JAPAN INTERNATIONAL COOPERATION AGENCY(JICA) THE DEPARTMENT OF IRRIGATION, THE MINISTRY OF WATER RESOURCES HIS MAJESTY'S GOVERNMENT OF NEPAL

THE MASTER PLAN STUDY ON THE TERAI GROUNDWATER RESOURCES EVALUATION AND DEVELOPMENT PROJECT FOR IRRIGATION

FINAL REPORT

VOLUME III: APPENDICES

MARCH, 1995

SANYU CONSULTANTS INC.

No. 52

· · · · · · · · · · · · · · · · · · ·	
国際協力事業団	
28096	

JAPAN INTERNATIONAL COOPERATION AGENCY(JICA) THE DEPARTMENT OF IRRIGATION, THE MINISTRY OF WATER RESOURCES HIS MAJESTY'S GOVERNMENT OF NEPAL

THE MASTER PLAN STUDY ON THE TERAI GROUNDWATER RESOURCES EVALUATION AND DEVELOPMENT PROJECT FOR IRRIGATION

FINAL REPORT

VOLUME III: APPENDICES

MARCH, 1995

SANYU CONSULTANTS INC.

مەرىمىيەت بەرىمىيەت بەرىمىيەت بەرىمىيەت بەرىمىيەت بەرمەت بەرىمىيەت بەرىمەت بەرىمىيەت بەرىمىيەت بەرمەت بەرمەت بە مەرىمىيەت بەرىمىيەت بەرىمىيەت بەرىمىيەت بەرىمەت بەرمەت بەرمەت بەرمەت بەرىمەت بەرىمەت بەرىمەت بەرىمەت بەرمەت بەر

PREFACE

This report summarizes the results of the "Master Plan Study on Terai Groundwater Resources Evaluation and Development Project for Irrigation," conducted by the Japan International Cooperation Agency (hereafter JICA) and requested by His Majesty's Government of Nepal (HMGN).

The major objectives of this study include the evaluation of deep groundwater resources and the formulation of an irrigation master plan using deep tubewells (DTW) in Jhapa District, in the eastern part of Terai Plain, which is the granary of Nepal, as well as Mahottari District in central Terai and Banke District in western Terai.

The study have been conducted in "Phase I" and "Phase II." The objective of the "Phase I" study is to select irrigable areas by deep tubewell as well as a representative area with the highest groundwater potential among the three study districts. As a result, the southeastern part of Jhapa District has been selected as the representative area.

After an intensive survey and study of the representative area, the objectives of the "Phase II" study include an evaluation of groundwater resources, formulations of a DTW irrigation master plan, and DTW irrigation guidelines. This Study includes the establishment of a monitoring network and observation related to meteorology, hydrology, groundwater, geophysical prospecting, the drilling of 20 exploratory wells, well testing, groundwater surveys, toposurvey of sample area, a socio-economic and agricultural study. Based on results of the said field survey, a groundwater resource evaluation and a DTW irrigation master plan and guidelines have been made for the representative area and the other two areas. As well, a groundwater monitoring system, a meteorological, hydrological, and hydrogeological database, and a groundwater management system have been constructed.

Through the study period, technical transfers have been conducted for the counterpart personnel of Department of Irrigation (DOI) in the On-The-Job basis and the training in Japan.

The "Phase I" study was conducted between October 1991 to March 1992, and "Phase II" was conducted between September 1992 to September 1994, for a total study period of 36 months.

This report is volume three of three volumes.

Volume One	:	Main Report
Volume Two	:	Sector Report
Volume Three	:	Appendices

The Study Team wishes to express its deep appreciation to the officers of the Department of Irrigation of the Ministry of Water Resources, particularly to the counterpart personnel and the officers of related agencies of Japan.

TABLE OF CONTENTS

Preface	
Abbreviation Glossary	
APPENDIX- ONE: GUIDELINES FOR DEEP TUBEWELL IRRIGATION 1-1	
1.1 LFCA and LFWY 1-1	L
1.2 Evaluation of Aquifer Potential 1-38	\$.
1.3 Construction of Prodution Well 1-38	
1.3.1 Design of Production Well	5
1.3.2 Completion of Production Well)
1.4 Back Data on Project and O&M Costs for the Case Stady using	
a Diesel Engine as a Power Source 1-45	5
APPENDIX - TWO: OPERATIONAL MANUAL FOR GROUNDWATER	
MONITORING 2-1	Ł
	1
2.1 Introduction	
2.2 Program	
2.2.1 Language	
2.2.2 Program Component	
2.2.3 Program Structure	
2.3 Input and Output Data 2-	
2.3.1 Input Data	
2.3.2 Output Data 2-	
2.4 Data Structure	
2.4.1 GENERAL.DAT	
2.4.2 BASIN.DA I	
2.4.3 DV.DAT	o ∡
2.4.4. KAIN, DA I	
2.4.5 DRF.DAT	0 7
2.5 Operation	7
2.5.1 Current Groundwater Balance	·1.
2.5.2 Simulation under Pumping Conditions	-7 -0
2.5.3 Plotting	9 10
2.6 Improvement and Maintenance	.U
2.7 Appendix	U.

I

.

APPENDIX - THREE: DATA BASE SYSTEM AND ITS OPERATION	
3.1 Introduction	
3.2 Conventional Software	
3.3 Developed Software (JDBASE)	3-2
3.3.1 Program Components	3-2
3.3.2 Operation	3-2
APPENDIX - FOUR: REFERENCE DATA	4 1
APPENDIX - FOUR: REFERENCE DATA	4-1
4.1 Meteorology and Hydrology	
4.1 Meteorology and Hydrology4.1.1 Relationship between River Discharge and Rainfall	
4.1.2 Rating Curves	
4.1.2 Rating Curves 4.1.3 Return Period by Gumbel Plot	
4.1.4 Summary of Meteorology	
4.2 Hydrogeology and Groundwater	
4.2.1 Data Sheet of Pumping Testing in Exploratory Wells, Jhapa	
4.2.2 Exploratory Wells and Existing Wells	
4.2.3 Water Quality Test	
4.2.4 Groundwater Monitoring	4-117
4.2.5 Water Utilization Survey	4-132
4.3 Agriculture and Agro-economy	4-137
4.4 Irrigation	4-166
4.4.1 Typical Standard Design	
4.4.2 Water Requirement	
4.4.3 Disbursement Schedule	
4.5 Evaluation of Groundwater Resources	
4.5.1 Details of Basin Structure	· .
4.5.2 Details of Aquifer Structure	•
4.5.3 Simulated Hydrograph	· · · · · · · · · · · · · · · · · · ·
4.5.4 Groundwater Head Contour Map	and the second
4.5.5 Summary of the Hydrologic Balance (for 14 years)	1 a.
4.6 Project Cost	1 · · · · · · · · · · · · · · · · · · ·
4.7 Project Evaluation	4-334

APPENDIX - FIVE:	SCOPE OF WORK	5-1
APPENDIX - SIX:	LIST OF MEMBERS RELATED TO THE STUDY	6-1
APPENDIX - SEVEN	BIBLIOGRAPHY	7-1

APPENDIX ADDITIONAL

4.2.6	Result of Pumping Test	A-1
4.2.7	Analysis Charts of Pumping Test	A-16
4.2.8	Data sheet on Geophysical Survey	A-46
	Analysis Charts on PLMT	

Abbreviation

ADB	:	Asian Development Bank
ADB/N	:	Agricultural Development Bank/Nepal
AIC	:	Agricultural Inputs Corporation
AMD	:	Agricultural Marketing Division
AO	:	Association Organizer
ASD	:	Agricultural Statistics Division
BNP	:	Program for Fulfillment of Basic Needs
CBS	:	Central Bureau of Statistics
CDO	:	Chief District Officer
CDR	:	Central Development Region
DMH	:	Department of Meteorology and Hydrology
DOA	:	Department of Agriculture
DOI	:	Department of Irrigation
DTW	:	Deep Tubewell
DTWIP	:	Deep Tubewell Irrigation Project
EIRR	:	Economic Internal Rate of Return
ESE	:	East-south-east
E-W	:	East-west
GCA	:	Gross Command Area
GDP	:	Gross Domestic Product
GNP	:	Gross National Product
GOJ	:	Government of Japan
GWRDB	:	
GWRDP		Ground Water Resources Development
HMGN	:	His Majesty's Government of Nepal
HYV	:	High Yielding Variety
IAP	:	Intensive Irrigation and Agriculture Program
IDA	:	International Development Association
JADP	:	Janakpur Zone Agricultural Development Project
JICA	:	Japan International Cooperation Agency
JTA	:	Junior Technical assistants
LLDC	:	Least Level Development Country
MOA	:	Ministry of Agriculture
MOWR	:	Ministry of Water Resources
MPID	:	Mater Plan for Irrigation Development in Nepal
MSL	:	Mean Sea Level
NCA	:	Net Command Area
NNE	:	North-north-east
O&M	:	Operation and Maintenance
PVC	:	Polyvinyl Chloride
SSW	:	South-south-west
STW	:	Shallow Tubewell
STWIP	:	Shallow Tubewell Irrigation Program
SWL	:	Static Water Level
TIATSP	;	Tubewell Irrigation Agriculture Training and Services Project
UNDP	:	United Nation Development Program
UPVC	:	Unplastixised Polyvinyl Chloride
ASAID	:	United State Agency for International Development
WNW	:	West-north-west
WUA	:	Water Users Association
WUG	:	Water Users Group
	•	I

Glossary

а	: Annum
av.	: Average
bgl	: Below ground level
mags	: Meter above ground surface
masl	: Meter above sea level
m	: Meter(s)
mm	: Milli-meter(s)
km	: Kilo-meter(s)
km2	: Square kilometer(s)
sq.km	: Square kilometer(s)
m3	: Cubic meter(s)
cu.m	: Cubic meter(s)
MCM	: Million cubic meter(s)
t	: Ton(s)
Mt	: Metric ton(s)
kg	: Kilogram(s)
ha	: Hectare(s)
°C	: Degree centigrade
%	: Percent
yr	: Year(s)
hr	: Hour(s)
min	: Minute(s)
sec	: Second(s)
1	: Liter(s)
S/cm	: Siemens per centimeter(s)
in	: Inch(es)
**	: Inch(es)
kw	: Kilowatt(s)
KVA	: Kilo-volt-ampere
Rs	: Nepal Rupee(s)
MRs	: Million Rupee(s)
¥	: Japanese Yen
M¥	: Million Yen
US\$: US Dollar
M\$: Million Dollar
EC	: Electric Conductivity
k .	: Permeability (Water Conductivity)
pH .	: Potential of Hydrogen
S	: Storage Coefficient
T	: Transmissivity
ND	: Nominal Diameter
ID	: Internal Diameter
OD	: Outer Diameter
MAX.	: Maximum
MIN.	: Minimum

APPENDIX - ONE

GUIDELINES FOR

DEEP TUBEWELL IRRIGATION

APPENDIX ONE: GUIDELINES FOR DTW IRRIGATION

1.1 LFCA and LFWY

The purpose of studying guidelines for DTW irrigation projects is to study the least feasible command area (LFCA) irrigated by one DTW, and to grasp the least feasible well yield (LFWY) in order to offer the materials for evaluating the economic feasibility of DTW irrigation projects in the future.

LFCA is considered the least feasible command area irrigated by one DTW under variable conditions, such as natural conditions, socio-economy, and agriculture in the project areas. After deciding LCFA, LFWY can be estimated automatically as the water requirement necessary for LCFA.

An economic analysis is carried out based on the same conditions used in 6.9 Project Evaluation in the main report, and the priority area of Jhapa District has been selected for the study. Conditions used in the study are shown below.

Command area by one DTW	100 ha
Cropping intensity without project	126%
Cropping intensity with project	200%
Cropping patterns	refer to Figure 1
Farmgate Prices	refer to Table 1
Production Costs	refer to Table 2
Project Life	50 years
Construction Period	1 year
Replacement	
DTW	20 years
Pumps	15 years
OM Equipments	10 years

The following three cases are analyzed regarding the yield of DTWs and the number of pump stations.

	Yield of DTW	Pump Stations
Case-1	90 lit/sec	1 place
Case-2	45	2
Case-3	30	3

Project costs for each case are estimated per 100 ha in the case of a) irrigated by one DTW, b) irrigated by two DTWs, and c) irrigated by three DTWs. These cost estimations are based on the topo-map survey in the sample area which was conducted in the Phase II study.

When estimating economic project costs, the land acquisition cost and price escalation cost are excluded as transfer expenditures, and local portions in the financial project cost are converted to border prices by multiplying the SCF.

The economic project costs and O & M costs per 100 ha are shown in the following three cases:

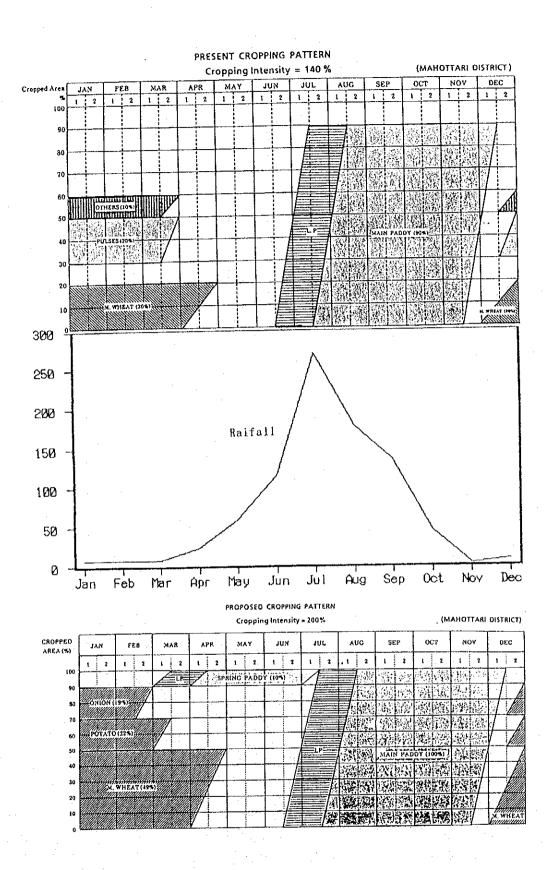
Project Costs			
		(Unit: Rs	1,000/100 ha)
	Case-1	Case-2	Case-3
LC	5,129	5,727	6,358
FC	8,901	10,956	13,308
Total	14,030	16,683	19,666
		(Unit: Rs	1,000/100 ha)
O & M Costs	Case-1	Case-2	Case-3
LC	200	287	344
FC	25	35	42
Total	225	322	386

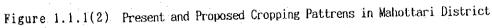
The incremental agricultural benefits are estimated as shown in Table 3.

The results of the study of the EIRR and B/C ratio in the three cases are shown below:

Case-1	Case-2	Case-3
16.77	13.94	11.75
1.53	1.26	1.07
Case-1	Case-2	Case-3
15.51	12.69	10.53
1.38	1.14	0.97
Case-1	Case-2	Case-3
15.59	12.81	10.67
1.40	1.15	0.98
	16.77 1.53 Case-1 15.51 1.38 Case-1 15.59	16.77 13.94 1.53 1.26 Case-1 Case-2 15.51 12.69 1.38 1.14 Case-1 Case-2 15.59 12.81

Base on the economic analysis, the following remarks can be made:


- number of pump stations can be reduced when the well yield is higher
- annual O & M cost will be higher when the well yield is small and the number of pump stations is high
- total length of the buried pipelines will be longer when the well yield is high and the number of pump stations is low
- EIRR and B/C ratios will be higher when the well yield is high and lower when the DTW yield is low (refer to Figure 2)
- the ratio of B/C will be less than 1.0 when the well yield is approximately 30 lit/sec
- therefore, LFCA irrigated by approximately 30 lit/sec is estimated at approximately 30 ha


1-3

- LFWY will be approximately 30 lit/sec.

Figure 1.1.1(1) Present and Proposed Cropping Pattrens in Jhapa District

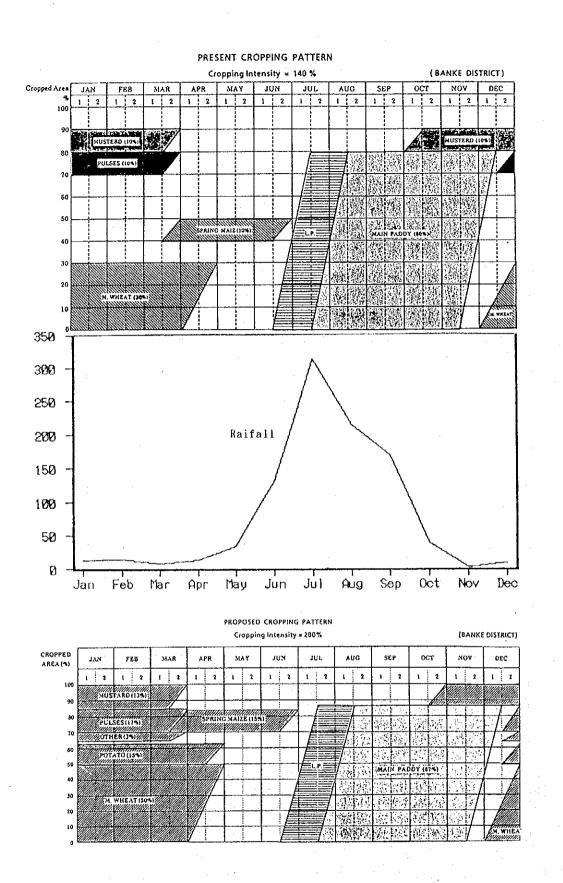


Figure 1.1.1(3) Present and Proposed Cropping Pattrens in Banke District

	Unit	Price Financial Ec	onomic	Remarks
. Seeds				
Paddy	Rs/kg	10.00	10.61	
Wheat	Rs/kg	11.65	23.90	
Maize	Rs/kg	14.20	25.12	
Mustard	Rs/kg	23.00	21.95	
Pigeon Peas	Rs/kg	16.00	14.58	
Lentil	Rs/kg	18.00	16.40	
Cauliflower	Rs/kg	300.00	273.30	
Potato	Rs/kg	10.00	9.11	
Onion	Rs/kg	225.00	204.97	
Vegetables (cabbage)	Rs/kg	305.00	277.86	
2. Crops				
Paddy	Rs/ton	4790	10106	
Wheat	Rs/ton	4250	12312	
Maize	Rs/ton	4590	9567	
Mustard(oilseeds)	Rs/ton	23110	23110	
Pigeon Peas	Rs/ton	17190	17190	•
Lentil	Rs/ton	14940	14940	
Cauliflower	Rs/ton	7690	7690	
Potato	Rs/ton	3880	3880	
Onion	Rs/ton	8940	8940	
Vegetables (cabbage)	Rs/ton	6740	6740	
3. By-products				
Paddy Straw	Rs/kg	0.40	0.36	
Wheat Straw	Rs/kg	0.25	0.23	
Maize Stalks	Rs/kg	0.20	0.18	
Lentil Stalks	Rs/kg	0.25	0.23	
Mustard Stalks	Rs/kg	0.20	0.18	
4. Fertilizer		10.18	00.00	
Nitrogen	Rs/kg	12.17	26.32	
Phosphate	Rs/kg	17.39	24.68	
Potash	Rs/kg	14.17	17.35	
Barnyard Manure	Rs/ton	200.00	182,00	
5. Agri-Chemicals	D (t	808 f	k one	
Parathion	Rs/kg	338.5 5.9	308.4	
BHC Dust	Rs/kg		5.4	
Malathion Dust	Rs/kg	12.6	11.5	
Hinosan	Rs/lit.	463.0	421.8	
2-4D	Rs/kg	203.8	185.7	
6. Farm Labor	D /1	32	22	
Hired Labor	Rs/day		68	
Hired Bullock with La	pour Ks/day	100	00	· ·

Table 1.1.1(1) Financial and Economic Price of the Commodities(Jhapa)

		Price		
	Unit	Financial E	conomic	Remarks
. Seeds	. //			
Paddy	Rs/kg	8.50	9.01	
Wheat	Rs/kg	10.50	21.50	
Maize	Rs/kg	15.00	26.51	
Mustard	Rs/kg	22.00	20.04	
Pigeon Peas	Rs/kg	16.00	14.58	
Lentil	Rs/kg	18.00	16, 39	
Cauliflower	Rs/kg	300.00	273.30	
Potato	Rs/kg	8.00	7,29	
Onion	Rs/kg	225.00	204.97	
Vegetables (cabbage)	Rs/kg	300.00	273.30	
. Crops				
Paddy	Rs/ton	6070	10361	
Wheat	Rs/ton	6010	12704	
Maize	Rs/ton	4920	9959	
Mustard (oilseeds)	Rs/ton	23480	23480	
Pigeon Peas	Rs/ton	23480 15420		
-			15420	
Lentil	Rs/ton	14940	14940	
Cauliflower	Rs/ton	6000	6000	
Potato	Rs/ton	4530	4530	÷ .
Onion	Rs/ton	4140	4140	
Vegetables (cabbage)	Rs/ton	3430	3430	
. By-products				: .
Paddy Straw	Rs/kg	0.50	0.46	
Wheat Straw	Rs/kg	0.30	0.27	
Maize Stalks	Rs/kg	0.20	0.18	·
Lentil Stalks	Rs/kg	0.25	0.23	
Mustard Stalks	Rs/kg	0.20	0.18	
. Fertilizer			· · ·	
Nitrogen	Rs/kg	11.22	27.17	
Phosphate	Rs/kg	17.39	25.35	
Potash	Rs/kg	13.58	18.00	
Barnyard Manure	Rs/ton	200.00	182.00	·. ·
. Agri-Chemicals				
Parathion	Rs/kg	338.5	308.4	· ·
BHC Dust	Rs/kg	5.9	5.4	
Malathion Dust	Rs/kg	12.6	11.5	
Hinosan	Rs/lit.	463.0		
2-4D	Rs/kg		421.8	
6 40	novrg	203.8	185.7	
. Farm Labor			· · · ·	-
				1 State 1 Stat
Hired Labor	Rs/day	35	24	

Table 1.1.1(2) Financial and Economic Price of the Commodities (Mahottari)

1. SAC 3

		Price				
	Unit	Financial Ec	onomic	Remarks		
. Seeds		0.05	0 50			
Paddy	Rs/kg	9.05	9.59			
Wheat	Rs/kg	11.65	23.90			
Maize	Rs/kg	14.90	26.37			
Mustard	Rs/kg	30.00	27.33			
Pigeon Peas	Rs/kg	20.00	18.22			
Lentil	Rs/kg	18.50	16.85			
Cauliflower	Rs/kg	550.00	501.05			
Potato	Rs/kg	8.00	7.29			
Onion	Rs/kg	225.00	204.97			
Vegetables (cabbage)	Rs/kg	340.00	309.74			
. Crops						
Paddy	Rs/ton	5270	10584			
Wheat	Rs/ton	6310	13049			
Maize	Rs/ton	5570	10302			
Mustard (oilseeds)	Rs/ton	20330	20330			
Pigeon Peas	Rs/ton	24230	24230			
Lentil	Rs/ton	21600	21600			
Cauliflower	Rs/ton	7000	7000			
Potato	Rs/ton	3600	3600			
Onion	Rs/ton	8940	8940			
Vegetables (cabbage)	Rs/ton	12060	12060			
3. By-products		i.				
Paddy Straw	Rs/kg	0.50	0.46			
Wheat Straw	Rs/kg	0.25	0.23			
Maize Stalks	Rs/kg	0.25	0.23			
Lentil Stalks	Rs/kg	0.25	0.23			
Mustard Stalks	Rs/kg	0.20	0.18			
4. Fertilizer				÷		
Nitrogen	Rs/kg	12,17	27.91			
Phosphate	Rs/kg	18.08	26.28			
Potash	Rs/kg	14.16	18.57			
Barnyard Manure	Rs/ton	200.00	182.00			
5. Agri-Chemicals						
Parathion	Rs/kg	338.5	308.4			
BHC Dust	Rs/kg	5.9	5.4			
Malathion Dust	Rs/kg	12.6	11.5			
Hinosan	Rs/lit.	463.0	421.8			
2-4D	Rs/kg	203.8	185.7			
6. Farm Labor	- ;;		· · ·			
Hired Labor	Rs/day	37	25			
Hired Bullock with Lab	our Rs/day	100	68	1 A.		

Table 1.1.1(3) Financial and Economic Price of the Commodities (Banke)

Table 1.1.2(1) Cost and Return of Crops(Economic)-Jhapa

District: Jhan)a
Grop:Rainted	Paddy-Monsoon

	<u>.</u>				
1	Unit	Without		With P	roject
µnit	Price	Quant-	Value	Quant~	Value
	(Rs)	ity	(Rs)	ity	(Rs)
	1. A.				
day	22	172	3784	185	4070
day	68	41	2788	44	2992
1		1	6572		7062
[
kg	10.61	62	658	62	658
	0.18	900	162	900	162
			•••••••••		
kg	26.32	30	790	40	1053
	24.68	10	247	20	494
		0	0	15	260
	* • • • • • • • •	0	60		150
			1916		2776
					518
					10356
+		}		•••••	36559
ton	10106	2.33		3.50	35371
	******		· · · · · · · · · · · ·		1188
					26203
	day day kg kg kg	UnitPrice (Rs) day 22 day 68 kg 10.61 kg 0.18 kg 26.32 kg 24.68 kg 17.35 kg ton 10106 ton 360	UnitPrice Quant- (Rs) ity day 22 172 day 68 41 kg 10.61 62 kg 0.18 900 kg 26.32 30 kg 24.68 10 kg 17.35 0 kg 0 ton 10106 2.33 ton 360 2.15	UnitPrice Quant- Value (Rs) ity (Rs) day 22 172 3784 day 68 41 2788 6572 kg 10.61 62 658 kg 0.18 900 162 kg 26.32 30 790 kg 24.68 10 247 kg 17.35 0 0 kg 0 60 1916 	Unit Price (Rs) Quant- ity Value (Rs) Quant- ity day 22 172 3784 185 day 68 41 2788 44 6572 6572 6572 6572 kg 10.61 62 658 62 kg 0.18 900 162 900 kg 26.32 30 790 40 kg 27.35 0 0 15 kg 0 60 1916 24321 c 24321 24321 3.50 24321 ton 10106 2.33 23547 3.50

District: Jhapa Crop: Irrigated Paddy (HYV) - Monsson

rop: Irrigated Paddy (HYV) - Monsson									
		Unit	Without	Pro ject	With P	roject			
	Unit	Price	Quant-	Value	Quant-	Value			
· · · · · · · · · · · · · · · · · · ·		(Rs)	ity	(Rs)	ity	(Rs)			
1. Production Cost									
a.Labor Cost									
Labor	day	22	179	3938	197	4334			
Bullock Labor		68	43	2924	49	3332			
Sub-total			} .	6862		7666			
b. Input Cost	[[
Seed	kg	10.61	56	594	56	594			
Manure	ton	0.18	1650	297	1650	297			
Fertilizer			}						
<u>N</u>	kg	26.32	46	1211	80	2106			
Р	kg	24.68	15	370	40	987			
K		17.35	10	174	20	347			
Agri-Chemicals	kg		0	75		200			
Sub-total		[2721		4531			
Miscellaneous (5% of total)	[]	[504		642			
Total Costs				10087		12839			
2. Gross Income				27781		42152			
***************************************	ton	10106	2.64	26629	4.00	40424			
	ton	360	3.20	1152	4.80	1728			
B. Net Profit	Rs			17694		29313			

District: Jhapa Crop: Irrigated Paddy (HYV) - Spring Paddy

GOD. III Igated Taddy (III) bp		Unit	Without	Pro iect	With Pr	ro.ject
	Unit	Price	Quant-	Value	Quant-	
		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost						
Labor	day	22	100	2200	114	2508
Bullock Labor	day	68	42	2856	47	3196
Sub-total	l			5056		5704
b. Input Cost						
Seed	kg	10.61	69	732	69	732
Manure	kg	0.18	1090	196	1090	196
Fertilizer	 	{]	ļ		
N	kg	26.32	40	1053	70	1842
Р	kg _	24.68	15	370	30	740
K	kg	17.35	10	174	20	347
Agri-Chemicals	kg		0	75		200
Sub-total		<u> </u>		2600		4058
Miscellaneous (5% of total)				403		514
Total Costs		<u> </u>		8059		10276
2. Gross Income				14847		39987
a. Main Product	ton	<u>þ0106</u>	1.41	14199	3.80	38403
b. By-product	ton	360	1.80	648	4.40	1584
B. Net Profit	Rs		<u> </u>	6788	1	29711

District:Jhapa Crop:Maize

Crop:Maize						<u> </u>
		Unit	Without	Project	With P	
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(<u>Rs</u>)
1. Production Cost						
a.Labor Cost						
	day	22	133	2926	160	3511
Bullock Labor		68	29	1972	34	2312
Sub-total				4898		5823
b.Input Cost		[
Seed	kg	25.12	25	628	25	628
Manure	kg	0.18	2880	518	2880	518
Fertilizer]				
N	kg	26.32	25	658	80	2106
P	kg	24.68	10	247	40	987
K	kg	17.35	0	0	20	347
Agri-Chemicals	kg		l	50		200
Sub-total	}	1		2101		4786
Miscellaneous (5% of total)	[368		558
Total Costs				7368		11168
2. Gross Income				12815		26412
a. Main Product	kg	9567	1.31	12533	2.70	25831
b. By-product	kg	180	1.57	283	3.23	581
B. Net Profit	Rs			5448	<u> </u>	15245

District:Jhapa Crop:Wheat

Lrop:wheat						
		Unit	Without	Project	With P	roject
· ·	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost]					
Labor	day	22	119	2618	140	3080
Bullock Labor	day	68	40	2720	47	3196
Sub-total				5338		6276
b.Input Cost	[
Seed	kg	23.9	120	2868	120	2868
Manure	kg	0.18	1700	306	1700	306
Fertilizer						
N	kg	26.32	40	1053	50	1316
Р	kg	24.68	18	444	40	987
K	kg	17.35	0	0	20	347
Agri-Chemicals	kg		0	50		150
Sub-total				4721		5974
Miscellaneous(5% of total)				529	. :	645
Total Costs			}	10588		12895
2. Gross Income]			19951		33880
a. Main Product	ton	12312	1.59	19576	2.70	33242
b. By-product	ton	230	1.63	375	2.77	637
B. Net Profit	Rs			9363		20985

District:Jhapa Crop:Lentil & Pulses

trop:Lentil & Pulses	,					· · · · · ·
		Unit	Without		With P	
	Unit	Price	Quant-	Value	Quant-	Value
N		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost	}					
a.Labor Cost						
Labor	day	22	72	1584	83	1826
Bullock Labor		68	11	748	13	898
Sub-total				2332	0	2724
b. Input Cost	[
Seed	kg	16.4	22	361	22	361
Manure	kg	0.18	300	54	300	54
Fertilizer						
N	kg	26.32	15	395	25	658
Р		24.68	20	494	40	987
K		17.35	0	0	0	0
Agri-Chemicals	kg		0	0		65
Sub-total				1303		2125
Miscellaneous (5% of total)				191		255
Total Costs		[[3827	•••••	5104
2. Gross Income	[9086		16657
a. Main Product	ton	14940	0.60		1.10	16434
b. By-product	ton	230	0.53	122	0.97	223
3. Net Profit	Rs			5259		11553

District:Jhapa Crop:Mustard(Oilcrops)

e grage i laga shekara wa takaraya na kara y**xe tix**a ke<mark>ya</mark> aka kara kara ka

rop:Mustard (Ui Icrops)		Unit	Without	Project	With Pr	roject
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
.Production Cost						
a.Labor Cost						
Labor	day	22	83	1826	98	2156
Bullock Labor		68	34	2312	38	2584
Sub-total			ļ	4138		4740
b. Input Cost						
Seed	<u>kg</u>	21.95	20	439	20	439
Manure	kg	0.18	2500	450	2500	450
Fertilizer		. 				
<u>N</u>	kg	26.32	35	921	50	1316
р	kg	24.68	10	247	40	987
K	<u>kg _</u>	17.35	0	0	30	521
Agri-Chemicals	kg		0	0		150
Sub-total	ļ			2057		3863
Miscellaneous(5% of total)	ļ		·	326		453
Total Costs			ļ	6521		9055
2. Gross Income				14239		18673
a. Main Product	ton	23110	0.61	14097	0.80	18488
b. By-product	ton	180	0.79	142	1.03	185
8. Net Profit	Rs			7718		9618

District:Jhapa Crop:Potato

rop:Potato		Unit	Without	Project	With P	roject
· · · ·	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
.Production Cost						
a.Labor Cost						
Labor	day	22	311	6842	338	7436
Bullock Labor		68	27	1836	31	2108
Sub-total			<u> </u>	8678		9544
b.Input Cost						
Seed	kg	9.11	950	8655	950	8655
Manure	kg	0.18	11500	2070	11500	2070
Fertilizer						
N	kg	26.32	300	7896	330	8686
Р	kg	24.68	100	2468	110	2715
К	kg _	17.35	25	434	28	477
Agri-Chemicals	kg]	0	150		300
Sub-total	[21672		22902
Miscellaneous (5% of total)		{	1	1597		1708
Total Costs	[[31948		34154
2. Gross Income				35269]	46560
a. Main Product	ton	3880	9.09	35269	12.00	46560
b. By-product	ton	0	0	0	0	0
B. Net Profit	Rs			. 3322		12406

District:Jhapa Crop:Vegetables(Cauliflower)

Crop: Vegetables (Cauliflower)	,					
		Unit	Without	Project	With P	roject
	Unit	Price	Quant-	Value	Quant-	Value
	{	(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost	}					
a.Labor Cost	}]		
Labor	day	22	345	7590	385	8470
Bullock Labor	}	68	25	1700	29	1972
Sub-total				9290		10442
b. Input Cost	·					
Seed	kg	273.3	0.5	137	0.5	137
Manure	kg	0.18	15000	2700	15000	2700
Fertilizer						
N	kg	26.32	50	1316	100	2632
Р	4 · · · · · ·	24.68	48	1185	80	1974
K		17.35	25	434	50	868
Agri-Chemicals	kg			150		300
Sub-total	, : e		{·····	5921		8611
Miscellaneous (5% of total)	}	•••••	·····	801		1003
Total Costs	}	i	 	16012	······	20055
2. Gross Income	{	• • • • • • • • • •		47524		84590
	ton	7690	6.18	47524	11.00	84590
······································		1030	{····			
	ton	<u>↓</u>	0.30	0	0.50	0
p. Net riolli	Rs	L		31513		64535

Table 1.1.2(2) Cost and Return of Crops(Economic)-Mahottari

Distr	ict:M	lahot	tari
-------	-------	-------	------

Cron Rainfed	Paddy-Monsoon
LEINE MALITER	FAULY MUNDUUL

crop:Rainted Paddy-Monsoon						
		Unit	With Project			
	Unit	Price	Quant-	Value	Quant-	
		(Rs)	ity	(Rs)	ity	(Rs)
1.Production Cost						
a.Labor Cost						
Labor	day	24	164	3936	175	4200
Bullock Labor	day	68	44	2992		3196
Sub-total			ļ	6928		7396
b. Input Cost						
Seed	kg	9.01	64	577	64	577
Manure	kg	0.18	900	162	900	162
Fertilizer	ļ					
N	<u>kg</u>	<u>27.17</u>	35	951	40	1087
Р	kg	25.35	10	254	20	507
К	kg .	18.00	0	0	15	270
Agri-Chemicals	Į	l	0	0		200
Sub-total		<u>_</u>		1943		2802
Miscellaneous (5% of total)	<u> </u>	. 		467		537
Total Costs	\ 	ļ		9338		10735
2. Gross Income				24733		30322
a. Main Product	ton		2.29	23675	2.80	29011
b. By-product	ton	460	2.30	1058	2.85	1311
B. Net Profit	<u> </u>		<u> </u>	15395	<u> </u>	19587

<u>cop:Irrigated Paddy(HYV)-Mc</u>		Unit	Without	Project	With Pr	
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
Production Cost				· · · · · · · · · · · ·		
a. Labor Cost						
Labor	day	24	159	3816	175	4200
Bullock Labor	day	68	41	2788	47	319
Sub-total	<u> </u>	1		6604		739
b. Input Cost			1			
Seed	kg	9.01	60	541	60	54
Manure	kg _	0.18	2100	378	2100	
Fertilizer]	· · · · · · · · · ·				
N	kg	27.17	62	1685	80	217
Р	kg	25.35	20	507	40	101
К	kg	18.00	10	180	20	36
Agri-Chemicals	}		0	0		20
Sub-total				3290		466
Miscellaneous (5% of total))	{		521		63
Total Costs		1		10415		1269
. Gross Income				29231		3683
a. Main Product	ton	10361	2.70	28016	3,40	3522
b. By-product	ton	460	2.64	1214	3.50	161
. Net Profit			· · ·	18816	· ·	2414

District:Mahottari	
--------------------	--

Crop:Irrigated Paddy (HYV) - Spring Paddy									
		Unit	Without	Project	With P	roject			
	Ünit	Price	Quant-	Value	Quant-	Value			
		(Rs)	ity	(Rs)	ity	(Rs)			
1.Production Cost									
a.Labor Cost									
Labor	day	24	100	2400	114	2736			
Bullock Labor	flay	68	42	2856	47	3196			
Sub-total				5256		5932			
b. Input Cost									
Seed	kg	9.01	60	541	60	541			
Manure	kg	0.18	2000	360	2000	360			
Fertilizer			}						
N	kg	27.17	50	1359	70	1902			
Р		25.35	15	380	30	761			
K	kg	18.00	10	180	20	360			
Agri-Chemicals			0	0		200			
Sub-total				2819		4123			
Miscellaneous (5% of total)	L			425		529			
Total Costs				8500		10584			
2. Gross Income				32967		38983			
a. Main Product	kg	10361	3.05	31601	3.60	37300			
b. By-product	kg	460	2.97	1366	3.66	1684			
B. Net Profit				24467		28399			

.

.

District:Mahottari Crop:Maize

Crop:Maize						
		Unit	Without	Pro ject	With P	roject
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost						
Labor	day	24	125	3000	150	3600
Bullock Labor	day	68	32	2176	38	2611
Sub-total				5176		6211
b.Input Cost						
Seed	kg	26.51	28	742	28	742
Manure	kg	0.18	2100	378	2100	378
Fertilizer						:
N	kg	27.17	60	1630	80	2174
Р	kg	25.35	10	254	30	761
K		18.00	0	0	20	360
Agri-Chemicals				25		200
Sub-total				3029		4614
Miscellaneous (5% of total)				432		.570
Total Costs				8637		11395
2. Gross Income				19839		26469
a. Main Product	ton	9959	1.95	19420	2.60	25893
	ton	180	2.33	419	3.20	576
B. Net Profit				11203		15074

District:Mahottari Crop:Wheat

Crop:Wheat						
		Unit	Without	Project		
	Jnit	Price	Quant-	Value	Quant-	1
		(Rs)	ity	(Rs)	ity	<u>(Rs)</u>
1.Production Cost						
a.Labor Cost						
Labor	day	24	98	2352	116	2784
Bullock Labor	day	68	47	3196	55	3740
Sub-total			<u> </u>	5548		6524
b.Input Cost						
Seed	kg .	21.5	120	2580	120	2580
Manure	kg	0.18	1800	324	1800	324
Fertilizer		}]		
N	kg	27.17	65	1766	70	1902
P .	kg	25.35	20	507	40	1014
K	kg	18.00	10	180	20	360
Agri-Chemicals			0	0		200
Sub-total		1		5357]	6380
Miscellaneous (5% of total)		[1	574	.	679
Total Costs				11479	<u> </u>	13583
2. Gross Income			[19212		33751
a. Main Product	ton	12704	1.48		2.60	33030
b. By-product	ton	270	1.52	410	2.67	721
B. Net Profit				7733	<u> </u>	20168
p. Net Prolit	L	<u> </u>		1 1100	1	, 20100

District:Mahottari Crop:Lentil & Pulses

rop:Lentil & Pulses								
		Unit	Without	Project	With P	roject		
	Unit	Price	Quant-	Value	Quant-	Value		
		(Rs)	ity	(Rs)	ity	(Rs)		
1. Production Cost								
a.Labor Cost								
Labor	day	24	60	1440	71	1704		
	day	68	12	816	12	816		
	uay		1 4	2256		2520		
Sub-total				4400		2020		
b. Input Cost		10 00		674		574		
Seed	1.2.18	16.39	35	574	35			
Manure	ĸg	0.18	1200	216	1200	216		
Fertilizer								
N	<u>kg</u>	27.17	7	190	25	679		
Р	kg	25.35	10	254	40	1014		
K	kg	18.00	0	0	0	0		
Agri-Chemicals	kg	1	0	0		200		
Sub-total		1		1233		2683		
Miscellaneous(5% of total)				184	[274		
Total Costs	1	}		3673		5477		
2. Gross Income	·•••••	· · ·		9086	1	16657		
a. Main Product	kg	14940	0.60	8964	1.10	16434		
	kg	230	0.53	122	0.97	223		
b. By-product	<u>ng</u>	- 400		5413		11180		
B. Net Profit	<u> </u>	<u> </u>	<u> </u>	0110	L.,	1 11100		

District:Mahottari Crop:Mustard(Oilcrops)

crop:mustaru (011crops)						
		Unit	Without	<u>Project</u>	With P	roject
· ·	µnit	Price	Quant-	Value	Quant-	Value
	Į –	(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost	}.	}				
Labor	day	24	86	2064	112	2688
Bullock Labor	day	68	30	2040	35	2380
Sub-tota1				4104	•••••	5068
b. Input Cost					•••••	
Seed	kg	20.04	20	401	20	401
Manure	kg	0.18	2500	450	2500	450
Fertilizer						
N	kg	27.17	35	951	50	1359
P P		25.35	10	254	30	761
K	kg	18.00	0	0	30	540
Agri-Chemicals			0	0		200
Sub-total				2055		3710
Miscellaneous (5% of total)				324		462
Total Costs	[6483		9240
2. Gross Income				12805		18969
a. Main Product	kg	23480	0.54	12679	0.80	18784
b. By-product	kg	180	0.70	126	1.03	185
<u>B. Net Profit</u>				6322	•••••	9730

District:Mahottari Crop:Potato

		Unit	Without	Project	With P	roject
	Ünit	Price	Quant-	Value	Quant-	T
		(Rs)	ity	(Rs)	ity	(Rs)
1.Production Cost	[
a.Labor Cost						[
Labor	day	24	316	7584	342	8208
Bullock Labor	day	68	42	2856	48	3264
Sub-total]			10440		11472
b. Input Cost						
Seed	kg	7.29	990	7217	990	7217
Manure	kg	0.18	15100	2718	15100	2718
Fertilizer			• • • • • • • • • • • • • •	·····		
N	kg	27.17	300	8151	310	8423
Р		25.35	100	2535	110	2789
К		18.00	50	900	50	900
Agri-Chemicals	1	•	0	0		300
Sub-total				21521	•••••	22346
Miscellaneous (5% of total)				1682		1780
Total Costs			**********	33643		35598
2. Gross Income			••••••	45662		54360
a. Main Product	ton	4530	10.08	45662	12.00	54360
b. By-product	ton	0	0	0	0	0
3. Net Profit		•••••	· · · · · · · · · · · · · · · · · · ·	12019		18762

District:Mahottari Crop:Vegetables(<u>Cauliflower</u>)

Crop: Vegetables (Cauliflower)						
		Unit	Without	Project	With P	roject
	Jnit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost						
Labor	lay	24	330	7920	368	8832
Bullock Labor	day	68	23	1564	27	1836
Sub-total			}	9484		10668
b.Input Cost						
Seed	kg	273.3	0.5	137	0.5	137
Manure	kg	0.18	14500	2610	14500	2610
Fertilizer						
N	kg	27.17	50	1359	100	2717
Р	kg	25.35	48	1217	80	2028
K	kg	18.00	25	450	50	900
Agri-Chemicals]	1	300		500
Sub-total				6072	<u> </u>	8892
Miscellaneous (5% of total)				819	ļ	1029
Total Costs		[16375		20589
2. Gross Income			[60000		72000
a. Main Product	ton	6000	10.00	60000	12.00	72000
b. By-product	ton	0	0.30	0	0.50	0
B. Net Profit	[{	1	43625		51411

. .

District:Mahottari Crop:Onion

Crop:Union							
		Unit	Without	Project	With Project		
	Unit	Price	Quant-	Value	Quant-	Value	
		(Rs)	ity	(Rs)	ity	(Rs)	
1.Production Cost							
a.Labor Cost					,		
Labor	Hay	24	430	10320	480	11520	
Bullock Labor	day	68	29	1972	29	1972	
Sub-total				12292		13492	
b.Input Cost							
Seed	kg	204.9	8.0	1640	8.0	1640	
Manure	kg	0.18	30000	5400	30000	5400	
Fertilizer							
N	kg	27.17	55	1494	66	1793	
Р	kg	25.35	45	1141	54	1369	
К		18.00	60	1080	70	1260	
Agri-Chemicals	}			500		600	
Sub-total				11255		12062	
Miscellaneous (5% of total)		[[1239		1345	
Total Costs	[24786		26899	
2. Gross Income				41400		53820	
a. Main Product	ton	4140	10.00	41400	13.00	53820	
b. By-product	ton	0	0.00	0	0.50	0	
B. Net Profit		ļ		16614		26921	

.

Table 1.1.2(3) Cost and Return of Crops(Economic)-Banke

Crop:Rainfed Paddy-Monsoon

or opendanted ready workboon		Unit	Without	Project	With P	roject
	Unit	Price	Quant-	Value	Quant-	
		(Rs)	ity	(Rs)	ity	(Rs)
1.Production Cost]					
a.Labor Cost						
Labor	day	25	156	3900	165	4125
Bullock Labor	day	68	44	2992	48	3264
Sub-total				6892		7389
b.Input Cost						
Seed	kg	9.59	65	623	65	623
Manure	kg	0.18	570	103	800	144
Fertilizer						
N	kg	27.91	45	1256	40	1116
Р	kg	26.28	10	263	20	526
K	kg	18.57	0	0	15	279
Agri-Chemicals			0 :	0		200
Sub-total	{			2245		2888
Miscellaneous (5% of total)	[{		481		541
Total Costs				9618		10818
2. Gross Income				21552		28806
a. Main Product	ton	10584	1.95	20586	2.60	27518
b. By-product	ton	460	2.10	966	2.80	1288
B. Net Profit				11934		17989

District:Banke

oropatiti Barra I dady (III 1/ alo	1000					
		Unit	Without	Project	With P	roject
	Unit	Price	Quant-	Value	Quant-	
		(Rs)	ity	(Rs)	ity	.(Rs)
1.Production Cost					1	
a.Labor Cost]					
Labor	day	25	162	4050	179	4475
Bullock Labor	day	68	46	3128	55	3740
Sub-total				7178		8215
b.Input Cost	[
Seed	kg	9.59	64	614	64	614
Manure	kg	0.18	400	72	400	72
Fertilizer						
N	kg	27.91	50	1396	80	2233
Р	kg	26.28	15	394	40	1051
К		18.57	10	186	20	371
Agri-Chemicals			0	0		200
Sub-total				2661		4541
Miscellaneous (5% of total)				518		671
Total Costs				10357		13428
2. Gross Income	[23367		38608
a. Main Product	ton	10584	2.12	22438	3.50	37044
b. By-product	ton	460	2.02	929	3.40	1564
3. Net Profit	[13010		25180

District:Banke

District:Banke						
Crop:Irrigated Paddy(HYV)-Sp	ring	Paddy				
		Unit	Without	Project	With P	roject
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost						
Labor	day	.				
Bullock Labor	lay					
Sub-tota1	ļ					
b. Input Cost		1	Į. .	1		
Seed	kg	[]]	
Manure	kg 🛛		.			
Fertilizer	[]	l
N	kg	\]]	
Р	kg _					
К	kg					
Agri-Chemicals	1	1				
Sub-total	.				Į	
Miscellaneous (5% of total)	[
Total Costs						
2. Gross Income						
a. Main Product	ton					
b. By-product	ton	.l				
B. Net Profit	L.	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

District:Banke Crop:Maize

Crop:Maize		Uni+	Without	Project	With P	ro ject
	lini+	Price	Quant-	Value	Quant-	
	JULU	(Rs)	ity	(Rs)	ity	(Rs)
		(112)	109	(110)	109	(110)
1.Production Cost				. <i></i> .		
a.Labor Cost						
Labor	day	25	132	3300	156	3900
Hired Labor	day	68	39	2652	46	3128
Sub-total				5952		7028
b. Input Cost						
Seed	kg	26.37	26	686	26	686
Manure	kg	0.18	5640	1015	5640	1015
Fertilizer		-				
N	kg	27.91	10	279	70	1954
Р	kg	26.28	10	263	40	1051
K	kg	18.57	0	0	20	371
Agri-Chemicals	1			0		300
Sub-total		1		2243		5377
Miscellaneous (5% of total)	1	1		431		653
Total Costs				8626]	13058
2. Gross Income				17030].	27498
a. Main Product	ton	10302	1.61	16586	2.60	26785
b. By-product	ton	230	1.93	444	3.10	713
B, Net Profit		1		8404		14440

District:Banke Crop:Wheat

urop:meat		···				
		Unit	Without	Project	With P	roject
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1.Production Cost						
a.Labor Cost						
Labor	llay	25	120	3000	143	3575
Bullock Labor	day	68	39	2652	45	3060
Sub-total				5652		6635
b.Input Cost						
Seed	kg	23.9	125	2988	125	2988
Manure	kg	0.18	975	176	975	176
Fertilizer	1					
N	kg	27.91	30	837	50	1396
Р		26.28	15	394	40	1051
K	(• 7 • • • •	18.57	0	0	20	371
Agri-Chemicals	· · ····		0	0		200
Sub-total			•••••	4395	••••••	6181
Miscellaneous (5% of total)	1			529		675
Total Costs				10575	•-•-•	13491
2. Gross Income				18598		27897
a. Main Product	ton	13049	1.40	18269	2.10	27403
	ton	230	1.43	329	2.15	495
B. Net Profit				8022		14407

District:Banke

<u>a</u>			÷	
Crop:	lonti	I Y.	D_{111}	000
VI 110.	1.55614/1	ו מעי	r 1.1 1	

oropinoneri a ruibeo						
		Unit	Without	Project	With P	roject
· · · ·	Ųnit	Price	Quant-	Value	Quant-	
		<u>(</u> Rs)	lity	(Rs)	ity	(Rs)
1.Production Cost						
a.Labor Cost]]				
Labor	day	25	75	1875	90	2250
Bullock Labor	day	68	14	952	16	1088
Sub-tota1	}		}	2827	0	3338
b. Input Cost	[[
Seed	kg	16.85	23	388	23	388
Manure	kg	0.18	450	81	450	81
Fertilizer]			
N	kg	27.91	10	279	25	698
Р		26.28	0	0	40	1051
K		18.57	0	0	0	0
Agri-Chemicals			0	0		200
Sub-total	}			748		2418
Miscellaneous (5% of total)		[188		303
Total Costs	[[[3763		6058
2. Gross Income	[14826		21807
a. Main Product	ton	21600	0.68	14688	1.00	21600
b. By-product	ton	230	0.60	138	0.90	207
B. Net Profit	[[11063	•••••••	15749

District:Banke Crop:Mustard(Oilcrops)

1. 1. Car

Crop: Mustard (UTICrops)			·····			
		Unit	Without]	Project	With Pr	oject
)	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1.Production Cost						
a. Labor Cost						
Labor	day	25	110	2750	132	3300
Bullock Labor	day	68	30	2040	36	2448
Sub-total				4790		5748
b.Input Cost						
Seed	kg _	27.33	20	547	20	547
Manure	kg	0.18	3600	648	3600	648
Fertilizer						
N	kg _	27.91	10	279	50	1396
Р	kg	26.28	0	0	40	1051
K	kg _	18.57	0	0	30	557
Agri-Chemicals			0	0		200
Sub-total		<u> </u>		1474		4398
Miscellaneous (5% of total)	[[]	330		534
Total Costs			_	6593		10680
2. Gross Income	1			11309	1	16417
a. Main Product	ton	20330	0.55	11182	0.80	16264
b. By-product	ton	180	0.71	128	0.85	153
B. Net Profit	<u> </u>		<u>]</u>	4716	<u> </u>	5737

District:Banke Crop:Potato

Crop:Potato		· · · · · · · · · · · · · · · · · · ·				
		Unit	Without	Project	With P	
· · · · · · · · · · · · · · · · · · ·	Jnit	Price	Quant-	Value	Quant-	
		(Rs)	ity	(Rs)	ity	(Rs)
1. Production Cost						
a.Labor Cost						
Labor	lay	25	367		390	9750
Bullock Labor	lay	68	50	3400	59	4012
Sub-total				12575		13762
b. Input Cost		[
	kg	7.29	560	4082	560	4082
	kg	0.18	8000	1440	8000	1440
Fertilizer]			
N	kg	27.91	40	1116	45	1256
Р		26.28	20	526	22	578
		18.57	0	0	0	0
Agri-Chemicals		1	0	0		300
Sub-total		1		7164		7657
Miscellaneous (5% of total)				1039		1127
Total Costs			1	20778		22546
2. Gross Income				43128		50400
	ton	3600	11.98	43128	14.00	50400
	ton	0	0	0	0	0
B. Net Profit				22350	1	27854

District:Banke Crop:Vegetables(Cauliflower)

Crop: Vegetables (Cauliflower)						
		Unit	Without	Project	With P	roject
	Unit	Price	Quant-	Value	Quant-	Value
		(Rs)	ity	(Rs)	ity	(Rs)
1.Production Cost						
a.Labor Cost						
Labor	day	25	320	8000	356	8900
Bullock Labor	day	68	25	1700	29	1972
Sub-total				9700		10872
b. Input Cost						
Seed	kg	501	0.5	251	0.5	251
Manure	kg	0.18	15000	2700	15000	2700
Fertilizer				0		
N.	kg	27.91	50	1396	80	2233
Р	kg	26.28	48	1261	70	1840
K	kg	18.57	25	464	40	743
Agri-Chemicals	<u>.</u>			500		300
Sub-total				6572		8066
Miscellaneous (5% of total)		[[856		997
Total Costs				17128		19934
2. Gross Income				62020		77000
2 • • • • • • • • • • • • • • • • • • •	ton	7000	8.86	62020	11.00	77000
	ton	0	0.50	0	0.80	0
3. Net Profit				44892		57066

	M. Paddy Rainfed		S.Paddy Irrigated	Maize	Wheat	Miscellaneous (Mustard)	Total
Without Project							
Yield(ton/ha)	2.33	-	-	1.31	1.59	-	
Price(Rs/ton)	10,106	-	-	9.567	12,312	- ·	
GPV (RS/ha)	24.321	-	-	12,815	19,951		
Production Cost(Rs/ha)	8,935	-	-	7,368	10,588	.— .	
NPV (Rs/ha)	15,386	-	. ~	5,447	9,363	-	
Cropping Area(ha)	90	<u> </u>	-	10	26	-	126
Total NPV (RS1000)	1.385	-	-	54	243	-	1,683
lith Project							
Yield (ton/ha)		4.00	3.80	2.70	2.70	0.80	
Price(Rs/ton)	-	10,106	10,106	9,567	12,312	23.110	
GPV (RS/ha)	-	42, 152	39,987	26.412	33,880	18,673	
Production Cost(Rs/ha)	-	12,839	10,276	11, 168	12,895	9,055	
NPV (Rs/ha)	- '	29,313	29,711	15,244	20,985	9,618	
Cropping Area(ha)		100	40	15	30	15	200
Total NPV (RS1000)	-	2,931	1,188	229	630	144	5,122
(ncremental NPV (Rs1000)	-1.385	2,931	1,188	174	386	144	3,440

Table 1.1.3(1) Incremental Agricultural Benefit (Jhapa)

Table 1.1.3(2) Incremental Agricultural Benefit(Mahottari)

	M.Paddy Rainfed	M. Paddy Irrigated	S. Paddy Irrigated	Wheat	Pulses (Lentil)	Onion	Potato	Others (Oilseeds)	Total
Without Project	TRITITO	ALL IGALOU						0.54	
Yield (ton/ha)	2.29		<u> </u>	1.48	0.60	-	•	0.54	
Price (Rs/ton)	10,361	-	-	12,704	14,940	-	-	23.480	
GPV (RS/ha)	24,733	<u> </u>	-	19,212	9,086	-	-	12.805	
Production Cost(Rs/ha)	9,338	· _	. <u>-</u>	11,479	3,673	-	÷- '	6.483	
	15.395		-	7,733	5,413	-	-	6,322	
NPV (Rs/ha)	15, 555		-	20	20	-	-	10	140
Cropping Area (ha)	1.386		-	155	108	· _	-	63	1.712
Total NPV (RS1000)	1,300								
With Project		3.40	3.60	2.60	_	13.00	12.00		
Yield (ton/ha)	-			12,704	-	4, 140	4,530	-	
Price(Rs/ton)	- '	10.361				53,820	54.360		
GPV (RS/ha)	-	36.837		33, 751		26.899	35.598		
Production Cost(Rs/ha)		12.697		13, 583	-		18.762		
NPV (Rs/ha)	-	24.140		20,168	-	26,921			200
Cropping Area (ha)	-	100	10.	49	. – .	19	22		4,610
Total NPV (RS1000)	-	2.414	284	988	**	511	413	~	4,010
Incremental NPV (Rs1000)	-1.380	2.414	284	834	-108_	511	413	-63	2,899

Note:GYP includes income from by-products

Table 1.1.3(3) Incremental Agricultural Benefit(Banke)

	M. Paddy Rainfed	M. Paddy Irrigated	Maize	Mustard	Wheat	Pulses (Lentil)	Potato	Others Cauliflowe	Total r)
ithout Project						0.00			
Yield(ton/ha)	1.95	-	1.61	0.55	1.40	0.68	-		
Price(Rs/ton)	10.584	- .	10.302	20,330	13.049	21.600		-	
GPV (RS/ha)	21.552	-	17,030	11.309	18,598	14.826	- · ·	-	
Production Cost(Rs/ha)	9,618	-	8.626	6.593	10.575	3.763	-	-	
NPV (Rs/ha)	11,934	÷ .	8,404	4,716	8,023	11,063	· -	-	
Cropping Area(ha)	80	1 i 2	10	10	30	10	-	· -	140
Total NPY (RS1000)	955		84	47	241	III	-	-	1.43
ith Project	1. 1. 1.						14 00	11.00	
Yield (ton/ha)		3.50	2.60	0.8	2.10	L.00	14.00		
Price (Rs/ton)	· -	10,584	10,302	20,330	13.049	21,600	5,420	7,000	
GPV (RS/ha)	_ ·	38,608	27,498	16,417	27.897	21.807	75.880	77,000	
Production Cost (Rs/ha)	19 J. 🚽 🖓 🖓	13,428	13,058	10,680	13.491	6.058	22.546	19,934	
NPV (Rs/ha)		25,180	14,440	5,737	14,406	15.749	53,334	57,066	
Cropping Area (ha)	an a	87	15	13	50	17	15	3	20
Total NPY (RS1000)		2, 191	217	75	•720	268	800	171	4,44
Incremental NPY (Rs1000)	-955	2. 191	133	27	480	157	800	171	3,00

Note: GVP includes income from by-products

Table 1.1.4(1)

Calculation of EIRR-Jhapa Representative Area-Case-1(90 lit/sec)

		0 & M)		NP	V	NP	v	NP	<u>. 1, 000)</u> v
Year	Capital	1	Total	Benefit	Return	Int. =	0.1	Int. =	0.2	Int. =	0.25
	Cost	0050	10001	Denerru	neourn	Cost	Benefit		Benefit		Benefit
1	14030	0	14030	0	-14030	14030.0	0.0	14030.0		14030.0	0.0
	0	225	225	1514	1289	186.0	1250.9	156.3	1051.1	144.0	968.7
$\frac{2}{3}$	Ö	225	225	1823	1598	169.0	1369.8	130.2	1055.1	115.2	933.5
4	Ö	225	225	2236	2011	153.7	1527.2	108.5	1078.3	92.2	915.9
5	0	225	225	2546	2321	139.7	1580.6	90.4	1023.0	73.7	834.1
6	0	225	225	2786	2561	127.0	1572.9	75.4	933.2		
7	0	225	225			1115.5				59.0	730.4
				2993	2768		1535.8	62.8	835.2	47.2	627.6
	0	225	225	3130	2905	105.0	1460.4	52.3	728.0	37.7	525.2
9	0	225	225	3234	3009	95.4	1371.4	43.6	626.7	30.2	434.0
10	484	225	709	3302	2593	273.4	1273.2	114.5	533.4	76.1	354.6
11	0	225	225	3354	3129	78.9	1175.6	30.3	451.4	19.3	288.1
12	0	225	225	3378	3153	71.7	1076.4	25.2	378.9	15.5	232.1
13	0	225	225	3440	3215	65.2	996.4	21.0	321.5	12.4	189.1
_14	0	225	225	3440	3215	59.2	905.9	17.5	267.9	9.9	151.3
15	1290	225	1515	3440	1925	362.7	823.5	98.3	223.3	53.3	121.0
16	0	225	225	3440	3215	49.0	748.6	12.2	186.1	6.3	96.8
17 [0	225	225	3440	3215	44.5	680.6	10.1	155.1	5.1	77.5
18	0	225	225	3440	3215	40.5	618.7	8.5	129.2	4.1	62.0
19	0	225	225	3440	3215	36.8	562.5	7.0	107.7	3.2	49.6
20	1157	225	1382	3440	2058	205.4	511.3	36.0	89.7	15.9	39.7
21	0	225	225	3440	3215	30.4	464.8	4.9	74.8	2.1	31.7
22	• 0	225	225	3440	3215	27.6	422.6	4.1	62.3	1.7	25.4
23	0	225	225	3440	3215	25.1	384.2	3.4	51.9	1.3	20.3
24	0	225	225	3440	3215	22.8	349.2	2.8	43.3	1.1	16.2
25	0	225	225	3440	3215	20.8	317.5	2.4	36.1	0.9	13.0
26	0	225	225	3440	3215	18.9	288.6	2.0	30.1	0.7	10.4
27	0	225	225	3440	3215	17.2	262.4	1.6	25.0	0.5	8.3
28	0	225	225	3440	3215	15.6	238.5	1.4	20.9	0.4	6.7
29	0	225	225	3440	3215	14.2	216.9	1.1	17.4	0.3	5.3
30	1774	225	1999	3440	1441	114.6	197.1	8.4	14.5	2,5	4.3
31	0	225	225	3440	3215	11.7	179.2	0.8	12.1	0.2	3.4
32	0	225	225	3440	3215	10.7	162.9	0.7	10.1	0.2	2.7
33	0	225	225	3440	3215	9.7	148.1	0.5	8.4	0.1	2.2
34	Û	225	225	3440	3215	8.8	134.7	0.5	7.0	0.1	
35	0	225	225	3440	3215	8.0	122.4	0.3	5.8	0.1	1.7 1.4
36	0	225	225	3440	3215	7.3	111.3	0.3	4.9		1.4
37	0	225	225	3440	3215	6.6	101.2	0.3	4.0	0.1 0.1	0.9
38	0	225	225	3440	3215	6.0	92.0	0.3	4.0	0.1	
39	0	225	225	3440	3215	5.5	83.6	0.2	3.4 2.8		0.7
40	1157	225	1382	3440	2058	30.5	76,0			0.0	0.6
41	0	225	225	3440	3215	4.5	69.1	0.9	2.3	0.2	0.5
42	0	225	225	3440		4.5		0.1	2.0	0.0	0.4
43	0		225	3440	3215		62.8	0.1	1.6	0.0	0.3
40	0 0	225 225			3215	3.7	57.1	0.1	1.4	0.0	0.2
45	1290		225 1515	3440	3215	3.4	51.9	0.1	1.1	0.0	0.2
		225		3440	1925	20.8	47.2	0.4	0.9	0.1	0.1
46	0	225	225	3440	3215	2.8	42.9	0.1	0.8	0.0	0.1
47	0	225	225	3440	3215	2.6	39.0	0.0	0.7	0.0	0.1
48	0	225	225	3440	3215	2.3	35.5	0.0	0.5	0.0	0.1
49	0	225	225	3440	3215	2.1	32.2	0,0	0.5	0.0	0.1
50	484	225	709	3440	2731	6.0	29.3	0.1	0.4	0.0	0.0
otal					· · · ·	16872.7			10621.5		7789.7
				÷ .	•			EIRR = B/C at 1		16.77 1.53	1997 - 1997 -

				Y			,	NDI		(Unit:Rs. NPV	
		0 & M		-		NPV		NP	0.2	Int. =	0.25
Year	Capital	Cost	Total	Benefit	Return	Int.=	0.1	Int. =	0.2 Benefit	Cost	Benefit
	Cost				10000	Cost	Benefit	Cost 16683.0	0.0	16683.0	0.0
1	16683	0	16683	0		16683.0				206.1	968.7
2	0	322	322	1514	1192	266.1	1250.9	223.6	1051.1	164.9	933.5
3	0	322	322	1823	1501	241.9	1369.8	186.3	1055.1		915.9
4	0	322	322	2236	1914	219.9	1527.2	155.3	1078.3	131.9	834.1
- 5	0	322	322	2546	2224	199.9	1580.6	129.4	1023.0	105.5	730.4
6	0	322	322	2786	2464	181.8	1572.9	107.8	933.2	84.4	
7	0	322	322	2993	2671	165.2	1535.8	89.9	835.2	67.5	627.6
8	0	322	322	3130	2808	150.2	1460.4	74.9	728.0	54.0	525.2
9	0	322	322	3234	2912	136.6	1371.4	62.4	626.7	43.2	434.0
10	484	322	806	3302	2496	310.7	1273.2	130.2	533.4	86.5	354.6
11	0	322	322	3354	3032	112.9	1175.6	43.3	451.4	27.7	288.1
12	0	322	322	3378	3056	102.6	1076.4	36.1	378.9	22.1	232.1
13	Ū Ū	322	322	3440	3118	93.3	996.4	30.1	321.5	17.7	189.1
14	Ŏ	322	322	3440	3118	84.8	905.9	25.1	267.9	14.2	151.3
15	1313	322	1635	3440	1805	391.4	823.5	106.1	223.3	57.5	121.0
16	1315	322	322	3440	3118	70.1	748.6	17.4	186.1	9.1	96.8
17		322	322	3440	3118	63.7	680.6	14.5	155.1	7.3	77.5
$\frac{11}{18}$	0	322	322	3440	3118	57.9	618.7	12.1	129.2	5.8	62.0
	0		322	3440	3118	52.6	562.5	10.1	107.7	4.6	49.6
19		322	1883	3440	1557	279.9	511.3	49.1	89.7	21.7	39.7
20	1561		322	3440	3118	43.5	464.8	7.0	74.8	3.0	31.7
21	0		322	3440	3118	39.6	422.6	5.8	62.3	2.4	25.4
22	0				3118	36.0	384.2	4.9	51.9		20.3
23			322	3440	3118	32.7	349.2	4.1	43.3		16.2
24				3440		29.7	317.5	3.4	36.1	1.2	13.0
25				3440	3118		288.6	2.8	30.1		10.4
26				3440			262.4	2.3			8.3
27				3440				2.0			6.7
28											
29			322							2.6	
30	1797							8.9			
31	.] (
32	(
33) [() 322	322								
34	[[) 322	2] 322								
35	j () 322	322	344(
36	3 () 322	2 322	3440							
3'		322									
- 38		0 32	2 322	2 344(
3		0 32								3 0.1	
4											
4						8 6.					
4	2	0 32 0 32					62.8				
4		0 32									
4		0 32) 51.9) 0.			
4											
4		0 32									
		0 32							1 0.		
4) [0.1
		0 32 0 32			***********					***********	0.1
											0.0
	0 48	94 34	<u>a</u> ov	0 [<u></u>		4 25861.			5 17832.	
fot	<u>ar</u>	· · · · · · · · · · · · · · · · · · ·				Porto.		EIRR =		13.9	
								B/C at		1.2	
	1 T 4							<i>D</i> , 0 40			

Calculation of EIRR-Jhapa Representative Area-Case-2(45 lit/sec)

1 27

		0 & M	[NP	N J	L ME	k?	(Unit:Rs	the second s
Year	Capital		Total	Benefit	Poturo	Int. =		NF Tet a		NP	
Teat	Cost	vost	TUCAL	Denerro	Neculti	Cost	0.1 Benefit	Int.= Cost	0.2 Benefit	Int.= Cost	0.25 Benefit
1	19666	0	19666	0	-19666	19666.0		19666.0		19666.0	0.0
2	0	386	386	1514	1128	319.0	1250.9	268.1	1051.1	247.0	968.7
3	Ö	386	386	1823	1437	290.0	1369.8	203.4	1051.1	197.6	933.5
4	0	386	386	2236	1850	263.6	1527.2	186.1	1078.3	158.1	915.9
5	0	386	386	2546	2160	239.7	1580.6	155.1	1070.3	126.5	834.1
6	Ŭ,	386	386	2786	2400	217.9	1572.9	129.3	933.2	101.2	730.4
7	0	386	386	2993	2607	198.1	1535.8	107.7	835.2	81.0	627.6
8	Ū	386	386	3130	2744	180.1	1460.4	89.8	728.0	64.8	525.2
9	Ŭ.	386	386	3234	2848	163.7	1371.4	74.8	626.7	51.8	434.0
10	484	386	870	3302	2432	335.4	1273.2	140.5	533.4	93.4	354.6
11	0	386	386	3354	2968	135.3	1175.6	52.0	451.4	33.2	288.1
12	Ŭ,	386	386	3378	2992	123.0	1076.4	43.3	378.9	26.5	232.1
13	0	386	386	3440	3054	111.8	996.4	36.1	321.5	20.3	189.1
14	0	386	386	3440	3054	101.6	905.9	30.1	267.9	17.0	151.3
15	1313	386	1699	3440	1741	406.7	823.5	110.3	223.3	59.8	121.0
16	0	386	386	3440	3054	84.0	748.6	20.9	186.1	10.9	
17	Ŭ.	386	386	3440	3054	76.4	680.6	17.4	155.1		96.8
18	Ö	386	386	3440	3054	69.4	618.7	14.5	129.2	8.7	77.5
19	Ö	386	386	3440	3054	63.1	562.5	14.5 12.1	107.7	7.0	62.0
20	2099	386	2485	3440	955	369.4	511.3	64.8		5.6	49.6
21	0	386	386	3440	3054	52.2	464.8		89.7 74.8	28.7	39.7
22	0	386	386	3440	3054	47.4	404.0	8.4		3.6	31.7
23	0	386	386	3440	3054	47.4	444.0 384.2	5.8	62.3 51.9	2.8	25.4
24	Ö	386	386	3440	3054	40.1 39.2	349.2			2.3	20.3
25	0	386	386	3440	3054	35.6	317.5	4.9	43.3	1.8	16.2
26	0	386	386	3440	3054	32.4	288.6	4.0	36.1	1.5	13.0
27	0	386	386	3440	3054	29.4		3.4	30.1	1.2	10,4
28	0	386	386	3440	3054	26.8	262.4	2.8	25.0	0.9	8.3
29	0	386	386	3440	3054	20.8	238.5	2.3	20.9	0.7	6.7
30	1797	386	2183	3440	1257	125.1	216.9	2.0	17.4	0.6	5.3
31	0	386	386	3440	3054	20.1	<u>197.1</u> 179.2	9.2	14.5	2.7	4.3
32	0	386	386	3440	3054 3054	18.3		1.4	12.1	0.4	3.4
33	0	386	386	3440	3054	16.5	162.9 148.1	1.1	10.1	0.3	2.7
34	0	386	386	3440	3054	15.1		0.9	8.4	0.2	2.2
35	0	386	386	3440	3054	13.1 13.7	134.7	0.8	7.0	0.2	1.7
36	0	386	386	3440	3054		122.4	0.7	5.8	0.2	1.4
37	0	386	386	3440	3054	12.5 11.4	111.3 101.2	0.5	4.9	0.1	1.1
38	0	386	386	3440	3054	11.4	92.0	0.5	4.0	0.1	0.9
39	0	386	386	3440	3054	9.4	92.0 83.6	0.4	$\frac{3.4}{2}$	0.1	0.7
40	2099	386	2485	3440	955	54.9	63.0 76.0	0.3 1.7	2.8	0.1	0.6
41	0	386	386	3440	3054	54.9 7.8	69.1	0.2	2.3	0.3	0.5
42	Ŭ,	386	386	3440	3054	7.0	62.8	0.2	2.0		0.4
43	0	386	386	3440	3054		57.1	0.2	1.6	0.0	0.3
44	0	386	386	3440	3054	6.4 5.8	51.9		1.4	0.0	0.2
45	1313	386	1699	3440	1741	23.3	51.9 47.2	0.1 0.5	$\frac{1.1}{0.0}$	0.0	0.2
46	1010	386	- 386	3440	3054	4.8			0.9	0.1	0.1
47	0	386	386	3440	3054	4.0	42.9	0.1	0.8	0.0	0.1
48	0	386	386	3440	3054		39.0 35.5	0.1	0.7	0.0	0.1
49	0	386	386	3440	3054	4.0	35.5 32.2	0.1	0.5	0.0	0.1
50	484	386	870	3440	2570	3.6 7.4		0.1	0.5	0.0	0.1
Fotal		000	010	0440		7.4 24126.6	29.3	0.1	0.4	0.0	0.0
- UUUI			· · · · · · · · · · · · · · · · · · ·			H1140.0		EIRR =	10021.0	<u>21026.1 </u> 11 75	7789.7

Calculation of EIRR-Jhapa Representative Area-Case-3(30 lit/sec)

EIRR = B/C at 10%= 11.75

1.07

Table 1.1.4(2)

.

Calculation of EIRR-Mahottari-Case-1(90 lit/sec)

(Unit:Rs.1,000)

										Unit:KS.	
1		0 & M				NP		NPV		NP\	
Year	Capital	Cost	Total	Benefit	Return	<u>Int. =</u>	0,1	<u>Int. =</u>	0.2	Int.=	0.25
	Cost					Cost	Benefit	Cost	Benefit	Cost	Benefit
1	14030	0	14030	0	-14030	4030.0	0.0	4030.0		14030.0	0.0
	0	225	225	1305	1080	186.0	1078.1	156.3	905.9	144.0	834.9
2	0	225	225	1884	1659	169.0	1415.7	130.2	1090.5	115.2	964.8
3			225	2319	2094	153.7	1584.0	108.5	1118.4	92.2	949.9
4	0	225			2384	139.7	1620.0	90.4	1048.5	73.7	854.9
<u>b</u>	0	225	225	2609		127.0	1554.6	75.4	922.3	59.0	722.0
5 6 7	0	225	225	2754	2529			62.8	788.8	47.2	592.8
7	0	225	225	2827	2602	115.5	1450.5			37.7	486.4
8	0	225	225	2899	2674	105.0	1352.4	52.3	674.2		389.1
9	0	225	225	2899	2674	95.4	1229.5	43.6	561.8	30.2	
10	484	225	709	2899	2190	273.4	1117.7	114.5	468.2	76.1	311.3
11	Ö	225	225	2899	2674	78.9	1016.1	30.3	390.2	19.3	249.0
	0	225	225	2899	2674	71.7	923.7	25.2	325.1	<u>15.5</u>	199.2
12	\$	225	225	2899	2674	65.2	839.7	21.0	271.0	12.4	159.4
13	0			2899	2674	59.2	763.4	17.5	225.8	9.9	127.5
14	0	225	225			362.7	694.0	98.3	188.2	53.3	102.0
15	1290	225	1515	2899	1384			12.2	156.8	6.3	81.6
16	0	225	225	2899	2674		630.9		130.0 130.7	5.1	65.3
17	0	225	225	2899	2674		573.6	10.1			
18	0	225	225	2899	2674		521.4	8.5	108.9	4.1	52.2
19	0		225	2899	2674	36.8	474.0	7.0	90.7	3.2	41.8
20	1157	225		2899	1517	205.4	430.9	36.0	75.6	15.9	33.4
21	0		225	2899	2674		391.7	4.9	63.0	2.1	26.7
			225	2899	2674		356.1	4.1	52.5	1.7	21.4
22	0			2899	2674		323.8	3.4	43.8	1.3	17.1
23	0		225		2674		294.3	2.8	36.5		13.7
24	0							2.4	30.4		11.0
25	0								25.3		8.8
26	0							2.0			7.0
27	0	225						1.6	21.1		5.6
28		225	225	2899	2674			1.4	17.6		
29		225	225	2899	2674	14.2		1.1	14.7		
30					900) 114.6	166.1	8.4	12.2	2.5	3.6
31						1 11.7	151.0	0.8	10.2		
									8.5	0.2	
32										0.1	1.8
33											1.5
34											
35) 225									
3€) 225	5 22								
37	7	0 22									
38		0 22	5 22								
- 39		0 22		5 289							
4(2.(
4		0 22						0.1			
4		0 22							1.4		
							7 48.				
4											
4		0 22									
4											
4		0 22				4 2.					
4	7	0 22									
4		0 22									
		0 22		5 289							
	0 48					10 6.	0 24.	7 0.			
fot						16872.	7 23332.	<u>5 15168.</u>	1 9918.	3 14863.	1 7351.0
LUC	417							EIRR =		15.5	1
6. S. 1997		and the second		10 A. 10 A.	1. Sec. 1. Sec. 4.						

1-29

EIRR =

1.38

B/C at 10%=

		÷ .	
Calculation	of EIRR-Mahottari-Case-	2 (45	lit/sec)

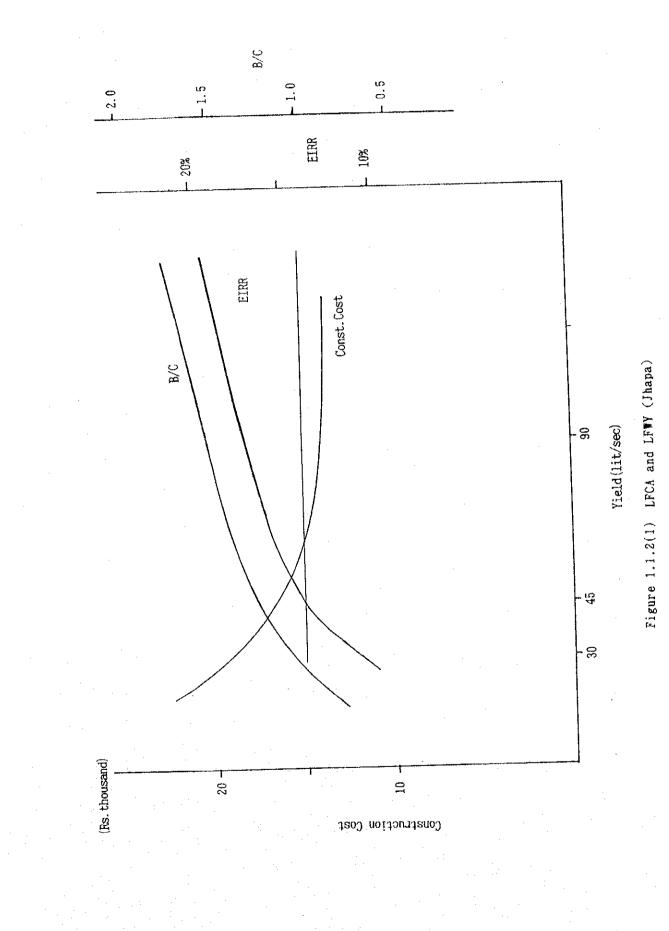
Т		0 & M				NP	v	NP	V	(Unit:Rs NP	
Year	Capital	Cost	Total	Benefit	Return	Int.=	0.1	Int. =	0.2	Int.=	0.25
100	Cost	0000		Denorie	·	Cost	Benefit		Benefit		Benefi
1	16683	0	16683	0	-16683	16683.0		16683.0		16683.0	0.0
2	0	322	322	1305	983	266.1	1078.1	223.6	905.9	206.1	834.9
3	0	322	322	1884	1562	241.9	1415.7	186.3	1090.5	164.9	964.8
4	Ö	322	322	2319	1997	219.9	1584.0	155.3	1118.4	131.9	949.9
5	0	322	322	2609	2287	199.9	1620.0	129.4	1048.5	105.5	854.9
6	0	322	322	2754	2432	181.8	1554.6	107.8	922.3	84.4	722.0
	0	322	322	2827	2505	165.2	1450.5	89.9	788.8	67.5	
	**********		322	2899	2505			74.9	674.2	54.0	592.8
	0	322				150.2	1352.4				486.4
9	0	322	322	2899	2577	136.6	1229.5	62.4	561.8	43.2	389.1
10	484	322	806	2899	2093	310.7	1117.7	130.2	468.2	86.5	311.3
11	0	322	322	2899	2577	112.9	1016.1	43.3	390.2	27.7	249.0
12	0	322	322	2899	2577	102.6	923.7	36.1	325.1	22.1	199.2
13	0	322	322	2899	2577	93.3	839.7	30.1	271.0	17.7	159.4
14	0	322	322	2899	2577	84.8	763.4	25.1	225.8	14.2	127.5
15	1313	322	1635	2899	1264	391.4	694.0	106.1	188.2	57.5	102.0
16	0	322	322	2899	2577	70.1	630.9	17.4	156.8	9.1	81.6
17	0	322	322	2899	2577	63.7	573.6	14.5	130.7	7.3	65.3
18	0	322	322	2899	2577	57.9	521.4	12.1	108.9	5.8	52.2
19	0	322	322	2899	2577	52.6	474.0	10.1	90.7	4.6	41.8
20	1561	322	1883	2899	1016	279.9	430.9	49.1	75.6	21.7	33.4
21	0	322	322	2899	2577	43.5	391.7	7.0	63.0	3.0	26.7
22	0	322	322	2899	2577	39.6	356.1	5.8	52.5	2.4	21.4
23	0	322	322	2899	2577	36.0	323.8	4.9	43.8	1.9	17.1
24	0	322	322	2899	2577	32.7	294.3	4.1	36.5	1.5	13.7
25	0	322	322	2899	2577	29.7	267.6	3.4	30.4	1.2	11.0
26	0	322	322	2899	2577	27.0	243.2	2.8	25.3	1.0	8.8
27	0	322	322	2899	2577	24.6	221.1	2.3	21.1	0.8	7.0
28	0	322	322	2899	2577	22.3	201.0	2.0	17.6	0.6	5.6
29	0	322	322	2899	2577	20.3	182.8	1.6	14.7	0.5	4.5
30	1797	322	2119	2899	780	121.4	166.1	8.9	12.2	2.6	3.6
31	0	322	322	2899	2577	16,8	151.0	1.1	10.2	0.3	2.9
32	0	322	322	2899	2577	15.3	137.3	0.9	8.5	0.3	2.3
33	0	322	322	2899	2577	13.9	124.8	0.8	7.1	0.2	1.8
34	0	322	322	2899	2577	12.6	113.5	0.7	5.9	0.2	1.5
35	0	322	322	2899	2577	11.5	103.2	0.5	4.9	0.1	1.2
36	0	322	322	2899	2577	10.4	93.8	0.5	4.1	0.1	0.9
37	0	322	322	2899	2577	9.5	85.3	0.4	3.4	0.1	0.8
38	0	322	322	2899	2577	8.6	77.5	0.3	2.8	0.1	0.6
39	0	322	322	2899	2577	7.8	70.5	0.3	2.4	0.1	0.5
40	1561	322	1883	2899	1016	41.6	64.1	1.3	2.0	0.3	0.4
41	0	322	322	2899	2577	6.5	58.2	0.2	1.6	0.0	0.3
42	0	322	322	2899	2577	5.9	52.9	0.2	1.4	0.0	0.2
43	Ō	322	322	2899	2577	5.3	48.1	0.1	1.1	0.0	0.2
44	0	322	322	2899	2577	4.9	43.7	0.1	1.0	0.0	0.2
45	1313	322	1635	2899	1264	22.4	39.8	0.4	0.8	0.1	0.1
46	0	322	322	2899	2577	4.0	36.2	0.1	0.7	0.0	0.1
47	0	322	322	2899	2577	3.7	32.9	0.1	0.6	0.0	0.
48	Ő	322	322	2899	2577	3.3	29.9	0.1	0.5	0.0	0.
49	Ū	322	322	2899	2577	3.0	27.2	0.0	0.4	0.0	0.
50	484	322	806	2899	2093	6.9	24.7	0.1	0.3	0.0	0.0
lotal			J				23332.5			17832.0	7351.
								EIRR =		12.69	1 1 4 4 4 1 1
								B/C at 1		1,14	

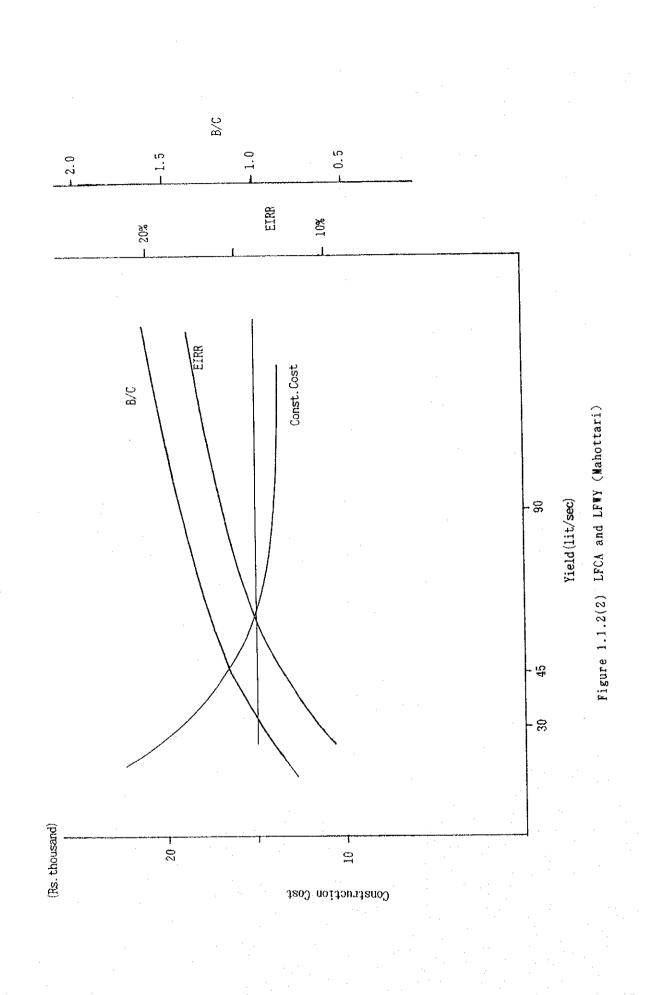
Calculation	of	EIRR-Mahottari-Case-3(30	lit/sec)

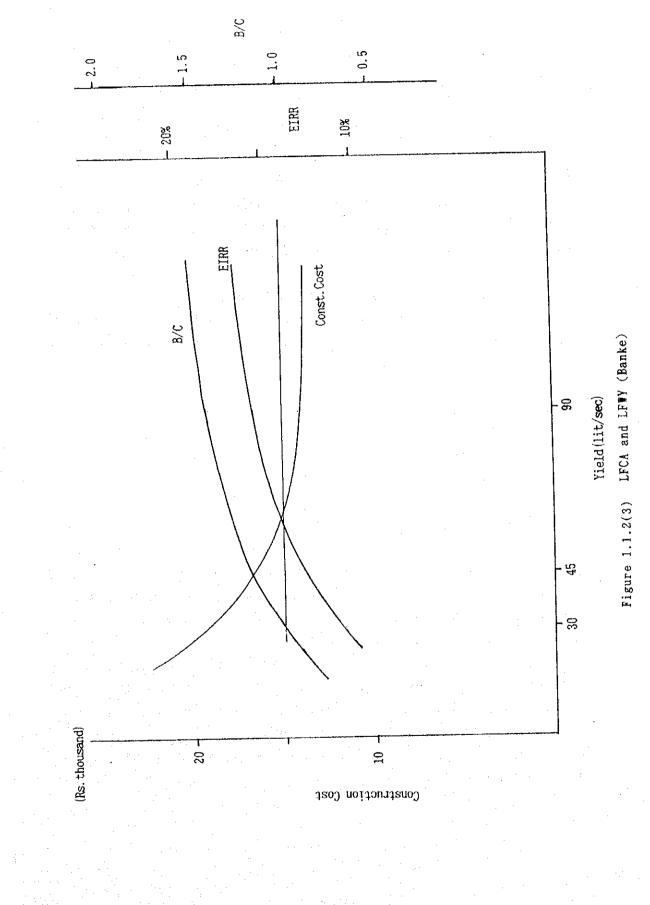
		0 & M		·	1	NP1	1	NP	1	(Unit:Rs. NP\	
'ear	Capital		Total	Benefit	Return	Int.=	0.1	Int.=	0.2	Int.=	0.25
<u> </u>	Cost	0000	10001			Cost	Benefit	Cost	Benefit	Cost	Benefit
1	19666	0	19666	0	-19666	19666.0		19666.0		19666.0	0.0
2	0	386	386	1305	919	319.0	1078.1	268.1	905.9	247.0	834.9
3	0	386	386	1884	1498	290.0	1415.7	223.4	1090.5	197.6	964.8
	0	386	386	2319	1933	263.6	1584.0	186.1	1118.4	158.1	949.9
4 5	0	386	386	2609	2223	239.7	1620.0	155.1	1048.5	126.5	854,9
U R	0	386	386	2754	2368	217.9	1554.6	129.3	922.3	101.2	722.0
6 7	0	386	386	2827	2441	198.1	1450.5	107.7	788.8	81.0	592.8
		386	386	2899	2513	180.1	1352.4	89.8	674.2	64.8	486.4
	0	386	386	2899	2513	163.7	1229.5	74.8	561.8	51.8	389.1
9	0	386	870	2899	2029	335.4	1117.7	140.5	468.2	93.4	311.3
10	484		386	2899	2513	135.3	1016.1	52.0	390.2	33.2	249.0
11	0	386			2513	123.0	923.7	43.3	325.1	26.5	199.2
12	<u> </u>	386	386	2899				36.1	271.0	20.3	159.4
13	0	386	386	2899	2513	111.8	839.7	30.1	225.8	17.0	127.5
14	0	386	386	2899	2513	101.6	763.4		188.2	59.8	102.0
15	1313	386	1699	2899	1200	406.7	694.0	110.3	156.8	10.9	81.6
16	0	386	386	2899	2513	84.0	630.9	20.9		8.7	65.3
17	0	386	386	2899	2513	76.4	573.6	17.4	130.7		
18	0	386	386	2899	2513	69.4	521.4	14.5	108.9	7.0	52.2
19	0	386	386	2899	2513	63.1	474.0	12.1	90.7	5.6	41.8
20	2099	386	2485	2899	414	369.4	430.9	64.8	75.6	28.7	33.4
21	0	386	386	2899	2513	52.2	391.7	8.4	63.0	3.6	26.7
22	0	386	386	2899	2513	47.4	356.1	7.0	52.5	2,8	21.4
23	0	386	386	2899	2513	43.1	323.8	5.8	43.8	2.3	17.1
24	0	386	386	2899	2513	39.2	294.3	4.9	36.5	1.8	13.7
25	0	386	386	2899	2513	35.6	267.6	4.0	30.4	1.5	11.0
26	0	386	386	2899	2513	32.4	243.2	3.4	25.3	1.2	8.8
27	0	386	386	2899	2513	29.4	221.1	2.8	21.1	0.9	7.0
28	0	386	386	2899	2513	26.8	201.0	2.3	17.6	0,7	5.6
29	Ō	386	386	2899	2513	24.3	182.8	2.0	14.7	0.6	4.5
30	1797	386	2183	2899	716	125.1	166.1	9.2	12.2	2.7	3.6
31	0	386	386	2899	2513	20.1	151.0	1.4	10.2	0.4	2.9
32	Ö	386	386	2899	2513	18.3	137.3	1.1	8.5	0.3	2.3
33	Ö	386	386	2899	2513	16.6	124.8	0.9	7.1	0.2	1.8
34	Ì	386	386	2899	2513	15.1	113.5	0.8	5.9	0.2	1.5
35	Ö	386	386	2899	2513	13.7	103.2	0.7	4.9	0.2	1.2
36	Ö			2899	2513	12.5	93.8	0.5	4.1	0.1	0.9
37	0	386		2899	2513	11.4	85.3		3.4	0.1	0.8
38	0			2899	2513	10.3	77.5	0.4	2.8	0.1	0.6
39 39	0			2899		9.4	70.5	0.3	2.4	0.1	0.5
	2099			2899	414	54.9	64.1	1.7	2.0		0.4
40				2899		7.8	58.2	0.2	1.6		0.3
41	0	********				7.0	52.9	0.2	1.4		0.2
42	0						48.1	0,2	1.1	0.0	0.2
43						6.4			1 0		0.2
44						5.8	43.7		1.0	0.1	0.2
45						23.3	39.8				
46		386				4.8	36.2		0.7		0.1
47	0					4.4	32.9		0.6		0.1
48	0					4.0	29.9		0.5		0.1
49		*******					27.2		0.4		0.1
50		386	870	2899	2029		24.7		0.3		0.0
lota	1					24126.6	23332.5	21501.7	9918.3		7351.0
								EIRR =		10.53	

Table 1.1.4(3)

Calculation of EIRR-Banke-Case-1(90 lit/sec)


		0 & M	1	·····		NP	17	NP	V	(Unit:Rs NP	
Voon	Capital		Total	Benefit	Roturn	Int.≃	0.1	Int. =	0.2	Int. =	0.25
Year		wsi	10041	Denerro	Necarn	Cost	Benefit	Cost	Benefit		Benefit
	Cost 14030	0	14030	0	-14030	4030.0		14030.0		14030.0	
1							0.0				0.0
2	0	225	225	1352	1127	186.0		156.3	938.8	144.0	865.2
	0	225	225	1802	1577	169.0	1354.2	130.2	1043.1	115.2	922.8
	0	225	225	2253	2028	153.7	1538.8	108.5	1086.5	92.2	922.8
5	0	225	225	2493	2268	139.7	1548.2	90.4	1002.0	73.7	817.0
	0	225	225	2704	2479	127.0	1526.1	75.4	905.4	59.0	708.7
7	0	225	225	2824	2599	115.5	1449.0	62.8	788.1	47.2	592.2
8	0	225	225	2914	2689	105.0	1359.3	52.3	677.7	37.7	488.9
9	0	225	225	2944	2719	95.4	1248.5	43.6	570.6	30.2	395.1
10	484	225	709	3004	2295	273.4	1158.2	114.5	485.2	76.1	322.6
11	0	225	225	3004	2779	78.9	1052.9	30.3	404.3	19.3	258.0
12	0	225	225	3004	2779	71.7	957.2	25.2	336.9	15.5	206.4
13	0	225	225	3004	2779	65.2	870.2	21.0	280.8	12.4	165.1
14	0	225	225	3004	2779	59.2	791.0	17.5	234.0	9.9	132.1
15	1290	225	1515	3004	1489	362.7	719.1	98.3	195.0	53.3	105.7
16	0	225	225	3004	2779	49.0	653.8	12.2	162.5	6.3	84.6
17	0	225	225	3004	2779	44.5	594.3	10.1	135.4	5.1	67.6
18	0	225	225	3004	2779	40.5	540.3	8.5	112.8	4.1	54.1
19	0	225	225	3004	2779	36.8	491.2	7.0	94.0	3.2	43.3
20	1157	225	1382	3004	1622	205.4	446.5	36,0	78,4	15.9	34.6
21	0	225	225	3004	2779	30.4	405.9	4.9	65.3	2.1	27.7
22	0	225	225	3004	2779	27.6	369.0	4.1	54.4	1.7	22.2
23	Ō	225	225	3004	2779	25.1	335.5	3.4	45.3	1.3	17.7
24	0	225	225	3004	2779	22.8	305.0	2.8	37.8	1.1	14.2
25	0	225	225	3004	2779	20.8	277.3	2.4	31.5	0.9	11.3
26	0	225	225	3004	2779	18.9	252.1	2.0	26.2	0.7	9.1
27	0	225	225	3004	2779	17.2	229.1	1.6	21.9	0.5	7,3
28	0	225	225	3004	2779	15.6	208.3		18.2	0.4	
29	0	225	225					1.4			5.8
30	1774			3004	2779	14.2	189.4	1.1	15.2	0.3	4.6
		225	1999	3004	1005	114.6	172.2	8.4	12.7		3.7
	0	225	225	3004	2779	11.7	156.5	0.8	10.5	0.2	3.0
32	0	225	225	3004	2779	10.7	142.3	0.7	8.8	0.2	2.4
33	0	225	225	3004	2779	9.7	129.3	0.5	7.3	0.1	1.9
34	0	225	225	3004	2779	8.8	117.6	0.5	6.1	0.1	1.5
35	0	225	225	3004	2779	8.0	106.9	0.4	5.1	0.1	1.2
36	0	225	225	3004	2779	7.3	97.2	0.3	4.2	0.1	1.0
37	0	225	225	3004	2779	6.6	88.3	0.3	3.5	0.1	0.8
38	0	225	225	3004	2779	6.0	80.3	0.2	2.9	0.0	0.6
39	0	225	225	3004	2779	5.5	73.0	0.2	2.5	0.0	0.5
40	1157	225	1382	3004	1622	30.5	66.4	0.9	2.0	0.2	0.4
41	0	225	225	3004	2779	4.5	60.3	0.1	1.7	0.0	0.3
42	0	225	225	3004	2779	4.1	54.9	0.1	1.4	0.0	0.3
43	0	225	225	3004	2779	3.7	49.9	0.1	1.2	0.0	0.2
44	0	225	225	3004	2779	3.4	45.3	0.1	1.0	0.0	0,2
45	1290	225	1515	3004	1489	20.8	41.2	0.4	0.8	0.1	0.1
46	0	225	225	3004	2779	2.8	37.5	0.1	0.7	0.0	0.1
47	0	225	225	3004	2779	2.6	34.1	0.0	0.6	0.0	0.1
48	0	225	225	3004	2779	2.3	31.0	0.0	0.5	0.0	0.1
49	Ū Ū	225	225	3004	2779	2.1	28.1	0.0	0.4	0.0	0.1
50	484	225	709	3004	2295	6.0	25.6	0.1	0.3	0.0	0.0
Fotal			1			6872.7		15168.1		14863.1	7325.3
6								EIRR =	1 00041-3	15.59	
	· · · ·	·						B/C at 1	N¥=	13.33	
		-						י טוט עיקע		1. 10	1.1


Calculation of EIRR-Banke-Case-2(45 lit/sec)


$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											(Unit:Rs.	
			0 & M				NP	V				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Year	Capital		Total	Benefit	Return	Int.=		Int. =			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		Í			Cost					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		0	16683	0	-16683	16683.0					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			322	322	1352	1030	266.1	1117.2	223.6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			h		1802	1480	241.9	1354.2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1931	219.9	1538.8				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>6</u>						199.9	1548.2		1002.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>×</u>							1526.1	107.8	905.4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							165.2	1449.0	89.9	788.1	67.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							150.2	1359.3	74.9	677.7	54.0	488.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									62.4	570.6	43.2	395.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										485.2	86.5	322.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										404.3	27.7	258.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											22.1	206.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											17.7	165.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												105.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												17 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												3 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.3	
33 0 322 322 3004 2682 13.9 129.3 0.8 7.3 0.2 1.9 34 0 322 322 3004 2682 12.6 117.6 0.7 6.1 0.2 1.5 35 0 322 322 3004 2682 11.5 106.9 0.5 5.1 0.1 1.2 36 0 322 322 3004 2682 10.4 97.2 0.5 4.2 0.1 1.0 37 0 322 322 3004 2682 9.5 88.3 0.4 3.5 0.1 0.8 38 0 322 322 3004 2682 7.8 73.0 0.3 2.9 0.1 0.6 39 0 322 322 3004 2682 7.8 73.0 0.3 2.5 0.1 0.5 40 1561 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 42 0												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
36 0 322 322 3004 2682 10.4 97.2 0.5 4.2 0.1 1.0 37 0 322 322 3004 2682 9.5 88.3 0.4 3.5 0.1 0.8 38 0 322 322 3004 2682 8.6 80.3 0.3 2.9 0.1 0.6 39 0 322 322 3004 2682 7.8 73.0 0.3 2.5 0.1 0.5 40 1561 322 1883 3004 1121 41.6 66.4 1.3 2.0 0.3 0.4 41 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 42 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 2</td></t<>												1 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			**********									1 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										9.4		
30 0 322 322 3004 2682 7.8 73.0 0.3 2.5 0.1 0.5 40 1561 322 1883 3004 1121 41.6 66.4 1.3 2.0 0.3 0.4 41 0 322 322 3004 2682 6.5 60.3 0.2 1.7 0.0 0.3 42 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 45 0												
33 0 322 1883 3004 1121 41.6 66.4 1.3 2.0 0.3 0.4 40 1561 322 1883 3004 1121 41.6 66.4 1.3 2.0 0.3 0.4 41 0 322 322 3004 2682 6.5 60.3 0.2 1.7 0.0 0.3 42 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 45 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 47 0										6.9		
40 1301 322 322 3004 2682 6.5 60.3 0.2 1.7 0.0 0.3 41 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 42 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 45 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 46 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 47 0									0.3	4.5		
42 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 2682 4.0 37.5 0.1 0.7 0.0 0.1 46 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 47 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 48 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 49 0											0.3	
42 0 322 322 3004 2682 5.9 54.9 0.2 1.4 0.0 0.3 43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 0.1 45 0 322 322 3004 2682 4.0 37.5 0.1 0.7 0.0 0.1 46 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 47 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 48 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 0.5 0.0									0.2			
43 0 322 322 3004 2682 5.3 49.9 0.1 1.2 0.0 0.2 44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.0 0.2 45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 45 0 322 322 3004 2682 4.0 37.5 0.1 0.7 0.0 0.1 46 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 47 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 48 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 49 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 50 484 <	42) 322									
44 0 322 322 3004 2682 4.9 45.3 0.1 1.0 0.8 0.2 45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 46 0 322 322 3004 2682 4.0 37.5 0.1 0.7 0.0 0.1 47 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 48 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 49 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 0.0 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 0.0	43	(0.4
45 1313 322 1635 3004 1369 22.4 41.2 0.4 0.8 0.1 0.1 46 0 322 322 3004 2682 4.0 37.5 0.1 0.7 0.0 0.1 47 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 48 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 49 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 10tal EIRR = 12.81		(0 322		*******							
46 0 322 322 3004 2682 4.0 37.5 0.1 0.7 0.0 0.1 47 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 48 0 322 322 3004 2682 3.3 31.0 0.1 0.6 0.0 0.1 49 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 49 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 60431 20475.4 23625.3 8237.6 9921.4 17832.0 7325.3 EIRR = 12.81												
47 0 322 322 3004 2682 3.7 34.1 0.1 0.6 0.0 0.1 48 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 49 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 60475.4 23625.3 8237.6 9921.4 17832.0 7325.3 7325.3 EIRR = 12.81												
48 0 322 322 3004 2682 3.3 31.0 0.1 0.5 0.0 0.1 49 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 60475.4 23625.3 48237.6 9921.4 47832.0 7325.3 81			0 32									
49 0 322 322 3004 2682 3.0 28.1 0.0 0.4 0.0 0.1 50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 Total EIRR = 12.81				2 32								
50 484 322 806 3004 2198 6.9 25.6 0.1 0.3 0.0 0.0 Total 20475.4 23625.3 18237.6 9921.4 17832.0 7325.3 EIRR = 12.81				2 32	2 3004				0.0			
Total 20475.4 23625.3 28237.6 9921.4 27832.0 7325.3 EIRR = 12.81					5 3004	4 219	8 6.9					
EIRR = 12.81							20475.4	1 23625.		5 9921.4		
B/C at 10%= 1.15			1.1				e eter 1957 Geografie					
		· · ·	314 D	1.1		ć i i	i i		B/C at	10%=	1.15	,

Calculation of EIRR-Banke-Case-3 (30 lit/sec)

								100		(Unit:Rs	
		0 & M			D .	NP		NP		NP	
Year	· ·	Cost	Total	Benefit	Return	<u>Int. =</u>	0.1	Int.=	0.2	Int.=	0.25
	Cost					Cost	Benefit	Cost	Benefit	Cost	Benefit
1	19666	0	19666	0	-19666	19666.0		19666.0		19666.0	0.0
2	0	386	386	1352	966	319.0	1117.2	268.1	938.8	247.0	865.2
3	0	386	386	1802	1416	290.0	1354.2	223.4	1043.1	197.6	922.8
4	0	386	386	2253	1867	263.6	1538.8	186.1	1086.5	158.1	922.8
5	0	386	386	2493	2107	239.7	1548.2	155.1	1002.0	126.5	817.0
6	0	386	386	2704	2318	217.9	1526.1	129.3	905.4	101.2	708.7
7	0	386	386	2824	2438	198.1	1449.0	107.7	788.1	81.0	592.2
8	0	386	386	2914	2528	180.1	1359.3	89,8	677.7	64.8	488.9
9	0	386	386	2944	2558	163.7	1248.5	74.8	570.6	51.8	395.1
10	484	386	870	3004	2134	335.4	1158.2	140.5	485.2	93.4	322.6
11	0	386	386	3004	2618	135.3	1052.9	52.0	404.3	33.2	258.0
12	0	386	386	3004	2618	123.0	957.2	43.3	336.9	26.5	206.4
$\frac{14}{13}$	0	386	386	3004	2618	111.8	870.2				165.1
								36.1	280.8	21.2	
14	1212	386	386	3004	2618	101.6	791.0	30.1	234.0	17.0	132.1
15	1313	386	1699	3004	1305	406.7	719.1	110.3	195.0	59.8	105.7
16	· 0·	386	386	3004	2618	84.0	653.8	20.9	162.5	10,9	84.6
17	0	386	386	3004	2618	76.4	594.3	17.4	135.4	8.7	67.6
. 18	0	386	386	3004	2618	69.4	540.3	14.5	112.8	7.0	54.1
19	0	386	386	3004	2618	63.1	491.2	12.1	94.0	5.6	43.3
20	2099	386	2485	3004	519	369.4	446.5	64.8	78.4	28.7	34.6
21	- 0	386	386	3004	2618	52.2	405.9	8.4	65.3	3.6	27.7
22	0	386	386	3004	2618	47.4	369.0	7.0	54.4	2.8	22.2
23	0	386	386	3004	2618	43.1	335.5	5.8	45,3	2.3	17.7
24	0	386	386	3004	2618	39.2	305.0	4.9	37.8	1.8	14.2
25	0	386	386	3004	2618	35.6	277.3	4.0	31.5	1.5	11.3
26	Ö	386	386	3004	2618	32.4	252.1	3.4	26.2	1.2	9.1
27	Ő	386	386	3004	2618	29.4	229.1	2.8	21.9	0.9	7.3
28	0	386	386	3004	2618	26.8	208.3	2.3	18.2	0.7	α ο
		********			• • • • • • • • • • • • • •						5.8
29	1707	386	386	3004	2618	24.3	189.4	2.0	15.2	0.6	4.6
30	1797	386	2183	3004	821	125.1	172.2	9.2	12.7	2.7	3.7
31	0	386	386	3004	2618	20.1	156.5	1.4	10.5	0.4	3.0
32	0	386	386	3004	2618	18.3	142.3	1.1	8.8	0.3	2.4
33	0	386	386	3004	2618	16.6	129.3	0.9	7.3	0.2	1.9
34	0	386	386	3004	2618	15.1	117.6	0.8	6.1	0.2	1.5
35	0	386	386	3004	2618	13.7	106.9	0.7	5.1	0.2	1.2
36	0	386	386	3004	2618	12.5	97.2	0.5	4.2	0.1	1.0
37	0	386	386	3004	2618	11.4	88.3	0.5	3.5	0.1	0.8
38	0	386	386	3004	2618	10.3	80.3	0.4	2.9	0.1	0.6
39	0	386	386	3004	2618	9.4	73.0	0.3	2.5	0.1	0.5
40	2099	386	2485	3004	519	54.9	66.4	1.7	2.0	0.3	0.4
41	0	386	386	3004	2618	7.8	60.3	0.2	1.7	0,0	0.3
42	0	386	386	3004	2618	7.0	54.9	0.2	1.4	0.0	0.3
43	Ũ	386	386	3004	2618	6.4	49.9	0.2	1.2	0.0	0.2
44	0	386	386	3004	2618	5.8	45.3	0.1	1.0	0.0	0.2
45	1313	386	1699	3004	1305	23.3	41.2	0.5	0.8	0.0	0.1
46	1315	386	386	3004	2618	4.8	37.5	0.5			
40		386		3004					0.7	0.0	0.1
	0		386		2618	4.4	34.1	0.1	0.6	0.0	0,1
48	0	386	386	3004	2618	4.0	31.0	0.1	0.5	0.0	0.1
49	0	386	386	3004	2618	3.6	28.1	0.1	0.4	0.0	0.1
50	484	386	870	3004	2134	7.4	25.6	0.1	0.3	0.0	0.0
<u> Total</u>						24126.6	23625.3		9921.4	21026.1	7325.3
			1997 - A.	1 I I I I I I I I I I I I I I I I I I I	ан . Т			EIRR =		10.67	
				1 - A A - D -			· · · ·	B/C at 1	.0%=	0.98	
								1.4			1. Sec.

1.2 Evaluation of Aquifer Potential

The evaluation of aquifer potential is of particular importance to the groundwater irrigation project. The first consideration is to interpret the lithologic well logs and data of borehole loggings in order to establish the hydrogeological units. Particular attention should be paid to the presence of the Churia Group in shallow depths, based on the regional geological studies. In general, the Terai Plain is underlain by a thin series of alternating clay and sand and gravel beds, and possible yields are estimated at 60 to 120 l/s. Potential problems may arise in certain areas where the consolidated Churia Formation with finer materials underlies the shallow parts. For instance, north of Nepalganj, a formation underlies the central part of the alluvial plain; it is composed of a thick series of alternating fine sand and silt, with many siltstone fragments, and it has been established in previous studies as alluvial. The composition rate of the permeable beds and the transmissivity in this formation are less than 15% and 200 m²/day, respectively, which are much smaller compared with neighboring alluvial formations. These geological conditions can be easily confirmed through a study of the regional geology and a careful interpretation of the borehole lithologic logs and aerial photographs.

1.3 Construction of Production Well

1.3.1 Design of Production Well

(1) Depth and Diameter

The diameter must be chosen to satisfy the water requirement. For this connection the entrance velocity of water into the screen must be calculated based on the design yield. It has been proposed, based on field experience and laboratory tests, that the average entrance velocity of water moving into the screen should not exceed 3.0 cm/s to the avoid extraction of formation material (Driscoll, 1987).

According to calculations based on well diameters of 150 mm, 200 mm, and 250 mm with a 30 m screen length, the velocity by a 120 l/s discharge is 3.4 cm/s, 2.5 cm/s, and 2.0 cm/s, respectively. Therefore, the recommended well diameter is 250 mm in the Terai Plain. The necessary length of screen selected is shown in Table 1.3.1. The length is calculated based on a screen with an opening rate of 25%, and the required velocity is calculated by the 30 m screen length.

Well Yield	Necessary Le	Required Velocity		
(l/s)	Velocity=2.0 cm/s	Velocity=3.0 cm/s	(cm/sec)	
60	15.6	10.2	1.0	
80 100	20.7 25.9	13.6 17.0	1.4	
120	31.1	20.3	2.0	

Table 1.3.1 Length of Screen and Entrance Velocity by Yields

The optimum length of screen for four different yields in Jhapa, Mahottari, and Bank can be calculated by using the optimum screen velocity derived from the representative transmissivity (Walton, 1962). The actual depth of well is the sum of the lengths of housing (=50 m), the total length of beds including permeable and impermeable beds, several clearances for seasonal fluctuation (=10 m), and others. Results are tabulated in Table 1.3.2.

District /Area	T(m2/d) /k(m/d)	60	Yie	1. S.L. eld(l/s 100)	Rate of Sand & Grav(%)	60	Yiel	.L d(1/s) 100	120	Total W.L. (m)
<u>Jhapa</u> North Alv. Kankai Alv. Gangetic Alv. Terrace	1,130/49 1,740/76 2,490/108 1,000/43	13 10 9 16	18 14 11 21	20 17 14 26	26 20 17 31	61 76 77 66	21 13 12 24	30 18 14 32	33 22 18 40	22	98 81 77 105
<u>Mahottari</u> Bhabar Gangetic Alv.	4,800/218 520/24	6 20	7 27	9 34	11 41	60 52	10 38	12 52	15 65		73 134
Banke Bhabar Central Alv. South Alv.	700/90 210/27 1,010/129	9 18 8	13 24 10		19 35 15	30 15 50	30 120 16	43 160 20		233	118 288 85

Table 1.3.2 Calculation of Necessary Well Depth

Remarks: T=transmissivity k=permeability, derived by T with aquifer lengths of 23 m in Jhapa, 22 m in Mahottari, and 7.8 m in Banke Cal.S.L.=calculated screen length F.L.=length of necessary beds

Total W.L.=necessary total well length

1.3.2 Completion of Production Well

(1) Well Drilling Method

Selection of the drilling method depends on the geologic conditions. The percussion drilling method is the proper technique in the Bhabar Zone where the stratum is composed mainly of large gravel; the rotary drilling method is more efficient in the southern Terai because the sand and gravel size decreases southward. Taking regional geological conditions into consideration, the most economical method should be adopted for the project drilling.

(2) Density of Drilling Fluid

Selection and maintenance of the proper drilling fluid density will prevent the collapse or the flow of water into a borehole. Water-based drilling fluids include (1) clean, fresh water, (2) water with clay additives, (3) water with polymeric additives and (4) water with clay and polymeric additives. Water-based drilling fluid systems with clay or polymeric additives are typically used in unconsolidated formations, therefore items (2) and (4) are recommended drilling fluids for the Terai Plain.

Control of the drilling fluid density is a fundamental factor in successful water well drilling. To maintain an open hole, the pressure exerted by the drilling fluid column must exceed the pore pressure in the aquifer. Typically, a minimum excess pressure of 34.5 kPa is desirable, though the pressure requirement may be higher when pressure from confined formations is encountered.

Ordinarily, the water pressure within a freshwater aquifer is 9.8 kPa/m, unless the total dissolved solids are abnormally high. Therefore, at a depth of 10 m the pressure is 98 kPa. Under confined conditions, the potentiometric surface is above the top of the aquifer, therefore, the pore pressure at any thickness always exceeds the normal hydraulic pressure of 9.8 kPa of aquifer thickness.

A simple equation for determining the hydrostatic pressure exerted by the drilling fluid in a borehole is as follows:

Hydrostatic pressure(g/cm²)

= fluid density (g/cm^3) x height of fluid column (cm)

To control the flow of water into the borehole, it is necessary to increase the density of the drilling fluid before reaching the confined formation. The additional drilling fluid density required to equalize the confined pressure is determined by the follow:

Additional drilling fluid density

= weight of water x (height of water above ground level/depth to top of confined aquifer)

The calculated additional density at site EX-8 in Jhapa is 0.45 where the height of the artesian pressure and the depth to the top of aquifer are 9 m and 60 m, respectively. Based on the above formula, the required density of drilling fluid is calculated as shown below.

Aquifer	S.W.L (mags)	Pore Pressure (kPa)	Excess P. (kPa)	Total P. (kPa)	Add. Density	Total F.Density
Unconfined	0	60x9.8=96.6	34.5	131	-	1.3
Confined	9	60x9.8=96.6	34.5	131	0.45	1.75

Table 1.3.3 Required density of Drilling Fluid

Remark: S.W.L.=static water level Excess P.=excess pressure Total P. =total pressure Add. Density=additional density

F.Density=fluid density

It is not necessary to increase the fluid density for unconfined aquifers because the weight of ordinal bentonite is estimated at 1,320 kg/m³; however, drilling in confined aquifers requires the control of the fluid density. An excessive increase in the density can affect the drilling and well completion process in the following ways:

- Large volumes of drilling fluid and cuttings can be forced into the aquifer during drilling. Removal of the drilling fluid and cuttings during development can be extremely difficult, especially if clay additives are used.
- Material cost increase due to high fluid losses.
- Rate of penetration is reduced.
- Sample collection is more difficult and less reliable as cuttings do not separate from the drilling fluid at the surface.

Polymers are ordinarily used to control viscosity. Even the addition of small volumes of polymers to the drilling fluid can have significant effects on viscosity. In general, high-viscosity drilling fluids are required to lift coarse sand or gravel, whereas lower viscosity

drilling fluids are adequate to lift fine sand and silt. In most cases, continuous monitoring of the drilling fluid is necessary to achieve the best results.

(3) Casing and Screen

a) Casing

Standard design procedures involve choosing the casing diameter and material, estimating well depth, selecting the length, diameter, and material for the screen, determining the screen slot size, and choosing the completion method. In regard to the material for the casing and screen, an assessment of the water quality is essential to prevent corrosion and incrustation. A general idea of the chemical combinations and the limit of concentrations which cause corrosion and incrustation are listed in Table 1.3.4.

Table 1.3.4	Quality Limitation	for Corrosion and	Incrusting in mg/l
			U U

	pH	CO2	Fe	Mn	Hard's	DO	TDS	Cl
Corrosion	7.0>	50<	1	-	-	2.0<	1,000>	500<
Incrusting	7.5<	-	0.5<	0.2<	300<	- -	-	-

The table shows that there are no problems related to quality in the exploratory wells in Jhapa, except in the Kankai alluvial plain. It is advisable to use stainless if Fe and Mn concentrations exceed the limit.

b) Screen

A type of continuous slot wire-wound screen is adequate for irrigation purposes because of its large slot opening. The required opening must be greater than 25%, as stated in 1.3.1 (1).

Three factors, including water quality and strength requirements, govern the choice of materials used to fabricate well screens. High concentrations of Fe and Mn should also be taken into consideration for Terai groundwater.

The three loads, or forces, imposed on a screen include the column load (vertical compression), tensile load (extending forces), and collapse pressure (horizontal force). While a borehole is open during the installation of the screen and pipe, a screen attached directly to the casing may have to support the entire weight of the pipe. This burden exerts a column load on the screen. A tensile load is exerted on the screen when long screen and casing sections are installed. After the borehole material sloughs against the screen, the earth pressure exerts a horizontal stress on the screen, especially during development. The screen must have adequate collapse resistance to withstand both the earth and hydraulic pressures. The screen's resistance to both column and tensile loading is directly proportional to the yield strength of the material used to fabricate the screen, whereas the collapse resistance is proportional to the material's modulus of elasticity.

The necessary resistance is calculated using the following standard well:

Housing

Diameter: 400 mm Length:50 m Material: steel (w=80 kg/m)

Casing

Diameter: 250 mm Material: stainless steel (w=45 kg/m)

Location: 70-140 mbgs (total 70 m)

Screen

Type: continuous slot wire Material=stainless steel (w=30 kg/m)

Location: 60-70, 140-150 mbgs (total 20 m)

Fresh water in the borehole

Load exerts to screen under above conditions

Tensile load: (450 kg x 70m)+(10kg x 30m)=3,450 kg	67kg/cm ²
Column load: (80kg x 50m)+((10kg x 10m)+(45kg x 70m)=7,250 kg	40 kg/cm ²
Max collapse load: $k \ge \gamma \ge H - 0.5 \ge 2.0 \ge 150 \text{ m} = 150 \text{ t/m}^2$	15 kg/cm ²

k = coefficient of earth pressure at rest

 γ = unit weight of sand and gravel

H = depth to bottom of screen

Some degree of safety should be considered in selection of screen material, for example, 150% to 200% of the calculated load.

Casing	Dia. (mm)	Thick. (mm)	Tensile (kg/cm2)	Column (kg/cm2)	Collapse (kg/cm2)
Required Strength	250	6.6	134	280	30
Tested Strength	250	6.6	2,000	-	40

1 - 43

Table 1.3.5 Required Strength of Casing

Screen	Dia.	Opening	Slot Size	Tensile	Collapse
	(mm)	(%)	(mm)	(t)	(kg/cm2)
Required Strength Tested Strength	250 250	-		7	15
Ordinal Reinforced by	250	39	1.5	50	19.6
Ring base		39	1.5	28	50.5
Wire base		-	1.5	22	25.4

Table 1.3.6 Required Strength of Screen

Remarks: ordinal=continuous slot wire-wound screen

The table shows that the strength of the casing is within the required limits; however, the strength of the screen, especially the collapse, indicates a critical value to the required strength. Therefore, it is strongly recommended that reinforced screens be used if the well depth exceeds 100 m.

- 1.4 Back Data on Project and O&M Costs for the Case Study using a Diesel Engine as a Power Source
 - 1. Subject

To calculate the Project Cost and O&M Cost for the Case Study on LFCA and LFWY when a Diesel Engine is applied for the power source of pump, instead of electristic power supply system.

- Methodology Just same with the calculation methodology applied in the draft final report.
- Cost of Diesel Engine Referred to the recent estimation for the imported diesel engine from India.
- Other basical costs
 Same with the ones used in the draft final report.

5.	Brea	k down on "Pump Set" (for Case-I)							
	estimated cost of Vertical Shaft Turbine Pump: 450 (40 kW)								
	estin	nated cost of Diesel Engine:	54	8 (95 HP)					
	estin	nated cost of Appurtenance:	30						
	1		<u>L/C</u>	<u>F/C</u>	Total	<u>Remarks</u>			
			(10 %)	(90 %)	(100 %)				
	(1)	Vertical Shaft Turbine Pump							
		47 kW/40 kW = 1.18	59	472	531	450x1.18			
	(2)	Diesel Engine							
		67HP/95HP = 0.74	93	313	406	548x0.74			
	(3)	Appurtenance							
		30 % of above	28	94	122	406x0.3			
	(4)	Discharge Pipes, Valve, Flow-meter, etc.	69	230	299	253x1.18			
	99 - 1 	Sub-total (1)~(4)	249	1,109	1,358				
	·			•					
	(5)	Spare-Parts							
- 1		above S•T x 0.3	41	366	407				
•	•	Total	290	1,475	1,765	н 19			
÷.,									

- 6. Costs for Case-II and Case-III
- (1) Case-II

L/C: $290 \times 0.6 \times 2 = 348$ (x 1,000 NRs) F/C: 1,475 x 0.6 x = 1,770 Total 2,118

(2) Case-III

L/C: $290 \times 0.4 \times 3 = 348$ (x 1,000 NRs) F/C:1,475 x 0.4 x 3 = 1,770 Total 2,118

Thus, the Project Cost using Diesel Engine was summarized as Table-A at next page.

7. O&M Costs

	<u>L/C</u> (90 %)	<u>F/C</u> (10 %)	<u>Total</u> (100 %)	<u>Remarks</u>
Case I	5,580	620	6,200	620,600 NR/100 ha
Case II	7,520	830	8,350	834,200 NR/100 ha
Case III	8,780	970	9,750	974,300 NR/100 ha

Table-A	Summary of Project	Cost Estimate	(using Diesel Engine)
---------	--------------------	---------------	-----------------------

7M1 ()

(1,000 NR) Case Study Case III (30 l/s) Remarks Case II (45 l/s) Case I (90 l/s) Currency F/C F/C T•C L/C F/C T•C L/C T•C L/C No Work Items 1 Well Development 3,113 3,638 Same with the case 2.426 525 350 2.076 219 1,297 1,516 Sub-total using motor 2 **Pump Station** 1,770 2,118 2,118 348 290 1,475 1,765 348\3 1,770 Pump Sets 628 594 348 942 232 314 96 198 116 Pump House 420 768 348 140 256 232 280 512 116 Control Chamber Power Supply 3,258 1,290 2,538 3,828 976 2,282 1,731 2,335 604 Sub-total 3 Irrigation Canal 1,262 416 1.097 681 506 632 1,495 756 863 Sub-total Drainage System 4 73 393 320 366 311 298 68 253 58 Sub-total 1,705 1,705 1,023 682 1,705 1,023 682 1,023 682 Farm Road System 5 460 486 26 460 486 26 Procurement of O&M and 460 486 26 6 Office Equipment 950 2,680 3,630 950 2,680 3,630 950 2,680 3,630 **Technical Support** 7 950 950 950 950 950 950 **Project Administration** 8 1,890 1,740 1,890 1,410 1,740 1,410 -Land Acquisition 9 8,661 8,181 4,689 3,822 4,839 3,822 8,511 4,359 3,822 Sub-total (5~9) 9,962 17,617 6,298 7,540 13,838 7,069 8,754 15,823 7,655 10 Total Investment Cost 99.6 176.2 103 NR 76.6 158,2 70.7 87.5 63.0 75,4 138.4 Cost/ha 996 1,762 10% for T.C 707 875 1,582 766 630 754 1,384 11 Physical Contingency 965 L/C 10% F/C 2% 766 199 175 882 630 151 781 707 12 Prince Escalation 8,445 16,003 8,483 9,804 18,287 9,187 11,157 20,344 7,558 13 TOTAL PROJECT COST

8. Break down of O&M Cost

	D&M Equipmen	t Cost			
N	Motorcycle	l unit	36,000/5 years	Ξ	7,200 NR
B	Bicycle	2 units	4,000 x 2/5 years	Ξ	1,600 NR
<u>T</u>	Fool set (mechan	nics)	50,000/20 years	=	2,500 NR
S	Sub-total				11,300 NR
) (Operation Cost				
F	Fuel for DE	1 LS*see	9.	=	541,700 NR
C	Operator	1 x 2,00	00 x 12	Ξ	24,000 NR
A	Asst. Operator	2 x 1,40	00 x 12	=	33,600 NR
S	Sub-total				599,300 NR
) N	Maintenance				
		1 7 6			40.000.000
Ň	Mechanics	<u>1 LS</u>			<u>10,000 NR</u>
	Mechanics Sub-total	<u> </u>			10,000 NR 10,000 NR
S		<u></u>	620,600 ÷ 100 ≒	; 6,2	10,000 NR 620,600 NR
$\frac{1}{3}$	Sub-total Fotal Case Study II (A D&M Equipmen	= 100 h t Cost	a, Q = 45 l/s, 40 HP		10,000 NR 620,600 NR 200 NR/ha DE, 2 wells)
$\frac{1}{1}$	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set	= 100 h t Cost	a, Q = 45 l/s, 40 HP		10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR
$\frac{1}{1}$	Sub-total Fotal Case Study II (A D&M Equipmen	= 100 h t Cost	a, Q = 45 l/s, 40 HP	of I	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells)
$\frac{1}{1}$	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set	= 100 h t Cost	a, Q = 45 l/s, 40 HP x 2	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR
$\frac{1}{3}$	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set Sub-total Operation Cost Fuel for DE	= 100 h t Cost 11,300	a, Q = 45 l/s, 40 HP <u>x 2</u> 1 LS ^{*see 9.}	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR
$\frac{1}{3}$	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set Sub-total Operation Cost Fuel for DE Operators (Case-	= 100 h t Cost 11,300	a, Q = 45 l/s, 40 HP x 2	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR 681,400 NR 115,200 NR
$\frac{1}{3}$	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set Sub-total Operation Cost Fuel for DE	= 100 h t Cost 11,300	a, Q = 45 l/s, 40 HP <u>x 2</u> 1 LS ^{*see 9.}	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR
$\frac{1}{3} \frac{1}{1}$ $\frac{1}{2} \frac{1}{2} $	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set Sub-total Operation Cost Fuel for DE Operators (Case-	= 100 h t Cost 11,300	a, Q = 45 l/s, 40 HP <u>x 2</u> 1 LS ^{*see 9.}	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR 681,400 NR 115,200 NR
$\frac{1}{3} \frac{1}{1}$ $\frac{1}{2} \frac{1}{2} $	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set Sub-total Operation Cost Fuel for DE Operators (Case- Sub-total	= 100 h t Cost 11,300	a, Q = 45 l/s, 40 HP x 2 1 LS*sec 9. 57,600 x 2	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR 681,400 NR 115,200 NR
$\frac{1}{3} \frac{1}{1}$ $\frac{1}{2} \frac{1}{2} $	Sub-total Fotal Case Study II (A D&M Equipmen Case I x 2 set Sub-total Operation Cost Fuel for DE Operators (Case- Sub-total Maintenance	= 100 h t Cost 11,300	a, Q = 45 l/s, 40 HP x 2 1 LS*sec 9. 57,600 x 2	of I 	10,000 NR 620,600 NR 200 NR/ha DE, 2 wells) 22,600 NR 22,600 NR 681,400 NR 115,200 NR 496,600 NR

- 8-3 Case Study-III (A = 100 ha, Q = 30 l/s, 28 HP of DE, 3 wells)
- (1) O&M Equipment Cost $\frac{\text{Case-I x 3 set}}{\text{Sub-total}} = 33,900 \text{ NR}$ (2) Operation Cost

·	operation of the second s			
	Fuel for DE	1 LS*see 9.	=	747,600 NR
	Operators (Case-I x 2)	57,600 x 3	=	172,800 NR
	Sub-total			920,400 NR

(3) Maintenance

Case-I x 2.0	10,000 x 2.0	= 20,000 NR
Sub-total		20,000 NR
Total		974,300 NR
	974,300 ÷ 1	00 ≐9,750 NR/ha

- 9. Fuel Cost of Diesel Engine
- (1) Conditions

Operation time:	2,200 hours/year
Consumption:	$100 \sim 300 \text{ HP}$ 0.22 kg/h/ps = 0.22/0.85 = 0.26 l/h/ps
	less than 100 HP 0.25 kg/h/ps = 0.25/0.85 = 0.29 l/h/ps
	\rightarrow applied 0.29 l/h/ps

(2) Fuel Cost for each case

٠	Case-I Power Output: 70 HP		
	Operating time:	2,200 hour	
	Fuel consumption:	0.29 l/h x 70 HP x 2,200 h = 44,600 l/year	
	Oil consumption:	0.1 % of Fuel	
		$44,6601 \ge 0.001 \doteq 45 $ l/year	
	Fuel Cost:	44,6601 x $12 \text{ NR} = 535,920 = 536,000 \text{ NR}$	
		$451 \times 125 \text{ NR} = 5,625 = 5,700 \text{ NR}$	
	Total	541,700 NR	

Total

٠	Case-II Power Out	put:40 HP (70/2 + 5)					
	Operating time:	2,200 hour					
	Fuel consumption:	1.10 of fuel efficiency					
		$(0.29 \times 70 \times 2,200) \times 1.10 \times 2 = 56,144 = 56,200 $ l/year					
	Oil consumption:	0.1 % of Fuel					
		$56,200 \text{ l x } 0.001 = 56.2 \doteq 56 \text{ l/year}$					
	Fuel Cost:	$56,200 \mathrm{lx}$ $12 \mathrm{NR} = 674,400 \mathrm{NR}$					
		$56 \mathrm{l} \ge 125 \mathrm{NR} = 7,000 \mathrm{NR}$					
	Total	681,400 NR					
٠	Case-III Power Out	put:28 HP (70/3 + 5)					
	Operating time:	2,200 hour					
	Fuel consumption:	1.15 of fuel efficiency					
		$(0.29 \times 28 \times 2,200) \times 1.15 \times 3 = 61,631 \doteq 61,650 \text{ l/year}$					
	Oil consumption:	0.1 % of Fuel					
		$61,650 \mid x \mid 0.001 = 62 \mid / year$					
	Fuel Cost:	$61,6501 \times 125 \text{ NR} = 439,800 \text{ NR}$					
		$621 \times 125 \text{ NR} = 7,750 \text{ NR}$					
	Total	747,550 NR = 747,600 NR					

·.

APPENDIX - TWO

OPERATIONAL MANUAL FOR

GROUNDWATER MONITORING

APPENDIX TWO: OPERATION MANUAL FOR GROUNDWATER MONITORING

2.1 Introduction

For groundwater development projects, the analysis of the groundwater balance, including surface water, and the forecasting of groundwater movements under pumping conditions, are the most important studies in terms of the planning and implementation stages.

The Synthetic Storage Model (STML) has been developed to implement the above simulation studies on a practical basis.

STML is a mathematical model which deals with basin-wide hydrological balance analyses for both surface and subsurface systems, simultaneously in an unsteady and quasi three-dimensional state. In regard to groundwater systems, it also performs water balance and hydraulic analyses of multi-aquifer systems, including aquicludes. Therefore, the model can be applied to solve phenomena such as multi-phase density flow, land subsidence, substance balance, and so forth.

The program for the synthetic storage model is written by FORTRAN-IV. Originally it was prepared for a main frame computer but was transferred to a desk-top computer by the Study Team during the study period. In the Project, both surface water and groundwater balances are analyzed by the program, and groundwater behavior under pumping conditions is simulated through the program. In the future the groundwater in the area should be controlled through water balance studies using this program as well as data obtained by a proper groundwater monitoring system.

The Manual provides the simulation program with the associated subroutine programs, its structure, required input data or parameters, program operation instructions, and further maintenance. A full set of the program sources are attached in the Appendix, together with a floppy disk containing the latest version of the program.

2.2 Program

2.2.1 Language

The major programs, which are provided by JICA, are written by MS-FORTRAN, version 5.1, and are already installed into the desk-top computer, which is also provided by JICA

under the Project. Some programs related to the plotter are written by MS-BASIC, version 7.1 because of the ease in handling the plotter or digitizer. MS-BASIC is also provided simultaneously and is already installed.

2.2.2 Program Component

The STML program consists of a main program, "STML.FOR," and ten subroutine programs. These include,

STML.FOR	•••	Main routine
BLOCK.FOR	•••	Data initialize subroutine
DATARD.FOR		Data reading subroutine
DATAWR.FOR	•••	Data write out subroutine
OPEGRA.FOR		Subroutine for preparing a graphic condition
PRESET FOR		Preparing the yearly data and variables
PRESET2.FOR	•••	Preparing the monthly data and variables
SURF.FOR	•••	Calculation for surface system
SUBSURF.FOR	•••	Calculation for subsurface system
GPLOT.FOR		Graphic display subroutine
AFTTRET.FOR		After treatment on a monthly basis

Besides the main program, it associated several subordinate but isolated programs for data handling or plotting. These include,

DPSWR.FOR	•••	Program to print out the data calculated by the main
		routine.
SELECT.FOR	•••	Program to rearrange the data which is calculated by
		the main routine into separated sub-basin data.
SELECDRW.FOR	•••	Rearranging the data resulting from SELECT.FOR
· ·		into a data form by the BASIC plotting program.

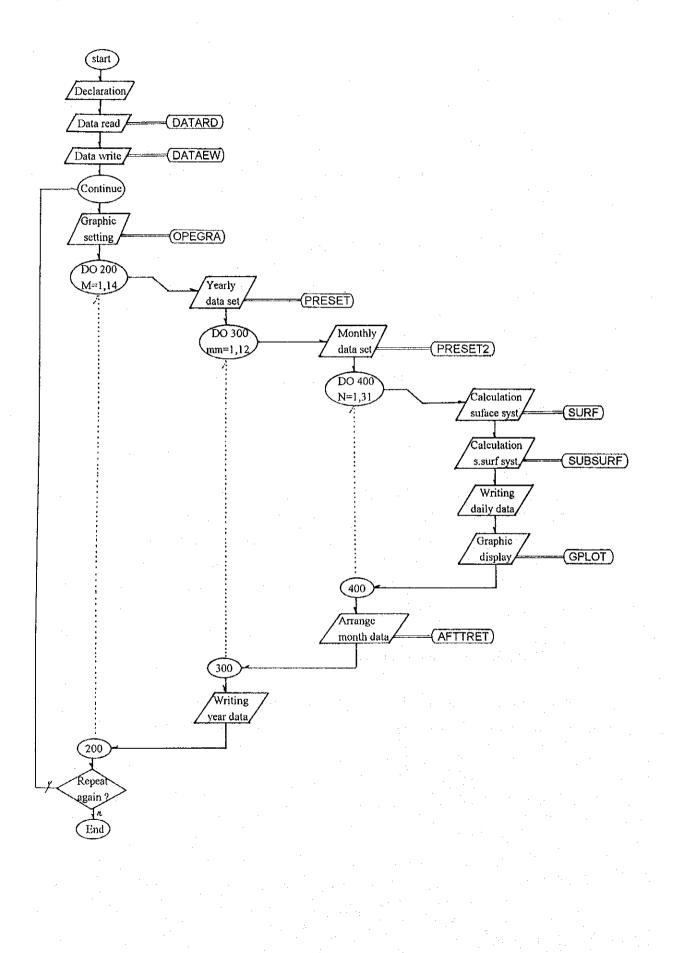
As the BASIC program, following two programs are provided:

PLOT2.BAS		Plotting routine for the Plotter.	
PLOTDRW BAS	•••	Same as above but for results under pumping	
		condition.	

2.2.3 Program Structure

The flow chart of the program is illustrated in Figure 2.1, and the program source is shown in List 1. The program structure is explained based on the step numbers in the list.

Line No. 3 to 78 are declarations on the graphic display, common data, and data format. Among the declarations, line No. 3 and No. 5 are the special treatments for MS-FORTRAN to enable graphic displays on the CRT.


After setting the basic variables, subroutines of data reading and printout are called (lines 80 to 93), and then the data files on draft, rain, and verification are opened along with the files for installing results. Lines 120 to 122 are set at the graphic mode.

The major routine starts from line 126 by inputting the target

sub-basin number which is displayed on screen for tracing. Lines 129 to 148 set the graphic constants or variables and calls the OPGRA subroutine at line 150, which arranges the graphic screen.

The yearly iteration starts from line 154, including the monthly iteration from line 170 and the daily iteration from line 179. At the beginning of yearly iteration, PRESET subroutine prepares the draft data and clears all yearly variables. In the monthly iteration, PRESET 2 prepares the rain and verification data and clears the monthly variables. The major calculations on the surface and subsurface systems are carried out in the daily iteration routine by SURF and SUBSURF subroutines. Results of the calculations are immediately written into the result file, and GPLOT is then called for display on screen. After the daily iteration, AFTTRET is called to arrange the daily data into a monthly and yearly data form; and at the end of yearly iteration, the monthly and yearly data arranged by AFTTRET are written in the result file.

Lines 336 to 353 are the closing routine. If another sub-basin is to be analyzed, the program resumes from line 96 and the program ends at line 355.

2.3 Input and Output Data

2.3.1 Input Data

The program needs following input data arranged into data files:

<u>Data</u>	Data File	Called at
model parameter E.transpiration	GENERAL.DAT	DATARD "
basin parameter	BASIN.DAT	66
drafting	DRF.DAT	PRESET
rainfall	RAIN.DAT	PRESET2
G.hydrograph	DV.DAT	""
River runoff	**	"
Add. draft	DRWBAS.DAT	(SUBSURF)

2.3.2 Output Data

Output data and files are as follows:

Data	Data File	Written at
SW.hydrograph	RESSUR.DAT	Daily iteration
G.hydrograph	RES1-26.DAT	64
SW.balance	YEARLY.DAT	Yearly iteration
G. balance	44	44
draft amount	DRWUP.DAT	(AFTTRET)
unable amount	UNDRW.DAT	(")

2.4 Data Structure

Because the main memory capacity is limited by MS-DOS, all of the input data has to be prepared in monthly bases, or partitioned month by month. This make the data structure rather complicated, therefore each data structure is explained below.

2.4.1 GENERAL.DAT

The name of the study basin, case number, basin number, treatment years, fixed water heads at the dummy basin, total area, existence of verification data, monthly evapotranspiration, and the number of data basin (basins having verification data) are contained in GENERAL.DAT. The data structure is described in List-2.

2.4.2 BASIN.DAT

This data file is the most basic and most significant: It contains all of the sub-basin parameters including the initial heads. Data structures of surface basins, groundwater basins, and dummy basins are different because of the subsurface structure which is associated or not associated.

The data structures of three kinds of sub-basins are shown in List 3, (a) to (c), accompanied with explanations.

2.4.3 DV.DAT

The data file is one of the most complicated among the data files required. It includes the verification data of the groundwater hydrograph and the river runoff in the same level, and these two are distinguished by the parameter "IPV" in the SURF and SUBSURF subroutines.

The data is grouped completely into yearly data. In the yearly group, the data is separated into monthly subgroups, and further divided into each verification data in monthly bases. List 4 indicates the part of the DV.DAT used in the Project.

2.4.4 RAIN.DAT

Daily rainfall data is simply arranged in a monthly order under a yearly order, as shown in List 5.

2.4.5 DRF.DAT

In this program formulation, DRF.DAT contains only the current draft amount of all of the sub-basins in monthly bases. List 6 shows a portion of an actually used DRF.DAT.

2.5 Operation

2.5.1 Current Groundwater Balance

The STML program already has a full set of input data and verification data under the current situation, so the program can be run as it is. For running the program, working in the PWB (Programmers Work Bench) circumstance under MS-FORTRAN is much easier than working in a stand-alone condition. The ".MAK" and ".SRS" files required for working in PWB are also included in the attached floppy disk.

Operation procedures are as follows:

a) Change directory into \FORTRAN, set path route required.

b) Copy all files from the floppy (A:*.*) to the directory.

c) Start up PWB under MS-FORTRAN (pwb.exe).

d) Set STML.MAK as make file.

e) Run STML.

f) Answer the target basin number (1 - 27)

g) Input the number more than 28 when ending the program.

Through the above procedure, the groundwater hydrograph for the target sub-basin for 14 years is displayed on the screen, together with the verification data if it exists. When the operator wants to revise any parameters, the data file (usually BASIN.DAT) is opened under PWB, the data modified, saved, and run again. Therefore, the operator can modify the model until the simulated hydrograph became satisfactory or as intended.

A hard copy of the calculation results can be obtain through running of associated program "DPSWR.FOR" after completion of the main program. The program reads out the result file "YEARLY.DAT" created by the main program, and sends it to the printer along with the predetermined format.

2.5.2 Simulation Under Pumping Conditions

(1) General Procedure

For the simulation study under pumping conditions, another program named "STML-D.FOR", which is a version including additional draft routines, is required, as well as the associated subroutine programs of "PRESET D.FOR," "SUBSUR-D.FOR," and "AFITRE-D.FOR," instead of the subroutine programs mentioned above. These versions of the program are also contained in the floppy disk. This requires some data such as the

amount of additional draft on a monthly basis, sharing ratio of draft for the relevant subbasins, and the control level of the draft. The first one is read from DRWBAS.DAT, and the others are given in the PRESET-D and SUBSUR-D subroutines directly.

The procedures for running the program are the same as the ones explained above; the only different is the setting of STML-D.MAK instead of STML.MAK in the PWB circumstance.

(2) Setting the Draft Amount and the Target Sub-basin

Initially set the draft amount for each sub-basin to be withdrawn in monthly unit draft (mm/day), as shown in Table 5.2.1. The table indicates the sample applied in the Study for simulation under shallow aquifer drafting conditions. In this case, the target sub-basins are from No. 14 to No. 27, except for No.18, No. 22, and No. 24. Among them, sub-basins No. 21, No. 23, and No. 27 target only deep aquifer drafting, and sub-basins No.15, No.16, No. 20, and No.26 target both shallow and deep aquifers.

Next set the target aquifer to be extracted in subroutine PRESET-D (refer to the program list of "PRESET-D.FOR"). When there is more than one aquifers to be withdrawn, for example sub-basin No.15, No.16. and so on, the draft amount is shared for each aquifer as the total becomes 1.0.

1:	0.	Ú.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
2:	0.	0.	0.	0.	0.	0.	0.	0.	ΰ.	0.	0.	0.	
Э:	0.	0.	٥.	0 .	0.	θ.	0.	0.	0.	θ.	0.	0,	
4:	0.	0.	0.	Q.	0.	0.	٥.	0 .	0.	٥.	0,	0.	
5:	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
6:	0.	0.	0.	0.	0.	- 0.	0.	0.	0,	٥,	Q.	0.1	
7:	0.	0.	0.	0.	0.	0.	0.	0:	0.	0.	0.	٥.	
8:	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	. 0.	Ð	
9:	Ò.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	θ.	
10:	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
11:	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	θ.	0.	
12:	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
13:	Q,	0.	0.	0.	. Ú.	0.	0.	0.	0	0.	θ.	0.	
i4:									4.873				
15:	0.347	0.840	2.033	3.533	2,949	1.509	2.693	5.866	4.381	4.230	2.250	0.298	
16:									4.089				
17:	0.370	0.683	2.169	3.768	3.145	1.609	2,873	6.257	4.573	4.512	Z.400	0.319	
10:	0.	0.	0.						0.		0.	0,	
19:	0.370	0.683	2.169	3.768	3.145	1.609	2.873	8.257	4.873	4.512	2.400	0.319	
20:									4.966				
21:	0.296	0.555	1.762	3.062				5.084	3.797	3.866	1.950	0.259	
22;	· 0.	0,	0.	0.		0.		0.		0.		. 0.	
23:									1.460	1.410	0.750	0.099	
24:	0.		.0.			0.				0		0.	• •
25:									4.873				
59: J									4.966				
27:	0.384	0.683	2.169	3.789	3.145	1,609	2.873	6.257	4.674	4.512	2.400	0.318	Č.

Table 2.5.1 Sample of "DRWBAS.DAT"

Therefore, the unit draft amount must be set to the total volume to be withdrawn from the sub-basin.

Further, an additional draft parameter for each sub-basin is defined in the subroutine SUBSUR-D to simulate other draft conditions, ie., to check the maximum draft potential. When simulating the hydrologic balance under irrigation water demand, set the parameters as 1.00, and set the target sub-basins to seven sub-basins just concerned. Lines 186 to 219 in the program list of SUBSUR-D are the definition routine for unconfined aquifers. If only confined aquifers are the target, this routine is voided and the routine from lines 368 to 402 in the same program is used instead.

After completion of these preparation, run STML-D carefully checking the drawdown displayed on screen. During this procedure, line 199 in the program list of STML-D is effective because it can make the run-time much shorter. At the end of this procedure, line 199 is voided for complete function of the program.

2.5.3 Plotting

Before drawing out the results by the plotter, the results are rearranged into a favorable format for the plotting routine through SELECT.FOR and SELECDRW.FOR. The former separates the daily results of water heads and runoff into each sub-basin, and the latter distinguishes the amount of draft and unable draft, which are then arranged into sub-basin unit data.

SELECT program creates 27 data files, named RAT-1 to RAT-27.DAT, which occupy a total of 12.2 MB of memory space in Hard Disk; therefore it is necessary to check the HD space prior to running this program.

The program needs a long run-time, depending upon the clock speed of CPU and the existence of co-processor. For the program, a co-processor for floating calculations is indispensable.

The plotting routine is written by BASIC language. The programs are PLOT2.BAS and PLOTDRW.BAS; the former is for normal water balance and the latter is for water balance under pumping conditions. The running procedure is as follows:

a) Change directory to \BASIC, and set required path.

b) Copy all BASIC file (*.BAS) to the directory.

c) Start up Quick-basic (qbx.exe),

d) Set the program PLOT2.BAS or PLOTDRW.BAS under QB conditions.

- e) Prepare the Plotter (A3 paper size).
- f) Run program.
- g) Answer the target sub-basin to be drawing.
- h) Answer the number greater than 28 when go to end.

Before running the program, setting the data file name in the routine from lines 84 to 139 as well as editing on lines 269 and 272 for the title line are required.

2.6 Improvement and Maintenance

Though the program has been debugged and is stable as is, it is recommended that the following aspects of program be improved:

- a) To unify the STML.FOR and STML-D.FOR.
- b) To include SELECT.FOR and SELECDRW.FOR into the main routine.
- c) To make clear the common data to omit unnecessary variables.
- d) To translate the BASIC program into the FORTRAN program, and to unify all of the program into FORTRAN.
- e) And so forth.

For periodical maintenance, the verification data must be revised on a monthly basis if possible. Carefully run the program to determine whether or not the model parameters still meet the actual water balance. When the calculated hydrograph or runoff no longer fits the new verification data, the model parameter(s) should be modified, and the water balance already carried out should be reviewed again. Therefore, the storage model of the area becomes even more precise, month by month, and year by year.

2.7 Appendix

A floppy disk (3.5", 1.44 MB format) is attached as the appendix which contains all of the fortran programs (.FOR), make files (.MAK), and input data files (.DAT).

List-1

Program Source of STML

1994/ 8/12 20:02:57

[C:\FORTRAM\STNL.FOR 10967]

91: C****** PRINT OUT BASIC DATA ****** PROCESSE STILL HAIN ROUTINE AND DEDICATION 1: [**** 92: C 3 :S CALL DATAWR 93 : INCLUDE 'FERAPH FE' 3: 94: C PROCEAN STAL 4: 95: C******* OPRN DATA FILES ********* 5: INCLUDE 'FGEAPH.FD' 96. 50 continue 6: C . ___ ___ 7: C 90: C****** START ITERATIVE CALCULATION FOR TREATING YEAR ****** 8: 0 99 : Carkenserrekenserenserrekenserrekenserrekenserrekenserrekenser PABAMETER (NB-37, NBC-37, NA-4, NT-3, NS-2, NY-14, NAS-XA-1) 9; 100: 8 10: C ----- OPEN DATA FILES -----101: Č CONNON / MANE/AREANN, BASNAN, ICASE 11: 102: C CONNON /DTE/NYR, KY8, KNN, NREGE 12: OPEN(2,FILE-'C:\FORTHAN\DRF.DAT',STATUS-'OLD') OPEN(3,FILE-'C:\FORTHAN\ARIN.DAT',STATUS-'OLD') OPEN(4,FILE-'C:\FORTHAN\AYAARLY.DAT',STATUS-'OLD') OPEN(5,FILE-'C:\FORTHAN\YEARLY.DAT',STATUS-'UKKNOWN') CONNER /NONTH/HON(12) 1031 13: CONNON /BRSIN/NBASIN, NACER, AREA(NBC), CAREA(NBC), IBASN(NY) 104: 14: 105: CONNON /BASIN2/ET(12),STRK(NB) CONNON /BLK1/IP9(NB,NY),IPV(6,NB),IPG(NB),NTK(NB) CONNON /BLK2/NBCT(NB),NGCT(4,NBC),NPCT(4,NBC),HOSN(NB),BET(NT,NB) 15 108: 16: 107: 8 17; OPEN(8,FILE="C:\FORTRAN\RESSUR.DAT",STATUS="UNKNOWN") OPEN(6,FILE-'C:\FORTRAN\RESSUR.DAT',STATUS-'UKKUGMY') OPEN(0,FILE-'C:\FORTRAN\RESS.DAT',STATUS-'UKKUGMY') OPEN(0,FILE-'C:\FORTRAN\RESS.DAT',STATUS-'UKKUGMY') OPEN(10,FILE-'C:\FORTRAN\RES11.DAT',STATUS-'UKKUGMY') OPEN(11,FILE-'C:\FORTRAN\RES17.DAT',STATUS-'UKKUGMY') OPEN(12,FILE-'C:\FORTRAN\RES17.DAT',STATUS-'UKKUGMY') OPEN(13,FILE-'C:\FORTRAN\RES20.DAT',STATUS-'UKKUGMY') OPEN(13,FILE-'C:\FORTRAN\RES22.DAT',STATUS-'UKKUGMY') OPEN(14,FILE-'C:\FORTRAN\RES22.DAT',STATUS-'UKKUGMY') 108: COMMON /BLK3/RTRN(NB), NOUT(4, NT, NB) 18: COMMON /BLK4/GSL(NBC),XL(NBC),YL(NBC),ZL(NA,MBC),GZZ(NA,MB) COMMON /BLK5/XA(NT,KB),HA(4,MT,KB),ALF(4,MT,KB) 109: 19: 110. 20: CONNON /BLK6/GALF(4, NA, KB), GLEX(MAS, KB), GHA(4, KB) 111: 21 : 112: GETX(NA,NE),EDSH(NAS,NE) COMMON /BLK7/GXA(32,NA,NEC),GSTR(32,NA,NE),GGZ(NA,NE) 22: 113: 23: CONNON /BLK8/RAIN(31), DEF(12, MA, MB), IDEF(MB), EDEF(MB), PDRF(MB), 114: 24: 115: DBFT(31,MA,MB) 25: COMMON /BLR9/BBAIN(31,NB),DV(31,6,NB),EET(31,NB) COMMON /BLR9/BBAIN(31,NB),DV(31,6,NB),EET(31,NB) COMMON /BLR10/RIBF(32,NBC),OVFL(31,NB),RNOF(32,NB),GRCH(31,NB), GLR(31,NA,NB),GRNF(31,NA,NB),GLNF(32,NA,NBC),NOF(NB) 116: 26: 117: C 27: 118; CRAMMANNANANANAN Find graphics mode. MANNANANANANANANANANA 28: 119: C COMMON /OTH1/EXROF(MB), EXBIN(MB), EXGST(MA, MB), EXGXA(MA, MB), 29: IF(setvideomode(18) .EO. 0) 120: EXGIN(NA, NB) COMMON /OTH2/AANAX, BBMAX(NB), BBMIN(NB), EENAX, EENIN 30: STOP 'Error: cannot set graphics mode'
 CALL getvideoconfig(screen) 121 : 31 : COMMON /OTH//INTA/LEMA LEMA / 122: 32: 123: 0 33: 34 COMMON /OTH5/SSRE(NB), SSEN(NB), SSEE(NB), SSIN(NB), SSFF(NB), 125: C 35: WRITE(*,*) ' INPOT TARGET BASIN NUMBER (12)' CONNON /OTHB/SRL(12, MB), SSE(MA, MB), SSDF(MA, MB) CONNON /OTHB/SRL(12, MB), SEE(12, MB), SIN(12, MB), SFF(12, MB), * SRE(12, MB), SLK(MA, 12, MB), SGR(MA, 12, MB), SDF(MA, 12, MB) 126: 36: BEAD(*,81) NTG 127: 37: 128: C 38. COMMON /GTH7/ARE(HB),ARN(HB),ARE(HB),AU(HH),CH,HB),ARE(HB),ALK(HA),HB), + AGH(KA,HB),ADE(HA),HB),ACE(HB),ARB(HB),ARD(HB),SHD(HA,HB), COMMON /DUN/GRDNY(6,KA),XDUNY(KA),MDUNY COMMON /GRAP/UBA(HB),PBA(HB),GHH(KA),RHF(27),COH(27) HNO-340 129: 39: RN1-340 130: 40: xleft = 40 yleft = 40 131 : 41 : 132: 42: xrightE-631 133: CONNON /PLOT/A01Y, A02Y, A03Y, A04Y, A018, A02N, A03H, A04N 43: vright = 440 134: COMMON /RCHG/CONGRCH(31,9) COMMON /DERM/DRT10(NB),DEMON(12,27),AQBAT(4,27),DRNN(31,4,27), 44: AQX = xleft 135: 45: VEASE-SBA(NTG) 136: REGE(NB), UNDRN(31,27) 46: AREA2-AREA(NTG)/CAREA(NTG) 137: 47: C AQ1Y-40+18T((UBASE-0XA(1,1,8TC))*10.) 130: CHARACTER*20 AREANY 48: A927-40+INT((UBASE-CXA(1,2,NTG))*10.) 139: CHARACTER*16 BRSNOM 49: AQ3Y=40+INT((UBASE-CXA(1,3,NTG))*10.) 140: CHARACTER*1 ANS 50: CARGENICET (ND) INTEGER*2 Status, xleft, yleft, yright, xrightE INTEGER*2 A017, A027, A037, A047, A018, A028, A038, A048, HNO, RN1 RECORD / xycoord / xy RECORD / videoconfig / screen A04Y+40+18T((UBASE-GXA(1,4,NTG))*10.) 141: 51: 142 · C 52: SSRN(H)=0.0 143: 53 SSSY(M)-0.0 144: 54: TRAIN = 0. 145: 55: RECORD / recoord / S IACUN = 0 146: 58: C LST = 0 147: 57: C SM3AIN - 0 1 FORMAT(' MONTH-',12,8%, 'MX1 + 4%, 'XA3',9%,'Q31',3%,'Q32 + 'BNOF',9%,'Q21 Q11') 872 MX3',9X,'XA1',4X,'XA2', 148: 58: 033 022 012 149: C 150: 013 Q14'.6X. 59: CALL OPGRA(STC) 601 151: C 2 FORMAT(212) 6t : 152: CHARTERNAMENTARY YEARLY ITERATION **************** 5 FORMAT(12,6F8.2) 62: 153: C 3 FORMAT(12) 63: DO 200 MM-1, 14 154: 4 FORMAT(15) 64: 155: 0 'BASIN-',12,' TERN-',12) 85: 8 FORMAT('+', LAS-KAN 7 FORMAT(2X,5F8.2) 156 **66**: 157: LNN=12 8 FORMAT(12,3F8.2) 67: 158: 178-878-1+18 9 FORMAT(14F9.1) 68: 159 NREP=1 10 FORMAT(12F6.3) 14 FORMAT(0F8.1) 69: 160: C 70: 161: COLL PRESET(EN AREP) 79 FORMAT(12,13,15,F8.2) 71: 182: 1F(WREP,EQ.0) GO TO 990 72: BO FORMAT(12F8.2,2F8.2) DO 1-1, 9 NF = 1 + 5 163: 73: AL FORMAT(12) 164: 82 FORMAT(12F8.2) 74: NBITE(NF,4) IYR 165: 75: 03 FORMAT(A20,13,14) FRD DD 166 76 84 FORMAT(14.8F8.1) 167: C 85 FORMAT(12F8.2,F8.0,F8.1) 77: OCCURATE ACTION ADDRESS OF A DREED ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDR 160: C 78: 90 FORMAT(A1) 169: C 79: C DO 300 M-LMS, LMM 170: 80: C 171: 6 NREGB * 27 61 : 172: THO-HON(H) NTERN * 0 IF(MOD(IYB,4),E0.0.8ND.M.E0.2) JN0-29 82: 173: IDAVINT - 5 83: 174: C 84: C CALL PRESET2(NB.N.JHO) 175: OPEN(1,FILE='PED') 85: 176: C **86: C** 177: C ************* DAILY ITERATION ********** 87: CHARACTER GENERAL DATA READING ****** 170: C 88: C 179: TAS 400 N=1. JND Call Databl 89: 180: C 90: 0 2 - 11

1994/ 8/12 20:02:57

C:\FORTRAN\STNL.FOR 10987]

271:

272:

273

274: 275: C 276:

227: 6 278:

279: C

280 C 281: C

282:

283: 284: 285:

286 : 287: 288:

289: 290: 291: 292:

293: 294: 295:

296: C

297: C

298: 299: C

300: 301 · C 302:

303: 304: 305;

306 : 307:

310.

311: 312: 313:

314:

315: 316: C 317:

318: C 319:

320:

321: 322:

323:

324:

325

328:

330: 331: C

326: C 327:

329: C

332: C 333:

334:

338 :

337: 338: 339: 340:

341:

342:

343:

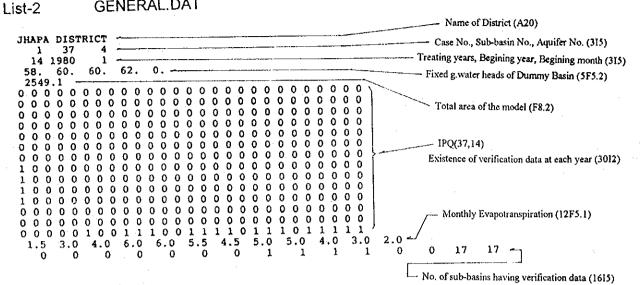
347:

346;

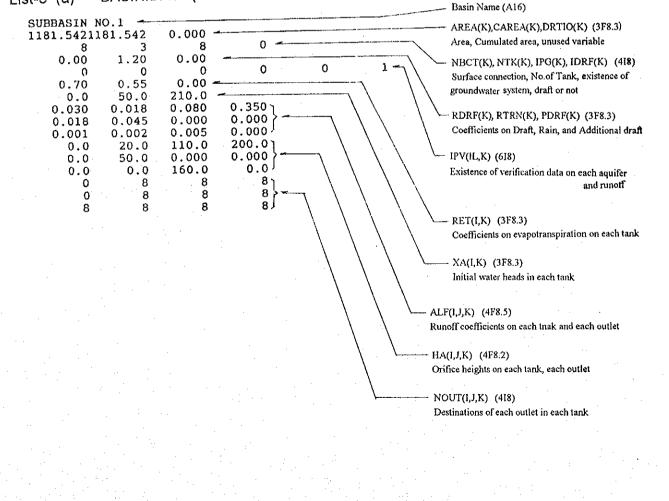
350:

351 : 352: 353:

355;

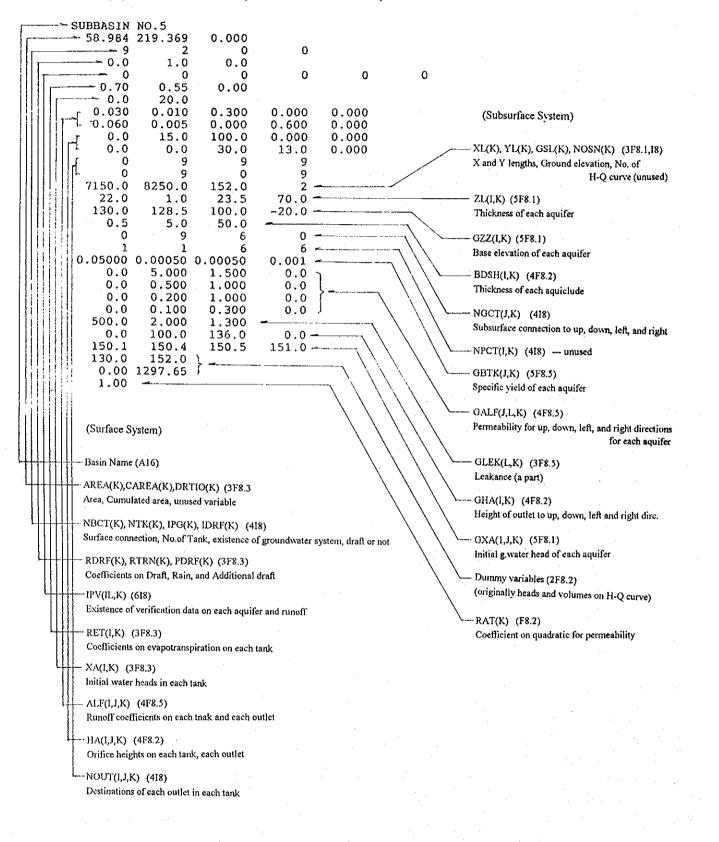

335: C

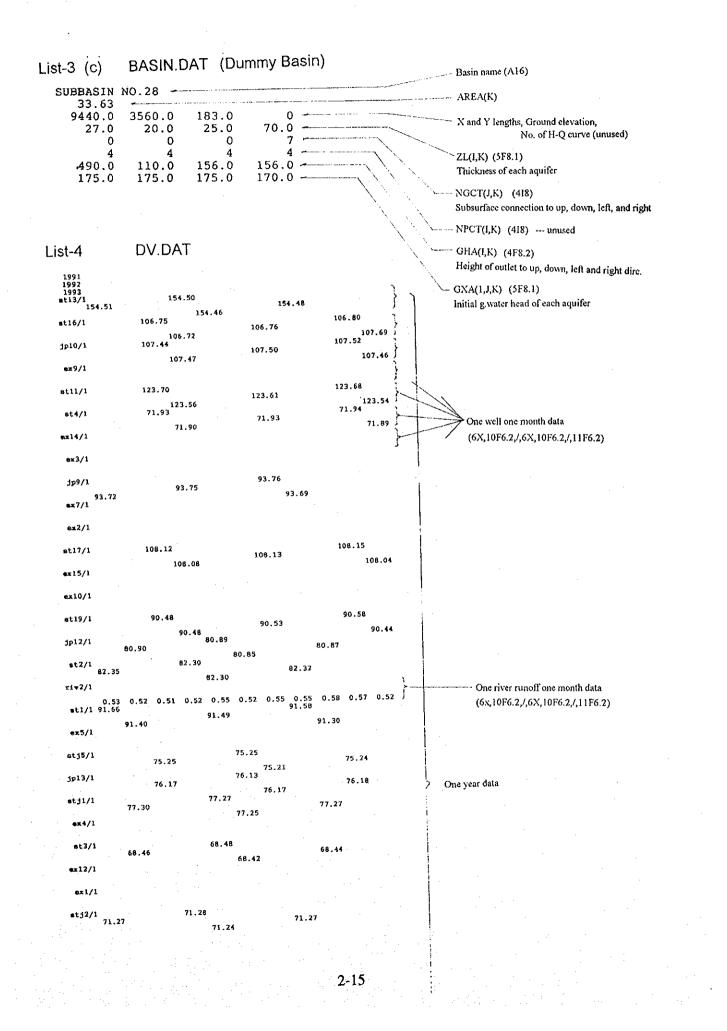
308: C 309:

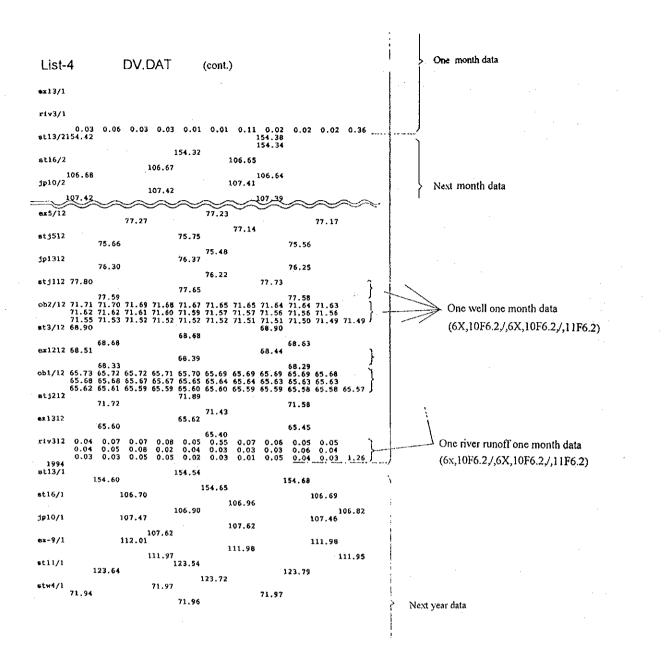

181:			INCUM = INCOM + 1
182:			RAL = RAIN(N)
	a		DUL . TUDIU(U)
183:	G		
184:	_		CALL SUBF(N,N,JNO,NN)
185:	С		
188:			CALL SUBSUKF(1,AULK,AUZK,AUJK,AUJK,AUJK,AUJK,AUJK,AUJK,AUJK,AUJ
187:	C		
188:	Ĉ		go to 399
189:	С	~	WRITING TO SURFACE DATA FILE
190:			
191:	~		WRITE(6,2) H, N
192:			DO K-1, 4
193:			CC1 * RNOF(N, K) * AREA(K)/CAREA(K)
194:			WRITE(6,0) K, CC1, DV(N,6,K), RAI
195:	~		END DO
198:			
197:	С		WRITING TO SUB-S DATA FILE (5 - 27)
198:			WRITE(7,2) M, N
199:			DO K-5, 7
200:			CC1=RNOF(N,K)+AREA(K)/CAREA(K)
201:			WRITE(7,5) K, (GXA(N,1,K),L=1,4), CC1, RAL
202:			WEITE(7,7) (DV(N,L,K),L=1,4),DV(N,6,K)
203:			END DO
204:			
			WEITE(8,2) N, N
205:			DO K=0, 10
205:			CE1-BNOF(N,K)*AREA(K)/CAREA(K)
207:			WRITE(8,5) K, (GXA(N,1,K),1=1,4), CC1, RAI
209:			W8ITE(8,7) (DV(N,L,K),L=1,4),DV(N,6,K)
209:			END DO
210:			WRITE(9,2) X, N
211:			ĐO K=11, 13
212:			CC1=RNOF(N,K)+AREA(K)/CAREA(K)
213:			WRITE(9,5) K, (GXA(N,L,K),L=1,4), CC1, RAI
214:			WRITE(9,7) (DV(N,L,K),L=1,4),DV(N,6,K)
215:			END DO
218:			WRITE(10,2) N, N
217:			DO K-14, 16
218:			CC1=BNOF(N,K)=AREA(K)/CAREA(K)
219:			NBITE(10,5) K, (EXA(N,L,K),L=1,4), CC1, RAI
220:			<pre>BBITE(10,7) (DV(N,L,K),L=1,4),DV(N,8,K)</pre>
:155			END DO
222:			WRITE(11,2) N, N
223:			DO K-17, 19
224:			CC1~BNOF(N,K)*AREA(K)/CAREA(K)
			WRITE(11,5) K, (GXA(N, L, K), L=1,4), CC1, RAI
225:			
226:			WBITE(11,7) (DV(N,L,K),L=1,4),DV(N,6,K)
227:			END DO
228:			WRITE(12,2) N, N
229:			DO K-20, 22
230:			CC1=RNOF(N,K)*AREA(K)/CAREA(K)
231:			WRITE(12,5) K, (GXA(H,L,K),E=1,4), CC1, RAL
232:			NHITE(12,7) (DV(N,L,K),L=1,4),DV(N,6,K)
233:			END DO
234:			WRITE(13,2) N, N
235:			D0 K-23, 25
236:			CC1=BNOF(N,K)*AREA(K)/CAREA(K)
			WRITE(13,5) K, ($0X9(N,L,K),L^{-1},4$), CC1, RAI
237:			RITE(13,7) (DV(N,L,K),L=1,4),DV(N,S,K)
238:			
239:			END DO
240:			WRITE(14,2) H, N
241:			DO K=26, 27
242:			CC1*RHOF(H,X)*AREA(K)/CAREA(K)
243;			WRITE(14,5) K, (GXA(N,L,K),L=1,4), CC1, BAI
244:			WRITE(14,7) (DV(H,L,K),L=1,4),DV(H,8,K)
245:			END DO
246	: C		
247			PLOTTING ROUTINE
248		399	continue
249			
249:			TROIN - TROIN + ROI
			TRAIN - TRAIN + BAI
251:			IF(IACUM.EQ.IDAYINT) THEN COLL CRIDIC(W WW WIC ODY match+ OPEO2 DWG RWI WIEDW TROIN)
252			CALL GPLOT(N, NH, NTG, AQX, yright, AREA2, BNO, RN1, NTERN, TRAIN)
253:			JACUM = 0
254			TRAIM = 0.
255			ABX = ABX + 1
258:	;		IF(AQX.GT.xrightE) THEN
257	:		ADX=xleft
258	:		NTERN - NTERN + 1
259			CALL settextposition(1,6,S)
260			WRITE(*,6) NTG,NTESN+1
261			END IF
262			END IF
			643347 AB
263			00471400
264		400	CONTINUE
265			1000 AF 64110
266			(END OF DAILY ITERATION)
267		:	
268	:		IF(NTERN.EQ.0) THEN
269:			dummy = setcolor(7)
			FISE

dummy = setcolor(5) END IF CALL moveto(AOX, yright, xy) STATUS = lineto(AOX,yright+10) CALL AFTTRET (NU. N. JKO) 300 CONTINUE (END OF NONTHLY ITERATION) IF(NTERN.E0.0) THEN dummy = setcolor(?) ELSE dummy = setcolor(5) END IF AQX = AQX + 1 CALL moveto(AQX,yleft,xy) STATUS = lineto(AQX,yTeTx,Xy) STATUS = lineto(AQX,yright) IF(AQX.GT.xrightE) THEM AQX = xleft NTERN = NTERN + 1 CALL settexiposition(1,6,S) WRITE(*,6) NTG,NTERN+1 END IF ----- recording to HD DO 750 KK-1,NRECB WRITE(5,79) KK, ICASE, IYR, ABEA(KK) WRITE(5,80) (SRN(N,KK),N~1,12),SSRN(KK),ARN(KK) WRITE(5,85) (SIN(M,KK),N-1,12),SSIN(KK),AIN(KK) WRITE(5,80) (SEE(M,KK),N-1,12),SSEE(KK),AEE(KK) WRITE(5,85) (SFF(M,KK),N-1,12),SSFF(KK),AFF(KK) WRITE(5,80) (SRE(#,KK),#=1,12), SSRE(KK), ARE(KK) IF(IPG(KK).GT.0) GO TO 750 DO 745 L-1, MAOFR WRITE(5,81) L MITE(5,00) (SLK(1,M,KK),M-1,12),SSLK(1,KK),ALK(L,KK) HBITE(5,80) (SGE(1,M,KK),M-1,12),SSGF(L,KK),AGE(L,KK) HBITE(5,80) (SDF(L,M,KK),M-1,12),SSDF(L,KK),ADF(L,KK) WRITE(5,02) (SHD(1,M,KX),M-1,12) CONTINUE 745 750 CONTINUE WRITE(5,03) AREANN, ICASE, IYR DO 735 KK=1 NREG9 WRITE(5,84) KK, AREA(KK), ARM(KK), AIM(KK), AEE(KK), AFF(KK), ARE(KK), AGF(KK), AAD(KK) 1 735 CONTINUE WRITE(5,14) CAREA(NBASIN), SSSB(NN), SINF(NN), SSSE(NN), SOUT(HM), SSSI(HM), SSSG(HM), SSSB(HM) 1 707 SSSY(NH)=SOUT(NN)-SINF(NN) SSRM(MM)-SSSG(MM) 200 CONTINUE *************************** (END OF YEARLY ITERATION) **************************** WBITE(5,9) (SSSY(K),H-1,14) WRITE(5,9) (SSRB(N),N=1,14) 991 WRITE(*,*) ' PLOT OTHER BASIN ? Y or N BEAD (*,90) ANS IF(ANS.EQ.'N'.OR.ANS.EQ.'n') CO TO 999 DO NF-2, 14 CLOSE(NF) END DO ATESN = 0 60 TO 50 344 : C 346: C 990 STOP 'ERROR DATA' NRITE(*,*) 'END OF PROGRAM 349 E 999 CONTINUE DD 1000 N-1,14 CLOSE(N) 1000 CONTINUE 354: C FND 356: 2********

GENERAL DAT

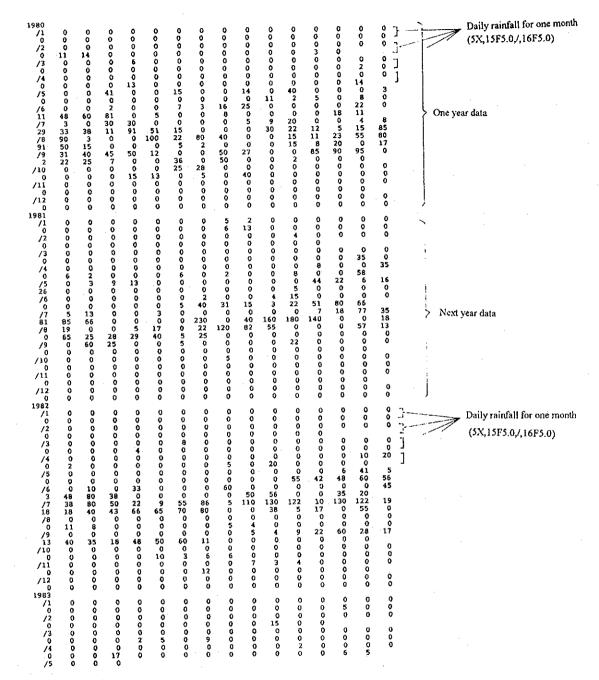


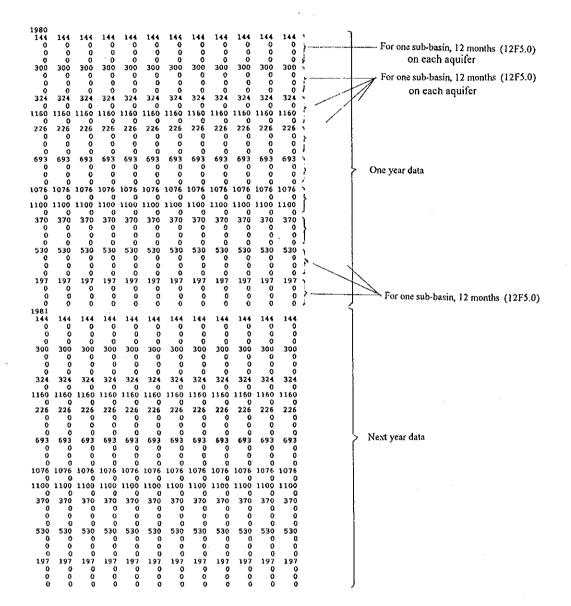




List-3 (b)

BASIN.DAT (Groundwater Basin)





List-5

RAIN.DAT

DRF.DAT

List-6

APPENDIX - THREE

DATA BASE SYSTEM AND ITS OPERATION

APPENDIX THREE: DATA BASE SYSTEM AND ITS OPERATION

3.1 Introduction

A large amount of data has been collected and processed for the purpose of this Study. Data consists of rainfall, river discharge, groundwater heads as well as an inventory of the gauging stations.

For the purpose of processing and managing the related data, some conventional software have been supplied from JICA, and a database program has been developed by the Study Team. The names of the programs are shown below.

Conventional Software (available in market)

LOTUS123 (Ver. 3.1): for data processing LOGGER (Rockworks): for managing bore hole lithology GEOBASE 6.0: for dealing with geological data

Developed Software for this Study

JDBASE :

for managing meteorological, hydrological, and geological data simultaneously

3.2 Conventional Software

Lotus 123 is used for the purpose of data managing and processing. The software has been employed to manage such data as daily rainfall, river discharge, groundwater head, and the inventory of gauging stations for this Study. All data processed by Lotus has been saved on floppy(s), submitted with this report, and a portion of the data has been printed and attached in Appendix 4.

Logger is a software developed by RockWare Inc., which can produce lithological logs with the aid of a graphic screen. Geobase is a database software managing geological and geo-hydrological data such as lithology, groundwater chemistry, pumping tests, water levels, and so on.

Geobase was developed by Earthware of California. Logger and Geobase have already been installed in the desk-top computer provided by JICA.

3.3 Developed Software (JDBASE)

A database program named JDBASE has been developed in order to manage meteorological and hydrological data. The program also deals with groundwater data, and the relationship between rainfall, river runoff, and groundwater heads can be graphically shown. The program is written by MS-Basic and the source program is presented so that the user can further improve the program. All data used in JDBASE must be prepared by LOTUS and finally converted into a text file (ASC file), as exampled by the floppy containing the program.

3.3.1 Program Component

The configuration of the program is shown in Figure 3.1.1. The program consists of a main program and nine sub-programs as shown below, which are brought into the computer memory through chain-functions. The main program, JDBASE, must be loaded into the memory by using the load-function of Ms-basic, or in otherwords, JDBASE is run under the condition that Ms-basic is in the memory.

Main JDBASE

SUB

JDB510: to generate inventory screen for graphic
JDB511: to generate inventory screens for data reference
JDB516: to generate inventory screens for graph overwrite
JDB520: to screen data selected for a period of one year
JDB521: to screen data selected for a period of three years
JDB522: to screen data selected for a period of five years
JDB523: to screen data selected for a period of three years
JDB550: to calibrate the graph screened
JDB570: to tabulate the data selected

3.3.2 Operation

Ms-basic is first loaded into computer memory and then the main program, JDBASE. As JDBASE begins to operate, the menu screen in Figure 3.2.1 is generated. When data reference is needed, 01, 02, or 03 is input in case of groundwater level, river discharge, and rainfall, respectively. When data graphics are needed, 11, 22, or 33 is input in the case of the same mentioned above. When the function key F10 is pressed, the program is terminated and returns to Ms-basic.

Following the menu screen, inventory screen appears as shown in Figure 3.2.2. The screen is an example for well inventory. If the drive containing the data file is required to be changed, press F8 key. F9 key terminates the current screen and returns the operation to the menu screen. To select well on the screen, move the rectangle by the arrow keys.

When detailed information is required for well enclosed the rectangle, press F6 key. The F6 key generates the screen showing detailed information such as exact well location, well constants and remarks. An example is shown on Figure 3.2.3.

When the well to be referred is identified, press the enter key. The chronological table appears on the right square, as shown in Figure 3.2.4. Function key F1, F2, F3, and F4 supplies selectable periods of 1, 3, 5, and 10 years, respectively. In the case of data reference, the screen shown in Figure 3.2.5 appears instead of one in Figure 3.2.4. The screen in Figure 3.2.5 supplies only one year because the data reference is made on a yearly basis.

A graph follows according to the period selected, as shown in Figure 3.2.6. When additional data is required to be overwritten, function key F1, F2, or F3 key supplies so. After F1, F2, or F3 key is pressed, the inventory screen shown in Figure 3.2.2 appears again. The selected data on the inventory screen is overwritten (see Figure 3.2.6). Calibration for the graph in Figure 3.2.6 is supplied by pressing function key F8. An example of calibration is shown in Figure 3.2.7.

Figure 3.2.8 is a screen for data reference. The screen follows after the year to be referred is identified in the screen shown in Figure 3.2.5.

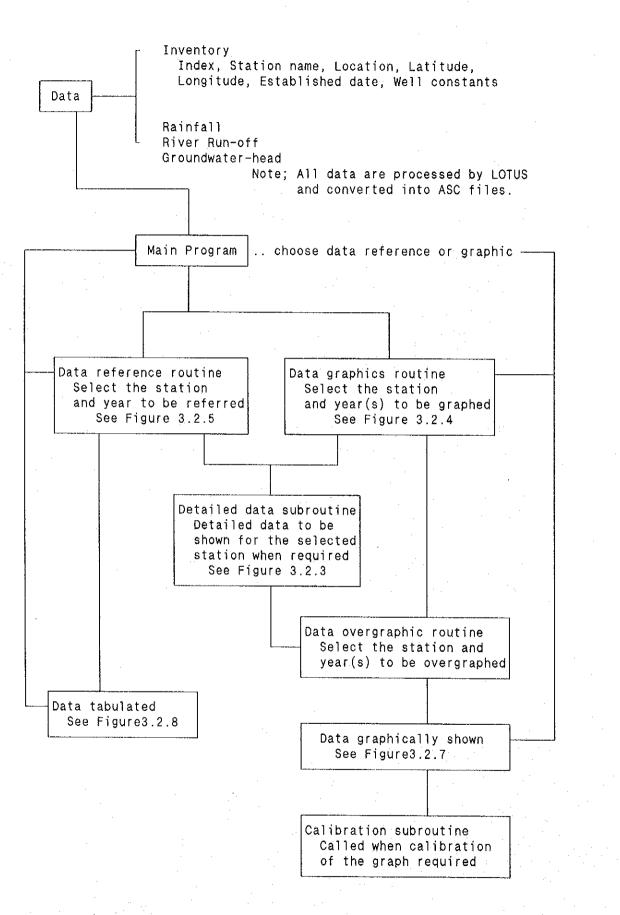


Figure 3.1.1 Configuration of Database Program

MENU SCREEN ON METEO-HYDROLOGICAL & GROUNDWATER DATABASE

DATA REFERENCE

DATA GRAPHICS

01;Groundwater Level(Daily)11;Groundwater Level02;River Discharge(Daily)22;River Discharge03;Rainfall(Daily)33;Rainfall(Daily)	
--	--

Please enter the number you want, and hit Enter key !!

Note; All data is basically processed by LOTUS.

File names shall be \GRWTR\INVEN.PRN for inventry of item 1 above \RIVER\INVEN.PRN for inventry of item 2 above \RAINF\INVEN.PRN for inventry of item 3 above

> \GRWTE***** PEN for data of item 1 above \RIVEE***** PEN for data of item 2 above \RAINF***** PEN for data of item 3 above

Where ; ***** is the INDEX No. corresponding to the station

|--|--|--|--|--|

Figure 3.2.1 Menu Screen Generated by JDBASE

Index EX-1 EX-2 EX-3 EX-4 EX-5 EX-6 EX-7 EX-8 EX-9 EX-10 EX-11 EX-12 EX-13	EX-4 EX-5 EX-6 EX-7 EX-8	Location Sumadhi Patharia Harchana Garamuni Dangebari Bhagdubba Rajbarh Sitachauk Prithvinag Dangagaun Balubari Hamumanbir Halidibari Bhimnager Prithvinag Birtabazar Anarmani Balubathan Sarnamati Balua Jalthal Gherabari Gherabari Dangabari Pathamar Tulshibari Surunga Laijhora Jamirgarhi Sumadih Patharia	Dr 111ed SEP. 1993 OCT. 1992 AUG. 1993 SEP. 1992 NOV. 1992 JAN. 1993 JAN. 1993 OCT. 1992 FEB. 1993 DEC. 1992 DEC. 1992 FEB. 1993 OCT 1992 FEB. 1993 NOV. 1992 MAR. 1970	
Please	JP-2 JP-3 insert the ve[F], then	Bhagdubba Bajgarh Hanumanbir Haldibari data floppy of [JP-1 hit Enter key !!	OCT.1992 OCT.1992]	

(I.O.06	MTIONJ /				
Lit	ltude : 26-	06-39 Lowits	le: 37-58-54		
	leve)	34.26 Bepth	: 197		
	l Dia.: 25		.: 2.19		
			: 11.19		14 14
(.)	/eild':			1	8 1
3 11 aug			L.: <u>1</u> 8		
1 2512	aars iphtes	en schull 100-112,	, 128-153		
F: 37	EX-12	Eberabari Ebera	thoni EEU	1993	
	EX-13	Bungabari Path		1992	
	EX-14	Tulshibari Sur		1993	
FX-15	EX-15				A
([-]	JP1	Sunadih Pathar	ia MAR	11831	2
	JF-2	Bhaudubhe Baiga		1992	
3B-3	3P-3	Bannauhir Hale	iibari (MCT	1:192	
		Information and the Person	er an each mainear	1.00	÷
					55 C

Figure 3.2.3 Screen Showing Detailed Information in an Inventory Screen

Groupsata			a Year	
These	Well /	Location	Utilled	
EX-1	EX-1 🖌	Sunadhi Patharia	SEP. 1993 🚺 1993	
EX-2		Herchaea Gerouwai	OCT. 1992 1984	,
EX-3		Canvebari	AUG. 1993 📓 1985	
	EX-4	Staudutha Sajharb	SEP. 1092 8 1986	
	FX-5	Sitecood Prithvinay	NOV.1992 1987	ļ
EX-6		Pannanan Balubari	JAN. 1993 🚺 1389	
EX-7		Haramaahir Halidibari	JAN 1093 🗿 1088	
EX-6		Abicomager Prithvisag	DCT.1992 1900	
EX-9		Birtabazar Amarmani	SEP. 1993 1993 OUT. 1992 1984 AUG. 1993 1984 AUG. 1993 1985 SEP. 1092 1986 NOV. 1992 1986 JAN. 1993 1305 JAN. 1993 1307 JAN. 1993 1308 JUN. 1093 1309 JUN. 1093 1309 JUCT. 1092 1909 FEH. 1993 1991 NUC. 1092 1993 FEH. 1993 1991 NUC. 1992 1993 FEH. 1993 1994 OUT. 1992 1992	
EX-10		Ralubathan Sarmamati	INC 1992 1982	
	EX-11	Balua Julthal	DEC. 1992 1993	
	EX12	Sberaberi Gberabari	FER.1393 1002	
	EX-13	Handahari Pathamar	(P)) 100G 📲 [.	
	EX-14	Tulshibari Surunga	FER. 1993	
	<u>EX-15</u>	Laijhura Jamiryarhi		
[]]-1		Simadih Patharia	MAR. 1993]	
JP-2	JF-2	Bhaadubba Rajyarh	0CT 1992	١.
$_{15-3}$	JP-3	Hammandir Haldibari	OCT.1992	١.
an en	viensa a l'icanop			1
[Year]			logical Table of Data	1
		e period with Fi to Select		-1
Enter		l onte years shown right,	enu gat 🙀	
Exter.	rzy 11	·		
医生物 动物 口的名	*****			12.1
			RETR. STERLE	мà

Figure 3.2.4 Inventory Screen for Selected Well with its Chronological Table

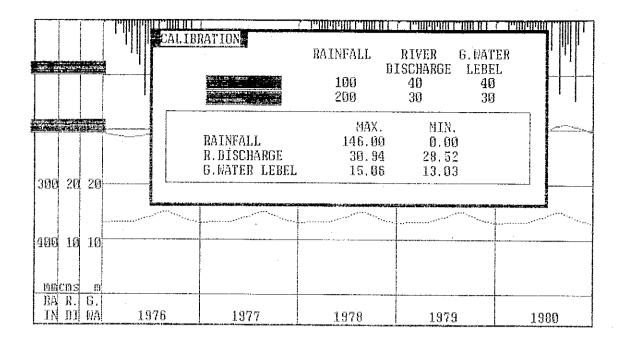

Grounwat		Y		Drilled	Year	
Index EX-1	Well EX-1	Location Sunadhi Pat	haria	SEP. 1993	Year 1970 1971 1972 1973 1974 1975 1976 1976 1977 1978 1979 1980 1981 1981 1982 1983 1984 1985 1985 1986 1987 1989	
E^{A-1}	EX-2	Harchana Ga		OCT.1992	1971	
2.00		Dangebari		AUG. 1993		
EX-4	EX-4	Bhagdubba R		SEP.1992 NOV.1992	1973 1974	
ЕХ-5 ГУ-6	EX-5 EX-6	Sitachauk P Dangagaun B		JAN, 1993	1975	
EX = 7	EX 0 EX-7	Hamumanbir	Halidibari	JAN, 1993	1976	
EX-8	EX-8	Bhinnager P	rithvinag	OCT.1992	1977	
EX-9	EX-9 EX-10	Birtabazar Balubathan		FEB. 1993 DEC. 1992	1978 1979	
EX+10 FX-11	EX-10 EX-11	Balua Jalth		DEC. 1992	1980	語調
EX-12	EX-12	Gherabari G	herabari	FEB. 1993	1981	
EX-13	EX-13	Dangabari F		OCT 1992 FEB.1993	1982 1983	
EX-14 EY-15	EX-14 EX-15	Tulshibari Laijhora Ja		NOV.1992	1984	
JP-1	JP-1	Sunadih Pat	haria	MAB. 1970	1985	
JP-2	JP-2	Bhagdubba I	lajgarh	OCT.1992	1986 1987	
JP-3	JP-3	Hanumanbir	Haldibari	OCT.1992	1988	
EX-3 EX-4 EX-5 EX-6 EX-7 EX-8 EX-7 EX-8 EX-7 EX-8 EX-7 EX-10 EX-11 EX-12 EX-13 EX-14 EX-13 EX-14 EX-15 JP-1 JP-2 JP-3 [Year] Pleas the y					1989	
Pleas	e assign the	Year to be re	efered onto	_		
the y	ears shown r	ight, and hit	Enter key !	!	1989 1990 1991 1992	<u>茶</u>
		·			1005	
						<u> 08</u> –
1 yr	ALTER AND A CONTRACT OF		And restored and and the second second	RETN	MENU	12.0
Figure 3.2.	5 Inventory	Screen for S				
Figure 3.2.	5 Inventory	Screen for S				
Figure 3.2.	5 Inventory	Screen for S				
Figure 3.2.	5 Inventory	Screen for S				
Figure 3.2.		Screen for S				
Figure 3.2.						
			elected Wel			
199 40 40			elected Wel			
199 40 40			elected Wel			
199 40 40			elected Wel	1 in Case o	of Data Refe	
196 46 40 209 35 36			elected Wel		of Data Refe	
196 46 40 209 35 36			elected Wel	1 in Case o	of Data Refe	
196 46 40 209 35 36			elected Wel	1 in Case o	of Data Refe	
100 40 40 200 30 30 300 20 20			elected Wel	1 in Case o	of Data Refe	
190 40 40 200 30 30 300 20 20 400 10 10			elected Wel	1 in Case o	of Data Refe	
100 40 40 200 30 30 300 20 20 400 19 10 nncms n		ainfall	elected Wel	l in Case of	of Data Refe	
190 40 40 200 30 30 300 20 20 400 10 10			elected Wel	1 in Case o	of Data Refe	

Figure 3.2.6 An Example between Rainfall, River discharge and Groundwater Table

CALL NENU OS

3-7

BAIN B. DI G. NA

CALL RETR DS

Figure 3.2.7 An Example for Calibration

Index	:	JP-1	Latitude	: 26-06-39
Well	:	JP-1	Longitude	: 87-68-54
Location	;	Sunadih Patharia	Drilled	:MAR.1970

1975	JAN	FEB	MAR	APR	MAY	JUNT	JUL	AUG	SEP	OCT
1	13.17	13.11	13.14	13.15	13.24	13.78	14.16	14.81	14.96	14.42
2	13.14	13.09	13.16	13.12	13.26	13.79	14.17	14.83	14.98	14.36
3	13.10	13.11	13.16	13.11	13.28	13.81	14.17	14.84	14.97	14.36
4	13.08	13.08	13.14	13.11	13.28	13.83	14.17	14.85	14.96	14.38
5	13.04	13.11	13.14	13.11	13.30	13.83	14.17	14.86	14.95	14.35
6	13.03	13.10	13.14	13.10	13.30	13.83	14.17	14.91	14.96	14.37
7	13.01	13.10	13.16	13.11	13.31	13.85	14.17	14.95	14.94	14.36
8	13.02	13.10	13.16	13.13	13.28	13.87	14.13	14.98	14.92	14.34
9	13.02	13.10	13.16	13.13	13.32	13.89	14.21	15.00	14.87	14.27
	13.01	13.10	13.14	13.12	13.35	13.89	14.24	15.01	14.85	14.26
	13.01	13.10	13.15	13.11	13.37	13.90	14.30	15.02	14.84	14.25
12	13.02	13.12	13.16	13.12	13.37	13.91	14.35	15.04	14.82	14.23
13	13.01	13.12	13.16	13.11	13.39	13.93	14.39	15.05	14.78	14.21
14	13.02	13.12	13.16	13.11	13.42	13, 93	14.44	15.06	14.76	14.18
1.5	13.03	13.14	13.12	13.12	13.43	13.93	14.49	15.07	14.75	14.16
16	13.04	13.13	13.13	13.12	13.46	13.92	14.54	15.08	14.74	14.14
17	13.04	13.12	13.13	13.10	13.49	13.93	14.58	15.07	14.72	14.11
18	13.04	13.11	13.14	13.12	13.44	13.93	14.62	15.06	14.71	14.09

NOTE: Move by [ROLL-UP], [ROLL-DOWN] and arrow keys

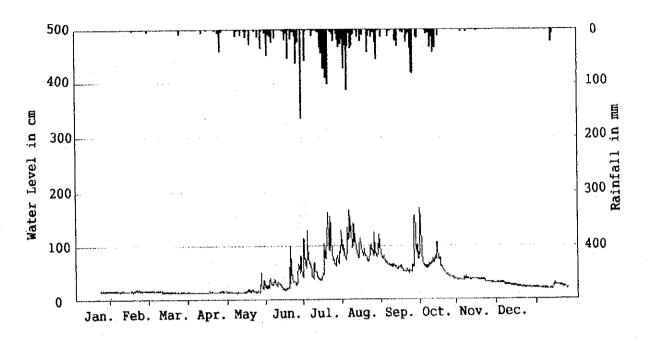

Eiguro 2 2 9 An Example for Data Defende

Figure 3.2.8 An Example for Data Reference

APPENDIX - FOUR

REFERENCE DATA

4.1 Meteorology and Hydrology

4.1.1. Relationship between River Discharge and Rainfall

Figure 4.1.1

Relationship between Water Level for FG-1 and Chandragadhi Rainfall

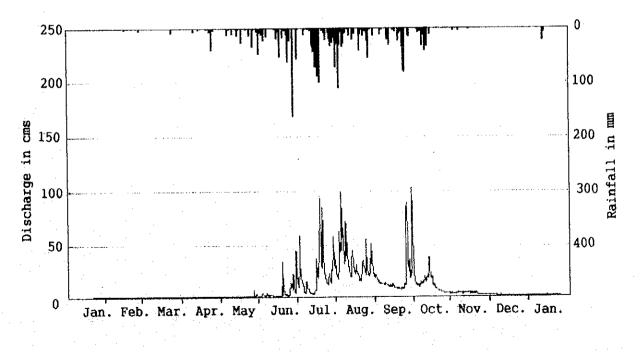


Figure 4.1.2

Relationship between Deoniya Discharge at FG-1 and Chandragadhi Rainfall

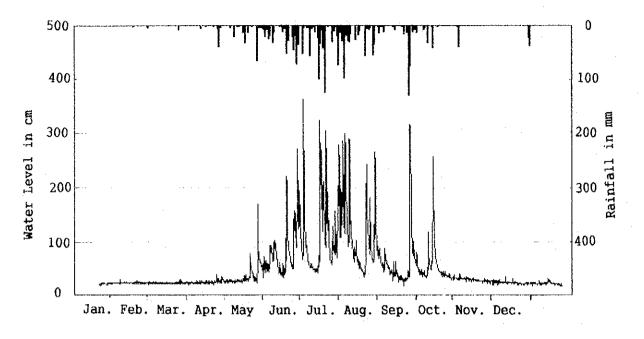


Figure 4.1.3

Relationship between Water Level for FG-2 and Chandragadhi Rainfall

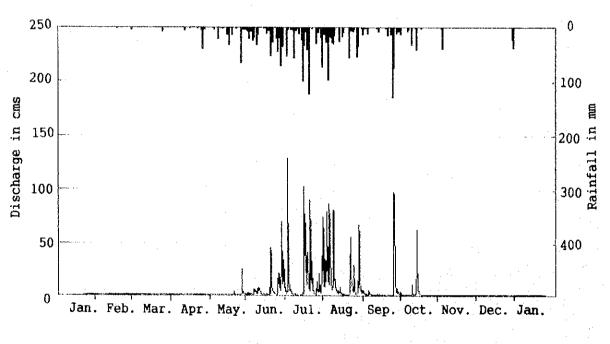
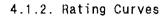



Figure 4.1.4

Relationship between Budhajhora Discharge at FG-2 and Chandragadhi Rainfall

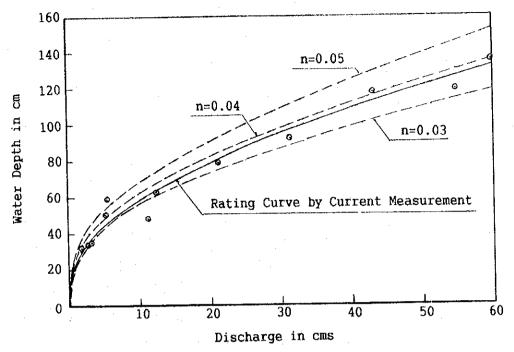


Figure 4.1.5 Rating Curve at FG-1 for Deoniya River

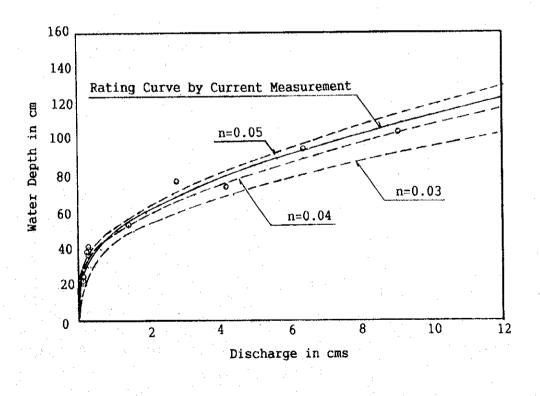


Figure 4.1.6 Rating Curve at FG-2 for Budhajhora River

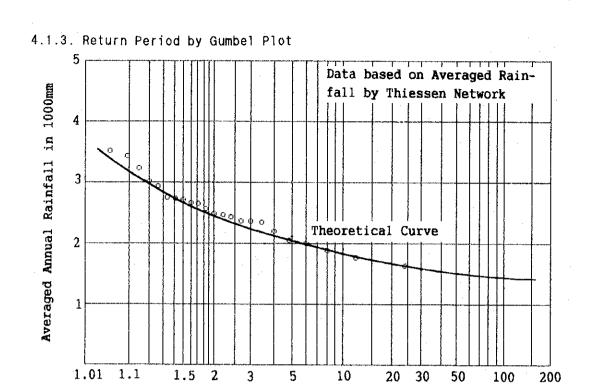


Figure 4.1.7 Non-Exceedance Gumbel Plot for Averaged Annual Rainfall in Jhapa District

Recurrence Interval in Years

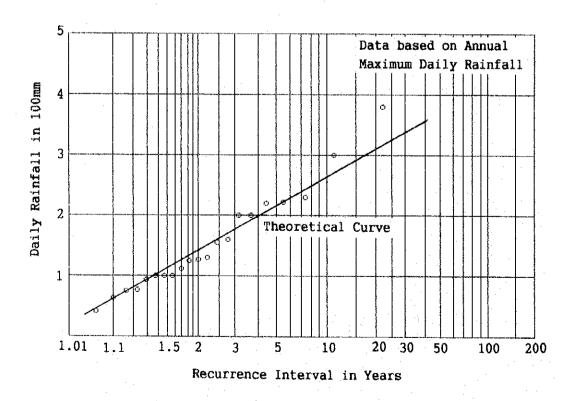
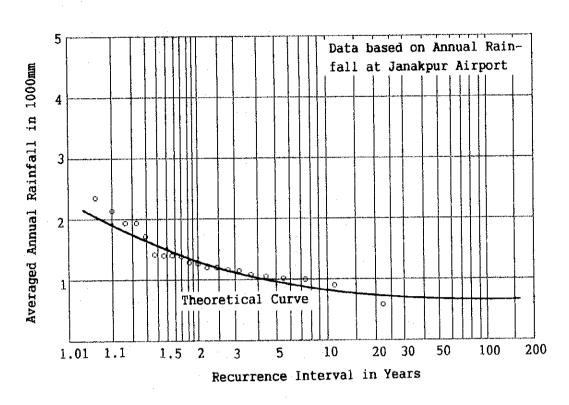
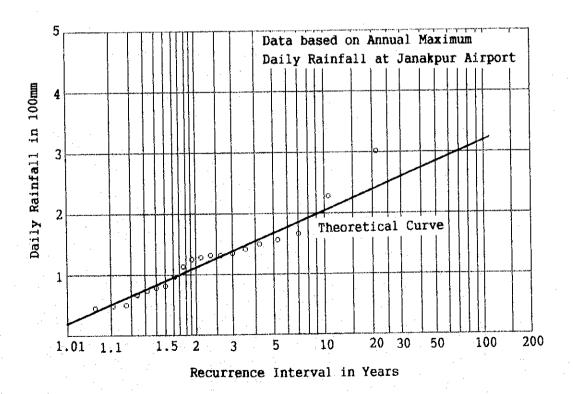
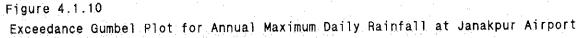





Figure 4.1.8 Exceedance Gumbel Plot for Annual Maximum Daily Rainfall at Chandragadhi

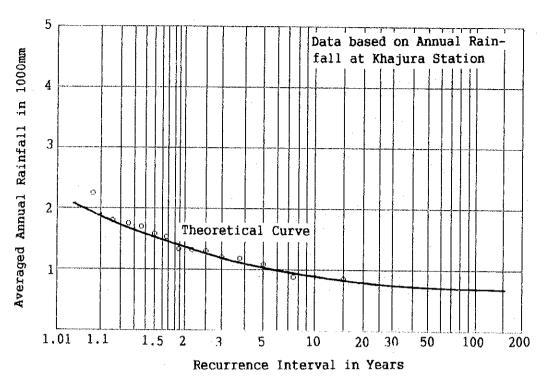


Figure 4.1.11

Non-Exceedance Gumbel Plot for Annual Rainfall at Khajura

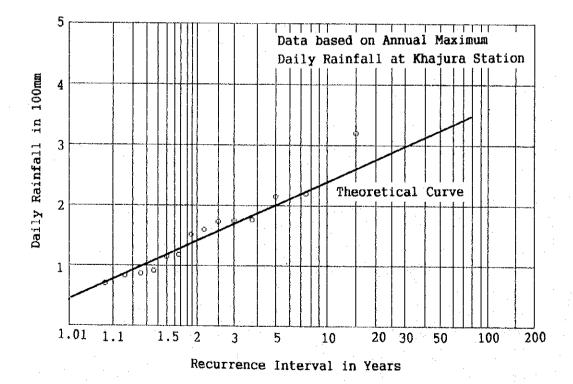


Figure 4.1.12

Exceedance Gumbel Plot for Annual Maximum Daily Rainfall at Khajura