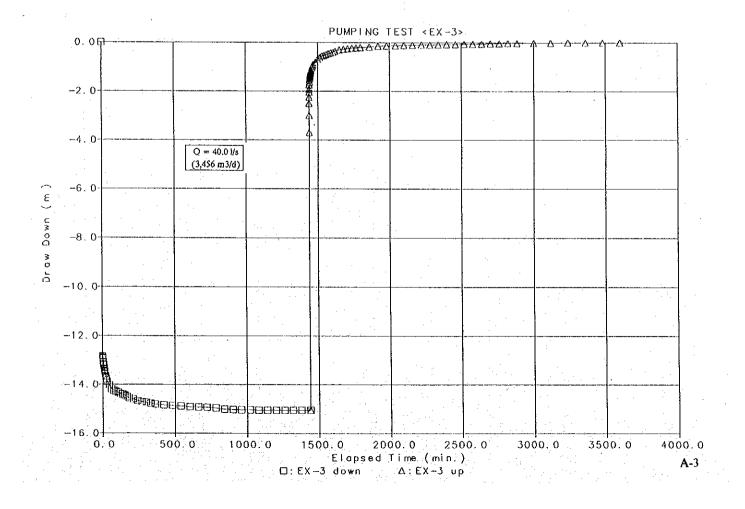
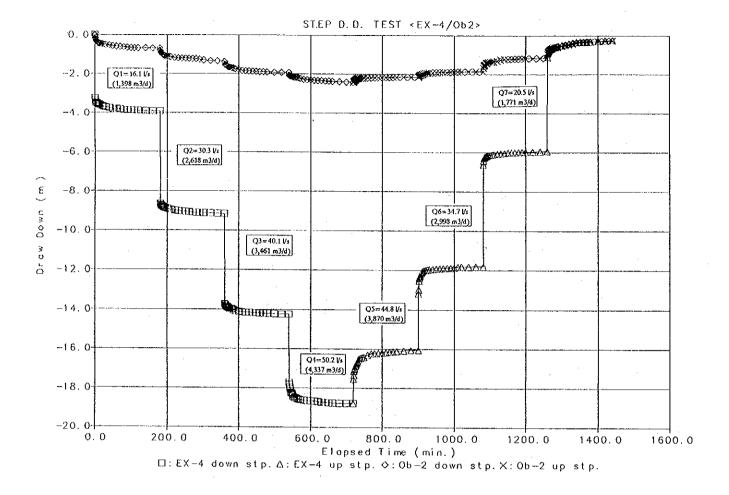
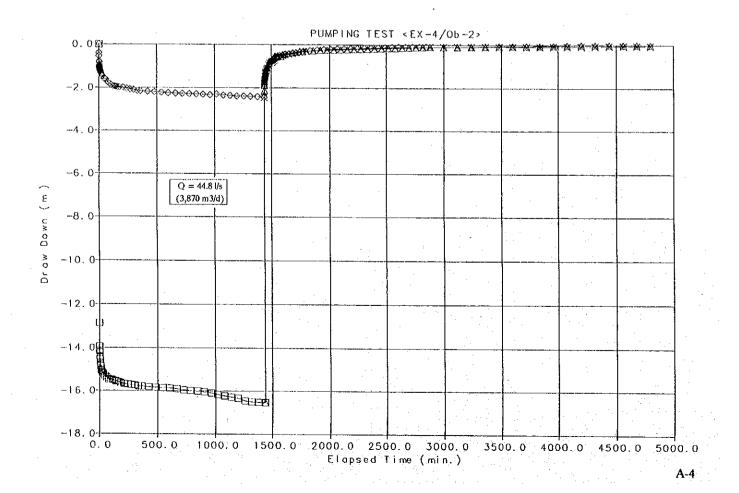
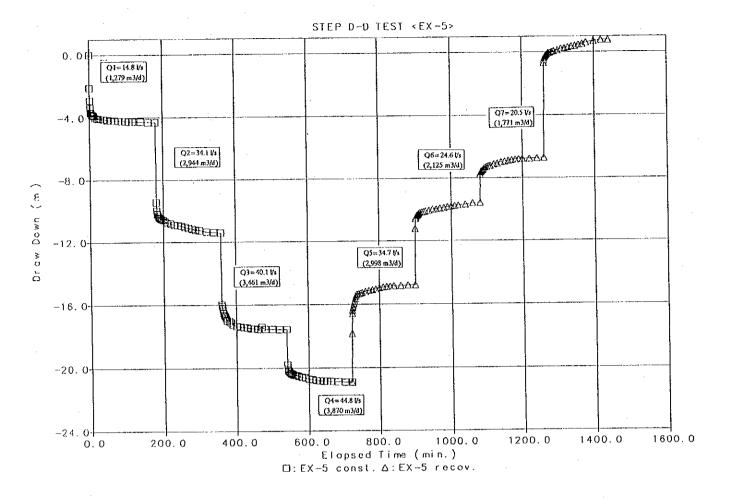
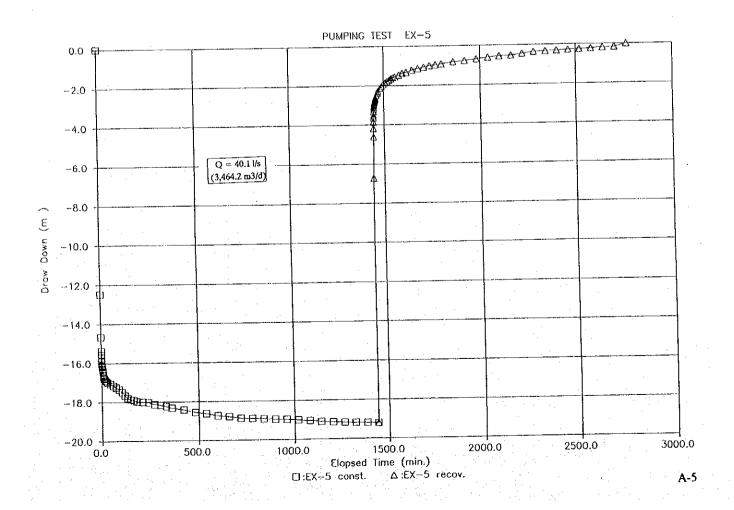

APPENDIX ADDITIONAL

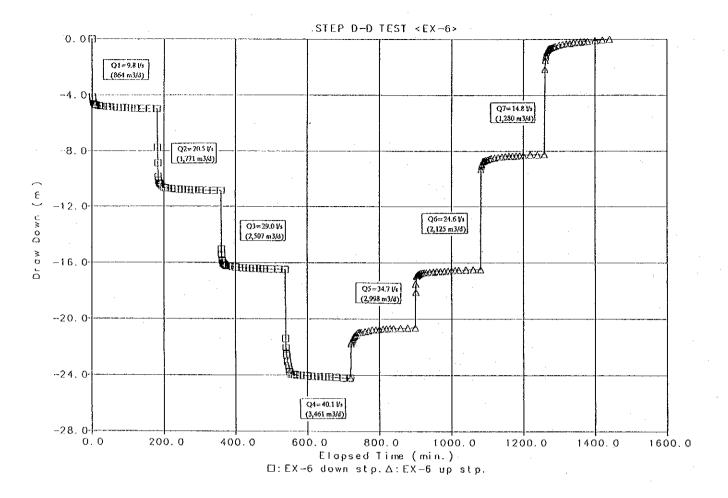


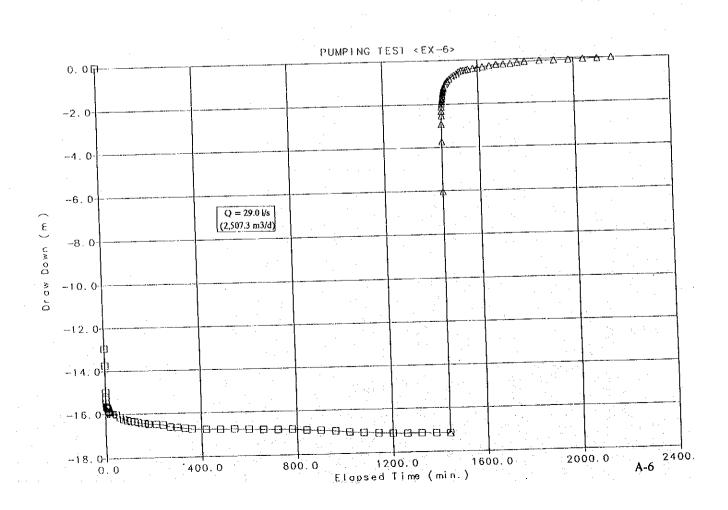


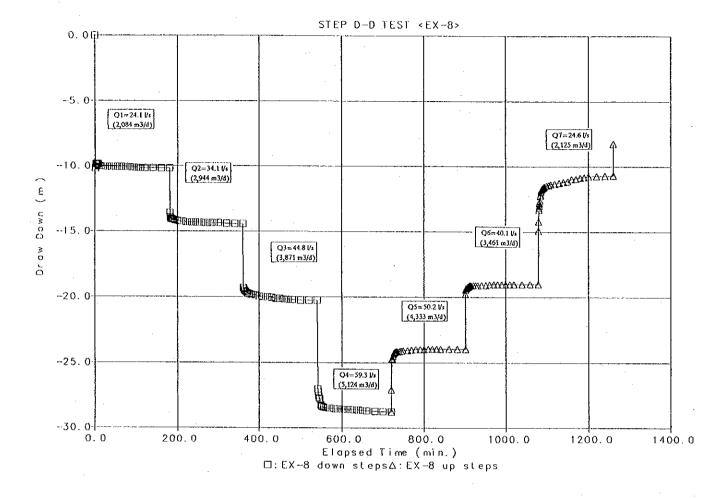


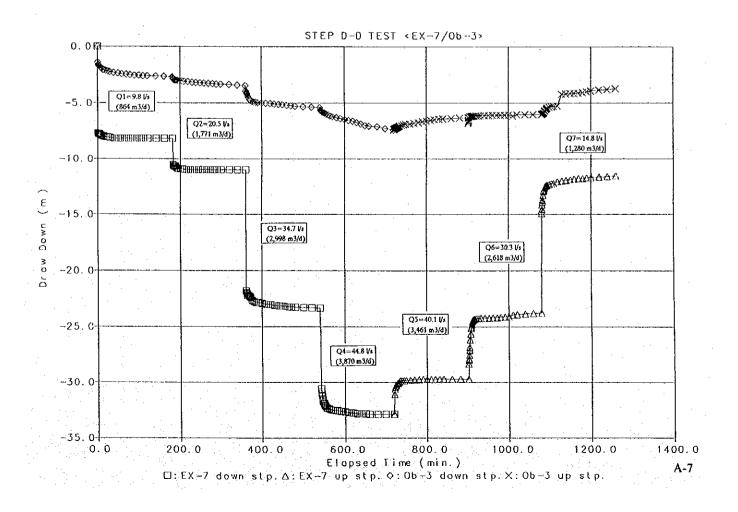


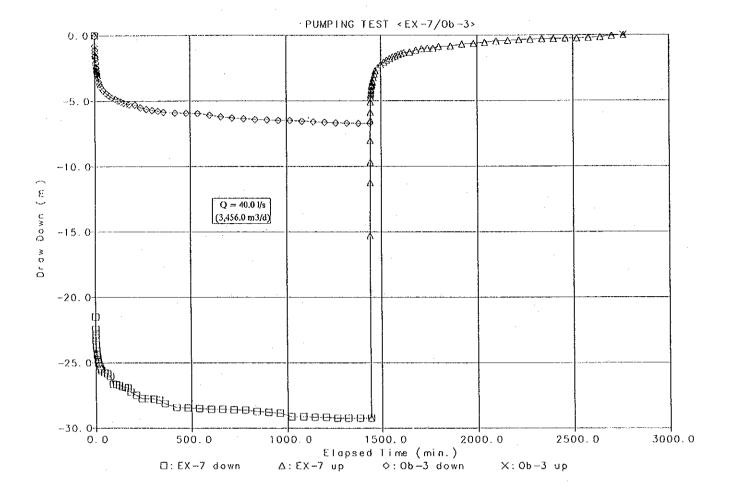


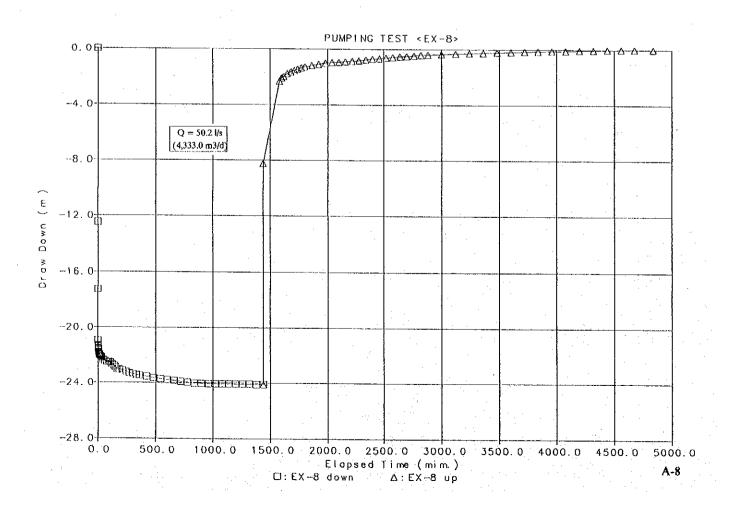


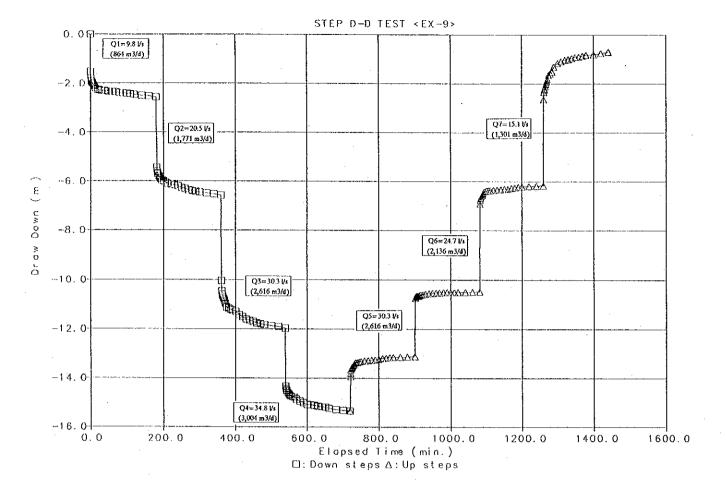


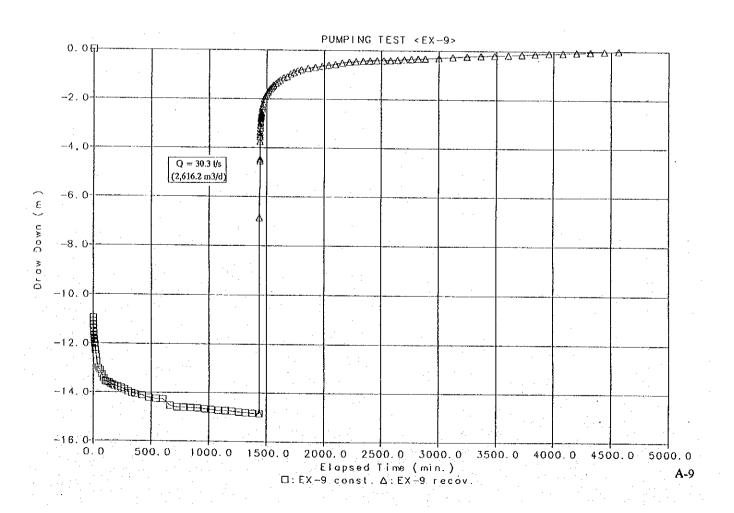


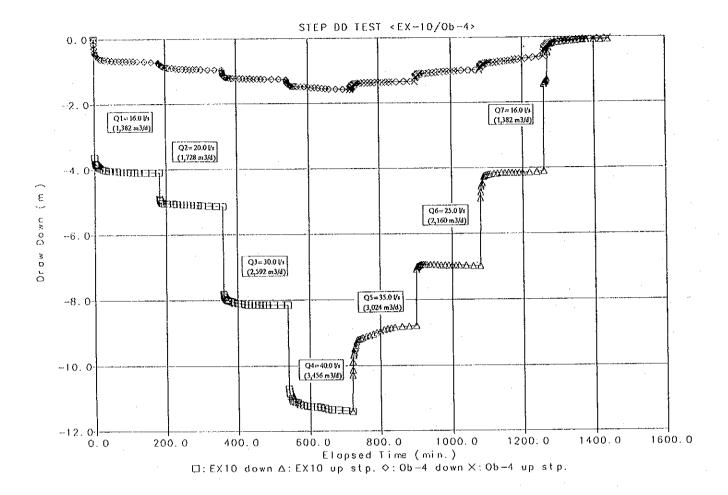


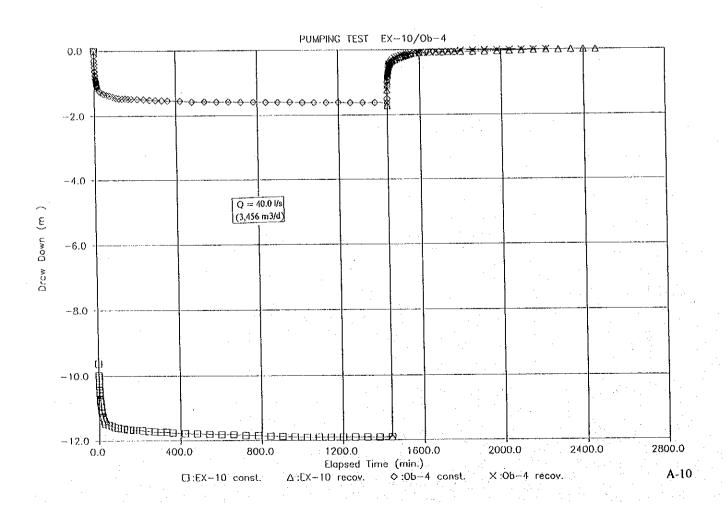


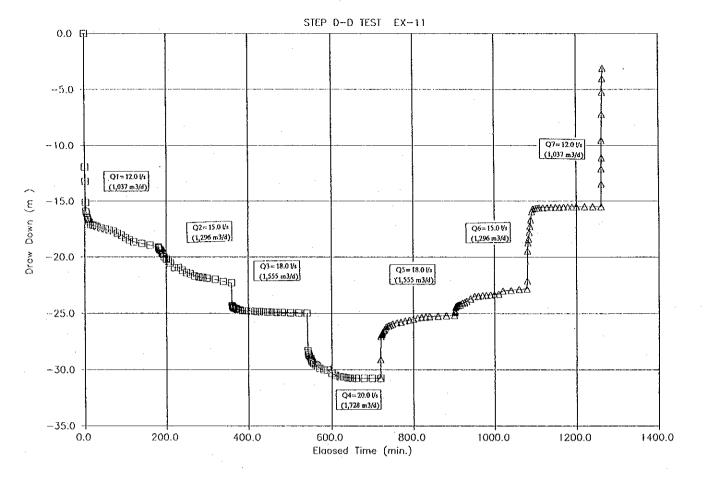


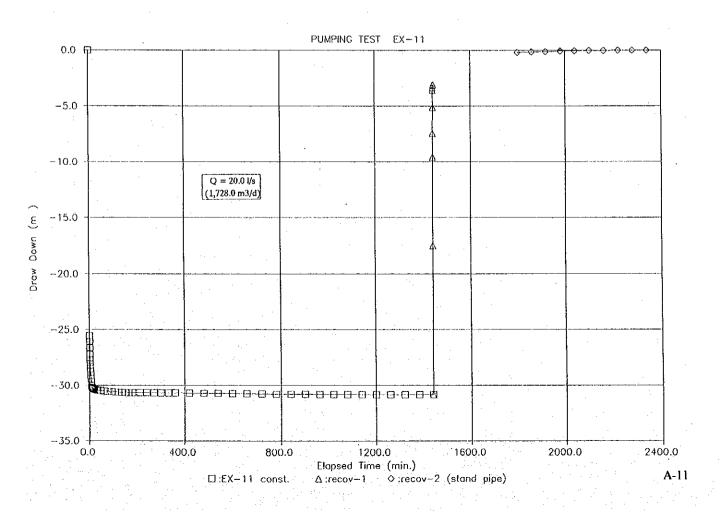


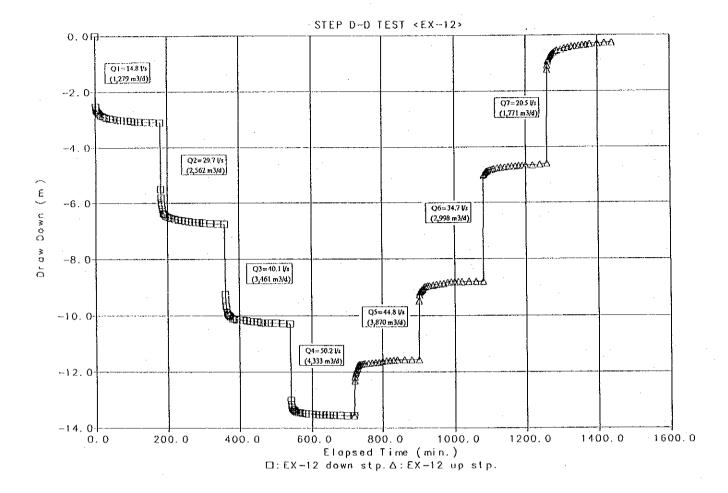


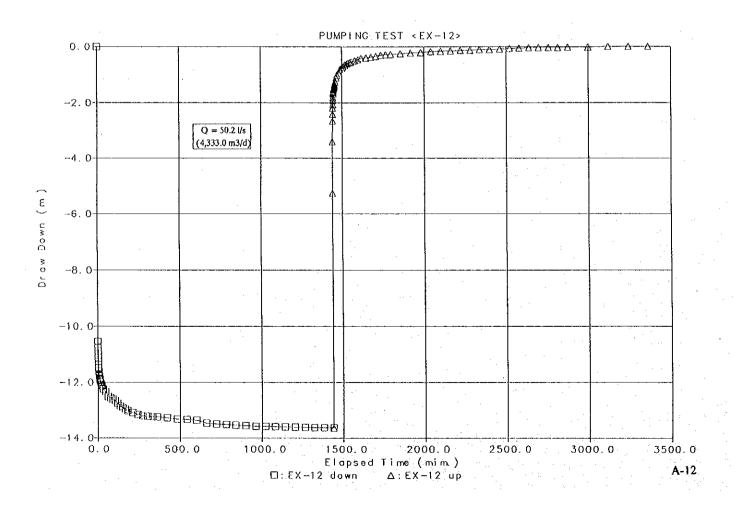


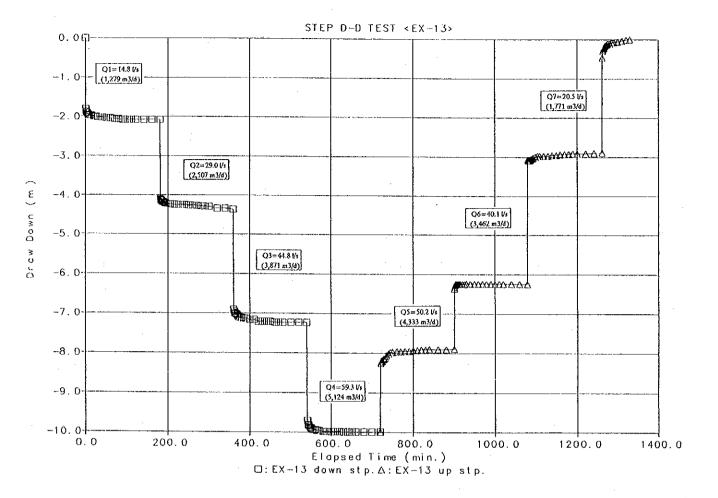


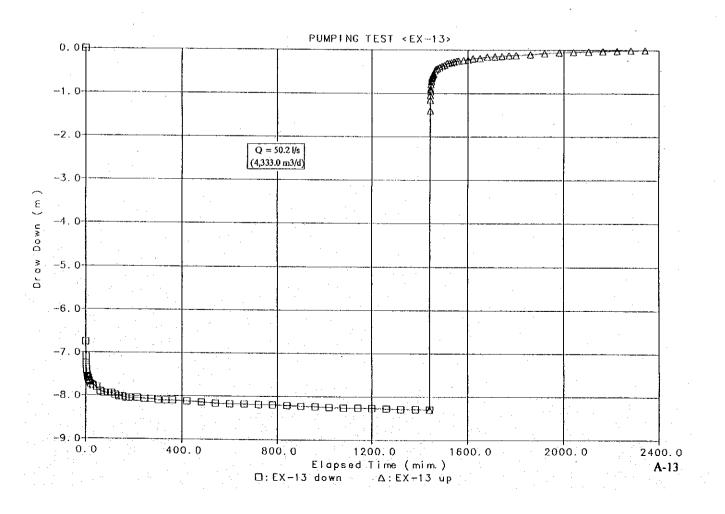


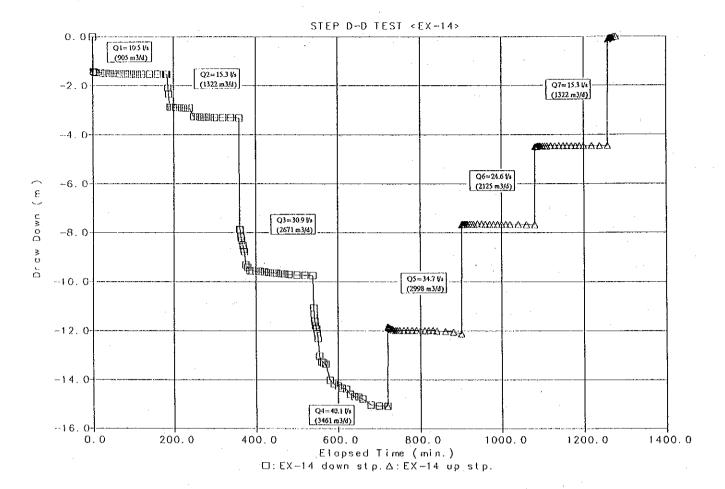


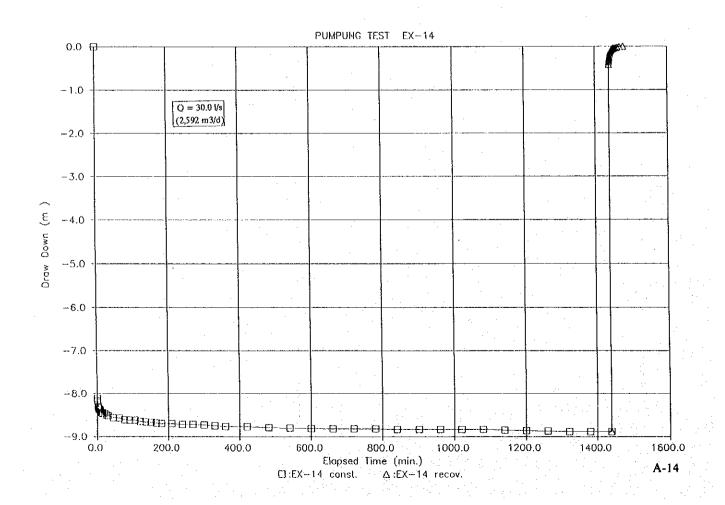


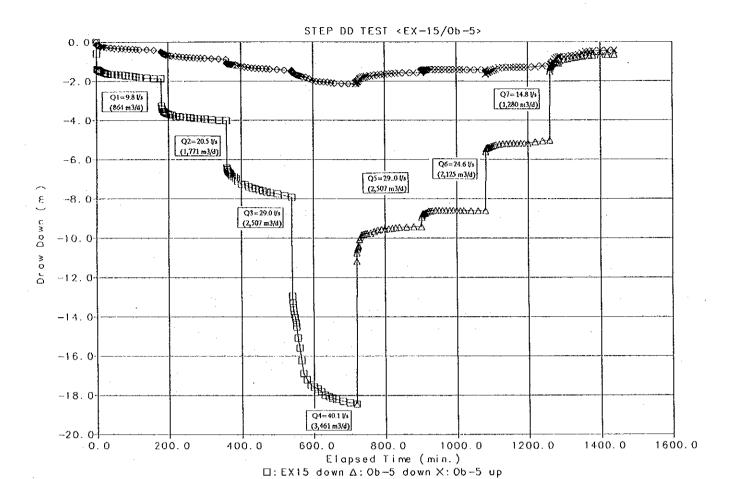


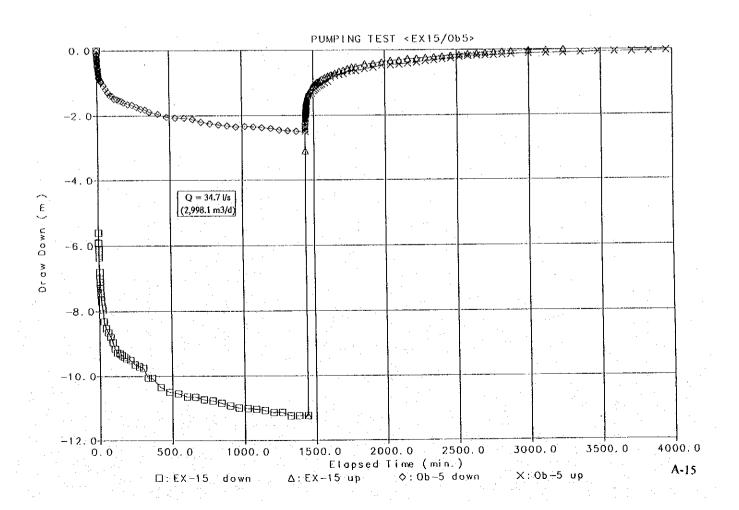












Test : ex-1'

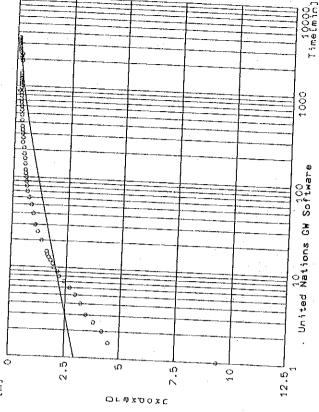
Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software ΰ 0 Method THEIS 0 35 20 25 ဓ္ဗ ロトのまひのまに

363. [m2/day] Transmissivity =

1.3758 [m] Standard Deviation =

55 of Number of Points =


4.4 3.

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX-1'-rec

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

[m] RECOVERY METHOD

849. [m2/day] П Transmissivity

0.8938 [m] Standard Deviation =

 $A0 = 0.00000000 \pm 00$

A1 = 0.000000E+00

Test : EX-2

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software Method THEIS 27 28 22 28 ္ထ ଖ □ F @ 3.0 0 3 C

Transmissivity = 293.59079 [m2/day]

0.1600 [m] Standard Deviation =

Number of Points = 50 of 50

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX-2

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software JACOB METHOD 32 7 22 24 58 8 2 3 <u>လ</u> ဗ □ r @ 3 .0 0 3 C

Transmissivity = 293.21600 [m2/day]

0.1600 [m] Standard Deviation = 0.224480E+02 A0 =

0.215694E+01 A1 =

Test : ex2-rec

Constant Pumping Rate = 2160.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software RECOVERY METHOD ÇA ထ S Ö ٦

01-030030

Transmissivity = 409.01486 [m2/day]

0.2216 [m] Standard Deviation = 0.000000E+00 A0 = 0.000000E+00 A1 =

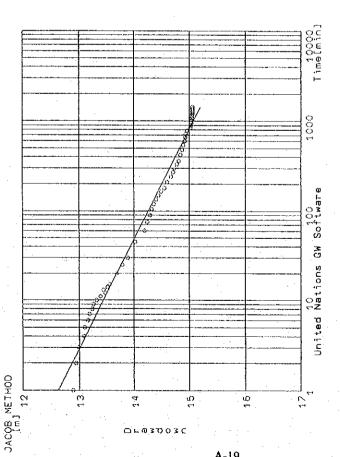
Number of Points = 59 of 59

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test: EX-3

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method THEIS


10000 Time[min] 3000 10 United Nations GW Software 13 75 9 7,7 2 14 **△∟**037030

Transmissivity = 777.12427 [m2/day]

0.0838 [m] Standard Deviation =

Test : EX-3

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Transmissivity = 776.12463 [m2/day]

0.0838 [m] Standard Deviation = 0.126276E+02 A0 = 0.814879E+00 н Al

52 of 52 Number of Points =

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex3-rec

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations BW Software RECOVERY METHOD C) ر ق **□ ⊾ の 3 で 0 3 C**

Transmissivity =1198.06775 [m2/day]

0.2567 [m] Standard Deviation =

0.000000E+00 A0 = 0.000000E+00 A1 =

Test : EX-4

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software Method THEIS 14 3 15 ထ 7 □ € のひをのょ□

Transmissivity =1025.06311 [m2/day]

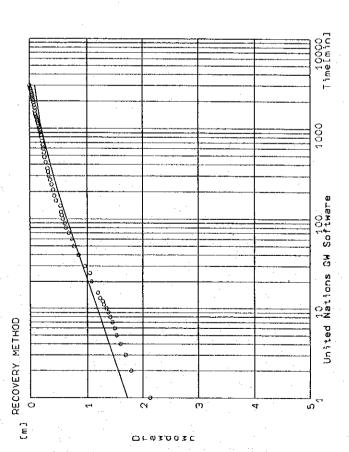
0.1071 [m] Standard Deviation =

55 of 55 Number of Points =

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX-4

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD


10000 Time[min] 1000 100 United Nations GW Software JACOB METHOD 18. 1 13 14 15 16 17 OF03003C

Transmissivity =1023.74731 [m2/day]

0.1071 [m] Standard Deviation = 0.141098E+02 A0 = 0.691764E+00 Al =

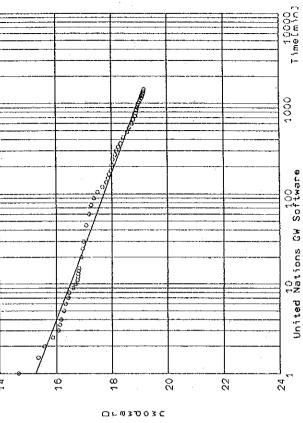
Test : ex4-rec

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Transmissivity = 1297.54187 [m2/day]

0.1099 [m] Standard Deviation = 0.000000E+00 A0 =

 $A1 = 0.00000000 \pm 00$


Number of Points = 65 of 65

Project : TERAL GROUNDWATER PROJECT Organization : JICA/HMGN

Test: EX-5

Constant Pumping Rate = 3464.2 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method THEIS

521. [m2/day] Transmissivity =

0.1562 [m] Standard Deviation =

Test : EX-5

Constant Pumping Rate = 3464.2 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

JACOB METHOD ġ 00 80 22

520. [m2/day] Transmissivity =

0.1562 [m] Standard Deviation =

0.152744E+02 AO H 0.121952E+01 Al

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex5-rec

Constant Pumping Rate = 3454.2 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

RECOVERY METHOD Ö တ œ Ŋ ٦ Or03003C

486. [m2/day] Transmissivity =

10000 Time[min]

1000

10 United Nations GW Software

٠ ٦

10000 Time[min]

1000

United Nations BW Software

24.

0.1452 [m] Standard Deviation = 0.000000E+00 A0 =

0.000000E+00 A1 =

Test : EX-6

2507.3 [m3/day] 0.15 [m] Constant Pumping Rate = 2507.

Distance from Pumping Well = 0.1

Type of Aquifer = CONFINED

Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software JACOB METHOD 133 14 5 9 17 ω これのななのまに

688. [m2/day]

Transmissivity =

0.2017 [m] Standard Deviation ==

0.150166E+02 ≅. 0¥

0.667204E+00 A

Number of Points = 55 of 55

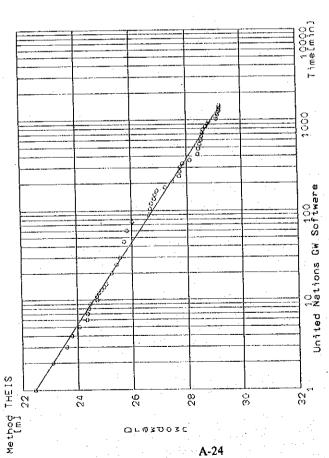
Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex6-rec

Constant Pumping Rate = 2507.3 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

1000 Time[min] 100 10 United Nations GW Software RECOVERY METHOD o Ø ო Ē ೧೯೦ರ₹೮੫೧

731. [m2/day] Transmissivity =


0.4082 [m] Standard Deviation =

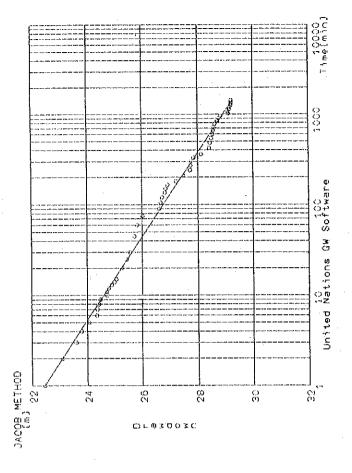
A0 = 0.150166E + 02

A1 = 0.667204E+00

Test : EX7

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Transmissivity = 292,77130 [m2/day]


0.1559 [m] Standard Deviation =

Number of Points = 52 of 52

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX7

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Transmissivity = 292.39661 [m2/day]

0.1559 [m] Standard Deviation = 0.224356E+02 11 C4

0.216298E+01 11

Test : ex-7 rec.

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

RECOVERY METHOD

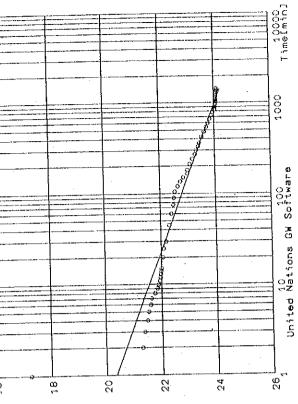
10000 Time[min] 1000 10 United Nations GW Software 20 2, 10, ഗ 0 ů, [w] ロトのまむりまた

Transmissivity = 320.54779 [m2/day]

1.5446 [m] Standard Deviation =

0.224480E+02 A0 =

0.215694E+01 Al =

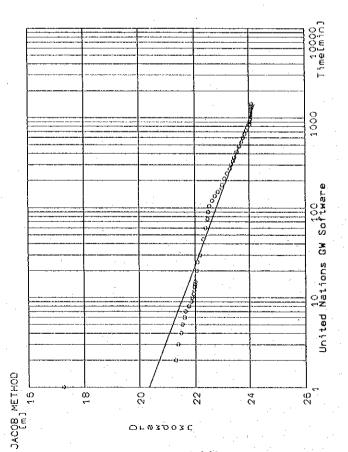

Number of Points = 54 of 54

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX-8

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method THEIS 16,


ひょのまののまに

Transmissivity = 645.73254 [m2/day]

0.4752 [m] Standard Deviation =

Test : EX-8

Constant Pumping Rate = 4333.0 [m3/day] Distance from Pumping Well = 0.10 [m] Type of Aquifer = CONFINED Type of Input Data = DRAWDOWN Well Type = STANDARD

Transmissivity = 644.90155 [m2/day]

0.4752 [m] Standard Deviation = 0.203385E+02 ΥO 0.122955E+01 ti A

Number of Points = 52 of 52

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX8-rec

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software AECOVERY METHOD 2.5 7.5 Ö 12.5 S Or03003C

Transmissivity = 454.38916 [m2/day]

0.2649 [m] Standard Deviation = 0.000000E+00 A0 =

0.000000E+00 A1 =

Test: ex-9

Constant Pumping Rate = 2616.2 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software Method THEIS 16. 12 ტ 14 ű 0 x 0 0 x 0 H C

369. [m2/day] Transmissivity =

0.1326 [m] Standard Deviation =

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex-9

nstant Pumping Rate = 2616.2 [m3/day]
e from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD Constant Pumping Rate = Distance from Pumping Well =

JACOB METHOD

10000 Time[min] 1000 100 United Nations GW Software 6 기 12 13 14 ί. ם במסצכם כ

368. [m2/day] Transmissivity =

0.1326 [m] Standard Deviation = 0.107540E+02 PO.

0.130067E+01 K Al

Test : ex9-rec

Constant Pumping Rate = 2616.2 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software RECOVERY METHOD 5 7 [8] . C) E Ø 3 TO O 3 E

382. [m2/day] Transmissivity =

0.1409 [m] Standard Deviation = 0.000000E+00 A0 == A1 = 0.000000E + 00

Number of Points = 70 of 70

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex10con

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software ø Method THEIS 12 L □ F M 3 Δ O 3 C 11,0 ្ត 든

1141. [m2/day] Transmissivity =

0.1567 [m] Standard Deviation =

Test : ex10con

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software JACOB METHOD 12 1 CL03003C 10 ر ا

1140. [m2/day] Transmissivity =

0.1567 [m] Standard Deviation = 0.103337E+02 II AO

0.555017E+00 A1 =

Number of Points = 55 of

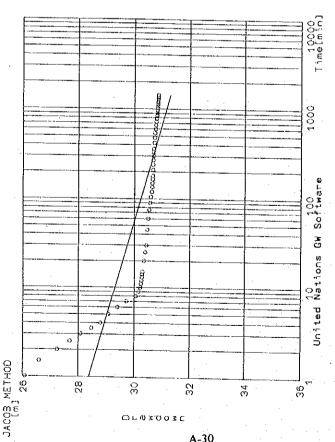
Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex10-rec

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

[m] RECOVERY METHOD

10000 Time[min] 1000 United Nations GW Software o Ö 0.5 ď. 2.5 N **Ω∟**0≥Σ00≥∈


2982. [m2/day] Transmissivity =

0.1314 [m] Standard Deviation = 0.000000E+00 A0 =

0.000000E+00 11 A1

Test : exll-con

Constant Pumping Rate = 1728.0 [m3/day]
Distance from Fumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

346. [m2/day] Transmissivity =

0.6589 [m] 11 Standard Deviation 0.283961E+02 It 90

0.914510E+00 11 H

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : exll-rec

Constant Pumping Rate = 1728.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

1000 Time[min] 100 10 United Nations GW Software RECOVERY METHOD o 2.0 7.5 12.5 8 Ξ OF@SG03C

392. [m2/day] Transmissivity =

0.6590 [m] Standard Deviation = 0.000000E+00 #0 W

0.000000E+00 II Al

= 13 of 16 Number of Points

Test : EX-12

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software Method THEIS 15. 4 2.5 <u>ر</u> ひゃりまひりょく

Transmissivity = 904.08130 [m2/day]

0.0738 [m] Standard Deviation =

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/FMGN

Test : EX-12

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 10 United Nations GW Software JACOB METHOD 15 L 0 ე 4 Ç. $\frac{1}{2}$ O F 0 3 D 0 3 C

Transmissivity = 902.92688 [m2/day]

0.0738 [m] Standard Deviation = A0 = 0.109564E+02

A1 = 0.878187E+00

Test : ex12-rec

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

RECOVERY METHOD

10000 Time[min] 1000 10 United Nations GW Software Ó ់ CV. v) ٦

Transmissivity =1278.24036 [m2/day]

0.2844 [m] Standard Deviation =

0.000000E+00 0.000000E+00 II AO Al

Number of Points = 60 of 60

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX-13

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.08 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method THEIS [m]

10000 Time[min] 1000 10 United Nations GW Software **ే** 7.5 8 Λ ထ ことのひてのコロ

Transmissivity = 2281.85107 [m2/day]

0.0735 [m] Standard Deviation =

of 52 Number of Points = 52

O E O U E O B C

Test : EX-13

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.08 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software JACOB METHOD 7.5 ω ω ω DE02003C

Transmissivity =2278.91797 [m2/day]

0.0735 [m] Standard Deviation =

0.347945E+00 Al =

0.722678E+01

A0 ≈

Number of Points = 52 of 52

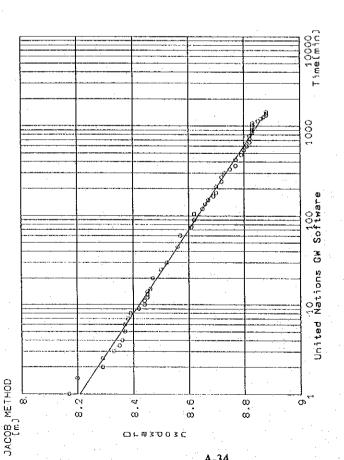
Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex13-rec

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 0.08 [m]
Type of Aquifer = UNCONFINED
Initial Saturated Thickness = 98.56 [m]
Type of Input Data = DRAWDOWN
Well Type = STANDARD

RECOVERY METHOD ٦

1000 Time[min] 000 10 United Nations GW Software 7.0. 7. 0,5 ે. CI ⊇€00€03C


Transmissivity =3076.50684 [m2/day]

0.0904 [m] Standard Deviation = 0.696289E+01 A0 =

0.320415E+00 A1 ==

Test : ex-14

Constant Pumping Rate = 2592.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

2230. [m2/day]

Transmissivity =

0.0135 [m] Standard Deviation = 0.820850E+01 **A**0 0.212707E+00 A.

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ex14-rec

Constant Pumping Rate = 2592.0 [m3/day]
Distance from Pumping Well = 0.15 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

100 Time[min] 00000 United Nations GW Software RECOVERY METHOD 0.1 0.2 ω.ο 4.0 0.5 [m] こまのひをのょこ

8483. [m2/day] Transmissivity =

.0.0847 [m] Standard Deviation =

0.820850E+01 ₩0 ==

0.212707E+00 A1 =

Test : EX-15C

Constant Pumping Rate = 2998.1 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method THEIS ဖ ω 0 2 O1.03003C

Transmissivity = 304.50543 [m2/day]

0.1113 [m] Standard Deviation =

Number of Points = 52 of 52

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : EX-15

Constant Pumping Rate = 2998.1 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = UNCONFINED
Initial Saturated Thickness = 98.22 [m]
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 JACOB METHOD Ø 10 7 ○▼○ひまの→○

Transmissivity = 334.21948 [m2/day]

10 United Nations GW Software

10000 Time[min]

1000

10 United Nations GW Software

4

0.0964 [m] Standard Deviation =

0.541094E+01 il AO A 0.164159E+01 Ц Ą

Test : EX-15rec

Constant Pumping Rate = 2998.1 [m3/day]
Distance from Pumping Well = 0.10 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

RECOVERY METHOD C) [ш] 01.030030

10000 Time[min] 1000 United Nations GW Software ო

Transmissivity = 768.37671 [m2/day]

0.1645 [m] Standard Deviation =

A0 = -0.509204E-01

0.770105E+00

Number of Points = 45 of 45

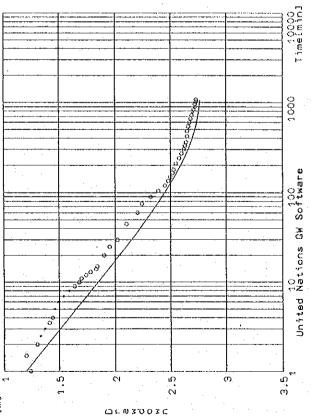
Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : obl'con

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 28.80 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software Method THEIS 1,5 2.5 დ დ ロドのまひのまに

1430. [m2/day] Transmissivity =


0.23E-04 Storage Coefficient 0.0812 [m] Standard Deviation =

Number of Points = 55 of 55

Test : obl'con

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 28.80 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method HANTUSH LEAKY TYPE CURVE

967. [m2/day] Transmissivity =

0.0879 [m] Standard Deviation = 3.3304 [1/DAY] Leakance =

Number of Points = 42 of 49

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : obl'-rec

Constant Pumping Rate = 4333.0 [m3/day]
Distance from Pumping Well = 28.80 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 10001 United Nations GW Software RECOVERY METHOD ູດີ ო O E O Z T O Z C

917. [m2/day] Transmissivity =

0.15E-02 Storage Coefficient = 0.1665 [m] Standard Deviation =

0.000000E+00 0.000000E+00 ¥0 == Al =

Number of Points = 73 of 73

Test : Ob-2

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method THEIS

10000 Time[min] 1000 10 United Nations GW Software 1.5 2.5 ことのひをひって

Transmissivity = 1274.46277 [m2/day]

0.13E-03 Storage Coefficient = 0.0431 [m] Standard Deviation

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test: Ob-2

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software JACOB METHOD ა 1 1.5 2.3 ことのびをのって

Transmissivity = 1274.68030 [m2/day]

0.13E-03 Storage Coefficient = 0.0427 [m] Standard Deviation = 0.693171E+00 A0 = 0.555584E+00 A1.

Number of Points = 55 of 55

Test : Ob-2

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software Method HANTUSH LEAKY TYPE CURVE 2.5 <mark>1</mark> ئ ೨೭೦೮೭೮೨೧

Transmissivity =1197.93018 [m2/day]

0.16E-03 Storage Coefficient == 0.0375 [m] Standard Deviation = 0.0001 [1/DAY] Leakance =

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ob2-rec

Constant Pumping Rate = 3869.9 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN

Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software RECOVERY METHOD 7,5 0.5 3. CA ٦

Transmissivity = 1244.60557 [m2/day]

0.16E-03 Storage Coefficient =

0.0989 [m] Standard Deviation =

0.000000E+00 A0 =

0.000000E+00 A1 =

Number of Points = 58 of 58

Test: OB-3

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 10 United Nations GW Software Method THEIS N Ø œ ू

Transmissivity = 329.39111 [m2/day]

0.21E-03 Storage Coefficient

0.1255 [m] Standard Deviation =

Number of Points = 50 of 50

Project : TERAI GROUNDWAIER PROJECT Organization : JICA/HMGN

Test : 0B-3

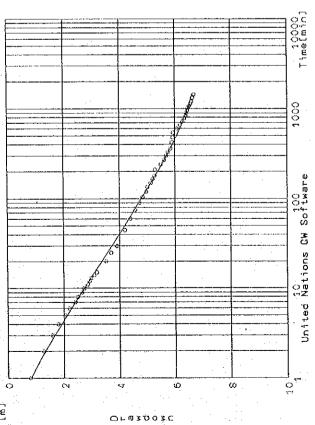
Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

JACOB METHOD

10000 Time[min] 1000 10 United Nations GW Software ૢ૽૽ૼ Ø S œ ことのひをのコロ

Transmissivity = 331.57779 [m2/day]

0.20E-03 Storage Coefficient 0.1157 [m] Standard Deviation = 0.863368E+00 ព 2


0.190739E+01 A1 =

Number of Points = 50 of 50

Test: OB-3

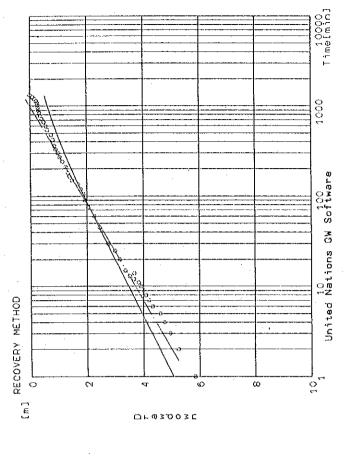
3456.0 [m3/day] 30.00 [m]

Method HANTUSH LEAKY TYPE CURVE

Transmissivity = 295.30380 [m2/day]

0.28E-03 Storage Coefficient =

0.0691 [m] Standard Deviation = 0.0003 [1/DAY]


Leakance =

Number of Points = 50 of 50

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : Ob3-rec

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 30.00 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Transmissivity = 394.31119 [m2/day]

0.67E-04 Storage Coefficient = 0.3611 [m] Standard Deviation =

0.224480E+02

AO II

0.215694E+01 A1

Number of Points = 50 of 50

Test : ob4

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 31.70 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 United Nations GW Software o Method THEIS 0 Ü, 2.5 Cł A-42

1704. [m2/day] Transmissivity =

0.77E-04 Storage Coefficient = 0.1016 [m] Standard Deviation =

Number of Points = 55 of 55

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ob4

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 31.70 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

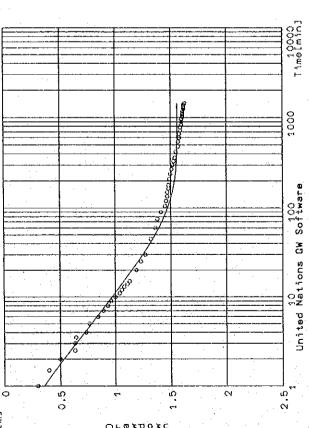
10000 Time[min] 1000 10 United Nations GW Software o JACOB METHOD 7. 7. 0.5 1.5 ÇV ひとのまなのまじ

1700. [m2/day] Transmissivity =

0.78E-04 Storage Coefficient =

0.1013 [m] Standard Deviation = 0.371999E+00 11 Al

0.569521E+00


A0 ≃

Number of Points = 55 of 55

Test : ob4

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 31.70 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method HANTUSH LEAKY TYPE CURVE

925. [m2/day] Transmissivity =

0.52E-03 Storage Coefficient =

0.0383 [m] Standard Deviation = 0.0059 [1/DAY] Leakance =

Number of Points = 55 of

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : ob4-rec

Constant Pumping Rate = 3456.0 [m3/day]
Distance from Pumping Well = 31.70 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

1000 Time[min] 000000000000 100 10 United Nations GW Software RECOVERY METHOD o 2. 7. 0.5 ō 1.5 Ø (m) ロドのさのなど

2810. [m2/day] Transmissivity =

0.37E-06 Storage Coefficient =

0.1687 [m] Standard Deviation =

0.569521E+00

#0 W

0.371999E+00 A1 =

Number of Points = 45 of 45

Test : OB-5C

nstant Pumping Rate = 2998.1 [m3/day]
e from Pumping Well = 28.23 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD Constant Pumping Rate = Distance from Pumping Well =

10000 Time[min] 1000 100 United Nations GW Software Method THEIS 0 C4 4

Transmissivity = 672.46118 [m2/day]

0.21E-02 Storage Coefficient = 0.0651 [m] Standard Deviation =

Number of Points = 54 of 54

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : OB-5C

Constant Pumping Rate = 2998.1 [m3/day]
Distance from Pumping Well = 28.23 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

1000 10 United Nations GW Software JACOB METHOD ۳. سا Q ო

೧೯0ೱ೩೦೨೮

Transmissivity = 712.43811 [m2/day]

10000 Time[min]

0.16E-02 Storage Coefficient =

0.0829 [m] Standard Deviation = A0 = -0.509204E-01

A1 = 0.770105E+00

Number of Points = 54 of 54

Test: OB-5C

Constant Pumping Rate = 2998.1 [m3/day]
Distance from Pumping Well = 28.23 [m]
Type of Aguifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

Method HANTUSH LEAKY TYPE CURVE

10000 Time[min] 1000 United Nations GW Software ო ロドロエロロエビ

Transmissivity = 711.68488 [m2/day]

0.22E-02 Storage Coefficient = 0.0834 [m] Standard Deviation = 0.0000 [1/DAY] Leakance =

Number of Points = 54 of 54

Project : TERAI GROUNDWATER PROJECT Organization : JICA/HMGN

Test : OB5-rec

Constant Pumping Rate = 2998.1 [m3/day]
Distance from Pumping Well = 28.23 [m]
Type of Aquifer = CONFINED
Type of Input Data = DRAWDOWN
Well Type = STANDARD

10000 Time[min] 1000 100 United Nations GW Software RECOVERY METHOD Ω [m] Q1.03003C

Transmissivity = 664.78564 [m2/day]

0.18E-02 Storage Coefficient =

0.1044 [m] Standard Deviation = 0:770105E+00

= -0.509204E-01

II A1

Number of Points = 60 of 60

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

264.6

210.6

176.8

189.4 154.3

61.1

Ap. Res. ; (ohm – m) Station Number 21,000 0.233 0.131 0.796 0.076 0.454 0.155 0.095 0.139 0.076 0.043 0.416 0.247 0.049 0.093 0.027 ٨/٧ (ohm) 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 20.00 20:00 20.00 20.00 20.00 5.00 20.00 50.00 (mA) 2.77 05.00 12.80 13.50 4.16 2.33 7.98 0.76 4.54 1.55 0.95 0.49 2.66 0.54 0.86 1.86 7.67 ... Sign 2.47 1.51 0.51 1.05 .43 AB/2, MN/2! Geometric 868 264 238 716 Constant 452 759 1,230 2,030 388 1,120 1,760 5,300 1.023 3,000 4.890 3,130 586 1,780 3,993 2,384 1,442 0 5.0 0 5.0 50 5.0 5.0 5.0 0 0. 25.0 5.0 25.0 25.0 25.0 50.0 50.0 25.0 280 220 480 220 280 360 100 170 6.0 0 17 75 ω 6 22 28 28 36 36 82 09 100 130 130 816.5 724.8 871,5 945,4 1003.2 845.2 701.3 516.6 576.0 353.2 381.4 233.4 170.2 140.8 126.8 126.6 153.7 123.3 128.2 102.8 Ap Res. (ohm – m) 116.1 144.3 Station Number 200 15.040 10.040 3.800 1.870 2.420 0.174 0.956 64.800 6.060 0.924 0.420 0.326 0.152 0.080 0.041 0.215 0.029 0.121 24.000 0.041 0.081 0.030 0.043 0.072 0.024 (ohm) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 18.00 12.10 324.00 120.00 75.20 50.20 30.30 19.00 9.35 4.62 2:10 4.78 0,40 4.30 0.87 1,63 0.76 0.81 0.58 2.41 1.44 0.81 1.61 0.59 0.65 0.44 Geometrio Constant 55.0 86.8 158 264 452 759 1,230 238 716 2,030 399 1,120 1,760 3,130 589 5,300 1,023 1,780 3,000 1,442 4,890 2.384 5 0 0 () () 1.0 5.0 50.0 00 5.0 25.0 5.0 25.0 25.0 25.0 50.0 25.0 50.0 100 .n 35

176.9 173.6 167.2

151.1

153.4

156.7

141.7 134.4 114.2

124.7

34.1

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	1,442	4,890	2,384	3,993	7,160
	MN/2	(E)	0	0.1	0	1.0	0	0.	0.	1.0	0.	5.0	2	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	50.0
	AB/2	(w)	3.0	ς	6.0	æ	9	13	17	22	29	28	36	36	48	90	75	100	100	130	130	170	220	220	280	280	360	480
,			1		:				'										. ,									
202	Ap. Res.	(m-m4o)	278.7	296.6	345.4	378.4	433.7	467.3	492.7	470.6	424.4	478.4	355.3	399.0	324.0	252.6	205.9	183.1	168.2	181.3	161.0	158.4	137.4	144.2	147.7	142.1	132.6	121.7
Station Number	A/V	(mho)	22.200	9.820	6.280	4.360	2.780	1.770	1.090	0.620	0.345	2.010	0.175	1.000	0.453	0.226	0.117	0.059	0.286	0.034	0.157	0.089	0.046	0.100	0.030	090'0	0.033	0.017
Station	4	(mA)	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	10.00	10.00	10.00	10.00	20.00	20.00	20.00	20.00	20.00	50.00	20.00	50.00	50.00	44.90	50.00	50.00	50.00	50.00
	>	() (m)	111.00	49.10	31.40	21.80	13.90	8,85	5.45	3.10	3.45	20.10	1,75	10.00	9.05	4.51	2.34	1,17	5.71	1.71	7.87	4.45	2.29	4.49	1.51	2.98	1.66	0.85
	Geometric	Constant	12.6	30.2	55.0	86.3	156	264	452	759	1,230	238	2,030	399	718	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	1,442	4,890	2,384	3,993	7,160
	MN/2		10.	0.1		0.7	1.0	1.0	1.0	1.0	1.0	5.0	0	δ. C)	ري 0 ت	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	50.0
	ABIO	Έ	0 %	2	8.0	80	10	13	14	22	28	28	36	36	48	90	75	100	100	130	130	170	220	220	280	280	360	480

452.6

0.368

10.00

3.68

8.95

1331.8 1026.0 712.1

5.045

8.94

45.10 22.70

11,600

2.270

10.00 9.54

0.938

3793.1 2814.6 1809.6

68.966

8.99

620.00

32,426

8.45 10.00

274.00

116.00

8.07 162.330

(m-m4o) 5424.9 4902.4

(ahm) Λįγ

(mA) 4

(S E)

430.550

9.46

4073.00 1310.00

Ap. Res.

Station Number 203

284.2

0.140

387.4 261.3 197.1 153.0 153.4

0.971

10.00

9.71

0.176

0.365

10.00 10.00

3.65 1.76 0.75 0.49 2.95 0.55 2.96 1.22 0.65 1.91 0.44

604.5

2.540

10.00 10.00

25.40%

1.40

141.8 124.6 186.2

0.060 0.031 0.026

20.00 46.80 20.00

10

1.46 0.52

0.022

135.3 120.0 159.2 107.6

0.076 0.040 0.110

16.00 16.20 17.30 20.00

157.7

173.8 151.8

0.049 0.295 0.029 0.154

0.087

8.63 10.00 10.00 19.20 19.20

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

1,120 1,760 3,130 238 2,030 8000 AB/2 MN/2 Geometric 12.6 86.8 156 284 452 759 1.230 Constant 25.0 5.0 5.0 220 50.0 25.0 280 50.0 360 50.0 5,0 0. 5.0 5.0 5 0 25.0 220 25.0 0 0 0. 0. 0 5.0 0 0. 0. 0 170 25.0 280 100 130 130 100 0.9 36 36 9 75 5 5 22 88 28 45 ĸ ω Έ 3.0 7 160.8 162.0 136.9 121.8 170.6 165.0 173.9 179.7 359.0 273.5 196.6 140.2 201.1 170.7 555.5 486.9 408.7 691.7 619.1 Ap. Hes. (m – myo) Station Number 204 0.038 0.112 0.114 0.845 0.060 0.428 0.231 0.099 0.057 10.100 20,500 54.900 (mu) 50.00 50.00 50.00 20.00 20.03 20.00 20.00 20.00 10.00 10.00 00.01 (mA) 4.61 7.62 101.00 26.20 13.60 6.05 2.59 2.28 16.90 1.20 8.55 4.94 4.94 2.87 56.10 549.00 205.00 (M.V.) 238 399 716 1,120 1,760 3,130 589 5,300 3,000 759 1,230 2,030 12.6 30.2 55.0 86.8 264 452 AB/2 MN/2 Geometric Constant 360 | 50.0 5.0 0.0 0 τ. Ο ω O (C) 25.0 0.0 25:0 25.0 50.0 2801 50:0 0 5.0 220 | 25.0 0 0 0 0 0 $\widehat{\mathbf{E}}$ 100 100 130 130 8 90 Ξ IO. 3.0 5 22 28 38 90 17 æ

142.5 142.0 130.9 423.6 138.0 198.3 153.2 119.8 112.6 119.3 110.0 2307.3 470.6 469.9 139.3 187.7 1970.4 1856.4 840.7 2499.8 2211.0 1441.2 m-myo) Station Number 0.048 0.064 0.038 0.035 0.128 0.067 40.200 0.214 0.107 0.237 5.459 1.860 0.620 0.382 1.780 0.068 0.497 98.400 76.400 22.700 11.900 (onm) 20.00 20.00 20.00 19.20 20,00 10.00 10.00 10.00 10,00 10.00 10.00 20.00 20.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 19.80 10.00 227.00 17.80 0.64 0.68 107.00 18.60 6.20 0.68 2.14 1.07 402.00 984.00 764.00

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

207	Ap. B	- mHo)	50	24	25	28	29	30	29	24	19	39	9	24	Ψ.	2	7	12	-	7		-	-		-	-	1	
Station Number			16.500	8.110	4.610	3.255	1.865	1.170	0.658	0.320	0.157	1.250	0.080	0.615	0.260	0.134	0.081	0,040	0.202	0.023	0.116	0.067	0.039	- 0.078	0.022	0.048	0.027	0.013
Station	∢	(mA)	10.00	10.00	20.00	20.00	20,00	10.00	10.00	20.00	20.00	20.00	20,00	20,00	50.00	20.00	18.40	20.00	20.00	50,00	50.00	50.00	50.00	50:00	50.00	50.00	50.06	20.00
	>	(y m)	165.00	81.10	92.20	65.10	37.30	11.70	6.58	6.39	3.13	25.00	1.59	12.30	13.00	6.70	1,49	0.79	4.04	1.16	5.89	3.34	1.94	3.91	1.11	2.32	1.36	0.25
	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	7,442	4,890	2,384	3,993	7,160
	MN/2 G	(m)	1.0	1.0	0 -	0.1	1.0	0.	1.0	0.	0.	5.0	1 0	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	50.0
	AB/2 1	 (E)	3.0	ιΩ	6.0	8	10	13	17.	22	28	28	36	36	48	09	75	100	100	130	130	170	220	220	280	280	380	450
	L		L	.ł	J.,	J.,	.1	.1	-1		J	J.,	i	<u>.</u>		J	J								-1			.11
206	Ap. Hes.	(ohm – m)	1649.3	1452.6	1237.5	1059.0	8248	475.2	2427	142.7	91.0	89.5	89.3	74.2	78.8	.74.2	75.7	75.1	88.9	80.4	0.06	86.3	87.0	100.2	0 88	104.5	102.8	107.2
Station Number	V/A	(mu)	130.900	48.100	22.500	12.200	7 28 B	1 200	0.537	0.188	0.074	0.376	0.044	0.186	0.110	0.066	0.043	0 024	0 151	0.015	0.088	0.049	0.00	0.070	0.018	0.044	0.028	0.015
Station	A	(m. A)	10.00	10.00	20.00	20 00	20.02	00.00	10.00	20.00	20.00	50.00	10.00	10.00	10.00	9.81	,	- 14	20.00	68 6	98.0	20.00	20.00	20.00	20.00	47.70	33.80	33.40
	>	. (A	1309.00	481.00	450.00	200.00	00 447	26.40	30.00	3.78	1 48	18.30	0.44	1 86	1.10				3 02	1 10	0.10	79.0	0 S	0000	25.0	0.00	0.87	0.50
	Geometric	Constant	-	, ,	55.0 75.0	0.00	0000	000	254	750	1 030	238	2 030	388	716	1 120	780	2,00	00 4	2002 4	0,000	1 780	200.	000'0	7 tt, 7	7,000	4,00,4	
	MAN 101 G			2 0	2 0	0 0		0 0		2 0	5 6	- K	5 7) C	2 0		2 0	9 0	2 6	2 2	0,0	2 2	0 0 0	0.07	0.00	0.07	0.00	50.0
	0/04			- L	0 0) (0	<u></u> [7 0	0 0	2 4	0 6	3 8	2 0	2 1	2 3		2 6	2 6	3 5	2 8	077	0 2 2	780	280	480 000 000

120.5 118.9 1164 110.6

123.6 119.0 123.0

142.5

186.2

245.4

150.1

192.5

297.5 161.4

242.5

244.9

(o - m4o) 207.9

Ap. Res.

253.6 282.5 290.9 308.9 297.4

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

35

264

12.6 30.2 55.0 86.8

AB/2: MN/2: Geometric (m) (m) Constant

1,230

399

238

The Kingdom of NEPAL Galvanic Resistivity Memod Field Note

Ap. Res. 52.8 64.2 (ohm) (ohm-m) 0.066 7.870 0.147 0.043 0.043 0 0 20.00 10.00 20.00 20.00 20.00 20,00 20.00 20.00 20.00 50.00 50.00 50.00 50.00 (mA) 10.00 50.00 50,00 50.00 5.79 0.86 5.44 4.78 3.28 2.15 7.08 32.40 35.70 22.10 11.00 2.94 1.53 1,30 33 4.47 2.81 (E) AB/2 MN/2 Geometrid 12.6 30.2 55.0 8.99 156 264 452 759 1,230 238 2.030 399 716 1,120 1,760 3,130 589 Constant 5,300 1,023 1,780 3,000 4.890 36 1.0 36 5.0 1.0 0 0 0. 5.0 5.0 5.0 5.0 1.0 0 130 5.0 226 25.0 50.0 00 25.0 30 25.0 ည 3.0 9.0 ĠĊ V 100 (E) 584.6 425.1 284.8 175.5 120.5 125.8 125.8 558.3 533,8 ୍ୟ ୧୨ 108.3 109.2 110.0 12005 1-122.2 128.3 128.3 128.3 128.3 (C) (ahm – m) Station Number 46,400 0.630 0.285 0.149 1.570 0.233 0.098 0.610 0.063 0.039 0.208 10,150 2.725 0.046 0.098 0.022 20,600 6,150 0.071 0.042 0.087 (mto) 20.00 20.00 28.70 20.00 49.50 50.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20,00 49.70 4 20.00 123.00 54.50 31.40 12.60 4.65 1.96 12.20 5.69 2.97 10 60 T 1.25 0.77 4.15 0.63 3.60 1.42 2.08 928.00 412.00 203.00 4.32 2.4.1

5,300 |

1,780

589

1,760

0 0 0

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

	` }	Ap. Res.	팃	260.2	173.7	144.7	139.3	157.6	184.8	220.	252.4	271.2	360.6	229.4	303.	240.	3 204.	203.8	172.		134.	140.	107.	7 81.		107.	95.		3 96.
4 4 4 4	Station Number	۸/۷ ز	(ohm)	20.650	5.750	2.630	1,605	1.010	0.700	0.487	0.333	0.221	1.515	0.113	0.760	0.336	0.153	0.116	0.055	0.324	0.025	0,138	0.060	0.027	0.068	0.022	0.040	0.021	0.013
, , ,	Stailo	∢ .	(mA)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	10.00	14.30	17.50	43.80
		>	(m)	413.00	115.00	52,60	32.10	20.20	14.00	9.74	6.65	4.41	30.30	2.26	15.20	6.71	9.14	5.79	2.76	16.20	1.27	6.88	3.02	1,36	3.38	0.25	0.57	0.36	C) C) C)
		MN/2 Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	1,442	4.890	2,384	3,993	7 160
		N N/2	Ê	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	5.0	1.0	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	0 0 0
		AB/2	Œ	3.0	2	6.0	80	10	13	17	22	28	28	36	36	48	09	75	100	100	130	130	170	220	220	280	280	360	Cav
	ſ		~i		1	[Lai	L ,	1.00	(-	T 🚅	Γ <u>~</u>	1) , .	Ι,	[T 	Ι	ا س	6	[[ما	0	: [60	4	~	
	210	Ap. Res	(ohm-m	277.2	197.8	203.6	222.2	252.7	289.3	320.0	329.4	297.7	353.1	229.1	294.7	242.7	171.4	129.4	122.	109.3	111.3	103.3	105.9	114.0	111.6	118.3	115.4	110.2	F - F - C - F
	Station Number	V/A	(ahm)	22.000	6.550	3.702	2.560	1.620	1.096	0.708	0.434	0.242	1.484	0.113	0.739	0.339	0.153	0.074	0.039	0,186	0.021	0.101	090.0	0.038	0.077	0.024	0.048	0.028	V + O O
	Station	.: 4	· (mA)	20.00	20.00	20.00	50.00	50.00	50.00	50.00	50.00	50.00	49.00	48.20	48.20	20.00	20.00	}	20.00	20.00	20.00	20.00	20.00	20.00	50.00	50.00	50.00	50.00	
		^	(m)	440.00	131.00	74.04	128.00	81,00	54.80	35.40	21.70	12.10	72.70	5.44	35.60	6.78	3.06	1.47	0.78	3.71	0.42	2.02	1.19	0.76	3.87	1.21	2.42	1.38	4
		Geometric	Constant	12.6	30.2	55.0	86.8		264	452	759	1.230	238	2,030	399	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	- 1,442	4,890	2,384	3,993	7
		M N/2	Œ	0.1	0,	10	† ō	0	0	0.7	0	10	5.0	10	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	†
	• .	AB/2	(E	3.0	100	9		Ç.	13	12	22	28	28	36	36	48	00	75	90	8	130	130	170	220	220	280	280	360	

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

2085.6 2395.3 1211.4 442.8 2120.0 2589.6 797.0 495.0 264.9 295.3 189.4 164.6 158.4 131.8 137.1 134,4 138.3 (ahm - m)1217.8 2426.1 1457 213 Station Number 2.680 43.550 7.900 0.360 0.042 0.078 96.650 70.200 27.950 16.600 1.050 2.080 0.131 0.740 0.265 0.147 0.090 0.042 0.247 0.134 0.045 0.096 (mho) 20.00 20.00 20.00 20.00 20.00 20.00 10.00 19.00 20.00 40.00 20.00 20.00 20.00 20.00 20.00 20.00 19.00 10.00 10.00 40.00 20.02 (mA) 5.29 2.94 0.90 0.80 559.00 53.60 41.60 1933.00 332,00 158.00 21.00 7.20 2.61 14.80 4.70 1.51 3.85 1404.00 871.00 () () 12.8 (m) | Constant 264 452 759 AB/2 MN/2: Geometric 30.2 86.8 716 1,780 3.130 55.0 156 .230 238 399 589 5,300 130 25.0 170 25.0 0 0 0 0 5.0 5.0 0 130 5.0 100 25.0 75. 220 220 280 280 360 (E) 3.0 ıO 0.9 0 <u>က</u> .22 28 ယ 673.2 130.9 689.9 795.8 932.3 828.9 850.2 382.4 299.0 248.5 618.8 409.0 268.5 220.8 188.3 175.3 138.4 159:0 Ap. Hes. 347.1 131.7 121.1 (ohm – m) 212 0.030 0.846 0.202 0.074 0.043 5,450 Station Number (ohm) 18.950 9.550 2.550 1.025 0.375 0.056 0.235 54.750 26.350 0.394 0.171 7610 0.107 20.00 20.00 20:00 20.00 10.00 10.00 10.00 20.00 10.00 10.00 10.00 20.00 20.00 10.00 10.00 20.00 20.00 10.00 20.00 50.00 (mA) 1.28 1.71 339.00 191,00 109.00 25.50 8.46 3.94 26.00 20,50 7.50 3.94 2.14 1095.00 527.00 2.02 2.35 3,130 5,300 12.6 238 AB/2 | MN/2 | Geometric (m) | Constant. 30.2 156 264 716 55.0 88 450 1,230 2,030 399 1,120 758 100 | 25.0 | 130 | 5.0 130 | 25.0 170 | 25.0 10. 5.0 1.0 5.0 220: 50.0 280: 25.0 0 0 0.0 0 0 0 0 5.0 5.0 5.0 1001 2 1/ 28 S 38 48 90 75 22 28 36 (m)

O
7
\circ
The Kingdom of NEPAL Galvanic Resistivity Method Field No
$\underline{\varphi}$
L1
\circ
0
<u></u>
-
Q)
7.7
\rightarrow
-
5
ź
in
S.
e
7
O
-==
느
æ
>
ū
(7)
~
_,
انهج
~
tT.
цı
~
_
•
O
_
Ἐ
\overline{a}
~~
\sim
O
\subseteq
X.
43
Ψ,
⊢
ote o
. О

	•			Station	Station Number	214		İ			Station	Station Number	215
	M N/2	Geometric	>	A	V/A	Ap. Hes.	AB/2	MN/2	Geometric	^	₹	V/A	Ap. Res.
	Œ	Constant	(x m)	(mA)	(mho)	(m-m4o)	(m)	(m)	Constant	(m V)	(mA)	(ohm)	(ohm-m)
1	1.0	12.6	1534.00	20.00	76.700	966.4	3.0	1.0	12.6	163.00	20.00	8.150	102.7
	1.0	30.2	1513.00	50.00	30.260	913.9	3C	1.0	30.2	60.30	20.00	3.015	91.1
1	1.0	55.0	749.00	50.00	14.980	823.9	6.0	1.0	55.0	33.10	20.00	1.655	91.0
+	1.0	86.8	389.00	50.00	7.780	675.3	ω	1.0	86.8	21.80	20.00	1.090	94.6
	1.0	156	200.00	50.00	4.000	624.0	10	1,0	156	13.00	20.00	0.650	101.4
	1.0	264	99.60	50.00	1.992	525.9	13	1.0	264	7.96	20.00	0.398	105.1
	1.0	452	52.40	50.00	1.048	473.7	17	1.0	452	4.91	20.00	0.246	111.0
 	1.0	759	23.00	50.00	0.460	349.1	22	1.0	759	2.90	20.00	0.145	110.1
·	1.0	1,230	10.40	50.00	0.208	255.8	28	1.0	1,230	1.73	20.00	0.087	106.4
}	5.0	238	51.20	50,00	1.024	.243.7	28	5.0	238	8.97	20.00	0.449	106.7
	1.0	2,030	1.76	20.00	0.088	178.6	36	1.0	2,030	2.47	50.00	0.049	100.3
h	5.0	399	8.63	20.00	0.432	172.2	36	5.0	399	12.80	50.00	0.256	102.1
1	5.0	716	3.78	20.00	0.189	135.3	48	5.0	716	7.39	50.00	0.148	105.8
	5.0	1,120	2.13	20.00	0,107	119.3	09	5.0	1,120	4.71	50.00	0.094	105.5
	0 0	1,760	3.53	50.00	0.064	111.0	7.5	5.0	1,760	3.61	50.00	0.072	127.1
1	5.0	3,130	1.69	50.00	0.034	105.8	100	5.0	3,130	1.77	50.00	0.035	110.8
	25.0	589	10.50	50.00	0.210	123.7	100	25.0	589	9.40	50.00	0.188	110,7
·	5.0	5,300	1.03	50.00	0.021	109.2	130	5.0	5,300	1.04	50.00	0.021	110.2
···	25.0	1,023	6.08	20.00	0.122	124.4	130	25.0	1,023	5.43	50.00	0.169	111.1
	25.0	1,780	3.62	50.00	0.072	128.9	170	25.0	1,780	3.04	50.00	0.061	108.2
1-	25.0	3,000	2.18	50.00	0.044	130.6	220	25.0	3,000	1.82	50.00	0.038	109.2
1 :-	50.0		2.17	.50.00	0.103	149.1	220	20.0	1,442	3.73	.50.00	0.075	107.6
	25.0	4 890	1.25	50.00	0.025	122.3	280	25.0	4,890	1.20	50.00	0.024	117.4
	50.0	2,384	3.00	50.00	090.0	143.0	280	50.0	2,384	2.25	50.06	0.045	107.3
1	50.0	3,993	1.54	43.30	0.036	142.0	360	50.0	3,993	2.71	100.00;	0.027	108.2
1	50.0	7,160	0.84	42.90	0.020	140.2	480	50.0	7,160	0.73	50.00	0.015	104.5

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

9240 (m-muo) 3136.8 3550.0 2595.3 1567.8 267.2 215.3 208.3 195.9 187.9 169.3 160.2 156.6 158.1 187.6 185.8 186.0 201.8 3352.3 427.1 153.7 191.7 Station Number A V/A 60.950 0.175 248.950 117.550 10.050 3.500 0.945 0.471 29.900 0.352 0.237 0.051 0.319 0.133 0.079 0.097 0.089 0.029 0.110 0.062 0.050 (ohm) 20.00 (mA) 20.00 20.00 20.00 20:00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 50.00 50.00 50.00 45.00 44.00 50.00 50,00 201.00 | 70.00 18.90 9.42 1219.00 598.00 1.01 7.04 3.50 17.50 4 73 2 86 1 78 9 0 9 (O) 5.95 4979.00 2351.00 (E) MN/2 Geometric Constant 12.6 30.2 55.0 86.8 156 264 452 759 1,230 238 399 716 3,130 (2,030 589 1,760 5,300 1,023 3,000 1,442 5.0 0 0 0 0 0 0. 5.0 5.0 5.0 5.0 5.0 50.0 0. 0. 0 25.0 Ê 130 5.0 25.0 100 25.0 130 25.0 170, 25.0 100 220 220 280 280 28 0.9 0 28 36 38 48 60 75 'n 6 22 Ê 193.1 307.4 265.8 196.6 184.9 226.0 247.8 205.9 196.7 245.2 235.5 174.0 157.7 148.9 144.0 147.3 136.7 129.6 120.6 1393 119.2 Ap. Res. (ohm-m) 132.1 Station Number 216 24,400 0.116 8.800 2.265 1.185 0.745 0.500 0.323 0.202 0.243 0.141 0.085 0.046 0.250 0.026 0.143 0.073 0.092 (ohm) (mA) 20.00 20.00 20.00 20.00 50.00 50.00 50.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 50.00 50.00 50.00 50.00 50.00 50.00 45.30 10.00 488.00 176.00 23.70 14.90 4.03 82.80 8.46 2.32 9.68 4.86 7.04 12.50 3,64 4.58 1.22 2.01 (ME) 1,023 AB/2 MN/2 Geometrio 12.6 30.2 55.0 86.8 156 264 452 759 1,230 238 2,030 988 716 3,130 589 5,300 Constant 1,760 3,000 4.890 1,780 1,442 5.0 36 1.0 48 5.0 0 0. 0. 0 0 0 5.0 0 0 60 5.0 25.0 130 5.0 25.0 25.0 50.0 25.0 $\widehat{\mathbf{E}}$ 170 25.0 1001 100 3.0 130 220

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

d١
ofe
~
~
Ö
æ
Field
$\boldsymbol{\sigma}$
Methoc
<u></u>
ā.
⋝
_
ঽ
· =
=
.⊻
es
~
11.
.≌
C
Œ
_
æ
Galvanic Resistiv
- 1
∢
α.
EPAI
Z
õ
Ε
$\overline{}$
ň
ŏ
ζ
The
_
,

219	Ap. Hes.	(m-m4o)	3375.8	3272.2	2576.8	2022.4	1216.8	842.2	438.4	276.3	206.6	233.2	146.0	152.8	146.1	165.1	182.7	202.2	180.2	218.4	188.8	197.2	189.0	196.7	186.8	193.3	196.5	186.2
Station Number	W/A	(ohm)	267,923	108.350	46.850	23.300	7.800	3.190	0.970	0.364	0.168	0.980	0.072	0.383	0.204	0.147	0.104	0.065	0.306	0.041	0.185	0.111	0.063	0.136	0.038	0.081	0.049	0.028
Station	∢	(mA)	18.30	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	45.60	45.70	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	100.00	100.00	50.00	100.00
	۸	(m V)	4903.00	2167.00	937.00	466.00	156.00	63.60	19.40	7.28	3.36	19.60	3.28	17.50	10.20	7.37	5.19	3.23	15.30	2.06	9.23	5.54	3.15	6.82	3.82	8.11	2.46	2.80
	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	1.442	4,890	2,384	3,993	7,160
	MN/2	(E)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	5.0	1.0	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	50.0
	AB/2	(m)	3.0	5	6.0	8	10	13	17	22	28	28	36	36	48	9	75	100	100	130	130	170	220	220	280	280	360	480
218	Ap. Res.	(ohin-m)	584.6	696.1	671.0	616.3	533.5	484.2	383.3	279.3	239.9	253.2	205.8	213.9	186.2	179.0	178.5	180.9	177.9	191.3	189.3	190.5	192.0	190.3	197.6	194.3	195.3	184.0
Station Number.	V/A	(ohm)	46.400	23.050	12.200	7.100	3.420	1.834	0.848	0.368	0.195	1.064	0.101	0.536	0.260	0,160.	0.101	0.058	0.302	0.036	0.185	0.107	0.064	0.132	0.040	0.082	0.049	0.028
tation						ļ						-	1								t		l		1		Ì	ĺ
Ġ	∢.	·(mA)	20.00	20.00	20.00	20.00	50.00	50.00	50.00	50,00	50.00	50.00	50.00	50.00	50.00	50.00	20.00	20.00	50.00	100.00	100.00	100.00	100.00	100.00	100.00	100.001	100.00	100.00
·	\ \	(mV) (mA)	928.00 20.00	461.00 20.00	244.00 20.00	142.00 20.00	171.00 50.00	91.70 50.00	42.40 50.00	18,40 50,00	9.75 50.00	53.20 50.00	5.07 50.00	26.80 50.00	13.00 50.00	7.99 1.50.00	5.07 € 50.00	2.89 50.00	15.10 50.00	3.61 100.00	18.50 100.00	10.70 100.00	6.40 100.00	13.20 100.00	4.04 100.00	8.15 100.00	4.89 100.00	2.57 1.00.00
<i>S</i>										· 						<u> </u>	1.4									_	4.89	ļ
<i>S</i>	>	(mV)	928.00	461.00	244.00	142.00	171.00	91.70	42.40	18.40	9.75	53.20	5.07	26.80	13.00	7.99	5.07	130 2.89	15.10	3.61	18.50	10.70	6.40	13.20	4.04	8.15	4.89	2.57

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

Station Number

215.5 212.0 2222.6 219.2 211.2

(onm-m)

(ohm)

17,100

6.550 3.855 2.585 205.9

0.456

0.800

1,405

186.3 182.7

0.148 0.800 0.092 0.458

0.262

0.170 0.108 0.059 0.035

0.014

LO LO													_			_										!		0
Station	∢	(mA)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	10.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	100.00	100.00	100.00	50.00	50.00	50.00	100.00	100.0
	>	(mV)	342.00	131.00	77.10	51.30	28.10	16.00	9.11	5.23	2.96	16.00	0.92	22.90	13.10	8.48	5.30	2.94	14,70	1.73	1.35	5.83	5.80	6.04	1.70	3.54	4.28	8,28
	MN/2: Geometric	Constant	12.6	30.2	55.0	8.98	156	264	452	759	1.230	238	2,030	389	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	1.442	4,890	2.384	3,993	7.160
	MN/2: G	(m)	0.1	1.0	1.0	0	0.	0.1	0	0.	0	5.0	0	0.0	5.0	5.0	5.0	သ	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	50.0
	AB/2	(E)	3.0	ιΩ	8.0	æ	10	13	171	22	28	28	38	36	48	901	10	100	00.	30	130	170	220	220	280	280	. 380	() () ()
220	Ap. Res.	(m-mho)	453.6	433.4	412.5	395.4	382.2	364.3	323.2	297.1	258.9	260.6	233.5	235.4	190.5	183.1	180.4	173.7	184 1	171,7	180.3	177.3	178.4	184.5	178.5	183.3	1 82 1	177.5
Station Number	A/V	(mrho)	36.000	14.350	7.500	4.555	2.450	1.380	0.715	0.392	0,211	1.095	0.115	0.590	0.266	0.164	0.103	0,056	0.313	0.032	0.176	0.100	0.059	0.128	0.037	0.077	0.048	0.025
Station	A	(mA)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	50.00	50.00	50.00	50.00	50.00	100.00	100.00	100.00	100.00
	^	(MV)	720.00	287.00	150.00	0.7	49.00	27.60	14.30	7.83	4.21	21.90	2.30	11.30	5.32	3.27	2.05	1,1	6.25	1.62	8.81	4.98	2.94	6.39	3.65	7, 69	. 95 t	2.48
	Geometric	Constant	12.6	30.2	55.0	2 44	158	284	452	759	1 230	238	2.030	396	718	1 120	1 760	3.130	589	5,300	1.023	1.780	3 000 5	1 442	068 7	108.0	. 600	(C)
	CININ			0	2 0	2 C) C) C	> 0	1	O	2 C	0	0 6	0 5	2 2	10	0 0	25.0	1			,	• •	1.1	1	:	1
	0 0	ğ. <u>(</u> ξ	6	2 10	o C		9 0	2 (2 1	100	a c	80	35) (C	2 2	2 6) K	200	100	130	130	170	000	000) (v	200	200	9.084

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

Station	≪((mA)	20.00	100.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	100.00	100.00	100.00	50.00	50.00	50.00	50.00	50.00	100.00	100.00	50.00	100.00	50.00	100.00	100,00	100.00	100.00	
	>	(y m)	447.00	929.00	27.1.00	173.00	94.20	52.10	26.90	14.90	8.15	89.50	11.20	47.00	10.80	6,49	4.22	2.37	11.80	2.60	13.40	3.80	3.96	5.14	3.03	6.36	3.98	2.25	
	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3 000	1,442	4,890	2,384	3,993	7,160	
	MN/2	Ξ	1.0	1.0	1.0	0	1.0	1.0	1.0	1.0	1.0	5.0	0	5.0	5.0	0::5:	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	50.0	
	AB/2	(m)	3.0	S	6.0	တ	10	13	17	22	28	28	36	36	48	9	75	100	100	130	130	170	220	220	280	280	360	480	
,			1	l :		l				L				d	lan w	J A													
222	Ap. Res.	(m-m4o)	1799.3	1356.0	1020.3	677.0	411.9	288.3	224.2	169.7	159.0	155.7	140.1	142.0	138.2	26.4	73.9	160.3	7.1	274.5	160.0	175.2	180.0	184.3	183.9	189.8	178.7	164.7	
Station Number	ViA	(mho)	142.800	44,900	18.550	7.800	2.640	1.092	0.496	0.224	0.129	0.654	0.089	0.358	0.193	0.024	0.042	0.051	0.012	0.052	0.156	0.098	0.060	0.128	0.038	0.080	0.044	0.023	
Station	⋖	(mA)	20.00	20.00	20.00	20.00	48.10	50.00	50.00	42.00	44.70	45.10	10.00	20.00	20.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	
=	^	(X E)	2856.00	898.00	371.00	156.00	127.00	54.60	24.80	9.39	5.78	29.50	0.69	7.12	3.86	1 18	2.10	2.56	0.60	2.59	7.82	4.92	3.00	6.39	1.88	3.98	2.20	1.15	
•	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1.230	238	2.030	399	716	1.120	1,760	3.130	588	5.300	1,023	1,780	3,000	1 442	4.890	2 384	3 993	7,160	
	MN/2		1-:	0	0.1	0,	1.0	0.1	0,1	0	-	5.0		10			90	5.0	25.0	5.0	25.0			50.03	25.0		- 1	500	
	AB/2		3.0	ic.	9		0.	65	1,7	2	28.	200	3 6	38	2 4	09	75	100	100	130	130	170	220	200	280	280	380	480	

151.6 158.9

0.040

137.8

0.232

135.3 118.8 148.2 148.2

0.076 0.134

0.103 0.040

0.030

137.1

136.6

146,4

0.047

148.5

0.130

0.470 0.216

0.112

243.2 226.2 200.5 213.0 227.4 187.5 154.7 145,4

275.1

1.884 1.042 0.538 0.298 0.163 0.895

281.6 280.6

22,350

(chm)

9.290

Ap. Res. (m-m40)

Station Number 223

300.3 293.9

3.450

298.1

5.420

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

225	Ap. Res.	(m-mho)	226.8	172.1	181.0	185.3	204.4	225.7	248.6	266.0	273.1	282.0	279.3	292.9	240.6	300.2	293.9	262.9	253.3	212.0	198.5	148.5	0.14	148.6	132.5	138.9	129.8
Number	V/A	(mho)	18.000	5.700	3.290	2.135	1.310	0.855	0.550	0.351	0.222	1.185	0.138;	0.734	0.336	0.268	0.167	0.084	0.430	0.040	0.194	0.083	0.047	0.103	0.027	0.058	0.033
Station	 V	(mA)	20.00	20.00	100.00	200,00	20.00	20.00	20 00	20.00	20.00	20.00	59,00.1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	100.00	100.00	50.00	50.00	97.80	98.00	100.00
	>*	(S E)	360.00	114.00	329.00	427.00	26.20	17,10	11.00	7.01	47.4	23.70	6.89	36.70	16.80	13,43	0.35	4.20	21.50	2.98	.9.40	8.34	2.35	5.18	2.65	5.71	3.25
	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130,	589	5,300	1,023	1.780	3,000	1,442	4,890	2,384	3,993
	MN/2	(E)	1.0	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	5.0	1.0:	5.0.	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0
	AB/2	(E)	3.0	Ω.	6.0	æ	10	13	17	22	28	58	36,	38	8	09	75	100	100	130	130	170	220	220	280	280	380
224	Ap. Res.	(m – m4o)	2192.4	1556.5	1170.4	958.3	720.7	570.2	463.8	458.4	351.8	319.9	283.0	267.3	190.5	147.4	105.6	95.2	91.9	98.6	94.6	101.8	98.4	6.96	103.4	102.3	107.0
Number Number	V/A	(ohm)	174,000	51.540	21.280	11.040	4.620	2.160	1.026	0.604	0.286	1.344	0.139	0.670	0.266	0.132	0.090	0.030	0.156	6.019	0.093	0.057	0.033	0.067	0.021	0.043	0.027
Station	4	(mA)	20.00	50.00	50.00	50.00	50.00	50.00	50.00	50,00	50.00	20.00	50.00	50.00	50.00	50.00	20.00	42.40	42.80	50.00	100.00	50,001	50.00	50.00	93.20	95.10	100.00
	1							i	i :	4		L		d										100	7	on	<u>α</u>
	^	(y tt)	3480.00	2577.00	1064.00	552.00	231.00	108.00	51.30	30.20	14.30	67.20	6.97	33.50	13.30	6.58	1.2(1.2	6.6		9.25	2.99	1.64	3.36	о -	4.0	0 0
	Geometric V		12.6 3480.00	30.2 2577.00	5.0	86.8 552.00	156: 231,00	264 108.00	452 51.30		1,230 14.30	8 67	9	399 33.	65	0	1,760. 1.20	: : :	589, 6.63	0,	တ -	1.780 2.86	3,000	442 3	\$ *** 	ব	993
	MN/2 Geometric V		12.6 3	0.2	5.0	8	56:	₽9	\ \ \		14	67	030 6	399 33.	65	20: 8		3,130	9	300	.0 1,023	50	000	0.0 7.442 3	0 4 890	0.0 2,384 4	3 993 2

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

				Station	Station Number	226					Station	Station Number	227
B/2	MN/2	Geometric	· >	¥	V/A	Ap. Res.	AB/2	8/N W	Geometric	>	Ψ	V/A	Ap. Res.
Ê	Ξ		(m)	(mA)	(ohm)	(m-mho)	(m)	(E)	Constant	(mV)	(mA)	(ohm)	(m-m4o)
3.0	1.0	12.6	2028.00	100.00	20.280	255.5	3.0	1.0	12.6	1094.00	20.00	54.700	689.2
30	0		403.00	100.00	4.030	121.7	<u>ح</u>	1.0	30.2	564.00	20.00	28.200	851.6
0.9	1.0	55.0	108.00	50.00	2.160	118.8	6.0	1.0	55.0	333.00	20 00	16.850	915.8
60	1.0	8.8	67.90	50.00	1.358	117.9	8	1.0	86.8	217.00	20.00	10.850	941.8
9	0.	156	36.60	50.00	0.732	114.2	10	1.0	156	111.00	20.00	5.550	865.8
6	0	264	19.40	47.80	0.406	107.1	13	1.0	264	57.50	20.00	2.875	759.0
17	0		10.50	50.00	0.210	94.9	17	1.0	452	25.70	20.00	1.285	580.8
22	0.1	759	5.44	50.00	0.109	82.6	22	1.0	759	10.10	20.00	0.505	383.3
28	1.0	1,230	3.08	50.00	0 062	75.8	28	1.0	1,230	3.65	20.00	0.183	224.5
28	5.0	238	15.40	50.00	0.328	78.1	28	5.0	238	21.40	20.00	1.070	254.7
36	1.0	2,030	1.79	50.00	0.036	72.7	36	1.0	2,030	1.51	20.00	0.076	153.3
36	5.0		9.41	50.00	0.188	75.1	36	5.0	399	21.00	. 50.00	0.420	167.6
48	5.0	716	5.00	50.00	0.100	7.1.6	48	5.0	716	11.10	50.00	0.222	159.0
09	5.0	1,120	7.44	100.00	0.074	83.3	09	5.0	1,120	7.48	50.00	0.150	167.6
75	5.0	1,760	4:99	100.00	0.050	87.8	75	5.0	1,₹60	4.35	50.00	0.087	153.1
100	5.0		2.92	100.00	0.029	91.4	1.00	5.0	3,130	2.08	50.00	0.042	130.2
8	25.0	ļ	14.50	100.00	0.145	85,4	100	25.0	589	10.60	50,00	0.212	124.9
30	5.0	5,300	1.70	100.00	0.017	90.1	130	5.0	5,300	1,14	50.00	0.023	120.8
130	25.0	ļ	8.46	100.00	0.085	86.5	130	25.0	1,023	5.57	50.00	0.111	114.0
170	25.0	1,780	5.08	100.00	0.051	90.4	170	25.0	1,780	2.59	50.00	0.052	92.2
220	1	3,000	3.04	100.00	0.030	91.2	220	25.0	3,000	1.71	50.00	0.034	102.6
220	50.0	<u> </u>	5.51	100.00	290.0	93.9		50.0	1,442	3.33	50.00	0.067	96.0
280	25.0	4,890	0.97	50.00	0.019	9.4.9	280	25.0	4,890	1.02	50.00	0.020	9 66
280	50.0	2,384	2.04	50.00	0.041	97.3	280	50.0	2,384	2.05	50.00	0.041	97.7
360	. [1.24	50.00	0.025	99.0	380	50.0	3,993	1.04	43.00	0.024	98.6
480		7,160	1.37	100,00	0.014	98.1	480	50.0	7,160	0.69	20.00	0.014	98.8

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

(YE)

Constant

Ê 0

AB/2 MN/2 Geometric

12.6

0

30.2 55.0

0

86.8 156 264

0 0 1.0 452 759 1,230

0 0

9

0

0 1 0 238

5.0 0

28

28

2,030 399

36

50

36 48

7.16

ις Θ

1,120

5.0

90

1,760

э. О

75 100

3,130 589

20

25.0

100 130 1,023 1,780

25.0

130

5,300

0

1,442

3,000

25.0 50.0 25.0 50.0

220 220

25.0

170

4,890

280

2,384

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

1938.8 2200.4 1893.9 1426.9 1131.6 867.8 849.9 422.4 495.6 367.0 1611.2 2308.8 2085.6 m-mdo) 214.4 289.5 148.4 187.4 112.8 108.6 102.5 1224.1 1128.1 116.2 138.1 Station Number 35,250 25.350 14.800 7.900 4.190 1.880 0.920 4.740 0.428 97,150 53.350 2.130 0.590 0.443 0.209 0.028 0.078 0.038 0.069 0.492 0.183 0.022 (ohm) 0.081 20.00 20.00 20.00 20.00 20.00 20.00 20:00 20.00 20.00 20.00 20.00 20.00 30.00 20.00 20.00 20.00 20.00 20.00 50.00 50.00 50.00 50.00 50.00 (mA) 507.00 296.00 83.80 8.55 705.00 158.00 37.60 18.40 94.80 42.60 17.70 8.95 4.77 1.37 9.16 3.88 1943.00 0.56 4.03 1067.00 9 (SE) 12.6 30.2 55.0 AB/2 MN/2 Geometric Constant 86.8 156 264 452 759 1,230 238 399 716 2,030 1,760 3,130 1,120 589 5,300 1,023 1,780 1,442 4.890 3,000 2,384 3.993 0 1.0 0. 0 0 0 (E) 0 0. 0 0. 5.0 5.0 5.0 5.0 5.0 ις. Ο 5.0 25.0 25.0 25.0 25.0 50.0 25.0 50.0 50.0 360 280 280 480 3.0 170 220 0.9 220 K) Φ 0 100 130 130 ~ 22 28 28 36 36 8 75 100 5 00 Ê 1865.4 1199.2 916.4 (ohm-m) 2255.9 2530.0 2690.8 2574.0 2072.4 1450.9 1149.5 515.6 634.4 358.0 133.0 126.4 187.9 114.6 3.210 0.203 0.043 Station Number 7.850 148.050 74.700 46.000 16.500 1.580 0.745 4.830 0.254 1.590 0.500 0.100. 31.000 0.319 0.023 0.071 0.148 0.084 (ohm) 0.038 0.021 20.00 20.00 20.00 20.00 20.00 26.00 20,00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 40.30 50.00 40.10 50.00 50.00 50,00 920.00 157.00 330.00 14.90 1494.00 64.20 31.60 96.60 5.08 31.80 10.00 4.05 .99 0.85 2961.00 620.00 6.38 0.94 5.95 3.55 6 4.20 1.08 2.54 0.56 444

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

			Station	Station Number	230						Station	Station Number	231
Geometri	etric	^	¥	V/A	Ap. Res.	¥	AB/2 N	MN/2	Geometric	>	≪	٧/٨	Ap. Res.
Constant	tant	(m)	(mA)	(ahm)	(ohm-m)	<u> </u>	Ê	(m)	Constant	(m,V)	(mA)	(ohm)	(m-m40)
-	12.6	3066.00	20.00	153.300	1931.6		3.0	1.0	12.6	480.00	20.00	24.000	302.4
ြ	30.2	1444.00	20.00	72.200	2180.4	<u></u>	35	0.	30.2	228.00	20.00	11.400	344.3
10	55.0	769.00	20.00	38.450	2114.8		6.0	1.0	55.0	127.00	20.00	6.350	349.3
000	86.8	461.00	20.00	23.050	2000.7		50	1.0	8.98	82.40	20.00	4.120	357.6
·	156	239.00	20.00	11.950	1864.2		10	1.0	156	42.70	20.00	2.135	333.1
	264	130.00	20.00	6.500	1716.0		13	1.0	264	18.90	20.00	0.945	249.5
	452	56.50	20.00	2.825	1276.9	L	17	1,0	452	8.30	20.00	0.415	187.6
	759	21.00	20.00	1.050	797.0	<u></u>	22	0.0	759	3.92	20.00	0.196	148.8
-	1,230	8.56	20.00	0.428	526.4	L	28	0.	1,230	2.24	20.00	0.112	137.8
	238	53.20	20.00	2.660	633.1	j	28	5.0	238	13.20	20.00	0.660	157.1
2,	2,030	3.07	20.00	0.154	311.6	L	36	1.0	2,030	2.64	50,00	0.053	107.2
```	399	18.10	20.00	0.905	361.1		36	5.0	399	15.20	50.00	0.304	121.3
	716	6.71	30.00	0.224	160.1	l	48	5.0	716	6.34	50.00	0,127	80.8
-	1,120	8:08	50.00	0.162	181.2		09	5.0	1,120	3.72	20.00	0.074	83.3
-	1,760	4.34	50.00	0.037	152.8	Ĺ <u>.</u>	75	5.0	1,760	2.14	50.00	0.043	75.3
c.	3,130	1.77	50.00	0.035	110.8		100	5.0	3,130	1.15	50.00	0.023	72.0
	589	10,30	50.00	0.208	121.3		100	25.0	589	6.92	50.00	0.138	81.5
ιΩ	5,300	0.89	00.09	0.018	94.3		130	5.0	5,300	0.73	50.00	0.015	77.4
-	1,023	5.31	50.00	0.106	108.6	L	130	25.0	1,023	4.14	50.00	0.083	84.7
7-	1,780	2.54	40.00	0.064	113.0		170	25.0	1,780	2.45	50.00	0,049	87.2
ω,	3,000	2.2	50.00	0.044	132.6		220 ;	25.0	3,000	2.89	100.00	0.029	86.7
1	1,442	4.77	50.00	0.095	137.6		220	50.0	1,442	6.31	100.00	0.063	91.0
4	4,890	0.69	38.00	0.018	88.8		280	25,0	4,890	1.78	100.00	0.018	87.0
2,	384	2.28	38.00	0.060	4		280	50.0	2,384	4.22	100.00	0.042	100.6
ເດ	993	1.49	50,00	0.030	119.0		360	50.0	3,993	2.50	100.00	0,025	99.8
7.	7,160	0.69	48.50	0.014	101.9	7	480	50.0	7,160	0.87	50.00	0.017	124.6

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

20.00 20.00 20.00 20.00

472.00 232.00 124.00

> 86.8 156 264 452 759 230 238

0 0

1.0

C

20.00 20.00 20.00 20.00 20.00

32.20 62.60

15.00

1.0

0

0. 5.0

28 22

28

4.51

25.20 2.34

7.63

20.00

1239.00

12.6 30.2 55.0

0

Constant

(mA)

AB/2 MN/2 Geometric

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

92.9 98.3 96.4 91.5 98.5 94.2 92.8 93.0 106.4 105.8 110.3 { (ohm − m 87.7 108.1 113.1 Station Number 9.250 3.270 1.660 0.990 0.565 0.218 0.074 0.414 0.043 0.236 0.130 0.083 0.076 0.352 0.127 0.054 0.032 0.174 0.020 0.060 0.035 0.022 0.111 (mu) 50.00 20.00 20.00 20.00 20.00 20.00 20:00 50.00 50.00 50.00 50.00 50.00 20:00 50.00 50.00 50,00 50.00 50.00 98.00 50.00 50.00 50.00 50.00 94,00 (mA) 185.00 65.40 11,30 7.04 4.35 6.35 3.72 2,16 11.80 6.48 4,15 2.72 1.58 8.72 2.99 3.45 33.20 19.80 20.70 1.02 1.08 2.28 AB/2 MN/2 Geometric 12.6 30.2 55.0 86.8 156 264 452 759 1,230 238 2,030 399 1.120 1,760 3, 130 589 1,780 (m) | Constant 5,300 1,023 3,000 1,442 4.890 2,384 3,993 0. 5.0 0 0. 0 ō. 0 0 0. က် 5.0 25.0 0 5.0 0 5.0 25.0 50.0 25.0 170 280 360 28 220 280 3.0 6.0 100 130 130 220 10 60 Ê 5 22 36 36 100 ļ... 28 48 780.6 638.0 488.3 425.0 289.6 538.2 339.0 2774 299.9 237.5 253.4 201.2 167.4 134.8 131.9 107.9 (m - m4o) 712.7 157.3 127.2 122.8 115.3 108.0 0.90 Ap. Res. 232 Station Number 11.600 3.130 1.610 0.750 0.226 0.635 0.281 61.950 23.600 6.200 0.382 1.260 0.117 0.150 0,089 0.043 0.224 0.024 0.065 0.036 0.075 0.120 0.022 (mulo)

20.00 20.00 20.00 20.00

12.70

399 716 1,120

2,030

5.0 5

36

36

5.62 5:39 4.47 2.15 11.20

50.00 50.00 50.00 50.00

760 3,130 589

5.0

90

40.00

1.780

25.0 25.0

3,000 1 442 4.890

50.00

6.00 2.59 1.80

023

5.0

25.0

1,20 ;

5,300

50.00 50.00

100.00

... 82

3.74

50.0

4.12: 100.00

0.81

The Kingdom of NEPAL Galvanic Resistivity Methoo Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

Station Number 235

	Geometri	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	396	716	1,120	1,760	3,13(	583	5,30(	1,02;	1,78	3,00	1,44	4,89	2,38	3,99	7,16
	MN/2	Ē	0.	1.0	1.0	9.	1.0	9	0.	0.	0.	5.0	0.	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0		20.0
	AB/2	(m)	3.0	S	6.0	α	9	13	17	22	28	28	36	36	48	90	75	100	100	130	130	170	220	.520	280	280	360	480
	I					L																						
234	Ap. Res.	(m-mho)	1027.5	788.2	654.5	668.4	780.0	835.6	811.3	785.6	682.7	608.1	557.2	496.8	361.6	267.7	198.0	142.4	147.5	107.3	107.4	101.9	86.4	102.4	89.0	100.1	104.7	107.4
Station Number	V/A	(ohm)	81.550	26.100	11.900	7.700	5.000	3.165	1.795	1.035	0.555	2.555	0.275	1,245	0.505	0.239	6.113	0.046	0.251	0.020	0.105	0.057	0.029	0.071	0.018	0.042	0.026	0.015
Statio	¥	(mA)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20:00	20.00	20.00	20.00	41.00	42.00	44.00	50.00	50.00	50.00	50,00	45.00	50.00
-	>	SE)	1631.00	522.00	238.00	154.00	100.00	63.30	35.90	20.70	11.10	51.10	5.49	24.90	10.10	4.78	2.25	16.0	5.01	0.83		2.52	1.44	3.55	0.91	2.10	1.18	0.75
	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120				5.300	<u> </u>			<u>                                   </u>	4			7,160
	NND	(E)	0	Ç		) 0	-		1.0	0	1 0	50	0	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	20.0	50.0	50.
•	AB/2		3.0	2 10	2	ο α	) (	1	. 17	3	28	80	3.6	38	48	2 6	7 4	100	100	200	130	170	220	220	280	0 0 0	360	480

100.9 103.2 100.5 101.4 96.5 102.4 221.3 167.5 134.4 105.6 297.0 304.8 231.4 97.7 104.1 104.7 320.9 154.0 188.1 306.2 323.7 (m - m4o) Ap. Bes. 0.031 0.018 0.021 0.025 0.102 0,059 0.034 0:071 0.043 5.100 2.520 1,750 1.160 0.710 0.242 1.280 0.109 0.580 0.234 0.120 0.066 0.172 9,150 0.427 3.420 20.00 50.00 20.00 44.60 44.60 50.05 20.00 50.00 20.00 20.00 20.00 20.00 20.00 50.00 50.00 50.00 50.00 20,00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 1.24 1.42 1.93 2.18 11.60 5.09 0.67 0.92 0.65 25.60 4.68 1.56 2.94 2.40 1.20 0.91 4.83 8.61 50.40 35.00 23.20 14.20 8.53 68.40 102.00

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

The Kingdom of NEPAL Galvanic Resistivity Method Field Note

155.0 121.9 104.2 94.6 85.8 80.5 78.0 78.9 80.6 80.8 88.3 91.0 98.8 106.4 113.3 112.9 114.7 127.2 120.7 126.0 138.7 122.7 114.4

12.300

1.895 1.090 0.173

0.104

0.305

0.550

990.0 0.340 0.044 0 228 0.138 0.095

(ohm - m) Ap. Res.

(ohm)

Station Number 237

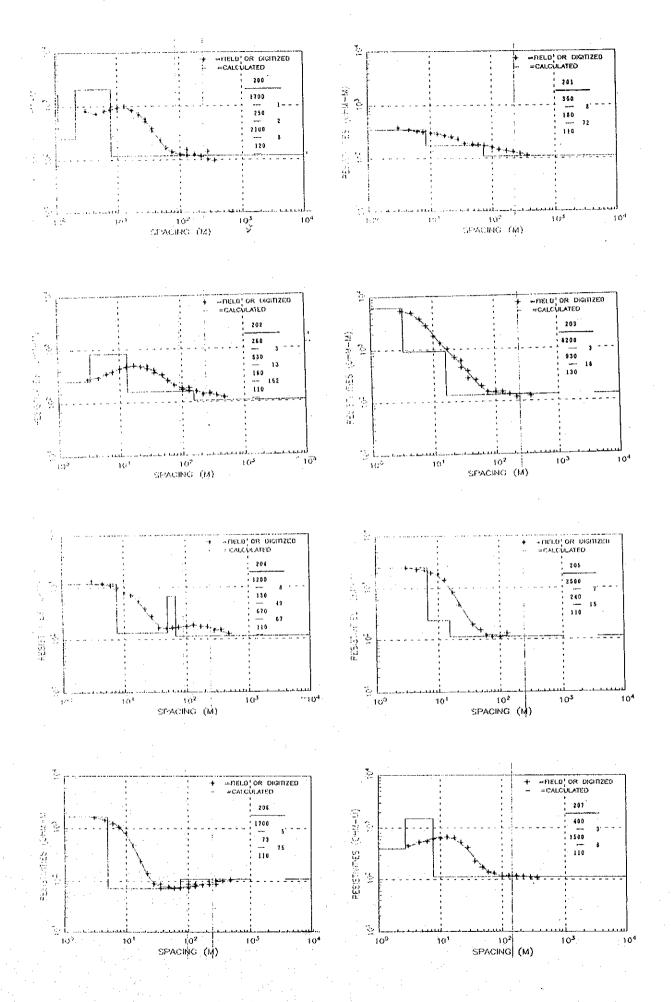
ion	- · ·		j (							_		_							 					];;				ļ 
Station	Ą	(mA)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	26.00	50.00	50.00	33.00	50.00	100.00	100.00	1.00,00	82.00	96.00	100.30	100.00	100.00	00 00 =
	>	(m V)	246.00	80.70	37.90	21.80	11.00	6.10	3,45	2.08	1.31	6.79	0.87	4.56	2.76	4.75	3.22	1.19	9.74	. 2.40	11.80	7.08	3.79	8.17	2.34	4.74	2.64	70
;	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	388	716	1,120	1,760	3,130	589	5,300	1,023	1,780	3,000	1,442	4,890	2,384	3,993	7 160
	MN/2	(m)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	5.0	1.0	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	0
	AB/2	(m)	3.0	2	6.0	æ	10	13	17	22	28	28	36	36	48	09	75	100	100	130	130	170	220	220	280	280	360	007
236	Ap. Res.	(m-m4o)	61:0	71.9	81.8	90.6	98.3	105.6	106.7	103.1	6.96	100.0	89.7	93,4	93.1	97.0	103.1	111.4	124.9	117.7	130.3	126.0	111.0	117.1	103.7	112.5	109.4	0 00 0
Station Number	V:A	(ohm)	4.840	2.380	1.488	1.044	0.630	0.400	0.236	0.136	0.079	0.420	0.044	0.234	0.130	0.087	0.059	0.036	0.212	0.022	0.127	0.071	0.037	0.081	0.021	0.047	0.027	13 7 0
Station	٠. ⊲	(mA)	50.00	50.00	50.00	50,00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00;	50.00	000
	^	: : (уш)	242.00	119.00	74.40	52.20	31.50	20.00	11.80	6.79	3.94	21.00	2.21	11.70	6.50	4.33	2.93	1.78	10.80	1.11	6.37	3.54	1.85	4.06	1.06	2.36	1.37	11.
	Geometric	Constant	12.6	30.2	55.0	86.8	156	264	452	759	1,230	238	2,030	399	716	1,120	1,760	3,130	583	5,300	1,023	1,780	3,000	1,442	4,890	2,384	3,993	001
	MN/2	Ê	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0	1.0	5.0	1.0	5.0	5.0	5.0	5.0	5.0	25.0	5.0	25.0	25.0	25.0	50.0	25.0	50.0	50.0	6 6 7
	AB/2	Œ	3.0	ĸ	6.0	80	10	13	17	22	28	28	36	36	48	90	75	100	100	130	130	170	220	220	280	280	360	60,

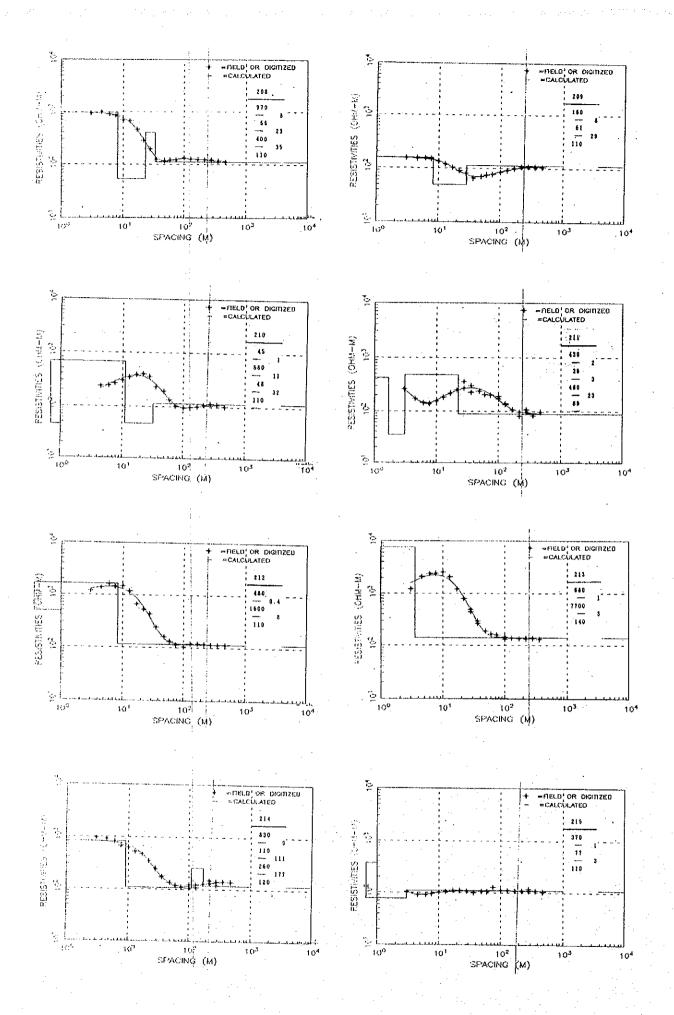
0.036

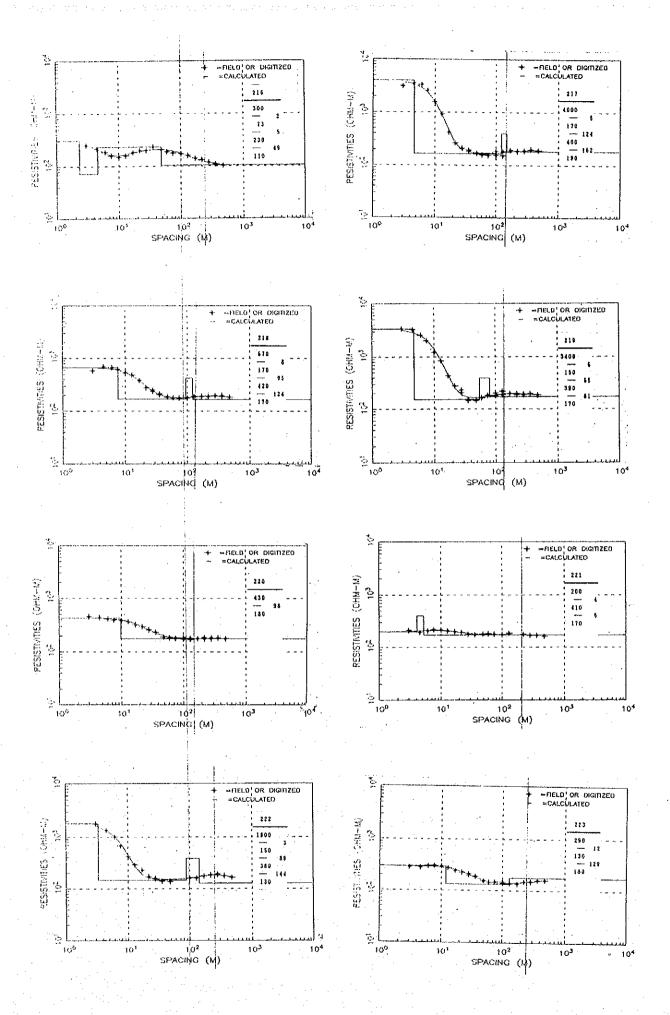
0.024

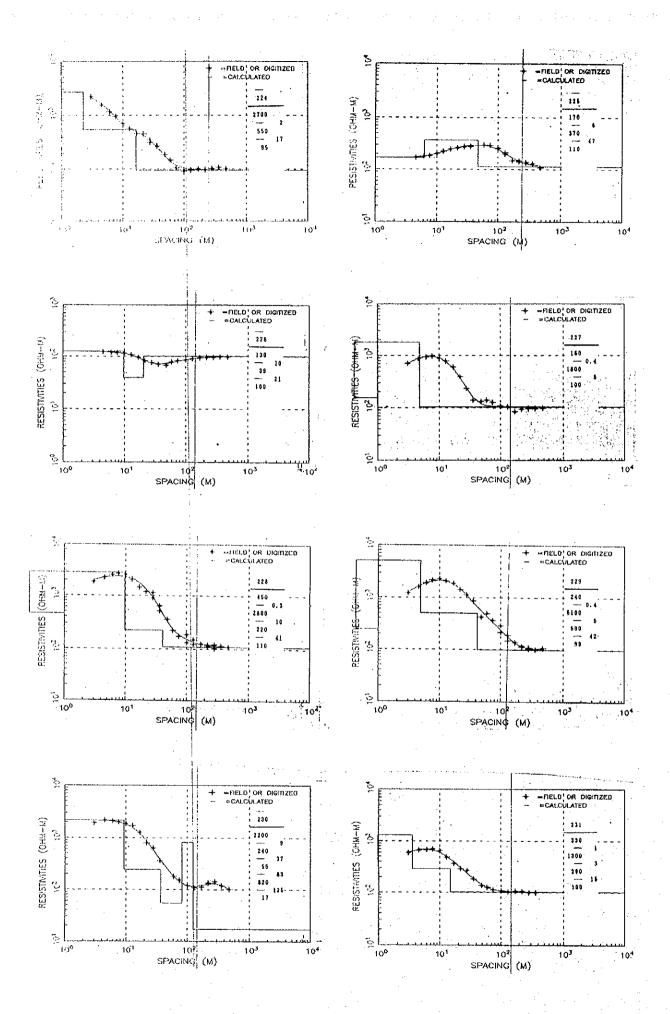
0.118

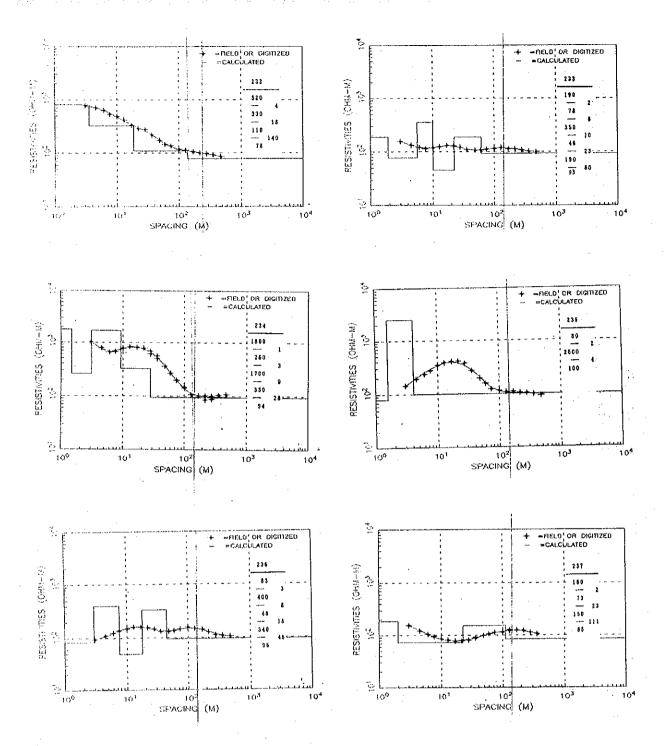
0.064

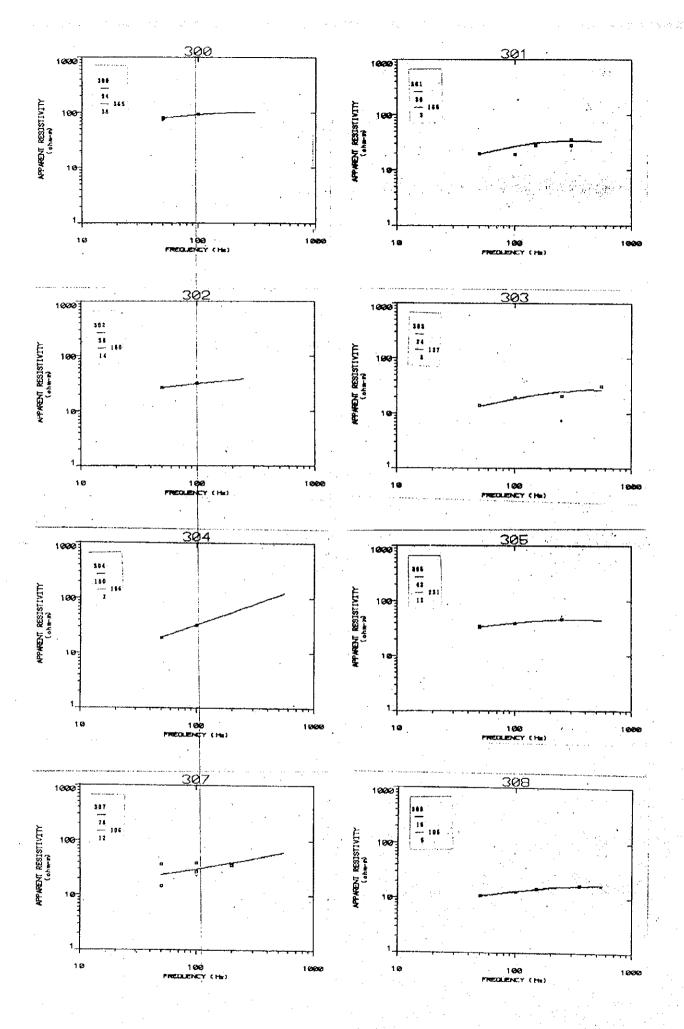

0.071

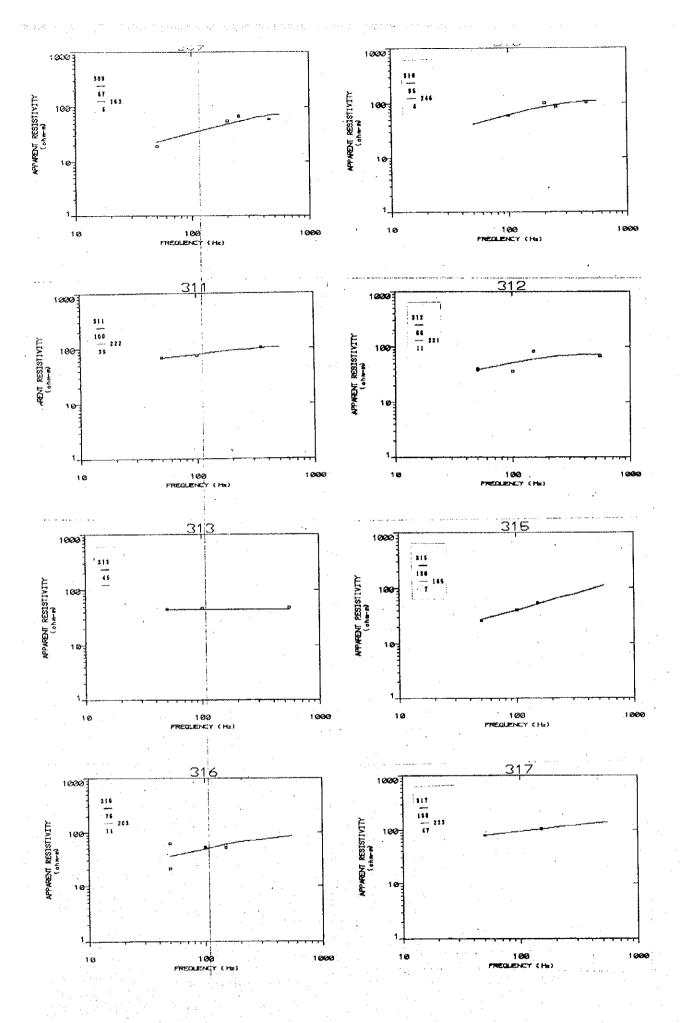

0.046

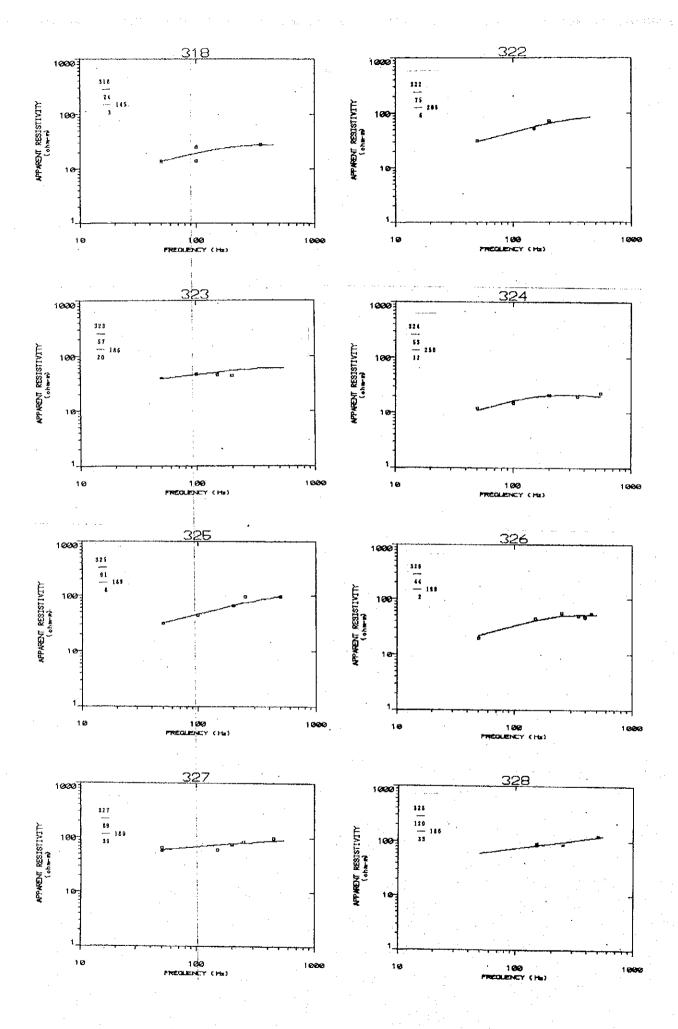

0.085

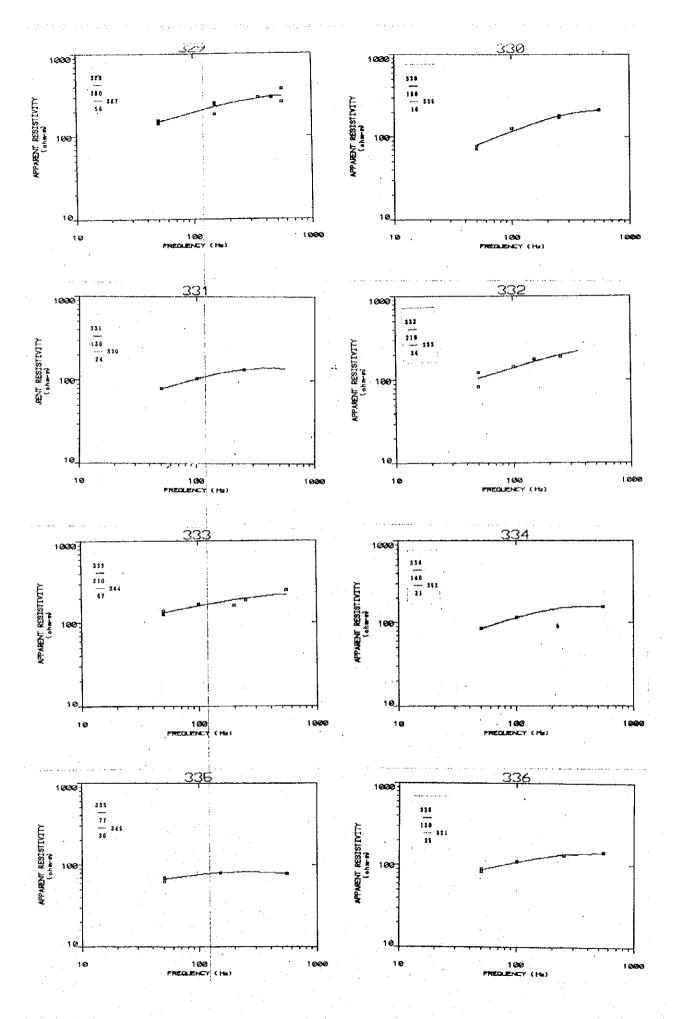

0.016

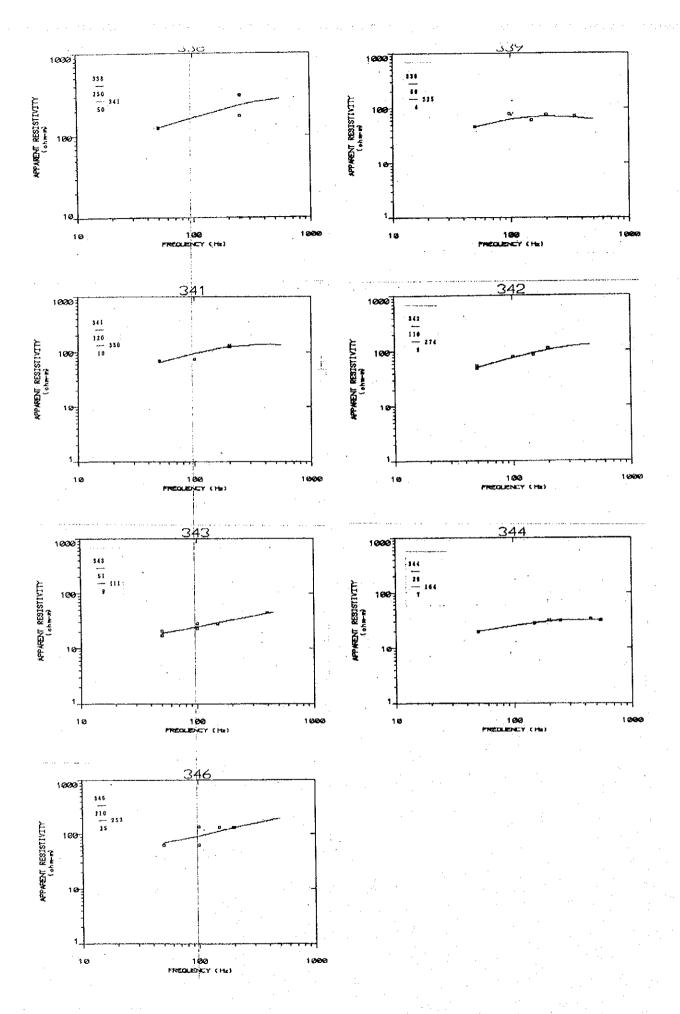

0.047



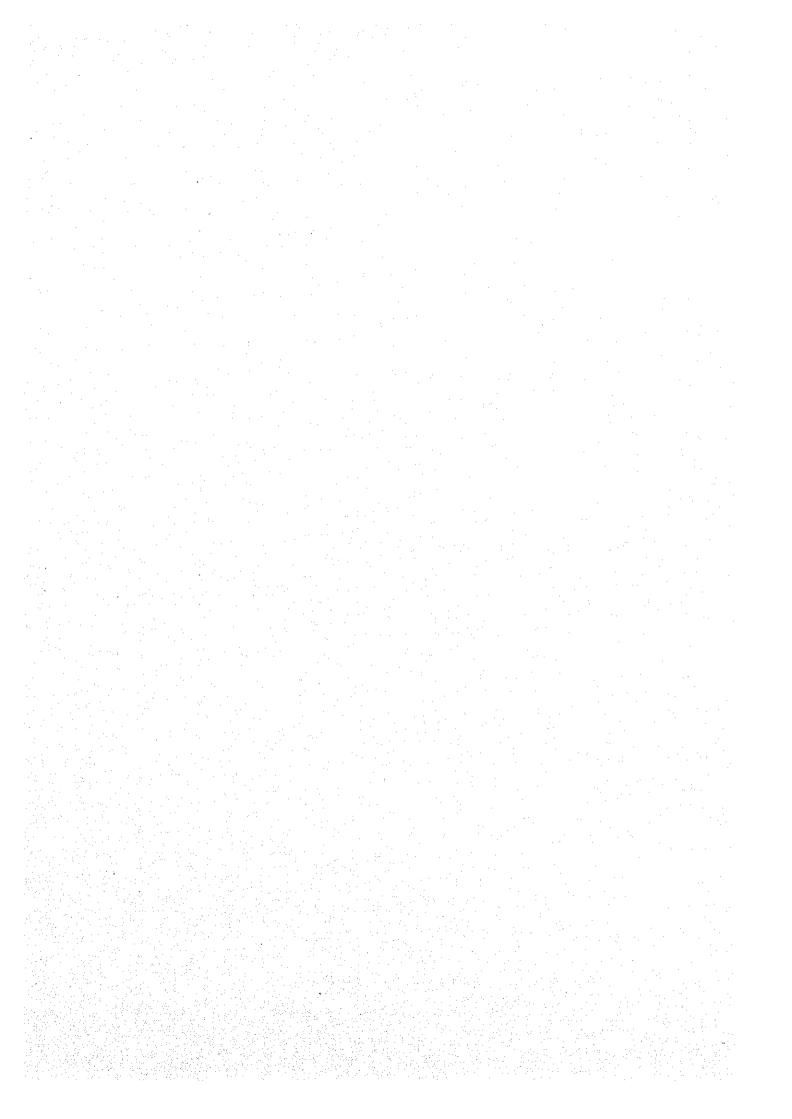












y normanda de 1900 de como de como que de estado do estado entre do entre de como de entre de entre de entre d Entre de estado entre de entre

entre de la companya La companya de la co



