7.3-5 Respondent's Profile

Total survey respondents are 67 percent female and 33 percent male. Majority are between the ages of 31 to 50 with household size of not more than five. Almost all female respondents are plain housekeepers equivalent to 43 percent of the total for occupation classification. Seventeen (17) percent are engaged in small private businesses. Others are teachers, laborers, janitors, farmers, etc.

The educational attainment distribution reflects a good literate population. College undergraduates and graduates are 29 percent and 19 percent, respectively. Fourteen (14) percent are high school graduates, while 22 percent are high school undergraduates. Seventy three (73) percent have been living in Cavite since birth. Ninety-eight (98) percent are Catholics. Family income is quite low with 85 percent earning not more than P5,000 per month, the current poverty level.

7.3-6 Present Water Supply System

Primary sources of respondents' drinking water are deep wells and public faucets, equivalent to 54 percent. Neighbor's wells and faucets account for 32 percent, while house connection is only 10 percent. Sixty-eight percent (68) percent of the respondents owned their water source and almost all use the same water source for drinking and other uses.

In terms of water expenses, 38 percent do not pay for their consumption. Half are paying not more than P200 per month. Seventy-eight (78) percent are not aware nor track their water consumption, while 21 percent consume not more than 30 m^3 of water per month.

TABLE 7-1 ESTIMATE OF DOMESTIC WATER DEMAND

•

BY CALCULATION YEAR (IN MCM/YR.)

				-	-
	City/Municipality	1980	1985	1990	1994
1.	Dasmariñas	1.995	3.236	5.248	7.729
2.	Indang	0.833	0.939	1.057	1.163
3.	GMA	1.391	1.624	1.897	2.148
4.	Mendez	0.425	0.461	0.499	0.532
5.	Silang	1.399	1.874	2.508	3.168
6.	Tanza	0.453	0.538	0.639	0.734
7.	Tagaytay City	0.635	0.766	0.923	1.073
8.	Amadeo	0.406	0.462	0.526	0.583
9.	Magallanes	0.152	0.173	0.196	0.218
10.	Maragondon	0.375	0.422	0.475	0.522
11.	Ternate	0.107	0.118	0.131	0.143
12.	Alfonso	0.668	0.767	0.880	0.983
13,	Naic	0.484	0.563	0.654	0.737
14.	G.E. Aguinaldo	0.211	0.226	0.242	0.255
15.	Carmona	0.181	0.236	0.308	0.381
16.	Trece Martirez	0.175	0.237	0.321	0.408
17.	General Trias	0.459	0.529	0.610	0.684
	Total	10.350	13.171	17.116	21.460

T

TABLE 7-2 WATER PERMIT GRANTED FOR IRRIGATION FROM DEEPWELLS

_

	Location	Discharge MCM/yr.	Date Granted
1.	Paradalian, Tanza NIA	0.082	Oct. 1,1982
2.	120-51-26; 14-19-41 Phil. Cutflower Corp. Buck Estate, Alfonso 120-57-04; 14-05-12	0.126	?
3.	Ancient Equipt., Tagaytay	0.02	7
		0.116	?
		0.03	?
4.	Monterey, Gen. Trias	0.315	7
		0.063	?
5.	M. Villalobos, Gen. Trias	0.047	Jan. 29, 1981
6.	Monterey, Gen. Trias	0.032	Dec. 28, 1979
7.	Dynavision, Carmona	1.195	Feb. 14, 1978
8.	R.S.D.G., Maragondon	2.112	Jan. 24, 1978
	Total	131.27	

Source: NWRB Water Right Permits

Note: ? - means assumption that rights were granted during the past 5 years.

.

Total groundwater discharge for agricultural use = 4.139 million cubic meters per year. (MCM/yr)

Municipality/City	1980 & below	1985	1990	1994
	Delow			
1. ALFONSO	9,300	9,300	9,550	9,550
2. CARMONA				
A. Peoples Tech. Complex		-	36,035	36,035
B. Grandville Ind'l Complex	-	-	980	4,580
C. Mountain View Ind'I Complex	-	-	-	1,600
D. Outside Ind'l Parks	-	-	13,122	30,712
3. dasmariñas				
A. First Cityland Ind'l Center	-	-	-	540
B. DBB-NHA Ind'l Estate	3,000	11,950	15,150	15,150
C. First Cavite Ind'l Estate	-	~	6,766	30, 309
D. Outside Ind'l Estates	_	3,000	106,510	167,010
4. GENERAL TRIAS	[
A. New Cavite Ind'l City	-	4,320	-	1,392
B. Gateway Business Park	-		-	15,000
C. Outside Ind'l Estate	6,200	6,200	8,760	21,250
5. GMA				
A. GMA - NHA Ind'l Estate	_	_	~	4,950
B. Outside	_	_	-	120,000
				,
6. NAIC	-	720	720	720
7. SILANG	759	759	759	10,115
		1.53	661	10,113
8. TANZA	-	1,350	13,420	22,670
9. TAGAYTAY	-	-	-	940
10. TRECE MARTIREZ	-	3,100	4,225	7,340
		5,200	77,544J	1,510
TOTAL (m ³ /month)	19,259	40,699	215,997	499,863
TOTAL (MCM/yr)	0.231	0.488	2.591	5,998
7 4 - 7			21.571	5.775

TABLE 7-3 ESTIMATE OF GROUNDWATER WITHDRAWAL RATES FOR INDUSTRIAL USE

Note: Industrial Establishments with a water consumption rate of less than 6 MCM/yr or 16.4 cu.m. per day were excluded except those inside industrial estates.

.

Table 7-4

WELL DATA SUMMARY

.:	6				1.20		1962	문자	3~	1000	10002	5	14			× ×
WELL,		PGDB	LOCATION	YEAR	LONGT	TUDE	ч	TTUDE		ELEVATION	WELL	CÁSDIO	STATIC	DISCHAROE	CONDUC-	
NO.		NO.	MUNICIPALITY/BARANGAY	COMPLETED							DEFTH	SIZE	WATER LEVEL	1.1.1.1.2.2		TOME
		-			1020		4		<i></i>	MASU	0000	3.5.			τινπγ	Elopsed
	1						<u></u>	<u></u>		MASU	OKBOL)	(mm)	041013	(1.74)	(uS/cm)	<u> </u>
E		32624-601	Carmons, Madeys (Matorolls Phil., Isc.)	1990	121 - 03	- 39	14 -	19 -								
ε. 4	-	32624-602	Carmona, Madeya (Bandiz Containes, PTC)	1991	121 - 03		14		34	14,0	200	200	6,39 *	17.30	-	24 her,
£ -	3		Carmons, Cabiling Baybay, Real Street	1996	121 - 01			19 -	17	72.0	152	300	-	12.60	-	-
E -		32624-611	Carmena, Cabilang Baybay, Mis, Southwood PS #8	1997			14 -	19 -	08	22.0	21	50	\$.50	- :	-	-
E -			Campena, Mabuhay, Cityland Dov't, Corp.		121 - 01			18 -	33	23.0	234	250	5.89	26,50	-	-
E -	1		OMA, de Castro, Mandaría Homes Subdivision	1990	121 - 02		14 -	14 -	39	25.0	110	200	9.46 *	19.00	-	S hei.
- E -			GMA, Pulido, Area H GMA-WD PS # 7	1986	121 - 01	-	14 •	19 -	24	93.0	110	150	55.78 *	5.00	•	1 hr.
E -			GMA, Viscs, GMA-WD 75 #	1970	121 - 01		14 -	18 -	57	\$1.9	210	200x150	59.41 -	20.00	-	24 hrs.
E -				1978	121 - 03		14 -	15 -	41	110.0	120	200	-	20.00	•	-
-	10		GMA, Memeler, GMA-WD 75 #5	1981	121 - 01		14 -	18 -	21	120.0	138	200	E1.33 +	1.60		tier.
-			OMA, Poblation Use, GMA-WD PS M	1992	121 - 00	- 00	14 -	17 -	56	158.0	138	150x100	п.н•	3.00	-	S Mri.
		32624-605	GMA, San Gabriel, Teacher's Vill, WD PS 13		121 - 00	- 21	14 -	17 -	43	159.0	-	150x100		6.70	-	- I
	- 1	31621-421	OMA, Area K. GMA-WD PS #1		121 - 01	- 00	14 -	17 -	12	110.0	183	200	76.50	6.60	-	-
	- 1	31621-629	Silong, Phone I Bulihan, NHA PS 31	1942	120 -	59 - 29	14 -	16 -	45	186.0	150	200	43.35 •	1.90	-	3 hrs.
	"		Silang, Phase I Bulihan, AFP Housing PS #7	1943	120 -	59 - 46	14 -	16 -	20	198.0	130	200	73.94 •	1,10		3 5.
	- 1	31621-631	Silang, Phase I Dulilian, AFP Housing PS #4	1913	120 -	59 - 37	14 -	16 -	28	206.0	- 1	200	72.64 •	-		3 hrs,
	16		Dasmarians, Area B. DAS-WD PS #3	1971	120 -	58 - 52	14 -	21 -	40	63.0	143	200	25.61- *	21,40		I Mr.
Ε-	17		Damariaas, Burol II, DAS-WD PS #5	1941	120 -	58 - 52	14 -	21 -	10	70.0	183	200	39.91 -	14.50	_	1 Mr.
ε-	18		Doamarizat, San Mateio, DAS-WD Well #11	1992	120 -	59 - 20	14 -	20 -	25	90.0	180	1.	41,11	18,40	1	11.
ε-	19		Desmerines, Lutvimiade, DAS-WD PS #9	1992	120 -	59 - 16	14 -	19 -	53	98.0	1	200	42.70 •	1.50		
٤ - ١	20		Dasmarinas, Sa Antonio de Padua, DAS-WD PS #18	1992	120 -	58 - 12	14 -	19 -	29	106.0	107	150	30.10	9,70	-	1 br.
E -	21	31621-603	Dasmarinas, Picla Sampalor, Mia, Mem. Park	19972	120 -	58 - 32	H -	17 -	45	155.0	240	300	51.29		•	1 br.
E -	n	31621-621	Silang, Bigs, Silang WD PS #6	1993	120 -	58 + 30	14 -	15 -	03	255.0	104	200	65.91 *	20,10	-	6 hrt.
Ε • ·	23	31621-625	Silong, Poblation I, Silang WD PS # 4	1986	120 -	58 - 08	14 -	13 -	28	310.0	192	300	78.51 *	12.60		2 50.
Е-	24	31621-633	Silang, Lucsuhin, Silang WD PS #2	1913	120 -	57 - 57	14 -	12 -	50	330.0	245	200	63.31 *	1.50		I hr.
ε.	25		Amades, Poblacion 6. Lavel III Water System	1960	120 -	55 - 22	14 -	10 -	20	435.0	72	100	58.00	.		<u> </u>
Е-	26		Amadeo, Poblacion 8, Level III Water System	. 1990	120 -	55 - 10	14 -	10 -	15	425.0	75	150	45,90 *	1.20	<u> </u>	20 min.
Ε-	27		Amadea, Poblacion 12, Level III Water System	1959	120 -	54 - 58	14 -	10 -	19	420.0	- 193	200	60.00	9.40		
ε-	28		Armadee, Poblacion 1, Lavel 121 Water System	1914	120 -	55 - 21	14 -	09 -	50	462.0	50	150	63.63 •	0.90		20 min.
ε.	29		Amadea, Lonia, Level III Water System	1960	120 -	55 - 40	14 -	09 -	16	490.0	76	100	49.13 •	1.12		Jars.
٤-	30		Tagaytay, Sungay East, Level (2) Water System	1993	120 -	59 - 40	14 -	07 -	42	\$\$5.0	140	300	\$1.60	1,10		J Ars.
ε -	31		Tagaylay, Sungay East, Picnic Grove Resort	1992	120 -	59 - 04	14 -	07	35	\$\$7.0	122	150	\$3.00	2.70		1
E -	32		Tagaylay, Kaibagal South, RFM Well #4	1985	120 -	55 ~ 59	14 -	06 -	50	618.0	183	250	91.46		-	
Е-	33	31622-607	Tagayuy, Kaibagat South, RFM Well #3	1977	120 -	55 - 55	14 -	06 -	33	671.0	214	250	91.46		-	-
Е-	ж	l	Tegaytay, Kaibagai South, RFM Well #5	1987	120 -	55 - 43	14 -	06 -	35	630.0	335	300	91.45			-
Ę.	35	31622-601	Meades, Poblacion 8, Meades WD Wall Source	1992	1	54 - 12	14 -	07 -	30	\$30.0	244	200	\$7.50	10.00	-	-
e -	36		Mandez, Poblacion 2 Level 1 Water System	1986	120 -	54 · 05	14 -	67 -	59	\$10.0	103	100	•1.50		-	-
ε-	37		Mendez, Poblacion 7 Level 1 Water System	1992	1	ы. - м	14 -	D8 -		502.0	91	100	- 68.09	0,90	•	-
ε-	38	1	Mendet, Ceres I Anuling, Elem, Sch. Compound	1960		53 - 70	14 -	07 -	. 55	505.0	114			0.17	-	-
Е-	39		Mendet, Ceres II Aculing, Level II Water System	1991		53 - 01	14 -	07 -				100	90,60	·	-	·
E۰	40		Mendez, Paloopoo, Lavel III Water System	1985	····	52 - 40	1 .		51	500.0		100		1.30	1 -	-
ε.	41		Alfonio, Esperanza, Level II Water System	1960				07 -	40	493.0	1	150	20.00	4.40	•	-
Ε-	42	1	Alfonso, Esperanza Ibada, Level II Water System	1957	1		1	07 -	50	460.0	· ·	100	45.70	-	•	-
Ε-				1	,	52 - 10	1	07 -	29	464.0	1	100	67,10	1.00	~	1 •
L		L	Alfonso, Esperanza Ilaya, Level II Water System	1990	120 -	52 - 25	14 -	07 -	15	\$01.0	102	100	67.10	1.00	-	-

.

Table 7-4 WELL DATA SUMMARY (con't.)

WELL NO.	н. 1	PGD1 No.	LOCATION. Министрацтуралайолу	YEAR COMPLETED	LONK	TITUDE		1999 1997 1997	ITTUDE		ELEVATION	DEPTH	CASING SIZE	STATIC WATER LEVEL	A	TIVITY	TIME *** Elapard
E -	44	31672-603	Alfonse, America, SMC Tesising Center	1990	120 -	<u> </u>	X 0	14 -	<u>е</u> н-	<u>2017</u>	630.0	oract)	(mm)	(MIROL)	(1-44)	(uS/cm)	<u> </u>
Ê-	43		Alfonse, Marshan I, Level III Water System	1959	120 -	50 -	42	14 -	67.	я Я	420.0	154	250	101.22	J.30	•	-
E -	46		Alfonse, Paje, Level II Water System	199}	120 -	51 -	-	14 -	04 -	и 25	433.0	11	100	21.34	-	- ·	-
£ -	17		Alfonse, Pajo, Level III Water System	1960	120 -	51 -	20	14 -	01 -	_Д ц	410.0	. 4	100	19,50	3.00	•	134.
E -	4		Magallansa, Medina, Level III Water System	1992	120 -		48	14 -	ан -	6	310,0	- 63 - 60	100	19.01		•	30 min.
E -	49		Magallance, Balinag, Level II Water System	1992	120 -	47 -	18	14 -	6L -	~ *	250.0	20	100	12.59	-	- 1	30 min.
E -	×		Magallanes, Balluag, Level II Water System	1992	120 -	46 -	58	14 -		30	228.0	3	100	27.37	-	•	·
E -	51		Magallance, Bendita L Purious Piggery Farm	1915	120 -	45 -	93	14 -	09 -	50	191.0	42	100	27.37	-	•	2 hrs.
E -	52		Magallance, Urdaneta, Level II Water System	1992	120 -	43 -	37	14 -	- 20	51	270.0	×	100	25.61	-	-	•
E -	53		Magallanes, S. Aguptin, Level III Water System	1992	129 -	43 -	30	14 -	10 -	20	220,0	, ,	100		-	-	3 km.
Ε	я		Mogallanes, Poblecion 4, Level II Water System	1992	120 -	45 -	63	14 -	11 -		179.0	70	100	24,43	0,19) · -	Dar,
E -	55		Megallanes, Publicion 2, Level III Water System	1992	120 -	45 -	23	14 -		25	163.0	32	100	27.14	1.30	•	20 min.
E -	ж		Gen, Aguinside, Kaypasha (Handpump)	1963	120 -	47 -	26	14 -	10 -	51	211.0	33	100	25.64		•	-
E -	57		Oca, Agvinelde, Poblecion 4 (Handpump)	1990	120 -	47 -	42	14 -	 11 -	20	200,0		50	11.29	Abandoncel	•	
E.	я		Oca. Aguinalda, Lumipa, Figgery Farm	1994	120 -	47 -	02	14 -	17 •	65	170.0	18	100	36.65 41.25	· ·	-	-
Ε-	59		Gen. Aguiaaldo, Lumipa, Level III Water System	1193	120 -	47 -	00	14 -	12 -	30	155.0	6	100		2.00	•	30 m.ia.
E -	60	-	Indang, Poblacion, Don Severine Agri. College	1930	120 -	57 -	40	14 -		53	294.0	1 1		43.28 +	-	- 1	30 min.
E -	4		Indang, Kaytapos, Level III Water System	1962	120 -	53 -	02	14 -		46	305.0	150	200	16.76	-	-	
Ę -	42	-	lodang, Alulod, Level III Water System	1990	120 -	53 -	28	14 -	11 -			36	100	19.00	1.00	-	
Ε-	63		Indeag, Ages-es, Level III Weter System	1985	120 -	51 -	29	14 -	13 -	54 26	312.0	100	150	20.74 *	-	• •	Ebr.
E -	"		indang, Calumpang Lejos Level III Water System	1960	120 -	50 -	58	и.	13 -		213.0	100	150	31.00 •	-	•	2 Mrs.
E -	65		indang. Calumpung Lejos Level III Water System	1960	120 -	50 -	39	14 -	14 -	26	185.0	100	150	-	1.20	-	
E -	66		Gen Trias, Javalera, Gateway Holdings 75 #5	1990	170 -	ж- я-	42	14 -	14 -	20 51	160,0 178,0	90 152	100 250	36.51	•	•	15 min.
Ë-	67	31621-623	Gen Trias, Javalera, Galeway Holdings 75 #4	1992	120 -	55 -	05	14 .	15 -	59	112.0	200		5.00	7.50	-	-
E -	64	31621-635	Trees Martirez, Cabesso, La Paz Homes Subd.	1993	120 -	53 -	15	14 -	16 -	32	143.0		250	17.32 •	10.30	-	24 bri,
Ę -	69		Trece Martinez, Inocencia, Level III Water Sys.	1985	129 -	52 -	21	16 -	16 -	05 05	143,0	244	250	14.28	12,50	-	4 hrs.
E -	70		Trees Martirez, Luciano, Level III Water System	1979	120 -	52 -	10	14 -	16 -	28	125.0	40	100	30,46 •	0.19	•	20 min.
Е-	71		Trees Marifrez, Hugo Perez, Level III Water Sys.	1940	120 -	53 -	30	н -	17 -	10	- 115.0	×0	100	30.45 *	1.30	-	20 min,
Е-	n		Gen, Trias, Manggahan, Level III Water System	1960	120 -	я-	42	14 -	17 -	35	113.0		100	23.51	-	-	30 min.
ε.	73		O. Trias, S. Francisco, SM Campolrie Corp. PS#2	1992	120 -	55 -	01	14 -	17 -	39	120.0	- 152	100	13.23 -	-	-	24 h ri,
٤ -	74		Con Tries, Buenavisias, Lovel III Water System	1985	120 -	54 -	05	14 -	18 -	21	91.0	152	200 200	24,97	12.30	-	24 hrs.
Ę -	75		Trece Manizez, Lapidario, Level III Water Sys.	1991	120 -	59 -	41	14 -	17 +	04	120.0	~	200	20.25	-	-	30 mia,
Е -	I	31621-636	Trees Martirez, Cabuco, Don Basen Exce. Village	1993	120 -	50 -	45	14 •	17 -		12.0	182	200	•	-		-
E -	77		Trece Manirez, Cabuco, Level III Water System	1921	120 -	50 -	25	14 ~	17 -	30	80,0	40	100	- 71 M	-	•	•
Е •	70		Noic, Palangue, Level III Water System	1992	120 -	4.	36	14 -	16 -	56	69.0	42	100	27.34	0.95	•	-
Ę -	79		Maragoadon, Tulay Silangan (Hand Purop)	1960	120 -	46 -	08	14 -	16 +	17	33.0	52	100	24.01	-	0.618	20 min.
E -		31621-624	Maragondon, Bucal 4, Maragondon WD Well #2	1990	120 -	45 -	51	14 -	16 -	30	35.0	70	250		•	0.420	. 24 hrs.
Ε-	*1		Maregondon, Bucal 2 (Hand-pump)	1960	120 -	45 -	21	14 -	16 -	35	30.0		100	22.51 ·	16.00	0.550	24 hrs.
Е-	82		Maragondon, Bucal I (Hand-pump)	1993	129 -	44	50	14 -	16 -	30	25.0		50 50		-	0.569	5 Jurs.
Ε-	1)		Maragondon, Poblacion I, Maragondon WD Well #1	1917	120 -	44 -	94	14 -	16 -	30	19.0	120	130 130	2.11		0.374	-
Ε-	н		Ternate, Casuyao, NAPOCOR Compound	1980	120 -	44 -	33	14 -	16	59	13.0	120		5.77	14.00	0.499	-
Ë -	15		Terrate, Poblecies 18, Mus. Hall Compound	1984	120 -	43 -	03	34 -	17 -	12	6.0	1	200	3.76 •	•	0.608	24 hns.
Е-	ы	'	Temale, Poblacion 2, (Hand pump)	1985	120 -	42 .	49	14 -	17 -	22	6.0 3,0	11	50 	-	-	0.484	-
٤-	17		Ternale, Sapang 2, (Hand pump)	1994	120 -	42 -	25	14 -	16 -	50	5,0 6,0	12	50 50	•	· ·	Q.322	-

Ð

.

.

1

Table 7-4 WELL DATA SUMMARY (con't.)

WELL		7 603	LOCATION	YEAR	LONC	ITTUDE	10.0	Г.	TTTUDE		ELEVATION		CASING	STATIC	DISCHARGE	CONDUC-	TD (E ***
NO.		. NO.	MUNICIPALITY/BARANDAY	COMPLETED		$< \delta_{c}$		2.5			1.452.55	DEPTH	SIZE	WATER LEVEL	5	יתיוו	Elspied
							η.				(MASL)	MIGL	(88)	MICL	(i)	(mS/cm)	-
E -	u		Ternate, Comundag, Poerto Azul, Comundag PS	1980	120 -	41 -	. 15	14 -	16 -	45	23.0	- 46	300	25.18 +		0.427	20 min.
E •.	Ħ		Ternate, Puezte Azul, Palicpican PS #1	1910	120 -	40 -	58	14 •	16 -	33	8.0	- 46	250	-	6.00	0.390	
E -	90	31624-602	Terrate, Patrie Azul, Palicpican PS #3	1993	120 -	40 -	42	14 -	16 -	12	\$7.0	100	200	-	5.00	0.330	
E ·	91		Temale, Poerio Azul, Cayaubiz PS	1980	j20 -	40 -	17	14 +	16 -	42	16.0	60		-	6.31	1.944	1
Ę.	9 2		Temate. Son Juan B. (Hand Jump)	(915	120 +	43 -	-41	14 -	17 +	\$\$. 3.0	. ,	50	1.43		0.387	-
E -	93		Ternete, San Juna (Hand Pump)	1992	120 -	43 -	58	14 -	18 -	n	3.0	15	50			0.546	
£۰	×		Temate, San Miguel Caputatan (Hand Pump)	1990	120 -	44 -	20	14 -	17 -	50	6.0	33	50	•		0.394	1.
£.	95		Maragenden, San Miguel, (Shallow Well)	1994	120 -	44 -	42	14 -	17 -	20	19.0	30	50	6.00		0.412	
E •	96		Nale, Muzen (Shallow Well)	1970	120 -	45 +	12	14 -	17 -	45	21.0		50	-	9.20	0.334	
E -	97		Naic, Malainin Bago, (Shellow Well)	1914	120 -	43 -	45	14 -	18 -	١Ş	20.0	24	50	-	0.40	0.574	
E -	91		Naic, San Reque, (Shallow Well)	1974	120 -	45 -	03	14 -	12 -	45	16.0	24	50		.	0.513	
E -	9 9		Naic, Sapa, Bangcaan Elem, Sch, (Shallow Well)	1987	120 -	46 -	15	14 -	19 -	28	2.5	18	20	1.41 •		0.588	L br.
ε.	100		Naic, Dayong Silangan, Naic Public Market	1991	120 -	45 -	00	14 -	19 -	15	12.0	24	50	9.00		0.546	
E -	101		Haie, Sabang (Hand Pomp)	1919	120 -	47 -	- 14	14 -	19 -	01	21.0	25	50	-	- 1	Q.639	
Е·	102		Naie, Ibayan Silangan (Hand Pump)	1970	120 -	46 -	*	14 -	19 -	18	18,0	30	50	.	-	0.579	
ε -	103		Nois, Isayo, Ville Apotonio Subdivision	1994	120 -	46 -	35	14 -	19 -	45	11.0	60	100	.	-	0.625	
ε.	104		Noie, Timalan Concepcion, Spheres Metal Craft	1982	120 -	46 -	53	14 -	19 -	51	10.0	21	50		-	0,700	
ε.	105		Naie, Munting Mapino, Coastal Homes Subd.	1916	120 -	46 -	40	14 -	20 -	10	10.0	28	50	-		0.606	
E۰	106		Noie, Timalang Xanluran (Hand Pump)	1980	120 -	46 -	45	14 -	20 -	30	9.0	36	50	·;		1.052	ļ
Ε-	107		Naie. Timulang Concepcion (Shallow well)	1994	120 +	<i>c</i> 7 -	30	14 -	20 •	40	12.0	30	75	-		0.692	1
٤-	101		Tanza, Calibuyo Bgy. Hall (Hand Pump)	1953	120 -	· a -	30	14 +	21 -	38	11.0	24	50	-		0.565	
	109 110		Tanza, Halaybay, Promium Packaging In'i loc. Tanza, Sahud Ulan (Hand Pump)	1936 1991	120 - 120 -	41 - 49 -	41 12	14 - 14 -	22 -	27 18	6,0 9,0	1	250 50	. .	1 13.00	0.497	6 brs.
ε -	ш		Tanta, Amaya (Shallow well)	1992	120 +	50 -	. 12	14 -	22 -	55	12.0					0.641	1
Е•	112		Tanza, Daang Amaya I, Tanza WD Well Source	1992	120 -	51 -	01	14 -	23 -	39	10.0		250	5.40 *	28.63	0,467	10 hm.
Ē -	113		Tanza, Molawin (Hand Pump)	1990	120 -	- 1	10	14 -	23 -	00	11.0	1	1	-		0.911	1
E -	114		Tanze, Senja Mayor (Shallow Well)	1984	120 -	51 -	n	14 -	22 ~	- 35	17.0		1			0.893	1.
E -	113		Tanza, Biga (Hand Pump)	1965	120 -	5L -	п	14 -	2: •	58	21.0		1	1.		0.765	
E -	116		Tents, Ponta (Hand Pump)	1966	120 -	31 -	21	и-	21 -	10	22.0	72		-		0.725	
ε-	ut	1	Silang, Poting Kaboy (Hand Pump)	1957	121 -	91 -	35	14 -	12 -	56	225.0			\$7.00	0.25	-	
٤-	н		Silang, Lalaan I. Level 111 Water System	1993	120 -	57 -	31	14.	10 -	40	415.0		150	27.10 •	5.6		24 hrs.
ε-	119		Silang, Lalaan 3, Dug Well	6988	120 -	57 -	'ы	14 .		12	395.0			11.72 •		1_	
E -	120		Amadeo, Tamakan, Level III Water System	1912	120 -	55 -	я	14 -	. 13 -	03	300.0	80		20.79 •	2.16	<u> </u>	20 min.
E -	121		Dasmarinas, Salitran.St. Anthony Subd.	3982	120 -	56 -	38	14 -	- 20 -	46	61.0			22.55	11.93		
Е-	172		Daamarinaa, Saliiran, Souch Meridian Subd.	1961	120 -	56 -	49	น	21 -	33	50.0	300	1		-	.	
ε-	123		Dasmarinas, Salitran, DA-RA Subdivision	1946	120 -	56 -	50	IK -	- 25 -	31	48,0		1		9.46		

Measurements conducted sometime in October 1994

.

ſ

** Measured during the survey otherwise data is taken from pumping test data

*** Elapsed time when measurements was taken after the pump was shut-off

ALFONSO, CAVITE	STRIAL ESTABLISHME PRODUCT	NO. OF EMPLOY.	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
A1. MONTEREY FARM CORP. Buck Estate, Alfonso	Swine, cattle, processed meat	102	20 cat./d 500 hogs/d	0.068	Private DW	1980	0.054
A2. PHIL. CUTFLOWERS CORP. Buck Estate, Alfonso	Cutflowers, roses	25	•	0.003	Private DW		0.002
A3. SMC MAGNOLIA DAIRY FARM Amuyong, Alfonio	Fresh cow's milk, cattle feeder stocks		5,000 hds	0.104	Private DW	1965	0.084
A4. SMC MAGNOLIA POULTRY FARM, Amuyong, Alfonso	Hatching eggs, poultry	64 		0.004	Private DW		0.003
	· · · · · · · · · · · · · · · · · · ·	277		0.179	401000		0.143
CARMONA, CAVITE	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
BI. PEOPLE'S TECHNOLOGY COMPLE	x				PTC DW	1988	
I. ALMAZORA MOTORS CORP.	Bus and trucks body	54		0.005	PTC DW		0.004
2. AVSL GARMENTS, INC.	Ladies wear, denim pants, jogging suits			0.006	Private DW		0.005
3. AUKURAYA FOOD PHILS. INC.	Tofu and aburage			0.004	Private DW		0.003
4. BAVARIA FOODS CORP.	Processed meat	90	1,080		Private DW Private DW		0.004
5. BENAMI MFG. CORP. 6. BENDIX CONTAINERS MFG.	Parts and steel fab. nets, sacks	157		0.004 0.005	Private DW Private DW		0.003
CORP. 7. CHUAYUCO STEEL MFG.	Galv. roofing mat'l.	110	25,200	0.360	Private DW	1992	0.002
CORP. 8. CONSOLIDATED ADHESIVES	and steel products Stickwel and white glue			0.004	Private DW		0.003
INC. 9. HD (HONGDRILL) ENG'G. EQPT. INC.	Rock & soil drill eqpt, and water well/pileboring	43		0.007	PTC DW		0,006
IO.H.S. CRAFT MFG CORP. INC.	Christmas lights	57	,	0.000	PTC DW		0.000
11.HANEDA CORP.	PC comp, Al diecast-radar scanner & auto mach part	101		0.004	Private DW	•	0.003
12.HI-PRECISION STEEL CENTER INC.	Special steel products	57	- •		PTC DW	1988	0.024
13.HI-TOYS PHILS., INC./ ARTIF. PLANTS INC.	Stuffed toys and artificial plants	214	•	0.003	PTC DW		0.002
14.INTEGRATED TRADE BONDERS 15.I-SHENG FOODS INC.	Tire recapping Coconut water, buko juice	31	6	0.001	Private DW		0.007
16.ITALPINO CO. PHILS.	Christmas trees,		-	0.003	Private DW		0.002
INC. 17.J.P. AOKI RUBBER PHILS.	ornaments Rubber products	9	8.	0.028	PTC DW		0.022
INC. 18.NEW POLYTEX INT'L. CORP	Kitchen & bath. fixtures	31	s	0.014	Private DW	1992 1988	
19.NEW RISE MFG AND DEV'T. CORP.	Ceramics and gift items		8	0.001			0.000
20.NISHINO LEATHER IND., INC.	Tanned pigskin, garments	38:			Private DW & PTC DW		0.005
21.NORTHWEST PHILS. ELEC'L. MFG. CO., INC. 22.ONDA BUTTON SELLING	Christmas lights and decorative bulbs Fashion buttons, kitchen	12		0.004	Private DW Private DW	1988	0.003
(PHILS.) INC 23.PHICO INTERNATIONAL	/kitchen fixtures Gift and novelty items	14		0.018			0.014
24.PHILMETAL PRODUCTS, INC.	Rollformed pre-painted	. 6	9	0.000	Private DW		0.000
25.PHIL. NAGANO SEIKO INC.	sheets, GI sheets Reduction gear & gearbox	9	9	0.005	Private DW		0.004
26.PIGMENTEX INC.	cases Aluminum paste	2	0	0.002	Private DW		0.001
27.PINTAR INT'L. CORP.	Bone China gifts & & decorative access.			0.001	PTC DW		0.001
28.PROTEX PRODUCTS, INC.	Latex exam'n. gloves	:	52	0.002			0.002
29.QUALITY HATS AND BAGS	Baseball caps, headgear	10		0.001			0.001
30.R.I.L. INDUSTRIES, INC.	Knitted t-shirts, cotton jeans/pants		55	0.00	2 Private DW		0.002
31.ROHM ELECTRONICS CORP.	M°comput., resistors, IC, molds, dies, parts	, 8	00	0.18	0 Private DW	199	0 0.009
		7-16					• • • •
		/-10					

CARMONA, CAVITE	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUEN MCM/yr
2.ROMAR JEAN STAR PHILS.	Garments			0.004	Private DW		0.0
INC. 3. SAN JOSE CABINET MFG.,	Kitchen cabinets and	32		0.000	PTC DW		0.0
INC. H.SANOH FULTON PHILS.	standard furnitures			0.002	Private DW		0.0
5.SEFA ASIA, INC.	Aircraft comp., fab. or	24		0.002	Private DW		0.0
6.SIN HENG CHAN PHILS. INC.	seronautical products Prawn feeds	13		0.005	Private DW		0.0
7,SMOOTH LINE PHILS. INC.	Electronic devices			0.011	PTC DW		· 0.0
8.STAR PACKAGING	Plastic manufacturing			0.002	Private DW		0.0
9.STRONG INT'L. PHILS.	Slippers	259		0.008	PTC DW		0.0
INC. 0.SYNBER MFG. CORP.	Recycled plastic resin & plastic bags	7		0.001	Private DW		0.
1.TOP GRAND MFG. CORP.	Garments & knitted bats	10		0.004	Private DW		0.
2.TSAO MFG CORP.	Christmas lights, bulbs, decor sets	77		0.004	Private DW		0.
3.ULRICH INC.	Furniture beds			0.002	Private DW		0.
4. VALERIE PRODUCTS MFG. CO.	Metal fabrication	126		0.002	PTC DW		0.
YULETIDE ELECTRIC	Christmas and decorative	30		0.002	Private DW		.0.0
CREATION PHILS. INC.	light	4,901		0.446			0.2
. GRANDVILLE IN'L. COMPLEX					Complex DW	1990	
EVER RISE CERAMICS	Porcelain figurines	420		0.016	Complex DW	1992	0.0
KOU FU COLOR PRINTING	Printing of pack'g mat'ls.	31	÷	0.001	Complex DW		0,0
CORP. PHIL, ELECTRIC WIRES &	Electric wires/cables for	33	•	0.001	Complex DW		0.4
CABLES MFG. CORP. SCORE MFG. CORP.	Christmas lights Stuffed toys			0.001	Complex DW		0.
SENGA PHILS. INC.	Garments	500		0.021	Complex DW	1994	0.
SUN YOUNG PHILS. INC.	Plastic chair base, chair	34		0.002	Complex DW		0.
ZILOG PHILS. INC.	arm, etc. Semiconductor devices			0.006	Complex DW	1993	0.
		1,018		0.049			0.
3. MOUNTAIN VIEW INDUSTRIAL ((11 locators to date)	COMPLEX (20 HECTARES)	(part. filled)	·	0.019	2 deepwells		0.
4. AC RAFTEL CORP.	Wood and metal furniture	193		0.012	Private DW	1990	0
Bangkal, Carmona 5. BEST CHEM'LS & PLASTICS	Cast polypropylene, adhe-	155		0.346	Private DW	1990	0
INC., Maduya, Carmona 6. EXITO ELECTRONICS CO.	sives, masking tapes Extension cords	400	14.4 M pcs	0.032	Private DW	1992	0
PHILS. INC. 7. GLOBAL LIGHTING PHILS.	Decorative/household		1.0 M pcs	0.068	Private DW	1991	0
CORP. (1991) 8. L. SOFTWOOD PRODUCTS	electric bulbs Popsicle sticks, chop-	58	-	0.005	Private DW	1990	0
Mabuhay, Carmona 9. LEADER GARMENTS	sticks, toothpicks Garments	368		0.018	Private DW	1990	c
Maduya, Carmona 10. PILIPINAS ACTIVATED CAR-	Activated Carbon		240 MT	0.036	Private DW	1989	c
BON MFG CO INC, Mabuhay 11. TITAN MEGA BAGS IND'L.	Big and mega bags	87	900 MT	0.018	Private DW	1991	c
CORP. 112. TITAN MEGA TILES IND'L.	PVC floor tiles	50	0.81 M pcs	0.018	Private DW	1993	o
CORP., Mabuhay, Carmona		1,900		0.553			

Ċ.

TABLE 7-5

ASMARINAS, CAVITE	PRODUCT	NO.	PROD.	AREA (con WATER	SOURCE	DATE	EFFLUENT	
		OF EMPLOY	CAP. MT/yr	USE MCM/yr		ESTABL.	MCM/yr	
I. FIRST CITYLAND IND'L. CENTER				· · · · · · · · · · · · · · · · · · ·	FCIC DW			
Bgy. Langkaan, Dasmarinas								
CONSTRUCTION DECKING	Decking panels for high rise bldgs.	14		0.002	FCIC DW		0.001	
. FERMATTA GARMENTS INC.	rise plags. Polo and pajama garments	70		0.003	FCIC DW	:	0.003	
. FUJI WOODCRAFT	Woodcraft	25		0.002	FCIC DW		0.001	
· · · · · · · · · · · · · · · · · · ·		109		0.007			0.005	
2. DBB – NHA IND'L. ESTATE Bagong Bayan, Dasmarinas					DBB-NHA DW			
, BERLET HESTIA PHILS.	Ladies apparel (bras-	856		0.036	DBB-NHA D	1978	0.029	
INC. . DASMARINAS GARMENTS	sieres sports wear, etc.) Coats and jackets	895		0.038	DBB-NHA D	1982	0.031	
CORP.		••••						
. MERIDIAN GARMENTS MFG. CORP.	Garments			0.012	DBB-NHA D	1985	0.010	
. SANITARY STEAM LAUNDRY	Laundry/dry cleaning services	238	8,400 pcs	0.119	DBB-NHA D	1982	0.095	
		1,989		0.206			0.165	
 FIRST CAVITE INDUSTRIAL ESTAT Bgy. Langkaan, Desmarinas 	5				FCIE DW (2 units)	1990		
. ARTE WELL DRILLERS	Drilling			0.001	Deepweli	2	0.001	
BLUESTAR CONSTRUCTION	Construction services			0.002	Deepwell	• •	0.002	
CAMBRIDGE ELECTRONICS	Printed circuit boards	44		0.049	Deepwell	1993	0.039	
					-	1993		
E.C.E. CONSTRUCTION	Construction services			0.002	Deepwell		0.001	
. HEUI GARDEN INC.	Service			0.004	Deepwell		0.003	
. ISHIDA PHILS. GRATING INC.	Various grating steel products	49	2,160	0.006	Deepwell	1993	0.005	
. JP APPAREL	Garments	84		0.005	Deepwell		0.004	
. KAKUDAI (PHILS.) INC.	Faucets and valves	45		0.002	Deepwell		0.001	
KANLAON CONSTRUCTION	Construction			0.002	Deepwell			
							0.002	
0.KLT FRUITS	Processed tropical fruits	335		0.028	Deepwell	1992	0.022	
I.KYUNG-IL	Textile & yarn, knitted sweaters	528	1,800	0.012	Deepwell	1992	0.010	
2.LES GANTS PHILS. INC.	Various types of gloves	341	1.0 M pcs	0.011	Deepwe!	1993	0.008	
3.NEW EK LEE CONSTRUCTION	Construction			0.002	Deepwell		0.001	
4.PHIL. ARTS AND CRAFTS	Handicrafts			0.001	Deepwell		0.000	
15.PIDCO CONSTRUCTION	Construction			0.002	Deepwell		0.001	
I6.R.C.V CONSTRUCTION	Construction			0.003	Deepwell		0.003	
17.S & J INDUSTRIES	Plastic & metal parts,	18		0.002				
	mold dyes				Deepwell		0.002	
18.SUN ACE INDUSTRIES	Leather goods, fashion access. & textile apparel	399	0.72 M pcs	0.037	Deepwell	1993	0.029	
DUTSIDE INDUSTRIAL ESTATE		1,843	l	0.170			0.135	
C4. COCA COLA BOTTLERS	Carbonated drinks			0.144	Private DW	1989	0.115	
CORP., Burol Main C5. EUROMED LABORATORIES	Dextrose	294	11,520 mJ	0.090	Private DW	1990	0.009	
(1990), Bucal, Dasma. C6. FILKOR INTL. FOOD CORP.	Peanuts, choco balls	40)	0.006		1992		
Palapala, Dasmarinas	Yam							
C7. FINETEX SPINNING MILLS INC, Palapala, Dasma.		145		0.720	• :	1992	2 0.576	
C8. HELLA PHILS. INC. Malinta, Dasmarinas	Automotive lights, signal equipment	133	3	0.006	Private DW		0.005	
C9. JESSY AGRI ENTERPRISES Langkaan, Dasmarinas	Hogs	(6 170 hds	0.003	Private DW		0.002	
Langkaan, Dasmannas CIO. KEANSBURG BREWERY Malinta	Beverages			0.072	Private DW	199	0.058	
	······································						• • • • • • • • • • • • • • • • • • •	
								•
	7	-18						

B

DASMARINAS, CAVITE	JSTRIAL ESTABLISHMI PRODUCT	NO. OF EMPLOY	PROD. CAP MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
CII. MONTEREY MEAT PLANT	Live & carcass sales for	200		0.068	Private DW	1988	0.054
CORP., Langkasn, Dasma. C12. REYNOLDS PHILS. CORP.	hogs/cattle, proc. meat Aluminum sheets and foils	591		0.014	Private DW	1981	0.011
(1988), San Agustin C13.SAFFRON PHILS., INC.	Dyed and finished textile		2,484	1.080	Private DW	1990	0.518
Paliparan, Dasmarinas C14.SAN JOSE GARMENTS CORP. San Jose, Dasmarinas	fabrics and yarn Garments, coats, jackets	200		0.864	Private DW	1992	0.691
C15.SELF-DESIGNS INTL. INC. Langkaan, Dasmarinas	Woodcrafts, baskets	10		Ö.001	Private DW		0.001
	-	1,623		2.210			1.706
GMA, CAVITE	PRODUCT	NO. OF EMPLOY	. PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
DI. GMA - NHA INDUSTRIAL ESTATE							
1. GMA MFG. INC.	Pressed metal enclosure	90		0.005	Private DW		0.004
2. R.I.L. INDUSTRIES INC.	units Garments	795		0.014	Private DW	1991	0.012
3. SOUTHERN STEAM LAUNDRY INC.	Laundry services	70		0.040	Private DW	1993	0.032
DUTSIDE INDUSTRIAL ESTATE		955		0.059			0.041
D2. LAKEVIEW IND'L. CORP. Kabilang Baybay, GMA	Polyester filament yarn fiber	109	10,800	1.440	Private DW cooling(2)	1980	1.152
		109		1.440			1.152
GEN. TRIAS, CAVITE	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
EI. NEW CAVITE INDUSTRIAL CITY					NCIC DW		
1. METAL FORMING CORP.	Insul'd sandwiched panels,	146		0.007	NCIC DW		0.006
2. NEW LIFE INDUSTRIAL CORP.	pre-eng'd metal bldg syst Plastic houseware products	27		0.004	NCIC DW	1993	0.003
3. SHEENA FARMS, INC.	Fresh mushrooms	7		0.002	NCIC DW		0.001
4. SUN SAVER TECH & MFG CORP.	Solar hot water systems	5		0.001	NCIC DW		0.001
5. VINCENT GARMENTS	Garments	48		0.003	NCIC DW		0.002
E2. GATEWAY BUSINESS PARK Javalera, Geo. Trias						1993	
1. ASAHI OPTICAL CAVITE PHILS. CORP.	High index opthalmic lenses	181		0.090	Private DW	1993	0.072
2. TOKUMI ELECTRONICS PHILS., INC.	Head phone assembly, speakers & microphone	836		0.090	Private DW	1993	0.072
	sparkers of addrephone	1,017		0.180			0.144
OUTSIDE INDUSTRIAL COMPLEX							
E3. ASIA'S CRAFTS AND GARMENTS	Garments	830		0.040	Private DW		0.032
E4. INDOCOIL PHILS. CORP. De Fuego, Gen. Trias	Mosquito coils	133		0.007	Private DW	1990	0.005
E5. INSTAFOOD CORP OF THE PHILS, De Fuego	Nata growing farm	40		0.005	Private DW	1993	0.004
E6. JE LIVESTOCK CORP. San Francisco, G. Trias	Livestock			0.087	Private DW	1992	
E7. KINETICS INTL VENTURES CO, INC, San Francisco	Emergency light, air pot	. 138		0.003	Private DW	1993	
E8. MONTEREY FARM CORP. De Fuego, Gen Trias	Hog breeding and growing, dairy production	138		0.123	Private DW	1979	0.091

• .

7-19

19

GEN. TRIAS, CAVITE	PRODUCT	NO. OF	PROD. CAP.	WATER USE	SOURCE	DATE ESTABL	EFFLUENT MCM/yr
EIO. SAN MIQUEL CAMPOFRIO	Processed meat	EMPLOY	MT/yr	МСМ/уг	Private DW	1992	
CORP., De Fuego	Precured thread, black C			0.002		1993	
EI1. TUNG TAI HSING RUBBER IND'L. CORP, Manggahan	Procured thread, black C rubber tire recepping	×	,		Private DW	1773	0.002
		1,557		0.415			0.332
NAIC, CAVITE	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL	EFFLUENT MCM/yr
FI. GAZCEL AGRIBUSINESS	RFM poultry breeder farm	17	· · · · · · · · · · · · · · · · · · ·	0.001	Private DW		0.001
F2. IVAN FARMS	RFM poultry breeder farm	15	•	0.001	Private DW		0.001
F3. LAOMAN FARMS	Piggery	20)	0.001	Private DW		0.001
F4. MADISON SQUARE FARM Sabang, Naic	Swine	\$4)	0.001	Private DW		0.001
F5. RIZAL POULTRY & L'STOCK ASS'N, INC., Sabang	Poultry	50)	0.001	Privale DW		0.001
F6. SAN DIEGO FARMS Palangue, Naic	Poultry	1	1	0.001	Privata DW		0.000
F7. SPHERES METALCRAFT Timalan, Naic	Aluminum kitchenwares	18		0.009	Private DW	1982	
F8. YUMUL ENTERPRISE NAIC POULTRY, Palangue II	Poultry		,	0.001	Private DW		.0.000
		35		0.016			0.012
SILANG, CAVITE	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	ATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
31. CAVITE FARMERS FEEDMILL & MKTG COOP., Baypass	Animal feeds	38		0.003	Silang WD	<mark>, 1977</mark>	0.002
32. DRAGON TEXTILE MILLS INC., Lalaan I, Silang	Textile spura yam	\$0		1.044	Private DW .	1991	0.835
33. EURO TILES Biga, Silang	Glazed ceramics tiles	71		0.002	Private DW		0.001
34. FIL-TAI AGRI GROUP, INC. Balubad, Silang				0.006	Private DW	1977	0.005
35. JACNAVAR HOLMESGLEN MFG. CORP., Biga, Silang				0.001	Silang WD		0.001
 LEADER GOLF BAG MFG. CORP., Biga, Silang 	Golf bags, wooden lead cover and accessories	67		0.001	Privats DW		0.001
37. SUMMER FRUITS, INC. Bypasss, Silang	Dried tropical fruits and concentrates	158		0.008	Silang WD	1991	0.006
G8. UNI-PROS CERAMICS, INC. Biga, Silang	Ceramics			0.000	Silang WD		0.000
		414		1.066			0.852
ΤΑGΑΥΤΑΥ CITY	PRODUCT	NO. OF EMPLOY	PROD. CAP, MT/yr	WATER USE	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
HI. BIOFOOD CORP. Kaybagal, Tagaytay	Fresh and dried mushroom	59	MIIIJI	MCM/yr 0.004	Deepwell	-	0.003
H2. RFM-BLUE RIBBON HATCHERY, Mailim II	BR goldstock day old broilers and GP chicks	25		0.001	Deepwell		0.001
H3. ROYAL BEE CORP. Lalaan I, Silang	Honey bee and bee prod.	14		0.002	Deepwell		0.001
H4. SUJIN SILKROAD PHILS. Guinhawa, Tagaytay	Silkworm and silkfiber	5		0.00i	Deepweli		0.001
H5. THE FLOWER FARM CORP. Guindawa, Tagayiay	Culflower-roses, other flowers	18		0.004	Deepwell		0.003
		121		0.011			0,009
TANZA, CAVITE	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
I. CATHAY FARMS	Swine		4,000 hds	0.086	Private DW	1990	0.069
Tanauan, Tanza 12. CESA PIGGERY FARM Amaya Tanza	Swine	1	1,000 hds	0.040	Private DW	1986	0.022
Amaya, Tanza 13. CHUNG FU IND. (PHIL) INC., Tanauan, Tanza	Yara factory, knitted fabrics	305		0.025	Private DW	1990	0.020
 44. DOLPHIN ENV'L. CONTROL SYSTEM, Halayhay, Tanza 	raorics Water purifier, poly- aluminum chloride (PAC)	6		0.001	Private DW		0.001
5. MADISON PIGGERY FARM	Swine		8,000 hds	0.109	Private DW	1988	0.087
16. PREMIUM PACKAGING INT'L ASS'N. INC, Halaybay	Refill. PE Teraphthalate (RPET) container/preforms	458	0.50 M pcs	0.030	Private DW	1989	0.024
17. UNITY FISHING DEY'T. CORP., Halayhay, Tanza	Drydocking			0.020	Private DW	1984	0.015
		817		0.311			0.239
		-20					

T

٩

TRECE MARTIRES CITY	PRODUCT	NO. OF EMPLOY	PROD. CAP. MT/yr	WATER USE MCM/yr	SOURCE	DATE ESTABL.	EFFLUENT MCM/yr
 DON JUAN INTEGRATED FARM, Aguado, TM 	Swine	16	2,700 hds	0.037	Private DW	1984	0.024
J2. HO-JIN PHILS. INC	Stainless steel bowl for human & animal pets	106		0.005			0.004
J3. JET ENTERPRISES	• .	15		0.001			0.001
J4. KODI INTERNATIONAL Luciano, TM	Mannequins	45		0.002			0.002
JS. LILYWHITE GARMENTS Hugo Perez, TM	Garments	50		0.002	Private DW		0.002
J6. PELAGICA EAST, INC. Osorio, TM	Artificial marine corals, etc.	- 20		0.001			0.001
J7. PHIL. PYROTECHNIC INC. Conchu, TM	Toy products, display fireworks and fuses	121		0.004	Private DW		0.003
J8. PINNACLE CORP. De Ocampo, TM	Woodcraft	25		0.001			0.001
J9. QUICK PACK PHILS. INC. Conchu, TM	PVC shrink films	7		0.001			· 0.001
J10.RAMAH TAMAH FARM Conchu, TM	Steel			0.005	Private DW		0.004
J11.RUBY RICH (PHILS.) INC. Hugo Perez, TM	Fruit purces and conc.	70	2,52	0.003	Private DW		0.003
J12.SCT ELECTRO-COMPONENTS CORP., Conchu, TM	Electronic parts	45		0.002			0.002
113.SHIN HEUNG (PHILS.) INC.	Cat and other pet toys	90		0.004			0.003
J14.SONIC STEEL INDUSTRIES INC., Hugo Perez, TM	Galvanizing (Zinc) factory	. 98	5,4	0.014	Private DW	1992	0.01
JIS.TATAKE SPORTS PRODUCTS Osorio, TM	Rackets (tennis, squash, badminton)	68		0.003	Private DW		0.00
J16.TOP POWER INDUSTRIES De Ocampo, TM	Videogram system	28		0.002			0.00
	-	804		0.088			0.06

.

.

TABLE 7-5

.

Table 7-6

RANGES OF GROUNDWATER LEVEL DECREASE RATES AND ESTIMATED TOTAL DECREASE IN THE STUDY AREA

A. S.

Sec.

City/Municipality	Number of Wells Surveyed	Decrease Rates (m/year)	Maximum Decrease Within
			the 14 yr Period ¹ (m)
1. Alfonso	7	0.04 - 0.14	2.00
2. Amadeo	5	0.05 - 0.56	7.88
3. Carmona	5	0.60 - 0.87	12.18
4. Dasmariñas	6	1.05 - 2.61	5.22
5. Gen. E. Aguinaldo	4	0.01 - 0.28	1.38
6. Gen. Mariano Alvarez (GMA)	7	1.57 - 2.55	5.10
7. General Trias	5	0.22 - 0.86	2.51
8. Indang	6	0.03 - 0:34	4.67
9. Magallanes	8.	0.20 - 0.32	4.48
10. Maragondon	6	0.03 - 0.08	1.13
11. Mendez	6	0.15 - 0.46	9.55
12. Naic	13*	0.52	0
13. Silang	6	0.27 - 2.84	31.26
14. Tagaytay	5+	0.16 - 1.15	16.03
15. Tanza	9	0.20 - 0.54	1.52
16. Ternate	11	0.27 - 0.70	3.78
17. Trece Martirez	7	0.06 - 0.72	10.05

Note: ¹Assuming the maximum annual rate for the whole period *mostly shallow wells

Table 7-7 DOMESTIC WASTEWATER DISPOSAL SURVEY SUMMARY

	UPLAND	LOW	AND ARE	AS
SURVEY ITEMS	GMA	Cavite City	Naic	Tanza
Households Surveyed				
• With Toilet	100	100	100	90
• Without Toilet		-~		10
With Septic Tank	95	100	95	75
Septic Tank Effluent Receptor		_		
• Open Street Canal	20	5	55	40
 Covered Street Canal 	60	20	35	15
• Land	15	10	5	5 15
• Not Aware	15	65	5	10
Tank Material		05	05	75
· Concrete	80	65	95	75
Bricks	15	5 30		
· Not Aware	10	υG		
Tank Bottom			00	
• Sealed	70	55	80 5	60 5
• Unsealed	5	15 30	5 10	10
• Not Aware	20	00	10	10
Tank Construction Year	-	15	0.0	10
• Between 1960 - 1970	5	15	20 20	10 20
• Between 1971 - 1980	40 5	30 15	20 10	20
• Between 1981 - 1990 • Between 1991 - 1994	25	15		2.5
Not Aware	20	25	45	20
Desludging Frequency		-		
· Once		10	 ,	
• Not Yet Cleaned	65	25	50	45
• Not Aware	30	65	45	30
Kitchen Wastewater Receptor				
• Open Street Canal	55	50	60	50
 Covered Street CAnal 	35	30	30	25
· Septic Tank	10	5	5	
• River			56	5
• Land		10		20
• Not Aware		5		
Bathing And Laundry				
Wastewater Receptor				
• Open Street Canal	-50	45	60	50
 Covered Street Canal 	30	25	30	25
 Septic Tank 	10		5	5
• River	10	30	5	20
· Land	10	30		20
• Not Aware				1

The Values are all in percentages of those surveyed for a particular town. Twenty (20) households were surveyed at each poblacion. Some respondents were not aware of the answers to some questions. This is reflected in the items "Not Aware",

Table 7-8 WATER USE AND WASTE WATER GENERATION

City or Municipality	Ind'l; Estate	Indus- tries	Water Use,	Waste- water,	Industry Types
			MCM/yr	MCM/yr	
Alfonso	. 0	4	0.179	0.143	Meat processing, poultry, dairy
Carmona	PTC GVIC MVIC Outside	45 7 11 <u>9</u> 72	0.446 0.049 0.019 <u>0.553</u> 1.067	0.208 0.039 0.015 <u>0.443</u> 0.705	Garments, clo- thing apparel, toys, home decor, steel, computer chips, adhesives & plastic, other
Dasmarinas	FCIC DBB- NHA FCIE Outside	3 4 18 <u>12</u> 37	0.007 0.206 0.170 <u>2.210</u> 2.593	0.005 0.165 0.135 <u>1.706</u> 2.016	Garments, clo- thing apparel, textile mill, construction, fruit / beverage / meat processing, plating, other
G M A	GMA- NHA Outside	3 <u>1</u> 4	0,059 <u>1.440</u> 1.499	0.048 <u>1.152</u> 1.200	Textile mill, garments, laundry, metal enclosure
Gen. Trias	NCIC GBP Outside	5 2 <u>9</u> 16	0.017 0.180 <u>0.415</u> 0.612	0.013 0.144 <u>0.332</u> 0.489	Garments, pro- cessed meat, live- stock, houseware, electronics parts, other
Naic	0	8	0.016	0.012	Piggery, poultry, housewares
Silang	0	8	1.066	0.852	Textile mill, cera- mics, processed fruit, other
Tagaytay City	0	5	0.011	0.009	Poultry, veg./ honey / fruit processing, other
Tanza	0	7	0.311	0.239	Piggery, plastic, ship docking, other
Trece Martires	0	16	0.088	0.065	Piggery, fruit processing, metal / electronics, toys, sports
TOTAL	9	177	7,441	5.724	,,,,,,,

	Establic	shment V	Vith WTP	Establ	ishment with	No WTP
or City	Estate	side	I MCM/	Estate	Outside	Waste- water, MCM/yr
Alfonso	0	2	0,138			
Carmona	3	0	0.015	3 Meat proc., Steel, Rubber mfg	1 Plastic / adhesive	0.326
Dasmarinas	2	4	0.979	2 Laundry, Fruit proc.	2 Bottling Text. mill	0.809
GMA	ο	0	0		1 Text. mill	1.152
Gen. Trias	2	3	0.411			
Silang	0	0	0		2 Text. mill Fruit proc.	0.842
Tanza	0	5	0.218			
Trece Martires	0	2	0.035	·	1 Fruit proc.	0.003
TOTAL=35	7	16	1.796	5	7	3.132

Table 7-9 STATUS OF POTENTIAL POLLUTIVE INDUSTRIES

Industry Types	Wastewater Sources	Wastewater Characteristics	Pollution Impacts
fruit proc. (3), meat proc. (1), and bottling (1)	raw material cleaning, meat prepa- ration, spills, and mixing	high suspended and dissolved organics / solids, BOD, oil and grease	High BOD levels (dissolved and suspended organic) from partially or untreated wastewater infiltrates through groundsoil. The residual BOD (dissolved organic) which could not be filtered through the soil strata can make groundwater unfit for domestic and other beneficial uses.
Metals / steel (1) factory	pickling, galvanizing, and coating of metals & parts	acidic, high toxic metal (Cr, Pb, Zn, etc.) levels, organic solvents, oil and grease	High residuals of toxic metals such as chromium (hexavalent), lead, other plating compounds, and cyanides from improperly treated wastewater of metals / steels facilities would leach and contaminate the groundwater. Clean-up of these highly toxic and hazardous materials in groundwater is very costly.
Textile mills (3), laundry service (1), rubber (1), and plastics (1)	cooking & washing of fibers, fabric desizing, polymerizati on, steam cleaning, rubber operations	highly alkaline, colored organics and dyes, high suspended solids, temperature	Waste components (organic and inorganic) generated from textile mills, laundry, rubber, and related operations are hazardous and would require extensive clean-up procedures if groundwater is contaminated.

Table 7-10 WASTEWATER SOURCES, CHARACTERISTICS, AND POLLUTION IMPACTS

.

Table 7-11 SUEVEY RESULTS OF SOLID WASTES GENERATION, COLLECTION AND DISPOSAL.

Municipality	Genera-	Dump				Relation to	n to	Year	Collection	Number	& Trucks Fre	& Trucks Frequency of Collection	lection
or	tion	Area	Location	Longi tude	Latitude	Surface water	water	Opera-	Budget	Trailer	Elf-type	Dumptruck	Compactor
City	(MT/yr)	(Ha)				Distance	Name	tion	(Peso)				
1 Al fonso	5, 430	None	None	1		1	ł	None	500,00	1	T	2(weekly)	I
2 Amadeo	3, 741	None	None	1		L	1	None	200, 000	۱	I	I	5
3 Carmona	6, 030	1.0	Bangkal	121° 03' 00"	14° 18' 00"	300	Unnamed	QN	300, 000	1	1	1(2/d)(N-S)	1(2/d)(M-S)
		65.0	Lantik	121° 00' 30"	14° 16' 50"	600	Unnamed	1993				1	
4 Dasmarinas	30, 242	None	None	t	F			None	1, 200, 000	1	2(2/d)(N-S)	2(2/d)(M-S) 1(2/d)(N-S)	1(2/d)(N-S)
5 Gen. Aguinaldo	1	1.0	Pob. 4	120° 47' 40"	14° 11' 30″	100	Unnamed	1989	Ð	1	F	1	I
6 GMA		None	None	-	1	-	1	None	Q	1(daily)	I	I	1
7 Gen. Trias	11, 274	1,0	Pasong	120° 53' 00"	14° 18' 20"	100	Unnamed	1991	100, 000	1(2-3/d)	I	1	I
			Kawayan							(N-S)			
8 Indang	5, 346	0.02	ľ	120° 52' 25"	14° 11' 40"	100	Unnamed	51979	100,000	1(2-3/d)	ı	ł	ļ
9										(N-S)			
9 Magallanes	Ð	£	Ð					Q	QN	t	1	I	ł
10 Maragondon	4, 830	0.05	Mabacao	120° 46' 20"	14° 14' 40"	400	Mabato	1992	90,000	I	l(daily)	1	I
		0.05	Mabacao	120° 46' 10"	14° 14' 10"								
11 Mendez	3, 260	0.02	8	120° 54' 30"	14° 08' 00"	400	Hbuling	1992	£	1	1	1	1
12 Naic	11,700	1.0	Sabang	120° 46' 20"	14° 19' 30"	600	Alemeng	1993	1, 000, 000	1(daily)	I	I(daily)	l(daily)
13 Silang	17, 117	1.2		120° 58' 00″ 14°	14° 11' 55"	100	Unnamed	1984	1, 240, 000	I	I	2(2-3/d)	I
												(S-N)	
14 Tagaytay	4, 600	0.55	Silang	120° 58' 05"	14° 07' 20"	400	Unnamed	1994	1, 700, 000	1	2(1/d;N-F)	2(1/d;M-F) 3(1-3/d;M-F)	1(1-2/d;
W J			Crossing										M-F)
15 Tanza	11, 300	5.0	Sehod Ulan	120° 45' 35"	14° 22' 00"	100	Unnamed	1993	1,000,000	1	1	3(3/d;4/wk)	
16 Ternate	2, 010	0.25	Sapang	120°41'	14° 16' 15"	300	Sepeng	1993	400,000	1	1(3/wk)	:	
17 Trece Martires	3, 430	2.0	Ocampo	120° 51′ 00″	14° 18' 50"	200	Malilin	1992	Ð	1	l(daily)	2(daily)	
TOTAL	140, 960												
	F												

Source : JICA Study Team

Notes:

a. ND: No Data Available b. Capacity of garbage collection trucks varies.

c. throompacted volume is as estimated garbage trucks capabilities, e.g. Jeepney w/trailers = 2 cu.m; elf-type = 4-6 cu.m; dump trucks = 10-12 cu.m; compactor truck = 14-18 cu.m.

d. S.L. * Sanitary Landfill, referring to the sanitary landfill operated by the Metro Manila Authority catering to the garbage mostly form metro Manila.

e. M-S means Monday to Sunday of everyday

Municipality or City	Name of Creek/River	Longitude	Latítude	Wastes tossed, (MT)*
Alfonso	Sambal Cr.	120 ⁰ 52'40''	14 ⁰ 07'30''	16.0
Amadeo	Unnamed Cr. Unnamed Cr.	120 ⁰ 55'00'' 120 ⁰ 56'00''	14 ⁰ 11'00'' 14 ⁰ 12'20''	20.0
Carmona	Unnamed Cr.	121000'05"	14 ⁰ 17'00''	15.0
Dasmarinas	Unnamed R. Unnamed Cr.	120 ⁰ 56'20" 120 ⁰ 56'00"	14 ⁰ 19'50" 14 ⁰ 19'40"	7.0
GMA	Unnamed R.	121000'06"	14 ⁰ 17'03''	20.0
Gen. Aguinaldo	Unnamed Cr.	120 ⁰ 47'30"	14 ⁰ 11'30''	19.0
Gen. Trias	Pasong Camachile R. Palubluban Cr.	120 ⁰ 52'30'' 120 ⁰ 52'28''	14 ⁰ 23'00'' 14 ⁰ 23'00''	52.0
Indang	Unnamed Cr.	120 ⁰ 51'30''	14 ⁰ 11'00''	3.0
Magallanes	Unnamed Cr. Unnamed Cr.	120 ⁰ 45'15'' 120 ⁰ 45'20''	14 ⁰ 12'35" 14 ⁰ 12'30"	ND
Maragondon	Mabacao R.	120 ⁰ 45'30"	14 ⁰ 16'30''	0.0
Mendez	Quibaya Cr. Palocpoc Cr.	120 ⁰ 53'30'' 120 ⁰ 52'45''	14⁰07'50" 14⁰07'50"	16.0
Naic	Labac R. Balsahan R.	120 ⁰ 45'50'' 120 ⁰ 46'00''	14 ⁰ 18'20" 14 ⁰ 18'00"	10.0
Silang	Munt-ilog Cr. Unnamed Cr. Unnamed Cr.	120⁰58'45'' 120⁰58'30'' 120⁰58'20''	14 ⁰ 13'25" 14 ⁰ 13'25" 14 ⁰ 13'05"	22.0
Tagaytay	None	None	None	0.0
Tanza	Bucal Cr. Canas R.	121 ⁰ 51'30" 121 ⁰ 51'20"	14 ⁰ 23'55" 14 ⁰ 23'50"	16.0
Ternate	Maragondon R.	120 ⁰ 42'40"	14017'15"	0.0
Trece Martires	Unnamed Cr. Unnamed Cr.	120⁰52'00" 120⁰51'45"	14 ⁰ 17'20'' 14 ⁰ 17'25''	6.0
TOTAL				222.0

Table 7-12 LOCATION OF BANKS CREEKS/RIVERS USED AS ILLEGAL DUMPSITES

Legend:

ND -- Estime

No Data Available
 Estimated volume of solid wastes

Table 7-13 PROJECT PERCEPTION AND AWARENESS (Survey Summary)

1

(a. . .

		NUN	ABER OF	RESPONDEN	TS	
SURVEY ITEMS	GMA	Mendez	Naic	Tagaytay	Tanza	Total
HEALTH AND HYGIENE						
Existence of relation between some diseases and lack of potable water - • Believed to have relation • Believed to have no relation • No Opinion	26 24	4 46	7 21 1	17 33	6 44	60 189 1
Diseases considered related to lack of potable water - • Diarrhea • Stomach Ache • Cholera • Amoeba • Others • No Opinion	8 11 1 2 3	3	3 1 1 1	10 7	5	29 20 3 2 4 3
Sufficiency of present water supply source for the health and proper hygiene requirements of their families - • Considered as sufficient • Considered as not sufficient • Not sure WATER SUPPLY SERVICE	40 10	46 4	45 5	43 5 2	48 2	222 26 2
Adequacy of the level of water supply service in their areas - • Believed as adequate • Believed as not so adequate • Believed as inadequate	24 14 12	39 11	46 2 2	27 14 9	47 2 1	183 43 24
Existence of expectation of improvement on the present water supply system in their areas - • With expectation • No expectation • No opinion	41 8 1	49 1	48 1 1	47 2 1	49 1	234 12 4
Awareness of the proposed Cavite Water Supply Development Project - • Aware • Not Aware	8 42	9 41	1 49	7 43	50	25 225
Occurrence of improvement in the supply of potable water due to the proposed project - • Believed it will improve • Believed it will not improve • No Opinion	47 1 2	47 3	4 9 1	47 3	48 2	238 4 8

.

Table 7-13 (con't.) PROJECT PERCEPTION AND AWARENESS (Survey Summary)

		NUN	ABER OF	RESPONDEN	TS	
SURVEY ITEMS	GMA	Méndez	Naic	Tagaytay	Tanza	Total
Importance of improving availability of potable water Believed as very important	50	50	50	50	50	250
Willingness to cooperate to comply with some study requirements - • Willing to cooperate • Not willing to cooperate	49 1	47 3	49	49	50	244 4
• Not sure	,	5	1	1		2
GROUNDWATER DEVELOPMENT Necessity of adequate plan and proper management in the development of groundwater for water supply use - • Believed adequate plan and proper						
 management needed Believed adequate plan and proper management not needed No Opinion 	49 1	46 4	50	49 1	48	242 6
Appropriateness of continued withdrawal of groundwater in their areas • Considered as appropriate					2	2
 Considered as not appropriate Not sure Awareness that improper groudnwater 	23 21 6	15 31 4	20 28 2	14 26 10	25 24 1	97 130 23
development could lead to long-term bad effects - • Aware • Not Aware	29	28	29	39	30	155
No Opinion	18 3	20 21 1	23	10 1	30 19 1	89 6

Ð

Table 7-14 SOCIO-ECONOMIC PROFILE OF RESPONDENTS (Survey Summary)

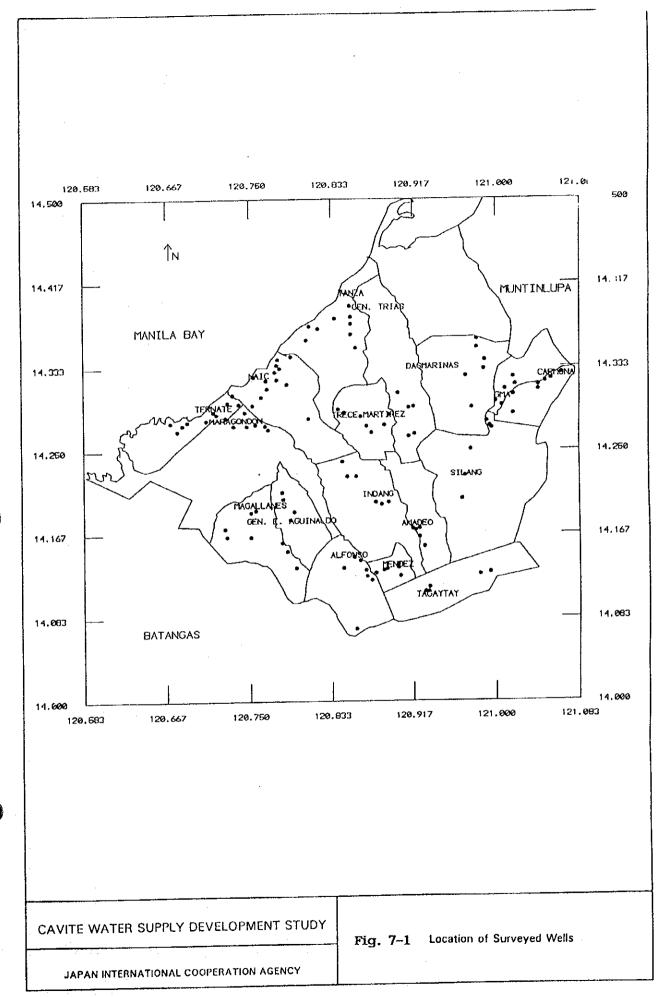
		NÛN	BER OF	RESPONDEN	rs .	
SURVEY ITEMS	GMA	Mendez	Naic	Tagaytay	Tanza	Total
1. AGE						
 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 82 	9 15 16 5 4 1	4 14 13 12 3 4	11 20 13 4 2	12 22 7 7 2	14 15 11 7 3	50 86 60 35 14 5
2. SEX						
FemaleMale	31 19	34 16	30 20	40 10	33 17	168 82
3. HOUSEHOLD SIZE						
● 1 - 5 ● 6 - 10 ● 11 - 15	29 20 1	22 27 1	21 27 2	24 25 1	29 19 2	125 118 7
4. OCCUPATION						
 Housewife Business Teacher Laborer, Janitor, Caretaker Employee Farmer, Vendor Driver, Mechanic Others No Occupation Barangay Member, Councilor Security Guard Engineer, Nurse, Midwife Electrician, Lineman 	16 7 8 3 2 3 3 4 1 1	25 7 3 4 1 2 3 2 1 1	23 8 1 4 1 3 1 3 1	17 16 2 3 2 4 1 2 2 1	25 3 4 1 3 1 2 2 1	106 41 17 14 13 13 11 9 6 5 4 4 3
5. EDUCATIONAL ATTAINMENT • Elementary Level • Elementary Graduate • High School Level • High School Graduate • College Level • College Graduate	2 3 10 10 14 11	6 1 8 4 17 14	7 2 17 6 16 2	3 5 11 14 13	- 11 15 5 11 8	29 9 55 36 72 48

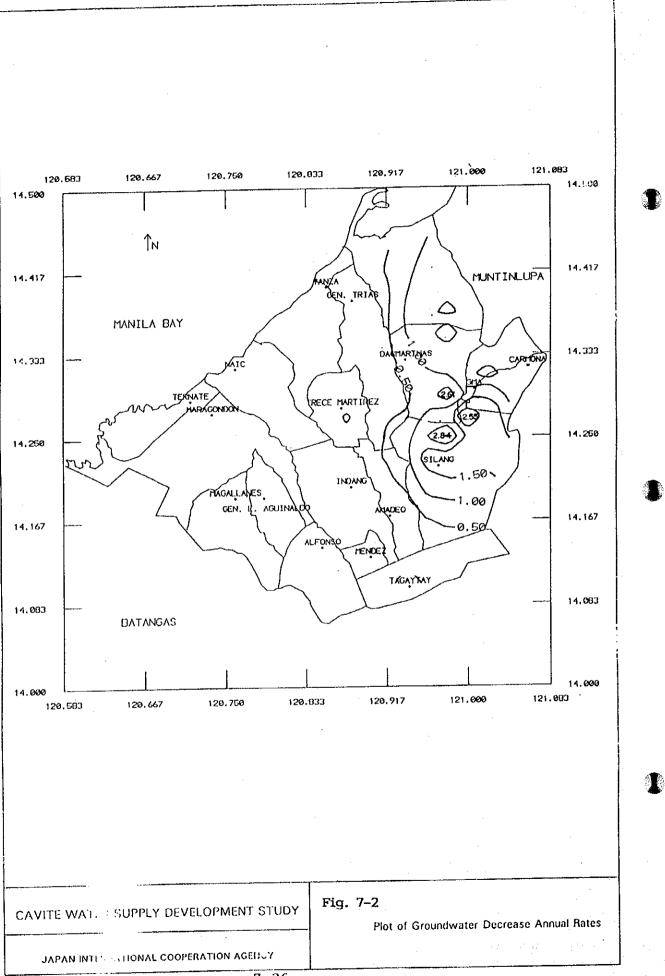
S	Table 7-14 (con't.) SOCIO-ECONOMIC PROFILE OF RESPONDENTS (Survey Summary)

		NÜN	ABER OF	RESPONDEN	TS	
SURVEY ITEMS	GMA	Mendez	Naic	Tagaytay	Tanza	Tota
6. RELIGION						
Catholic	48	50	50	48	. 48	244
Others	2			2	2	6
7. ETHNIC GROUP						
Cavite	13	48	48	29	45	183
 Visayas 	14	1	1	7	4	27
Manila	11		1	2		14
Bicol	5			3		8
 Batangas 	1			2 3 4 5		5
• Others	6	·· 1		5	. 1	13
8. MONTHLY INCOME						
 1,000 and below 	11	14	15	7	17	64
1,001 - 3,000	9	20	25	21	23	98
• 3,001 - 5,000	14	10	6	12	7	49
• 5,001 - 7,000	9	2	2	6	1	20
• 7,001 - 9,000	5		1	1		7
 9,001 - 11,000 	1	2	1	2 1	2	8
11,001 - 15,000	1			1		8 2 2
 15,001 - Above 		2				2

.

•


SURVEY ITEMS	NUMBER OF RESPONDENTS							
	GMA	Mendez	Naic	Tagaytay	Tanza	Total		
SOURCE OF DRINKING WATER -								
Deep well Public Faucet Neighbor's well Neighbor's faucet House Connection Public well Shallow well OWNERSHIP OF WATER SOURCE -	14 13 13 9 1	2 15 15 15 1 1 1	24 4 7 5	32 1 16 1	26 23 1	66 64 45 35 26 13 1		
Own water source Not own water source	18 32	2 48	24 26	12 38	25 25	81 169		
MONTHLY WATER CONSUMPTION IN CUBIC METERS -								
 10 and below 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 Not Known 	10 3 7 1 2 27	1 1 2 1	3 4 1 42	15 2 33	3	32 10 10 1 1 2 194		
HOUSHOLD MONTHLY WATER EXPENSES -								
 P100 and below P101 - P200 P201 - P300 P301 - P400 P401 - P500 	22 19 5 2	8 24 10 4	6 2	19 28 3	1	56 73 18 6		
• P501 - P600 • Free	2	1 3 ·	42		49	1 96		
SOURCE FOR DRINKING WATER AND SOURCE FOR OTHER WATER USES -								
 The same source Not the same source 	49 1	50	50	50	50	249 1		
SOURCE OF WATER OTHER THAN FOR DRINKING PURPOSES								
 Rain Neighbor's Well 	1				1	1 1		


Table 7-15 PRESENT WATER SUPPLY INDICATORS (Survey Summary)

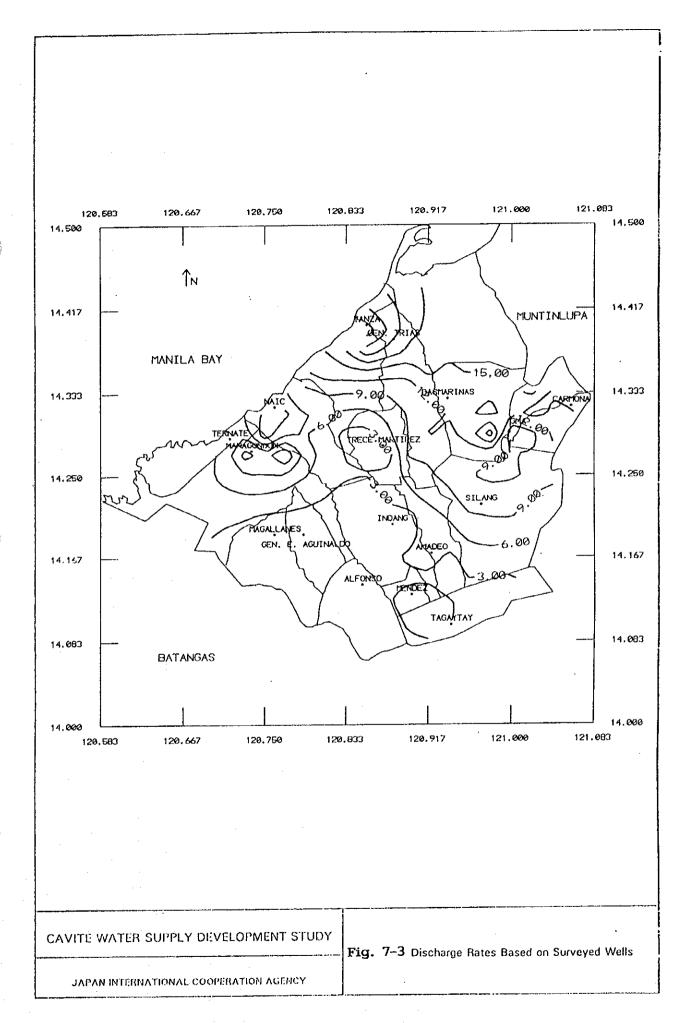
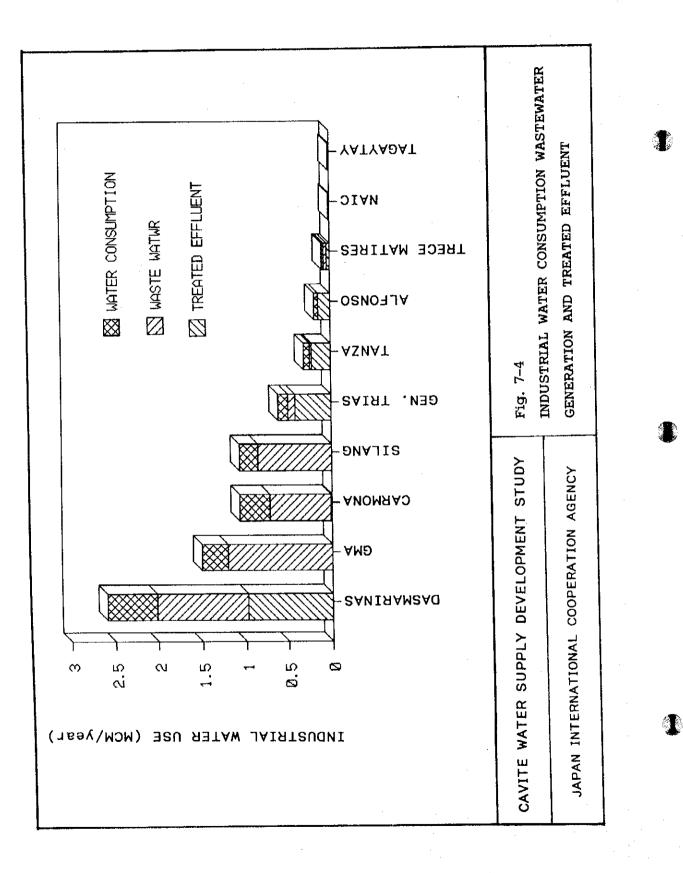
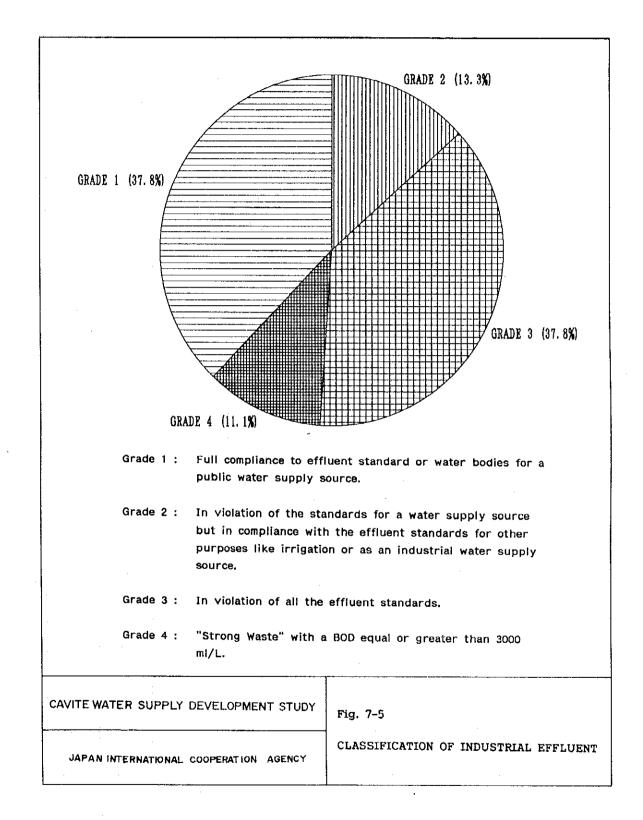
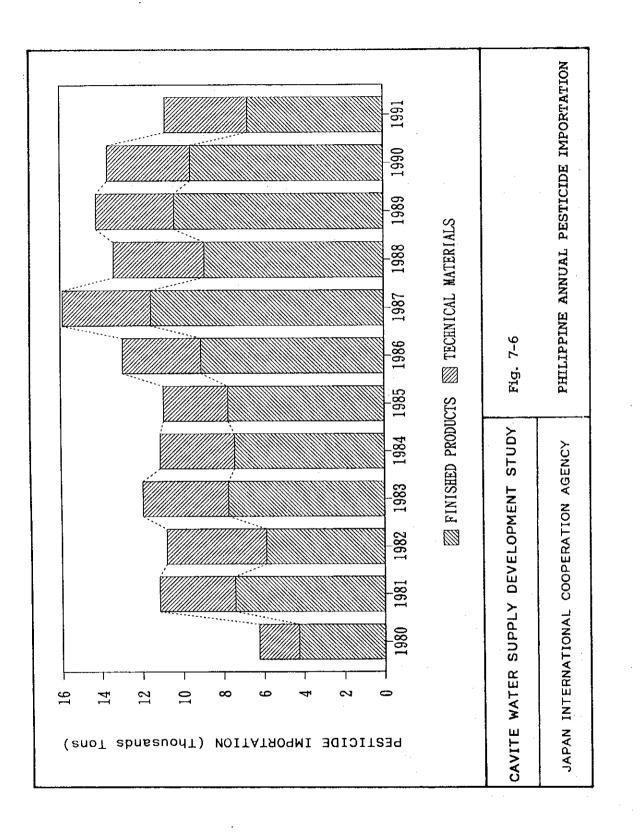

	NUMBER OF RESPONDENTS							
SURVEY ITEMS	GMA	Mendez	Naic	Tagaytay	Tanza	Total		
6. RELIGION								
 Catholic Others 	48	50	50	48 2	48	244		
7. ETHNIC GROUP								
 Cavite Visayas Manila Bicol Batangas Others 	13 14 11 5 1 6	48 1	48 1 1	29 7 2 3 4 5	45 4 1	183 27 14 8 5 13		
8. MONTHLY INCOME • 1,000 and below • 1,001 - 3,000 • 3,001 - 5,000 • 5,001 - 7,000 • 7,001 - 9,000 • 9,001 - 11,000 • 11,001 - 15,000 • 15,001 - Above	11 9 14 9 5 1 1	14 20 10 2 2 2	15 25 6 2 1 1	7 21 12 6 1 2 1	17 23 7 1 2	64 98 49 20 7 8 2 2.		

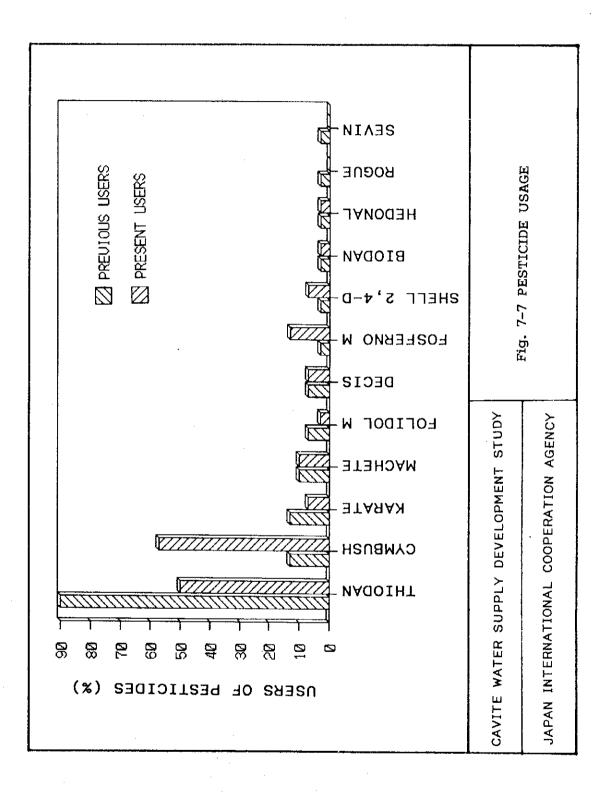
Table 7-15 (con't.) PRESENT WATER SUPPLY INDICATORS (Survey Summary)

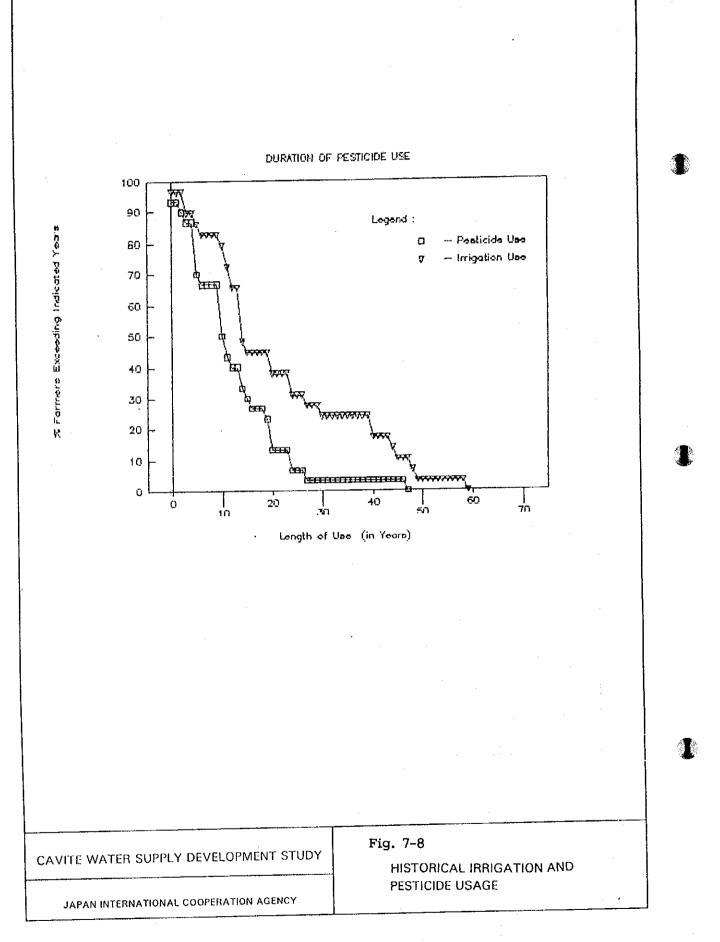

Ð

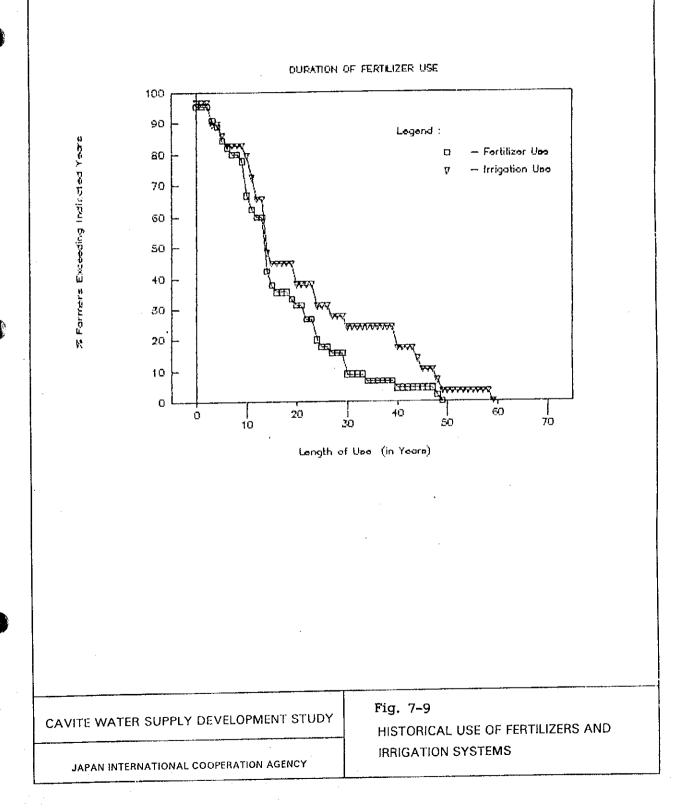




.






P.

7-40

40

8. EXISTING WATER SUPPLY SYSTEM

8. EXISTING WATER SUPPLY SYSTEM

8.1 STUDY METHODS

Questionnaire survey was the main method of data collection. The manner of data collection ares were as follows:

- (1) The study team devised a questionnaire form that contained the relevant technical, administrative and financial data requirements filled in by the personnel in charge of the water supply.
- (2) Questionnaire forms were distributed to the respective Municipal Planning Development Office and the study team discussed in detail all data requirements that were provided.
- (3) Once the questionnaire forms were finished, the study team conducted a confirmation survey on the subject areas to validate the information gathered.

The questionnaire form as shown in **Table 8–1**, was prepared and distributed to all concerned agencies of the city/municipality. The questionnaire form contained the following information:

(1) System Scale

This provided the level of service for the water supply, service area coverage, service population, demand and supply capacity and water use classification.

(2) Water Source

The number and type of source utilized by the existing system e.g. deep well, spring or surface water.

(3) Existing Facilities

Description of the components of the water supply system, such as transmission/distribution lines, reservoir, pumping stations and treatment facilities.

(4) Water Quality

Record or water quality test results/certificates in accordance with the national Standard for Drinking Water (NSDW).

(5) Financial Condition

This contained information on water cost, production and collection efficiency. Records of the financial statements were requested whenever available.

8-1

(6) Operation and Maintenance

This indicated the personnel in charge of Water Supply, Operation and Maintenance, an Organizational Chart and Staffing.

In the course of data collection using the questionnaire for, it was anticipated that difficulties would be encountered in municipalities without water districts. These were water supply systems being managed by the Rural Waterworks and Sanitation Association (RWSA) and the Municipal Water Supply. A majority of these associations didn't have technical personnel and since a number of these projects were implemented by different Agencies, technical data were not readily available at the provincial/municipal level.

Considering the above constraints, the study team would extract information through actual interviews of the associations/consumers and by visual inspection of their facilities.

Among the basic data that would be recognized are the following:

- (1) Technical description of the water system, such as water source facility, transmission lines, pumping stations, storage facilities, distribution line, treatment facility and service connections.
- (2) Existing condition of the system, especially the present state of the facilities and the status of operation and maintenance.
- (3) Water system's management and financial conditions, organizational set up, water fcc and collection efficiency.
- (4) Future plans of the association to improve/expand the present systems including the necessary technical and financial assistance that would be required.

8.2 SURVEY RESULT

Tables 8-2 to **8-18** show the detailed present status of the existing facilities in all the seventeen (17) municipalities/cities in the Study Area.

Table 8-19 to 8-23 show the results of hydraulic analysis of pipe-line system of the five F/S areas.

Fig.s 8-1 to 8-7 show the existing water supply systems of municipalities /cities with Water District in it. They are Indang, Mendez, Silang, Tanza, Tagaytay, Amadeo and Maragondon.

Fig. 8-8 to 8-13 show typical plan of the existing facilities. Fig. 8-14 and 8-15 show the pump setting diameters of G.M.A. test well.

Fig.s 8-16(a) to (j) show the nodal diagram of recommended water supply system.

8-2

Table 8-1 Questionnaire Form

÷

.

. .

SURVEY OF EXISTING WATER SUPPLY FACILITIES

50		TOP EXISTING WATER SUFFET FACIL			
			······································		
	BAI	- ANGAT:			
	TO	WN/CITY:			······································
I.	SYS	STEM SCALE			
	1.	Service Level	· [_]	Level II	Level III
	2.	Total Population (Poblacion)			
	З.	Population (Service Area)	—	.	
	4.	Demand			a se ana la a se
		- Maximum Daily Demand			cu.m/day
	5	- Average Daily Demand			cu.m/day
	5.	Supply Capacity - Maximum Daily Demand			cu.m/day
		- Average Daily Demand		•	cu.m/day
	6.	Water Use Classification	·		00.111/004
	Ų.	- Domestic Consumption			cu.m/day
		- Commercial/Industrial	· · · ·		cu.m/day
II.	WA	TER SOURCE			
	1.	SPRING SOURCE			
		Spring No.			
		- Distance from Service Area,	L =		m/km
		(above service area)	el		m
		(below service area)	el	~~~~~	m
			-		
		- Spring Yield,			l no
		Q(Ave) = Q(Dav scalars) = 0			Lps
		Q (Dry season) =			Lps
-		 Intake Facility Dimension 			
	2.	DEEP WELL SOURCE			
		Well No			
		- Distance from Service Area			m/km
	•.	- Difference in Elevation			
		(above service area)	el		m
		(below service area)	el		m

Table 8-1(con't.) Questionnaire Form

		-	Well Depth Casing Material/dia Screen meterial/dia Discharge capacity Type of Pump/rating Power Supply	ameter ',	D = Q =	Single/Three Pha	_m _Lpm 	
^а ш.	DES	CRIPTIO	N OF FACILITIES					9
	١.	Pipeline	S					
		-	Transmission Line	Material Size Range Length, L			_mm _m/km	
		-	Distribution Lines	Material Size Range Length, L			_mm _m/km	
	2.	Reservo	birs					
		- - -	Type and Dimensi Volume, Elevation head,	on	V = H.=		cu.m m	
	З.	Pumping	g Stations					
		Pumpin	g Station No.	- -				
		-	Pump type/Rating]			·	
		-	Discharge Capaci Pressure head	ty,	Q = H =		_Lps _m	
	4.	Water T	Freatment Plant					.
		. .	Treatment Method	d				Ľ
		■.	Capacity	. <u></u>			_cu.m/day	

Table 8-1(con't.) Questionnaire Form

IV. WATER QUALITY

Source No./	Turbidity	Color	Fe	m/n		Coliform
Туре	(Degree)	(Degree)	(mg/L)_	(mg/L)	PH	unit/100ml
				-		

V. FINANCIAL CONDITION

1.	-	Water Cost	P	/cu.m
2.	-	Monthly Productions		cu.m
З.	-	Charged Quantity		cu.m
4.	-	Unaccounted Volume		cu.m
5.	-	Cost of Unaccounted Water	Р	
6.	-	Record of Financial Statement Showing and expenditures (to be provided by water district)	list of collection	

VI. OPERATION AND MANAGEMENT

1. Organization and Staffing	
------------------------------	--

(to be provided by water district)

2.

Schedule of planned maintenance activites and corresponding cost

(to be provided by water district)

ITY/ IUNICIPALITY	PRESENT STATUS
) DASMARIÑAS	A. System Scale The present service area of LEVEL III system covering an area of 73 barangays against total number of barangays 74. The total served population for above system is 167,556.
	B. Description of Facilities (1) Water Source Bukal Spring Q - 717 cum/day Deep Well 27 operating from 15 HP submersible pump
	(2) Transmission 160mm - 200mm SP.PVC L = 41.553km
	(3) Reservoir Grand Reservoir 300 cum capacity overflow level 123m above msl 254 cum capacity
	Elevated Steel Reservoir 22 Range of capacity 20 ~ 302cum
	(4) Distribution 50mm ~ 100mm GI.PVC L - 144,477m Gravity Flow
	(5) Treatment No treatment is applied
	C. Water System Management Water District is managing the system and the water fee is as follows. Minimum Charge 11-20 21-30 31-40 41-50 51 above
	Dasmariñas I 35.00 4.00 4.75 5.75 6.90 6.90 Dasmariñas II 35.00 4.35 4.60 5.00 5.65 6.70
	D. Improvement Program Laying of transmision/distribution pipelines are being implemented.
	E. Organization and Staffing
	General Manager Board of Directors
	Accounting and Financial Dept. Commercial and Administrative Dept. Maintenance Dept.
	Accounting Commercial Operation
	Financial Administrative Maintenance

L

Table 8-2 Detailed Present Status of Existing Water Supply System

MUNICIPALITY	PRESENT STATUS
(2) INDANG	A. System Scale Indang Water District has 2 LEVEL III water supply systems which covers the poblacio and one barangay. Those systems are presently serving a total of 905 service connections in the poblacion and 104 in the barangay.
	B. Description of Facilities
	(1) Water Source
	Ikloy Spring 97.8 l/s IPLE I and II spring 14.5 l/s combined discharge
	(2) Transmission 100mm.450mm L=45m
	(3) Reservoir
	Ground Reservoir 316.4 m asl - 316.4 m above msl 330.0 m asl - 330.0 m above msl
	(4) Pumping Station
	The hydro-turbine pump draws from the sump and supplies water
	directly to the poblacion network. Pump discharge is 4.4 l/s 15 HP contrifugal pump also draw water from the sump and supplies water for 10 hours daily to the reservoir.
	(5) Distribution 63mm~160mm L=7,300m
	(6) Treatment No treatment is applied
	C. Water System Management Indang Water District presently operates two separate water system. One serves the poblacion and the other serves barangay Kaytambog.
	The water fee is as follows
	Classification Minimum 11-20 21-35 36-up Domestic P48.00/mo 5.00 6.00 7.00 Commercial P96.00/mo 10.00 12.00 14.00
	D. Improvement Program The proposed improvement program include leak detection and repair, laying of transmission/distribution pipelines, rehabilitation of the pumping station and purchase of water meters and fittings. The total project cost will be P2.8M.
	E. Organization and Staffing The water supply systems are presently being managed by Indang
	WD with a staff of 12 consisting of General Manager, billing clerk, bookkeeper, cashier, secretary, loadman, utility man, 2 plumber, and 3 pump operator.
4 ·	

Table 8-3 Detailed Present Status of Existing Watre Supply System

	esent Status of Existing Water Supply System	
CITY/ MUNICIPALITY	PRESENT STATUS	
(3) GEN, MARIANO ALVAREZ	 A. System Scale GMA Water District is supplying water to 21 barangays including the poblacion. Other barangays are being served by LEVEL II water system managed by San Jose Water and Sewerage Cooperative (SAJOWASECO). Subdivision and villages in the area has their own LEVEL III water system. B. Description of Facilities. (1) Water Source The existing system utilities 8 deepwells equiped with 1 unit-5,2units-15,1unit-20, 3 units-25 and 1 unit-30 HP submersible pump respectively. The total amount of dischatge is estimated at 4.01 cum/m. (2) Pipeline Total length of transmission/distribution lines with diameter ranging from 50mm to 150mm GI/PVC is 17,800m. (3) Reservoir 4 Elevated Steel Tank 227 cum capacity 1 Steel Ground Reservoir 757 cum capacity 	
	 (4) Treatment No treatment is applied C. Water System Management The water supply system is presently being managed by the GMA Water District. Water fee is as follow: Area Minimum(0-5 cum) Commodity charge(6 cum above) Residential P 40.00 P 8.00/cum Commercial P 80.00 P16.00/cum Mandarin Home P 40.00 P 5.00/cum D. Improvement Plan The proposed improvement program include leak detection and repair, source delvelopment, rehabilitation of existing pump station, construction of pumping station, reservoir construction and installation of disinfection facility. The total cost will be P 15.1 M. E. Organization Staffing 	
	Accounting and Financial Dept. Commercial and Administrative Dept. Maintenance Dept.	
	8-8	

Table 8-4 Detailed Present Status of Existing Water Supply System

MUNICIPALITY	PRESENT ST/	1105
(4) MENDEZ	A. System Scale Mendez Water District has one LEVEL III v serves a total of 801 service connections ir RWSA has two LEVEL II system and one	poblacion and barangay Galicia.
	B. Description of Facilities (1) Water Source Water District Deepwell equiped with 25HP submersi	ble pump
	RWSA Source	
	Panungyan: Deepwell 100 mm, Depth ANULING CERCA II D ee pwell 100 mm, Depth 97.4 m	103.7 m
	Poblacion: Deepwell 150-200 mm Depth 244 m	
	(2) Transmission WD	
	150 mm	L=3,000m
	(3) Reservoir WD Ground Reservoir	212 cum capacity
	(4) Distribution	
	WD 50mm ~ 150mm	L=3,800m
	(5) Treatment No treatment is applied	
	C. Water System Management	
	The water system which presently manage Water fee is as follow:	d by Mendez Water District
	ResidentialP 8.00/cumCommercialP 16.00/cum	
	D. Improvement Program	la source development
	The proposed improvement program includ (well drilling 1,730 cum/day discharge), lea laying of total of 4,878 m transmission/dist diameters ranging from 50 mm to 200 mm, reservoir construction with a capacity of 10 connection and installation of disinfection f project cost will be P 9.5 M.	k detection and repair, ribution lines with pumping station construction Ю cum, 1,712 service
	E. Organization and Staffing	
	General Mana	ger Board of Directors
	Accounting and Commercial a Financial Dept. Administrative	

Detailed Present Status of Existing Water Supply System

CITY/ MUNICIPALITY		PRESENT STATU	S	
(5) SILANG	A. System Scale Silang Water District has two water su the other one is LEVEL II system. There are 3,517 households connecti there are 86 public faucets in the LEV 46,168 persons or abour 41 percent of served by above systems.	on in the LEVEL III system and EL II system.		*
	B. Description of Facilities (1) Water Source LEVEL III			
	Lucsuhin-1	Spring Discharge	1,420 cum/day	
	Lucsuhin-2	Deepwell Discharge	209m depth 1,090 cum/day	
	lba	Deepwell Disccharge	146m depth 1,090 cum/day	
	Pumping Sta. No.4	Deepwell Discharge	200m depth 1,090 cum/day	
	Gabriela Pumping Sta.	Deepwell Discharge	1,360 cum/day	
	Butihan No.1	Deepwell Discharge	150m depth 650 cum/day	
	Butihan No. 2	Deepwell Discharge	168m depth 1,090 cum/day	
	Butihan No.3	Deepwell Discharge	183m depth 650 cum/day	
	Butihan No. 4	Deepwell Discharge	920 cum/day	
	Butihan No. 5 Butihan No. 6	Deepwell Discharge Deepwell Discharge	920 cum/daỳ	
- -	(2) Transmission LEVEL III 100~150mm	GI,PVC,ACP	L≃ 2,265m	
	LEVEL II 100~150mm	PVC	L=59,646m	
	(3) Reservoir LEVEL III Ground Reservoir Overflow Elev.	227 cum capacity 133 m asl		
	LEVEL II 6 Elevated Steal Tank	227 cum capacity		

.

Table 8-6 Detailed Present Status of Existing Water Supply System

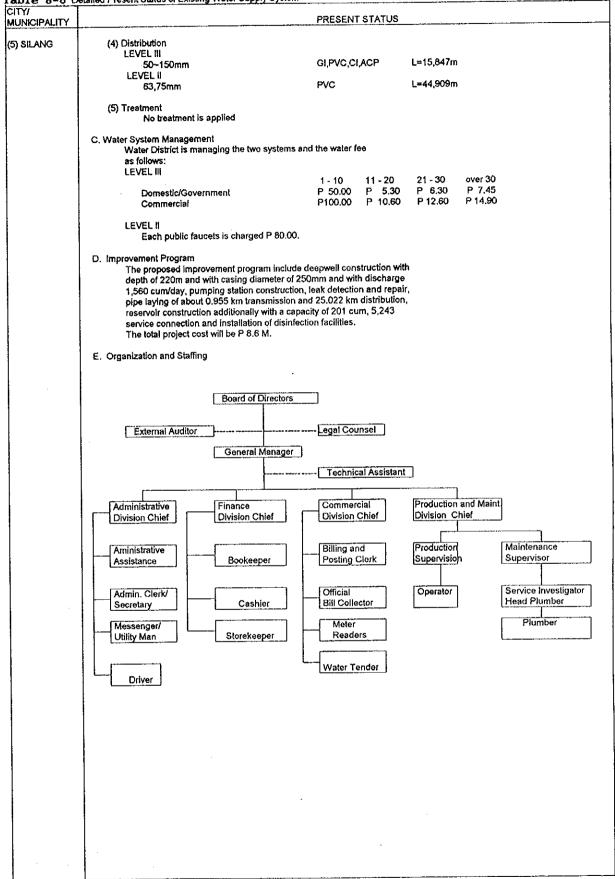


Table 8-6 Detailed Present Status of Existing Water Supply System

ITY/ UNICIPALITY	PRESENT STATUS
TANZA	A. System Scale Tanza Water District was created in 1988. LEVEL III water supply system are presently serving a total of 210 service connections .
	B. Description of Facilities (1) Water Source Deepwell 115m depth
	casing 200m~250mm (2) Reservoir
	Elevated Steel Tank 250 cum capacity (3) Pipelines
	Total of 10,136m transmission/distribution pipelines (50 mm - 200 mm) are now being laid.
	(4) Treatment The water is treated using a hypochlorinator.
	C. Water System Management Water District is managing the system.
	Water fee is as follows:
	0-10 cum 11-20 cum 21-30 cum over 30 cum Residential/ P 60.00 6.00/cum 6.20/cum 6.35/cum Connection
	D. Improvement Program The proposed improvement program include leak detection and repair, installation of
	water meters and fittings. E. Organization and Staffing
	General Manager Board of Directors
	Accounting and Commercial and Operation and
	Financial Dept. Administrative Dept. Maintenance Dept.
here a second	

af Culatia Mates Our . . . ~

NITY/ MUNICIPALITY	PRESENT STATUS
7) TAGAYTAY	A. System Scale Tagaytay City Water District has a LEVEL III water supply system and has a total of 2,552 metered service connections.
	B. Description of Facilities (1) Water Source
	Kaybubutong Spring 32.52 L/S yield 324 mas 1 Matang Tubig Spring 8.16 L/S yield 505 mas 1 Pulong Usiw Spring 0.89 L/S yield 550 mas 1
	(2) Pipelines As of Jan. 1991, TCWD had a total of 48.98 km of transmission and distribution pipelines with pipe diameters ranging from 38 to 250 mm of PVC, CI, Steel and AC pipes
	(3) Reservoir Ground Reservoir RC Two-chambered Upper Chamber 250 cum (not utilized due to leakage)
	Lower Chamber 700 cum
	(4) Treatment The water is treated using a gas chlorinator at Booster Pumping Station No.5.
	C. Water System Management Tagaytay Water District is managing a LEVEL III water supply system. Water fee is as follows:
	Minimum 11-25 26-45 (<10 cum)
	Residential 110.00 5.80 7.05 Commercial 220.00 10.60 14.10 Institutional/Gov't 110.00 5.80 7.05
	D. Improvement program The proposed improvement program include leak detection and repair, rehabilitation of pumping station facilities, installation of emergency power generator, 18 km pipe laying of PVC and SP with diameters ranging from 50 to 250 mm, rehabilitation of existing reservoir capacity ranging from 50 cum to 150 cum, installation of chlorinating equipment and total of 1,404 service connections. The total project cost will be P 29.3 M.
	E. Organization and Staffing
	General Manager Board of Directors
	Accounting and Commercial and Operation and
	Financial Dept. Administrative Dept. Maintenance Dept.

8-13

	PRESENT STATUS A. System Scale
() / () 20	The Poblacion area of Amadeo is presently being served by Level III water supply system. Service population is 4,402 with a supply capacity of 350 cu.m/day. Water use is 100% domestic consumption.
	 B. Description of Facilities (1) Water Source Present water source is deep well with a depth of 182 m and a capacity of 568 ipm
	(2) Distribution Line G.I. pipe and PVC pipes with the size ranging from 150-75 mm dia. and length of 2.5 km.
	 (3) Pumping Station 25 HP submersible pump. Direct pumping in a 15-18 hrs. operation.
	(4) Treatment Treatment method is chlorination. C. Water System Management
	Water cost of P 50/month minimum.
	D. Improvement Program The municipal government intends to rehabilitate the existing PVC distribution pipes but doesn't have any budget as of the moment.
	E. Organization and Staffing The system is being managed by the Municipal Water Supply.

Table 8-9 Detailed Present Status of Existing Water Supply System

	PRESENT STATUS
9) MAGALLANES	A. System Scale The system serving the Poblacion and adjacent 4 barangays is a combined Level II/III with a total service population of 4,833.100% of consumers are residential.
	B. Description of Facilities (1) Water Source
	There are two (2) springs currently being utilized as water sources.
	(2) Transmission/Distribution Lines A combination of GI and PVC composed the distribution/transmission pipelines with size ranging from 100-150 mm dia. and a length of approx. 1,700 m.
	(3) Reservoir There are two (2) units of concrete reservoir located at the Poblacion and barangay Medina with a combined volume of 400 cu.m.
	(4) Treatment Treatment method is by chlorination.
	C. Water System Management Water cost is flat rate.
	for: Level II - P30.00/month Level III - P40.00/month
	 D. Organization and Staffing The system is being managed by the Municipal Water Supply.

.

Table 8-10 Detailed Present Status of Existing Water Supply System

ITY/ UNICIPALITY	PRESENT STATUS						
0) MARAGONDON	A. System Scale Maragondon Water District has a LEVEL III water supply system which has 624 service connections as of January 1992.						
	B. Description of Facilities (1) Water Source Deepwell 121m depth 160mm diameter						
	1,210cum/day discharge (2) Pipelines 38~100mm PVC, PB L=9,820m						
	(3) Reservoir Elevated Steel Tank 167cum capacity						
	(4) Treatment No treatment is applied						
	C. Water System Management Maragondon Water Dsitrict is managing a LEVEL III water supply system. The water fee is as follows:						
	Minimum 16-20 21-30 31-50 50 above						
	(< 15) P45.0 P2.0 P2.5 P3.0 P5.0						
	 The proposed improvement program include total length of 2,095m pipe laying with diameters ranging from 100mm to 150mm, installation of hyprochlorinator, purchasing a generator and 445 service connections. The total project cost will be P2.3 M. E. Organization and Staffing The water supply system is manned by a manager, a plumber, a bookeeper and two collection clerks. 						

Q.

Table 8-11 Detailed Present Status of Existing Water Supply System

CITY/ MUNICIPALITY	PRESENT STATUS					
(11) TERNATE	A. System Scale					
	The Poblacion area and adjacent barangay have their individual Level I system complete with pump and storage facilities. This is due to the availability of potable water source Which is only about 3-5 m below ground surface. The municipal government has no future plans to put up a piped water system (Level II or III).					
	·					
L	8-17					

Table 8-12 Detailed Present Status of Existing Water Supply System

CITY/ AUNICIPALITY	PRESENT STATUS
12) ALFONSO	A. System Scale The Poblacion area is presently being served by a combined level II/III water system with a total population of 5,300 and currently with 520 service connections.
	B. Description of Facility (1) WATER SOURCE
	- Spring Q = 3.5 Lps D = 1.6 km from service area Elev ≈ 28.7 m above service area
	 Deep Well No. 1 (within service area) Q = 200 Lpm Deep Well No. 2 (within service area) Q = 200 Lpm
	(2) Pipelines L = 1,700 m transmission/Distribution lines
	(3) Reservoir - Spring intake box only
	(4) Pumping Station - P.S. No.1 (20 Hp turbine pump) - P.S. No. 2 (10 Hp centifugal pump)
۰.	(5) Treatment Facility No treatment
	C. Water System Management The system is presently being managed by Municipal Water Supply under the Office of the Mayor and collecting a flat rate of P 50/month. Water consumption is purely domestic (residential area) with an average of approximately 233 cu.m/day.
	D. Improvement Program The municipal government has set aside an annual budget of P 100,000 for the rehabilitation/improvement of the water system and has utilized P 40,000 in the repair of pumping facilities.
	E. Organization and Staffing
	Chief Executive Officer Directors
	Maintenance Treasurer Operation Admin. Officer

MUNICIPALITY	PRESENT STATUS					
(13) NAIC	A. System Scale The service level for the Poblacion area is only Level I (Private Wells with pump and storage) but the five (5) adjacent barangays has a level II/III water system serving a total of 2,950 residents or about 558 service connections.					
	 B. Description of Facility (1) Water Source Spring (by gravity) Q = 4.3 Lps D = 4 km from service area Elev = 30 m above service area 					
	(2) Reservoir Intake facility, V ≔ 50 cu.m					
	(3) Pipelines L = 8.53 km transmission and distribution lines with a diameter ranging from 38 m to 200 mm PVC, and GI pipe.					
	(4) Treatment Facility No treatment is applied.					
	C. Water System Management Water District is managing the system and the water rates being charged is P 30.00 per month on the flat rate basis.					
	 D. Improvement Program The proposed improvement program include leak detection and repair, installation of water maters. 					
	E. Organization and Staffing					
	General Manager Board of Directors					
	Admin. (4) Maitenance (4) Operation (1)					
L	8-19					

City/ AUNICIPALITY	PRESENT STATUS						
14) GENERAL AGUINALDO	A. System Scale The municipality of General Aguinaldo specifically the Poblacion area and two (2) adjacent barangays are presently being served by a level II/III water supply system. Served population for the above service area is 6,694.						
	B. Description of Facility (1) Water Source Spring Q = 12.5 Lps L = 6.4 km from service area Elev = 100.00 m above service area (2) Reservolr						
	 (2) Reservoir Spring intake box, V = 5 cu.m (3) Pipelines L = 7.03 km transmission and distribution lines Dia = 25 ~ 100 mm 0 PUC pipes 	i					
	(4) Treatment Facility No treatment is applied.						
	C. Water System Management The Municipal Water Supply is managing the system collecting a water fee of P 2.84/cu.m. Water users are purely domestic. Under this management, collected fees are included in the municipality's general fund. Thus, O & M would depend on the fund to be allocated by the municipality.						
	D. Rehabilitation/Expansion Program The system is presently undergoing major rehabilitation works with the total replacement of existing pipelines and utilization of additional spring source.						
	E. Organization and Staffing Chief Executing Board of						
	Officer Directors	-					
	Maintenance Treasurer Operation Admin. Officer						
	8-20						

	PRESENT STATUS						
15) CARMONA	The municipality of Carmona including the poblacion area has no existing piped water system. Most of the residents have their own private shallow wells (LEVEL I) except the newly established industrial zones which has their own water supply system. Poblacion area is a relatively flat terrain will shallow well depth ranging from 5~15 m below ground surface.						

Table 8-16 Detailed Present Status of Existing Water Supply System

Table 8-17 Detailed	Present Status of Existing Water Supply System	
	PRESENT STATUS	
(16) TRECE MARTIRES	A. System Scale The Poblacion area of Trece Martires and one adjacent barangay is presently being served by a LEVEL III water system. Total served population is 7,242 with serving connections numbering 1,107 units.	
	B. Description of Facility (1) Water Service 4 units deep well Well depth - 100 ~ 120 m	
	Q = 180 ~ 200 Lpm (2) Reservoir No reservoir	
	(3) Pipe lines L = 4.92 km Distribution Lines Dia = 25 ~ 200 mm o puc & GI pipe	
	 (4) Pumping Stations - 3 units pump stations with 7.5 Hp turbine pump - 1 unit pump station with 10 Hp turbine pump 	
	(5) Treatment Facility Chlorination only	
	C. Water System Management The city government is managing the system collecting a water rate of P 2.40/cu.m. Average daily consumption is about 960 cu.m. Majority of concessionaires are residential areas.	
	D. Improvement Program The City Government is intending to create a water district and presently being studied by the city council. This year, the allocation for operation and maintenance work is P 150,000.	
	E. Organization and Staffing	
	Chief operating Board of Officer Directors	
	Operation Maintenance Treasurer Administration	
	· · ·	

(17) GENERAL TRIAS A. System Scale The Poblacion area and adjacent barangays have their individual LEVEL I system complete with pump and storage facilities. This is due to the availability of possible water source which is approx. 5 m below ground surface. However, other barangays e.g. Mangahan, Poungysman, Buenavista have their own LEVEL UNII facilities. These areas are approx. 100 m higher compared to the Poblacion and are utilizing Deep Well as water sources.	CITY/ MUNICIPALITY	PRESENT STATUS					
		A. System Scale The Poblacion area and adjacent barangays have their individual LEVEL I system complete with pump and storage facilities. This is due to the availability of possible water source which is approx. 5 m below ground surface. However, other barangays e.g. Mangahan, Panungyanan, Buenavista have their own I EVEL II/III facilities. These areas are approx. 100 m higher compared to					
	· · ·						
	L						
8-23	• •	8-23					

Table 8-18 Detailed Present Status of Existing Water Supply System

.

Table 8-19 RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.

T I T L E NO. OF PIPES	:	GMA1 (peak hour) 92
NO. OF NODES PEAK FACTOR		2
MAX HEADLOSS/Km MAX UNBAL(LPS)		• -

PIPE	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEAD	LOSS
NO.	Node	Node	(H)	(MM)		(LPS)	(MPS)	(H/KH)	(M)
1	3	1	100.00	150	90	0,50	0.03LO	0.02	0.00
2	2	3	58.00	100	90	2.83	0.35	3,69	0.21
2001	2	3	58.00	150	110	10.08	0.57	3,89	0.21
3	3	43	284.00	150	90	11.34	0.64	6.69	1.90
4	2	44	282.00	100	90	4.14	0.53	7.47	2.11
5	44	45	50.00	100	90	2.14	0.2710	2.20	0.11
5	44	43	56,00	100	90	0,42	0.0510	0.11	0.01
7	43	4	128.00	150	90	10.64	0.60	5.95	0.75
8	45	19	462.00	100	90	1.74	0.22LO	1.49	0.89
9	4	10	162,00	150	90	2,39	0.14LO	0.38	0.05
10	4	5	70.00	100	90	1,60	0.20LO	1,29	0.09
1000	4	5	70.00	150	110	5.69	0.32	1.29	0,09
11	5	6	166.00	100	90	2.55	0.32	3,05	0.51
1100	5	6	166.00	100	110	3.12	0.40	3.05	0.51
12	6	7	88.00	100	90	1.80	Q.23LO	1.60	0.14
1200	6	7	88,00	100	110	2.20	0.28LO	1.60	0.14
13	6	8	88,00	75	50	0.74	0.17LO	1,27	0.11
14	5	9	88.00	75	90	0.80	0.18L0	1.45	0.13
15	9	8	168.00	75	90	1.17	0.26LO	2.92	0,49
16	11	9	88,00	75	90	0.84	0.19L0	1.59	0.14
17	6	13	92,00	75	90	0.91	0.2110	1.83	0.17
18	7	14	176.00	100	90	3.14	0.40	4.47	0.79
19	13	14	100.00	150	90	11.15	0.63	6.48	0.65
20	12	13	78.00	150	90	11.00	0.62	6,33	0.49
21	11	12	94.00	150	90	7.68	0.43	3,25	0,31
2100	11	12	94,00	150	110	9.39	0.53	3.25	0.31
22	10	11	34,00	150	90	2.82	0.16LO	0.51	0.02
23	19	10	158.00	150	90	1.17	0.07LO	0.10	0.02
24	12	17	98,00	100	90	2,40	0,31	2.72	0.27
2400	12	17	98.00	100	110	2.93	0.37	2.72	0.27
25	14	15	100.00	150	90	5.95	0.34	2.03	0.20
2500	14	15	100.00	150	110	7.28	0.41	2.03	0.20
26	16	15	84,00	100	90	2.88	0.37	3.81	0,32
27	17	15	92.00	100	90	4.37	0.58	8.24	0.75
28	17	18	64,00	100	90	0.21	0.03LO	0.03	0.00
291	19	50	30,00	100	90	2.45	0.31	2.82	0.08
292	50	18	100.00	100	90	3.42	0.43	5.23	0.52
30	20	19	170.00	150	90	5.59	0.32	1.81	0.31
31	18	21	160.00	100	90	2.57	0.33	3,10	0.50
32	16	22	242.00	100	90	0.25	0.03L0	0.04	0.01
33	15	23	180.00	100	90	1.45	0.19L0	1.08	0,19

<u>_</u>

8-24

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

PIPE	FROM	TO	LENGTH	DIA	HMC	FLOW	VELOCITY		
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(M/KM) 	(M
3300	15	23	180.00	150	110	5,18	0.2910	1.08	0.1
34	15	29	284.00	75	90	1.30	0.29LO	3.54	1.0
3400	15	29	284.00	100	110	3,38	0,43	3.54	1.0
35	15	27	308.00	100	90	2.70	0.34	3,39	1.0
36	27	28	80.00	100	90	0.65	0.08LO	0.24	0.0
3600	27	28	80.00	100	110	0.79	0.10LO	0.24	0.0
37	29	28	36.00	75	90	0.84	0,19LO	1,57	0.0
3700	29	28	36.00	100	110	2.18	0.28LO	1.57	0.0
38	29	30	84.00	75	90	0,70	0.16LO	1.13	0.0
39	23	30	170.00	100	90	3.45	Q.44	5,33	0.9
40	23	24	114.00	100	90	1,67	0.21LO	1,40	0.1
41	24	31	104.00	75	90	1.92	0.43	7.33	0.7
42	25	24	120.00	100	90	1.19	0.15LO	0.75	0.0
43	22	26	140.00	100	90	2.47	0.31	2.88	0.4
4300	22	26	140.00	100	110	3.02	0.38	2.88	0.4
44	26	25	84.00	100	90	2.05	0.26LO	2.03	0.1
4400	26	25	84.00	100	110	2.50	0.32	2.03	0.1
45	25	35	178.00	75	110	2.16	0.49	6.30	1.1
46	35	34	100.00	75	110	1.01	0.23LO	1.54	0.1
47	31	34	140.00	75	90	1.19	0.27LO	3.02	0.4
48	30	31	90.00	75	90	0,25	0.06LO	0.17	0.0
49	30	33	90.00	100	90	2.93	0.37	3,95	0,3
50	28	32	90.00	50	90	0.46	0.2310	3,68	0.3
5000	28	32	90.00	100	110	3,45	0.44	3.68	0.3
51	32	33	120.00	100	90	0.97	0.12L0	0.51	0.0
52	32	36	100.00	50	90	0.24	0.12LO	1.10	0.1
5200	32	36	100.00	100	110	1.80	0,23L0	1.10	0.1
53	33	37	100.00	100	90	3.03	0.39	4.19	0.4
54	34	38	54.00	50	90	0.62	0,32	6,57	0.3
5400	34	38	54.00	50	110	0.76	0,39	6,57	0.3
55	37	38	90.00	50	90	0.09	0.05LO	0.20	0.0
56	36	37	120.00	50	90	0.41	0.21LO	3.09	0.3
57	36	39	94.00	50	90	0.69	0.35	8.02	0.7
58	40	39	120.00	50	90	0.23	0.12L0	1.04	0.1
59	37	40	90,00	100	90	2.47	0,31	2.87	0.2
60	38	42	180.00	50	90	0.52	0.27LO	4.78	0.8
61	40	41	82.00	100	90	1.42	0.18L0	1.04	0.0
62	41	42	90.00	50	90	0.59	0.30	5.94	0,5
63	21	22	70,00	100	90	2.90	0,37	3.88	0.2
6300	21	22	70.00	100	110	3.55	0.45	3.88	0.2
64	51	21	100.00	100	90	4,90	0,52	10.19HI	1.0
641	20	51	38.00	100	90	4.93	0,63	10.31HI	0.3
65	20	46	205.00	150	90	5,02	0.28LO	1,48	0.Э
66 66	46	47	120.00	150	90	0.64	0,04L0	0.03	0.0
50 57	46	48	80.00	100	110	3.87	0,49	4,55	0.3
67 68	48	49	226.00	100	110	2.95	0.38	2.75	0.6
69 69	11	50	155,00	100	110	0.94	0,12L0	0.33	0.0
70	51	50 50	155.00	100	110	0.03	0.00L0	0.00	0.0

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

ΡΙΡΕ	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEAD	OSS
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(M/KM)	(M)
101	100	2	50.00	200	110	17.83	0.57	2.63	0.13
201	200	11	20.00	150	110	16.60	0.94	9.34	0.19
301	300	20	20.00	200	110	17.23	0.55	2.46	0.05

NODE	FLOW	ELEVATION	HGL	PRESSURE
NO.	(LPS)	(M)	(M)	(M)
1	-0,504	188.00	196.15	8.15
2	-0,804	186.50	196.37	9.87
3	-1.044	188.00	196.15	8.15
4	-0,954	186,60	193.51	6.91
5	-0.824	184.70	193,42	8.72
6	-0.924	180.00	192.91	12.91
7	-0,864	178.50	192.77	14.27
8	-1.004	179.50	192.80	13,30
9	-0.474	183.50	193.29	9.79
10	-0.744	184,00	193.45	9.45
11	-0.574	182.00	193.43	11.43
12	-0.734	179.40	193,12	13,72
13	-0.764	179.30	192.63	13.33
14	-1,054	178.00	191.98	13.98
15	-2.094	178.00	191.78	13.78
16	-1,234	178.00	192,10	14,10
17	-0.754	178.20	192.85	14.65
18	-1.054	177.50	192.85	15.35
19	-3.714	180.00	193.46	13,46
20	-1.684	176.70	193.77	17.07
21	-1,014	174.20	192.36	18.16
22	-1.214	175.50	192.09	16,59
23	-1.514	173.50	191.58	18,08
24	-0.944	171.70	191.42	19.72
25	-1.194	167.40	191.51	24.11
26	~0.944	169.00	191.68	22.68
27	-1.264	164.00	190.74	25.74
28	-0.544	169.50	190,72	21.22
29	-0.964	170.40	190.77	20.37
30	-0.964	169,10	190,68	21.58
31	-0.984	168.00	190.66	22.66
32	-0.904	166.40	190.38	23,98
33	-0.874	165.60	190.32	24.72
34	-0,814	166.50	190.24	23,74
35	-1.154	167.20	190.39	23.19
36	-0.924	164.50	190.27	25.77
37	-0.884	164.80	189.90	25.10
38	-0.954	164.50	189.88	25.38
39	-0,924	164,00	189.52	25,52
40	-0.814	164,10	189.65	25.55

RESULT OF	HYDRAULIC	ANALYSIS (OF PIPE-LINE	SYSTEM OF	G.M.A.(con't)
-----------	-----------	------------	--------------	-----------	---------------

NODE NO.	• •	ELEVATION (M)	(M)	(H)
41	-0.834	162.00	189.56	27.58
42	-1.114	160.90	189.02	28.12
43	-1.114	187.30	194.26	6,96
44	-1.584	186,00	194.26	8,26
45	-0.404	185.50	194.15	8.65
46	-0.504	176.70	193.46	16.76
47	-0.644	172.00	193.46	21.46
48	-0.924	168.00	193.10	25.10
49	-2.948	162.30	192.48	30,18
50	0.000	180.00	193.38	13,38
51	0.000	179.00	193.38	14.38
100 R	17.832	186,50	196.50	10.00
200 R	16.601	183.62	193.61	9,99
300 R	17,227	176.80	193.82	17.02

.

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

ΤΙΤΕΕ	:	GMA2 (peak hour)
NO. OF PIPES	;	30
NO. OF NODES	:	27
PEAK FACTOR	:	2
MAX HEADLOSS/Km	:	10
MAX UNBAL(LPS)	:	.002

PIPE	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEADL	0\$3
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(H/KM)	(м)
	2	 1	120.00	150	90	1.02	0.0610	0.08	0.01
3	3	2	56.00	150	90	5,99	0.34	2,06	0.12
4	4	3	210.00	150	90	0.32	0.02LO	0.01	0,00
5	4	5	120.00	150	90	2.51	0.14L0	0,41	0.05
6	6	5	200.00	150	90	1.54	0.0910	0.17	0.03
7	7	6	322.00	150	90	6.99	0.40	2.73	0.88
8	7	8	106.00	100	90	3.34	0.43	5.03	0.53
9	8	9	290.00	100	90	1.75	0.22LO	1.52	0.44
10	10	3	104.00	150	90	7.44	0.42	3.06	0.32
11	10	11	328.00	100	110	2.09	0.27LO	1,45	0.48
12	11	12	328.00	100	90	0.03	0,00LO	0.00	0.00
13	13	12	328.00	100	90	1.35	0.17LO	0.94	0.31
14	14	10	130.00	150	90	12.10	0.68	7.54	0.98
15	14	15	150.00	100	90	5,83	0.74	14.05HI	2,11
16	15	16	150.00	100	90	3,72	0,47	6.14	0.92
17	18	17	170.00	100	90	1.54	0.20LO	1.20	0,20
18	18	4	90.00	150	90	4.82	0.27LO	1.37	0.12
19	18	19	70.00	100	110	4.93	0.63	7.13	0,50
20	19	20	70.00	100	110	1.18	0.15LO	0.51	0,04
21	19	21	230.00	100	110	2.00	0.25LO	1.34	0.31
22	22	21	72.00	100	110	2.44	0.31	1.93	0.14
23	21	23	48.00	100	110	2.54	0,32	2.09	0.10
24	23	24	100.00	100	110	1.42	0.18LO	0.71	0.07
25	2	22	94.00	100	110	3.87	0.49	4.55	0.43
26	5	11	106.00	100	90	1.43	0.18LO	1.05	0.11
27	6	12	102.00	100	110	2,08	0,2610	1.42	0.14
28	7	13	106.00	100	90	3,92	0.50	6.76	0.72
101	100	14	270.00	150	110	19.39	1.10	12,44HI	3,36
201	200	18	30,00	150	90	10.75	0.61	6,06	0,18
301	300	7	600.00	150	110	16,60	0,94	9.34	5,60

NODE NO.	FLOW (LPS)	ELEVATION (M)	Н G L (М)	PRESSURE (M)
1	-1.022	168.48	173.22	4.74
2	-1.102	162.34	173.23	10.89
3	-1.762	167.20	173.34	6.14
4	-1.992	163.40	173.34	9.94
5	-2.612	160.70	173.30	12.60
6	-3.392	146.30	173.33	27.03

NODE	FLOW	ELEVATION	HGL	PRESSURE
NO.	(LPS)	(M)	(H)	(H)
7	-2.342	138,30	174.21	35,91
8	-1.592	138.00	173.68	35.68
9	-1.752	136,00	173.23	37,23
10	-2.572	164.10	173.66	9.56
11	-3.492	155.10	173.18	18.08
12	-3.442	143.60	173.18	29,58
13	-2.572	133.00	173,49	40.49
14	-1.462	161.50	174.64	13.14
15	-2.102	153.00	172.53	19.53
16	-2.182	148.50	171.61	23.11
17	-1,542	148.50	171.41	22.91
18	-1.000	162.70	173.47	10.77
19	-1.752	160.00	172.97	12.97
20	-1,182	156.00	172.93	16.93
21	-1.892	160.80	172,66	11.86
22	-1.432	162.30	172.80	10,50
23	-1.122	158.00	172,56	14.56
24	-1.422	158.50	172.49	15.99
100 R	19.385	166.00	178.00	12.00
200 R	10.751	163.65	173.65	10.00
300	16.600	135.00	179.81	44,81

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

8-29

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

TITLE	:	GMA3 (peak hour)
NO. OF PIPES	:	31
NO. OF NODES	:	21
PEAK FACTOR	;	2
MAX HEADLOSS/Km	:	10
MAX UNBAL(LPS)	:	.002

PIPE	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEADLO	055
NO.	Node	Node	(H)	(MM)		(LPS)	(MPS)	(H/KH)	(H)
						~~~~~~			
1	2	1	98,00	150	90	1.08	0.06L0	0.09	0.01
1000	2	1	98.00	100	110	0.45	0.06LO	0.09	0.01
2	2	З	70.00	100	110	1.32	0.17LO	0.62	0.04
З	4	3	186.00	100	110	1.14	0.14LO	0.47	0.09
4	5	2	186.00	150	90	5.30	0.30L0	1.64	0.30
5	5	4	70.00	100	110	3.47	0.44	3.72	0.26
6	6	5	60,00	150	90	11.03	0.62	6.35	0,38
.7	9	4	180.00	100	-110	0.52	0.07LO	0.11	0.02
. 8	5	10	120.00	150	90	7.67	0.43	3.24	0.39
9	10	9	70.00	100	110	3.26	0.42	3.31	0.23
10	7	6	56.00	100	90	4.53	0.58	8,82	0.49
1010	7	6	56.00	150	110	16,09	0.91	8.82	0,49
11	7	8	80.00	100	90	1.45	0,18LO	1.07	0.09
1100	7	8	80.00	100	110	1.77	0.23LO	1.07	0.09
12	7	45	118.00	100	90	1,99	Q.25LO	1,93	0.23
1200	7	45	118.00	150	110	7,08	0.40	1.93	0.23
13	8	45	114.00	100	90	1.57	0.20L0	1.24	0.14
14	12	11	134.00	100	110	1.57	0.20L0	0.86	0.12
15	11	13	176.00	100	90	1.44	0.18L0	1.05	0.19
1500	11	13	176.00	150	110	5.11	0.2910	1,06	0.19
16	14	12	110.00	100	90	4.48	0.57	8.65	0.95
17	14	13	206.00	100	90	3.70	0.47	6.08	1.25
18	45	11	68.00	100	90	1.62	0.21LO	1.31	0.09
1800	45	11	68.00	150	110	5.74	0,32	1.31	0.09
19	12	46	120.00	100	90	0.60	0.0810	0.21	0.03
20	10	15	290.00	150	90	1.04	0.06LQ	0.08	0.02
38	13	31	400.00	100	90	4.47	0.57	8.59	3.44
42	31	36	400.00	100	90	1.04	0.13LO	0.58	0.23
58	46	45	94.00	100	110	0.12	0.02L0	0.01	0.00
101	100	7	20,00	150	90	34.63	1.96	52.74HI	1.05
201	200	14	300.00	150	110	10.52	0.80	4.01	1.20
		• •							

NODE NO.	FLOW (LPS)	ELEVATION ( M )	HGL (M)	PRESSURE ( M )
	-1.528	136.20	139.86	3.66
2	-2.448	133.50	139.87	6.37
3	-2.458	132.20	139.82	7.62
4	-2.858	131.00	139.91	8.91
5	-2.258	132.00	140.17	8,17

Ð

# RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

NODE NO,		FLOW (LPS)	ELEVATION ( M )	наг (н)	PRESSURE ( M )
6		-1.928	131.60	140.55	8,95
7		-1.718	131.20	141.05	9,85
8		-1.648	127.30	140,95	13,66
9		-2.738	127.00	139.93	12,93
10		-3.368	127.00	140,16	13.16
11		-2.378	124.60	140.73	16.13
12		-2.308	110.00	140.84	30.84
13		-5.788	114.60	140.54	25,94
14		-2.328	108.50	141.80	33.30
15		-1.038	115.00	140.14	25.14
31		-3.428	109.00	137.11	28.11
36		-1.038	101.70	136.87	35.17
45		-1.838	125.50	140.82	15.32
46		-2.048	123.20	140.82	17.62
100	R	34.626	132.10	142.10	10.00
200	R	10,516	128.00	143.00	15.00

# RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

TITLE	:	GHA4 (peak hour)		
NO. OF PIPES	<b>;</b> `	28		
NO. OF NODES	:	20		
PEAK FACTOR	:		е. С	
MAX HEADLOSS/Km	:	10		
MAX UNBAL(LPS)	:	.005		

PIPE	FROM	то	LENGTH	DIA	ныс	FLOW	VELOCITY	HEAD	L053
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(M/KM)	(M)
2	1	2	50.00	150	90	9.11	0.52	4.46	0.22
3	2	3	210.00	150	90	8.18	0,46	3.64	0.76
4	3	4	300.00	150	90	6.04	0.34	2,09	0.63
5	5	4	160.00	150	90	8.34	0.47	3,79	0.61
6	5	5	220.00	150	90	8.20	0.46	3.67	0.81
7	6	7	160.00	100	90	2.62	0.33	3.19	0.51
8	6	8	40.00	100	90	4.48	0.57	8.66	0.35
9	8	9	140.00	100	90	1.74	0.22LO	1.51	0.21
10	8	10	64.00	100	90	3.64	0.46	5.88	0.38
11	11	10	220.00	100	90	0.05	0.0110	0.00	0.00
12	10	12	46.00	100	90	2,85	0.36	3,74	0.17
13	11	13	46.00	100	110	1.90	0.24LO	1.23	0.06
14	12	14	50.00	100	90	3.19	0.41	4.61	0.23
15	14	17	120.00	100	110	2,62	0.33	2.22	0.27
16	16	15	100.00	50	110	0.18	0.09LO	0.47	0.05
17	17	15	184.00	50	110	0.16	0.08LO	0.38	0,07
18	18	16	180.00	150	90	0.53	0,03LO	0.02	0.00
19	19	18	310.00	150	90	2.45	0.14LO	0.39	0.12
20	13	12	190.00	100	90	1.07	0.14LO	0.61	0.12
21	17	18	70.00	100	110	0.85	0.11L0	0.28	0.02
22	4	19	280.00	150	90	10.03	0.57	5,33	1.49
23	4	8	290.00	100	90	1.97	0.25LO	1,89	0.55
24	1	5	124.00	150	90	12.58	0.71	8.11	1.01
2400	1	5	124.00	100	110	5.29	0.67	8.11	1.01
25	7	9	40.00	100	110	1.84	0.23LO	1.15	0.05
26	9	11	64.00	100	110	2.85	0.36	2.58	0.16
201	200	1	30.00	150	90	12.45	0.70	7.95	0.24
202	200	1	30.00	150	110	15.22	0.86	7.95	0.24

NODE NO.	FLOW (LPS)	ELEVATION ( M )	НGL (М)	PRESSURE ( M )
1	-0,686	121.45	124.76	3.31
2	-0,956	118.00	124.54	6.54
3	-2.116	119.00	123.77	4.77
4	-2,386	101.20	123.15	21.95
5	-1.336	113.40	123.76	10.36
6	-1.096	113.10	122.95	9.85
7	~0,776	111.50	122.44	10.94
8	-1,076	108.00	122.60	14.60

6

8-32

## RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

NODE	FLOW	ELEVATION	HGL	PRESSURE
NO.	(LPS)	(M)	(M)	(M)
				*******
9	-0,736	105.00	122.39	16.39
10	-0,836	107.10	122.22	15.12
11	-0.895	97.00	122.23	25.23
12	-0.726	100.90	122.05	21.15
13	-0.836	94.00	122.17	28.17
14	-0.566	98.50	121.82	23.32
15	-0.345	105.50	121,49	15.99
16	-0.346	107.60	121,53	13.93
17	-1.606	106.50	121.56	15.06
18	-2.776	109.00	121.54	12.54
19	-7.576	115.20	121.66	6.46
200 R	27.574	124.60	125.00	0.40

# RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

а С.

T I T L E: GMA5(Peak hour)NO, OF PIPES: 26NO. OF NODES: 17PEAK FACTOR: 2MAX HEADLOSS/Km: 10MAX UNBAL(LPS): 0

PIPE	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEADL	055
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(M/KM)	(M)
		•				•			
2	1	2	208.00	150	90	5.14	0,29LO	1.55	0.32
3	2	3	72.00	75	90	2.31	0.52	10.30HI	0.74
4	1	4	104.00	150	90	5.12	0.29LO	1.53	0.16
4000	1	4	104.00	200	110	13,33	0.42	1.53	0.16
5	5	4	530,00	150	90	6.55	0.37	2.42	1.28
5000	5	4	530.00	150	110	8.00	0.45	2.42	1.28
6	6	5	550.00	150	90	9.40	0.53	4.73	2.50
6000	6	5	550.00	150	110	11.49	0,65	4,73	2,60
7	4	7	70,00	100	90	3.37	0.43	5,10	0,36
7000	- 4	7	70.00	200	110	25.52	0.81	5.10	0.36
8	7	8	250.00	100	90	4.56	0.58	8.94	2,24
8000	7	8	250.00	100	110	5.58	0.71	8.94	2.24
9	8	9	150,00	75	90	1.78	0.40	6.36	0.95
9000	8	9	150.00	100	110	4.84	0.59	6.36	0.95
10	9	10	100.00	50	90	0.22	0.11LO	0,94	0.09
1010	9	10	100.00	100	110	1,65	0.2110	0,94	0.09
11	9	11	140.00	100	110	1,90	0.24L0	1.22	0.17
12	7	12	210.00	100	90	3.24	0.41	4.75	1.00
1200	7	12	210.00	150	110	11.53	0.85	4.75	1.00
13	12	13	450.00	100	90	3.54	0.45	5.59	2.52
14	12	14	60.00	100	90	1.68	0.21L0	1.41	0.08
1400	12	14	60.00	150	110	5.98	0.34	1.41	0.08
15	14	15	490.00	100	90	3.32	0.42	4.96	2.43
16	13	15	90.00	100	90	0.03	0.00L0	0.00	0.00
101	100	1	30.00	200	110	25,80	0.82	5,20	0.16
201	200	6	200.00	200	110	25.00	0.80	4.91	0.98

NODE NO.	FLOW (LPS)	ELEVATION ( M )	Н G L ( М )	PRESSURE ( M )
1	-2.210	102.40	113.67	11.27
2	-2.830	107.50	113.35	5.85
3	-2,310	105,50	112.61	7.11
4	-4.110	100.40	113,51	13.11
5	-6.340	91.50	114.80	23.30
6	-4.110	78.50	117.40	38.90
7	-3,980	96.98	113.16	16.18
8	-3.720	87.00	110.92	23.92
9	-2.650	84.52	109.97	25,45
10	-1.870	83,50	109.87	26.37

NODE NO.	FLOW (LPS)	ELEVATION ( M )	Н G L ( М )	PRESSURE ( M )
11	-1,900	85.00	109.80	21.80
12	-3.570	94.80	112.16	17.36
13	-3.510	90.14	109,64	19,50
14	-4.340	101.00	112.07	11.07
15	-3,350	101.40	109.64	8.24
100 R	25.800	103.80	113.83	10.03
200	25.000	78.00	118.38	40.38

.

## Table 8-19

## RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

day )

# RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

TITLE	;	GMA 1	(max
NO. OF PIPES	:	92	
NO. OF NODES	:	54	
PEAK FACTOR	:	1.3	
MAX HEADLOSS/Km	:	10	
MAX UNBAL(LPS)	:	, 009	

PIPE	FROM	TO	LENGTH	DIA	HWC	FLOW	VELOCITY	HEADL	085
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(M/KM)	(M)
1	3	1	100,00	150	90	0.33	0.0210	0.01	0.00
2	2	з	58.00	100	90	2.54	0.32	3.03	0.18
2001	2	3	58.00	150	110	9.04	0.51	3.03	0.18
3	3	43	284.00	150	90	10.58	0.60	5.88	1.67
4	2	44	282.00	100	90	3.84	0.49	6,50	1.83
5	44	45	50.00	100	90	2.14	0.27LO	2.21	0.11
6	44	43	56.00	100	90	0.67	0.08L0	0.25	0.01
7	43	4	126.00	150	90	10.52	0.60	5.82	0.73
6	45	19	462.00	100	90	1.88	0.24LO	1.74	0.80
9	4	10	162.00	150	90	4.29	0.24LO	1.11	0.18
10	4	5	70.00	100	90	1.23	0,16LO	0,79	0.06
1000	4	5	70.00	150	110	4.38	0.25LO	0.79	0.06
11	5	6	166.00	100	90	1.86	0.24LO	1.69	0.28
1100	5	6	166.00	100	110	2.27	0.29LO	1.69	0,28
12	6	7	88.00	100	90	1.27	0.16LO	0.84	0.07
1200	6	7	88.00	100	110	1.55	0.20LO	0.84	0.07
13	6	8	88.00	75	90	0.70	0.16LO	1.12	0.10
14	5	9	88.00	75	90	0.95	0.21LO	1.98	0.17
15	9	8	168.00	75	90	0,73	0.16LO	1,22	0.20
16	11	9	88.00	75	90	0.09	0.02LO	0.03	0.00
17	8	13	92.00	75	90	0.77	0.17LO	1.36	0,12
18	7	14	176.00	100	90	2.26	0.29LO	2.45	0.43
19	13	14	100.00	150	90	7.10	0.40	2.81	0,28
20	12	13	78.00	150	90	6.83	0.39	2.62	0.20
21	11	12	94.00	150	90	4.79	0.27LO	1.36	0,13
2100	11	12	94.00	150	110	5.86	0.33	1.36	0.13
22		11	34,00	150	90	4.93	0.28LO	1.43	0.05
23		10	158.00	150	90	1.12	0.06LO	0.09	0.01
24		17	98,00	100	90	1,51	0,19LO	1.15	0.11
2400		17	98.00	100	110	1.84	0.23LO	1.15	0.11
25		15	100.00	150	90	3.91	0.2210	0.93	0.09
2500		15	100.00	150	110	4.78	0.27L0	0.93	0.09
26		15	84.00	100	90	1.81	0.23LO	1,62	0,14
27		16	92.00	100	90	2.79	0.35	3.59	0.33
28		18	64.00	100	90	0.07	0.01LO	0.00	0.00
291		50	30.00	100	<u>90</u> ر	2.08	Q,26LO	2.09	0.06
292		18	100.00	100	90	2,25	0.29LO	2.42	0.24
30		19	170.00	150	90	3.73	0.21L0	0.86	0.15
31		21	160.00	100	90	1.63	0,2110	1.34	0,21
32		22	242.00	100	90	0.17	0.02L0	0.02	0.00
33		23	180.00	100	90	0.95	0.12LO	0.49	0,09

( B)

Table	8-19
-------	------

-

.

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

PIPE	FROM	то	LENGTH	DIA	нис	FLOW	VELOCITY	HEAD	LOSS
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(H/KM)	(м)
3300	15	23	180.00	150	110	3.38	0.19LO	0.49	0.09
34	15	29	284.00	75	90	0.84	0.191.0	1,60	0.45
3400	15	29	284,00	100	110	2.20	0.28LO	1,60	0.45
35	15	27	308.00	100	90	1.76	0.22LO	1.53	0.47
36	27	28	80.00	100	90	0.42	0.0510	0.11	0.01
3600	27	28	80.00	100	110	0.51	0.07L0	0.11	0.01
37	29	28	36.00	75	90	0.54	0.12LO	0.71	0.03
3700	29	28	36.00	100	110	1.42	0.18LO	0.71	0.03
38	29	30	84.00	75	90	0.46	0.10L0	0.51	0.04
39	23	30	170.00	100	90	2.24	0.29LO	2.40	0,41
40	23	24	114.00	100	90	1.11	0.14LO	0,85	0.07
41	24	31	104.00	75	90	1.25	0.28LO	3,29	0.34
42	25	24	120.00	100	90	0.75	0.10LO	0.32	0.04
43	22	26	140,00	100	90	1.60	0.20LO	1.28	0.18
4300	22	26	140.00	100	110	1.95	0.25LO	1.28	0,18
44	26	25	84.00	100	90	1.32	0.17LO	0.90	0.08
4400	26	25	84.00	100	110	1.61	0.21LO	0.90	0.08
45	25	35	178.00	75	110	1.40	0.32	2.83	0.50
45	35	34	100.00	75	110	0.65	0.15L0	0.69	0.07
47	31	34	140.00	75	90	0.77	0,18LO	1,36	0.19
48	30	31	90.00	75	90	0.17	0.0410	0.08	0.01
49	30	33	90,00	100	90	1.91	0.24LO	1.78	0.16
50	28	32	90,00	50	90	0,30	0.15LO	1.66	0.15
5000	28	32	90.00	100	110	2.25	0.29LO	1.66	0.15
51	32	33	120.00	100	90	0.63	0.0810	0.23	0.03
52	32	36	100.00	50	90	0.15	0.08LO	0.50	0.05
5200	32	38	100.00	100	110	1.17	0.15L0	0,50	0.05
53	33	37	100.00	100	90	1.97	0.25LO	1.89	0.19
54	34	38	54.00	50	90	0.40	0.21LO	2.95	0.16
5400	34	38	54,00	50	110	0.49	0.25L0	2.95	0.16
55	37	38	90.00	50	90	0.06	0,03LO	0.09	0.01
56	36	37	120.00	50	90	0.27	0.14LO	1.40	0.17
57	36	39	94,00	50	90	0.45	0.23L0	3.62	0.34
58	40	39	120.00	50	90	0.15	0.08LO	0.47	0,06
59	37	40	90.00	100	90	1.60	0.20LO	1.29	0.12
60	38	42	180.00	50	90	0.34	0.17L0	2.15	0.39
61	40	41	82.00	100	90	0.93	0.12LO	0.47	0.04
62	41	42	90.00	50	90	0.38	0.20LO	2,68	0.24
63	21	22	70.00	100	90	1.87	0.24L0	1.72	0.12
6300	21	22	70.00	100	110	2.29	0.29LO	1.72	0.12
64	51	21	100.00	100	90	3.19	0.41	4.61	0.48
641	20	51	38,00	100		3.46	0,44	5.35	0.20
65	20	46	206.00	150	90	3.26	0.18L0	0.67	0,14
66	46	47	120.00	150	90	0.42	0.02L0	0.01	0.00
67	46	48	80.00	100	110	2,52	0,32	2.05	0.16
68	48	49	226.00	100	110	1.92	0.24L0	1.24	0.28
		11	155,00	100			0.01L0	0.00	0.00
69	50		155,00	100	110	0.10	0.0110	0.00	0.00

Table	8-19
-------	------

## RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

PIPE	FROM	το	LENGTH	DIA	HWC	FLOW	VELOCITY	HEAD	.035
NO.	Node	Node	(H)	(MM)		(LPS)	(MPS)	(M/KM)	(M)
				~~~~~					
101	100	2	50.00	200	110	15.95	0.51	2.14	0.11
201	200	1.1	20,00	150	110	5,09	0.34	1.46	0.03
301	300	20	20,00	200	110	11.55	0.37	1.18	0.02

NODE	FLOW	ELEVATION	HGL	PRESSURE
NO.	(LPS)	(M)	(M)	(M)
1	-0.328	188.00	196.22	8.22
2	-0.523	186.50	196.39	9.89
3	-0.679	188.00	196.22	8.22
4	-0,620	186.60	193,81	7.21
5	-0,536	184.70	193,76	9.06
6	-0.601	180.00	193,48	13.48
7	-0,562	178.50	193.40	14.90
В	-0.653	179.50	193,38	13,88
9	~0,308	183.50	193,58	10.08
10	-0.484	184,00	193.63	9.63
11	-0.373	182.00	193.59	11.59
12	-0.477	179.40	193.46	14.06
13	~0,497	179.30	193.25	13,95
14	-0.685	178.00	192.97	14.97
15	-1.361	178.00	192.88	14.88
16	-0.802	178,00	193.01	15,01
17	-0.490	178.20	193.34	15.14
18	-0.685	177.50	193.34	15.84
19	-2,414	180,00	193,65	13.65
20	-1.095	176.70	193.79	17.09
21	~0,659	174.20	193.13	18,93
22	-0.789	175,50	193.01	17.51
23	-0.984	173.50	192.79	19.29
24	-0.614	171.70	192.72	21.02
25	-0.776	167.40	192.75	25.35
26	-0.614	169.00	192.83	23.83
27	-0.822	164.00	192.41	28.41
28	-0.354	169.50	192.40	22.90
29	-0,627	170.40	192.43	22.03
30	-0,627	169.10	192.38	23.28
31	-0,640	168.00	192.38	24.38
32	-0.588	166.40	192.25	25.85
33	~0,568	165,60	192.22	26.62
34	-0.529	166.50	192.18	25.68
35	-0.750	167.20	192.25	25.05
36	-0.601	164,50	192.20	27.70
37	-0,575	164.80	192.03	27.23
38	-0,620	164.50	192.02	27.52
39	-0.601	164.00	191.86	27.86
40	-0,529	164.10	191.92	27.82

۲

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

NODE NO.	FLOW (LPS)	ELEVATION (M)	НGL (М)	PRESSURE (M)
41	-0.542	162.00	191.88	29,88
42	-0.724	160.90	191.64	30.74
43	-0.724	187.30	194,55	7.25
44	-1.030	186.00	194.56	8.56
45	-0.263	185.50	194.45	8.95
46	-0.328	176.70	193.66	16.96
47	-0.419	172.00	193.65	21.65
48	-0.601	168.00	193.49	25,49
49	-1.916	162.30	193.21	30.91
50	0.000	180.00	193.59	13.59
51	0.000	179.00	193,59	14.59
100 R	15,947	186,50	198,50	10.00
200 R	6.085	183.62	193,61	9,99
300 R	11.547	176.80	193.82	17.02

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

TITLE	:	GMA2 (max day)
NO. OF PIPES	:	30
NO. OF NODES	:	27
PEAK FACTOR	:	1.3
MAX HEADLOSS/Km	;	10
MAX UNBAL(LPS)	:	.004

۰.

ΡΙΡΕ	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEAD	LOSS
ΝΟ.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(H/KH)	(H)
2	2		120.00	150	90	0.66	0.04L0	0.04	0.00
3	3	2	55.00	150	90	4,59	0.26LO	1.25	0.07
4	3	4	210.00	150	90	2,96	0.17LO	0.55	0.12
5	5	4	120.00	150	90	4.81	0.2610	1.26	0.15
6	6	5	200.00	150	90	5.55	0.31	1.78	0,36
7	7	đ	322,00	150	90	9.02	0.51	4.38	- 1.41
8	7	8	106.00	100	90	2.17	0.2810	2.27	0.24
9	8	9	290.00	100	90	1.14	0.14L0	0,69	0.20
10	10	3	104.00	150	90	8,69	0.49	4.09	0.43
11	10	11	328.00	100	110	1.78	0.2310	1.09	0,36
12	12	11	328.00	100	90	1.24	0.16LO	0.80	0.26
13	13	12	328.00	100	90	2.21	0,28LO	2.34	0.77
14	14	10	130.00	150	90	12.15	0.69	7.59	0,99
15	14	15	150.00	100	90.	3,79	0,48	6.33	0.95
16	15	16	150.00	100	90	2.42	0.31	2.77	0.42
17	16	17	170.00	100	90	1.00	0.13L0	0.54	0.09
18	4	18	90.00	150	90	6.27	0.35	2.23	0.20
19	18	19	70.00	100	110	2.51	0,32	2.05	0.14
20	19	20	70.00	100	110	0.77	0.10L0	0.23	0.02
21	19	21	230.00	100	110	0.61	0.08LO	0.15	0.03
22	22	21	72.00	100	110	2.28	0,29LO	1.71	0.12
23	21	23	48.00	100	110	1.65	0.21LO	0.94	0.05
24	23	24	100.00	100	110	0,92	0.12LO	0.32	0.03
25	2	22	94.00	100	110	3.21	0.41	3.21	0.30
26	11	5	106.00	100	90	0,76	0.10LO	0.32	0.03
27	6	12	102.00	100	110	1.27	0.16LO	0.58	0.06
28	7	13	106.00	100	90	3,88	0.49	6,63	0.70
101	100	14	270.00	150	110	16.88	0.96	9.63	2.50
201	18	200	30,00	150	90	3,11	0.18LO	0,61	0.02
301	300	7	600.00	150	110	16.60	0,94	9.34	5.60

NODE NO.	FLOW (LPS)	ELEVATION (M)	НGL (М)	PRESSURE (M)
	*			
1	-0.664	168.48	173.91	5.43
2	-0.716	162.34	173.92	11.58
3	-1.145	167.20	173.99	6.79
4	-1.295	163.40	173.87	10.47
5	-1.698	160.70	174,02	13.32
6	-2.205	145.30	174.38	28.08

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

NODE NO.		ELEVATION (M)		
	-1.522	138.30	175.79	37.49
8		138.00		
9	~1.139	136.00		
10	-1.672		174.41	
11	-2.270	155.10	174.06	18.96
12	-2.237	143.60	174.32	30.72
13	-1,672	133.00	175.09	42.09
14	-0.950	161.50	175.40	13.90
15	~1.366	153.00	174.45	21.45
16	-1.418	148.50	174.03	25,53
17	-1,002	148,50	173.94	25.44
18	~0.650	162.70	173.67	10.97
19	-1.139	160.00	173.53	13.53
20	-0.768	156.00	173.51	17.51
21	-1,230	160.80	173.49	12.69
22	-0,931	162.30	173.61	11.31
23	-0.729	158.00	173.45	15.45
24	-0.924	156.50	173.41	16.91
100 R	16.884	166,00	178,00	12.00
200 R	-3.106	163.65	173.65	10.00
300	16.600	135.00	181.39	45.39

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

<u></u>

ΤΙΤΙΕ	:	GHA3 (max	day)
NO. OF PIPES	:	31	
NO. OF NODES	:	21	
PEAK FACTOR	:	1.3	
MAX HEADLOSS/Km	:	10	
MAX UNBAL(LPS)	:	.003	

PIPE	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEADL	oss
NO.	Node	Node	(H.)	(MH)		(LPS)	(MPS)	(M/KM)	(M)
1	2	1	98,00	150	90	0.70	0.04LO	0.04	0.00
1000	· 2	1	98,00	100	110	0.29	0.04LO	0.04	0.00
2	2	3	70.00	100	110	0,86	0.11L0	0.28	0.02
3	4	3	186.00	100	110	0,74	0.0910	0.21	0.04
. 4	5	2	185.00	150	90	3,44	0.19LO	0,74	0.14
5	5	4	70.00	100	110	2.26	0.29LO	1.68	0.12
6	6	5	60.00	150	90	7,17	0.41	2.86	0.17
7	9	4	180.00	100	110	0.34	0.04L0	0.05	0.01
8	6	10	120.00	150	90	4,98	0.28LO	1.46	0.18
9	10	9	70.00	100	110	2.12	0.27LO	1.49	0,10
10	7	6	56.00	100	90	2.94	0.37	3,97	0,22
1010	7	6	56.00	150	110	10.46	0.59	3.97	0.22
11	7	8	80.00	100	90	0.84	0.11L0	0.39	0,03
1100	7	8	80.00	100	110	1.03	0.13LO	0,39	0.03
12	7	45	118.00	100	90	1.09	0.14LO	0.63	0.07
1200	7	45	118,00	150	110	3.88	0.2210	0.63	0.07
13	8	46	114.00	100	90	0.79	0.10LO	0,35	0.04
14	12	11	134.00	100	110	1.28	0.16LO	0.58	0.08
15	11	13	176.00	100	90	0.83	0.11LO	0.39	0.07
1500	11	13	176.00	150	110	2.96	0.17LO	0.39	0.07
16	14	12	110,00	100	90	3.60	0.46	5.77	0.63
17	14	13	206.00	100	90	2.87	0.37	3.79	0.78
18	45	11	68.00	100	90	0.89	0.11LO	0.44	0.03
1800	45	11	68.00	150	110	3.17	0.18LO	0,44	0.03
19	12	46	120.00	100	90	0,82	0.10LO	0.38	0.05
20	10	15	290.00	150	90	0.67	0.04L0	0.04	0.01
38	13	31	400.00	100	90	2,90	0.37	3.87	1,55
42	31	36	400.00	100	90	0.67	0.09LO	0,26	0.10
58	46	45	94.00	100	110	0.29	0.04L0	0.04	0.00
201	200	14	300.00	150	110	7.98	0.45	2.41	0.72
101	100	7	20.00	150	90	21.36	1,21	21.58HI	0.43

NODE NO.	FLOW (LPS)	ELEVATION (M)	HGL (M)	PRESSURE (M)
1	-0.993	136.20	141.13	4.93
2	-1.591	133.50	141.14	7.64
3	-1.598	132.20	141.12	8.92
4	-1.858	131.00	141.15	10.16
5	-1.468	132,00	141.27	9.27

NODE NO.		FLOW I (LPS)	ELEVATION (M)		
6		-1.253	131.60	141,45	9,85
7		-1.117	131.20	141.67	10.47
8		-1.071	127.30	141.54	14,34
9		-1.780	127.00	141.17	14.17
10		-2.189	127,00	141.27	14.27
11		-1.546	124.60	141.56	16.96
12		-1.500	110.00	141.64	31.64
13		-3.762	114.60	141.50	26.90
14		-1.513	108.50	142.28	33.78
15		-0.675	115.00	141.26	26.26
31		-2.228	109.00	139.95	30.95
36		-0.675	101.70	139.84	38.14
45		-1,195	125.50	141.59	16.09
46		-1.331	123,20	141.60	18,40
200	R	7.982	128.00	143.00	15.00
- 100	R.	21.361	132.10	142.10	10.00

Table 8-19 RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

Table 8-19 RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

)

TITLE	:	GMA4 (max day
NO. OF PIPES	:	28
NO. OF NODES	:	20
PEAK FACTOR	:	1.3
MAX HEADLOSS/Km	:	10
MAX UNBAL(LPS)	:	.009

NO. Node Node (M)	DIA	HWC	FLOW	VELOCITY	HEAD	LOSS
	(MM)		(LPS)	(MPS)	(M/KM)	(M)
2 1 2 50.00	150	90	5,93	0.34	2.01	0,10
3 2 3 210.00	150	90	5.30	0.30	1,64	0.34
4 3 4 300,00	150	90	3.93	0.22LO	0.94	0.28
5 5 4 160.00	150	90	5.42	0.31	1.71	0.27
6 5 6 220.00	150	90	5.32	0.30	1.65	0,36
7 6 7 160.00	100	90	1.70	0.22LO	1.44	0.23
8 6 8 40.00	100	90	2,91	0.37	3.90	0.16
9 8 9 140.00	100	90	1.13	0.14LO	0.68	0.10
10 8 10 64.00	100	90	2.36	0.30	2.65	0.17
11 11 10 220.00	100	90	0.03	0,00L0	0.00	0.00
12 10 12 46.00	100	90	1,85	0.24LO	1.68	0.08
13 11 13 46.00	100	110	1.24	0.16LO	0.55	0.03
14 12 14 50.00	100	90	2.07	0.26LO	2.07	0.10
15 14 17 120.00	100	110	1.70	0.22LO	1,00	0.12
16 16 15 100.00	50	110	0.12	0.06LO	0.21	0.02
17 17 15 184.00	50	110	0.11	0.05LO	0.17	0.03
18 18 16 180.00	150	90	0.34	0.02LO	0.01	0.00
19 19 18 310.00	150	90	1,59	0,09L0	0.18	0.06
20 13 12 190.00	100	90	0.69	0,09LO	0.27	0.05
21 17 18 70.00	100	110	0.55	0.07LO	0.12	0.01
22 4 19 280,00	150	90	6.52	0,37	2,40	0.67
23 4 8 290.00	100	90	1.28	0.16LO	0.85	0.25
24 1 5 124.00	150	90	8.18	0.46	3.65	0.45
2400 1 5 124.00	100	110	3.44	0.44	3.65	0.45
25 7 9 40.00	100	110	1.19	0.15LO	0.52	0.02
26 9 11 64.00	100	110	1.85	0.24LO	1.16	0.07
201 200 1 30.00	150	90	8.09	0.46	3.58	0.11
202 200 1 30.00	150	110	9.89	0.56	3.58	0.11

NODE NO.	FLOW (LPS)	ELEVATION (M)	Н G L (М)	PRESSURE (M)
1	-0.446	121.45	124.89	3.44
2	-0.621	118.00	124,79	6.79
3	-1.375	119.00	124,45	5.45
4	-1.551	101,20	124.17	22.97
5	-0,868	113.40	124,44	11.04
6	-0.712	113,10	124.08	10.98
7	-0,504	111.50	123.85	12.35
8	-0.599	108.00	123.92	15,92

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

NODE NO.	FLOW (LPS)	ELEVATION (M)	Н G L (М)	PRESSURE (M)
9	-0,478	106.00	123.82	17.82
10	-0,543	107.10	123,75	16.65
11	-0.582	97.00	123,75	26.75
12	-0.472	100.90	123.67	22.77
13	-0,543	94,00	123.72	29.72
14	-0.368	98.50	123.57	25.07
15	-0.225	105.50	123.42	17.92
16	-0,225	107.60	123.44	15.84
17	-1.044	106,50	123.45	16.95
18	-1.804	109.00	123.44	14.44
19	-4.924	115.20	123.49	8.29
200 R	17,988	124.60	125.00	0,40

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

)

3 🕯

ΤΙΤΕ	:	GHA5 (HAX_DAY)
NO. OF PIPES	:	26
NO. OF NODES	:	17
PEAK FACTOR	:	1.3
MAX HEADLOSS/Km	:	10
MAX UNBAL(LPS)	:	0

PIPE	FROM	то	LENGTH	DIA	HWC	FLOW	VELOCITY	HEAD	LOSS
NO.	Node	Node	(M)	(MM)		(LPS)	(MPS)	(M/KM)	(M)
2		2	208.00	150	90	3.34	0.19L0	0.70	0.15
3	2	3	72.00	75	90	1.50	0.34	4.64	0.33
4	1	4	104.00	150	90	0.90	0.05L0	0.06	0.01
4000	1	4	104.00	200	110	2.34	0.07L0	0.05	0.01
5	5	4	530.00	150	90	8.19	0.46	3.67	1.94
5000	5	4	530.00	150	110	10.01	0.57	3.67	1,94
6	6	5	550,00	150	90	10.05	0.57	5.35	2,94
6000	6	5	550.00	150	110	12.28	0.69	5.35	2,94
7	4	7	70.00	100	90	2.19	0.28LO	2.30	0.15
7000	4	7	70.00	200	110	16.59	0.53	2.30	0.16
् 8	7	8	250.00	100	90	2.97	0.38	4.03	1.01
8000	7	8	250.00	100	110	3.63	0.46	4.03	1,01
9	8	9	150.00	75	90	1.16	0.26LO	2.87	0,43
9000	8	9	150.00	100	110	3.02	0.38	2.87	0.43
10	9	10	100.00	50	90	0.14	0.07L0	0.42	0.04
1010	9	10	100.00	100	110	1.07	0.14L0	0.42	0.04
11	9	11	140.00	100	110	1.23	0.16L0	0.55	0.08
12	7	12	210.00	100	90	2.11	0.27L0	2.14	0.45
1200	7	12	210.00	150	110	7.49	0.42	2.14	0.45
13	12	13	450.00	100	90	2.30	0.2910	2.52	1.13
14	12	14	60.00	100	90	1.09	0.14L0	0.64	0.04
1400	12	14	60.00	150	110	3.89	0.221.0	0.64	0.04
15	14	15	490.00	100	90	2.16	0.27LO	2.24	1,10
18	13	15	90.00	100	90	0.02	0.0010	0.00	0,00
101	100	1	30,00	200	110	8,02	0.26LO	0.60	0.02
201	200	6	200.00	200	110	25.00	0,80	4.91	0.98

NODE NO.	FLOW (LPS)	ELEVATION (M)	НGL (М)	PRESSURE (M)
1	-1.436	102.40	113.81	11.41
2	-1.839	107.50	113.67	6.17
3	-1.501	105.50	113.33	7.83
4	-2.672	100.40	113.81	13.41
5	-4.121	91.50	115.75	24.25
6	-2.672	78.50	118.69	40.19
7	-2.587	96.98	113.64	16.66
8	-2.418	87.00	112.64	25.64
9	-1.722	84.52	112,21	27.69
10	-1.216	83,50	112.16	28.66

NODE NO.		FLOW (LPS)	ELEVAT		і G М	-	PRES (SU M	
11		-1.235	88.0	00 1	12.	13	2	4.	13
12		-2.320	94.8	30 1	13.	19	1	8.	39
13		-2,281	90,	14 1	12.	06	2	11.	92
14		-2.821	101.0	00 1	13,	16	1	2.	16
15		-2.177	101.4	40 1	12.	06	1	0,	66
100	R	8.020	103.8	30 1	13.	83	1	0.	03
200		25.000	78.0	00 1	19.	67	4	11.	67

Table 8-19 RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF G.M.A.(con't)

ð Ö

TITLE	;	Tanza ND (Maximum Day Demand 2005	}
NO. OF PIPES	ł	80	
NO. OF NODES	:	64	
PEAK FACTOR	:	1.3	
MAX HEADLOSS/Ka	t	10	
MAX UNBAL(LPS)	:	.008	

PIPE	FROM	TO	LENSTH	DIA	HNC	FLON	VELOCITY	HEADL	.055
NO.	Node	Node	(X)	(88)		(LPS)	(MPS)	(H/KM)	(肖)
í	2	1	75,00	50	100	0.41	0.21L0	2,52	0.19
2	4	1	420.00	50	100	0.27	0.14LO	1,14	0.48
3	5	4	48.00	75	100	0.96	0.22L0	1.68	0.08
4	5	3	313.00	75	100	0.70	0.16L0	0.92	0.29
5	2	2	95.00	75	100	0.68	0.15LO	0.89	0.08
6	8	3	69.00	. 75	100	0.69	0.16LO	0.91	0.06
7	7	5	45.00		100	2.26	0.51	8.17	0.37
8	6	7	336.00	150	110	7.07	0.40	1.92	0.65
9	7	8 .	312.00	100	100	2.20	0.2810	1.91	0.60
10	8	9	63.00	75	100	0.72	0.16LO	0.97	0.05
11	7	10	90.00	75	100	1.49	0.34	3.77	0.34
12	10	9	306.00	50	100	0.26	0.13L0	1.11	0.34
13	9	13	69.00	75	100	0.05	0.01LO	0.01	0.00
14	10	12	66,00	50	100	0.25	0.13LD	1,01	0.07
15	12	13	291.00	50	100	0.25	0.13LO	0.99	0.29
16	14	13	60.00	75	100	0.51	0,11L0	0.51	0.03
17	12	16	60.00	75	100	1.40	0.32	3.37	0.20
18	16	15	177.00	50	100	0.22	0.1110	0.79	0.14
-19	14	15	111.00	75	100	0.62	0.14LO	0.75	0.08
20	15	18	54.00	50	100	0.21	0.10LO	0.59	0.04
21	17	18	180.00	50	100	0.21	0.11LO	0.75	0.13
22	16	17	54.00	75	100	0.64	0.15L0	0.80	0.04
23	22	23	105.00	50	100	0.26	0.13LB	1.04	0.11
24	24	22	105.00	50	100	0.11	0.06LO	0.23	0.02
25	25	24	120.00	50	100	0.38	0.20L0	2.20	0.26
26	26	22	50.00	100	110	2.61	0.33	2.20	0.11
27	11	25	147.00	100	110	5.02	0.64	7.35	1.08
28	11	6	195.00	150	110	7.64	0,43	2.22	0.43
29	29	11	465.00	150	110	13.26	0.75	6.15	2.87
30	21	318	396.00	200	110	21.51	0.68	3.71	1,47
31	20	45	135.00	50	100	0.16	0.08L0	0.42	0.06
32	20	19	156.00	150	110	19,16	1.08	12 .1 7HI	1.90
33	19	14	60.00	100	110	1.55	Q.20LO	0.84	0,05
34	22	12	84.00	100	110	2.27	0.29LO	1.59	0.14
35	25	25	48.00	100	110	3.48	0.44	3.73	0.18
36	26	27	120,00	50	100	0.60	0.31	5.05	0.61
37	28	27	489.00	50	100	0.04	0.0210	0.03	0.02
38	25	28		50	100	0.68		6.41	0.77
39	29	21	315.00	150	110	3.95	0.22LO	0.66	0.21
40	19	30	570.00	200	110	17.39	0.55	2.51	1.43
41	30	31	129.00	200	110	15.18	0.48	1.95	0.25

Page 1 of 2005TAN1

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

P1P5	FROM	T0	LENGTH	DIA	HNC	FLOW	VELOCITY	READLO	ISS
NG.	Node	Koqa	(X)	(88)		(LPS)	(MPS)	(M/KN)	(N)
42	31		275.00	150	110	9,94	0.56	3.81	1.00
43	31	32	360,00	100	110	3.20	0.41	3,19	1.15
44	33	32	215.00	75	100	0.60	0,14LO	0.70	0.15
45	32	34	305.00	100	110	1.44	0.18LO	0.73	0.22
45	33	34	171.00	150	110	7.58	0.43	2.19	0.37
47	34	35	273.00	150	110	7.37	0.42	2.08	0.57
 \$8	35	36	351.00	100	110	3.04	0.39	2.91	1.02
47	35	38	222.00		- 110	1.57	0.09LO	0.12	0.03
50	36	37	330.00	75	100	0.07	0.02L0	0.01	0.00
51	38	37	225.00	75	100	1.63	0.37	4,44	1,00
52	39	37	309.00	75	100	2.07	0.47	6.91	2.13
53	39	38	294.00	100	110	3.54	0.45	3.86	1,14
54	39	43	150,00	50	100	0.67	0.34	6.20	0.93
55	43	44	150.00	50	100	0.34	0.17LO	1.72	0.26
56	40	39	354.00	100	110	2,91	0.37	2.68	0.95
2056	40	39	354.00	150	110	8.46	0.48	2.68	0.95
57	45	40	354.00	100	110	3.76	0.48	4.32	1.53
2057	45	40	354,00	150	110	10.94	0,62	4.32	1,53
58	45	41	100.00	50	100	1.08			1.48
50	41	47	50.00	50	100	0.42	0.2110	2.56	0,13
301	318	20	300,00	200	110	20.32		3.34	1.00
201	200	29	200.00	200	110	18.44		2.79	0.56
1051	148	45	600.00	200	110	20.65	0.66	3.44	2.07
1062	43	148	600.00	200	110	22.22	0.71	3.94	2.37
1063	48	21	400.00	150	110	1.12	0.0610	0.05	0.03
1064	49	21	350.00	200	110	19.03	0.61	2.96	1,04
1065	50	49	350.00	200	120	21.02	0.67	3.03	1.06
1066	51	50	400.00	250	120	22.48	0,46	1.16	0.46
1067	52	51	800.00	100	110	1.97	0.2510	1.31	1.05
1068	53	52	800.00	100	110	2.62	0.33	2.21	1.77
1069	54	53	280.00	100	110	3.26	0.42	3.31	0.93
1070	55	54	250.00		110	3.91	0.50	4.63	1.16
1071	56	55	475.00	150		5.49	0.31	1.20	0.57
1072	57	56	500.00	150	110	6.45	0.36	1.62	0.81
1073	58	57	470.00	200	110	9.34	0.30L0	0.79	0.37
1075	600	58	560.00	200	110	13.26	0,42	1.52	0.85
1074	58	59	800.00	100	110	1.96	0.2510	1.29	1.03
1077	700	51	150.00	250	110	22,58		1.37	0.21
1076	800	48	150.00	200	110	25.08	0.80	4.94	0.74

NODE NO.	FLOW (LPS)	ELEVATION (M)	H G L (M)	PRESSURE (M)
1	-0.651	7.85	29.27	21.42
2	-0.269	7.96	29.46	21,50
3	-0.707	8.18	29.54	21.36
4	-0.694	9.09	29.75	20.66

Page 2 of 2005TAN1

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

10

* 3

NODE No.	FLCH (LPS)	ELEVATION (M)	H G L (M)	PRESSURE (M)
5	-0.606	9.40	29.83	20.43
5	-0.571	10.34	30.84	20.50
7	-1.109	9.24	30.20	20.96
, 8	-0.793	8.51	29.60	21.09
9	-0.928	7.79	29.54	21.75
10	-0.974	8.40	29.86	21.46
11	-0.510	9.72	31.27	21,55
12	-0.864	8.40	29.76	21.36
13	-0.809	6.65	29.47	22.82
14	-0,425	6.16	29.51	23.35
15	-0.637	7.50	29,43	21,93
16	-0.540	8.05	29.56	21,51
17	-0,430	7,76	29.52	21.76
318	-1,193	10.94	32.46	21,52
18	-0.419	6.75	29.39	22.64
19	-0.213	5.99	29.56	23.57
20	-1.002	8.79	31.46	22.67
21	-2.590	13.09	33.93	20.84
22	-0.203	9.06	29.91	20.85
23	-0.256	9.03	29.80	20.77
24	-0.270	9.10	29.93	20.83
25	-0.475	9.48	30.19	20.71
26	-0.264	9.41	30.02	20.61
27	-0.640	8.34	29.41	21.07
28	-0.643	8,60	29.43	20.83
29	-1.228	11,20	34.14	22.94
30	-2.214	6:97	28.13	21.16
31	-2.047	6.54	27.88	21.34
32	-2.357	4.00	26.73	22.73
33	-1.755	4.39	26.89	22.50
34	-1.647	4.52	26.51	21.99
35	-2,759	3.43	25.94	22.51
36	-2,969	1.29	24.92	23.63
37	-3.765	1.03	24,92	23.89 23.08
38	-3,489	2.83	25.91 27.05	
39	-5.082	2.04	28.00	25.01
40	-3.346 -0.659	1.77 2.10	28.04	26.23 25.94
41		1.50	26.12	24.52
43	-0.335 -0.335	1.50	25.86	24.36
44 45	-4.865	1.50	29.53	28.03
45 46	-9.605	8.75	31.40	22.65
40	-0.415	2.10	27.92	25.82
148	-1.565	7.00	31.59	24.59
48	-1.748	11,00	33.96	22.96
49	-1.992	14.00	34.97	20.97
50	-1.455	15,50	36.03	20.53
51	-2.073	16.50	36.49	19.99

Page 3 of 2005TANI

.

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

NODE NG.	FLO¥ (lps)	ELEVATION (K)	HSL (H-)	PRESSURE (M)
52	-0.643	19.00	37.54	18.54
53	-0.643	24.60	39.31	14.71
54	-0.643	26.00	40.24	14.24
55	-1.581	27.00	41.39	14.39
56	-0.963	30.52	41.97	11.45
57	-2.894	31.80	42,78	10,98
58	-1.956	34.48	43.15	8.67
200 R	18.441	11,25	34.70	23.45
600 R	13.256	33.19	44.00	10.81
59	-1.956	32.20	42.12	9.92
700 R	22.575	14.05	36.70	22.64
800 R	25,084	11.00	34.70	23.70

Page 4 of 2005TAN1

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

L

TITLE	:	Tanza	¥D	(Peak	Hour	Demand	2005)
NO. OF PIPES	ł	80					
NO. OF NODES	\$	54					
PEAK FACTOR	ł	2					
MAX HEADLOSS/Ks	:	10					
KAX_UNBAL(LPS)	:	.007					

PIPE	FROM	TO	LENGTH	DIA	HWC	FLOW	VELOCITY	HEADL	095
NO.	Node	Node	(11)	(MM)		(LPS)	(MPS)	(N/KM)	(ቨ)
1	2	1	75.00	50	100	0,63	0.32	5.51	0.41
2	4	. í	420.00	50	100	0.42	0.21LO	2.59	1.09
3	5	4	48.00	75	100	1.49		3.75	0.18
4	5	3	313.00	75	100	1.10	0.25LD	2.15	0.67
5	3	2	95.00	75	100	1.04	0.24L0	1.95	0.19
6	8	3	67.00	75	100	1.03	0.2310	1.90	0.13
7	7	5	45.00	75	100	3.52	0.80		0.83
8	6	7	336.00	150	110	11.00	0.62	4.35	1.47
9	7	8	312,00	100	100	3.47	0.44	4.42	1.38
10	8	9	63.00	75	100	1.21	0.27L0	2.58	0.16
11	7	10	90.00	75	100	2.31	0.52	8.50	0.76
12	10	9	306.00	50	100	0.42	0.2210	2.54	0.81
13	9	13	69.00	75	100	0.21	0.05LO	0.10	0,01
14	10	12	66.00	50	100	0.39	0,20LO	2.29	0.15
15	12	13	291.00	50	100	0.40	0.20LO	2.36	0.69
15	14	13	60.00	75	100	0.64	0.14L0	0.78	0.05
17	12	16	60.00	75	100	2.20	0.50	7.73	0.46
18	16	15	177.00	50	100	0.36	0.18L0	1,97	0.35
19	14	15	111.00	75	100	0.92	0.21LO	1.54	0.17
20	15	18	54.00	50	100	0.30	0.15L0	1.39	0.08
21	17	18	180.00	50	100	0.34	0.18L0	i.81	0.33
22	16	17	54.00	75	100	1.01	0.23LO	1.82	0.10
23	22	23	105.00	50	100	0.39	0.20L0	2.32	0.24
24	24	22	105.00	50	100	0.18	0.09LD	0.54	0.06
25	25	24	120.00	50	100	0,59	0.30	4.96	0.60
26	26	22	50.00	100	110	4.05	0.52	4.97	0.25
27	11	25	147.00	100	110	7,77	0.99	16.50HI	2.43
28	ii	5	195.00	150	110	11.88	0.67	5.03	0.98
29	29	11	465.00		110	20.57	1.16	13.90HI	6.46
30	21	318	396.00		110	32.84	1.05	8.13	3.22
31	20	46	135.00	50	100	0.24	0.12L0	0.93	0.12
32	20	19	156.00	150	110	29,22	1.65	26.58HI	4.15
33	19	14	50,00	100	110	2.21	0.28L0	1.61	0.10
34	22	12	84.00	100	110	3.53	0.45	3.84	0.32
35	25	26	48.00	100	110	5.39	0.69	8.39	0.40
36	25	27	120.00	50	100	0.92	0.47	11.18HI	1.34
37	28	27	489.00	50	100	0.05	0.03L0	0.07	0.04
38	25	28	120.00	50	100	1.05	0.54	14.24HI	1.71
39	29	21	315.00		110	8,41	0.49	2.65	0.84
40	19	30	570.00	200	110	26.69	0.85	5.54	3.16
41	30	31	129.00		110	23.28	0.74	4.30	0.55

Page 1 of 2005TANI

.

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

P 19E	FROM	TO	LENGTH	DIA	HHC	FLOW	VELOCITY	HEADL	DSS
NO.	Node	Nade	(8)	(MM)		(LPS)	(XPS)	(M/KN)	(8)
42	31		275.00	150	110	15.23	0.85	7.96	2.20
43	31	32	360.00	100	110	4.90	0.62	7.04	2,53
44	33	32	216.00	75	100	0.92	0.21LD	1,55	0.34
45	32	34	305.00	100	110	2.20	0.28L9	1.60	0,49
46	33	34	171.00	150	110	11.51	0.66	4.62	0.82
47	34	35	273.00	150	110	11.27	0.64	4,56	1,25
48	35	36	351.00	100	110	4.56	0.59	6.42	2.25
49	35	38	222.00	150	110	2.36	0.1310	0.25	0.06
50	36	37	330.00	75	100	0.10	0.02L0	0.02	0.01
51	38	37	225.00	75	100	2,50	0,57	9.81	2.21
52	39	37	309.00	75	100	3.20	0.72	15.45HI	4,77
53	39	38	294.00	100	110	5.51	0.70	8.73	2.57
54	39	43	150.00	50	100	1.03	0.53	13.75HI	2.06
55	43	44	150.00	50	100	0.52	0.26LO	3,82	0,57
56	40	39	354.00	100	110	4.49	0.57	5.99	2.12
2056	4 !)	39	354.00	150	110	13.06	0.74	5,99	2,12
57	45	40	354.00	100	110	5.81	0.74	9.64	3.41
2057	45	40	354.00	150	110	16.89	0.95	9.64	3,41
58	45	41	100.00	50	100	1.65	0.84		3.29
60	4i	47	50.00	50	100	0.54	0.33	5.68	0,28
301	318	20	300.00	200	110	31.00	0.99	7.31	2.19
201	200	29	200.00	200	110	30.88	0.98	7.25	1.45
1061	148	45	600.00	200	110	31.84	1.01	7.67	4.60
1062	48	148	600.00	200	110	34.25	1.09	8,78	5.27
1063	48	21	400.00	150	110	4,85	0.27L0	0.96	0.38
1064	49	21	350.00	200	110	23.56	0.75	4.40	1,54
1065	50	49	350.00	200	120	26.63	0.85	4.69	1.64
1066	51	59	400,00	250	120	28.87	0.59	1.84	0.74
1067	52		800.00	100	110	1.06	0.14LD	0.42	0.33
1068	53	52	800.00	100	110	2.05	0.26LO	1,41	1,13
1069	54	53	280.00	100		3.04	0.39	2.92	0.82
1070	55	54	250.00	100	110	4.03	0.51	4.91	1.23
1071	56	55	475.00	150	110	6.47	0.37	1.63	0.78
1072	57	56	500.00	150	110	7.95	0,45	2.39	1.20
1073	58		470.00	200	110	12.40	0.39	1.34	0.63
1075	600	58	560.00	200	110	18.42	0.59	2.79	1.56
1074	58	59	800.00	100	110	3.01	0.38	2.86	2.29
1077	700	51	150.00	250	110	30.99	0.63	2.46	0.37
1076	800	48	150.00	200	110	41.79	1.33	12.69HI	1,90

NODE NO.	FLOW (LPS)	ELEVATION (H)	Н G L (М)	PRESSURE
i	-1.048	7.85	22.24	14.39
2	-0.414	7.96	22.65	14.69
3	-1.088	8.18	22.83	14.65
4	-1.068	9.09	23.33	14.24

Page 2 of 2005TANI

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

े है

1

NODE No.	FLOX (LPS)	ELEVATION (N)	H S L (K)	PRESSURE (M)
5	-0,932	9.40	23.51	14.11
6	-0.878	10.34	25.80	15.46
7	-1.706	9.24	24.34	15.10
8	-1.220	8.51	22.96	14.45
9	-1.428	7.79	22.80	15.01
10	-1.498	8.40	23.57	15.17
11	-0.938	9.72	26.78	17.06
12	-1.330	8.40	23.39	14.99
13	-1.244	6.65	22.70	16.05
14	-0.654	6.16	22.76	16.60
15	-0.990	7.50	22.59	15.09
16	-0.830	8.05	22.92	14.87
17	-0.662	7.76	22.82	15.06
318	-1.836	10.94	29.20	19.26
16	-0.644	6.75	22.51	15.76
19	-0.328	5.99	22,86	16.87
20	-1.542	B.79	27.00	18.21
21	-3.984	13.09	32.41	19.32
22	-0.312	9.06	23.71	14.65
23	-0.394	9.03	23.47	14.44
24	-0.416	9.10	23.76	14.56
25	-0.730	9.48	24.36	14.88
26	-0.406	9.41	23.96	14.55
27	-0.984	8.34	22.62	14.28
28	-0.990	8.60	22.65	14.05
29	-1.890	11.20	33.25	22,05
30	-3.406	6.97	19.70	12.73
31	-3.150	6.54	19.15	12.61
32	-3.626	4.00	16.61	12.61
33	-2.700	4.39	16,95	12.56
34 75	-2.534	4.52	16.13	11.61
35	-4.244	3,43	14,88	11.45
36 37	-4.56B -5.792	1.29 1.03	12.62	11.33
38	-5.368	2.83	12.62 14.82	11.59 11.99
38	-7.818	2.04	14.02	11.77
40	-5,148	1.77	17.51	17.74
41	-1.014	2.10	19.63	17.53
43	-0.516	1.50	15.33	13.83
44	-0.516	1.50	14.75	13.25
45	-7.484	1.50	22.92	21.42
46	-0.240	8.75	26.88	18,13
47	-0.640	2.10	19.35	17.25
148	-2.410	7,00	27.53	20.53
48	-2.590	11.00	32.80	21.80
49	-3.064	14.00	33.95	19.95
50	-2.240	15.50	35.60	20.10
51	-3.190	16.50	36.33	17.83

Page 3 of 2005TAN1

NODE NO.	FLO¥ (LPS)	ELEVATION (M)	H G L (N)	PRESSURE (X)
52	-0.990	19.00	36.66	17,66
53	-0.990	24.60	37.79	13.19
54	-0.990	26.00	38.61	12.61
55	-2,432	27.00	39.84	12,84
56	-1,482	30.52	40.61	10.09
-57	-4.452	31.80	41.81	10.01
58	-3.010	34.48	42.44	7.96
200 R	30.884	11.25	34.70	23.45
600 R	18.421	33.19	44.00	10.81
59	-3.010	32.20	40.15	7.95
700 R	30,993	14.06	36.70	22,64
800 R	41.790	11.00	34.70	23.70

Table 8-20 RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TANZA(con't)

Page 4 of 2005TAN1

1

TITLE	:	Naic Hater District
NO. OF PIPES	;	102
NO. OF NODES	:	73
PEAK FACTOR	1	2
NAX: HEADLOSS/Ka	:	10
NAX UNBAL (LPS)	1	.007

PIPE	FROM	TO	LENGTH	DIA	HWC	FLOW	VELOCITY	READLE	DSS
NO.	Node	Node	(8)	(88)		(LPS)	(MPS)	(M/KM)	(٢)
- 6	300	5	20.00	150	120	18,00		9.23	0.18
7	5	6	500,00	100	110	3.94	0.50	4.71	2.36
707	5	6	500.00	150	129	12.51	0.71	4.71	2.36
8	6	7 -	500.09	100	110	3,44	0.44	3.66	1,83
808	6	7	500.00	150	120	10.92	0.62	3.66	1.83
9	7	8	500.00	100	110		0.39	2.94	1.47
909	7	8	500.00	150	120	9.70	0.55	2.94	1.47
íØ	8	9	500.00	75	100	1.20	0,2710	2.51	1.25
<u>191</u>	8	9	500.00	150	120	8.90	0.50	2.51	1.25
11	9	10	500.00	75	100	0.84	0.19L0	1.29	0.65
111	9	10	500.00	150	120	6.21	0.35	1.29	0.65
12	10	11	500.00	75	100	0.41	0.0910	0.34	0.17
121	10	11	500.00	150	120	3,03	0.17L0	0.34	0.17
13.		11	50.00	200	130	35.00	1.11	6.71	0.34
14:		11	500.00	50	90	0.38	0.1910	2.62	1,31
151	13	iI	300.00	200	120	28.33	0.90	5.26	1.58
161	18	13	40.00	200	120	29.28	0.93	5.59	0,22
171	19	18	55.00	200	130	33,66	1.07	6.25	0.34
181	24	19	150.00	230	130	34.79	0.71	2.24	0.34
19	25	24	100.00	250	130	39.70	0.81	2.66	0.29
1900	97	25	400.00	150	130	21.33	1.21	10.90HI	4,36
2000	98	97	300.00	200	120	22.23	0.71	3.36	1.01
20	24	23	50.00	100	110	3,87	0.49	4.55	0.23
2í	23	22	50.00	50	90	0.88	0.45	12.47HI	0.62
22	22	21	50.00	50	90	0.40	0.21LO	2.96	0.15
23	20	21	50.00	50	- 90	0,68	0.35	7.74	0.39
24	23	20	50.00	75	100	2,19	0,50	7.69	0.38
25	19	20	50,00	50	90	0.57	0.29LD	5.53	0.28
25	20	17	55.00	75	100	1.61	0.35	4.35	0.24
27	18	17	50.00	100	110	3.39	0.43	3.55	0.18
28	17	16	50.00	50	90	0.54	0,27LO	4.98	0.25
29	21	15	50.00	50	90	0.32	0.16LO	1,96	0.10
30	16	15	50.00	50	90	0.28	0.14L0	1,54	0.03
31	14	15	50.00	50	90	0.38	0.19L0	2.58	0.13
32	17	14	50.00	100	110	3.61	0.46	3.99	0.20
33	14	12	50.00	100	110	2.67	0.34	2.29	0.11
34	11	25	320.00	250	130	69.05		7,96	2.55
35	25	27	335.00	250	130	67,92	1.38	7.72	2.59
36	27	48	220.00	250	130	53,82	1.10	5.02	1.10
37	27	28	60.00	150	120	13.17	0.75	5.18	0.31
38	28	29	120.00	75	100	1 45	0.33	3.60	0.42

Page 1 of NAICF2

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF NAIC(con't)

H3. Hoda (K) (KH) (LPS) (KPS) (M/KK) (K) 37 28 32 115.00 150 130 7.93 0.45 1.75 0.20 40 23 30 75.93 75 100 1.64 0.37 4.50 0.34 41 30 31 120.00 59 90 0.65 0.34 7.33 0.43 42 32 31 65.00 100 100 6.60 0.74 10.28HI 1.33 44 33 34 35.00 150 120 5.73 0.32 1.11 0.04 45 34 35 85.00 100 1.08 0.45 6.55 0.54 0.24 47 34 35 36.00 150 120 7.80 0.44 1.70 0.61 53 37 20.00 100 110 2.46 0.67 0.31 1.34 <tr< th=""><th>5165</th><th>FROM</th><th>TO</th><th>LENSTH</th><th>DIA</th><th>HWC</th><th>FLON</th><th>VELOCITY</th><th>HEADL</th><th>OSS</th></tr<>	5165	FROM	TO	LENSTH	DIA	HWC	FLON	VELOCITY	HEADL	OSS
40 23 30 75.00 75.100 1.64 0.37 4.50 0.34 41 30 31 120.00 50 90 0.40 0.2010 2.83 0.34 42 32 31 45.00 50 90 0.66 0.34 7.33 0.43 43 32 33 1300 100 110 6.00 0.76 $10.25H1$ 1.33 44 33 34 35.00 150 120 5.73 0.32 1.11 0.04 45 47 33 60.06 50 90 0.57 0.2710 5.51 0.33 46 34 35 85.00 100 110 3.00 0.33 2.64 0.244 47 34 53.800 75 100 1.78 0.45 6.55 0.241 48 35 360 50 90 0.33 0.1710 2.03 0.033 50 35 37 220.00 100 110 3.44 0.444 1.66 0.411 51 37 220.00 100 110 3.44 0.444 1.66 0.67 53 940 260.00 100 110 3.16 0.36 2.60 0.67 54 42 300.00 100 110 3.16 0.44 1.97 0.41 55 42 43 300.00 100 110 3.16 0.44 3.15	NQ.	Node	Node	(K):	(KM)		(LPS)	(MPS)	(M/XK)	(首)
40 23 30 75.00 75.100 1.64 0.37 4.50 0.34 41 30 31 120.00 50 90 0.40 0.2010 2.83 0.34 42 32 31 45.00 50 90 0.66 0.34 7.33 0.43 43 32 33 1300 100 110 6.00 0.76 $10.25H1$ 1.33 44 33 34 35.00 150 120 5.73 0.32 1.11 0.04 45 47 33 60.06 50 90 0.57 0.2710 5.51 0.33 46 34 35 85.00 100 110 3.00 0.33 2.64 0.244 47 34 53.800 75 100 1.78 0.45 6.55 0.241 48 35 360 50 90 0.33 0.1710 2.03 0.033 50 35 37 220.00 100 110 3.44 0.444 1.66 0.411 51 37 220.00 100 110 3.44 0.444 1.66 0.67 53 940 260.00 100 110 3.16 0.36 2.60 0.67 54 42 300.00 100 110 3.16 0.44 1.97 0.41 55 42 43 300.00 100 110 3.16 0.44 3.15			 7-1			(70		 A &S		
413031120.005090 0.43 $0.20L0$ 2.33 0.34 423231 65.00 5090 0.66 0.34 7.33 0.43 433233 130.00 100 110 6.00 0.74 $10.25HI$ 1.33 443334 35.00 150 120 5.73 0.32 1.11 0.04 454733 60.00 5090 0.57 $0.29L0$ 5.51 0.33 463435 85.00 100 110 3.00 0.38 2.84 0.244 473435 35.00 75 100 1.98 0.455 6.66 0.51 483535 40.00 5090 0.33 $0.17L0$ 2.03 0.03 503537 -220.00 100 110 3.44 0.44 3.66 0.21 513730.00150 120 7.80 0.44 1.97 0.64 5339 310.00 150 120 1.62 0.67 4.31 1.34 55 42 43 300.00 100 110 3.16 0.40 3.13 0.94 53 39 300.00 100 110 3.16 0.40 3.13 0.94 54 42 300.00 100 110 3.16 0.40 3.13 0.94 55 44 230.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
42 32 31 45.66 50 90 $0.6b$ 0.74 7.33 0.49 43 32 33 130.00 100 110 6.00 0.76 $10.25HI$ 1.33 44 33 34 35.00 150 120 5.73 0.32 1.11 0.04 45 47 34 35 85.00 100 110 3.00 0.32 2.84 0.24 47 34 35 86.00 50 90 0.37 0.2710 5.51 0.33 46 34 35 86.00 75 100 1.98 0.445 6.35 0.24 49 45 36 90.00 100 110 3.44 0.44 3.66 0.81 50 36 37 220.00 100 110 3.44 0.44 3.66 0.81 51 37 38 100.00 220 130 24.95 0.77 3.59 0.56 52 38 39 310.00 150 120 11.92 0.67 4.31 1.34 55 42 41 480.00 100 110 3.16 0.40 3.13 0.94 57 44 37 50.00 200 130 226.07 0.83 3.69 0.17 58 42 41 480.00 200 130 25.58 0.81 3.76 0.19 57 44 3										
433233130.00100110 6.00 0.76 $10.25HI$ 1.33 44333435.00150120 5.73 0.32 1.11 0.04 454733 60.00 5090 0.57 $0.29L0$ 5.51 0.33 46343585.00100110 3.00 0.33 2.84 0.24 47343538.0075100 1.98 0.45 6.35 0.24 483535 36 90.00100110 4.36 0.55 5.66 0.51 49453540.005090 0.33 $0.17L0$ 2.03 0.03 503537220.00100110 3.44 0.44 3.66 0.91 513780100.00200130 24.95 0.79 3.56 0.67 543842310.00150120 7.80 0.44 1.97 0.61 554241480.00100110 3.15 0.41 3.13 0.94 57443750.00100110 3.16 0.40 3.13 0.94 57443750.00100130 26.07 0.33 3.67 0.17 5845450.0020013025.06 0.35 7.86 0.97 59664420.00										
44333435.00150120 5.73 0.32 1.11 0.04 45 47 33 60.00 5090 0.57 $0.29L0$ 5.51 0.33 46 34 35 85.00 75 100 1.98 0.45 6.35 0.24 47 34 35 38.00 75 100 1.98 0.45 6.35 0.24 48 35 35 90.00 100 110 4.36 0.55 5.66 0.51 49 45 36 40.00 50 90 0.33 $0.17L0$ 2.03 0.03 50 35 37 -220.00 100 110 3.44 0.44 1.97 0.56 52 38 100.00 150 120 7.80 0.444 1.97 0.64 53 39 40 260.00 100 110 3.26 0.44 1.97 0.64 54 42 43 300.00 150 120 11.92 0.67 4.31 1.34 55 42 41 460.00 100 110 3.16 0.40 3.13 0.94 57 44 270.00 150 24.18 0.77 3.37 0.20 56 44 250.00 100 110 3.10 0.40 7.66 0.79 58 45 42 250.00 130 25.58 0.81 3.76										
454733 60.00 5090 0.57 $0.29L0$ 5.51 0.33 463435 85.00 100110 3.00 0.38 2.84 0.24 47343538.0075100 1.98 0.45 6.35 0.24 483538.40.005090 0.33 $0.17L0$ 2.03 0.03 503637 -220.00 100110 3.44 0.44 3.66 0.81 513738100.00200130 24.95 0.77 3.59 0.35 523839310.00150120 7.80 0.44 1.97 0.61 533740260.00100110 3.26 0.44 1.97 0.61 533842310.00150120 11.92 0.67 4.31 1.34 554241480.00100110 3.16 0.40 3.13 0.94 57443750.0020013026.07 0.83 3.69 0.97 584544230.00100110 3.16 0.40 9.66 9.97 52464450.0020013024.18 0.77 3.39 0.20 59664460.005090 0.38 0.40 9.66 9.97 52466530.00200130 <td></td>										
46 34 35 85.00 100 110 3.00 0.36 2.84 0.24 47 34 35 38.00 75 100 1.98 0.45 6.35 0.24 48 35 36 90.00 100 110 4.44 0.55 5.66 0.93 49 45 36 40.00 50 90 0.33 $0.17L0$ 2.03 0.93 50 35 37 220.00 100 110 3.44 0.44 3.66 0.81 51 37 38 100.00 220 130 24.95 0.79 3.59 0.36 52 38 39 310.00 150 120 7.80 0.444 1.97 0.647 53 39 40 260.00 100 110 3.26 0.57 4.31 1.34 55 42 41 480.00 100 110 3.16 0.40 3.11 0.94 57 44 37 50.00 200 130 26.07 0.83 3.89 0.19 58 45 44 230.00 200 130 24.18 0.77 3.59 0.28 56 47 230.00 200 130 25.58 0.81 3.76 0.28 56 44 50.00 100 110 3.91 0.55 5.77 0.38 66 44 50.00 100 110 <										
47343538.00751001.980.456.350.2448353690.001001104.340.555.660.5149453640.0050900.330.17L02.030.03503537-220.001001103.440.443.660.81513738100.0020013024.950.793.590.36523839310.001501207.800.441.970.61533740260.001001102.2650.352.600.67543842310.0015012011.920.614.311.34554241480.001001103.160.403.130.9457443750.0020013026.070.833.890.19584544230.001001103.100.373.010.6959664460.0020013025.880.813.760.82616567100.0050900.780.409.860.976246650.001001103.160.407.850.2864450.001001103.910.565.770.33644565.00100110										
43 35 36 90.00 100 110 4.34 0.55 5.45 0.51 49 45 38 40.00 50 90 0.33 $0.17L0$ 2.03 0.03 50 35 37 220.00 100 110 3.44 0.44 3.66 0.81 51 37 38 100.00 230 120 7.80 0.44 1.77 0.61 52 38 39 310.00 150 120 7.80 0.44 1.77 0.61 53 39 40 260.00 100 110 3.25 0.41 3.29 1.58 54 42 310.00 150 120 11.92 0.67 4.31 1.34 55 42 41 480.00 100 110 3.16 0.40 3.15 0.94 57 44 37 50.00 200 130 26.07 0.83 3.29 0.15 58 44 230.00 100 110 3.10 0.35 7.86 0.28 58 44 230.00 200 130 25.58 0.81 3.76 0.66 56 47 100.00 50 90 0.45 0.35 7.85 0.28 66 44 60.00 200 130 25.58 0.81 3.76 0.66 64 45 65.00 100 110 3.91 0.55 5.77 <										
49453640.005090 0.33 $0.17L0$ 2.03 0.03 503537.220.00100110 3.44 0.44 3.56 0.21 513738100.0020013024.95 0.79 3.59 0.36 523839310.00150120 7.80 0.44 1.97 0.61 533940260.00100110 2.86 0.55 2.60 0.67 543842310.00150120 11.92 0.67 6.31 1.34 554241480.00100110 3.16 0.40 3.13 0.94 57443750.0020013026.07 0.83 3.69 0.169 58664460.0020013024.18 0.77 3.39 0.20 666453.005090 0.68 0.35 7.66 0.28 616567100.005090 0.73 0.40 9.66 0.97 624666230.0020013025.58 0.81 3.76 0.66 63464565.00100110 3.91 0.50 4.63 0.23 64474610.0015012013.33 1.05 6.05 6.77 646550.00100110 3.91 $0.$										
503637 \cdot 220.00100110 \cdot 3.44 \cdot 0.44 \cdot 3.56 \cdot 0.81513738100.0020013024.95 \cdot 0.79 \cdot 3.57 \cdot 0.35523839310.00150120 7.80 \cdot 0.44 1.97 \cdot 0.61533940260.00100110 2.86 \cdot 0.35 2.60 \cdot 0.67543842310.00150120 11.92 \cdot 0.67 4.31 $i.34$ 554241480.00100110 3.16 0.40 3.13 0.94 57443750.0020013026.07 0.83 3.69 0.19 584544230.00100110 3.10 0.37 7.35 0.20 60666535.005090 0.78 0.43 7.86 0.28 616567100.005090 0.78 0.40 7.66 0.97 624666230.0020013033.08 1.05 6.05 6.77 63464565.00100110 3.15 1.25 8.26 0.41 644748110.00150120 13.65 0.77 5.33 0.61 644745110.00100110 3.96 0.77 5.33 0.61 65464710										
51 37 38 100.00 200 130 24.95 0.79 3.59 0.36 52 38 39 310.00 150 120 7.80 0.44 1.97 0.61 53 39 40 260.00 100 110 2.86 0.35 2.60 0.67 54 38 42 310.00 150 120 11.92 0.67 4.31 1.34 55 42 41 480.00 100 110 3.15 0.41 3.29 1.58 56 42 43 300.00 100 110 3.16 0.40 3.15 0.94 57 44 37 50.00 200 130 24.18 0.77 3.39 0.20 66 64 45 50.00 200 130 24.18 0.77 3.39 0.20 66 64 53.00 50 90 0.78 0.40 9.86 0.97 62 46 66 230.00 200 130 25.58 0.81 3.76 0.86 63 44 45 100.00 50 90 0.73 0.40 9.86 0.47 64 45 51.00 100 110 3.106 1.05 5.77 0.38 64 47 50.00 200 130 37.05 1.05 6.67 63 46 45 51.00 100 110 3.75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
52 32 32 39 $310,00$ 150 120 $7,80$ 0.44 1.97 0.61 53 39 40 $260,00$ 100 110 2.86 0.35 2.60 0.67 54 38 42 $310,00$ 150 120 11.92 0.67 4.31 1.34 55 42 41 $480,00$ 100 110 3.25 0.41 3.29 1.58 54 42 43 $300,00$ 100 110 3.16 0.40 3.13 0.94 57 44 37 50.00 200 130 26.07 0.83 3.69 0.169 58 45 44 $230,00$ 200 130 24.18 0.77 3.39 0.20 60 66 65 35.00 50 90 0.469 0.35 7.86 0.28 61 65 67 $100,00$ 50 90 0.76 0.40 9.86 0.97 62 46 66 $230,00$ 200 130 $32,15$ 0.81 3.76 0.667 63 46 45 65.00 100 110 4.40 0.56 5.77 0.33 64 47 50.00 200 130 $39,15$ 1.25 8.26 0.411 64 45 10.00 100 110 3.75 0.48 4.29 0.43 64 45 10.00 100 <										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
54 58 42 310.00 150 120 11.92 0.67 4.31 1.34 55 42 41 480.00 100 110 3.25 0.41 3.29 1.58 54 42 43 300.00 100 110 3.16 0.40 3.13 0.94 57 44 37 50.00 200 130 26.07 0.83 3.69 0.19 58 45 44 230.00 100 110 3.10 0.39 3.01 0.69 59 66 44 80.00 200 130 24.18 0.77 3.39 0.20 60 66 65 35.00 50 90 0.78 0.40 9.66 0.97 62 46 65 230.00 200 130 25.58 0.81 3.76 0.86 64 47 50.00 200 130 33.08 1.05 6.05 0.67 62 46 65.00 200 130 33.08 1.05 6.05 0.67 63 46 45 50.00 200 130 33.08 1.05 6.05 0.47 64 47 50.00 200 130 37.15 1.25 8.26 0.41 64 47 50.00 200 130 37.15 1.25 8.26 0.41 64 47 50.00 100 110 3.75 0.48 </td <td></td>										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
56 42 43 300.00 100 110 3.16 0.40 3.13 0.94 57 44 37 50.00 200 130 26.07 0.83 3.69 0.19 58 45 44 230.00 100 110 3.10 0.39 3.01 0.69 59 66 44 60.00 200 130 24.18 0.77 3.39 0.20 60 66 65 35.00 50 90 0.78 0.40 7.86 0.77 62 46 66 230.00 200 130 25.58 0.81 3.76 0.86 63 46 45 65.00 100 110 4.40 0.56 5.77 0.38 64 47 50.00 200 130 33.08 1.05 6.05 0.67 63 46 45 65.00 100 110 4.40 0.56 5.77 0.38 64 47 50.00 200 130 33.08 1.05 6.05 0.61 63 48 47 50.00 200 130 37.6 0.48 4.22 0.41 64 47 50.00 100 110 3.75 0.48 4.27 0.43 64 47 50.00 100 110 3.75 0.48 4.27 0.43 64 45 100.00 100 110 3.76 0.48 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
88 45 44 230.00 100 110 3.10 0.39 3.01 0.69 59 66 44 60.00 200 130 24.18 0.77 3.39 0.20 60 64 65 35.00 50 90 0.69 0.35 7.86 0.28 61 65 67 100.00 50 90 0.78 0.40 9.86 0.97 62 46 66 230.00 200 130 25.58 0.81 3.76 0.86 63 46 45 65.00 100 110 4.40 0.56 5.77 0.33 64 47 45 110.09 200 130 33.08 1.05 6.05 0.67 65 48 47 50.00 200 130 37.15 1.25 8.26 0.41 64 48 49 110.00 150 120 13.45 0.77 5.33 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 68 47 55 50.00 100 110 3.75 0.48 4.27 0.43 67 55 55 120.00 100 110 3.75 0.48 4.27 0.43 70 45 55 30.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00										
59 66 44 $60,00$ 200 130 24.18 0.77 3.39 0.20 60 66 65 35.00 50 90 0.69 0.35 7.86 0.28 61 65 67 100.00 50 90 0.73 0.40 9.86 0.97 62 46 66 230.00 200 130 25.58 0.81 3.76 0.86 63 46 45 65.00 100 110 4.40 0.56 5.77 0.38 64 47 45 110.00 200 130 33.08 1.05 6.05 0.67 65 48 47 50.00 200 130 37.15 1.25 8.26 0.41 64 48 49 110.00 150 120 13.45 0.77 5.33 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 68 47 55 50.00 100 110 3.75 0.48 4.27 0.43 69 55 55 120.00 100 110 3.75 0.48 4.27 0.43 70 48 55 30.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 50 90 0.24 $0.12L0$ 1.65 0.67 70 45 50.00 50 <										
60 66 65 35.00 50 90 0.49 0.35 7.86 0.28 61 65 67 100.00 50 90 0.73 0.40 9.86 0.97 62 46 66 230.00 200 130 25.58 0.81 3.76 0.86 63 46 45 65.00 100 110 4.40 0.56 5.77 0.33 64 47 45 110.00 200 130 33.08 1.05 6.05 0.67 65 48 47 50.00 200 130 39.15 1.25 8.26 0.41 66 48 49 110.00 150 120 13.65 0.77 5.53 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 68 47 55 50.00 100 110 3.75 0.48 4.29 6.43 69 55 56 120.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.32 0.30 1.86 0.17 73 64 63 65.00 50 90 0.24 0.1210 1.12 0.07 75 62 68 75.00										
δ_1 δ_5 δ_7 $100,00$ 50 90 0.73 0.40 9.66 0.97 δ_2 46 66 $230,00$ 200 130 $25,58$ 0.81 3.76 0.86 δ_3 46 45 65.00 100 110 4.40 0.56 5.77 0.33 64 47 46 $110,00$ 200 130 33.08 1.05 6.05 0.67 65 48 47 50.00 200 130 39.15 1.25 8.26 0.41 64 49 110.00 150 120 13.65 0.77 5.53 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 68 47 55 100.00 100 110 3.91 0.50 4.63 0.23 69 55 56 120.00 100 110 3.85 0.49 4.50 0.54 70 45 55 30.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 50 90 0.64 0.32 6.83 0.64 72 64 65 100.00 50 90 0.29 0.1510 1.65 0.07 73 64 63 65.00 50 90 0.29 0.1510 1.63 0.05 72 64 65 100.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
62 46 66 230.00 200 130 25.58 0.81 3.76 0.86 63 46 45 65.00 100 110 4.40 0.56 5.77 0.33 64 47 46 110.00 200 130 33.08 1.05 6.05 0.67 65 48 47 50.00 200 130 39.15 1.25 8.26 0.41 66 48 49 110.00 150 120 13.65 0.77 5.53 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 69 47 55 100.00 100 110 3.75 0.48 4.29 0.43 69 55 56 120.00 100 110 3.85 0.49 4.50 0.54 70 48 55 30.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 65 100.00 50 90 0.29 0.1516 1.63 0.05 72 64 65 00.05 50 90 0.29 0.1516 1.63 0.05 75 62 68 60					50					
64 47 46 110.00 200 130 33.08 1.05 6.05 0.67 65 48 47 50.00 200 130 39.15 1.25 8.26 0.41 66 43 49 110.00 150 120 13.65 0.77 5.53 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 69 47 55 100.00 100 110 3.75 0.48 4.29 0.43 69 55 56 120.00 100 110 3.85 0.49 4.50 0.54 70 48 56 80.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 65.00 50 90 0.29 0.1516 1.63 0.05 75 62 68 60.00 50 90 0.54 0.2710 4.99 0.37 77 57 63 155.00 50 90 0.53 0.2910 5.67 0.63 79 54 57 $80.$										
65 48 47 50.00 200 130 39.15 1.25 8.26 0.41 66 48 49 110.00 150 120 13.65 0.77 5.53 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 69 47 55 100.00 100 110 3.75 0.48 4.27 0.43 69 55 55 120.00 100 110 3.85 0.49 4.50 0.54 70 45 56 80.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 65.00 50 90 0.29 0.1510 1.63 0.05 75 62 68 60.00 50 90 0.24 0.1210 1.12 0.07 76 65 62 75.00 50 90 0.54 0.2710 4.97 0.37 77 57 63 155.00 50 90 0.58 0.2910 5.67 0.83 79 56 57 80.00 50 90 0.58 0.2910 5.67 0.83 79 55 54 75.00										
66 48 49 110.00 150 120 13.65 0.77 5.53 0.61 67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 69 47 55 100.00 100 110 3.75 0.48 4.29 6.43 69 55 56 120.00 100 110 3.85 0.49 4.50 0.54 70 45 55 80.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 65.00 50 90 0.29 0.1510 1.63 0.05 75 62 68 60.00 50 90 0.24 0.1210 1.12 0.07 76 65 68 75.00 50 90 0.58 0.2910 5.67 0.83 79 56 57 80.00 50 90 0.58 0.2910 5.67 0.83 79 56 57 80.00 50 90 0.37 0.1910 2.55 0.20 79 54 57 110.00 100 110 3.78 0.51 4.78 0.24 82 49 50 70.00 <										
67 49 55 50.00 100 110 3.91 0.50 4.63 0.23 68 47 55 100.00 100 110 3.75 0.48 4.27 0.43 69 55 56 120.00 100 110 3.85 0.49 4.50 0.54 70 46 55 80.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 65.00 50 90 0.29 0.1510 1.63 0.05 75 62 68 60.00 50 90 0.24 0.1210 1.12 0.07 76 65 69 75.00 50 90 0.54 0.2710 4.99 0.37 77 57 63 155.00 50 90 0.54 0.2710 4.99 0.37 77 57 63 155.00 50 90 0.53 0.2910 5.67 0.83 79 54 57 110.00 100 110 2.63 0.34 2.23 0.17 80 55 54 75.00 100 110 2.63 0.34 2.23 0.17 80 55 54 75.00 <										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
70 45 56 80.00 75 100 1.51 0.34 3.84 0.31 71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 65.00 50 90 0.64 0.32 6.83 0.64 74 63 62 30.00 50 90 0.29 0.1510 1.63 0.05 75 62 68 60.00 50 90 0.24 0.1210 1.12 0.07 76 65 68 75.00 50 90 0.54 0.2710 4.99 0.37 77 57 63 155.00 50 90 0.58 0.2910 5.67 0.83 79 56 57 80.00 50 90 0.37 0.1910 2.56 0.20 79 54 57 110.00 100 110 3.98 0.51 4.78 0.24 82 49 50 70.00 150 120 8.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.32 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 <										
71 56 64 150.00 100 110 3.76 0.48 4.30 0.65 72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 55.00 50 90 0.64 0.32 6.83 0.44 74 63 62 30.00 50 90 0.29 0.1510 1.63 0.05 75 62 68 60.00 50 90 0.24 0.1210 1.12 0.07 76 65 68 75.00 50 90 0.54 0.2710 4.99 0.37 77 57 63 155.00 50 90 0.58 0.2910 5.67 0.83 79 56 57 80.00 50 90 0.37 0.1910 2.56 0.20 79 54 57 110.00 100 110 4.17 0.53 5.22 0.37 80 55 54 75.00 100 110 3.98 0.51 4.78 0.24 82 49 50 70.00 150 120 8.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.32 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00										
72 64 65 100.00 100 110 2.38 0.30 1.86 0.17 73 64 63 65.00 50 90 0.64 0.32 6.83 0.44 74 63 62 30.00 50 90 0.29 0.1510 1.63 0.05 75 62 68 60.00 50 90 0.24 0.1210 1.12 0.07 76 65 68 75.00 50 90 0.54 0.2710 4.99 0.37 77 57 63 155.00 50 90 0.58 0.2910 5.67 0.83 79 56 57 80.00 50 90 0.37 0.1910 2.56 0.20 79 54 57 110.00 100 110 2.63 0.34 2.23 0.17 81 50 54 75.00 100 110 3.98 0.51 4.78 0.24 82 49 50 70.00 150 120 6.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.33 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 $0.201.0$ 2.88 0.13										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
77 57 63 155.00 50 90 0.58 0.29L0 5.67 0.83 79 56 57 80.00 50 90 0.37 0.19L0 2.56 0.20 79 54 57 110.00 100 110 4.17 0.53 5.22 0.37 90 35 54 75.00 100 110 2.63 0.34 2.23 0.17 81 50 54 50.00 100 110 3.98 0.51 4.78 0.24 82 49 50 70.00 150 120 8.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.33 84 51 52 60.00 75 100 1.83 0.43 5.77 0.35 85 53 52 45.00 50 90 0.40 0.20L0										
72 56 57 80.00 50 90 0.37 0.19L0 2.55 0.20 79 54 57 110.00 100 110 4.17 0.53 5.22 0.37 80 55 54 75.00 100 110 2.63 0.34 2.23 0.17 81 50 54 50.00 100 110 3.98 0.51 4.78 0.24 82 49 50 70.00 150 120 8.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.33 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.20L0 2.88 0.13										
79 54 57 110.00 100 110 4.17 0.53 5.22 0.37 80 55 54 75.00 100 110 2.63 0.34 2.23 0.17 81 50 54 50.00 100 110 3.78 0.51 4.78 0.24 82 49 50 70.00 150 120 8.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.32 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.20L0 2.88 0.13				80.00						0.20
80 55 54 75.00 100 110 2.63 0.34 2.23 0.17 81 50 54 50.00 100 110 3.78 0.51 4.78 0.24 82 49 50 70.00 150 120 6.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.33 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.2010 2.88 0.13										0.57
81 50 54 50.00 100 110 3.78 0.51 4.78 0.24 82 49 50 70.00 150 120 6.40 0.48 2.26 0.15 83 50 51 110.00 100 110 3.35 0.43 3.49 0.33 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.2010 2.88 0.13										0.17
82 49 50 70.00 150 120 8.40 0.48 2.25 0.15 83 50 51 110.00 100 110 3.35 0.43 3.48 0.33 84 51 52 60.00 75 100 1.89 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.2010 2.88 0.13										0.24
83 50 51 110.00 100 110 3.35 0.43 3.48 0.33 84 51 52 60.00 75 100 1.83 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.2010 2.88 0.13										
84 51 52 60.00 75 100 1.88 0.43 5.79 0.35 85 53 52 45.00 50 90 0.40 0.20L0 2.88 0.13								0.43		0.38
85 53 52 45.00 50 90 0.40 0.20L0 2.88 0.13									5.79	0.35
85 54 53 80.00 75 100 1.66 0.39 4.61 0.37	85			45.00	50	- 90	0.40	0.2010	2,88	
	88	54	53	80.00	75	100	1.66	0.39	4.61	0.37

Page 2 of NAICF2

8-57

.

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF NAIC(con't)

2419	FROM	TÐ	LENSTH	91A	H¥C	FLOW	VELOCITY	HEAD	LOSS
NO.	Node	Node	(11)	(MK)		(LPS)	(XPS)	(K/XX)	(X)
87	53	58	155.00	50	50	0.34	0.17L0	2,15	0.33
88	57	58	50.00	100	110	2,86	0.35	2.59	0,13
89	58	62	150.00	50	90	0.56	0.28L0	5,32	0.80
90	63	62	80.00	50	90	0.17	0.09L0	0.61	0.05
91	60	61	140.00	50	90	0.69	0.35	7.85	1.10
92	59	60	160.00	75	100	1.65	0.37	4.54	0.73
93	58	59	50.00	75	100	1.30	0.2910	2.94	0.15
94	52	59	130.00	75	100	1.22	0.28L0	2.61	0.34
95	80	25	460.00	200	130	19.22	0.61	2.21	1.02
96	400	80	50.00	200	130	20.00	0.64	2.38	0.12
97	1000	5	50.00	200	130	1.12	0.04LO	0.01	0.00
98	500	9 8	10.00	200	130	22,00	0.70	2.84	0.03
99	2000	98	20.00	200	130	1.01	0.03L0	0.01	0.00
	NO. 87 88 89 90 91 92 93 94 95 95 96 97 98	NO. Node 87 53 88 57 89 58 90 63 91 60 92 59 93 58 94 52 95 80 96 400 97 1000 98 500	NO. Node Node 87 53 58 82 57 58 89 58 62 90 63 62 91 60 61 92 59 60 93 58 59 94 52 59 95 80 25 96 400 80 97 1000 5 98 500 78	NO. Node Node Node (H) 87 53 58 155.00 88 57 58 50.00 89 58 62 150.00 90 63 62 60.00 91 60 81 140.00 92 59 60 160.00 93 58 59 50.00 94 52 59 130.00 95 80 25 460.00 96 400 80 50.00 97 1000 5 50.00 98 500 98 10.00	NO. Node Nade (H) (HM) 87 53 58 155.00 50 88 57 58 50.00 100 89 58 62 150.00 50 90 63 62 60.00 50 91 60 61 140.00 50 92 59 60 160.00 75 93 58 59 50.00 75 94 52 59 130.00 75 95 80 25 460.00 200 96 400 80 50.00 200 97 1000 5 50.00 200 98 500 98 10.00 200	NO. Node Node Node (K) (MM) 87 53 58 155.00 50 90 85 57 58 50.00 100 110 87 58 62 150.00 50 90 90 63 62 60.00 50 90 91 60 81 140.00 50 90 92 59 60 160.00 75 100 93 58 59 50.00 75 100 94 52 59 130.00 75 100 95 80 25 460.00 200 130 96 400 80 50.00 200 130 97 1000 5 50.00 200 130 98 500 98 10.00 200 130	NO. Node Node Node (M) (LPS) 87 53 58 155.00 50 90 0.34 85 57 53 50.00 100 110 2.86 87 58 62 150.00 50 90 0.56 90 63 62 60.00 50 90 0.17 91 60 61 140.00 50 90 0.69 92 59 60 160.00 75 100 1.45 93 58 59 50.00 75 100 1.22 95 80 25 460.00 200 130 19.22 96 400 80 50.00 200 130 1.12 98 500 98 10.00 200 130 22.00	NO. Node Node <thn< td=""><td>NO. Node Node (H) (MK) (LPS) (MFS) (K/KM) 87 53 58 155.00 50 90 0.34 0.17L9 2.15 86 57 58 50.00 100 110 2.86 0.36 2.57 87 58 62 150.00 50 90 0.56 0.28L0 5.32 90 63 62 60.00 50 90 0.17 0.09L0 0.61 91 60 61 140.00 50 90 0.67 0.35 7.35 92 59 60 160.00 75 100 1.45 0.37 4.54 93 58 59 50.00 75 100 1.22 0.28L0 2.61 94 52 59 130.00 75 100 1.22 0.61 2.21 96 400 80 50.00 200 130 1.12</td></thn<>	NO. Node Node (H) (MK) (LPS) (MFS) (K/KM) 87 53 58 155.00 50 90 0.34 0.17L9 2.15 86 57 58 50.00 100 110 2.86 0.36 2.57 87 58 62 150.00 50 90 0.56 0.28L0 5.32 90 63 62 60.00 50 90 0.17 0.09L0 0.61 91 60 61 140.00 50 90 0.67 0.35 7.35 92 59 60 160.00 75 100 1.45 0.37 4.54 93 58 59 50.00 75 100 1.22 0.28L0 2.61 94 52 59 130.00 75 100 1.22 0.61 2.21 96 400 80 50.00 200 130 1.12

10

27 - S

NODE NO.	FLOW (LPS)	ELEVATION (M)	86L (M)	PRESSURE (M)
5	-2,666	30.00	40.00	10.00
6	-2.098	28.00	37.64	9,64
7	-1,602	22.00	35.81	13.81
8	-2.666	20.00	34.34	14.34
9	-3.044	19.00	33.09	14.09
10	-3,610	12.00	32.44	20.44
11	1.908	11.00	32.27	21.27
12	-2:290	10.00	33,58	23.58
13	-0.954	14.00	33.85	19.85
14	-0.560	14.00	33.70	19.70
15	-0.550	14.00	33.57	19.57
16	-0.576	14.00	33.64	19.64
17	-0.856	14.00	33,90	19.90
18	-0,995	14.00	34.07	20.07
19	-0.552	14.00	34.42	20.42
20	-0.466	14.00	34.14	20.14
21	-0.762	14.00	33.74	19.74
22	-0,476	14.00	33.89	19.89
23	-0.798	14.00	34.52	20.52
24	-1.034	14.00	34.75	20.75
25	-0.855	16.00	35.04	19.04
26	-1,134	7.00	29.73	22.73
27	-0.922	9.00	27.14	18.14
28	-2.150	10.00	26.83	16.83
29	-1,454	10.00	26,40	16.40
30	-1.245	7.00	26.49	19.49
31	-1.056	6.00	26.15	20.15
32	-1.264	10.00	26.63	16.63
33	-0.942	9.00	25.29	16.29
34	-0.754	8.00	25.25	17.25

Page 3 of NAICF2

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF NAIC(con't)

TITLE : Naic Water District NO. OF PIPES : 5 NO. OF NODES : 6 PEAK FACTOR : 1.3 MAX HEADLOSS/Ka : 10

٠.

	PIPE	FROM	10	LENGTH	DIA	HMC	FLOW	VELOCITY	HEADL	.055
NG.	liode	Node	(#)	(MM)		(LPS)	(KPS)	(M/KM)	(11)	
	1	100	1	4550.00	200	130	4,59	0.15L0	0.16	0.71
	2	i	2	550.00	150	120	4.56	0.26LO	0.73	0.40
	3	2	3	550.00	150	120	4.47	0.25L0	0.70	0.39
	ş	3	4	360.00	100	110	2.95	0.38	2.75	0.99
	5	4	5	360.00	100	110	1.25	0.16LO	0.55	0.20

NODE NO.	FLOX (LPS)	ELEVATION (M)	H G L (M)	PRESSURE (M)
1	-0.023	43.00	56.29	13.29
2	-0.095	43.00	55.89	12.89
3	-1.521	42.00	55.50	13.50
4	-1,695	39.00	54.51	15.51
5	-1.252	30.00	54.31	24.31
100 R	4.585	57.00	57.00	0.00

Page 1 of NAICEBAN

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF NAIC(con't)

<u>م</u>

NODE	FLOW	ELEVATION	H G L	PRESSURE
NC.	(LPS)	(ド)	(8)	(٢)
35	-0.618	7.00	25.01	18.01
36	-1,246	5.00	24,50	18.50
37	-4.552	8.00	23.70	15.70
38	-5.224	8.00	23.34	15.34
39	-4,944	11.00	22.73	11.73
4 0	-2,859	9.00	22.05	13,05
41	-3.250	8.00	20.42	12.42
42	-5.510	8.00	22.00	14.00
43	-3,162	8.00	21.06	13.06
44	-1,206	8.00	23.89	15.89
45	-0.976	9.00	24.58	15.58
46	-1.590	9.00	24.96	15.95
47	-1.758	7.00	25.62	18.62
48	-1.020	5.00	26.04	21.04
49	-1.338	6.00	25.43	19,43
50	-1.076	6.00	25.27	19.27
51	-1.472	5.00	24.89	19.89
52	-1.056	8,00	24.54	16.54
53	-0.922	8.00	24.55	16.66
54	-0.778	9.00	25,03	16.03
55	-1.175	5.00	25.19	15.19
56	-1.224	7.00	24.65	15.65
57	-1,114	8.00	24.45	16.45
58	-1.338	7.00	24.32	17,32
59	-0.875	7.00	24.20	17.20
50	-0,962	6.00	23.47	17.47
óİ	-0.686	7.00	22.37	15.37
62	-0.782	6.00	23.51	17.51
63	-0,746	7.00	23,56	16.56
64	-0,736	7.00	24.09	17.00
65	-1.758	5.00	23.82	18.82
<u>65</u>	-0.716	7.00	24.09	17.09
67	-0.775	7.00	22.83	15.83
88	-0.775	5.00	23.44	18,44
80	-0.782	16.00	36.06	20.06
97	-0,900	18.00	39.40	21.40
98	-0.780	20.45	40,41	19.96
200	35.000	10.00	32.61	22.61
300	18,000	30.00	40.18	10.18
400	20,000	16.00	36.18	20.18
500	22.000	20.41	40.44	20.03
1000 R	1,124	30.00	40.00	10.00
2000 R	1.014	20.41	40.41	20.00

Page 4 of NAICF2

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF MENDEZ

T I T L E : MENDEZ WATER DISTRICT (Peak-Hour) NO. OF PIPES : 73 NO. OF NODES : 54 PEAK FACTOR : 2.00 MAX. HL/1000 : 10.00 MAX. UNBALANCE : 0.0008

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PIPE	FROM	TO	LENGTH	DIAM	HXC	FLOW	VELOCITY	HEADL	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			NODE	(M)	(MM)		(L/S)	(M/S)	(#/1000)	()
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
4 3 4 710.00 150 110 5.40 0.31 1.15 0.82 5 4 5 300.00 159 110 5.40 0.31 1.15 0.35 6 5 6 400.00 83 90 2.58 0.83 29.08H1 11.63 8 7 300.00 150 110 3.88 0.22 0.62 0.12 10 9 200.00 150 110 8.87 1.05 11.34H1 2.22 11 0 14 46.00 150 110 24.37 1.38 18.76H1 0.75 12 11 0 14 40.00 150 110 23.381 1.35 17.97H1 2.52 13 12 13 160.00 100 110 5.24 0.92 14.37H1 2.30 14 12 14 240.00 150 110 25.24 0.67 7.85 <td></td>										
545300.001501105.400.311.150.35656400.0063904.181.3471.06HI28.42767400.0063902.580.8329.08HI11.63878300.00501001.540.7828.35HI8.51919200.001501106.450.361.600.0611091040.001501106.450.361.600.06110914460.0015011024.371.3517.77HI2.521312140.0015011024.371.3517.77HI2.52131315110.001001105.700.739.181.0116141589.001001105.240.667.671.89131315110.001001105.740.677.850.37141214240.001501108.141.0417.76HI1.4217151645.001001105.240.677.850.3718161750.001001105.480.708.530.8120151995.001001105.480.708.530.8121162060.005										
		Ę.								
767400.00 63 90 2.58 0.83 $29.08HI$ 11.63 878300.0050100 1.54 0.78 $23.38HI$ 8.51 919200.00150110 3.88 0.22 0.62 0.12 10910 40.00 150110 8.45 0.36 1.60 0.06 110914 46.00 150110 24.37 1.38 $18.76HI$ 0.75 121112140.00150110 23.81 1.35 $17.97HI$ 2.52 131213160.00100110 7.26 0.92 $14.37HI$ 2.30 141214 240.00 150110 15.24 0.86 7.67 1.89 151315110.00100110 7.43 0.95 $14.97HI$ 0.67 181617 50.00 100110 5.24 0.67 7.85 0.39 191418100.00150110 24.25 1.37 $18.59HI$ 1.86 201517 75.00 100110 5.48 0.70 8.53 0.81 211620 60.00 5090 0.52 0.27 4.66 0.37 241920 60.00 50100 1.97 $42.21HI$ 2.52 251822160.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>28.42</td></th<>										28.42
878300.00501001.540.7823.36HI8.51919200.001501103.880.220.620.1210914460.001501106.450.361.600.06110914460.0015011018.571.0511.34HI5.2211101140.0015011023.811.3517.97HI2.52131213160.001001107.260.9214.37HI2.30141214240.0015011015.240.867.871.89151315110.001001105.790.739.181.0116141580.001001107.430.9514.97HI1.4217151645.001001107.430.9514.97HI1.4618161750.001001105.240.677.850.37191416100.0050901.770.9044.44HI2.67221725260.00751004.541.0327.14HI7.582318190.0015011024.251.3117.17HI2.7524192060.0050901.770.9044.44HI2.672217 <t< td=""><td></td><td></td><td></td><td>400.00</td><td></td><td>90 -</td><td>2.58</td><td>0.83</td><td>29.08HI</td><td>11.63</td></t<>				400.00		90 -	2.58	0.83	29.08HI	11.63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8		8	300.00	50	100	1.54	0.78	28.36HI	8,51
110914460.0015011018.571.0511.34HI5.2211101140.0015011024.371.3818.76HI0.75121112140.0015011023.811.3517.77HI2.52131213160.001001107.260.9214.37HI2.30141214240.0015011015.240.867.671.69151315110.001001105.700.739.181.0116141580.001001105.740.677.850.3718161750.001001105.240.677.850.37191418100.0015011024.251.3718.59HI1.8620151995.001001105.480.708.530.8121162060.0050901.770.9044.44HI2.67221725260.00751004.541.0329.14HI7.5823181990.0050900.520.274.660.3724192060.00501001.9742.2HI2.53251923160.0063903.100.9940.74HI6.52272024 <t< td=""><td>9</td><td></td><td>9</td><td>200.00</td><td>150</td><td></td><td>3,88</td><td></td><td></td><td></td></t<>	9		9	200.00	150		3,88			
11101140,0015011024.371.3818.76HI0.75121112140,0015011023.811.3517.97HI2.52131213160,001001107.260.9214.37KI2.30141214240,0015011015.240.867.671.87151315110.001001105.700.739.181.0116141580.001001107.430.9514.97HI0.6718161750.001001105.240.677.850.37191418100.0015011024.251.3718.59HI1.8620151795.001001105.480.708.530.8121162060.0050901.770.9044.44HI2.67221725260.00751004.541.0327.14HI7.5823181980.0050903.100.9742.21HI2.5324192060.00501001.910.9742.21HI2.53251922160.0015011023.231.3117.17HI2.75261923160.0063903.651.1755.31HI4.5227				40,00						
121112140.0015011023.811.3517.97HI2.52131213160.001001107.260.9214.37HI2.30141214240.0015011015.240.867.671.89151315110.001001105.700.739.181.0116141580.001001108.141.0417.76HI1.4217151645.001001105.240.677.850.3718161750.001001105.480.708.530.8120151975.001001105.480.708.530.8121162060.0050901.770.9044.44HI2.67221725260.00751004.541.0327.14HI7.5823181920.0050900.520.274.660.3724192060.00501001.910.9742.21HI2.53251822160.0063902.500.8027.38HI1.92272024170.0063902.500.8027.38HI1.9229222375.0063902.500.8027.38HI1.92292223<										
131213160.00100110 7.26 0.92 $14.37H1$ 2.30 141214240.00150110 15.24 0.86 7.87 1.89 151315110.00100110 5.70 0.73 9.18 1.01 16141580.00100110 8.14 1.04 $17.76H1$ 1.42 17151645.00100110 5.24 0.67 7.85 0.57 181617 59.00 100110 5.24 0.67 7.85 0.57 191418100.00150110 24.25 1.37 $18.59H1$ 1.86 201519 75.00 100110 5.48 0.70 8.53 0.81 211620 60.00 5090 1.77 0.90 $44.44H1$ 2.67 221725260.0075100 4.54 1.03 $29.14H1$ 7.58 231819 90.00 50 90 0.52 0.27 4.66 0.37 241920 60.06 50100 1.91 0.97 $42.21H1$ 2.53 251923 160.00 63 90 3.10 0.99 $40.74H1$ 6.52 272024 170.00 63 90 2.50 0.80 $27.38H1$ 1.92 2922										
141214240.0015011015.24 0.86 7.87 1.89 151315110.00100110 5.70 0.73 9.18 1.01 16141580.00100110 8.14 1.04 $17.76HI$ 1.42 17151645.00100110 7.43 0.95 $14.97Hi$ 0.67 181617 50.00 100110 5.24 0.67 7.85 0.37 191418100.00150110 24.25 1.37 $18.59HI$ 1.86 201519 95.00 100110 5.48 0.70 8.53 0.81 211620 60.00 5090 1.77 0.90 $44.44HI$ 2.67 221725 260.00 75100 4.54 1.03 $27.14HI$ 7.58 231819 90.00 5090 0.52 0.27 4.66 0.37 2419 20 60.00 50100 1.91 0.97 $42.21HI$ 2.53 251822160.006390 3.10 0.99 $40.74HI$ 6.52 272024 170.00 63 90 2.68 0.86 $31.10HI$ 5.27 292223 75.00 63 90 2.50 0.80 $27.38HI$ 1.92 292223 </td <td></td>										
151315110.00100110 5.70 0.73 9.18 1.01 16141580.00100110 8.14 1.04 $17.76HI$ 1.42 17151645.00100110 7.43 0.95 $14.97HI$ 0.67 18161750.00100110 5.24 0.67 7.85 0.39 191418100.00150110 24.25 1.37 $18.59HI$ 1.86 201519 95.00 100110 5.48 0.70 8.53 0.81 211620 60.00 5090 1.77 0.90 $44.44HI$ 2.67 221725 260.00 75100 4.54 1.03 $29.14HI$ 7.58 231819 90.00 5090 0.52 0.27 4.66 0.37 241920 60.00 50100 1.91 0.97 $42.21HI$ 2.53 251923 160.00 6390 3.10 0.97 $40.74HI$ 6.52 272024 170.00 63 90 2.50 0.80 $27.38HI$ 1.92 292223 75.00 63 90 3.65 1.17 $55.31HI$ 4.15 302324 55.00 50 100 0.26 1.17 $5.99HI$ 9.21 3322 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
16 14 15 80.00 100 110 8.14 1.04 17.76HI 1.42 17 15 16 45.00 100 110 7.43 0.95 14.97HI 0.67 18 16 17 50.00 100 110 5.24 0.67 7.85 0.37 19 14 18 100.00 150 110 24.25 1.37 18.59HI 1.86 20 15 17 75.00 100 110 5.48 0.70 8.53 0.81 21 16 20 60.00 50 90 1.77 0.90 44.44HI 2.67 22 17 25 260.00 75 100 4.54 1.03 29.14HI 7.58 23 18 19 90.00 50 100 1.91 0.97 42.21HI 2.53 25 19 23 160.00 50 100 1.91 0.7										
17 15 16 45.00 100 110 7.43 0.95 14.97Hi 0.67 18 16 17 59.00 100 110 5.24 0.67 7.85 0.37 19 14 18 100.00 150 110 24.25 1.37 18.59HI 1.86 20 15 19 95.00 100 110 5.48 0.70 8.53 0.81 21 15 20 60.00 50 90 1.77 0.50 44.44HI 2.67 22 17 25 260.00 75 100 4.54 1.03 29.14HI 7.58 23 18 19 90.00 50 90 0.52 0.27 4.66 0.37 24 19 20 60.00 50 100 1.91 0.97 42.21HI 2.53 25 19 23 160.00 63 90 3.10 0.99 40.74HI 6.52 27 20 24 170.00 63 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
18 16 17 59.00 100 110 5.24 0.67 7.85 0.37 19 14 18 100.00 150 110 24.25 1.37 18.59HI 1.86 20 15 19 75.00 100 110 5.48 0.70 8.53 0.81 21 16 20 60.00 50 90 1.77 0.90 44.44HI 2.67 22 17 25 260.00 75 100 4.54 1.03 29.14HI 7.58 23 18 19 20 60.00 50 100 1.91 0.97 42.2HI 2.53 25 18 22 160.00 63 90 3.10 0.99 40.7HHI 6.52 27 20 24 170.00 63 90 2.68 0.86 31.10HI 5.29 29 22 23 75.00 63 90 2.61										
19 14 18 100.00 150 110 24.25 1.37 18.59H1 1.86 20 15 17 95.00 100 110 5.48 0.70 8.53 0.81 21 16 20 60.00 50 90 1.77 0.90 44.44H1 2.67 22 17 25 260.00 75 100 4.54 1.03 29.14H1 7.58 23 18 19 20 60.00 50 90 0.52 0.27 4.66 0.37 24 19 20 60.00 50 110 23.23 1.31 17.17H1 2.75 25 18 22 160.00 63 90 3.10 0.99 40.74H1 6.52 27 20 24 170.00 63 90 2.50 0.80 27.38H1 1.92 29 22 23 75.00 63 90 2.31 0.74 23.67H1 1.30 31 24 25 65.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
20 15 17 95.00 100 110 5.48 0.70 8.53 0.81 21 16 20 60.00 50 90 1.77 0.90 44.44H1 2.67 22 17 25 260.00 75 100 4.54 1.03 29.14H1 7.58 23 18 19 90.00 50 90 0.52 0.27 4.66 0.37 24 19 20 60.00 50 100 1.91 0.97 42.21H1 2.53 25 19 22 160.00 150 110 23.23 1.31 17.17H1 2.75 26 19 23 160.00 63 90 2.68 0.86 31.10H1 5.29 27 20 24 170.00 63 90 2.61 0.74 23.67H1 1.50 30 23 24 55.00 63 90 2.61 0.74										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
22 17 25 260.00 75 100 4.54 1.03 29.14HI 7.58 23 18 19 90.00 50 90 0.52 0.27 4.66 0.37 24 19 20 60.00 50 100 1.91 0.97 42.21HI 2.53 25 19 23 160.00 150 110 23.23 1.31 17.17HI 2.75 26 19 23 160.00 63 90 3.10 0.99 40.74HI 6.52 27 20 24 170.00 63 90 2.50 0.86 31.10HI 5.29 29 22 21 70.00 63 90 2.50 0.80 27.38HI 1.92 29 22 23 75.00 63 90 2.31 0.74 23.67HI 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
23 18 19 90.00 50 90 0.52 0.27 4.66 0.37 24 19 20 60.00 50 100 1.91 0.97 42.21H1 2.53 25 19 22 160.00 150 110 23.23 1.31 17.17H1 2.75 26 19 23 160.00 63 90 3.10 0.97 40.74HI 6.52 27 20 24 170.00 63 90 2.68 0.86 31.10HI 5.27 29 22 21 70.00 63 90 2.50 0.80 27.38HI 1.92 29 22 23 75.00 63 90 2.31 0.74 23.67HI 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 63 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
24 19 20 60.00 50 100 1.91 0.97 42.21H1 2.53 25 18 22 140.00 150 110 23.23 1.31 17.17H1 2.75 26 19 23 160.00 63 90 3.10 0.99 40.74HI 6.52 27 20 24 170.00 63 90 2.68 0.86 31.10HI 5.29 29 22 21 70.00 63 90 2.50 0.80 27.39HI 1.92 29 22 23 75.00 63 90 2.31 0.74 23.67HI 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 63 90 3.04 0.98										
25 19 22 160.00 150 110 23.23 1.31 17.17HI 2.75 26 19 23 160.00 63 70 3.10 0.97 40.74HI 6.52 27 20 24 170.00 63 70 2.68 0.86 31.10HI 5.27 29 22 21 70.00 63 90 2.50 0.80 27.38HI 1.92 29 22 23 75.00 63 90 2.31 0.74 23.67HI 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.04										
27 20 24 170.00 63 90 2.68 0.86 31.10HI 5.29 29 22 21 70.00 63 90 2.50 0.80 27.38HI 1.92 29 22 23 75.00 63 90 3.65 1.17 55.31HI 4.15 30 23 24 55.00 63 90 2.31 0.74 23.67HI 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.04 0.98 39.39HI 5.50 35 24 29 165.00 50 100 0.73 0.3		19		140.00	150	110	23.23	1.31	17.17HI	2.75
28 22 21 70.00 63 90 2.50 0.80 27.38HI 1.92 29 22 23 75.00 63 90 3.65 1.17 55.31HI 4.15 30 23 24 55.00 63 90 2.31 0.74 23.67KI 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.04 0.98 39.39HI 5.50 35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 36 25 30 175.00 75 100 4.30 0.9	25	19	23	160.00	63	70	3,10		40.74HI	
29 22 23 75.00 63 90 3.65 1.17 55.31H1 4.15 30 23 24 55.00 63 90 2.31 0.74 23.67H1 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.04 0.98 39.39HI 5.50 35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 36 25 30 175.00 75 100 4.30 0.97 26.40H1 4.62 37 27 26 75.00 50 100 0.73 0.		20		170.00		70				
30 23 24 55.00 63 90 2.31 0.74 23.67H1 1.30 31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.36 1.09 47.35HI 7.81 35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 36 25 30 175.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 18.3										
31 24 25 65.00 50 100 0.12 0.06L0 0.27 0.02 32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.36 1.09 47.36HI 7.81 35 24 29 165.00 63 90 3.04 0.98 39.39HI 6.50 36 25 30 175.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 18.31HI 1.37 39 29 28 50.00 50 100 0.12 0.0										
32 21 26 160.00 50 100 2.26 1.15 57.59HI 9.21 33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.36 1.09 47.36HI 7.81 35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 36 25 30 175.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 19.31HI 1.37 39 29 28 50.00 50 100 0.12 0.06LD 0.23 0.01 40 30 29 75.00 50 100 1.43 0.7										
33 22 27 165.00 100 110 16.30 2.08 64.19HI 10.59 34 23 28 165.00 63 90 3.36 1.09 47.36HI 7.81 35 24 29 165.00 63 90 3.04 0.98 39.39HI 6.50 35 24 29 165.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 19.31HI 1.37 39 29 28 50.00 50 100 0.12 0.06LB 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.2										
34 23 28 165.00 63 90 3.36 1.08 47.35HI 7.81 35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 36 25 30 175.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 23 75.00 50 100 1.22 0.62 19.31HI 1.37 39 29 28 50.00 50 100 0.12 0.06LD 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 <td></td>										
35 24 29 165.00 63 90 3.04 0.98 39.39HI 5.50 35 25 30 175.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 19.31HI 1.37 39 29 26 50.00 50 100 0.12 0.04LB 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 63.13HI 8.52										
36 25 30 175.00 75 100 4.30 0.97 26.40HI 4.62 37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 18.31HI 1.37 39 29 28 50.00 50 100 0.12 0.04LB 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 63.13HI 8.52										
37 27 26 75.00 50 100 0.73 0.37 7.20 0.54 39 27 28 75.00 50 100 1.22 0.62 18.31HI 1.37 39 29 28 50.00 50 100 0.12 0.04LB 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 63.13HI 8.52										
39 27 29 75.00 50 100 1.22 0.62 19.31HI 1.37 39 29 28 50.00 50 100 0.12 0.06L0 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 63.13HI 8.52										
39 29 26 50.00 50 100 0.12 0.04LD 0.23 0.01 40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 63.13HI 8.52										
40 30 29 75.00 50 100 1.43 0.73 24.80HI 1.86 41 26 31 135.00 50 100 2.37 1.21 63.13HI B.52										
41 26 31 135.00 50 100 2.37 1.21 63.13HI 8.52					· · ·					
	42	27	32	135.00	100	110	13.11	1,67	42.88HI	5.79
43 28 33 125.00 63 90 2.57 0.82 28.83HI 3.61	43	28	- 33	125.00	63	90	2.57	0.82	28.85HI	3.61

Page 1 of PEAK-BR.LOP

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF MENDEZ(con't)

PIPE	FROM	TO	LENGTR	DIAH	HWC	FLOW	VELOCITY	HEADL	.055
NO.	NOBE	NODE	(K)	(MM)		(L/S)	(M/S)	(M/1000)	
		:====== 34					A 07		
44	29 70		120.00	63	90	2.58	0.23	29.00HI	3.48
45	30 77	35 70	115.00	50	100	1.99	1.01	45.66HI	5.25
47	33	32	75.00	63	90	1.51	0.48	10.7781	0.81
48	34	33	65.00	50	100	0.38	0.19	2,12	0.14
149	35	34	60.00	50	100	0.31	0.16	1.48	0.09
50	31	37	140.00	50	100	1.29	0.65	20.50HI	2.87
51	32	38	140.00	50	100	1.97	1.00	44.82HI	<u>6.27</u>
151	32	38	140.00	50	100	1.97	1.00	44.82HI	6.27
52	34	39	150.00	50	100	1.27	0.65	19.82HI	3.17
53	35	40	170.00	50	100	1.14	0.58	16.22HI	2.76
154	37	36	100.00	100	110	6.98	0.89	13.33HI	1.33
55	37	38	46.00	50	100	0.45	0.23	2,85	0.13
155	37	38	45.00	50	100	0.45	0.23	2.85	0.13
56	39	38	160.00	50	100	1,45	0.74	25.31HI	4.05
57	40	39	50.00	50	100	0 .83	0.45	10.04HI	0.50
158	36	41	300,00	100	110	6.30	0.80	11.03HI	3,31
159	32	37	300.00	100	110	8.80	1.12	20.48HI	6.14
160	38	43	300.00	75	100	3.62	0.82	19.19HI	5.76
161	41	42	100.00	75	100	2.93	0.66	12,97HI	1.30
162	43	42	100.00	75	100	0.50	0.11	0.49	0.05
163	41	44	300.00	75	100	2.40	0.54	8.98	2.69
164	42	46	300.00	75	100	1.53	0.35	3.90	1.17
165	43	46	350.00	75	100	1,44	0.33	3.49	1,22
167	44	45	200.00	50	100	1.58	0.81	29.88HI	5.98
168	46	45	200.00	50	100	1.62	0.82	31.00HI	6.20
169	45	47	200.00	50	100	1.56	0.79	29.04HI	5.81
170	49	10	660.00	200	110	17.44	0.62	3.04	2.01
171	48	9	670.00	200	110	22.26	0.71	3.91	2.62
172	48	49	110.00	150	110	13.34	0.75	6.14	0.68
173	51	49	110.00	150	110	7.02	0.40	1.87	0.21
174	50	51	110.00	150	110	7.36	0.42	2.05	0.22
175	48	50	110.00	150	110	7.70	0.44	2.22	0.24
176	51	52	150.00	50	100	0.22	0.11	0.77	0.12
177	200	48	2.00	200	110	44.00	1.40	13.80HI	0.03

NODE	FLOW	ELEVATION	HGL	PRESSURE
NO.	(L/S)	(M)	(M)	(H)
22222222	*****	1=2=2=2====		
1	-0.72	100.57	132.48	31.91
2	0.00	92.00	132.36	40.35
3	0.00	96.00	132.02	36.02
ť	0.00	82.00	131.20	49.20
5	-1.22	73.43	130,86	57.43
6	-1.60	62.00	102.43	40.43
7	-1.04	50.57	90.90	40.23
8	-1,54	42.00	82.29	40.29
ና	-1.12	99.20	132.35	33.15
10	-1.52	98.00	132.29	34.29
11	-0.55	97.60	131.54	33.94
12	-1.30	92.30	129.02	36.72
13	-1.58	97.88	126.73	28.95

Page 2 of PEAK-HR.LOP

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF MENDEZ(con't)

NODE	FL0%	ELEVATION	HGL	PRESSURE
NO.	(L/S)	(M)	(ដ)	(E)
=================	===================	********	*******	
14	-1.42	90.35	127.14	36.79
15	-0.94	94.59	125.72	31.13
16	-0.42	90.00	125.04	35.04
17	-0.70	87.10	124.65	35.55
19	-0,50	89.91	125,28	35.37
19	-1.00	91.42	124.91	33.49
20	-1.00	89.59	122.38	32.79
21	-0.24	80,37	120.61	40.24
22	-0.78	82.67	122.53	39,86
23	-1.08	83,72	118.39	34.67
24	-1.82	81,62	117.09	35.47
25	-0.36	81.10	117.07	35.97
26	-0.62	73.26	111.40	38.14
27	-1.24	74.08	111.94	37.86
28	-2,12	74,91	110.57	35.66
29	-1.78	74.40	110.59	36.19
30	-0.88	75.05	112,45	37.40
31	-1.08	73.71	102.88	29.17
32	-1.88	72.05	106.15	34.10
33	-1.44	70.02	106.97	36.95
34	-1,24	72.74	107.11	34.37
35	-0.54	72.68	107.20	34.52
36	-0.68	62.00	98.67	36.67
37	-2.22	69.23	100.01	30.79
38 -	-2.66	66.41	99.88	33.47
39	-0,70	71.40	103.92	32.52
40	-0.26	68.84	104.44	35.60
41	-0.96	56.00	95.37	39.37
42	-1.90	63.00	94.07	31.07
43	-1.68	60.00	94.12	34.12
44	-0.82	50.00	92.67	42.67
45	-1.64	50.00	86.70	36.70
45	-1.36	58.00	92.90	34.90
47	-1.56	48.00	80.89	32.89
48	-0.70	120.00	134.97	14.97
49	-0.92	121.00	134.30	13.30
50	-0.34	122.00	134.73	12.73
51	-0.12	123.00	134.50	11.50
52	-0.22	125.00	134.39	9.39
100	10.00	100.57	132.52	31.95
200 R	44.00	120.00	135.00	15.00

Page 3 of PEAK-HR.LOP

8-63

.

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF MENDEZ(con't)

3

 T F T L E
 : MENDEZ WATER DISTRICT (Max-day demand)

 X0. OF PIPES
 : 78

 N0. OF NODES
 : 54

 PEAK FACTOR
 : 1.30

 MAX. NE/1000
 : 10.00

 MAX. UNSALANCE
 : 0.0009

PIPE	FROM	TO	LENSTR	DIAN	exc.	FLOW	VELOCITY	HEADL	OSS
W.	NODE	KODE	(8)	(33)		(L/S)	(#/S)	(8/1999)	(#)
102220									
1	100	1	10.00	150	110	10.00	0.57	3.60	0.04
2	1	2	100.00	150	110	3.51	0.20	0.52	0,05 0.10
3	2	3	300.00		110	3,51	0.20	0.52 0.53	0.16 0.37
4	3	4	710.00	150	110	3.51	0,20	0.52 0.52	0.16
\$	4	5.	300.00	150	110	3,51 2,72	0.20 0.87	0.02 32.00XI	12.80
6	5	6	400.00	63	90 90	1.59	V.0/ Q.54	13.09HI	5.24
7	6	1.	400.00 300.00	63 59	100	1.00	0.51	12.778i	3.83
8	7	8 9	200.00	150	100 110	6.02	0.34	1,41	0.28
r 10	1 9	, 10	40.00	150	110	5.70	0.32	1.27	0.05
110	, 9	14	460.00	150	110	12.11	0.69	5.13	2.36
11	10	11	40.00	150	110	15.81	0.89	8.41	\$.34
11	11	12	140.00	150	110	15.44	0.87	8.06	1.13
13	12	13	160.00	100	110	4.72	0.60	6.46	1.03
14	12	14	240.00	150	110	9.88	0.56	3.53	0.85
15	13	15	110.00	100	110	3.70	0.47	4.12	0.45
16	14	15	80.00	100	110	5.30	0.67	8.01	0.64
17	15	16	45.00	100	110	4.83	0.61	6.74	0.30
19	16	17	50.00	100	110	3.40	0.43	3.53	0.13
19	14	18	100.00	150	110	15.77	9.89	8.38	0.84
20	15	19	95.00	100	110	3.56	0.45	3.84	0.36
21	14	20	60.00	50	90	1,15	0.58	20.00HI	1.20
22	17	25	260.00	75	100	2.95	0.67	13.11HI	3,41
23	18	19	80.00	50	90	0.34	0.17	2,11	0.17
24	19	20	60.00	50	100	1.24	0.63	19.01HI	1,14
25	18	22	160.00	154	110	15,10	0.85	7.73	1.24
28	19	23	169.00	63	90	2.¢i	9.65	18.34HI	2.93
27	20	24	170.00	63	- 90	1.74	0.56	14.00HI	2.38
23	22	21	70.00	53	90	1.52	0.52	12.33HI	0.86
29	22	23	75,00	63	90	2.37	0.75	24.9281	1.87
30	23	24	55.00	63	90	1.50	0.48	10.57HI	0.59
31	24	- 25	55.00	50	100	0.08	0.04L0	0.12	0.01
32	21	24	169.00	50	100	1.47	0.75	25.94HI	4.15
33	22	27	165.00		110	10.60		28,9181	4.77
34	23	28	165.00	63	90 02	2.18	Q.70	21,32KI	3.52 2.93
35	24	29	165.00	63	90	1.98	0.63 0.63	17.73KI 11.89KI	2.73
36	25	30	175.00	75	100	2.80	V.03 V.24	3.24	9.24
37	27	28	75.00		100	0.48 0.79	0.40	8.25	0.62
33	27	28	75.00		100 100	0.07	0.04LO	0.10	0.01
39	29	28 29	50.00 75.00		100	0.93	0.04CO 0.47	11.16HI	0.84
40 41	30 25		135.00		100	1.54	0.79	28.43HI	3.84
41 42	28	31 32	135.00		110	8.52	1.09	19.31HI	2.51
43	28		125.00		90	1.67	0.54	12.99HI	1.62
43 7	20	22	154164	. 94	/*	1141	1111		

Page 1 of MAX-DAY.LOP

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF MENDEZ(con't)

PIPE	FROM	TO	LENGTH	914N	Е¥С	FLOW	VELOCITY	HEADL	.055
NO.	NODE	NODE	(K)			(L/S)		•	
200223									
41	29	34	120.00	63	90	1.67	0.54	13.06HI	1.57
45	30	35	115.00	50	100	1.29	0.65	20.5681	2.36
47	33	32	75.00	63	90	0.98	0.31	4,85	0.35
45	34	33	65.00	59	190	0.25	9.13	0,95	9,96
147	35	34	50.00	50	100	0.20	0.10	0.67	0.04
50	31	37	140.00	50	100	0.84	0.43	9.23	1.29
51	32	38	140.00	50	100	1.28	0.65	20.18HI	2.83
151	32	38	140.00	50	100	1,28	9.65	20.18HI	2.83
52	34	39	160.00	50	100	¢.82	0.42	8,92	1.43
55	35	40	170.00	50	100	0.74	0.38	7.30	1.21
154	37	36	100.00	100	110	4.53	0.58	6.00	0.60
\$5	37	38	46.00	50	100	0.29	0.15	1.29	0.06
155	37	38	46.00	50	100	0.29		1.29	0.06
56	39	38	160.00	50	100	Ŷ.94	0.48	11.39HI	1.82
57	4û	39	SQ.QQ	50	100	0.57	0.29	4.52	0.23
158	36	41	309.00	100	110	4.09	0.52	4.97	1.19
159	32	37	300.00	100	110	\$.72	0.73	9.22	2.77
160	38	43	300,00	7\$	100	2.36	0.53	8.64	2.59
161	4i	42	100.00	7\$	100	1.91		5.84	0.58
162	43	42	100.00	75	100	Q.33	0.07L0	Q.22	0.02
163	41	44	300.00	75	100	1.56	0.35	4.04	1.21
164	42	46	300.00	75	100	1.00	9.23	1,74	9.53
165	43	45	350.00	75	100	0.94	0.21	1.57	0.55
167	44	45	200.00	50	100	1.03	0.52	13.45HI	
163	46	45	200.00	jç	100	i.05	0.53	13.96HI	2.79
169	45	47	200.00	50	100	1,01	0.52	13.08HI	2.62
170	49	10	660.00	200	110	11.09	0.35	i.08	0.71
171	48	9	670.00	200	110	12.52	Q.40	1.35	0.90
172	48	49	110.00	150	110	7.67	0.43	2.21	0.24
173	51	49	110.00	150	110	4.01	0.23	0.67	0.07
174	50	51	110.00	150	110	4.24	0.24	0.73	0.08
175	48	50	110.00	150	110	4.46	0.25	0.81	0.09
176	51	\$2	150.00	50	100	0.14	0.0710	0.35	0.05
177	200	48	2.00	200	110	25.10	0.80	4.88	0.01

NODE	FLOW	ELEVATION	HGL	PRESSURE
X0.	(L/S)	(X)	(#)	(M)
======	********		\$22555222	
í	-0.47	100.57	134.37	33.80
2	0.00	92.00	134,32	42.32
3	0.00	96.00	134.16	38.16
4	0.00	82.00	133.80	51.80
5	-0.79	73.43	133.64	60.21
5	-1.04	62.00	120.84	58.84
7	-0.66	50.57	115.60	65.03
8	-1.00	#2.00	111.77	69.77
9	-0.73	99.20	134.09	34,89
10	-0.99	98,û0	134.04	36.04
11	-0.36	97.50	133,70	36.10
12	-0.84	92.30	132.57	40.27
13	-1.01	97.38	131.54	33.66

Page 2 of MAX-DAY.LOP

. T

XONE	FLOW	ELEVATION	KEL	PRESSURE
NO.	(L/S)	(X)	(8)	(K)
20202222				
14	-9.92	90.35	131.73	41.38
15	-0.61	94.59	131.09	35,50
16	-0,27	90.00	130.78	40.78
17	-0.45	89.10	130.61	41.51
18	-0.33	89.91	130.89	40.98
19	-0.55	91.42	130.72	39.30
20	-0.65	87.59	129.58	39.99
21	-0.16	80.37	128.79	48.42
22	-0.51	82.67	129.65	46,98
23	-0.70	83.72	127.79	41.07
24	-i.18	81.62	127.20	45.58
25	-0.23	81.10	127.20	46.10
26	-0,40	73.26	124.64	51.38
27	-0.81	74.08	124.88	50.80
28	-1.38	74.91	124.27	49.36
29	-1.16	74.40	124.28	49.89
30	-0.57	75.05	125.12	50.07
31	-0.70	73.71	120.80	47.09
32	-1.22	72.05	122,27	50.22
33	-0.94	70.02	122.54	52.62
34	-0.91	72.74	122.71	49,97
35	-0.35	72.68	122.75	50.07
36	-0.44	62.00	118,91	56.91
37	-1.44	69.23	119.51	50.28
38	-1.73	66.41	119.45	53.04
39	-0,45	71,40	121.27	47.87
40	-0.17	68.84	121.51	52.67
41	-0.62	56.00	117.42	61,42
42	-1.23	63.00	116.83	53.83
45	-1.99	69.00	116.86	55.86
44	-0.53	50.00	116.20	66.20
45	-1.07	50.00	113.51	63.51
46	-0,88	58.00	116.31	58.31
47	-1.01	48.00	110.90	62.90
48	-0.45	120.00	134.99	14.99
47	-0.60	121.00	134.75	13.75
50	-0.22	122.00	134.90	12.90
51	-0.08	123.00	134.82	11.82
\$2	-0.14	125.00	134.77	9.77
100	10.00	100.57	134,41	33.84
200 R	25.10	120.00	135.00	15.00

Page 3 of MAX-DAY.LOP

Table 8-23 RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY

 T I T L E
 : TACAYTAY CITY ND (Zone I)

 NO. OF PIPES
 : 57

 NO. OF NODES
 : 35

 PEAK FACTOR
 : 2

 MAX HEADLOSS/Ka
 : 10

 MAX UNBAL(LPS)
 : .009

919E	FROM	10	LENGTH	DIA	HXC	FLOW	VELOCITY	HEADLO)SS
NO.	Node	Xode	(11)	(XX)		(LPS)	(MPS)	(H/KM)	(M)
				-					
31	31	32	311.00	63	90 (20	1.67	0.53	13.14HI	4.09 2.79
4031	31	33	622.00	150	120	12.18	0.69	4.48	
32	33	32	311.00	63	90	0.90	0.29L0	4.18	1.30
33	33	34	311.00	63	90	1.12	0.36	6.31	1.96
39	40	31	63.00	150	110	12.52	0.71	5.54	0.35
3900	40	31	63.00	100	110	4.30	0.55	5.54	0.35
40	1 1	40	60.00	150	110	12.89	0.73	5,85	0.35
4008	41	40	60.00	100	110	4.43	0.56	5.85	0.35
41	42	41	516.00	150	110	9.43	0.53	3.28	1.69
4100	42	41	\$16.00	150	120	10.28	0.58	3.28	1.69
1 2	43	42	436.00	150	110	14.88	0.84	7.63	3.33
4201	43	42	436.00	150	120	16.23	0.92	7,63	3.33
43	4 4	43	371.00	150	110	9.58	0.54	3.38	1.25
4301	44	43	371.00	200	130	24.14	Q.77	3,38	1.25
44	45	44	430.00	150	110	10.31	0.58	3.87	1.66
4401	45	44	430.00	200	130	25.99	0.83	3.87	1.66
45	46	45	274.00	150	110	6.97	0.39	1.87	0.51
4501	46	45	274.00	250	130	31,60	0.64	1.87	0.51
45	47	46	278.00	150	110	7.29	0.41	2.04	0.57
4601	47	46	278.00	250	130	33.04	0.67	2.04	0.57
47	47	48	247.00	75	100	4.37	0.99	27.52HI	8.80
1047	47	51	954.00	63	90	1.47	0.47	10.48HI	10.00
4047	47	52	1272.00	250	130	21.66	0.44	0.93	i.18
48	48	49	410.00	75	100	2.25	0.51	8.05	3.30
49	49	50	175.00	75	100	0.37	0.0810	0.29	0.05
50	51	50	122.00	75	100	1.15	0.26L0	2.33	0.28
51	52	51	318.00	50	90	1.36	0.69	27.72HI	8.81
52	52	53	360.00	50	90	0.40	0.20L0	2.92	1.05
5201	52	53	360.00	75	100	1.30	0.29L0	2.92	1.05
53	53	54	373.00	63	90	0.02	0.01L0	0.00	0.00
39	60	47	158.00	150	110	12.65	0.72	5.65	0.89
4059	60	47	158.00	250	130	57,35	1.17	5.65	0.89
60	60	61	7.00	150	110	19.53	1.10	12.61HI	0.09
1060	60	65	1425.00	150	120	20.67	i.17	11.93HI	17,00
1061	60	65	1425.00	150	120		1.17	11.93HI	17.00
61	61	62	380.00	150	110	18.96	1,07	11.94HI	4.54
62	62	63	400.00	150	110	17.84	1.01	10.67HI	4,27
63	53	64	402.00	150	110	16.71	0.95	9.45	3.80
64		65	235.00	150	110	23,83	1.35	18.23HI	4.30
65		565		100	110	0.80	0.10L0	0.24	0.20
651		565	800.00	75	100	0.34		0.24	0.20

Page 1 of TAGA1

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

うな

PIPE	FROM	T0	LENGTH	DIA	HMC	FLOW	VELOCITY	HEADLI	JSS
NC.	Node	Node	(#)	(KX)		(LPS)	(KPS)	()/()	(٢)
65	65		653.00	150	110	20.08	1.14	13.23HI	8.67
1055	65	67	1092.00	150	120	20.78	1.18	12.048F	13.15
1067	65	67	1092.00	150	120	20.78	1.18	12.04HI	13.15
67	66	57	439.00	150	110	17.42	0,99	10.21HI	4,48
58	67	68	97.00	150	110	16.38	0.93	9.11	0.88
6800	67		97.00	200	130	41,29	1.31	9.11	0.88
69	68	69	303.00	150	110	13.79	0.78	6.53	2.01
6900	68	69	303.00	200	130	34,76	1,11	6.63	2.01
70	70	59	400.00	150	110	8.16	0.46	2,51	1.00
7000	68	70	400.00	150	:110	8.16	0.46	2.51	1.00
4500	33	5000	50,00	150	120	7.60	0.43	1.87	0.09
4600	52	6000	50.00	200	130	16.00	0.51	1.58	0.08
4700	69	7000	50,00	200	130	55.00	1.75	15,4980	0.77
4000	1000	60	50.00	250	120	131,13	2.67	30.23HI	1.51
1820	42	50	1820.00	150	130	7 49	0.42	1.57	2.86
850	50	64	850.00	150	130	8.04	0.46	1.79	1.52

NODE NO.	FLOW (LPS)	ELEVATION	8 G L (K)	PRESSURE (M)
 <u>31</u>	-2.976	650,20	 687.78	37,58
32	-2.562	642.22	683.70	41.48
33	-2,562	634.24	685,00	50.76
34	-1,120	626.26	683.03	56.77
40	-0.508	650.10	688.13	38,03
41	-2.380	650.00	688.48	38.49
42	-3.915	650.70	690.17	29.47
43	-2.600	667.60	693.60	25.00
44	-2.582	673.20	694.85	21.65
45	-2.268	689.70	695.52	6.62
46	-1.762	691.70	697.03	5.33
47	-2.192	687.40	697.60	10.20
48	-2.120	675.70	690.80	15,10
49	-1.874	668.70	687,50	18.80
50	-0.970	662.80	687.31	24.51
51	-1.680	660,20	687.60	27,40
52	-2.600	645.50	696.41	50.91
53	-1.680	660,20	695.36	35,16
54	-0.020	626.80	695.36	68.56
60	~0.244	690.50	698.49	7.99
51	-0,562	690.60	698.40	7.80
52	-1.120	&\$2.20	693.86	11.65
63	-1.139	554.20	689.59	25.39
64	-0.915	664.10	585.79	21.69
65	-2,378	667.70	681.49	13.79
565	-1.138	647.70	581.30	33.60
65	-2.656	648.90	672.82	23.92

Page 2 of TAGA1

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

NGDE	FLCX	ELEVATION	KGL	PRESSURE
X0.	(LPS)	(X)	(11)	(٢)
\$7	-1.306	637.50	668.34	28.84
63	-0.970	636.70	667.45	30.76
69	-1.708	626.30	665.45	39.15
70	0.000	615,17	665.45	51.28
5000	-7.500	637.00	684.90	45.90
6000	-16.000	651.00	696.33	45.33
7000	-55,000	\$31,00	664.68	33.68
1000 8	131.128	695.00	700.00	5,00

÷

Page 3 of TAGA1

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

:	TAGAYTAY CITY WD (Zone II)
:	31
:	28
:	2
;	10
:	0
	: : :

PIPE	FROM	TO	LENGTH	DIA	HNC	FLOW	VELOCITY	HEADL	OSS
NO,	llode	Node	(11)	(MM)		(LPS)	(MPS)	(H/KH)	(K)
1	2	1	200.00	100	110	0.42	0.05L0	0.07	0.01
2	3	2	150.00	100	110	1,16	0.15L9	0.49	0.07
3	Ę	3	100,00	150	110	2.04	0.12L0	0.19	0.02
4	5	4	20.00	150	110	1.16	0.0710	0.07	0.00
4005	5	6	347.00	75	110	2,18	0.49	6.38	2.22
4006	6	7	94.00	75	110	1.68	0.43	4.85	0.46
4007	7	8	87.00	75	110	1.42	0.32	2.87	0.25
4008	8	9	418.00	50	110	0.82	0.42	7.54	3.15
4009	9	10	350.00	50	100	0.34	0.17L0	1.76	0.62
10	ii	5	278.00	150	110	4.16	0.2410	0.72	0.20
11	12	11	276.00	150	110	4.66	0.26LO	0.87	0.25
12	13	12	342,00	150	110	5.22	0.30L0	1.10	0.38
13	14	13	50.00	150	110	5,86	0.33	1.36	0.07
1013	14	4	966.00	100	110	1.64	0.21LO	0,92	0.89
4014	14	15	200.00	50	100	0.98	0.50	12.50HI	2,50
4015	15	16	100.00	50	100	0,46	0.23L0	3.08	0.31
16	14	17	284.00	150	110	9.02	0.51	3.02	0.86
17	17	18	293.00	150	110	8.32	0.47	2.60	0.76
4018	18	19	285.00	50	90	1.13	0.58	19.76HI	5.63
4088	18	19	285.00	75	100	3.65	0.83	19.76HI	5.63
18	18	21	722.00	50	90	1,00	0.51	15.78HI	11.39
4019	19	20	100,00	50	100	0.38	0.1910	2,17	0.22
4020	19	21	437.00	50	90	0.91	0.46	13.18HI	5.76
4021	19	2i	437.00	75	100	2,93	0.66	13.19HI	5.76
4021	21	22	300.00	50	100	0.42	0.21LQ	2.61	0.78
22	21	23	623.00	75	100	0,40	0.09L0	0.33	0.21
28	18	29	356,00	150	110	1,90	0.11LO	0.17	0.06
29	29	30	231.00	150	110	1.18	0.07LD	0.07	0.02
30	30	31	344.00	150	110	0,62	0.04LO	0.02	0.01
4300	21	3000	50.00	75	110	3.52	0.80	15.49HI	0.77
201	2000	14	50.00	150	110	18,10	1.02	10.96HI	0.55

NODE H0.	FLOW (LPS)	ELEVATION (N)	H 6 L (K)	PRESSURE (K)
1	-0,420	635.50	678.45	42.95
2	-0.740	641.10	678.47	37.37
3	-0.880	645.30	678,54	33.24
4	-0.760	648.10	678.56	30.46
\$	-0.920	648.00	678.56	30.56

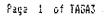
Page 1 of TASA2

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

NODE NO.	FLOX (LPS)	ELEVATION (M)	H G L (M)	FRESSURE
5	-0.300	624.40	676.35	51.95
7	-0.460	650.50	675.89	25.39
8	-0.600	645.90	675.64	29.74
9	-0.480	630.97	672.49	41.52
10	-0.340	618.26	\$71.87	53.61
11	-0.500	655.00	678.76	23.76
12	-0.560	662.70	679.01	16.31
13	-0.640	673,30	679.38	5.08
14	-0.600	672.90	679.45	6.55
15	-0,520	667.70	676.95	9.25
16	-0.460	665.40	676.64	11.24
17	-0.700	662.30	678.59	16.29
18	-0,640	660.00	677.83	17.83
19	-0.560	657.30	672.20	14.90
20	-0.360	654.80	671.98	17.18
21	-0,500	647,60	666.44	18.84
22	-0.420	640.10	665.65	25.55
23	-0.400	631.80	666.23	34.43
29	-0.720	648.70	677.77	29.07
30	-0.560	655.00	677.76	22.76
31	-0.620	650.20	677.75	27.55
2000 R	18.100	680.00	680.00	0.00
3000	-3.520	648.00	665.67	17.67

Page 2 of TASA2

8~71


RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

TITLE	ł	TAGAYTAY CITY ND (Zone III)
NO. OF PIPES	1	4
NO. OF NODES	:	5
PEAK FACTOR	:	2
NAX HEAPLOSS/Ka	:	10

PIPE	FRON	T0.	LENSTH	DIA	HWC	FLOW	VELOCITY	HEADL	OSS
ΝО.	Node	Node	(К)	(KM)		(LPS)	(MPS)	(N/KN)	(肖)
23	23	24	580.00	50	 90	0.56	0.29L0	5.39	3,13
24	24	25	362.00	50	90	0.00	0,0010	2.76	1.00
4400	23	4000	580.00	75	100	3,52	0.80	18,48HI	10.72
4301	3000	23	623.00	100	110	4.84	0.62	6.88	4.29

(**)**

NODE NO.	FLO¥ (LPS)	ELEVATION (X)	H G L (M)	PRESSURE (M)
23	-0.760	631.80	643.71	11.91
24	-0.560	602.00	640,59	38.59
25	0.000	584.40	639.59	55.19
4000	-3.520	607.00	633.00	26.00
3000 R	4.840	648.00	648.00	0.00

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

TITLE	1	TAGAYTAY	CIIY	70	(lone	IV)
NO. OF PIPES	:	4				
NG. OF NODES	;	Ĵ				
PEAK FACTOR	;	2				
MAX HEADLOSS/Ka	:	10				

919E	F86%	TO	LENGTH	DIA	Hac	FLOX	VELOCITY	HEAD	.055
XO.	Noda	Node	(٢)	(KK)		(LPS)	(MPS)	(M/KM)	(М)
4025	25	.23	1800.00	75	110	0.46	0.10L0	0.36	0.65
26	25	26	215.00	50	90	0.78	0,40	9.96	2.14
27.	26	27	300.00	50	90	0.44	0.2210	3.45	1.04
4401	4000	25	365.00	100	110	1.68	0.2110	0.97	0.35

NGDE NO.	FLOW (LPS)	ELEVATION (X)	H G L (M)	PRESSURE (X)
25	-0.440	584.40	601.65	17.25
25	-0.340	577.30	599.50	22.20
27	-0,440	566.30	578.47	32.17
28	-0.460	539.40	601.00	61.60
4000 R	1.680	602.00	602.00	0.00

· Page 1 bilinun4

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

TITLE : TAGAYTAY CITY NO (Zone V) NO. OF PIPES : 9 NO. OF NODES : 7 PEAK FACTOR : 2 MAX HEADLOSS/Ka : 10

9195	FROM	TO	LENGTH	DIA	HXC	FLOW	VELOCITY	HEADLO	ISS
NO.	Xode	Ncóe	(1)	(MX)		(LPS)	(NPS)	(X/KN) 	(11)
	34	35	311.00	63	90	1.19	0.38	7.04	2,19
4034	34	35	311.00	100	110	4.90	0.62	7.04	2.19
35	35	36	311.00	63	90	0.99	0,32	5,06	1.57
4035	35	36	311.00	100	100	3.73	0.47	5.05	1.57
36	36	37	345.00	63	90	1.19	0.38	7.02	2.42
3601	36	37	345.00	75	100	2.09	0.47	7.92	2,42
37	37	38	389.00	75	100	1.64	0.37	4,48	1.74
4038	38	39	173.00	75	100	0.39	0.09LD	0.31	0.05
4501	5000	34	310.00	100	110	6.09	0.78	10,52HI	3.26

٦Ľ

NODE	FLOW	ELEVATION	HGL	PRESSURE
NO.	(LPS)	()	(8)	(M)
34	0.000	626.26	631.74	5,48
35	-1.366	618.2B	629.55	11.27
36	-1,450	610.30	627.98	17.68
37	-1.636	596.30	625,56	29.26
38	-1.248	583.80	623.81	40.01
39	-0.385	578.20	623.76	45.55
5000 R	6.088	634,00	635.00	1.00

Page 1 of TAGAS

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

TITLE	1	TAGAYTAY	CITY	₩D	(leas	YE)
NO. OF PIPES	:	11				
NO. OF NODES	3	7				
PEAK FACTOR	;	2				
MAX SEADLOSS/Ka	t	19				

	FRUTUN (EADLOS		10						
								, 	
PIPE	FROM	TQ	LENGTH	DIA	HWC	FLOX	VELOCITY	HEADL	085
NO.	Node	Node	(8)	(MM)		(LPS)	(XPS)	(M/KM)	(*)
54	54	55	133.00	50	90	0,60	0.30	6.09	0,81
4054	54	55	133.00	150	120	14.38	0.81	5.09	0.81
55	55	56	363,00	50	90	0.51	0.26L0	4.49	1.63
4055	55	56	363.00	150	120	12.20	0.69	4.49	1.63
56	56	57	242.00	50	90	1.16	0.57	20.68HI	5.00
4056	56	57	242.00	100	110	8.77	1.12	20.68HI	5.00
57	57	58	289.00	50	? ()	0,87	0.45	12.30HI	3.55
4057	57	58	289.00	100	110	5.63	0.84	12.30HI	3.55
58	58	59	675.00	50	90	0.79	0.40	10.21HI	6.89
4058	58	59	675,00	75	50	2.30	0.52	10.21HI	6.89
4501	6000	54	735.00	150	110	17.30	0.98	10.0881	7,41

NODE NO.	FLOW (LPS)	ELEVATION	K G L (K)	PRESSURE (X)
54	-2.324	626.00	639.59	13.59
55	-2.274	621,30	638.78	17.48
56	-2.772	614.70	637.15	22.45
57	-2.432	602.70	632.15	29.45
58	-4,410	591.50	628.59	37.09
59	-3.090	575.70	621.70	45.00
6000 R	17,302	647.00	647.00	0.00

Page 1 of TAGA6

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

TITLE	:	TAGAYTAY	CITY	¥0	{Zone	VII)
NO. OF PIPES	;	63				
NC. OF NODES	:	49				
PEAK FACTOR	:	2				
MAX HEADLOSS/Ka	;	10				
KAX UNBAL(LPS)	;	0				

PIPE	FROM	TO	LENSTH	DIA	HNC	FLOX	VELOCITY	HEADLO	ISS ·
No.		Node	(M)	((LPS)	(MPS)	(N/KM)	()
71	70	71	132.00	100	100	10.43	1.33	34,25HI	4.52
72	71	72	380.00	100	100	9.43	1.20	28.1981	10.71
73	72	73	380.00	100	100	7.89	1.01	20.28HI	7.71
74	73	74	330.00	100	100	6.36	0.81	13,58HI	5.16
75	74	75	372.00	100	100	4.46	0.57	7.05	2.62
4076	75	76	300.00	50	100	0,77	0.39	7.96	2.39
77	75	77	396.00	100	100	1.00	0.13L0	0.44	0.18
78	70	78	380.00	150	110	20.17	1.14	13.39HI	5.09
7801	70	78	380.00	150	120	22.01	1.25	13.39HI	5.09
79	78	79	212.00	150	110	19.57	1.11	12.66HI	2.68
7901	78	79	212,00	150	120	21,35	1.21	12.66HI	2.58
80	79	80	338.00	150	110	19.01	1.08	12.00HI	4.05
8000	79	80	338.00	150	120	20.74	1.17	12.00HI	4.05
81	BO	81	305.00	150	110	18.36	1.04	11,25HI	3.43
8100	80	81	305.00	150	120	20.03	1.13	11.25HI	3,43
82	81	82	232.00	150	110	17.82	1.01	10.64HI	2.47
8200	81	82	232.00	150	120	19.44	1.10	10.64HI	2.47
4083	82	S 3	200.00	75	100	0.75	0.17LO	1.07	0.21
4084	82	84	150.00	50	90	0.50	0.25LO	4.44	0.67
4088	82	84	150.00	75	100	1.63		4.44	0.57
4085	84	85	500.00	50	100	0.75	0,38	7.62	3.91
4085	85	86	60,00	50	100	0.09	0.04L0	0.14	0.01
87	82	87	398.00	150	110	32.61	1.85	32.56HI	12.95
4088	87	88	150.00	50	100	0.21	0.10LO	0.70	0.10
87	87	89	266.00	150	110	14.95	0.85	7.70	2.05
8900	87	89	256.00	150	120	16.31	0.92	7.70	2.05
90	89	90	298.00	150	110	14.58	0,83	7,35	2.17
9000	89	90	295.00	150	120	15.91	0.90	7.35	2.17
91	90	91	150.00	50	90	0.32	0.16L0	1.87	0.28
103		102	120.00	150	110	0.72	0.0410	0,03	0.00
104		103	227.00	150	110	14.40	0.81	7.18	1.63
1004		105	1154.00	100	110	3.57	0.45	3.91	4.55
1114		105	1164.00	i 50	120	11.31	0.64	3.91	4.55
105		104	189.00	150	110	11.91	0.67	4.97	0.90
106		105	757.60	150	110	8.45		2,68	2.03
107		105	325.00	150	110	9.85		3.35	1.15
1107		113	1013.00	100	110	2.31	0.2910	1.74	1.77
1117		113	1013.00	150	120	7.31	0.41	1.74	1.77
103		107	134.00	150	110	8.19			0.34
109		108	250.00	50	90	0.91	9.46	13.14HI	3.28
110	107	109	209.00	150	110	5.16	0.29L6	1.08	0.22

Page 1 of TAGA7

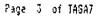
Table 8-23 💈

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

PIFE	FROX	TO	LENSTH	DIA	HAC	FLOW	VELOCITY	HEADL	JSS
K0.	Node	Node	(M)					(X/XX)	
111	109	110						14.73HI	
4112	110	111	100.00	50	100	0.37	0.1910	2.04	0.20
113	107	112	73.00	150	110	2.55	0.15L0	0.31	0.02
114	112	113	272.00	150	110	1.41	0.0810	0.10	0.03
115	113	114	200.00	75	100	0.72	0.16LO	9.99	0,20
115	113	115	169.00	75	110	2,42	0.55	7,72	1.30
1115	113	120	957.00	100	110	0.67	0.0910	0.18	0.17
1866	113	120	957.00	200	130	4.93	0.16LO	0.18	0.17
117	115	115	229.00	150	110	0.98	0.06LO	0.05	0.01
118	117	115	112.00	150	110	0.25	0.0110	0.00	0.00
119	118	117	202,00	75	90	0.47	0.1110	0.55	0,11
120	119	118	190.00	75	90	0.76	0.17L0	1.33	0.25
:21	120	119	55.00	50	90	0,94	0.45	14.19HI	0.78
122	120	121	200.00	50	90	0.88	0.45	12.55HI	2.51
4123	121	122	200,00	50	100	0.59	0.30	4.92	0.98
412 4	122	123	300.00	50	100	0.22	0.11LO	0.81	0.24
125	120	124	66,00	50	90	0.68	0.35	7.72	0.51
1125	120	127	556,00	100	110	2.85	0.36	2,59	1.44
126	124	125	109.00	50	90	0.55	0.28L0	5.22	0.57
127	125	126	70.00	50	90	0.42	0.2110	3,17	0.22
128	126	127	311,00	50	90	0,15	0.07LO	0.45	0.14
4701	7000	70	400.00	250	130	54.51	1,11	5,14	2.05

NODE NC.	FLOW (LPS) ⁻	ELEVATION (N)	H G L (M)	PRESSURE (M)
70	-1.850	615,17	644.94	29.77
71	-1.046	611.77	640.42	28.65
72	-1.538	601,99	629.71	27.72
73	-1,538	592.21	622.00	29.79
74	-1.896	582.43	616.84	34.41
75	-2.694	572.86	614.22	41.36
76	-0,769	565.36	611.83	46.47
77	-0.995	562.67	614.04	51.37
78	-1.262	604.60	639.86	35.26
79	-1.166	598.30	637.17	38.87
80	-1.366	590.30	633.12	42.82
51	-1.135	585,20	629.68	44.48
82	-1,756	584.10	627.22	43.12
83	-0.754	579.10	627.00	47.90
84	-1.382	580.35	626.55	45.20
85	-0.662	567.85	522.74	54.89
86	-0.093	\$66.35	\$22.73	55.38
87	-1.136	580.90	614.26	33.36
99	-0.206	585.15	614,15	29.00
99	-0.720	284,60	612.21	27.61
70	-0,890	538.30	610.03	21.73

Page 2 of TAGA7


RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

a e

Č.

D

NODE	FLOX	ELEVATION	8 G L	PRESSURE
NO.	(LPS)	(M)	(5)	(11)
91	-0.316	574.70	609.75	35.05
102	-0.722	577 .8 4	608.40	30,56
103	-1.869	586.10	608.41	22.31
104	-3.356	582.40	507.51	25.11
105	-3.870	582.15	505.48	23.33
108	-1.880	570,70	604.33	33.63
107	-2.120	573.00	603.99	30.99
108	-0.906	566.75	600.70	33,95
109	-1.552	575.70	603.76	28.05
110	-0.596	571.95	601.55	29.60
111	-0.368	569.45	601.35	31.90
112	-1.232	574.80	603.74	28,94
113	~2.250	577.90	603 71	25.81
114	-0.722	572.90	603.52	30.52
115	-1.432	579.35	602.41	23.05
116	-1.232	589.50	602.40	12.90
117	-0.224	590.10	602.40	12,30
118	-0.292	584.80	602.51	17.71
119	-0.180	579.60	602.76	23.16
120	-0.242	580.70	603.54	22.84
121	-0.292	575.64	601.03	25.39
122	-0.368	570.59	600.05	29.46
123	-0.224	563.00	599.80	36.80
124	-0.130	582.20	603.03	20,83
125	-0,130	578.00	602.47	24.47
125	-0.274	579.40	602.24	22.84
127	-3,000	587.00	602.10	15.10
7000 R	54,510	627.00	647.00	20.00

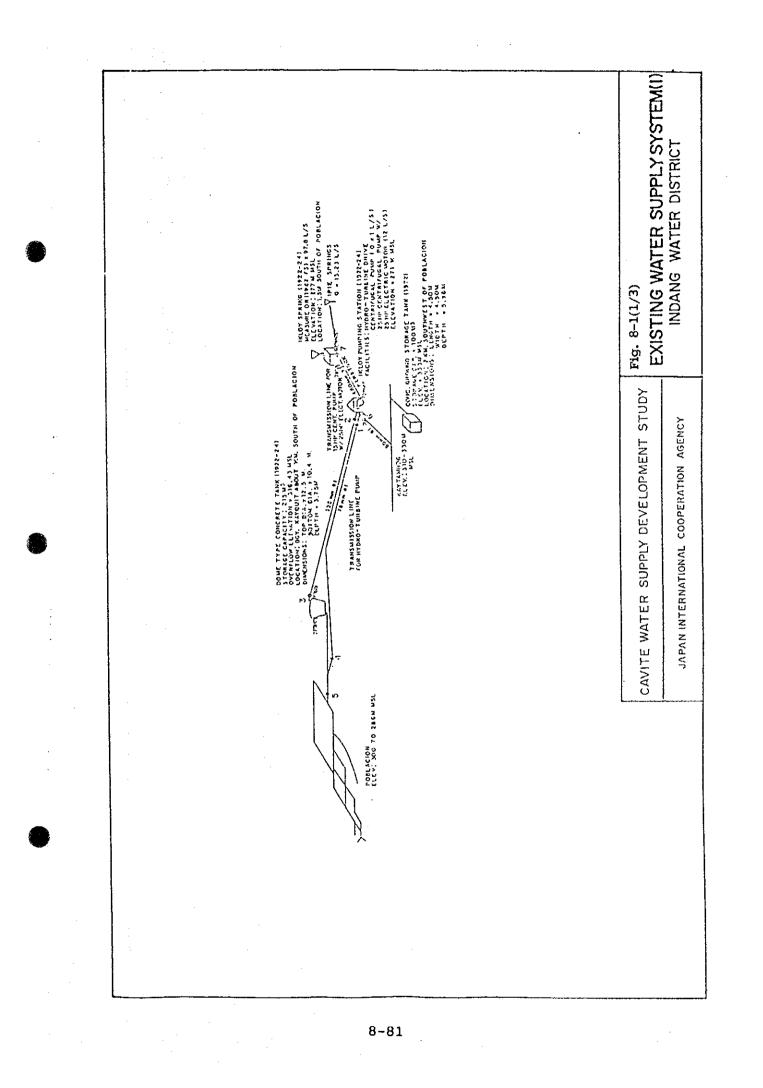
RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

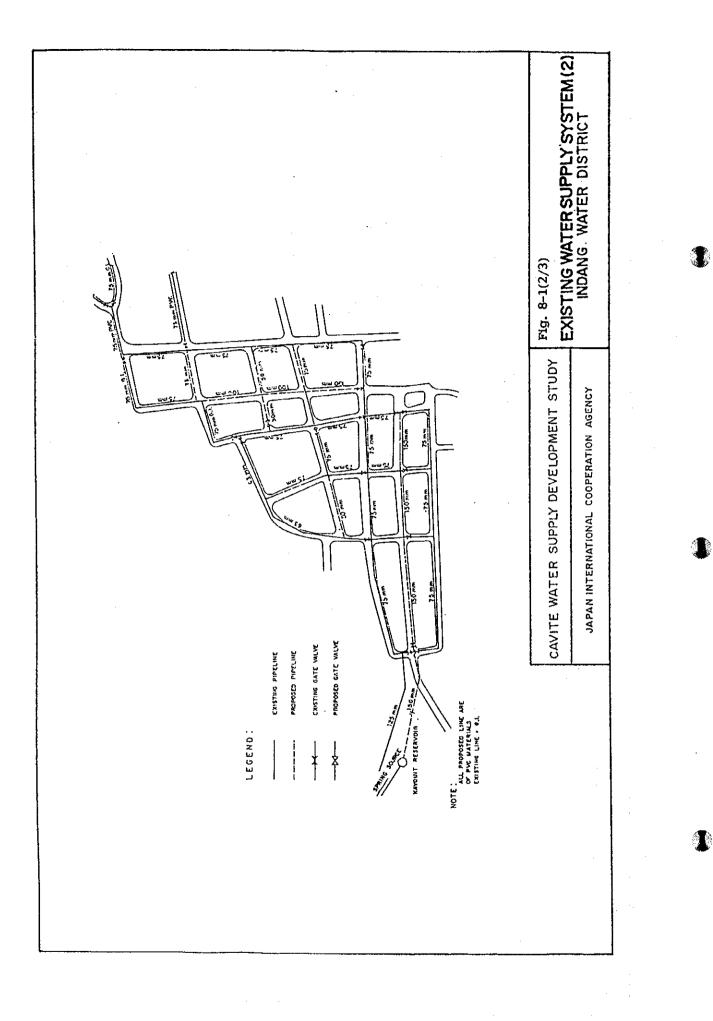
		TAGAYTAY CITY WD (Zone VIII) 13
NC. OF PIPES	•	
NO. OF NODES	-	13
PEAK FACTOR	-	2
HAX HEADLOSS/Ka		
MAX UNBAL(LPS)	ł	0

PIPE	FROM	TO	LENGTH	DIA	HAC	FLOW	VELOCITY	HEADL)55
NO.	Noce	Node	(M)	(83)		(LPS)	(NPS)	(M/XM)	(#)
	 91	 92	349.00	50	90	1.75	0.89	44.26HI	15,45
4092	91	93	721.00	75	110	4.67	1.06	25.17HI	18.87
93	92	93	372.00	50	90	0.75	0.38	9.19	3.42
94	93	94	270.00	50	90	1.04	0.53	16.96HI	4.58
4095	93	95	476.00	100	110	3.48	0.44	3.74	1.78
4096	95	95	189.00	100	110	2.15	0.28LO	1.55	0.29
4097	96	97	57.00	75	100	0,80	0.18LO	1,19	0.07
4100	99	78	281,00	50	100	1.00	0.51	12.98HI	3.65
4101	100	99	281.00	75	110	2.48	0,55	8.10	2.28
4102	102	100	281.00	75	110	3,88	0.88	18.55HI	5.21
4901	8000	91	125.00	100	110	1.34	0.17L8	0.64	0.08
4802	91	102	230.00	100	110	5,08	0.65	7.52	1.73
8500	8500	71	950.00	150	120	11.50	0,65	4,03	3.83

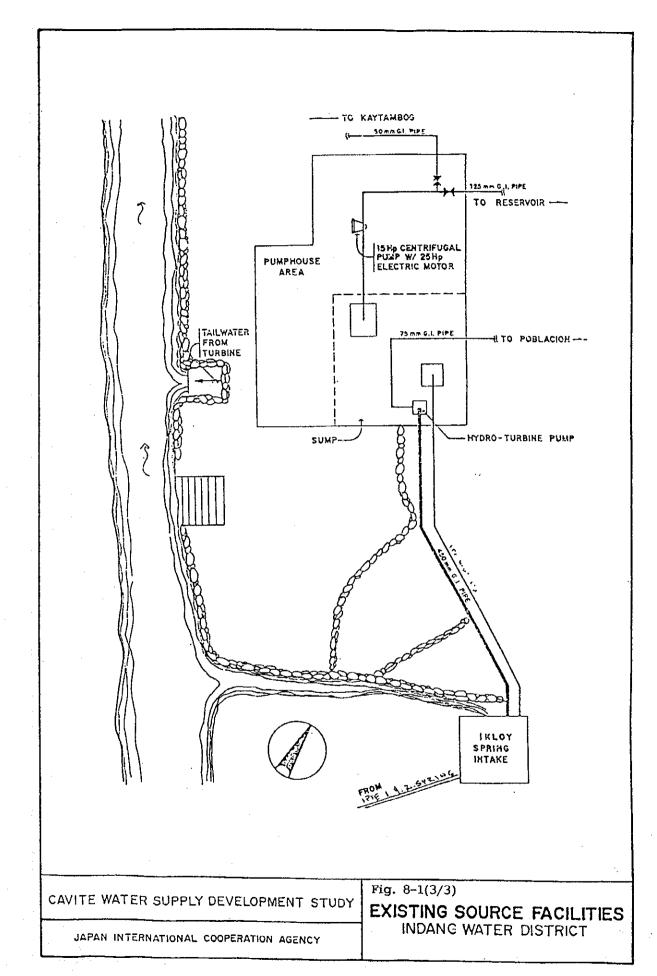
NCDE	FLOW	ELEVATION	86L	PRESSURE
NO.	(LPS)	(M)	(M)	(M)
91	-1.340	574.70	592.92	18.22
	-1.000	564.30	577.47	13.17
92 93	-0.900	558.20	574.05	15.85
54	-1.040	547.90	569.48	21.58
95	-1.320	543.80	572.28	28.48
96	-1.360	533,40	571.98	38.58
97	-0.800	531,70	571.91	40.21
102	-1.200	577.94	591,19	13.35
100	-1.400	558.50	585.98	27,48
99	-1,480	539.28	583,70	44,42
98	-1.000	520.00	580.05	60.05
8000 R	1.340	593.00	593.00	0.00
8500	11.500	550.00	596.75	46.75

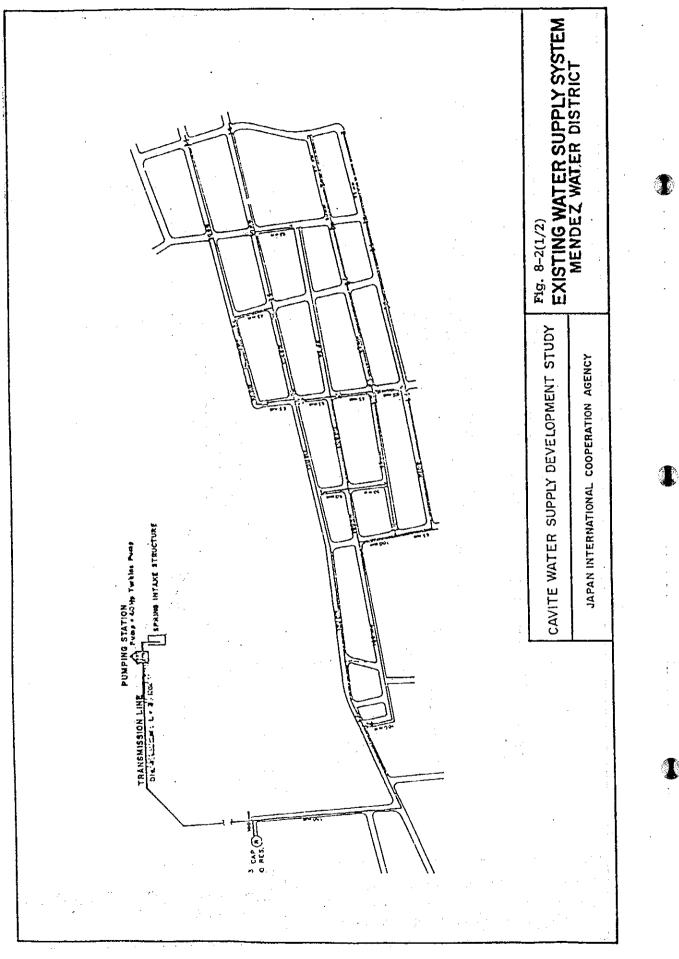
Page 1 of TAGA8

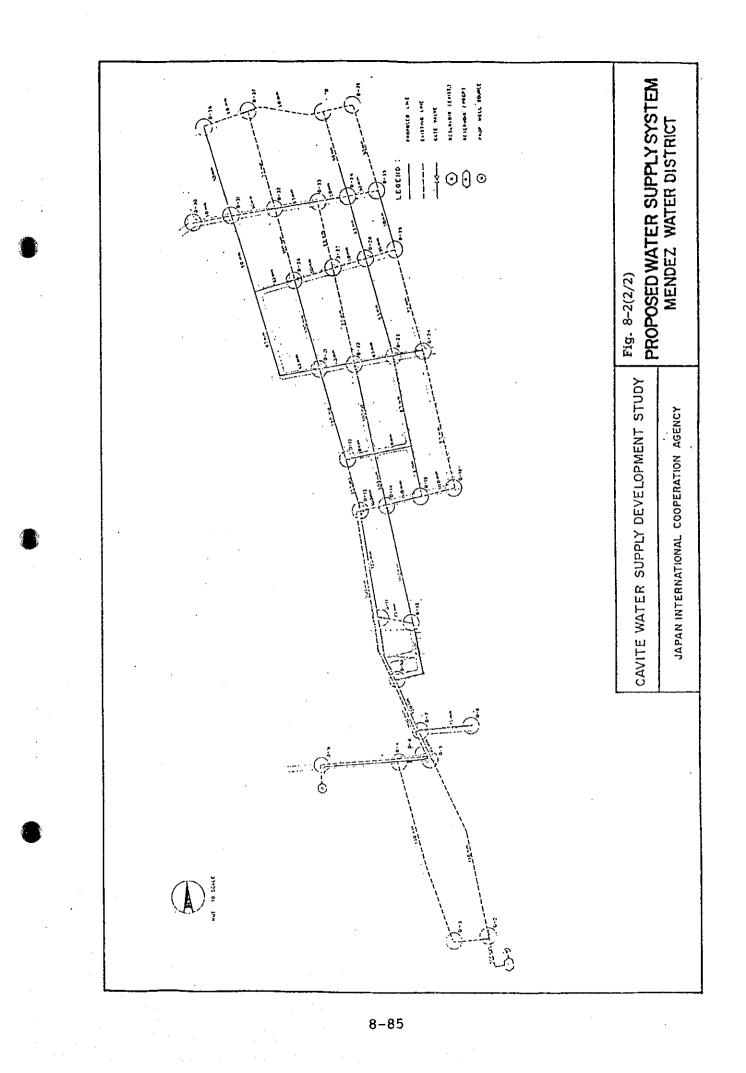

RESULT OF HYDRAULIC ANALYSIS OF PIPE-LINE SYSTEM OF TAGAYTAY(con't)

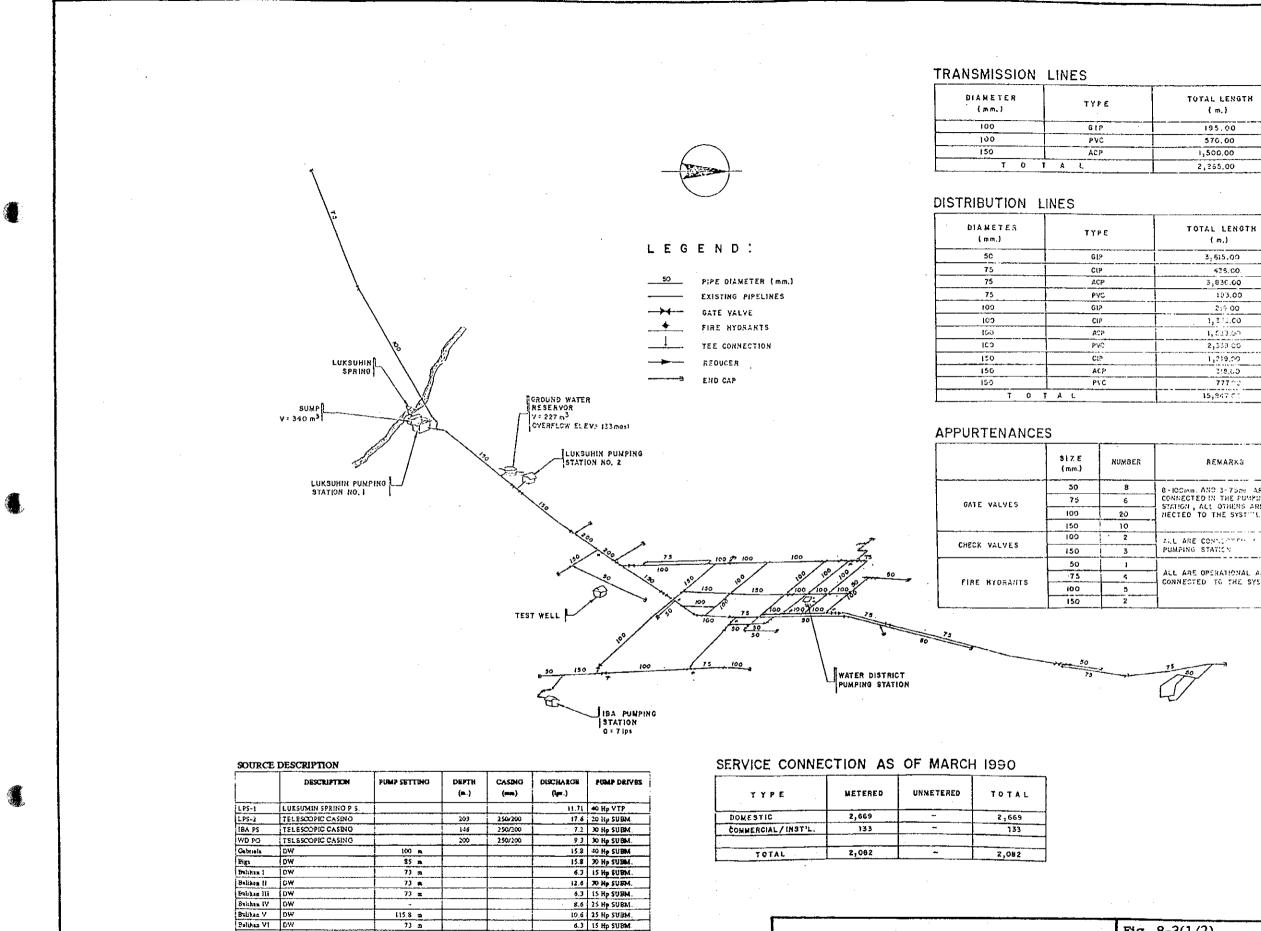

T I T L E : TASAYTAY CITY ND (Jone IX) NO. OF PIPES : 9 NO. OF NODES : 8 PEAK FACTOR : 2 MAX WEADLOSS/Ko : 10 MAX UNBAL(LFS) : .003

PIPE	FROM	TC	LENGTH	DIA	HNC	FLON	VELOCITY	HEADL	335
¥0.	Node	Node	(K)	(XX)		(LPS)	(MPS)	(#/K#) 	(#)
129	127	128	347.00	50	90	0,47	0.24L0	3,24	1.33
4129	127	128	347.00	100	110	3,53	0.45	3.84	1.33
130	128	129	240.00	50	90	1.81	0.92	47.07HI	11.30
131	129	130	240.00	50	90	0,95	0.48	14.29HI	3.43
132	128	131	451.00	50	90	0.75	0.38	9,15	4.13
1132	123	133	935.00	100	110	0.63	0.09L0	0.18	0.17
133	132	131	204.00	50	90	0.18	0,09LO	0.65	0.13
134	133	132	230.00	50	50	0.93	0.47	13.68HI	3.83
5000	9600	133	20.00	100	110	6,86	0.11LO	0.28	0,01


NODE NO.	FLOW (LPS)	ELEVATION (N)	Н G L (М)	PRESSURE (M)
127	4,000	587.00	 651.50	64.50
126	-0.770	607.50	650.16	42.55
129	-0,858	573.75	638.87	65.12
130	-0.946	580.00	635.44	55.44
131	-0.924	632.90	646.03	13,13
132	-0.748	624.90	646.15	21.26
133	-0.515	640.10	649.99	9.89
7600 R	0,964	640,10	650.00	9.90


Paga 1 of TABA9




.

500

10 15 Hp SUEM.

JAPAN INTERNATIONAL COOPERATION AGENCY

CAVITE WATER SUPPLY DEVELOPMENT STUDY

8-86

91.4 m.

Bulikan VII DW

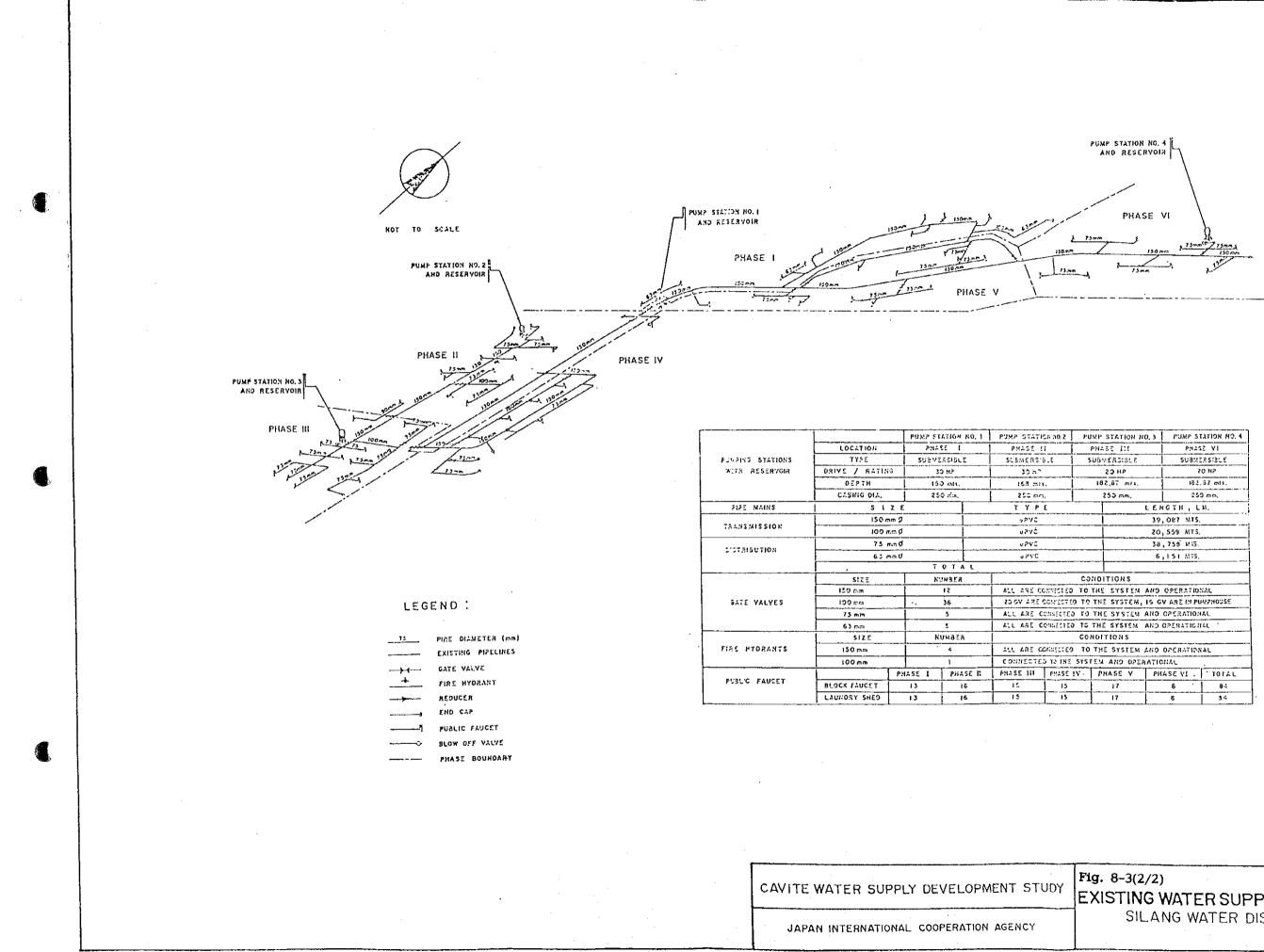
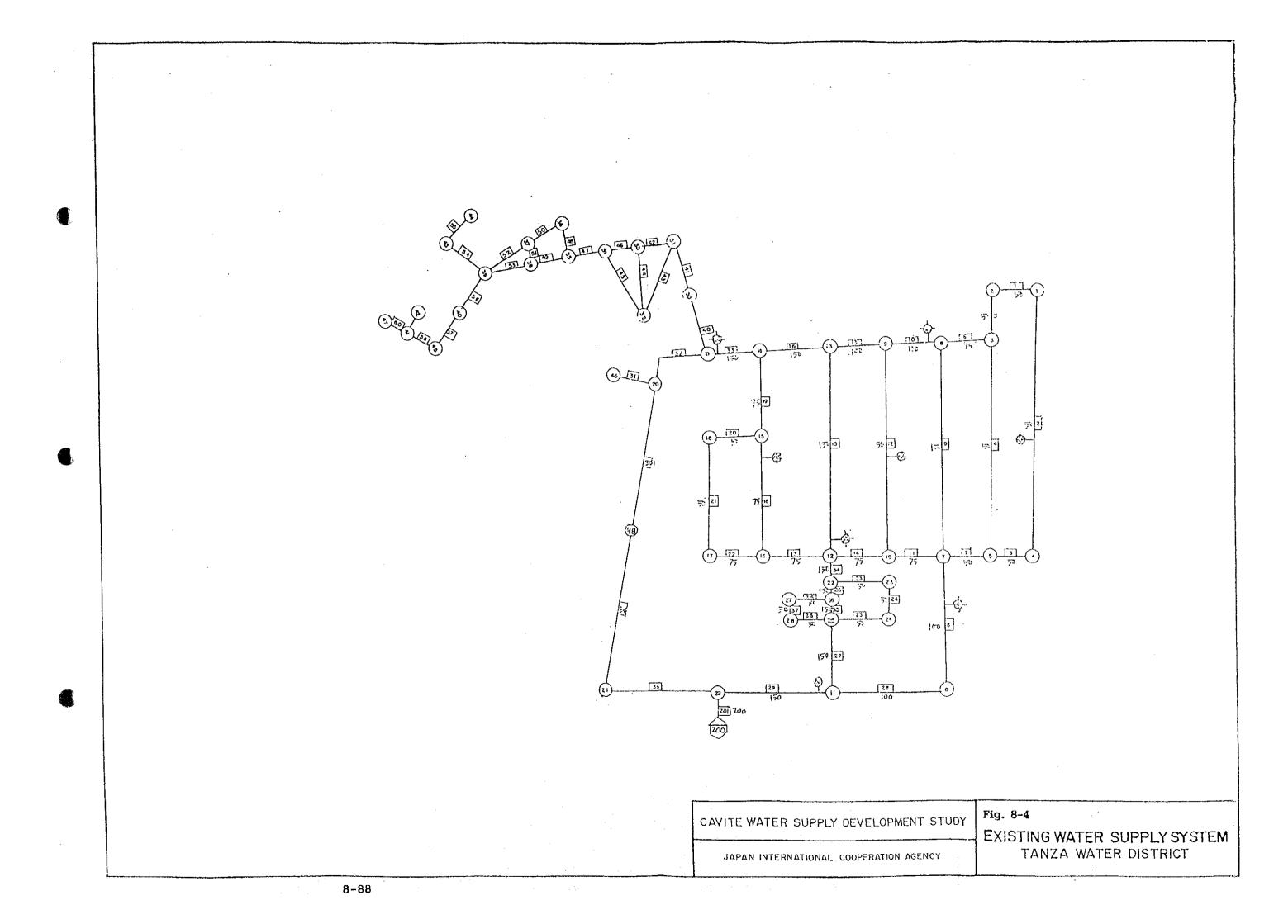
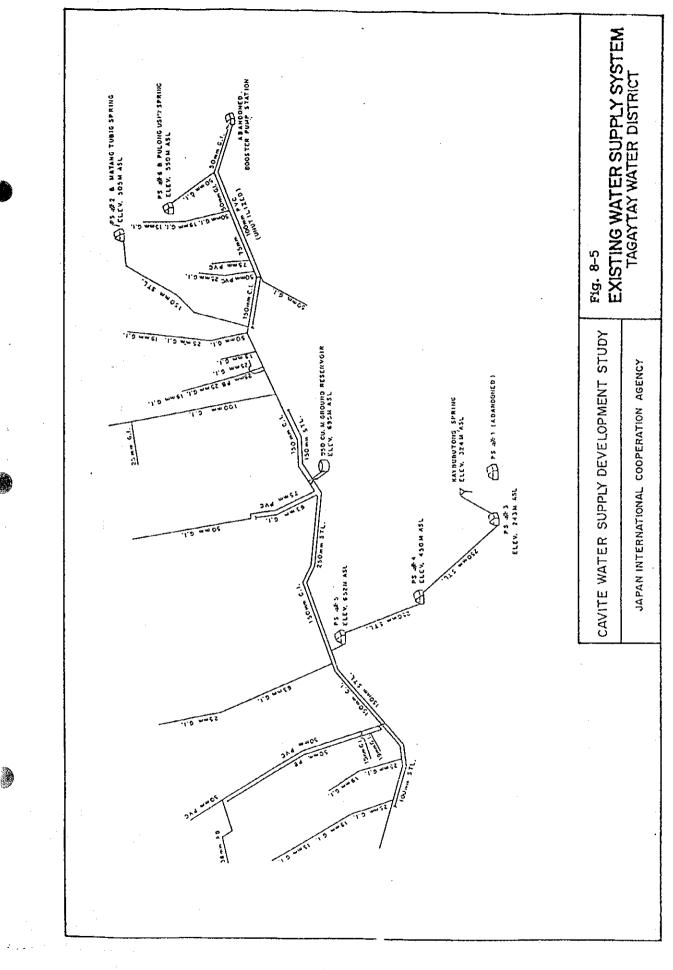

EXISTING WATER SUPPLY SYSTEM(1) SILANG WATER DISTRICT

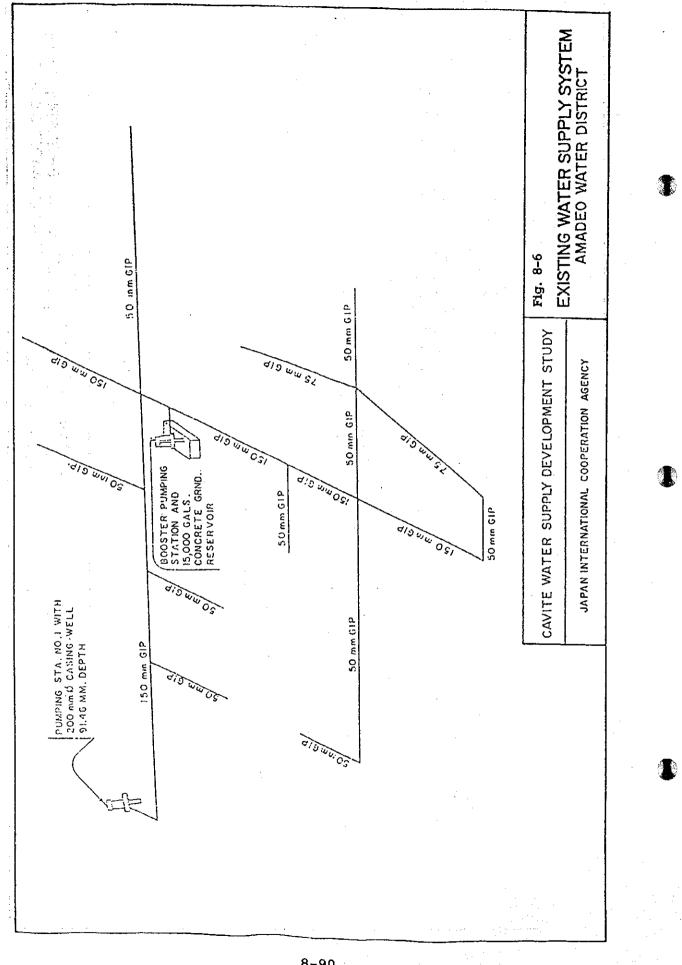
Fig. 8-3(1/2)

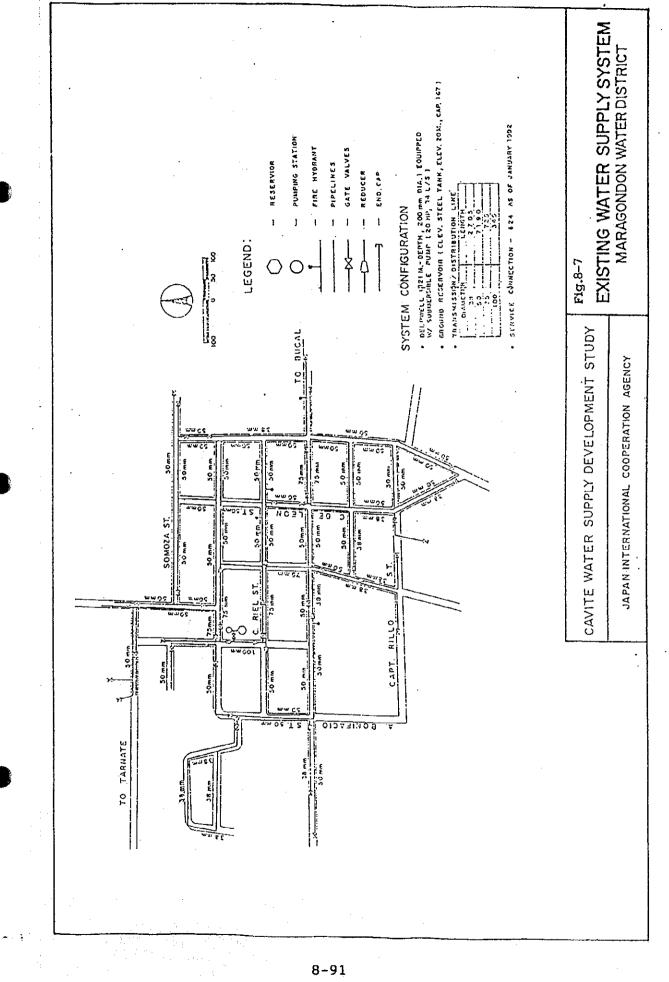
REMARKS
8-IOCIMM. AND 3-75ml ARE
CONNECTED IN THE PUMPING STATION, ALL OTHERS ARE CON-
NECTED TO THE SYST "L
<u> </u>]
ALL ARE CONCLETED & THE
PUMPING STATICN
ALL ARE OPERATIONAL AND CONNECTED TO THE SYSTEM
Sincole to the states


	(m.)	
	3, 515,00	
	435, CO.	
	3,830.00	
	103.00	
	219-00	
	1, E 11,CO	
	1, 633,00	
	2,333 CG	
	1,219,50	
	CU.BIE	
	777 **2	

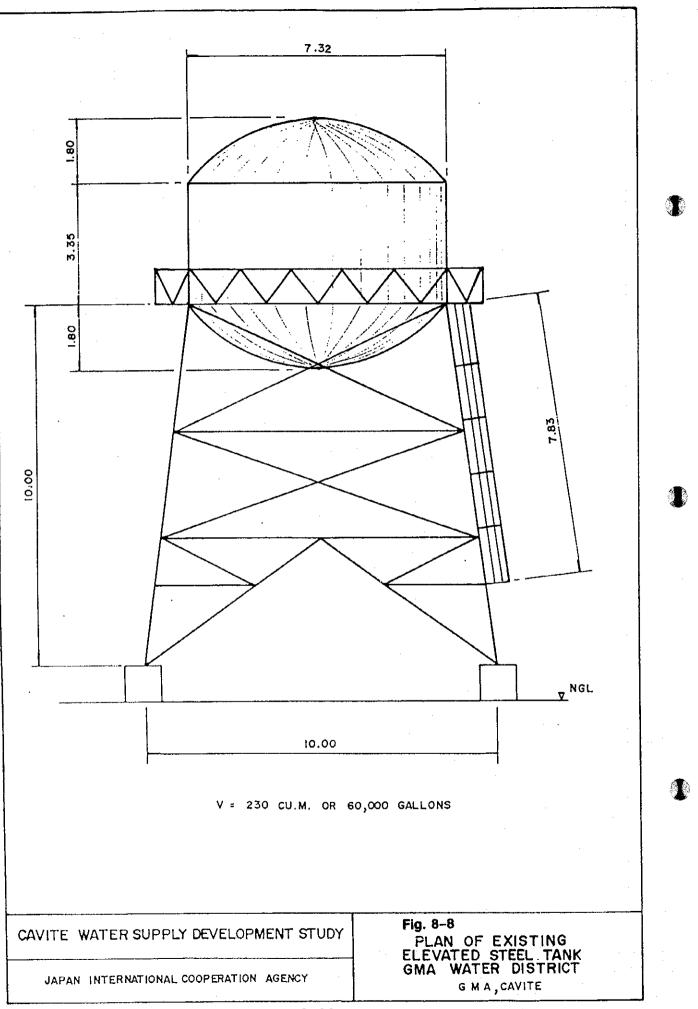
	TOTAL LENGTH (m.)
·	195.00
	570.00
	1,500.00
	2,255,00

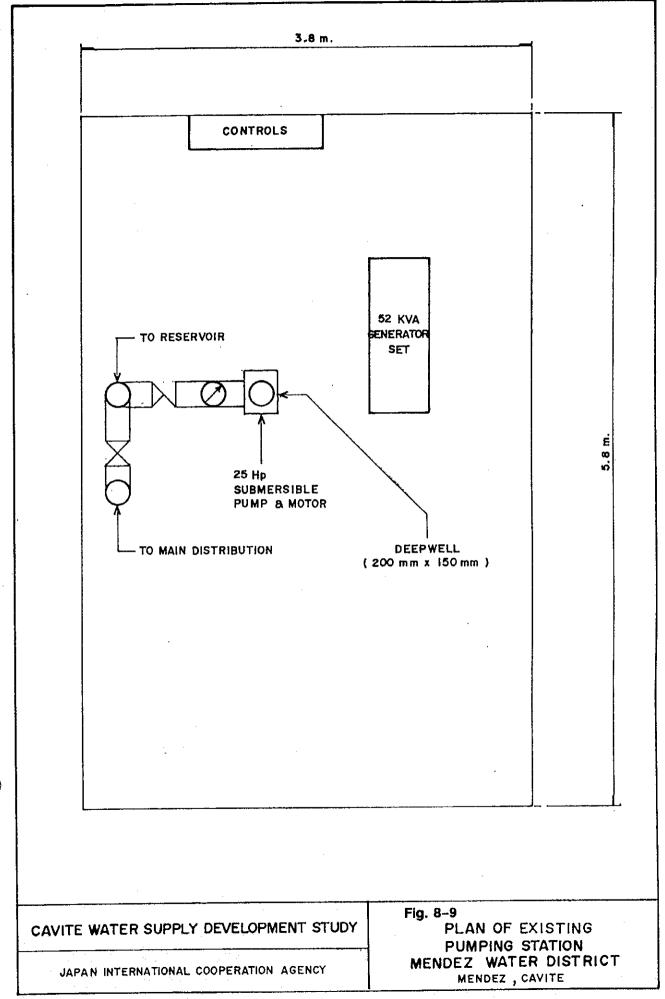


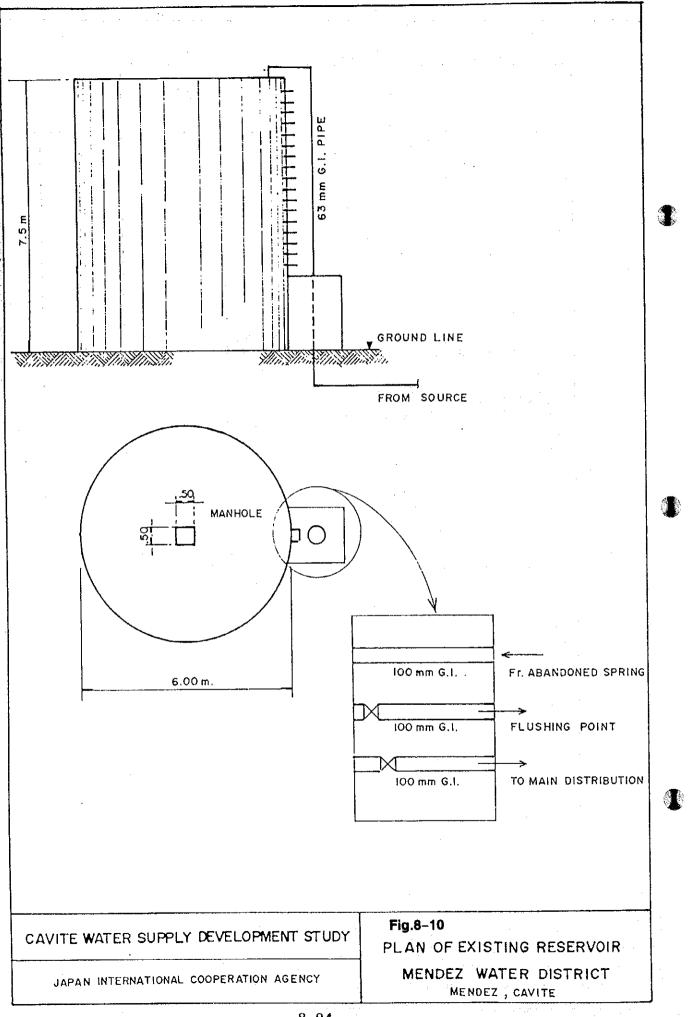

EXISTING WATER SUPPLY SYSTEM(2) SILANG WATER DISTRICT

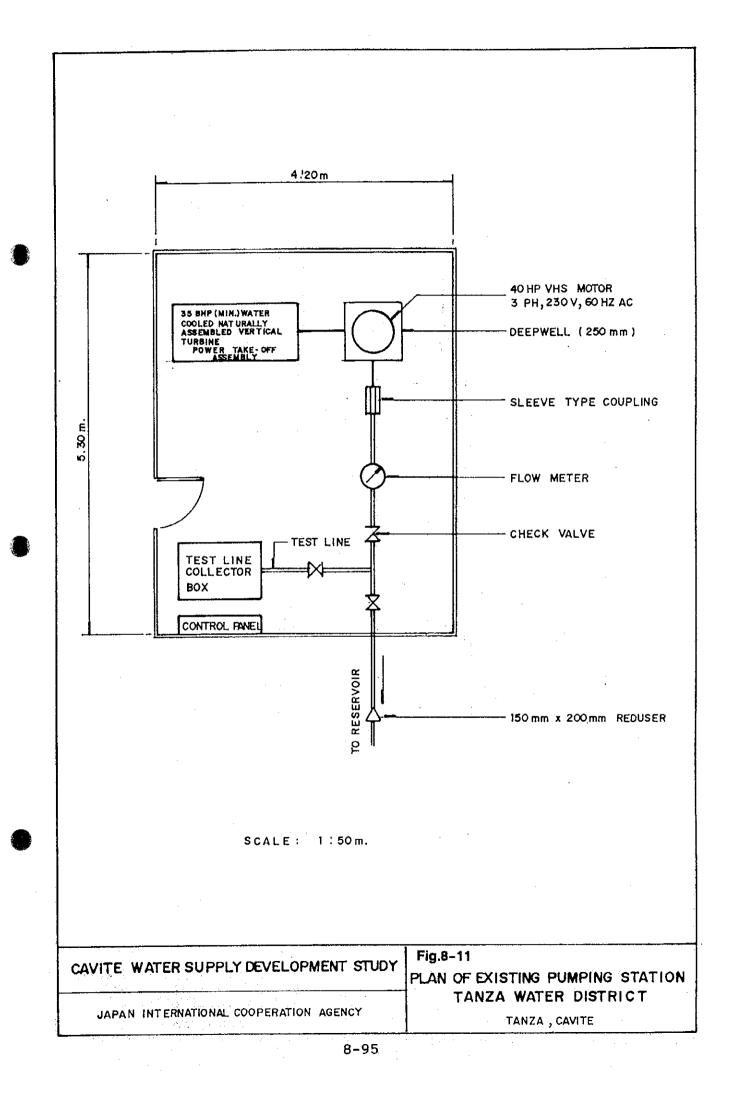

250 ന	25	10 mm.					
LENGTH, LM.							
39, 087 MIS.							
	20, 559 MTS.						
	3a,759 ¥ 15						
	6,151 MT5						
NOITIONS							
THE SYSTEM	AND OPERATIO	DNAL					
THE SYSTEM,	IS GV ARE IN P	UMPHOUSE					
THE SYSTEM	AND CREEATIO	HAL					
THE SYSTEM	AND OPERATIG	1146 .					
NUITIONS							
THE SYSTEM	AND OPERATIO	NAL					
TEM AND OPER	ATIONAL						
PHASE V	PHASE VI .	TOTAL					
17	6 [.]	84					
17	6	54					

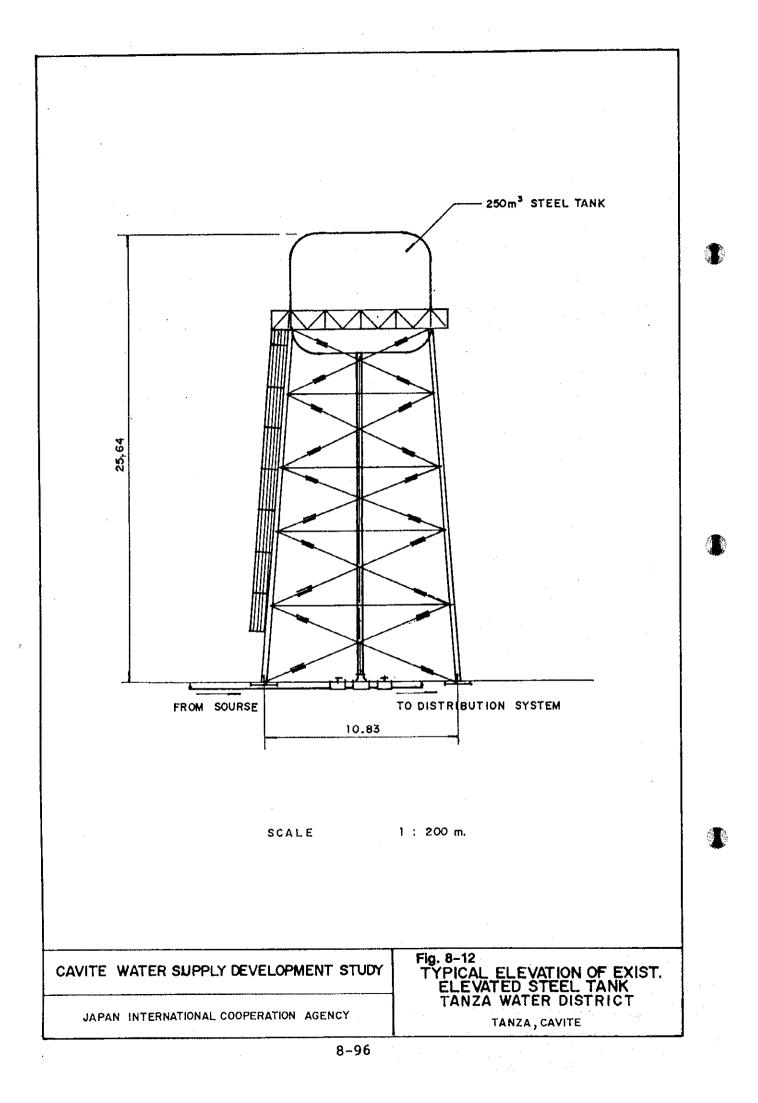
•

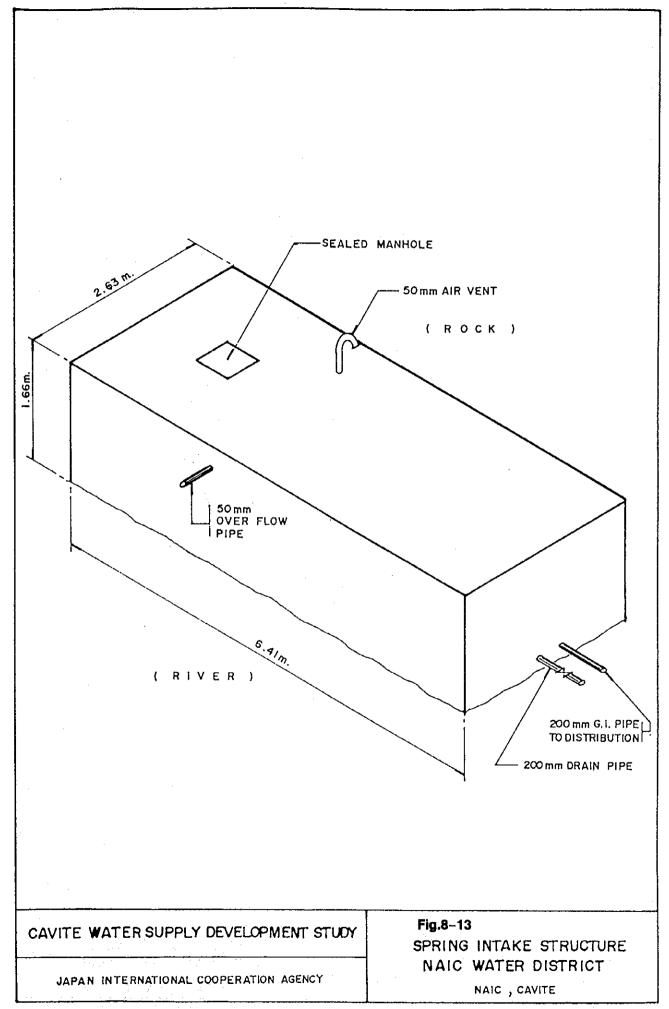


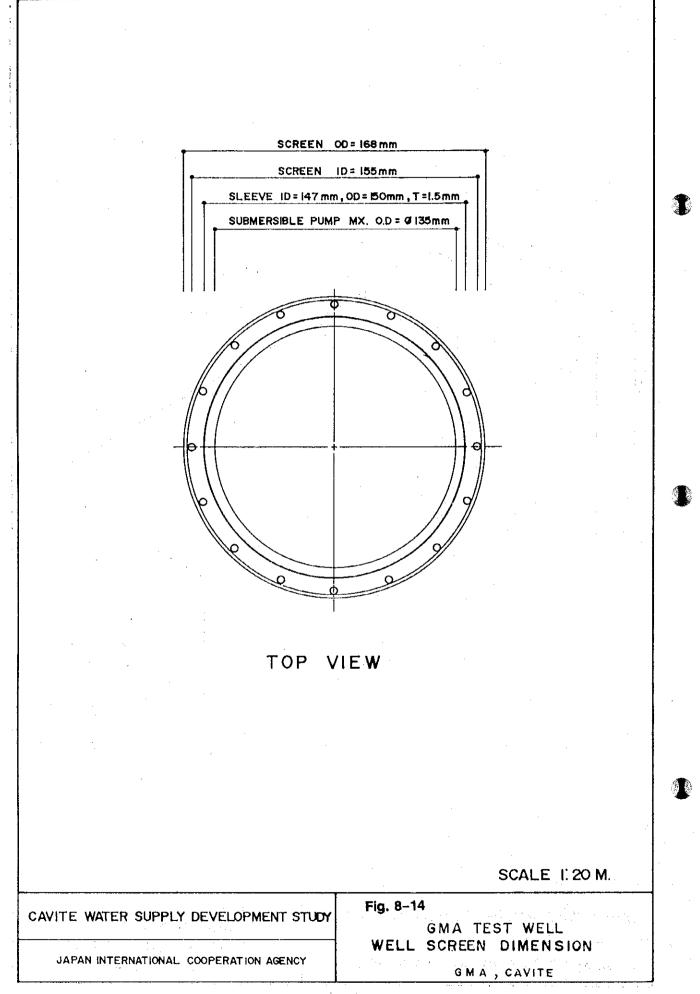


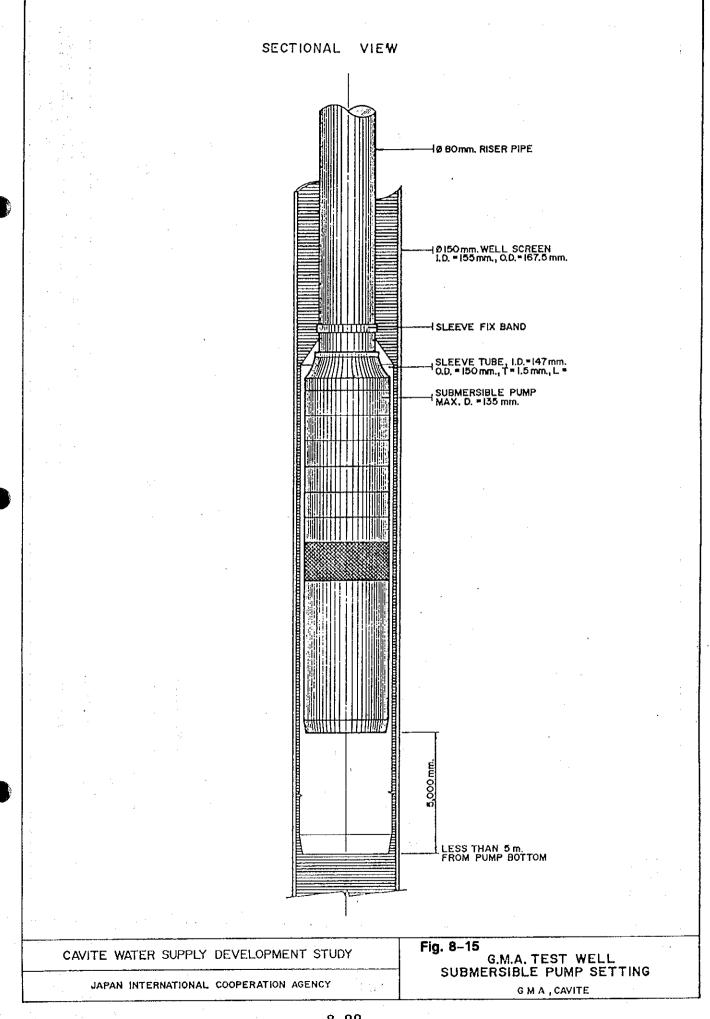


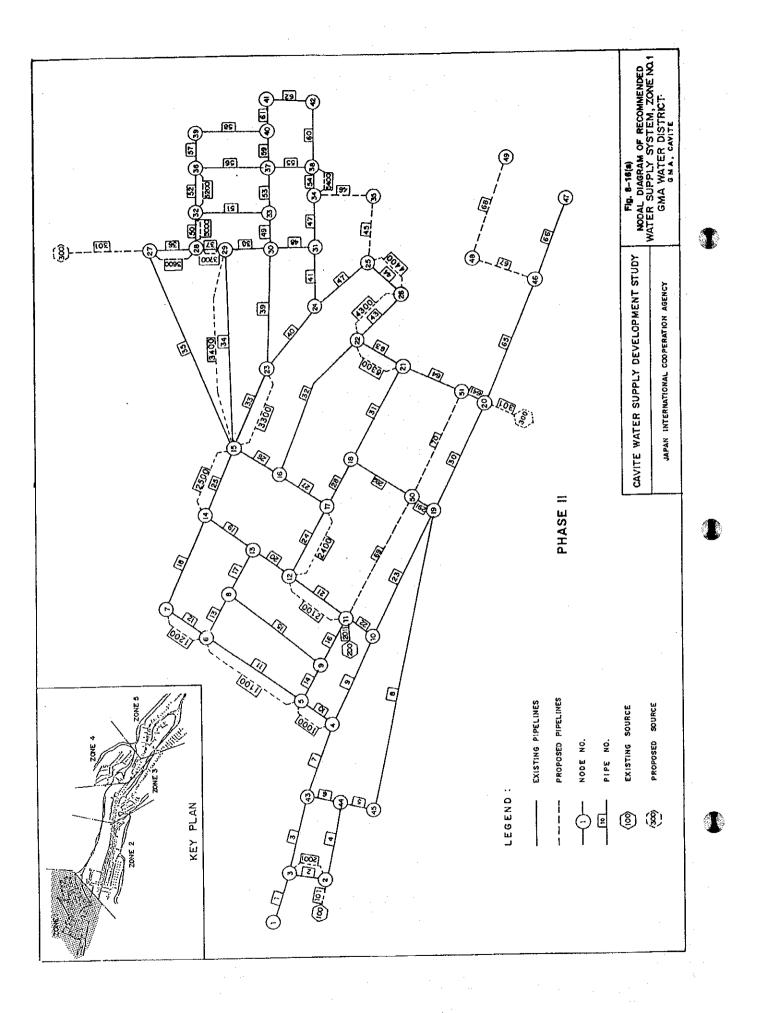

- -

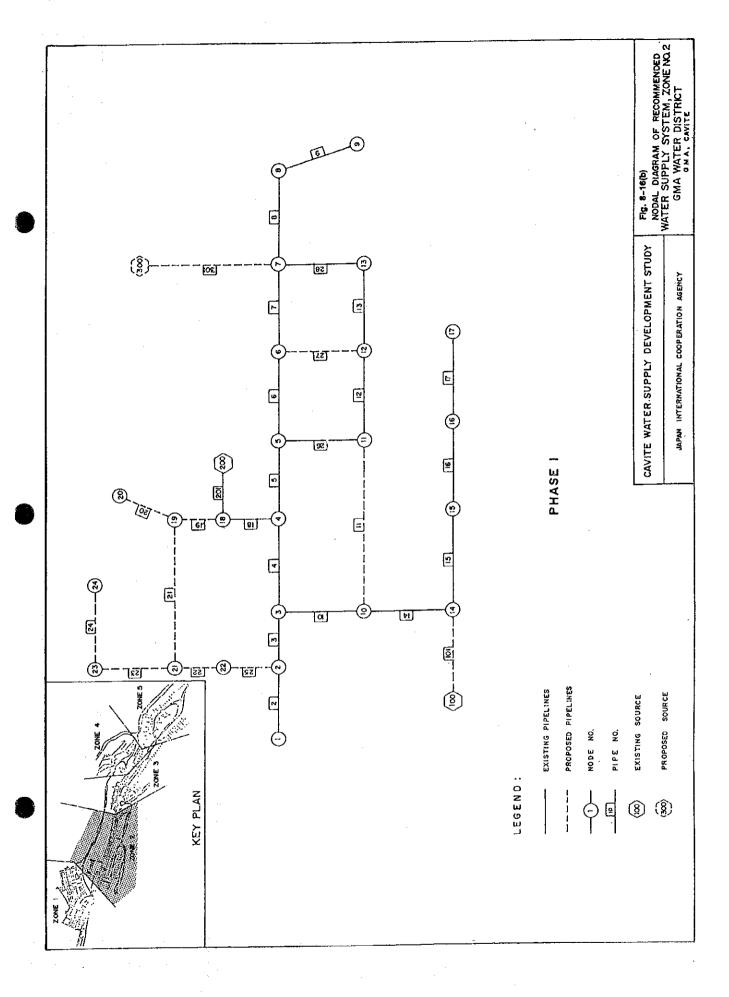

.

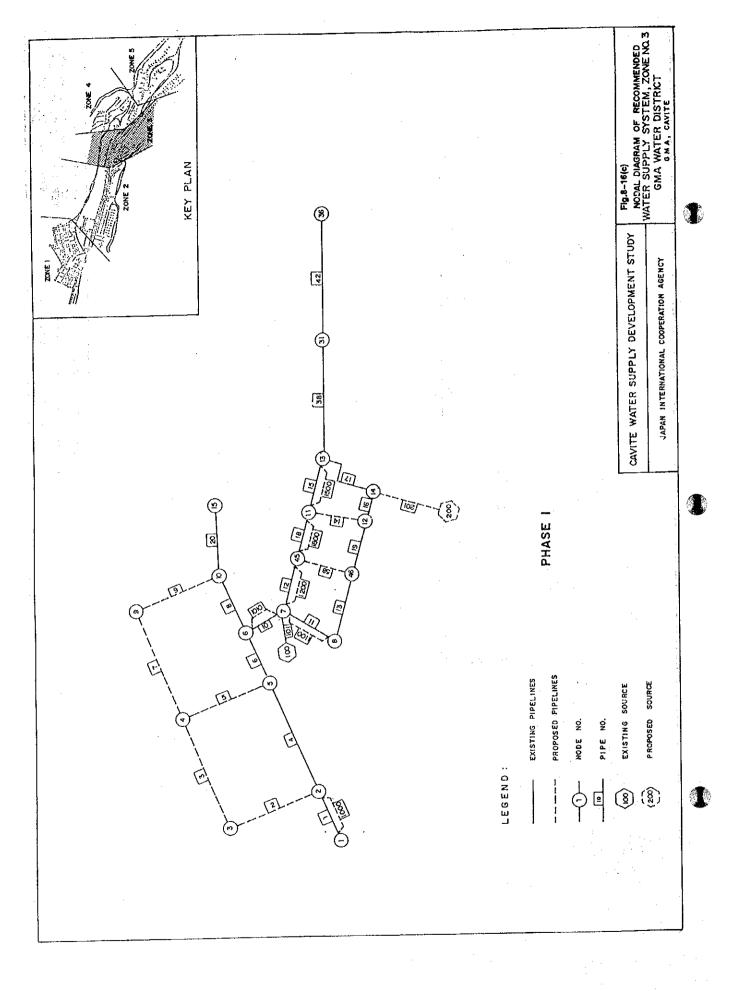


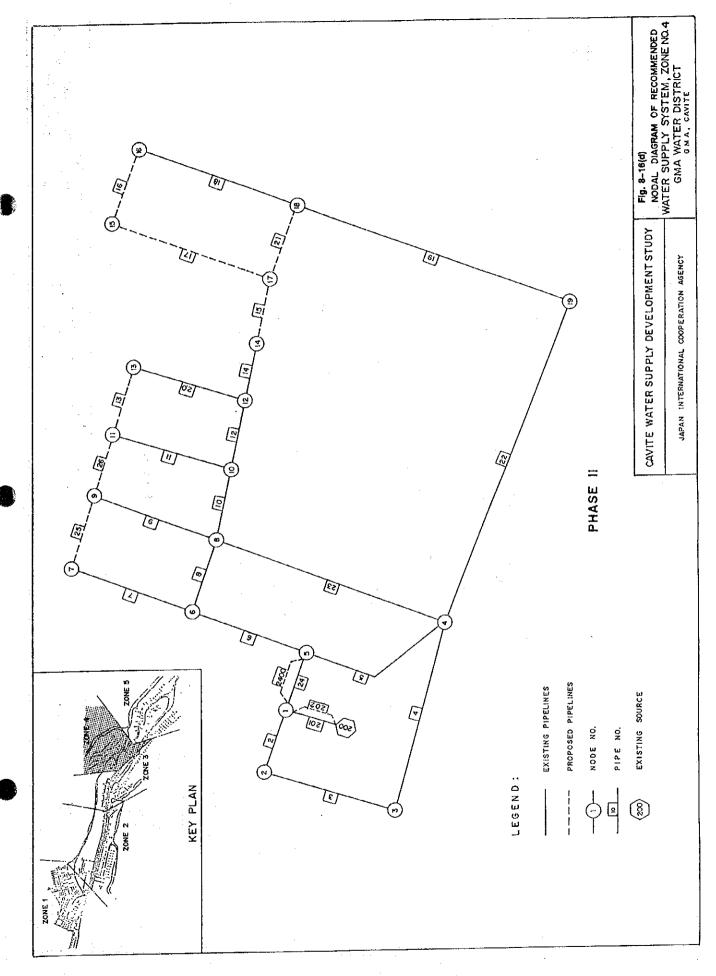


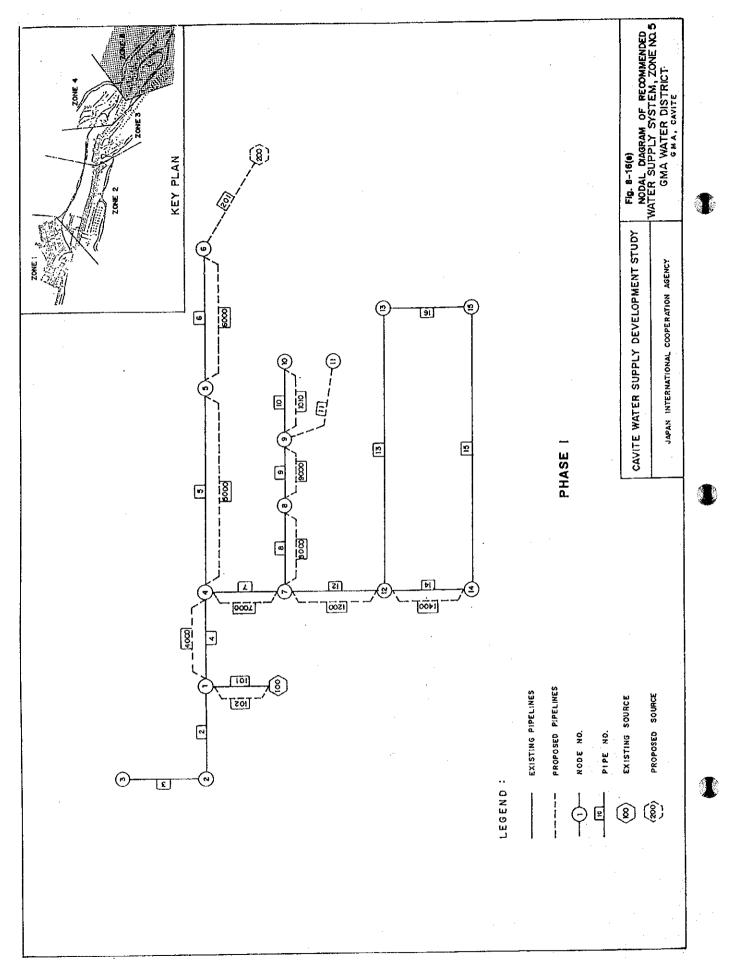


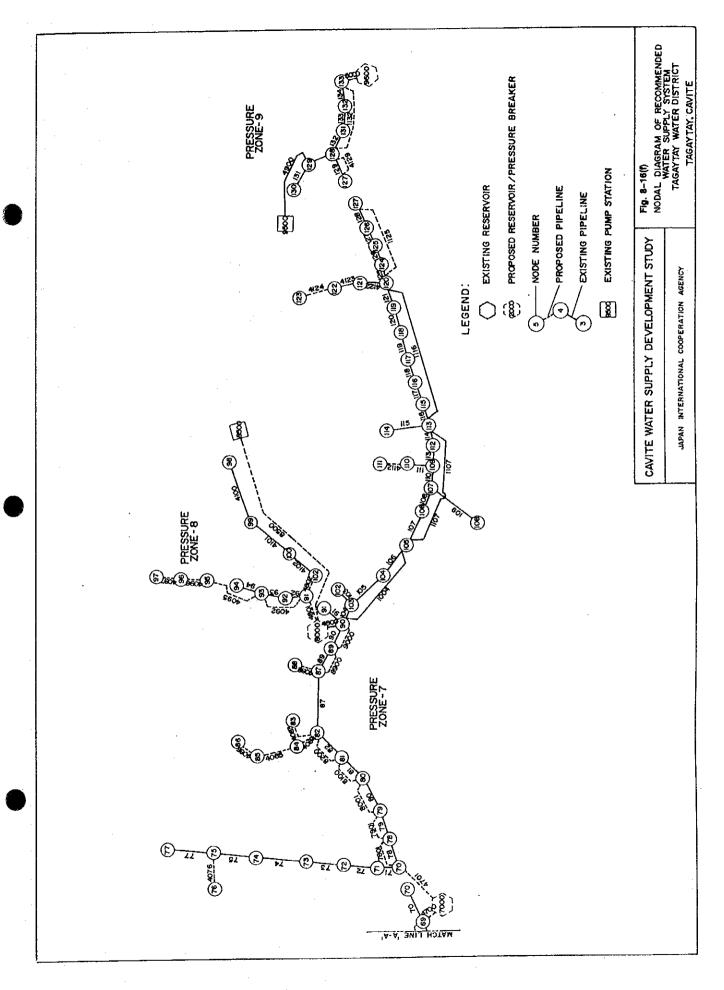


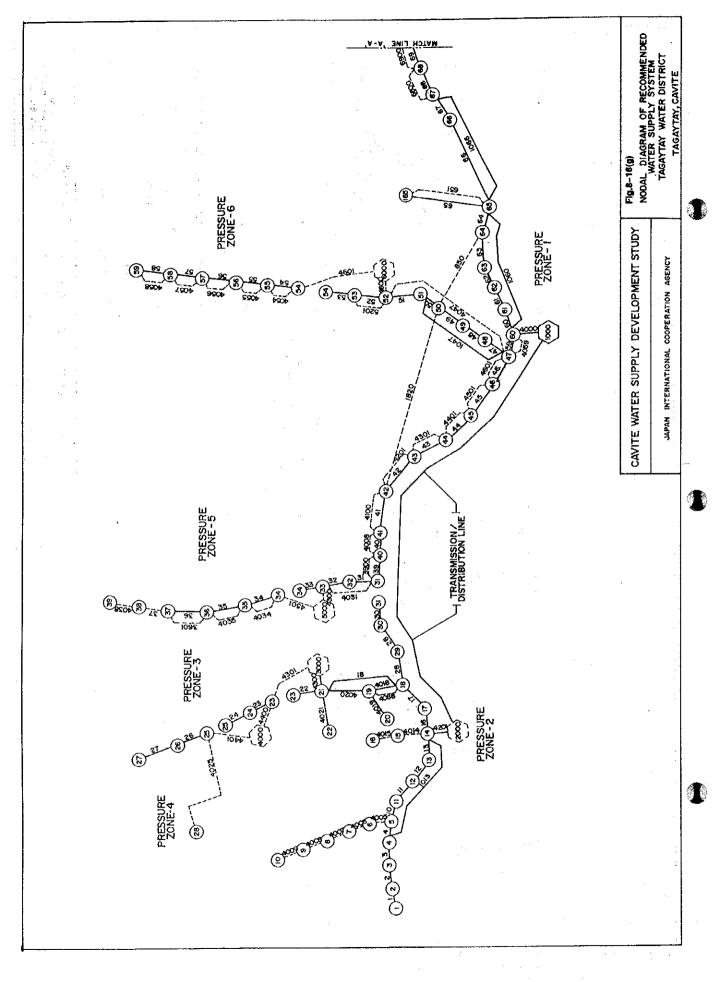


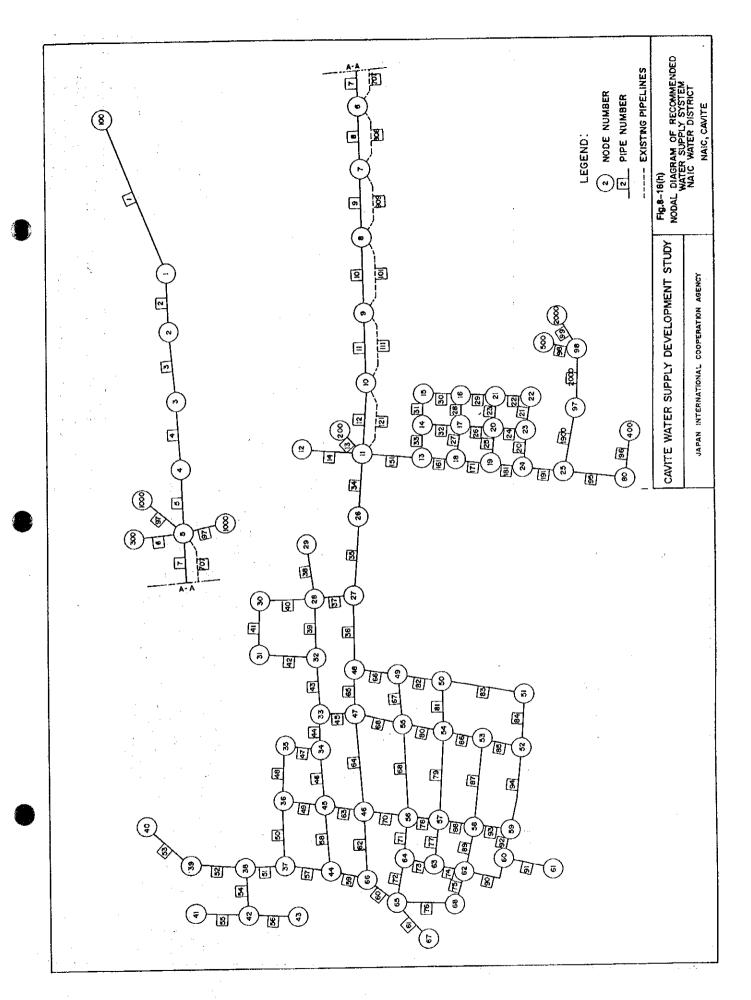


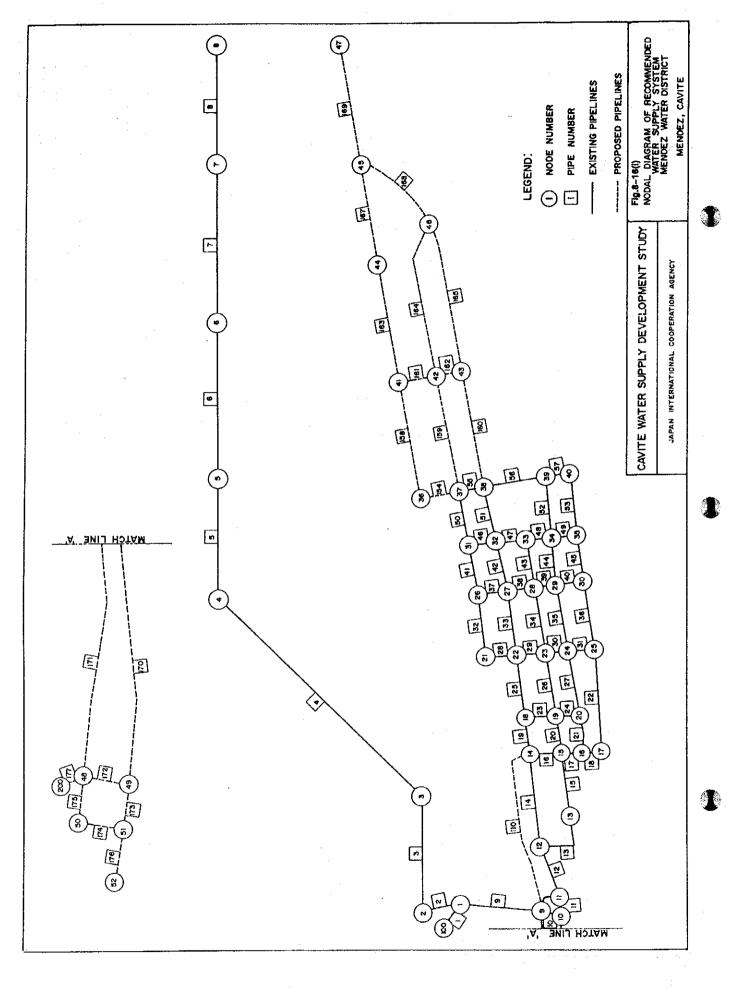



.






• .





8–108

