	14	16	20	73	*-1	80	4	50	53	- 58	17	1.1	16	တ	22	16	3	07	41		23	15	53	80	64	270	7	16	7	24	24	13	21	10	က	13	9	10	9	10	2	<u></u>
0	E.	†	1 · u.	-	2	9	15	-	22	1	3	က	23	2	13	81	-	-	110	_ص		268	-	7	3.	1.1	6	8	10	1	3	13	က	ß	3	8	2	_	2		_		4	21	∞
Y	E AC	200	407	92	15	15	49	83	22	45	44	1.7	14	34	Þ	တ	Ö	82	32	65	14	68	16 K	36	80	23	2	25	74	/ /	=	80	85	32	10	6	9	9	80	12	14 ×	16 K	8	10	-
Sc	200	0 0	r c.	8.5	11.5	15.5	2.6	0.5	8.6	42.0	6.2	25.1	9.4	12.7	0.5	3.6	10.0	13.3	2.5	0.5	4.7	1.6	7.1	10.6	4.3	7.2	4.8	0.5	0.5	2.8	6.3	11.4	10.2	6.8	6.4	4.8	5.2	6.2	6.5	4.0	7.1	3.5	1.2	1.2	9.8
3 ;																																													
e.		_1_					1	ł			_				v		lv'	!					1 3	i i	v i		I 🗤 ا	1		٠. I	l 🗤 l	!	į	- 1	١٠١	- 1	1	!	١	ι	l		l i	1	J
139		2 0	24	2.1	1.2	1.2	4.4	3.8	1.5	1.4	2.1	0.8	8.0	1.5	0.7	0.9	0.5	F.3	1.7	2.8	1.2	4.0	1.5	1.8	9.0	2.2	1.1	3.2	4.6	1.2		0.5	1.3	9.1	9.0	0.7	0.1	0.6	1.0	1.1	1.0	1.1	6.0	0.7	0
쿒	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 9	1:7	1.2	1.0	10.3	10.7	2.1	1.9	1.8	1.6	1.5	3.3	0.9	1.4	0.9	1.9	2.9	7.3	2.1	7.7	4.3	6.1	2.1	7.3	3.0	31.4	35.5	2.0	2.0	6.0	1.7	9.1	8.	<u>-</u>	1.5	0.9	1.5	2.3	2.1	2.1	2.0	6.0	5.0
馬																																													
Nd F	200	32	3 8	44	22	39	308	143	46	33	88	48	22	\$	16	21	8	31	19	116	45	133	82	173	62	168	178	2164	5039	92	37	20	9	#	19	13	ဇ္ဌ	14	20	52	46	33	53	13	92
ප දි	25	3 2	340	34	81	127	1605	426	150	107	194	142	88	152	55	63	18	78	180	418	151	421	178	693	195	2999	760	1962	9232	169	141	8	112	6	- 19	4	176	73	216	187	121	06	166	30	152
3	42	2 4	156	28	45	25	825	215	29	7]	100	68	33	99	41	88	12	99 98	81	202	72	181	87	637	138	200	999	긔	4	88	97	32	2	8	23	49	108	47	201	100	71	99	113	12	105
Rock	3 5	1 5	Nen Nen	rg.	Ngn	Ngn	Mcd	Mcd	Ngn	ξ.	Eg	Nen	Ng.	Ngn	Mfn	T.	Agn	Ngn	Mcs	HCS	Ngn	Mcs	Mcb1	₩S⊓	Mcb1	Se Se	Jcb1	┈╅		Mcbi	McD1	NSI.	LIS.	<u>[</u> 2	Eg Eg	Ngn Ngn	Acb1	Sch1	Mcbi	Mcb1	Ysu	Kdd	Mcbl	Mfn	Mcb1
Rock Name		75-540	Dtz-Fd	Qtz-Fd				, Hol?	Qtz-Fd	Qtz-Fd	Qtz-Fd	Qtz-Fd	Qtz-Fd		٠.	-albitite?	Qt2-Fd	Qtz-Fd	HPJ (Qtz-Fd	bl-Agt		fenitised				, Ank		Ank	te, Ank		Utz-ra	Otz-Fd	Uta-rd		, Ank		, Ank	Beforsite 1	Syenite		ď.	porphyritic	Beforsite :
Samp le		┿	-+	200		B 200 6		Н	\vdash	-1	\dashv	-+	\rightarrow					_	-	-					-+	+	-+	∤		-			+	-	310	{			-	410				500 Sy	-
No.	-	, 6	-	-	8 Y	6 B		-	9	10	\neg		-+	-1	┪	16 B		18	Н	20 B			-1	24 B		-1					-	32 B	-+			ان	ပ			40 C	41 ; C	-	43 C	<u>4</u>	45 6

B-3 Geochemical Analyses of the Orange Area (2)

			10.0	-		73		::	Ł		•	^	-	-			7.7		L		Fe	F-R203
ō.	dines in	LOCK NAME	g e	3 5			 8 6	3 E	add.	nedd.	a and	ad Edd	add.		add add	ı mdd	Edd	EG.	ed d	add	><	pbd
48	C 510	D Beforsite, Phi	#cb1	19			2.5	0.5						_	- 1	- 1	¥	- 1		- 1	2.82	120
	215	+-	Ncb1	103	133		10.2	2.6					10 (1	- 1		113		l	ſ	6.33	385
8	C 520	_	¥cb1	38	L		4.4	1:1						: 1			Υ.		L	- 1	2.29	137
1	C 525	S Reforsite	 	12760	11100		164.4	65.6							•	- 1		- 1		!	0.47	32716
2	C 600	-,	+	153	276		21.6	5.2									φ		L	- 1	- 88.	139
3 2	C 605	Ş	McS	115	25.		17.2	4.4	l								65			- 1	2	295
£ 6	0.65	Sovite, Hb -Agt	Acs	130	┞		22.0	5.8	t .		1					! 1				- 1	0.45	<u>8</u>
3 6		Sovite Hh -Art	Nes	187	Ł		28.0	7.3					ı				3	. 1			.53	926
3 7		Sovite Hhi-Apt	NCS.	174	322		20.4	6.5			5.0			ŀ		1 :	9				1.24	796
15	~₹	Gne ise	Ę	27	 		4.5	1.0							1 1	1	_	1		- 1	0.40	158
3 4	ŧ	Gnoise,	£	36	87		2 6	1.0			ŧ					!	2				0.43	233
3 2		Project,	, L	36	5		5.7	0.7	ı					1 1			æ		1		1.65	162
g G	+	Refors	Hcb1	111	506		14.5	4.6						1	- 1			- 1	L	- 1	4.68	220
œ.	-+-	-	Mcb1	346	382		18.1	3.6							- 1	!	v	- 1	1	vΙ	4.05	1102
8	-	Gneiss Dt.	ZZ.	65	35		10.1	1.3	•							3	ć:	í		- 1	2.13	282
3 2	C3325		Kcbi	111	383		19.7	5.0					1 1		1		Ö	- 1	1	v. t	4.33	225
2	240	O Svenite, porphyritic, banded	Æ	82	00		4.3	0.9						I	1	- 1	73	- 1	_	- 1	7.03	[]
3 22	2	Reforsite, Hal-Phi	¥cb!	415	-		18.0	3.8							. 1	٠.١	¥	- 1		., 1	4.25	1313
3 2	2415	Reforeite	NCD!	185	452		38.2	9.7	J							- 1	¥	- 1		· · · · · · · · · · · ·	2.83	1196
<u> </u>		Reforeste	id S	46			4.7	1.2	•		•						×		1		3.24	205
3 8	+	-∔-	1	244	436		9.9	3.8	١.		•						Υ.				3.00	1022
3 2	-+-	+-	, QCP	25	1,		7.2	1.8	1					1			1			~ I	0.48	369
5 2	+-		Ę.	2	165		14.0	4.8						l	ł					- 1	2.69	425
3 8	+		¥ch!	2512			11.0	18.8	ŧ		1		1	l							5.01	6766
32			K CD1	161	6		16.9	3.5					ı ı	ı		3	¥				2.68	940
2 5	C35.57		H Cbi	595	618		25.4	4.6			1 1		i				×	- 1		ויי	3.24	1801
: 2	C2520	-	Jeb!	131	 _		18.7	4.5	1		, ,		1		١ ٢	1	¥	- 1		v 1	2.75	99
: 2	2.53	+-	iqo.	902	763		46.5	9.1						li		1 × 1	~	ı		ŧ	2.16	2303
2 2	·+-	+-	HCD!	211	Ļ.		6.01	2.0						. 1			-		i	ı,	3.57	721
15	+-	+	H cbi	4328	5716		164.2	28.3	1 1								Y			- 1	7.62	14155
18	-	+	HSII	111	175		11.7	2.4	. 1		\		- 1	ŧ	- 1	- 1	8	- 1	_	- 1	7.04	400
77	Ca 700	1	Msu	75	_		8.8	2.3					- 1	- 1		- 1		- 1		- 1	8	21.5
78	١÷		Hcs	201	0		16.8	8.4	- 1		- 1		- 1	- 1	- 1	٠ı	7	- 1			2.0	1000
79	-	Sovite,	HCS	193	<u>.</u>		25.7	00	- 1		4.0		- 1	- 1	. !	٠ls	7	- 1	ᆛ	- ! >	27.1	000
8	├	E	Ep.	240			13.0	2.8	- 1	- - - -	10		- 1	- 1	- 1			- 1		<i>7</i>	2 6	34
≅	Cb315	<u> </u>	ED!	126	l		72.7	2.5	- 1	5:1	7.7		- 1			- 1		- 1			7 2	72.4
8	!-	1	ЖcЫ	114	с С		14.4	3.5	- 1	× 6.0	1.1		- 1	- 1	- 1	- 1	~	- 1	Ц,	- 1	5	4 (4
122		+-	Mf.	108	2		24.2	6.5		1.7	0.2		- 1		- 1		4	- 1	_	- 1	3.51	700
2		+	Mcb1	459	548		15.5	3.6	- 1	1.2	- 1		- 1	- 1	- 1	t	Y	- 4		- 1	20.0	1333
83		+-	₩cb1	-93	96		8.7	1.8	. 1	2. 2.	-		- 1	- 1	- 1	- 3.		- 4		- 1	3.11	3
98		+	Mcb1	18	20		3.6	0.8	- 1	20	0:1		- 1	- 1	- 1	v Is	2 5	- 1	_	ŀ	10.	2070
83	Cb420	-	Mcbi	1276	1472		88	13.4	- 1		2.0		- 1	- 1	- 1	sz Is		- 1	4	- 1	0 0	7180
88	CM25	+	Mcb1	22	43		ro C		- 1	0 8			- 1	- 1	•	vz I	2	ι	-4:	- 4	60.0	066
88		+	Hcb1	89	101	67	10.3	2.0	- 1	0.6 K	0		∞ !	3		- 15				• • •	Q. 0	325
8		┿	Mcb1	95	124		8.0	1.8	8.0	0.5 K	0.1			ŀ		χ.	χ.	3 1001	0 2010	۲. دور	3.10	7/0

B-3 Geochemical Analyses of the Orange Area (3)

T-R203	ildd S	714	250	6101	997	151	6145	224	352	332	629	894	437	1138	278	38	773	621	772	301	533	485	597	138	బ్ల	83	475	208 708	200	3591	116	83	510	21657	33	28	611	162	88	148	8934	292	3420	371	834	1337
Fe	,	2, 7	5.43	4.35	3. 3.	0.50	2.19	4.07	4.03	9.64	5.38	5.64	4.82	6.69	4.37	4.79	4.75	3,33	3.63	2.96	3.33	3.33	8 8	2.73	4.33	3.49	4.92	2.00	1.75	3.77	0.61	1.42	6.71	6.85	2.82	5.74	3.13	2.87	2.79	2.90	5.84	2.49	4.63	2.71	3.24	4 30
۵,	E C	4800	10/1	201	8	1067	209	1404	11372	100	100	200	955	8	4840	8	7201	10445	12911	3100	100	8	190	548	001	4025	11659	28	435	5370	221	929	100	222	121	100	201	100	213	104	190	207	100	100	100	142
S.	E 6	5002	022)	2.08U X	4790 X	6542	7222	4160	1929	4462 K	4558 K	820 X	6798	3092 ×	2038	1409 K	5932	280	6762	7312	6150 K	5484 ×	5054 K	6678	5358 ×	208	6264	1297	168	13300	87	123	3302 ×	2010	4690	4810 X	3530	5970 x	3830	4610	2696 K	4790	5758 K	4810 K	5388 K	7050
Æ:		0000	4314	907	6861	183	1399	2477	2332	10921	8678	7804	8437	9690	6954	6432	8117	5482	6844	6238	6122	6143	6620	6405	77.06	8968	9151	1063	571	2880	317	783	10501	6260	6210	13799	5930	6245	5200	4970	6607	4990	7734	2300	6994	8300
Zr		5	2	4	က	3	102	608	145	3	က	3	က	3	<u>_</u>	3	.3	3	3	3	3	3	3	3	11	3	6	22	41	113	63	93	ဗ	3	6	4	3	3	ເລ	3	က	3	m	3	က	18
Ta	E.	7	7	7	7 7	2	3	2	31	2	2 K	2 K	2 2	ဗ	18	2 2	2 2	8 K	15 K	2 K	. 2 K	2.k	2 K	2 K	2	× 2	× ∾	34	2	4	2	3	2	15	2	7	_د ې	2 ×	2	2 K	2	7 2	2	2	2	6
Nb	E 3	2	× 101	1905 K	365 ×	77	523	38 <	989	> 0.2	8 K	17 K	37 ×	6	733	118 K	85 K	978	888	179 X	1414 K	771 K	737 K	21 K	497 K	17 K	8	1243	24 ×	288	23.×	127	1249 ×	416	9 9	2935 ×	88	1280 K	.391 K	35 ×	939 K	508 ×	491 ×	430 K	1710 K	1100
	E .	3	77	. 61	9	1	33	4	22	52	19	27	15	30	5	10	12	4	52	=	11	6	17	3	9	17	24	43	14	39	15	8	12	930	~	15	17	1	4	1	228	2	73	9	6	-
<u>۔</u> ت	E.	+	4	13	_	Υ C	7	11	78	က	_	5	2	3	32	2	5	ις	6	-	5	2	4	1	3	2	2	69	ဗ	20	2	2	8	92		15	<u>~</u>	-1	2.	×. 2	11	7	4	3	17	1
×	-1	-	2	81	8	2	56	y 9	28	15	&) X	12.	13	11	10	14	01	92	27	∞ ×	6	8	14	2 K	9	10	1.2	12	16	105	9	7	11	99	မ	15	10	y. Q	11	2	55	8	07	6	16	4
Sc	E .	 	4.0	0.9	4.2	0.5	7.3	0.5	1.3	3.9	5.9	5.2	7.2	4.7	7.4	4.5	5.9	8.5	5.6	5.6	8	4.5	7.5	4.8	4.9	5.2	6.3	0.5	9.7	19.61	3.6	1.9	7.1	5.4	5.3	5.2	9	4.7	0.9	5.5	6.1	8.4	5.0	,1	5.7	0
13	+	<u></u>	3	0.1	0.1	Y	0.5	0.1 K	0.3	0.2	0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	2.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	× 	0.2	1.1	0.1	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	1.0	0.2	c
Q.	and a	x	× 0.8	1.0 ×	0.7 X	0.3 K	1.4	0.6 K	2.2	1.5	0.7 X	0.8 X	0.9 K	0.8 K	0.7 K	1.0 X	0.7 X	1.3	8	9.0 X	0.8 X	0.7 ×	2 0 -	0.4	0.6 K	0.8 K	0.7 K	 V	1.5	11.0	0.7 K	0.7 K	1.3	3.0	0.7 ×	7 0 Y	0.7 <	0.5 K	0.8 A	0.7 k	1.6	0.7 ×	0.7 ×	0.8 K	1.3	
_ 	E.	0.0	e .0	8.	0.8	0.7	2.8	8.0	1.2	1.4	1.6	1.2	1.5	1.0	1.0	2.0	1.5	2.3	9.	0.1	0.9	0.8	1.0	0.5	9.0	0.8	1.0	1.0	1.2	8.7	0.7	0.5	1.2	15.3	0.4	0.9	1.7	0.5	9.0	9.0	7.0	6.0	3.6	0:1	E	-
EI	E.	9.	5.5	7.8	2.4	1.1	13.5	1.5	3.6	2.0		3.7	2.7	4.0	5.0	4.5	3.4	6.4	2	2.3	2.1	2.0	3.5	1.5	1.5	1.3	2.2	1.6	9.0	14.5	0.5	6.0	2.1	0.60	0.9	2.3	2.3	1:1		0.9	30.3	1.5	11.2	1.6	3.0	2
易	EG.	- 1			- 1				ı	ı	ţ					ŀ	ı	ı			1	i	ì			ŧ			:		ļ		Į i	-	il	1 1		ł		4.3	65.0	6.9	66.5	9.7	15.1	0
Nd																																														
- 1	- 1	- 1	- 1	- 1			-		1			1		£ I		ı	ξ.	ŧ		Į.	1	ı				l	ı	ı		ı								ı	ł	1 -	1			1	162	1
		8	-4		90	ļ	1911	99	۱	↓_	25	L .		1-4	<u> </u>	├	┞-	122	 	├	150	ļ	١	ļ	ļ.,	ļ.,	ļ	ļ	ļ	<u> </u>	L.,	-	L	H	31	Ŀ	<u> </u>	_	ļ	39	╄	╁	╀	╀	╀	╁.
Rock	ag O	0	<u>20</u>	Mcbl	Mcb1	Mcb1	Mcb1	Mcb1	Msn	ES	icbi	Mcb1	Ncb1	Ncb1	Mcb1	Mfn	Mcb1	Ncb1	Sco.	HCb1	Mcb1	Mcb1	Mcb1	Mcb1	Msu	Mcb1	Hcb1	Hcb1	Ng)	Hcd Hcd	Ngn	NS:	上		Hcb1	Hcb1	Acb1	HCD!	Acb1	Mcb1	-	-	Mcb!	*cb1	Acb1	1707
									.fenitised						Ţ															Phl-Agt-Hbl																
Rock Name		Ph1-Agt				Ank		Ank	迃	1			Ank		Hbl-Agt-Ph			Ap .	I I		Aet-Ph				Agt-phl		Ank		Fd			bitite											Ank		Ank	
-	- 1	ا۔	Beforsite	Beforsite	8eforsi te	Beforsite, A	Seforsite	1 -	Syenite, Agt	iss. Otz-Fd.	نوا		Ι.		Beforsite,	te	Reforsite	١.	Ι.	_	1,	1	Befors te	Beforsite	Svenite, Agt		Beforsite, A	Beforsite	Gneiss, Qtz-Fd	rsite ve	Gneiss, Otz-Fd	Syenite - albitite	Beforsite	Beforsite	Beforsite	Beforsite	Beforsite	Beforsite	Beforsite	Beforsite	Beforsi te	Beforsite	Ι.		Ι,	. П
le					-	·	 	+	╄-	-	+-	+-	•	-	 -	+-	٠	1	-	+	+	+-	+)	+-	-		+	 				+		+	-	Η.	+	+	+	+	-				4
				3 Cb525	4 CP600	5 Cb605	6 Cb610	+	+	+-	+-	+-	Τ.		4 Cc405	5 Cc410	+-	+-	+-	+	+-	1 Cc510	2 Cc515	3 Cc520	4 Cc525	5 Cc600	6 00605	7 Cc610	8 0 100	9 0 200	1-	_	-	3 0 310	4 D 400	5 D 405	6 D 410	╁┈	1	+		9	9 =	+	9 00	+
Š.		9	ŏ	8	8	35	96	97	38	8	8		105	8	104	105	108	107				E	Ë		11,6			Ξ	Ë	119		121	-22	123	124	121	128	127	128	129	8	3 2	133	3 5	3 8	

B-3 Geochemical Analyses of the Orange Area (4)

No. Sample Roc	Rock Name	Sock Sock	3 5	1	S PA	3 5	T E	ę.	.3 [S 25	>- 5	 	11 11	8 g	E .	ZZ	E S	rs a	P F	Fe T-I	T-R203
136 0 605 Reforsite. Ank		ich.	122	29	. I	Т.	4-	_		4.3		7	19	2129	12	-		Τ×	-1-		468
D 610 Beforsite		Mcb1	82	ì	[_	ļ	Ŀ	0.1	5.2	ı.c	=	-	9	2 ×	3	ļ_	+~	ļ		369
138 D 615 Beforsite, Ank		Mcb1	92	i	l	<u> </u>	L.	_	< 0.1	4.8	ω	-	2	2. 7.	2 2	 	<u> </u>	_Y_	}	.	292
-		Mcb1	1.1	l i	L	Ш	_		0.2	4.4	8	1	3	32 k	2 K			×			327
140 D 700 Beforsite		Mcb1	23	il	IJ	L	Ш		< 0.1	6.2	9	I ¥	1	82 <	2 k	Ш		Y	Н		241
141 D 705 Beforsite, Ank		Mcb1	178			Ш	_		0.1	4.3	9	2	6	371. K	2 ×	_		×	-	-	614
Sovite,		Mcs	104		1				0.4	0.8	40	-	1	38 K	2	_		\vdash	-4		455
0 720		Mcs	133		1				0.5	1.0	41	42	10	522 K	2	_			_		574
0 800 Gneiss,	fenitised	Ngn	36	ΙI	1 1		Ш	Ш	0.4	15.8	20	19	22	265	Ą	 		Н	┞┤	1	157
Da220 Syenite	ite	HSu.	54		1			_	0.1	2.3	1	11	7	200	ĸ				_	-	219
146 Da300 Gneiss, Qtz-Fd,	femitised	Ygn	156						0.	0.5	- 83	31	12	982	56	_				1	053
Da305		Mfn	169					_	0.2	8.7	28	6	33	539	13	-	<u>.</u>				678
148 Da310 Syenite, bre.		NSu	223	- 1	ı				0.3	5.6	22	23	76	1440	11						282
Da320		Mcb1	217				_4	Ц	0.2	4.3	43	6	2	252	6	4		-1			202
Da400		Mc51	678	_ I					0.3	4.4	20	2	101	31 K	7 ×	-		-+		1	339
Da 405		Mcb1	196		1				0.1	4.8	æ	~>	13	192 ×	х 7			쒸			8
Da410		₹ Ç	33		- 1	_	-:-			2.4		8	9	1190	2 2	_		t			195
08415		Mcb1	62			_	_	_	0.	4.9		8	٠-	2736 ×	× ~			~			27
DR420		Mcb1	110						0.1	3.4	=	2	15	510 K	2 ×		-4		_		522
155 Da425 Beforsite		Mcb1	53						0.1	5.4	တ	9	4	1558 K	2 K			×			185
-		Mcb1	49					Ш	0.1	3.0	6	2	9	1960	3				_		248
Da 505		McDi	78	li					0.1	6.7	7	9	8	2589 k	2 2		_	×.			33
Da510 Beforsite		Hcb1	22]	_	_]	0.7	4.6		2	9	202 k	х 2			\dashv			282
Da515		Kcbi	123	- 1	- 1		_	[6.3	6	က	2	383 ×	х 73			~			3
Da520 Beforsite	- Andrews	ICD	8	- 1	- 1	_				4.3		2	∞	8	7	4	-		_1		88
Da525		3	135	-	ı		_	_		4.6	و	_	2	<u>8</u>	×	_	-4	×	4		8
Da600		10. 10.	238	- 1	- 1	_	_	_	0.1	ص د د	200		32	X 02	× ,	4	-	-+	_		9
Da610		CD!	5	. 1	- 1	_L	4		3	20 0	- ·	.2	× ,	× ,	× ,	_	-4	-	Ц.		2
parou beforeste		JCDI.	<u>s</u>		-1		┙		- ; - ; - ;	5	×	-	3 0	× :	7	_	4	-4:	4		
Da 705		HCD]	29	ŀ			_	_	0.1	4 6	3		80	(26 K	× .	-	4	×-	_		823
Da710 Beforsite		ICD]	န္တ	- 1	.]		_	_L	0.1	7.7	Y	,	5 (y .	× .	_	-		_	L	22
08715		TCD!	& 5	1			_	Ц.	7 6	4.0	2 5		ب م	3 5	y 20	4	4	-1-	_1_		300
100 Marto Syelline, ure.	for it soul	T W	300	1	1		1	┸	3 4	2 2	a a	18	o you	11011	16	1	4	+-	1		
Dag10	fenitised		32	3/2	1	Д	1	<u>.L</u>	0.2	9.9	25	2 2	3 6	29 K	2 02	2 2	4	+	٦		197
Dh.205		ls.	112	ł	ı	<u>L.</u>	<u>L</u>	<u> </u>	Ž	20	9	82	6	1274	31	↓_	1_	ĮΥ	Ļ.,	1	377
172 Db310 Syenite, Agt-Hb1		MSu	782	ı		L	L	<u> </u>	0.1	1:0	97	16	142	1631	52	┖	_	-	L	<u>. </u>	663
173 Db315 Fenite		Mfn	146	į į	1	L			0.2	1.2	27	<u>ب</u>	10	498	38	٠.					624
174 Db320 Beforsite		Mcb1	406	i	I. i				0.2	7.9	35 K	1	2	20 k	2						529
Dp325		Mcb1	34						: 0.1 j	4.8	2 k	7	5	42 k	2 x	3					131
Db400		Mcb1	265						0.1	5.7	Ξ	3	12	718 K	2	က		ч			\$
DP405		Hcb1	31	li	⊢ I	1		_1	0.1	4.5	9	2	3	1047 K	2 ×	6		4			25
DP410			49	- 1	- 1	_1		0.5	0.I	4.4		4	9	288 288 288	У 72			4	_	<u></u>	98
Reforsite		HCD.	158	- 1	- 1	_1	_	8.0	1.0	6.8	ž		77	214 K	× 2	6	-1	4	_	ᆣ	23
DP/20		Cp1	460	· 1	- 1			1.4	0.2	6.5	18	11	74	3376 K	2 2	m	_				23

B-3 Geochemical Analyses of the Orange Area (5)

203	000	202	320	36	28	547	199	215	926	283	365	∞	8	187	295	2	98	ğ	=	33.	3	14	20	312	316	96	24	쯇	127	9	1.1		80	91	1.76	65	i.c	88	36	80	23	29	48	3	3
T-R203	al L		3 1			_		~~					- -									14.					L	Ĺ		2	4	Ξ	30	2	16			4	15	28	83	-	17	2	2
9.8	٩	4:4	6.7	3.7	33	7.28	5.14	3.98	3.78	4.3	4.71	5.25	.30	4.00	3.41	4.83	5.86	4.84	3.65	4.10	2 98	6.43	4 01	3.71	4.21	5.06	3.68	3.17	4.40	2.59	2.88	6.32	3.10	2.98	2.02	0.32	4.04	8.01	3.29	2 86	7 79	4.14	5.12	3.61	2.88
٦,				100	100 V	001 ×	100	100	200	100	100	227	200	8116	108	8818	100	2001	100	100	100	652	100	258	100	100	100	001	001 >	001	100	100	100	100	2634	285	1110	139	156	4840	4675	1860	100	100	100
Sr	2 S	70.07	5334	96,88	5502	4676	5304	5730	2885	4716	5228	5424	9	2772	5556	4856	5304	5588	5620	5724	5330	2012	3336	4332	5956	38	6970	5386	5578	6398	5796	4176	5082	5258	10122	∞	346	2570	1097	988	2872	3080	5294 ×	4430 ×	3556 K
ē	6767	7067	9540	7588	6206	9171	7853	6956	7159	7035	7759	8172	121	2009	6269	8285	7846	2006	6102	1699	5770	8038	5359	6537	7802	73	8308	5626	8390	5898	6173	7010	5522	6179	5314	242	1570	9110	3091	1860	7464	3650	7339	6290	5631
172	2	200	s or	6	n	က	n	က	က	က	62	es	145	70	က	က	82	3	22	m	m		2	3	6	220	3	14	س	8	6	ဗ	တ	က	8	21	221	က	22	49	15	3	છે	ເນ	2
Ta		30	3 6	~	2 ×	2	×2	2 ×	ν,	2	2 ×	2 ×	21	5	2	2 ×	2	× 7	2	2	2 2	2	2	2	× 2	56	2 ×	2	03 A	2	2	> 2	2 X	7. 2	7 7	2	2	× 7	S	43	5	× 12	2 7	× 7	× 2
3. E	1244		3355 K	76 K	891 ×	2976 ×	152 K	613 K	383 ×	1852 K	482 K	1036 ×	176	386	2123 K	421 k	4121 K	612 k	1756 K	299 K	1751 X	505	4609 K	1732 K	1128 K	214	502 X	31.78 K	381 X	260 K	1031 K	869 ×	1762 K	126 K	28 K	× 80	136 K	A A	2734	3310	143	1850	735 K	343 K	1289 K
T.	T I	, a	6	130	7	ıņ	9	11	∞	4	4	Ξ	53	53	13	4	902	9	<u>س</u>	19		9	12	14	7	59	44	41	13	<u>-</u>	7	1.0	20	2	~	80	-	88	28	156	310	7	4	2	4
]]	P.M.	7	- 80	-	7	9	က	1		_	-	2	17	4	ę.	4	6	01	~	6	-	_د	2	3	5	17	2	2	2		1	3	1	1	1 X	11	-	2	12	41	2	5	1	2	တ
7 E	2	0	80	18 18 18	5	7	œ	2 K	7	S	ω	-	20	23	11	ဆ	£	9	5	2	9	45	13	12	82	31	10	7	ż	4	2 X	10	7	5 K	47	13	11	16	15	24	19	80	17	<i>-</i>	2
သွန	4	7 8	5.2	9.6	7.0	5.0	5.2	4.7	4.6	4.7	4.7	ი ი	0.5	1.3	6.4	5.5	3.6	4.2	4.3	4.9	5.1	6.5	9.7	6.4	2.1	0.5	6.1	4.2	5.2	4.1	4.7	4.4	5.3	9.1	5.8	3.2	11.9	6.4	2.1	0.9	2.4	5.2	4.5	5.8	4.3
3 5	 	-	0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5 K	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.0 K	0.1	0.1	0.1	0.1	0.1	0	0.1	0.1	0.4	0.2	0.3	0.2	0	0.2	0.4	0.1	0.2	0.1	0.1
Q.	1 2 C		0.0 X	1.3	0.4	0.7 k	0.6 K	1.0 K	0.5 K	0.5 K	$0.6 \mathrm{K}$	0.7 K	3.1	2.1	0.9 k	0.7 k	1.0 X	0 0 V	0.5 X	0.7 K	0.6 K	=	1.0 X	1.0 K	0.7 K	7.0	0.8 K	0.6 k	$0.7 \mathrm{k}$	0.8 K	0.9 K	0.8 X	0.6 K	0.5 K	3.9	2.0	2.0	-:	0.9 ×	1.8	3.4	1.3 ×	1.3	0.9 K	0.6 ×
T. T.	2 0	0	0	8.2	0.5	9.0	1.1	0.9	0.8	8.0	0.7	0.4	1.2	2.8	1.0	9.0	9.0	1.0	1.0	0.5	9.0	8.1	0.9	1.6	8.0	1.5	1.0	0.6	0.4	0.5	0.5	1:1	0	0.5	3.8	0.5	8.0	4.0	3.3	7.5	11.5	1.2	.5	8.0	0.6
Eu	- C		00	4.9	8.0	1.2	1.8	0.5	2.4	1.1	1.3	0.5	0.5	6.0	2.3	1.0	0.5	1.1	10	0.5	8.0	31.4	2.2	5.6	1.6	9.0	2.4	1.9	1.3	1.2	1.7	3.2	1.9	0.9	7.5	0.5	6.0	8.8	11.9	21.8	57.5	1.4	3.4	0.9	0.9
22 80	. C.	8.9	7.5	23.4	3.1	5.5	0.6	3.6 K	12.4	5.9	5.5	1.6 K	4.3	18.1	11.9	5.0	2.2	9.9	4.9	1.6 ×	3.9	82.4	0.8	13.2	6.3	5.4	11.5	8.3	8.6	5.9	8.3	16.0	8.1	4.5	32.9	2.2	4.3	50.4	59.9	80.8	87.3	9.0	16.4	4.3	3.5
PN .	200	35	31	103	13	26	Z	14	23	42	21	12	15	88	8	80	24	42	32				3				109	62	91	ည္က	33	106	69	29	191	6	-		306	ļ	_		121		72
၁ ရှိ	88	34	153	553	65	237	275	72	342	111	109	31	77	133	199	99	67	106	œ	80	78	5959	122	303	105	148	190	506	211	108	169	455	332	Z.	999	13	48	1982	754	1112	3263	133	285	112	88
<u> </u>	43	77	97	403	41	138	189	23	253	7.1	7.1	20	ጄ	101	149	89	55	1.1	44	12	65	4065	100	213	35	93	150	<u>9</u>	100	52	88	365	239	20	414	14	33	1225	440	648	1891	99	427	60	5
Rock	Nebi	Acb.	Acb1	Mcbi	Mcbi	Mcb1	Hcb1	S E	Kcb.	Mcbi	Hcb1	Hcb1	Mfn	Mfn	TCD1	Acb1	Hcb1	Mcb1	Mcbi	Hcb1	Wcb1	Ycbl	Mcb1	Mcb1	Mcb1	Mgr	¥cb1	3cD1	Kcb1	Hcb1	HCD1	Mcb1	Col	Mcb1	SS.	Ngn	Msu	Mcb1	Hsu	MS!	Mfn	Hcbi	Ncb1	K.b.i	ŞCP.
																											- 1																		
Rock Name	Site	Site	site	site	site, Ap	site	site	site	- 1	site, Ank		site, Ank		e, Agt-Phl	site	site	site	site	site	ite	ite	ite	site, Ank	ite	site, Ank		site, Ank	- 1	ite, Ank		ite Ank		ite, Ank	ıte	Sovite, Px-Phl	Gneiss, Otz-Fd	Syenite, banded	Beforsite, Ank	Ü	Syenite, banded		Beforsite, Phl-Hbl	ite	ite	ite
	Beforsite	-	+		Beforsite,	Beforsite	Beforsite	Befor:	Beforsite	Beforsite,	Beforsite	Beforsite,	Fenite	_			Beforsite	Beforsite	Beforsite	Beforsite	Beforsite				Beforsite,	Granophyre	Beforsite,	Reforsite	Beforsite,	Beforsi te	Beforsite	Beforsite	Beforsite,	Beforsite	Sovite	Gnerss	Syenit	Befors	Syenite	Syenit	Fenite	Befors	Beforsite	Beforsite	Beforsite
Sample No.	DM25	00505	Db510	Db515	DP220	999	DD610	DP620	DP700	Db705	DP710	Db715	Db720	02320	Dc ±05	Dc410	Dc415	Dc420	Dc425	Dc:500	Dc505	Dc510	Dc515	0c520	Dc525	0090	Dc605	Dc610	Dc615	Dc620	Dc625			Dc710	Dc715	£ 100	E 220	E 300		-	-	320			£ 405
ò	181	182	183	184	185	186	187	88	<u>88</u>	36	191	192	193	138		~~		861	_	7	-		_			-	_					_			215				\neg		221		-+	⇁	225

B-3 Geochemical Analyses of the Orange Area (6)

19 19 19 19 19 19 19 19				-		1	1	4		*	=	1	1	72	_		Ł	T-R	233
No. No. No. No. No.		, KOCK	4		2	3 5	2 8			a do	iidd d	2	udd.	andd.				Ž.	
440 Particular	No.	Code	and d	+		5	립.	\		~	6	100	1600 x	\ \ \ \	رب ا	ı		26	980
Colorestic Property Propert	-	Mcb1	273	4	3	2	1		2 6 6	3 2	1 4	2	7	S Y	٣.	•		6 09	121
State Marche March Mar	Beforsite.	Mcb1	2315	{	6001	8.12	اد.	7 0 0	7:0	7, 6	2 6	5 *	2000	1	0	1		93	215
Fig. Beforeste Fig. Fi	+	Hcb[23	25	24	=	٥	× 0		2	5 0	- 4	1000	, ,	0			47	6.13
Fig.	F 494 Reforeste	Hcb1	98	130	21	5	0	2 2	0.1	-,	× (ו	1001	30	2 6			23	2 6
Fig. Recorsite Web 157 213 255 256 18.5 17.5 27.5	E SOO Reforeite	Hcb1	63	92	22	1.1	9.0	0.7	0.1	7:	N .	יי	200	20	2	-		36	7
E.501 Beneristic	E COE Notonsito	Hcb1	7.5		32	1.1	0.8	0.8 X	0.1		٥		1400	7	2	1		20	200
5.00 Particular Particula	∤-	Med	1503	1	593	18.3	7.2	2.5	0.2	7 2.	8	200	हे	4	-	- 1	•	3 2	
State Bellowing State Bell	-+	Lobi	173	+-	g	0.4	2.1	1.8	0.2	9.	5	14	6124 K	7	~ 	- [- 1	3	0
E. 500 Referencie Mich. A. 5. C. 5.	⊣	TCD!	3	4-	24	2	-	× ×	1.0	Lr.	2 ×	16	Ĭ3	У 2	က		- 1	27	2/5
E 600 Berganite Month ADA SSS SSS CSS <		UCDI	25	+	5 6	3	1 -	000	-	<u>ب</u>	7	7	2400 k	7	<u>ب</u>	1		48	309
E. 50. Beforsite World Indicated World Indicated World Indicated Applied Street Ap	-	*cbi	8	133	\$	-	- 0	2 2	1 .	ء اد	0	5	25.5 X	2		ı		89 2	003
Fig. Beforestie Mich Mil 31 31 31 31 31 31 31 3	┝	Mcb1	423	200	707	, i	0 0	2 0			,		207	, c	٠.	1		97	273
Fig. Reference Fig. Fi	+	Hcb1	\$	113	31	1:2	8	ν 0.0	7 6	7.	2 0	7 0	346	10	2 6			29	785
Fig. 6 Parcial Control Con	+-	Hcb!	121	322	112	7.	1.5	0.6 K	0.1	4.		0	06.7	7 0	3	1	ı	900	380
E 700 Refusite Wild Big 131 S 5.1 1.4 0.7 5.3 5 K 1 4 15K K 2 2 K 1 4 15K K 2 2 K 1 4 15K K 2 2 K 1 4 15K K 2 4	200	Mch1	734	L	193	4.6	6.1	0.6 X	0.11	. 9	9	16	1338	2	3	- 1		2 2	3 8
E 110 Bedicastic Ark E 110 Bed	50,2	Kohi	2	╁	35	1.4	0.7	0.9 K	0.1	<u>س</u>	ъ У	4	153	×,	7	- 1		67	3
E 750 Beforsite Ant Service May 1 65 16 16 16 16 16 16 16 17 18 17 18 17 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 (10 Deloisine	Mah.	020	t	70	9 6	1.6	0.8 ×	0.1	1.	6	15	929	7	4	- 1	•	3	8
E 700 Reforsite Reforming Re	E 715 Beforsite,	10.7	3 5		2 6	i c	ď	4	2	00	7	2	117	2 2	က		1	\$	2
E 800 Security Bernaries Main Security	E 720 Beforsit	MCDT	20		38	3	0	0.2		1	~	180	302	ro C	79			30	236
Fig 10 Inclusion Figs 13 13 14 15 15 15 15 15 15 15	Syenite	M Sri	2	٦t	3	-	3 6	2 0		-	, c		7	7	4	1		85	123
EAGOND Scientistic Act actregation Main 74 128 84 1.1 2.4 0.3 <t< td=""><td>E 810 Gneiss, Qtz-Fd,</td><td>ES)</td><td>3</td><td>1</td><td>3</td><td>200</td><td></td><td>2 6</td><td></td><td></td><td>3</td><td>12</td><td>292</td><td>2</td><td>8</td><td>1</td><td></td><td>90</td><td>329</td></t<>	E 810 Gneiss, Qtz-Fd,	ES)	3	1	3	200		2 6			3	12	292	2	8	1		90	329
Early Sterilite Main State Sta	£ 900 Gneiss,	ES P	2	871	3	7,0	000	3 6	200	, u	24		534	20	362	ı		67	224
Rajio Deforsite, Art agregation Nobl Rajio Proposite (1.2) 0.3 k 0	Ea220 Syenite	P.S.n	3	1	g	۔ اد	2 0	700		9 6	×	=	49	2 X	က	Į.		90	355
Rad10 Beforeste Mod Logs AGD LOGS	Beforsite,	GC.	2 00		2000	0 4	20.0	000	~	15		3 563	113	2	6	Ι.,		78 28	892
Earli Beforistie, Fd bearing NGC 1852 395 430 5110 5110 5110 5110 5110 5110 5110 51	Ea305 Beforsite	[0]	7878		2479	0.00	0 10	2 4	, 4		87	389	87	က	12	L		12 10	539
Early Syonite, Agt—Hb] Most 153 322 213 343 575 113 570 20 k 1 106 8 k 2 k 3 575 510 510 310 350 310 350 310 320 310 310 320 310	Beforsite,	5 .	200		0107	0 12 12	100	10	× 0.0	11.5	-	13	88	2	33	l		11	821
Ba317 Deformite Mich Index 1960 310 3270 1139 3.10 3.20 3.10 3.10 3.10	Syenite,	WSn	200		3.5	2.0	2 4	200			× 12	136	∞	77	<u>ښ</u>			81	180
Ra202 Sovite, Ap Mobile Same 194	-	MCDI	7061	1	350	r :	, 4	2 00	٦ د د	-	25	2 42	123	∞	2	L.		10	93
Ea2/25 Beforesite MCDI 2.44 400 6.6 6.1 2.5 9 2 14 93 2 3 6.0 5.7 3.6 6.0 6.0 6.0 6 6.1 3.8 2 3 6.0 5.0 6.0 6 6.1 3.8 2 3 6.0 5.0 6.0	-	usn.	8	_†.	2	2 6	2) (C		 a	 			~	<u>س</u>	L.,		56	926
Ead10 Deforsite NCCII 1.35 1.50	£a325	UCDI	557	<u> </u>	8	3 0		000		0 0	0	2	93	27	~			77	692
Ra405 Beforsite MCDI 55 19 25 17 0.9 0.7 0.9 0.2 2.3 6 6 6 795 3 9450 410 161 8.1 Ba410 Beforsite MCDI 55 794 132 27.4 5.9 0.9 0.0 4.8 11 4 41 1640 2 3 3574 5390 4310 28.3 3 3.7 3 3 4 6 6 7 2 1 9 6 0.8 0.1 6 1 4 4 160 2 3 3 4 6 0.8 0.1 2 4 6 0.8 0.1 2 3 4 4 6 0.8 0.1 2 3 4 6 0.8 0.1 2 7 4 6 0.8 0.1 2 6 0.8 0.1 2 6 0.8 0	Ea400	ICE I	722	300	ē ķ	- -	190	× ×		α	4	2	368	2	3	L		.16	246
Ea410 Deforsite MCDI 535 794 125 27.4 1.9 0.8 0.1 4.1 1.6 2 3 5374 5390 4810 283 3.7 EA415 Deforsite MCDI 176 3.7 86 15.3 3.4 1.7 1.2 0.2 4.1 18 5 26 180 2 3 5590 4810 28.3 3.7 EA425 Beforsite MCDI 476 70 1.0 0.9 0.1 5.6 16 0.9 2 3 4 9 0.6 0.8 0.1 2.7 2 1.0 0.9 0.1 2.7 1.0 0.8 0.1 2.7 3 3.5 4 3.1 4		VCO.	នដ	ماد	36	0	0 0	0	ر د د	6.	2	9	795	3	က		_	11	220
Ea415 Deforsite Mcbi 356 37 88 15.3 3.4 1.7 1.2 0.2 4.1 18 5 26 180 2 13 6990 4810 283 3.77 EA420 Deforsite Mcbi 47 70 21 5.0 0.9 0.0 6.0 1.5 0.9 0.1 2.7 6 3 46 2 3 554 6020 7.0 3.14 Ea500 Beforsite Mcbi 194 362 7.5 1.5 0.8 0.1 4.4 10 2 3 355 6422 1.0 6.0	-	100	8 6	+	18	n.	6	80 C	0.1	8.	=	4	1640	2 ×	3			27 1	810
Ea425 Deforsite MCDI 17 126 1.5 0.9 0.1 5.6 16 10 42 423 2 3 554 6000 10 3.1 Ea525 Beforsite MCDI 4.0 0.9 0.6 0.8 0.1 5.7 6 3 4 630 2 3 556 600 1.0 4 3.7 2 3 560 5.0 1.0 6.0 1.0 4 3 4 630 2 3 556 600 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 1.0 1.0 1.0 1.0<	+	7	3 4	+	3 8	2		1.2	0.2	1.1	18	5 26	180	2	22	_	_		22
Ea405 Beforsite MCD1 410 701 120 170 60.8 0.18 0.1 2.7 6 3 4 690 2 6 3 4 690 2 6 10 5.2 10 5.2 10 7 22 1908 2 6 3 6.10 </td <td>Ea420</td> <td>TCO1</td> <td>3 6</td> <td>1.</td> <td>36</td> <td>000</td> <td>ر ا</td> <td>× 6</td> <td>0.1</td> <td>9.6</td> <td>16</td> <td>0 42</td> <td>4231</td> <td>2</td> <td>m</td> <td></td> <td>~~</td> <td>¥-</td> <td>141</td>	Ea420	TCO1	3 6	1.	36	000	ر ا	× 6	0.1	9.6	16	0 42	4231	2	m		~~	¥-	141
Ea500 Beforsite McDi 41 52 15	Ea425	TO S	2	- 0	3 6	0	9 0	×	0	2.2	9	3	690	7	က	_		Q.	33
Ea505 Deforsite Deforsite Mobile Service 134 332 13 23 14 15 16		acor.	ř	1	100	2 12	1	8	-	27	91	7	1908	2	က		$\overline{}$	2	2
Ea510 Deforsite with Dol mega-crystal Mob. 113 224 33 6.2 6.2 1.5 6.2 1.5 6.2 1.5 6.1 4.8 7 3 3 740 2 8 6.42 100 3.31 Ea515 Beforsite Mob. 89 179 49 5.1 1.5 0.7 1.0 6.0 10 4 22 1677 2 3 77 4 9 4.9 6.0 1.2 0.2 3.2 7 4 2 1677 2 3 7765 4.70 4.0 6 6.0 1.2 0.2 3.2 7 4 2 1677 2 3 7 4 9 1.0 1.0 0.0	Beforsi te	-	134	٦.	25	30	0	× ×	, ,	7	200	2 1/2	317	2	65	٠	_	69	517
Ra515 Beforsite MCDL 35 153 65 67 1787 47 78 49 49 EASTO Deforsite MCDL 286 408 83 15.6 3.1 1.8 0.6 0.1 6.0 4 22 1677 2 3 7787 4716 100 6.05 EASTO Deforsite MCDL 286 4.3 1.0 0.6 1.2 0.2 3.2 1677 2 3 7787 4716 100 6.05 6.05 3.2 1677 2 3 7787 4716 100 1.06 1.2 0.2 3.2 7 4 9 1360 2 3 7687 4.08 1.0 6.0 8 1.0 1	Ea510 Beforsite with Dol		21	627	e e	7 -	2	2		×	2 2	c	740	~	67		_	.31	283
Ea520 Deforsite Mobi 29 179 49 3.1 1.0 0.6 0.1 6.0 10 4 22 1677 2 3 7787 4716 100 6.05 Ea525 Beforsite Mobi 26 408 43 1.2 0.6 1.2 3.2 7 4 9 1360 2 3 6550 4600 126 4.06 Ea605 Beforsite Mobi 14 28 2.0 1.2 0.8 0.1 6.8 8 2 14 964 2 3 650 4600 126 4.06 Ea605 Beforsite 9 16 1.2 0.8 0.1 6.8 8 2 14 3.5 3 3536 100 4.08 4.03 10 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03	Ea51.5	NCD.	33	252	3					0	· a	α	1030	2	~	ــــ	-	86.	411
Ea525 Deforsite Mobility 256 408 63 13.0 1.0	Ea520	ig Si	20	5	45	7	-	2 2	5 0	200	9 5	4	1677	2	6	<u> </u>	_	.05	936
Ea600 Beforsite McDi 114 28 4.3 1.0 0.0 0.2	Ea525	Mcbi	922	20	3	-	0	0 0	200		2 6		1360	6	~	+		98	255
Eactor Beforsite Mobile 218 283 43 8.8 2.0 1.2 0.5 0.1 0.5	Ea600	Rebi	ន	1	8	5		7.0	7:0	70	- 0	6	984	0		+		80.	691
E&GIO Beforsite with Dol mega-crystal Mobi 140 293 84 13.5 3.6 1.1 0.1 2.8 6 1 9 185 2 2 3.57 116 3.58 Ea620 Beforsite Mobi 70 141 41 6.2 1.9 0.9 6 0.1 2.4 7 1 8 35 2 4 6130 4800 184 3.45 Ra700 Beforsite Mobi 70 141 41 6.2 1.9 0.6 6 7 1 8 35 2 4 6130 4800 184 3.45	Ea605		218	<u></u>	43	7.0	7:1	0.0	1 -	0 0	9 4	100		2	-	+-	+	82	689
Eacon Beforsite Hobi 90 156 42 3.1 1.0 0.3 0.4 7 1 8 35 k 2 4 6130 4800 184 3.45 RATIO Beforsite	Ea610	_	140	~	\$	٠,٠	- "	1.1	7.0	0 0	2 4	1	12	٦	~	- -	+	83	377
Ration Sefersite Mebi 70 141 41 6.2 1.9 0.9 0.0 K 0.1 2.4 1	Fa620		8	156	4.5	٥.	 	2 0	1 .	0.0	2 6		3 15	1	-	ا	+	45	334
	69700	Mcbi	20	141	4,	5	2	2	7.5	,	-	1	3				4		

B-3 Geochemical Analyses of the Orange Area (7)

						ı									ł	-	ŀ	- 1	ı	6	7.00	5
3	Complo	ROCK Name	Rock	e,	ව	Md	H	Eu Tb	Q.	13	Sc		 	년 	£	T2	17	7 F	7	2) be	Se de	3
	14 0			mdd.		_	id udd		Pod	Ddd	+	Edd.	<u>.</u>	200	1	4	+	Ί.	١.	+	23	18
271 F	F2705 B	Reforsite, Ank	-	544	~	í		_]	0	o 0	-		1	30	1011	4	,	1	. [╁-	3	2
1	_	1	Hcb1	7.5	~		4.8	9	5	· ·	7-7	0	-	0 0	277	3 0		1:	1	╁.	6	22
+		Beforsite, Ank	Mcb1	73		L		_1	ان ا	у У	4,4	١٥	- -	2 0	250	10	2 0		1	-	4	83
+		Į	Hcbi	87	192		_	0) (> c	200	- 2	-	3 4	107 X	, y			570 2380	30 0.56	99	27
-	•	Sovite	S	687		- 1		5 0	; c	ο c	3 C	3 7	1	22	359	80		1	i i		3	97
	-	Syenite, leuco-	T S	23	-	- 1	1.7	2 6	-	2 6	× ×	22	9	15	1426	137	859	1	1 !		11 4	<u>@</u>
	_	Syenite, Agt, fenitized	ns.	977	+	- 1	-ŀ	4-	: c	ט פ	4	6		12	× 83	2	 	ł I	U	100 5.1	20.	ജ
	Eb305	Beforsite	ucp.	222	-	- 10		4	3 -	, ,	- 2	74	-	242	× 82	2	6	ı			7 190	င္ထု
┺	_	Beforsite	Ç.	2000	į	7 0711	-1	4	100	10	3 6	72	1	999	× 69	2	8	1	1		178	77
	Eb315 1	Beforsite, on bearing	NCD.	4127	1			2.3 4.0) c		2 2	3 6	39	12	651	202	59	ŀ	}	98 2.68	58	2
	-		NSn	137	- 1			4.	; ; ;	5 C	7	1	6	-	716	4 X	3		V	00 4	5.	4
282 E		Beforsite, Agt segregate	WCD	à	55		7 0	3 0		×	1 4.5	٥	3	4	176i k	2 K	3	L	v.	100 6.	5	23
-		Beforsite	VICOY.	7	ł		30	3	, 12	0	4	4	-	8	230 ×	2 ×	E		J.	00	73	3
	_	Beforsite	JCD!	3	- 1			- 4	0	Z V	1	×		3	× 98	2	E		v	~	¥	4
		Beforsite	3 2 2	5	- 1		2.5		7	y y	.5	6	2	S	3834 K	× 2	3		v	~ [2]	2 84	8
		Beforsite	2	£	- 1		0	2 2	-	0	5 A	14	61	81	4603 K	2	- 2		v	3.	~ ~	2
	Eb420	Beforsite	ē,	7	- 1		-	1	1	, a	2 6	=	3	80	1123 K	رم ح	رب ا	_		3.	22	ş
·		Beforsite	2	9				0.0	ļ.	0.0	10	-	~		2493 K	2	8	<u>L</u>		36 4	38	89
_		Beforsite	NCD	20	-+		-	2	1	0 0	7	, ,	7	-	160 K	×	(m	Ļ	Ų,	100	36	53
	50505	Beforsite	Mcbl	09]			7,1		4	4	7		-	4 0	1691 K	\ \ \	~	⊥	v	100 6.	19 4	=
	⊹ -	Beforsite	McDI	35	- 1		- 1	4.	1	4	0 4	- 1	1	140	У 1001-1	2	3	١	V	100 6.	57 89	44
-	+-	Beforsite, Agt?	Mcb1	2376	- 1		٦.	24.4	1	200	2 - 2 - 2 - 2 -		-	2 2	- X	× ~	3	٠	v	00 4.	50	2ç
	┺-	· -	<u>1</u> 0	95	- 1		.	1	_	2 2 2 2 2 2	- a	7	-	25	× 588	2	3	-	430 K	3.		11
	Eb525	Beforsite	100 100 100 100 100 100 100 100 100 100	223	٠,		ł	1 -	2 2	2 2	7 7	1.0	, ~	6	£3.	2	9	١_	338 K	00 4.		46
+	-	Beforsite	3	818	- 1		ĺ	6 7) - -	200	9 6	3 5	4 4	21	1916 K	2	60		356 K 1	00 3.	3.87 10	1005
+	ED605	Beforsite	100 E	83	- 1		-	7.6		2 2	2 5	0	4		1749 K	× 2	3	-	824 K 1	00 3.		4
	-~	Beforsite	MCD:	8 8				1.1	2 6	× ×	4	9		2	48 X	2	3	L	604 K	3.	4	22
298		Beforsite	CO.	8	- 1			16	5 0	, x	4.5		2	7	313 K	2	4	_	V	00 5.69	-	3
${}^{-}$	-	- 1	MCD1	202	L-		1	2 2 2	1 -	, 9	2 4.3	12	2	31	121 K	2 K	3		v	_	75 22	23
	-	Beforsite, Ank	TCD.	050			ı	- R		C V	1	9	ī	~	415 K	У 2	3		v.	00 4.	15 5	3
	-	- 1	TO CO	8 8	221	18	1 L.	6	0	0 × 6	1 4.2	g	1	10	303 K	2 K	က	8964	v.	100	10	7 6
		Beforstre, Ank	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	407			1	5.5	0.	0	1 7.9	21	2	4	305 ×	× ·		\rightarrow	_1	200	101	2 2
305	20170	Detores to	- L	3953	⊥		l	4.7 5	4 0.	$.9 \times 0$	1 3.0	27		137	=	7 2	2000	+-	4	900	27 77	<u> </u>
-1-	+-	Syanita Cut by Ank vein	NS:II	713	_				5	.7 K	1 × 0.5		3	200	oner	9 8	000	+	┸	67 2 R	: S	2
+-	-	Syenite	Msu	186	_				1.8	0		- 6	2	3	S	3 2	100	+-	1_	1	8	5
+-	┿	Fenite, carbonatised	¥fn	341	497			10.2	9	0 0	0.3 × 0.5	25	J (1	2	704	2	100	-{-	1	3.3	98	65%
╁	+	Reforsite Agt-Phi	Hcb1	53			Į	_	9	>) Y	- i	- (7	216	200	1	6	╁	۷,	2	63	3
	+	Reforeste	Mcbl	29	1—		5.1	1.4	0.8	6 7	2	ام	- -	- -	7 500	43	2 6	+-	2036	28	23	233
	-+	Reforsite	Mcb1	139	⊢		12.2	2.6 1	0	o y	2	×	7		270	3	20		7 706	3 5	Se Se	2
_	-	Reforsite	HCD.	83			6.2	1.4	0 8	0 Y	4	- 8	77 9	20 0	2000	30	2 0	+		141	03	100
+	-	Reforeite	HCD.	75	۱—		4.6	1.2 0	9	9.	1	9	10	20 .	570	3 0	2 6	0000		2	, E	2
~i ~	+	Referente Apt	Keb.	130	⊢	33	8.1	2.0 0	8	6.	2.9	3 12	φ.	4. 5	X CIE2	20	3 6	2010	4278 ×	200	36	2
			Kep!	262	=	94	19.0	3.6	.2	0 X	.1	11	4	77	X 5021	200	3	0130	2000		3 2	1
214	2012	Reforeite	KO.	479	8	133	16.6	3.4	0	7 × 0	1.	7 12	7	=	4118	4 7	2	2020	2020	3	7	3
		DETUTATive																				

B-3 Geochemical Analyses of the Orange Area (8)

	3	200	and d		_			_	-			1000		EDCIC	Edd				_	ac
Beforsite	Mcbl	65	120		L.		0.3	0.7 K		6.3	9 6	9	-	ا ب	×	-	ļ		١	783
Beforsite	*CD1	123	152	Į I	Ļ	_		ابا		1.8	9	2	5 29	3 K	2 K	3 5928	-		1	391
Beforsite	Hcb1	106	190		10.6	\dashv	Ц	0.7 K	0.1	6.2		3	4 57	A A	х 2	3 6858		لعا	5.95	455
Beforsite	Ncb1	114	202		8.5	1.8	0.7	إير		0.9	7		4 614	×	2 X	3 6788	ļ	т 199	က 88	477
Beforsite	Hcb1	153	235	- 1	7.0	1.4	0.7	20	0		9			Υ	X 2	3 5518	_	8 2	2.74	573
Beforsite	Acbi	282	126	1.	م ب ب		٥-	لع	0.0	0.0	- 61	2 9	4	<u>بر</u> بر	y y	3 7599	5000 5006	3 5	3.43	C25
_	Mch3	127	961	- 1	2 2	2.0	8.0	D. 7 K	7 ~	2	1 00	2 -		y y	Y	3 7550	4.	90	5.22	483
Reforsite	Mcb1	629	932	1	16.1	9.5	2.1	0.9 ×	0.1	5.2	12 ×	103	33	×	V	3 6856	4		3.54	2100
Beforsite	Mcb1	229	405	1	22.5	L	2.2	0.8 K	0.1	1.7	12 K	1 4	Ļ	x w	, , ,	3 8144	ļ.,	1001	3.91	984
Beforsite	Kcbi	127	156		L	L	9.0	0.5 ×	0.1	9.1	e V	1	┡	3 X	, x	3 6950	<u> </u> _	ľ	4.35	411
Beforsite	Mcb1	212	311	1 .			6.0	v		4.8	80 X	1		× 8	, x	3 6564	ļ.,	100	3.83	773
Beforsite	Hcb!	154	241		1	2.2	8.0	یعا	0.1	0.	e Se	1		N N	Y	-		IJ	3.83	280
Beforsite, Ank	Hcb1	339	455	126	17.1	3.2	7:2	0.8 K		3.5	7	II.	7 183	Y Y	39	9 9074	5986	00 t	7.11	1171
Belorsite Gnoves Oty-Ed famitised	Nega Nega	3 8	27		1	0 6.	0 0	4	0.0		15.	20	8 14	2 1	215		4.		2.00	36
	Men w	8	163	Ł	1.	, L.	; œ	\perp		1		L	+	07	757	Ŧ.	2570	5960	4.27	493
Reforatio.	¥CP.	294	209		17.0	4.2	Ļ.		_			_	<u> </u> _	¥	×	 	4	77	4.07	1320
Beforsile with Mag layers	r C	186	316		5.4	3.6	S	v	+	1.2	×	7	!	×		8580	. .	179	5,71	28
Beforsite	Mcb1	169	88		9.8	2.4	L	l _x	0.1	2.6	9		14 25	1 x	, X	3 5670	4960	131	4.03	825
Beforsite	Kcb1	7.5	122	ĺ	5.3	2.0	0.9	يعا	_	8:	ص حد		L.,	2	~	3 5720	_	166	3.00	314
Beforsite	#cbi	2.2	119	ı	6.3	1.3		v	L.	1.2	6	4		5	Y	3 8000	6044	100	5.37	305
Beforsite	Mcb1	97	137	i	5.0	1-6	0.8	v		8.	7	2	8 46	×	X	3 6010	5540	130	2.02	321
Beforsite	¥cbi	93	155		5.1	1.5	0.7	V.	0.1 5	5.4	ę.	2	\Box	Υ 6	<u>.</u>	3 6430	6040	255	3.86	371
Beforsite	ig.	9	88	- 1	4.3	1:3	9.0	y.	_	80	ω,		4	-	Y	6140	5520	139	3.92	22
Beforsite	QC.	109	169	ι	8. α	2.3		,	_	4	16	4	4	y ,	x :	5584	22.00	4420	3.97	430
deforsite	ucpi	313	180		18.0	4.0	٥٠	يا	_	9.4			-4	١	<u>, </u>	2000	4850	1/1	3.33	1364
Beforsite	Col.	62	791		4.5	4.0	7.	0.6 0.6	0.1	5.7	- 9	2	1100	×	<u> </u>	2965	7696	100	4.01	244
Berorsite	ACEL	3	200	•	5.5	6.5	7 0	ىك	+	2	2 5	7	4	- 1	1	0000	0717	267	0.10	100
Beiorsite		20 5	707	- 1	2.7	2.0	ρ (r	حلع	7	0 0	20	1	207		×Į,	6180	3480	91 -	3.87	200
Referente	Tep.	137	214	- [7 0	200	200	J	100		, 00	1	100		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6360	2310	100	4 92	132
Beforeite	KCP.	25	302	ì	2 0	2.4	8	. ,		~		, -	8 123	×	×	5780	4050	19	3.17	382
Befors: te	Acbi	107	165	1	7.9	8.	0.9	9 0	0.1	7	7 ×	1	0 2	~	×	3 6470	9009	100	3.11	405
Beforsite	Mcbi	79	140	1	5.1	1.4	1:1	1.7	3.2	4.	7	2	7 157)	×.	7860	4910	114	3.95	344
Beforsite	Hcb1	184	291		14.5	5.9	1.0	0.9 × (0.1 4	1.5	7	7]	L,	7 K	×.	1 7610	2088	< 100	3.43	111
Beforsite	Mcb1	276	505		15.8	3.5	1.8	0.7 k	0.1 2	9.	10	4 20		7	4	009/	4200	180	4.82	1158
Beforsite	Mcb1	283	448	- 4	21.1	o.	1.2	9.0		9.	6	27		,	14	9218	9466	168	7.23	1087
	igo Repi	23	348	ı	12.0	2.6	2:	0.5 X	7.1	0	9	~	_			6190	4200	133	 	822
Beforsite, Ap	ico:	294	406	- 1	11.6	2.5	0.0	× 0	7.1	0			4		_	6058	6948	001	3.15	8
Beforsite, Phi	HCD1	434	299	- 1	25.3	000	2.5	X X X	7	×ομ	13	C7 2	4	61 6	5000	0230	4820	9070	3.03	1592
We with Cal	To La	2 5	200			0 0	7 6		44		1 46		4		1	0777	2070	0000	70.7	050
Symile, he will bal marrix	TISE!	101	200		0.2	2.0	2.0	1.7	4,6	20	2.3		1		1	403	007	282	200	977
Refors to	Mch.	77	152		5.5	1.3	0.8	0.9 ×	1.1	.2	200	, ,	1_	2 2	ļ.,	1 6190	4440	174	4.04	349
22.1	2000		3				2						4	ĺ	1.	┨.				
•										٠.										÷.

B-3 Geochemical Analyses of the Orange Area (9)

ŀ		Line Control of the C	,	-	ŀ	- 1-	L	- 1	L		Ļ	-	H	1	1	-	H	H	-	2	CUC 0-2	2
2	aldings.	KOCK NAME	500	3 5				0.00		E GO	200	uca.	1 1000	n maa		n maa		n didd	Edd Hdd	2 2-4	Rid	3
3.5	F9.120	Reforsite	Nch!	439	661	4_		ì	1	0.2	L	_		ļ.,	L	×	_	- -	Ŀ	ļ	L	27
	Fa400	+-	Mch	₽	1_		1_	1	1.2	0.1	4.5	10	8	ļ	700	13	4	Ľ	Ŀ	⊢	-	47
-+	Fad 10	Reforsite	Nebi	64	6		1_		0.5	0.2	3.0	5			341	4	6	Ļ.	Ŀ	3.56	6 269	8
+-	34 5	Refors te	Mcbl	╁	_	i	1_	ŀ	0.7	k 0.1	5.3	9		∞	402	× 2	£	ļ	Y.	L	_	11
+	Fa420	Reforsite	Mcbl	62		ļ_,	1	ı	0.5	0.1	2.8	9	~	! —	762	2	3	L	_			42
	Fad25	+	<u> </u>	╄	<u>L</u>	ļ.,		1	0.7	5 0.1	5.5	10	က	16	697 K	2 K	3 6	Ц			Н	2
τ-	Fa500	+	Mcb1	-	<u> </u>	ļ	<u> </u>	ı	0.5	- 0 Y	2.4	9	3		320	4	4 6	L	250 108		_	79
+-	1.	+	Yeb1	╁	Ŀ	<u></u>	Ŀ	ı	1:0	У 1.0	9.6	12	-	-	291 <	2 2	3 6	3442 6	210 433			35
-1-	•	•	Mcb1	╁	<u></u>		Ц.			× 0.1	2.9	7			967 K	2 K	3	5510 5	720 1(.
-	-f	-f	Acb1		_		L	1	0.8	k 0.1	5.8	6	3		> 920	× 2	3 6	9 019	434 × 10	-		23
	+-	+	Mcb1	├	<u>L</u>		1_	ł		0.2	2.5	9	Ц	Ц	658	3 K	3 8	860 4	900 122		Ц	5
7			Ncb1		L.	ļ	L	l	0.1	х 1.0	5.3	∞	ന	_	033	> 2	3 6	5058 5	286 × 10		Ц	£
	Fa600	+:	Neb	2350	上	1	L_	1		0.2	3.5	28	31	L	030	10 10 10	3 6	3940 5	120 12	L.,		01
1-	F2605	+	Mcbl	├-	L	Į,	L_	i	8.0	0.1	4.8	5	L	<u> </u>	952 ×	_v_	ļ	3756 5	344 K 3(L.,	8
_	100	- }-	Ncb.	╀	L	<u> </u>	1_	ŀ	9.0	0 1	3.2	7	2	L	450	v	Ļ.,	460 4	740 13	ļ	_	2
-	Kaf 15	╨	Ę	182	L	ļ	1	L	0.1	0	4.2	7	L	! _	234	Į.	ļ	3660	912×16		L	22
	Fa620	+	بري. الج	╁	1	Ļ.,		ı	0.7	0.1	2.6	7	-	 _	38	v		3250 4	110		Ŀ	88
	13675	-	, Co	-	!_	<u> </u>	<u>. </u>		8.0	А	0.5	9 X	-	L	S.	v	<u> </u>	7138 6	758×16	100 4.2		37
- -	Fa700	+	Mch.	+-	L	I	<u> </u>		L	L.	2.5	11		L_	140	v	_	3410 5	1 066			47
+	Fa705	+	Mcbl	┾	1_	٠.		6 1.0	6.0	× 0.1	2.9	9	L.	L	163 K	v	L		Y		_	6
-	Fa710	+-	Mcbl	⊢	<u> </u>	ļ		ł	L		2.6	× -	L	_	4 ×	v		Н	Н		_	9
1	Fa715	!	Ncb1	157	_	I				х 9.1	5.5	9	3		99	Ų			ᆚ			စ္ကု
 	Fa720	┰	Hcb1	⊢	L	ļ.,		4 1.1	0.9	K 0.1	3.9	10		_	2	\mathbf{v}					_	စ္တု
+-	Fa800	Syenite, Ne with Cal matrix	MSn		L_				. :	0.3	0.5	23	_		277		4			-1	_	<u>@</u>
 	Fa810	-	Msu	Н	Ш				Ц		0.5	SS	7	ιĊ	265	20	575 1	-+	2340 5250	3.48	_	8
*-	Fb320	-	Mcb1	⊢	L			4 6.2		0.2	0.5	32	_		021	V	-					8
+-	FM00	!	Acb1	١	L.		I		0.5	1 0 x	4.8	9	_	ı.	483			-	×	_	_	73
_	FØ10	+	Mcbl		_			5 0.8	1.0	0.2	4.3	S			417	24 K	3 - 6			_	_	2
+	Fb415	+-	Hcb1	202	<u>L</u>		L	5 0.7	0.8	K 0.1	4.7	6		_	850	v	_		×	_	_	2
-	Fb420	-	Mcbl	} —	L	ш	L. :	5 1.1	0.6	K 0.1	4.9	7			999	ی	_		ᅬ		_	္ဆု
+	F0425	+	Mcbi	_	L		<u>i_</u> 1	9 0.7	0.8	- - -	4.6	5	4		358	ايد		[164 × 130	-+		য়
1	Fb500	Beforsite	Hcb1	ļ	L.,			5 7.0	2.0	0.2	0.5	62	12	Ц	937	لح			_		_	္ထု
393	Fb505	⊹	Hcb1	<u> </u>	L!	ш		5 0.8	1.0	K 0.1	4.6	9		_	38 38	ایر	က		28 24	3.8	_	
i –	†	Beforsite	Hcb1	L	L.				1.0	k 0.1	6.7	21	2	_	6				312 × 10	0 12.4		5
395	∤	∤	Içb.	ļ			<u> L</u>	8.0.8	1.0	k 0.1	5.1	9	ស		989 ¥	اح		-1	396 × 10	00 4 E		25
و	Fb520	Beforsite	Mcb1	21			.6	5 0.8	0.5	 	4.3	9	4		891	×.	3		188 × 10	10 4.E	_	S
12.	Fb525	-	HCD1			_	.9 1.	0 0.7	9.0	- 0.T	4.5	2	က		510 K	7 7	3		152 × 10	ω ω	_	
398		۰.	Ycb.		_	L	.2 1.	2 0.5	0.7	. O. I	5.4	9	1		459	3 Y	3		33. ×	0.0	_	g
-1	+	+	Hcb1	22	L.	<u>l </u>	.7 1.	0 0.8	0.8	د 0.1	4.3	4	2		82	3 X	3 7	7836 5.	268 × 10	5.5		္ဘု
-	Fb610	┾	Hcbi	ļ	L_		.3	5 0.9	8.0	K 0.1	4.5	4	4		233	œ œ	3	134	50 200 200 200 200 200 200 200 200 200 2	5.0	_	္ဆြ
\vdash	Fb615	Beforsite	Hcbi	Į.	l	ᆫ	1.	2 0.5	0.8	< 0.1	3.8	4	Ţ		685 ×	×	3	3096	36 × 55	3	2/	2
\vdash	Fb620	Beforsite	Hcb1	547	L	_	.7 8	6 2.3	0.8	(0 I	5.3	13 K			27 K	2	3	2905	152 × 10	0 6.2	7 215	ട്ടി
403	Fb625	Beforsite	Hcb1	Ŀ			ري و	4 1.5	0.9	0.1	∞	12	4	_	812	۲ ۲	က I	832 4	310 ×	00	155	3
404	Fb700	_	Hcb1	633	770	!	9	4 1.0	9.0	0	3.7	6			47. 4	7		250	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.0	202	3
35	-	Beforsite	Mcbi	78	127		.1	5 0.7	0.7	6.1.	3.7	6 K	1		890 K	7. Y	υ 	9079	11 × 21	3.5	37	3
1	٠.	٠.																				

B-3 Geochemical Analyses of the Orange Area (10)

B-3 Geochemical Analyses of the Orange Area (11)

T-R203	Edd.	1404	413	750	1023	250	135	1300	141	350	88	179	12232	326	684	689	1160	9463	1590	463	859	3018	25.55	138	850	2670	612	1993	424	909	957	906	26883	5790	11964	5916	850	945	5859	1642	183	6675	3255	280	484
9 :	34	50.0	5 00 c	3.63	4.2	3.39	282	2.23	2.87	1.15	1.94	2.98	7.13	2.99	4.74	6.43	5.43	7.97	06 6	4.28	5 93	9	8 29	5.44	4.54	5.37	4.00	4.91	4.76	5.09	2.99	1.15	7.29	99.9	6.75	9.07	5.85	6.20	5.33	8.26	6.41	4.96	8.40	5.99	2.97
ď	aldd.	200	141	315	100	135	8	15700	725	293	496	2100	1240	3100	2064	344	1852	2150	3374	150	100	4	295	155	100	153	100	116	3418	7120	0710	2140	100	9996	1242	007	100	100	001	180	100	100	100	001	126
Sr	Edd S	7010	4020	4210	6632 K	5240	339	3330	3450	97	309	647	6210	166	1172	2580	5612	2900	2986	4970	4×90 K	4910	3570	4860	5134 ×	4020	6512 K	4650	1906	696	2580	4340	1694 ×	7230	2768	2412 K	5796 ×	4932 ×	4620 ×	1418	1855 K	5306 K	8100 K	5930 K	7082
Ų.	PDd 2.476	01410	7896	5840	7648	6790	1219	1230	1050	460	554	988	7890	1120	1225	5200	8062	7400	11088	7100	7434	8420	12412	7970	6782	8140	7050	7380	1688	1830	1430	1380	7928	8560	6444	0286	8632	7858	8116	1102	9656	8246	0800	8034	7100
Zr	Edd.	2 0	3 63	4	(1)	-	164	28	797	87	405	493	က	143	66	က	er	m	c	3	(7)	65	m	8	9	ιç	က	3	556	949	132	14	1.5	<u>س</u>	m	9	ຕາ	3	က	27	m	က	3 1	m	3
Ta	₩dd	46	76	3 [2	3	23	2	15	2	11	57	5	2	41	2	ς, X	4 ×	4	2 k	47 K	33	2	82	2 X	2	2 K	8	58	61	2	2	2	2 K	× ∞	4	2 7	2 2	?	ເດ	~	2 ×	2 ×	2 2	2 7
SP.	- 12 Edd	005	248 X	2300	Y	246	183	23 ×	555	27 K	202	1670	88	313	2903	47	476	38	7.1	87 K	3649	2020	99	1850	57 K	210	38 K	1980	354	214	20 K	88 88	52	37	689	180	ω X	7.1.K	ω ×	329	125	17 K	398 K	45 K	204 ×
£	uda .	5 0	30	28	╌	1-	١	⊢	4		⊢	├	<u> </u>	ـــــ	ـــــ	L	ļ	<u>ļ </u>	<u> </u>	ــ	.	1	↓_	<u> </u>	Ш							_				L		L_	L	Ļ.	4	228	127	53	20
	ed.	3 -			-	3	31	6	ro	2	12	34	4	16	4	2	2	4	3	·	32	53	6	2.2	1	7	1	9	1	2	2	55	0]	S	9	9	1	3	3	15	53	2		_	_
h	Edd.	2	- 40	80	10 X	00	=	52	Ġ,	13	က	91	25	18	11	8	6	92	50	9	∞	=	34	=	6	14	8 X	17	20	105	55	10	\$	42	41	35	12 k	10	54	48	5.7	37	14 K	10 K	7 k
SS	Ppdd 1	9.3	4.4	2.6	6.4	3.7	1.1	0.5	2.6	3.9	0.5	0.5	3.3	0.5	2.3	1.7	5.0	3.0	5.1	2.8	5.5	3.5	4.3	3.4	4.2	2.4	5.5	3.1	0.5	0.5	0.5	0.2	0.5	3.8	3.1	4.0	5.4	8.9	4.9	15.5	11.3	5.6	3.1	5.4	3.8
3	E C			0.1	0	0.1	0.1	0.2 K	0.2	0.5	0.1 k	0.1 k	0.3	0.2 K	٠.٠	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.5	0.2 K	× 0.1	0.4 X	9.0	0.2 K	0.3	0.1	0.2	0.1	0.1	0.1	0.4	0.2	0.1	0.1	0.1	0.1
ę l	200	0.7	0.6	0.7	0.7	1.0	0.8 K	2.4	1.3	1.4	0.5 k	0.9 K	2.3	1.6	0.7 K	0.8 K	1.0 K	1.9	1.7	0.7 K	0.7 X	0.7 K	1.2	0.8 X	0.7 K	0.9 K	0.6 ×	1.4	1.8	8.6	3.6	4.0	1.2	2.8	1.0 ×	1.5	0.8 ×	0.9 K	1.1	3.7	1.8	0.0 X	0.8 k	$0.7 \mathrm{k}$	0.5 K
T.	PPI R	2 0	9.0	1.4	1.7	0.8	1.0	4.1	0.7	2.1	9.0	0.5	13.1	2.6	5.9	1.3	2.1	11.8	1.6	1.2	1.7	2.0	7.8	3.6	0.9	4.1	9.0	3.0	2.0	4.3	3.5	5.5	16.1	5.6	16.3	8.3	1.4	0.7	4.7	4.0	1.1	5.7	5.9	1.2	0.8
E	7 7 7	×	2.2	2.4	3.2	1.1	9.1	9.9	6.0	1.0	0.0	1.0	80.9	4.7	5.0	3.3	5.9	41.6	9.3	2.2	4.6	5.8	23.9	6.9	2.7	0.6	2.6	4.6	4.0	8.4		.5	1.1	19.8	73.3	44.5	5.7	3.0	12.5	8.5	1.1	32.9	21.1	4.0	1.9
8	25.55	2	8.0	10.7	14.9	6.4	4.8	36.6	3.9	11.8	3.4	5.9	279.5	13.6	22.0	12.6	27.5	156.6	41.5	8.5	22.1	22.5	186.8	28.9	11.8	43.8	11.0	22.3	13	22.6	26.0	31.2	551.4	95.5	383.0	221.3	23.1	12.7	72.4	33.8	1.0	73.3	90.5	16.2	6.5
Nd	156	34	28	22	106	28	16	153	61	43	10	22	1778	22	98	\$	152	952	208	55	112	114	1282	149	35	262	70	162	15	8	122	129	3192	650	1860	1066	Z	100	989	138	18	1132	517	73	21
e i	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	176	386	332	400	97	48	507	42	114	31	29	5047	110	892	284	446	4033	288	1 81	328	397	3322	546	342	1132	241	906	155	186	369	343	8580	2032	4050	2034	327	373	7066	280	60	2064	1150	214	176
r Pa	385	107	143	186	292	60	27	538	38	35	19	49	2560	25	130	159	284	2414	420	112	210	268	1936	359	233	691	165	203	83	112	5 <u>0</u>	179	9385	1862	3160	1307	213	272	1955	463	47	1941	805	142	120
Rock	FC.	¥C.D.	HCD1	HCD.	Mcb1	Mcb1	MSt	Mcs	MSIL	Ngn	iksn	Msu	D K	NS.	MSn	Mcb1	Mcb1	Mcb1	Mcb1	Mcbi	Hcb!	Kebi	Mcb1	Mcb1	Mcb1	Mcb1	Mcb1	CS	NSt	ns	S	S	JCD!	E F	Mcbl	Mcb1	Hcb1	Mcb1	Hcb1	Mcb1	Hcb1	<u> </u>	Hcb1	Mcb1	Mcb1
Rock Name			The state of the s			, Phl	Agt	forsite, Phl	- 1	tz-fd, fenitised	Ne	Ne	Beforsite dyke with Phl		fenitised	, Phi												11-Px		We with Cal matrix	Agt-Phl rich					. Gn bearing									
<u>a</u>	Beforsite	-	+	f			Syenite, Agt			Gnerss,	Syenite,			Syenite	Syenite,			_	Beforsite			-	Reforsite	Beforsite			-+		_	Syenite	Sovite,	_		~+	$\overline{}$		-+		_						Befors te
Sample	_	+	+	├ ──	9	ی	-			-+		-	-†				$\overline{}$	-		-						\rightarrow	+	$\overline{}$	Ga525	6a 700	Ga 710	69720	0099	60505	GP210	Gb515	CD520	G9255	9995 1990	GP605	019Q5	00400	66410	00415	6c420
δ.	451	452	453	45	455	456	457	458	429	460	461	462	463	\$	465	466	467	468	469	470	47.	472	473	474	475	476	Į,	\$	43	2	æ		8	2	485	486	487	188	489	490	<u></u>	495	93	494	495

B-3 Geochemical Analyses of the Orange Area (12)

B-3 Geochemical Analyses of the Orange Area (13)

T-R203	E dd	157	38	597	1280	2162	1125	747	418	1285	2.03	1255	658	1040	1376	960	513	1043	1233	843	1906	219	1364	1521	675	217	239	665	37	800	940	340	261	663	1580	707	007	286	1001	523	1320	114	005	ç
<u>, </u>	**	1.15	1.70	2.47	1.95	2.13	2.24	0.44	2.10	2.23	2.96	3.51	2 90	3.82	1.58	3,55	3.81	2.24	2.58	3.17	3.29	0.56	3.66	2.46	.88	1.78	3.87	1.37	2.85	0.36	1.04	2.32	2.44	3.81	3.14	6.7	27.79	000	25.00	260	2	2.49	\$ R.F.	
d		+	}	1	┰	-	1	i -	\vdash	+	···		+-	₽	•	-		-	+-	+	+	∤-	ł	+	-	╄	Ŀ	_	L	٠	L	ш	1			L	_L	1940			_1	┺.	1	
5	Edd																																					2660						
Mn.	Mad	28	+	┿-	├	Į	١	╁	! —	+-	 -	4-	₽	₩	├ ~	ļ	ļ	٠		↓ .:	٠	∟.	Ļ.	١	↓_	١	L.,		L.,	L.,_		LJ		Ш.	L	_1.	.:	. [1	1	1	1	L	
-	E E	-	100	120	╆	6	 	 	-	-	ļ	ļ	+-	1_	1			<u>. </u>			i	I	1			1				\$ I		4	223	- 1	- 1	ن د د	3 0	2 6	26	3 6	22	83	0,1	200
-	ndd.	-	2	2	54	× %	2	2	2	2 K	2 2	× ~	2	L	Ь.	Ь.	X.	×	v	v	١ż.	<u> </u>	حا	~2 ~2	L	L.					\mathbf{v}		7		<u>.</u>	y 0	2 0	20	16	3 0	 -	2	-	
P	udd	×	7	99 Y	520	210 K	170 K	130 K	40 K	583 K	661 K	430 K	900 V	147 K	834	14! X	23 ×	2 000	635 K	733 ×	553 K	55 X	448 ×	× 089	358	64 X	164 K	330 K	249	378	40 K	27 ×	89	8 5 5	200	2020	3 5	را 1	7 2	98		83	9	3
Lh I N	d undd	-	Ļ	42	ļ	ıc	┡	ļ	<u> </u>	L.	ļ	 	L	ļ	17	2	L.	L.,	L	L	L.	_	L	1_						Li				- 1	1			30-	Т	1	ı	ı	l	
ŀ		~		2	27	4		2	2	1	-		-	 -	5	-		1	_	L		<u> </u>	L	-								3	4	7) (7)	.7.	-	4		, ,		L	∞	Ļ	_
	E E	_	2	2.1	05	16	42	192	23	53	21 K	98 98	28 28	X 82	83	34 ×	17 K	29 K	44 K	ļ	ļ			Ļ								0		201		y \	15	~	200			ĺ		
, , ,	Edd E	1	l		İ		·								١.								ĺ								1	ı	-		-		1		Ì		١.		Ì	
	#dd	Ľ		1	يدا	lv.		L	٤	lv.		iv	!	I۷.	IV.	l٧	v		!	lv.	Iv.	v	I۷.	l -	v			-	I	1 4	اردا	- 1	- 1				- 1		i	· I	1	I	ı	
\vdash	u dd	¥.	×.	Ļ_	<u> </u>	ν.		!	Ŀ	L	<u> </u>	_	L	ļ <u> </u>			_	L	L.,	ــا		عدا		L									- [Ì		١,		١,		1	ł	I٠		: -
L	mdd.	ļ	<u> </u>	<u> </u>				Ŀ	Ŀ	_	_	L	乚	<u> </u>										L	L							- [. [.				1	1	ı	0.7	-	-
\vdash	ppd	ļ	L	ļ.,	ш	Щ			L	ļ	<u> </u>	L	L.	L.	L	٠			_		L										ĹĴ							2 -	:	1		0.7	-	?
L	ppm	_	_	<u></u>		Ĺ		Щ	Ĺ	L	L.,	L_							ļ	l!		il						- 1			1	- 1	vΙ	- 1	-)	1	ŧ	1	ŀ	1	!	ì	ì	
易	mdd .	3.6	2.6	19.6	42.5	19.4	32.5	32.4	6.8	27.9	30.5	41.2	18.3	29.4	42.8	34.1	14.6	23.4	38.9	28.9	73.3	5.8	82.9	62.8	16.4	4.5	5.6	18.1	2.4	25.0	25.2	יט נים	9.6	- C	20.00	4.62	7	5 5	24 0	21.7	23.2	2.6	0	
PR	шdd	17	9	3 4	165	260	149	111	48	139	130	218	8	158	200	151	74	112	166	139	281	46	272	250	83	28	35	8	ა	103	125	23	37	20 50	8	111	5 5	200	3 2	22	147	16	7.1	-
3	ndd	59	8	226	495	1062	451	223	168	571	972	509	264	378	526	377	207	440	491	321	730	77	770	574	257	92	116	240	6	298	365	138	99	797	010	- YO	212	8	35	244	585	쫎	130	8
<u> </u>	u dd	37	9	116	250	392	226	122	83	259	486	130	123	245	262	156	97	231	538	145	378	85	355	259	147	49	69	138	4	175	192	77	52	139	125	52	3 6	3 6.	27.5	4	289	30	117	77
Rock	Code	Mgr	Ngn	Mgr	Mcs	rg.	Mcb2	Msn	Ngn	Mcb2	Mcb2	Hcb2	Mcb2	Mcb2	Mcs	Mcb2	Mcb2	Mch2	Mcb2	Mcb2	Mcb2	Nsh	Mcb2	Mcb2	S)	Nen	Mgn Tay	Mcs	Nsu	HCS	Xcs	ES.	ES.	Ngj Koko	200m	MCh2	200	Mrh2	, F	14CB2	ASA:	NS.	Non	2
Rock Name		ock	z-Fd		1-Hp]				Qtz-Fd, fenitised	Ąρ	Agt-Dol	dy	Ank	Ap	-Agt	Ap	Agt	Ap	ďγ					Ap			Qtz-Fd, fenitised		ct-Phl-he	2				. rentrised				[6]		Beforsite cut by Carbonate vein		ore.		
		Granitic rock	Gneiss, Qtz-Fd	Granophyre	Sovite, Phl-Hb	Granophyre	~ 1	-	Gneiss, Ota	Beforsite,	Beforsite, Agt-Do	Beforsite, Ap	Beforsite,	Beforsite,	Sovite, Ap-Agt	Beforsite, Ap				Beforsite	Beforsite	Quartzite	Beforsite	မှ	Sovite, Bt	Gneiss, Qtz	Gneiss, Otz	Sovite, Phl	Syenite, Agt-Phl-Ne	Sovite, Agt?	Sovite-beforsite	Gneiss, Otz-Fd	Gneiss, Otz	unelss, Vtz-ra,	Beforeste, Ap	Sefores to		1.		forsite, c	Syenite-albitite,	Syenite-albitite,	or of inov	CITTOR'
Sample		•		-	-				-	_	-	-	Ja900 B	_			-				_	-			K 400A S		-1	£				-+		07/	-1-	-+-	-f	-	┿	+	Kallo S	Ka120 Sy	12 000 CV	-
No.			542		_			-	_		_	551	-	$\overline{}$		_		_	_			199	_			*	×	~	∸	~	≝	<u> </u>	572 K	3 C A	< >	2 =	4 >	-	=	-	581 Ka	582 Ka	583 189	-

B-3 Geochemical Analyses of the Orange Area (14)

T-R203	2	1102	1361	368	920	298	ਡ	768	641	1505	1170	245	989	737	354	532	459	375	088 88	741	929	185	1102	1140	1009	717	380	1045	732	299	149	632	491	1672	892	541	203	601	115	216	283	854	132	1608	1160
0.34	2 33	2.64	1.35	5.89	5.63	3.03	2.43	3.57	3.22	2.13	8. 22.	2.36	2.85	3.03	3.62	3.40	7.35	8.42	3.29	<u>4</u>	3.37	5.91	2.52	3.18	3.01	2.95	1.98	3.01	2.67	2.45	2.34	2.59	3.18	2.66	2.60	5.80	1.74	3.30	1.74	3.88	2.82	0.75	4.61	1.82	3.36
d a	241	11500	8140	4390	916	1880	14578	7400	4662	21400	16055	191	9646	8950	2877	8297	4396	1565	16084	10220	13709	145	16899	16302	19090	3820	3130	9311	11130	5574	100	7690	5628	30060	9783	1550	509	341	237	169	388	4160	1180	22120	18400
Sr	333	1640	4250	569	517	1840	4530	1570	4082	2320	4610	6340	4046	4040	873	3538	498	069	4484	3930	3766	1682	4460	4444	37706	4202	5642	4036	4066	4800	3888 k	5374	4700	8869	3640	130	139	224	889	819	1270	4100	332	6428	4100
Wu waa	874	1310	5240	1450	1244	7850	6346	5540	6770	2900	6910	6230	7018	6150	763	9160	1233	1308	1176	7354	7514	10698	5934	6852	5812	7192	6134	7346	6450	5628	8224	6288	. 6867	6602	2982	1820	585	698	430	1580	1280	1060	1160	1194	6150
2r DDM	280	14	3	29	260	6	3	3	8	8	8	~	ر ب	33	136	3	33	22	3	60	60		60	က	3	3	3	3	3	2	3	3	3.	3	3	135	122	153	53	512	700	22	270	18	e
Ta	63	3 143	~3 ~	2	2 . >	2 >	2 >	2 2	2	2 2	2	2	2	2	38	2	2	2	2	2	2	2	2	2	2	2	2 2	2	2	2	2 2	2 2	2 .	2	2	7	2	ب	2	15	2		2		
d% mag	1810	105	145	æ	74	2770	1536	2350	164	14	2533	2	2562	102	2742	1156	36	536	999	1236	1327	4277	808	4789	1610	1014	10 k	1367 k	221	656 k	. 708 k	572	951	339 k	1310	46	33	88	127	955	259	733	68 K	218 ×	2280
ųL Rod	0	6	-	2	6	5	6	33	13	2	∞	2	ın	2	31	3	8	9	-	ď	41	=	6	S	5	4	1	9	2	4	ស	2	4	4	8	21	16	x	တ	6	99	35		60	14
n n	210	13	F	-	2	۲ ۱	1	2	1 >		-	(-	7	က	1	1	3	1		4	14	1	_	(1	: 1	1 ×	1	. 1	1 1	4	: 1	. 1	. 1	: 1	2	٠,	ထ	10	c.	79	6	7	4	7
Y	2	29	95	35	14	10	32	46	41	55	43	တ	23	82	13	707	43	13	31	24	82	14	35	40	35	25	14	33	56	18	16	24	21 }	54 4	33 k	45	50	8	4	15	30	63	9	64	48
သည်	20.5	2 2	3.1	10.6	2.6	0.6	0.6	4.3	< 0.5	< 0.5	1.1	< 0.5	× 0.5	9.0	S 0 S	< 0.5	19.7	12.3	0.7	2.0	6.7	2.3	1.0	9.0	< 0.5	1.3	0.5	< 0.5	0.7	1.3	3.1	1.3	3.0	1.1	1.8	15.2	3.5	10.0	0.5	1.4	0.5	c 0.2	11.4	0.5	0.5
ry Edd		0.5	0.7	0.3	0.3	k 0.1	0.2	0.2	0.3	0.2	0.3	< 0.1	0.1	0.2	0.2	0.2	9.0	0.2	0.2	0.2	0.5	0.3	0.2	0.5	0.2	0.2	< 0.1	0.2	0.2	0.1	0.5	0.1	0.2	0.2	0.2	0.5	0.4	0.4	0.1	0.4	0.3	0.5	4 0.1	0.5	0.3
QJ.	9.0	(C)	9.9	8.2	1.4	8.0	1.5	2.2	2.2	2.7	2.2	0.7	1.2	1.1	1.1	1.1	3.9	0.9	ે. ક	1.3	3.3	1.6	1.6	1.8	1.6	1.3	0.8	1.8	1.3	1.1	1.8		1.4	2.4	1.9	3.9	2.3	2.5	0.5	2.0	2.4	3.7	8.0	4:0	2.6
Tb	.l		3.8					L								1.2	3.5	0.1	2.7	2.3	4.2				2.6		1.0							5.9		1.9	1.7	1.7	0.7	1.0	1.2	2.5	9.0	3.3	4.4
ng Boo	L	1	<u> </u>	L_					_				_							L	L	L	L.,	L.,								I	ļ				i I		ŀ	ı	l	7.3	-	11.9	11.2
3 6	2.6	30.9	38.6	9.6	6.6	5.7	32.4	20.2	20.7	36.6	41.3	4.5	21.4	22.7	5.2	18.3	15.2	9.	33.1	24.2	28.1	4.2	35.9	37.7	35.1	23.1	2.6	30.2	23.5	15.7	4.1	23.2	20.1	63.3	33.5	10.8	10.5	23.2	2.6	4.7	6.5	24.0	3.4	52.3	35.0
PN	<u>}</u> _	j	174	Ι.						l							- 1							•							.	Ì					ļ.		l	l	١.		1	230	179
	1		Z	120	267	108	360	282	761	290	464	98	275	797	160	206	171	156	34	791	138	9,2	424	424	382	267	146	394	288	245	ය	222	159	551	307	218	99	251	36	78	108	319	52	647	430
La Dog	22	248	276	8	156	76	174	170	109	277	203	69	126	172	68	92	75	8	2	117	126	æ	165	176	162	118	28	200	124	162	27	105	90	309	168	97	S	102	99	47	59	204	28	309	229
Rock	i S	S	NCS.	Mcb2	Mfn	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Ncb2	Mcb2	Mcb2	Mcb2	NS:	Mcb2	Ash	Mf.	McD2	Mcb2	Mcb2	Hcb2	Mcb2	Ncb2	Mcb2	Ncb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	4cb2	Mcb2	Mcb2	Ngn	HS.N	NSI.	HSp.	dsk	dS.	Mcs	HSI	McS	Mcb2
Rock Name	-	Sovite.	+-	├	Fenite, gneiss origin?	_	-	Beforsite, Ap-Dol	Beforsite	!	Beforsite,		Beforsite, Ap		Syenite, Agt	Beforsite, Cal bearing	-	Fenite, gneiss origin?		Beforsite	Beforsite	Beforsite	ļ—	-	Beforsite	Beforsite	-	-			-		-	Beforsite	-	Gneiss, Otz-Fd, fenitised	Syenite, porphyritic	┝	+	├ -	Syenite - albitite	Sovite, Px	Syenite	-	Beforsite-sovite
Sample	-1	Ka620		1 Ka710	Ka715		Ka725	Ka800	Ka805	Ka810	Ka815	Ka820	Ka825	Ka900	Kp610	KP620		1	-	Kb720	Kb725	Kb800	K P805	Kb810		Kb820		Kc725		Kc805				Kc825	Kc900	L 100	L 110	1, 120	L 200	L 210	L 220	1 600	F	Н	T 620
No.	98	283	288	589	290	591	592	593	594	595	286	282	298	280	909	109	805	603	9 0	992	909	607	809	609	610	611	612	613	614	615	615	617	618	619	620	621	622	623	624	625	929	627	628	629	630

B-3 Geochemical Analyses of the Orange Area (15)

Š	Sample	e Rock Name	Rock	E.	ප	N.	S	Bu	Tb	Yo	13.	SS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	Th	Nb Ta	-	JL JZ	An S	Sr P	Fe	T-R203	-
	ė		9 0 0 0	E.		~+		_	E.	L Mid		1 Mda	E E	-	-	\dashv	-	\dashv					_
631	L 625	_	Хd	21		\dashv	I	_	2,4	3.0		21.9	× 63	Ţ	4	38 ×		_	-				
632	L 700	Gneiss, Qtz-Fd	Ngn	93		-	- 1	_	_	ш			15				3	45 14		-	_		_
633	1, 705		Mcb2	483		-							71	2:					H				
634	L 710	Beforsite	Mcb2	234		-		Ŀ.		L									\vdash	_	٠.		y
635	T 712		Mcb2	28	1	\vdash	i		-	Υ.					_	•		1 :	-	1	-		t
636	1.720	Beforsite	Mcb2	10	ı	-	\sim		-4										-	1			
637	1 725	Beforsite	1 Mcb2	184											_			. 1	-	-			_
638	008 7	Beforsite	Mcb2	215				_				ļ	١					ŀ	-				···
633	1, 805	Beforsite	Mcb2	71		\vdash		Ŀ	Ь.	lv.		_	ŀ		1	ı		ı	├	ì	+-		_
640	1, 810	Beforsite	Mcb2	159		•	1	_		Щ		L	١٠.		<u>. </u>	ı	ŀ	1	┼	1	+		т—
541	L 820	Beforsite, Dol	Mcb2	169	i	-	1			L.,			١. ا					Į.			-		·
642	006 T	Shale, black hard	NSh	66				Ш		L						ı		ı	┝	┪			·
643	La120	Syenite, porphyritic	Msp	30		-				l !					١				-	-	-		
544	La200	-	Msp	31						_									-	-	⊢		_
5 42	La210	Syenite, porphyritic	dsW	112					·-	l		L_								-	⊢		~—
8	La220	-	McS	212	l.	├ ~~	ı	L.,	<u> </u>	l		L_		U		1		1	┝	├ ┺	┼~		<u>-</u>
<u>£</u>	La610	Sovite-beforsite, Px-Phl	Scs	253	1	ļ	1	L	L	ı			l			ı		ľ	⊢	1-			
6 <u>78</u>	La615	Beforsite	Mcb2	144	ı	⊢		L_	_	ŀ		İ.	1		1	ı		ı	 –	┼~	⊢		
<u>S</u>	1,a620	Sovite-heforsite, Px-Phl	NCS.	347	ı	┞	ı	<u>L</u>	L	١.		l	l			ŀ	١.	1	├-		-		-
650	La625	Beforsite	Ncb2	12	Į	₧	lv.	ᆫ	L	Ľ		l	ı			!		_	 –	1.	1		÷
651	La700	Beforsite, Ap	Mcb2	154	ļ	⊢-	ı	L.	<u>_</u>	l		l	l		}	ł		ı	├-	-			
652	La710	Beforsite	Mcb2	338		_		L	<u> </u>	1		1	ł		ı	l		ı	H	-	f —∙		_
653	La715	Beforsite	Mcb2	157			ı								1	í		ı	Ŀ	-			-
654	La720	Beforsite	Mcb2	ċ			\sim									•	2	~		-			-
655	La725	-	Mcb2	128		_									1	ı			ļ	_			-
929	La800	Beforsite, Ap	Mcb2	181		-		_						٠	1	ı			<u> </u>				
657	La805	Beforsite	Mcb2	170				L.I	_							i I			ļ	-			
658	La810	-	Nsh	80		\vdash						1	l		1 :				ļ	-	<u>. </u>		
623	La900	\dashv	NSh	61	- 1	\dashv	. [1	- 1		ı	- 1	4									
999	Lb605	-	Mcb2	238								.	i						-4				
661	1,5610		₩cb2	138											- 1								
662	Lb615	_	Mcb2	114			- 1	.		1.6		0.7	22 K	7	7 10	1045 ×	2 2	22 62	_		_		
93	10620	Beforsite	Hcb2	88	- 1		- 1		[ł		Į			- 1	- 1	- 1	- 1	-4	- 1			
664	Lb625	-4	Mcb2	124		_	- 1	1	1	- 1					- 1	ı		- [_		!		
9	Lb700		Mcb2	2	- 1		- 1	- 1		- 1		- 1	- 1		- 1	- 1	- 1	- 1			_4		
999	Lb705		Mcb2	93			- 1			H		- 1	Į						-				
299	Lb710	-	Hcb2	115	- 1	_	- 1	1	1	- 1									_		_		
899	Lb715	-	Mcb2	38	ļ	_	- 3	- 1					Ė							-			
699	Lb720		Mcb2	\$			' · i		∟	v.													
670	Lb725	_	Mcb2	104			1		L. J										ļ.,				
129	008qT	Beforsite	Mcb2	61	1								10 K		15				L				
672			Mcb2	69		1	- 1		Į	v			13	က	8					_			
673			Mcs	183	l								23	94	9 14		7	6 17	Н		_		
674	lc615	Sovite	Mcs	207						1			83	4	11 12	212	5	4 61			L_:		
675	Lc620	Beforsite	Hcb2	88	!	Ш	1	}	į l	1.5	0.2		21	<u>.</u>	6 14	111 K	2 K	3 60]	1	1		
											-	-											_

B-3 Geochemical Analyses of the Orange Area (16)

NO. Sapire No. 676 Lc625 Beforsite 677 Lc700 Beforsite 678 Lc705 Beforsite 679 Lc710 Beforsite 679 Lc710 Beforsite	3 6						add .	and o	-	. !				-				-	-	2
Lc625 Lc700 Lc705 Lc710 Lc715	8	1	-				1111			Edi	E dd	bbm	bbm	ppm i	ppd	-	ᅥ	٩	Edd.	
Lc700 Lc705 Lc710	Mcb2		ı		l		2 7.1	1.1	0.5	92 K	-	_	707		-	_				15
Lc705 Lc715	Mcb2	153	1			1	_	l	1.0	8 8	1		935 K	2 K	_					*
Lc710 Lc715	Mcb2		1			1 -		v.	0.7	21 K	1		454	15 K			-	-		Ĕ
Lc715	Mcb2	 -	Į.		l	1	_	l_	2.0	19 K			252 K	У 2	_	-		_	-	<u>,</u>
	Hcb2	┼~			ţ	l			6.4	38			1755 K	2		-4				<u>,</u>
1,c720	Hcb2	383	1		ı	l	l	l	3.0	21			2194 K	2	_	-	Y	_		اي
1 Lc725	Hcb2	╂	1		ı	ļ	L	l	22.1	16		Ĺl	4493 K	-2	_		-			0
٠.	Hcb2	╁	ı		į	ı	<u> </u>	1.	3.7	145			974 K	2 ×		Ш				ري ا
1,0805	Mcb2	├ -	ţ		Ι΄.			v	3.7	14 K			185	20 K		\vdash	-			2
9	MSW	ļ	J		l				0.9	13			823	9						
M 110 Svenite-a bitite.	NS.	├ ~~	1		ł	ļ	- 1	Ú	0.5	10			892	2	<u>.</u>		-	[اي
W 120 Syenite, porphyri	MSM	ļ			l			v	0.5	17	1 1		006	9			-			ջ
N 206 Syenite	Asp	 	Į.		1	·		v	1.2	:13	34	18	496	2.	320		\dashv			اع
N 210	ASP.	 	1		l		<u> </u>	l	0.5	24			3170	15			-			<u>.</u>
¥ 220	ğ	 	ı		ŀ	l		I	5.1	79			13 K	2 2					1	_
300	XCS	73	i		ı	i			0.5	56			134	2	_					_
M 400	¥cs	├	ı		ì				0.7	- 22	: 1		2100 K	2	_	-	-			و ا
× 500	¥CS	├	l						0.5	11			æ	2					-	9
909	Mcs	ļ	ŀ						₹ 0.5	99	-1		856 X	7	_	-	-			9
¥ 605	Mcb2	 	l		1			v	1:5	16			1001 K	× 7			-		-	چا
N 610	Mcb2	├	1		I.	l		v	1.3	12 K			126 K	7 7			_	1		2
N 615	Mcb2		l		l.	l	L	_	1.5	23 X			487 K	7 7			-		[
N 620	Hcb2	┾	ł		ł	l	_	L.	0.5	16 K			768 K	2			_		-1	اي
M 625 Reforsite	Mcb2	⊢	ı		1	١.			0.6	55 K			2272	22			\dashv		1	9
902 ¥	MCb2	 	1 -		·				2.8	37 K	li		1980 X	× 2	_		┱╂		1	
N 705	Hcb2	٠							3.2	49 40 40	Į		3661	24				-		စ္က
¥ 710	Mcb2		l						8.0	40			4030	5		{	{			
M 715 Beforsite	*cb2	181			l	l			0.7	39 K	1		837	21 K		-		-1		*
₩ 720	Mcb2	١÷	l		1				1.2	38 K			1480 K	У 7	-4	-				إي
M 725 Beforsite	Hcb2	333	1 8		1	- 1			0.7	х Ю		.]	578	×		4		-4	-	3
₩ 800	Hcb2		1						9.0	91	1		3520			4	_	-4		<u> </u>
┰	Hcb2	434							8.8	22	23		2357	22		-	- 1	-1	-	2
H 810 Shale, bla	NSh.	89			1				8.6	32		1	21	~						وا
006	ASh	├ -	ł						0.5	29 K			2 ×	2	_					اي
Ha 120	MSM	121							0.5	I3	109		1170	S	_1		<u></u>		}	2
Na200	Msp		i					v	0.7	13		*	309	3				-		2
Ma210	Nsp	81	ŀ		l		Ĺ		8.0	52			519	2			_			2
Na220	Nsp	28	í				. :	×	0.5	14			124 K	7			_	{		٦
Ka510	NCS.	 			Ł	l	<u> </u>	_	3.0	65	1 K		3 K	У. 7	_		_			إو
Ma520	SS	195	l		Į.	l			0.5	.63	4		90 K	23			_		{	ائت
Refors te.	Mcb2	┿	ŀ		1	l	Ŀ	v.	5.1	10	7	13	612	¥. 9!		-	¥			ای
Ma600 Beforsite. Cal	Ncb2	-	Į.		1	l		يحا	1.5	16	10	41	2200 K	2		4	⊣	-1		اي
Ma605 Beforsite	Mcb2	+	306	191	36.9	8.7 6.2	2 1.5	LJ	0.7	35 K	7	ည	941 K	х 2	3	7166	7252 14282	38.	951	긏.
Ma610	Hcb2		i. I		ll	ı		× 0.1	0.5	83	-	3	916 ×	× 2	3	-	<u>:</u> †		-	اج
Ma615 Beforsite	Mcb2	102					0 1.2	0.1	0.71	25 K		c	989	712 712	2	-	_		4	ام

B-3 Geochemical Analyses of the Orange Area (17)

T-1203		557	1029	603	27224	16476	596	335	217	331	426	242	1346	383	321	1659	905	9226	1163	457	966	1526	454	550	465	867	321	922	366	2571	2409	2221	5500	8	3	227	1159	3829	1094	467	574	1134	654	2622	2400
		.37	121.	.31	88.	69	.99	86.	.14	92.	- 88.	.37	86	.35	- 64	47	.42	23	-24	.52	18	.45	00.	39	. 50	. 19	. 6	.43	36	.77	.48	88	45	15	35	.61	.83	.13	88	95	20	40	43	02	- 50
-		⊢	⊢	⊦⊹⊦	١	-	Н	⊢	۳	├—	H	ļ.,	┝	-	Н	-		-	ļ			 	_	Ŀ									щ		-				! _	ļ	3	3.	3.	32 4.	37 5
-	udd	ļ	 		_		_		-	-		<u></u> ¥	-					-			 -			·~·		-	-	-				-	-	-					IV.	Į¥.	1360	1093	180	1048	36
_	E dd			_		_	_	_		_		L	Ь		_			_	l	L	1 -	₹		_	_				L I					- 1								3		11126	12858
r X	W.d.d	5430	7712	7270	7880	15468	2330	791	210	7376	7990	8144	6540	2806	8064	7574	7998	11434	1309	6408	5980	5458	5170	6236	6154	6086	6878	6464	7354	8584	5700	8018	10154	1340	1110	939	1460	9018	8552	7978	7310	8376	10278	7592	14258
7.	ā	3	ന	5	3	3	181	. 65	98	3	3	3	က်	3	3	ဗ	က	3	17	n	ω	:2	15	4	12	3	3	3	3	3	3	œ	က	241	148	691	9 .	3	ب	3	m	3	4	3	3
÷	E G	2	2	2	2	2 k	2	2	2	y 02	22 K	2	23 X	21 K	26 K	2 ×	2	4 K	2	7 7	2	2	2	2	2	2	2 K	> 2	2 ×	2 <	2 K	2	2 2	4	4	9	2	4. X	2	γ 2	2	2	2	× 2	×
4	. <u>E</u>	737 ×	621 K	14 ×	354 ×	33 K	32 K	18 K	22 K	46	849	× 609	972	613	826	100 k	413	50	315 K	36 7	093 ×	027 ×	777 K	092 K	167 K	414 K	268 k	94 k	372 K	920 K	905 k	¥ 191	126	323	504	889	230 ×	505	911 ×	179 K	020 K	820 K	676 ×	298 ×	32
r.	i Edd	3	18		L					1		_						Ŀ	١.	1	ı	l			,				Ιi										ı		1	i	l	06	
-	<u> </u>	_	5	1	1	1	4	4	1	ĭ	4	-		6		1	2			Ŀ	L.	L	2	L	_	1			1				٠						3	8	_	2			
}-	- E	_		Y.	_	2 K		3	¥	× ×			×.			×.	_			L		Ļ			×	×	.,	J											_	_	_	_	Y.	_	¥
┖	e Edd			22	_					L	L	L	L			_		L			Ŀ	L		L	Ĺ			L	6												61	25	13	175	99
Ċ.	2 dd	0.8	1.6	1.1	0.9	< 0.5	6.7	5.9	1.2	2.1	5.2	5.8	0.5	2.7	6.2	4.3	4.5	6.2	0.5	0.9	1.5	0.5	2.1	- - 5	2.5	1.1	3.3	0.5	3.9	5.0	7.6	6.7	3.5	0,7	1.6	2.1	0.5	6.6	4.2	5.3	3.6	4.2	9.4	4.9	5.5
17.		0.1	0.5	0.2	0 1	1.0	0.5	4.0	0.1	0.1	0.1	0.1	0.2	1.0	0.2	0.1	0.1	0.3	0.5	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.7	0.3	†	~ 0	0.2	0.1	0.4	6.7	0.1	0.1	0.3	0.2	0.1	1:1	0.5
V.	, Md	0.7 K	2.2	1.8	1.0 ×	1.4	4.1	3,3	1.0 k	1.1×	1.0×	-0 -	2.3	1.3	Ξ	1.2	0.9 K	2.3	3.9	0.7	1.4	2.5	2.8°	0.7 X	0.9 X	1.3	1.1	1.5	0.6 K	0.7 K	5.7	2.1	10.4	0.9 X	1.1	0.9 K	3.4	6.5	0.7 X	0.7 K	2.0	.5	0.8 K	0.0	3.0
47	e dd	2.0	2.2	1.5	7.9	7.5	1.9	2.0	6.0	1.2	2.7	1.8	7.3	5.9	9 0	2.0	1.0	0.7	3.2	1.1	1.5	4.	1.2	0.7	1.9	3.5	1.2	3.1	8.0	1.1	4.2	3.2	9.3	0.7	1.0	8.0	2.5	0.0	0.5	0.7	9.5	3.2	9.1	3.4	3.6
L	n made	<u> </u>	Ŀ	LJ	l		l. i	t					l	ı	ļ				1	l	1	ı	l	ı									1		l			{	ı	Į.	ı	L			ı
_		١	ļ	!			_	_	ш		<u> </u>		<u>. </u>	ļ	L.,	L.,			l	L	ļ	_	_	_	<u> </u>	Ŀ	_	l	L	Ľ			1			_		€.	ı	1	(į.			l
-	E dd	 	┢		┝				L	! —	Ļ	-	↓ —	۰	⊢	⊢		_	٠	٠	↓_	Ļ.,	!	Ļ	<u>. </u>	L_	i	L	L		<u></u>				٠.,			I	L_	J:	1	1	Ι.	I	L. :
PN -	d.		 	ļ				_	L.	L.	<u> </u>	ļ.,	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u> _	L	Ļ	Ļ.,	L	<u> </u>	L	1_	L.		L.		<u>L</u>	L	Ш	_				Ŀ	L.	l_	L.	<u> </u>			450	
Ş	, E	214	378	254	11633	5603	242	124	8	102	147	69	409	126	121	658	368	3273	417	179	386	569	<u>%</u>	237	181	344	125	363	148	1063	934	935	2121	71	101	98	480	1579	476	204	226	448	250	913	888
6	, E	7	210	141		5398		82		7		26		7				2557	_	7	-	-		116	7.	_		148	F	1	_	_	_	58	•	-	_	·	1-	1	+	<u> </u>	1	1-	t
, OCK	oge 1	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Nsh	Ngu	, ysv	Acb2	Hcb2	Yeb2	fcb2	4cb2	Ach2	Ncb2	Acb2	Mcb2	HCS	Hcb2	Acb2	Hcb2	Hcb2	Ycb2	Mcb2	Mcb2	#cb2	Mcb2	Mcb2	Hcb2	Hcb2	Mcb2	Mcs	MSW	Hsp	ds	- SOL	Mcb2	Hcb2	Hcb2	Ncb2	Ycb2	Mcb2	Mcb2	Mch2
Port Name		Dol				-	s-calcareous						Ap?																					porphyritic			_	Py bearing							
		Beforsite,	Beforsite	┿~~) Beforsite-sovite, Dol	-	 	₩-	_		 	+	Beforsite.	Beforsite	1-	?-) Beforsite	Beforsite		Beforsite	, 	╆-	Beforsite	Beforsite	+	Beforsite	Beforsite			Beforsite	Beforsite	-	Sovite	Syenite,	Syenite	Syenite	Sovite, Hbl	Seforsite,	Beforsite,	Beforsite	 	+	╌┼─	+-	⊢
Comp	No.	Ma620	Ma625	Ma700	Ma710	Ma715	Ma720	Ma800	Ma820	+		Mb605	MP610	Hb615	Mb620	Mb625	MP700	Mb705	Ac525	Mc600	1,0005	Mc610	Hc615	Mc620	Mc625	Mc700	Mc705	Mc710	Mc715	Mc720	Mc725	Mc800	Mc805	N 200	N 210	N 220	N 400	N 525	009 N	N 605	N 610	N 615	N 620	N 625	N 700
2	<u>.</u>	721	722	723	724	725	322	727	728	729	730	73	732	733	č	735	736	737	738	739	740	741	742	743	747	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	1	+-	1	7	764

B-3 Geochemical Analyses of the Orange Area (18)

27 7.7 31 5.8 32 15.9 405 88.2 220 37.7 220 37.7 702 113.9 702 113.4 702 113.4 702 113.4 703 113.4 704 112.6 705 24.2 706 113.4 707 113.4 708 113.4 709 113.4 7
2805 324.8 57.8 10.3 2.7 0.3 15.3 15.3 144 29.3 4.1 5.7 4.8 0.5 2.2
2905 324.8 57.8 10.3 2.7 0.3 144 29.3 4 1 5.7 4.8 0.5
5.8 1.8 1.8 1.6 1.0
27 28 405 28 405 28 28 28 28 28 28 28 28 28 28
$\begin{array}{c} 68 \\ \hline 68 \\ \hline 69 \\ \hline 61 \\ \hline 61 \\ \hline 61 \\ \hline 61 \\ \hline 61 \\ \hline 61 \\ \hline 62 \\ \hline 63 \\ \hline 64$
NSW NSW NSW NSW NSW NSW NSW NSW NSW NSW

B-3 Geochemical Analyses of the Orange Area (19)

ŀ			-	r	- 1		L	ļ			1			H		ŀ	ŀ	-	┺	L	L	ľ	2060
Š.	Sample	Rock Name	Kock	<u>ج</u>									- -		2 2	2 12	77				E		L-ncoo
			code	٦,		- 1	L	t			4			+	9	ă.	+	+	-1				20 C
811	T 84	Beforsite, Ank	Mcd	_		-,		- 1	- 1	. 1	- 1	- 1	S	-}	- 1	-	1	4	-4	Ŀ			201
812	+	Sovite, Hbl	Mcs	189						. 1			51		- 1		-	_	_l	\mathbf{v}	_		3
813	╌		Mgn	!-							- 1	ı	<u>8</u>		ŀ	-			_	_1	_1		8
814	1 11A		Msn			1 1	Ш		1 1	ادرا				\dashv		- 1		_					5
815	T 12A	Gneiss, Qtz-Fd, fenitised	Ngn	\vdash	69	21	4.5	1.3	9.8	0 8 ×	0.1	2.3	4	,:. 	4	7. 7.	2	70 372	4	61 3	383	3.56	2 2
918	T 13A	Sovite-beforsite	Mcs	346	- 1	- 1		- 1	- 1	- 1	- 1	- 1	=	٦-		Ì	J	_	┛	٦.			3
ſ	ONCW	-1					- 1						ļ		Į				L	r	ŀ		
817	1- 0	Beforsite, weathered	Mcb1	42	. 79			i	7.7	0.9	0.1	.4	Ġ			v	2 2	3 916	_;	*+	_		<u> </u>
818	+	Beforsite, weathered	Mcb1	142	228						-	4.	œ	S	9		₩	3 856	_	~+	4	 83	88
8.3	1- 10		Mcb1	55	91		L.,		•			.5	&			_	8	4 853	긔	~-1			X
820		Beforsite	Mcb1	-	10023	⊢	L	l	Ŀ		0.1 K 0	.5	41				× 8.	3 850	긔		-4	~	36
821	2	Beforsite	Ncb1	+-	108	٠	L_	1	Ш			.7		Ш			8	3 96.	"		\perp		8
822	+		Hcb1	7.9	165	⊢	L	1	<u> </u>	IJ	_	9.	4				18 K	3 591	Ц		\dashv	_	3
823	+		Hcb1	36	110	₽-	L_	ı	┖	U	L.,							\Box					24
824	4-	weathered	Mcbi	150	262	⊢	_	l	<u>L</u> _		<u> </u>						Ì	33 715	_1	× (<u> </u>
208	5	1	Mcb1	1020	1617	ŧ	乚		1_			L						_					455
┿	+-	Beforsite	Mcb1	51	118		L		L.	İ						v	J	_		× 1	\dashv		8
827		Beforsite	Mcb1	288	1312	٠.	ᆫ	-	Ļ								1						쮦
828	+-	Arkose, Bre. & carbonated	Ash	1561	1862	-		l	L.	İ	_								_		-1		2
+-	9	Bre.	Nsh	4105	4485	1222 1	155.3	32.4 11	11.6 1	16.1	2.2 10	10.1	187	31	89 85	822	30 8	85 8904	5280	80 17242	-	10.62 12	2
830	+	Bre.	Nsh	598	1019		Ŀ	ļ	ļ										_			_	82
+-	4—		Nsh	1309	2341	┞		ı	Ļ.		Ш							Ц	_	+	-		88
23.5		Bre.	Nsh	125	217	-	<u>_</u>	١.	ļ.,		L.,								_				2
833	+	Bre. & carbonated	Nsh	143	266	⊢			L.								1	_	_		_	٠	E
┾┈	-		NS.	88	346		_										- 1	_			_	_	3
+	+		MSu	693	1328	·	L		L									_	_	-+	_1		340
836	-		NSn.	445	923	_	<u> </u>	1	·	1	L	L			_					_	_		Š
┿	+		nS/k	261	464	١÷	<u></u>		1		L	L				_	l	L		\vdash			127
1.	+		(S)	524	006	₩	L	ı	Ŀ		L	Ľ			L	L	ľ	_	<u> </u>	1			239
230	┰		NS:	526	948	┼	1_	ŧ	↓_	ı	_	3.1	L	l	L	L	1		L.				241
-{-	+-	ŀ	157	018	1250	ļ.,	_	ĺ	Ŀ	ļ	<u> </u>	L	L			L.	l			-			331
╁╌	+-	ı	NS:U	331	699	-l	L.	ĺ	1_	l	L	L			L	L				Н			203
1	+	•	ns,	995	1882	ļ	L	ł	ļ		_	<u>L</u> .		_	_								495
-	+-		Msu	222	340	ļ	L		<u> </u>	5.4	0.7 0	1.7					1			_	_		န္
┿			Wsu	267	483	⊢	L_	[Ļ	7.2	1.0 1	L											128
845	+-		WSII	102	206		L		ᆫ	1.6	0.2 0												22
SA6	+	1	Nsu	344	787	{ -	<u> </u>	1	ᄂ	5.4	0.7 0	0.5								-			8
	✝⊏	1.	Msu	962	1316	 	l_	ı	╙	6.2	0.8 0	_		ļ									器
٦̈ -	-10	1 2				1														. [ļ		
848	2	Reforsite An	Kcbi	229	360	<u>L</u>	l		L	L	L	L	15			33					-		6
-}-	, u		NCB.	522	780	L	L	}	L	L	<u> </u>	L	35			13				1			199
	è	An	Mch	566	943	230	29.7	6.3	2.1	0.7	0.1	5.8	14	27	32 26	260	5	8 8190		7586 K	100 4.	4.60 2	2206
┿	ıc	W.	Mcbl	99	106	L.	Ŀ		L	L		L	13			(2)							8
- }	12	An	Mcb1	88	173	<u></u>			<u> </u>				6		_	35 K							윔
263	3	Reforest to An	Mcb1	92	275	L.		١	1	L	Ŀ	L	У 5		_	31		İ	L	L			حَا
-4	3	Deluistos, rui	11000	7	;	1	J		Ţ							-							-

B-3 Geochemical Analyses of the Orange Area (20)

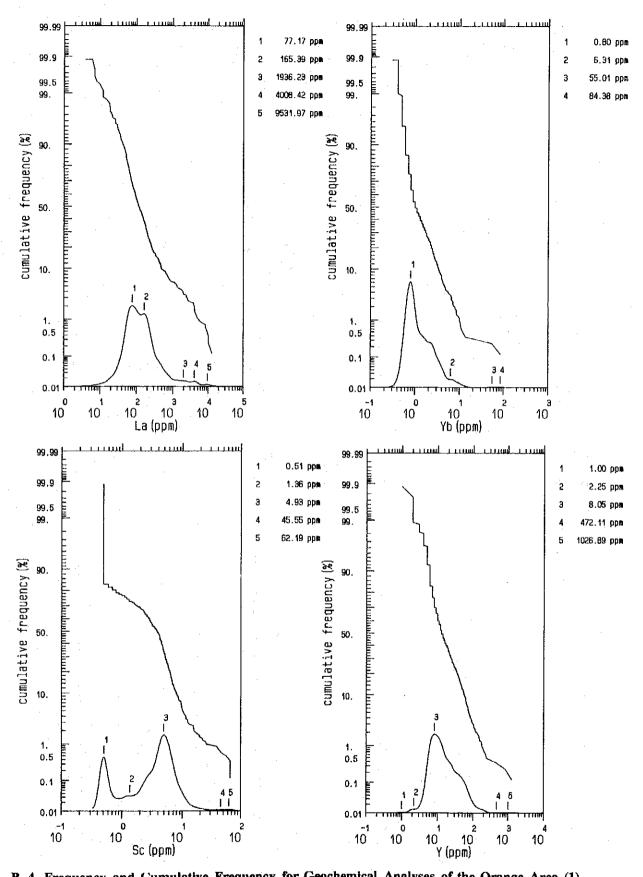
8203	u dd	594	1233	700	503	637	918	804	827	615	667	286	790	940	296	135	451	1240	474	747	477	1272	745	808	288	222	-	377	1029	315	448	539	609	341	555	393	457	877	411	423	340	242	282		246	363
				-		-	-			_			+		_	_	$\overline{}$		_	-	_			_	-	_		.71	42	- 35	.61	38	71	.13	.93	.47	. 70	. 55	14	24	.42	. 97	.16	3.38	.75	.33
} -	, Made	_	_	_	_	_	_	_		!	↓ —	┞	-				٠.				-			_		_			٠.	-	_				-	_				-		-		100	\dashv	9
}-		-	ш	<u> </u>		-				Ļ	↓ —	╁	ļ	-		Y	_					<u> </u>	_		_			v	v	v	v	v	Ü	٧l	٧l	$ \cdot $	v	U	v	v	v	Ÿ	IJΙ		٧l	4 7
<u></u>	E dd	L.		L.			_		_	<u> </u>	L	┖	Ŀ		\Box	<u>.</u>	_									Ц	- 1						إند							-		-		3 8050		₹
L	E dd.			Ц_						L.,		L	_	L.,		L							_					679	1075	768														6403		596
1	E E	!		1				. 1	ŧ I	1	ı	l	1					[ers .X.	13	5	Ÿ	3	9	9	80	80	9	9	9	3	3	7	3	8		11
2	, E	3	11	\$3	8	21	4	80	10	~	15	13	9	3	2	16	13	9	51	13	•	14	14	-11	13	2		7	7															2	ı	
2	텶	310	1689	1901	477	892	173	262	368	371	697	1538	234	244	114	247	432	791	3957	935	1657	535	2256	805	919	0.9		E	147	799	12	က	₹.	71	15	1737	3039	98	10	104	2520 ×	616	945	533 K	1573	449
5	E Ed	53	53	52	18	16	9	9	σo	2	E	12	101	40	7	-	32	121	22	18	Ξ	20	34	3	4	3		6	53	æ	7	14	18	8	15	8	13	92	22	မ	13	10	6	į	Ŋ	4
-	Ed.	_	9	17.	3	7	3	2	က	4	4	က	m	2	ო	17	12	2	17	2	ı,	8	6	3	4			.7	8	: ©	1.	1	_	Ţ		14	14	-		9	6	S	œ	2	~	_
ı	, edd	l	17	88	- 22	9	6	-	7	6		တ	01	61	19	17	<u>e</u>	16	23	14	-18	22	17	6	9	7 K		× 8	4	7	6	13 K	×	9 Y	7 7	9	7	χ Χ	2 K	မ	S	2	2	9	2	9
ı	d model	i		1				ı	ı	ı	1	ı				l	ı	ļ		[0.6	- 2	8.	3.7	.7	.9	.3	9.0	7.	0.3	α0	5.0	-	4.6	4.0	8	5.2	<u> </u>	
L	id.	<u> </u>		<u> _</u>	_		L.	_	_	L	l_	↓_	L.	_		_	L	ᆫ	_	<u> </u>	Ш		L					-		_	_	L		_		_	L	L	Ŀ	L	<u> </u> _	L.	Н	Н	Н	-
ı		1	ļ	l				IJ	1	ļ	ł	1	ł	j			ŀ	l	ĺ	l	i		i	U	l.	IJ		v	L.		\mathbf{v}	v	V	v	×	يعا	v	<u>اح</u> ا	v	V	v	v	v	4 K 0.1	V	4 X 0
L	80.	<u>L</u>	╙	i_		Ŀ	_	<u> </u>	┖	L	1	┺	┺	Ļ.	_	L.	L	<u> </u>	Ļ.,	_	ļ	L_		╙	L_	l_l		L.,	ļ.,,,	L	_						L.	L	L	L	_		Ш	0.4		0
П	edd	ı	3.4	1	ì			l		ı	ı	1						1	١.		ı	Į	l	ĺ				l]							l		1		L.	1			0.7		0
L		1_			1		<u> </u>				L		1	L_				Ŀ		<u> </u>		_	L.	L_				l_	<u> </u>	L	l	l	Į		٠	l	1.		ı	1	1	ĺ	, ,	1.5		1.4
5		6	16.9	17.9	11.3	4.4	12.0	12.3	8.8	11.6	18.4	8.0	6 01	16.0	9.7	5.8	7.3	25.9	12.2	10.9	2.6	19.5	10.1	8.7	4.3	4.3		8.4	20.8	9.8	11.7	16.4	10.0	6.9	13.2	8.5	8	14.4	9.9	8	6.2	7.2	4.9	8.9	5.6	7.2
3		B	132	88	65	8	28	8	22	98	6	72	02	8	93	24	48	139	21	92	48	135	74	69	35	32		52	142	45	89	8	88	20	94	51	29	109	29	7	46	31	37	49	33	20
3	3 6	262	567	270	179	293	358	311	414	237	25.5	219	332	349	223	35	190	517	189	283	210	494	302	466	113	83		142	410	115	166	200	223	134	207	147	191	343	162	154	142	97	122	181	105	162
-	1 E	131	263	172	133	184	285	225	172	174	128	168	215	275	168	23	103	539	108	225	107	360	506	185	92	58		33	233	71	100	128	157	74	120	100	101	873	88	91	88	51	57	78	48	69
1 4000		 	├-	Ncb!	Mcb1	Hcb1	Mcb1	Cb1	Hcb1	Light.	15	YCh.	Ich:	Ncb!	Mcb1	cb]	Ncb1	Hcb1	Nebi	F.C.	NCD1	Ncb.	Ncb1	Mcb1	McD1	Mcb1		igopi Kepi	Hcb1	Mcb1	Sebi-	Mcbi.	¥cb1	Mcb1	Mcb1	Ncb.	Mcb1	Hcb1	Kcbi	Ncb1	Mcb1	Mcb1	Mcb1	Mcb1	Mcbl	Mcb1
F							-							2							-	-			*	~				_	-	-	.	2.	*	*	, A.				2		æ	æ	*	Ž.
															Ì.															ich	ich	ich		ıch				ig.	101			co	ich	ıcı		
Dool: None	N TOTAL					Weathered	weathered	weathered	weathered	Westhered	vest here	weathered	venathere.	weathered	Weathered	Weathered	weathered	weathered			fractured	fractured	fractured	fractured	fractured	fractured		Weathered		sulfide rich	sulfide rich	sulfide rich	weathered	sulfide rich	weathered	westhered	weathered	sulfide rich	sulfide rich	Before te weathered	weathered	Sulfide rich	sulfide rich	sulfide rich	weathered	weathered
200	Š	te.	1					E				9						1																	te, vea		. н				re wea			ce, sul	Le, wea	te, wea
		Beforsite.	Beforsi te.	Refors te	Befors te.	Befors: te.	Beforsite.	Beforsite.	Beforsi te.	Reforsite	Refors to	Refore te	Refore to	Reforsite.	Reforsite.	Seforsite.	Sefors: te.	Beforsite.	Beforsite.	Refors te	Beforsite.	Reforsite	Beforsite.	Beforsite.	Beforsite.	Beforsite,	E 1	Beforsite.	Befors: te.	Befors te.	Beforsite,	Beforsite.	Beforsite,	Beforsite,	Beforsite.	Beforsite.	Reforsite	Beforsite.	Beforsi te.	Porsi	Beforsite.	Beforsite.	Beforsite,	Reforsite,	clorsi	Beforsite,
1	No.		12	27	30	32	35	37	+	╁╌	┿	+-	+	╁	H	+	+	2	22	10	1	S	-	┿	+-	+	MJNO-		'n		15	2	22		٠.	-	+-	-	+-	╄	+	+	75	3-80 B	_	_
r	2	854 2-	-	856 2-	+	1	┿╾	860 2-	861 2	698	26.2	+-		366 2	267 2	+	+	870 2-	+	t .	873 2-	- -	875 2-	┿	+-		Ŕ	879 3-	-1	┿	١	1	+	t	1	+-		+	890	+-	t	+	+-	+	+-	+-
Ċ		100	-		000	000	000	000	• ∞	0	<u> </u>	3	9	×		~	~	000	000	100	100	1	0	=0	100	∞	L	9	000	· loc	00	100	∞	00	100	00	00		0	•	000	~	œ	∞	000	φò

B-3 Geochemical Analyses of the Orange Area (21)

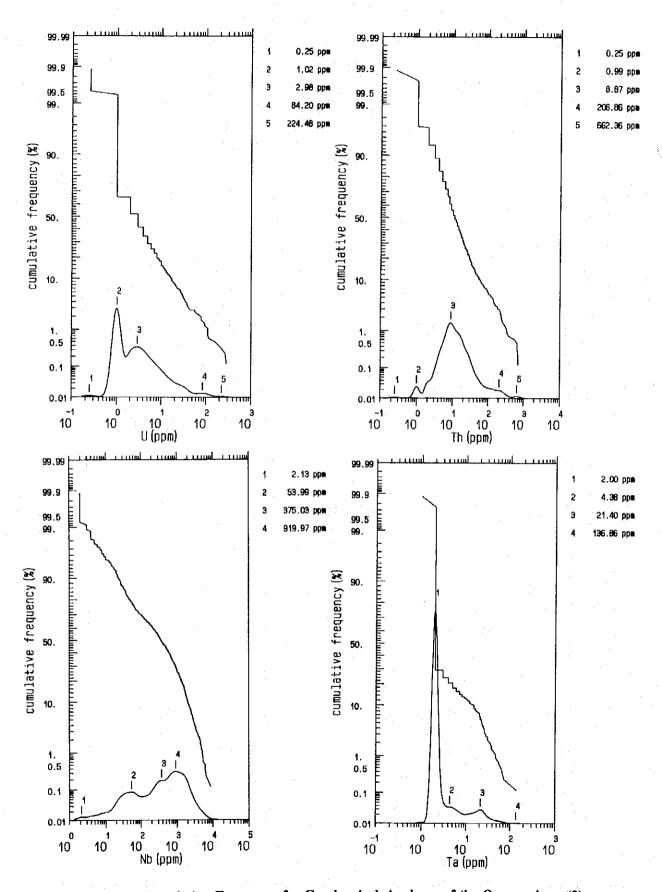
ا	-		V		-	ŀ		L	Ŀ	Ĺ	L	Ļ	>	=	ŕ	4	ŕ		L	į.	0	l	0000
ģ	Sample	NOCK NAME	name	KOCK Code	3 8							2 6	, diam	5 6		900	p 100	TO DE					2 5
898	3- 95	Beforsite, weathered	ered	Ncbi		741	307	41.5	7.2 3.0	0.7	k 0.1	1		9	216	089	9	7	8564	12522 K	100	 	1904
668	3-100	1	Fe oxide rich	Mcb1	117			_	L	I	l	L	8	2	r.	28	2	14	<u> </u>	×	L.		494
906	3-105		Fe oxide rich	Hcbi	274]	i		ļ		3	94	1266 K	2	8	ш	Y.			1789
106	3-110	-		Mcb1			IJ	Ц			l l			3	က	1416 K	2	9	_	ᆈ		4	8
305	3-115	Beforsite,	ered	Mcbi				_	- 1		I	_			8	22	× ~		-4	_		4	1916
96 8	3-120		ered	¥cb1	_		- 1	_	Į	Ė	I	_		E	7	716 X	2	5	.4	× 7899		_	250
904	3-125	Beforsite,	sulfide rich	Hcb1			- 1	_	- 1	i	}			9	2	370	¥ 0		_	25 25 25 25 25 25 25 25 25 25 25 25 25 2		4	72.61
906	3-130	Beforsite,	sulfide rich	¥cb]			- 1	_ [ŀ		[S	20 X	× 7	e (4	6578 ×	00	4	443
906	3-135	Beforsite,	sulfide rich	Mcb1					.			_		1	Ċ	162 K	×	ر	_1	6870 ×	-		33
907	3-140		sulfide rich	Mcb1			1							2	21	780 ×	× 2	3		6706 K	-	٠	809
808	3-145	, ,	sulfide rich	Ncb.			i I		.			4 l	9	n	ານ	369	× 7	က	- ↓	6154 ×	+	4.93	272
606	3-150	Beforsite, sulfi	sulfide rich	HCb!	119		- 1	ᆜ	1	ŀ	. C	.; .;			121	× 26.7	× 7		_	(415 ×	100	_	ŝ
) Z C W	0-4					ı		Ì	ļ	. Į								ļ		1	-	
910	4-0	Beforsite, weathered	ered	Mcbi	46	107	_		0.8 0.7			4.4	S)		2	X X	× 72	က	_	5812 K	8	7.	243
911	4-5	Beforsite, weathered	ered	Hcb1	38	74	_				0.1	4.5	S	~	15	1574	13	4	_	ᆈ			8
912	4- 10	Beforsite,	ered	HCb]	46	22	Ш		0.8 0.	Ц	یا	4.4	9	-	2	835 K	× 2	က		v.		3.01	23
913	4- 15	Beforsite,	sulfide rich	Hcb1	86	201	_				v	5.7	14	2	49	2831	11	14	_	5318 (. 07	507
0.0	4- 20	Beforsite,	sulfide rich	KCD.	30	29	<u>L</u> .				v	9.3	5	11	140	7391	113	23				5.42	164
915	4- 25	Ł	Fe oxide rich	Mcbi	53	64	L				v	14.8	5	2	14	4598	94	80	_			8.82	160
916	4- 30		Fe oxide rich	McbI	22	72	_		.0 0.7		v.	2.2	5	14	114	8609	103	44	_	ν		. 18	158
917	4- 35		sulfide rich	Hcb1	66	178	Ŀ		L		v	2.9	7	13	12	5678 ×	2	4		5194 K		91.	411
918	4- 40		Fe oxide rich	#cb1	931	1384	.277	53.3 10	10.0 1.2	2 0.7	, k 0.1	6:3	15	Ţ	7.1	116 K	×.	က	6107	5212 K	100	3.34	3262
919	4-45	Beforsite, weathered	ered	Hcb1	373	544	_				یا	6.8	읔	2	21	1879 <	× 2	<u></u>		5314 ×		22	1302
920	4-50	Beforsite, weathered	ered	Mcb1	112	199	Ц		4.			8.7	=	2	7	1037	× 7	ر	_	2834 ×	-4	55	512
921	4- 55	Beforsite, weathered	ered	Ncb1	129	230					v	8.3	13	4	=	216	ري ح	 	_	3860 ×	-+	56	228
922	4- 60	Beforsite, weathered	ered	Mcb1	116	201				_	v	5.8	6	12	14	6177 K	× 7	ر	_	5392 K		70.	473
923	4- 65	Beforsite	-	Mcb1	132	230				_	v	9.8	11		15	98 98	Y 7	3		4160 K		. 45	545
924	4- 70	Beforsite		Mcb1	105	202			٠	7 0.7	1.0 ×	7.5	10	-2	11	300 ×	× 2	e E	↵	6232 K		.98	461
925	4- 75	Beforsite, weathered	ered	Hcb1	146	897	_	l	L	_	v.	0.3	es.	-1	11	S.	2 ×	3		7220 K		.00	608
926	4-80			Hcb1	88	160			L		×	2.7	10	12	12	1570 ×	> 2	3		5630 K		.73	369
927	4-85	Beforsite		Hcb1	295	764		1		8 1.1	0.2	6.4	16	4	43	568 ×	2 ×	3		5112 K	Н	82	1858
926	4- 90	Beforsite		Mcb1	130	324		i			v	6.5	13	Ξ	23	3298 ×	× 2	3		5644 ×	100	8	743
929	4- 95	Beforsite, weathered	ered	Mcb1	387	280	_					6.6	16	9	25	1965 ×	× 2	_ص	_	4484 ×	-	.27	1373
930	4-100	Beforsite, weathered	ered	Hcb1	493	752	L					6.5	15	2	25	434 ×	2	3	_	5638 K	-	. 13	1870
931	4-105	Beforsite		Mcb1	88	165	L			8 0.8	v	5.3	11	28.	13	7358 K	2	3	_	6010 K		. 65	409
932	4-110	Beforsite, weathered	ered	Mcb1	152	256	_					7.3	13	2	14	777 ×	× ~	3		5978 K		. 15	652
933	4-115	Beforsite, weathered	ered	Mcb!	214	351	_			_	¥	7.5	13	1	31	17 ×	× 7	33	\dashv	7432 K		.87	998
934	4-120	Beforsite, weathered	ered	Mcbl	276	385					v	6.5	11	7	14	414 ×	7 7	2	_	4996 K		.72	939
935	4-125			Mcb1	49	87					\mathbf{L}	5.9	6	S	4	1121 ×	× ~	3		5634 ×		. 14	232
936	4-130	Beforsite, weathered	ered	Kcb1	95	83	Щ				یا	4.0	7	2	43	6324 ×	2	2	_1	4930 ×		33	2112
937	4-135	Beforsite		¥cb1	81	145	Щ	6.6	1.1 1.	0.0	v	5.6	¢-		9	126 ×	2 ×	3		6234 K		8	360
938	4-140	Beforsite, weathered	ered	Hcb1	52	45			.7 0.7		- -	4.9	ς. Q			225 ×	× 2	~	_	4934 K		68	127
939	4-145	Seforsite,	sulfide rich	Hcb1	35	146		9.4	.2 1.	2 0.7	, к	7.3	80	1	4	× ∞	× 7	3		5556 K		- 35	383
<u> </u>	4-150	Beforsite,	sulfide rich	Mcb1	62	142	Ц	4.9	.3 0.	7 0.5	× 0.1	5.3	7	3	11	2577 ×	2	3	6242	5890 K	100	.49	322
	MJNC) – 5																,				_	-

B-3 Geochemical Analyses of the Orange Area (22)

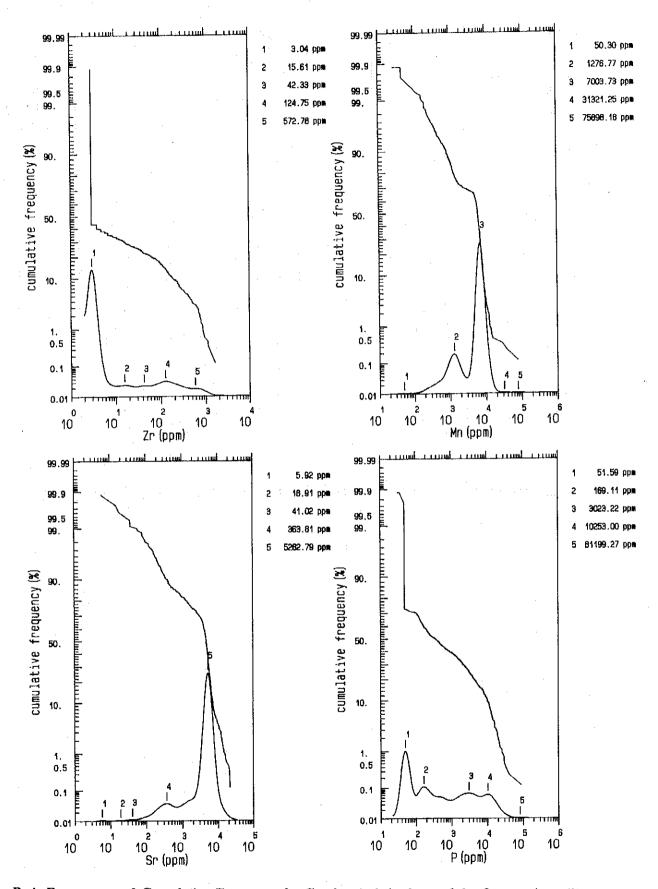
S	1	2	-	2	اچ	ج	4	6	စ	စ္တာ	ıχ	ကျ	22	3	4	တ္ဆ	9	5	راچ	3	3	ရှုန္		3	2 5	2	9	gle	2 0	263	6	9	ž	9	2	÷ l	<u> </u>		8	2	g.	S	-	ì
T-8203	ndd.	-		≅∫	5	7.	ę,	4	80	æ	9	జ	ض	175	5	4.	7	7	3		3 1	í	75 	7 6	اِدَ ا	ä	100	202	200		2	2	2	•4	4	ιñ.	7		7	_	16	5	4	ć
Fe	+	_		6.40	3.28	4.39	3.01	4.45	2.94	3.56	5.12	4.65	4.77	5.85	5.06 5.06	4.28	2.34	4.03	5.34	4.31	S);	25.	1	Ø;	4.11	7.37		9,44	900	3 2	4.88	3,39	4.87	3.32	2.95	82-9	2.91	2.83	3.14	4.36	4.64	3.12	3.63	
4		4	-	4	130				_		Н	\dashv	-	5860	-		-	+	+	-+		3	3		8	88	╌	45560	132	100	ļ	100	_1	_	_		_		-1		\perp		1991	
L.		_]		ᆚ	لع	v.										v.	ν.	v .	ZĮ:	ᆚ	4	¥ .	y 21:	¥	_	4			36	6386 X	Iv.	IV I	VΙ	V.	VΙ			1		I	L., i	LШ		
	1		_[_	_							<u></u>		4990	_	_	_	_1	_			_		2 6916	4	4	1	-1-	-	┿-	١	\vdash			-+			-			\vdash	Н	Н	
두	Edd.	(4)	576	858	670	653					L	ш		_1.		980	555	247	030	-4		250	8	7372	4	4	ŀ	4	300	6014	631	1		618	-		1		828	8	525	6738	765	
J 2	Eldd.		5		9	3	4	3	ς 3	07	3	9	7	3	17	9	3		3	χ (2	2		m	4	2	,	200	3 6)) ()	3	3	3	3	3	3	3	3	3	9	9	3	< 3	
ľa	bdd	4	6	8	2	4	4	3	2	2	7	[]	9	13	14	œ	2	12	7	77	Ξ,	77	2	7	7.7	4	6	77 0	30	7 ~	2	2	2	2	2	4	2	7	2	2	2	2	2	
QΝ	E.	3	1347	2	21 X	1180	903	182	158	632	813	1009	3023	714	594	3590	482 ×	1579	× 45	459	603	5	X [8]	25 X	191	222	000	× 8/21	200		4532 K	× 62	$1094 \times$	2503 ×	1563 ×	502	> 285	1055 K	929 K	1819 X	1508 K	484	2645 K	
-	udd	_	_						Ш		L.			80			-4		4	ς,	-1	57	4	16	-	4	Ļ	ر د د	7	2 1/2	000	L_{\perp}									Ш	50	48	
	-	4	~	2	1	ນວ	3 -	ī	7	7	4	61	8	10	99	8	2	34	_	8	-				18	9		- 4	<u></u>	- 10-		-	4	4	4	4	2	2	2	4	9	9	4	
-	ndd.		6	_	8	ي	9	5	9 8	10	L	L		10				\rfloor	Z Z		20	× O	اي	×	20			_		4	E	у 6	7	8	. 6	9	19	5	2	2	9	3		
	ppdd	-																			٠			_			ļ	5	1	5					i.			_						
Sc	bba	5.3	3.8	5.1	3.7	3.7	3.7	3.9	3.6	3.9	4.5	3.5	4.2	4.8	3.7	4.7	4.9	5.3	4.0	3.8	4.6	4.3	4.	4.4	6.8	5.1		0.5	٩	3 6	7.4	3.9	9.2	4.5	4.5	< 0.5	1.9	3.0	2.2	3.3	5.0	2.9	4.1	
3	add.	0.	0.1	0.1	0.1	0.1	-:	0:1	0.1	0.1	0	0.1	1.0	0.1	0.1	0.1	0	0.1	0	0.1		-		0	-1	9.1		0.5	- 6	3 -		3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Yb	bba	0.7	0.9 ×	0.5 K	1.0 K	0.8 X	0.9 K	0.4	0.6 K	0.7 ×	0.4 K	0.5 K	0.4 K	0.5 K	0.4 K	0.4 K	0 4 K	0.4 K	0.4 X	0.4 X	0 X	0 5 X	0. 4.	0.4 X	0.0 X	=	ļ	4.6	10.5	0 00 0 0	8	0.7	6 0	0.7	0.6 K	9.0 K	6.0	0.7 K	9.0	0.7	6.0	8 0	0.7	
1	pou	ŀ				ı	1		1	1.1	1.2	.5	_	1.2	Ь.		_		۰				0.8	8 0		1.2		8.4	5.3	6.7	8	0.6	0.7	7.0	1.0	9.0	6.0	0.9	1.0	1:0	0.4	5	1.2	
		1			ı	ļ.	ı	1		3.0	8-2	3.2	5.5	2.9	2.2	1.7	1.2	. 0	.3	2.	.3	2.4	5	1.4	6,1	8.8].	27.6	_		L	1.5	L					乚			9.	3.4	25	
_		_			<u> </u>	<u> </u>	L	ļ.	L	Ļ.,	↓_	<u> 1</u> _	L	14.8	<u> </u>	Щ		\Box	_]		_	Ц	3	4	∞	7	- 1		- 1	43.5	1	1	1	1	1			ı		ı			1	
S	bbs	-			l	Ι.	l	L.	L.		L	<u> </u>				L											- 1			-+-	+-	4	1	⊢	├-	⊢	-	_	⊢	! —	1-	 	ļ	
Ŗ	д		L	L	L	_	ŀ	L	L	L	L		L	54	<u> </u>								L.				.			36	1	1	_	<u> </u>	Ŀ	_			L	L	<u> </u>			
లి	Bod	292	496	342	397	230	23	99	359	286	287	403	88	222	216	191	87	103	129	130	118	185	117	97	130	422		914	1302	55	;	312	83	9	130	200	76	105	69	110	622	196	149	
2	add	177	321	232	291	28	151	102	205	166	163	207	143	139	132	77	45	64	.08	84	17	164	92	79	96	318		467	926	717	3 19	62	73	52	125	177	59	\$	46	65	407	168	112	
Rock	Code	Hcb1	Hcb1	Mcb1	Nebi	icbi	Hcb:	ieg:	Hcb1	Mcb1	Hcbi	Hcb!	Mcb1	Mcbi	leb!	Mcbi	Hcb1	Mcb)	Mcbi	Mcb1	Mcb!	Mcbi	¥cbĭ	Mcbi	Mcbi	¥cb1		Mcb2	Mch2	202	16 P	HCb2	Mc b2	Mcb2	Nch2	Mcb2	Mcb2	Mcb2	Ac b2	Mc b2	Ncb2	Hcb2	yc b2	
			-	T	†		<u> </u>	1	T		1				-															1	T		T	Ť							1		1	
											-					rich	rich	rich	rich	rich	1.ch	ich.	ich.	1:	15. 15.	ich			io.	ر ا	3 6	101	107	ioi.	ich L			i.ch	ich ich	ich	5			
Rock Name		weathered	weathered	weathered	weathered	Weathered	ric	Phi rich	1.0	rich C	rich	12	Ph rich	rich	rich	Fe exide rich	Fe oxide rich	Fe oxide rich	Fe oxide rich	Fe oxide rich	sulfide rich	sulfide rich	sulfide rich	sulfide rich	sulfide rich	sulfide rich		weathered	sulfide rich	sulfide rich	Delorsite, Suilfide flow	sulfide rich	sulfide rich	sulfide rich	sulfide rich	Phi rich	Phl rich	sulfide rich	sulfide rich	sulfide rich	Sulfide rich	rich		
300					1	.1	.1	<u>اج</u>	논	노	눔	Æ	. I	E	E		ŀ	1			١.	f.				! !					ng 's			. Ł	1	1 .	. i .							
		Beforsite,	Beforsite.	Beforsite.	Refors te.	Reforsite	Refors te.	Reforeite	Refore ite	Reforeste	Refore to	Reforsite.	Reforsite.	Beforsite,	Reforsite.	Beforsite.	Beforsite,	Beforsite,	Beforsite,	Beforsite,	Beforsite	Beforsite,	Beforsite,	Beforsite,	Beforsite,	Beforsite,	မွ	Beforsite,	Beforsite,	Beforsite,	perorsite,	Reforsite.	Reforsite	Reforsite	Beforsite.	Reforsite	Beforsite.	Reforsite.	Beforsite.	Reforsite.	Reforsite	Refordite	Reforsite	
9		0 Bet	+	 	+-	+-	✝∸	┰	-+-	+-	-1	-	+-	+-	+-	+-	┿	0 Be	75 Be	80 Be	85 Be		1-			55 Be	9-0N	0 Be	5 Be	-	90 C1		+-	1	+-	+	+	+-	-			~+~	-	
Samo	, <u>0</u>	r.						2 6			2 7		, ,,	5-5		2	5-6	5-7	5-2	5- 8	5.8	5- 90	5.0	5- 95	5-100	5-105	ONIW	2			- 6					6-4	6-5	5 -5	6-6	9-9	2 6			
NO.	·	941	Ι.,	1	3	3	3	2	870	070	200	S L	650	953	7	355	926	957	958	959	98	361	362	963	964			966	267	968	200	971	512	22.	374	3,5	976	977	97R	0.0	8	3 3	18	

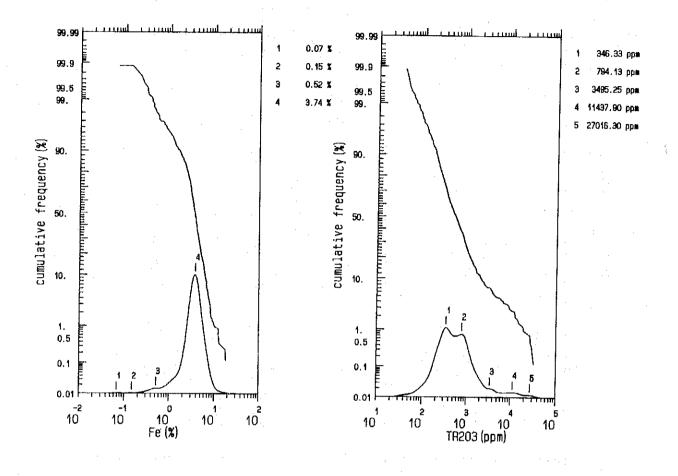

B-3 Geochemical Analyses of the Orange Area (23)

	203	657	933	869	879	8	201	- 6	2 3	500	300	3675		248	346	3	Ξ	=	జ్ఞ	898	127	£	3	2	8 2	200	312	32.5	320	53	953	8	8	98	9	9 :	217	5 8	38	36	3 8	36	Ţ	
	T-R203	4	Γ	ļ.			_	1		1		1											ľ	Ţ					_							-			2	,		-	-	
	e >	3.31	2.16		i l	- 1	- 1	3	1	ŀ	1 6	2.40	5	2.06	5.93	3.57	7.7	9.0	1	3.58		- 1	- 1	- 1	- 1	20.0	3 C	1 2	2.54	4.0	ļ		2.82		-1	2.24	2.3	00.00	200	2	1	6	3	
	a, [25600	7014	11086	7869	12660	4056	11430	78501	23/100	3040	5054		20640	6782	6226	200	음 각	음 오	11974	3346	4392	3478	77761	3072	2003	16856	30640	448	20840	14628	7036	9252	26560	1364	19030	15140	04701	17107	17576	9200	15360	7007	-
	i S	9588	9534	6462	11540	7312	200	00/501	00001	6000	78001	132.14		5336	3480	4186	1243	2454	1773	5528	5828	5856	5834	57TC	9619	2010	5790	5192	6176	5186	6532	4926	4862	6462	5914	2030	2012	2010	4086	2010	6554	7100	77.	
1	5 8	7182	6948	6444	5816	6222	0470	45,00	2000	0999	22.00	5572	200	5274	10734	7152	15122	11330	418	6500	7208	7820	7122	2	55.4	0310	5050	2688	7522	4668	8099	6942	6544	6358	259)	0190	7550	0430	2162	270E	2750	8038	2000	
	7 5		m	3	3	<u>در</u>		77	2	7	20	2 60	•	က	4	23	4	210	3	က	က	6	m	٦,	7	26	2 6	300	o (*.	,	6	3	က	2	2	7	2	3 6	3	-	3	7	7	
	Ta E	2	× ×	2 K	2	×	7 C	7		7 0	y :	2 C	1	ı.	2	2	4	2	3 ×	7 7	7 7	×	× ~ .	7	7	y 2	د . ۷ ۰	4 0	, v	2 2	y 7	× 2	> Z	× 7	×	y \	y \ 9 c	7 0	46	46	4	36	3	
}	9	4777 K	× 885	892 ×	522 ×	× 990	216 K	× ×	y .	2 2	201	539 X		5587	773 K	3566 K	1015	200 ×	340	558 ×	325 ×		144 ×	× 7.79	447 X	× ×	x 2	165	127 K	985 ×	146 ×	821 K	936 K	280 280	× 201	× ;	× 017	200	4016	2012	3 2	2 07.5	2	
1	*	-	5	₽	4	\dashv	+	ω r	+	+	× c	1	4	ļ	44		_	}		9 1	_	2	—†	-+			4 4	-	+	4 15	27	3	4	2		7 0		- 0	20	90	3	- 6	1	
	•	+	,		,d	~~			-	_ .	-	4. ~	-	7 5	1	3	4	53	3	-1	_	_		_	_		- -	-	-	10	-		1	-	_	 	- -	- -	- -	1	- -	-	- 	
	- [- 0C	Y.	S K	ς. Y	× .	Υ,	Υ.	5),	<u> </u>	er c.			6	3		0	7.	33 K	×	14 K	14 ×	×	Y S	<u>.</u>	×	7 2 2	7 22	,	×	1 X	3 ×	×	×	X .	v C		2 2	۷.	4	200	4	
		200	1	1_	ļ		-+		-4-	Ξ:	1	54		51	L							1	_	_[_	1		1	_	47	ļ			ເນ	=	4	\downarrow	\downarrow	5 6	3	7 6	3		
	ၾ ျ	Л.,	1.	<u>_</u>	ļ.,	_	_	_			2	- C	?	9.0	1	Ļ,			5.3		Ц	_	_	2.7	_	ᆚ	\perp	7.7	1		2.0	2.2		1.1	0.7			2.0	3	7:	7,6	2:0	.,	
	,3 <u> </u>		c	0.2	0.3	0.3	0.3	0		0,4		ဂ ဇ	0.0	0.3	0.4	0.4	0.4	0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.4	200	7.0	200	2	100	0.2	0.1	0.1	0.2	0		7.0	7.0	7.0		2	-	5	
	e l	PP4	2	1.9	2.9	2.3	2.4	2.0	5	4.5	7.4	3.0	3	2.6	3.6	3.2	2.4	1.2	1.8	1.7	0.5	0.7	0.8	1.8	3.5	1.9		2 0	0.7	- 1	1.6	1.0	1.1	2.1	9.0	1.8	1.9	7.7	0.7	1.4	L.0	1.1	7.0	
	2	E	0	2.4	2.7	2.6	2.6	 	×.	4.6	8	9.0	3.	5.5	4.5	4.1	1.0	9.0	1.2	3.0	1.1	1.5	1.3	9.0	9	2	4.0	4.0		·	4.8	2.7	2.4	6.8	6.0	6.2	4.2	7.6	ą, c	ن د	0.0	0,0	7:7	
	显		7.4	8.8	9.3	9.9	5.7	15.9	19,4	14.4	16.5	χ - c	7.67	12.3	9.6	8.0	9.0	1.7	2.5	8.1	2.9	3.3	3.1	11.9	18.9	11:7	- 0	20.01	2 -	19 0	9.0	5.4	6.2	14.9	6.1	11.4	12.5	70.	4.5	C:	7	- -	1 . U .	
	易	0 v	31.7	38.2	36.8	30.0	20.7	61.7	74.8	32.0	63.2	36.4	7.5	50.5	43.5	30.9	5.0	∞ ∵.	11.2	32.0	11.5	16.0	13.1	45.4	74.2	49.9	1 .	93.0	0.2	0 V	35.6	20.02	25.4	59.2	6.3	47.9	20.3	42.8	200	31.6	41.0	1.4.1	41.1	
	py y	Eda.	120	146	154	154	8	228	98	4	325	88	704	221	218	100	18	ļ	ļ	ļ	ļ		_		4	-	\dashv	000	2 0	202	152	35	2	216	30	89	174	146	B 5	207	8	\$ 5	001	
	•	- 1	36.	299	281	264	159	438	472	98	4	444	460	474	505	303	49	177	271	341	138	231	166	482	869	졄	459	418	25.	770	371	225	247	565	87	445	ğ	375	480	365	373	3	400	
	 	Edd.	+	+	↓ _	188	-	- 1	_	-4	4	218	4	179	249	125	83	79	140	141	88	107	7.3	192	292	246	201	25 S	202	213	148	116	109	254	47	204	219	88	1,62	9	107	771	200	
	<u> </u>	ege s	360	Hch2	Mcb2	Mcb2	Mcb2	Mcb2	Hcb2	Hcb2	2GP2	Hcb2	nsu	Mch2	Mcb2	Hcb2	Hcb2	Mcb2	Kdd	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	2cp2	765 CD2	acb2	MC102	Mch2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Mcb2	Hc52	McD2	7g2	MCDZ	
	A .	وات	2 2	X	X.	X	Ξ	Σ	A	Ž.	Σ.	2 2	E	*	: 32	×	- X	E	<u> </u>	=	Σ	Ξ	Σ	æ	¥	3	×C :	2		£ 3	2 3	E	-	25.	H	*	2.	ž.	PC :	x : 1	× ;	É :	E	
	Rock Name	- 1	Deformite suiffide rich								Beforsite, Phl rich	Beforsite, Phi rich	Syenite - 7	Referente weathered	Beforsite, Ap rich				. 1	Beforsite	Beforsite, Fe oxide rich	۱.		Beforsite, Ap rich							Referents An rich				Beforsite, Ap rich	Beforsite, Ap rich		Ŀ				A.	Belorsite, Ap rich	
) ie		-		-	} _	1—	-	-	-	щ		-IC) 	+-	+	+-	4-	J		-	╄	+-	+-		-							+	┿~	ļ	\vdash						S Bei	10	
	Sample		0.0	_	+-	+-	-				-	-	0 Z	Г	- 2	7-		Ľ	1	302	+-	╌	┿	7 7- 50	╁╾	Н	<u>.</u> -	<u>.</u>	-+	-+	2 - 2	+-	+-	+	3 7-110		Н			~				Z
	è	.	S S	8 8	886	686	990	991	766	99.	994	988	3	007	998	000		100		1003	00	1005	1006	1007	1008	1009	0101	101	1012		1014	1018	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	_]

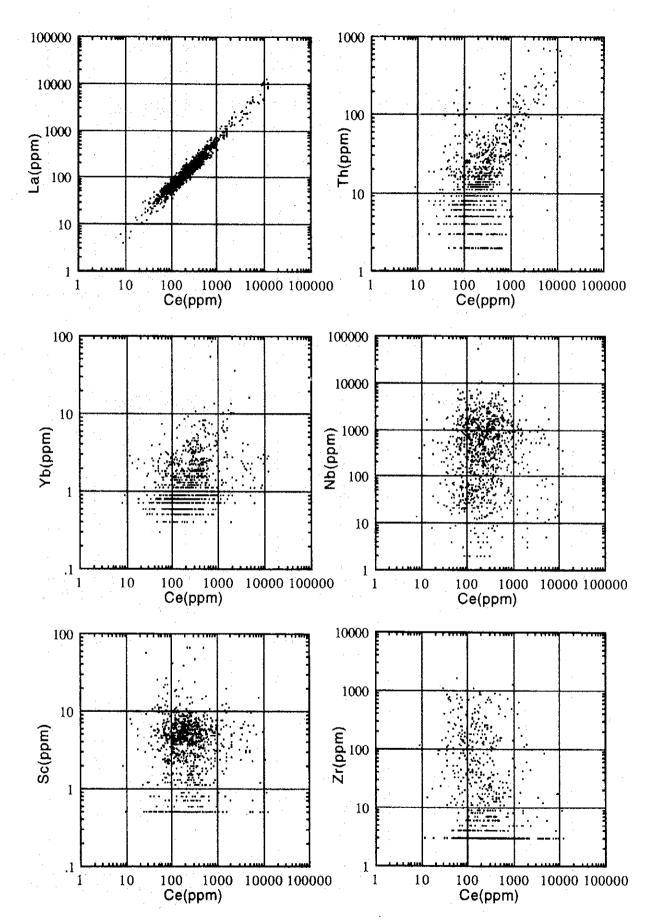

B-3 Geochemical Analyses of the Orange Area (24)

, C	Comp		Book Namo	-	A.O.	1.0	Ι.		_	<u>_</u>	L	1	<u> </u>	<u>,</u>		12	S.	Ta	12	£		ď	Fe. 1	1-1203
	, c	·	- Walter									-			Edd	Edd	W.	ppm	Edd.	mdd.		#dd	_	mdd
28 28	0	Beforsite	. weathered		Mc52	-	168		L	<u> </u>	匚	l	L_	3 22 K	 	1	1134 K	2 K	က	7824	1	8204		473
+-	ı	+	Ι.		1cb2	Ļ.,	١.		<u> </u>	_	L_		ш		2	9	424 K	2 2	m	6212		24200	4.68	1121
1	2	+	J	† -	JC52	85	L.		L.	_	L_		Ŀ		k I	9	40 K	2 K	က	6852	1	733	7.66	166
, 	Τ.	-		f	Mcb2	↓_	Ι.		Ľ.	L	L.,				3	1	455 ×	2	က	11044	У.,	100	6.74	20
032	1 1	+-	e. & carbonated		NSI	L	i		Ŀ						2	6	74 ×	2	14	10974		4130	4.22	7.
+-		+		-	lsh	21	L		_							=	2	× 7	က	7416		6//	7.	977
+		Refors	1		Acb2	223	l		L	<u></u>	L.,					3	569	2	23	204		26980	5.03	7901 1062
035	33	Beforsite		٦	Mcb2		Į I			Ш	Ш			Ш	14	2	2135	S	31	7392		17436	6.81	£
+	ę	Reforsite.	Phl rich	 	4cb2	<u>L</u> .	l						_			S	1245	2	8	2096		18438	7.74	88
┿	1	Refors te.	E	-	Mcb2	L	ļ		<u> </u>	<u> </u>	<u> </u>		ш		 ×	2	660 k	2	172	7048		8652	5.51	<u>≅</u>
+-	1.		E		Mcb2	47	├-		L	L.	<u> </u>		<u> </u>	L.,	k I	1	9 K	2	183	1005		5174	7.15	221
030			E	 	Mch2	L	-		L	<u> </u>			ᆫ		 Y	2	65 K	2	273	1364	~-	5832	7.98	346
	19	Roforsita	E		Mch2	L	┼-		L	L		1	_	L.	3	9	3552 k	2	22	3024	-	34280	4.85	1331
-†		Sefors to	9	T	4cb2	╄	1		L.,	L	<u>Ļ</u> .		Ŀ		~~ Y	2	1010 k	2	3	8124	_	5238	3.12	583
		Reforsite	Ap rich	 	Mcb2	L	Ł		ļ	Ļ			Ļ.	_	 	3	904 k	2 K	3	7300	_	10170	2.72	635
+-		Reforente	Aprich		Mcb2	L	╄-		ļ	Ŀ	ļ_	l	<u> </u>	_	 	9	3128 k	2	15	2296	_	17220	3,70	1146
+	2 4 2 4	Roforsito	An rich	+	Heb2	1	┞		L	L	1_	l	!	<u> </u>	-	3	759 K	2 <	3	4992	$\overline{}$	34880	2.33	1407
+	3	+	Aprich	f	Mcb2	171	1		1_	L	ļ	1	ļ	L.,	 Y	5	1137 k	2 <	. 3	5430	_	12524	1.21	918
				t	Mcl.2	Ļ	H		ļ.,	L	ļ	l	!	L.,	K 1	9	640 K	2	- 20	2794	_	21380	4.28	1018
2 2					Mcb2	1_	╀		L.	L	ļ	1	ļ		 	4	1641 K	2	17	5326	-	19330	3.55	756
+		+-		 	Mch2	<u> </u> _	╀		Ļ.,	L	ļ	ĺ	! _	L	×	3	1783	2	4	6982		4116	2.64	251
040	1	+-		ľ	Mcb2	183	╀		Ļ.,	_	L_		ļ		I	2	84 ×	2 ×	3	6232		17712	4.17	843
+	4	+-		105		ļ.,	146	64 18	18.0 4.7	L	2.4	1.0 0.	0.1 2.7	7 19 k	, ,	3	1542 k	2	4	7158	6330	8176	3.53	435
is.	å			110	-	137	⊬		_	ļ			ļ		k 1	v	3873 K	7	S	6920		8942	85	655
3 6	÷			115		ļ	╀		<u>_</u>	_		l	١		k 1	2	303 K	2 7	ო	7974		15644	2.76	- 130
255	å			120		L	H		L.	L	L.,	ı	 	Ŀ	- X	က	22	2 <	က	8112		1418	3.15	524
3 2	4		Linder	122	T	69	╁		┺	L	<u> </u>		ļ		×	2	152	2 ×	3	7522		2418	2.90	283
32				130	t	165	 		┖	ļ	_	ı	0.2 1.4		L L	3	444 K	2 ×	က	6505		14778	3.02	720
312	۵			5	ŀ	8	╁		┖	ļ.,	L	L	!		- -	2	9	2 ×	က	6618		20220	2.10	843
220	4			137	+	5	╁╌		Ŀ	L	2 1	0	ļ.,	Ŀ	-K	2	618 K	2	8	7120	-	10208	3.30	440
32	4			145	 	09	73		Ļ.	<u> </u>	.4	.2	-		k 1	1	110 K	2	4	7374	$\overline{}$	4408	2.94	252
059	¥			150	-	186	١		Ш	ļ	.6	.8 0.	.2 2.0		, 1	3	1470 ×	2	3	6720		15536	3.04	879
;			- Constitution of the Cons	1																				

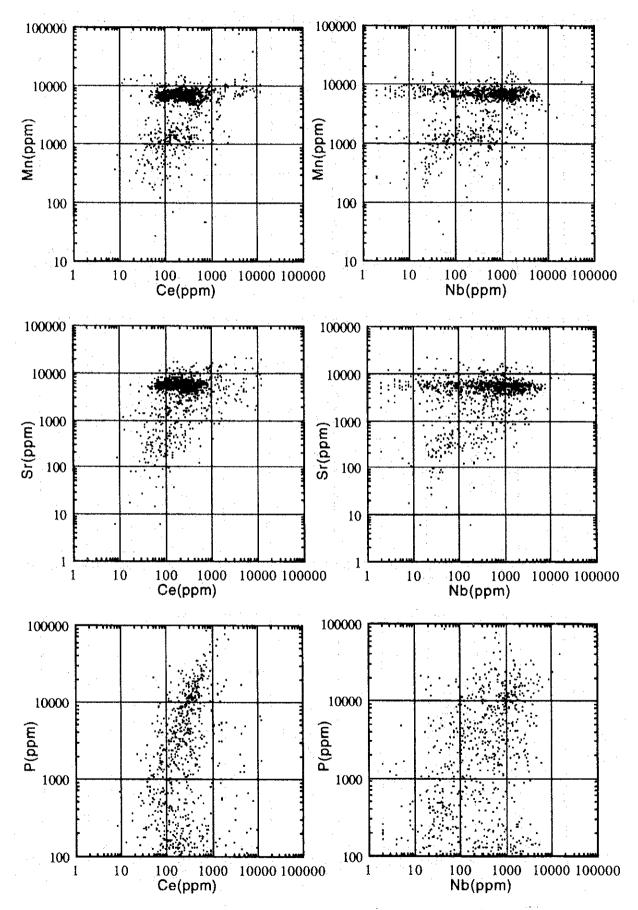

B-4 Scatter Diagrams for Geochemical Analyses of the Orange Area


B-4 Frequency and Cumulative Frequency for Geochemical Analyses of the Orange Area (1)

B-4 Frequency and Cumulative Frequency for Geochemical Analyses of the Orange Area (2)



B-4 Frequency and Cumulative Frequency for Geochemical Analyses of the Orange Area (3)



B-4 Frequency and Cumulative Frequency for Geochemical Analyses of the Orange Area (4)

B-5 Frequency and Cumulative Frequency for Geochemical Analyses of the Orange Area

B-5 Scatter Diagrams for Geochemical Analyses of the Orange Area (1)

B-5 Scatter Diagrams for Geochemical Analyses of the Orange Area (2)

B-6 Drilling Logs of the Orange Area

M J N (Depth	Geologic	Rock Name	Description	Teath-	Sampling Number		0 ∼ 1 Samplin Interva	g l
	Colum	& (Rock Code)		ering	t (Type of Test)	From	to (m)	Width (m)
(m)	# - # - # - # - #	(Kock Code)	0, 0m-6, 5m		KINI a OI Test	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\/	\ <u>#</u> Z
. 5		weathered beforsite (Mcbl)	light brown (5YR 5/6)to light brownish gray (5YR 6/1) beforsite(\$\phi=2\$ to 3mm) with brownish Fe hydroxides	2	1-5(G)	5.0	5. 5	0.5
	* * * * *		6.5-35.0■		1.			
	# # # # #		12-14 (NO)		1-10(0)	10.0	10.5	0.5
10	# # # # # # # # # # #		very light gray (N8) beforsite(φ=2 to 3mm) with dark green, dusky brown, and black minrals which are impregnated(φ=2 to 3 mm) and scattered(d=3 to 5cm)		1-15(6)	15. 0	15.5	0.5
10	# # # # # # # # # #		clear flow banding(< 60 to 70°)					
20					1-20(G, W)	20.0	20.5	0.5
		beforsite		0		1		
	* * * * *				1T-1(T)	25.0	25.1	0.1
25		*	24.5-28.0m rich in scattered dusky brown (5YR 2/2) minerals(φ=2 to 5cm)		1-25(G) 1X-1(X)	25. 0 26. 0	25.5 26.1	0.5 0.1
30			30.4-31.4	•	1-30(G, W)	30.0	30.5	0.5
30	, , , , , , , , , , , , , , , , , , ,		rich in impregnated pyrite(ϕ =1 to 2mm)	:	1 00(01 4)	00.0	00.0	""
35	* * * * *				1-35(G)	35.0	35.5	0.5
33	A-4-4-4-4		35.0-40.5■		1 00(0)	55.5	55.5	""
. 40	#•#•#•#•# #•#•#•#•# #•#•#•#	weathered beforsite (Mcbl)	light brownish gray (5YR 6/1) to brownish gray (5YR 4/1) beforsite(\$\phi\$ = 2 to 3mm) with brownish Fe hydroxides	1	1-40(6)	40.0	40.5	0.5
			40.5-52.0m very light gray (N8) beforsite (ϕ =2 to					
45			3mm) with black, dusky brown, and dark green minerals which are dotted(d=2 to 3mm and spotted(d=5 to 30 cm), and with a few pyrites(φ=1 to 2mm) ∠60°	0	1-45(G, W) 1R-1(I)	45. 0 45. 0	45. 5 45. 1	0.5 0.1
50	# # # # #	4.	40.5-42.0m & 48.0-50.6m rich in dark green, dusky brown, and black minerals(ϕ =1 to 3mm)		1-50(G)	50.0	50.5	0.5
	• • • • • • • • • • • • • • • • • • • •		clear boundary (∠45°)					
55			52.6-66.0m very light gray(N8) brecciated arkose (φ=1 to 2mm) with beforsite networks		1-\$5(G)	55.0	55.5	0.5
60			which matrix is rich in black and dusky minerals		1-60(G, W) 1X-2(X)	60.0	60.5 60.1	0.5 0.1
	· · · · · · · · ·		1		1 2 /			•••
65					1-65(G)	65.0	65.5	0.5
1 00		brecciated		1		"""	"""	"."
		arkose	66.0-81.5m					
70		(Nsh)	light gray(N7) brecciated arkose (φ=1 to 2mm) with a few light gray		1-70(6)	70.0	70.5	0.5
'			beforsite veinlets (10 to 30 cm wide)					
-			which contain a few black and dusky brown minerals		ļ			
75		ļ			1-75(G)	75.0	75.5	0.5
			67.0-70.6m & 76.5-80.5m		1	1		
			brown to light brown fractured arkose]		
80				+	1-80(G)	80.0	80.5	0.5
85			81.5-91.5m light gray(N7) massive arkose $(\phi = 1 \text{ to } 2mm)$ with pyrite dissemination		1T-3(T)	85.0	85.1	0.1
		1	84.0m & 87.5m calcite veinlets(5mm wide)					
90		arkose (Nsh)		1		1	1	
1.		`	91.5-95.5m	1		1		
95		.]	pale red(10R 6/2) massive arkose with pale red Fe oxides dissemination					
"	• • • • • • • • • • • • • • • • • • • •	.[95.5-109.6m		1			
1]	light gray(N7) arkose (\$\phi = 1\$ to 2mm max. 5mm) with pyrite dissemination	1				
100	ļ		Ammy after blyric grasomingcion				1	

Remarks: (C):Geochemical Analysis, (T):Thole Rock Analysis, (T):Polished Thin Section, (E):EPMA Analysis (X):X-ray Diffraction Analysis, (1):Oxygen and Carbon Isotope Analysis

Weathering: O:fresh, 1:weakly altered, 2:moderately altered 3:strongly altered

B-6 Drilling Logs of the Orange Area (1)

-1			<u> </u>	Sampling		0 0 ~ 1 Samplin	g
Geologic Colum	Rock Name	Description	Weath- ering	Number &	From	interva to	Tidth
	(Rock Code)	95.5-109.6		(Type of Test)	. (■)	(1)	(#)
		light gray(N7) arkose ($\phi = 1$ to 2mm max.		in the second of			
	arkose (Nsh)	5mm) with pyrite dissemination	1				
		clear boundary (∠60°)		1 110703	1100	110 5	0. !
> > > > > >		109.6-114.7m very light gray(N8) carbonated syenite (φ = 2 to 3mm) with calcite(sovite).		1-110(G)	110.0	110.5	0. :
>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		pyrite, black, and dusky brown minerals 109.6-118.7m very light gray(N8) carbonated syenite		1-115(G)	115.0	115.5	0.
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		$(\phi = 2 \text{ to } 3\text{mm})$ with black minerals		1-117(G)	117.3		0.
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1 ,	118.7-122.5m very light gray carbonated syenite with calcite(sovite)		1-120(G, T) 1-122(G)	120.0	120.5	0.
> > > > > > > > > > > > > > > > > > >		122.5-123.5m very light gray(N8) carbonated syenite with black minerals		1-125(G)	125.0		0.
> > > > > > > > > > > > > > > > > > >		123.5-125.5m very light gray carbonated syenite with calcite(sovite)	0	1X-3(X) 1-127(G)	126.0 127.3	126. I 127. 8	0
	carbonated	125.5-129.5m very light gray carbonated syenite with abundant black and sufides		1-130(G, W) 1T-4(T)	130.0 131.5		0. 0.
· > > > >		minerals 130.0-131.0m clear flow banding(∠45°) very light gray carbonated syenite		1-132(G) 1-135(G)	132.3	132. 8	0.
· > > > > > > > > > > > > > > > > > > >		with calcite(sovite) 131.0-138.0m		1-137(G)	137.3		0.
> > > > > > > > > > > > > > > > > > >		very light gray(N8) carbonated syenite $(\phi = 2 \text{ to } 3 \text{mm})$ with abundant black and sulfides minerals		1-140(G, V)	140.0	140.5	0.
> > > > > > > > > > > > > > > > > > >		138.0-150.4m very light gray(N8) carbonated syenite (φ=2 to 3mm) with abundant dark green,		1-145(G) 1-147(G)	145.0 147.3		0. 0.
> > > > > >		pale green, brown, and sulfides minerals		1T-5(T) 1X-4(X) 1-150(G, W)	148.4 148.4 150.0	148.5	0. 0. 0.
) 		150. 4a	<u> </u>	1.100(0, 4)	1.00.0	1.00.0	
				1			
· ·						ļ ·	
						i i	
• .			1				

B-6 Drilling Logs of the Orange Area (2)

MJN	0 ~ 2			<u> </u>	Sampling		0 ~ 1 (Samplin	
Depth			Description	Teath-	Number		Interva	1
(m)	Colum	& (Rock Code)		ering	& (Type of Test)	From (m)	to (m)	Width (m)
5	# + # + # + # + # # + # + # + # + # # + # +		0.0-9.0m dusky brown(5YR 2/2) to grayish brown (5YR 3/2) ankeritic beforsite(ϕ =2 to 3 mm) with dark green blocks (d=2 to 3mm,		2-0(G) 2-5(G)	0. 0 5. 0	0. 3 5. 5	0.3 0.5
-10	#		max. $10cm$) which contain pale green clayey mineral, black Fe oxide, and brown hydroxide(ϕ =1 to 2mm)		2-10(G)	10.0	10. 5	0.5
15	#	beforsite	9.0-31.0m dusky brown(5YR 2/2) to grayish brown. (5YR 3/2) partly dusky red(5R 3/4)	1	2T-1(T) 2-15(G)	15. 0 15. 0	15. 1 15. 5	0. 1 0. 5
20	#+#+#+#+# #+#+#+# #+#+#+#	(Nobl)	ankeritic beforsite(ϕ =2 to 3mm max.5mm) with dusky red to black Fe oxides and brown minerals(ϕ =1 to 2mm)		2-17(G) 2-20(G, W)	17. 3 20. 0	17. 8 20. 5	0.5 0.5
	# + # + # + # + # # + # + # + # + # # + # +	. *			2-22(G)	22. 3	22. 8	0.5
25	# + # + # + # + # + # # + # + # + # + # # + # +	4			2-25(G) 2-27(G)	25.0 27.3	25. 5 27. 8	0. 5 0. 5
30	#				2-30(G, W)	30.0	30. 5	0. 5
35	# • # • # • # • # • # • # • # • # • # •		31.0-49.0m light brownish gray(5YR 6/1) beforsite (φ=2 to 3mm) with black, dusky brown minerals rich part(d=3 to 5cm max. 20cm)		2-32(G) 2X-1(X) 2-35(G)	32. 3 32. 2 35. 0	32. 8 32. 3 35. 5	0.5 0.1 0.5
	# • # • # • # • # # • # • # • # • #	+ .	partly contain dark to pale green rich parts		2-37(G)	37. 3	37. 8	0.5
40	# • # • # • # • # # • # • # • # • # # • # •				2-40(G, T) 2-42(G)	40.0 42.3	40.5	0.5 0.5
45	# - # - # - # - # # - # - # - # - #		46.5-49.0m		2-45(G)	45.0	45.5	0.5
50	# - # - # - # - # # - # - # - # - # # - # -		fractured zone		2-47(G) 2-50(G, W)	47.3 50.0	47. 8 50. 5	0.5 0.5
	# - # - # - # - # - # - # - # - # - # -	weathered beforsite (Mcbl)	49.0-68.5m grayish brown(5YR 3/2) to dusky brown (5YR 2/2) beforsite(ϕ =1 to 2mm), fractured with brown Fe hydroxides(ϕ =1 2mm) and partly black Fe oxides	1	2-55(G)	55.0	55.5	0.5
60	# - # - # - # - # # - # - # - # - #		Zamu) and partry brack re oxides		2-60(G, W)	60.0	60.5	0.5
65	# · # · # · # · # # · # · # · # · # # · # ·		68.5-71.5m light brownish gray beforsite		2-65(G, W)	65.0	65. 5	0.5
70	# • # • # • # • # # • # • # • # • # # • # •		with black and dusky brown minerals		2-70(G, W)	70.0	70.5	0.5
75	#+#+#+#+# #+#+#+#+# #+#+#+#	ankeritic beforsite (Ncbl)	71.5-77.5m grayish brown to dusky brown ankeritic beforsite(φ=1 to 2mm)	1	2-72(G) 2-75(G, T)	72.3 75.0	72. 8 75. 5	0.5 0.5
.,	# # # # # # # # # # # #				2T-2(T) 2-77(G)	75.0 77.3	15. 0 77. 8	0. 1 0. 5
80			77.5-120.0m		2-80(G)	80.0	80.5	0.5
85	* # # # # * # # # # # # # # #	beforsite	light gray(N7) to brownish gray(SYR 4/1) to dark gray(N4) beforsite(ϕ = 1 to 2mm) with black Fe oxide, brown phlogopite and white mica fractured(clayey, sandy to powdery)	1				
90						e cermina		
95					2-95(G)	95.0	95.5	0.5
100	9 # # # # # # # # #					<u> </u>	<u></u>	<u> </u>

B-6 Drilling Logs of the Orange Area (3)

JNC) - 2				Sampling	1 0	$0 \sim 1.5$ Samplin	0 m
epth	Geologic	Rock Name	Description	Weath- ering	Number	From	Interva to	l Tidth
(m)	Colum	(Rock Code)	77 - 100 0	ciing	(Type of Test)	(a)	(m).	(R)
		-	77. 5-120. 0 m		•			
105	# # # # #				•	;		
	* * * * *		light gray(N7) to brownish gray(5YR 4/1) to dark gray(N4) beforsite(\$\phi\$=1 to 2mm)					
110	# # # # # # # # # #		with black Fe oxide, brown phlogopite and white mica		2-109(G)	109.0	109.5	0.5
			fractured(clayey, sandy to powdery)				·	
115								
•••		fractured			2X-2(X)	118.0	118.1	0.1
100	#####	beforsite (Mcbl)		ì	Lit D(N)	110.0	110.1	".
120	* * * * *	(MCDI)	120.0-136.0m		0 100/6)	100 0	100 5	0.5
			very light gray (N8) to light brownish gray(5YR 5/6) beforsite($\phi = 1$ to 2mm)		2-122(G)	122.0	122.5	0.5
125	, , , , , , , , , , , , , , , , , , ,		fractured(clayey, powdery and sandy)		a.i. a.c.u.s			
					2X-3(X)	127.0	127. 1	0.1
130								
	# # # # # # # # # #							
135	# # # # # # # # # #				2-135(G) 2X-4(X)	135.0 135.0	135.5 135.1	0.5 0.1
٠.	Y							
140	r , , , ,	*.	136.0-150.4m					
	Y Y Y Y Y	trachyte dyke	very light gray quartz(φ=1 to 2mm) trachyte dyke, altered siliciously	1				
145			traceyed dyke, artered strictousty		•			1 : 5
	V. V, V V							}
150	Y	<u> </u>	150.4					
						:		
		1						
				1.12		. , .		
			·					
					:			
					V 1			
		:						
				1				
					<u> </u>]	<u> </u>

B-6 Drilling Logs of the Orange Area (4)

MJNO	O - 3 Geologic	Pock Nome	Dogoviation	No - 2 5			0 ~ 1 (Samplin	g
veptn (ma)	Colum	Rock Name & (Rock Code)	Description	Weath- ering	Sampling Number	From	lnterva to	Width
	#•#•#•#•#	weathered beforsite	0.0-4.5m l gray(N7) to light brwonish gray beforsite(φ=2mm max.5mm) with Fe	i	3-0(G)	(m) 0.0	(n) 0.3	(m) 0.3
5	#•#•#•#•# #•#•#•# #•#•#	ankeritic beforsite	oxides spots(d=2 to 3cm) to networks 4.5-9.4m grayish brown(5YR 3/2) ankeritic beforsite(\$\phi\$=2 to 3mm max.5mm)	1	3-5(G) 3X-1(X)	5. 0 5. 7	5. 5 5. 8	0. 5 0. 1
	# 1 # 1 # 1 # 1 # 1 # # 1 # 1 # 1 # 1 # # 1 # 1		9.4-12.5m very light gray beforsite with sulfides, black and dusky red Fe oxides 12.5-13.3m light brwnish gray beforsite		3-10(G)	10.0	10.5	- 0.5
	#1#1#1#1# #1#1#1#1# #1#1#1#1# #1#1#1#1#	sulfides-rich	13. 3-16. On very light gray beforsite with sulfides dissemination 16. 0-17. 4m light brwonish gray beforsite 17. 4-20. 4m very light gray(N8) beforsite	0 to 1	3-15(G)	15.0	15.5	0.5
20	#1#1#1#1# #1#1#1#1# #1#1#1#1# #1#1#1#1#	(Nebl)	$(\phi$ = 5 to 15mm) with sulfides and grayish brown Fe hydroxides(d=5 to 15mm) 20.4-25.4m very light gray(N8) beforsite $(\phi$ = 5 to 15mm) with sulfides, black Fe		3-20(G, Y) 3R-1(1) 3X-2(X)	20. 0 23. 2 23. 2	20.5	0.5 0.1
25	#1#1#1#1# #1#1#1#1# #•#•#•#		oxides, brownish gray Fe hydroxides(d= 5 to 15mm) 25.4-27.3m light brownish gray beforsite (φ= 5 to 15mm)	1	3T-1(T) 3-25(G)	23. 4 25. 0	23. 3 23. 5 25. 5	0. I 0. I 0. 5
30	#1#1#1#1#	sulfides-rich beforsite(Mcbl)	27.3-30.3m very light gray beforsite (ϕ = 5 to 15mm) with sulfides and Fe oxide. 30.3-46.0m	0	3-30(G)	30.0	30.5	0.5
35			light brownish gray(5YR 6/1) beforsite (ϕ =1 to 2mm max.10mm) with gray brown Fe hydroxides(d= 3 to 5cm)		3-35(6)	35.0	35. 5	0.5
40	# • # • # • # • # # • # • # • # • # # • # •			1	3-40(G, W)	40.0	40.5	0.5
	# • # • # • # • # # • # • # • # • # # • # •		46.0-52.0m		3-45(G)	45.0	45.5	0.5
50		sulfides-rich beforsite (Ncbl)	very light gray(N8) beforsite(\$\phi=2\$ to 3 mm max. 20mm) with sulfides and black Fe oxides. 52.0-53.3m light brownish gray beforsite	0	3-50(G)	50.0	50.5	0.5
55	#•#•#•#•# #1#1#1#1#	beforsite(Mcb1) sulfides-rich beforsite(Mcb1) weathered	$(\phi = 3 \text{ to 50mm max. 30mm})$ $53.3-56$. Im very light gray beforsite $(\phi = 3 \text{ to 50mm})$ with sulfides and Fe oxide $56.1-60$. Im	0	3-55(G)	55.0	55. 5	0.5
60	# - # - # - # - # # - # - # - # - #	beforsite (Mcbl) sulfides-rich	light brownish gray(5YR 6/1) beforsite $(\phi = 2 \text{ to } 3\text{mm})$ with brown Fe hydoxides 60.1-63.0m very light gray(N8) beforsite $(\phi = 2 \text{ to } 3\text{mm})$ with sulfides, Fe oxide,	1	3-60(G, W)	60.0	60.5	0.5
65	#1#1#1#1# #•#•#•#•# #•#•#•#•#	(Ncbl) weathered beforsite	light brown and pale green minerals 63.0-69.0m clear flow banding (\angle 70°) light brownish gray(5YR 6/1) beforsite (ϕ = 2 to 3mm max. 20mm) with grayish	1	3-65(G)	65.0	65.5	0.5
70	#•#•#•#•# #1#1#1#1# #1#1#1#1# #1#1#1#1#	(Mcbl)	brown Fe hydoxides 69.0-82.3m clear flow banding (∠70°) very light gray(N8) beforsite(\$\phi = 3\$ to		3-70(G) 3T-3(T)	70.0 70.0	70.5 70.1	0.5 0.1
75	#1#1#1#1#	sulfides-rich beforsite (Mcbl)	5mm max. 20mm) with dotted sulfides, black Fe oxides, light brown and pale green minerals	0	3-75(G) 3T-4(T, E)	75. 0 77. 0	75. 5 7. 1	0.5 0.1
80	#1#1#1#1# #1#1#1#1# #1#1#1#1#		clear flow baniding(∠80-90°)		3-80(G, W)	80.0	80.5	0.5
85	#•#•#•#•# #•#•#•#•# #•#•#•#•# #1#1#1#1#	weathered beforsite (Ncbl)	82.3-85.5m light brownish gray(5YR 6/1) beforsite (φ=1 to 2mm) with brwon Fe oxides 85.5-90.0m very light gray(N8) beforsite	1	3-85(G)	85.0	85.5	0.5
90	#1#1#1#1# #1#1#1#1# #•#•#•#•#	sulfides-rich beforsite (Ncbl)	$(\phi=1$ to 2mm) with dotted sulfides, black Fe oxides, light brown and pale green minerals 90.0-98.2m	0	3R-3(1) 3-90(G)	89. I 90. 0	89. 2 90. 5	0. 1 0. 5
95	# • # • # • # • # # • # • # • # • # # • # •	weathered beforsite (Ncbl)	light brownish gray(5YR 6/1) beforsite (ϕ =1 to 2mm) with grayish brown Fe oxides	1	3-95(G)	95.0	95.5	0.5
	#2#2#2#2#	e oxides-rich peforsite(Mcbl)	98.2–106.9m light bwnish gray beforsite with Fe oxide and Fe hydroxides	1	3-100(G, W)	100.0	105.5	0.5

B-6 Drilling Logs of the Orange Area (5)

JNC) - 3			T	<u>. </u>		00~1 Samplin	g
epth ()	Geologic Colum	Ł	Description	Weath- ering	Sampling Number	From (m)	Interva to (m)	l Width (m)
	#2#2#2#2# #2#2#2#2#	(Rock Code) Fe oxides-rich	98.2-106.9m light brownish gray(5YR 5/6) beforsite	1		\ <u>\\\</u>	<u> </u>	- \- 2
105	#2#2#2#2# #2#2#2#2#	beforsite (Ncbl)	$(\phi = 1 \text{ to } 2mm)$ with dotted black Fe oxides, grayish brown Fe hydroxides		3-105(G)	105.0	105.5	0.5
	#+#+#+#+# #+#+#+# #+#+#+#	ankeritic	106.9-112.0m graysih brownish(5YR 3/2) to yellowish brown(10YR 4/2) ankeriteic beforsite(ϕ =	1				
110	#+#+#+#+# #+#+#+#+#	(Mcbl)	1 to 2mm max. 5mm) with graysih brown Fe oxides		3-110(C)	110.0	110.5	0.5
	#•#•#•#•# #1#1#1#1#		112.0-120.6m light brwonish gray(5YR 6/1) to brownish		3-115(G)	115 0	115.5	0.5
	# • # • # • # • # # 1 # 1 # 1 # 1 # # • # • # • # • #	beforiste	gray(5YR 4/1) beforesite(ϕ =1 to 2mm) with graysih brown Fe hydroxides, black	1	3-113(0)	110.0	110.0	0.0
120	#1#1#1#1# #:#:#:#:#		Fe oxides, and sulfides 120.6-121.8m very light gray beforsite	ļ ₀	3-120(G. W)	120.0	120.5	0.5
		beforsite(Ncbl)	$(\phi = 1 \text{ to } 2mm)$ with sulfides and Fe oxide	<u> </u>			٠.	
125	#1#1#1#1# #•#•#•#	•			3-125(G)	125.0	125.5	0.5
	#1#1#1#1# #•#•#•#•# #1#1#1#1#				3-130(G)	130.0	130.5	0.5
	#•#•#•#•# #•#•#•#•#		112.0-120.6m					
135		weathered and sulfides-rich beforsite	1 brwonish gray(5ΥR 6/1) to brownish gray(5ΥR 4/1) beforsite(φ=1 to 2mm) with graysih brown Fe hydroxies, black	1	3-135(G) 3x-3(X)	135.0 135.0	135. 5 135. 1	0.5 0.1
	#1#1#1#1# #•#•#•#	(Ncbl)	Fe oxides, and sulfides					
	#1#1#1#1# #•#•#•#•# #1#1#1#1#				3-140(G, T) :	140.0	140.5	0.5
	#•#•#•#•# #•#•#•#•#				3-145(G)		145.5	0.5
	#1#1#1#1# #•#•#•#•# #•#•#•#				3T-5(T) 3R-5(I)	146.7 146.7		0.1
150	#1#1#1#1#		150.3m		3-150(G)	150.0	150.5	0.5
٠								
							. :	
					:			
٠							:	
						,		
					_		<u> </u> :	

B-6 Drilling Logs of the Orange Area (6)

MJNO) - 4	<u> </u>		l	Sampling		$0 \sim 10$ Samplin	g
Depth	Geologic Colum	Rock Name &	Description	Weath- ering	Number &	From	Interva to	l Ridth
(m)		(Rock Code)	·		(Type of Test)		(m) 0.3	(m)
			0.0-14.3m light brownish gray(5YR 5/6) to very light gray(N8) beforsite(ϕ =1 to 2mm) with spots(5×20cm) by graysih brown Fe	1	4-0(6) 4-5(6)	5.0	5.5	0.3
	# - # - # - # - # # - # - # - # - # # - # -		hydroxides		4-10(G)	10.0	10.5	0. 5
	#1#1#1#1# #1#1#1#1# #1#1#1#1# #1#1#1#1#	sulfides-rich beforsite	14.3-20.3m clear flow banding (∠70°) very light gray(N8) beforsite (φ=1 to 2 mm) with dotted to spotted (d=2 to 3cm) sulfides, brownish black Fe oxides,	0	4-15(G) 4T-4(T)	15.0 15.0	15. 5 15. 1	0.5 0.1
	#1#1#1#1# #2#2#2#2# #2#2#2#2# #2#2#2#2#	·	and a few yellowish brown minerals 20.3-30.5m clear flow banding(∠70°) very light gray(N8) beforsite(ø=1 to 2		4-20(G, W) 4X-1(X) 4T-1(T)	20.0 20.6 20.6	20. 5 20. 7 20. 7	0.5 0.1 0.1
	#2#2#2#2# #2#2#2#2# #2#2#2#2#	(Mcbl)	mm) with dotted to spotted(d=2 to 3cm) black Fe oxides, yellowish brown minerals and a few sulfides	0	4-25(G)	25.0	25.5	0.5
	#2#2#2#2# #1#1#1#1# #1#1#1#1# #1#1#1#1#		30.5-37.5m very light gray(N8) beforsite(φ=1 to 2	0	4-30(G, W) 4T-2(T)	30. 0 30. 0	30. 5 30. 1	0. 5 0. 1
	#1#1#1#1# #1#1#1#1# #1#1#1#1# #2#2#2#2#	(Ncbi)	mm) with dotted sulfides and black Fe oxides(φ=1 to 2mm) 37.5-45.0m		4-35(G) 4R-1(1)	35. 0 35. 0	35. 5 35. 1	0.5 0.1
40	#2#2#2#2#	Fe oxides-rich beforiste	very light gray(N8) beforsite(ϕ =2 to 3 mm max.10mm) with dotted black Fe oxides (1 to 2mm)and a few sulfides(d=1 to 2mm) partly light grayish brown weathered	0 to 1	4-40(G. W)	40.0	40.5	0.5
	#2#2#2#2# #•#•#•#•# #•#•#•#•#		beforsite with Fe hydoroxides spots		4-45(6)	45.0	45.5	0.5
	# # # # # # # # # # # # # # # # # # #	weathered beforsite	45.0-66.0m. light brownish gray(5YR 6/1) to light gray(N7) beforsite(ϕ =1 to 2mm, max10mm) with grayish brown Fe hydroxides spots	1	4-50(6)	50.0	50.5	0.5
	# - # • # • # - # # # # # # # # - # - # - # - #	,,	(d=5 to 10cm)		4-55(G)	55.0	55. 5	0.5
60	# - # - # - # - # # # # # # #		66. 0-72. 0m		4-60(G, W)	60.0	60.5	0.5
65 70		beforsite (Ncbl)	very light gray(N8) beforsite(ϕ =2 to 3 mm max.10mm) with a few dotted sulfides and black Fe oxides(ϕ =1 to 2mm)	0	4-65(G) 4-70(G)	65.0	65. 5 70. 5	0.5
75	# # # # # #•#•#•#•# # # # #	weathered beforsite (Ncb1)	72.0-78.5m light brownish gray(5YR 6/1) to light gray(N7) beforsite(\$\phi\$=1 to 2mm, max.50mm) with grayish brown Fe hydroxides spots (d=5 to 10cm)	1	4-75(G)	75.0	75. 5	0.5
80			78.5-84.0m very light gray(N8) beforsite(φ=2 to 3 mm max.20mm) with a few dotted sulfides	1	4-80(G. W)	80.0	80.5	0.5
85	# # # # # # # # # # # # # # # # # #	beforsite (Mcbl)	and black Fe oxides(ϕ =1 to 2mm) 84.0-86.0m light brownish gray beforsite (ϕ =2 to 3mm max.20mm) with Fe hydroxide 86.0-93.0m	0	4-85(G)	85.0	85. 5	0.5
90	# # # # # # # # # # # # # # #		very light gray(N8) beforsite(ϕ =2 to 3 mm max.10mm) with a few dotted sulfides and black Fe oxides(ϕ =1 to 2mm)		4-90(G)	90.0	90.5	0.5
95	#•#•#•#•# # # # # # # #•#•#•#•# # # # #	beforsite (Mcbl)	93. 0-101.5m light brownish gray(5YR 6/1) to light gray(N7) beforsite(ϕ =2 to 3mm, max. 10mm) with grayish brown Fe hydroxides spots (d=5 to 10cm)	1	4-95(G)	95.0	95.5	0.5
100					4-100(G, N)	100.0	105.5	0.5

B-6 Drilling Logs of the Orange Area (7)

Column	0.5 0.5 0.5
Colum (Rock Code) Colum (Rock Code)	0.5 0.5 0.5
101.5-106.0m	0. 5 0. 5 0. 5
101.5-106.0m very light gray(N8) beforsite (\$\phi = 1\$ to 2 0	0. 5 0. 5 0. 5
106.0-122.0m	0.5
T - T - T - T - T - T Weathered before ite Bray(N7) before ite(φ = 2 to 3mm, max. 50mm) 1	0.5
120.0 120.5 120.0 120.0 120.5 120.0 120.5 120.0 120.5 120.0 120.5 120.0 120.0 120.5 120.0 120	0.5
# # # # # beforsite very light gray(N8) beforsite(φ=1 to 2 nm max. 5ma) with a few dotted sulfides and black Fe oxides(φ=1 to 2mm) # # # # # weathered light brownish gray(5YR 6/1) to light # # # # # # weathered light brownish gray(5YR 6/1) to light # # # # # # # (Ncbl) with grayish brown Fe hydroxides spots # # # # # # beforsite (φ=1 to 2mm, max. 5mm) # # # # # # light gray beforsite (φ=1 to 2mm, max. 5mm) # # # # # # light gray beforsite (φ=1 to 2mm, max. 5mm) # # # # # # light gray beforsite (φ=1 to 2mm, max. 5mm) # # # # # light gray light gray beforsite (φ=1 to 2mm, max. 5mm) # # # # # beforsite (φ=1 to 2mm, max. 5mm) # # # # # beforsite (φ=1 to 2mm, max. 5mm) # # # # # beforsite (φ=1 to 2mm, max. 5mm) # # # # # beforsite (φ=1 to 2mm, max. 5mm) # # # # # beforsite (φ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # beforsite (σ=1 to 2mm, max. 5mm) # # # # # # beforsite (σ=1 to 2mm, max. 5mm)	
# # # # # weathered light brownish gray(5YR 6/1) to light beforsite gray(N7) beforsite(\$\phi = 1\$ to 2mm, max. 5mm\$) 1 4-130(G) 130.0 130.5 # # # # # # beforsite (\$\phi = 1\$ to 10cm) 132.5-136.5m very light gray beforsite (\$\phi = 1\$ to 2mm max. 5mm) with a few dotted 0 4-135(G) 135.0 135.5	0.5
# # # # # beforsite $(\phi = 1 \text{ to } 2 \text{mm max. 5 mm})$ with a few dotted 0 4-135(G) 135.0 135.5	
# * # * # * # 136.5 - 143.0m	0.5
# # # # # # # # # # # # # # # # # # #	0.5
# # # # # clear flow banding (<60 to 70°) 45 # # # # #	0.1
#1#1#1#1# (Mcbl) clayey, greenish gray minerals(ϕ =1 to 50 #1#1#1#1#1 3 mm) 4-150(G) 150.0 150.5	0.5
	1
	1
	1

B-6 Drilling Logs of the Orange Area (8)

) - 5		B	2 b	Sampling Number		Samplin Interva	
epth	Geologic Colum	Rock Name &	Description	Teath- ering	å	From	to	Yidth
(<u>*</u>)	K · # · # · # · #	(Rock Code)		···	(Type of Test) 5-0(G)	(a) 0.0	(n) 0.3	(m) 0.3
ļ	# * # * # * #				0 0(0)	0.0		4,0
	# • # • # • # • # # • # • # • # • #				5-5(0)	5.0	5.5	0.5
J	**#*#*#*#			· .	0 000	0.0	0.0	
	#•#•#•#•#		0.0-24.0m					
10	F . # . # . # . #	•	grayish brown(5YR 3/2) to brownish gray		5-10(G)	10.0	10.5	-0.5
		weathered beforiste	(5YR 4/1) beforsite(≠ =1 to 2mm, max.3 cm) with dark green rock breccia(d=3 to	1				
	H • H • H • H	(Mcb1)	Sem max. 10cm)			1		٨
	#•#•#•#•# #•#•#•#•#		white calcite veinlets(W=1 to 2mm)		5-15(G)	15.0	15.5	0.
	# • # • # • # • #		:					
20	F · R · R · R · R				5-20(G)	20.0	20.5	0.
_	# • # • # • # • #					-		
İ	# • # • # • # • # # • # • # • # • #	•			·			
-	#3#3#3#3#	***************************************	24.0-34.0m		5-25(C)	25.0	25.5	0.
	#3#3#3#3# #3#3#3#3#		light gray(N7) beforsite(φ=1 to 3mm)		,			
	#3#3#3#3# #3#3#3#3#	phlogopite-rich beforiste	with irregular spots(d= 2 to 3cm max.10 cm) by dark green minerals, and with	0	5-30(G, N)	30.0	30.5	0.
	#3#3#3#3#	(Mcbl)	dots(d=1 to 2 mm) by yellowish brown,		0 00(0, 1)	00.0	00.0	•
	#3#3#3#3# #3#3#3#3#		and pale green minerals			!		
	LLLLL				5-34(G)	34.0	34.5	0.
		dolerite dyke	34.0-39.0m dark green dolerite dyke	1	5X-1(X)	35.0	35-1	0.
	LLLLL	(Kdd)			r 40(0 T)	40.0	40 5	,
	#3#3#3#3# #3#3#3#3#		39.0-41.5m light greenish gray beforsite		5-40(G, T)	40.0	40.5	0.
	#3#3#3#3#		with pale to dark green . and brownish				-	
	#3#3#3#3# #3#3#3#3#		black Fe oxide minerals 41.5-55.0m		5-45(G)	45.0	45.5	0.
	#3#3#3#3#	nhlaganita righ	light greenish gray(5GY 8/1) beforsite (φ=1 to 2mm, max.10mm) with spots(d=3		5-47(G)	47.3	47.8	0.
	#3#3#3#3#		to 5cm, max 40cm) of dark green, black,	0				
	#3#3#3#3# #3#3#3#3#	(Mcbl)	pale to dark green, and dark yellowish minerals		5-50(G, T)	50.0	50.5	0.
	#3#3#3#3#							
	#3#3#3#3# #3#3#3#3#	٠.	clear flow banding(∠70°)		5-55(G)	55.0	55.5	0.
	#3#3#3#3#		55.0-59.7m		5X-2(X)	55.0	55. 1	ŏ.
	#3#3#3#3# #3#3#3#3#		light greenish gray beforsite(ϕ =1 to 2mm max.10mm) with spots(d=3 to 30cm max.1m)					
	#3#3#3#3#		of dark green and black minerals		5-60(G, T)	60.0	60.5	0.
	#2#2#2#2# #2#2#2#2#							
	#2#2#2#2#				5-65(G)	65.0	65.5	,
	#2#2#2#2# #2#2#2#2#							0.
	#2#2#2#2# #2#2#2#2#		59.7-83.8m clear flow banding(∠70°) very light gray(N8) beforsite(φ=1 to		5-67(G)	67.3	67.8	0.
70		Fe oxide-rich	2mm) with black Fe oxides and sulfides,	0	5-70(G, X)	70.0	70.5	0.
	#2#2#2#2# #2#2#2#2#	beforiste (Mcbl)	bearing spots(d=1 to 5cm) of dark green minerlas					
	#2#2#2#2#							١.
	#2#2#2#2# #2#2#2#2#		clear flow banding(∠70°)		5-75(G)	75.0	75.5	Q.
	#2#2#2#2#							
80	#2#2#2#2# #2#2#2#2#		·		5-80(G, W)	80.0	80.5	0.
	#2#2#2#2#	,	weak flow banding(∠60°)					
	#2#2#2#2# #1#1#1#1#		83.8-86.2m very light gray beforeste(ϕ =		5E-1(T)	84.7	84.8	0.
85	#1#1#1#1# #1#1#1#1#	beforsite (Mcbl)	1 to 2mm) with dotted sulfides and dark green brecciated syenite(d=5 30cm)	0	5-85(G)	85.0	85.5	0.
	#2#2#2#2#	Fe oxide-rich	86.2-88.7m very light gray beforsite(φ=	0	ST-1(T)	88.5	88.6	0.
90	#2#2#2#2# #1#1#1#1#		1 to 2mm) with bk Fe ox and sulfides	 	5-90(G, T)	90.0	90.5	0.
	#1#1#1#1#		88.7-105.1m		5E-2(T)	92. 2	92.3	0.
	#1#1#1#1# #1#1#1#1#		clear flow banding(∠0°) very light gray(N8) to light gray(N7)	0	5-92(G)	92.3	92.8	0.
			beforsite(ϕ =1 to 2mm) with dotted	i .	5-95(G)	95.0	95.5	0.
95	#1#1#1#1#		aulfidan/numite	l .		ne i	000	
95	#1#1#1#1# #1#1#1#1#	· (Mcbl)	sulfides(pyrite, pyrhotite)		5T-2(T)	96.1	96.2	0.

B-6 Drilling Logs of the Orange Area (9)

10-5				Sampling		0 ~ 1 Samplin	g
h Geologic Colum	Rock Name	Description	Weath- ering	Number &	From	Interva to	Yidth
0 #1#1#1#1#	(Rock Code)	88.7-105.1m		(Type of Test)	(m)	(m)	(m)
#1#1#1#1# #1#1#1#1# 5 #1#1#1#1#		very light gray(N8) to light gray(N7) beforsite(φ=1 to 2mm) with dotted sulfides(pyrite, pyrhotite)	0	5-105(G)	105.0	105. 5	0.5
>>>>>	syenite	105.1-108.4m dark green metamorhosed syenite with	0				
0 + + + + +	(Nsu)	sulfides(pyrite, pyrhotite)					
+ + + + + + + + + +							1
5 + + + + +		٠.					:
+++++							
0							
1 1 1 1 1	micro-granite	108.4-150.3m very light gray quartz(ϕ = 1 to 2mm) because micro-granite with dotted	1				
+ + + + +	(Mgr)	beraing micro-granite with dotted sulfides(pyrhotite) and black Fe oxide					
++++0;						1.	
13							
+ + + + + + + + + + + + +					· ·		
5 + + + + +							
1111				1			
0 + + + +		150. 3m			<u> </u>		
	·						
					:		
					-		
			1.				
		:					
	1			_L	1		

B-6 Drilling Logs of the Orange Area (10)

MJNO	O - 6				Sampling		0 ~ 1 (Samplin	
Depth	Geologic	Rock Name	Description	Weath-	Number		Interva	Ī.
(a)	Colum	& (Rock Code)		ering	& (Type of Test)	From (a)	to (m)	Yidth (m)
(8)	A · # · # · #	weathered	0.0-3.8		6-0(G)	0.0	0.3	0.3
	# - # - # - # - #	beforsite (Ncb2)	grayish brown(5YR 3/2) beforiste (φ=1 to 2mm)	2				
	#1#1#1#1#				6-5(G)	5.0	5.5	0.5
	#1#1#1#1# #1#1#1#1#1#		3.8-20.0m very light gray(N8) beforsite(φ=1 to 2					
10	#1#1#1#1#		mm max.5mm) with dotted sulfide(pyrite)		0 10(0 %)	10.0	10.5	ا م د
10	#1#1#1#1# #1#1#1#1#		and black Fe oxide minerals (ϕ =1 to 2mm) partly light brwonish gray weathered		6-10(G, T)	10.0	10.5	0.5
İ	#1#1#1#1# #1#1#1#1#			. :				
15	#1#1#1#1#				6-15(G)	15.0	15.5	0.5
	#1#1#1#1# #1#1#1#1#	sulfides rich	clear flow banding(∠60°)	0 to 1	6T-1(T)	17.5	17.6	0.1
	#1#1#1#1#	beforsite		0 .0 .				
20	#1#1#1#1# #1#1#1#1#	(Mcb2)			6-20(G)	20.0	20.5	0.5
	#1#1#1#1#		00.0.41.0-					
25	#1#1#1#1# #1#1#1#1#1#	·.	20.0-41.0m clear flow banding(∠70°)		6-25(G)	25.0	25: 5	0.5
	#1#1#1#1# #1#1#1#1#		very light gray(N8) beforsite(ϕ =1 to 2 mm max.5mm) with dotted sulfide(pyrite)					
	#1#1#1#1#		and black Fe oxide minerals ($\phi = 1$ to 2mm)	4				
30	#1#1#1#1# #1#1#1#1#			٠	6-30(G. ¥)	30.0	30.5	0.5
	#1#1#1#1# #1#1#1#1#							
35	#1#1#1#1#	and the second			6-35(C)	35.0	35.5	0.5
	#1#1#1#1# #1#1#1#1#							
	#1#1#1#1#							
40	#1#1#1#1# #3#3#3#3#				6-40(G)	40.0	40.5	0.5
	#3#3#3#3#		41.0-53.0m		6X-1A(X)	42.2	42.3	0.1
45	#3#3#3#3# #3#3#3#3#	j.	very light gray(N8) beforsite(\$\phi = 5 to 10mm) with dotted pale green minerals		6X-1B(X) 6-45(G)	42.3 45.0	43.4 45.5	0.1
1	#3#3#3#3# #3#3#3#3#	phlogopite-rich beforiste	$(\phi = 5 \text{ to } 7\text{mm})$, dark brown minerals $(\phi = 5 \text{ to } 10\text{mm})$, brown minerals $(\phi = 3 \text{ to } 5\text{mm})$.	0				
	#3#3#3#3#	(Mcb2)	black Fe oxide(ϕ =1 to 2mm), and sulfides					
50	#3#3#3#3# #3#3#3#3#		(marcasite, pyrite)		6-50(G, W)	50.0	50.5	0.5
	#3#3#3#3# #1#1#1#1#							
55	#1#1#1#1#		53.0-73.0m		6-55(G)	55.0	55.5	0.5
	#1#1#1#1# #1#1#1#1#		very light gray(N8) beforsite(ϕ =1 to 2 mm max.5mm) with dotted sulfide(pyrite)					
	#1#1#1#1#		and black Fe oxide minerals(ϕ =1 to 2mm)					
. 60	#1#1#1#1# #1#1#1#1#	•			6-60(G)	60.0	60.5	0.5
÷	#1#1#1#1# #1#1#1#1#	sulfides-rich beforsite		0				
65	#1#1#1#1#	(Mcb2)			6-65(G)	65.0	65.5	0.5
ļ.	#1#1#1#1# #1#1#1#1#		clear flow banding(∠60 to 70°)					:
7.0	#1#1#1#1#				0 ma/0 %	70.0	~~ .	ا ا
10.	#1#1#1#1# #1#1#1#1#				6-70(G, ¥)	70.0	70.5	0.5
	#1#1#1#1# #3#3#3#3#	***************************************	73.0-77.0m very ligh gray beforsite with					
75	#3#3#3#3#	phlogopite-rich	dotted pale green, dark brown, brown	0	6-75(C)	75.0	75.5	0.5
	#3#3#3#3# #3#3#3#3#	beforiste (Mcb2)	minerals, black Fe oxide, and sulfides with black sitate breccia(d=2 to 3m)					
	# # # #				6-80(G)	00.0	00.5	ا ، ، ا
80	#####	beforiste	77.0-85.5m very light gray(N8) beforsite($\phi = 1$ to 2	0	υ-ου(υ <i>)</i>	80.0	80.5	0.5
	* * * * *	(Mcb2)	mm max.5mm) with a few dotted sulfide and black Fe oxide minerals(ϕ =1 to 2mm)]				·
85	# # # # #	***************************************			6-85(G)	85.0	85.5	0.5
	#3#3#3#3# #3#3#3#3#	phlogopite-rich beforiste	85.5.0-88.0m very light gray beforsite with pale green, brown minerals. Fe oxide	0				
	#3#3#3#3#	(Mcb2)	and sulfides(pyrite), with slate breccia	ļ	6-65/C #1	00.0	60 -	, ,
90	#1#1#1#1# #1#1#1#1#		88.0-101.0m		6-90(G, T)	90.0	90.5	0.5
-	#1#1#1#1# #1#1#1#1#		clear flow banding($\angle 60^{\circ}$) very light gray(N8) beforsite($\phi = 1$ to 2	0	!			
95	#1#1#1#1#	beforsite	nm max.5mm) with dotted sulfide(pyrite)		6-95(G)	95.0	95.5	0.5
	#1#1#1#1# #1#1#1#1#	(Mcb2)	and black Fe oxide minerals(φ=1 to 2mm)			1		
inn	#1#1#1#1# #1#1#1#1#		clear flow banding(∠60°)	1	6-100(G)	100 4	105.5	0.5
100	F 1 T 1 T 1 T 1 T 1 T 1			J	10 100/0/	1 100.0	1 10000	1 4.0

B-6 Drilling Logs of the Orange Area (11)

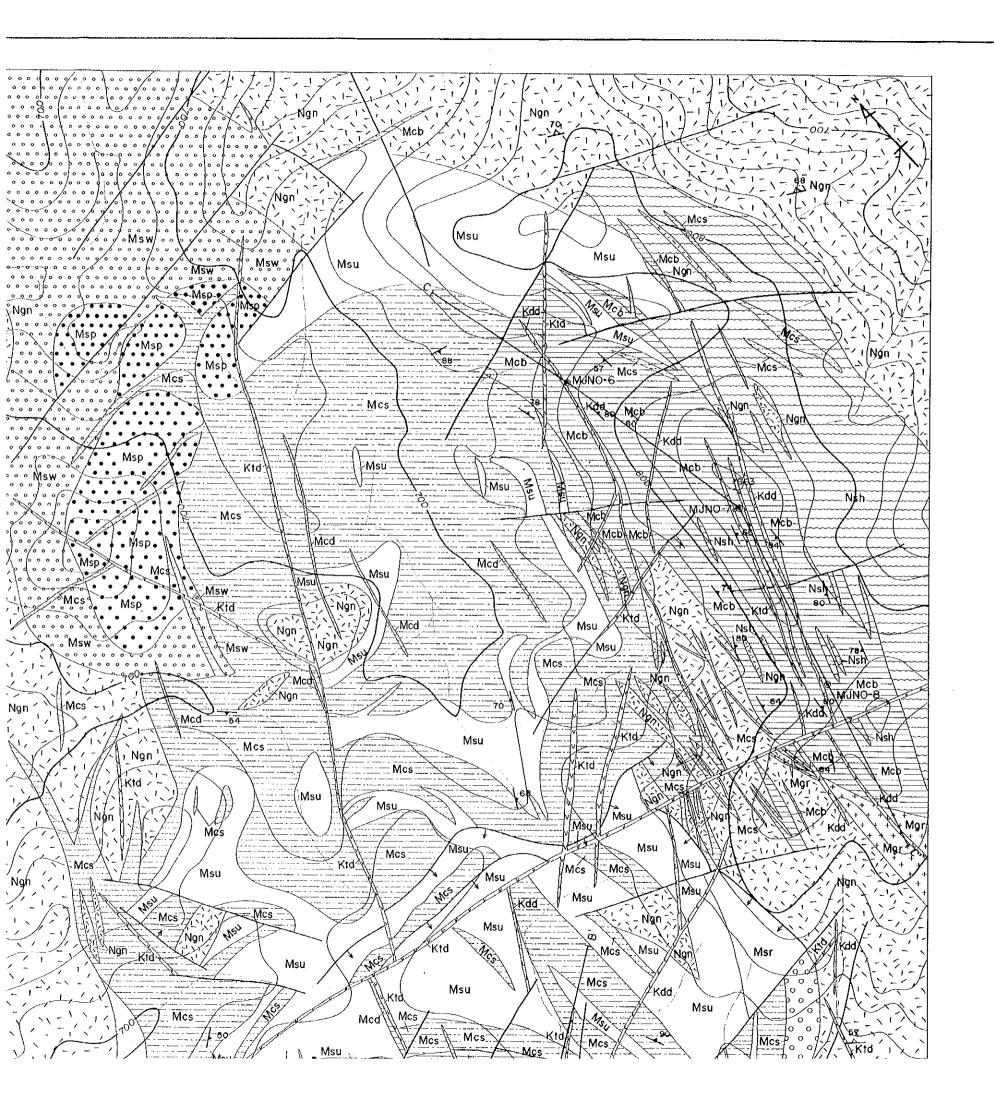
N C) - 6		· · · · · · · · · · · · · · · · · · ·	+.			0~1	
th	Geologic	Rock Name	Description	Teath-	Sampling Number		Samplin Interva	g 1
L11	Colum	&	DOOT PETON	ering	. &	From	to	Width
00	#1#1#1#1#	(Rock Code)	1,000,000,000,000,000,000,000,000,000,0		(Type of Test)	(R)	(•)	
	#4#4#4#4#	***************************************	101.0-109.0m very light gray(N8) beforsite(φ=1 to 2					
05	F4#4#4#4# F4#4#4#4#	apatite-rich	mm max.5mm) with spots(d=1 to 3cm max.	0	6-105(G)	105.0	105.5	0.5
	F4#4#4#4# F4#4#4#4#	beforiste (Ncb2)	30cm) of dark brown minerlas(phlogopite) and pale green apatite(φ=1 to 5mm)	7.7.5	6X-2(X)	105.5	105.6	0.1
	#4#4#4#4#	**		0	6-110(G, T)	110.0	110.5	0.5
	#4#4#4#4#	dolerite(Kdd)	109.0-110.3m black hard dorelite dyke 110.3m-121.5m	U	0-110(O'N)	110.4	110.5	. 0.0
	#4#4#4#4# #4#4#4#4#		clear flow banding(∠60°) very light gray(N8) beforsite(φ=1 to 2					
15	74#4#4#4#	apatite-rich	mm max.5mm) with dotted pale green,	0	6-115(G) 6R-1(1)	115.0 115.0	115.5 115.1	0.5 0.1
	#4#4#4#4# #4#4#4#4#	beforiste (Ncb2)	brown to dark brown(phlogopite), pale to dark green, and sulfides(pyrrhotite)	".	6T-2(T, E)	117.0	117.1	0.1
	#4#4#4#4# #4#4#4#4#4#		minerals($\phi = 1$ to 2 max. 5mm)		6-120(G)	120.0	120.5	0.5
20	#4#4#4#4#		clear flow banding(∠60°)		6T-3(T)	121.3	121.4	0.1
		dolerite dyke(Kdd)	121.5-124.0m black hard to soft(fractured) dolerite	ì				
25	#4#4#4#4# #4#4#4#4#		124.0-130.0m very light gray(N8) beforsite($\phi = 1$ to 2	:	6-125(G)	125.0	125.5	0.5
	#4#4#4#4#	beforiste	am max. 5mm) with dotted apatite, sulfide	0		:		· [
30	#4#4#4#4# #4#4#4#4#		phlogopite, and phlogoite, later calcite clear boundary(270°)		6-129(G, W)	129.0	129.5	0.5
	և և և և և	dolerite(Kdd)	130.0-131.0m black hard dolerite dyke	0				
	#4#4#4#4# #4#4#4#4#	beforiste(Mcb2)	131.0-132.8m very light gray beforsite with apatite, sulfide, phlogopite	Ĭ				
35	L L L L L #4#4#4#4#	dolerite(Kdd) apatite-rich	132.8-135.5m black hard dolerite dyke 135.5-136.8m very light gray beforsite	0	6-135(G)	135.0	135.5	0.5
	#4#4#4#4#	beforiste(Mcb2)	with apatite, sulfide, phlogopite					
40			136.3-141.8m black hard dolerite dyke	. 0	6~140(G)	140.0	140.5	0.5
	L L L L L #9#9#9#9#9#		clear boundary(∠70°) 141.8-145.8m very light gray beforsite		6-142(G)	142.3	142.8	0.5
	#3#3#3#3#	beforisite	with phlogopite and sulfides	Q.				
45	#3#3#3#3# L L L L L	(Mcb2) dolerite(Kdd)	clear boundary($\angle 70^{\circ}$) 145.8-147.2m black hard dolerite dyke	0	6-145(G)	145.0	145.5	0.5
)		147.2-150.5m very light gray syenite with phlogopite and sulfides	0	6T-4(T).	148 7	148.8	0.1
50	<u>, , , , , , , , , , , , , , , , , , , </u>		150.5m		6-150(G, T)	150.0	150.5	0.5
							1 1 14 1 1	
			,					
				·				
					1			
		·		ļ.				ļ.
					F 12			.
						1.		'
				1				
								ŀ
							100000	
		1						
						'.	1	
	1					:		
		1						
						1		
						-		
				1				
-								

B-6 Drilling Logs of the Orange Area (12)

MJN	0 - 7	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u> </u>		0~10	
Depth	Geologic	Rock Name	Description	Yeath-	Sampling Number		Samplin Interva	
	Colum	å	Description	ering	&	From	to	Vidth
<u>(n)</u>	#+#+#+#+#	(Rock Code) weathered	0.0-2.0m very light gray to light	<u> </u>	(Type of Test)	(m) 0.0	(m) 0.3	(m)
		peforsite(Mcb2)	brownish gray beforesite(ϕ =1 to 2mm)	1	7-0(6)	0.0	U. 3	0.3
_	414141414	***************************************			n r(0)			
l °	#1#1#1#1# #1#1#1#1#				7-5(G)	5.0	5.5	0.5
	#1#1#1#1#		2.0~24.5m					
10	#1#1#1#1# #1#1#1#1#	sulfides-rich	very light gray(N8) beforsite(φ=1 to 2	l	7-10(G, Y)	10.0	10.5	0.5
''	#1#1#1#1#	beforsite	mm) with dotted sulfides(pyrite), black		1 10(0, 11)	10.0	10.0	0.0
	#1#1#1#1# #1#1#1#1#	(Mcb2)	Fe oxide minerals(ϕ =1 to 2mm)					
15	#1#1#1#1#		·		7-15(G)	15.0	15.5	0.5
	#1#1#1#1#							
ļ	#1#1#1#1#	,						ŀ
20	#1#1#1#1#				7-20(G)	20.0	20.5	0.5
[:	#1#1#1#1# #1#1#1#1#							
	#1#1#1#1#		clear boundary(∠50°)					
25			24.5-30.5m		7-25(G)	25.0	25.5	0.5
	LLLLL	dyke	black hard dolerite dyke	0				
30		(Kdd)			7-30(G, Y)	30.0	30.5	0.5
"	#2#2#2#2#				1 30(0, 1)	30.0	00.0	0. 3
]	#2#2#2#2# #2#2#2#2#						* .	
35	727272727				7-35(C)	35.0	35.5	0.5
	#2#2#2#2#	Fe oxide-rich	30.5-48.0m very light gray(N8) beforsite(φ = 1 to				·	
	#2#2#2#2#		2mm) with black Fe oxides and sulfide					
40	#2#2#2#2#		minerals(ϕ =1 to 2mm)		7-40(G)	40.0	40.5	0.5
ŀ	#2#2#2#2# #2#2#2#2#							
	#2#2#2#2#							i
45	#2#2#2#2# #2#2#2#2#				7-45(G) 7T-2(T, E)	45.0 46.0	45.5 46.1	0.5 0.1
	#2#2#2#2#			1	11-2(1, 6)	40.0	40.1	0.1
5.0	#2#2#2#2# #4#4#4#4#		· · · · · · · · · · · · · · · · · · ·		7-50(G, W)	50.0	50.5	0.5
. 30	#4#4#4#4#		<i>:</i>		1-30(0, #)	30.0	50.5	0.5
:	#4#4#4#4# #4#4#4#4#							
55	#4#4#4#4#				7-55(G)	55.0	55.5	0.5
	#4#4#4#4#		48.0-71.5m					
	#4#4#4#4# #4#4#4#4#		very light gray(N8) beforsite(φ=2 to 3mm max.5mm) with dotted pale green					1
60	#4#4#4#4#	beforsite	apatite(ϕ =3 to 5mm), sulfide(pyrite)	0	7-60(G)	60.0	60.5	0.5
	#4#4#4#4# #4#4#4#4#	•	$(\phi < 1 \text{mm})$, black Fe oxide $(\phi < 1 \text{mm})$, and pale to blusih green minerals $(\phi = 3)$ to				,	
	#4#4#4#4#		5mm)					
65	#4#4#4#4# #4#4#4#4#				7-65(G)	65.0	65.5	0.5
	#4#4#4#4#							
70	#4#4#4#4#				7 70(0 %)	70.0	70.5	ا ۽ ا
		phlogopite-rich	71.5-72.5m very light gray beforsite	0	7-70(G, W)	70.0	70.5	0.5
•	#3#3#3#3# #4#4#4#4#	beforsite(Mcb2)	with spots(d=2 to 5cm) of phlogopite 72.5-79.0m					
75	#4#4#4#4#		very light gray beforsite with dotted		7-75(G)	75.0	75.5	0.5
	#4#4#4#4#		pale green apatite ($\phi = 3$ to 5mm), sulfide					
	#4#4#4#4# #4#4#4#4#		(φ (lmm), black Fe oxide(φ (lmm), and pale to blusih green minerals(φ=3 to					
80	#4#4#4#4#		5 mm)		7-80(G)	80.0	80.5	0.5
].	#4#4#4#4# #4#4#4#4#		79.0-83.0m very light gray beforsite with dotted	0				
	74#4#4#4#	beforsite	pale green apatite, and black Fe oxide					
85	#4#4#4#4# #4#4#4#4#		83.0-86.0m clear flow banding(∠60°) very light gray beforsite with dotted		7-85(G) 7X-3(X)	85.0 85.0	85.5 85.1	0.5 0.1
	#4#4#4#4#		apatite, phlogopite, and amphibole		14-0(4)	00.0	30.1	0. 1
مه ا	#4#4#4#4# #4#4#4#4#		86.0-93.0m very light gray beforsite with dotted		7.00(C ¥\	00.0	00 5	ا م
30	#4#4#4#4#		pale green apatite($\phi = 3$ to 5mm), and		7-90(G, W)	90.0	90.5	0.5
	#4#4#4#4#		a few sulfides(pyrite)		7T-3(T)	93.0	93.1	0.1
95	#1#1#1#1# #1#1#1#1#		93.0-95.0m very light gray beforsite with dotted pyrite, phlogopite and apatite	0	7-95(G)	95.0	95.5	0.5
	#4#4#4#4#		95.0-101.0m					
	848484848 84848484		very light gray to light brwonish gray beforsite with apatite. Fe oxides, pyrite	0				
100	#4#4#4# 4 #		and phlogopite		7-100(G)	100.0	105.5	0.5

B-6 Drilling Logs of the Orange Area (13)

ŀN C	7		· · · · · · · · · · · · · · · · · · ·	ight gray(N8) beforsite(ϕ = 2 to $(.5\text{mn})$ with dotted pale green $(.6\phi$ = 3 to 5 mm), sulfide(pyrite) w), black Fe oxide(ϕ (1mm), and oblusih green minerals(ϕ = 3 to 105.5 my) with dotted pale green $(.6\phi$ = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and spots(d = 3 to 5 mm), and despensive $(.6\phi)$ = 3 t				
pth	Geologic	Rock	Description	Teath-				
	Colum	Name		ering	& Tuno of Toot)	From		
100	#4#4#4#4#			 	(lype of lest)	(=/	(m)	_ <u></u>
	7484#4#4#						1.	
	#4#4#4#4# #4#4#4#4#		101.0-120.0m very light gray(N8) beforsite($\phi = 2$ to		7-105(G)	105.0	105.5	0.5
	#4#4#4#4#		3mm max, 5mm) with dotted pale green					7.7
	#4#4#4#4# #4#4#4#4#			1:-		. '		
	#4#4#4#4#		pale to blusih green minerals(φ=3 to		7-110(G. T)	110.0	110.5	0.5
	F4 H4 H4 H4 H		5mm)				:	
	#4#4#4#4#							
115	44#4#4#4#		120.0-128.5m	1	7-115(G)	115.0	115.5	0.5
	#4#4#4#4# #4#4#4#4#		very light gray(N8) beforsite(φ=2 to	İ				İ
	#4#4#4#4#		Sum max.5mm) with dotted pale green		7 100(0)	100.0	100 0	0.6
120	#4#4#4#4#4# #4#4#4#4#4#		apatite(φ=3 to 5mm), and spots(d=3 to 5 cm max. 20cm) of dark brown phlogopite,	ļ	1-120(0)	120.0	120.5	0. 5
	#4#4#4#4#		dark green amphibole					
195	#4#4#4#4# #4#4#4#4#	apatite-rich beforsite	128.5-133.0m	1 0	7-125(G)	125.0	125.5	0.5
120	#4#4#4#4#	(Mcb2)	very light gray to light brwonish gray		1 120(0)	1201	120.0	
	#4#4#4#4# #4#4#4#4#		beforsite with apatite. Fe oxide, pyrite, phlogopite	1				
130	#4#4#4#4#							
	#4#4#4#4# #4#4#4#4#		133.0-139.0m very light gray heforsite(d = 2 to 3mm.		7T-4(T)	129.3	129.4	0.1
	#4#4#4#4#		$max 5mm$) with apatite($\phi = 3$ to 5mm), and					
135	#4#4#4#4# #4#4#4#4#		spots(d=5 to 10cm max.20cm)of phlogopite and amphibole					
	#4#4#4#4#		and amplituote					
1.40	#4#4#4#4#		139.0-146.0m		7-140(0)	140 0	140 5	0.5
140	#4#4#4#4# #4#4#4#4#		very light gray to light brwonish gray		1-140(0)	140.0	140.0	0.0
	#4#4#4#4#		beforsite with apatite, Fe oxides,	1			:	1
145	#4#4#4#4# #4#4#4#4#		pyrite, phlogopite		7-145(G)	145.0	145.5	0.5
110	#4#4#4#4#		146.0-150.5m very light gray beforiste		7R-1(1)	145.0	145.1	0.1
	#4#4#4#4# #4#4#4#4#	٠	with apatite, pyrite, phlogopite, and dark green mineral		7X-2(X)	148.0	148.1	0.1
150	74#4#4#4#		150.5m		7-150(G, Y)	150.0	150.5	0.5
			,					
								1 : .
					1			
		· · · · · · · · · · · · · · · · · · ·						
					. '			:
] . [
					1		4	
	[-]							
		•						
	.				T			
					1			'
							1 1	
				1.	· .			
						'		
	1		The state of the s		1			
								[]
	1							
					1			
					1			


B-6 Drilling Logs of the Orange Area (14)

Depth Color Color Rock Name Description Fasth Color Color Rock Name Color Rock Name Color Rock Name Color Rock Rock Color Rock Rock Color Rock Rock Color Rock Rock Rock Color Rock Rock Rock Color Rock	MJNC) - 8				Sampling	1	$0 \sim 1$	
Column (column)	Depth	Geologic	Rock Name	Description	Yeath-		<u> </u>	Interva	<u> </u>
Fig. 1. Section			& l		ering				
				0.0 A 0m					
		,			1				
		# - # - # - # - #		with dusky brown and black minerals	·	8-3(G)	3.0	3.5	0.5
10	5			4.0-12.2m		'			
10	'		slate	dark green well foliated slate	1		.		
F F F F F				with abundant dark green and black					
	-10			metamorphic minerals					
F F F S C(k)2) disconnection light gray(NF) to very light gray(NE) 0 8-15(0) 15.0 15.5 0.5				12 2-17 Om clear flow handing(/ 0°)		8-12(G)	12.0	12.5	0.5
15			beforsite		0				
A A A	15					8-15(G)	15.0	15.5	0.5
20 △ △ △ brecclated clab brecclated clab	1				 		1	`	
A				17. U-27. 3m					
A A State	20	ΔΔΔ				8-20(G)	20.0	20.5	0.5
25					1				
### 333-333 \$33-3333 \$33-3333 \$33-3333 \$33-333333 \$33-33333 \$33-33333 \$33-33333 \$33-33333 \$33-33333 \$33-33333 \$33-33333 \$33-3									
### #################################	25	ΔΔΔ		(W=5 t 30cm)		8-25(G, W)	25.0	25.5	0.5
2.1.3-4.3.0 mclear flow banding(∠ 60°) 8-30(G) 30.0 30.5 0.5		*0*0*0*0*							
Seasy Seas	1			27.3-43.0m clear flow banding(∠60°)				· .	
2mm accompanied with brown to dark 3.5 3		#3#3#3#3#]	8-30(G)	30.0	30.5	0.5
### ##################################				very light gray(N8) before ite (ϕ = 1 to	1		1		
### ##################################									
### ### ### ### ### ### ### ### ### ##	- 35								
### ##################################						8X-1(X)	35.0	35.1	0.1
### ##################################					n	1			
######################################	40				"	8-40(G)	40.0	40.5	0.5
######################################									
######################################				43 0-58 5m					
28m3 accompanied with brown sineral	45			30,000,000		8-45(G)	45.0	45.5	0.5
138283338						<u> </u>		٠.	
So 34838388 Sa Sa Sa Sa Sa Sa Sa									
######################################	50					8-50(G, X)	50.0	50.5	0.5
######################################		#3#3#3#3#							
\$5 \$38383838 \$3838388 \$3838388 \$3838388 \$3838388 \$3838388 \$383838 \$3838388 \$3838388 \$38388 \$383888 \$383888 \$	1			weak pyrite dissemination					
#38383818 Hardfard	55					8-55(G)	55.0	55.5	0.5
LLLL U dolerite dyke 55.5-61.5m black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich black to dark green dolerite TSF3878587 hlogopite-rich TSF3878587 hlogopite-rich TSF38787878 hlogopite-rich TSF38787878 hlogopite-rich TSF3878787878		#3#3#3#3#							
Solution Solution				66 6-61 6m	····	8X-2(X)	55.0	55.1	9.1
#\$8#\$8#\$8#\$ hlogopite-rich 61.5-62.5m very light gray beforsite 0	60				'	8-61(G)	60.0	60.5	0.5
\$\frac{4444444}{65 \frac{4444444}{44444444}}\$\frac{62.5-70.2m}{444444444}\$\frac{4444444}{644444444}\$\frac{44444444}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{4444444}{644444444}\$\frac{4444444}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{644444444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{6444444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$\frac{62.5-70.2m}{644444444}\$62.5-70.		#3#3#3#3#	phlogopite-rich	61.5-62.5m very light gray beforsite	0	1			
very light gray(N8) beforsite(φ = 2 to 3 8-65(G) 65.0 65.5 0.5 πmm rich in pale green apatite and with pale to dark green, black minerals and sulfides(pyrite, pyrrhotite) 8-70(G) 70.0 70.5 0.5 πmm rich in pale green, black minerals and sulfides(pyrite, pyrrhotite) 8-70(G) 70.0 70.5 0.5 πmm rich in pale green, black minerals and sulfides (pyrite, pyrrhotite) 8-70(G) 70.0 70.5 0.5 πmm rich in pale green, black minerals and sulfides (pyrite, pyrrhotite) 8-70(G) 70.0 70.5 0.5 πmm rich in pale green, and black slate breecin max 5cm and with pale l to dark green πmm		#3#3#3#3#	beforsite(Mcb2)	with dark brown mineral(phlogopite)		·			
########### apatite-rich pale green apatite and with pale dark green, black minerals and sulfides(pyrite, pyrrhotite) ###################################	65				1	8-65(G)	65.0	65.5	0.5
#####################################		#4#4#4#4#	apatite-rich		0			25.0	
70 #4#4#4#4## ### ######################						8-67(G, N)	67.3	67.8	0,5
#3#3#3#3## phlogopite-rich 70.2-72.5m very light gray beforsite	70	********				8-70(G)	70.0	70.5	0.5
72.5-90.5m 72.5-90.5m 72.5-90.5m 75.6 75.0 75.5 0.5 75.7 75.0 75.1 0.1 75.7 75.4 44.4 44.4 44.4 76.4 44.4 44.4 44.4 87.4 44.4 44.4 44.4 88.4 44.4 44.4 44.4 88.5 44.4 44.4 44.4 88.5 44.4 44.4 44.4 88.5 44.4 44.4 44.4 88.5 44.4 44.4 44.4 88.6 44.4 44.4 44.4 88.6 44.4 44.4 44.4 88.7 5(G) 88.7 5(G) 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.1 75.0 75.0 75.0 75.1 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.1 8-80(G, W) 8-80(G, W) 8-80(G, W) 8-80(G, W) 8-80(G, W) 8-80(#3#3#3#3#	phlogopite-rich		0	1			
75 \$4#4#4###	1				ļ	1	:		
#####################################	75	F4#4#4#4#		1 1 2 0 00.00		8-75(G)		75.5	0.5
######################################		#4#4#4#4#	·					75.1	0.1
80 #4#4#4### max 5cm) and with palel to dark green pyrhotite) ####################################					1				
######################################	80					8-80(G. W)	80.0	80.5	0.5
######################################	"	#4#4#4#4#	apatite-rich	minerals and sulfides (pyrite and	0] .	1	
85					1				
#4#4#4###	85					8-85(G)	85.0	85.5	0.5
〒4444444 90		#4#4#4#4#			1				
90				The state of the s		8T-4(T)	873	87.4	U. I
#3#3#3#3# phlogopite-rich 90.5-93.8m very light gray beforsite #3#3#3#3#3# beforsite with brown, dark green, and black 0 minerals patches (d=10 to 50cm) 95 #4#4#4#4# apatite-rich 93.8-97.5m very light gray(N8) beforsite 8-95(G) 95.0 95.5 0.5 #4#4#4#4## beforsite (φ=3 to 5mm) with pale green apatite (Mcb2) (φ=5mm, max 3 to 5cm) and sulfides #3#3#3#8# phlogopite-rich 97.5-99.5m very light gray beforsite 0	90					8-90(G, W)	90.0	90.5	0.5
13	"	#3#3#3#3#	phlogopite-rich		T		Ī .	1]
95 #4#4#4### apatite-rich 93.8-97.5m very light gray(N8) beforsite 8-95(G) 95.0 95.5 0.5 #4#4#4##############################			beforsite		0				
#4#4#4## beforsite (ゆき to 5mm) with pale green apatite 0 #4#4#4#4# (Mcb2) (ゆき5mm, max 3 to 5cm) and sulfides #3#3#3#3# phlogopite-rich 97.5-99.5m very light gray beforsite 0	95		apatite-rich		· † ·····	8-95(G)		95.5	0.5
#3#3#3#3# phlogopite-rich 97.5-99.5m very light gray beforsite 0	"	#4#4#4#4#	beforsite	(φ=3 to 5mm) with pale green apatite	0				
	1					4	1		
	100				"	8-100(G. W)	100.0	105.5	0.5

B-6 Drilling Logs of the Orange Area (15)

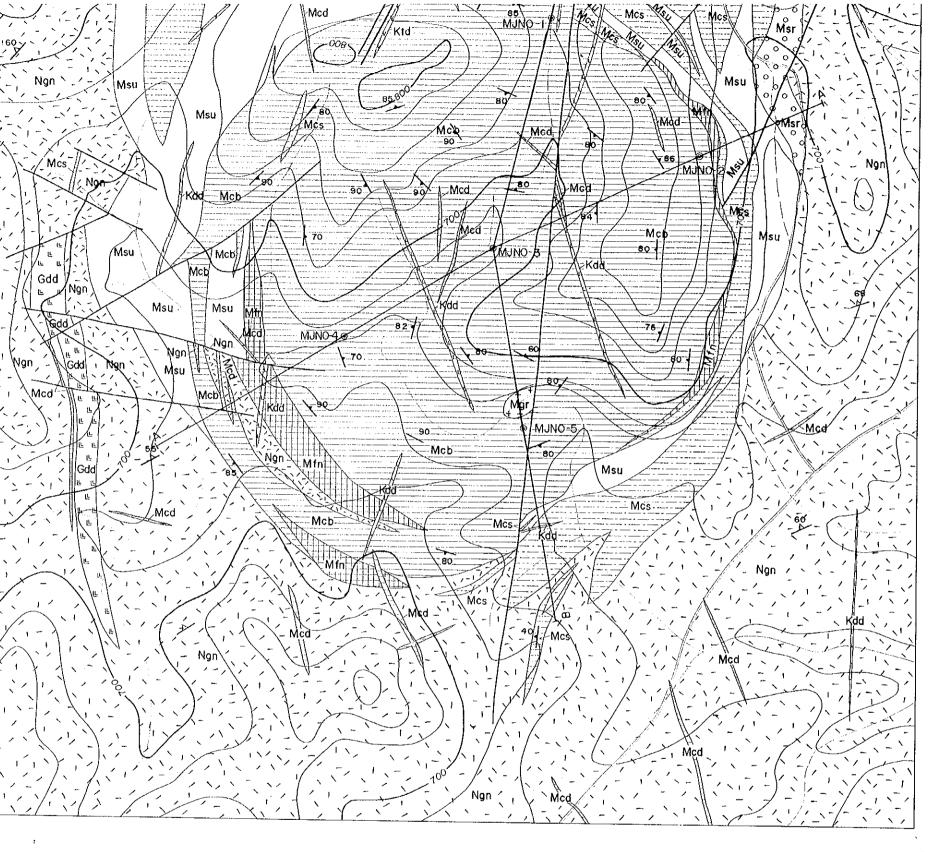
Depth Geologic Rock Name (Rock Code) (a) 100	1 J N C) — 8	 			Sampling) 0 ∼ 1 Samplin	g
(m) 484444848	epth			Description		Number		Interva	ĭ
100 ###44###	(n)	Colum			ering				Tidth (m)
######################################	100		(ROCK CODE)	99.5-137.5	 	13 pc 01 1651)	\=/	\ = /	<u></u>
110 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		#4#4#4#4# #4#4#4#4# #4#4#4#4#		very light gray(N8) beforsite(ϕ =2 to 3 mm) rich in pale green apatite and with pale to dark green, black minerals,		8-105(G)	105. 0	105.5	0.5
115		#4#4#4#4# #4#4#4#4# #4#4#4#4#		pale green apatite rich parts		8-110(G)	110.0	110.5	0.5
120 #4#4#4### apatite-rich beforsite #4#4#################################	115	#4#4#4#4# #4#4#4#4# #4#4#4#4#		sulfides (pyrite and pyrrhotite) rich parts		8-115(G)	115.0	115.5	0.5
125 #4#4#4###############################	120	#4#4#4#4# #4#4#4#4# #4#4#4#4#	beforsite	brown, dark green and black minerals	0	8-120(G, ¥) 8R-1(1)			0.5 0.1
130	125	#4#4#4#4# #4#4#4#4# #4#4#4#4#	. •			8-125(G)	125.0	125.5	0.5
135 #4#4#4#4##		#4#4#4#4# #4#4#4#4# #4#4#4#4#				8-130(0)	129.0		. 0-5
V V V V V V dyke light gray trachyte dyke 0 8T-5(T) 142.8 142.9 0. 145 V V V V V V V V V V V V V V V V V V V	135	#4#4#4#4# #4#4#4#4# #4#4#4#4#		clear contact boundary (∠60°)					0.5
145 Y Y Y Y Y Clear contact boundary (∠60°) #3#3#3#3#3 #3#3#3#3# phlogopite-rich very light gray beforsite(φ = 2 to 3mm #3#3#3#3# beforsite max.1 to 2cm) with phlogopite, magnetite		*	dyke	light gray trachyte dyke	0				0.,
150 M3838388 (Nob2) 150.4m 8-150(G) 150.0 150.5 0.	•	#3#3#3#3# #3#3#3#3# #3#3#3#3#	phlogopite-rich beforsite	145.5-150.4m very light gray beforsite (ϕ = 2 to 3mm max.1 to 2cm) with phlogopite, magnetite	0		,		0.5
	150	#3#3#3#3#	(Nicb2)	150.4m		8-150(G)	150.0	150.5	0. !
	14			and the second s					
	•				1				
	•						1		
						1	ļ	1	
	4				.51	1			
							į		
	•								
		[]						1	
			•			Ι.	4.	1 1 10	
							٠	[·	
						[-	. "		
			. *						1
								'	
								' ' '	
		''					1	1	
								1	
							ļ. ·	1	1
		1			1				
							1		
					<u>.l.</u>	<u> </u>			

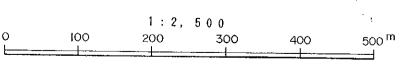
B-6 Drilling Logs of the Orange Area (16)

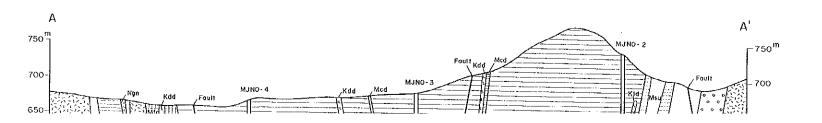
The Mineral Exploration in the Orange and Kalkfeld Areas, the Republic of Namibia

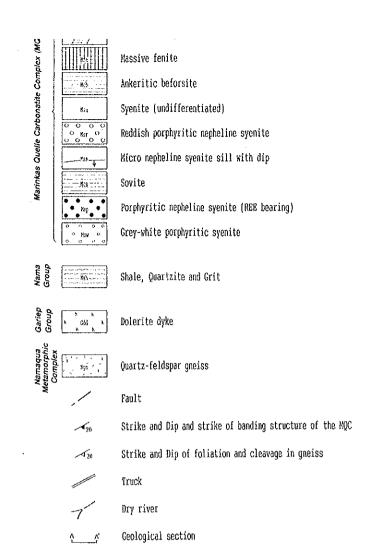
Phase 2

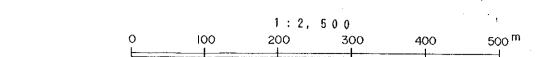
Fig. ||-1-2|Geological Map of the Orange Area


JAPAN INTERNATIONAL COOPERATION AGENCY
METAL MINING AGENCY OF JAPAN


February 1995


LEGEND


Trachyte dyke


Granophyres and Micro-granite

