
Appendix III.1.7

Intake Pump List

		VOID NO	014 (113)			(0-7) FIN					1047 . 14	VIG (#3)	AND DOT IN THE OWNER																+			-					-					-		
_		nor day	>	>	,		>	:	>	>:	>	>				>					-	>>>	> >		>										>	>							;	
288	Beavy	S SECTER		;	,			;	>	> :	>					>:						>>	>>		>					>	,				>	>							:	>
S as of UCL	Ninor	heade(#1)heade(#2)																																										
) STATUS		Norkable	> ;	>		> :	>	>				>		> >	>		>	>	>	>	>			>		>	>			>		> >						>					>	
		e Board	1 <u>982 JNY-51-21</u>	1 <u>987 11-01-02</u>	20-10-11 2661	20-20-13S 2661	1989 JL-51-02	13-12-NNC 2661	1992 JL-51-02	1992 SET-58-02	1991 SET-58-02	1989 SET-58-02		1909 507-50-09	1020 577-59-19	1996 SET-78-62	1987 JL-51-02	1989 SET-58-02	1990 SET-58-02	1989 SET-58-02	1986 JL-51-02	1992 7151-02	1990 SET-58-02	1950 561-36-02	1000 CFT-58-02	1985 SET - 58-02	1992 SET-58-02	1990 SET-58-02	1990 SET-58-02	1990 SET-58-02	1980 361-38-02	1990 JL-01-02	1000 H -51-09	1900 31-51-02	1989 SET-58-02	1980 SET-58-02	1990 333-51-21	1988 SET-58-02	1990 SET-58-02	1980 JL-51-02	1990 JL-51-02	<u>1989 JL-51-02</u>	1990 SET-58-02	1986 SET-58-02
	t Inst	ä						8		22 :	22 :	45		.	. 56	***	30	22 :	. 64		32 :	32	32		. 99	36		22 :	22 :	22		22	20	78	- 2		30	22 :	\$. 78	11	32		11 :
Ĩ		Type of Notor	1961 PED#-22-219	1961 PEDW-11-180	1959 PENG-11-180	1959 PED#-11-180	1959 PED#-11-180 :	1959 PEDW-8-40	1959 PED#-11-180 :	1961 PED#-22-219 :	1961 PED#-22-215 :	1969 PEDW-45-270 :		1972 PEDG-45-219	612-22-4014 Z/AI	1079 DEMP-99-910 -	1079 DENE-99-910	1075 PENK-99-910	016-66-20136 1001	516-66-muld 8201	1973 PEDW-32-219	1973 PED#-32-219 :	1973 PEDW-32-219 :	1973 PEDR-22-219	RT2-22-MT4 CIST	612-22-M034 C/RT	1075 PEN#-39-919	1980 PEDW-22-219	1980 PEDW-22-219 :	1980 PEDM-22-219	1980 PEDW-22-219	1980 PEDW-22-219	1980 PEUM-32-219	1980 PED#~22-219 :	1969 PENM-45-219 :	1903 FEUR-99-910	1089 DEDE-29-910	1083 PETR-99-910	1983 PEDW-45-219	1983 PEDW-32-219 :	1983 PEDW-11-180 :	1983 PEDW-32-219 :	1983 PEDW-11-180	1983 PED#-11-180
Duan and Mator	Rell Depth Installation	(1)	22.5 :	22.6	25.2	27.3	26.7	28.2 :	25.7 :	25, 0 :	29.4 :	30.7		27.0	30.6	0.10		200		30.0	5	32.6	33.3	31.0	30.0:		20.00	32.0	42.0	45.0	44.0	42.0	37.0	37.0	37.0	2 06	10 10			30.0	34.0 :	32.0:	35.0	27.0
din di	Casing	ianeter(m)	400-350 :	400-350	350~250	350-250	350-250 :	350-250	350-250 :	400-350	600-409 :	600-400		600-400	600-400	<u>500 -500 : 50 : 50 : 50 : 50 : 50 : 50 :</u>	000-000	- 000-000	- 001000	500-400 -	800-400	500-400	500-400 500-400	500-400	600-400	600-400	500-400	700-300	500-300 E	600-300 :	600~300 :	600-300	600-300	600-300	600-300 :	500~200 :	000 000	- 000-000	000-000	600-300	600-300	600-300	600-300	R00-300
	iftine PineWoll	Diameter(m)Diameter(m)	80								US US	001		100	100																	100									ļ ,		98	
	Head	3	100	10.0	19	5		100						150																		 85												001
	Concel to	(0.8.0)	25	ц.	25	ĸ	3 3 8	3 6	38	3 K	34	382		63	22 	3	120	38	23	38	2 9 5 C	191	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33	8 	8		2 2 2 2 2 2 2	32	322	83 	8	8 	 89	3	88	88 	38 	28 E	32	38	38		32
		Time of Part		NT-2-95-100	2 hrw-2.95-100	50 0 0 0 100 - 100	E Pre-0-63-100	001-20-001-20-001-201-201-201-201-201-20	001-02-0-01	001-22-2-8-W	001 20 0 100	brw-8-23-100	20 00 0T 400	ECH-10-63-150	ECH-10-63-110	14 207-10-63-65	ECN-10-120-60	16 ECT-10-63-65	ECH-10-63-65	18 P.C.1-10-63-65	09 00 01 -X74	20 20-10-10-120-60	FIN-10-63-65	23 EOM-10-63-65	DOT-10-63-65	ECW-10-63-65	ECW-10-120-50	00-071-01-000	ECH-10-00-00	PCP 10-03-110	hrg-10-63-65	BCW-10-63-65	pow-10-63-110	ECP-10-63-65	b0#-10-63-65	bcw-10-63-150	PCW-10-63-65	SCW-10-63-110	<u>p0%-10-63-65</u>	10-10-03-130	RCW-R-95-130	hrw-10-63-130	PLTE-0-02-100	hor 0 50 100
	Puero No.	V- Vo on Man		10	40						× ×			12	13	14 14	15 15			18 18				23		3	25	5	1	1		32 82/42	Į					38 38/49	33 39/50	40 40/51	41 E1/34	42 42/03 10/00 or		ļ

Table (1)Intake Pump List [1-1](Central Water Source)

Intake Pump List [1-2] (Central Water Source)

		Remarks					Tansferred																						
	2 2 2	Replaced									>		>			>	>								۲	>			>
1533	Beavy	ଛ									>		>			>	>								>	>			>
SUBLIC AS OF UCL.	Nibor	Damage(#1)	>									>																>	
010100		for lable		_ ^ :	>	>	4	>	>	>				>	>			>	>	>	>	>	>	>			>		
	Installation Control	Date Board	1990 SET-58-02	1991 SET-58-02	1985 SET-58-02	1988 SET-58-02		1992 SET-58-02	1988 JYN-51-21	1989 SET-58-02	20-82-132 2661	1985 SET-58-02	1992 SET-58-02	1991 SET-58-02	1984 SET-58-02	1992 SET-58-02	1987 SET-58-02	1993 SET-58-02	1984 SET-58-02	1984 JNN-51-11	10-85-T32 0091	1992 SET-58-01	10-85-THS 0661	1993 SET-58-01	1993 SET-58-01	1990 SET-58-01	1984 SET-58-01	1984 SET-58-01	10.00 TWN-51-11
	Output Ins	(A 4)	22	22 :	22 :	22 :		22	22	22		32 :	: 11	11 :]] :	22	22	: 11		11	. 11	11	: 11	28:	2.8	22	22	: 11	
		Date Type of Motor	1983 PFD#-22-219	1983 PED#-22-219	1983 PED#-22-219	1983 PEDW-22-219 :		1984 PEDW-22-219	1984 PEDW-22-219 :	1984 PED#-22-219	1984 PED#-32-219	1984 PEDW-32-219	1984 PEDW-11-180 :	1984 PED#-11-180	1984 PED#-11-180	1984 PEDW-22-219	1984 PEDW-22-219	1984 PEDW-11-180	1984 PEDW-11-180	1984 PEDM-11-180 :	1984 PED#-11-180	1984 PEDW-11-180	1984 PED#-11-180	1984 PEDMP2 8-140	1984 PEDW2 8-140 :	1984 PED#-22-219	1984 PEDW-22-219	1984 PED#-11-180	1084 DENE-11-180
LULUE NUM POLO	11 Depth Ins		30.0	33.0	33.0	28.0		30.0	32.0 :	31.0	41.0	30.0	26.0	26.0	25.0	23.0	24.0	26.0	18.0	21.0	22.0	22.0	22 0 :	22.0:	22 0 :	28.0:	26.0	24.0 :	: 0 16
	I Casing Ne	meter(mm)	600-300 :	600-300	600-300	500-300		600-300	600-300	609-300	600-300	600-300	600-300	600-300	600-300	600-300 :	600-300	600-300 :	600-300	600-300	600-300	600-300	600-300	600-300	600-300	600-300 :	500-300	600-300	RON-2RD
	ifting Pipefell Casing Fell Depthinstallation	meter (mm) bis	100 : 600-300	100	100	100		100	100	100	100	100	80	80 i	:: 08 ::	100	100 :	: 08	: 08	: 08	: 08 80	: 08	80 :	: 09	: 09	160 :	100	98	S.
	Head Lit	(m) Dia			65 :	65 :		65 :	65 :	65 :	 13	65 :	: 001	100	100	65 	55	: 001	: 001	100	100	100	100	80 :	80 :	85 : 1	65 :	: 09	100
	Capacity	(m3/h)	63 [63 :	63 :	63 :		 23	:: 83	ន	 8	: ജ	22 25	25	ະ: ຊ	83 :	63 :	25 :	25	25	25	25	25	10	10 :	.: 83		40	ĸ
_		Type of Pump	ECT-10-63-65	DCW-10-63-65	DCW-10-63-65	ECW-10-63-65	12	BC#-10-63-65	ECT-10-63-65	100-10-63-65	ECV-10-63-65	POW-10-63-65	ECW-8-25-100	ECW-8-25-100	DOT-8-25-106	ECT-10-63-65	ECT-10-63-65 :	BC#-8-25-100	BC#-8-25-100	BCT-8-25-100	BOF-8-25-100	EC#-8-25-100	BC#-8-25-100	ECW-6-10-80	ECT-6-10-80 :	ECT-10-53-65	DOM-10-63-65	pcy-8-40-60	FTW-R-25-100
		ell No. No. on Map	46 36/59	47 47/58	48 48/57	45 \$9/56	50 Transferred	51 1/64	52 2/65	53 3/66	54 \$7(67	55 5/68	56 6/69	57 1/70	58 8/71	59 8/73	60 10/74	61 11/75	62 12/76	63 13/77	64 14/78	65 15/79	66 16/80	67 17/81	58 18/82	69 19a	70 20a	71 21a	

r ISAC Coed				÷	
Ninor damage able to be repaired by USAG Beary damage or broken, to be replaced Old and deteriorated	3	Purp			23
ble to be : T broken; orated	be unp	tion of New	Output	(4 1)	22
Minor demage able to Heavy damage or brok Old and deteriorated	humber of Pumps to be Replaced with New Pum	Specifica	Bead	3	60
(#1): Mine (#2): Blean (#3): 01d	Number of Replaced	Technical	Capito: ty	(4/8-)	8
[legend]	÷.				•

T

8.

10

(Industrial Water Source) Intake Pump List [2] Table (2)

Rearks 01d (#3) V D1d (±3) 01d (\$3) 01d (#3) (#1): Minor damage able to be repaired by ICSAG
 (#2): HEARY damage on broken; to be replaced
 (#3): Old and deteriorated Status as of Oct. 1993 Ninor Beary To be Nortable Demogr(#1)Demogr(#2)Replaced >
 Jarian
 Control
 Action

 Ite
 Board
 Fort

 1975
 String
 Social

 1985
 Fort<-30-43</td>
 Social

 1995
 Fort<-30-43</td>
 Social

 1995
 Fort<-30-43</td>
 Social

 1992
 Fort<-30-43</td>
 Social

 1993
 Fort<-50-43</td>
 Social

 1993
 Fort<-50-43</td>
 Social

 1993
 Fort<-50-43</td>
 Social

 1993
 Fort<-50-43</td>
 Social

 1993
 Social
 Social

 1993
 Social
 Social

 1993
 Social
 Social

 1993
 Social
 Social

 1983
 Social
 Social

 1983
 Social
 Social

 1983
 Social
 Social

 1983
 Soci
 Pumb And Motor.
 Pumb And Motor.
 Pumb And Motor.

 201
 Jiftiag Pipelell (Saing Fell LepthInstallation)
 (0)
 Date
 Prove Stallation
 Control

 110
 100
 400-200
 21.60
 [983 PFM-29.21]
 20
 1985 PFM-29.21]
 200

 110
 100
 400-200
 21.60
 [983 PFM-29.21]
 20
 1985 PFM-29.21]
 200

 155
 200
 400-200
 21.60
 [983 PFM-29.21]
 20
 1985 PFM-29.21]
 20

 165
 100
 400-200
 25.40
 [983 PFM-29.21]
 20
 1985 PFM-20
 1985 PFM-20

 175
 200
 400-200
 25.40
 [983 PFM-20.21]
 20
 1983 PFM-20

 150
 400
 26.00
 [983 PFM-20.21]
 20
 1983 PFM-20

 150
 400
 26.00
 1975 AFM-50
 20
 1983 PFM-50

 150
 400
 28.00
 1975 AFM-50
 55
 1989 PFM-50

 150
 400
 20
 1975 AFM-50
 55
 1989 PFM-50

 Bead 8 러 82 <u>සුසියයුතුව විසිතියක් ස</u> ଞ୍ଚାର୍ଚ୍ଚ Capacit (a3/b) 4 (17)-14-1-3 5 (17)-14-1-3 5 (17)-14-1-3 5 (17)-14-1-3 8 (27)-10-55-55 9 (27)-19-55-55 1 (27)-14-1-3 11 (17)-14-1-3 11 (17)-14-1-3 11 (17)-14-1-3 11 (17)-14-1-3 13 (17)-10-55 15 (17)ype of Pump Ę Fell Yo. No. on Kap Pailo Vo. 1011212100

	7		r		2
	-	Ver Purp			6
20	Pump	cation of	Output	(II)	3
Number of Pumps to be	with New	l Specifi	Field	3	99
Number o	Replaced	Technica	Capeci ty	(u)(p)	120

Intake Pump List [3] (Meat Complex Water Source) Table (3)

		Remarks)ld (#3))1d (#3))ld (#3)				DSAC BC
	To be		>	- >	70 >	< 01 10	10		-	-	(#1): Winor damage able to be repaired by USAG (#2): Heavy damage or broken; to be replaced (#3): 01d and deteriorated
1993	Reavy	1((2)) 300000000000000000000000000000000000	>	>		-	-		_	_	le to be ru broken; tu rated
Status as of Oct 1993	TOUL!	Foritable Damage(#])Damage(#2) Replaced		••••		•••			•••		(41): Winor damage able to be repaired by US (42): Heavy damage or broken; to be replaced (43): Old and deteriorated
Status		for table			>	>	:: >	>	>	>	(#1): Minor (#2): Heavy (#3): Old a
		Board	1990 SET-53-02	990 SET-58-02	1992 SET-58-02	50-09-X34 996	987 SET-58-02	986 SET-58-02	384 SET-58-02	986 SET-58-02	[legend]
	stallation	Date	S 0661	S 0661	I 392 S	1 9961	1987 S	I 986 S	3 1 86 :	3 9861	
	Output Installation Control	(Xw)	 ¥2	 \$: 5\$: 66		22 :	22	 83	
		Type of Motor (Kw)	1965 PED9-45-270	965 PEDW-45-270	965 PEDW-45-270 :	ORS ARS-255	1965 PEDM-45-219	978 PEDW-22-219 :	1978 PEDW-22-719 :	1978 PEDW-22-219 :	
Pum And Notor	Lifting Pipeweil Casing Well DepthInstallation	(a) Date	26.00 : 196	26. 20 : 196	26.00 : 196				40.00 : 197	10.00 : 197	
Page A	Casing Fell	eter(m) (i	500-400 :	600-400						600-250 :	
	ting PipeWell	Diameter(=)Diameter(=)	100 :	150 :	150 :	200	100		: 001	1001	
	Head Lif	(a) Dia	: 09	 19	 19	24		ين ي	۲ <u>۶</u>	22 22	
	Capacity	(a3/b)	120				190	3	5	35	8
		Twee of Pump	5 US-10-10-10	FT-12-160-65	N'W-12-160-65	TTL11-1-0	10-10-10-10-EU	51-11-67-65	PT-10-63-65	Dru-10-63-65	
Putto Vo		Tail My Norm han Tone of Pann		6	30		* ''' * '''		2	- 04	

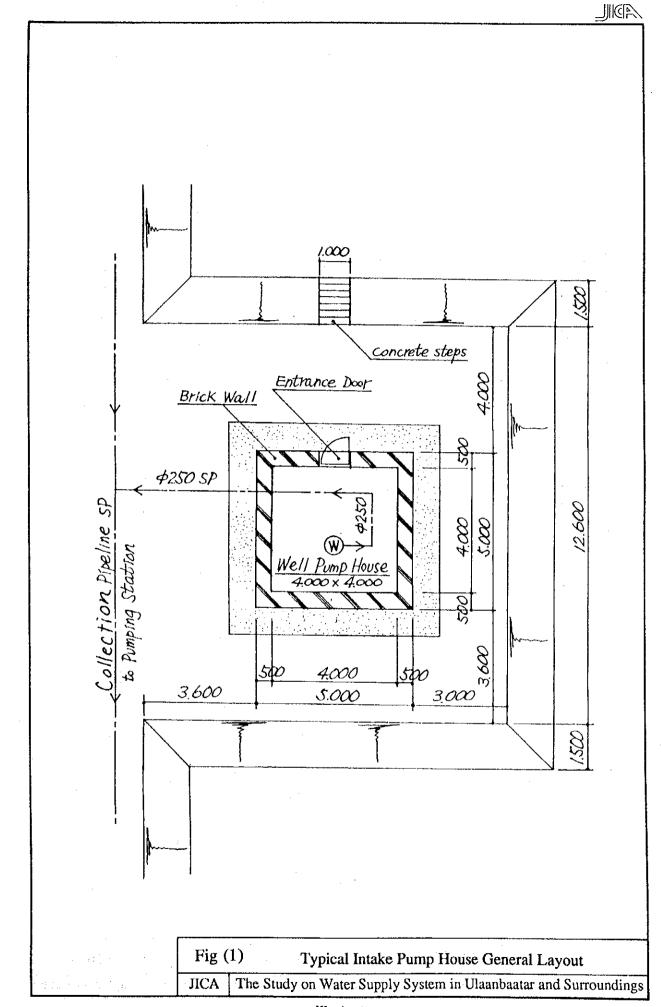
Ĵ

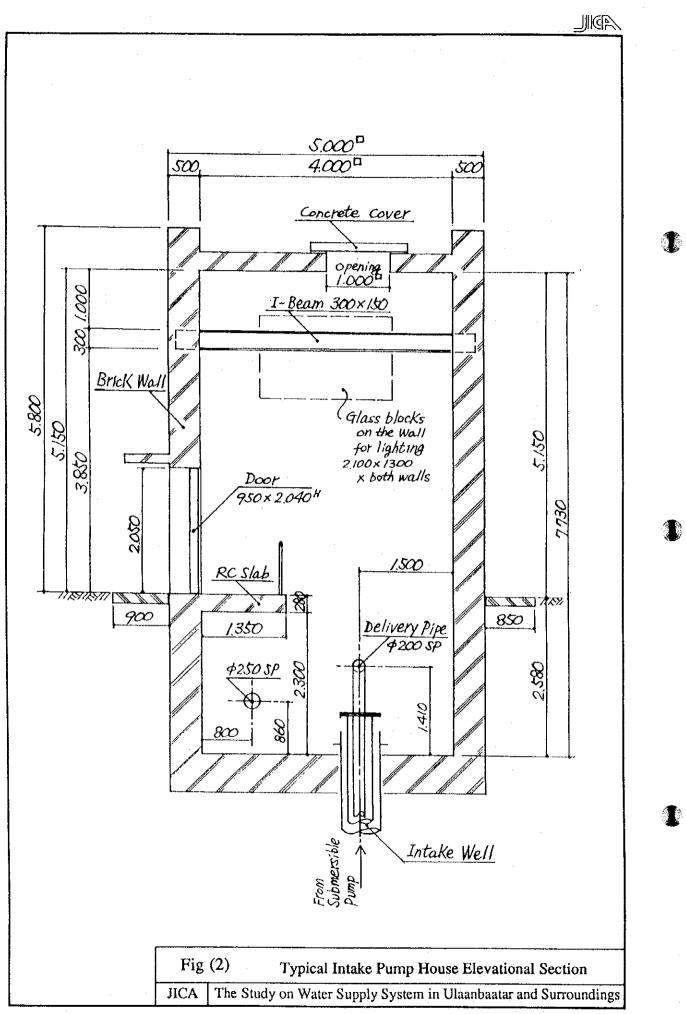
Number of Punns to be Replaced with New Punn Technical Specification of New Pu Capacity Head Output (a3/b) (a) (b) 37

~

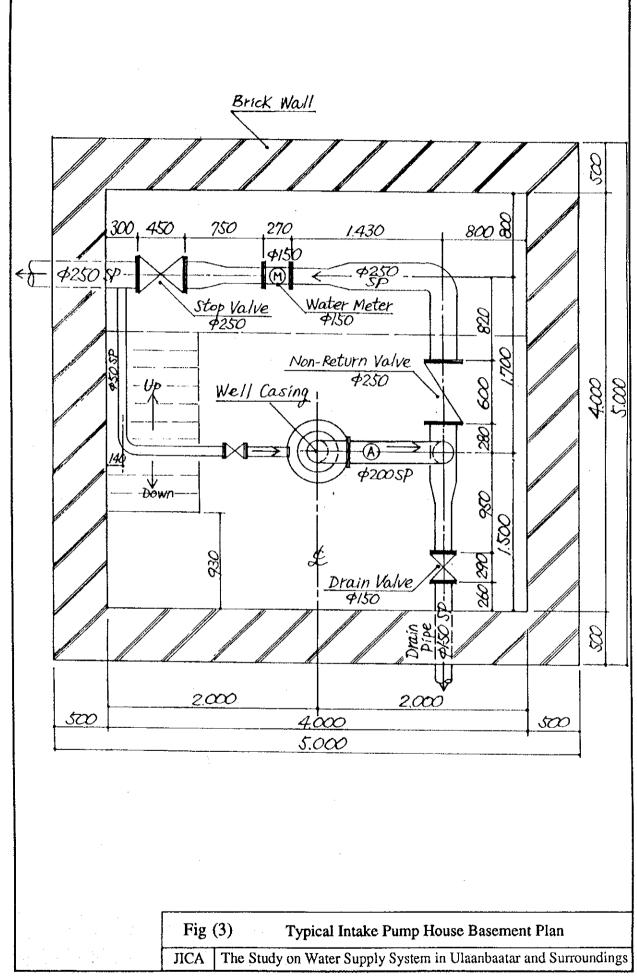
Number of Pumps to be Replaced with new Pump Intake Pump List [4] (Upper Water Source)

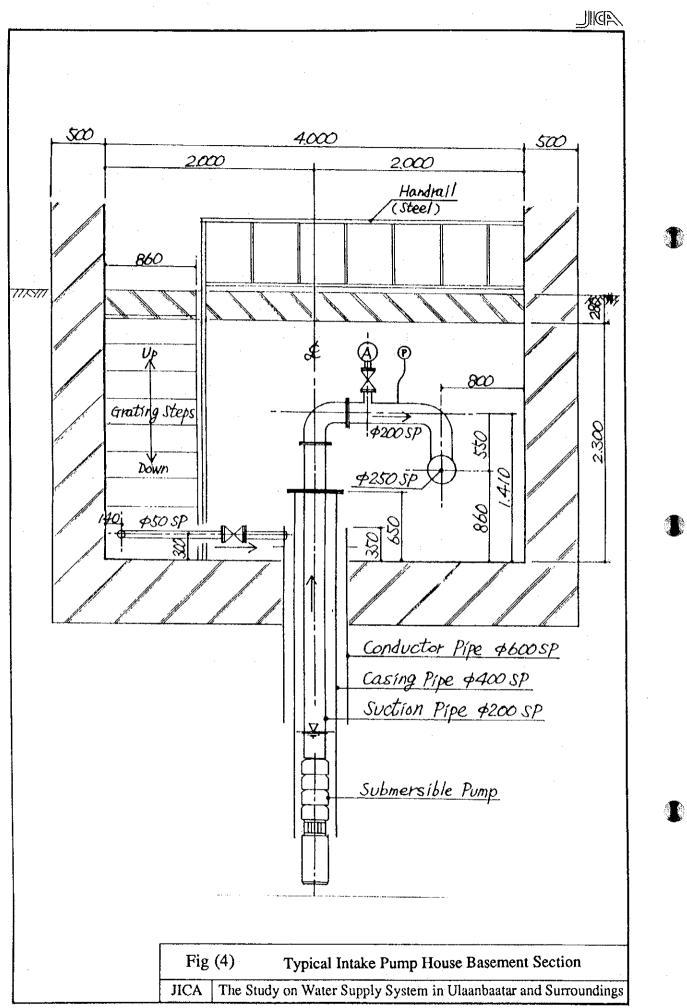

Table (4)

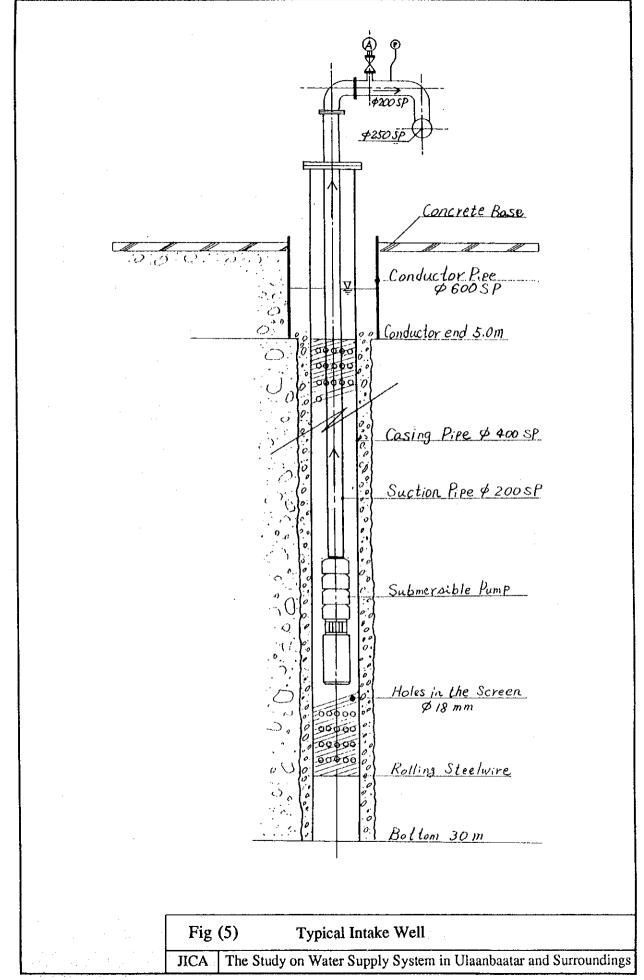

•

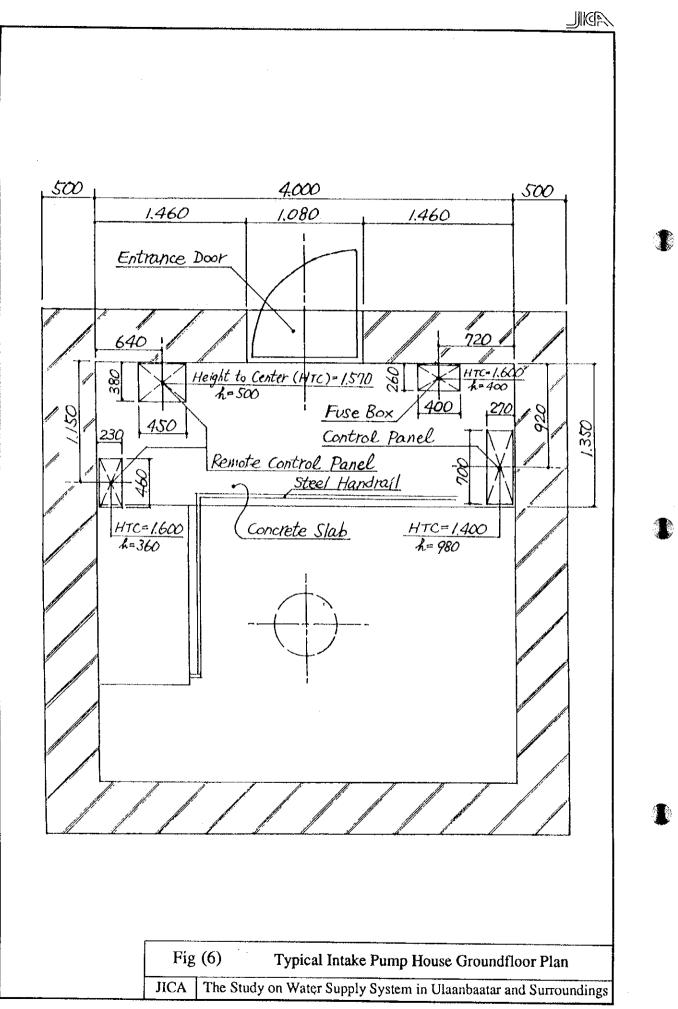

III - A - 59

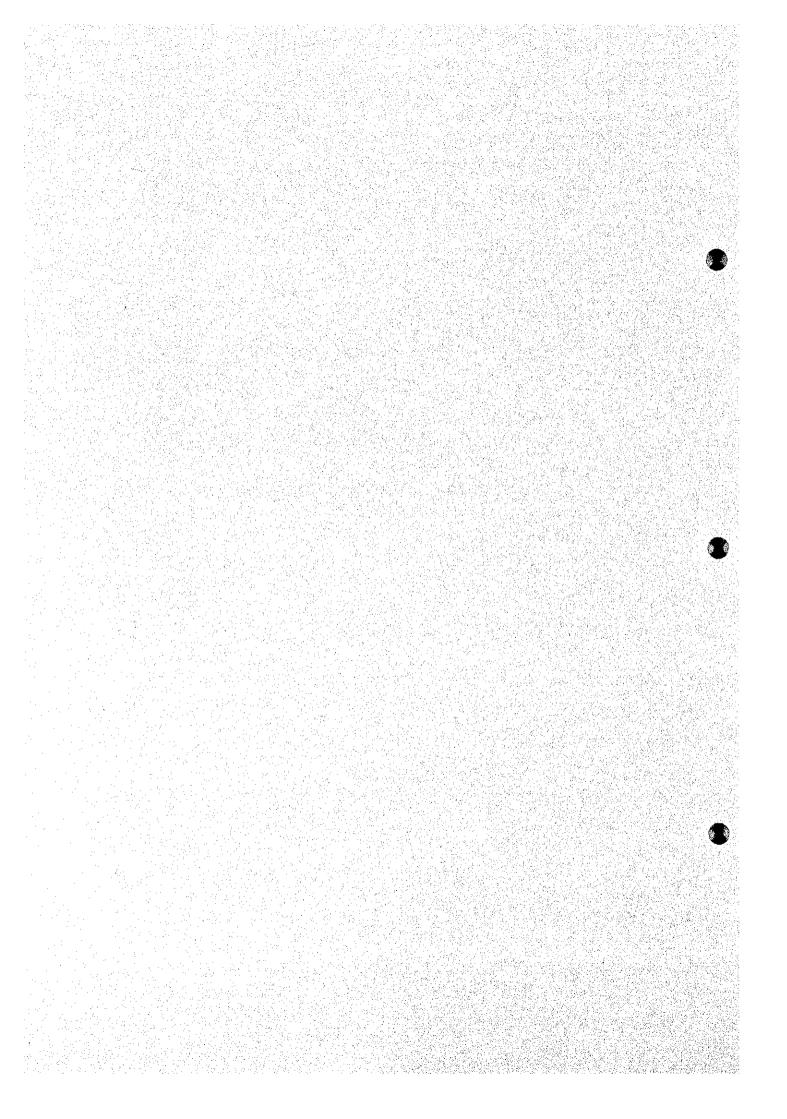
Appendix III.1.8

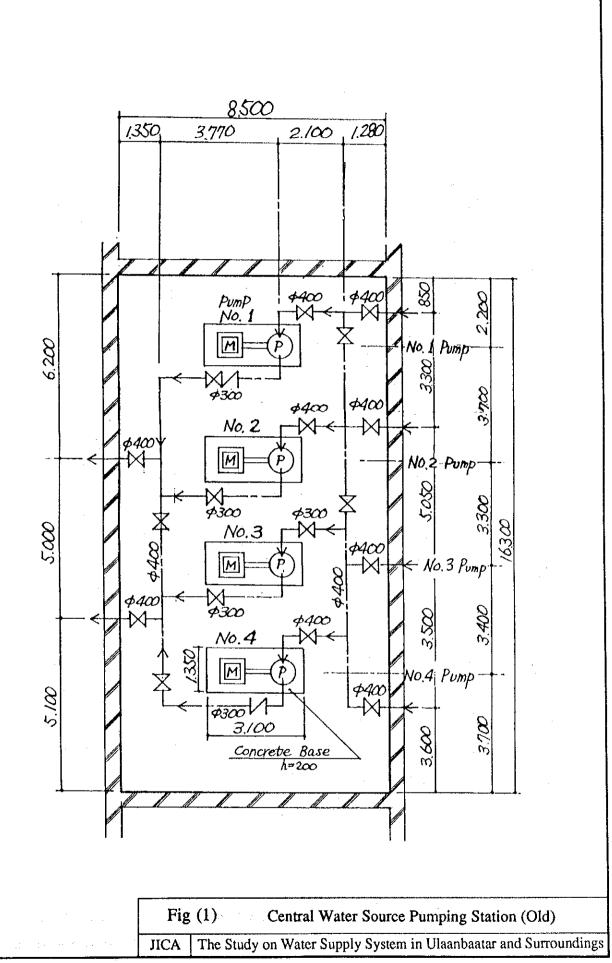

Drawings of Intake Pump Houses

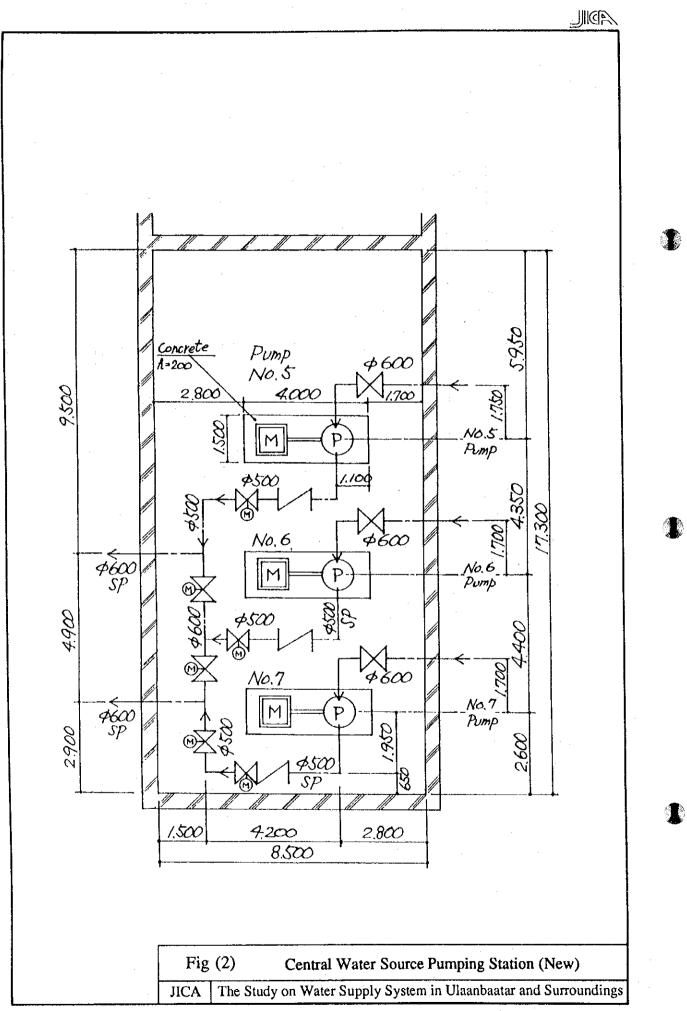




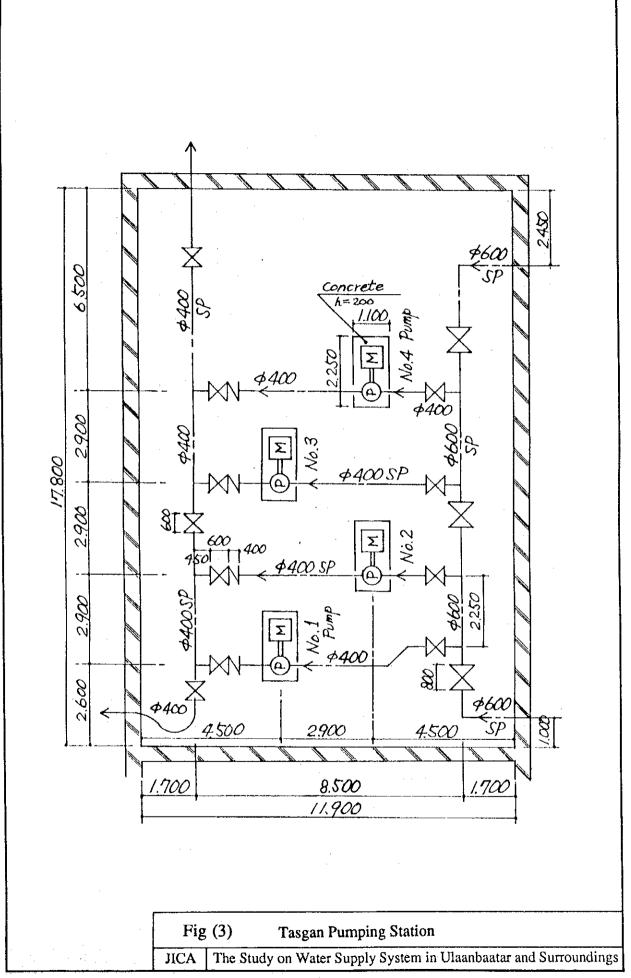

JIICER

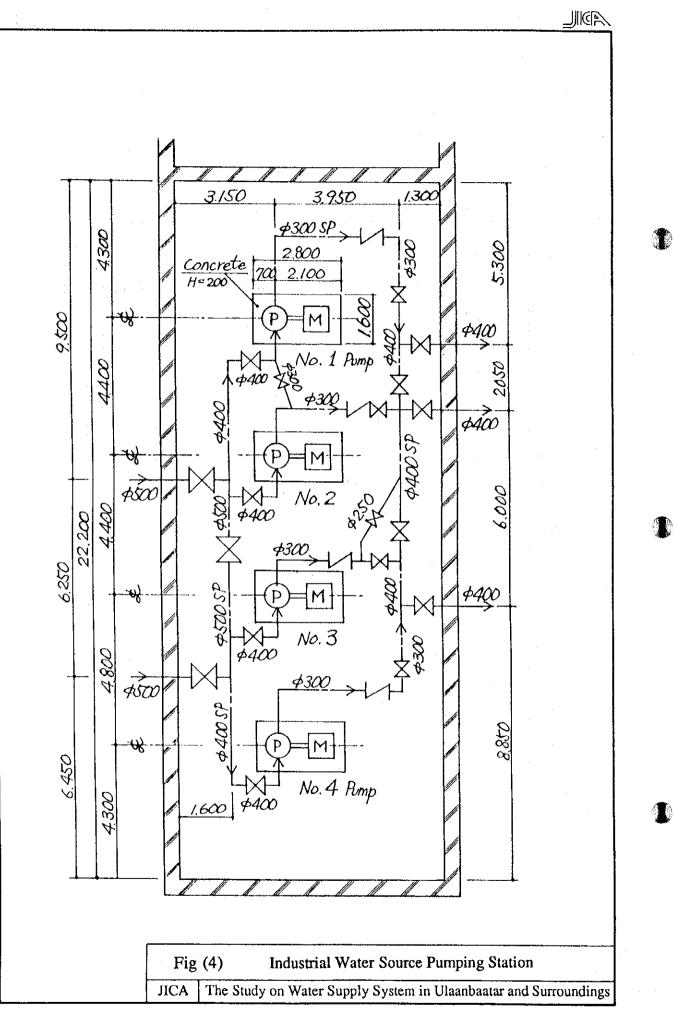

ADIIL

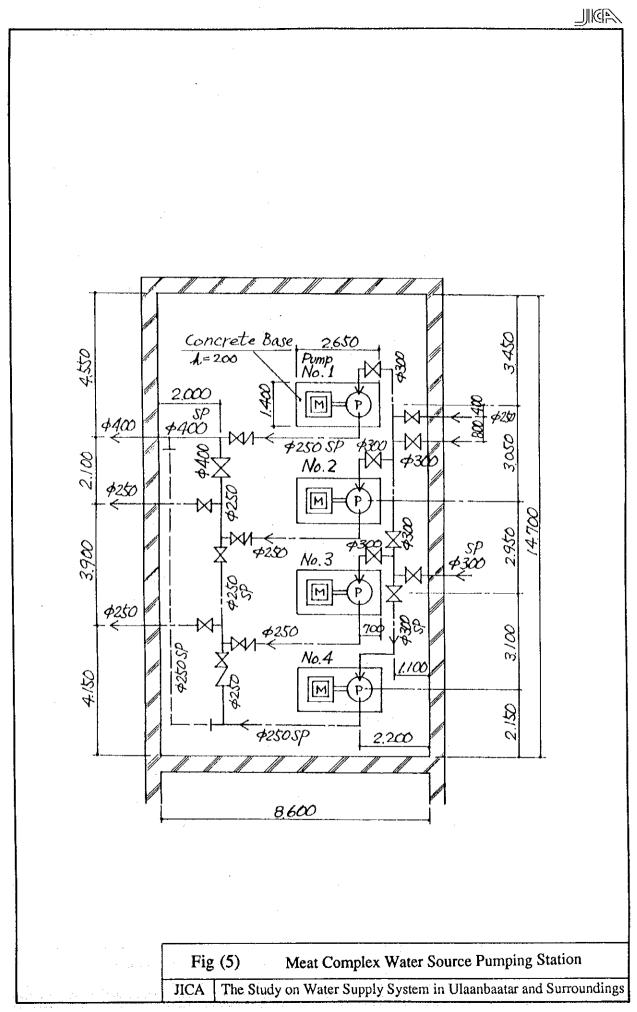


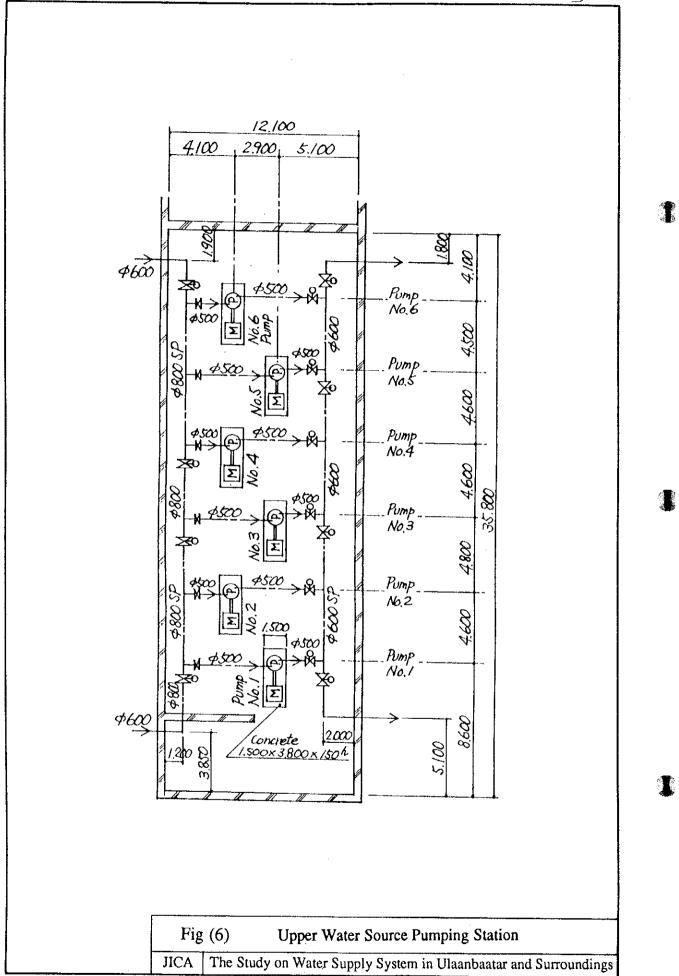

Appendix III.1.9

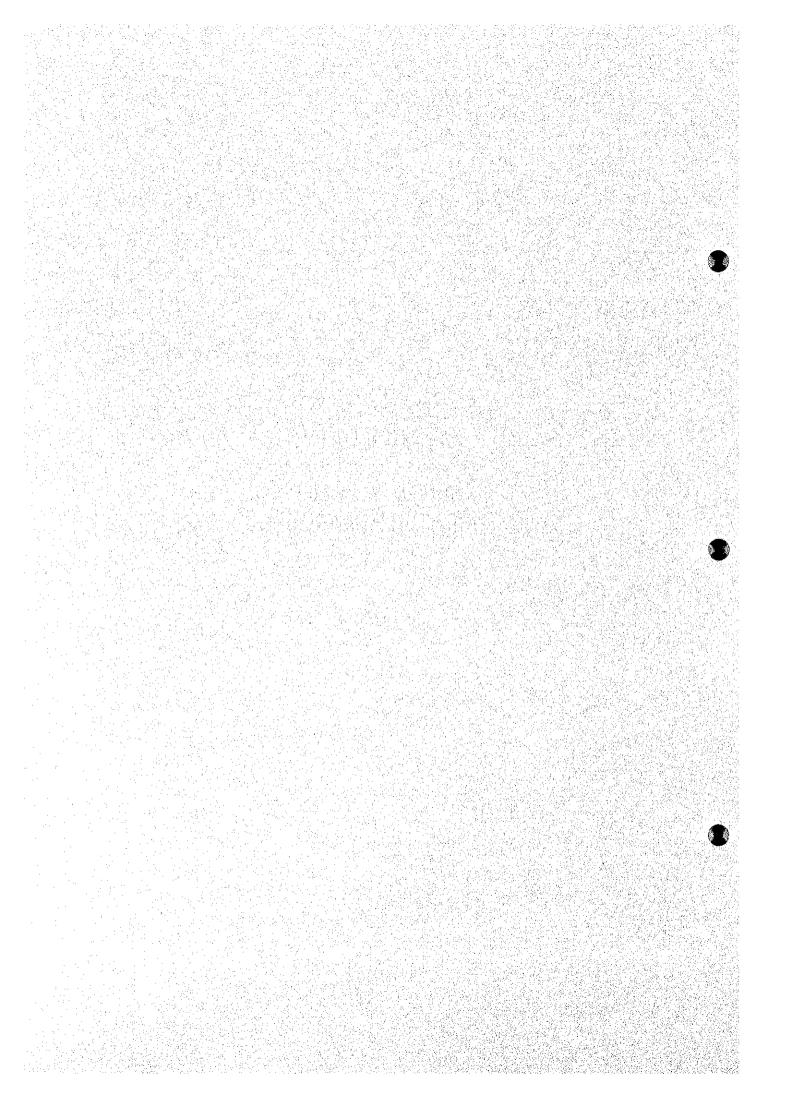
Layout of the Pumping Stations




JICA







JIKA

Appendix III 1.10

Survey on Water Taps Conditions in Apartment Buildings

Appendix III.1.10

A Survey on Water Taps Conditions in Apartment Buildings

During the course of the present study, a survey was carried out on the actual conditions of water service taps/faucets installed in household rooms in apartment buildings, in order to find present situation of wastage of water and leakage from water taps in apartment buildings.

The survey was carried out by individual interview method on four (4) apartment buildings, two old buildings and other two middle-aged; thus 40 households' water taps in total were surveyed. Its survey result is given in Tables (1) to (4).

The findings from the survey result are as follows:

- Water taps are installed in kitchens, bathrooms, toilets and washbasins in general, and total number of water taps is four (4) in average in each household.
- In old buildings, most of water taps (87%) are not functioning well, causing leakage and wastage.
- Combining old and middle-aged buildings, about 62% of water taps are not in good condition, which requires repair work.

Recommendations

- 1) All the water taps in the existing buildings should be checked to be repaired. The check work should start in particular from older buildings.
- 2) All water taps are recommended to be equipped with water meters for the purpose of water charge which should be paid based on the water volume actually consumed. Although installation of water meters to existing buildings is considered comparatively difficult, at least newly-planned buildings should have water meters in each household.

Table (1) Water Taps Survey Sheet (No.1)

Survey Date : 12 October 1993 Name of Apartment Building : Bldg. No.13 / 120,000 District Building Status : Old

.

	_	· .	Water T	'aps (Numbe	r and Condi	ition)		
Room	No	Kitc	hen	Bath	room	Toilet	Washbasin	
		Mixed	Single	Mixed	Single			Remarks
1)	1	⁻	2		2	1 (*)	1 (*)	
2)	2		2	1		1 (*)	1 (*)	
3)	3		2	1		1 (*)	1 (*)	· .
4)	4	2		· · · · · · · · · · · · · · · · · · ·	2	1 (*)	1 (*)	· .
5)	5		2		2	1 (*)	1 (*)	
6)	6		2		2	1 (*)	1 (*)	
7)	7		2		2	1 (*)	1 (*)	
8)	8		2		2	1 (*)	1 (*)	
9)	9		2		2	1 (*)	1 (*)	
10)	10		2		2	1 (*)	1 (*)	
11)	11		2		2	1 (*)	1 (*)	
12)	12	2		2		1 (*)	1 (*)	

Table (2) Water Taps Survey Sheet (No.2)

Survey Date : 14 October 1993 Name of Apartment Building : Bldg. No.3 / 3rd 4th Microdistrict Building Status : Middle-Aged

-		Water T	aps (Numbe	r and Condi	tion)		
Room No.	Kito	chen	Bath	room	Toilet	Washbasin	÷.,
	Mixed	Single	Mixed	Single			Remarks
1) 33	1 (*)		1 (*)		1 (*)		
2) 34	1 (*)		1		1		
3) 20	1 (*)		1 (*)		1 (*)		
4) 11	1 (*)		1 (*)		1 (*)		
5) 63	1 (*)		1		1 (*)		
6) 57	1 (*)		1 (*)		1		
7) 44	1 (*)		1		1		
8) 105	1 (*)		1 (*)		1 (*)		
9) 108	1		1 (*)		1 (*)		
10) 102	1 (*)		1 (*)		1		
11) 99	1		1 (*)		1		
12) 93	1 (*)		1		1		

Table (3) Water Taps Survey Sheet (No.3)

Survey Date : October 1993 Name of Apartment Building : 40,000 District Building Status : Old

	_		Water T	`aps (Numbe	r and Condi	tion)		
Roc	m No	Kitc	hen	Bath	room	Toilet	Washbasin	
• •	· · · .	Mixed	Single	Mixed	Single			Remarks
1)	18-35	1 (*)		1			2 (*)	
2)	62-23	1			1		:	
3)	6-40	1		1			2	Repaired by himself
4)	9-49	1		1 (*)			2	Repaired by himself
5)	26-33	1		1			2	
6)	21-16	1 (*)		1 (*)	·		2 (*)	
7)	24-87	1		1			1 (*)	

T)

Table (4) Water Taps Survey Sheet (No.4)

Survey Date : October 1993 Name of Apartment Building : Building No. 30, 1 and 3a Building Status : Middle-Aged

		Water T	`aps (Numbe	r and Cond	ition)		
Room No.	Kito	hen	Bath	room	Toilet	Washbasin	
	Mixed	Single	Mixed	Single			Remarks
1) 30-5	1 (*)		1 (*)		1	1 (*)	Repaired in 1990
2) 1-37	1		1		1 (*)	1 (*)	Repaired in 1986
3) 3a-1	1 (*)		1 (*)		1 (*)	1 (*)	
4) 30-15	1 (*)		1 (*)		1 (*)	1 (*)	Started in 1991
5) 3-18	1 (*)		1 (*)		1 (*)	1 (*)	
6) 1-5	1 (*)		1	<u>.</u>	1 (*)	1 (*)	
7) 1-23	1 (*)		1		1	1 (*)	
8) 3a- 8	1 (*)		1 (*)		1 (*)	1 (*)	
9) 3a-45	1 (*)		1 (*)		1 (*)	1 (*)	

Appendix III.1.11

Result of the Monthly Water Quality Analysis of Raw Wastewater and Treated Appendix III.1.11 Results of the Monthly Water Quality Analysis of Raw Wastewater and Treated Wastewater (Average)

		Itomo						Monu	11						
			-	6	4	4	5	6		8	6	10	1	12	Average
			104.00	160 10	76 271	102 201	17A KN	140.60	145 20		219.70	294.30		242.40	196.37
			124.00	102.40		00.001					11 50	37 70		14 30	
	(l/gm)	Treated W	10.40	30.90		01.11	00.1	loc'	٥.W	20100000000000000000000000000000000000			- 33		
1988)	Removal Eff	94.66	81.09		93.96	95.70	94.67	94.49		94.77	88.89	200	94.IU	
3			166 80	165 00	8	162 60	170.60	150.60	130.60		219.70	294.30		242.40	
		T-acted W	14.30	20.40		12.60	10.90	12.00	15.20		11.50	32.70		14.30	
	(ungui)		2.11	2.1	- 33	NO OK	12 60	07.02	25 99		04.77	88.89	-383	94 10	
		Removal Ett	91.43	81.04	S.,	C7-76	10.0%	CU:26	00.00				81		
	SS	Raw W	192.20	156.60		226.30	191.10	159.30	182.80	301.80	320.00	286.80		204.00	
	(ma/l)	_	13.30	8.60		10.40	8.80	9.30	7.40	7.40	9.30	8.20		23.70	
1000	(1)S			15 76	- 333	95.40	95.40	94.16	95.95	97.55	97.09	97.14	889 (S	95.30	
202	2004		8	274 80	3 1 -	250.60	239.00	270.00	197.00	234.00	329.70	269.00		496.00	
		T	02.01	14 00		17.00	14 90	12.80	13.00	10.00	15.80	21.80		47.00	
		Democrat Eff	01.08	01.23	- 333	03.22	63.77	95.26	93.40	95.73	95.21	91.90	-3333	90.52	
T	00	Dom W	017 M	265 00	21	214 70	343 00	261.00	173.00	208.30		347.50	1	266.80	
	55 1		00.000	50.207 V		13.20	12.20	20.00	8.90	10.80		23.80		14.60	
	(1/Run)	Demonstrate	00.72	00.0	- 333	93.85	96.44	92.34	94.86	94.82		93.15	3833	94.53	
R	2000		00 017	260.80	8	269 00	252.00	305.00	213.30	322.00		320.00	3	339.00	
		T-anted W	26 M			21.60	24.80	22.80	11.30	15.60	-	27.00		15.00	
	(1/3/11)	Demoval Fff		- 232	- 233	16.19	90.16	92.52	94.70	95.16		91.56	32335	95.58	
	20	Dow W		21640		197 001	400.20	252.40	137.60	271.00	239.90	317.70		315.80	
		Treated W	21 40	17.90		22.10	52.60	18.00	8.10	11.50	8.50	20.20		13.40	
1001	(1/Rm)	Removal Fff		- 5553	- 333	88.78	86.86	92.87	94.11	92:76	96.46	93.64	10.00	95.76	
1	RODS			84	8	325.00	212.00	221.00	277.00	259.00	324.20	272.00		336.00	
	(Vom)		13.80			34.60	22.40	14.10	29.20	33.80	22.20	44.20	37.80	28.30	
	20			- 2002	3333	89.35	89.43	93.62	89.46	86.95	93.15	83.75	200	91.58	
	55	Raw W	š	158.00	206.70	169.80	148.90	132.70	156.60	152.30	152.30	171.60		218.00	167.20
	(mg/)	(mg/l) Treated W	11.00	9.60		11.80	14.80	19.70	11.40	21.20	21.30	11.00		14.80	
1992		Removal Eff	93.62	93.92	1000	93.05	90.06	85.15	92.72	86.08	86.01	93.59		93.21	
	BOD5	i Raw W	161.20	-		190.10	270.40	106.30	246.00	154.00	261.30	244.30			214.3
	(mg/l)	(mg/l) Treated W	23.80			36.50	40.50	12.80	14.00	45.00	33.00	19.40			29.3
) /	Removal Eff	85.24	128	2.200	80.80	85.02	87.96	94.31	70:78	87.37	92:06			10.00

[Legend SS: Suspended Solid, BOD5: Biochemical Oxygen Demand, Raw W: Raw Wastewater, Treated W: Treated Wastewater, Removal Eff: Removal Efficiency,

Appendix IV.1.1

Original Data of Analyses for Well of USAG

Appendix IV.1.1 Original Data of Analyses for Wells of USAG

Upper Water Source

	Well number		29			00		3]			7			3		ť	7	2
Tem	VNIT Sampling date 13,Sep. 1993	13,Sep. 1993	26,Apr. 28,Jun. 1994 1994	28,Jun. 1994	13,Sep. 1993	28,Jun. 1994	13.Sep. 1993	26.Apr. 1994	28,Jun. 1994	13.Sep. 1993	26.Ar	28,Jun. 1994	13,Sep. 28,Jun. 1993 1994	28,Jun. 1994	13,Sep. 1993	28,Jun. 1994	12,Sep. 1994	12,Sep. 1994
Water temperature	0,1	6	4	71	8	5	8	4	5	8	E	5	1	4	1	5	6	11
H		6.7	7.5	81	6.8	7.8	6.6	6.9	7.5	6.6	6.9	7.5	6.6	7.5	6.7	7.6	7.7	7.2
Conductivity	micro s/cm	70	8	1001	70	60	70	70	50	70	60	50	70	50	70	99	8	8
Furbidity	NTU			0		0			0			0		0		0	0	0
8	mgA	13.8	19.9	15.1	14.1	15.2	13.9	19.2	14.9	13.8	19.4	15.3	14.5	14.9	14.5	15.7	13.6	12.7
Alkali	mg/lCaCO3	38	33	39	24	36	38	35	26	30	32	29	35	29	38	8	32	33
S04-	mg/l	0	0	0	4	0	0	ō	0	13	0	0	0	-	0	0		
-1	Vau	9	S	5	5	80	9	4.5	9	18	5.5	5.5	8	ŝ	6	4.4	10	13.5
Ca++	meA	0.45	0.6	0.85	12	0.9	1.25	0.52	0.95	1.3	0.37	0.87		0.89	0.95	0.95	0.55	0.67
Mett	meA	1.82	0.6	3.62	2.43	3.48	6.68	5.22	4.21	1.82	7.05	2.64	7.29	3.01	5.47	3.98	1.45	6.44
LIS C	meA	64	71.5	39	77.5	42.5	87	84.5	45	125.5	115.5	24	70	38.5	87	86.5	47.5	48.5
Ma	Vau		1.0	0		0		0.1	0.1		0.1	0		0		0	0.1	0
e.	meA		0.05	60.0		0.07		0.11	0.03		0.03	0.04		0.12		0.01	0.18	0.05
Bacteria	Number/I		0	0		0		0	0		0	0		0		0	0	0
Coliforn	Number/I		0	0		0		0	0		0	0		0		0	0	0

Central Water Source (1/6)

	Well number	57	58			17					91					14		
Item	Sampling date 14, Sep. 1003	14,Sep. 1993	14,Sep. 1993	14,Sep. 1993	13,Des.	27,Apr. 1994	8,Jun. 1994	6,Sep. 1994	14,Sep. 1993	13,Des. 1993	27,Apr. 1994	8,Jun. 1994	6,Sep. 1994	14,Sep. 1993	13,Des. 1993	17,Des. 1993	8,Jun. 1994	6,Sep. 1994
Water temperature		0	6	12	9	9	9	11	12	4	5	5	11	11	3	7	9	
nH		6.7	6.8	6.8	6	6.6	7.9	7.5	6.7	1.7	7	7.8	7.5	6.7	6.9	6.8	7.6	7.
Conductivity	micro s/cm	8	6	80	130	100	100	80	80	120	100	66	90	8	110	100	8	100
furhidity	NTU						0	ō				0	0				Ö	
00	Men	13.4	13.5	11.6	16.9	15.4	15.3	12.5	11.5	16.3	16	17.3	12.7	12.1	15.9	12.8	16.1	12.8
Altali	me/ICaCO3	37	39	29	28		33	33	62	31		38	33	39	38	32	39	42
SO4	mel	0	0		25	2	0		0	22	æ	ō	2	0	20	1	0	
	mel	5	4	5	5.5	6	6	6	5	5	2	9	7	9	9	5.5	90	6.5
	Vom	1.55	-	1.35	0.7	0.65	0.95	0.65	0.8	0.72	0.92	0.65	1.07		0.75	1.1	0.65	0.75
Mort	low low	5.47	4.25	1.82	7.53	7.86	0.24	2.67	7.29	4.01	1.21	2.06	0.6	6.68	9.94	15.2	2.67	3.89
100		81	77	69	46.5	65	55	60	71.8	57.5	60.5	53.5	66.5	76.5	49.5	66.5	69	66.5
					0	03	0	0.1		0	0.2	õ	0.1		0	0	0	0.1
	Vam				0.01	0.4	0.01	0.05		0.03	0.13	0.03	0.08		0.01	0.18	0.03	0.17
Bacteria	Number/I				0	ö	0	0		0	0	5	0		ō	-	0	
Coliform	NumberA				ò	0	0	2		0	0	0	0		0	1	0	

:Exceed the standard limit for drinking water

(5/6)
Source
Water :
Central

_		Well number			13					39				. 38			-	70	
		Sampling date 14, Sep.		13,Des. 27,Apr.	27.Apr.	8,Jun.	<u> </u>	5	13,Des.	27,Jun.	6,Sep.	14.Sep.	13,Des.	27,Jun.	6.Sep.	15,Sep.	27.Apr.		6.Sep.
	Item		1993	1993	1994	1994	1994	1993	1993	1994	1994 L	1993	5661	1994	1455	Ň	t t	1 4721	1441
	Water temperature	0.	6	4	12	9	10	7	5	6	7	5	4	9	9	10	S	-	5
	Hq		6.7	6.8	7.2	7.4	7.8	6.7	6.9	7.8	7.6	6.7	7.2	7.5	7.6	6.8	7	7.8	7.5
-	Conductivity	micro s/cm	6	140	60	60	90	110	110	180	120	160	8	140	130	8	120	110	100
	Turbidity	NTU				0	0			0	0		:	0	0	-		0	0
	00	mg/l	13.1	14.5	15.8	15.4	13.6	14.9	14.5	15.2	14.6	16.1	15.3	15.1	15.2		17.2	15.1	13
	Alkali	mg/lCaCO3	74	28		37	39	44	77	52	44	52	6	45	42	39		30	36
	S04	mgA	0	18	1	0	1	3	0	25	12	17	28	8	191	0			0
	<u> </u>	mg/l	4	Ś	7.5	80	80	7	3.5	11	27	10	4	5	32	8	80	6.5	10
	Ca+	meA	0.85	0.95	1.22	0.72	0.82	0.85	0.6	1.45	0.77	0.8	0.72	1.25	0.97	0.55	0.67	0.77	0.8
	Me++	mg/l	10.3	1.21	2.06	1.13	0.64	9.72	13.37	3.64	9.48	35.2	7.9	3.04	5.47	11.55	4.01	3.04	1.21
	TDS	mg/l	85	49.5	65	130.5	62.1	76	51.5	154	86.5	111.5	43	117.5	78	68.5	71.5	53.5	83.5
	Mn	mg/l		0.1	0.2	0	0.1		0	0.1	0		0	0.1	1.0		0.2	0	0.1
	Fe	mg/l		0	0	0.02	0.08		0.01	0.04	0.06		0.03	0.02	0.06	_	0.01	0.01	10.0
	Bacteria	Number/I		0	0	0	Ö		0	0	ę		0	0	o		0	0	0
]	Coliform	Number/I		0	0	0	ö			0	3		1	0			0	0	0
v																			
- A																			
- 2	Central Water Source (3/6)	Source (3/6)																	
2																			

	Well number			55			54			5 3			52				62	
Ē	Sampling date 15,Sep. 28,Apr. 16,Jun. 1 NIT 1 993 1 994 1 994	15,Sep. 1993	28,Apr. 1994	16,Jun. 1994	20,Sep. 1994	15,Sep. 1993	16,Jun. 1994	20,Sep. 1994	15,Sep. 1993	26.Apr. 1994	16,Jun. 1994	15.Sep. 1993	16,Jun. 1994	20,Sep. 1994	15,Sep. 1993	27,Apr. 1994	16,Jun. 1994	20,Sep. 1994
r temperature		.6	1	9		101	5	11	6	4	9	6	6	80	12	4	7	10
		6.7	7.2	7.4	- 7.5	6.6	7.4	7.5	6.7	6.4	7.3	6.8	7.4	7.7	6.7	7.1	7.4	L.L.
Conductivity	micro s/cm	6	8	06	100	60	80	60	66	8	80	110	8	110	70	110	- 100	80
	DIN			0	0		0	0			0		0	0			0	0
	meA	13.7	18.1	15.4	13	13	14.6	12	14.1	18.1	14.3	14.2	14.4	12.6	12	18.5	14.6	12.5
Alkali	me/ICaCO3	37		45	42	35	39	43	40	34	34	38	41	49	29		40	- 34
	mg/l	0		0	0	0	0	5	1		0	0		4	1		0	2
	Vam.	9	9	5	10	è	9	80	5	S	6.5	6.5	5	8.5	6.5	7.5	90	12
Cat Cat	me/i	-	0.57	0.77	0.67	1.15	0.65	0.62	1.85	0.55	0.7	1.05	0.7	1.65	0.9	0.7	0.67	0.6
	me/l	4.86	2.79	1.82	26.7	1.21	1.21	8.51	4.86	3.04	1.82	3.64	0.85	4.49	1.82	7.29	4.01	4.41
	meA	73.5	59	76.5		88.5	86	52	63.5	60.5	87	71.5	62.5	- 67	65.5	87	81.5	54.5
	me/l		0	0	0.1		0	0.1		0.1	0		0	0		0.2	0	0.1
	meA		60.0	0.04	0.03		0.05	0.09		0.1	0.04		0.03	0		0.37	0.04	0.01
Bacteria	Number/		0	0	0		0	0		0	0		0	0		0	ō	0
	NumberA		0	0	0		0	0		0	0		0	0		0	ō	1

:Exceed the standard limit for drinking water

à

٢

Central Water Source (4/6)	
-	

	Well number			61			- 1	51			en l	35			. 1	28		53
	Sampling date 15,Sep.	15 Sep.	28,Apr.	16,Jun. 1004	20,Sep.	15,Sep.	27,Apr. 1094	16,Jun.	20,Sep.	18,Sep.	28,Apr. 7	27,Jun. 1994	6,Sep. 1994	18,Sep. 1993	28,Apr. 1994	8,Jun. 1994	6,Sep. 1994	18,Sep. 1993
Vater termenatilitie		12		7	10	13	3	4	10	œ	80	16	6	10	7	7	6	
THE THE PARTY OF T		6.8	7.3	1.7	7.5	L	6.8	7.2	7.6	7.1	6.9	7.4	7.3	7.2	7.2	7.5	7.5	6.9
Conductivity	micro s/cm	0 ²		6	70	140	170	180	130	110	110	8	110	180	170	170	170	170
Turbdity	UTIN			0	0			0	0			0	0			0	0	
00	me/l	12.2	19.6	15.6	11.8	12.3	19.5	15.9	12	13.8	16.2	12.8	10.8	12.3	16.3	15.2	10.3	12.8
Alkali	me/ICaCO3	30		32	40	51		44	<u> 6</u> 6	40		39	43	59		69	62	ŝ
SD4	l/am	0		0	2	-		19	9	4		1	11	20		17	18	19
2	me/l	9	S	5.5	10.5	6	10	6	∞	1	2	œ	7	80	5	11.5	6	`
1 1 2		0.95	0.87	0.65	0.62	0.65	0.72	1.37	1.07	0.8	0.72	0.7	0.85	1.2	0.77	1.35	1.27	
Mott	mell	3.64			11.3	16.4	3.64	4.86	2.18	4.21	2.43	6.08	6.32	3.64	3.4	0.85	4.25	3.64
SUL	Vom.	74.5			42	48.5	58.5	79.4	65	59.5	77.5	90.5	83.5	100	77.5	103	124	130
Ma	- Automatical Automatica Automatical Automatical Automatica Automatical Automatical Automatica			0	0.2		0.1	0	0		0	0.1	0.1		0.1	0	0.1	
Fe	Te/l		0.06	0.04	0.02		0.03	0.03	0.01	 	0.01	0.03	0.12		0.01	0.02	0.05	
Bacteria	Number/I		0	0	0		ò	0	0		0	0	0		0	0	0	
Coliforn	Number/		0	0	0		0	0	0		0	0	0		0	0		
	Source (5/6)]														-		
3	1.1.1. T		çç			C.	30			6	37	-		34			6	

	Well number		29				30			. ,	32			34			2	
	Sampling date 28, Apr.	28.Apr.		6,Sep.	18,Sep-	28,Apr.	8,Jun.	6,Sep.	-	28,Apr.	8,Jun.	6,Sep.	18,Sep.	28,Apr.	8,Jun.	18,Sep.		27.Apr.
ltem	UNIT	1994	1994	1994	1993	1994	1994	1994	1993	1994	1994	1994	1993	1994	1944	5641	1995	1444
Water temperature		7	2	6	7	1	7	7	8	6	5	8	و	9	و	6	و	-
Ha		6.7	7.3	7.4	7	6.9	7.4	7.6	6.7	6.6	7.3	7.4	6.8	6.4	7.3	6.7	6.7	7.5
Conductivity	micro s/cm	150	150	160	130	150	130	120	180	210	200	180	170	220	210	110	110	8
Turbidity	NTU		0	0			0	0			0	0			0			
2	Vam	15.7	14.5	10.7	13.6	15.3	14.5	12.6	13.1	15.1	13.5	12.5	14.1	15.4	14.1	12.9	13.5	16.8
Alkali	mg/lCaCO3		49	61	43		51	47	59		55	56	56		62	41	29	
S04	mg/l		11	19	13		11	12	22		24	21	20		22	1	6	1
0	me/l	4.5	11	8	8	3.5	0.9	80	6	5.5	1.6	25	9		2	6	5	7.5
Ca+1	me/l	0.75	1.05	1.05	1.05	0.77	1.2	0.87	1.55	1.5	1.45	1.35	1.15		1.5	0.92	0.75	0.82
Me++	meA	3.04	3.04	0.36	1.45	3.65	10.57	2.43	1.21	9.12	6.08	12.16	2.79		1.82	1.82	15.2	13.13
SUL	meA	76.5	90.5	109	105.5	59	145	90.5	142.5	59	172	121.5	133.5	62.5	81	109.5	59.5	59.5
Mn	me/l	0	ō	0.1		62	0	0		04	0	0.1		0	0		0	0.1
Fe	meA	0.02	0.16	0.03		60.0	0.03	0.04		0.06	0.17	0.03		0.08	0.01		0.01	0.02
Bacteria	Number/	0	0	0		0	0	0		0	0	2		0	0		0	0
Coliform	Number/l	0	0	0		0	0	0		0	0	0		0	õ		0	ō

.Exceed the standard limit for drinking water

Central Water Source (6/6)

	Well number	2		19	24	8
	Sampling date	27,Jun.	6,Sep.	17,Des.	17,Des.	20,Sep.
ltem	UNIT	1994	1994	1993	1993	1994
Water temperature	0.	8	10	6	80	11
Hd		οo	8.1	6.7	6.9	7.8
Conductivity	micro s/cm	96	110	130	140	90
Turbidity	UTN	0	0			0
8	mg/l	13.9	14.3	13.6	14.3	12
Alkali	mg/lCaCO3	50	52	16	34	41
S04	1/3m	0	12	0	14	
<u>с</u> -	/Sm	6.5	7.5	5	5	19
Ca++	V ³ u	0.7	1	1	1	0.7
Mg++	mg/l	3.64	0.65	16.4	12.16	15.44
SQT	mg/i	87	67.5	61.5	64.5	53.5
Mn	mg/l	0	0.1	0	0	0.1
Fe	mg/l	0.03	0.04	10.0	0.04	0.04
Bacteria	Number/I	0	2	1	0	2
Coliform	Number/I	0	0	0	0	Ţ

leat Complex	Meat Complex Water Source (1/2)																	
	Well number		4				2								6		6	
lem	Sampling date 16,Sep. UNIT 1993	16,Sep. 1993	17,Des. 27,Jun. 1993 1994	27,Jun. 1994	16,Sep. 1993	17,Des. 1993	27,Jun. 1994	12,Sep. 1994	16,Sep. 1993	17,Des. 1993	27,Jun. 1994	12,Sep. 1994	16,Sep. 1993	17,Dec. 1993	28,Jun. 1994	12,Sep. 1 1994	16,Sep. 1 1993	17,Dec. 1993
Nater temperature	0.	8	5	7	6	12	6	6	7	5	8	80	6	7	7	6	8	
F		7.1	6.9	7.3	7	7	7.4	7.6	6.8	7.1	7.2	7.6	6.8	7.2	7.1	7.5	6.7	6.9
Conductivity	micro s/cm	390	390	370	360	390	330	390	400	380	400	410	440	440	460	490	440	410
urbidity	NTU			0			0	0			0	0			0	0		
8	mg/l	15	13.5	13.4	13.6	14.2	12.3	13.1	15	12.5	13.2	13.4	12.6	14.5	10.5	13.1	12.8	13.1
Alkali	mg/ICaCO3	119	64	56	42	63	52	19	92	62	59	144	118	62	8	120	133	ង្ក
S04-	mg/l	75	75	75	75	75	75	75	58	44	54	53	31	75	55	8	19	75
	mg/l	25	23	23	26	22.5	21	28	27	29.5	31	32	34	24	32	32	37	23.5
1+E	mg/l	2	2.02	2.1	2.3	2.06	2.15	2.12	2.15	2.5	2.1	2.8	2.25	2.15	2.55	2.77	3.25	2.03
Mg++	∏/3m	7.29	5.83	10.33	7.29	5.59	11.9	7.9	6.68	1.45	19.4	18.48	10.57	1.45	1.9	7.65	4.25	3.52
DS	mg/l	293.5	251	324.5	276.5	240	306.5	240.5	261	254	326.5	299.5	200.5	247.5	363.5	286.5	273	241
Min	mg/l		0.1	0.1		0.1	0	0.1		Ö	0.1	0.1		0	0	0.4		0.1
	mg/i		0.01	0.07		0.02	0.07	0.02		0.02	0.03	0.05		0.07	0.06	0.03	-	ľ
Bacteria	Number/1		0	0			0	0		1	0	1		0	0	1		Î
Coliform	Number		C	С		r -	5	<		c	с	v		с	c	•		ſ

:Exceed the standard limit for drinking water

Meat Complex Water Source (2/2)

.

	Well number	6	
	Sampling date	28,Jun.	12,Sep.
Item		1994	1994
Water temperature	<u>.</u>	6	6
Ha		7.4	7.4
Conductivity	micro s/cm	430	480
Turbidity	NTU	0	0
8	mg/J	11.8	13.4
Alkali	mg/lCaCO3	54	135
S04	mg/l	58	55
¢	mg/l	27	23
Catt	mg/l	2.95	3.25
Mg++	mg/l	9.72	7.29
SOL	mg/l	368.5	276
Mn	mg/l	0	03
Fe	Vgm	0.01	0.04
Bacteria	Number/	0	0
Coliform	Number/I	0	0
A Industrial Water Source	ter Source		
. 5	Well number		12

	Well number		12		
	Sampling date	18,Sep.	26,Apr.	27,Jun.	12,Sep.
Item	UNIT TINU	1993	1994	1994	1994
Water temperature	0.1	12	9	11	12
μa		1.1	7.5	7.6	7.9
Conductivity	micro s/cm	60	240	210	110
Turbidity	NTU			1	0
8	mg/l	12.6	17.7	12	12.6
Alkali	mg/ICaCO3	59	39	40	37
SO4	mg/l	0	47	50	18
ď	mg/l	7	16.5	7.5	25.5
Ca+t	mg/l	0.65	1.62	1.55	0.82
Me++	mg/I	12.16	7.01	2.43	13.74
TDS	mg/l	251	262.5	162	81
Mn	mg/l		0.5	0.1	0.1
Fe	mg/I		0.2	0.04	0.05
Bacteria	Number/		0	0	0
Coliform	NumberA		0	0	θ

.Exceed the standard limit for drinking water

Appendix IV.2.1

Original Data of River Water Quality by Central Environment Research Laboratory, the Ministry of Environment

	ltern	pH	Ca	Mg	SO4	CI	TDS	NH4	NO2	NO3	Р	Fe2+3	Cu	Mn	F	Mo	Coliforn
	Unit	-	mg/l	mg/l	mg/i	mg/l	mg/l	mgN/I	тgNЛ	mgN/l	mgP/I	mgЛ	mg/l	mg/l	mg/l	mg/l	Number
Year	Date						Ţ			-							Λ
	Jan.	T		<u> </u>													
	Feb.																
ſ	Mar.																
	Apr.																
ſ	May																
1986	25,Jun.	7.6	4.6	1.7	15.7	1.1	56.4	1.31	0.011	0.21	0.006	0.11	0.004	0.01	0.08		
ľ	29, Jul.	7.7	4.6	0.6	8.6	0.7	55.5	0.79	0.014	0.34	0.003	0.08	0.001	0.15	0.18		
	26,Aug.	7.7	3.8	1.1	8.5	1.8	51.8	2	0.013	0.28	0.015	0.18	0.002	0.2	0.04		1
ľ	30,Sep.	7.9	5	1.2	6.6	1.4	79.6	0.7	0.02	0.19	0.001	0.03	0.012	0.04	0.16		
Ì	29,Oct.	7.5	8.8	2.9				0.62	0.2	0.09	0.007	0.2					
	Nov.																1
Ì	30,Dec.	7.6	4.2	1.3				0.07	0.002		0.005	0.06					
verage		7.7	5.2	1.5	9.9	1.3	60.8	0.9	0.043	0.22	0.006	0.11	0.005	0.1	0.12		
	Jan.				Ĭ												
	Feb.																1
Ì	Mar.																
ł	27.Apr.	7.5	11.6	1.9		1.8		0.46	0.006	0.34	0.006	0,1	0.002	0.06	0.27		1
ľ	30,May	7.9	16.4	5	24	9,6	149.3	0.46	0.001	0.31	0.008	0.02	0.003	0	0.05		
1987	25 Jun.	7.4	8.6	0.5	15.4	3.5	90.2	0.25	0.023	0.21	0.008	0.07	0.008	0.06	0.06		
	27.Jul.	7.4	8.6	1	19.5	2.1	67.1	0.26	0.007	0.17	0.003	0.13	0.01	0	0.04		1
	20, Aug.	7.6	10.2	3.8				0.41	0.004	0.15	0.001	0.05			0.14		
	16,Sep.	6.8	6.7	4.1	9.2	2.5	43.8	0.34	0.002	0.94	0.008	0.04	0	0	0.06	·······	
	26,Oci.	7.6	11.8	2.8	4.1			0.99	0.005	0.34	0.024				[1
	18,Nov.	7.1	9	9	14.6	1.8	110.4	0.06	0.001	0.24	0.004	0.05	0.002	0.23			
	29,Dec.	7.8	9.2	15.9				0.15	0.001		0.019	0.01	-		0.03		
\verage		7.5	10.2	4.9	14.5	3.6	92.2		0.006	0.34	0.009	0.06	0.004	0.06	0.09		
	14,Jan.	7.8	9.2	6.1	43.7	<u></u>		0.15	0.019		0	1		0.06	1		T
	17,Feb.	6.8	7.6	4	24.4	3.9	112.2	0.33	0.006	0.26	0.007	0.36		0.17			
	22.Mar.	6.7	16.2	7.9				0.19	1		0.009			ļ			-
	18 Apr.	7.4	9.8	7.2	2.8	13.1	96.6			0.24	0.012	0.15	0.005	0	0.05		
	18,May	8.6	5	2.7	3.6	6.4	63.8		***···	0.39	0.004	0.17	0.016	0.32	0.04		
1988	23,Jun.	6.8	5.6		3.3	7.4	43.4	0.78	0.004	0.02	0.004	0.1	0.005	0	0.06		
	22,Jul.	7.4	7.6	2.9	2	3.9	54.6		0.006	0.09	0.003	0.06		0.36	0.06		-
	25,Aug.	7.2	7.4	1.4	2	3.9	36.4		0.003	0.31	0.02	0.06			0.09		
	26,Sep.	6.8	9	1.4	2.9	5.7	48.1		0.002	0.15	0.003	0.03		0	0.04		
	24 Oct.	7.2	9	6.9	1.5		···· · · ·	1	0.002	<u>+</u>	0.016	0.07		0.03	0.1		1
	16 Nov.	7.2		5		<u> </u>	1		0.017	ł •	1			0.06	•		
	19.Dec.	7.2	10.6		1.9			0.49		0.13	+				0.02		
\verage		7.3	9		8.2	7.3	· · · ·	<u> </u>		0.2		0.12	0.009	0.11	0.05		
	13,Jan.	7.1		2.4	30.7	5.7			0.001	0.13		0.06		0.09			
	16 Feb.	7.4	1	5.5	37.6							0.01		0.05		0.00	1
	20, Mar.	7.9	<u> </u>	6.1	18.2	30.8	1	∱ ·	0.017	1	1	0.03				0.01	3
	20,Apr.	7.9		3.2	9.9	1		t		0.03		0.03	0.002	0.02		1	
	22,May	8.3	16.8	3	2.5	5.3	71	0.52	0.003	0.15	0.009	0.05	0.01	0.02			
1989	19 Jun.	7.6	1		15	11.3	1					0.03	0.005	0.1		[
	26,Jul.	7.4	1				h	0.42	0.006	0.05	0.054	0.05	0.007	0.07		0.00	7
	15,Aug.	7.4			3.4	f		1	1		- <u>}</u>		0.007				1
	21,Sep.	8	t		<u> </u>	<u>+</u>	·}			1			0.01				1
	19,Oct.	7.4			• • • •		T				f		0.002			1	
	13,Nov.	7.4	1	••••••••••••••••••••••••••••••••••••••	+ · · · · · · · · · · · · · · · · · · ·		1	1		1			+		1	1	
	09 Dec.	7			1.8	1		0.3	·		0.027		ŧ	1		1	
	07,000	7.6		3.2	<u> </u>	+	108.4	1			+			1		* •••••	

Appendix IV.2.1 Original Data of River Water Quality by Central Environment Reserch Laboratory, the Ministry of Environment Tereli (1/2)

IV - A - 6

· •

				÷												:	
					·		•							· ·			
erelj (2	/2) Item	pН	Ca	Mg	SO4	Ci	TDS	NH4	NO2	NO3	P	Fe2+3	Cu	Mn	F	Mo	Coliform
Year	Unit Date	-	mg/l	mg/i	mg/l	mg/l	mg/i	mgN/l	тgNЛ	mgN/l	mgP/I	mg/l	mg/l	mg/i	mg/l	mg/l	Number A
	15.Jan.	7.6						0.12	0.003		0.047			0.14	0.27		21
	14,Feb.	6.5	9	2.3	3.6	1.4	78.6	1.04	0.001		0.003	0.04		0.04	0.65		20
	28,Mar.	7.4			13.4			3.05	0.044		0.19			0.18	0.24	0.164	
	29,Арт.	7.6	14.2	2.8	11.3	3.5	133.8	0.64	0.005	0.4	0.053	0.09	0.001	0	0.14	0.214	18
	23,May	8,4	7.4	2.7	3.1	6	45.4	0.03	0.002	0.48	0.021	0.04	0	0.02	0.16	0.076	25
1990	14,Jun.	7.8	7.4	2.3	1.2	6	42.7	0.26	0.002	0.13	0.017	0.01	0.005	0	0.25		12
	15,Jul.	7.4	5.4	1.7	2.2	3.2	37.3	0.52	0.002	0.3	0.006	0.04	0.017		0.27		
	27,Aug.	7.6	9.8	0.5	12	2.3	39.5	0.94	0.002	0.27	0.008	0.04	0.003		0.23		
	Sep.										• • • •				-	0.00/	
	08,Oct. 05,Nov.	7.9 8.5	8.2	4.5	0.4	3.2			0.002	0.28	0.006	0.04	0		0.76 0.06	0.036	22
	06,Dec.	8.J 7.2	8.2 12.3	2.4 3.5	1.1 1.8	3.5 5.7	58 74.8	0.18	0.001	0.23	0.024	0.04	0.01	0.03	0.08	0.098	20 25
verage	00,040.	7.6	9.1	2.5	1.0	3.9	63.8		0.005	0.23	0.004	0.02	_	0.05	0.29	0.098	
	22,Jan	7.3						0.21	0.005	0.24	0.004	0.01	0.002	0.00	0.19	0.121	12
	Feb.																
	25,Mar.	7.3	25	7.4	13.7	4.2	180.6	0.18	0.012	2.24	0.013	0.02	0.008	0.11	1.4	0.08	31
	18,Арт.	8	12.6	1.8	0.1	2.8	54.5	0.3	0.005	0.23	0.004	0.08	0.041	0.02	0.23	0.029	
	22,May	7.5	4.8	1.8	1.6	4.6	27.6	0.47	0.004	0.14	0.013	0.1	0.002	0.01	0.03	0.08	
1991	17,Jun.	7.8	8.1	1	1.8	8.2	65.3	0.3	0.002	0.14	0.01	0.05	0.003	0.05	0.29	0.084	
	05,Jul.	7.5	9.8	1.5	10.1	3.5	57	0.31	0.003	0.28	0.011	0.05	0.002	0.03	0.01	0.05	
	Aug.							 	· .			 					
	04,Sep.	7.7	7.8		2.1	1.4	38.7	0.85	0.002	0.12	0.012	· · · ·	1 . · · · ·	· · · ·	0.19	0.1	
	21,OcL	7.4	8	1.9	0.8	2.1	46	0.57	0.001	0.14	0.007	0.04	0.002	0.02	0.14	0.03	
	Nov.																
verage	20,Dec.	7.2 7.5	16.2 11.5	6.1 2.8	4.2		49.8 64.9	<u> </u>	0.008	0.11	0.084		0.001	0.03	0.15	0.08	
weinge	09,Jan.	6,8	11.5	4.4	4.5	<u>, </u>	85.3	÷	T	0.4	0.018				0.52	0.073	ģ
	Feb.			4.4		3.7			0.004		0.020	0.04	0.000		0.52	0.005	
	Mar.								··· ···			;					
	Apr.													<u> </u>			
	May			<u></u>													
1992	03,Jun.	7.1	5.4	2.3	2	6.7	43.1	0.27	0.002	0.28	0.005	0.17	0.004		0.71	0.28	1
	09,Jul.	7.8	7.2	1.9	2.3	10	55.3	1.39	0.001	0.36	0.005	0.07	0.002	0.1			
	Aug.				ļ			L	ļ								
	04,Sep.	6.9	6.4	1.2	2.9	2.8	37.3	0.45	0.009	0.47	0	0.26	0.001	0.25	0.66	0.23	
	Oct,							 	ļ				<u> </u>				
	Nov.			<u> </u>				 		ļ							
	Dec.		L	Į	ļ	<u> </u>			<u> </u>	L		<u> </u>	L	L			

8 B

	Item	pH	<u>C</u> a	Mg	SO4	C1	TDS	NH4	NO2	NO3	₽	Fe2+3	Cu	Mn	F	Мо	Coliform
	Unit		mg/l	mg/l	mg/l	mg/i	mg/l	mgN/I	mgN/l	mgN/I	mgP/l	mg/l	mg/l	mg/l	mg/l	mg/l	Number
Year	Date																Λ
	Jan.					_											
	Feb.																
	Mar.																
	28.Apr.	7	7.6	1.6	22.1	1	150.4	0.26	0.002	0.12	0.017	0.08	0.002	0.11	0.09		
	30 May	7.5	5	0.6	3.1	1	45.9	0.34	0.005	0.08	0.007	0.22	0.003	0.05	0.08		
1986	25,Jun.	7.6	13.8	0.8	16.9	0.7	64.5	0.86	0.001	0.44	0.001	0.77	0.002	0.06	0.05		
	29,Jul.	7.8	4.8	0.6	8.1	2.1	64	0.33	0.002	0.36	0.007	0.08	0.002	0.27	0.09		
	30,Aug.	8	6.6	1.7	5.9	8.2	78.7	0.26	0.009	0.15	0.004	0.04	0.002	0.05	0.04		
	29,5ер.	7.9			3.5			0.2	0.024	0.14	0.003	0.19					
	Oct.																
	Nov.																
	Dec.																
Average		7.6	7.6	1.1	9.9	2.6	80.7	0.4	0.007	0.22	0.007	0.23	0.002	0.11	0.07		
	Jan.																
	01,A pr .	7.1			66.8			4.43	0	0.16	0.28	0.14		0.11	0.08		
	18,Apr.	7.6	15	2.3	39.2	2.1	160,3	0.48	0.003	0.13	0.02	0.05	0.008		0.05		
	27.Apr.	7.8	11	1.9	19.1	1.1	92	0.26	0.006	0.23	0.005	0.04	0.001	0.18	0.05		
	30,May	7.8	17.8	4.3	18.5	2.1	89	0.44	0.003	0.13	0.011	0.01	0.01	0.15	0.16		
1987	25,Jun.	7.6	12.2	3.3	13.2	3.9	87.3	0.26	0.013	0.27	0.007	0.1	0.01	0.06	0.04		••••
	27,Jul.	7.4	7.8	2.4	20.1	2.5	69.1	0.26	0.011	0.08	0.011	0.1	0.022		0.11		
	21,Aug.	7.4			10.8			0.23	0.004	0.32	0.019	0.07		0.02	0.03		
	16,Sep.	6.8	8.9	2.2	6.9	2.5	38.2	0.3	0.003	0.29	0.013	0.09	0.001	0	0.09		
	27,Oct.	8			5.7	9.9		0.26	0.002	0.17	0.01	0.02		0			
	18,Nov.	7.4	16.4	14.3	4.3	6	116.2	0.06	0.001	0.09	0.003	0.06	0.014	0.03			
	Dec.	Ι															
Average		7.5	12.7	4.4	20.5	3.8	93.2	0.7	0.005	0.19	0.038	0.07	0.009	0.07	0.08		÷.,
	Jan.	T															
	Feb.																
	Mar.																
	18,Apr.	7.6	11.4	5.2	5	14.5	99.6	0.27	0.008	0.19	0.005	0.13	0	0	0.08		
	18,May	7.2	5.8	3.9	3.5	6.4		0.36	0.004	0.27	0.001	0.28	0.002	0.22	0.23		
1988	23,Jun.	6.6	7.2	0.9	2.1	10.6	59.9	0.8	0.003	0.15	0.008	0.06	0.01	0.01	0.09		
	22,Jul.	6.9	9.6	1.1	3.7	7.1	65		0.034	0.04	0.022	0.14		0.23	0.07		
	25,Aug.	7.4	9	1.4	3	3.9	45.1		0.003	0.26	0.018	0.05			0.12		
	26,Sep.	6.6	10	2.3	3.1	5.7			0.002	0.13	0.005	0.01		0.02	0.04		
	24,Oct.	7.2	11.4	4.5	2	8.1			0.002		0.005	0.18		0.02	0.06		· · · · ·
	16,Nov.	7			1.2	10.6	72.1		0.002	0.16	···	0.11		0	0.02		
	19,Dec.	7.5	18	3.9	5.6	10.3		0.14		0.1	0.006				0.23		
Average		7.1	10.7	ţ.		8.6	68.3			0.16	0.008	0.12	0.004	0.07	0.1		
	Jan.	· · ·]				1									
	Feb.																
	Mar.																
	20,Apr.	7.9	12.4	2.8	8.6	16.8		0.74	0.002	0.07	0.008	0		0.05			20
	22,May	7.2	- ····	t	· · · ·	3.9		0.26			0.008	0.04		0.05			
1989	19,Jun.	7.8				11.3	76	t	1	0.06		0.06	0.003	0.03			(
	26,Jul.	7.4	· · · · · · · · · · · · · · · · · · ·		2	15.6		0.41		0.06		0.13	0.005	0.01		0.006	
	16,Aug.	7.5	t		·	8.9				0.05		0.05	0.002	0.01			10
	21,Sep.	8.1	10.8			11.3		+ · · ·		0.11		0.08	0.001	0.11			14
	19,Oct.	7.8				6			(0.32		0.02	0.002	0.08			
	13,Nov.	7.4	+	t		1.4	82.7		<u> </u>	0.95		0.03	0.002	0.16	_		14
	09,Dec.	7.1	l	1	1.9	<u> </u>		0.05	h		0.018	0.02	0.003	0.07	0.17		12
Average		7,6	10.9	2.2	t · · · · · ·	t	74.2			0.23	t	0.05	0.003	0.06	0.17		12

.

	Item	pН	Ca	Mg	SO4	С	TDS	NH4	NO2	NO3	Р	Fe2+3	Ċ	Mn	F	Мо	Coliforni
	Unit	-	mg/l	mg/l	mg/1	mg/l	 mg/l	mgN/l	mgN/l	mgN/I	mgP/1	mg/l	mg/l	.mg/l	mg/l	mg/l	Number
Year	Date																Λ.
	Jan.																
	Feb.																
	28,Mar.	6.9			13.6			0.45	0.007	0,17	0.011	0.05		0.04	0.31	0.053	
	29,Apr.	7.8	12.8	2.2	6.8	2.8	91.4	0.17	0.002	0.64	0.01	0.01	0.008	0.03	0.12	0.003	2
	23,May	8	7.4	2.3	2.2	3.5	44.5	0.09	0.004	0.42	0.01	0.07	0		0.05	0.076	<u> </u>
1990	14,Jun.	7.8	8.8	2.3	13	6	44.6	0.34	0.003	0.1	0.009	0.02		0	0.21		
	15,Jul.	7.5	6.4	2.2	1.7	3.5	36.6	0.37	0.002	0.25	0.005	0.03	0.032		0.26		1
	27,Aug.	7.4	9	1.9	10.4	1.5	52.1	0.98	0.004	0.27	0.008	0.06	0.004		0.14		
	Sep.																
	08,Oct.	8.3	9.8	1.9	0.3	2.1			0.002	0.39	0.004	0.03	0.001	0.04	0.04	0.043	<u> </u>
·	05,Nov.	8.1	11.4	1.7	1	3.5	61.3		0.004	0.25	0.048	0.05	0		1.44		·
	06,Dec.	7.3	11.4	3	3.5	6.4	68.9	0.07	0.001	0.26	0.003	0.02	0.003	0.05	0.2	0.027	
Average		7.7	9.6	2.2	4.5	3.7	57.1	0.4	0.003	0.31	0.012	0.04	0.007	0.03	0.31	0.04	1
	Jan.																
	Feb.						·										
	Mar.																
	18,Apr.	8	22.8	3.3	4.6	6	126.9	1.72	0.105	0.42	0.07	0.06	0.081	0.44	0.27	0.226	
	22,May	7.5	7.8	0.5	3.5	2.8	31.6	0.68	0.004	0.1	0.017	0.08	0.001	0.02	0.21	0.102	
1991	17,Jun	7.8	8.1	1	2	7.4	53.1	0.35	0.002	0.05	0.01	0.05	0.003	0.03	0.27	0.095	
	05,Jul.	7.9	7.4	1.5	6.7	5.3	79.5	0.33	0.005	0.62	0.01	0.03	0.002	0.06	0.03	0.06	
	Aug.								н. 1. – А								
	04,Sep.	8.1	6.6	2.4	3.5	4.6	51.8	0.41	0.003	0.33	0.014	0.09	0.003	0.02	0.34	0.09	
	21,Oct.	7.5	9	i	1.8	2.1	50.5	0.84	0.001	0.12	0.004	0.05	0	0.04	0.54	0.03	ļ
	20,Nov.	7.4	25	6.4	20.6	5	179.8	0.14	0.001	0.08	0.004	0.01			0.32	0.04	
	Dec.																ļ
Average	L	7.7	12.4	2.3	6.1	4.7	81.9	0.6	0.017	0.25	0.018	0.05	0.015	0.1	0.28	0.092	
	Jan.																
	Feb.															·	ļ
	Mar.																
	Apr.																· .
	Мау							ļ		ļ							ļ
1992	03,Jun	7.4	6	3.3	1	7,4	55.6	· · · · ·	0.003	0.65	0.007	0.16	0.004		0.05	0.11	
	09,Jul.	7.5	11.2	1.7	1.6	19.5	84.3	1.66	0.031	0.47	0.227	0.22	0.003	0.28	0.39		
	Aug.							 					· ·-				1
	04,Sep.	6.9	7.2	1.2	2.4	3.5	47.8		0.009	0.42	[0.001	0.12	0.4	0.23	t
	29,Oct.	7.3	10.4	1.9	1.8	6.4	69.2	0.13	0.002	0.84	0.002	0.08	0	0.06	0.65	0.08	
	Nov.							L			L	1					

Т

	Item	pН	Ca	Mg	SO4	CI	TDS	NH4	NO2	NO3	р	Fe2+3	Cu	Mn	F	Мо	Colifor
1	Unit	-	mg/l	mg/l	mg/l	mg/l	mg/l	mgN/l	mgN/I	mgN/l	mgP/l	mg/l	mg/i	mg/l	mg/l	mg/l	Number
Year	Date																Л
ŀ	24 Jan.	7.8	47.1	10.9	1.9	179.3	393.9	2.68	0,13	0.06	0.311	0.51	0.006				
ļ	Feb.																
	Mar.																
	28, Apr.	6.4	19.2	2.4	59.5	41.8	313.5	7.4	0.027	0.52	0.216	0.72	0.023	0.11	0.23		
	29,May	7.8	8	1.8	24.5	12.4	115.5	3.12	0.022	0.14	0.036	0.27	0.006	0.04	0.11	÷.	
1986	24,Jun	7.7	14	1.5	23.2	1.1	88.9	2.41	0.022	0.29	0.012	1.03	0.008	0.1	0.09		
	30,Jul.	7.8	6.6	0.2	7.8	2.8	63.7	0.67	0.009	0.25	0.008	0.13	0.012	0.32	0.1	[
	Aug.																
	23,Sep.	8.6	6.6	4.2	23.1	8.2	127.1	1.21	0.031	0.16	0.022	0.36	0	0.1	0.21		
	29,Oct.	7.8			46.3			3.1	0.124	0.11	0.007	0.21					
	27,Nov.	8	15.4	3	61.9	42.2	276.9	1.28	0.133	0.2	0.078	0.11	0.01				T
	Dec.																
verage		7.7	16.7	3.4	31	41.1	197.1	2.7	0.062	0.22	0.086	0.42	0.009	0.13	0.15		T
	Jan.	Ī			1	Î											1
· · · ·	Feb.	 				t											
H	01,Apr.	7.8			109.5			5.35	0.556	0.37	0.247	0.49		0.58	0.21		1.
	28,Apr.	7.6	17.4	3.9		5.7		2.17	0.039	0.67	0.077	0.08	0.005	1.43	0.11		1
	29,May	7.9	24.9	8.1	50.9	30.8	200.7	4,33	0.166	0.01	0.101	0.07	0.012	0.04	0.08		<u></u>
1	26,Jun	7.5			49.8			0.96	0.018	0.03	0.15	0.12	0.028	0.44	0.1		1
	28,Jul.	7.6	iı	2.3	29.3	5	97.7	0.68	0.012	0.15	0.044	0.23	0.018		0.06	•	1
1	21,Aug.	7.5		~~~	20.4			0.64	0.012	0.45	0.014	0.13		0.04	0.14		+
	17,Sep.	7.6	11.2	2.2	9.2	4.6	67.3	0.47	0.005	0.12	0.036	0.06	0		0.04		1
	27.Oct.	7.7		L.L	15.8	14.9		0.65	0.009	0.51	0.142	.0.04		0		·	1
	19,Nov.	7.3	42.5	5.4	11.5	84	406.3	3.37	0.044	1	1.292	0.15	0.003	0.2		†	
	30,Nov.	7.4	40.9	9.8				6.21	0.128		0.532	0.07		0.16	0.27		-1
Average	50,11011	7.6	24.7	5.3	37.1	24.2	193		0.099	+		0.14	0.011	0.4	0.13		1
	15 Jan.	7.4	51.5	4.1	119.6			5.21		1.	0.48			0.26			1
	18 Feb.	7	49.3	12.2	193.6	132.6	640.9	6.01	0.023	0.32	0.046	0.21		0.08			
	23,Mar.	7	46.3	24.3	125.8			3.19	0.271	0.27	1.182	0.16	0.006	0	0.2		1
	19,Apr.	7.6	29.6	12.4		61		6.2	0.195		0.155	0.18	0.02	<u> </u>	0.33	t	-
	19,May	7	8.6	3.9	3.4	12.4	63.9	·····	0.023			0.18	0.002	0.02	0.14		1
1988	24.Jun	6.6	7.6	1.7	5.4	6.4	51.5	 	0.013			0.04	0.016		0.09		1
1700	23,Jul.	7,2	10.4	2.3	1.7	9.6	73.4		0.031	<u> </u>		0.04			0.14		1
	26,Aug.	7.3	11.4	1	1.4	9.2	56.2	+ • •	0.017	1		0.08		0.03	0.07		1
	27,Sep.	7.4	13	2.1	3.2	8.2	67.7	+···	0.003	1		0.24		0.2	0.61		
	27,0ct.	7.4	18	7.9	19.7	25.9	01.1	<u> </u>	0.005	{	0.215			0.06	0.01	<u> </u>	
	17,Nov.	7.8	17.2	4.9	10.4	12	107	<u> </u>	0.003	1		0.01			0.27	1	
	20,Dec.	7.4	53.1	10	14.4			2.73	0.034			· · · · · · · · · · · · · · · · · · ·				t	+
Average	<u> </u>	7.3	26.3	7.2	48.4	37.4	151.5		ŧ			0.16	0.011	0.09	0.24		
	14,Jan.	8.1	61.3	12.4	141.5	154.2	676					0.1		0.38		[1
	17,Feb.	7.6	55.7	6.4	190.7	113.8	660.3	t	<u></u>			0.18		0.21		0.00	4
	21,Mar.	7.6	52.1	12.3	160.9	103.5	615.4	+	0.4			0.14		-	†	0.01	
	21,0001.	7.3	24	8.8	34.6	38.3	163.8		1		1	0.05		0.04		1	
	23,May	7.3	22.8	9.1		25.2	.0.5.0	2.69			0.278			0.2	 	1	+
1989	19 Jun	7.4	18		29.8	23.4	165.5	1	1			0.05	· · · · · · · · · · · · · · · · · · ·		1	<u> </u>	+
1707	27,Jul.	7.5	11.2	<u>i</u>	1.6	13.5	64	1	<u> </u>			0.05	0.000			0.0	
		7.5	11.2	1	3.3	13.3 9.9	50.6		1					+			1
	16,Aug.			3.8		23.4				· • • • • • • • • • • • • • • • • • • •			·····			1	
	22,Sep.	8.1	16.2				184.9		1	· · · ·		· · ·		·		+	
	20,Oct.	7.9	16.2	<u> </u>	32.2	21.6	212.9	1	<u>+</u>	+			t	1		<u> </u>	
	13,Nov.	7.5	37.7	9	142.6	78.7	659	· f	1	+	+		1	· · · ·	t ·		
	09,Dec.	7.5	29.7	6.1	115.8 80.5	55	345.2	13.6			1.77 0.572		+				-

	item	pH	Ca	Mg	SO4	CI	TDS	NH4	NO2	NO3	Р	Fe2+3	Cu	Mn	F	Мо	Coliform
Year	Unit Date	-	mg/l	mg/l	mg/l	mg/l	mg/l	mgN/l	mgN/i	mgN/I	mgP/l	mg∕l	mg/l	mg/l	mg/l	mg/l	Number /l
TCAL	16 Jan.	8			76.8			11.4	0.339		0.249	0.06	0.003	0.2	0.15		34
	15,Feb.	7.5	47.3	9.5	33.1	95.4	312.7	9.88	2.326	1.61	0.897	0.13		0.11	0.89		30
	29,Mar.	7.5		,,,,	123.7			7.57	0.65	5.7	0.94	0.14	0.002	0.61	0.27	0.095	
	20,Apr.	7.6	59.1	4.5	164.3	98.9	745.9	16.3	0.243	1.75	1.058	0.09	0.004	0.01	0.14	0.151	31
	24,May	7.8	21.4	2.3	50.9	23	186.2	2.05	0.077	1.16	0.059	0.03	0.001	0.02	0.29	0.099	40
1990	15,Jun	8.4	16.2	3.2	22.2	15.6	125.8	1.97	0.05	0.27	0.18	0.03	0	0	0.44		31
1770	16 Jul.	7.4	7.2	1.1	2.4	4.2	39.7	0.64	0.006	1.26	0.013	0.05	0.015		0.22		33
	28,Aug.	7.6	9	1	7.4	1.5	48.5	0.8	0.003	0.59	0.001	0.03	0.008	0.01	0.11	0.049	35
	Sep.	+															
	09,0cL	7.8	12.2	2.6	1.8	9.9	78.5		0.017	0.53	0.113	0.06	0	0.04	0.2		30
	04,Nov.	8.2	22	3	21.4	21.8	164.5		0.068	1.26	0.112	0.05	0.002		0.26	0.148	
	07,Dec.	7.4	24.5	22.4	13.4	100	391.5	12.53	0.17	1.99	0.575	0.16	0.007	0.08	0.09		34
Verage	<u> </u>	7.7	24.3	5.5	47	41.1	232.6	· · · · · · · · · · · · · · · · · · ·	0.359	1.61	0.382	0.08	0.004	0.12	0.28	0.108	33
	23.Jan.	7.4			113.8	115.9		27.5	0.21	0.33	1.205	0.08	0.005		0.24	0.184	30
	Feb.																
	26,Mar.	7.6	45.3	8.9	58.7	115.9	429.6	17.87	0.672	5.03	0.33	0.11	0.036	0.21	0.36	0.178	27
	19,Apr.	7.4	29.8	5.7	19.3	23	184.9	5.08	0.043	0.14	0.105	0.02	0.141	0.05	0.46	0.189	
	23,May	7.5	8.6	1	2.9	4.6	43.6	0.78	0.007	0.14	0.066	0.04	0.001	0.13	0.5	0.113	
1991	18 Jun	7.7	9.8	2.4	1.9	11.3	66.5	0.61	0.006	0.04	0.031	0.04	0.003	0.04	0.24	0.073	
	06,Jul.	7.8	7.4	2.9	4.8	8.6	66.9	0.44	0.009	0.19	0.012	0.11	0.001	0.07	0.18	0.03	
	Aug.	1															ļ
	05,Sep.	8	9.8	1.2	2.6	3.5	50	0.78	0.005	0.44	0.039	0.08	0.003	0.02	0.27	0.06	
	22,Oct.	7.4	15.6	3.3	8.1	10.3	90.5		0.026	0.14	0.086	0.06	0.006	0.02	0.51	0.11	1
	Nov.											ļ	ļ				ļ
	Dec.										ļ		ļ			 .	ļ
Average		7.6	18	3.6	26.5	36.6	133.	6.8	0.122	0.81	0.234	0.07	0.025	0.08	0.35	0.117	29
	10,Jan.	7.3	43.7	11.8	102.9	74.4	523.3	18.8	0.138	3.66	1.42	0.24	0.005		0.46	0.18	i
	Feb.								 	Į			ļ		<u> </u>		
	Mar.							ļ	 								.
	Арт.		1	ļ				1				Ļ			ļ	· · ·	
	May	_					ļ	ļ	ļ	-		ļ			 	ļ	
1992	04,Jun	7.1	10.6	2.3	5.2	12	79.3	2 2.35	0.014	3.16	0.139	0.28	0.002		0.17	0.11	l.
	Jul.			ļ	ļ			1	ļ		<u> </u>						_
	Aug.			ļ			ļ				<u>_</u>	. 	ļ	 		ļ	
	05,Sep.	7	7.6	1.2	2.9	3.5	49.4					0.34		0.13		0.32	
	30,Oci.	7.5	20	2.7	24.5	26.6	i 177.:	2 3.6	0.02	3 0.03	0.08	1 0.18	3 0.002	0.39	0.38	0.0	<u> </u>
	Nov.			 	Į		<u> </u>		i		<u> </u>	_		 	 	 	
	Dec.		ļ		 	ļ	<u> </u>	_	<u> </u>				<u> </u>			+	
Лустад	e	7.2	20.5	4.5	33.9	29.1	207.	3 6.3	0.04	3 1.86	5 0.41	1 0.26	5 0.004	0.20	0.34	0.17	31

Appendix IV.2.2

Original Data of River Water Quality Investigated by JICA Study Team

Location				R-1					R-2				R-3				
Sampling date		21,Sep.	26,Mar.	21,Sep. 26,Mar. 27,May 18,Aug.	<u> </u>	13,Sep.	23,Sep. 2	28,Mar.	30,May	19,Aug.	12,Sep.	24,Sep.	26,Mar.	30,May	26,Aug.	15,Sep.	
Item	Unit	1993	1994	1994	1994	1994	1993	1994	1994	1994	1994	1993	1994	1994	1994	1994	Standard
Water temperature	ပ္	L L	7	11	15	11	10	÷	17	22	11	13	7	15	22	13	
Ha		8.3	7.1	7.8	7.6	80	7.5	7.3	8.5	8.7	8.3	7.8	7.8	9	8.4	8.4	6.5-8.5
Conductivity	micro s/cm	80		80	50	60	80		100	80	8	120	140	220	170	120	
Turbidity	NTU		0		0	2		0	1	5	9			0.9	48	7.	
DO	mg/l	15.1	16.1	12.7	13.5	13.8	14.4	17.3	14.4	10.6	13.2	12.6	14.8	11.7	10.6	12.4	
Alkali	mg/lCaCO3	70	27	31	27	51	9		43	40	36	14		60	73	34	
SQ4	mg/l	0	0		17	e	3		ł	Э	7	75	59	23	63	7	500
Ċ	ng/l	6		8.5	31.5	12.5	5	9	9.5	11.5	29	12	40	10.5	10	15.2	350
Ca++	mg/l	0.57	0.47	0.6	0.5	26.0	0.62	0.95	0.7	0.5	0.82	1.27	2.12	1.24	1.45	0.9	100
Me++	l/am	5.83	3.64	1.89	2.67	8.75	1.64	3.64	6.68	7.9	0.97	3.89	16.4	3.64	3.89	15.2	30
	meA	72	75	55	47	54.5	86	87.5	62.5	52	62.5	96.3		128.5	144.5	100	1000
	l/am	0.004	0.005	0.001	0.002	0.004	0.001	0.005	0.03	0.005	0.008	0.027	0.215	0.12	0.069	0.023	
NO3-	ng/l	0.5		0.6	0.6	1.1	1.6	0.9	0.9	0.7	1.4	1.1	4.1	7.6	6.3	2.5	10
	mg/l	0.01	0.17	0.1	0.11	0.12	0.11	0.12	0.05	0.18	0.2	0.7	2.75	0.46	0.89	0.27	
PO4	тел	2.75	0.01	0.01	0.01	0.79	2.46	0.45	0	1.82	0.01	0.49	2.64	2.25	0.37	0.15	3.5
ප	l/am	0.01		0.01	0.02	0.02	0.03	0	0.01	0.04	0.05	0.04	0.04	0.04	0.06	0.05	0.05
Mn	mg/l	0.2		0	0.1	0.2	0	0.4	0	0	03	0.1	0.1	0.1	0.2	0.5	0.1
Fe	ng/	0.05	0.07	0.02	0.04	0.12	0.06	0.09	0.03	0.1	0.25	0.14	0.07	0.05	0.55	0.16	0.3
ſĽ,	mgA	0.3		1.18	0.77	0.05	0.39		1.19	1.05	0.03	0.3		1.21	0.55	0.21	0.7-1.5
రే	иgл	0.03	0	0.03	0.01	0.04	0.03	0	0.01	0.01	0.07	0.07	ō	0.01	0.02	0.15	
Zn	mg/l	0.07	0.03	0.02	0.02	0.04	0.12	0.03	0.01	0.01	0.03	0.23	0.01	0	0.26	0.01	s
COD	тgл	0		0	21	12	70		0	22	18	115		0	24	23	
Bacteria	Number/I	2	0	0	3	4	6		0	0	θ	26		3	14	5	
Coliform	Number/1	4	0	0	2	1	22	Ħ	0	0	4	26	1	4	8	6	ω

Appendix IV.2.2 Original Data of River Water Quality Investigated by JICA Study Team

Standard:Standard for drinking water in Mongolia R-1:Terelj bridge R-2:Zaisan bridge

R-3:Chicken factory bridge

Exceed the standard limit for drinking water

Appendix IV.3.1

Original Data for Water Quality of Reservoir Water Analyzed by USAG

Appendix IV.3.1 Original Data for Water Quality of Reservoir Water Analyed by USAG

Upper Water Source

			1991				1992				1993		i
Item	Unit	Jan. Mar.	AprJun	JulSep,	OctDes	JanMar.	AprJun	JulSep.	Oct-Des	JanMar.	AprJun	Average	Standard
Color			1	1	25	14	27	19	12	11	14	17	20
Smell		1			0	0	0	0	0	0	0	0	
Taste				1	0	0	0	0	0	0	0	0	2
pH		T	1		6.9	6.8	6.9	6.9	6.9	7	6.8	6.9	6.5-8.5
NH4	mg/l			1	0.088	0.025	0.046	0.05	0	0.03	0.011	0.036	
NO2	mg/l			1	0.007	0.002	0	0.002	0	0.002	0	0.002	
NO3	mg/l			1	0.62	1.6	1.7	1.36	1.56	1.35	1.48	1.38	10
Fe2+	mg/l		1		0.15	0.071	0.083	0.136	0.024	0.146	0.075	0.098	0.3
Hardness	mg/l		<u> </u>	T	0.75	0.72	0.58	0.78	0.75	0.8	0.74	0.73	
Ca	mg/l	1			0.45	0.57	0.46	0.58	0.54	0.5	0.51	0.52	100
Mg	mg/l				3.65	1.82	1.46	2.43	2.55	4.25	2.79	2.71	30
Cl	mg/l				6	6	6.2	7.1	5.2	6.3	5.2	6	350
TDS	mg/l	l		1.	74.5	52	63.5	63.4	51	75	66.3	63.7	1000
SO4	mg/l	1			8.4	7.2	8.5	7	38.7	2.4	7.1	11.3	500
DO	mg/l	1											
Residual Cl2	mg/l	1			1								
Mn	mg/l	1											0.1
F	mg/l				0	0.16	0.23	0.12	0.15	0.04	0.06	0.11	0.7-1.
Coliform	Number/I	1		T	3	3	<3	<3	<3	<3	<3	<3	3

Central Water Source

[1991				1992				1993		
Item	Unit	JanMar.	AprJun	JulSep.	Oct. Des	JanMar.	AprJun	Jul. Sep.	OctDes	JanMar.	AprJun	Average	Standard
Color		3	7	6	6	6	10	8	3	6	4	6	20
Smell		1	0.5	0.5	0.5	0.5	0	0.5	0	0	0	0	
Taste		0	0	0	0	0	0	0	0	0	Ō	0	
pli		7,2	6.7	6.8	6.6	6,8	6.8	6.9	6.9	7	6.9	6.9	6.5-8.5
NH4	mg/l	0	0.021	0	0.006	0.035	0	0.007	0	0.026	0	0.01	
NO2	mg/l	0	0	0	0.001	0.004	0) Ö	0	0	0	0.001	
NO3	тgЛ	2.04			1.75					2.34	3.7	3.07	
Fe2+	mg/i	0.008	0.019	0.012	0.021	0.074	0.008	0.038	0.022	0.021	0	0.022	0.3
Hardness	mg/l	0.85	0.95	0.72	0.9				1.02	1.21	1.15		
Ca	mg/l	0,67	0.78	0.65	0.8	0.75	0.76	0.7	0.88	0.95	0.9		
Mg	mg/l	2.18	2.06	0.85	1.21	2.18		3.04	1.7	3.16	2.4	2.11	
CI	mg/l	6.3	5	4.6			8.2	8.8			6.5		
TDS	mg/l	73	63.8		71	63.7	78.8		78.8		87.3		
SO4	mg∕l	5.2	10.4	8.2	10	7.9	9.9	7.1	10.7	9.9		8.7	500
DO	mg/l										2.16		
Residual Cl2	mg/l	0.46	0.38	0.36			0.26	0.45	0.32		0.4		
Mn	mg/l				0.011							0.011	
F	mg/i	0.21				0.11	0.2	0.09	0.09	0.23	0.07	0.15	0.7-1.5
Coliform	Number/l	<3	<3	<3	3	<3	<3	<3	<3	<3	<3	<3	3

Industorial Water Source

[1991				1992				1993		
Item	Unit	JanMar.	AprJun	JulSep.	OctDes	JanMar.	Apr. Jun	Jul. Sep.	Oct. Des	JanMar.	AprJun	Average	Standard
Color		3	6	5	· 5	6	8	8	3	4	3	5	20
Smell		1	1	1	0.5	0.5	0	0.5	0.5	Ō	0	1	
Taste		0	0	0	0	0	0	0	0	0	0	0	2
pH		7.1	7	6.9			6.9	7	6.9	7.1	7	6.9	6.5-8.5
NH4	mg/l	0	0.024	0	0.003	0.013	0	0.006	0	0.01	0	0.006	
NO2	mg/l	0	0	0	0	0.001	0	0	0	0	Ó	0	
NO3	mg/l	2.3	2.64	2.01	1.33	1.6	5.4	2.6	5.44	2.23	2.5	2.81	10
Fc2+	mg/l	0.016	0.033	0.035	0.075	0.072	0.016	0.023	0.004	0.006	0	0.028	0.3
Hardness	mg/i	2.64	2.65	2.6	2.9	2.75	3,45	1,51	2.53	2.89	2.54	2.65	
Ca	mg/l	2.41	2.13	2.19	2.6	2.36	8.91	1.22	2.17	2.35	2.3	2.86	100
Mg	mg/l	2.79	6.32	4.98	3.64	4.74	6.56	3.52	4.37	6.56	8.4	5.19	30
CI	mg/l	21	24	24		29.3		17.6	24.8		26	26.5	350
IDS	mg/l	245.1	230	262.8	285.6	248.7	244	205.5	221	234.5	264.3	244.2	1000
SO4	mg/l	41.1	70.9	63.1	89.6	63.7	59.2	49.9	67.5	59.9	59.8	62.5	500
DO	mg/l										0.8	0.8	
Residual Cl2	mg/l	0.68	0.67	0.77	0.71		0.51	0.54	0.58	0.53	0.51	0.61	
Ma	mg/l				0.01							0.01	
F	mg/l	0.65	0.78	0.84		0.7		0.84	0.88	0.74	0.76	0.8	0.7-1.5
Coliform	Number/I	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	3

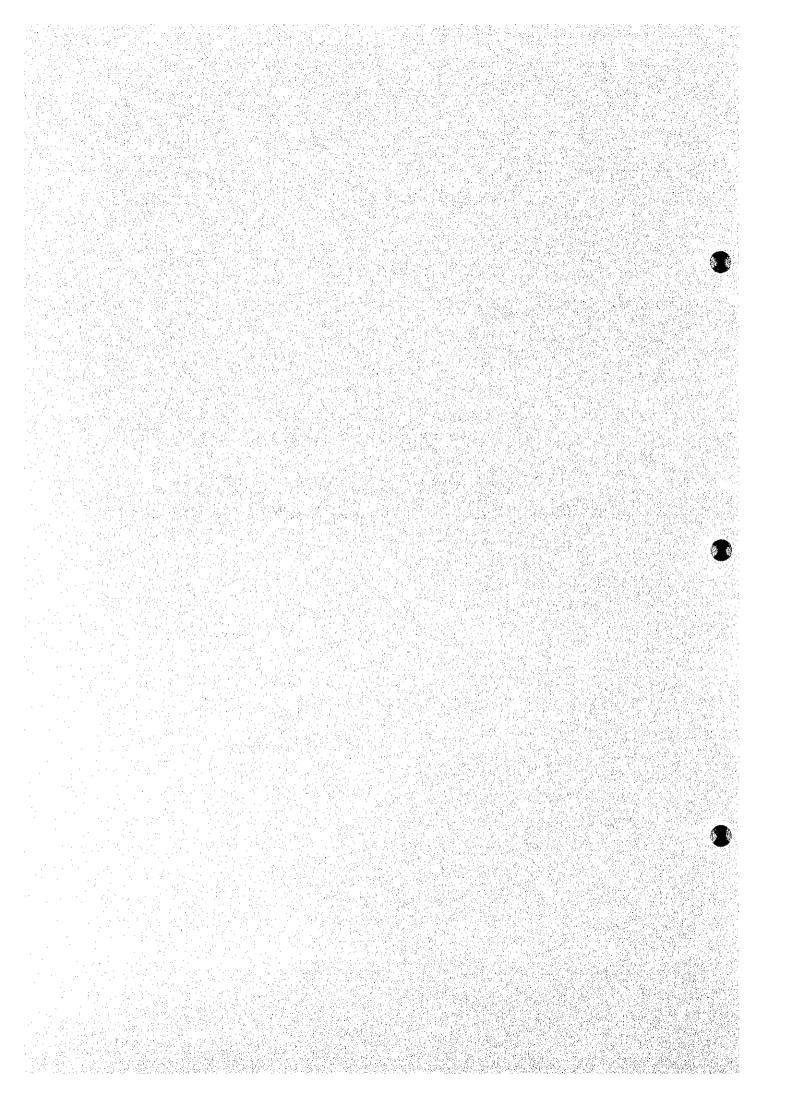
Meat Complex Water Source

incar compre		UNITE											
			1991				1992				1993		
Item	Unit	JanMar.	AprJun	JulSep.	OctDes	JanMar.	AprJun	JulSep.	OcL-Des	Jan. Mar.	AprJun	Average	Standard
Color		3	5	5	9	11	18	11	5	5	2	7	20
Smell		1	0.5	0,5	0.5	0	0	0.5	0.5	0	0	0	
Taste		0	0	0	0	0	0	0	0	0	0	0	2
pH		7.1	7	6.8	6.7	6.9	6.8	6.7	6.9	6.9	6.9	6.9	6.5-8.5
NH4	mg/l	0	0.033	0.04	0.016	0.02	0.01	0.034	0	0.018	0	0.017	[
NO2	mg/l	0	Ö	0	0.004	0.004	0	0.003	0	0.002	0	0.001	
NO3	mg/l	11.3	14.1	10.2	13.4	11.1	6.13	11.1	7.44	8.4	12.7	10.59	10
Fe2+	mg/l	0.024	0.028	0.021	0.191	0.031	0.025	0.084	0.017	0.035	0	0.046	0.3
Hardness	mg/l	3.19	3.28	3.29	3.28	3.26	3.36	2,76	3.32	2.79	3.1	3.16	
Ca	mg/l	2.36	2.43	2.68	2.5	2.58	2.68	2.22	2.74	2.44	2.3	2.49	100
Mg	mg/l	10.1	10.3	7.68	9.48	8.26	8,26	6,56	7.05	4.25	9.7	8.16	30
ĊĪ	mg/l	27.8		26.5			32.3	32.8	25.6	26.3	29.1	29.8	350
IDS	mg/l	230.6			299.8	253.7	281.5	289	249.5	243	291.5	271.3	1000
\$04	mg/l	49.2	17.1	56.8	\$3.7	52.3	52.9	50.2	40.3	76.8	62.4	57.2	500
DO	mg/l					1					0.8	0.8	
Residual Cl2	mg/l	0.76	0.93	0.85	0.59			0.46	0.56	0.49	0.43	0.63	i
Mn	mg/l				0.005	I			1	[0.005	0.1
F	mg/l	0.24	0.35	0.17	0.15	0.18	0.15	0.18	0.26	0.23	0.12	0.2	0.7-1.5
Coliform	Number/i	<3	<3	<3	<3	<3	3	<3	<3	3	<3		3
Standard-Sten	ined for de	inking wate	r in Monar	11									

Standard:Standard for drinking water in Mongolia

Appendix IV.3.2

Original Data for Water Quality of Reservoir Water Analyzed by JICA Study Team


Team
ndy
y JICA SI
uyzed b
er Anal
r Wate
Reservoi
Quality of
or Water
Data fe
dix IV.3.2 Original
IV.3.2
Appendix

9.Dec. 25.May 18.Aug 12.Sep. 23.Sep. 9.Dec. 27.Apr. 1993 1994 1994 1994 1994 1994 1993 1019 101	19,Aug. 21 1994 10 7.5	Sep. 23.Sep. 9.Dec.	25.	19,Aug.	20.Sep. 23.	Sep. 9 Dec. 1		AUR. 120, SCD.
1965 1965 1964 1994 1994 1995 1993 <t< th=""><th></th><th>1.00</th><th></th><th>3</th><th>1001</th><th>c</th><th>12, May 15,</th><th>1001</th></t<>		1.00		3	1001	c	12, May 15,	1001
36(m) 66 77 7 71 70 70 91 110		- 1227			13		19 1	
7/4 6.5 $7/1$ <t< td=""><td>-</td><td>71</td><td>77</td><td>7.3 7.3</td><td>7,4</td><td>7.1 7.1</td><td>7.2</td><td>7.8</td></t<>	-	71	77	7.3 7.3	7,4	7.1 7.1	7.2	7.8
Solem 60 73 15 15 13 <th< td=""><td>1001</td><td>011</td><td></td><td>110 100</td><td></td><td>100</td><td>100</td><td>1001</td></th<>	1001	011		110 100		100	100	1001
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.5	13.6		15.7 11.7	11.2	14.2 16.3	16.7	11.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		34 45 45			4		44	34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	c	0		1	0 27	25	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.6	10 71		8 12.5		7 8.5	9.5	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.05	0.75		L	0.4	0.87 1.05		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	000	1 1		1	2 12			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.07	I.			5.25	72.2 51		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1000	1.97		100 0	500.0	Ì		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.003	600'N			500.0	1	ł	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.8	1.2 0.5 1.3			Ţ	0.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.18	0		0.11 0.16	0.1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.68	60'0		0.02 0.13	0.03		C0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.01	0			0.03	0.01		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2000 C			0.2	0	0.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1000			0.22	C	L	0.58 0.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.15	0.03		1000	77-0	ł	<u>(</u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. [4]	0.23			0.14	1.1.1	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0.01			10.0		۰. ۱۳.	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.01	0.01 0.03 0.04	04		0.02	0.01 0.07	0	0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	2			21	2	0	
Derif 0.0 0.0 0 0 0 0 0 0 1 1 Derif 1 0 0 0 0 0 0 1 1 Section 1 0 0 0 0 0 0 1 1 Section 1399 19993 19994 19994 19994 19994 19994 19994 19994 10 1 <td>0.05</td> <td>0.03 2.2</td> <td></td> <td>0.01 0.08</td> <td></td> <td>1.94 0</td> <td>0</td> <td>0.07 0.74</td>	0.05	0.03 2.2		0.01 0.08		1.94 0	0	0.07 0.74
Der/l 0 0 0 0 0 1 North-West North-West North-West North-West 25.5ep 1994 19.7es 1994 1914 10 CaCO337343131 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0</td><td></td></t<>						1	0	
ber/l I 0 01 01 01 0 1 23.5xp. $3,00c.$ 1593 1993 1001 001 001				<u>k</u>		2		P
23.5ep. 9 Dec. North-West North-West North-West 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1994 1094 1914 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>5</th><th>5</th></t<>							5	5
Z3.Sep P.Dec. North-West North-West All 1944 15, Aug. Z0.Sep. 243, Sep. 9106 1994 1911 10 10		- T	Mast Complex Water Source	AL SOURCE	ſ			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				10 500 CC	1.5 6.2			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19,Aug. 20,	4	TdA-02	1004 1004 1004				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19441	ST 1561 1661	\$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	101		8	ł	5			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.7 7.3	7.8 71			7.5			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2601 3801	410	410 410	440			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0				0			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					12.5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.7	14.3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		23			2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58 41	35 64 68	49	67 70	70			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	3,6	2		8			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 1 C	0 63	ľ	2 12			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.7 0		ſ			
684 58.5 58.5 72 89.5 86.7 273.5 0.005 0.001 0.002 0.001 0.005 0.002 0.002 0 0.11 0.11 0.2 0.13 0.05 0.09 0.01 0.011 0.2 0.13 0.03 0.09 0.01 0.01 0.02 0.01 0.05 0.09 0.01 0.01 0.01 0.03 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.25 0.01 0.02 0.02 0.03 0.04 0.01 0.02 0.01 0.01	- 1	1.41	17.0	1				
0.005 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.01		89.4	C.6/2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.001 0.001	0.005	0.003	0.002 0.01	0.002			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		151	2.8		6.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ł	010					
0.08 1.92 0.03 0.7 1.16 0.2 0.89 0.01 0 0.04 0.01 0.01 0.01 0.01 0.01 0 0.1 0.02 0.03 0.01 0 0 0.03 0.09 0.01 0.01 0 0 0 0 0.03 0.09 0.05 0.25 0.17 0.22 0.02 0.3 1.14 0.75 1.09 0.66 0.01 0.01 0.08 0.02 0.09 0.02 0.01 0.01 0 0.08 0.02 0.09 0.01 0 0.01 0 0 0.01 0.02 0.01 0.01 0 0 0 0 0.01 0.02 0.01 0 </td <td>17'N 17'N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	17'N 17'N							
0.01 0 0.04 0.01 0.02 0.01 0.01 0.4 0.1 0.1 0.1 0 0 0 0 0.03 0.09 0.05 0.17 0.2 0.07 0.01 0.03 1.14 0.75 1.09 0.68 0.61 0.01 0.08 0.02 0.09 0.06 0 0.01 0.01 0.08 0.02 0.09 0.68 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		0.24	0.44					
0.4 0.1 0.1 0.1 0 6.22 0 0 0.03 0.09 0.05 0.25 0.17 0.2 0.02 0.5 1.14 0.75 1.09 0.68 0.46 1.83 0.6 0.02 0.02 0.02 0.01 0.01 0.01 0.08 0.02 0.09 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01		0.04 01		0.02 0.04				
0.03 0.09 0.05 0.12 0.17 0.2 0.02 0.5 1.14 0.75 1.09 0.66 0.46 1.83 0.8 0.02 0.06 0 0.02 0.01 0.01 0.8 0.02 0.06 0 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01		T 0		0.1	0.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.01	0.01 0.00 0.0	15.0	0.03 0.03	0.11			
0.5 1.14 0.75 1.09 0.68 0.46 1.83 0.08 0.62 0.04 0 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01	00.000							
0.08 0.02 0.04 0 0.02 0 0.01 0.01 0.02 0.01 0.02 0.07 0.07 0.07 0.01 0.02 0.01 0.02 0.07 0.07 0.07					ļ			
0.01 0.02 0.01 0 0.01 0.2 0.07 3 0 16 16 11	0	õ	5					
	0	62.0	0.02 0.01	0.03 0.03	0.06			
	19			0 21	17.			
	0.0	0.00 0.00	0.02		0.05			
	4.0	51		0	1			
0 0		11						
0 0 0 0	0	2			2			

Exceed the standard limit for drinking water

Appendix IV.3.3

Original Data for Water Quality of Taps, Water Service and Water Vending Center

Appendix IV.3.3 Original Data for Water Quality of Tap water, Water service and Water Vending Center

									L L L				Tan water [[04G	1640		┝─	Å.	Water service station	te station			*	Water supply station	station	
Location			IED WIIC	Isp wher Anit Hotel								-				_	-	_	┝		1				
Sumpling date		24,Sep.	24,Dec.	24,Dec. 27,May 26,Jun.	26,Jun.	21.Sep.	24,Sep.	24,Dec.	Z7,May	26,Jun. 2	21,Sep. 2	24.Sep. 2	24,Dec. 27,May		26,Jun. 21,	21,Sep. 24,	24.Sep. 24	24.Dec. 27	27 Mey 26 Jun.	un. 21,Sep.		24,Sep. 24,	24,Dec.	26 Jun.	1 21,Sep.
lten.	unit	1993	1993	1994	1994	1994	1993	1993	1994	1994	1994	1993	1993	1994	1994	1994	1993	1993	1994	1994	1994	1933	1993	1	1994 1994
Water temperbure	2	12	ē	~		1	EI	11	11	14	12	15	12	8	11	11	10	10	90	9	10	õ	=		2
Hq		72	7.3	4		7.5	μ	7.3	7.4	7	7.7	6.5	6.9	7.3	7.3	7.5	6.6	6.8	53	7.3	7.4	6.6	6.9		72
Conductivity	micro s/cm	8		110	8	110	8		130	8	110	110		140	100	100	8		260	110	110	8			8
Turbidity	ыти			0		•			ō	0	0			0	0	-0			0	0	0				0
2	med	13.5	13.9	18.7	10.9	12.3	13.2	17.1	14.7	10.4	11.8	12.5	13.8	16.4	10.3	13.1	13.3	17.8	14.7	11.9	12.4	13.3	12.5		11.1
A lt-li	me/CeCO3	~	80		2 Z	32	19	SI	8	39	62	7	20	44	43	26	01	11	43	8 4	ន	16	12		4
-05 -05	me/l	0	27				0	61	ŝ	2	3	8	28	5	5	-1	1	81	×		45	5	15		*
ċ	me/	7.5	7.5		0	10.5		65	7.5	0	11	- v	2.2	6	0	6.0	-0	6,5	8.5		13	r	5.5	-	-
ţ	me/l	0.55	0.64	6.0	0.85	6'0 9	2.0	0.57	0.75	0.9	0.82	8.0	0.55	0.8	0.9	76.0	0.75	0.55	0.85	0.75	0.8	0.42	0.65		1 0.87
Me++	шел	6.01	124			7.9	121	16.1	4.25	0.6	3.64	1.28	1.15	3.04	9.0	3.04	1.68	1.05	2.89	2.43	3.04	0.97	1.72		2.67
	Vam	65.8	58.5			74	62.3	48.5	75	99.5	70.5	54.3	55.5	61	67.5	63	r	81.5	243.5	8	72.5	61.5	72.5		96 69.5
	Ш	0	0.003	100.0	0000	100.0	0.003	0.002	0.002	0.002	0.002	0.008	100.0	100.0	0.002	100.0	100.0	-0	0.003	0.001	0.00		100.0	ĕ	0.002 0.002
FON A -	me/l	12	1.4			1.3	6.0		0.9	0.4	0.8	1.9	0.8	0.8	0.5	6.0	1.6	1.2	0.6	0.4	0.8		1.3		0.5
	mg/	10.0	0.02	0.07	0.13	0.1	0.02	10.0	60;0	0.11	0.11	0	10.0	0.06	0.12	800	6	0	0.09	0.1	0.12	-	0.01	_	0.1 0.09
	me/	0.19	0.1	0.05	10.0	0	0.03	0.04	0.02	0.09	0	60.0	0.08	0.55	0.07	10:0	0.28	1.58	0.01	0.12	0	2.56	0.38	0	0.12
Ċ	med	10.0	0.01	100		0.02	10.0	20:0	0	10.0	0.03	0.01	0.01	10.0	0.01	0.05	0.01	0.02	0.04	200	0.05	0.03	0.01		0.02 0.05
Ma	Na m	5	10.0			0	0		0.1	0	0	0.1	. 0.01	.o	6	0.1	0	0	0	0	0.1	0	0		-0
e E	EK/	0.07	0.05	0.04	0	0.05	0.07	0.06	0.06	0.02	0.08	0.22	0.07	0.78	90 0	0.12	0.05	90.0	0.13	10.0	0.08	0.13	0.04	°	0.01 0.04
Ŭ	me/	0	0	0	0	0	0	0	0.001	G	0	0	ò	0	0.001	0.001	o	0	0	0	0.001	0.001	0.001	0.	0.001 0.001
j.	Mg/l	0.42		1.33	11.0	1.0	0.44		1.5	0.1	76.0	0.28		122	0.01	0.32	0.24	0.24	0.74	0.17	0.33	0.21	0.25	°	0.06 0.32
Ö	. Vam	10.0	0.01	0.09	0.04	10'0	0.01	0.02	10.0	0	10'0	10.0	0	10:0	10.0	0.04	0.03	0	0.02	0.04	0.03	0	0.02	°	0.04 0.01
7.9	шел	0.14	0.04	0.05	0.01	0.06	0.12	0.03	10.0	027	0.03	0.14	0.0	0	0.05	-0	0.15	0.07	0	-	0	80	0.08	-	0.01
3	mg∕i	0.005		0.001	0.003	0.002	0.005		100'0	0.005	0.001	10.0		0.002	0.006	0.002	0.009		0.001	0.004	0.001	0.005		- 	0.004 0.003
Phenol	1 名田			0	00000	0.001			0.002	0.0004	0.0002			-	0.0001	100010			00	0.0001	-	┥		0000	00010
Hg	Nga			0	0	0			0	0	0.0017			0.0017	0	- 0			0.0017 0.0	0.0017 0.(0.0017			0:0017	5
Residual CI2	mg/l	0.02	0.01	0.05	0	0.02	0.04	0.02	0.06	0	£0:0	0.03	0.0	0.02	0.02	68	0.01	20.0	0.02	0.01	0.0	0.0	0.01		0.01 0.02
Coliform	Number/J	13	-	0	0	0	13	~	٥	ò	0	2		8	9	-0	m	0	0	-	0	7	0		
Bacteria	Number/J	6	-	0		0	29	Т	0			7		-		~	-	0		-	-	0	0		

.Exceed the standard limit for drinking water

Location			Water se	Water service station	tion			Water Sup	Water supply station		
Sampling date		24, Sep.	24, Sep. 24, Dec. 27, May 26, Jun.	27.May	26,Jun.	21.Sep.	24,Sep.	24,Dec.	26,Jun.	n. 21, Sep.	éþ
ltem	unit	1993	1993	1994	1994	1994	1993	1993	<u>8</u>	1994	ğ
Water temperture	lAé	01	10	8	10	10	10	11		10	10
PH		6.6	6.8	6.5	7.3	7.4	6.6	6.9	_	7.2	7.5
Conductivity	micro s/cm	100		260	110	110	100		Ĩ	8	8
Turbidity	NTU			0	0	0				0	0
8	mg/l	13.3	17.8	14.7	11.9	12.4	13.3	12.5	11	11.1	12.7
Alkali	mg/ICaCO3	01	11	43	48	28	16	12	_	4	37
so4	mg/l	2	18	8	1	45	2	15		8	21
Ċ	fmg/l	9	6.5	8.5	1	12	7	5.5	_	1	11.5
Cet C	mg/J	0.75	0.55	0.85	0.75	0.8	0.42	0.65		1	0.87
148M	mg/l	1.68	1.05	2.89	2.43	3.04	0.97	1.72	2.	2.67	3,4
SOL	mg/l	72	81.5	243.5	86	72.5	61.5	72.5		96	69.5
N02-	me/l	0.001	0	0.003	0.001	0.001	0	0.001	0.002		0.002
NO3-	me/	1.6	1.2	0.6	0.4	0.8	1.1	1.3	0	0.5	0.7
NH4+	mg/l	0	0	0.09	0.1	0.12	0	10.01	0	0.1	0.09
POA	mg/l	0.28	1.58	0.01	0.12	0	2.56	0.38	0	0.12	0
Ċ	mg/I	0.01	0.02	0.04	0.02	0.05	0.03	0.01	0.0	0.02	0.05
Mn	mg/l	0	0	0	0	0.1	0	0		0	5
Fc	mg/I	0.05	0.06	0.13	0.01	0.08	0.13	0.04	0.0	0.01	8
CN	mg/l	0	0	0	0	0.001	0.001	0.001	0.001		0.001
F	mg/l	0.24	0.24	0.74	0.17	0.33	0.21	0.25	0.0	0.06	0.32
Ŝ	mg/l	0.03	0	0.02	0.04	0.03	õ	0.02	0.0	9.0	0.01
Zn	mg/l	0.15	0.07	0	0	0	0.09	0.08	0.0	0.01	ò
Cd	mg/i	0.009		0.001	0.004	0.001	0.005		0.004		0.003
Phenol	mg/J			0	0.0001	0			0.0001		0.0001
Hg	mg/l			0.0017	0.0017	0.0017			0.0017	17	٥
Residual CI2	mg/l	0.01	0.04	0.02	0.01	0.02	0.04	0.01	0.0	0.01	0.0
Coliform	Number/I	3	0	¢,	1	0	2	¢		•	8
Bacteria	Number/1	0	0	0	0	1	0	ö	ļ	1	0

-
ā
- S
10
-5
3
÷.
ŏ
1
1
1
- ¥
퀑
3
÷
-9
P
ð
Δ.
88
168

自的

IV	- A -	16

Appendix IV.4.1

Original Data for Water Quality of Effluent from Industries

	Location			Е -1				1	E-7					с Ц			
Sampling Date		24,Sep.	4,Dec.	30,May	20,Jul	21,Sep.	24,Sep.	4,Dec.	30,May	20,Jul	21.Sep.	24,Sep.	4,Dec.	30,May	20,Jul	21,Sep.	
Item	Unit	1993	1993	1994	1994	1994	1993	1993	1994	1994	1994	1993	1993	5 61	4661	1944	Standard
Water temparture	ပ ပ	21		17	22	16	15		15	20	13	15		16	18	13	
		10.4		11.7	8.8	9.6	7.3		8.2	7.8	7.6	7		7.1	7.5	7.8	-
Conductivity	micro s/cm	4700		210	500	2600	069		640	400	680	590		380	400	580	
Turhiditv	UTU	220		24	0.1	67	17	•••••••••	20	0.1	49	10		0.1	0.1	18	
	l Vom	9.7		9.8	é	9.9	11.4		11.4	7.4	11.8	11.6		10.7	7.8	11.8	
Alleali	me/CaCO3	46	152	99	133	168	36	135	154	117	198	30	62	39	1020	2720	
- PUs		75	75	75	Ŷ	75	75	14	75	36	75	41	2	49	31	37	
-12	ne/	56		45	59	860	72		36.5	31	220	46		37	31.5	160	
1	l'am	4.25		2.32	1.65	4.22	1.15		1.25	1.75	3.2	2.25		1.57	1.35	2.57	
Mett	l/sm	12.16		7.66	24.3	4.62	1.21		18.24	7.9	6.68	10.57		7.66	11.18	12.52	
	ro	528.3		322	314	1564	543.2		263	232	1484	125.8		242	221	1148.5	
NO2-	- Nem	0.069	0.07	0.159	0.085	0.259	0.33	0.33	0.33	0.114	0.198	0.284	0.144	0.264	0.33	0.184	
N03-	meA	31.1	35.5	2.2	0.8	6	16	4.8	8.9	2.4	8.4	3.1	4	8.5	2.3	4.4	
NH4+	me/l	2.75	2.75	2.76	2.65	2.21	2.75	2.75	2.75	2.75	2.17	2.75	3.28	1.38	2.75	1.13	
PO4	Vam	0.63	0.56	0.85	1.15	2.74	0.63	2.75	2.25	2.75	2.72	0.38	2.75	2.25	1.06	2.25	
	l'am	ō			0.49	1.58	0.16		0.42	0.38	0.08	0.16		0.38	0.3	0.03	
5	Vam	23	0	3.6	0	1,4	5	0	2.3	0	1.5	0.1	0	0.6	0	0.3	
	l/am	0.89	0.15		0.29	0.37	0.7	0.63	0.69	0.3	0.5	0.25	0.06	0.04	0.04	0.25	
, N	l/sm	0.043	°		0.005	0.017	0.028	0	ò	600.0	0.019	0.001	0.001	0	0.001	0.001	
	Van	0		2.2	0.53	0.79	0.02	0.26	1.82	0.54	0.71	0	0.26	1.57	0.54	0.35	
. 5	ле/	1.24	0.15		0.07	0.57	0.56	0.03	0.57	0.18	0.52	0	0.01	0.01	0.01	0.08	0.5
2-	neA	0.62		0.38	o	0.21	0.42	0	0.18	0.15	0.13	0.39	0.01	0.01	0.05	0.01	
COD	meA	334		10	18	14	8		24	26	45	18		29	27	35	500
É	l'am	0.176		0.176	0.026	0.28	0.177		0.176	0.076	0.19	0.00		0.126	0.034	0.2	
	L'am	0.1		0.004	0.015	0.005	1.0		0.008	0.004	0.005	0		0.003	0.005	0.001	0.1
Phenol	l'am	0.006		0.003	0.0033	0.0033	0.006		0	0.0007	0.0004	0.007		0	0.001	0	5
He	me/l	0		0.0017	0.0042		0		0.0017	0.0017	0.0017	0		0	0	0	0.01
	non N	200		0-1	0.08	0.071	0.06		0.06	-	CIU	0.01		0.08	200		2

Appendix IV.4.1 Original Data for Water Quality of Effluent from Industries

Exceed for effluent standard to sewage system in Mongolia