11.2.4 Telecommunication Equipment

Power line carrier system (earth return) is provided for composing telecommunication circuits for power generation and dam operation.

11.3 Transmission Line

11.3.1 Transmission Line Route

Design of the transmission line is that the 154 kV twocircuit lines supported by two-circuit steel towers start from the Köprübaşı power station and extend to the Çıplak district, where is near to the planned site of the Çay power station, and these transmission lines are separated into two independent lines to reach Karabük and Ereğli substations respectively.

The transmission line route is planned to be constructed along the existing roads for reducing the construction costs and making maintenance of lines easy. However, for the section that the existing roads can not be directly utilized for construction, the shortest possible distance to the extent that it is allowed technically is selected in order to reduce the construction costs of the transmission line.

The first half of the total 15 km of the transmission lines from the Köprübaşı power station to the Çıplak district passes through rather steep mountainous areas (the maximum land height: 750 m), while the latter half passes through rather gentle hilly areas to finally reach the Karabük and Ereğli substations. Figure 10-1 shows the selected transmission line route. The distance of each section of the transmission line is as shown below:

	Number of circuits	Length (km)
Köprübaşı - Çıp	lak 2	15
Çıplak - Karabü	k 1	70
Çıplak - Ereğli	1	35

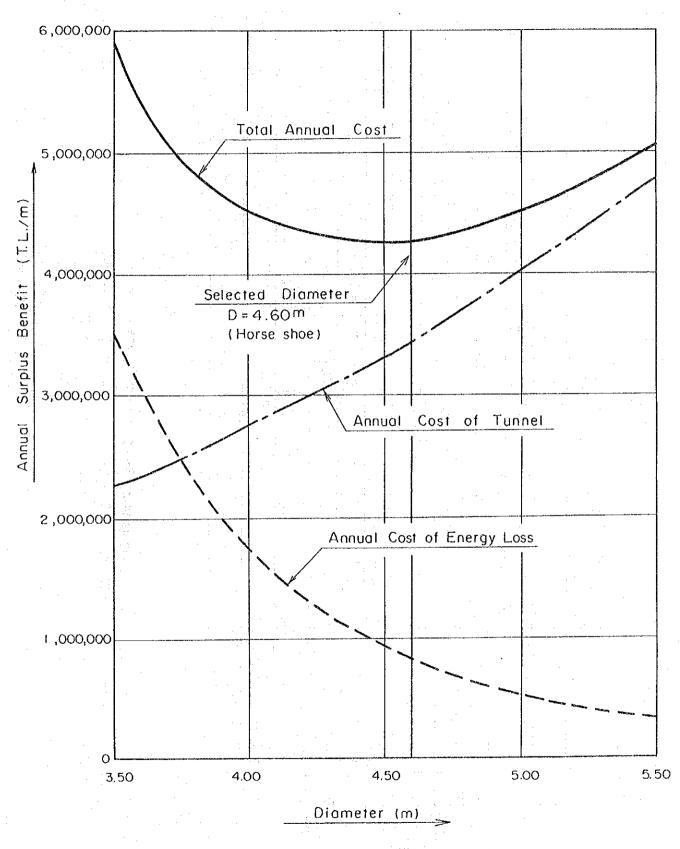
The ambient conditions for the transmission line are as follows:

Snow deposit: Max. 85 cm Rainfall: Annual total 775 mm Temperature: Annual average 13.5°C Wind velocity: Average 35 m/sec

11.3.2 Conductor, Insulator and Ground-wire

In consideration of the electrical and mechanical characteristics needed for the conductor as well as the development plans for Çay and Karabük hydroelectric power stations, the aluminum conductor steel reinforced (ACSR) 1,272 MCM was selected.

Taking into account the results of electrical and mechanical studies and insulation coordination with the existing 154 kV transmission line, the number of insulators per one string and type are taken for 12 units of suspension insulators with 250 mm in diameter.


In order to reduce lightning strokes as less as possible and to enhance the stability of the system, an overhead ground-wire is fitted.

11.3.3 Supporting Structure

In view of the geographical features and meteorological conditions, steel towers which are provided with higher mechanical strength are adopted. As a design condition for these steel towers, the following loads due to wind pressure were considered.

Conductor: 68 kg/m² Steel tower: 90 kg/m²

Figure 11-16 (two-circuit design) and 11-17 (one-circuit design) show typical tower types to be adopted into the design of this transmission line.

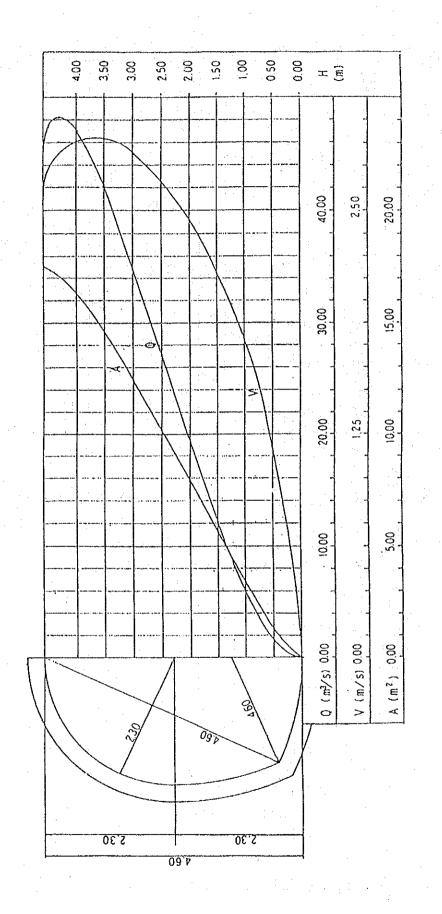
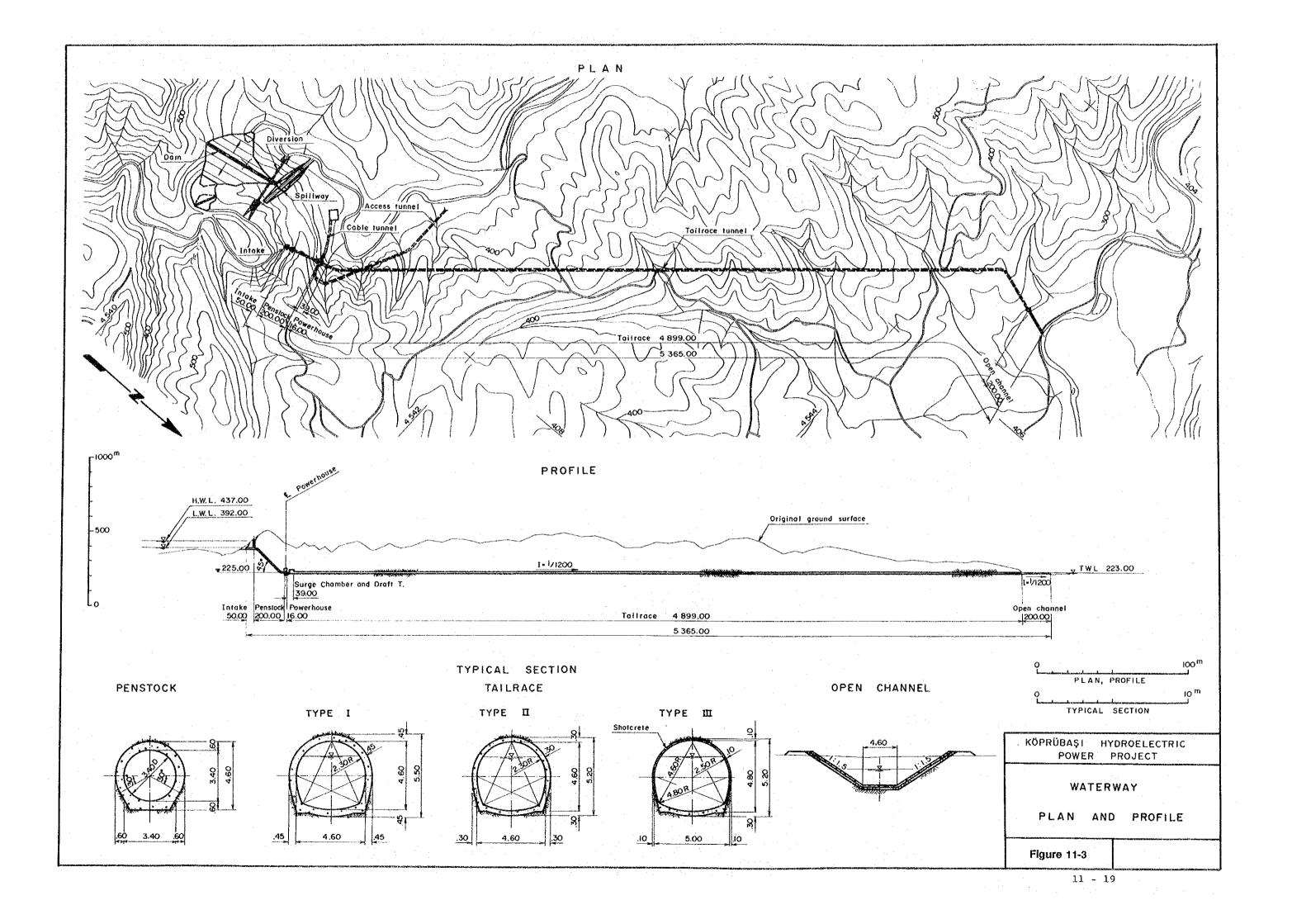
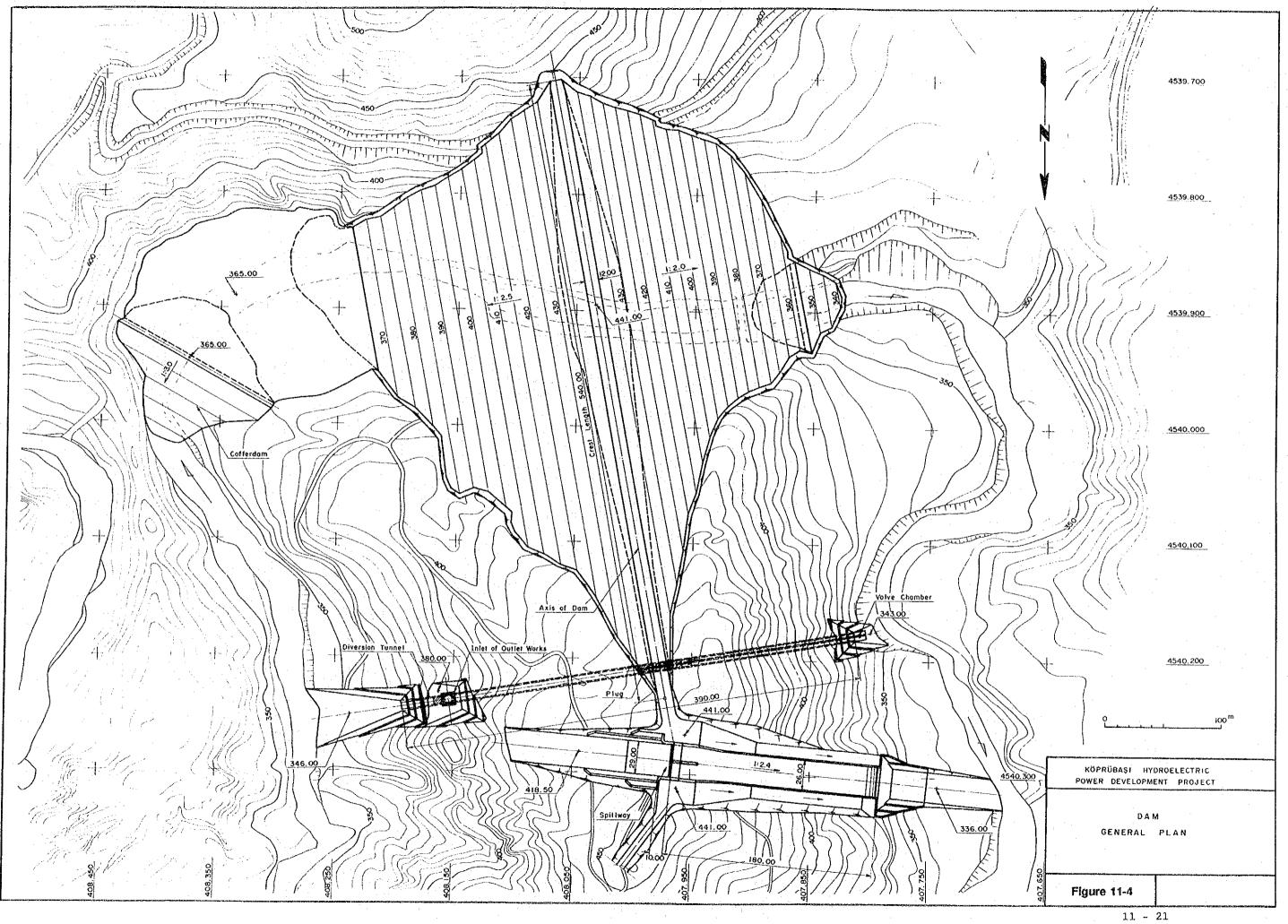
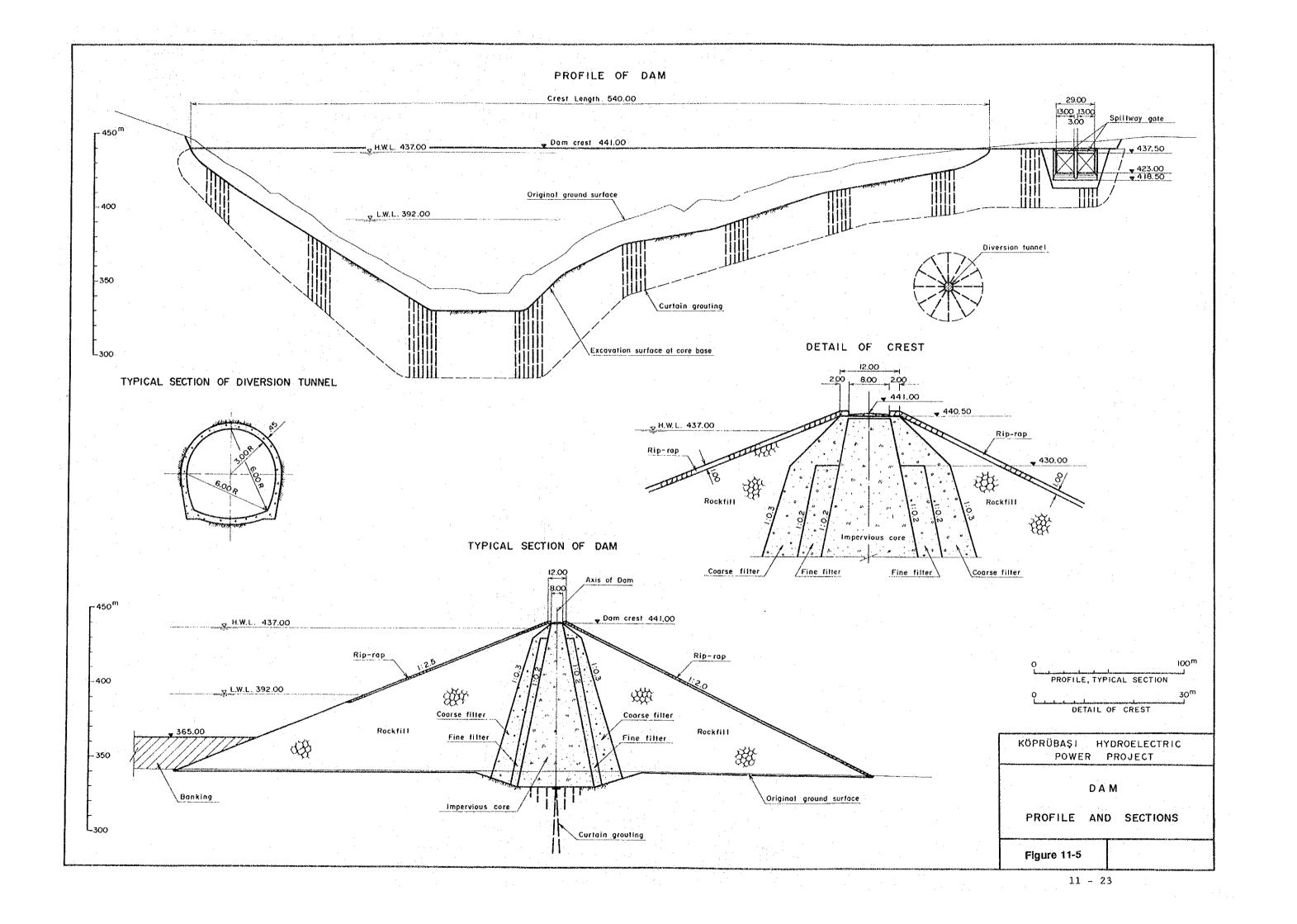
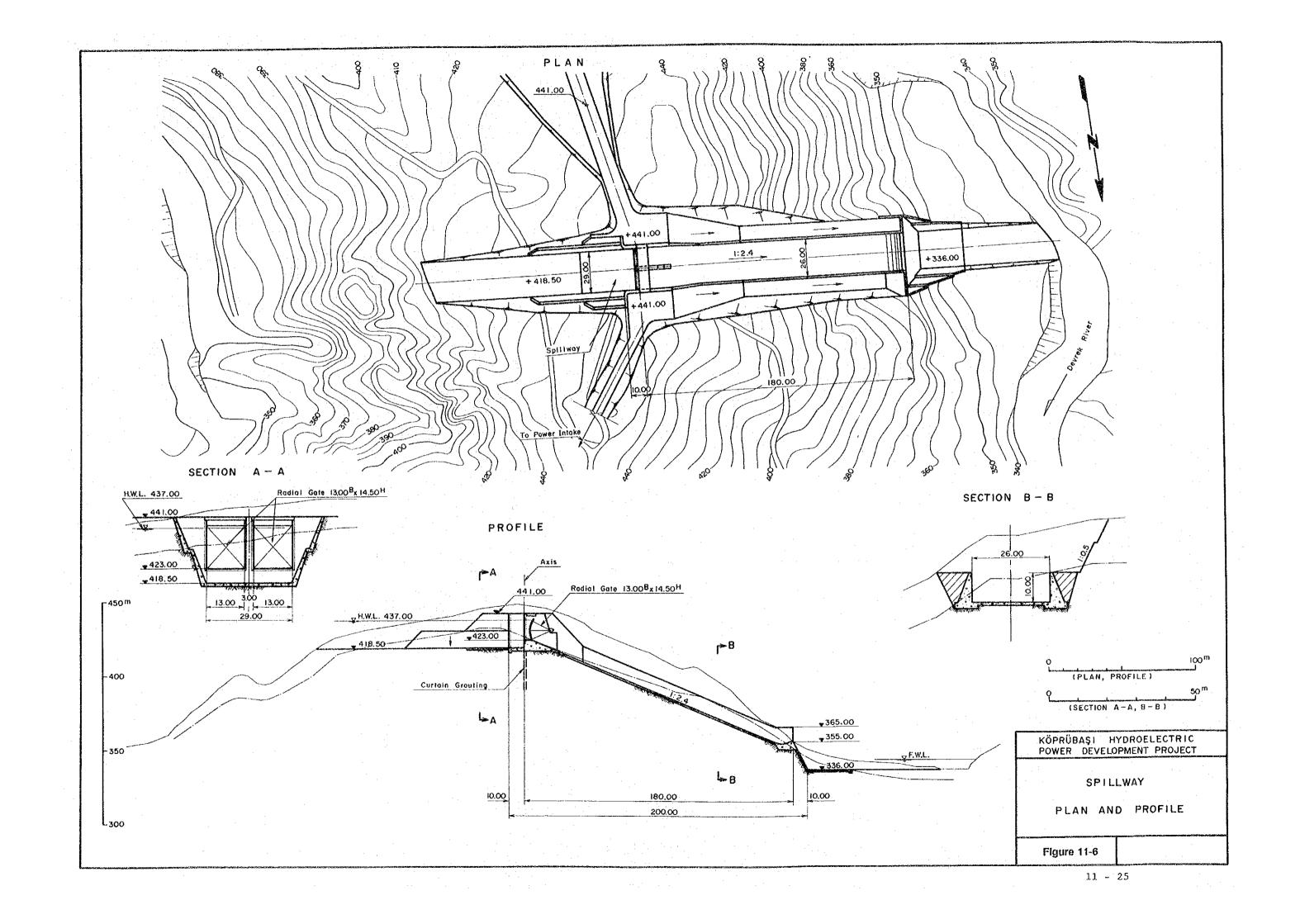
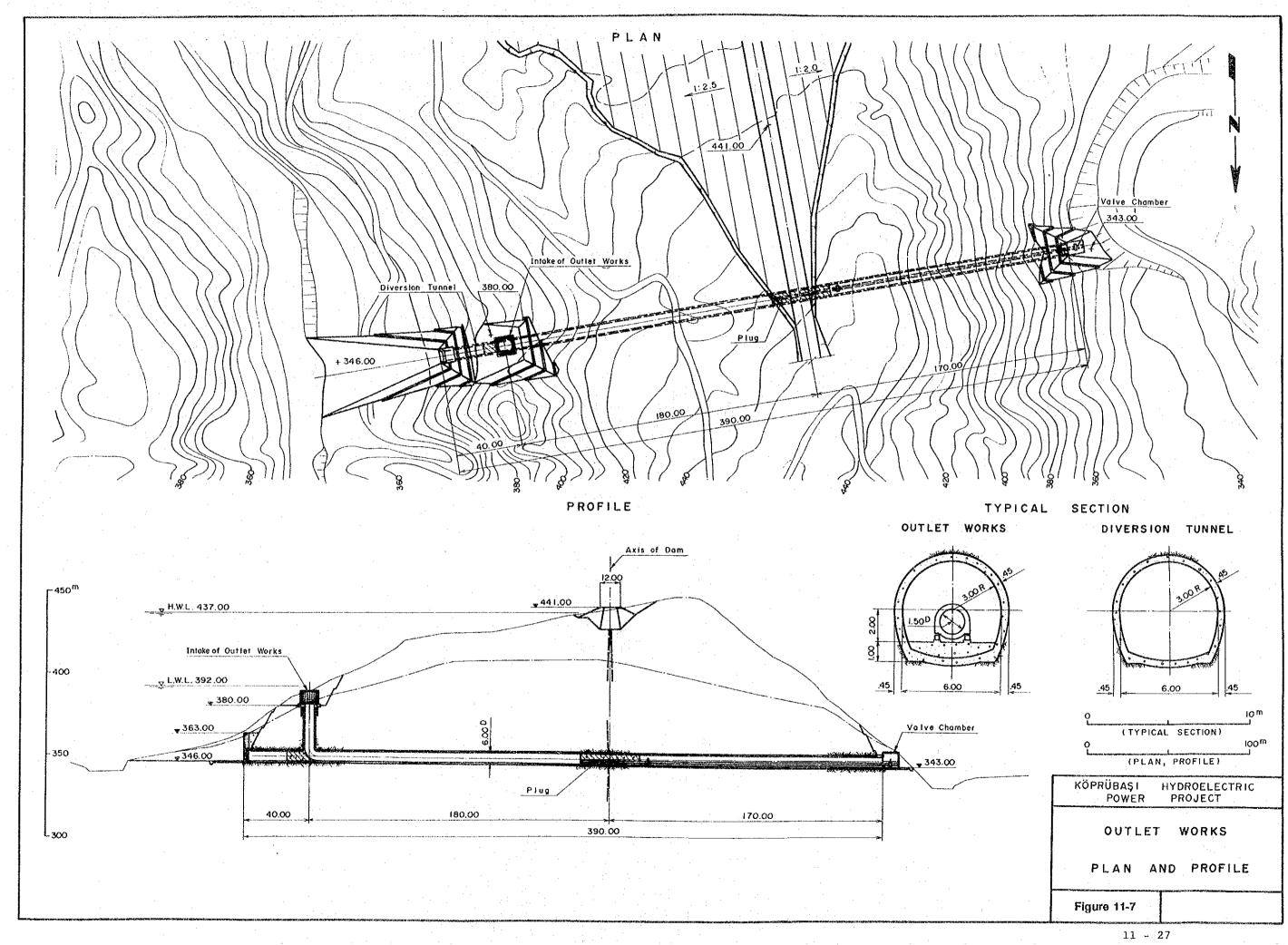
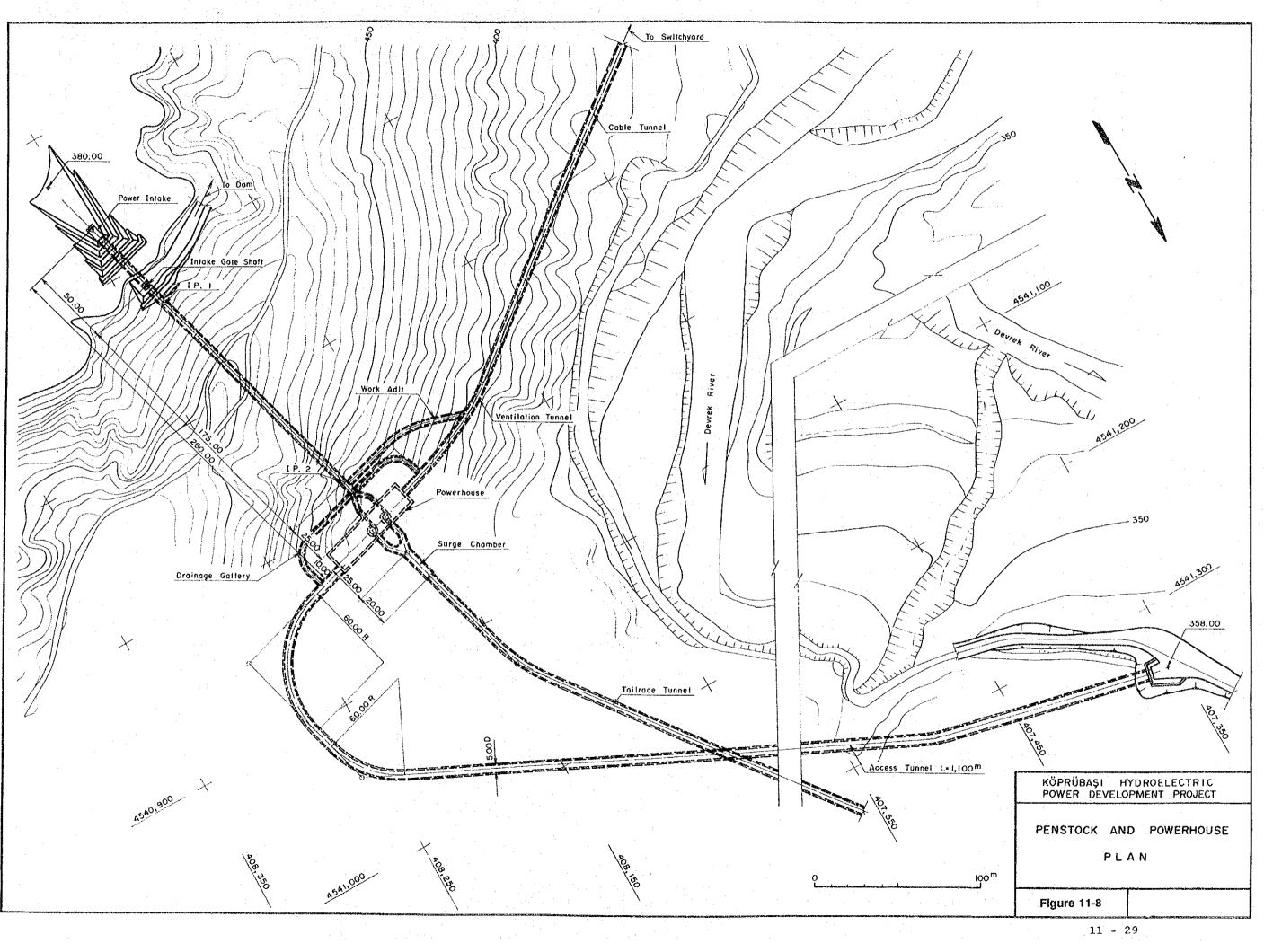
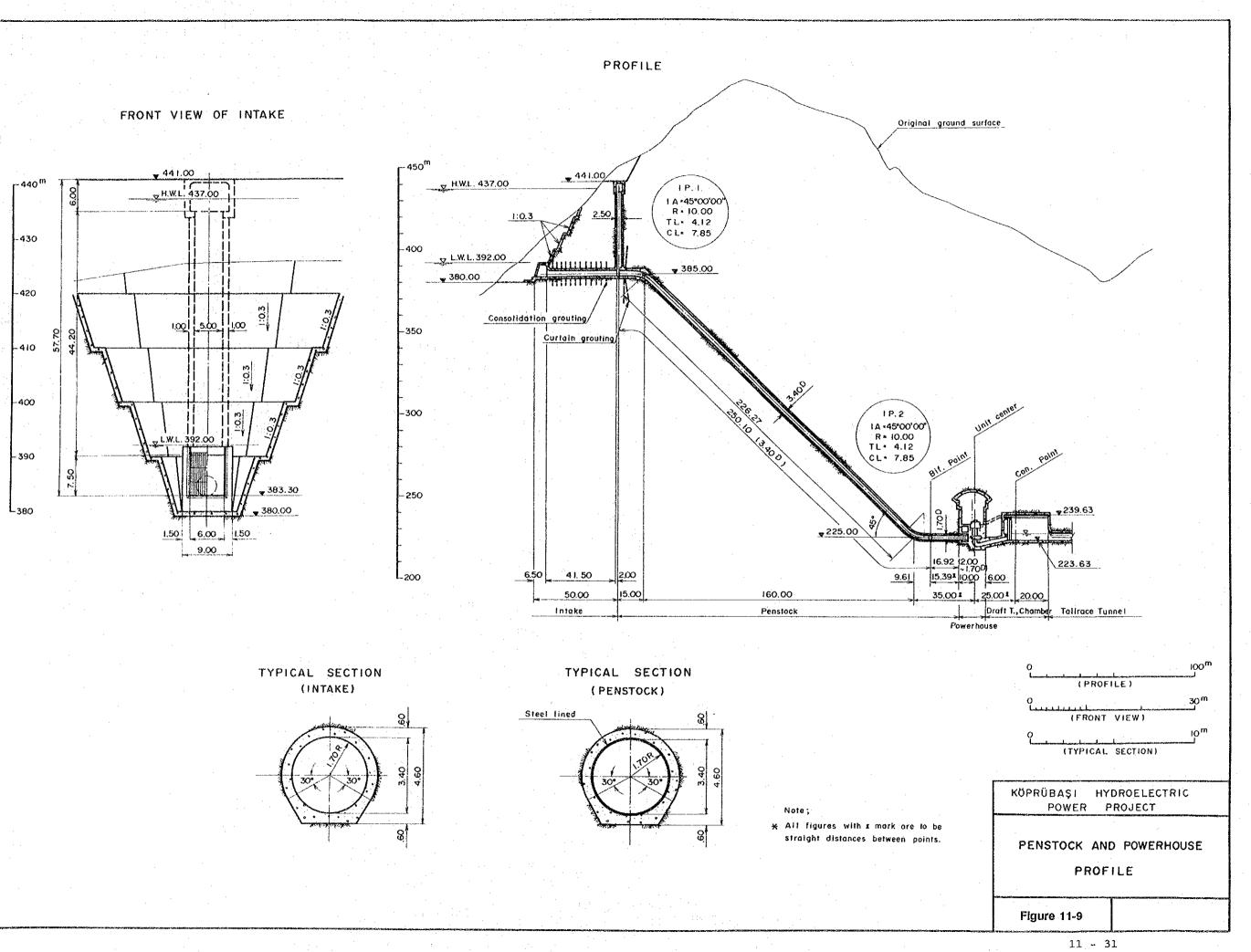





Figure 11-2 Rating Curve of Tailrace Tunnel

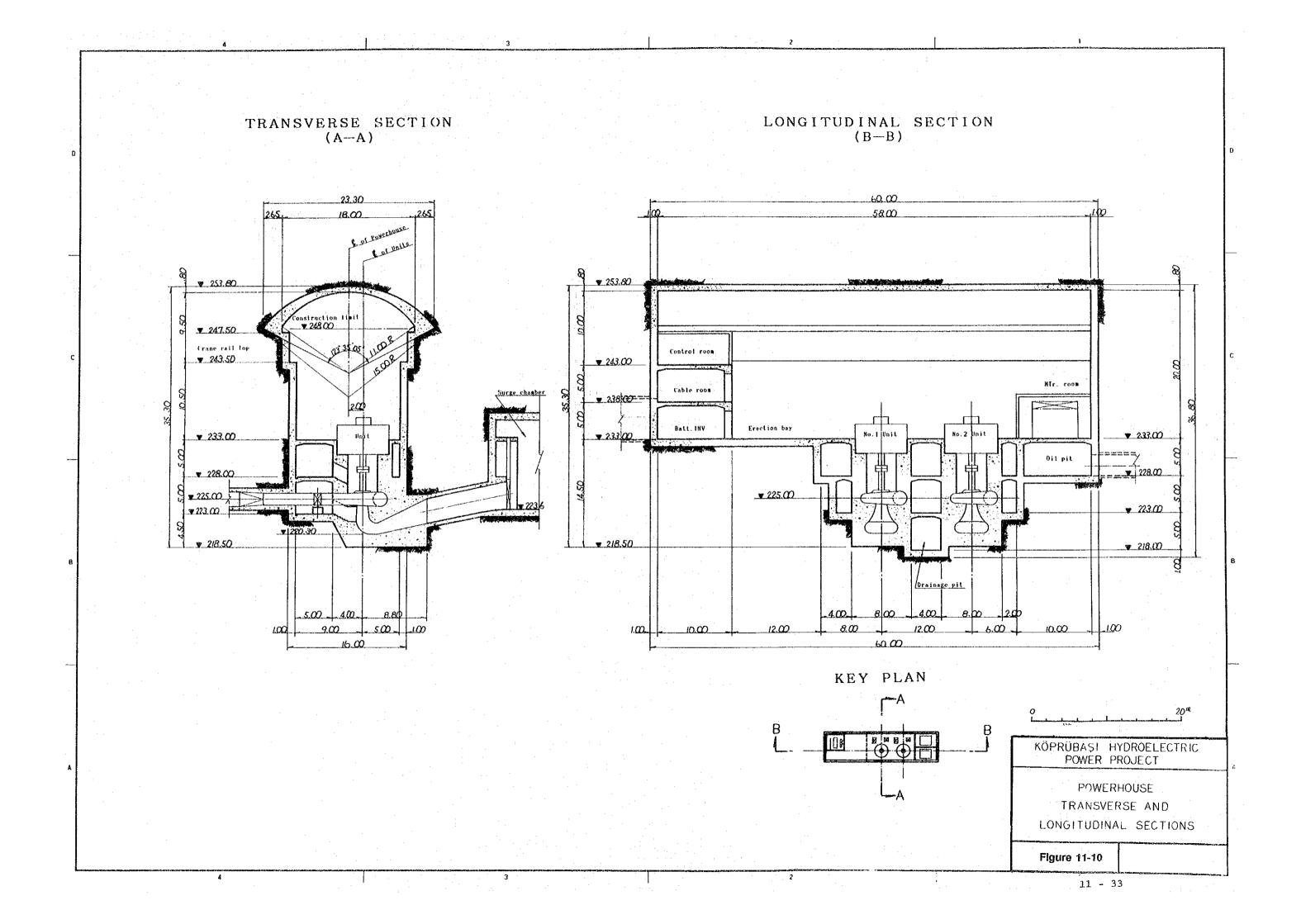

11 - 18

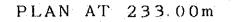


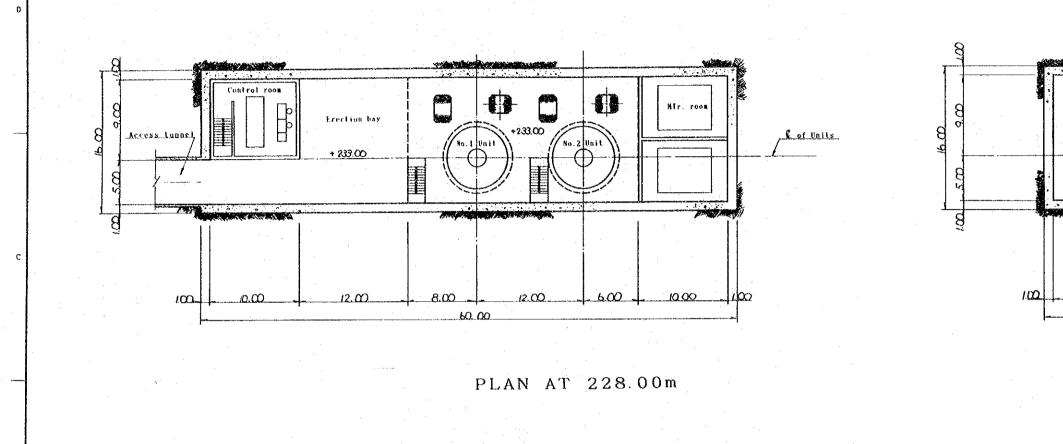


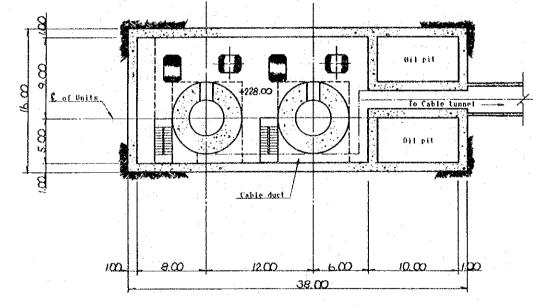


.

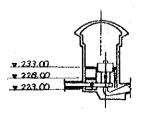








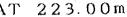
.

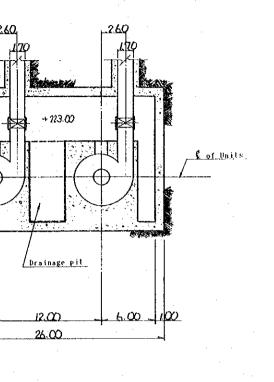


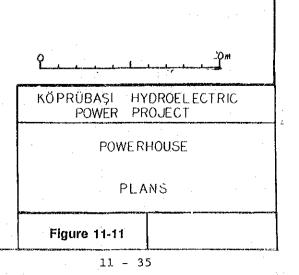
3

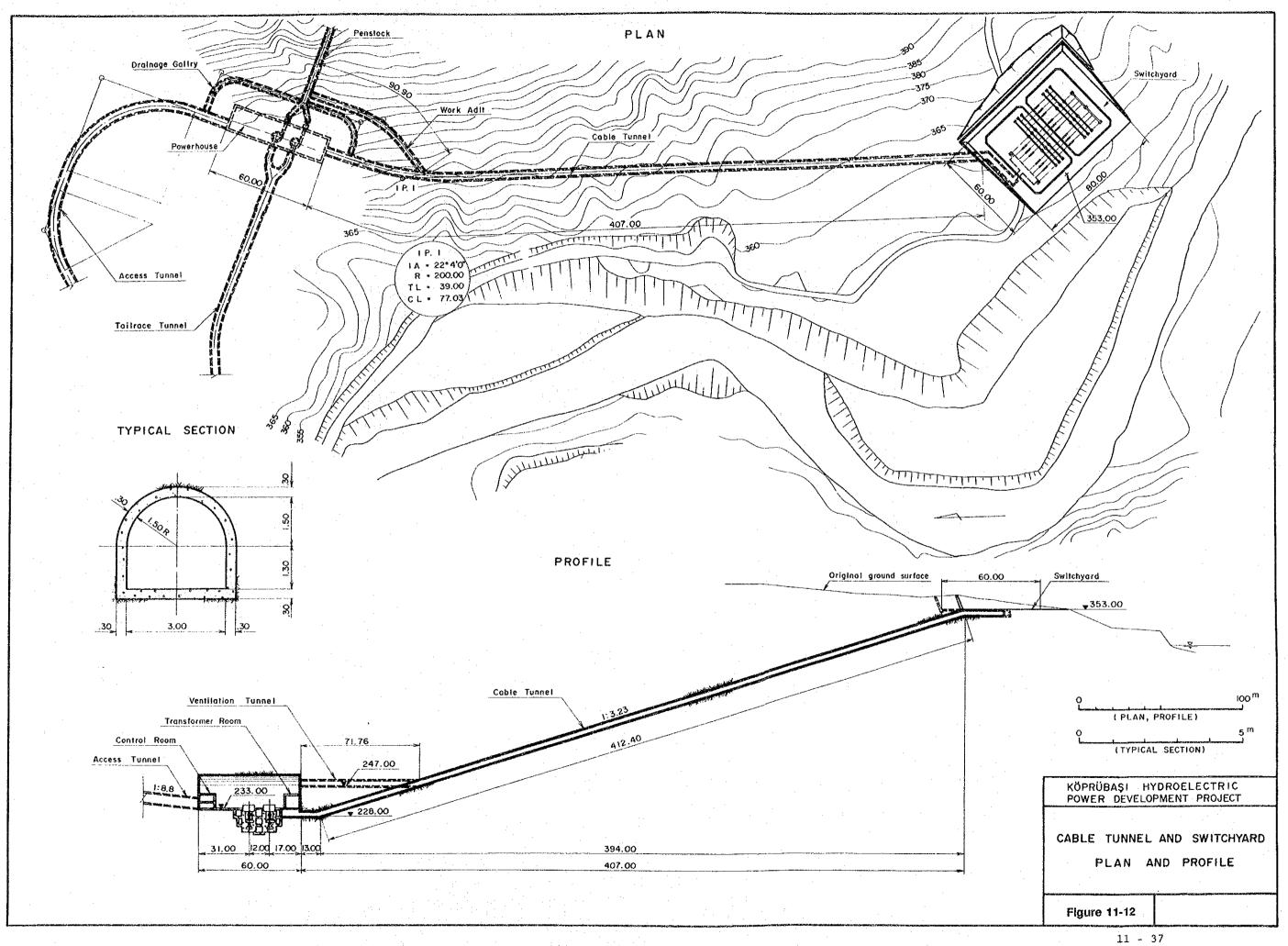
4

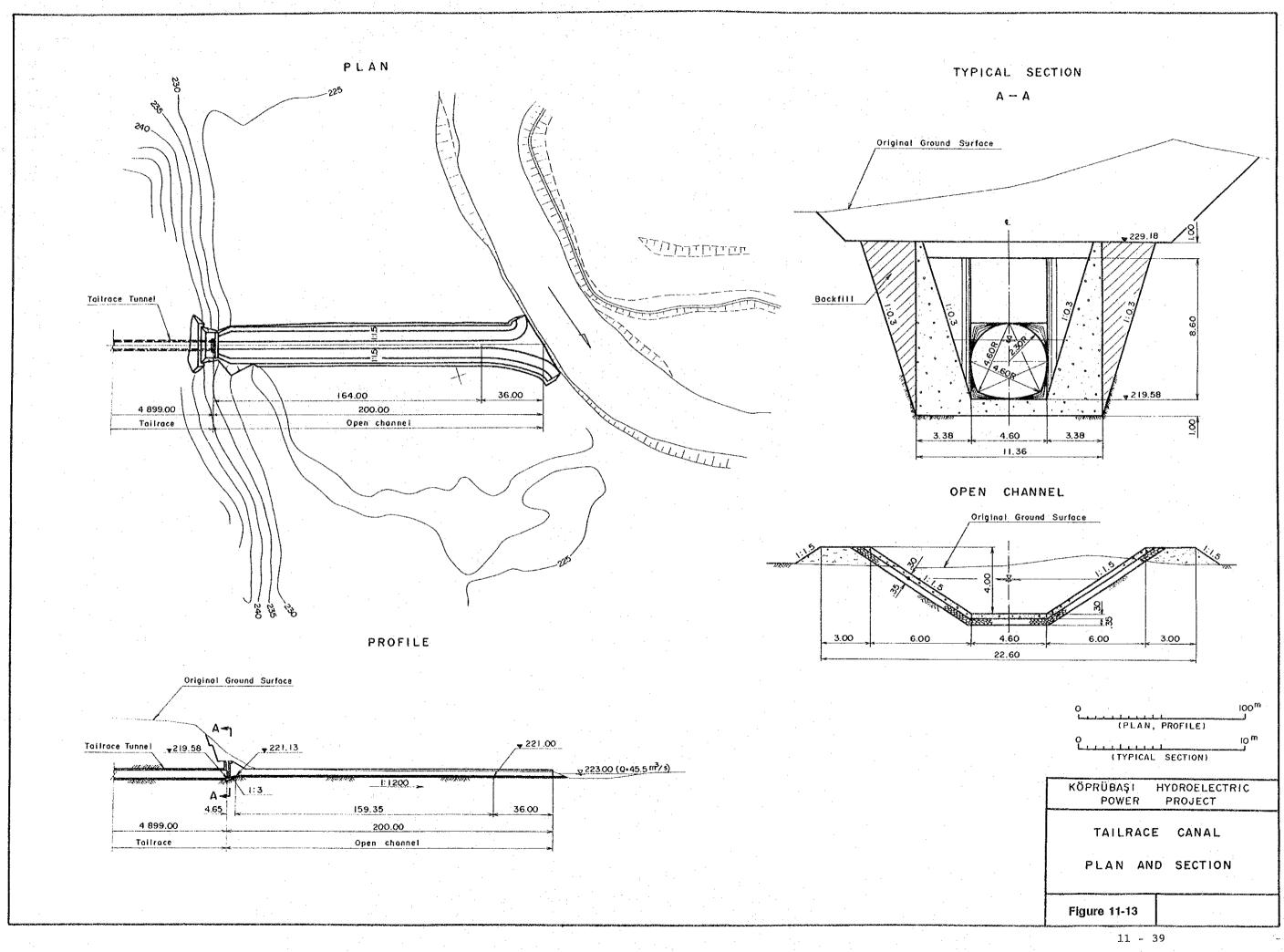
KEY SECTION

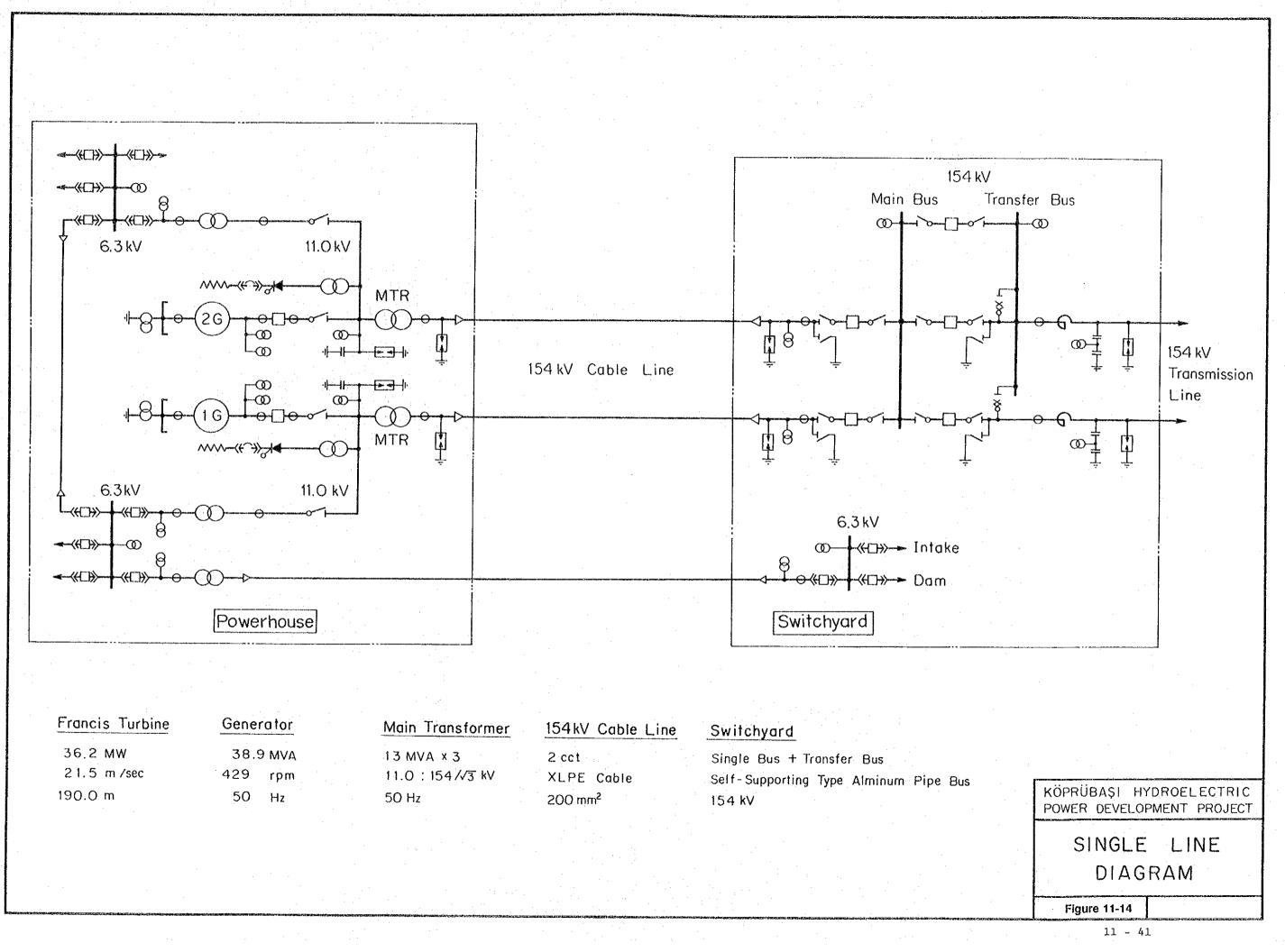


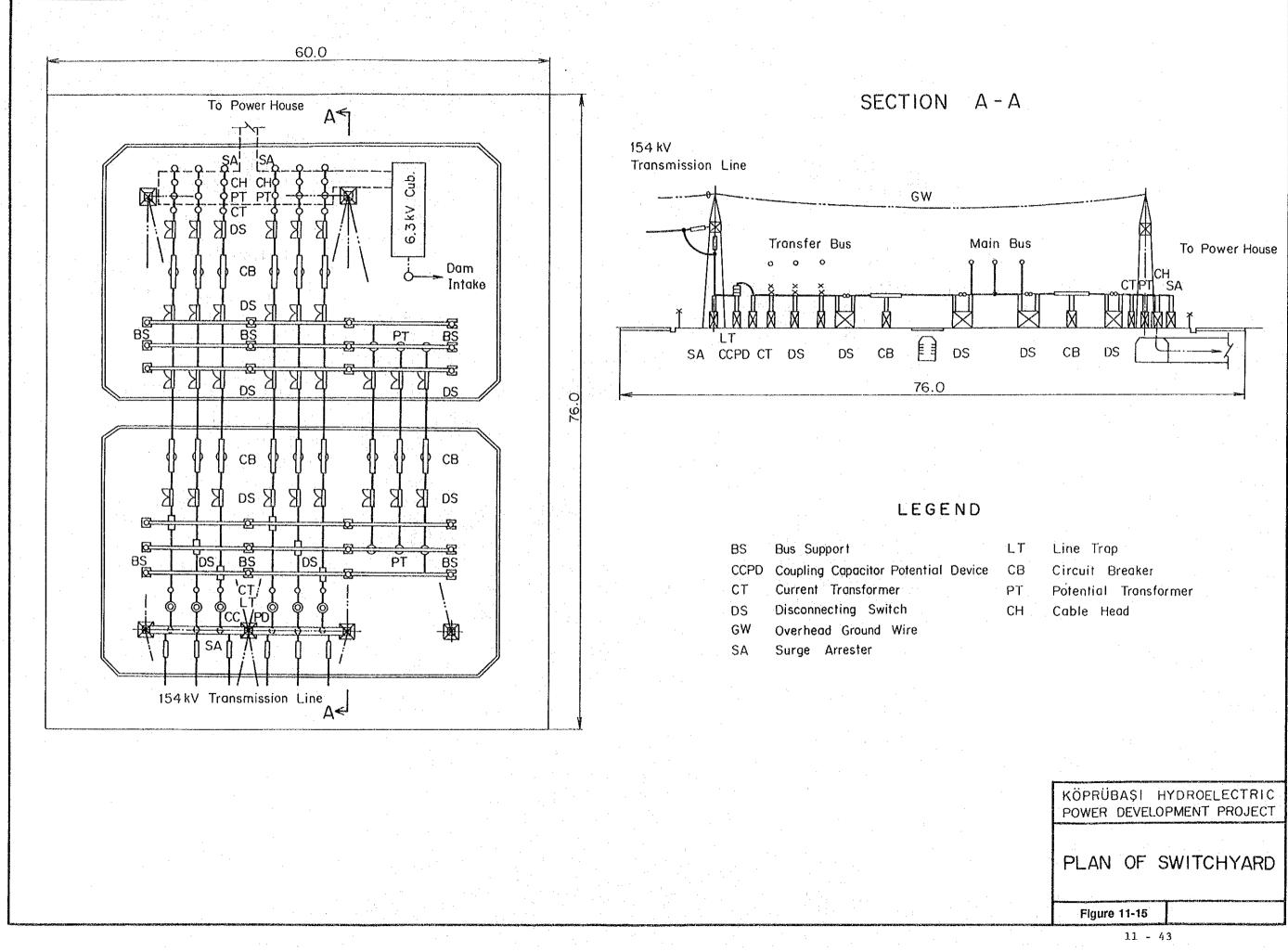

. 1

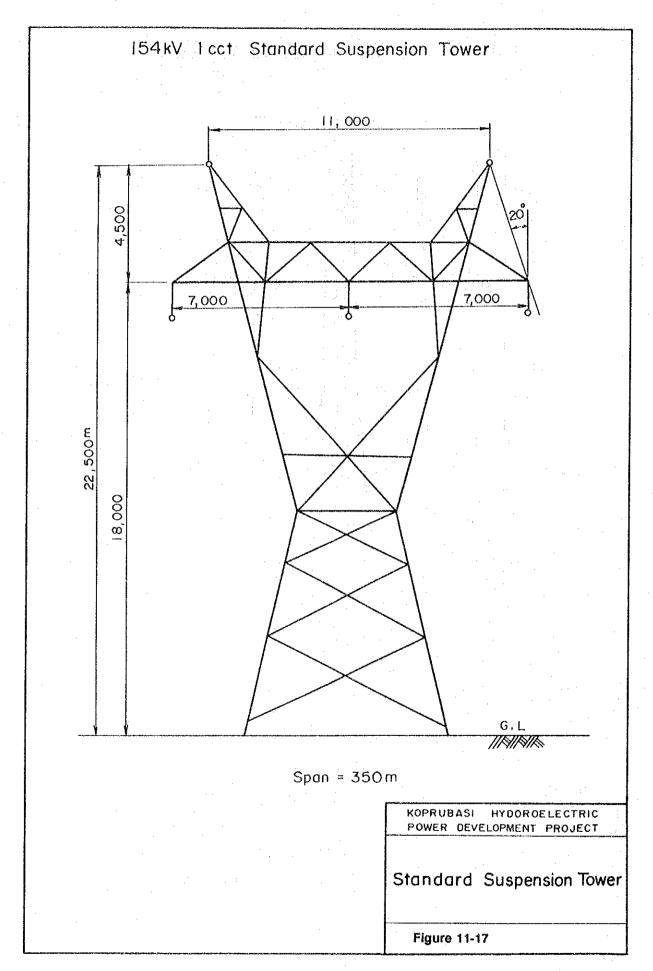

2


PLAN AT 223.00m


6.00







rancis Turbine	Generator	Main Transformer	154kV Cable Line	Switchyar
36.2 MW 21.5 m/sec	38.9 MVA 429 rpm	13 MVA × 3 11.0 : 154 //3 kV	2 cct XLPE Cable	Single Bus Self-Suppo
90.0 m	50 Hz	50 Hz	200 mm ²	154 kV

. .

Chapter 12 CONSTRUCTION PROGRAM AND CONSTRUCTION COST

Chapter 12

CONSTRUCTION PROGRAM AND CONSTRUCTION COST

Contents

				Page
12.1	Constru	action Program and Construction Schedule	•	12 - 1
	12.1.1	Basic Conditions to Affect the		
	•	Construction Program ,	•	12 - 1
	12.1.2	Construction Program and Construction	•	e e e
		Schedule	•	12 - 4
12.2	Estimat	e of Construction Cost	•	12 - 17
	12.2.1	Fundamental Matter	•	12 - 17
	12.2.2	Construction Cost	•	12 - 22

List of Figures

Figure	12-1	Construction Schedule	
Figure	12-2	Transportation Route	
Figure	12-3	Location of Temporary Facili	ties

List of Tables

Table	12-1	Principal Civil Works
Table	12-2	Machinery for the Project
Table	12-3	Labor Cost
Table	12-4	Construction Material Cost
Table	12-5	Fund Requirement of Each Year of Köprübaşı
	1 - 4 1	Project
Table	12-6	Construction Cost of Civil Works (Summary)
Table	12-7	Construction Cost of Civil Works

Chapter 12 CONSTRUCTION PROGRAM AND CONSTRUCTION COST

12.1 Construction Program and Construction Schedule

12.1.1 Basic Conditions to Affect the Construction Program

It is expected that structures planned for the Project will consist of a rockfill dam of height approximately 110 m and a tailrace tunnel of length approximately 5 km as main, along with an intake, penstock and power plant. The outline of matters that affect construction planning and the construction schedule of this Project are as follows:

(1) Meteorology

- A.

The meteorological conditions of this project area are as described in Chapter 6. The construction schedule was set up assuming that excavation and embankment of the rockfill dam and placement of spillway concrete would be possible 9 months out of a year, and that other underground works would be possible to perform throughout the year.

(2) Transportation

Mengen is the nearest city for the Project Site. The trunk road No. 100 and a main road of approximately 310 km in total connect Mengen with Istanbul. The highway No. 750 and a main road of 170 km in total connect Mengen with Ankara. Those roads have enough capacity to transport electro-mechanical equipment, construction equipment, and materials, because those are the most important roads in Turkey on which much similar heavy equipment has already been transported.

There is a route between Mengen and the powerhouse of the Project, the main road of approximately 3 km and the earth road of approximately 22 km in length, 5 or 6 m in width, with 7 or 8 bridges. It has a possibility to transport electro-mechanical equipment, construction equipment, and materials by partial improvements of the road.

There is another route between Mengen and the Project Site, a secondary road with asphalt pavement of 13 km from Mengen to Gökçesu and an earth road of 18 km from Gökçesu to the dam site which pass through the reservoir of the Project.

An earth road of 8 km connects the dam with the powerhouse.

The Istanbul port has a capability to unload electromechanical equipment for the Project because much similar equipment has been unloaded.

(3) Construction Materials

a) Cement

A cement factory is located at Caydurt, approximately 30 km south from the Project Site and 20 km east from Bolu. Another cement factory has been installed at 11 km east from Bolu. Both cement factories will be a major source of cement utilized for the Project.

b) Steel

A steel mill is located at Karabük, approximately 65 km northeast from the Project Site. The steel mill has a capability to be a major source of steel bars utilized for the Project.

Another steel mill is located at Eregli, approximately 50 km northwest from the Project site, and produces steel plates which will be required for the penstock and gates of the Project.

c) Concrete Aggregates

DSI performed the study and test on concrete aggregates utilized for the Project at C and G-Area on Devrek river sand-gravel deposit.

Aggregates are to be manufactured from sand-gravel deposit at the river bed near the outlet of the Project G Area.

(4) Electric Power Facilities for Construction

Electric power will be required for construction at the dam, headrace, powerhouse, and outlet. Two power distribution schemes for construction are conceivable as follows:

Case A: Addition of one circuit to the existing 15 kV Mengen-Çubuk-Köprübaşı distribution line, with new 15 kV distribution lines to be constructed from Köprübaşı to the dam site and powerhouse.

Case B: A 34.5 kV distribution line is to be newly constructed from Kayabükü to the dam site via the powerhouse.

(5) Hydraulic Equipment

Hydraulic equipment except steel penstock pipes and steel conduits are to be fabricated in the vicinity of Eregli, and hauled overload to Köprübaşı by trailer.

For steel penstock pipes and steel conduits a temporary plant is to be constructed in the field, where manufacturing is to be done, with installation carried out at the specified places. (6) Electrical Equipment

The principal items of electrical equipment are to be manufactured overseas and landed at Istanbul Port, from where they would be transported by trailer for installation at the powerhouse.

12.1.2 Construction Program and Construction Schedule

Assuming that the year of commissioning of this Project is to be 2001, it would be necessary for preparations and start of construction to be roughly in accordance with the schedule below.

Oct. 1992	- Sep. 1994	Feasibility study (2 years)
Oct. 1994	- Mar. 1995	Provision and award of final design
		(0.5 year)
Apr. 1995	- Dec. 1996	Final design (1 year)
Mar. 1996	- Dec. 1996	Finance formalities (1 year)
Jul. 1997	- Dec. 1997	Bidding and award of contract for
		construction (1 year)
Aug. 1998	••••	Start of construction
in the second second	Dec. 2001	End of construction

The quantities of the principal civil works in this Project are as shown in Table 12-1. The major items of machinery and equipment expected to be required at the peak of the construction work are given in Table 12-2.

As a result of study considering the scale of the construction work, the layout of structures, etc., it is thought a period of approximately 5 years will be needed, including preparatory works. The layout of temporary facilities for construction and construction schedule are shown in Figure 12-1 and Figure 12-3, respectively.

The critical path in the construction schedule of the Project is construction by the powerhouse work. Therefore, the first work to be done in this Project is the access roads for the powerhouse, in succession to which excavation of cable tunnel is to be started. The construction programs and construction schedule for the various works will be described below, the procedures of the works being indicated in the construction schedule.

(1) A strategies to Apply a

First Year

Completion of improvement of the road between Dirgine and dam for powerhouse and dam construction, prior to starting construction is indispensable for carrying out construction work smoothly. Simultaneously with start of construction, procurement of materials, construction of access roads to access tunnel, cable tunnel and access adits of tailrace tunnel, excavation of diversion tunnel, offices and housing facilities of the owner and contractor, materials storage yard, etc., site development for temporary facilities such as repair shop, concrete plant, aggregate plant, and assembly of apparatus are to be commenced.

Diversion of the river to the diversion tunnel is to be done immediately after completion of excavation and lining concrete. After completion of river diversion, constructions of the upstream and downstream cofferdams are to be done.

The excavation of dam foundation is commenced from upper part of both left and right bank.

Excavation for the headrace tunnel is to be commenced after completion of open air excavation of intake.

After completion of installation of belt conveyer in cable tunnel, powerhouse excavation and hauling of the muck is to be started in succession.

Second Year

For dam construction, embankment work would be done after completion of excavation of the alluvium, and carrying out foundation treatment. Prior to the commencement of dam embankment, construction of hauling roads from quarry and borrow area and preparatory works should be ready for the work.

Spillway excavation would be started. Of the excavated muck, utilizable material would be transported for embankment of the dam. Intake gate shaft excavation is to be started.

Excavation of penstock would commence when the excavation of powerhouse reach to elevation of generator room. As for transportation of excavation muck from penstock, it will be done parallel to powerhouse excavation by the belt conveyer installed in cable tunnel.

Concrete placement in powerhouse would be done in step with progress of excavation. Draft tube liner installation would be done while placing foundation concrete.

Meanwhile, excavation at access tunnel would be completed and lining concrete be commenced.

At the tailrace tunnel excavation would continue.

<u>Third Year</u>

In dam construction, grouting work and embankment works such as of the impervious core, filter and rock zones would continue to be carried out. At the spillway, concrete of the wall, chute and weir portions would be placed.

For the penstock, installation of the penstock would be done. After completion of the penstock work lining concrete placement at headrace tunnel would be done in succession.

At the intake, concrete of inlet and gate shaft is to be done.

At the powerhouse, work on the side-wall and slab concrete would be almost finished, in succession to which installation of the crane girder, the overhead travelling crane would be installed. At the powerhouse, in succession to installation of the crane, equipment installation such as of turbines and generators would be commenced.

After completion of excavation of the tailrace tunnel, placement of lining concrete is to be started.

Foundation works for the outdoor switchyard and transmission line construction are to be commenced.

Fourth Year

Dam construction embankment work to be completed by the end of the year. Installation of spillway and intake gates would be done.

After completion of lining concrete placement of the tailrace tunnel plugging of adits is to be done in succession to grouting work.

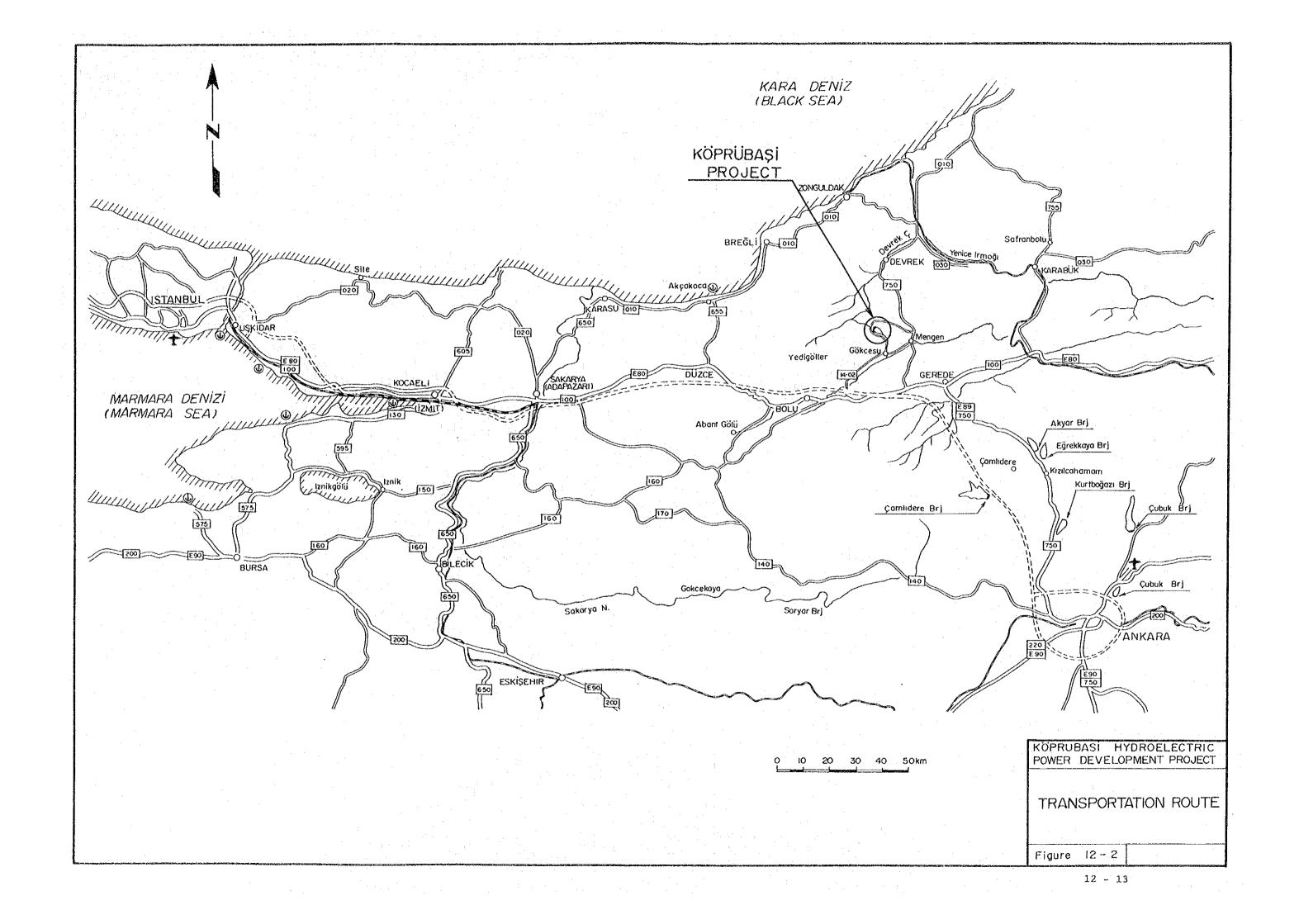
In diversion tunnel after installation of the outlet valve, plugging work is to be done in parallel with impoundment of water in the reservoir.

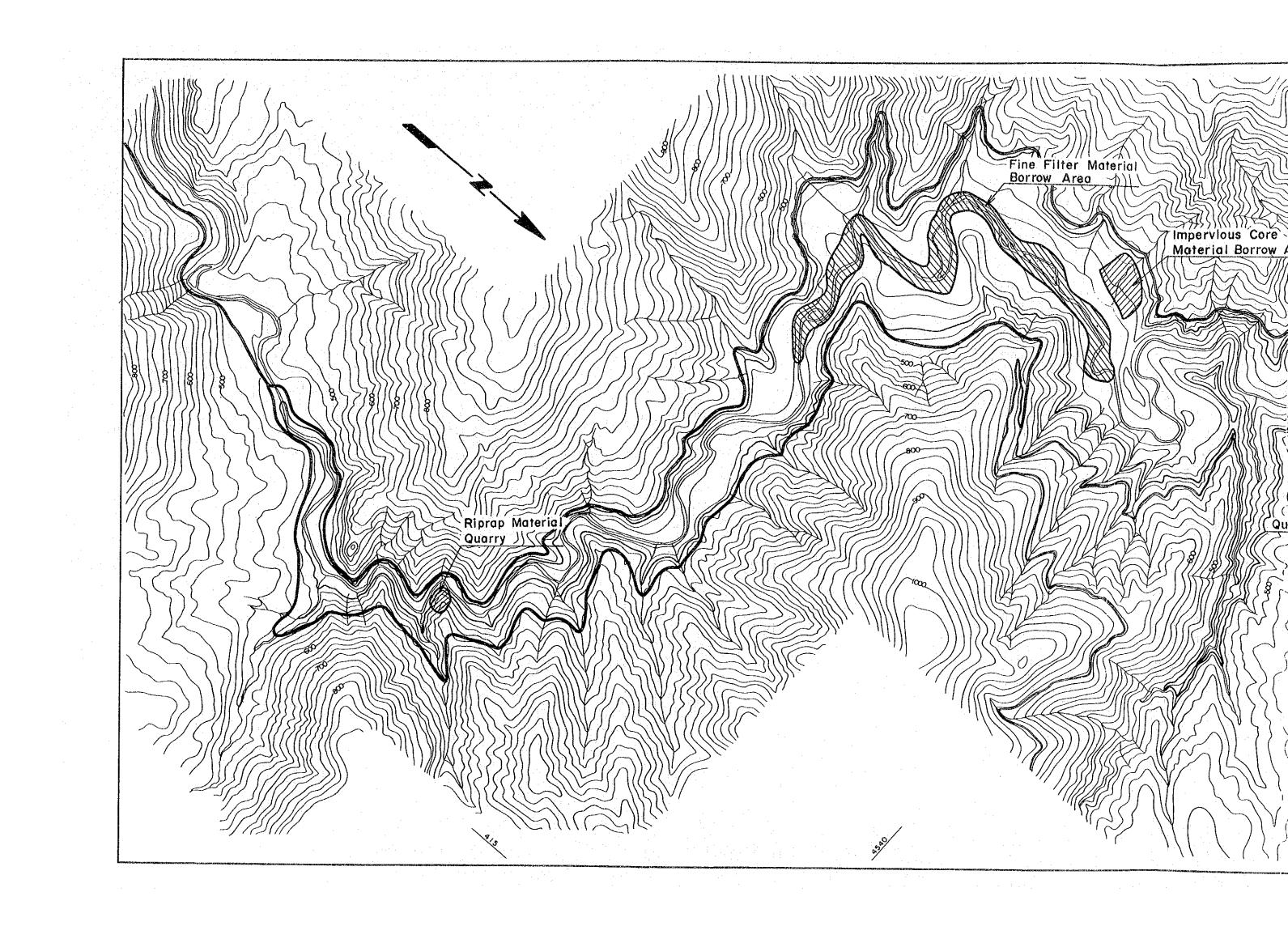
At the powerhouse and outdoor switchyard, installation and assembly of turbines, generators, electrical equipment and control equipment would be underway aiming for the start of operation in succession to dry test and wet test at the end of the year.

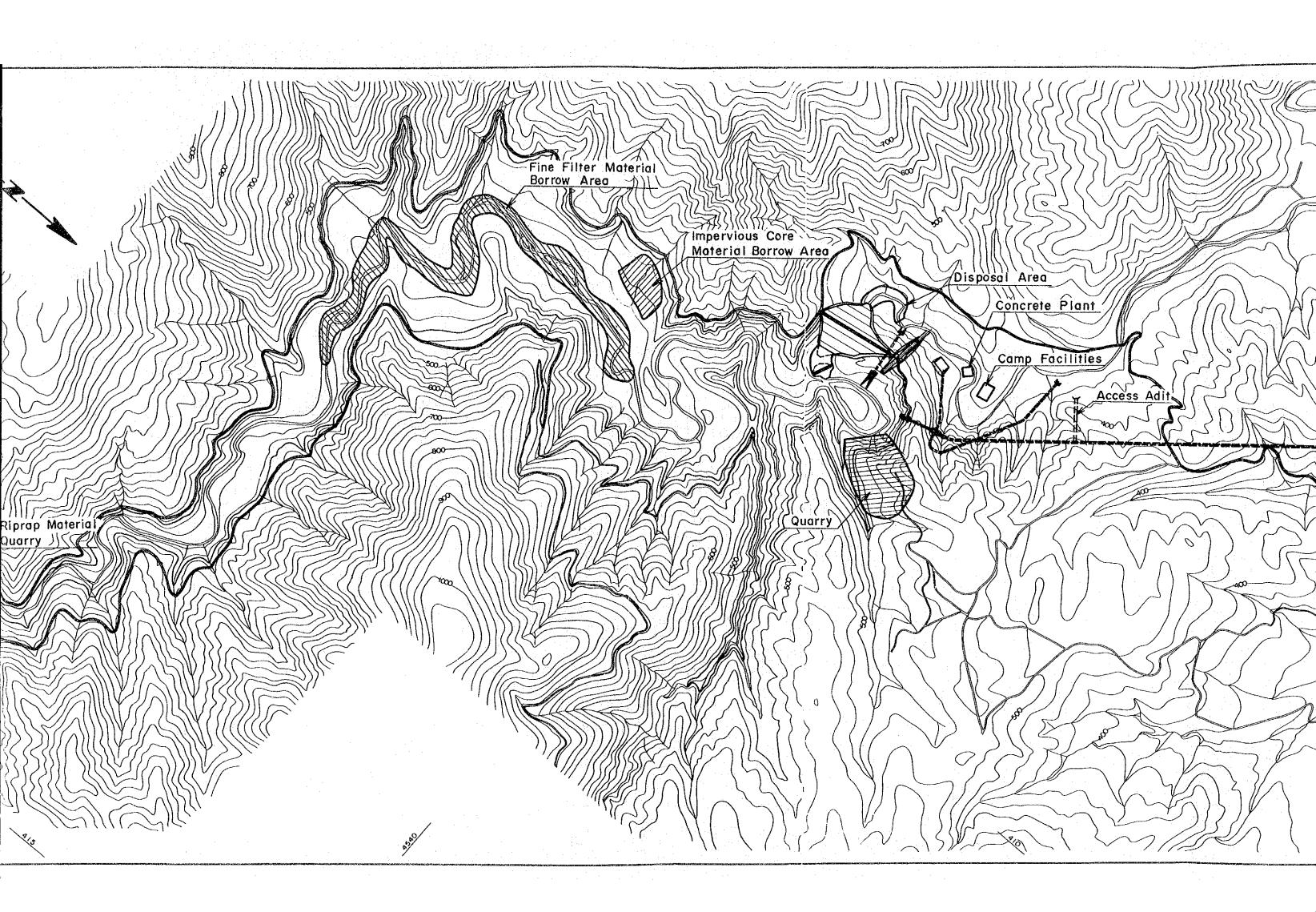
Construction of a transmission line is to be completed by the time wet tests of the power station are started.

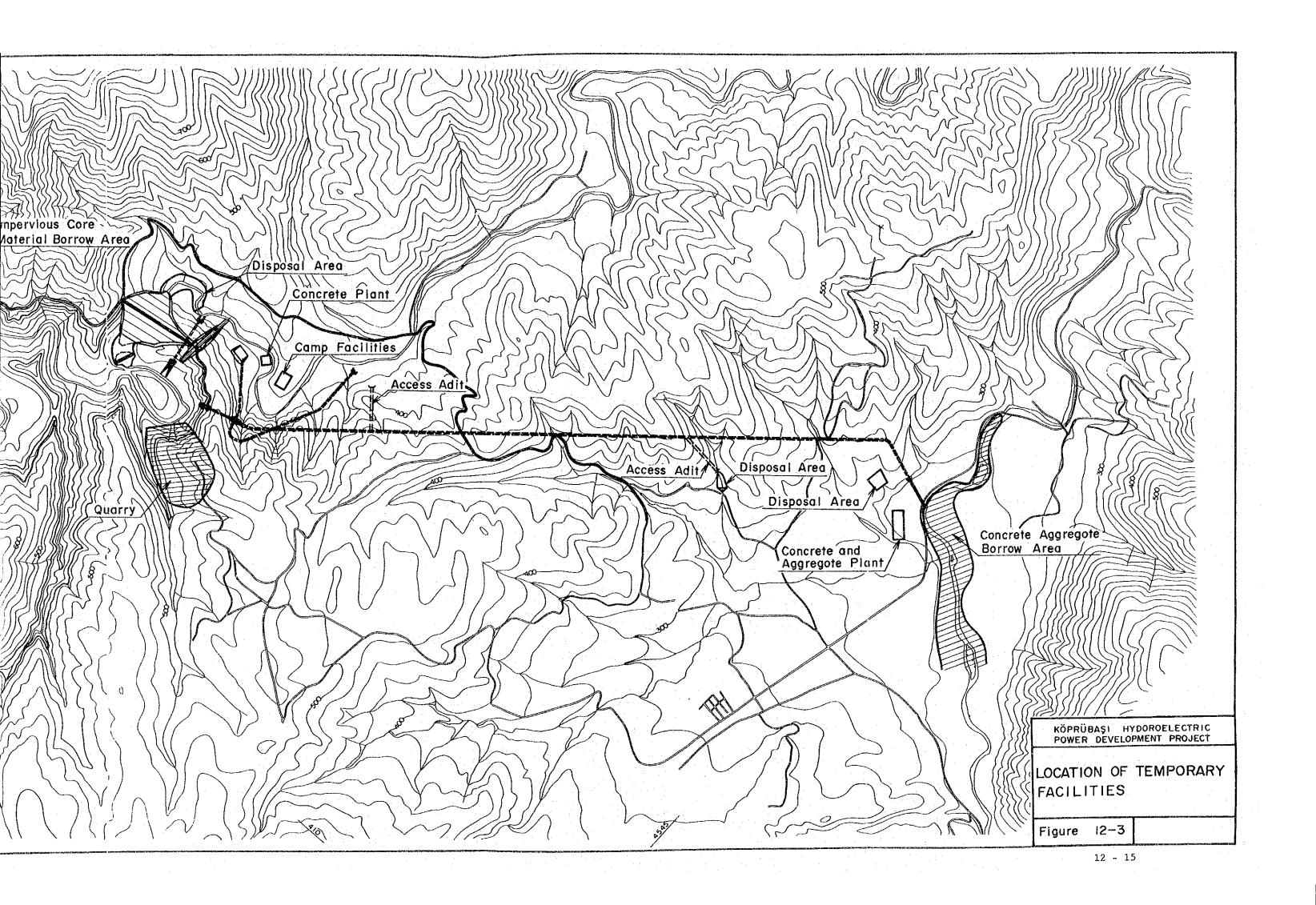
Table 12-1	Principal Civil Works	

ltem	Description	Civil	Works
Diversion	D = 6.0 m	Tunnel ex.	16,400 m ²
Tunnel	L ≈ 390 m	Lining conc.	4,100 m
Cofferdam	α ^μ ε με τη μεταλ αματική τη	Embankment	87,000 m
		Ex. in open	553,000 m
• 		Em. of Core	757,000 m
	H = 110 m	Em. of Filter	735,000 m
Dam	L = 540 m	Em. of Rock	3,067,000 m ⁻
		Banking	334,000 m ³
		Riprap	132,000 m ³
<u> </u>		Ex. in open	356,000 m ³
Spillway	W = 26.0 m L = 180 m	Concrete	44,800 m ²
	W = 13 m, H = 14.5 m	Gate	2.
1		Ex. in open	26,200 m ²
		funnel ex.	750 m ⁻
Power Intake	D = 3.4 m, L = 41.5 m $W = 2.5 \text{ m} \times 5.0 \text{ m},$	Shaft ex.	1,700 m ³
	H = 57.7 m	Concrete	2,190 m ²
		Gate	1
		Tunnel ex.	4,850 m ⁻
Penstock	(D=3.4m, L=248m x 1) (D = 2.2 m ~ 1.70 m	Plug conc.	2,410 m ²
	L = 17 m x 2)	Steel Penstock	715 t
Powerhouse	W = 16 m, H = 35.5 m L = 60 m	Ex. in underground	31,000 m ³
	L = 00 m	Concrete	9,100 m ³
Access Tunnel	W - 5 m, H = 5 m	Tunnel ex.	32,300 m ³
Access fumer	L = 1,100 m	Lining conc.	4,250 m ³
Tailrace	D = 4.6 m,	Tunnel ex.	120,000 m ³
Tunnel	L = 4,850 m	Lining conc.	25,000 m ³
Switchyard	W – 60 m x 80 m	Ex. in open	53,000 m ³
Switchyard		Concrete	2,400 m ³
	12 -	- 9	


	ltem	Machi	nery	·	Nos.
Dam	Core and Filter	Wheel loader	4.5	m ³ class	2
· · · · ·		Dump truck	32	t class	8
		Bulldozer	32	t class	5
		Vibratory roller	15	t class	2
			<u></u>		
	Rock	Wheel loader	8.5	m ³ class	2
		Dump truck	45	t class	8
		Bulldozer	43	t class	5
		Vibratory roller	15	t class	2
		Shovel .	1.2	m ³ class	2
Tunnel	Tunnel Ex.	Jumbo	3	boom	4
		Rocker shovel	0.6	m ³	4
	Concrete	Concrete pump	60	m ³ /hr	4
		Concrete plant	0.75	m ³ /min	2
		Aggregate plant	150	t/hr	1


Table 12-2 Machinery for the Project


	ю	· · · ·																	:		· ·						
5th	 									· · · · ·									· · · ·							1 1 1 1 1 1 1 1 1	
4 th	2 2 4		filing reservoir											Conc										ent of operation			
	3 4 1 1		Commencement of fi						Conc.	Conc	Conc				· · · · ·		Conc							Commencement		· · · · ·	
3nd	1 2																										
2nd	2 3 4		ing river flow										Conc.														
St	3 4 1		Divert	Conc.			• • • •				ж Ж Ц			Ex -													
	4 1 2		1																						- 1ŀ 		
- 1 st	1 2 3																										
	AUTITUS			D:6.0m L: 390m		Ex: 553×10 ³ m ³	Em: 5,025 x 10° m ³	Grouting: 1,350 t	Ex: 356,000m/Conc: 44,800m		x:28,700m,Canc:2,300m	D: 220~I70m,L: 248m x 1	Access Tunnel L:1,100m	CableTunnet L: 424m	Ex: 31,000m ⁵	Conc: 9,100 m ^s	D: 4.60m,L:4,850m	Ex:53ccm,Conc:2,4com	Outlet Valve : I Unit	Spill. Gate : 2 Units	Intake Gate: 1 Unit	Draft Gate : 2 Units	Penstock: 7151				
₹ (+ +		Preparatory Works	Access Road	ei	Coffer Dam		Dam		Spillway	Outlet Works	Intake Ex	Penstock D:		Powerhouse	<u><u></u></u>	<u></u>	nnel	Switchyard Ex	<u></u> <u>ठ</u>		Hydraulic Equipment		<u>a</u>		Electro-Mechanical Equip.		Transmission Line
	 	a.	V	0	<u></u>				S		1		12		11		<u></u>	<u>.</u>			<u></u>		 		<u>LU</u>	1	<u><u><u></u></u></u>


Figure 12-1 Construction Schedule

--

12.2 Estimate of Construction Cost

The construction cost of the Project would be estimated assuming that construction methods, materials and products, according to the technological level that can be expected at the present time, would be used, and taking into consideration the run-off discharge, geologies, and regional conditions of the project sites, and in addition, the project scales. The time of estimate is to be taken as the beginning of 1993, with the exchange rate between local and foreign currencies being US\$1 = TL8,700.

12.2.1 Fundamental Matters

(1) Construction Cost Estimate Items

1) Civil Works

Care of River

Diversion tunnel, and cofferdam

Dam

Spillway

Outlet Works

Power Intake

Penstock

Tailrace Powerhouse & Switchyard

Access Road

2) Hydraulic Equipment

Power intake, Gate shaft,

Tailrace tunnel

Headrace tunnel

Civil and architectural Works

Gate, penstock, etc.

3) Electro-mechanical Equipment

4)

5)

6)

Turbine, generator, switchyard equipment, etc.

Camp Facilities

Administrative Cost

Compensation Cost

Camp for power station operation

Engineering service concerning work, coordinating and management of work, etc. Compensation for land buildings, etc. in reservoir

- 7) Transmission Line
- 8) Interest during Construction

Interest during period of construction

- (2) Criteria of Cost Estimate
 - 1) Civil Works

civil For unit prices of works and hydraulic equipment, the 1993 YILINA AIT, ÎNŞAAT BIRIM FIYATLARINA ESAS IŞÇÎLÎK-ARAÇ VE GEREC RAYIC LÍSTELERÍ, BÍRÍM FÍYAT CETVELÍ 1993 (DSI) are used or referred to, and the prices are determined upon comparison studies with construction cost unit prices at sites in Turkey of power stations existing, under construction, or for which feasibility studies had been made.

The unit prices are composed of labor, materials, machinery depreciation, and various insurance costs.

a) Labor and Materials Costs

Labor costs and material costs used are the primary costs in 1993 YILINA AÎT, ÎNȘAAT BÎRÎM FÎYATLARINA ESAS ÎŞÇÎLÎK-ARAÇ VE GEREÇ RAYÎÇ LISTELERI.

The principal costs are given in Table 12-3 and Table 12-4.

Table 12-3 Labor Cost

item	Labor Cost TL/day
Foreman	124,200
Skilled Labor	86,600
Driller	105,300
Operator	98,600
Carpenter	86,600
Nelder	86,600
Slectrician	86,600
abor	47,600
fechanic	86,600

e Antonio Sectorio Alta Antonio Antonio Alta Antonio A

ltem	Price	Cost TL
Cement (bag)	Ton	480,000
Cement (bulk)	Ton	445,000
Dynamite	kg	24,200
ANFO	kg	3,600
Gasoline	kg	6,179
Diesel oil	kg	4,791
Reinforcement	Ton	2,771,000
Shape steel	Ton	3,369,000
Timber	m ³	2,500,000

Table 12-4 Construction Material Cost

The transportation costs of cement, reinforcing bar and shaped steel are calculated referring to the method of calculating transportation costs given in the DSI BIRIM FIYAT CETVELI 1993.

b) Construction Machinery

Principal construction machinery such as dump trucks, bulldozers, loading equipment, concrete pumps, aggregate plants, bathing plants, cranes, boring and grouting machines is assumed to be all imported, and the machinery costs are calculated from CIF Prices of Istanbul Port.

C)

Relocation Roads and Access Roads

Construction costs of relocation roads and access roads would be calculated based on the unit construction costs of the Highway Department.

2) Hydraulic Equipment

Steel penstock, spillway gates, outlet works, intake gate, outlet gate of tailrace etc. will be manufactured in Turkey.

3) Electro-mechanical Equipment

Electro-mechanical equipment such as turbines, generators, transformer and control equipment would be imported from abroad, while steel structures of switchyard and overhead travelling crane would be procured in Turkey. The costs are to include the transportation costs to the power station sites, installation costs, insurance costs, etc.

4) Camp Facilities

These would include the costs of quarters and other requirements of power station operating personnel.

5) Administrative Cost

The administrative cost for the Project is considered to be 15% of the cost of construction works.

6) Compensation Cost

Compensation costs such as land acquisition costs would be calculated based on data furnished by DSI. The costs of relocated roads would be included separately under costs of civil works.

7) Transmission line Cost

The transmission line costs would be calculated referring to the periodic unit cost of TEK.

8) Interest during Construction

Interest during construction is to be 9.5% for both local and foreign currency funds based on discussions with DSI.

9) Import Duty and Various Taxes

Import duties are not to be included for imported construction machinery and electro-mechanical equipment such as turbine and generator.

Value added taxes of 10% would be considered in the construction cost for both local and foreign currency portions to be used in financial evaluation of the project.

10) Contingency Cost

Based on discussions with DSI, contingency costs are to be 15% for civil works, and 5 ~ 15% for hydraulic equipment and electro-mechanical equipment.

12.2.2 Construction Cost

(1) Construction Cost of Civil Works

The principal materials used for civil works - cement, steel such as reinforcing bars and structural steel, fuel, oils and fats, explosives - are to be domestically procured, and come under local currency requirements.

Machinery for civil works, such as heavy dump trucks, bulldozers, loading equipment, concrete plants, aggregate plants, cranes, etc. are all to be imported and construction costs calculated in terms of foreign currency.

Drilling machines, grout pumps, compressors, etc. are also to be procured through importation, and come under foreign currency requirements.

(2) Hydraulic Equipment

Hydraulic equipment, except for special types, would all come under local currency.

(3) Electro-mechanical Equipment and Transmission Lines

Principal electro-mechanical equipment would come under foreign currency requirements, while overhead traveling crane and steel structures of switchyard would be local currency. The inland transportation costs and installation costs of these would be local currency.

(4) Engineering Service Cost

This cost would be 70% local currency and 30% foreign currency.

(5) Compensation Cost

All compensation costs would be in local currency.

(6) Interest during Construction

Interest amounts according to local currency and foreign currency would be respectively allocated.

(7) Estimated Construction Cost

The domestic and foreign currency portions of construction costs and the fund requirement of each year of the Project are respectively given in Tables 12-5.

Table 12-5 Found Requirement of Each Year of Köprübaşı Project

35,185 1,161 339 21,098 1,122 0 238,949 \circ 0 I,229 Q o 0 201 0 175,714 12,709 29,427 39,237 136,477 Currency Foreign unit: 106 TL 4th Year 16,668 16,400 o 0 7.097 0 Ó 2,829 5,916 1,653 65,726 18,734 27,953 21,427 306,350 \circ 150,379 65,520 52,355 48,231 21,566 Currency Local 3,696 182 382 1,533 8 445 0 Ó 201 9,187 116 0 0 9,711 0 I5,938 0 40,205 0 90,391 56,297 56,297 Currency Foreign **3rd Year** 59,593 21.292 23,266 22 547 26,849 0 o O 912 2,048 1,595 7,471 664 29,789 12,300 C 21,566 171,683 250,868 116,841 20.976 Currency Local 0 56.948 o 0 6.412 1.450 5,170 20,586 50 23,280 8 542 8,824 84,138 o o 56,948 0 O 9,824 o Currency Foreign 2nd Year 5,128 12,185 4,100 ò 262 1,784 22,080 0 31,345 0 0 77,136 0 0 81,236 14,013 0 14,185 16,537 121,620 Currency Local 2,623 ò 0 6,268 7,184 Ò 336 506 7,312 5,036 6,512 0 6,913 0 28,519 43,683 0 0 57,854 15,164 Currency Foreign 1st Year 8,200 15,004 8,024 8,402 611 0 3,106 8,733 10,000 5,674 0 1,273 0 0 50,294 4,541 100,139 38,988 10,191 16,380 Currency Local 41,000 10,000 22,433 2,703 3,859 5,030 00,565 3,429 43.132 48,816 248,003 44.854 179,692 39,710 796,234 94,866 81,900. 471,332 1,250,309 182,700 19,625 157,684 Total 40,901 47.145 Ó 0 518 938 1,651 1,112 7,429 103,160 13,955 ¢ 0 Foreign Currency 11,337 332,642 34,732 56,813 181,001 151,641 Total 41,000 10,000 15,004 33,517 3,379 2.185 59,664 39,710 60,134 144,843 2,921 34,861 2,317 72,480 298,691 31,059 43.132 63,592 81,900 100,871 778,977 Currency Local Hydraulic Equipment Administration Cost Electro-Mechanical Transmission Line **Relocation Road** Engineering and Grand Total Camp Facilities Land Aquisition Care of River Outlet Works Powerhouse Interest during ltem Switchyard Construction Contingency Sub. Total Penstock Tailrace Equipment **Civil Work** Spillway **Total Cost** Intake Dam

12 - 2

24

Table 12-6 Construction Cost of Civil Works (Summary)

CONSTRUCTION COST OF CIVIL WORKS KOPRUBASI PROJECT

		÷.	•	•								
TOTAL	17.139.000.000	5.294.000.000	0000	000	00	3.859.000.000	S			429,000	000,	519,402,000,000
FC	5,147,000.000	282.000.	103,160,000,000	337,000.	000.	000	000	13.955.000.000	0.901.000.	112 000	•	181,001,000,000
ΓC	000	3,012,000,000	144,843,000,000	0.00	000	2,921,000,000	000	000	,664,000	,000,	,000,	338,401,000,000
DESCRIPTION	DIVERSION TUNNEL	COFFER DAM	DAM	SPILLWAY	OUTLET WORKS	INTAKE	PENSTOCK	POWERHOUSE	TAILRACE TUNNEL	SWITCHYARD	HYDRAULIC EQUIPMENT	TOTAL
NUMBER	€ -1	6 7	က	4	ۍ ا	9	- - -	8	တ	10	 	

Table 12-7 Construction Cost of Civil Works (1)

KOPRUBASI 1 DIVERSION THUN

I. DIVERSION TUNNEL		-		-				11117.71
1763	LINN	UNIT QUANTITY		UNIT PRICE			COST	71 - 11 10 -
			LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
Common excavation	e E	23,300	11,500	10.600	22.100	267.950.000	246 980 000	511 020 000
Rock excavation	с Б	58,300	30.400	22.900	53,300	1 779 290 000	1 325 070 000	000 000 110
Tunnel excavation	ŝ	16.400	137.800	154.200	000 666	2 250 020 000		000,050,000 × 700 000 ×
Protal converse		002 1	007 010			6,500,020,000	2, J20, 000, UVU	4,/88,800,000
	ĵ.	1 , UU	111,400	01,200	278,600	369,580,000	104,040,000	473,620,000
I unnel lining concrete	n E	4,100	338,500	103,700	442,200	1,387,850,000	425,170,000	1.813.020.000
Shotcrete open	ш 2	4 600	62,700	10,300	73,000	288,420,000	47.380.000	335,800,000
Shotcrete tunnel	20	3,600	70,600	15,400	86,000	254.160.000	55.440.000	209,600,000
Rock bolt	р Д	620	378,100	98,900	477,000	234.422.000	61 318 000	905 710 000
Mortar injection	ကိုးရ	400	664,200	0	664.200	265,680,000		
Drilling consolidation	E	1.700	275,900	0	275, 900	469 030-000		
Crouting consolidation	<u>ب</u>	170	1.585.700	579 200	2164 000	000 000 000 000 000		403,030,000
Reinforcement	, ,			224625		703,303,000	30,404,000	368,033,000
	د.	150	040,000	0	5,040,000	907,200,000	0	907,200,000
Lebert	ب.	2,200	713,300	ĊO	713,300	1,569,260,000	0	1.569.260.000
Closure gate	بد 	e e	38,700,000	0	38,700,000	1.161.000.000		
Others	Ľ. S	-				515,768,000	245.137.000	760.905.000
Total						11,992,000,000	5.147.000.000	17 139 000 000
								20262226226

Table 12-7 Construction Cost of Civil Works (2)

	×
	č
ŝ	$\dot{\mathbf{c}}$
\mathbf{o}	Li.
2	H
X	č
0	- C

Z. CUPPERDAN			-		-			UNLEELL
K311	LINN	UNIT QUANTITY		UNIT PRICE			COST	
			LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
· · · ·								
Common excavation	ς Έ	21,000	7,900	14,600	22,500	165,900,000	306,600,000	472,500,000
Embankment impervious core	ŝ	22,000	16,200	24,200	40,400	356,400,000	532,400,000	888,800,000
Embankment rockfill	ကို	65,000	27,900	15,200	43,100	1,813,500,000	988,000,000	2,801,500,000
Drilling curtain	e	530	419,600	0	419,600	222,388,000	0	222,388,000
Grouting curtain	<u>ر</u>	50	2,179,900	796,200	2,976,100	108,995,000	39,810,000	148,805,000
Cement	ب	50	713,300	0	713,300	35,665,000	0	35,665,000
Others	Ľ.S.	-1				135,142,000	93,340,000	228,482,000
Care of river	L. S.					174,600,000	322,600,000	497,200,000
Total						3.012.000.000	2.282.000.000	5 294 000 000

Table 12-7 Construction Cost of Civil Works (3)

S	
\square	
60	>
α	-
۵.	C
0	
24	<u>ح</u>

E	<u>(</u>	UNIT OUANTITY		TINIT PRICE			1000	
							ISUU	
			LUCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
Common excavation	833	427,000	7,900	14,600	22.500	3.373.300.000	6.234 200 000	9 607 500 000
Rock excavation	a3	126,000	30,400	22,900	53,300	3.830.400.000	2 885 400 000	6 715 200 000
Embankment impervious core	Ê	757 000	16.200	24.200	00 V00	10 969 400 000		
				27767	>>r'>r	12,200,400,000	10,019,400,000	30,282,800,000
	ê	328,000	17,500	29,300	46,800	5,740,000,000	9,610,400,000	15.350.400.000
Embankment coarse filter	ဓ	407,000	15,200	25,200	40,400	6.186.400.000	10.256.400.000	16 442 800 000
Embankment rockfill	e	3,067,000	27,900	15,200	43.100	85.569.300.000	46 618 400 000	129 127 700 000
Embankment rip rap	e Se	132,000	75.600	17.100	92 700	a a7a 200 000	9 957 900 000 C	10 000 000 000 000
Embankment backfill	СЕ СЕ	334,000	2 200	2010		000 000 000	000 107 000 000	12,230,400,000
			3 3 3 4 3	22012	0,100	000,000,000	808,400,000	1,703,400,000
rap concrete	ະ ເ	1,900	87,200	93,400	180,600	165,680,000	177.460.000	343.140.000
Drilling curtain	e	10,900	419,600	0	419.600	4.573.640.000		A 573 540 000
Drilling consolidation	e	4.900	275, 900	C	275,000	1 251 010 000		
						000 070 700 1	>	1,351,310,000
	ം പ	1,100	2,179,900	7.96,200	2,976,100	2,397,890,000	875,820,000	3,273.710.000
Urouting consolidation		250	1,585,700	579,200	2,164,900	396,425,000	144.800.000	541 225 000
Cenent		1.800	713_300	- C	712 200	000 000 1		
0.5000	с 		>>>>>>>>>>>>>	>	1000001	1000,045,000,1	5	1,283,940,000
	ה י		- - - -	:		6,897,324,000	4,912,394,000	11,809,718,000
Total						111 010 000 000	100 100 000 000	

Table 12-7 Construction Cost of Civil Works (4)

KOPRUBASI A SPILIWAY

UNIT QUANTITY UNIT PRICE			COST	-
LOCAL FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
249,000 7,900 14,600		1, 967, 100, 000	3, 635, 400, 000	5, 602, 500, 000
107,000 27,300 23,100	50.400	2.921.100.000	2, 471, 700, 000	
101,		390, 290, 000	313, 720, 000	704.010.
87,200	180,600	619, 120, 000	663, 140, 000	
146,400 100,	247, 300	5,065,440,000	3.491.140.000	8, 556, 580, 000
2,700 419,600 0	419,600	1, 132, 920, 000	0	1, 132, 920, 000
2,179.	2	610, 372, 000	222, 936, 000	833, 308, 000
2,100 5,040,000 0	5,040,000	10, 584, 000, 000	0	10, 584, 000, 000
1,500 713,300 0	713, 300	8, 202, 950, 000	0	8, 202, 950, 000
30 15,000,000 0	15,000,000	450,000,000	0	450,000,000
•		1, 574, 664, 000	539, 901, 000	2, 114, 565, 000
-				
-				
		33.517.000.000	11.337.000.000	44.854.000.000
			33.517.000.000	33.517.000.000 11.337.000.000

Table 12-7 Construction Cost of Civil Works (5)

KOPRUBASI 5. OUTLET WORI

ITEX	LIND	ATITNAUD TINU		UNIT PRICE			COST	
			LOCAL	FORELCN	TOTAL	LOCAL	FOREIGN	TOTAL
Common excavation	E m 3	9,900	11,500	10,600	22,100	113,850,000	104,940,000	218,790.000
Rock excavation	ຕ ຕ	2,500	27,300	23,100	50,400	68,250,000	57.750.000	126.000.000
Shaft excavation	ເ ເ	510	146,700	27,900	174,600	74,817,000	14.229.000	89.046.000
Concrete open	ို	1,000	146,400	100,900	247,300	146,400,000	100,900,000	247,300,000
Shaft lining concrete	е 1 1 3	130	215,000	171,600	386,600	27, 950,000	22,308,000	50,258,000
Plug concrete	ကိုမ	1,500	154,500	62,700	217,200	231,750,000	94,050,000	325.800.000
Shotcrete tunnel	a2	440	70,600	15,400	86,000	31,064,000	6,776,000	37,840,000
Rock bolt	bc	130	378,100	98,900	477,000	49,153,000	12,857,000	62.010.000
Drilling curtain	8	1,000	419,600	0	419,600	419,600,000	0	419.600.000
Grouting curtain	بر 	100	2,179,900	796,200	2,976,100	217,990,000	79.620.000	297.610.000
Reinforcement	ر. 	30	5,040,000	0	5,040,000	151,200,000	0	151.200.000
Cement	د. 	770	713,300	0	713,300		0	549.241.000
Others	L.S.	1	 			104,063,000	24,671,000	128,734,000
-								
						- - -		•
						-	· · · · · · · · · · · · · · · · · · ·	
						· · ·		
						-		
Tola								

6. INTAKE (INCLUDING HEADRACE TUNNEL)	E TU	NNEL)							UNIT:TL
ITEA		UNIT QUANTITY		UNIT PRICE				COST	
			LOCAL	FORELGN	TOTAL		LOCAL	FOREIGN	TOTAL
					:				
Common excavation	ĉ	21,000	11,500	10,600	22,100	. î.	241,500,000	222,600,000	464,100,000
Rock excavation	ĩ	5,200	27,300	23,100	50,400	4 	141,960,000	120,120,000	262,080,000
Tunnel excavation	ĉ	750	137,800	154,200	292,000	<u>19</u>	103,350,000	115,650,000	219,000,000
Shaft excavation	с Б	1,700	146,700	27,900	174,600		249,390,000	47,430,000	296,820,000
Lining concrete	е С	350	338,500	103,700	442,200		118,475,000	36,295,000	154,770,000
Shaft lining concrete	e S	062	215;000	171,600	386,600		169,850,000	135,564,000	305,414,000
Concrete open	Ê	1,050	146,400	100,900	247,300		153,720,000	105,945,000	259,665,000
Shotcrete tunnel (NATN)	92°	540	70,600	15,400	86,000		38,124,000	8,316,000	46,440,000
Rock bolt	о Д	150	378,100	98, 900	477,000	• •	56,715,000	14,835,000	71,550,000
Reinforcement	<u>د</u>	60	5,040,000	0	5,040,000		302,400,000	0	302,400,000
Mortal injection	្ព	30	664,200	0	664,200		19,926,000	0	19,926,000
Drilling consolidation	8	1,500	275,900		275,900		413,850,000	0	413,850,000
Grouting consolidation	د. 	150	1,585,700	579,200	2,164,900		237,855,000	86,880,000	324,735,000
Cement	د.	750	713,300	0	713,300	÷	534,975,000	0	534,975,000
Others	L. S.				•	.	139,104,000	44,681,000	183,785,000
								-	
Total							2,921,000,000	938,000,000	3,859,000,000

Table 12-7 Construction Cost of Civil Works (6)

KOPRUBASI

Table 12-7 Construction Cost of Civil Works (7)

NULAUDASI 7. PENSTOCK	-						•	11:11:11 n
LTEX	LINO	YTTERAUD TIRU		UNIT PRICE			COST	
			LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
Tunnel excavation	с Ш	4,900	221,400	251,300	472,700	1,084,860,000	1,231,370,000	2,316,230,000
Around pensitock concrete	ពី	2,400	213,100	63,400	276,500	511,440,000	152,160,000	663,600,000
Shotcrete tunnel	ц Ц	3,500	70,600	15,400	86,000	247,100,000	53,900,000	301,000,000
Rock bolt	ů d	970	378,100	98,900	477,000	366,757,000	95,933,000	462,690,000
Mortal injection	ရို	50	664,200	0	664,200	33,210,000	0	33,210,000
Drilling curtain	8	500	419,600	0	419,600	209,800,000	0	209,800,000
Grouting curtain	د.	50	2,179,900	796,200	2,976,100	108,995,000	39,810,000	148,805,000
Cement	ب 	920	713,300	0	713,300	656,236,000	0	656,236,000
Others	r.s.	1				160,919,000	78,658,000	239,577,000
• • •								
			••	:				
Total					ал 5	3,379,000,000	1,651,000,000	5,030,000,000

Table 12-7 Construction Cost of Civil Works (8-1)

KOPRUBASI 8. POWERHOUS

8. POWERHOUSE No. I	•		. ·			•	· · ·	UNIT:TL	
ITEM	EN L	QUANTITY		UNIT PRICE			COST		
			LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL	
(1) UNDERGROUND POWERHOUSE	. 								
Rock excavation	ŝ	30,600	115,000	36,100	151,100	3,519,000,000	1,104,660,000	4,623,660,000	1
Arch concrete	က္မ	- 2,200	235,600	61,600	297,200	518,320,000	135,520,000	653,840,000	
Wall concrete	ဗ္ဗ	4,000	204,000	106,800	310,800	816,000,000	427,200,000	1,243,200,000	• 1
Slub concrete	ຕີ	1,300	280,500	60,000	340,500	364,650,000	78,000,000	442,650,000	
Around machine concrete	е Б	1,600	188,100	62,000	250,100	300,960,000	99,200,000	400,160,000	
Shotcrete	2	6,100	70,600	15,400	86,000	430,660,000	93,940,000	524,600,000	
Reinforcement	د.	530	5,040,000	0	5,040,000	2,671,200,000	0	2,671,200,000	
Rock bolt (5m)	ö.	1,200	378,100	98,900	477,000	453,720,000	118,680,000	572,400,000	
P. C Anchor	×- 80	14,000	182,800	21,300	204,100	2,559,200,000	298,200,000	2,857,400,000	
Cenent	د.	3,000	713,300	0	713,300	2,139,900,000	0	2,139,900,000	
Others	L. S.					688,680,000	117,770,000	806,450,000	
Sub-total			:			14,462,000,000	2,473,000,000	16,935,000,000	
(2) ACCESS TUNNEL									
Common excavation	ရို	2,300	11,500	10,600	22,100	26,450,000	24,380,000	50,830,000	
Rock excavation	ĉ	600	30,400	22,900	53,300	18,240,000	13,740,000	31,980,000	•
Tunnel excavation	ε	32,500	148,000	184,200	332,200	4,810,000,000	5,986,500,000	10,796,500,000	÷
Shotcrete tunnel	ш2	25,000	70,600	15,400	86,000	1,765,000,000	385,000,000	2,150,000,000	
Lining concrete	Ê	4,290	338,500	103,700	442,200	1,452,165,000	444,873,000	1,897,038,000	
Portal concrete	က္ရ ။	. 60	217,400	61,200	278,600	13,044,000	3,672,000	16,716,000	
Reinforcement	د 	110	5,040,000	0	5,040,000	554,400,000	0	554,400,000	
Rock bolt	5	5,600	378,100	98,900	477,000	2,117,360,000	553,840,000	2,671,200,000	
Hortar injection	Ê	290	664,200	0	664,200	192,618,000	0	192,618,000	
Cement	د 	2,170	713.300	0	713,300	1,547,861,000	0	1,547,861,000	
Others	s.:					624,856,000	370,600,000	995,456,000	
Sub-total						13,121,000,000	7,782,000,000	20,903,000,000	

8. POWERHOUSE No. 2		÷						UNIT:TL
ITEM	TITNAU TINU	TITY		UNIT PRICE			COST	
		L	LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
(3) CABLE TUNNEL								
Tunnel excavation	в3 6	,400	217,700	284,000	501,700	1,393,280,000	1,817,600,000	3,210,880,000
Lining concrete	n3 2	2,000	338,500	••••	442,200	677,000,000	207,400,000	884,400,000
Shotgrete tunnel	n 12 5	,200	70,600	15,400	86,000	367,120,000	80,080,000	447,200,000
Reinforcement	<u>د ا</u>	50	5,040,000	0	5,040,000	252,000,000	0	252,000,000
Rock bolt	DC	,950	378,100	98,900	477,000	737,295,000	192,855,000	930,150,000
Mortal injection	с В	230	664,200	0	664,200	152,766,000	0	152,766,000
Cement	<u>רו</u>	800	713,300	0	713,300	570,640,000	0	570,640,000
Others	Ľ. S.					207,505,000	114,896,000	322,401,000
Sub-total						4,357,000,000	2,412,000,000	6,769,000,000
					 :		-	
(4) DRALMAGE TUNNEL	-			· ·				
Tunnel excavation	с Б	970	217,700	284,000	501,700	211,169,000	275,480,000	486,649,000
Lining concrete	с С Е	370	338,500	103,700	442,200	125,245,000	38,369,000	163,614,000
Shotcrete tunnel	n2 1	,010	70,600	15,400	86,000	71,306,000	15,554,000	86,860,000
Rock bolt	рс	430	378,100	38, 900	477,000	162,583,000	42,527,000	205,110,000
Drainage boring		330	275,900	0	275,900	91,047,000	0	91,047,000
Cement		130	713,300	0	713,300	92,729,000	0	92,729,000
Others	L. S.	 1			-	37,703,000	18,596,000	56,299,000
Sub-tota]						791,000,000	390,000,000	1,181,000,000
								· · · · · · · · · · · · · · · · · · ·
					1			

Table 12-7 Construction Cost of Civil Works (8-2)

KOPRUBAST 8. POVERHOUSE

KUPKUBASI									÷
8. POWERHOUSE No. 3	:						· · ·	UNIT: TL	1.1
I TEX	. I NN	UNIT QUANTITY		UNIT PRICE			COST		·
	-	I	LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL	·····
(5) SURGE CHAMBER									
Tunnel excavation	с П	3,400	148,000	184,200	332,200	503,200,000	626,280,000	1,129,480,000	•
Lining concrete	<u>1</u> 3	1,500	338,500	103,700	442,200	507,750,000	155,550,000	653,300,000	
Shotcrete tunnel	a2	1,500	70,600	15,400		105,900,000	23,100,000	129,000,000	
Reinforcement	د	- 75	5,040,000	0	5,040,000	378,000,000	0	378,000,000	
Rock bolt	U d	510	378,100	98,900	477,000	192,831.000	50,439,000	243,270,000	منب
Mortal injection	ς Ξ	30	664,200	0	664,200	19,926,000	0	19,926,000	<u>.</u>
Cement	ب	450	713,300	0	713,300	320, 985, 000	0	320,985,000	
Others	S.					101,429,000	42,768,000	144,197,000	
Sub-total	-	<u> </u>				2,130,000,000	898,000,000	3,028,000,000	
				-					
Total						34,861,000,000	34,861,000,000 13,955,000,000	48,816,000,000	شعمهم
						and the second se			-

Table 12-7 Construction Cost of Civil Works (8-3)

KOPRUBASI

Table 12-7 Construction Cost of Civil Works (9)

KOPRUBASI

NUT RUDAO I									
9. TAILRACE TUNNEL NO. 1								UNIT:TL	
ITEM	UNIT	UNIT QUANTITY		UNIT PRICE			COST		
			LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL	
(1) TAILRACE TUNNEL		:							
Common excavation	е В	7,000	50	0, 60	فسعط	500,00	74, 200, 000	154, 700, 030	
Rock excavation	ñ	3,000	30,400	3	53, 300	91, 200, 000	68, 700, 000	159, 900, 000	
Tunnel excavation	е В	120,000	9,10	241,800	370, 900	5	015,	, 508, 00	- 1 -
Shotcrete tunnel	ш2	87, 300		15,400	ۍ ف	163,	344	7. 507, 800, 000	
Rock bolt	bc	25,000		98,900	477,000	າ ເລີ	50	25,000,	: .
Lining concrete	е С	22, 600	ŝ	103, 700	442,200		343, 620, 00	9, 993, 720, 000	
Invert concrete	е Е	2,400	87, 200	3	180, 600	09, 280, 00	160,00	433, 440, 000	
Concrete open	а З	1.400	46,40	0, 90	247.300	204,960,000	141, 250, 000	346, 220,	
Reinforcement	فيه	810	õ	0	5,040,000	082, 4	0	082,400,00	
Mortar injection	е Э	1,800		0	664,200	1, 195, 560, 000	0	5, 560,	
Cement	. ب	10.300	713, 300	0	713.300	34	0	346, 990, 00	
Bridge	e	25		0	15,000,000	75,000,00	0	75,00	•
Others	i. S	- -4				, 598, 443, 00	1, 784, 243, 000	4, 382, 686, 000	
Sub-total						54, 942, 000, 000	37, 469, 000, 000	00	
						· · ·			
(Z) WOKK ADII		•						-	
Tunnel excavation	67 E	9, 700		284,000	501.700	2, 111, 690, 000	4.80	4, 866, 490, 000	
Lining concrete	ŝ	a a 370.			442, 200	3	8, 369,	3. 5.1	•
Shotcrete tunnel	щ 2	7, 900	់	ŝ	86,000	1.1	121, 660, 000	679, 400, 000	
Rock bolt	с Д	3,000	378,100	8	477,000	30	6,70	34.	
Plug concrete	E 33	910	· •	2	217, 200	40, 5	7, 057, 00	652,	÷ .
Cement	دي	600	713, 300	0	713.300	427, 980, 000	0	27, 980, 00	•
Others	Ŀ.S.					224, 877, 000	42	38, 306,	
Sub-total						22, 00	3, 432, 000, 000	00	•
Total						59, 664, 000, 000	40, 901, 000, 000	100, 565, 000, 000	

Table 12-7 Construction Cost of Civil Works (10)

KOPRUBASI 10. SWITCHYARD

••

UN 17EM UN							
Common excavation	אדודאגטס (רואנ		UNIT PRICE	-		COST	
Common excavation		- LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
	3 42,000	7,900	14,600	22,500	331,800,000	613,200,000	845,000,000
Rock excavation m3		27,300	23,100	50,400	300,300,000	254,100,000	554,400,000
Foundation concrete m3		591,	55,100	646,100	650,100,000	60,610,000	710,710,000
Wall concrete	3 1,300	i	100,900	247,300	190,320,000	131,170,000	321,490,000
Reinforcement	15	5,040,000	0	5,040,000	378,000,000	0	378,000,000
Cenent	500	713,300	0	713,300	356,650,000	0	356,650,000
Others L.S	S.] I				110,358,000	52,954,000	163,312,000
						· .	
Total					2,317,000,000	1,112,000,000	3,429,000,000

Table 12-7 Construction Cost of Civil Works (11)

KOPRUBASI

L'HINNAULIC CQUIFACHI						-		CNIE: 1
K31.1	1 N.O.	טאנין פטגאינודי		UNIT PRICE			COST	
			LOCAL	FOREIGN	TOTAL	LOCAL	FOREIGN	TOTAL
Spillway radial gate	ں	280	33,100,000	0	0 33,100,000	9,268,000,000	0	9,268,000,000
Conduit pipe	ي. 	75	33,100,000	0	33,100,000	2,482,500,000	O	2,482,500,000
Outlet gurad gate	ں 	15	88,400,000	0	88,400,000	1,326,000,000	0	1,326,000,000
Outlet jet flow gate	ب			0	96,700,000	2,417,500,000	0	2,417,500,000
ntake gate & trashrack	د.		37,100,000	0	0 37,100,000	2,411,500,000	0	2,411,500,000
'enstock pipe	د. 	715	27,600,000	0	0 27,600,000	19,734,000,000	0	19,734,000,000
Draft gate	د.	80	41,400,000	0	41,400,000	1,242,000,000	õ	1,242,000,000
Tailrace gate	`در	20	20 41,400,000	0	41,400,000	828,000,000	0	828,000,000
Total						39,709,500,000	0	39.709.500.000

Chapter 13 EFFECT ON ENVIRONMENT AND COMPENSATION

Chapter 13

EFFECT ON ENVIRONMENT AND COMPENSATION

Contents

建設

A DEC

			·			Page
13.1	Study Method	• • • • • •	• • • •	• • • •	• •	13 - 1
13.2	Overall Environme	ental Assessm	ent	* * * *	. 5 - D	13 - 2

List of Table

Table 13-1

Environmental Impact, Benefit and Environment Protection Measure

Chapter 13 Effect on Environment and Compensation

The present survey is positioned to the Feasibility Study to grasp the content of influences the enforcement of project are giving to the project area and its peripheral environments and to study in advance the presence of problems to the natural and social environment and also the countermeasures to be taken. The knowledge being obtained here is to be taken over to the work of environmental effect evaluation which is being conducted before deciding the detailed design of facilities and the enforcement of project. In the environmental effect evaluation, the confirmation of environmental current situations and the evaluation of the said effect are to be conducted by the method being indicated by the Republic of Turkey's Environmental Act following the various factors of facilities and the detailed information of construction work position and construction work contents.

13.1 Study Method

In carrying out the Köprübaşı Hydroelectric Power Plant Development Project, the project's environmental impact was estimated and evaluated by grasping the present situation of natural environment and social environment.

Items in this study were selected by making preliminary studies of the project's outline and the project area according to evaluation items shown in the Regulation for Environmental Effect Evaluation prescribed by the Republic of Turkey's environmental law.

Documents were collected in making studies of documents and the project area including its vicinity to grasp the present situation of natural and social environment.

The study items are as follows:

(1) Physical and Biological Characteristics and Utilization of Natural Resources

Meteological and Climate Conditions, Geological Characteristics, Hydrogeological Characteristics, Soil Characteristics and Usage Conditions, Agricultural Fields, Hydrological Characteristics, Available and Planned Usage of Surface Water Resources Aquatic Organisms, Thermal and Geothermal Water Resources, Area under Protection, Forest Resources, Flora and Fauna, Dairy Breeding Resources, Mineral and Fossil Fuel Resources, Points and Area of High Landscape Value and Recreation, Present Pollution Loads of Area.

(2) Socio-Economic Environment Economic Characteristics, Population, Social Sub-structure Services, Land Utilization, Income, Unemployment

In compensation object surveying, target compensation objects were selected based on the results of studying the present situation of social environment. Then the amount of compensation was calculated.

13.2 Overall Environmental Assessment

1

da ar di

(1) Out of the project site and its periphery areas, the natural vegetation at the dam site is extremely poor as compared with that in the peripheral forest areas. The reservoir area is mainly of the farming field including comparatively narrow irrigated agricultural land along the river. The upstream side of reservoir area is the valley covered by the forest, but because its tree species don't especially differ from those in the forest management area inclusive of its periphery areas and the volume of trees being immersed into water by the formation of reservoir,