Rеваг к s		N25° ¥·45° E, N60° ¥·44° NE, N50° ¥·45° E, N70° ~80° E·60 ~76° NE	N25°E•70°R, N75°E•50°NW N75°F•80°N, N80°F•75°N hydro-fracturing is com- monly seen	N80° F •45° S, N60° F •60° S N80° F •70° S, N60° F •70° S E-F •75° N, N85° E •50° S N60° F •80° NE, N40° F •50° SF STEEN COPPET and galera	N65" E-70" S. N65" # - 70" N E-# - 50° S. N50" # - 60" S#
A1	type		140 ~260 Qz-ser- Musc-pl- N K-fel h	QZ-Ser	Qz-Ka-pyp E
Filling	Tenp	t:	40 ~260	42 ~237	1
	S.	ຸດາ	<u></u> Ю	പ ന	শ
s s a y	AU (g/t)Ag (g/t)	0 0 V	0.3 V	6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	∽ ∞ ∽ } ↔ ∨
S F	Au (g/t	0.04	0.04	0. 03	0.04
Host Rock		diorite(C ₂₋₅	graphite gn- eiss(V-C 1) diabase, dior- ite, gabbro	limestone (V-C ,) basalt	limestone (Y-C ,)
Characteristics and Size		Silisified rocks and quartz veins in three vein zones. vein size: Max 10m×500 m area: BW 1.5 km ×NS 1.2 km	milky white quartz veins in the area of 2 km×7 km fluorite occures in the east- ern part. vein size: Max 8 m×500 m	More than ten milky white limest quartz veins are seen in the (V-C ₁ area of EW 3.500m×NS 1.000m basalt Maximum size of a vein is 1.5 m wide × 100m long.	Three massive silicified bodi- limestone es with network of quartz (V-C 1) veinlets. (V-C 1) Unit size Max. 120m × 800m area 500m × 1900 m South side is covered by dune and colluvial deposits.
nate 1t:t::do		45° 19′ 39′ ~ 45° 19′ 47′	45° 16′ 15′ ~ 45° 17′ 05′	45° 10' 45' ~ 45° 10' 24'	45° 10° 41′ ~ 45° 10° 39′
Coodinate	המנו המנו	106° 45′ 43° ~ 106° 46′ 46′	106° 39' 51' ~ 106° 44' 25'	106° 36′ 21′ ~ 106° 38′ 48′	106 [°] 44 [°] 25 [°] 106 [°] 45 [°] 41 [′]
Type of Denosit	Tepdar	Q2-V	-20 0	-20 -7	Massive silici- fied r. Qz-v
Mineral		Au	Au	Ą	Au
Name of . demosit	1100120		Futur Üs	Ulziit 0vco	Sologoi Bayan
		5	62	83	64

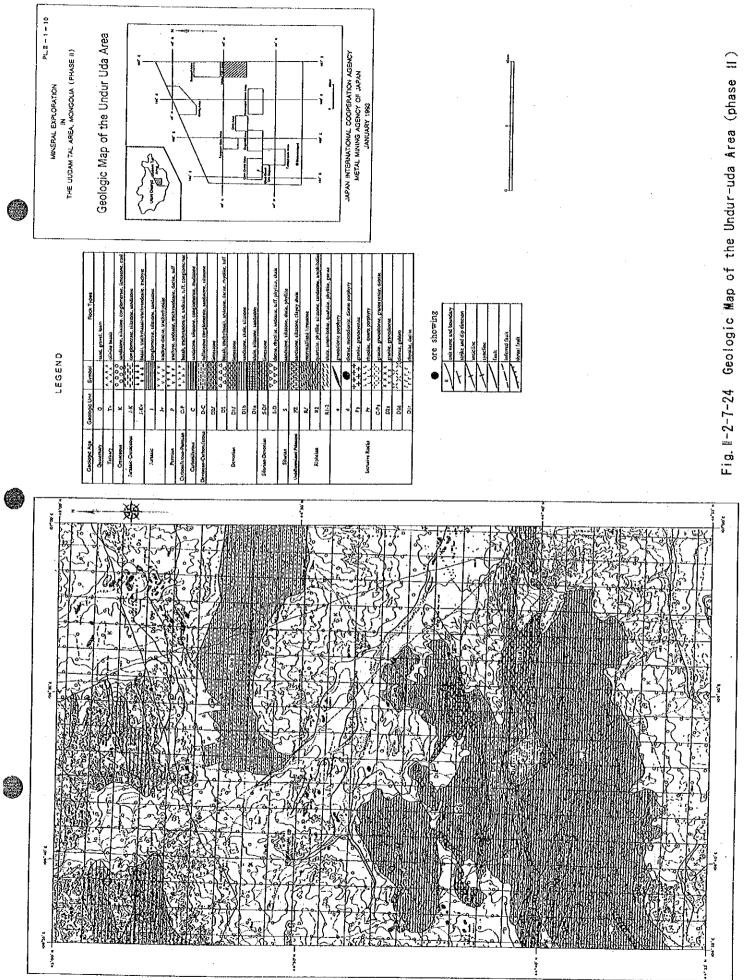
Table $\|-2-7-7$ Ore-showings in the Sologoi Area (2)

-121-

		<u>\$:</u>	yi <u> </u>			
	民の国名に近ら	Strike: N80°¶, dip: 75°S? graphite bering	N80' E.60' N. N-S and others. surface of the sinter- cones are widely covered by the fragments of sili- ceous sinter and dune.	This zone is located at southeastern lim of the mesozoic depression.	Strike: N50°~60E°, dip: 55°~60°NF Silicified rock bodies are located at the southeast- ern corner of the Mesozoic basin.	Strike: N75°~85°E. dip: 40°~45°S about 12 km east of Sologoi area
	Alteration type	(Qz-Ser)	Qz-cal		(Qz-cal)	I
	Filling Temp °C	4.	19 ~133 0z-cal		I	I
2	S		00		2	
	s a y g(g/t)	0 3	ಣ ರಾ ರ		е. С	1
	A s Au(g/t)A	0.04	0. 04 ~ 0. 05		0. 40	I
	Host Rock	granite	limestone(RU) siltstone, sandstone(J- X)		limestone(R/)	granite (PZ ₁)
	Characteristics and Size	parallel quartz veins and silicified rock vein size: Max, 5rm×400 m vein zone: Max, 80m×400 m	silicified zone with silicious limestone(RU) and calcaleous sinter cones. siltstone, siliceous sinter is cut by sandstone(J- chalcedonic quartz veinlets. K) silicified zone:		a couple of massive silicif- id rocks vein size: Max 15 m×280 m vein zone: Max 100m×300 m	a couple of milky white mono- quartz vein cut by two faults. vein size: Max 15 m×1,200 m insufficiently surveyed
	nate Latitude	45 05 36	45°06′23′ ~ 45°05′48′	•	45 06 28	45° 10' 43' ~ 45° 10' 21'
	Coodinate Longitude Lat:	106° 53′ 18′	106° 53′ 14′ ~ 106° 53′ 53′		106° 58' 09'	107 08' 49' ~ 107' 07' 59'
	Type of Deposit	QZ-V	Hot spr- ing type		massive silicif- ed rock	Qz-v
	Mineral	ny	γn		Υn	Чц
	Name of deposit		Hetsuu Tsagaan Uul		· · · ·	
	No	2 2	89		67	89

Table #-2-7-7 Ore-showings in the Sologoi Area (3)

-122-


.

.

\$	Name of deposit	¥ineral	·	Type of Coodinate Deposit Longitude Latitude	nate Latitude	Characteristics and Size	Host Rock	Åssay Au(g/t)Ag(g/t)	Assay /t)Ag(g/t)	bcs 1	Filling Temp °C	Alteration type	R e H a r K S
65	 	Чп	silicif- ed zone	silicif- 107 07 01' ed zone	45' 11' 36'	silicified zone along the lim of the Yesozoic depression. zone: Max. 23nn ×> 1 km	sandstone. siltstone (J-K1)	1	I	. 1	Ĩ	(62-2)	Strike: N50°E, dip: 50°S insufficiently surveyed
70		Y	A-20	106° 29' 29'	45 14 27	parallel quartz vein swarm in limestone(V-C,) vein size: Max, 40m×1.5 km	limestone (R/)	I	I		1	(dz-2)	strike and dip: E-¥.80° N, N78° E.75° N insufficiently surveyed
1		ч	Qz-v With sil Sinter	106 02' 18'	45 10 52	milky white chalcedonic mono- quartz veins with siliceous sinter. two parallel veins vein size: Max 5 m×100 m	granite. granodiorite (P2)	l .	1)	l	(6-20)	parallel quartz veins N30°E.90°? insufficiently surveyed
72		Ϋ́	Qz-v & alterat- ion zone	106 10' 55'	45 01' 31'	parallel quartz veins and sil- icified rocks in wide hydro- psammitic thermal alteration zones. schist vein size: $1\sim 5 \text{ m} \times 100 \text{ m}$ (PZ ₁) zone: $500 \text{ m} \times > 5 \text{ km}$	<pre>pelitic~ psammitic schist (PZ₁)</pre>	I	1		1	(Qz-Ser)	NTC*#-90° There are about ten alter- ation zones in a profile.
73		·· · · · · · · · · · · · · · · · · · ·	massive silicif- ed rock	106 27' 36'	45° 07′ 42°	single massive silicified rock limestone(20) body at the lim of the Meso- zoic depression. size: 100 m × 800 m	c limestone(&)	l :	1		1	(3-20)	N70° #.90° insufficiently surveyed

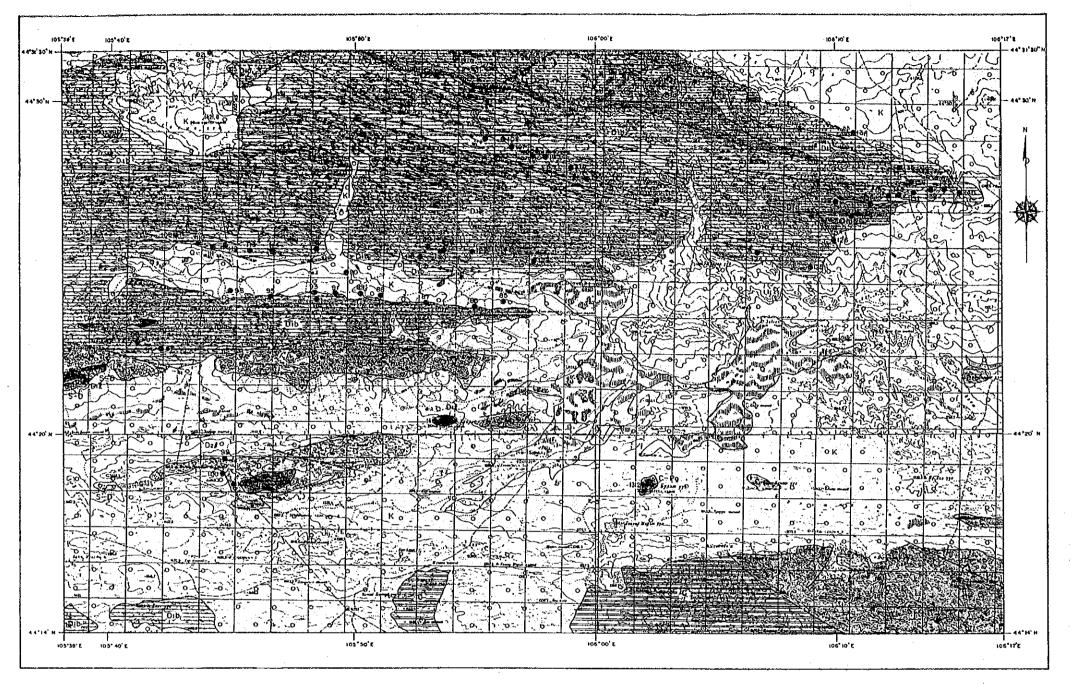
Table I-2-7-7 Ore-showings in the Sologoi Area (4)

-123-

-124-

田 ら た の	epidotizat- E-7.90°, N80°7,80°S ion no other ore-showings around)" N. N40" E-40" NW N	5° ~80° S	eiongated to N80°E direct- ion	Ø	extending to N75°E Sinter cones are alined along the northern lim of the Wesozoic depression.
ସ ଲ	E-F+90°, no other around	N75 * \$ + 60° N. N70° \$ + 60° N	N85° W • 75° ~80° S		N80° #• 50° S	l extending Sinter co along the the Mesoz
Alteration type	epidotizat íon	1	(ch1-ser)	Qz-ser-pi- K-fel	Qz-Ka-ser	Qz-Ka-K-fel extending to N75 E Sinter cones are al along the northern the Mesozoic depres
Filling Temp °C	I	1	1	I	I	ł
bcs	1	ы.	1	F-1	I	l .
Å s s a y Au(g/t)Åg(g/t) pcs	1	6	l,	с. С.	I	1
A A		0.04	I .	0 04	1	1
Host Rock	fng amphibol- ite~melano- cratic gns	granodiorite- porphyry	chl-ser sch. phyllitic	granite and limestone (PZ ₁)	chl-ser sch. lithoidite dike	chl-ser sch. phyllitic
Characteristics and Size	a couple of small quartz veins fng amphibol- in the area of 20 m×20m. ite~melano- cratic gns	milky white single quartz vein vein size: Max 0.8m×150 m	three parallel quartz veins. vein size: <u>Max</u> 0.6 m×20m	quartz-pipe formed at the contact between granite and limestone size: Max, 25m ×45m	parallel quartz veinlets. vein size: Max 0.3 m×3 m area: 10m×15m	quartz vein, siliceous sinter and mud pots aligned to N 75 E direction size of sinter cone: Max 50m ×50m area: 50m×500 m
nate Latitude	44° 56′ 08′	44° 54′ 37′	44° 43′ 50′	44° 41' 23'	44° 42′ 20′	44° 53' 26'
Coodinate Longitude Lat	106° 50′ 14′	106 45' 32'	106° 52′ 27′	106 46 39	106 39' 51'	Hot spr- 105 32'51' ing type
Type of Deposit	02-V	^-Z	A-20	2-23 9	02V	Hot spr- ing type
Mineral	Yn	Ąn	Чп	ЧП	γn	н Ч
Name of deposit			• .			
ġ.	74	75	76	22	78	

Table 1-2-7-8 Ore-showings in the Undur-uda Area (1)

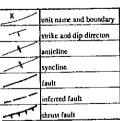

-125-

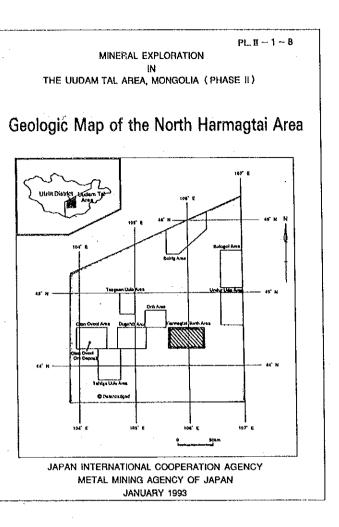
ſ	1	
ĺ		
୬ ୟ ଅ ଅ ଅ ଅ	N45' ~60' E^ 75' S	
Alteration type		
Filling A Temp °C	1	
	ļ	
Åssay Au(g/t)Åg(g/t) pcs	1	
······		
Bost Rock	limestone (D.)	
Characteristics and Size		
nate Latitude	44° 42' 17' ~ 44° 38' 38' 38'	
Type of Coodinate Deposit Longitude Latitude	silicif- 106 08 43' 44 42 17 ied zone ~ ~ ~ ~ ~ 105 43' 19' 44' 38' 38'	
Type of Deposit	silicif- ied zone	
Mineral	Ą	
Name of deposit		
J	8	

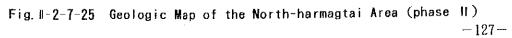
Table I-2-7-8 Ore-showings in the Undur-uda Area (2)

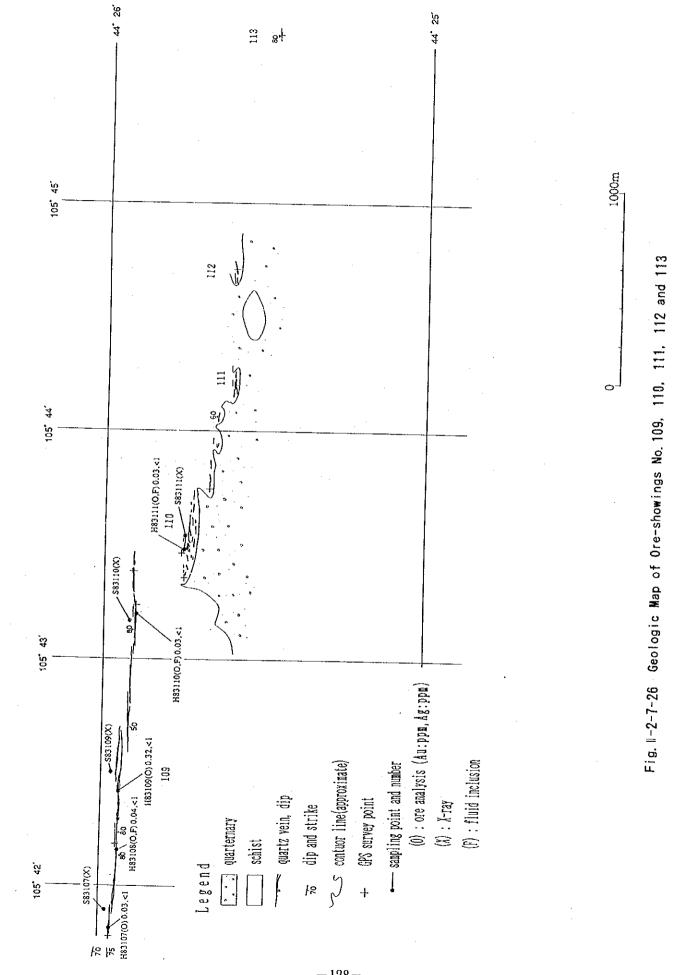
۲

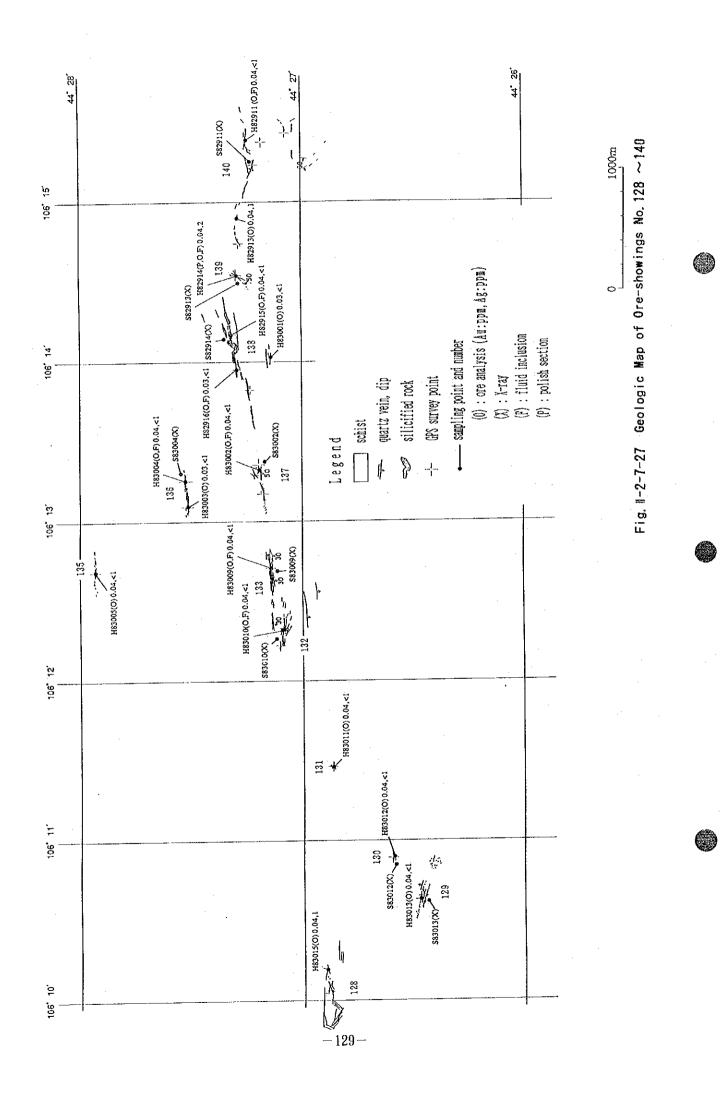
-126-




Geologic Age	Geologic Unit	Symbol	Rock Types
Quaternary	9		sand, gravel, korn
Teniary	Tv	^ ^ ^ ^	olivine basalt
Cretaceanas	к	0.00	sandstone, sillstone, conglomerate, limestone, coal
Jurassic-Cretaceous	J-K		congiomerate, silisione, sandsione
	J-Kv	6 A A A 4 A A	basalt, trachybasali-trachyandesite, trachyte
Jucassic	3		conglomerate, silistone, sandstone
	Jv	V V V V V V V	trachyte-dacite, trachyrhyolite
Pentulan	P	* * * *	trachyte, andesite, trachyandosite, dacite, tuff
Carboniferous-Permian	C-P	22.24	basali, trachyandesite, andesite, tuff, conglomerate
Carboniferous	c		sandstope, silestone, englomerate, mudstone
Devonian Carboniferous	D-C		tuffaccous conglomerate, sandstone, sillsione
÷	D2/		limestone
	D2		basali, trachybasalt, andesite, dacite, rhyolite, tuff
Devonian	DI		limestine
	DIP		sandsione, sbale, siltstone
ĺ	Dla		shale, siltstone, sandstone


Silunian-Devonian	S-D/	limestone
	5-D	
Silurian		
Jadifferentiated Paleozoic	PZ.	sandstone, siltstone, shale, phyllite
	R/	recrystallized lamestone
Ripheian	R2	quartzite, phyllite, siltstone, sandstone, amphiboli
	R1-2	shale, amphibolic, quanzite, phyllite, greiss
	c	granodiorite purphyry
	d	diorite, microdiorste, diorite pophyry
	Pi	+ + + teranite, granosyenite
Invusive Rocks	Pr	LLL thyolite, quartz posphyry
	C-Pt	article granite, granodicuite, granosyenite, diorite
	D2	X X X X X X X granite, granistionite
Ļ	D2d	diorite, gabbiu
	Dlr	r f r r rhyolite, dacite





-128-

	Reaarks	The zone extends approx- imztely three km to the insufficiently surveyed	N80° #+50° S hydro-fracturing	veins: N3 0°E• 80°~85°SE zone: N70°¶	N80° 7 • 50° N	Е- ₮ . 70°~80° S	extending to N60° ₩
	Al teration type	(chi-ser)	(ser-py)	162 ~263 Qz-chl-ser pl-cal-py	Qz-pl-ser	(Qz-ser)	(Qz-ser)
Ξ	Filling Tewp °C	1	I	162 ~263	1	1 .	1
rea	pcs	1	I	ന		ł	1
Jtai A	A s s a y Au(g/t) Ag(g/t)	1	I	с С С	0.8	1	1
harmag	A S Au(g/t)	1	i	0. 02 ~ 0. 03	0.02	I .	. 1
the North-	Host Rock	grn-gry sch phyllitic (D ₁)	pelitic sch (D.)	chl-ser sch. phyllitic (D,)	đk gry phyl sch(D1)	<pre>blk pelitic sch. phyllit- ic (D,)</pre>	ser sch. phyllitic (D,)
2-7-9 Ore-showings in the North-harmagtai Area	Characteristics and Size	parallel quartz vein swarm in the area of 40m×140 m. no wall rock alteration	milky white mono-quartz veins vein size: Max. 2 m×25m zone: 50m×300 m	parallel mono-quartz veins chl-ser sc vein size: Max. 0.8 m×400 m phyllitic zone: 600 m×1.500 m (D1)	aggrigate of parallel quartz dk gry veins. milky white chalcedonic sch(D, size: Max. 20 m×500 m	parallel quartz veinlets. vein size: Max 0.6 m×6 m area: 10m×25m	three small quartz veins aligned. vein size: Max 0.6 m×3 m total length: 30m
Table -2-7-9	nate Latitude	44° 32′ 01′	44° 31′ 26′	44° 28' 52' ~ 44° 28' 46'	44° 29′ 18′	44° 23' 55'	44° 23′ 48′
μ μ	Coodinate Longitude Lati	105° 43° 38′	105° 44' 03'	105° 54' 57' ~ 105° 55′ 50′	105° 57′ 10′	105 5 07	105 54 59
	Type of Deposit	V-20	∆ZÔ	^-Z0	∧-zð	- A	02-v1
-	Mineral	Au	'nų	ηγ	Ч	Au	п¥
	Name of deposit			······································			
	No.	81	82	ŝ	84	នួ	8

-130-

20 20 20 20 20 20 20 20 20 20 20 20 20 2	N80° 7 . 80° 7 . 80° 7	N50° ₩•80° ~90° S	N75 ° W. 75° N manganese oxide bearing	E-₩.80° N	N80° ¶•70° ~80° N Σv =4 m	N80°₩.90° Σv =2 m
Alteration type	(Qz-ser)	(ser-py)	(Qz-ser)	(Qz-ser)	(Qz-ser)	(Qz-ser)
Filling Temp °C	ł	I	I	I	1	I
S.	F			1	· · · · · · · · · · · · · · · · · · ·	, 4
Assay /t)Ag(g/t)	1	. 1	1	1	l .	1.0
A s s a y Au(g/t)Ag(g/t) pcs	1	I	I	I	1	0.02
Host Rock	blk sch. phy- llitic(D ,) dio-por stock	red alt ser sch(D ₁)	blk ser sch. phyll (D 1)	blk sch. phy- llitic(D 1)	<pre>gry alt ser sch.phyllitic</pre>	dk gry sch, phyll (D ₁)
Characteristics and Size	four parallel quartz veins in the area of 30m×50m. vein size: Max 2 m×20m	a couple of milky white tour- Qz veins aligned size: 0.6 m×15m,0.6m×10m	single milky white quartz vein blk ser sch. size: Max. 1.2m×60m phyll (D 1)	a couple of parallel quartz veins. size: 2.5 m×20m.1.5m×10m	parallei milky white quartz veins in the area of 100m× 200 m. six veins in a profile size: 2 m×15m.0.6m×10m	four parallel milky white quartz veins vein size: Max 2 m×30m area: 20m×50m
ate Latitude	44° 23′ 53′	44° 24′ 08′	44° 24' 11'	44° 24′ 49′	44° 24' 12'	44° 24' 08'
Coodinate Longitude Lat:	105 52' 58'	105 51' 03'	105° 50' 13'	105 49' 37	105" 49" 12"	105 48 48
Type of Deposit	7-20	0z-v	V-20	QZ-V	^- Z0	^-2°0
Hineral	γn	Au	ηγ	Au	Ą	Au .
Name of deposit						
2	87	00 00	68	06	61	

Table 1-2-7-9 Ore-showings in the North-harmagtai Area (2)

-131-

Remarks	N85' E• 90°	N75° ¥•80° N	N80° F. 60° S central part of Dayangol South zone. Yeins are shattered and dislocated too much	N80' E. 80° N	E-₩. 40°N There are three vein zones The veins are dislocated and dispersed too much	E-W · 75 N Density of the quartz vein is too much dilute.
Alteration	type (Qz-ser)	(ser)	(Qz-ser)	(Qz-ser)	(Qz-ser) 7 7 8	(Qz-ser) E
		1	l	1	ł	1
	8 –	True .		t	₩	2
ASSAY	0.02 0.8	+-+ +-i	0.3	I	러 다	0.6
A S 4.	0.02	0. 02	0. 03	I .	0. 03	0.02 0.03
Host Rock	gm-gry sch (D ₁)	alt diorite	bik ser sch. phyll (D 1) & alt. diorite	gry sch. phy- llitic(D 1)	bik sch. phyll (D ,)	gry sch. phyll (D ₁)
Characteristics and Size	milky white single quartz vein grn-gry sch vein size: Max 2 m×50m (D ₁)	aggregate of for parallel quartz veins vein size: max 2.5 m×45m zone: 5 m×60m	milky white parallel quartz veins and Qz-network in dior- ite dike vein size: Max 4 m×20m zone: 100 m×150 m	aggregate of parallel quartz veinlets, area: 30m×60m. vein size: Max 0.3 m×5 m	six parallel quartz veins exist in the area of 100 m×400 m. milky white mono quartz unit vein size: 1.5 m×20m	ten parallel quartz veins are gry sch. seen in the area of 150m×400m phyll (D ₁) vein size: <u>Wax</u> 0.5 m×40m
latitude	44° 24' 14'	44° 24' 02'	44° 24' 06'	44° 24′ 16′	44° 22' 34'	44° 22′ 47′
Coodinate Longitude [lati		105° 48° 25′	105° 46′ 35′	105° 44' 55'	105° 42' 03'	105 41' 04'
Type of Deposit	V20	^Z7	-20	A-20	√-20	∧- <i>2</i> 0
Mineral	лү	Au	Ąn	Yu	Au	Чп
Name of deposit						
o	83	94	 ອີຍິ	96	16	86 86

Table 1-2-7-9 Ore-showings in the North-harmagtai Area (3)

						<i>(</i>)		
Remarks		arrangement of blocks:E- W, remnant of eroded Q2-v	N20° E+55° S₩	N-S~N50" #• 45"~80" NE average width =20 cm for 250 m	N80° ₩• 60° ~70° S	N80° W 70° S There are three veins	N75° ¶• 80° N	Qz-ser-ch1- X60° ¥· 80° S cai
Alteration	type	(ch1)	(epi-chl)	101~166 Qz-ser-ch1	190~221 Qz-ser-ch1	pl-ser	(Qz-ser)	Qz-ser-chl- cai
Filling	Temp °C	1	1	101~166	190~221	138~262 pl-ser	I	f :
	pcs	1	l	f	sed.		1	 4
say	Au(g/t)Ag(g/t)	}	1	ຕ ເວັ V	с. С. У	0.3	1	0.3
ÅS	Au(g/t)	I	1	0.03	0.03	0.04	I	0. 03
Host Rock		green sch(D) serp. basic r.	galena and alt diorite g miky Qz m×50m	alt granite	grn-gry sch, phyllitic (D ₁)	grn-gry sch, phyllitic (D 1)	gry sch, phyll (D 1)	grn gry sch. phyll (D _)
Characteristics and Size		floats of milky white quartz- blocks size: Max. 1.5m×4 m	single quartz vein, galena and green copper bearing milky Qz vein size: max, 0.5 m×50m	aggregate of parallel quartz veinlets. area: 80m×250 m. vein size: <u>Max</u> 0.5 m×80m	single quartz vein located at anticlinal axis size: Max. 10 m×450 m	three parallel quartz veins emplaced at anticlinal axis, milky white mono Qz unit vein size: 1.5 m×350 m zone: 40m×350 m	four parallel quartz veins are gry sch, seen in the area of $40^{\text{m}} \times 350^{\text{m}}$ phyll (D $_1$) vein size: Max 0.5 m×80m	parailei quartz vein zone size: 8 m×100 m
late	Latitude	44° 19′ 16′	44° 18′ 49'	44° 18° 32′ ~ 44° 18° 27′	44° 26′ 58′	44° 27′ 34′	44° 27′ 56′	44° 28′ 15′
Coodinate	longitude	105' 44' 41'	105 44' 35'	105' 45' 02' ~ 105' 45' 07'	106° 02' 29'	105 59 37	105 58 59	105° 57′ 53′
Type of	Deposit	∿-z0	7-2Đ	∧ Zð	∆20	A-20	v-20	-z0
Wineral		Au	'ny	Чц	'n	Ā	ny	γn
Name of	deposit		·					
No.		56	001	101	102	103	104	105

Table I-2-7-9 Ore-showings in the North-harmagtai Area (4)

-133-

	Remarks		N70°¥•70°×85°S₩	N65' ~70° ¥• 70° ~80° S¥ Σ¥v=5 m	E-F-N50° F veins are too small and the density is too dilute	140~200 Qz-ser-Kfd N85 F. 80' S~N	N80° F. 60° N?	N80° ¶• 60' N?	N80° ¥• 60° N?
	R	type	14 89 09	Qz-ser	(Qz-ser)	Qzser-Kfd	Qz-ser	I	I
(2)	Filling	Temp C	l.	1	ł	140~200	134~166 Qz-ser	1	I
		2 2 2	 4			4	~ 1	1	I
ai Aı	SBY	g(g/t)		0.0 V	0.3 <	< 0.3 0.4	< 0.3	I	1 _:
armagt	A S A	Au(g/t)Ag(g/t)	0.03	0. 03	0.03	0.03	0. 03	i	.1
the North-h	Host Rock		grn-gry sch (D1)	grn-gry sch (D.)	grn-gry sch (D ₁)	grn-gry sch, phyllitic (D ₁)	gry sch. phyll (D 1)	grn gry sch. phyll (D 1)	grn gry sch. phyll (D 1)
∥-2-7-9 Ore-showings in the North-harmagtai Area	Characteristics and Size		aggregate of parallel quartz veins size: Max. 1 m×80m. Av. width 0.1 ~0.3 m znne.8 m x150 m 5 wrs 4 m	parallel quartz vein swarm vein size: max. 0.5 m×80m area 150m×200 m	vein swarm of milky quartz vein size: Max, 0.8 m×5 m area: 300 m×800 m.	single quartz vein size: Max. 6m×2.000 m	parallel quartz vein swarm vein size: Max 0.8 m×50m area: 100 m×900 m.	parallel quartz vein swarm vein size: Max. 0.5 m×50m area: 50m×180 m.	parallel quartz veins, size: 1 m ×50 m×5, total L =150 m
Table -2-	ate 1 -+:+ -10	Tatitude	44° 28′ 17′	44° 28′ 33′	44° 28′ 47″	44° 25′ 58′ ~ 44° 25′ 55′	44° 25′ 45′ ~ 44° 25′ 41′	44° 25′ 36′	44° 25′ 37′
Tat		Tongitude	105° 57′ 23′	105 56 30	105° 56° 07′	105° 41′ 54′ ~ 105° 43′ 23′	105° 43° 22′ ~ 105° 43′ 45′	105° 44' 11'	105° 44′ 43'
	Type of	neposit	^- 27	~~~Z	0z-v	-v-23	V-25	∆-20	0z-√
:	Wineral		Au	Ąr	γn	μų	'nų	Ац	Au
	Name of demonit	nebosit					·		
	oj.		106	107	108	601	011	111	112

-134-

Table 1-2-7-9 Ore-showings in the North-harmagtai Area (6)

אר ה ג ג ג ג ג ג	E-#• 80° N	N80' E.60' S	veins: N80°¶• 80°N, E-¶• 90°, zone: N70°¶	E-W.25°~30'N.30°~60'S Thickness of the leefs are unknown	N80° ≆• 80° ~90° N	N 503 - # - 02N
Alteration type	1	152~199 Qz-ser-cal pi	1	Qz-ser-cal pl	1	02-Ser
Filling Temp °C	I	152~199	156~196	1	I	ł
pcs	I	*-1	I	+-1 .	1	1
Å s s a y Au(g/t)Åg(g/t) pcs	Į.	ະ ເບິ V	1	C.3	•	!
A s Au(g/t)	1	0-04	I · · ·	0.04	ł	I
Host Rock	• gry sch. phyllitic (D1)	pelitic sch (D.)	pelitic sch. phyllitic (D.)	dk gry phyl. sch(D ₁)	blk pelitic sch. phyllit- ic (D.)	ser sch. phyllitic (D.)
Characteristics and Size	four quartz veins uint size Max. 0.3m×15m. total length 50 m	44"25'29' two vein zones along anticiin- pelitic sch ~ al axis 44"25"26' unit size: Max 2 m×300 m zone: 50m×450 m	five mono-quartz veins vein size: Max 1 m×180 m zone: 150 m×850 m	quartz veins conformably form- ed at anticlinal axis (saddle leef) size: Max. 30 m×250 m	six parallel quartz veins. formed along anticlinal axis vein size: <u>Max</u> 0.5 m×20m area: 20m×150 m	ring-shaped quartz veins form- ser sch. ed at anticlinal axis phylliti vein size: Max 1 m×160 m (D ₁) total length: 30m
nate Latitude	44° 25′ 29′	44° 25′ 29′ ∼ 44° 25′ 26′	45° 25′ 23′ ~ 44° 25′ 23′	44° 25′ 32′	45' 25' 33'	44° 25′ 16′
Coodinate Longitude Lat	105' 45' 44'	105' 46' 27' ~ 105' 46' 47'	105° 47′ 23′ ~ 105° 48′ 02′	105 48' 24' 44' 25' 32'	105' 49' 54'	105 52 43'
Type of Deposit	A-20	A-20	A-20	^∑	∆ZQ	1v-20
Yineral 1	ក្ក	γn	ny	Ąu	'n	лү
Name of deposit						
.v.	113	114	115	116	117	118

-135-

Table 1-2-7-9 Ore-showings in the North-harmagtai Area (7)

9

ſ 						
Rепагкs	142~192 Qz(ser-chl) N84° ¥• 60°~70° N. insufficiently surveyed	N84° ¶. 90° insufficiently surveyed	S ୃପିତ୍ସ ଅ	N60° ₩. 60° ~90° N	X80° ቑ.70° ~80° N Σv =4 m	an oval area elongated to E-W direction density of the vein is too dilute
Alteration type	Qz(ser-chl)	l	Qz~do1	Qz-ser	Qz-ser-cal	Qz-ser
Filling Temp °C	142~192	1	148~198 Qz-dol	I	1 · · · ·	I
bcs	r -4	I	∓ −i	1	• ~~ !	ŀ
A s s a y Au(g/t)Ag(g/t)	ణ ల	I	0.3	1	0. 3 V	
A s Au(g/t)	0. 03	I	0. 04	I	0. 05	1
Host Rock	gry psammitic sch (D 1)	gry psammitic sch (D 1)	gry psammitic sch (D ,)	blk sch, phy- llitic(D 1)	gry alt ser sch.phyllitic (D 1)	dk gry sch, phyll (D ₁)
Characteristics and Size	single quartz vein along anti- gry psammitic clinal axis sch (D 1) vein size: Max. 4 m×800 m	single milky white quartz vein gry psammitic size: 1 m×450 m sch (D 1)	aggregate vein of milky white quartz veins umit vein size: <u>Wax</u> 2m×80m total size: 20m×450 m	single quartz vein. milky white chalcedonic quartz size: 2 m×400 m	parallel milky white quartz veins in the area of 70 m× 400 m. ∑vw = 4m unit size: <u>Max</u> , 4 m×400 m	vein swarm of milky white quartz veins unit size: <u>Max</u> , 0.5 m×50m zone: 60m×150 m
nate Latitude	44° 25 35	44° 25' 26'	44° 25′ 28′	44° 25' 25'	44° 25' 08'	44° 25' 23'
Coodinate Longitude Latitude	105° 53′ 02′	105° 53′ 34′	105 53' 43'	105 54 50	105° 57′ 25′	105° 06′ 45′
Type of Deposit	V-20	A-20	V-20	∆-2 0	QZ-V	QZ-V
¥inera1	- P	Au	¥u.	Yn	Au	γn
Name of deposit					- 	
No.	119	120	121	122	123	124

-136-

	1					
S 5 5 5 5 5 5 5 5 5 5 5 5 5	N10° 7° 10° S~80° N	an oval area elongated to E-W direction	mainly N80° ¥, 80° S. partly N50° ¥, 60° S¥. N80° E, 80° N	N80° ¥+70° S. N80° ¥+ 60° N. N55° ¥+70° Sw. E-¥+ 60° S.	N70° F. 60° ~80° N	N55'F. 80'S, E-F.50'S. N20'F. 60'S. partiy saddie leef
Alteration	Qz-p1	Qz-pl-ser	ser-chl	149~204 Qz-pi-ser	ser-chl	Qz-pl-ser
Filling Temp °C	171~213 Qz-p1	1	Т. ¹	149~204	I.	ł
- SOL			,	ന	⊷ 1	* {
say Va(a/t)	0 0 V	0.3	с О	< 0.3	ະ ເບັ V	с С У
$\frac{A}{hi(\sigma/t)}$	1	0. 03	0.04	0. 03 ∼ 0. 04	0.04	0. 04
Host Rock	gry phyll sch (D 1)	gry phyll sch (D 1)	grn sch. phyll (D 1)	veins blu-gry sch. 4 m×500m phyll (D :)	blu-gry sch. phyll(D ₁)	gry sch. phyll (D 1)
Characteristics and Size	milky white single quartz vein gry phyll sch vein size: 2m×500 m (D 1)	aggregate of quartz veinlets vein size: max 0.5 m×6 m zone: 10m×40m	network of quartz veins vein size: Max. 0.5m×15m zone: 15m×60m	aggregate of quartz ' unit vein size: Max, area: 200 m×700 m	four parallel quartz vein zon-blu-gry sch. es in the area of 100 m×300 phyl1(D ₁) m. milky white mono quartz unit vein size: 0.6 m×80m	aggregate of quartz veins in the oval area unit vein size: Max, 5m×35m area: 25m×70m
nate Latitude	44° 24' 59'	44° 25' 47'	44° 25' 29'	44° 26′ 55′ ~ 44° 26′ 54′	44° 26′ 28′	44° 25 35′
Coodinate	106' 08' 58'	106' 09' 57'	106' 09' 00'	106° 09′ 54′ ~	106 10' 39'	106 10 54
Type of Dervsit	A-20	A 20	A20	0Z-1	∧ Z	oz- 2
Vineral	ηγ	γn	Au	Au	Ąu	Ą
Name of denosit			·			
ò.	125	126	127	128	129	130

Table $\parallel -2-7-9$ Ore-showings in the North-harmagtai Area (8)

-137-

Au Au Au	A- ZZ	Qz-v 106° 11′ 28° Qz-v 106° 12′ 20′ Qz-v 106° 12′ 13′ Qz-v 106° 12′ 42′ Qz-v 106° 10′ 57′ Qz-v 106° 10′ 57′ Qz-v 106° 10′ 57′	Longitude Latitude 106°11′28°44°26°52″ 106°12°20°44°27°05″ 206°12°44°27°05″ 106°12°42°44°27°08″ 106°12°42°44°27°08″ 106°10°57°44°27°08″ 106°10°38″44°28°57″ 106°10°38″44°28″57″	n B B C D	HOST MOCK MOCK MOCK ACK sch (D 1) sch (D 1) sch gry sch dk gry sch (D 1) (D 1) dk gry sch, phyllitic (D 1) dk gry sch, phyllitic dk gry sch, phyllitic	$\begin{array}{c c} A \leq S \leq A \\ Au(g/t) Ag(g/t) \\ 0.04 < 0.3 \\ 0.03 < 0.3 \\ \end{array}$ $\begin{array}{c c} 0.03 < 0.3 \\ 0.05 & 1.7 \\ 0.05 & 1.7 \\ 0.04 & 0.3 \end{array}$		Filling pcs Temp C 1 - 1 170~200 1 184~255 3 244~255 1 -	Filling Alteration Temp °C type 	R c m X10° E. 80° X10° E. 80° X10° E. 80° X10° E. 80° X10° F. 50° X10° F. 50° X10° F. 90° X10° F. 90° X10° F. 90° X10° F. 90°
Ч. Ч	∆Z0	106° 13' 06' ~ 106° 13' 15'	44° 27' 30' ~ 44° 27' 31'	vein size: Max 1.5m×350 m aggregate of saddle reef and ladder veins vein size: Max. 0.5 m×30m zone: 20m×300 m	gry sch. Øı)	0.03	× − 5 00 00 00 00 00 00 00 00 00 00 00 00 0	5	207~250 Qz-pi-ser	1 m×120 m umit vein N25 [°] ¥•30° ~50° E zone: E-¥

Table 1-2-7-9 Ore-showings in the North-harmagtai Area (9)

-138-

Table II-2-7-9 Ore-showings in the North-harmagtai Area (10)

Mame of Mame of Mame of Coodinate deposit Longitude Latitude Au Qz-v 106'13'21'44'27'10' Au Qz-v 106'13'10'44'27'10' Au Qz-v 106'13'10'44'27'10' Au Qz-v 106'13'10'44'27'10' Au Qz-v 106'14'11'44'27'10' Au Qz-v 106'14'11'44'27'10' Au Qz-v 106'13'40'44'27'10'
AZ7

-139-

[· ·
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	quartz vein: N7 0° ₹.90° silicified rocks: N60° E. N60° ₹ hydro-fracturing is seen
Alteration type	QZ-pi-chi K-fel
Filling Temp °C	ł
bcs D	
A S S A Y '/t) Ag(g/t)	
A S S A Y Au(g/t)Ag(g/t)	I
Host Rock	P ₁) P ₁)
Characteristics and Size	massive silicified rocks and milky white quartz vein size of silicified rocks 100 m×250 m cut by Qz viets 5 m×120 m size of quartz vein 1 ~2 m×140 m zone: 200 m×600 m
nate Latitude	44° 16' 55' 55' 55' 55'
Coodinate Longitude Latitude	Qz-v 106° 18° 54′ 44° 16° 55° ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Type of Deposit	∧ - Z Z
Mineral	Υ Υ
Name of deposit	Shvuun Hudag
	142

Table 1-2-7-9 Ore-showings in the North-harmagtai Area (11)

Ì

-140-

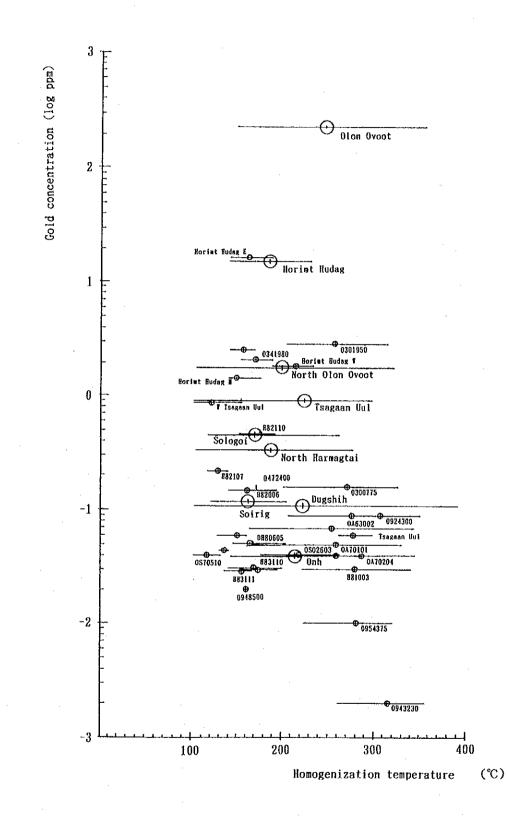
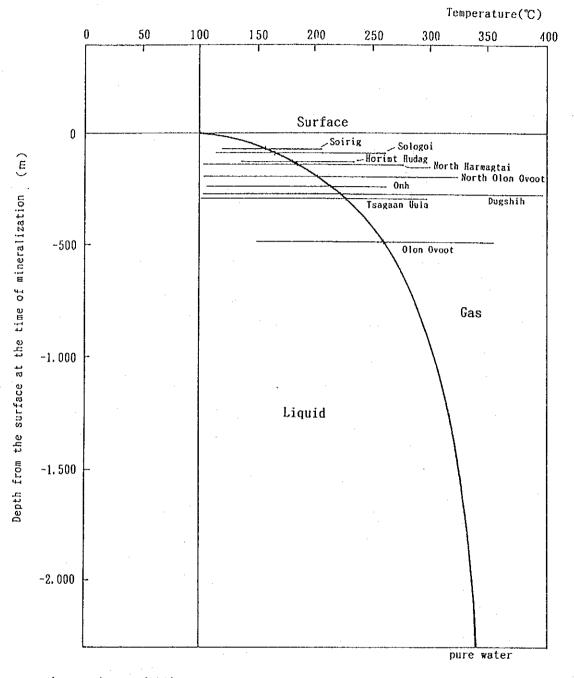
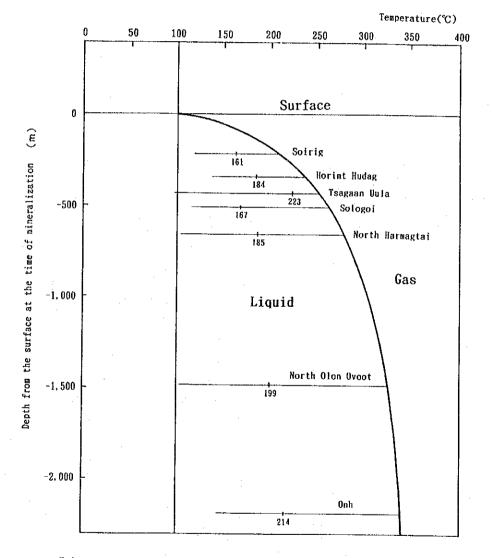

AREA	ORE DEPOSIT	D	E 3	CRIP	TION	E	YAL	UATI	0 K		
		BINERALES	TYPE	RESERVE(#. 1)	ORE GRADE(1, Au, Ap; g/1)	BINERALS	RESERVE	ORE GRADE	INFRA STR	TOTAL EYAL	NOTE
	TSAV	Pb, Zn, Ag	YEIN	7. 68	Pb 6. 4. Zn 4. 6. Ap 222	Ö	0	.0	0	0	Large potentielity is ex-
	ULANX	Ag, Pb, Zn	PIPE	93, 1	Pb 0, 95, Zn 1, 9, Ap 49	0	0	07	0	07	pected for polyestallic
	TUXHOR	Ag, Pb , Zo	PIPE	25.5	pb 9, 6, 2n 3, 4, Ag 113	Ø	∆?	· 47	0	۵?	minuralization in this are
	BAYAN-UAR	Av, Ag	Oz-V	81.1	Pb Zn 1, 5, Ag 80 g/t.	0	07	×	0	07	
DORNOD	SALHIIT	Pb, Zn, Ag	0z-¥	-	Ag 5g/t at out crop	0	7	?	· •	. 7	Further study is required
	DELGER-BUNH	Ag, Pò, Zn	17	-	Pb 4-6	Ø	7	?	0	. 7	Further study is required
·	TSAGAAR-CHULUU HUDUK	ί.λu	PLACER	Ju 41 7	Au0.39/1?	ø	07	07	0	07	Restricted by Ism of MPR.
	RARDAI	U	1	7	1	×	7	?	Ø	07	Restricted by ise of MPR
	TUNUATI IN-0800	Zn, Fe	SKARN	1.57	Zn 11.5	0	0	0	x	01	Little potentiality is re-
TUNURTIAN	SARHIT	Zn	SKARN	0, 92	Zn 8.4	0	Δ	×	x	×	mained for new discovery o
0400	SARAA	T	0Z-V	0, 17	10 1.35	٥	×	0	x	x	ore as an area,
	ARTN-MUUR	Ko	GREIZ	24, 1	¥o 0.6107	0	×	×	×	×	
	YUGZER	¥, £o, Be	GREIZ	21. 5	10 0. 197. No 0. 856	0	×	x .	×	×	Yory few patentiality is
	TUB (ISENTR)	Sn, T, Be	GREIZ	9	Sn 0. 078. TO 0. 137	0	×	×	×	×	remained for new discovery
	NUHUTTIN-TSAGA-	Ba	PEG	?	?(lenticular ore body,	0	×	х	x	×	of profitable ore deposit
	ANTOLGOT				10 ~20 m long)	0	×	×	×	×	in this area.
HUHUTT-	AR-BAYAN	Ϋ́	GREIZ	0,01	10 < 0.1	0	×	×	х	×	
DANAA	UYURBAYAN	Ŧ	GREIZ	-	NO 0. 04-0. 1	0	×	x	×	x	
	ORT GROUP	T	GREIZ	-	10 0.01-0.05	0	×	×	×	×	
	TARYAGATAI	Ko. T	GREIZ		¥0 < 0. 08, No<1	0	x	×	x	x	· · · ·
	DZURH-0Y00	He. Sn	SKARN	-	Ko 0.003.Sn 0.008	0	x	×	×	x	
	BAYAN-HAIRAST	¥ ·	az-v	-	TO 1-2	Ø	×	×	×	×	
	SATRAN-ULA	T	02-V	-	¥0 0. 18-0. 5	ø	×	×	×	×	
	NUNUTTEEN	۲.	OZ-¥	-	NG 0. 04-0. 13	0	×	×	×	×	· .
	BOR-UNDUR	CaF2	YEIN	20. 98	CaF, 39, 14, 02-F1 1ype	Δ	0	0	0	Δ	Fluorite is to cheep in the
	ADAG	CiF2	RIAL	4.0	CaF, 40 X, Oz-Fl typa	Δ	0	0	۲	Δ	western world market,
	CHOL-TSAGAAN-	CaFe	AEIN	5.4	CaF, 40-53%, Oz-FI type	۵	0	0	0	Δ	
HAR-AIRAG	DEL								•		
	HONGOR	CaFe	YEIN	1, 37	C#F, 29-34%, 0z-Fl, Cel	Δ	0	Δ	0	x	
	WATHANTA	CiFa	YEIN	3. 08	CaF, 33-363, Oz-FI, Cal		0	Δ	×	×	
	TSAGANTAKHILCH	CIF2	YEIN	1. 82	CoF2 40. 58, 02-F1 type		•			×	· · · · · ·
LUGIINGOL	LUGITHGOL	RE	CARB-V	0. 436	TREO 2.86	Ø	×	×	×	×	No secondary unrichment
	TSAGAAHSUVRAGA	Cu, ⊪o	20-Cu	240. 0	Cu 0, 53, Ko 0, 018	0	0	×	×	×	No secondary enrichment
	DUCHINX-HURAL	Cu	VEIN	-		0	×	×	×	×	in this region.
	HARWAGTAL	Cu	PO-Cu	139.6	Cu 0.25	0	0	×	x	×	
TSAGAAN-	IH-SHANNAT	Cu	PQ-CU	-		O	×	×	×	x	
SUVRAGA	NAFIN-HUOUX	Cu	PO-CU	0.05	Cu 0, 58	0	×	×	×	×	· .
	OYOOTU-HIRA	Cu	P0-Cu	-		0	×	×	×	×	
	SHAFTEN	Cu	PO-Cu	12.6	Cui 0, 31	0	×	×	X ·	×	
	UHAA-HUDAG	Cu	70-CU	-		0	×	×	×	×	
	HUNGUT	Cu	PO-Cu	-		0	×	×	×	×	
	INUSHGI A-HUDAK	RE	Carb	398	TREO 1, 53 \$, 0, R. Reduced	0	0	×	×	. x	No secondary enrichment
	BAYAN-HOSHOO	\$r	SL 1,	· 0.7	5r0 40 ~50 %	0	×	×	×	x	
l ži i t	010040-04001	λu	YEIN	?	Au ≤32.8g/t,Max 340g/t	0	07	07	0	01	Large colentiality for new
	BAYAN-OVOOT	C2F1	YEIX	1.0	CaFz 75 X Oz-Fl type		0	·0	×	×	discovery of workable gold
						_ !	~	~	~		
	OUGSHIH	λu	0x-¥	7	Au ≤50 g/t	0 [?	7	0	07	ore deposits is expectable
	OUGSHIH ONH BATAN-BOR-NURUU	Au .	0z-¥ 0z-¥	7	$\begin{array}{l} \lambda u \leq 50 \ g/t \\ \lambda u \leq 0.4g/t(13 \ samples) \\ \lambda u 1-6 \ g/t(162 \ samples) \end{array}$	0 0	7	7 7 07	0	7	ore deposits is expectable in this area.

Table #-2-8-1 Feasibility Evaluation of Major Ore Deposits in Uudam Tal Area


Kote; Ø good .

d, O passable,

∆ with difficulty, × bad



Average homogenization temperatures were adopted taking self-sealing effect into consideration.

Fig. 1-2-7-29 Depth of Ore Formation in Relation to the Homogenization Temperatures of the Fluid Inclusions in Self-sealing Model

Homogenization temperature of the ULZIIT DISTRICT

Name of the area	Tempe	erature	e Rang	e (°C)	Number of	Note	
	¥in,	Max,	Av.	Node	measuring		
Horimt Hudag	138	232	184	220	25	multiple peaks	
North Olon Ovoot	102	323	199	219	20	dispersed	
Olon Ovcot	148	356	256	172	181	multiple peaks	
Tsagaan Uula	98	298	223	285	21	double peaks	
Dugshih	101	392	222	172	235	single peak ?	
Onh	142	340	214	162	87	multiple peaks	
Soirig	119	205	161	180	102	multiple peaks	
Sologoi	115	260	167	160	135	double peaks	
North Harmagtai	101	275	185	170	234	single peak	

Hydrostatic Condition (maximum temperature=boiling temperature) In this case, depth of Dugshih(Max. T. = 392 V) and Olon Ovoot(Max. T. = 356 V) comes unreasonably large. Uniaxial strength of the schists in the Ulzitt district looks insufficient to sustain large caverns (tension cracks) to form quartz veins in such a deep place.

Fig. 11-2-7-30

Depth of Ore Formation in Relation to the Homogenization Temperatures of the Fluid Inclusions in Hydrostatic Model discoversd outcropping gold in 1990, is considered to be of the highest feasibility of development though the area is located in the remote desert with disadvantageous conditions. The Olon-ovoot Ore can easily be processed into the light weight product becaous of the characteristics of ore sutable for heap leaching.

On the other hand, the second year's reconnaissance geological survey revealed that there are numerous, large gold indications in a broad area(Govi District) extending from Ulziit District to Tsagaansuvraga District. At these gold indications, the homogenization temperatures of fluid inclusion are lower than those of Olon-ovoot Deposit, and are accompenied by large, massive silicified rock bodies and various kinds of sinters on the surface, which suggest occurrence of epithermal blind gold deposits(Fig.II-2-7-2 thru II-2-7-30).

Gold mineralization in Ulziit District has so far been unknown. In order to acquire certain guidance for exploration of gold resources in Govi District, surveys of Olon-ovoot Deposit should desirably be continued(Table II-2-8-1).

2-8 Consisterations

An overall evaluation of the foregoing major deposits, as of the fiscal 1991, is seen in Table II-2-8-2.

Within Uudam Tal Area, Tsav Deposit, though somewhat small in size, is considered to be of highest possibility of development because of its favorable ore grade and characteristics, and the infrastructure. For Ulaan and Mukhar Deposits, feasibility studies including a review of cutoff grades will be necessary

Tumurtiin-ovoo Deposit have certain problems in terms of ore reserves and characteristics whilst Tsagaan-suvraga in terms of ore grade and infrastructure.

In view of the social and geographical conditions of the survey area, minerals of high unit prices such as gold can be considered as the most desirable type of minerals. Olon-ovoot Deposit is small in scale but further survey of the deposit will be of great significance not only becaus of the high possibility of its development but becaus it would give invaluable guidance for future gold prospecting in Govi area.

Chapter 3 Semi-Detailed Geological Survey (phase II)

3-1 Purpose of survey

The survey was intended to investigate geological conditions and nature of mineralization around Olon-ovoot Deposit, thereby defining extension of the deposit and helping analyse geophysical survey findings.

3-2 Suvey methods

9

The semi-detailed geological survey was carried out at an area of 3km north to south and 4km east to west surrounding the deposit (Fig.II-3-2-1). The survey area and route are identical to the geophisycal survey lines. The survey was conducted in the east west direction at intervals of 200m along the planned survey line extending magnetic north to south. The total length of the survey route was 63km including the base line survey. Route maps with a scale of 1/5,000 were compiled by a line geological survey using a pocket compass and a measuring tape, while rock samples for geochemical survey was collected by pitting.

Laboratory tests included microscopic observation, whole rock chemical analysis, absolute dating, ore-analysis, mesurement of homogenization temperatures of fluid inclusion.

The ore analysis was conducted for the two elements, Au and Ag. Atomic absorption with aqua regia extraction was applied for the analysis while, for cross cheking, fire assay was used. The detection limits were set at 0.1-600ppm for Au and 0.3-600ppm for Ag.

Geochemical analysis was made by the ICP method on the seven elements: Au, Ag, Hg, As, Sb, W and Mo. The detection limits were set as follows:

Au	Ag	Hg	As	Sb	W	Mo
1ppb-10ppm	0.2-200ppm	10ppb-1%	2ppm-1%	2ppm-1%	2ppm-1%	1ppm-1%

3-3 Survey findings

3-3-1 Geology

The geology of the semi-detailed survey area is composed of Silurian, Devonian and Jurassic, and intrusive rocks which intrude into Paleozoic group(Fig.II-3-1).

The Silurian is composed of crystalline schist derived from It marine sediments and is exposed in most part of the area. in ascending order, of sandstone, alternated beds of consists. siltstone, siltstone medium-to fine-grained sandstone, green schist fine-grained fine-grained diorite, into which and mudstone, granodiorite, basaltic andesite, basalt, trachyte, etc. intrude.

The Devonian is composed of white-colored limestone rich in

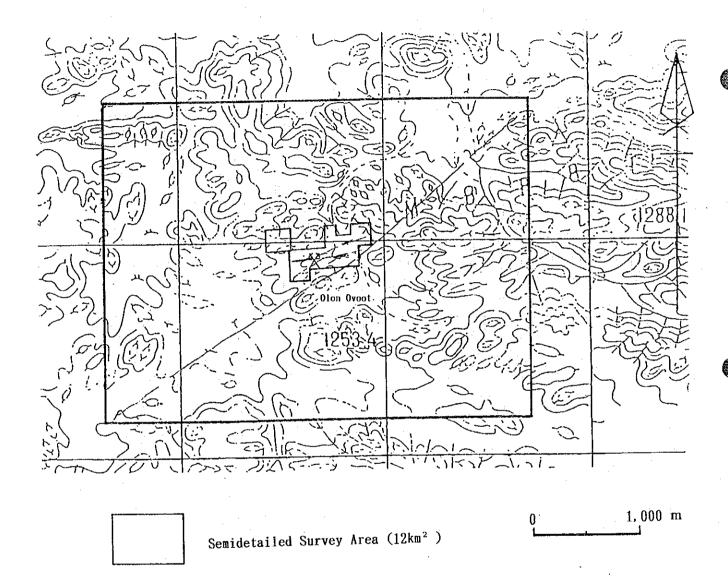


Fig. 1-3-2-1 Location Map of the Semidetailed Geological Survey Area

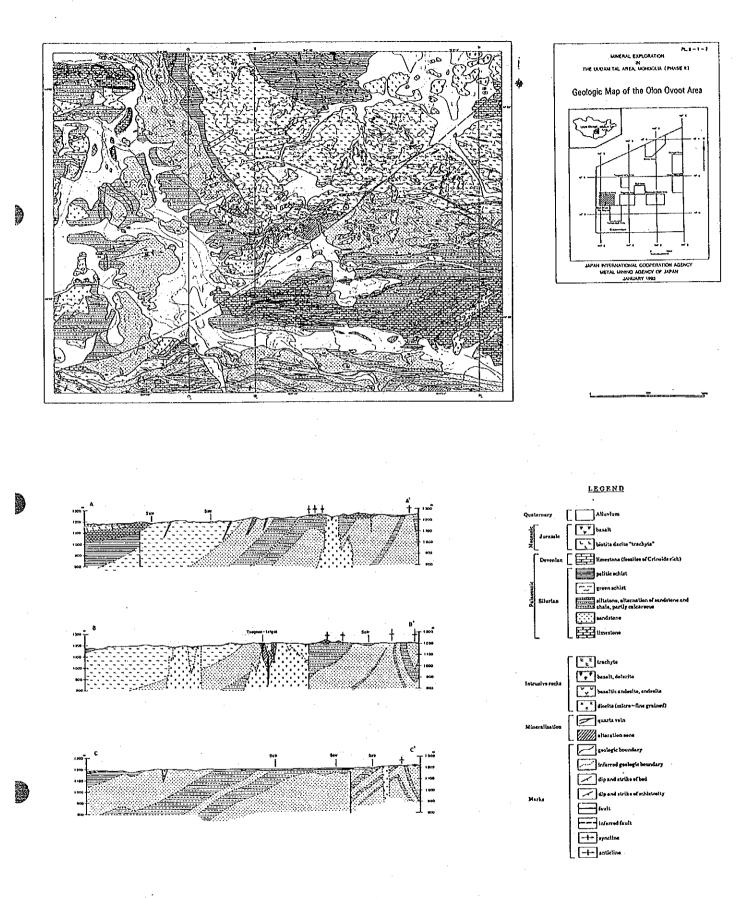
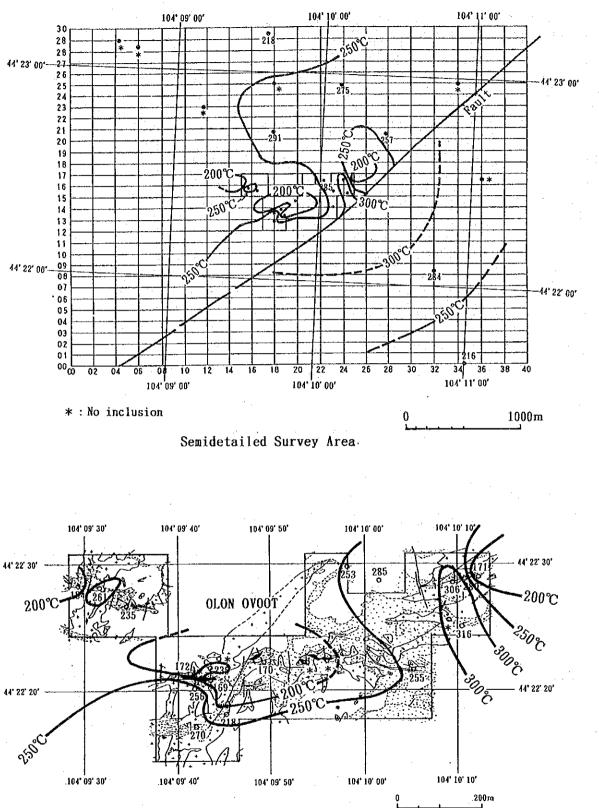



Fig. 1-3-3-1 Geologic Map of the Semidetailed Geological Survey Area

-148-

Geochemical Survey Area

Fig. N-3-3-2 Distribution of the Homogenization Temperatures of the Fluid Inclusions in the Semidetailed Survey Area

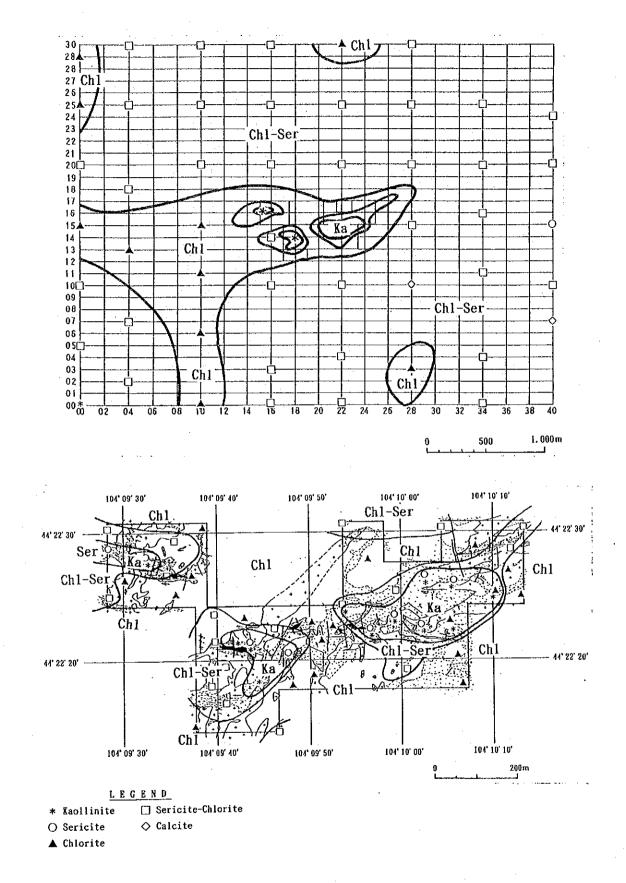


Fig. 11-3-3-3 Alteration Zoning in the Semidetailed Survey Area

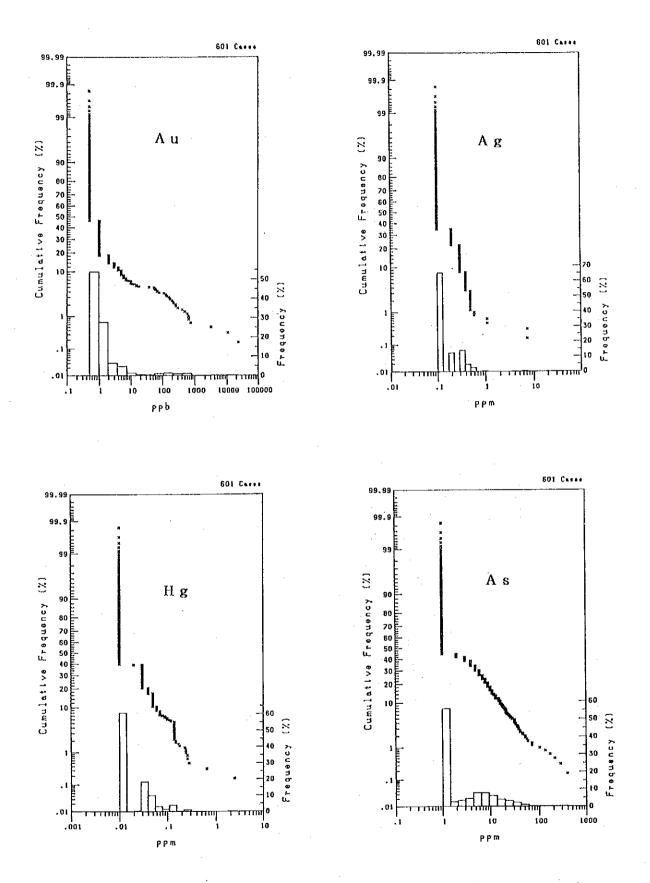
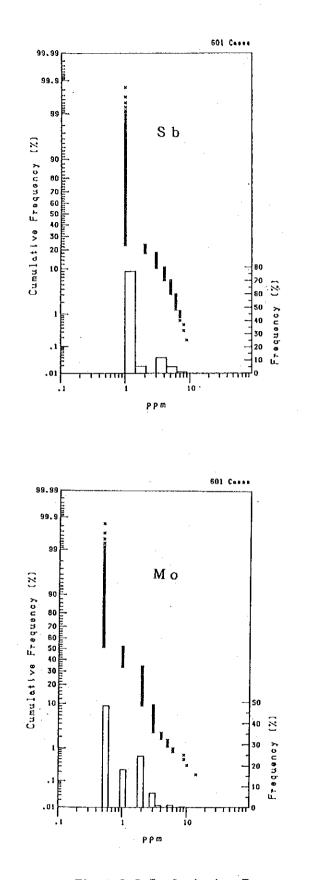



Fig. 1-3-3-4 Cumlative Frequency Curves of Assay Results (Au, Ag, Hg, As)

-151-

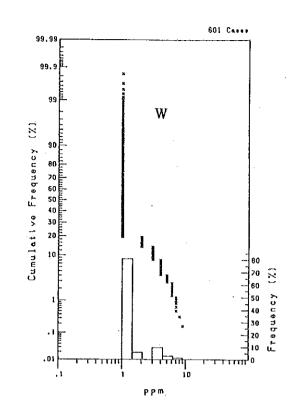
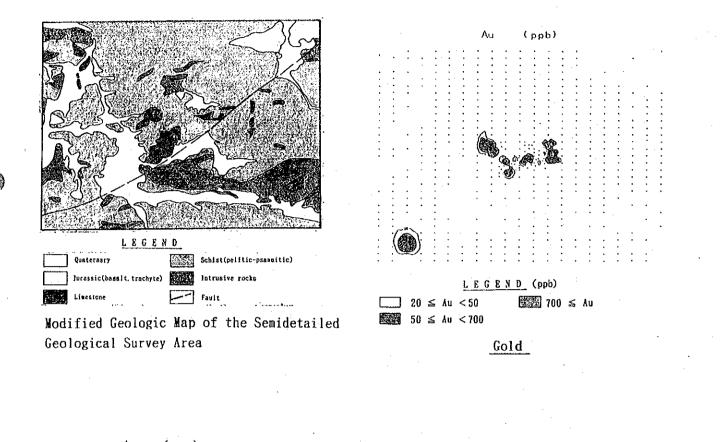
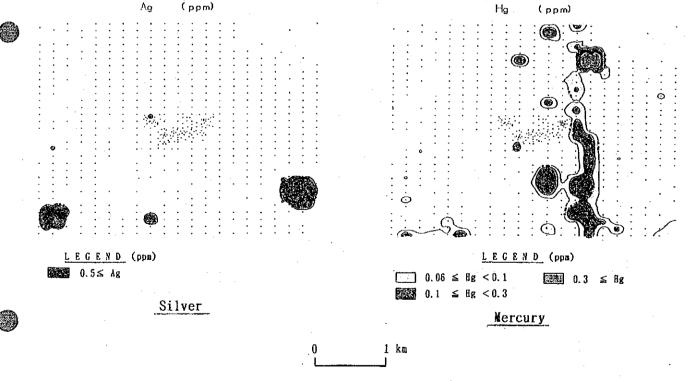
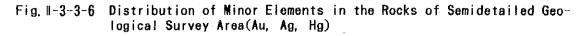





Fig. 1-3-3-5 Cumlative Frequency Curves of Assay Results (Sb, W, Mo)

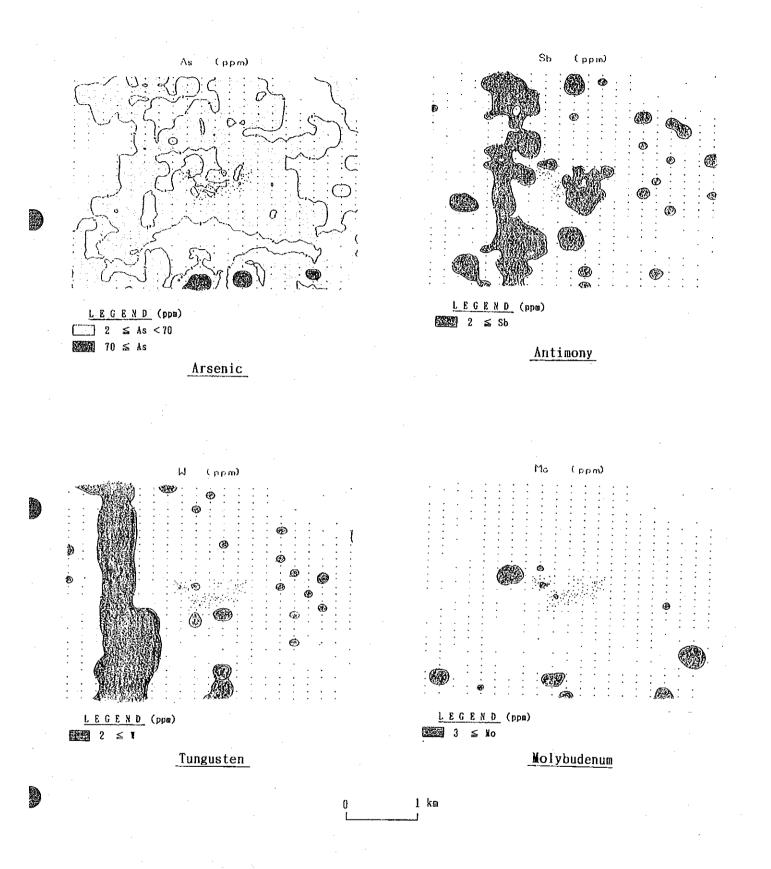


Fig. 11-3-3-7 Distribution of Minor Elements in the Rocks of Semidetailed Geo-logical Survey Area(As, Sb, W, Mo)

	Au	Ag	As	Sb	Mo	Hg	¥
試料数	601	601	601	601	601	601	601
最大值	23260	7.2	390	9	14	2.43	9
最小值	0.5	0.1	1	1	0.5	0.01	1
平均	73.93	0.19	7.72	1.62	1. 27	0.03	1. 49
Auとの相関係数	1	0.0371	0. 0217	-0. 027	0. 1382**	-0.0104	-0.0211

Table #-3-1 Statistical Numbers on Geochemical Survey Elements

**: 有意(有意水準=0.001)

fossils of crinoids, distributed in the northwestern, southern and northeastern parts of the area. The thickness of the formation exceeds 50m. The formation, folding with an axis east to west, has the structure unconformable to the underlying silurian. It lacks basal conglomerate and is in contract with the Silurian with sharp boundary.

The Jurassic is composed of unaltered lavas of basalt and biotiterhyorite, exposing itself in the northeastern part of the area. It is located at the margins of upheaved block of Paleozoic formation and distributed on a flat level.

The intrusive rock is composed of medium- to fine-grained diorite, medium- to fine-grained granodiorite, basaltic andesite, bsalt and trachyte. Diorite and medium- to fine-grained granodiorite are distributed in the form of small intrusive rock bodies all over the area, especially in the neighborhood of Olon-ovoot Deposit. Basaltic andesite and basalt in the form of small intrusive rock bodies are conspicuous in the western part of the area.

The structure is divided into two large blocks by a fault running northeast to southwest in the central part of the area(hereafter called "Olon-ovoot Fault" or simply "the fault "). The block east of the fault is characterized by folding structure with an axis of the east-west direction, similar to the regional general structure of the area. In contrast, the block west of the fault shifts its strike to the NW-SE direction near the fault, representing a structural distinction.

Olon-ovoot deposit is located at the intersection of the NE-SW fault and the Silurian sandstone, where intrusive rocks gather densely.

There are six quartz veins, max. 20m wide and 50-100m long, arranged in an arc form on the west side of the fault. Total extension of the aggregate of quartz veins reaches 1,000m. Besides, silicified and pyritzed alteration zones, max. 200m wide, develops around the deposit, a part of which extends for more than 1km northeastward along the fault. Similar alteration zones are found on the east side of the fault and in the northeastern part of the atea. Furthermore, a dominant quartz vein zone was newly found from the northeastern tip over to the western outer side of the survey area.

The homogenization temperatures of the quartz veins' fluid inclusion often exceed 250° C in the northern and eastern parts of the deposit whilst, at the gold rich parts, the temperatures are lower than 250° C (Fig.II-3-2).

Investigation of alteration zones indicated that the wall rock alteration zones of Olon-ovoot Deposit are predominated by chlorite, partially of sericite-chlorite facies and accompanied by plagioclase and some calcite. Only in the close neighborhood of the deposit, the alteration zones are associated with small amount of sericite and, rarely, with kaolinite(Fig.II-3-3-3).

3-3-2 Geochemical survey findings

A histogram of the seven elements(Au, Ag, Hg, As, Sb, W. and Mo) was compiled and the thresholds were determined(Figs.II-3-3-4 and II-3-3-5), on the basis of which an anomaly distribution map was prepared for the respective elements(Figs.II-3-3-6 and II-3-3-7). Statistical study was made on the analysis figures. Correlations between the elements were also studied(Table II-3-1). The results are summarized as follows:

- Gold :Gold anomalies appeared clearly around the major quartz veins and also on the fault in the southwestern part of the area.
- Silver :Siver concentration was low in general, although anomalies were recognized in the center of the deposit, along the fault, in the alteration zones rich in manganese oxide and also in the silicified sandstone zones in the south.
- Mercury: An anomaly zones is formed in the east of the central part of the area, in the north-south direction.
- Arsenic:Anomaly zones in ring forms were detected over the surroundings of the deposit; and, the silicified sandstone zones in the south also showed high values.
- Antimony: An anomaly zone in the north-south direction was detected in the western part of the area, as well as minor anomalies around the deposit.
- Tungsten: In the western part, anomaly zone stretching in the north-sourth direction was recognized while one-point anomalies were sporadically observed from the central to the northern part of the area.
- Molybdenum:Sporadic anomaly zones were detected in the central and southern parts of the area.

As the result of studies on correlations between each element, no correlation was recognized, except weak statistical correlations between molybdenum and gold. No systematic difference by type of wall rock was observed either, as compared to the geological map.

3-4 Observation

Mineral indication in the semi-detailed survey area may be classified into the following three types:

- i) Quartz veins without wall rock alteration zones.
- ii) Quartz veins accompanied by silicified, pyritized alteration zones.
- iii) Independent silicified, pyritized alteration zones.

From the fact that the distribution of quartz veins and of silicified, pyritized alteration zones are not always conforming to each other, it is presumed that this area has undergone repeated hydrothermal mineralization, which makes it difficult to interpret the geochemical survey findings.

In case, in geochemical survey, elements other than a target element are used, there should be certain systematic relations between the elements used and the target element. Normally, either positive or negative correlations are expected. However, it does not necessarily seen to be sufficient to explain only by correlation the character of the ring-shaped halos as shown by arsenic anomalies in this survey; probably, a concept of three dimensional models will be required for it.

It is presumably because the subject has since paleozoic time been affected by repeated igneous activity that the six elements used in this geochemical survey did not show correlations with gold.

Chapter 4 Geophysical Survey (phase II)

4-1 Purpose of survey

The geophysical survey was aimed to estimate extension/continuity of Olon-ovoot Deposit into the deep and to the surroundings, and also to clarify relations between mineralized zones and the geological structure.

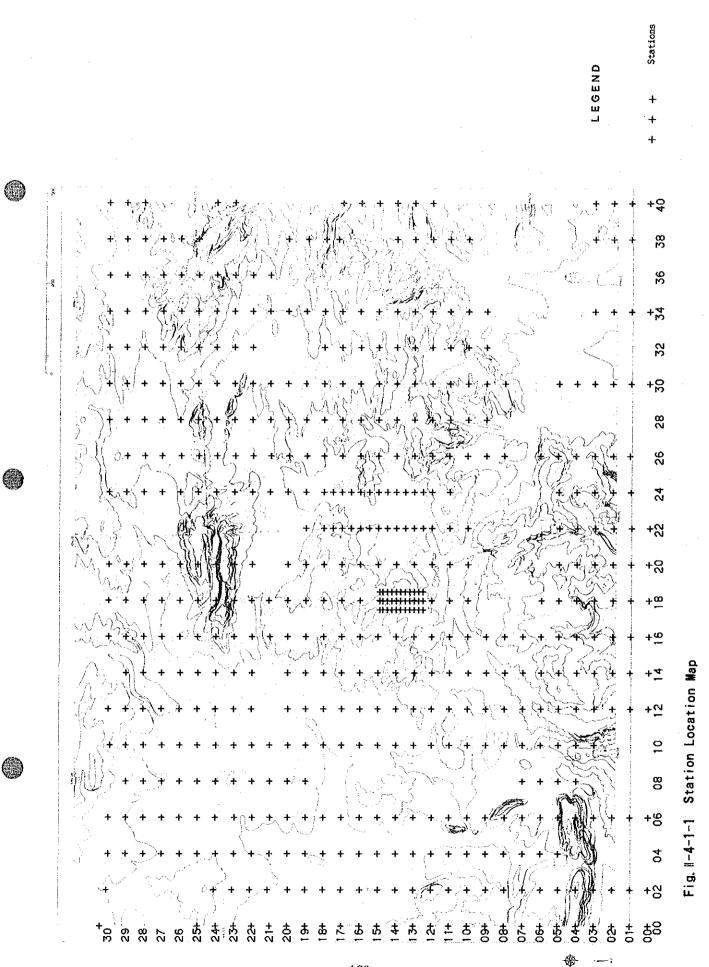
4-2 Survey method

The survey was conducted at the object area of 12km^2 (3km magnetic north to south and 4km east to west) around the deposit. For the resistivity survey, the transient electromagnetic measurement(TEM) method was applied. The survey points were located by open traverse method on grid of 100m magnetic north to south and 200m east to west. At the central portion of the deposit, measurements were done not only on the total measurement points were 548.(Fig.II-4-1-1)

The transmitter loop dimension were $100m \times 100m$ at most of survey points. For detailed survey of Tsagaan-tolgoi, however, measurement was done in the Turam arrangement using a $100m \times 200m$ rectangular 100p, and in the steep limestone area in the northwestern part of the survey area, the Turam arrangement using a square loop with a 100-mside was applied, respectivery. The transmission current was about 11.0-12.5A for the 100-m square loop and 9A for the $100m \times 200m$ rectangular 100p.

4-3 Findings of the survey

The data of all the survey points were converted by imaging processing to the resistivity structure for analysis. (Fig.II-4-3-1 thru II-4-3-4)


4-3-1 Resistivity plans

i) Resistivity imaging plan - 1,150m lavel(Fig.II-4-3-1)

This plan indicates the resistivity values at a depth of about 50m below the surface. The high-resistivity portion in excess of 200-300 ohm-m in the southern part of the survey area corresponds to the limestone-green schist-sandstone area. To the south of it, a lowresistivity zone under 100 ohm-m is recognized along Olon-ovoot Fault. At the lower area in the northeastern part, there is a lage, lowresistivity portion of under 50 ohm-m. In the northwestern part, a low-resistivity zone of under 50 ohm-m stretches in the northeastsouthwest ditection.

ii) Resistivity imaging plan - 1,100m lavel(Fig.II-4-3-2)

Continuity of the high-resistivity zone parallel to the Olonovoot Fault in the center appears more clearly. The low-resisitivity zone of under 100 ohm-m in the northern part further expands to conform the green schist-sandstone area.

-160-

LEGEND

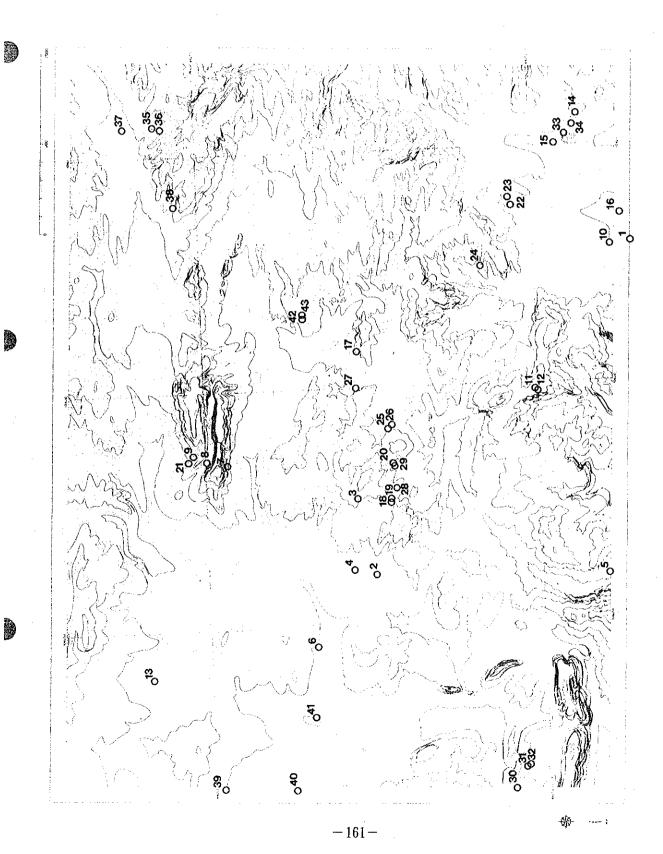
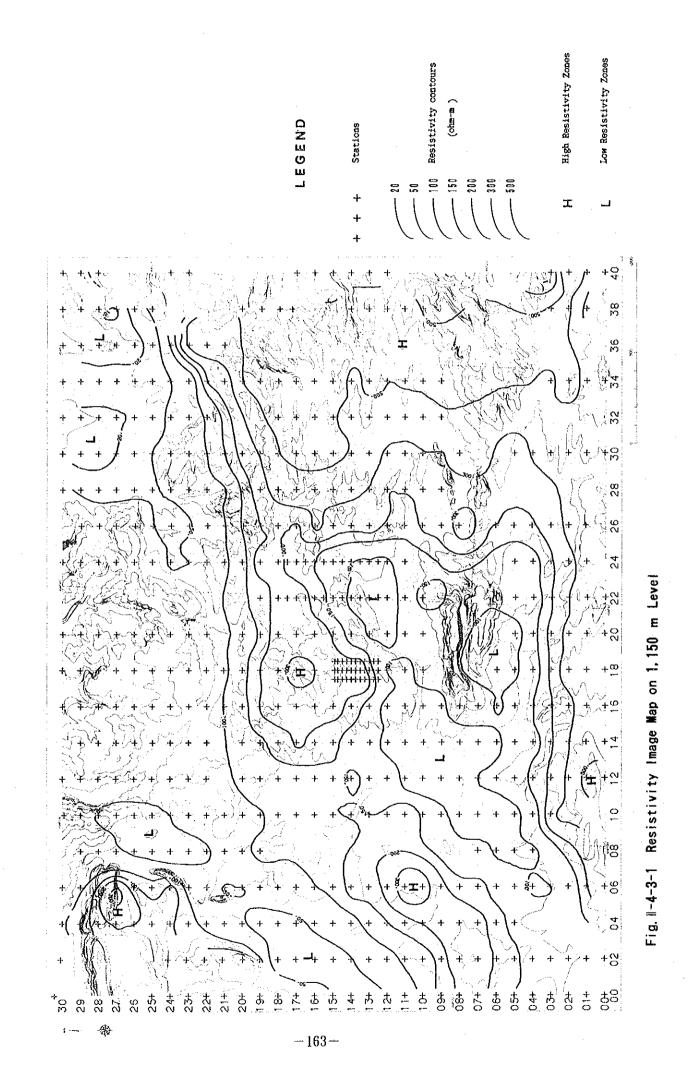
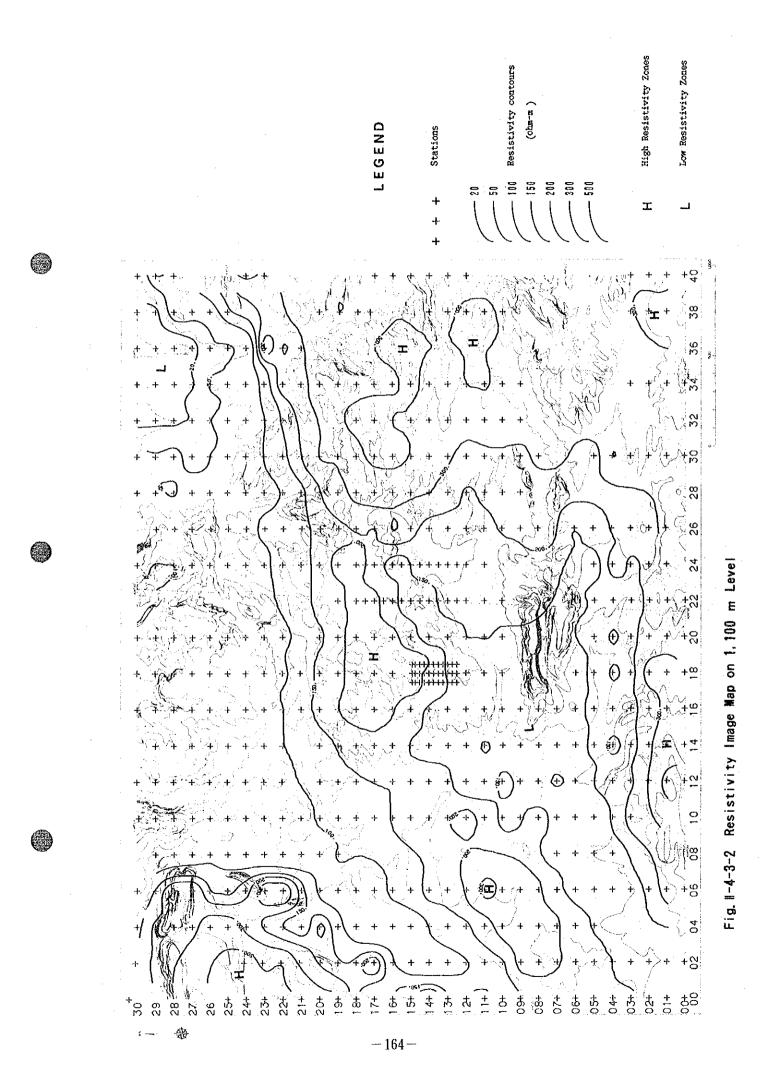
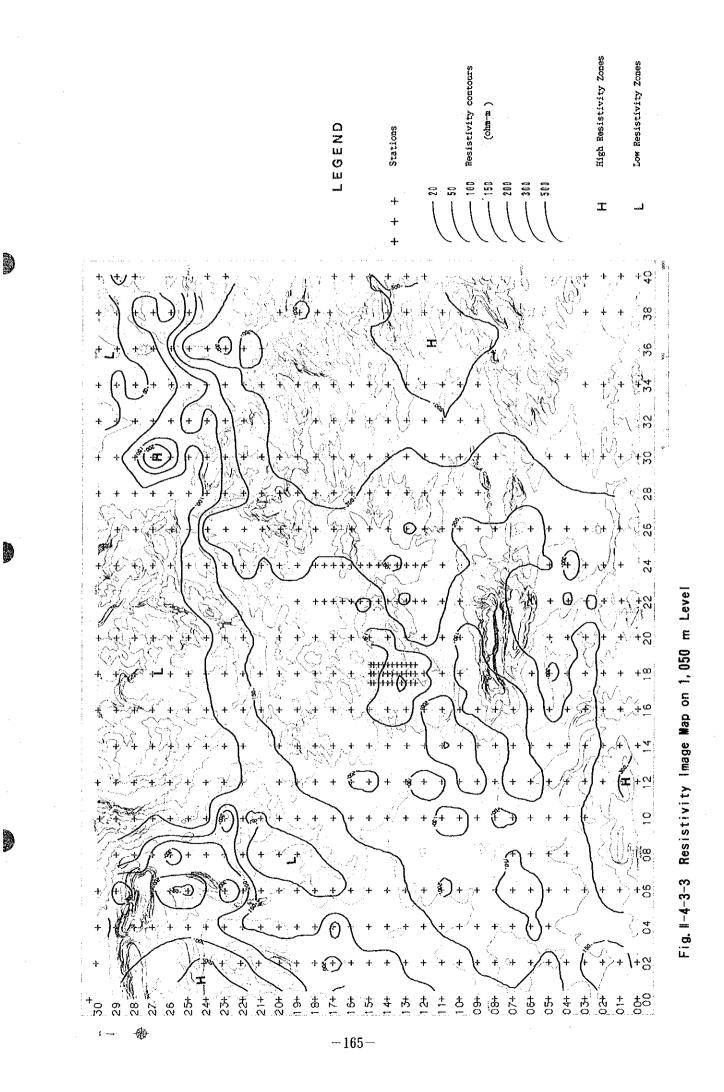


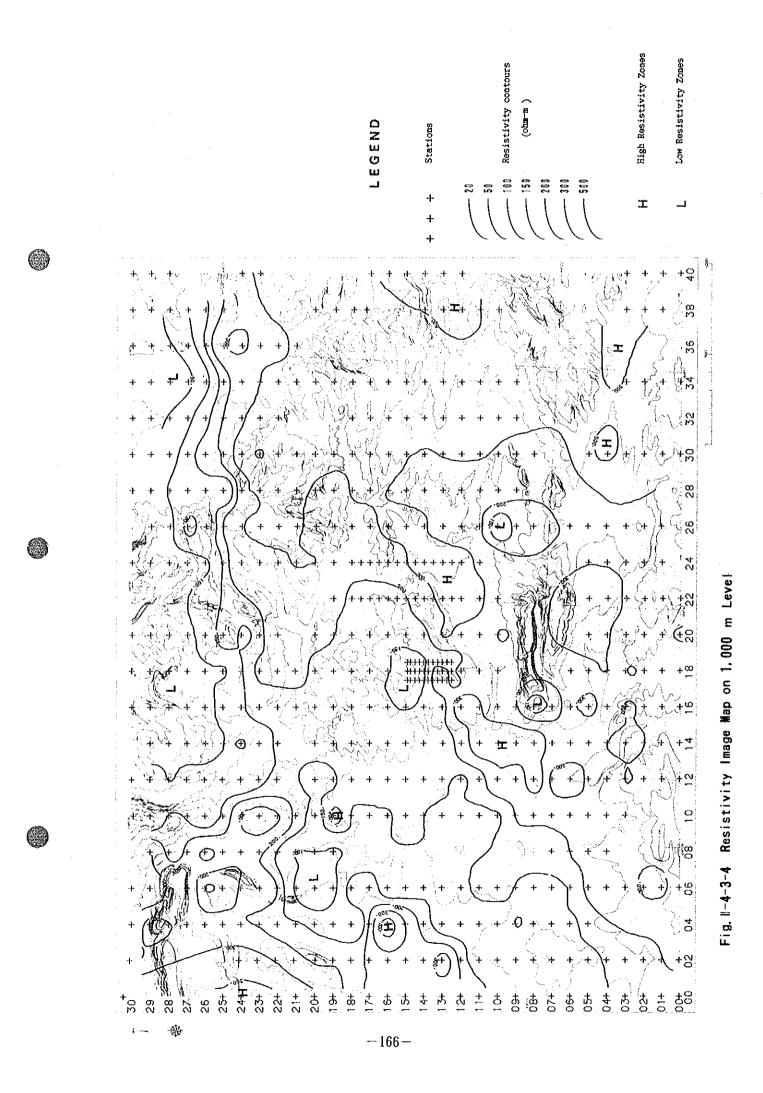
Fig. 1-4-1-2 Rock Samples Location Map

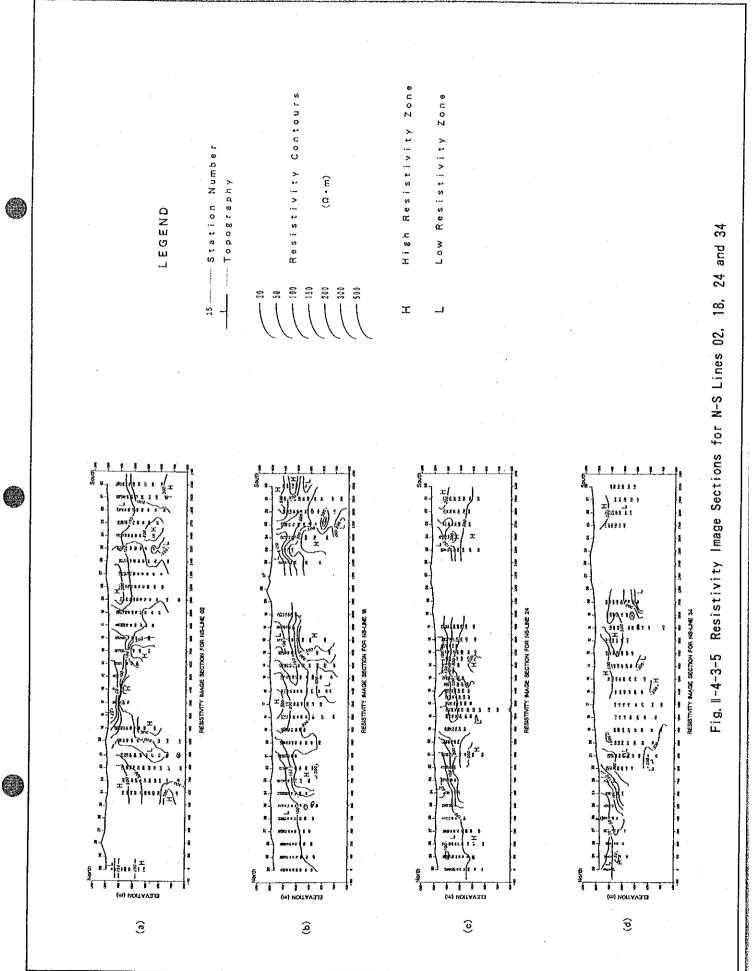

Table **1-4-1** Rock Properties

:			RESISTIVITY (ohm-m)		DENSITY (g/cc)		FE	
	NO	ROCKNAME	MEAN	AVE	MEAN	AVE	(%)	COMMENT
	1 2 3 4 5 6 7 8	sandstone	3,420 4,190 1,410 2,720 4,390 5,470 1,650 2,160	2,974	2.68 2.66 2.62 2.67 2.66 2.71 2.70 2.65	2.67	0.4 0.3 0.4 0.4 0.4 0.5 0.4 0.4	with Qtz vein fine, core silicified greenish gray greenish gray greenish gray
	9 10 11 12 13 14 15	limestone	3,870 6,550 10,500 20,200 10,600 7,040 2,350	7,903	2.67 2.72 2.69 2.76 2.65 2.83 2.66	2.72	0.5 0.3 0.4 0.4 0.5 0.5 0.4	greenish gray
	16 17 18 19 20 21	quartz	15,100 6,170 20,200 15,300 44,200 34,400	18,774	2.66 2.61 2.64 2.60 2.63 2.64	2.63	0.4 0.4 0.4 0.4 0.3 0.5	
	22 23	altered andesite	2,350 8,540	4,480	2.83 2.85	2.84	0.3 0.3	
·	24 25 26 27 28	altered diorite	658 348 488 258 1,210	511	2.71 2.69 2.74 2.78 2.62	2.71	0.2 0.2 0.4 0.0 0.4	pyrhytization
	29 30 31 32 33 34	diorite	1,410 6,760 13,800 11,300 1,780 7,200	5,168	2.78 2.90 2.93 2.95 2.84 2.86	2.88	0.3 0.5 0.5 0.5 0.5 0.5 0.4	boring core micro micro micro micro micro
	35 36 37 38	dacite	390 903 1,910 514	707	2.32 2.56 2.62 2.35	2.46	0.2 0.4 0.4 0.2	
	39 40 41		3,640 15,300 11,900	8,719	2.70 2.76 2.68	2.71	0.4 0.5 0.6	greenish gray silicified silicified, fg
	42 43	sha le	2,510 14,100	5,950	2.68 2.69	2.69	0.4 0.6	black shale black shale
		AVERAGE		3,880		2.69	0.4	


.


. •


.



b

-167-

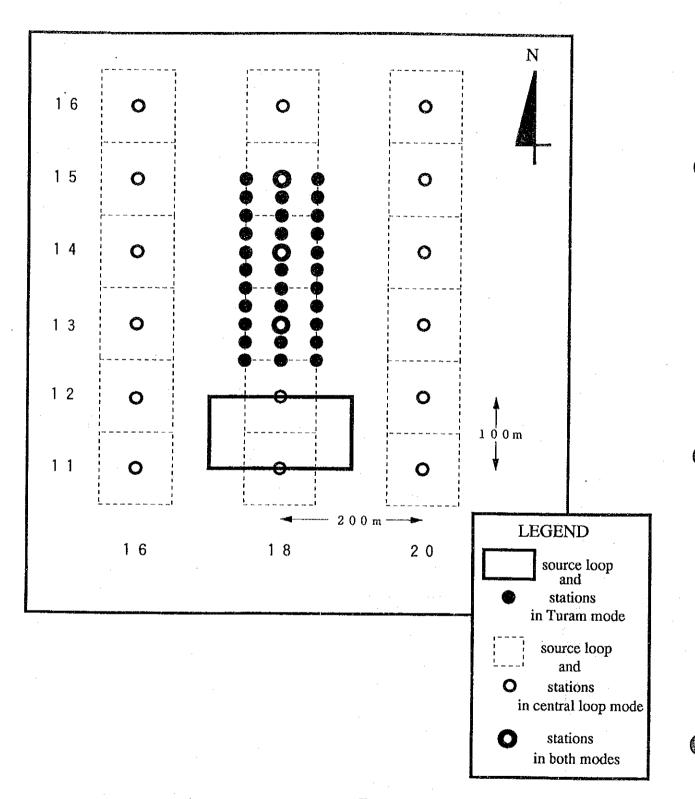
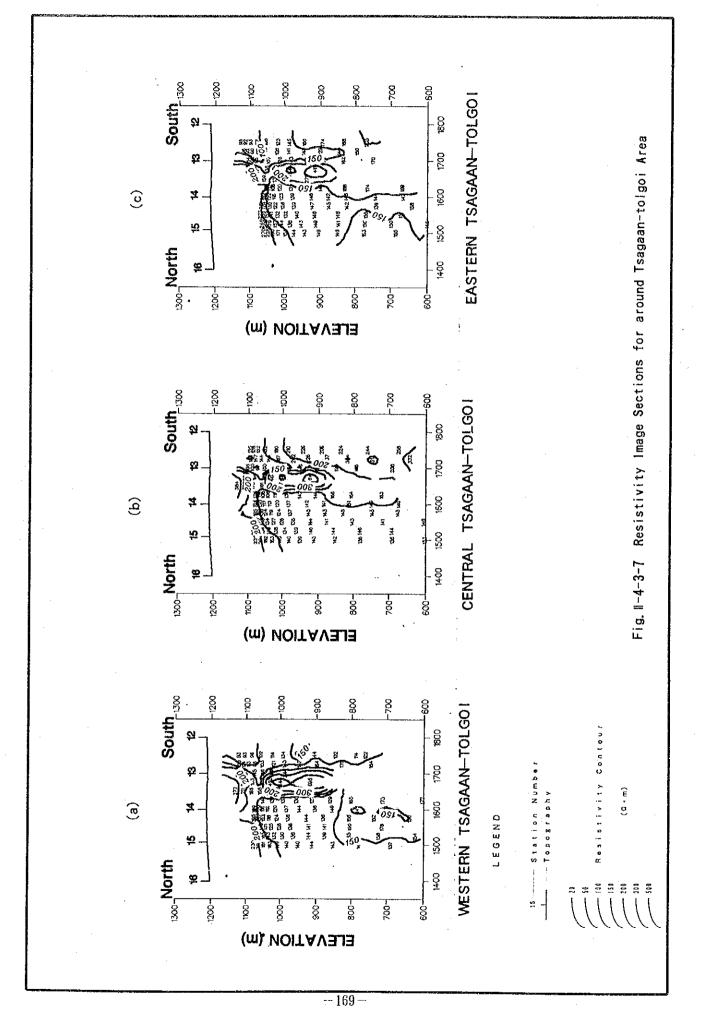
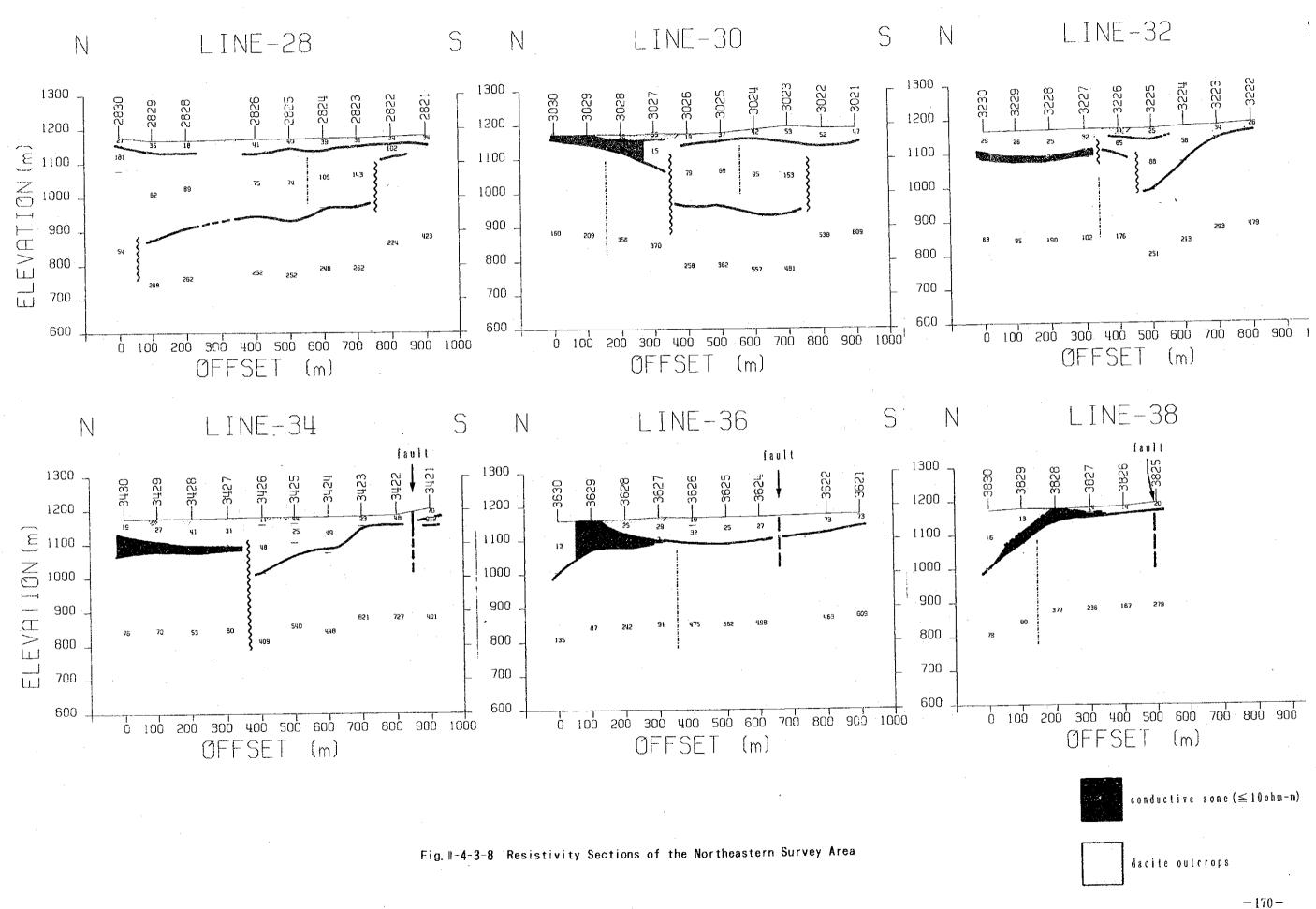




Fig. 11-4-3-6 TEM Survey Configurations at Tsagaan-tolgoi

÷

9

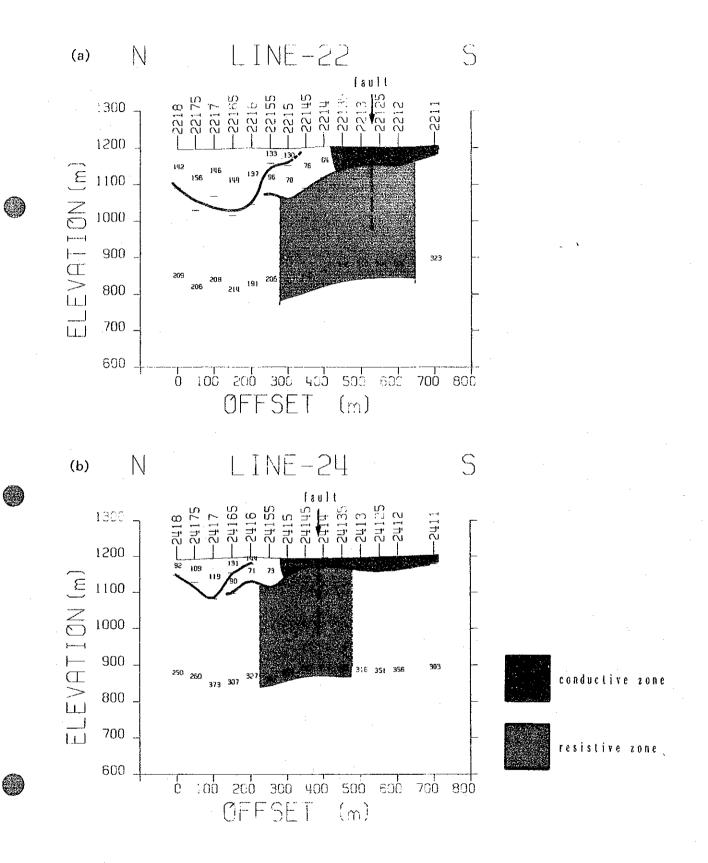


Fig.N-4-3-9 Resistivity Sections of N-S Lines 22 and 24 Around the Olon-ovoot Fault

The low resistivity portion under 50 ohm-m in the northeastern part somewhat narrows down but still has an extension over 600m east to west. In the northwestern part, a high resistivity portion conforming to the limestone area was captured.

iii) Resistivity imaging plan - 1,050m lavel(Fig.II-4-3-3)

The low-resistivity zone along the Olon-ovoot Fault in the center of the area, as seen in the 1,150m-level plan changes to a hig-resistivity zone over 200 ohm-m in this plan. The high-resistivity zone in the north of the fault becomes unclear. The limestone-green schistsandstone area represents high resistivity over 200 ohm-m. The low resistivity zone in the northeastern part shows complicated changes in its shape.

iv) Resistivity imaging plan - 1,000m level(Fig.II-4-3-4)

While high-resistivity areas over 200 ohm-m enlarge. In the north-central part, areas under 200 ohm-m extend east to west. Along the Olon-ovoot Fault in the central part, a high resistivity zone of over 300 ohm-m continue. On the other hand, high-resistivity zones over 500 ohm-m narrow down as the depth increases. In this plan, such zones are confined only to the limestone area in the eastern end.

4-3-2 Resistivity profiles

9

Resistivity profiles were compiled by imaging of all the survey lines.(Fig.II-4-3-5) Here, resistivity porfiles obtained by imaging of Tsagaan-tolgoi and its surroundings are shown.

i) Resistivity profile -Tsagaan-tolgoi (Fig.II-4-3-6 & II-4-3-7)

The profiles indicate three sections, north to south, centering at the survey line 18. In all the three sections, a vein-like, highresistivity zone, approx. 70m wide, standing almost upright, is captured right under the survey point No.13. This high-resistivity zone becomes clearer towards the west side. On the surface, a quartz vein exposes itself in the east-west direction near the survey point No.14, which was not captured by this survey. The 2-d forward modeling was performed to confirm the existence of the resistive body which was detaced by imaging also.

ii) Northeastern part of surveey area(Fig.II-4-3-8)

This profile indicates the results of 1-D inversion of the northeastern part of the survey area. The low-resistivity zone of under 10 ohm-m is seen at the N-S survey lines 30 - 38, at the depth of 50m to 90m below the surface. As seen in the N-S survey line 30 and 38, these low-resistivity zones continue to the surface on the east and west sides. They tend to become shallow northwards. The low-resistivity zones correspond aproximately to the Jurassic volcanic rock zones.

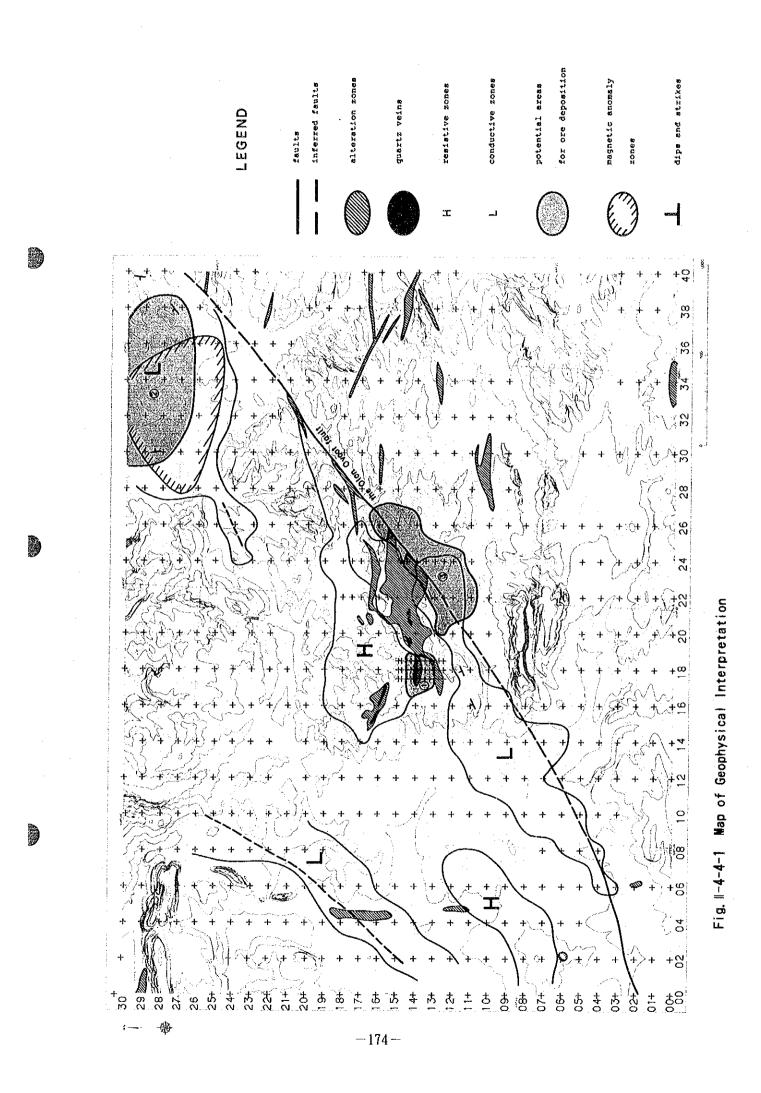
iii) Olon-ovoot fault(Fig.II-4-3-9)

The profiles (a) and (b) indicate the results of the 1-D inversion of an area traversing the Olon-ovoot fault. In the profiles, measurements were done at intervals of 50m. The Fig.II-4-3-9(a) is a profile along the survey line 22, in which Olon-ovoot Fault is located somewhat to the south of the center. Near the fault, a low-resistivity zone(20-90 ohm-m), over 400m wide, can been seen at the surface, under which lies a high-resistivity layer over 400 ohm-m.

4-4 Discussin and conclusion

Following are anomalous resistivity areas notable from the viewpoint of exploration:

- i) An area centering around the survey point 1813 at Tsagaan-tolgoi(a vein-like, high-resistivity anomaly)
- ii) An area centering around the survey point 2413 along Olon-ovoot Fault(low-resistivity anomaly in the shallow part; high-resistivity anomaly in the deep)
- iii) An area centering around the survey lines 32-36 in the northeastern part of the survey area(large scale, low-resistivity anomaly)
- a) Tsagaan-tolgoi


The quartz vein group at Olon-ovoot Deposit is located between the low-resistivity zone along the fault and the high-resistivity zone parallel with it.(Fig.II-4-4-1) This high resistive zone is is presumed to represent sandstone beds. The vein-like, high-resistivity zone, about 70m wide, standing almost upright, which was found right under the survey point 181325(the survey point 25m north of the 1813) by the detailed survey in the Turam arrangement, is believed to capture quartz veins.

b) The low-resistivity anomaly in the shallow portion, and the highresistivity anomaly in the deep, along Olon-ovoot Fault.

The low-resistivity anomaly zone extends northeastward. At the depth of 20-120m under the surface where the extension reaches, there is a high-resistivity zone over 400 ohm-m with over 400m wide, along the fault. As there is an alteration zone on the surface, this high-resistivity zone is likely to be a silicified zone formed along the fault.

c) Large scale, low-resistivity anomaly in the northeastern part

The area of this low-resistivity anomaly corresponds approximately to the Jurassic volcanic rock area. In this low-resistivity anomaly area, magnetic anomaly was also detected in the course of the survey work. As there are Devonian limestone accompanied by small green copper mineral-bearing hematite skarn, possible occurrence of a skarntype deposit with magnetite or pirrhotite is inferred.

5-1 Purpose of survey

The survey was conducted for the purpose of clarifying conditions of gold mineralization of quartz veins and wall rock of Olon-ovoot Deposit and investigating extension and continuity of the deposit and approximate grade distribution near the surface.

5-2 Survey method

The geochemical survey was carried out at the object area, $0.5 \rm km^2$, around Olon-ovoot Deposit.(Fig.II-5-2-1)

One hundred and one survey lines were set up in the direction of magnetic north to south at intervals of 10m east to west.

In principle, samples were collected at intervals of 2.5m for quartz veins, 5-10m for alteration zones and 20m or more for the others. The total number of collected samples was 2,261 pieces. Sample collection was done while compiling a 1/1,000 scale route map by summary survey with a pocket compass and a measuring tape. (Fig.II-5-2-2)

Pitting was done when necessary for collecting autochthonous, unweathered ore samples.

On sample ores and rocks with recognizable mineralization, the gold and silver analysis, microscopic observation of polished sections, measurement of homogenization temperature of fluid inclusion and K-Ar dating were conducted.

The ore analysis was done on the two components, Au and Ag, by the atomic absorption method with aqua regia extraction while the fire assays was used for the checking. The detection limits were set at 0.1-600 ppm for Au and 0.3-600 ppm for Ag.

Geochemical analysis was done of the two components, Au and Ag, by the ICP method with the detection limits of 1ppb-10ppm for Au and 0.2ppm-200ppm for Ag.

5~3 Survey findings

Concerning Au and Ag, thresholds were determined by cumulative frequency curves.(Fig.II-5-3-1) Anomaly distribution maps were drawn for the respective components.(Figs.II-5-3-2 and II-5-3-3) Statistical study was conducted on analized datea while correlation between respective components were studied.(Table II-5-1)

A summary of these studies are as follows:

Gold: Gold concentration is prominent around quartz veins. Gold concentrations of workable level were observed especially on Tsagaan-tolgoi, which has an approximate total ore area of $1,500m^2$ at 3.3g/t Au. Quartz veins in other places and some part of alteration zones also have such gold concentrations.

From these findings, it is estimated that the whole deposit has an approximate ore area of $2,500 \text{km}^2$ (3.2g/t Au). (Table II-5-2)

Silver: In general, silver concentration is so that no economic value

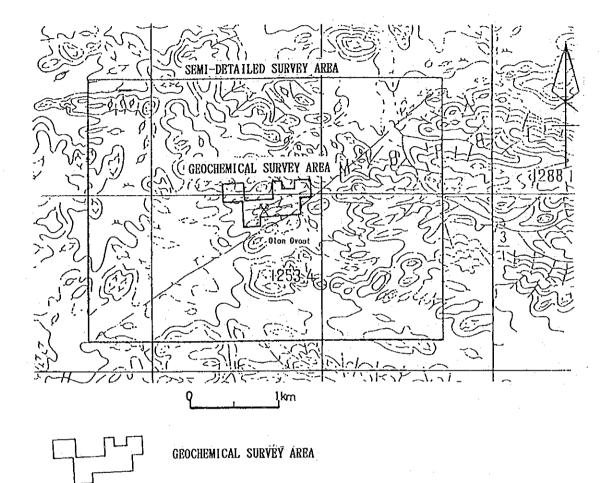
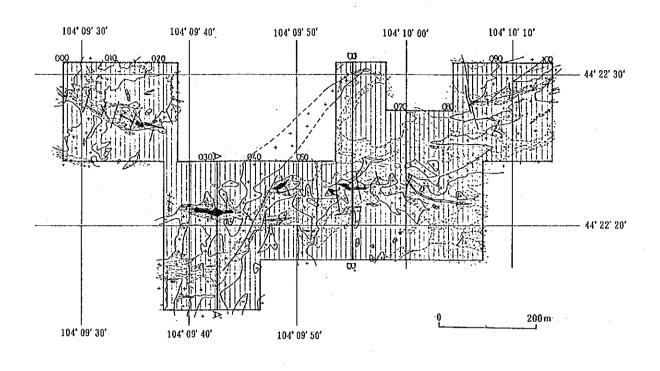
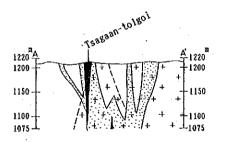
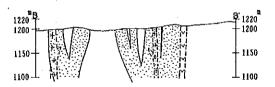





Fig. N-5-2-1 Location Map of the Geochemical Survey Area

9

Legend

quartz vein and quartz vein zone

altered zone (pyritization and silicification)

trachyte

+++ diorite, microdiorite, diorite porphyry

sandstone, shale, phyllite, tuffaceous schist

quaternary(dune sand, gravel)

- fault
- trench ---

Fig. 11-5-2-2 Geologic Map of the Geochemical Survey Area

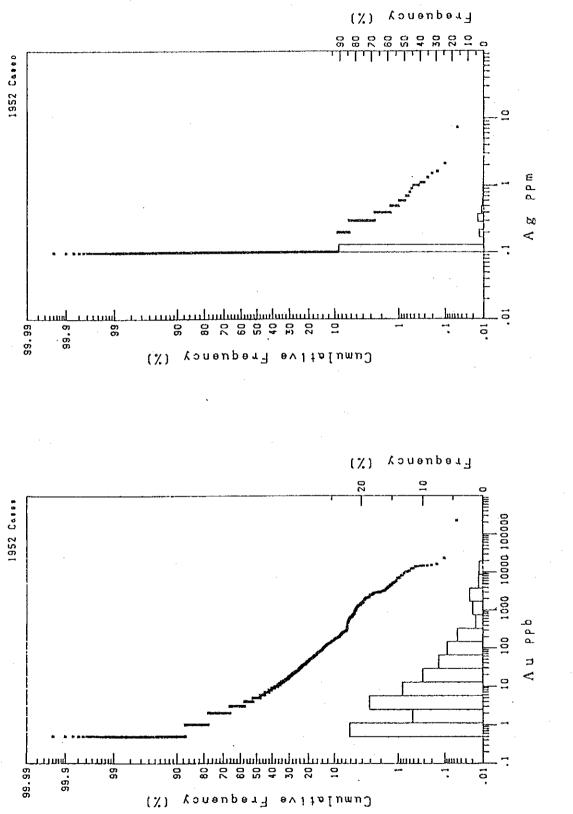


Fig. 1-5-3-1 Cumlative Frequency Curves of Gold and Silver

-178-

	Au	Ag
試料数	1952	1952
最大值	223000	7.3
最小値	0	0.1
平均	365.13	0.13
Auとの相関係数	1	0.1658**

.

Table I-5-1 Statistical Numbers on Gold and Silver in the Geochemical Survey

**: 有意(有意水準=0.001)

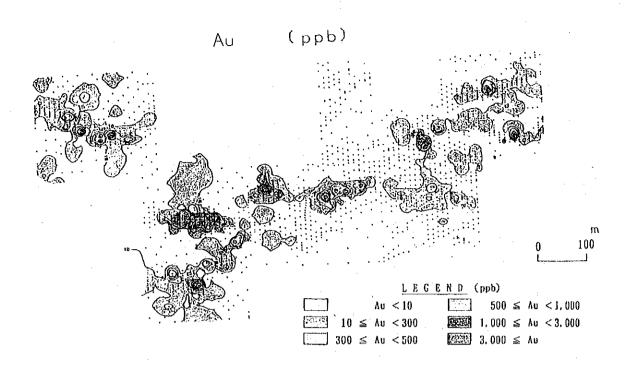


Fig. 1-5-3-2 Distribution of Gold in Geochemical Survey Area

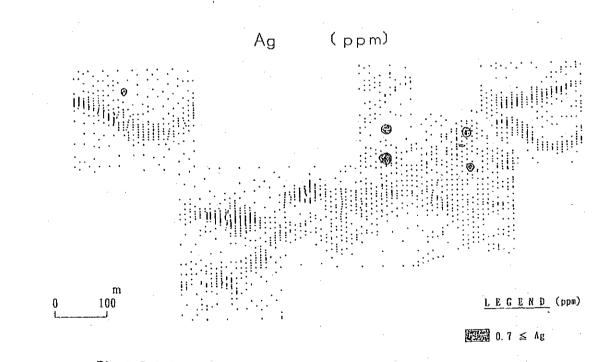


Fig. H-5-3-3 Distribution of Silver in Geochemical Survey Area

is expected. The central part of the deposit and alteration zones showed some anomalous figures, but only statistically.

Neither clear correlations between gold and silver nor systematic differences by type of wall rock were recognized by the correlation studies.

In this geochemical survey, the minimum interval between ore sampling points was not less than 2.5m, therefore, narrow quartz veins could not be blocked out.

5-4 Considerations

Since gold ore-level concentration of gold are detected at many points on narrow quartz veins both on the east and west sides, a further increase of the ore blocks would be possible by more detailed/minute surveys.

As gold of Olon-ovoot Deposit is generally coarse-grained and, sometimes, wall rock yields gold, it would be necessary to consider/check possible influence of the secondary enrichment in relation to the grades of gold near the suface. For evaluation of the deposit's potential ore reserves, it is necessary to confirm continuity into the deep of quartz veins and Au grades, by core drilling.

As regards gold yielded by wall rock of quartz veins, attention should be paid to relations with silicification after the for mation of quartz veins and with pyritized alteration zones.

The poor silver contents in Olon-ovoot Deposit can interpreted as its intrinsic character in view of the fact that quartz veins of the deposit bear little base metals and no "Ginguro" (silver black).

Block No.	Size (㎡)	Average grade (Au g/t)	Numbers of samples(pcs)	Note
1	1, 500	3. 3	60	Tsagaan Tolgoi(massive quartz ∼quartz vein)
2	500	2.3	15	150 m west from Tsagaan Tolgoi(wide quartz vein)
3	140	7.3	5	130 m south from Tsagaan Tolgoi(qz v and host rock)
4	90	1.9	4	630 m northeast from Tsagaan Tolgoi (qz v)
5	250	2, 0	3	280 m east from Tsagaan Tolgoi (wide qz v)
6	50	2. 7	. 5	250 m∼330 m northwest from Tsagaan Tolgoi (qz v)
Total	2, 530	3. 2	92	· · ·

Table N-5-2 Potential Ore Reserve of the Olon-ovoot Deposit

Note: Numbers in this table should be taken for "Potential" because of the number of the analysed samples are too few to evaluate gold deposit. Closer sampling is required to consolidate the workable area and the ore grade.

Chapter 6 Drilling Survey(phase III)

6-1 Purpose of Survey

Core drilling of eight boreholes, totalling 850m, was carried out at Olon-ovoot deposit where gold concentration was detected by the second year's geochemical survey and also at the geophysical anomaly zone. The drilling survey was aimed at confirming continuity of mineralization into the deep and at checking the geophysical anomaly zone in the south and approx. 2.5km northeast of the deposit. Major purposes of the drilling survey may be summarized as follows:

i) Confirm continuity of the deposit to the deep.

ii) Clarify occurrence and grades of gold and silver to a depth of 50m.

iii) Check the geophysical anomaly zone.

- iv) Clarify character of the deposit thereby giving guidance for future gold prospecting in Govi area.
- v) Technical transfer of drilling technology, through this survey.

6-2 Survey method

In the area indicated in Fig.II-6-2-1, the drilling work was executed. The survey was concentrated on and around Tsagaan-tolgoi, which is considered to be the center of the deposit in terms of ore reserves and grade. As the deposit was presumed to sharply dip towards the north, the drilling angles were made as gentle as possible so that drill holes may cross quartz veins at the highest possible angles. An L-38-98 drilling machine was adopted for the work.

For the drilling, the wire line method was applied. For the final diameter of drilling, NX was applied in a bid to improve core recovery and shorten the work period.

The work period was 74 days from July 8 to September 19, 1993.

A complete set of the drilling equipment was carried in from Japan. The transportation was made by ship from Yokohama to Tianjin, China, by railroad from Tianjin to Ulaan Baatar via Beijin, and by a large truck and a crane truck from Ulaan Baatar to the survey site. Haulage of equipment between boreholes were done with a power shovel, a truck and manpower.

Preparations for the drilling operations were done in the order of drill hole numbers.

Water for drilling was conveyed by a tank truck from a well at Bayankhushuu Village, some 20km away, and used in circulation at the work site.

Determination of drilling positions and directions was made, based on a summary survey with a pocket compass and a measuring tape. Postdrilling measurement of borehole deviations were done without since the respective boreholes were so short that slight deviations were anticipated.

Particulars of the drilling survey is shown in Table II-6-1.

6~3 Survey findings

The results of the drilling survey are shown in the drill logs at the

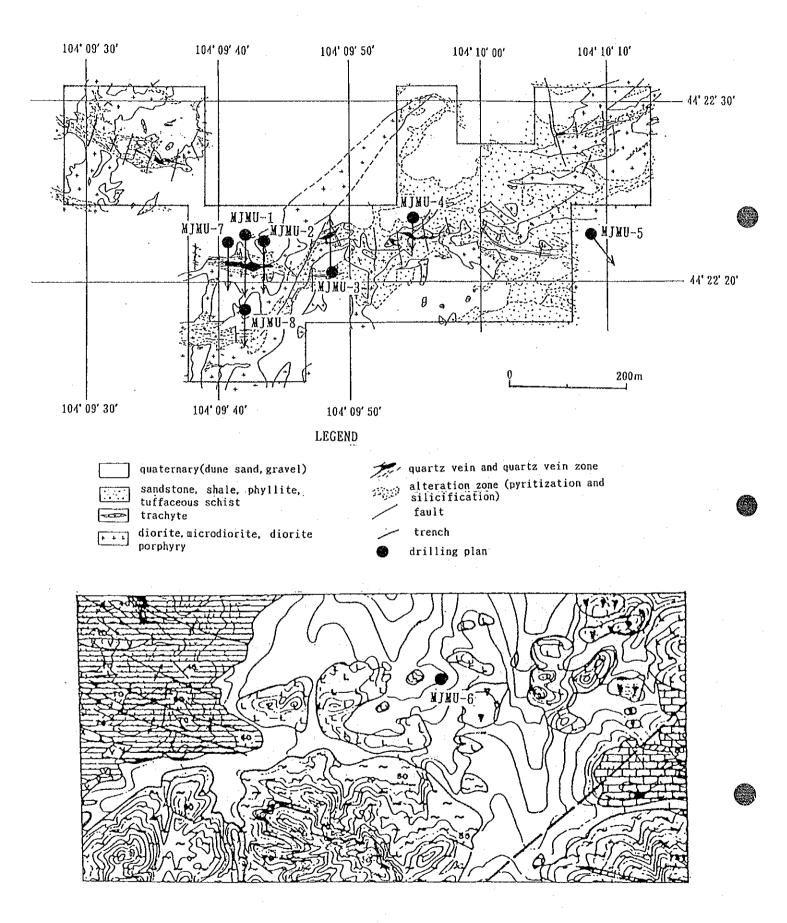


Fig. N-6-2-1 Location of the Drillings Showing with Geophysical Survey Results

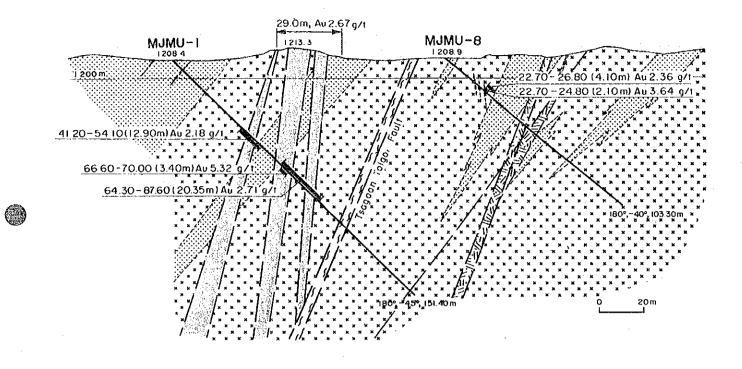

NANE	LOCATION*		N *	DIRECTION		LENGTH	NOTE	
	X	Y	Z	(dig	ree)	(m)		
MJMU-1	0. 47	54.23	1208. 2	180°	- 45°	151.40	To check the continuity of Ts. T. ore body	
NJNU-2	29. 9t	40.86	1206.6	180°	- 40°	110.70	To check the continuity of Ts. T. ore body	
MJNU-3	150.14	-16. 32	1207.9	0°	- 10°	100.60	To check the continuity of mineralization	
₩JMU-4	280.14	74.50	1203. 1	180°	- 55°	100.80	To check the continuity of mineralization	
NJNU-5	582.00	35.94	1197.7	145°	- 40°	100.40	To check geophysical anomaly and fault	
MJMU-6	1551.2	1399. 7	1176.0		– 90°	91.00	To check geophysical anomaly	
NJXU-7	-29.98	58.84	1206.6	180°	- 45°	103.50	To check the continuity of Ts. T. ore body	
MJMU-8	0	-73.95	1208.1	180°	- 40°	103.30	To check the continuity of mineralization	
TOTAL	8 Holes					861.70		

Table N-6-1 Location, Direction, Inclination, Length and Purpose of the Drillings

9

*Base point of the survey: Tsagaan-tolgoi (X= 0, Y= 0, Z= 1213.6m)

:

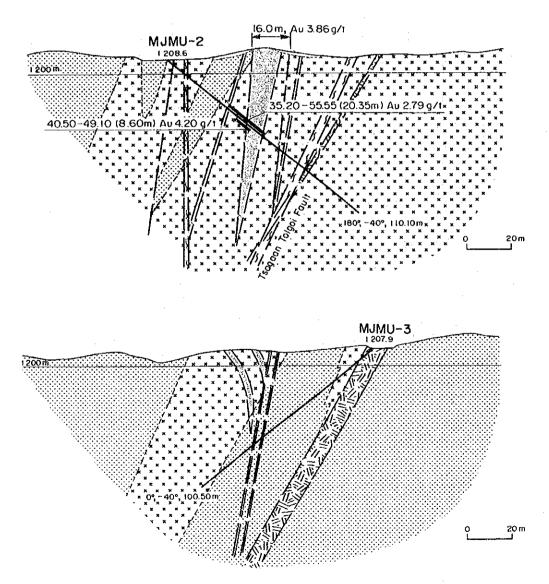
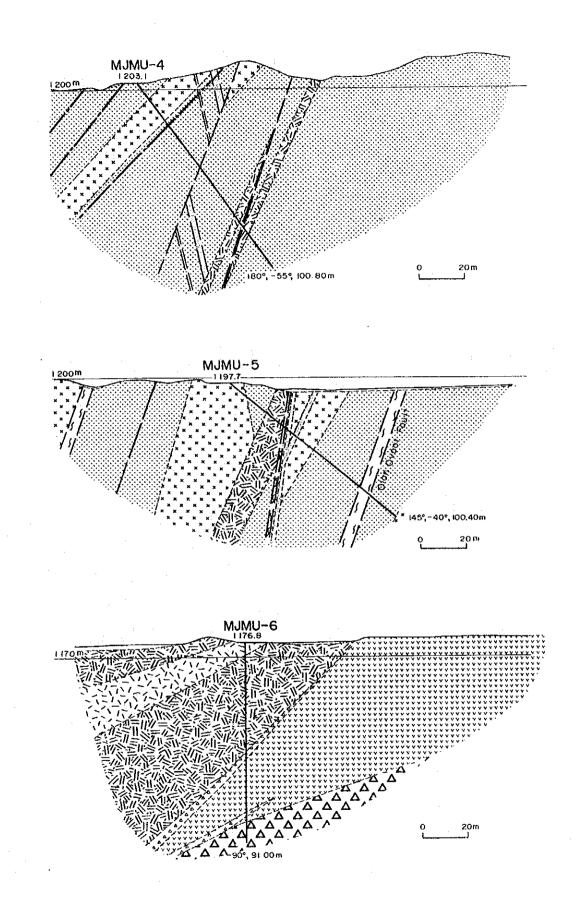
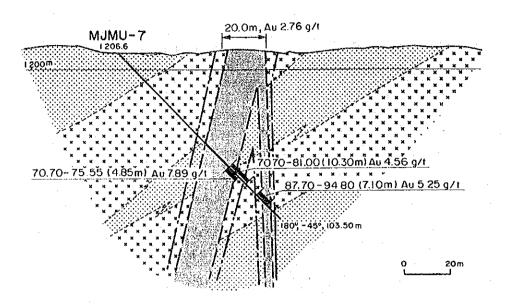




Fig. 1-6-3-1 Geologic Profiles Along MJMU-1, MJMU-2, MJMU-3 and MJMU-8 -186-

199

Fig. N-6-3-2 Geologic Profiles Along MJMU-4, MJMU-5, and MJMU-6

LEGEND

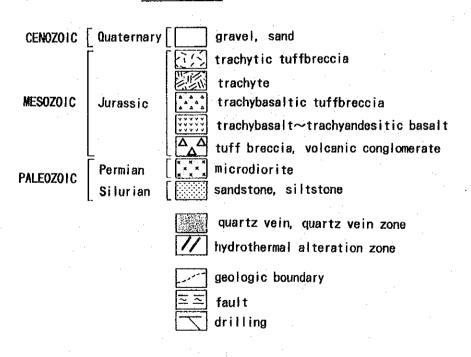
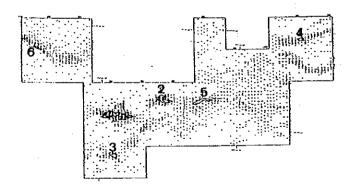


Fig. 1-6-3-3 Geologic Profile Along MJMU-7

NAME	ORE ZONES	WIDTH	ORE GRADE(g/t)		NOTE	
	(m)	(m)	Au	Λg	- -	
	41.20 ~54.10	12.90	2.18	< 0. 2	Qzv +host r.	
NJNU-1	64.30 ~87.60	23.30	2.71	< 0. 2	Qzv +host r.	
	(65.00 ~85.80	20. 80	2.97	< 0.2	higher grade p	art)
	(66.60 ~70.00	3.40	5.32	0.3	ditto)
MJMU-2	$35.20 \sim 55.55$	20.35	2.79	< 0. 2	Qzv +host r.	
	(40.50 ~49.10	8.60	4.20	< 0.2	ditto)
	70.70 ~81.00	10.30	4.56	0.2	Qzv +host r.	
NJNU-7	$(70.\ 70\ \sim 75.\ 55$	4.85	7.89	0.2	ditto)
	87.70 ~94.80	7.10	5.25	< 0. 2	Qzv +host r.	
NJNU-8	22.70 ~26.80	4.10	2.36	< 0. 2	Qzv + host r.	
	(22.70 ~24.80	2.10	3.64	< 0. 2	ditto)

Table 1-6-2 Major Ore Portions Captured by the Drillings


Abbreviations:

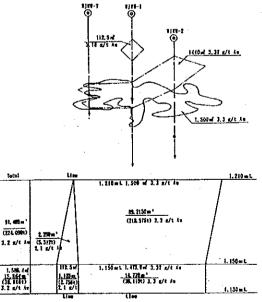

Qzv: Quartz vein, host r.: host rock

Table 1-6-3 Ore-blocks and Or	e-grade of th	ne Olon Ovoot	Deposit
-------------------------------	---------------	---------------	---------

				EA				BLOC		1:2:			
Block	SUR	FACE	1150		1	30 m L		1150 mL		1130 m L	τοτλι		NOTE
No.	ាំ	g/t Au	กใ	g/t Au	nf	g/t Au	m ' (t)	g/t Au	m ³ (t)	g/t Au			
1	1. 500	3. 3	1. 552	3, 2	Line	3. 2	91, 400 (224, 00D)	3. 2	15.800 (38.800)	3. 2	107, 200 m ³ 262, 800 t		Tsagaan- tolgol
2	500	2.3	N, D										
3	140	7.3	N, D										
4	90	1.9	N. D										
5	250	2.0	N. D										
6	50	2.1	N. D					- to					
TOTAL	2. 530	3.2						·			262.800t.	3.2g/tAu	

Note;
① Surface level of No.1 ore-block: 1,210 m
② Bulk specific gravity of ore: 2.45 (assumption)
③ Abbreviation; N.D.: not determined
④ Ore-block: Ghocked out by the geochaical survey data in 1992);
1: Tsgaan-toigoi 2: 150 m west from Tsagaan-toigoi .3: 130 m south from Tsagaan-toigoi 4: 630 m northwest from Tsagaan-toigoi 5: 280 m east from Tsagaan-toigoi 6: 250 m ~330 m northwest from Tsagaan-toigoi
⑤ Potential ore reserve; Assuming that the ore bodies captured by geochemical survey continue 110 m down from the outcrops, potential ore reserve will be estimated about 700,000 tons.

-190-

end of this volume, while the geological sections indicate the analysis results. The main ore parts caught by the drilling are listed in Table II-6-2.

The drilling survey revealed the following points:

- a) Gold is concentrated at both quartz veins and wall rock.
- b) The deposit does not decline in its size and ore grade to a depth of 50m under the surface, accordingly, it will presumably continue further down into the deep.
- c) The high magnetic, low-resistivity anomalies detected in the northeastern part of the deposit derives from the high salinity water held in porous lavas.

6-4 Considerations

From these findings, it is inferred:

a) From the above mentioned facts, Olon-ovoot Deposit is considered to reach further to the depth. Tsagaan-tolgoi Ore Body was proved to continue more than 50m down from the outclop by 3 drillings in this survey, and the total prospective ore reserve is assumed to be 369,900 tons(3.2 g/t Au).

It is somewhat difficult to estimate the total potential ore reserve of Olon-ovoot Deposit only by the drilling data of this year, but 700,000 tons of reserve at gold grade of about 3 g/t will be prospected supposing that the deposit is twice as long as the confirmed vertical length at Tsagaan-tolgoi in this survey. And by further exploration of ore-indications and geophysical anomalies around there, the amount will be expected to inclease.

b) that a substantial portion of the ore reserves is amenable to exploitation by open pit, which enhances possibility of the deposit being worked favorably.

Chapter 7 Considerations

7-1 Promising ore deposits

Economic viability of mineral resources is determined by a variety of factors such as i)type of minerals, ii)ore grade, iii)ore reserves, iv)occurrence of a deposit, v)shape of a deposit, vi)climatic conditions, vii) social infrastructure(transportation, communication, etc.), viii)energy cost, ix)labor costs, x)legislation, and forth.

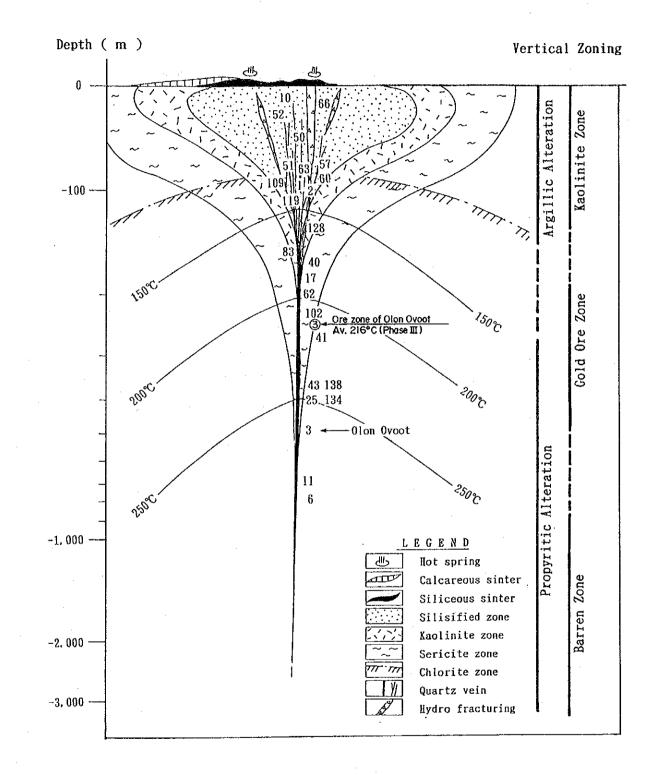
Since Uudam Tal Area is under constraint in the transportation aspect, minerals to be developed must be those which are not bulky, of high grades and of high market prices.

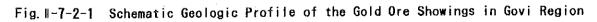
In the first year of the survey, Tsav Deposit, which is of high grade although somewhat small in size, was considered to have the highest feasibility, as matters related to ore reserves and grade of gold and silver were treated as the state secret. Ulaan and Mukhar, which are of low ore grades but are large in size, are considered to be deposits worthy of feasibility study after a review of the cutoff grades, if necessary adjustments with Russia are made.

Tumurtiin-ovoo is rather small in size and, reportedly, its sphalerite is of high manganese content; therefore, a study on characteristics of the ore would be required.

Tsagaan-suvraga Deposit lacks secondary enrichment zones and is of low grade on the whole; therefore, it is considered difficult to develop the deposit on the assumption of ores being treated by flotation. The deposit is not rich in pyrite and has hard and compact dissemination ores, extraction of copper by leaching method will presumably be difficult, too.

At the Olon-ovoot Deposit, it was ascertained by drilling survey that the primary gold concentration, as well as the size and grade, does not decline to a depth of 50m below the surface. Therefore, the deposit will presumably continue further down to the deep. In addition, a substantial portion of the ore reserves is amenable to exploitation by open pit. Thanks to these factors, the deposit is likely to be operated profitably in spite of its small size.


The mineral indication at Shuten retrieved from the existing literature in the first year has been explored in search of copper. However, its alteration zones are composed of massive silified rock accompanied by alunite, which represents the character of a epithermal gold deposit. Since the indication is large in size, Shuten should be reviewed as a target for gold deposit exploration. (Fig.II-2-6-7)


The other ore deposits and mineral indications in the survey area appear unlikely to be targets for development in view of the type of minerals, ore grades and deposit sizes.

7-2 Promising districts

7-2-1 Ulziit District

Olon-ovoot Deposit is of the highest homogenization temperatures of

its fluid inclusion in Govi area. Confirmation of the primary gold concentration at this deposit by the survey enhanced the possibility of occurrence of gold deposits formed in the Late Paleozoic time all over Govi area. This has been substantiated by the discovery of numerous gold indications of large scales in a broad area of Ulziit District. (Fig.II-7-2-1)

7-2-2 Dornod District

In Dornod District, Jurassic to Cretaceous volcanic rocks are widely distributed along the margins of Choibalsan Sedimentary Basin, with which polymetallic deposits such as Tsav, Ulaan and Muhar have been formed.

These deposits were confirmed as the result of regional surveys such as aeromagnetic survey, gravity survey, geochemical survey, etc. which were conducted simultaneously with the regional geological survey in a 1/200,000 scale, as well as the follow-up surveys including γ -ray spectrum survey, trenching, drilling and tunneling, etc. conducted on anomalies extracted by the foregoing regional surveys. The gravity survey was intended for petroleum. Many of these deposits are of non-magnetic substances and presumably fave undergone little erosion in view of their characteristics.

On the other hand, most part of the Choibalsan Sedimentary Basin is covered by the Middle to Upper Cretaceous formations. Therefore, this district is likely to embrace blind deposit zones of a non-magnetic, polymetallic type.

	NAJOR ORE-		ĐE	SCRIPT	0 4	F	ACTOR	EVALL	IAYION		C 0 8 8	ENT
AREA	DEPOSITS	WINERALES	TYPE	RESERVE(U, 1)	ORE GRADE(%, Au. Ag:@/t)	BINEALLS	RESERVE	ORE GRADE	INFRA STR.	TOTAL EVAL.	DEPOSIT	AREA
	ISLY	Pb, Zn, Ag	VEIN	7.88	Pb 8, 4, 2n 4, 8, Ag 222	0	. 0	0	0	0	Seall but the highest grade	targe potentiality for
	ULAIN		PIPE	93, 1	Po 0, 95, Zn 1, 1, Ag 49	ŏ	ĕ	01	ŏ	ŏĩ	The Inreast but los grade	polymetallic mineralizati
	HUXILAR	Ap.Pb.In Ap.Pb.In	PIPE	¥3. 1 25. 5	Pb 0, 8, 2n 3, 4, 4g 113	ŏ			ŏ.	67	Large but langrade	la expectable in this are
	BAYAN UUR		91FC	61, 1	Philip 1. 5. Ap 85 g/1.	-	Δ? 02	Δ?	ő	07		It is recommendable to
	1	Au, Ag			Pb \$1, 8, 2014, 1, 40574	0	01	×	-		Large but leagrade	excute further regional
	SALHIT	Pb, Zn, Ag	6z · ¥			0	1	?	0	7	Further study is required	
	DELGER BUNKH	Ag, Pb, In	YEIN	-	Pb 4-8	0	1	?	0	?	do,	geological survey in this
006900	15AGAAN CHULUU	ku (PLACES	AU 41 7	Au0, 30/17	0	01	07	0	07	#0	
	INCOO											Re-avaluation of Visan
	WARDAN	U	1	1	1	×	7	?	0	01	Restricted by the law,	Ore Deposit is also an
	ALTAN IOLGOIT	Pb, Zn, Ag	VEIN	· -	Pb -3, 7, 2n -6, 8, 4g -122	0	7	7	0	i	Further study is required	Important aubject in the
	BAITS	Pb, In. Is	YEIN	-	pb. 0. 3-15, 3, 2n 0, 2-12,	0	2	2	0	?	- do,	future.
	· ·				An Nax, 3, 4000/1	}	1					Exploration on gold is
	BOLOSTIN	Au, Ag, SD	YEIN	-	Au 10.5-30, Ap 80-150. Sb 18. AS 36	0	7	0	0	7	~ da,~+	racomandable too.
			47154				0	0	• x	07	High En content in sph?	Little potentiality is
TURBERTIER	10000111N-0800 SABHIT	Zn, Fa Zn	SKARA SKARN	7.57 9.92	20 TL 9 Zn 8,4	0	Δ	×	×	x	Small and scattered	resulted for new discover
0100	1	2n		0, 17	10, 1, 35			ô	x	x		of profileble ore deposit
0400	SARAA ARIM-MAR	₽ #a	OZ-V GREIZ	9. LA 24. L	¥o 0.0107	0	×. ×	×	x	×		in this area.
					TO 8 187 F. 6 614	0		×	×	×	Too los grede	Yaty few potentiality i
	TUGZER	U. Vo. Ba	GRETZ	21.3	TO ₅ 0, 197, No 0, 058	-	×	×	×	x	Too Ion grada	remained for new discover
	TUB (TSENTR)	5n, 11, 8+	GREIZ	9	5n 0, 078, 10 0, 137	0						of profitable ore deposit
•	HURVITTIN-ISAGA	Ba	PEO	r	?(lanticular ore body,	0	×	×	×	.×.		
	ANTOLGO				10 ~20 = tong)	0	×	×	× ·	×		in this step,
NUGUIT-	AR-BAYAN	T	GRE12	0, 61	170, < 8.1	Ø	×	×	× .	. ×	- do	
OATAA	UYURBAYAN	۳.,	GREIZ	-	KO1 0.04-0.1	0	×	×	×	• · ×	- do	
	ORT GROUP		GREIZ	- 1	TO, 0.01-0.08	o	×	×	×	×	- do, -	
	TARVAGATAL	No, 1	GREIZ	· ·	10, < 0,68,00<1	0	×	×	×	×	- do	
	ZUSH GYOO	No. Sa	SKARN	- 1	80 0. 003, Sn 0, 008	O	×	×	×	×	- do, - ,	
	BAYAN KATAAST	R	0Z-Y	-	10 1-2	0	×	×	. x .	×	Too small and exhausted	
	SATRAN-ULA	1	OZ V		10 , 0.18-0.5	0	×	×	×	×	do,	
	NAUTTER	Ŧ	02 V	. -	10 , 0.01-0, (3	0	×	×`	×	×	Too small and longrade	
	BOR-UNCUS	CaF,	VEIN	20, 98	CaF, 39. 15. 02-F1 1900	Δ	0	0	0	Δ	Fluosper is to cheep in the	This area is stready in
		CaF,	VEIN	4.0	CaF, 40 h,02-FI Lype	Δ	ŏ	ŏ	õ	Δ	usslarn world market,	tensively explaied for
	ADIG					6	õ	ŏ	ő	Δ	- do, -	fluosper,
	CHOL-TSAGAAN-	CaF,	VEIN	1.4	CaF, 40-53%, 0x-F1 type	6		U U	v			This area should be re-
BYB-NIEYO	DEL										do,	
	HONGOR	CaFa	VEIN .	1, 37	CaF2 29-3(1, 02-F1, Ca1	Δ	0	Δ	0	×		checked for gold in the
	BAIRASTA	CaF,	YEIN	3.08	CaFt 33-361, Oz-FI, Cal	Δ	0	Δ	×	×	- do. ~	future,
	TSAGANTAKHILCH	CaF,	VEIN	1, 82	CeF2 40 5% 02-F1 1ype	Δ	0	0	×	×	- do -	
LUGIINGOL	LUGIINGOL	REE	CARB-V	0, 438	TRED 2.85	0	×	×	×	×	too swalt and los grade	No room for exploration
	TRAGAANSUNRAGA	Cu. 20	PØ∙Cu	240.0	Cu 0.53, No 0.018	0	0	×	×	×	Law grada, na Zndary ore	This gree is already we
	DUCKINK-HURAL	Cυ	YEIN	-		0	×	×	×	` ×	Too smalt and los grade	explored for copper,
	HARWAGTAT	Cu	PO-Cu	139.6	Cu 9, 25	0	0	×	×	×	too los grade for Cu	Re-checking survey on
TSAGAAN-	TH-SRAMMAT	Eu	PO CU			0	×	×	×	×	- do	gold resources is strong
SUNNUGA	NAR IN HICK	Cu	PO-CU	0,05	Cu 0,58	0	×	×	×	×	do	required.
A DESCRIPTION OF THE PARTY OF T				9,97		ō	×	×	×	×	do,	Large potentiality for
	OYOGTU-HIRA	Cu	10-Cu		6. 0. 11	ŏ	×	×	×	×	Yery necessary to check on	nes discovery of morkable
	SHUTEN	Cu	20-Cu	¥2. E	Cu 8, 31	ō	×	×	x	×	Too los grada for Cu Au	gold deposits is expected
	URIAA- HUDAG	Cu	PO-CU	-		ŏ	×	×	×	×	Too too grade for Cu	gaid deposits is expeciso in the stee.
	INHOUT	Cu	PO Cu	-	•					· · ·		·····
•	NUSHQIA-HUQAQ	RE	Carb	398	TREO 1. 53 %. O. R. Reduced	0	0	×	. x	×	too low grade	Large potentiality for
	BAYAN-KHUSHRU	\$1	\$1, T.	0.7	5:0 40 ~50 1	0	×	×	×	×	Ica las grada?	nes discovery of workable
	OLOH OVOOT	Å β	YEIN	0.5 - 2	Au =3g/t, Bax 340g/t	0	0	0	0	0	Seall but probably workable	
	100YO WAYAB	CeF.	YEIN	1.0	CuF, 15 & Oz-FI type	Δ	0	0	×	×	Fluosper is too cheep	In this erea.
	OUGSIIIH	.tu	Qz V	-	Au ≤50 g/1	0	×	×	0	×	Too small and ecalibrad	
	ONE	ÂU	Qz-¥	.	Au ≤0, (g/1(13 11mples)	ō	×	×	0	×	Further study is required	
	BAYAN BOR-MURIA		Qz-¥	· .	Au 1-8 g/1(182 compiles)	o	7	07	0	07	Too smats and septered	
AZIH	INNEL TSAGAJA-		Isy SII	-	Au ≤0, 05. Ap ≤1. 3	0	7	?	0	07	Further study is regulared	
	TOL (0)				(# seeples)	-		-			ļ	
	HETSUU TSABAAN	Au	112-YE	-	Au ≤0.05.10 ≤1.3	0	7	7	0	01	do <u>.</u>	
	TOLODI		A - -	-	(187 samples) In ≤ 20/1 in ≤ 20/1		7	7	o	07	- da	
	CERSEN US-IRUDUN	λũ	Q2-¥		Au ≤2g/1,Ag ≤2g/1 (189 samples)	0	· '	r	С.	57	vu,	
	NOR15	Au	Q2-Y	-	Ju ≤0.7a/t, Ja≤55a/t	0	7	?	0	07	- da	-
	FUTUR-US	Au	911-4	-	(35.1000103) Au ≤0.88g/4, Ap ≤0,3	0	7	7	o	01	do	
	UL2111 0Y00	Ju			p/1 (35 seeples) Au ≤0,04p/1, Ag ≤2,9	0	7	7	0	07	do,	
			9 x · ¥		g/t (\$ semples)							
	SOLOGO I-BAYAR	Au I	sv-51)	-	lu ≤0.0(g/1, la ≤0.8	0	7	7	0	07	do	

Table II -7-1 Final Evaluation of Ore Deposits and Areas in the Uudam Tal Area

 \times bad

Note; (6) good , (7) passable, Δ with difficulty,

Part III CONCLUSIONS AND RECOMMENDATIONS

Chapter 1 Conclusions

From the surveys, the following conclusions can be drawn with regard to promising districts and deposits:

1-1 Promising ore deposits

1) Olon-ovoot (auriferous quartz veins)

The deposit, although small in size, has possibility of becoming a profitable mine since a substantial portion of its ore reserves is amenable to exploitation by open pit. It is desirable to explore and develop the deposit also from the standpoint that it may result in giving guidance for exploration and evaluation of the large gold indications found in wide zones in Govi area.

2) Tsav Deposit (a vein-type polymetallic deposit)

Although small in size, this deposit has been explored to the most advanced stage, and has ores of highest grades and reasonable infrastructure, Which led to a conclusion that the deposite has the highest possibility of development.

3) Ulaan and Mukhar Deposits (Pipe-type deposits partially skarnized)

These large deposits have been considerably explored and has reasonable infrastructure, but those ore grades are low. There remain tasks such as review of the cutoff grades, study of ore characteristics and adjustment of interest with Russia.

1-2 Promising districts

1) Ulziit District

The confirmation of gold concentration of workable grade at Olonovoot Deposit and of large gold indications widespread in the surrounding areas which are considered to have undergone lesser erosion than Olonovoot, leads to a conclusion that the Upper Paleozoic volcanic rock zones widely distributed in Govi area is worthy of note because of the possibility that the area emplaces blind gold deposits. (In 1992, Mongolia opened the door to foreign countries with respect to gold resources, as well,)

2) Dornod District

The substantial exploration conducted in the past at Tsav, Ulaan, etc. indicates that this district has certain interesting ore deposits. From the geological point of view, occurence of blind polymetallic deposits is presumable. Occurrence of gold deposits is also highly possible

Chapter 2 Recommendations

2-1 Promising ore Deposits

1) Olon-ovoot Deposits

Further exploration and development of the deposit should desirably be promoted so that it may give guidance for exploration and evaluation of the large gold indications confirmed in the surrounding areas.

2) Ulaan and Mukhar Deposits

It is desirable that, once adjustment of interest with Russia is settled, studies for development including review of the cutoff grades, ore characteristics study and feasibility study be conducted.

2-2 Promising districts

1) Southern Mongolia

In view of the geographical conditions, current state of infrastructure and economic conditions of Mongolia, it is recommended that regional reconnaissance survey of mineral resurces development be executed with a main aim at exploration and development of gold deposits. Such survey should desirably be conducted on a regional basis, along the Upper Palozoic volcanic rock zones in an area extending east-west direction.

2) Dornod District

After completion of the topographic maps with scales of 1/50,000 and 1/25,000 which are currently being prepared under the collaboration between Mongolia and Japan, regional reconnaissance survey aimed at blind polymetallic deposits and gold deposits should desirably be executed, based on the maps.

REFERENCES

Chapter 1 Conclusions

Results of the year's survey will be summalized as follows

- 1) Olon-ovoot Deposit has gold concentration both in a part of the quartz veins and in wall rock.
- 2) The deposit shows no decline in size and grade to a depth of 50m from the surface; therefore, the deposit is highly likely to continue further into the deep.
- 3) Consequently, the potential ore reserves of Olon-ovoot Deposit has a high possibility to reach 700,000 tons or more at a grade of Au 3g/t. supposing that the deposit is twice as long as the confirmed vertical length at Tsagaan-tolgoi in this survey. And by further exploration of ore-indications and geophysical anomalies around there, the reserve will be expected to inclease.
- 4) A substantial portion of its ore reserves is amenable to open pit mining; accordingly, the deposit, though small in size, is likely to be worked on a profitable basis.
- 5) The genetic age of the deposit was revealed to Early Permian by potassium-argon dating.
- 6) It was confirmed that grades of primary gold ore of the deposit are hith enough, which suggests possibility of occurrence of similar deposits anywhere in the wide area of Govi.
- 7) The low-resistivity, high-magnetic zone captured by geophysical prospecting 2.5km northeast of Olon-ovoot Deposit was found to be originated in saline water contained in the Jurassic porous lavas, which excludes possibility of occurrence of a sulfide deposit of skarntype containing pyrrhotite.

-198--

Chapter 2 Recommendations

From the above mentioned facts, following survey items are recommendable as the future subjects.

1) With respect to Olon-ovoot Deposit, it is recommended that further drilling surveys should be conducted to clarify its occurrence, that gold heap leaching tests should be made, and that, on the basis of results of these surveys and tests, feasibility study on the deposit should be conducted.

Appendices

Appendix1-2 Coal Production of Mongolia(1986 ~1992)

nit 1986 1987 1988 1989 1990 1991 1992 Note	M.t 17.0 16.6 17.3 17.9 17.9 17.9 7.1 9 Porphyry type T.t 344.4 345.4 347.7 419.7 425.9 260.0 296.0 All exported to USSR and t 3.232 3.240 3.268 3.072 3.155 3.373 3.075 Japan	t 175.4 178.1 181.7 273.1 317.4 140.9 62.9 Placer type t 81.4 50.4 103.9 0 0 0 0 exported to CSR	t 15.0 20.0 30.3 50.0 45.0 35 25 Quartz vein Ail exported	T.t 730.2 754.2 890.9 613.2 587.2 333.4 209.3 Vein type	T.t 41.0 72.7 115.1 91.8 91.8 91.8 100.0 1. $\sim 3.$ to USSR. 4. to CSR
1986	17.0 344.4 3.232			730. 2	41.0
Products Unit	Crude ore X. t Cu-conc. (35% Cu) T. t Mo-conc. (47% Mo) t	Sn-conc. (50% Sn) t W- conc. (20%W0 ₃) t	₩- conc.(60%#0₃) t	Crude ore T.t	CaF 2 conc. T.t (95~95% CaF 2)
Kineral		Sn. #	jæ ⊭=		<u> </u>
Name of the Wines	1. Erdenet	1. ¥odot	 Ulaan-uul(USSR) Tsagaandawaa(HPR) 	1. Bor-undur 2. Har-airag	3. Berh 4. Chuluut-tsagaandel

Ì

Abbrevistions; USSR; Union of Soviet Socialist Republics . JPN; Japan, BPR; Hungarian People's Republic CSR; Czechoslovac Socialist Republic, conc.; concentrate. It; thousand tons , t; ton

Appendix 2-1 Productions of Non-ferrous Metallic Minerals and Fluorite of Mongolia (1986 \sim 1992)

AP-1