3.5 Data of Geology

abl		Micr		

Table 2 Laboratory Test Results

Table 3 Micro Fussils from the Limestone Blocks in the Vicinity of Se Kong No.4 Dam

Site

Photogeological Maps

Table 1 Microscopic Analysis

Project	Sample Number	Locality	Lithologic Name
Se Kong No.4	SK - 1	Left bank of the dam site	Altered andesite
	SK - 8	River bank on the right bank of the damsite	Calcareous conglomerate
	SK - 9	River bed 500m downstream of the dam axis	Lapilli tuff
Xe Kaman No. 1	KX - 3	River bed downstream of the dam site	Conglomerate
Xe Namnoy Midstream	NH - 1	Right bank near B.Latsasin	Laterite

Table 2 Laboratory Test Results

Sample	locality	1:44-1	Unconfined	Splitting Tensile		
Drill hole	depth (m)	Lithology Compression Strength (Kgf/cm ²)		Strength (Kgf/cm²)		
XN - 1 XN - 1 XN - 1 XN - 1 SK - 1 SK - 1	32.78 - 33.0 20.45 - 20.63 19.00 - 19.15 19.25 - 19.40 20.25 - 20.40 8.0 - 8.1 8.65 - 8.75	Basalt Basalt Basalt Basalt Tuff Tuff Tuff	1,220 >2,120 1,590 880 510 >1,270	147 173 178		
SK - 1 SK - 1 SK - 1 SK - 1 XN - 1 XN - 1	17.10 - 17.20 51.25 - 51.40 7.15 - 7.25 20.65 - 20.90 19.28 - 19.39 53.46 - 53.56	Tuff Shale Basalt Sandstone Sandstone Conglomerate	1,400 510 100 250 1,470 660	166 159		

Table 3 Micro Fussils from the Limestone Blocks in the Vicinity of Se Kong No.4 Dam Site Age Sample Micro Fussil Fusulinaceans Robustoschwagerina sp. (n. sp. ?) Early Permian Schwagerinidae gen. et sp. indet. Schubertella sp. Boultoniidae gen. et sp. indet. Smaller foraminifer Neoendothyra sp. В Fusulinaceans Schwagerinidae gen. et sp. indet. Staffella sp. Minojapanella(Russiella)? sp. Schubertella sp. Smaller foraminifers Middle Permian Eotuberitina ex gr. reitlingerae Miklukho-Maklay Tuberitina sp. Tetrataxis sp. Climacammina valvulinoides Lange Endothyra sp. Globivalvulina gracea Reichel Pachyphloia sp. Langella sp. Multidiscus sp. D Smaller forminifers Permean Globivalvulina sp. After Early

Permean

Permean

Schwagerinidae gen. et sp. indet.

Lunucammina? sp.

Fusulinaceans

Ε

PHOTOGEOLOGICAL LEGEND

	(Common for 3 Projects)
	Litho stratigraphic boundary
Taken or was walked to be be before the	Fault(inferred, high certainty)
	Fault(inferred, low certainty)
	Lineaments
	Bedding trace
	Bedding trace with sign of dip
	Indication of strike and dip
	Syncline with plunge
	Anticline with plunge
	Landslide scarp
777	Erosion cliff
•	Waterfall
•	Photograph center with numbers

Photo-geolog Units	ical Characteristics
1	Unit 1 is distributed along by rivers and valleys, forming flat and smooth surfaces of the terrain including terrace. This Unit may consist of alluvial deposits.
2	Unit 2 appears at the foot of mountains and at the mouth of a valley, covering a small area. It has gentle and rounded relief with moderate to nearly horizontal slopes. The drainage density is low. This Unit may consist of talus deposits and alluvial deposits.
3	Unit 3 is distributed in the basen located in the northeastern part of the study area, spreading at the both sides of the Xe Kaman river. The sedimentary structure is not observed. The vegetation cover is dense. The Unit 3 may mainly composed of argillaceous rocks.
4	The topography is moderate, presenting flat lands in places. As the thickness of the overburden, which may consist of alluvial deposits, is thin the layers of the Unit 4 with high resistance against whethering show linear alignment of outcrops, They are recongnized as bedding traces. The layers are inclined to the southwest, and locally microfolded.
5	Unit 5 forms continuous mountain ridges. The layers with high resistance are exposed on the slope of the mountainside. The sedimentary structure is obvious. Unit 5 may conprise alternating beds of arenaceous to rudaceous rocks and argillaceous rocks. Probably, the arenaceous to rudaceous rocks are predominant. The attitude of dip and strike of the layers are consistent with those of the Unit 4.
6	Unit 6 is widely distributed in the basen situated on the east of the Unit 5. Linearments in the direction of NE~SW are prevalent. Drainage density is high, Bedding structure is not observed. The low resistance against weathering of the Unit 6 suggests that the Unit comprises predominant argillaceous rocks.
7	Unit 7 forms an isolated hill with thin ridges. On the whole, it presents massive features excepting local bedding traces. Resistance against weathering is high. Although the Unit 7 shows similar characteristics to those of the Unit 8, they are not definitely identified.
8	Unit 8 has thin and high ridges comprising high resistant layers with white bands. As the Unit is massive, The sedimentary structure of the Unit is not observed. Drainage density is relatively high. This Unit probably comprises alternating beds of arenaceous and rudaceous rocks and argillaceous rocks.
9	Unit 9 forms thin ridges including white-coloured outcrops of layers. White-coloured mottled pattern are observed in places. Bedding traces are obviously recognised along by the fault striking NW-SE in the valley. This Unit may comprise alternating beds of sedimentary rocks mainly composed of arenaceous rocks and/or limestone. The karst topography is not observed.
10	Unit 10, forming moderate slopes, is situated at the foot of the mountain composed of the Unit 7,8. The drainage density is high and the resistance against weathering is low. This Unit may consist of argillaceous rocks and/or talus deposits.

LEGEND FOR XENAMNOY MIDSTREAM PROJECT AREA

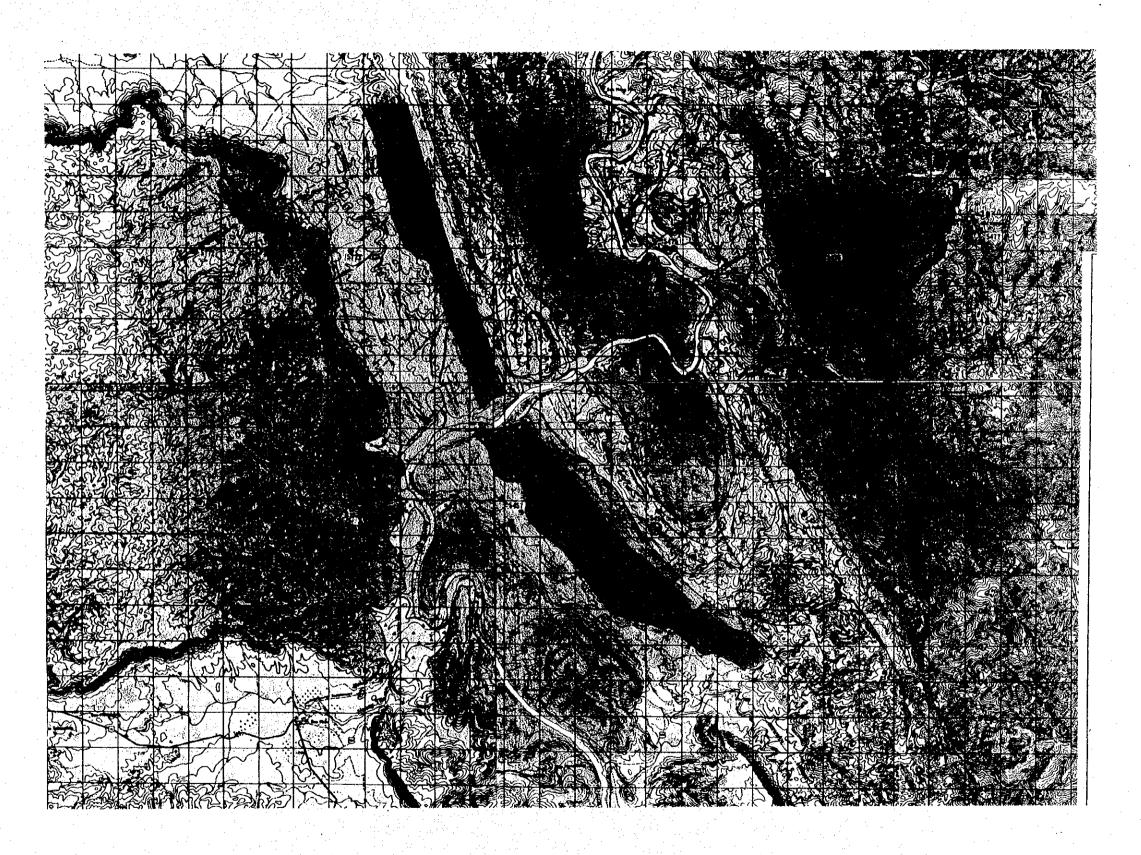
Photo-geolog Units	ical Characteristics
1	Unit 1 forms terraces with flat or gently inclined slopes, showing smooth geomorphic surfaces. This Unit forms escarpments on the marginal sides to the river. The levels of the terraces are slightly different in different localities. Unit 1 may consists of terrace deposits.
2	Unit 2 forms hills overlying the Unit 3. Valleys are shallow whereas the undulation of the terrain is slightly high. Dense vegetation covers the area, and the cultivated lands are scarce, Unit 2 is massive in generall. Sedimentary structure is not observed. The drainage density is low.
3	The topography shows gentle undulation and many flat lands. Many settlements are recognised, Cultivated lands are widely developped, Unit 3 overlies the Unit 4 almost horizontally. As the thickness of this Unit is thin the layers have been eroded to form hills studded in places. The Unit 3 is massive, and sedimentary structure is not observed.
4	Unit 4, conformably overlying the Unit 5, comprises horizontally layered or gently inclined sedimentary rocks. The outcrops, forming scarps along valleys, show high resistance against weathering. The sedimentary structure of this Unit 4 is clearly observed. Unit 4 may comrise alternating beds of arenaceous to rudaceous rocks and argillaceous rocks. Probably, the arenaceous and/or rudaceous rocks are predominant.
5	Unit 5 comprises horizontally layered or gently inclined sedimentary rocks, forming scarps along the valley with rather moderate slopes than that of the Unit 4. The Unit 5 may comrise thick alternating beds of arenaceous to rudaceous rocks and argillaceous rocks. Probably, the arenaceous and/or rudaceous rocks are predominant in the upper part whereas the argillaceous rocks are predominant in the lower part.

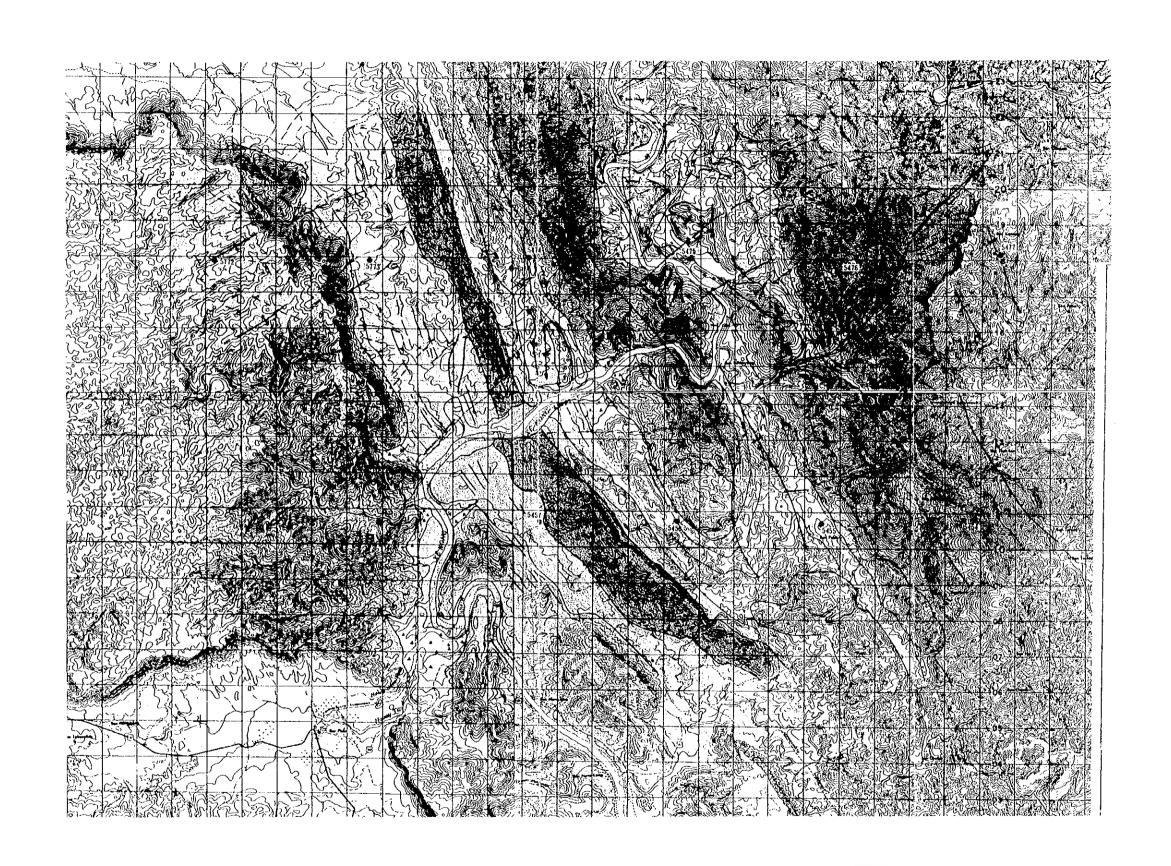
LEGEND FOR SE KONG NO. 4 PROJECT AREA

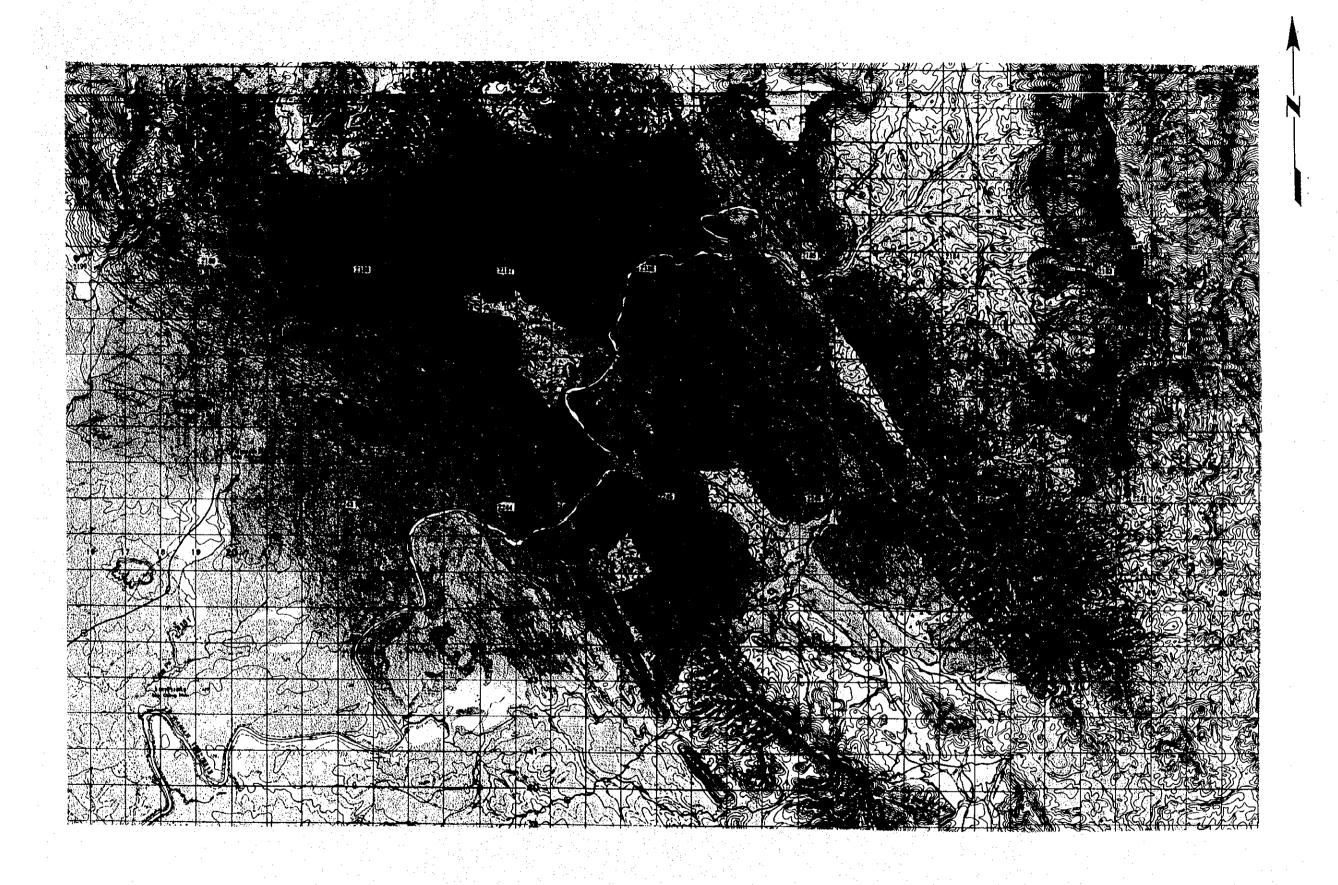
	Photo-geolog Units	ical Characteristics
1		Unit 1 is distributed along by rivers and valleys, forming flat and smooth surface of the terrain including terraces. It may consist of alluvial deposits.
2		Unit 2 appears locally at the foot of mountains and at the mouth of valleys. It has gentle and rounded relief with moderate to nearly horizontal slopes. The drainage density is low. It may consist of talus deposits.
3		Unit 3 is distributed to the south of Ban Palai Vil. located in the southeastern part of the study area. Sedimentary structure is not observed. The Unit horizontally overlies the lower layers which show distinct bedding traces. It may consist of sedimentary rocks mainly composed of argillaceous rocks.
4		The topography is moderate with flat lands. As the thickness of the overburden, consisting of alluvial deposits, is thin the resistant layers of the Unit against whethering show linear alignment of the outcrops as bedding traces. The layers, generally dipping southwest, show locally microfolded structures.
5		Unit 5 is distributed in the western part of the study area. It may comprise alternating beds of sedimentary rocks composed of arenaceous and ruddaceous rocks and argillaceous rocks. This Unit is horizontal or gently dips west in general whereas it shows a microfolded structure with the axis in ENE-WSW direction.
6		Unit 6 forms continuous mountain ridges. The layers with high resistance against wheathering are exposed on the slopes of the mountainside. The sedimentary structure is obvious. Unit 5 may comprise alternating beds of arenaceous to rudaceous rocks and argillaceous rocks. Probably, the arenaceous to rudaceous rocks are predominant. The attitude (dips and strikes) of the layers are consistent with those of the Unit 4.
7		Unit 7 is distributed in the long and narrow basen situated to the east of the Unit 6. This Unit is horizontal in attitude or gently dips west in general whereas it shows a microfolded structure with an axis in N-S direction in the right bank area of the Xe Kong River. Unit 7 may comprise alternating beds of arenaceous and rudaceous rocks and argillaceous rocks. Probably, the arenaceous rocks are predominant.
8		Unit 8 forms long and thin ridges, showing clear bedding traces. The Unit forms outside rims of the wings of the anticlinal and synclinal structures with the axes in NWN-SES direction. The resistance against weathering is high. Slope failures are not observed. The Unit may comprise alternating beds of sedimentary rocks mainly composed of arenaceous and ruda-

ceous rocks.

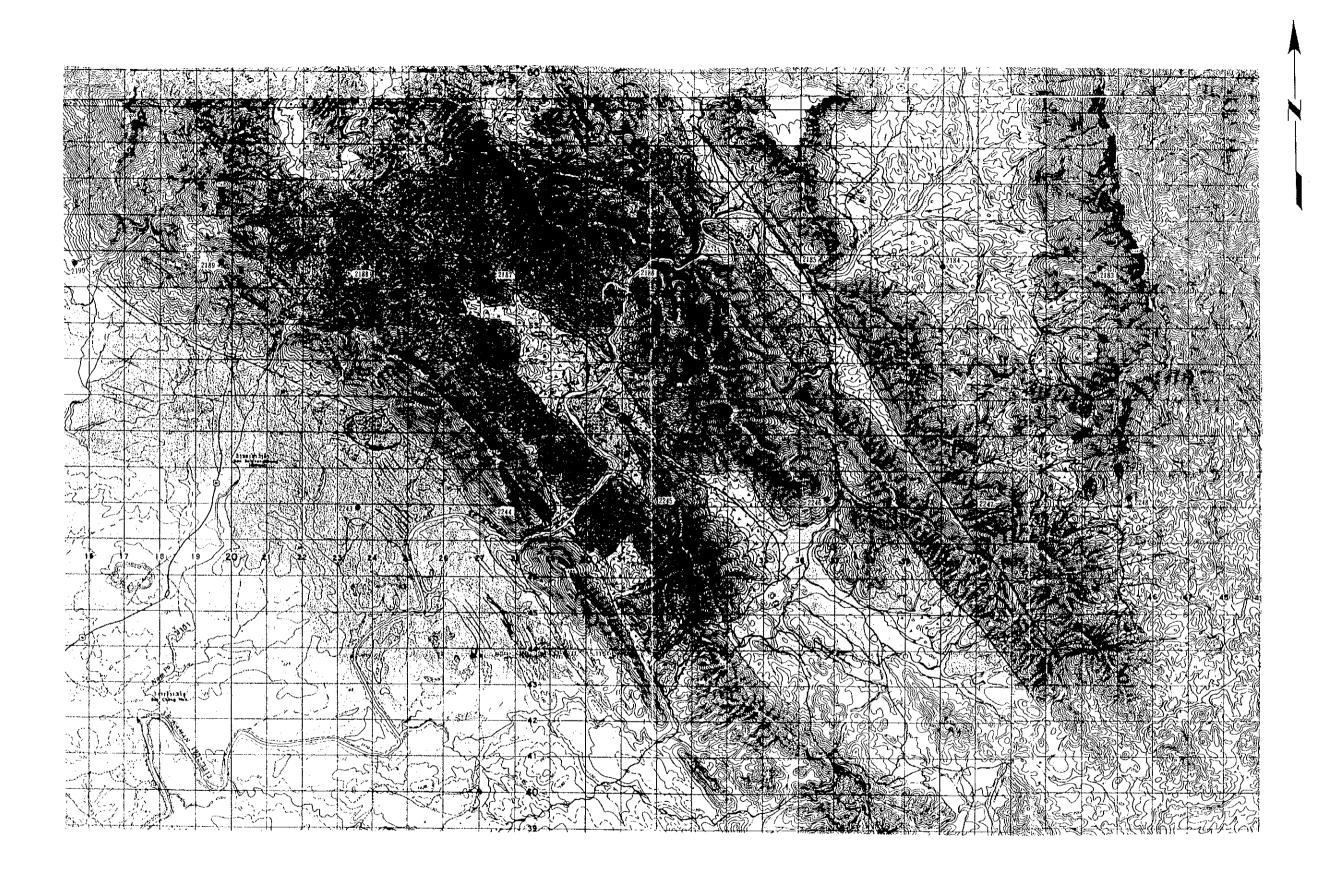
Unit 9 is overlain by the Unit 8, forming the cores of the anticlinal folds. The resistance agaist weathering is relatively low. As it is massive, sedimentary structure is not observed. Drainage density is relatively high. Many slope failures are observed. This Unit may comprise prevalent argillaceous rocks.


Unit 10 is a member of the Unit 9. Bedding plains, horizontal or gently dipping to the W-WSW direction, are clearly observed. Gentle topographic relief of the Unit and its occurence in the lowlands area lead to assume that this Unit may comprise alternating beds of arenaceous rocks and predominant argillaceous rocks.

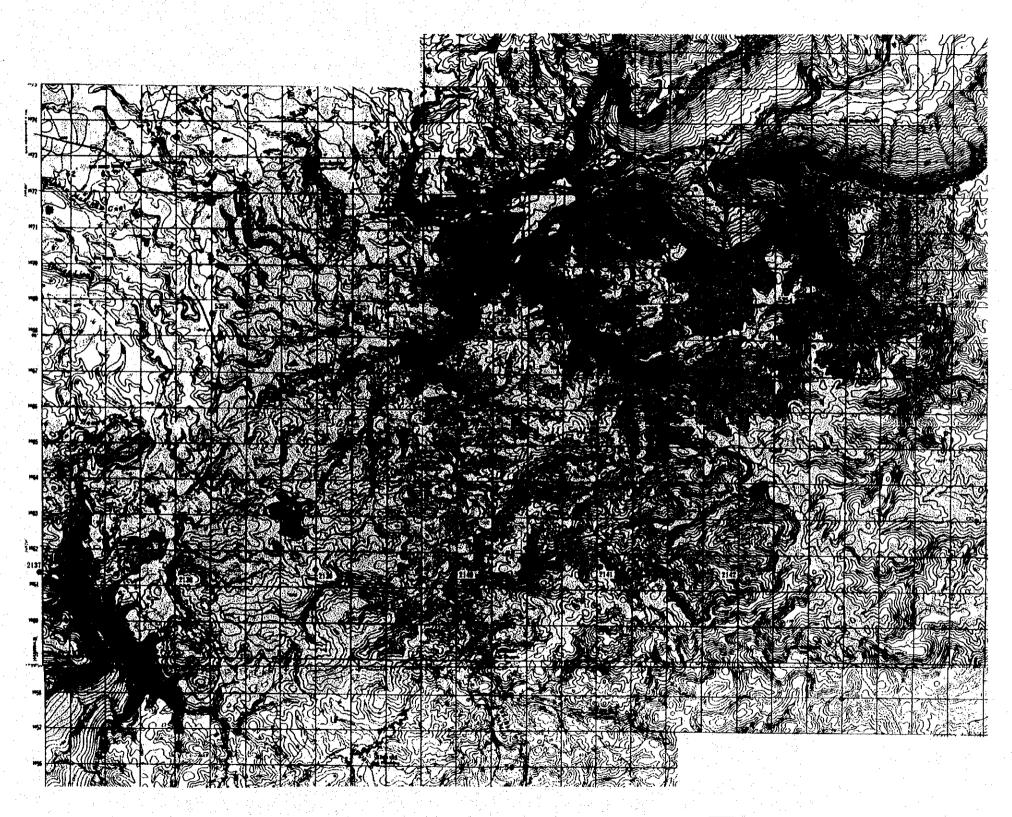

Unit 11 is a member of the Unit 9. Bedding plains are clearly observed, striking NWN-NW, dipping 20-30 degrees in the northern part and steeply in the southern part. The unit 11 may comprise of alternating beds of dominant arenaceous rocks to ruddaceous rocks.


Unit 12 is distributed in the northern central part of the study area. It dips \(\mathbb{V} \) or S\(\mathbb{V} \) in general. The bedding plains, which are ambiguously observed at the isolated hills forming scarps, show incoherent strikes and dips respectively. The geological structure of this Unit is so complicated that faults are inferred and that the relationship with other Units is not defined.

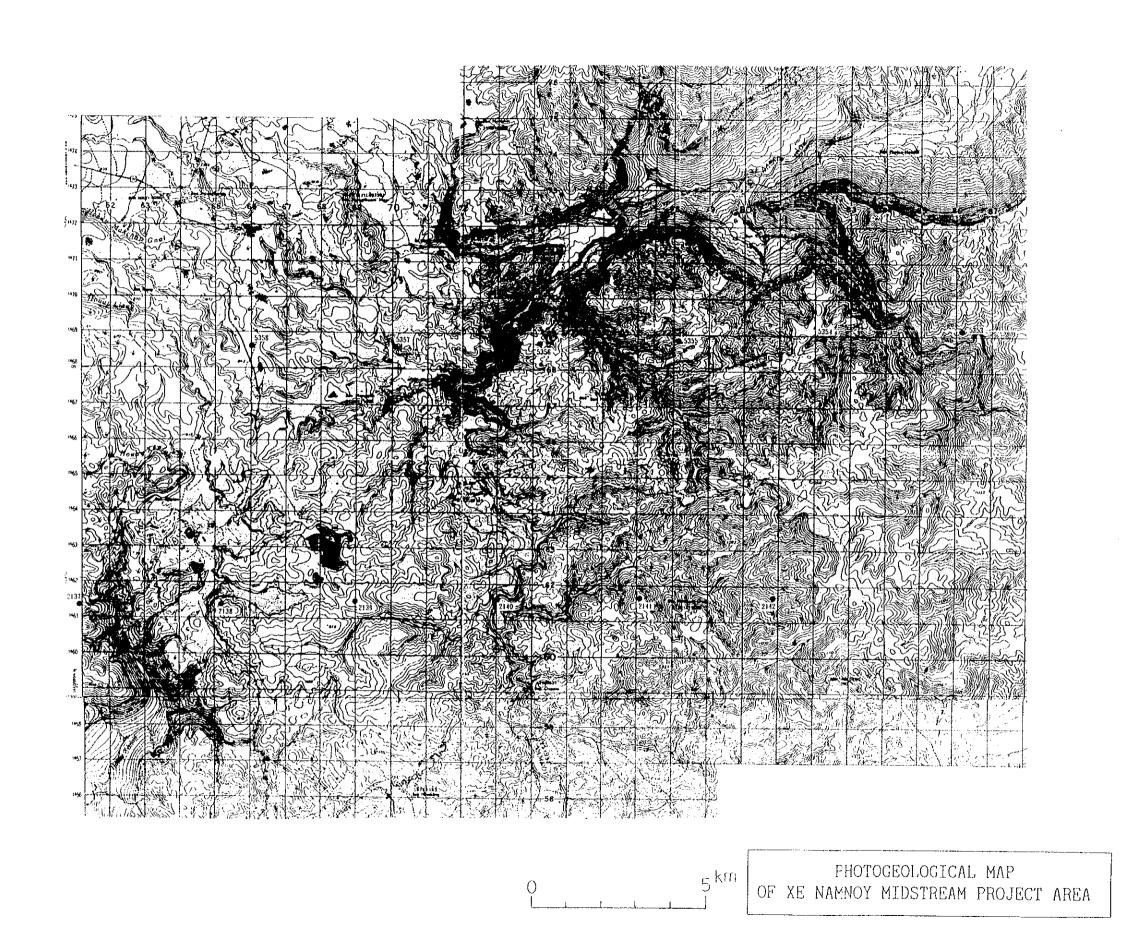
PHOTOGEOLOGICAL MAP
OF XE KONG NO.4 PROJECT AREA



PHOTOGEOLOGICAL MAP OF XE KONG NO.4 PROJECT AREA


5 km

PHOTOGEOLOGICAL MAP OF XE KAMAN NO.1 PROJECT AREA



5 kiri

PHOTOGEOLOGICAL MAP OF XE KAMAN NO.1 PROJECT AREA

PHOTOGEOLOGICAL MAP
OF XE NAMNOY MIDSTREAM PROJECT AREA

Appendix 4

Data of Pre-feasibility Study

Appendix 4

Data of Pre-feasibility Study

- 4.1 Data of Optimum Development Plan Study
- 4.2 Data of Cost Estimation

4.1 Data of Optimum Development Plan Study

4.1.1 Se Kong No. 4 Project

Table AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No. 4 Project (1/6) to (6/6)

Fig. AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No. 4 Project (1/3) to (3/3)

4.1.2 Xe Kaman No. 1 Project

Table AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No. 1 Project (1/6) to (6/6)

Fig. AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No. 1 Project (1/3) to (3/3)

4.1.3 Xe Namnoy Project

Table AP4.1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (1/6) to (6/6)

Fig. AP4,1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (1/3) to (3/3)

Table AP4.1-4 Data of Reservoir and Power Plant Operation of Xe Namnoy Downstream Project (1/5) to (5/5)

Fig. AP4.1-4 Data of Reservoir and Power Plant Operation of Xe Namnoy Downstream Project (1/2) to (2/2)

Note) Tables attached are for monthly data of reservoir inflow, spilled reservoir outflow, power discharge, reservoir water level, peak output, and energy production.

Figures are for inflow and outflow balance of the reservoirs, reservoir operation lines, and energy generation.

Table AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No.4 Project (1/6) and (2/6)

	<total< th=""><th>1004</th><th>0 0 0 0</th><th></th><th>27.7</th><th>4870</th><th>5557.</th><th>6365.</th><th>2765</th><th>5819</th><th>A C R</th><th>·</th><th>57212.</th><th>5721</th><th>0604</th><th></th><th>4001</th><th></th><th></th><th><tota!< th=""><th>o</th><th>0</th><th>254</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>254</th><th>N</th><th>254</th><th>ρ.</th></tota!<></th></total<>	1004	0 0 0 0		27.7	4870	5557.	6365.	2765	5819	A C R	·	57212.	5721	0604		4001			<tota!< th=""><th>o</th><th>0</th><th>254</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>254</th><th>N</th><th>254</th><th>ρ.</th></tota!<>	o	0	254	0	0	0	0	0	0	0	254	N	254	ρ.
	< 3UL >	0,000	4047.0	0.027	228.0	784.5	9.799	425.5	598.6	440 2		7.76.	8507.0	850.7	2 2700	* 1	3>>- g			- JUL >	0	0	0.0	٥	0	0	0	0	0	O	0.0	0.0	0.0	0.0
	< 30N >	7.082	4 4 7 4	A	319.4	576.8	386.0	298.0	345.2	2 721	1	2000		0-672				-		< NOT >	0-0	0	0.0	0-0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	V WAY >	246.5	336.5	255.5	293.9	339.5	262.2	168.0	126.0	7 7 7		2-161	2300.1	230.0	000	2. 400	126.0			< *** >	•		0.0	•		•	•	•	•	•	0.0	•	0	•
¥C¥	< APR >	60.5	85.8	98.2	98.2	110.6	122.8	128.2	113		7-501	114./	1005	1000	, ,	103.2	60-5		Σ	APR >	0	0.0	0.0	0-0	0.0	0.0	0-0	0.0	0-0	0.0	0.1	0-0	0.0	0-0
(1/6) Monthly Reservoir Inflow Volume in MCM	< MAR >	67.2	7.86	114.3	104.7	111.3	126.7	140.2	× 677	7 1 1	0 1	108.7	1 0 7 1 1	10 / 17	K-417	142.8	67.2		me in MC	A MAR >	ó	0	0.0	0-0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Inflow Vo	< FEB >	67.2	104.3	129.0	141.9	115.0	112.9	128.5	0 0		118.2	111.9	0	***	1.44.1	141.9	67.2		(2/6) Monthly Spilled Outflow Volume in MCM	< FEB >	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0	0.0
leser voir	< NAL >	108.0	148.8	192.7	214.6	176.6	148-6	0 10		101	134.6	156.1	7	V	1/0.3	238.9	108.0		oilled Out	< .AN >	٥	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0
Monthly F	< DEC >	158.2	214.6	321.7	311.9	254.7	218.1	100	, , , , , , , , , , , , , , , , , , ,	0 · 0	233.5	540.3		7.400	306.4	240.3	158.2		lonthly S _l	< DEC >		0.0	0	0-0	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	o - o
(1/6)	< NON >	236.4	274.1	326.4	503.0	7 275	482	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 6	586.5	655,9	367.3	1	1.221.4	412.3	655.9	236.4		(2/6) M	< NOV >	0.0	0.0	0.0	0	0.0	0-0	0.0	0.0	0.0	0.0			0.0	
	_	w.	310.3	'n	0	-		, t	1	ģ	364.	m	:	2) CT	731.	97	310.3			< T30 >	0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0-0
-	× SEP ×	590.	2044.2	809.	819.5	414 4		0.040	(0)	114.	928.5	641.6		2	119	770	313.3				Ċ		0.0							0.0				0-0
	(*)		921.2	781	Ċ	000			210	. 197	410.	•		Š	213	ď	8.992				Ċ	•	2.750	ó		•					4	25.	7	
	YEA	198	٠,	20.	α .	4 4	0 C	A 6	7.99	199	199	10 1994			>	- 0	: 2 : E			>		1 5	, 0	1 5	5	6	- 1	, t	0	10 1994	TOTAL	7	MAX	ΣH

Table AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No.4
Project (3/6) and (4/6)
(3/6) Monthly Power Discharge Volume in MCM

WWW WWWW WWWW WWW WWW WWW WW WW WW WW W	278.30 278.36 281.34 275.40	275.40 277.17 279.01 275.40	276-44 278-24 281-53 275-40	278-73 278-78 279-85 283.51 275.40	281.26 281.99 285.63 276.24	283.47 284.19 287.70 278.24	285.47 286.17 289.35 280.40	285.86 287.50 290.00 281.88	285.32 285.32 285.00 285.58	284.79 287.27 289.17 280.70	283.12 284.89 289.36 278.77	281 281 287 277		
283.9 284.9 284.2	278.64 277.49 278.32	277.89 279.01 278.06	279.10 281.53 280.07	283.51 282.28	283.03 285.63 284.45	285.17 287.70 286.53	289.35	288,95 290,00 289,65	290.00	MHW	285.46 285.19 284.38	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
280.86 282.36 282.35 284.76 284.46	<pre></pre>	<pre>< JUN > 275.40 276.27 277.79 278.27 276.35</pre>	275.40 275.40 276.40 278.94 279.70 275.40	APR V 275-93 278-20 280.84 281.32 275.40	A MAR Y 278.06 280.93 283.19 283.71 276.24	<pre>< FEB > 280.90 283.21 285.36 285.36 278.24</pre>	283.28 285.27 287.20 287.46 280.40	285.44 287.03 288.34 288.34 288.55	4 NOV > 287.00 288.21 288.87 288.39 282.58	<pre>< 0CT > 287.38 288.98 288.91 287.81 280.70</pre>	A SEP Y 284.60 284.89 289.36 278.77	AUG > 281.53 277.97 287.82 286.29 278.05	NO. YEAR 11.1985 2.1986 3.1987 5.1988	
					vel in m	Water Le	Monthly Reservoir Water Level in m	Monthly R	(4/6)					
55763. 5576. 6481. 4071.	5013.5 501.3 991.0 350.3	4316.9 431.7 646.0 281.6	3607_4 360.7 383.0 237.6	3220.1 322.0 370.7 97.9	3715.5 371.6 383.0 268.4	3484.2	3830.2 3833.0 3833.0	3935.7 393.6 488.6 383.0	4250-2 425.0 642.8 370.7	5216-1 521.6 958.7 383.0	7397.6 739.8 959.0 370.7	7776-3 777-6 991-0 383.0	TOTAL AVE MAX	
5652 6042 4629		296.3 295.4 295.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	370.7 370.7 370.7	0000 0000 0000	446.0 446.0 446.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0000 0000	376.2 642.8 370.7	4 44 80 EU	535.1 535.1 4.74.4 7.07.0	973.6 991.0 602.5	пппп	
5149 5149 5706 5428 5847 5755	A 88910 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A 201. 6 372. 7 372. 3 372. 3 372. 3 500. 5	A 2 8 8 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	APR 157.0 370.7 370.7 370.7 370.7	M W W W W W W W W W W W W W W W W W W W	A W W W W W W W W W W W W W W W W W W W		00000000000000000000000000000000000000	A MOV		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A AUG V 914.7 383.0 991.0 991.0	NO. 14 14 14 14 14 14 14 14 14 14 14 14 14	
					.*									

able AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No.4 Project (5/6)

Monthly Peak Power Output in MW

<t01 <="" th=""><th>4735</th><th>5123</th><th>5204</th><th>5198</th><th>4627</th><th>5187</th><th>5209</th><th>5186</th><th>5167</th><th>5091</th><th>50730</th><th>5073</th><th>5209</th><th>4627</th></t01>	4735	5123	5204	5198	4627	5187	5209	5186	5167	5091	50730	5073	5209	4627
< 70° >	397.87	425.58	455.48	406.07	420.02	412.93	407.57	411.45	401.37	411.35	4116.68	411.67	425.58	397.87
< NO 7 >	365.06	401.91	76.807	411.18	402.30	27.607	414.67	410.20	406.51	382.45	4012.67	401.27	414.67	365.06
< MAY >	599.99	402.51	414.34	417.86	397.88	415.05	426.51	419.63	416-63	402.68	4013.09	401.31	426.51	566.662
A APR >	207.04	410.89	423.26	425.50	129.00	423.23	435.86	70.027	426.09	413.57	3724.47	372.45	435.86	129.00
K. MAR. >	410.20	423.66	434-36	436.81	339.86	433.61	443.00	440.36	435-56	425.21	4222.62	422.26	443.00	330.86
< FEB >	423.54	434.46	743.00	443.00	411.08	443.00	443.00	743.00	443.00	435.68	4362.76	436.28	443.00	411.08
A NAL >	434.80	443.00	443.00	443.00	421.19	443.00	443.00	443.00	443.00	443.00	66.6627	00.044	443.00	7 10
< DEC >	00.577	443.00	443.00	443.00	428.13	443.00	443.00	443.00	743.00	443.00	4415.13	441.51	443.00	21 807
•										443.00	•	441.85	443.00	87 127
< 0CT >	443.00	443.00	443.00	443.00	422.60	443.00	443.00	443.00	443.00	441.98	4408.58	440.86	443.00	132 40
< SEP >	441.05	442.43	443.00	443.00	413.51	443.00	443.00	70 077	441.96	434.02	4385.00	438.50	743.00	112 517
< AUG >	426.50	605.79	443.00	443.00	410.15	635.30	424.01	07-617	424.63	415.56	52-1527	425.13	443.00	00 70
_		2 1986		8861 7	5 1989	0661	7 1991	2001	1003	10 1994	TOTAL	- A	J X	

Data of Reservoir and Power Plant Operation of Se Kong No.4 Monthly Energy Production in GWh Project (6/6) Table AP4.1-1

<total></total>	1675.69	1860.27	2116.48	1932,39	1298.16	1897.52	2160.52	1864,98	1994-20	1501.13	18301.34	1830.13	2160.52	1298-16	
< 300 >	108.57	316.63	314,32	120.31	123.03	121.66	120.61	121.37	119.39	121.35	1587.24	158.72	316.63	108.57	
< NOL >	87.61	115.64	149.07	162.20	116.37	158.15	205.76	156.32	116.52	91.79	1359.44	135.94	205.76	87.61	
< MAY >	74.40	119.62	121.93	122.61	102.42	122.07	124.28	122.96	122.37	111.89	1144.55	114.45	124.28	24.40	
A RPR V	69.67	117.34	119.67	120.09	30.96	119.66	122.02	120.93	120.20	117.85	1038.41	103.84	122.02	30.96	
A MAR Y	121.12	123.73	125.79	126.26	84.29	125.65	127.87	126.94	126.02	124.04	1211.71	121.17	127.87	84.29	
× 800 ×	111.74	113.64	119.38	115.66	109.56	115.09	121.51	116.29	115.40	113.85	1152,11	115.21	121.51	109.56	
V NAC Y	125.88	127.52	129.40	129.65	123.26	129.40	131.49	130.59	129.78	127.72	1284.69	128.47	131.49	123.26	
< DEC >	127.68	129.24	130,51	130.71	124.60	131.10	168.54	131.78	131.47	128-10	1333.73	133.37	168.54	124.60	
V VON A	125.04	126.18	126.79	126.35	121.20	127.55	219.62	129.76	221.73	123.46	1447.67	144.77	221.73	121.20	
< T20 >	129.57	131.13	131.06	130.00	123,53	130.37	320.33	218.78	326.75	127.25	1768.77	176.88	326.75	123.53	
V direct	317 55	31.8	318.96	318.96	117.84	292,95	318.96	177.24	148.63	121.67	2451.32	245.13	318,96	117.84	
< 911€ >	206 82	171.04	329.59	329.59	121.11	323.87	179.53	312.03	3.15	192.18	2521.70	252.17	329.59	121.04	
α σ μ >	0.00	4000	1 K	000	7000	9000	1001	2007	1001	10 1994	TOTAS	 	X	Z H	

Note)	Efficiency adjustment:	
	Total annual power discharge:	5578 MCM
	Annual discharge for partial operation (30 m^3/s): 537 MCM	537 MCM
	Net efficiency for peak operation:	0.8920
	Net efficiency for partial operation:	0.7958
	Adjustment on energy production:	

 $1830.13 - (1-537/5578) \times (1-0.7958/0.8920) = 1816 \text{ GWh}$

Fig. AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No.4 Project (1/3)

(Simulated Monthly Reservoir Operation in Water Level)

Simulated Operation Line
 Standard Operation Line

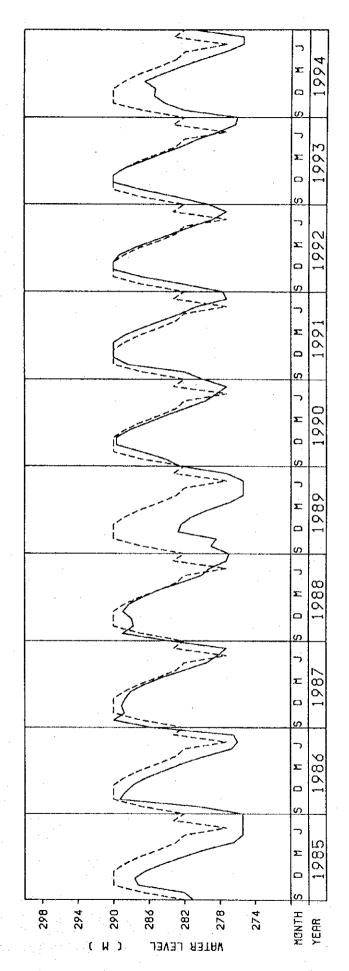


Fig. AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No.4 Project (2/3)

(Simulated Monthly Reservoir Inflow and Outflow Balance in MCM)

Simulated Reservoir Inflow Simulated Reservoir Outflow

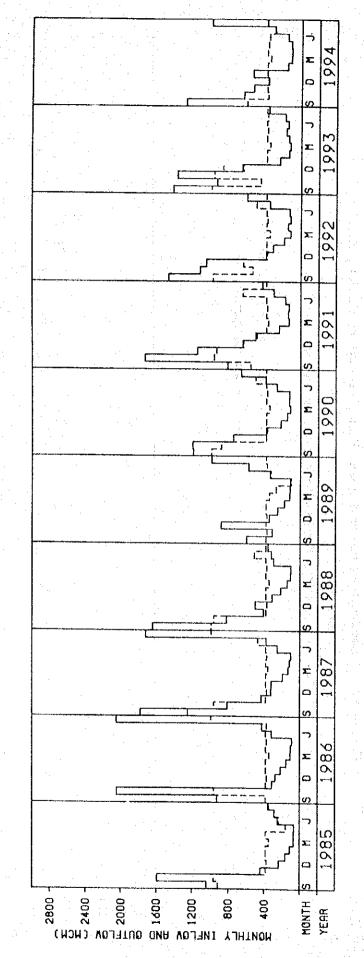


Fig. AP4.1-1 Data of Reservoir and Power Plant Operation of Se Kong No.4 Project (3/3)

(Simulated Monthly Energy Generation in GWh)

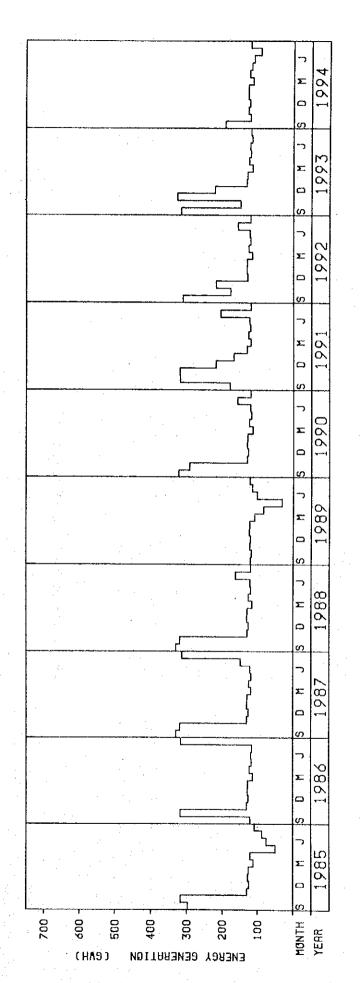


Table AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (1/6) and (2/6)

(1/6) Monthly Reservoir Inflow Volume in MCM

<total.< th=""><th>5108.</th><th>3452.</th><th>4308.</th><th>2601.</th><th>3046.</th><th>2816.</th><th>7577</th><th>2743</th><th>4930.</th><th>. 4009</th><th>42450.</th><th>4245.</th><th>6007</th><th>2601</th></total.<>	5108.	3452.	4308.	2601.	3046.	2816.	7577	2743	4930.	. 4009	42450.	4245.	6007	2601
< 38L >	307.1	260.1	198.2	229.6	601.1	239.5	496.2	564.6	1009.5	858.6	4764.2	4.924	1009.5	198.2
< NOT >	323.7	158.8	108.8	195.0	357.3	182-8	213.4	298.1	156.7	216.8	2211.5	221.2	357.3	108.8
< MAY >	119.2	349.2	35.9	105.1	210.5	51.9	53.0	153.7	81.5	143.9	1303.8	130.4	349.2	35.9
< APR >	106.9	7-17	36.2	32.3	20.7	35.6	54-1	105.2	96.8	103.0	632.1	63.2	106.9	20.7
< MAR >	103.8	2.67	85.7	8.0%	18.9	34.3	63.5	137.6	112.5	92.2	738.5	73.9	137.6	18.9
× 633 ×	142.4	87.9	127.5	7.09	28.4	34.0	86.8	117.7	110.8	98.6	874.5	87.5	142.4	28.4
A NAU >	242.5	168.4	231.2	100.7	69.5	55.5	6.96	140.8	136.3	130.3	1371.9	137.2	242.5	5.55
✓ DEC ➤	440.7	0 702	657.0	220.5	130.1	101.6	173.5	218.3	155.2	194.9	2585.7	258.6	657.0	101.6
^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	831.7	8.56.3	2-177	448.1	203.9	140.5	7-527	221.6	376.1	174.6	3629.3	362.9	831.7	140.5
< T30 >	784.6	227 4	867.6	0.00	748.3	342.8	1009.1	0220	803.5	262.4	6523.0	A 55.5	1009-1	259.5
۸ ۵ ۱۱ ۷	820.9	, t	744	V . 000	188.8	727.2	1150 8	1202	2.4	1461.7	0 1004	2000	1461.7	188.8
. ^ 9116 ^	F	α α α α α α α α α α α α α α α α α α α	100	2.707	0.697	87.5	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5441	1077	2271.0	7 5170	0.44	2271.0	404.2
		1 0 0 0 t	7007	1084	000	000	000	2004	7007	1993	10.10.1	1 1 1 1 1 1) ×	Z
5	•		. r	. 4	,	. ~		. u	J	1,0				

(2/6) Monthly Spilled Outflow Volume in MCM

< 00.7 >
182.8
0.0
0.0
0.0
0
0.0
0.0
0.0
0.0
. 1
182.8
18.3
182.8
0.0

Table AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (3/6) and (4/6)

(3/6) Monthly Power Discharge Volume in MCM

EAR	A AUG >	< SEP >	< 007 ¥	× 00% ×	◆ DEC >	< UAN >	< FEB >	< MAR >	< APR >	< MAY >	< NOC >	< 10L >	<total:< th=""></total:<>
786	610.7	416.8	603.1	591.0	415.6	257.8	379.9	463.9	310.2	250.4	358.8	238.4	7896
985	238.4	230.7	238.4	274.2	238.4	238.4	266.1	7.607	244.6	480.5	230.7	238.4	3328
986	350.0	232.4	610.7	453.6	596.8	246.4	365.1	6.544	239.5	238.4	230.7	205.2	4214
987	238.4	230.7	238.4	230.7	238.4	238.4	223.0	238.4	29.6	87.3	186.4	218.8	2398
988	238.4	230.7	238.4	230.7	238.4	238.4	215.3	77.1	6.4	192.7	230.7	348.0	2483
989	610.7	256.8	238.4	230.7	238.4	238.4	215.3	238.4	230.7	70.8	174.1.	228.4	2971.
086	238.4	443.6	610.7	447.7	238.4	238.4	215.3	261.8	257.4	238.4	230.7	264.5	3685.
991	610.7	591.0	610.7	233.9	238.4	238.4	223.0	467.6	308.4	284.9	333.2	369.2	4509
266	610.7	549.7	610.7	364.7	238.4	238.4	215.3	375.9	300.0	238.4	230.7	610.7	4583.
1993	610.7	591.0	282.8	230.7	238.4	238.4	215.3	298.4	306.3	275.1	251.9	610.7	4149.
OTAL	4356.9	3773.3	4282.1	3287.8	2919.5	2411.3	2533.7	3276.7	2231.6	2356.9	2457.9	3332.2	37219.
ш	432.7	377.3	428.2	328.8	291.9	241.1	253.4	327.7	223.2	235.7	245.8	333.2	3722.
×	610.7	591.0	610.7	591.0	8.965	257.8	379.9	467.6	310.2	480.5	358.8	610.7	7887
z	238.4	230.7	238.4	230.7	238.4	238.4	215.3	77.1.	6-4	70.8	174.1	205.2	2398

< AVE	257	257	257	254.	254.	256.	256.	257.4	257	257.	3078	3091.	3053.2	
< 10L >	254.27	253.95	253.22	253.17	254.45	253.17	254.51	254-61	254.81	254.75	254.09	254.81	253.17	
< NO.C >	254.23	254.13	253.62	253.17	253.49	253.17	253.99	254.23	253.99	254.23	253.83	254.23	253.17	
< MAY >	254.75	254.75	254.56	253.17	253.17	253.27	254.60	254.75	254.68	254.75	254.25	254.75	253.17	
< APR >	255.74	255.74	255.74	253.21	253.17	253.94	255.74	255.74	255.74	255.74	255.05	255.74	253.17	
A WAR >	257.36	257.36	257-36	253.84	253.40	255.12	256.93	257.28	257.10	256.95	256.27	257.36	253.40	
< FEB >	259.11	258.95	259.11	254.94	254.19	256.29	258,00	258.59	258.23	257.96	257.54	259.11	254.19	
Y NAL >	259.91	259.73	259.91	255.87	255.26	257.39	258,90	259.25	258.91	258.68	258.38	259.91	255.26	
< DEC >	260.00	259.89	259.91	256.40	256.12	258.36	259.57	259.69	259.52	259.21	258.87	260.00	256.12	
< 70N >	259.91	259.65	259.91	255.99	256.61	259.10	259.91	259.91	259.84	259.60	259.04	259.91	255.99	
< DCT >	259.36	258.76	259.46	255.45	255.41	259.16	259.46	260.00	259.39	259.91	258.64	260.00	255.41	
< SEP >	257.86	257.09	257.60	254.72	254.22	257.68	257.02	260.00	258.23	260.00	257.44	260.00	254.22	
< AUG >	256.09	255.29	255.13	253.59	253.76	255.77	254.15	257.55	256.33	257.92	255.56	257.92	253.59	
YEAR	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	AVE	×	N I W	
	_	c.	*	.+	ın	·A		~	•	\sim				

(4/6) Monthly Reservoir Water Level in m

Table AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (5/6)

		Month	ly Peak P	ower Out	Monthly Peak Power Output in MW			
× SEP >		•	< DEC >	V NAU >	< FEB >	A MAR V	APR >	¥
256.00			256.00	256.00	256.00	255.93	251.20	248
255.14			256.00	256.00	256.00	255.93	251.20	248
256.00			256.00	256.00	256.00	255.93	251.20	247
248.25			253.13	251.57	248.90	245.72	38.09	108
246.80			252.31	249.82	246.72	95.87	6.28	235
256.00			256.00	255,99	252.80	249.40	245.99	88
254.94			256.00	256.00	256.00	254,66	251.20	247
256.00			256.00	256.00	256.00	255.69	251.20	248
256.00			256.00	256.00	256.00	255.17	251.20	248
256.00	256.00	256.00	256.00	256.00	256.00	254.72	251.20	248
2541.13	2548.61	2553.66	2553.44	2549.39	2540.42	2379.02	2048.76	2168.
254.11	254.86		255.34	254.94	254.04	237.90	204.88	216
00	20.490		200	700	000	100	400	0 / 0

Table AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (6/6)

Monthly Energy Production in GWh

<total></total>	1525.46	1035.08	1715 DA	1	734.43	760.09	917.95	1145.88	1403.00	1422.07	0000	*T.0021	11547.14	1154-71	1525.46	734.43
< 10L >	72.69	72.51	70 07	70.30	66.16	106.26	69.05	80.82	112.87	184.89		184.70	1012.07	101.21	184.89	62.05
< NOF >	109.39	70.27	00 07		26.44	69.92	52.85	70.20	101.57	.70.20		08.0/	747.63	74.76	109.39	52.85
< MAY >	76.65	147.06	00 00	20.27	26.86	58.34	21.83	72.88	87.21	72.92	1 + (84.21	720.83	72.08	147.06	21.83
A APR >	95.66	75.45	70 +1	00.0	9.14	1.51	70.17	79.37	95.12	02 53		97.76	687.27	68,73	95.66	1.52
< MAR >	144.86	127 82		137.44	72.45	23.77	73.17	81.48	145.90	117 15	111	92.88	1018.70	101.87	145.90	23.77
< FEB >	119.82	2 4 8		1135-12	68.36	65.62	66.68	67.30	70.07	27 74	1	67.28	791.46	79.15	119.82	65.62
V NAL >	81.82	75.55		78.21	73.59	73.25	74.47	75.05	75.27	75.04		74.92	757.16	75.72	81.82	73.25
< DEC >	132.01	75.45	1	189.39	73.89	73.73	24.73	57.52	75.53	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	75.24	921.05	92.10	189.39	73.73
A NOR Y	784 32	, r	100	143.95	71.28	71.62	72.75	142.10	76.24	445 49	20-04-	73.04	1035.81	103.58	184.32	71.28
× 120 ×	190 44	71, 07		190.46	73.35	73.33	75.21	190.46	190.46	7/ 004	7.00	89.76	1338.95	133.89	190.46	73.33
A dus	440 44	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 1	72.51	70.59	70.32	20.08	118 14	186.42	10.00	77-7/1	184.32	1174.48	117 45	184 32	70.32
A 9118	187 AA	, , ,	13.6	107.43	72.31	72 41	184 07	72 63	400 74	7 . 00 . 1	100.10	190.46	1341.76	134.18	400 46	72.31
4 4 4 7	780	1 U	700	1986	1987	800	000	000	000	- C	744	1993	TOTAL	u.	> 4 X	Z Z
	, .	4 6	v	m	- 4	· v	١v	4 (. ۵	3 (м	0				

Note) Efficiency adjustment:

Total annual power discharge: 3722 M

Annual discharge for partial operation (30 m^3/s): 500 MCM

Net efficiency for peak operation: 0.8853

Net efficiency for partial operation:

0.7726

Adjustment on energy production:

 $1154.71 - (1 - 500/3722) \times (1 - 0.7726/0.8853) = 1137 \text{ GWh}$

Fig. AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (1/3)

(Simulated Monthly Reservoir Operation in Water Level)

Simulated Operation Line Standard Operation Line

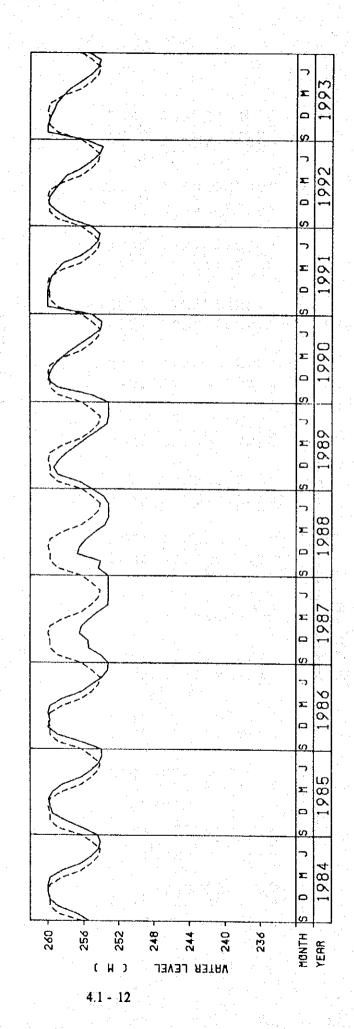
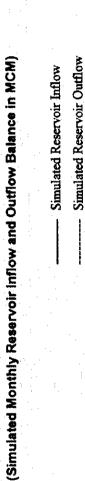



Fig. AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (2/3)

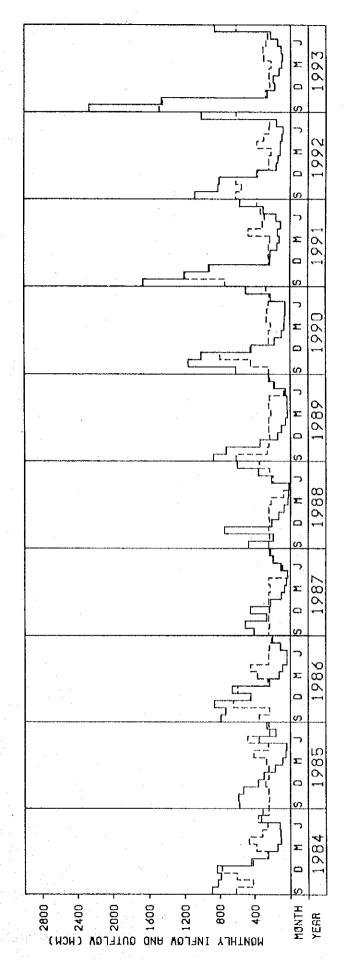
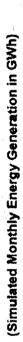



Fig. AP4.1-2 Data of Reservoir and Power Plant Operation of Xe Kaman No.1 Project (3/3)

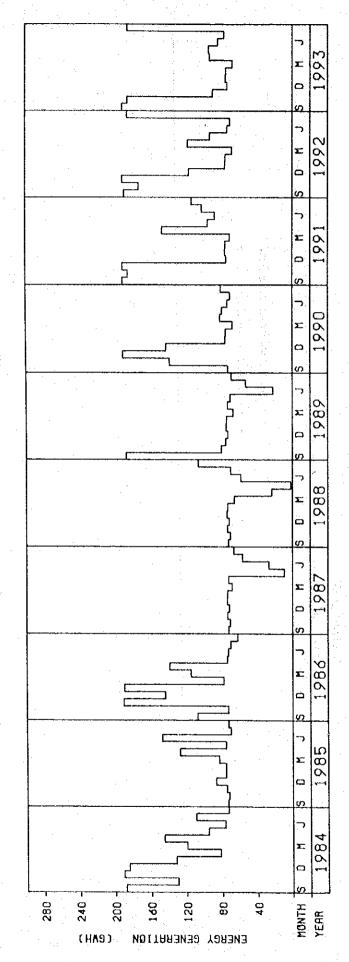


Table AP4.1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (1/6) and (2/6)

in MCM
Volume
Reservoir Inflow
Monthly I
(1/6)

<t0tal></t0tal>	902.2	1230.2	9.076	901.9	1021.7	1221.3	1187.0	868.5	932.0	10417.9	1041.8	1230.2	868.5
< 3UL >	0.46	306.2	89.3	197.2	105.1	253.7	159.1	138.5	160.7	1688.1	168.8	306.2	89.3
< NUL >	75.1	77.4	113.2	153.9	8.94	88	89.3	52.4	50.6	956.3	95.6	209-2	8.97
< MAY >	62.3	50.7	29.4	80.8	39.1	50.9	18.7	24.5	36.4	452.5	45.3	80.8	18.7
< APR >	15.1	8.2	8.2	14.5	9.5	ed In	7.1	4.8	13.8	109.0	10.9	19.4	5.1
A MAR >	1 00	5.0	8.7	4.7	9.5	7.6	~	8,2	7-4	85.1	8	14.5	4-7
× FEB ×	10.0	111.0	12.1	8,6	2.8	0	60	4-7	9.0	8.76	9.5	16.2	2.8
A JAN Y	21.6	16.4	18.2	19.0	16.1	14.3	9.5	13.7	14.0	179.5	17.9	30.6	13.7
V DEC V	7 7 7	7.97	26.9	21.1	31.1	95.3	24.8	21.4	28.0	386.9	38.7	95.3	21.1
A NON V	44.	114.5	64.1	57.8	55.2	140.8	6.05	0	53.7	795.8	9-62	155.6	39.1
< 00T >	154.7	154.1	84.2	111.2	154.6	7 557	170.0	11011	109.6	2 2271	143.7	255.4	84-2
< SEP >	154.T	20.50	161.9	5.66	288.7	0 0 0	, C	0 701	195.8	7 1001	192.2	288.7	66.5
< AUG >	164.0	7 120	100	166.5	0 2 2 2	V 67 F	0 774	100	256.0	0411		0 778	142.5
YEAR	1984	1001	1987	. K & O +	000	000	7004	1007	1993	14.10	AVE.	1 ×	ZH
NO.	٠ ،	u þ) 4	v	١ ٧	4 0	- a	0 .0	10	j.	•		

(2/6) Monthly Spilled Outflow Volume in MCM

<total></total>	0.0	0.0	0.0	67.0	0.0	9.68	0-0	190.7	0.0	0.0	347.3	34.7	190.7	0.0
< 10L >	0-0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
< NOT >	0.0	0.0	0-0	0.0	0	0	0-0	0.0	0.0	0.0	0.0	0.0	0-0	0.0
< MAY >	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0-0
< APR >	0.0	0.0	0.0	0.0	0.0	0	0-0	0-0	0.0	0-0	0.0	0-0	0.0	0.0
< MAR >	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0	0-0	0.0	0.0	0-0	0
< FEB >	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
٧											0.0			
< DEC >	0.0	0.0	0	0.0	0	0-0	0.0	0,0	0.0	0.0	0.0	0.0	0	0.0
٧											0.0			
< T30 >	0.0	0.0	0,0	0,0	0	0.0	0.0	15.0	0	0.0	15.0	۲.۵	15.0	0.0
< SEP >	0-0	0-0	0.0	2.7	0.0	89.6	C	121.6	0	0	213,9	21.4	121.6	0.0
< 90 ×	0.0	0-0	0-0	6.48	0.0	0-0	0	54.1	0	0.0	118.4	11.8	64.4	0-0
 O YEAR	1 1984	7 1985	1086	7861 7	5 1988	0000	7 1000	1991	1007	0 1993	TOTAL	AVE	×	Z H

Table AP4.1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (3/6) and (4/6)
(3/6) Monthly Power Discharge Volume in MCM

<total></total>	1042.2	7.086	000	K-0001	1003.4	757.5	988.	1061.0	1044.1	846.1		887.7	9619.8	962.0	1061.0	757.5
< 10t >	160.7	179.2		TOOT	148.3	160.7	93.5	160.7	160.7	126.9		149.1	1460.4	146.0	160.7	93.5
< NOC >	155.5	51.3		0.10	51.3	7.76	43.7	51.3	51.3	2.67		47.5	4.059	65.0	155.5	43.7
< MAY >	53.0	53.0	,	0	53.0	53.0	41.1	34.2	15.4	21.7		33.2	410.3	41.0	53.0	15.4
< APR >	51.3	51.3		0	51.3	11.5	51.3	51.3	50.0	7.50		6-27	442.5	£4.34	6.27	11.5
A MAR >	53,5	53.0		22.0	53.0	17.8	53.0	53.0	53.0	, c	1	53.0	495.5	9.67	53.0	17.8
< FEB >	0.87	0.27		6 . 7 . 9	9.67-	6-27	6-27	6.27	9.07	12.0		6.7.9	482.5	7.87	6.27	0.84
< JAN >	53.7	4	1	53.0	53.0	53.0	53.0	53.0	53.0		0.00	53.0	531.0	53.1	53.0	53.7
< DEC >	64.4		1	55.5	53.0	53.0	53.0	115.0	C M		2.00	53.0	606.8	2 09	115.9	53.0
< 00N >	151.3	0		110.2	59.9	51.3	75.1	7.55	, ,		0.10	51.3	6.948	2 7 8	155.5	51.3
< 0CT >	7 68	1004	1	88	114.7	53.0	160.7	160 7	7 09 0		2.00	53.0	1032.6	103.3	160.7	53.0
< GRS >	. V			123.2	155.5	5,1	V V V V	70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 .	1.101	137.9	1240.7	124.7	155.5	15 TS
× 4116 ×	, r			160.7	140.7	107	140.7	ν α	100		.00	160.7	1420.2	142.0	160.7	83.0
04 U.>	7007	000	1300	1986	1000	0.0	080	000	2001	144	7,4	1993	T 4 1	1 11 2	×	Z H E
S	• • •		V	М	. ◀	V		1 C	۰ ۵	9 (>	10	, <u>, , , , , , , , , , , , , , , , , , </u>		Σ.	E

(4/6) Monthly Reservoir Water Level in m

Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (5/6)

Monthly Peak Power Output in MW

<total></total>	2837.83	2830,96	2828.72	10000	7870.37	2478-03	2741,43	2747.54		502/1/4	2559.70	02 7070	KT: #0.7	27212.72	2721.27	1000	5837.83	2478.03
< 70° >	237.61	232.53	21775		222.98	236.21	230.33	235.47		232.51	230,33	740	60.00	2335.44	233.54		237.61	230.33
4 NO. 4	235.90	232.74	272.03		252.51	233.71	199.17	231.38		231.41	222.26	74.0	#0 CT2	2266.14	226.61	1 4	235.90	199.17
A MAY >	233.37	232,15	24 1 45	1	230.98	231.09	182.44	153.89	1 1 1	70.38	96.62		140.72	1811.47	181,15	1	233.37	70.38
< APR >	234.08	232.90	242 81	3	232.10	54.35	231.91	232.51	1	226.17	118.25		61/10	2012.77	80 100)	234.08	56.35
< MAR >	237.13	234. 67	7 7 7	1	234.17	81.23	233.99	55 720	1	233.83	232.64		235.43	2190.33	210 04	00111	237.13	81,23
< FEB >	238.00	238.00	0 0 0	2000	235.68	232.36	235.62	248	0	235-47	234.54	· () · () ()	235.19	2360.84	80 710	0000	238.00	23.34
< NAL >	238.00	248 00	100	220.00	238.00	234-14	238.00	000	200	238.00	238.00		238,00	2376.10	377 41	10.17.	238.00	71 720
< DEC >	238.00	010	0 0	200.00	238.00	235.38	238 00	000	00.00	238,00	238.00		238.00	75 2250		07.703	238.00	245 48
< ∧UN ×	248.00	200	9 6	00.863	238.00	238.00	238.00		2000	238.00	00 840	1	238.00	7379.96	0.00	00.003	238.00	24.00
< TUC >	200	00.0		228.52	238.00	234.98	248 00		20.00	238.00	00 840	000	238.00	76 9226		40-703	238.00	377 08
V 970 X	246	0000	0.00	527.50	238.00	233,81	200		00.007	238.00	000	9	237.86	78 5785		401/02	238.00	227 84
× 8116 ×	240 78	07.303	20.00	233-14	238.00	242 78	0 C C C C C C C C C C C C C C C C C C C	100	07.767	238.00	245	77-703	232.94	77 67 67	1000	62.662	238.00	07 10
0 4 4 >	2 0	1000	0 P	1986	1987	8801	000	1000	7	1001	00.0	7 2 2 7	1993	1 4 £ 0.	, .	٠ ٧	×	

Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (6/6) Monthly Energy Production in GWh Table AP4.1-3

<total></total>	1147.56	1	10/8.55	1107.55	20.04	O 1 0 0 1 1	828.44	1087.38		1100.19	1146.52	100	27.72	071 45		10564.50	405A 45	1 1	1165.79	77 800	•
< 10L >	176.78		151-02	176.44	** ***	7 - 7 0 7	175.74	100.81		1/2.19	172.99	00 77.	100.00	740 80		1587.73	158 77		176.78		10.001
< NOC >	169.84		22.40	25.69	(0 00	20.00	106.38	47.80	l l	20.00	55.54	1	40.00	51 64	1	707.40	70 27		169.84	77 00	1
< MAY >	57.88		27.57	57.45	01	07.70	57.31	45.24		38.10	17.45		25.96	10 71		449.54	20 77	74.4	57.88	17 / 1	C**) T
< APR >	56.18	1 (25.90	55.88		22.00	13.04	55.66	1 1	55.80	54.28		28.38	r cu		483.06	/0 24	10.01	56.18		10.01
< MAR >	58 83)	58.20	58.20	1 4))	20.15	58.03)	58 17	57.99		57.69	000	×0-/0	543.20	C P	74.00	58.81		20-15
FEB →	4		52.86	52.86	1	24.68	52.05	52.78	1	52.84	£7 75	1	52.54		26.48	531.01		22.10	54.68		>2.0>
< NAL >	4 O S	0	58.85	28.84	1	58.73	58.07	7.7		58.84	ν 1		58.48		00.80	587.54		77.00	59.66		28.07
< DEC >	71 41	4 5 4 4	59.05	61.83)	58.98	58.37	000	0	129.14	80 85		58.80	•	58.93	82.229		74.79	129.14	1	58.37
< >ON >	740	1	66.70	122 81		66.70	56.57	24	10.00	171.36	00 / 7	· · ·	57.08		57.12	71 170		94.15	171.36		26.57
V 100 V		70.4	113.97	40		128,01	58.28	477 07		177.07	77 77		58.85	1	58.85	77 6716		114.26	177.07		58.28
A GU		100	171.36	175 52	40.00	171.36	4.4.4.4	474 74	00.1.1	103.58	124 24	00.174	146.90		151.88	1265 87		136.59	375 36		56.11
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		01.411	177.07	77 24	7.0.10	177.07	116 37	110	\O. \.\T	00.13	100	/O. //T	26 741	1	174.05	1001	00.100	155.14	177 07		90.13
0 0 0 0		1704	2000	100	7400	1987	000	3 6	×0×1 ×	1000		7.4.7.	1007	1	1993		1	A VE	\ Z	3	Z M E

	0.8742	0.8712		
Efficiency adjustment:	Tentative net efficiency applied in energy calculation:	Final net efficiency determined in the study:	Adjustment on energy production:	$1056.45 \times (0.8712 / 0.8742) = 1052 \text{ GWh}$
ote)	: •			

A 1 _ 19

Fig. AP4.1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (1/3)

(Simulated Monthly Reservoir Operation in Water Level)

Simulated Operation Line Standard Operation Line

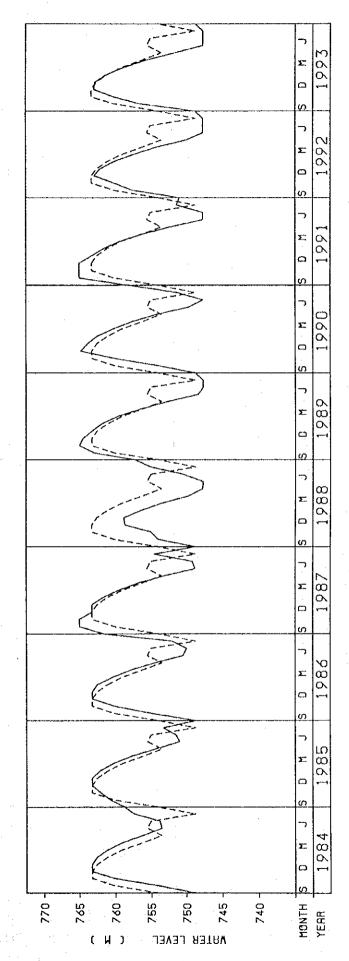


Fig. AP4.1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (2/3)

(Simulated Monthly Reservoir Inflow and Outflow Balance in MCM)

Simulated Reservoir Outflow

Simulated Reservoir Inflow

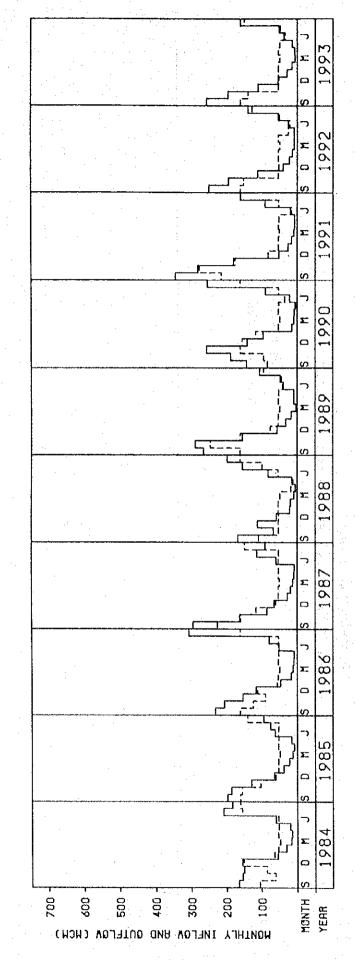


Fig. AP4.1-3 Data of Reservoir and Power Plant Operation of Xe Namnoy Midstream Project (3/3)

(Simulated Monthly Energy Generation in GWh)

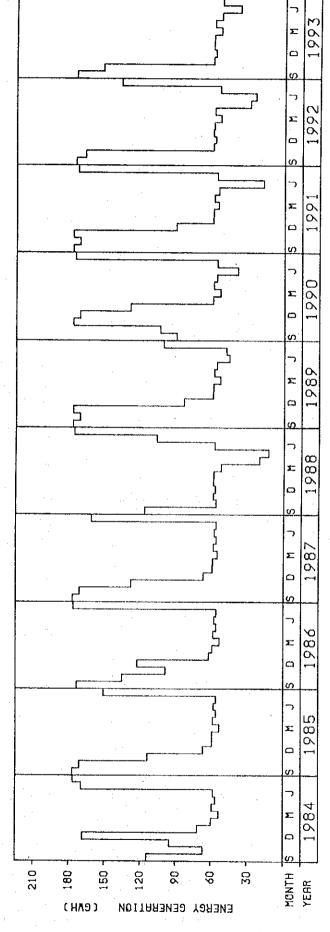


Table AP4.1-4 Data of Reservoir and Power Plant Operation of Xe Namnoy Downstream Project (1/5) and (5/2)

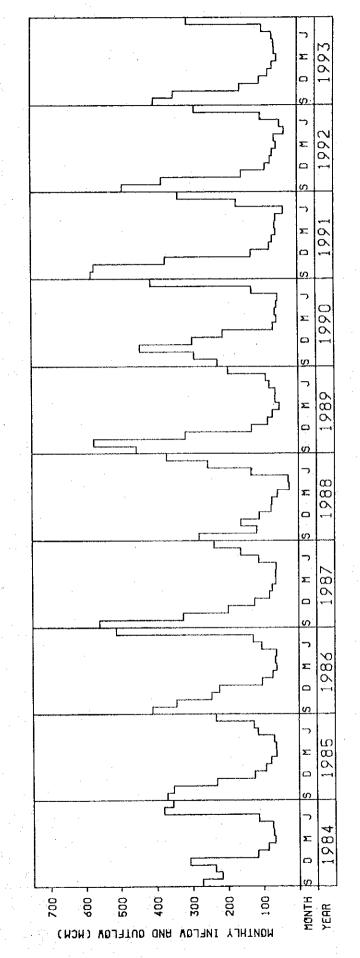
(1/5) Monthly Reservoir Inflow Volume in MCM

													٠.		•																		
1	1919.	2073.4	1697.6	2193.9	2324.9	2541.1	1867.2	1838.3	21087.1	2108.7	2541.1	1697.6		•				<total></total>	302.8	216.0	502.7	380.0	142.0	8.485	434.6	8.0.8	397.0	297.6	0.8607	8.607	840.5	142.0	
	552.8	237.5	369.6			336.6		311.8	3254.6	325.5	511.9	197.8						< 10L >	97.1	0.0	254.7	0.0	112.5	0.0	155.7	76.4	32.4	54.6	786.5	78.6	254.7	0-0	
	120.9	163.3	255.9	92.0	130-9	173.4	104.8	6.66	1655.8	165.6	379.7	92.0						< NOF >	130.8	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	137.8	13.8	130.8	0.0	
1 1 1	4.001	113.6	134.0	82.2	57.3	6.65	6.67	72.0	884.5	7.88	134.0	39.9						< MAY >	•		0.0	•		•	•	•			•		0.0	•	
	4.0	62.7	29.0	63.8	59.8	61.1	36.7	66.1		58-5		•						< APR >	0-0	0-0	0.0	0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	
7 7 7	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	65.1	26.1	65.7	63.7	63.4	64.2	63.9	613.6	61.4	71.1	26.1				e in MCA		< MAR >	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0-0	
7 (7	0 Y	64.7	29.4	24.0	59.7	61.1	58.4	56.9	4.509	60.5	6.99	54.0	٠			ow Volum		< FEB >	0-0		0.0		٠	•				٠	0.0	0.0	0.0	0.0	
11	72.4	74.2	75.0	72.2	69.3	4.07	69.1	7-69	736.7	73.7	86.7	69-1				led Outfl			0 0		•	. •					•	•		•	0-0	•	٠
	4.74 4.14	82,5	77.0	86.7	210.9	79.3	76.1	82.0	1007.3	100.7	210.9	76.1				2/5) Monthly Spilled Outflow Volume in MCM		< DEC >	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0 0	0-0	0	0.0	
	124.8	124.8	110.3	131.5	298.0	131.2	90.6	106.7	1650.1	165.0	308.7	9.06				(2/5) Mo		< YON >	59.8	0.0	0.0	0.0	0.0	0.0	49.1		0.0	0.0	109.0	10.9	59.8	0.0	•
	230.3	0.00	163.2	318.9	442.7	371.2	157.1	161.3	24.	10	7	157.1	ě	٠			-	< 0CT >	0.0	0-0	0-0	0-0	0.0	61.7	185.5	114.1	0.0	0.0	361.3	36	185.5	0.0	
	351.6	40.0	118.5	574.8	293.1	572.6	380.5	347.0	M	352	7.4	118.5						< 95 ×	0.0	102.8	76	77.2	0-0	325.9	7.7	23	131.7	98	80	10		0	
	370.4	0.024	279.7	454.3	226.7	580.4	790.0	402.0	£.9707	9.707	580.4	226.7						< AUG >	54	113.2	153.5	302.8	22.5	197.2	0.0	323.2	232.8	144.9		150	323.2	0	
10.4	1985	1001	1088	1989	1990	1991	1992	1993	TOTAL	AVE	χ	ZIE	:					YEAR	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	-	· >	•	Z H E	

Table AP4.1-4 Data of Reservoir and Power Plant Operation of Xe Namnoy Downstream Project (3/5) and (4/5)

(3/5) Monthly Power Discharge Volume in MCM	
) Monthly Power Discharge Volume	¥ Q ¥
) Monthly Power Discharge Volume	₽.
Monthly Po	/olume
Monthly Po	6
Monthly Po	harg
Monthly Po	ij
(3/5) Monthly P	ower [
(3/5) Monthly	Ē
(3/5) MC	nthly
(3/5)	ž
	(3/5)

٠	יטיי	257.1 1889. 257.1 1700. 257.1 1469. 257.1 1540.	246.8 16982. 257.1 1991. 197.7 1469.			67.00 803.93 67.00 803.93							670.00 7882.57 67.00 788.26	00 803.9 00 732.7
ထောတ္ဖ	m m o	128.9 171.4 102.7 99.9	1511.6 151.2 248.8 92.0		v	67.00 6	ė.	٠.		n (_	670.00 67 67.00 6	88
112.8	132.5	57.2 39.8 49.8 70.9	875.7 87.6 132.0 39.8		< MAY >	67.00	67.00	67.00	67.00	59.60	52.83	90.79	624.49	00
, 6, 4,	28.2	8 3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	584.3 58.4 73.4 28.9		< APR >	66.98	66.98	32.78	86-99	63.94	42.30	70.99	604-60	66.98 32.78
71.0	65.0 27.0	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	614.5 61.4 71.0 27.0	in MW	< MAR >	66.98	86.98	86-98 29,99	90.99	66.32	66.85	65.15	628.29	
66.84 8.62.84 8.62.84	59.4	50.00 50.00	606.6 60.7 66.8 56.8	r Output	w	66.98		vv	ניווי	~ `	o v	···	N 0	66.98
87.7 78.4	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	70.3 71.9 70.1	746.3 74.6 87.7 70.1	eak Powe	< 1AN >	67.00	67.00	67.00	67,00	67.00	67.00	67.00	670.00	67.00
116.8	82.5 76.9	210.8 79.2 76.1 81.9	1006.6 100.7 210.8 76.1	(4/5) Monthly Peak Power Output in	< DEC >	67.00	67.00	67.00	67.00	67.00	67.00	67.00	670.00	
1248.8	124.8	248.8 131.1 90.5	1540.5 154.1 248.8 90.5	(4/5) N	< NON >	67.00	67.00	67.00	67.00	67.00	67.00	67.00	670.00	67.00
		257.1 257.1 157.1 161.2	2162.5 216.2 257.1 157.1		< 0CT >	67.00	67.00	67.00	67.00	67.00	67.00	67.00	670.00	67.00
7 4 8 6	1 8 4	248-8 248-8 248-8 248-8 248-8	2325.2 232.5 248.8 118.4		< SEP >	67.00	67.00	67.00	67.00	67.00	00.76	67.00	670.00	67.00
A 2000	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	256.7 257.1 257.1 257.1	2540.8 254.1 257.1 226.7		< AUG >	67.00	67.00	67.00	67.00	67.00	00.74	67.00	670.00	67.00
≻न्न•		7 1990 8 1991 9 1992 10 1993	TOTAL AVE MAX MIN		»- ı	1 1984	1 64		•	Η.	-	• ~	TOTAL	X Z X H E E

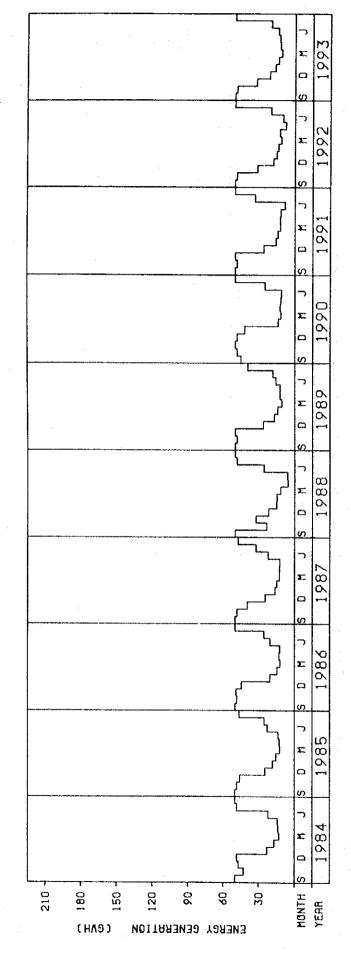

Table AP4.1-4 Data of Reservoir and Power Plant Operation of Xe Namnoy

Downstream Project (5/5)

Monthly Energy Production in GWh

A1014CA	389.54	334.32	358.74	332,31	304.44	314.39	368.32	330.70	287.05	300.62	3320.14	332.01	389.24	287.05
1000	49.85	4.6.20	49.85	47.13	58.67	39.25	49.85	58.67	49.85	49.85	481.51	48.15	58.67	39.25
Y 200 /	72.87	25.17	25.59	32.41	48-24	18.26	54.99	33.24	19.93	19.83	295.91	29.59	48-24	18.26
V 75.	22.10	22.59	20.44	22.06	25.60	15.89	11.09	8.01	9.83	13.89	171.50	17.15	25.60	8.01
A AYK A	14.24	13.45	12.15	12.15	5.90	12.36	11.51	11.64	7.61	12.51	113.53	11.35	14.24	2.90
V 38E V	13.76	12.52	12.75	12.60	5.58	12.43	12.39	12.35	12.45	12.14	118.97	11.90	13.76	5.58
A TEB V	12.96	12.13	11.96	12,53	11-51	10.64	11.56	11.84	11.31	11.10	117.54	11.75	12.96	10-64
V 747 V	17.19	15.37	14.38	14.73	14.88	14.34	13.78	44.09	13.74	13.78	146.28	14.63	17.19	13.74
A DEC Y	23.18	18.33	20.53	16.37	15.27	17.19	41.85	15.73	15.10	16.26	199.81	19.98	41.85	15.10
× 202 ×	48.54	24.77	44.33	24.77	21.88	26.09	78-57	26.03	17.97	21.17	303,48	30.35	48.24	17.97
v 000 v	46.72	69.57	48.67	39-48	32.38	49.85	49.85	49.85	31.18	32.00	425.66	42.57	49.85	31.18
A SEP A	42.91	48.24	78.87	48.54	23.51	48.24	48.24	48.24	48.24	48.54	452.33	45.23	78.57	23.51
A BUG A	58.67	49.85	58.67	49.85	49.85	58-67	66.77	49.85	49.85	49.85	493.62	49.36	49.85	66 77
YEAR	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	TAL	VE	ΧĄ	I.N

Data of Reservoir and Power Plant Operation of Xe Namnoy (Monthly Inflow / Outflow in MCM) Downstream Project (1/2)



Since the Xe Namnoy Downstream Project is planned as a daily regulation type power plant, inflow volume and outflow volume of the project are balanced each other. Note)

Fig. AP4.1-4 Data of Reservoir and Power Plant Operation of Xe Namnoy

Downstream Project (2/2)

(Simulated Monthly Energy Generation in GWh)

