ANNEXES

Annex 3.1 LIST OF EQUIPMENT AND MATERIALS

GROUP	EQUIPMENT/SPECIFICATION	PURPOSE OF USE	QUANTITY
A. 01	Swampdozer, 7t	Disposal sites	2 units
A-02	Excavator, grab bucket, $0.2 \mathrm{m3}$	Dredging	2 units
A-03	Working barge for the above	Dredging	2 units
A-04	Sludge hauling barge, $6 \mathrm{m3}$	Sludge hauling	4 units
A-05	Sludge hauling barge, 2 m 3	Sludge hauling	8 units
A-06	Sludge settling vessel, 6 m 3	Sludge hauling	2 nos.
A-07	Dump truck, 4 t w/extension	Clean/dredging	12 units
A-08	Water jet cleaner, 4 truck	Cleaning	2 units
A-09	Water tanker, 4 m 3	Cleaning	5 units
A-10	Vacuum truck, 8 t w/high vacuum	Dredging	2 unit
A-11	Vacuum truck, 4 t w/dehydrator	Cleaning	2 units
A-12	Vacuum truck, 4 t	Dredging	14 units
A-13	Sludge tank truck 4 t	Dredging	6 units
A-14	Portable winch for sewer	Dredging	2 sets
A-15	Truck, $4 \mathrm{tw} / \mathrm{ctane} 3 \mathrm{t}$	Clean/dredging	7 units
A-16	Rough terrain crane, 30 t	Dredging/etc.	1 unit
A-17	Tractor \& Trailer, 20 t	Dredging/etc.	1 unit
A-18	Pick-up truck, 1 t	SV/F-service	8 units
A-19	Submersible pump, 150 mm dia .	Clean/dredging	6 units
A-20	Submersible pump, 100 mm dia.	Clean/dredging	9 units
A-21	Diesel generator, 30 kVA	Clean/dredging	6 sets
A-22	Diesel generator, 20 kVA	Clean/dredging	4 sets
A. 23	Spare parts for the above	15% of CIF	1 lot
B-01	Porable gas detector, 3 gases	Cleaning	7 nos.
B-02	Floodlight, 300 W. W/tripod	Cleaning	10 sets
B-03	Blower, 300 mm dia..	Cleaning	11 nos.
B-04	Transceiver	Clean/dredging	7 sets
B-05	Hand tools for Dredging/Cleaning small canal, collector basin, small connection pipes, etc.	Clean/dredging	1 lot
B-06	Equipment \& tools for maintenance and repair shop	M \& R shop	1 lot
C-01	Dredge suction pipe (steel) set, 150 mm dia. $\times 200 \mathrm{~m}$	Dredging	3 sets
C-02	Suction hose, $150 \mathrm{~mm} \times 5 \mathrm{~m}$	Dredging	6 pcs
C-03	Delivery hose, 150 mm dia. $\times 50 \mathrm{~m}$	Clean/dredging	30 sets
C-04	Delivery hose, 100 mm dia. $\times 50 \mathrm{~m}$	Clean/dredging	45 sets
C-05	Cabtyre cable, $100 \mathrm{~mm} / \mathrm{cable}$ reel	Clean/dredging	30 sets
C-06	Fuel and lubricant (for 1 year)	Clean/dredging	600 m 3

Annex 3.3 CHARACTERISTICS OF ZONES

Item	ZONE 1		ZONE 2		ZONE 3	ZONE 4	ZONE 5	ZONE 6		20NE7	Total/Average
	ZONE 1-1	2ONE 1-2	ZONE 2-1	ZONE 2-2				ZONE 6-1	ZONE 6-2		
Area (ha)	930	1.060	990	1.010	1,350	500	2.800	870	2.290	1.740	13,540
Future Population	40,300	46,500	303,800	129,200	299,400	190,300	243,900	114,200	180,100	49,100	1,596,800
Future Population Density (person /ha)	$\begin{array}{r} 43.3 \\ (111.0) \\ \hline \end{array}$	43.9	306.9	127.9	221.8	380.6	87.1	131.3	78.6	28.2	117.9
Future Wastewater Yield (m3/c)	$8,260$	7,910	73,370	36,000	70,360	44,720	56,450	29,830	43,220	8,290	378.410
- Domestic	6,539	5,585	54,660	23.026	53,892	34,254	42,063	20.480	31,151	6.330	277.980
- Commercial	1,722	642	16.689	6,951	16,467	10,467	12,147	6,230	9.035	977	81.327
- Industrial	0	1,680	2,016	6,020	0	0	2,240	3,121	3.035	984	19.096
Future Pollutant Load (kg / d)	2,765	3,591	22,455	11,507	21,257	13,511	17,962	9,378	13,827	3,463	119.716
Specific Yield (m3/d/ha)	$\begin{array}{r} 8.88 \\ (22.75) \\ \hline \end{array}$	7.46	74.11	35.64	52.12	89.44	20.16	34.29	18.87	4.76	27.95
Specific Load (kg/d/ha)	$\begin{array}{r} 2.97 \\ (7.62) \end{array}$	3.39	22.68	$\therefore 11.39$	15.75	27.02	6.42	10.78	6.04	1.99	8.84
Raw Wastewater Quality (BOD \& SS :mg/l)	$\begin{aligned} & 335 \\ & 301 \\ & \hline \end{aligned}$	$\begin{array}{r} 454 \\ 409 \\ \hline \end{array}$	$\begin{aligned} & 306 \\ & 275 \\ & \hline \end{aligned}$	$\begin{aligned} & 320 \\ & 288 \\ & \hline \end{aligned}$	302 272	$\begin{array}{r} 302 \\ 272 \\ \hline \end{array}$	$\begin{array}{r} 318 \\ 286 \\ \hline \end{array}$	$\begin{aligned} & 314 \\ & 283 \end{aligned}$	$\begin{aligned} & 320 \\ & 288 \end{aligned}$	$\begin{aligned} & 418 \\ & 376 \\ & \hline \end{aligned}$	$\begin{aligned} & 316 \\ & 285 \\ & \hline \end{aligned}$
Name of Recelving Water	West Lake	Nhue	Kim Nguut	Kim Nguu	To Lich	Lu	Nhue	To Lich	Nhue	ToLich	
Proposed Removal	80		85		85	85	75	75	75	75	
Efficiency of BOD \& SS(\%)	80		80	80	80	80	80	80	80	80	
Treated Wastewater Quality (80D:mg/l)			50	50	50	50	80	80	80		
- Domestic	60	50				- .				90	\therefore
- Commercial/Industrial	50	50								50	
Proposed Wastewater Disposal System	On-site/ Community	Conmunity	$\begin{aligned} & \text { Large } \\ & \text { Centra } \end{aligned}$		Medium Scale Centralized	Medium Scale Centralized	Medium Scale Centralized	Mediu Cent	Scale zed	NonTreatnent	
Alternative Wastewater Disposal System	Small Scale Centralized		Medium Centr	$\begin{aligned} & \text { Scale } \\ & \text { ized } \\ & \hline \end{aligned}$	Large Centr	Scale lized	. . .			On-site/ Community	

Annex 3.4 PROJECT COST FOR DRAINAGE MASTER PLAN (1/8)

Description

Cost
(\$1,000)
I. TO LICH RIVER BASIN (77.5 km 2)

1st Stage Construction Project
A. Construction Cost $\quad 113,391$

1. Site Preparatory Works 723
2. Main Civil Works : 85,071
(1) General Installations 8,066
(2) Yen So Pumping Station $\quad 13,506$
(a) Pumping Station, Civil Work $\quad \therefore \quad 5,360$
(b) Inlet Structure $\quad 1,435$
(c) Inlet Channel, 1,200 m 1,914
(d) Ordinary Drainage Channel, $1,900 \mathrm{~m} \quad 834$
(e) Outlet Sluiceway, Civil Work $\quad 1,158$
(f) Outlet Channel, $1,600 \mathrm{~m} \quad 2,805$
(3) Yen So Regulating Reservoir
(a) Regulating Reservoir, $203 \mathrm{ha} \quad 14,923$
(b) Yen So Channel, $3,400 \mathrm{~m} \quad 2,522$
(c) Spoil Bank 1,706
(4) Linh Dam Channel, $1,000 \mathrm{~m}$
(5) Floodgates and Control Gates, Civil Work $\quad 4,489$
(6) River Improvement 14,427
(a) Lower Kim Nguu, To Lich and Lower Lu Rivers,
and Thanh Liet Channel, $22,100 \mathrm{~m}$
(b) Set and Upper Lu Rivers, and Lu-Set Floodway, $\quad 4,299$ $7,500 \mathrm{~m}$
(c) Upper Kim Nguu River, $3,400 \mathrm{~m} \quad 1,229$
(7) Hygdromechanical Equipment 22,828
(a) Pumping Station, Mechanical/Electrical Work $\quad 19,520$
(b) Outlet Sluiceway Gates $\quad 315$

Note : 1994 price, excluding price contingencies
Description Cost (\$1,000)
(c) Floodgates and Control Gates, Metal Work 2,993
(8) Installation of Flood Forecasting System 400
3. Drainage Channel Improvement, Reconstruction of 4,548
Bridges/Culverts
(1) To Lich and Lower Lu River Basins, and Hoang Liet 2,979
Drainage Basin, $16,400 \mathrm{~m}$
(2) Set and Upper Lu River Basins, $3,700 \mathrm{~m}$ 397
(3) Kim Nguu River Basin, 10,700 m 1,172
4. Lake Improvement 3,367
(1) Lake Dredging, 4 lakes 3,052
(2) Lake Conservation, Aeration in 2 pilot lakes 315
5. Sewer Rehabilitation and Construction 10,032
(1) West Lake Basin 336
(2) To Lich River Basin 1,660
(3) Set River Basin 1,284
(4) Upper Lu River Basin 2,649
(5) Kim Nguu River Basin 4,103
6. Supply of Dredging Eauipment 9,650
B. Administration Cost 3,402
C. Land Acquisition and Compensation Cost 15,181

1. Land Acquisition 14,030
2. House Evacuation 501
3. Fishery Compensation 650
D. Physical Contingency 11,573

Annex 3.4 PROJECT COST FOR DRAINAGE MASTER PLAN (3/8)
Description
Cost (\$1,000)

E. Engineering Service Cost

16,925
(Sub-total of 1st Stage Construction Project)
160,472

2nd Stage Construction Project
A. Construction Cost $\quad 101,609$

1. Main Civil Works 27,878
(1) General Installations $\quad 1,512$
(2) Yen So Pumping Station $\quad 5,519$
(a) Pumping Station, Civil Work 4,384
(b) Outlet Sluiceway, Civil Work $\quad 1,135$
(3) Linh Dam and Dinh Cong Lakes $\quad 4,561$
(a) Linh Ḍam Lake, 107 ha 3,348
(b) Dinh Cong Channel, $400 \mathrm{~m} \quad 429$
(c) Dinh Cong Lake, 25 ha 784
(4) Hydromechanical Equipment $\quad 16,286$
(a) Pumping Station, Mechanical/Electrical Work $\quad 15,971$
(b) Outlet Sluiceway Gates 315
2. Drainage Channel Improvement 17,723
(1) To Lich and Lower Lu River Basins and Hoang Liet
Drainage Basin, $16,400 \mathrm{~m}$
(2) Set and Upper Lu River Basins, $3,700 \mathrm{~m} \quad 2,924$
(3) Kim Nguu River Basin, $10,700 \mathrm{~m} \quad 3,115$
3. Lake Improvement $\quad 7,584$
(1) Lake Dredging, 14 lakes $\quad \mathbf{6 , 2 4 0}$
(2) Lake Conservation, 11 lakes $\quad 1,344$
4. Sewer Rehabilitaion and Construction 48,424
(1) West Lake Basin $\quad 2,412$

Note : 1994 price, excluding price contingencies

Description	$\begin{aligned} & \text { Cost } \\ & (\$ 1,000) \end{aligned}$
(2) To Lich River Basin	15,262
(3) Lower Lu River Basin	2,891
(4) Hoang Liet Drainage Basin	5,167
(5) Set River Basin	6,273
(6) Upper Lu River Basin	3,311
(7) Kim Nguu River Basin	12,803
(8) Yen So Drainage Basin	305
B. Administration Cost	3,048
C. Land Acquisition and Compensation Cost	20,049
1. Land Acquisition	18,050
2. House Evacuation	1,339
3. Fishery Compensation	660
D. Physical Contingency	11,656
E. Engineering Service Cost	20,577
(Sub-total of 2nd Stage Construction Project)	156,939
Total of I. TO LICH RIVER BASIN	317,411
II. NHVE RIVER BASIN (57.9 km 2$)$	
Co Nhue Drainage Basin Project (19.7 km)	
A. Construction Cost	54,787
1. Drainage Improvement	25,801

Note 1994 price, excluding price contingencies

Annex 3.4 PROJECT COST FOR DRAINAGE MASTER PLAN (5/8)

Description Cost(\$1,000)
(1) General Installations 3,365
(2) Pumping Station, $12 \mathrm{~m} 3 / \mathrm{S}$ 9,405
(3) Regulating Reservoir, 76 ha 9,808
(4) Drainage Channels, $19,200 \mathrm{~m}$ 3,223
2. Nhue River Left Levee, $6,000 \mathrm{~m}$ 565
3. Sewer Construction 25,019
4. River/Lake Conservation Works 3,402
B. Administration Cost 1,644
C. Land Acquisition and Compensation Cost 14,478

1. Land Acquisition 14,033
2. House Evacuation 65
3. Fishery Compensation 380
D. Physical Contingency 7,091
E. Engineering Service Cost 8,218
(Sub-total of Co Nhue Drainage Basin Project) 86,218
My Dinh Drainage Basin Project (13.6 km 2)
A. Construction Cost 26,659
4. Drainage Improvement 15,516
(1) General Installations 2,024
(2) Pumping Station, $8 \mathrm{~m} 3 / \mathrm{S}$ 6,648
(3) Regulating Reservoir, 40 ha 5,124

Description	$\begin{gathered} \text { Cost } \\ (\$ 1,000) \end{gathered}$
(4) Drainage Channels, $13,400 \mathrm{~m}$	1,720
2. Nhue River Left Levee, 3,700 m	348
3. Sewer Construction	8,446
4. River/Lake Conservation Works	2,349
B. Administration Cost	800
C. Land Acquisition and Compensation Cost	6,133
1. Land Acquisition	5,894
2. House Evacuation	39
3. Fishery Compensation	200
D. Physical Contingency	3,359
E. Engineering Service Cost	3,999
(Sub-total of My Dinh Drainage Basin Project)	40,950
Me Tri Drainage Basin Project (14.7 km 2)	
A. Construction Cost	30,801
1. Drainage Improvement	16,799
(1) General Installations	2,191
(2) Pumping Station, $9 \mathrm{~m} 3 / \mathrm{S}$	7,317
(3) Regulating Reservoir, 40 ha	5,222
(4) Drainage Channels, $13,500 \mathrm{~m}$	2,069
2. Nhue River Left Levee, $4,800 \mathrm{~m}$	452
3. Sewer Construction	11,011

Note : 1994 price, excluding price contingencies

Annex 3.4 PROJECT COST FOR DRAINAGE MASTER PLAN (7/8)

Description	$\begin{aligned} & \text { Cost } \\ & (\$ 1,000) \end{aligned}$
4. River/Lake Conservation Works	2,539
B. Administration Cost	924
C. Land Acquisition and Compensation Cost	12,791
1. Land Acquisition	12,500
$\because 2$. House Evacuation	91
3. Fishery Compensation	200
D. Physical Contingency	4,452
E. Engineering Service Cost	4,620
(Sub-total of Me Tri Drainage Basin Project)	53,588
Ba Xa Drainage Basin Project (9.9 km)	
A. Construction Cost	18,510
1. Drainage Improvement	10,877
(1) General Installations	1,419
(2) Pumping Station, $6 \mathrm{~m} 3 / \mathrm{S}$	5,174
(3) Regulating Reservoir, 27 ha	3,390
(4) Drainage Channels, $8,700 \mathrm{~m}$	894
2. Nhue River Left Levee, $4,100 \mathrm{~m}$	386
3. Sewer Construction	5,537
4. River/Lake Conservation Works	1,710
B. Administration Cost	555

Note : 1994 price, excluding price contingencies

Annex 3.4 PROJECT COST FOR DRAINAGE MASTER PLAN (8/8)

Description	$\begin{gathered} \text { Cost } \\ (\$ 1,000) \end{gathered}$
C. Land Acquisition and Compensation Cost	1,995
1. Land Acquisition	1,834
2. House Evacuation	26
3. Fishery Compensation	135
D. Physical Contingency	2,106
E. Engineering Service Cost	2,776
(Sub-total of Ba Xa Drainage Basin Project)	25,942
Total of II. NHUE RIVER BASIN	206,698
III. GRAND TOTAL	524,109

GROUP	EQUIPMENT/SPECIFICATION	CIF AT SITE PRICE		
			UNIT	AMOUNT
A-01	Swampdozer, 7 t	2 units	9,950	19,900
A-02	Excavator, grab bucket, 0.2 m 3	2 units	11,250	22,500
A-03	Working barge for the above	2 units	12,300	24,600
A-04	Sludge hauling barge, 6 m 3	4 units	3,800	15,200
A-05	Sludge hauling barge, 2 m 3	8 units	\%. 650	5,200
A-06	Sludge settling vessel, $6 \mathrm{m3}$	2 nos.	- 1,200	2,400
A-07	Dump truck, 4 t w/extension	12 units	4,400	52,800
A-08	Water jet cleaner, 4 t truck	2 units	21,600	43,200
A-09	Water tanker, 4 m 3	5 units	6,900	34,500
A-10	Vacuum truck, 8 t w/high vacuum	2 unit	27,300	54,600
A-11	Vacuum truck, 4 t w/dehydrator	2 units	33,400	66,800
A-12	Vacuum truck, 4 t	14 units	11,950	167,300
A-13	Sludge tank truck 4 t	6 units	10,900	65,400
A. 14	Portable winch for sewer	2 sets	3,450	6,900
A-15	Truck, 41 w/crane 3 t	7 units	6,850	47,950
A-16	Rough terain crane, 30 t	1 unit	31,600	31,600
A-17	Tractor \& Trailer, 20 t	1 unit	17,900	17,900
A-18	Pick-up truck, 1 t	8 units	2,100	16,800
A-19	Submersible pump, 150 mm dia .	6 units	690	4,140
A-20	Submersible pump, 100 mm dia.	9 units	430	3,870
A-21	Diesel generator, 30 kVA	6 sets	2,600	15,600
A-22	Diesel generator, 20 kVA	4 sets	2,350	9,400
A-23	Spare parts for the above	1 lot		109,284
	Sub-total:			837,844
B-01	Portable gas detector, 3 gases	7 nos.	340	2,380
B-02	Floodlight, $300 \mathrm{~W}, \mathrm{~W} /$ tripod	10 sets	95	950
B-03	Blower, 300 mm dia..	11 nos.	145	1,595
B-04	Transceiver	7 sets	85	595
B-05	Hand tools for Dredging/Cleaning	1 lot	2,300	2,300
B-06	Equip. \& tools for maint. and repair shop	1 lot	16,800	16,800
	Sub-total:			24,620
C-01	Dredge suction pipe (steel) set, 150 mm dia.	3 sets	1,550	4,650
C-02	Suction hose, $150 \mathrm{~mm} \times 5 \mathrm{~m}$	6 pcs	150	900
C-03	Delivery hose, 150 mm dia, $\times 50 \mathrm{~m}$	30 sets	140	4,200
C-04	Delivery hose, 100 mm dia. $\times 50 \mathrm{~m}$	45 sets	95	4,275
C-05	Cabtyre cable, 100 m w/cable reel	30 sets	284	8,520
C-06	Fuel and lubricant (for 1 year)	600 m 3		0
	Sub-total:			22,545
	Total:			885,009

Annex 3.6 PROJECT COST FOR WASTEWATER DISPOSAL

OOO＇LEO＇8	000＇9EI＇	1000＇661	O00＇LlS	$000{ }^{\circ} 280^{\circ} 1$	0000006	$0009861^{\circ} 1$	$000^{\circ} \mathrm{LLS}$	OOOOCOL	000＇6L2	000.615	［HOL
$\begin{aligned} & 000^{\circ} \text { LSS } \\ & 000^{\circ} \angle 8 b^{\circ} L \end{aligned}$	OOO'9عו:I	$\begin{aligned} & 000^{\prime} 911 \\ & 000^{\prime} \mathrm{E} 9 \end{aligned}$	$\begin{aligned} & 000^{\circ} \mathrm{Sb} \\ & 0000^{\circ} \mathrm{L} \text { 人 } \end{aligned}$	$\begin{aligned} & 000^{2} 8 E 1 \\ & 000^{2} \cup p 6 \end{aligned}$	$\begin{aligned} & 0 \times 0^{\prime} \angle 2 \\ & 000^{\prime} \mathrm{C} L 8 \end{aligned}$	$\operatorname{ONO}^{\circ} \angle L$	000°＇ps OOOCES	$\begin{aligned} & 0 \times 159 \\ & 000^{\prime} 500^{\prime}: \end{aligned}$	$\begin{aligned} & 000^{\prime} 9 z \\ & 000^{\prime} \mathrm{E} \Sigma \end{aligned}$	$\begin{aligned} & 000 ' s \\ & 0001 \mathrm{VI}, \end{aligned}$	सute mannernt：
											（ $\operatorname{suox} / \mathrm{SSO})$
buc，	$\angle \mathrm{FNO}$	で9 ENO7．	1.93 NOZ	$5 \pm N 07$.	\dagger TNO7．	¢ 3 NO7．	c－$¢ 3 \mathrm{NO}$	1－て3N07	Z－1 TNOZ	11 1207	แ⿰丬士 15OJ 200Z จสินวмวร

[^0]Annex 3.7 PROJECT COST DISBURSEMENT SCHEDULE

		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2080
L. Ustm Davinage Prem	524,107	8,150	29,866	42.762	47.235	27.56	15.750	22.439	57,422	53.534	25,217	21,962	31,806	28.288	27,45	23.023	20,611	14,033	5.629	6.166	3,447						
1 To Lich River	317,409	8,150	29,866	42762	47,235	27,568	15,700	22.439	57,422	46.311	19,346							. $\%$		\because			\cdots	\%.			
basage	160,470	8.150	29,166	42,762	47.239	27,68	4,689			.	\%			\%			\cdots							\because			
2nd Suge	256,939			\cdots			10,892	22,439	57,42	46,201	19,346	\cdots	\cdots	\cdots				\cdots	\cdots	\cdots		-	\cdots				
2 Mue Riva	206.698									0.693	5,871	21,962	31.205	20205	27.245	22.03	20,611	18,023	5.629	8,166	3,447			--			
Co Nasue	86,218									6,693	5,711	21,962	23.459	20,392	7.342												
My Dian	40,950												3.000	2356	2916	9.045	2,937	7,8\%									
MeTin	53,582												5,48	4,437	11,587	12,378	10.334	9,100									
B Xa_{0}	23,902													.			1.336	1,027	5.629	6,166	5,447						
7. Wenewor Diapoui Plat	637,926		3.991	5,038	5,933	5.96	2,093	23.553	34,02	36,350	14,181	20,66	31,291	16,809	33.015	32,663	45.970	29,2m	35,567	30.720	23,264	42,665	30,302	52.308	39,72	23.019	13,907
(1) 2-1	35,52		1,134	1,134	1.870	3.373	2.638	21,415	2,415	23,743	8,800				.			$\therefore \cdots$									
(2) 20004	69,50\%		2,55?	3,45	3,848	741	249	249	8,358	8,358	3,275	17,473	17,473	277													
(3) Tome 3	109,734					35	2,619	350	2.720	2730	360	1,619	10,739	9,480	23.678	23.678	23,673	8,73									
(4) Coeec 2-2	52.518			.										314	2.339	1,066	13,942	13,942	13,942	6.973							
(5) Tome 6-1	45.220												129	129	189	1,110	5,541	619	11,893	11,893	11.893	5,604					
(6) Zove 5	114.924																	501	2,923	4,576	2.254	29,209	29,299	29,299	16,03		
(7) Zome 6-2	99,744												\because	-	$\%$			\because		409	2,312	2.936	1.093	23,019	23.019	23,019	13.907
(1) Zowe 1-1	26.233			59	215	1,494	2587	1.474	1.474	1,474	1,474	1,474	1,474	1.474	1,474	1.474	1,474	1,474	1,474	1,474:	1,474	1,242	\cdots				
(9) 200en 1-2	24,990												104	662	3,423	3,423	3.423	1,951	3,423	3,423	3,423	2,735					
(10) 20007	19,607				\%			53	53	35	272	102	1,912	1.912	1,912	1,912	1.912	1.912	1.912	-1,912	1.912	1.80	\cdots				
mi. Grand Town	1,162,033	3,150	33,837	47,800	33,168	33,536	2,473	45,992	91,44	89,34	39,393	42,630	63.697	45.094	00,860	54,686	6,581	47,245	41,190	36,816	28,715	42,665	30,362	52,308	39.72	23,019	13,007

RAINFALL INIENSITY CURVES IN HANOI

Rainfall Intensities proposed by MOC

Duration (min.)	Retura Petiod (year)						
	50	20	10	5	3	2	1
5	219	202	188	175	16.5	1.57	$1+4$
10	194	177	10.5	152	$1+3$	136	123
15	174	158	147	135	127	120	108
20	157	143	132	122	114	107	97
25	144	131	121	111	103	98	88
30	133	121	111	102	95	90	80
35	124	112	103	95	88	83	74
45	109	99	91	83	77	72	64
60	93	34	77	70	65	61	54
75	82	74	68	61	57	53	47
90	73	66	60	55	51	47	42
120	61	55	50	45	42	39	3.4
180	47	42	38	34	31	29	25
240	38	34	31	23	2.5	24	20
360	29	2.5	23	21	19	17	15
480	23	21	19	17	15	14	12

SOCIALIST REPIBLK OF VETNAM
THE STWOY ON URBAN DRANNGGE AND WASTEWATEA
DISPOSAL SYSTEM W HANOI CITY
JAPAN WTERNATHNAL COOPERATION AGENCY.

Annex 4.1
RAINFALL INTENSITY CURVES IN HANOI
Hydrographs of Alternatives at the Yen So Site
Jun. 12 ' 89 Flood Type (10-year)

Annex 4.3 FLOODGATES AND CONTROL GATES

Annex 4.4 LAKE IMPROVEMENT

Lake		Area (ha)	Perimeter(km)	Low Water Level in Rainy Season EL (m)		Ground Level EL (m)	Dimensions of Dredging		Proposed Type of Improvment *2	Characteristics			
No.	Name					Depth *1 (m)	Volume$(1,000 \mathrm{~m} 3)$	Flood Control Effect		Quality of Environment Surrounding	Accessability	Recent Dredging by HPC	
				Present	Proposed								
T 7	Giang Vo	8.4	1.1	5.5	3.5	6.2	2.0	168	A	Large	High	Easy	
T 8	Ngoc Khanh	4.5	0.9	5.1	3.5	5.9	1.6	72	B	Medium	Medium	Easy in future	x
T 9	Thanh Cong	6.5	1.2	4.9	3.5	6.0	1.4	91	A	Medium	High	Easy	X
T10	Hao Nam	2.8	0.5	5.2	3.5	5.8	1.7	48	B	Small	Low	Easy	
T13	Dong Da	18.6	1.8	4.7	3.5	5.6	1.2	223	B	Large	High	Possible	
T16	Nghia Do 1	5.2	0.8	5.0	3.5	6.2	1.5	78	A	Medium	High	Easy	X
L 3	Van Chuong	4.1	0.8	5.2	3.5	5.7	1.7	70	B	Medium	Low	Easy	
L 4	Tho Quang	1.5	0.6	5.3	3.5	5.6	1.8	27	B	Small	Low	Hard	
L 6	Trung Tu	5.1	0.9	4.9	3.5	5.9	1.4	71	8	Medium	High *3	Easy	
L11	Phuong Liet 1	5.6	1.2	4.5	3.5	5.3	1.0	56	C	Medium	Medium	Hard	
L12	Phuong Liet 2	1.9	0.6	4.5	3.5	5.2	1.0	19	C	Small	Low	Easy	
S 2	Bay Mau	23.1	2.0	5.0	3.5	5.9	1.5	347	A	Large	High	Easy	X
S 4	Trai Ca	4.7	1.1	4.2	3.5	5.4	0.7	33	C	Medium	Low	Hard	
S 5	Lang Tam	1.9	0.9	4.5	3.5	5.4	1.0	19	C	Small	Low	Hard	
S 7	Thanh Liet	13.2	1.4	4.3	3.5	5.0	0.8	106	C	Large	Low	Hard	
S 8	Dam Set	3.6	0.6	4.0	3.5	5.0	0.5	18	C	Small	Low	Hard	
K 3	Thanh Nhan 1	8.5	1.2	4.7	3.5	6.2	1.2	102	A	Large	Medium	Easy	
K 4	Thanh Nhan 2	4.0	0.8	4.7	3.5	6.2	1.2		B	Medium	Medium	Easy	
	Total	123.2	18.4					1,596	--	-	-	-	4

Annex 4.5 PROJECT COST FOR TO LICH RIVER BASIN DRAINAGE SYSTEM

Annex 4.6 WORK ITEMS OF IST AND 2ND STAGE PROJECTS (1/2)

Item	First Stage Project	Second Stage Project
1. Yen So Pumping Station		
(1) Pumping Station	$Q=45 \mathrm{~m} / \mathrm{s}$	$Q=45 \mathrm{~m} / \mathrm{s}$
(2) Inlet Structure	$B=200 \mathrm{~m}$	--
(3) Inlet Channel	1,200	
(4) Ordinary Drainage Channel	$\mathrm{L}=1,900 \mathrm{~m}$	
(5) Outlet Sluiceway	$A=30 \mathrm{~m} 2$	$A=30 \mathrm{~m} 2$
(6) Outlet Channel	$L=1,600 \mathrm{~m}$	
2. Yen So Regulating Reservoir		
(1) Regulating Reservoir	$A=203 \mathrm{ha}$ (130ha)	
(2) Yen So Channel	$L=3,400 \mathrm{~m}$	
(3) Spoil Bank	$=40 \mathrm{ha}$	
3. Linh Dam and Dinh Cong Lakes		
(1) Linh Dam Channel	$L=1,000 \mathrm{~m}$	
(2) Linh Dam Lake		$A=107 \mathrm{ha}$
(3) Dinh Cong Channel		$L=400 \mathrm{~m}$
(4) Dinh Cong Lake		$A=25 \mathrm{ha}$
4- Floodgates and Control Gates	7 places	
5- River Improvement		
(1) To Lich and Lower Lu River System	$\begin{aligned} & \mathrm{L}=22.1 \mathrm{~km} \\ & \quad(\text { Lower } \mathrm{Lu}=3.2 \mathrm{~km}) \end{aligned}$	
(2) Set and Upper Lu River System	$\begin{aligned} & L=7.5 \mathrm{~km} \\ & (\text { Upper Lu }=3.1 \mathrm{~km}) \end{aligned}$	
(3) Kim Nguu River System	$\mathrm{L}=3.4 \mathrm{~km}$	
6- Drainage Channel Improvement		
(1) To Lich and Lower Lu River Basin	Bridges/Box Culverts (21 places)	Channel Works $(\mathrm{L}=16.4 \mathrm{~km})$ and Bridge/Box Culverts (24 places)
(2) Set and Upper Lu River Basin	Bridges/Box Culverts (13 places)	Channel Works ($\mathrm{L}=3.7 \mathrm{~km}$) and Bridge/Box Culverts
(3) Kim Nguu River Basin	Bridges/Box Cuiverts	(2 places)
		Bridge/Box Culverts (1 places)

Annex 4.6 WORK ITEMS OF IST AND 2ND STAGE PROJECTS (2/2)

Item	First Stage Project	Second Stage Project
7. Lake Improvement		
(1) Lake Dredging	4 lakes	14 lakes
(2) Lake Conservation	Aeration in 2 lakes as a pilot project	Overall environmental measures for 11 lakes
8. Sewer Rehabilitation and Construction		
(1) West Lake Basin	Rehabilitation	New construction
(2) To Lich River Basin	Rehabilitation	Rehabilitation/ New construction
(3) Lower Lu River Basin	-	New construction
(4) Hoang Liet Drainage Basin	-	New construction
(5) Set River Basin	Rehabilitation	New construction
(6) Upper Lu River Basin	Rehabilitation/ New construction	New construction
(7) Kim Nguu River Basin	Rehabilitation/ New construction	New construction
(8) Yen So Drainage Basin	- \quad -	New construction
9. Equipment Supply for Cleanup of Drainage Channels and Sewers	Grab bucket excavator, water jet cleaner, etc.	--

Annex 4.7 WORK QUANTITIES OF SEWER REHABILITATION AND CONSTRUCTION

Annex 4.8 (1/3) COST BENEFIT STREAM OF URBAN DRAINAGE (TO LICH RIVER - 1ST)

No.	Year	Const. Cost	O\&M Cost	Cost Total	Benetit Tocal	B-C
1	1995	5.994		5,994	0	-5.994
2	1996	23,867		23,867	0	-23,867
3	1997	38,330		38.330	0	-38.330
4	1998	46,161		46.161	0	-46,161
5	1999	27,568	342	27.910	3,321	-24,589
6	2000	4,889	572	5,461	5,979	518
7	2001	0	1,143	1,143	12.917	11,774
8	2002	0	1,143	1.143	13,950	12,807
9	2003	0	1.143	1.143	15,066	13,923
10	2004	0	1,143	1.143	16.272	15,129
11	2005	0	1,143	1.143	17,573	16,430
12	2006	0	1,143	1,143	18,979	17.836
13	2007	0	1,143	1.143	20,498	19,355
14	2008	0	1,143	1.143	22,137	20.994
15	2009	0	1,143	1.143	23,908	22,765
16	2010	0	1,143	1,143	25,82!	24,678
17	2011	0	1,143	1,143	27,887	26,744
18	2012	0	1,143	1,143	30,118	28.975
19	2013	0	1,143	1,143	32,527	31,384
20	2014	0	1,143	1,143	35,129	33,986
21	2015	0	1.143	1.143	37,940	36,797
22	2016	0	1,143	1,143	37,940	36.797
23	2017	0	1,143	1.143	37,940	36,797
24	2018	0	1,143	1.143	37,940	36,797
25	2019	0	1,143	1,143	37,940	36.797
26	2020	0	1,143	1,143	37.940	36,797
27	2021	0	1,143	1.143	37,940	36,797
28	2022	0	1.143	1.143	37,940	36,797
29	2023	0	1,143	1,143	37.940	36,797
30	2024	0	1.143	1.143	37,940	36,797
31	2025	32,478	1,143	33,621	37,940	4.319
32	2026	0	1.143	1,143	37.940	36,797
33.	2027	0	1.143	1,143	37,940	36,797
34	2028	0	1,143	1,143	37,940	36,797
35	2029	0	1,143	1.143	37,940	36,797.
36	2030	0	1,143	1,143	37,940	36,797
37	2031	0	1.143	1.143	37.940	36.797
38	2032	0	1,143	1,143	37,940	36,797
39	2033	0	1,143.	1,143	37,940	36.797
40	2034	0	1,143	1.143	37.940	36,797
41	2035	0	1,143	1,143	37,940	36,797
42	2036	0	1.143	1.143	37.940	36,797
43	2037.	0	1,143	1,143	37.940	36,797
44	2038	0	1.143	1.143	37,940	36,797
45	2039	0	1.143	1.143	37,940	36.797
46	2040	0	1,143	1.143	37,940	36.797
47	2041	0	1.143	1.143	37.940	36,797
48	2042	0	1.143	1,143	37.940	36,797
49	2043	0	1.143	1.143	37,940	36.797
50	2044	0	1.143	1,143	37,940	36.797
	Toial	179.287	51,206	230.493	1.460,276	1.229,783

Annex $4.8(2 / 3)$ COST BENEFIT STREAM OF URBAN DRAINAGE (TO LICH RIVER - 2ND)

No.	Year	Const Cost	O\&M Cost	Cost Total	Benefit Total	B-C
1	1995	0	\%	0		0
2	1996	0		0		0
3	1997	0	\%	0		0
4	1998	0		0		0
5	1999	0		0	8	0
6	2000	7,282		7.282		-7,282
7	2001	15,221		15.221		-15,221
8	2002	50.204	0	50,204	0	-50,204
9.	2003	46,841	174	47,015	3,014	44,001
10	2004	19,346	289	19,635	5,425	-14,210
11	2005	0	579	579	11,716	11,137
12	2006	0	579	579	12,653	12.074
13	2007	0	579	579	13,666	13,087
14	2008	0	579	579	14,759	14,180
15.	2009	0	579	579	15.939	15,360
16	2010	0	579	579	17.215	16.636
17	2011	0	579	579	18,592	18,013
18	2012	0	579	579	20,079	19,500
19	2013	0	579	579	21.685	21.106
20	2014	0	579	579	23.420	22,841
21	2015	0	579	579	25,294	24,715
22	2016	0	579	579	25,294	24,715
23	2017	0	579	579	25,294	24,715
24	2018	0	579	579	25,294	24.715
25	2019	0	579	579	25,294	24,715
26	2020	0	579	579	25,294	24,715
27	2021	0	579	579	25,294	24,715
28	2022	0	579	579	25,294	24.715
29	2023	0	579	579	25,294	24.715
30	2024	0	579	579	25,294	24.715
31	2025	0	579	579	25,294	24,715
32	2026	0	579	579	25,294	24.715
33	2027	0	579	579	25,294	24,715
34	2028	0	579	579	25,294	24.715
35	2029	16.285	579	16,864	25,294	8,430
36	2030	0	579	579	25,294	24.715
37	2031	0	579	579	25,294	24,715
38	2032	0	579	579	25,294	24,715
39	2033	0	579	579	25,294	24,715
40	2034	0	579	579	25,294	24.715
41	2035	0	579	579	25,294	24,715
42	2036	0	579	579	25,294	24,715
43	2037	0	579	579	25,294	24,715
44	2038	0	579	579	25,294	24,715
45	2039	0	579	579	25,294	24,715
46	2040	0	579	579	25,294	24.715
47	2041	0	579	579	25,294	24,715
48	2042	0	579	579	25,294	24.715
49	2043	0	579	579	25.294	24.715
50	2044	0	579	579	25,294	24,715
	Total	155.179	23,623	178,802	936.984	758.182

$E I R R=11.4 \%$

Annex 4.8 (3/3) COST BENEFIT STREAM OF URBAN DRAINAGE
(TO LICH RIVER BASIN)
(US\$1.000)

No.	Year	Const. Cost		O\&M Cost	Cost Total	Benefit			B-C
		1st Stage	2nd Stage			1st Stage	2nd Stage	Total	
1	1995	5,994			5.994	0	0	0	-5,994
2	1996	23,867			23,867	0	0	0	-23,867
3	1997	38.330			38,330	0	0	0	-38,330
4	1998	46,161		0	46.161	0	0	0	-46,161
5	1999	27,568		342	27,910	3.321	0	3,321	-24.589
6	2000	4,889	7,282	572	12,743	5.979	0	5,979	-6,764
7	2001	0	15.221	1,143	16,364	12,917	0	12,917	-3,447
8	2002	0	50,204	1.143	51,347	13,950	0	13,950	-37,397
9	2003	0	46,841	1,317	48,158	15,066	3,012	18,078	-30,080
10	2004	0	19,346	1.432	20,778	16,272	5.425	21,697	919
11	2005	0	0	1,722	1.722	17,573	11.716	29,289	27,567
12	2006	0	0	1,722	1.722	18.979	12,653	31,633	29,911
13	2007	0	0	1,722	1,722	20,498	13,666	34,163	32,441
14	2008	0	0	1.722	1.722	22,137	14.759	36,896	35,174
15	2009	0	0	1.722	1.722	23.908	15.939	39,848	38.126
16	2010	0	0	1.722	1.722	25,821	17,215	43,036	41,314
17	2011	0	0	1,722	1,722	27,887	18,592	46,479	44,757
18	2012	0	0	1,722	1,722	30,118	20,079	50,197	48,475
19	2013	0	0	1,722	1.722	32,527	21,685	54,213	52,491
20.	2014	0	0	1,722	1,722	35,129	23,420	58.550	56,828
21	2015	0	0	1.722	1.722	37,940	25,294	63,234	61.512
22	2016	0	0	1.722	1.722	37,940	25,294	63,234	61,512
23	2017	0	0	1,722	1.722	37.940	25,294	63,234	61,512
24	2018	0	0	1.722	1,722	37,940	25,294	63,234	61.512
25	2019	0	0	1.722	1.722	37.940	25,294	63,234	61,512
26	2020	0	0	1,722	1.722	37.940	25,294	63,234	61.512
27	2021	0	0	1.722	1,722	37.940	25,294	63,234	61.512
28	2022	0	0	1.722	1.722	37.940	25.294	63,234	61.512
29	2023	0	0	1.722	1,722	37.940	25,294	63,234	61.512
30	2024	0	0	1,722	1,722	37.940	25,294	63,234	61.512
31	2025	32,478	0	1,722	34,200	37.940	25,294	63,234.	29,034
32	2026	0	0	1,722	1,722	37,940	25,294	63,234	61.512
33	2027	0	0	1,722	1.722	37.940	25,294	63,234	61.512
34	2028	0	0	1.722	1.722	37.940	25,294	63,234	61.512
35	2029	0	16,285	1,722	18.007	37.940	25,294	63,234	45,227
36	2030	0	0	1,722	1.722	37,940	25,294	63,234	61,512
37	2031	0	0	1.722	1.722	37.940	25.294	63,234	61,512
38	2032	0	0	1.722	1,722	37.940	25,294	63,234	61.512
39	2033	0	0	1,722	1,722	37.940	25,294	63.234	61,512
40	2034	0	0	1.722	1.722	37.940	25.294	63.234	61.512
41	2035	0	0	1,722	1.722	37.940	25,294	63,234	61.512
42	2036	0	0	1,722	1.722	37,940	25.294	63,234	61,512
43	2037	0	0	1,722	1.722	37.940	25,294	63,234	61.512
44	2038	0	0	1.722	1.722	37.940	25.294	63.234	61,512
45	2039	0	0	1,722	1.722	37.940	25,294	63.234	61.512
46	2040	0	0	1,722	1,722	37,940	25,294	63.234	61.512
47	2041	0	0	1.722	1,722	37.940	25,294	63,234	61.512
48	2042	0	0	1.722	1.722	37,940	25.294	63,234	61.512
49	2043	0	0	1.722	1,722	37.940	25.294	63,234	61,512
50	2044	0	0	1,722	1.722	37,940	25.294	63,234	61.512
	Total	179.287	155.179	74.829	409.295	1,460,276	936,981	2.397,257	1,987,962

[^0]:

