1-2-2 ENAMI (1992): INFORME GEOLOGICO FINAL PROYECTO DE ESTUDIOS PRO-GRESO PERTENENCIAS PROGRESO 1-211 COPIAPO, III REGION, CHILE

A geological & geochemical survey was carried out in the Progreso 1-211 mining field owned by ENAMI; in addition to studying the possibility of the generation of copper deposits within the Punta de Cobre formation in the area, as a subsequent step it was suggested that geoelectric prospecting be carried out, and drilling survey conducted for the anomalies thus obtained.

A summary of the results of this survey follows.

- 1. The geology of the area and its environs is comprised of lower Cretaceous volcanic and sedimentary rocks, intrusive rocks thought to have been active from the mid-Cretaceous to early Tertiary Periods, and unconsolidated sediment of the Pleistocene and Holocene Periods.
- 2. The volcanic rocks and sedimentary rocks of the lower Cretaceous period are classified, from the bottom, into the Punta del Cobre, Abundancia, Nantoco and Bandurrias formations.
 - Of these, distributed within the survey area are the Punta del Cobre and Abundancia formation.
- 3. The Punta del Cobre formation is distributed in the foothills on both the east and west sides of the Copiapo River, along an anticlinal axis in a NE-SW direction. The formation may be divided into a lower (kpcli) and an upper (kpcls) strata. The lower stratum is made up of mainly andesitic lava, and the nether limit of the stratum is unascertained. The upper stratum has a depth of 60-120 m, and is made up of andesitic lava, andesitic tuff breccia, lapilli tuff and tuff volcanic rocks, intercalated with sedimentary rocks, such as slate, sandstone, calcareous sandstone, limestone, etc.
 - Within the area, albitized meta-andesite of the upper stratum are exposed in parts, but mostly they are covered by a Quaternary stratum.
- 4. The Abundancia formation covers the Punta del Cobre formation, and is distributed in its east, south and southwest parts. The formation is divided into three layers, from the bottom, kad, kau and kam. The kad layer is a stratified limestone-prominent stratum, the kau layer a weakly-stratified to massive limestone stratum sandwiched with trachytic tuff, and the kam bed is made up of skarn accompanying mineralization.
 - These formations are in conformity, showing a strike in a NNE to NE direction and forming an anticlinorium with an axis in the same direction. The area is located on the western wing of the anticlinorium, and with the trachytic tuff of the kau layer as the key stratum it is possible to suppose the location of the upper layer of the Punta del Cobre formation.
- 5. The intrusive rocks are made up of granites of the Andes batholith distributed widely on the western side of the Copiapo River, and acidic to basic dikes penetrating them.
- 6. The above-mentioned rocks are controlled by a folding structure with a NE-SW axis and a NW-SE, N-S fracture structure.
 - On the west side of the Copiapo River, this tendency is strong, and the NW-SE, N-S linearment is

- prominent. On the east side of the Copiapo River each stratum has a gentle easterly incline, but in the NE part where the survey area is located the folding structure and thrust fault accompanying it, are developed.
- 7. The ore deposits in the area and its environs are classified into three as shown below, and are generated controlled by the folding structure in the NE-SW direction and the NW-SE, N-S fracture structure.
 - a) Manto type, breccia type and vein type ore deposits with the Punta del Cobre formation as the country rock. Made up of chalcopyrite pyrite magnetite hematite ores.
 - b) Manto type ore deposits with the garnet skarn and hornfels of the Abundancia formation as the country rock. Made up of gold-bearing oxidized copper chalcopyrite ores.
 - c) Gold-bearing iron ore vein-type deposits within the Andes batholith as the country rock.

 Of these, a) is of economic value, and there are mines in operation on both east and west sides of the Copiapo River.
- 8. In the Progreso area, the southeast and northern parts are selected as fields for exploration. The southeast part conceals the Punta del Cobre stratum, which is a horizon for manto-type ore deposits, and a geochemical investigation of the rocks in the kau layer, the upper layer distributed on the surface, produced values of Cu:205-1660ppm, Au:<50ppb, Ag:6.3-20ppm. The Punta del Cobre stratum is also concealed in the northern part, covered by alluvium; in the skarn in the upper kam layer, mineral indications of mainly pyrite have been found, and in a geochemical rock survey of the outcrops values of Cu:35-585 ppm have been obtained.
- 9. It was suggested that electrical prospecting be carried out in the areas given above, and drilling survey conducted for the anomalies thus obtained.

1-2-3 ENAMI (1993): ESTUDIO GEOFISCO MEDIANTE CSAMT Y POLARIZACION INDUCIDA ESPECIAL PROYECTO PROGRESO, COPIAPO III REGION SECTOR PAN, PROGRESO SUR INTERMEDIO Y PROGRESOSUR

As a result of CSAMT and SIP surveys carried out in the three regions PAN, SUR INTERMEDIO and SUR within the Progreso 1-211 mining field, CSAMT and SIP anomalies were found to overlap in the border area between the SUR region and the SUR INTERMEDIO region, and this was chosen as having a high mineralization potential.

1-2-4 ENAMI (1993): ESTUDIO GEOFISCO MEDIANTE CSAMT Y POLARIZACION INDUCIDA ESPECTRAL PROYECTO PROGRESO, COPIAPO III REGION PROGRESO NORTE

As a result of CSAMT and SIP surveys carried out in the Northern region within the Progreso 1-211

mining field, a CSAMT low resistitivity band was found to exist in lens form in the level of the Punta del Cobre formation in the west-central part of the area. Since this overlaps with a SIP anomaly, the site was chosen as having a high mineralization potential.

However, it was suggested that prior to a drilling survey, the SIP survey should be conducted on lines P-1,3,4,5,7, in addition to P-2; and in order to carry out a detailed survey of the low resistitivity band in the horizon of the Punta del Cobre formation, it was suggested that a TEM(transient electromagnetic method) be performed on lines P-1 to 5 with measuring points at 50m interval.

A comprehensive analysis of these physical survey data and the geological conditions is suggested, followed by the drawing-up of a boring schedule.

:			
•			

:		
,		
i		
- ·		
:		
•		
:		
•		

Fig.II-1-2 Synthetic map of the Progreso area

> 300 Dm

CHAPTER 2 DRILLING SURVEY IN THE VERAGUAS AREA

2-1 Purpose

The purpose of this survey was to discover the existence of copper ore deposits through core-boring in the area in which, from an overall analysis of existing survey data, it may be considered highly possible for copper ore deposits to exist.

According to existing survey data, low resistivity anomalies by CSAMT have been confirmed in the areas of alteration rock of the Cerro Veraguas and the Sierra Overa, and it is considered there is a strong possibility of copper ore deposits lying beneath these mountains. As is shown in Fig.II-2-1, the drilling sites were chosen with these CSAMT anomalies and the alteration zones in mind.

The position coordinates, direction, inclination and depth of each boring hole are shown in Table II-2-1.

Table II-2-1 Contents of Drilling

Drill Hole	N	E	H(m)	Dir.	Incli.	Depth
MJCV-1	7,145,750.00	400,850.00	1,830.00	N90° W	-65	402.0m
MJCV-2	7,145,750.00	401,400.00	1,800.00	N90° W	-60	350.0m
NJCV-3	7,144,750.00	400,850.00	1,717.32		-90	401.0m
MJCV-4	7,143,220.00	399,180.00	1,459.98	N90° W	-35	500.0m
MJCV-5	7,142.000.00	396,400.00	1,550,00	N90° W	-55	400.0m
Total						2,053.0m

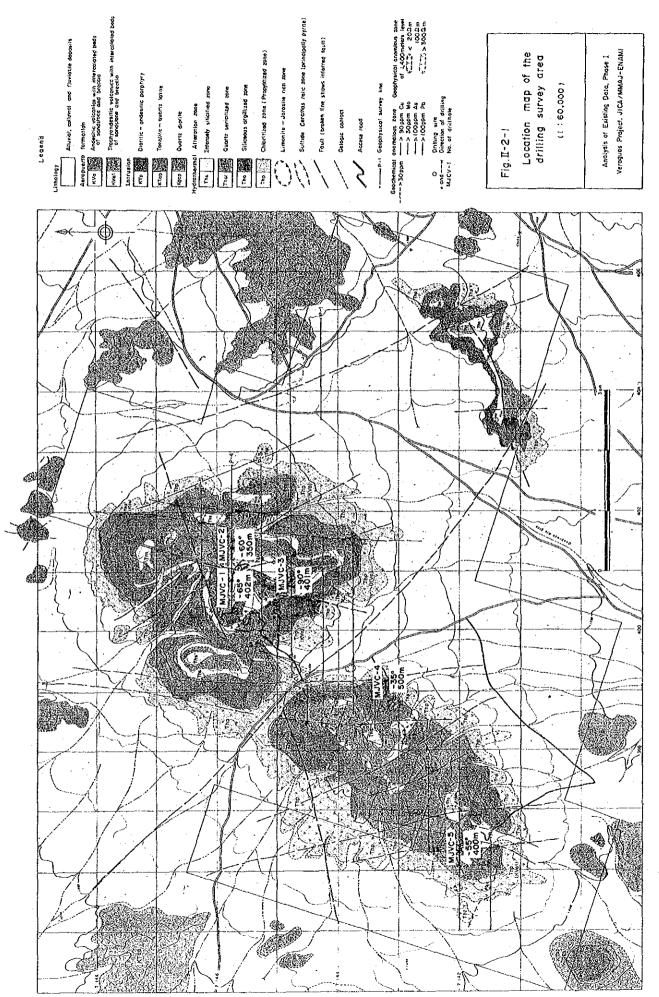


Table II-2-2 Equipments of drilling

ITEM	SPEC.	TOTAL	1st	2nd	3rd	REMARKS
DRILLING			LY-44	LY-44	LY-38	
MACHINE		3	(1)	(2)		set
DRILLING	BEAN ROYAL	1				
PUMP	434	3	1	- 1	1	set
DRILL	HXWL	235	85	85	65	@ 3.05m/rod
RODS	NXWL	430	170	140	120	@ 3.05m/rod
	BXWL	310	170	140		@ 3.05m/rod
INNER	HXWL	9	3	3	3	set
TUBE	NXWL	9	3	3	3	set
ASSEMBLY	BXWL	9	3	. 3	3	set
CORE	HXWL	9	3	3	3	set
BARREL	NXWL	9	3	3	3	set
ASSEMBLY	BXWL	9	3	3	3	set
CASING	HWCP	201	67	67	67	@ 3.05m/rod
	NXCP	300	100	100	100	@ 3.05m/rod
	BXCP	0 .				@ 3.05m/rod
DRILLING	MJCV-1	402.0		402.0		m
DEPTH	MJCV-2	350.0			350.0	m ·
	MJCV-3	401.0		401.0		m
	MJCV-4	500.0	500.0			m
:	MJCV-5	400.0	400.0		:	m ·

Table II-2-3 Articles of consumption

ITEM	SPEC.	TOTAL	MJCV-1	MJCV-2	MJCV-3	MJCV-4	MJCV-5
TRICON BIT		3	1			1	1
DIAMOND	HX	16	2	2	- 5	5	2
BIT	NX	10	2	2	2	2	2
	BX	3	1				2
REAMING	HX	6	1	1	2	1	1
SHELL	NX	5	1	1	1	1	1
	ВX	2	1				1
CASING	HX	5	1	1	1	1	1
SHOE	NX	5	1	. 1	1	1	1
•	BX	0	:				
CEMENT	bag	22				12	10
BENTONITE	bag	384	132	79	100	36	37
REPONITE	kg	198	88	22	22	22	44
C.M.C.	kg	484	132	44	154	44	110
POLYMER	l	620	40	120	140	160	160
CAUST.SODA	kg	400	50	100		50	200
GYPSUM	bag	6			6		
GASOLINE	1	24130	4490	3560	4540	6450	5090

Table II-2-4 Program of drilling

Drilling Nov.1993	ine	LY-44		LY-44 (2)	·		LY38	
	090		*					
\ 0	802	æ			******			
. 19	091	JCV-4						,
8	011	4						
	13			3	·····			
	41			\$				
	516			က္				
	17							
	181							***************************************
	920							
	21			 				
	222							
	25							
	425							
	26,							
	272							
ļ	82							
	930		*					
	101		ž	#				
a Pe	213141516171819202122232425262728293001020304050607080910112131415161718192021222324		<u>}</u>	*	3	ę		
Dec.1993	8		വ		**************************************	{ ŧ		
66	<u> </u>				<u>5</u>			***************************************
က	090							
	700							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	309	-				}		
	10							
	11						E	
	21,						ទ	
	314						2	
	12					ļ		
	19							
	718					ļ		
	6			· · · · · · · · · · · · · · · · · · ·				
	202		***************************************			†		
	2		***************************************					
	23		·······			•••••		
l	N			<u> </u>		•••••		

***** MOBILIZATION & DEMOBILIZATION

====== DRILLING

Table II-2-5 Summary of drilling activity (1)

MJCV-1	PERIOD	TOTAL TURNS	WORKING TURNS	DAY OFF TURNS	TURN *WORKER	DAYS
MOBILIZATION	12/03	2	2	- 0	8	1.0
DRILLING	12/04-20	33	33	0	132	16.5
DEMOBILIZATION	12/20	1.	1	0	4	0.5
TOTAL	12/03-12/20	36	36	0	144	18.0
DEPTH PLANNED	400.00	(m)	DRILLING	24.36	(m/drillin	g day)
DEPTH DRILLED	402.00	(m)	SPEED	22.33	(m/total w	orking day)
OVER BURDEN	0.00	(m)	CASING	11.00	HWCP(m)	
CORE LENGTH	366.82	(m)		115.40	NXCP(m)	
CORE RECOVERRY	91.25	(%)				

M J C V - 2	PERIOD	TOTAL	WORKING	DAY OFF	TURN	DAYS
	Land to the state of	TURNS	TURNS	TURNS	*WORKER	
MOBILIZATION	12/11	2	1	1	4	1.0
DRILLING	12/12-22	22	22	0.	88	11.0
DEMOBILIZATION	12/23	2	2	0	8	1.0
TOTAL	12/11-12/23	26	25	1	100	13.0
DEPTH PLANNED	350.00	(m)	DRILLING	31.82	(m/drilling	g day)
DEPTH DRILLED	350.00	(m)	SPEED	26.92	(m/total we	orking day)
OVER BURDEN	0.00	(m)	CASING	1.65	HWCP(m)	······································
CORE LENGTH	312.92	(m)		103.50	NXCP(m)	
CORE RECOVERRY	89.41	(%)				

M J C V - 3	PERIOD	TOTAL	WORKING	DAY OFF	TURN	DAYS
		TURNS	TURNS	TURNS	*WORKER	
MOBILIZATION	11/13	1	- 1	0	4	0.5
DRILLING	11/13-12/01	. 36	36	0	144	18.0
DEMOBILIZATION	12/01-03	. 3	2	1	8	1.5
TOTAL	11/13-12/03	40	39	1	156	20.0
DEPTH PLANNED	400.00	(m)	DRILLING	22.28	(m/drillin	g day)
DEPTH DRILLED	401.00	(m)	SPEED	20.05	(m/total w	orking day)
OVER BURDEN	0.00	(m)	CASING	6.20	HWCP(m)	····
CORE LENGTH	341.11	(m)		193.80	NXCP(m)	
CORE RECOVERRY	85.06	(%)				

Table II-2-5 Summary of drilling activity (2)

MJCV-4	PERIOD	TOTAL	WORKING	DAY OFF	TURN	DAYS
	<u> </u>	TURNS	TURNS	TURNS	*WORKER	
MOBILIZATION	11/07-08	3	2	1	8	1.5
DRILLING	11/08-27	38	38	0	152	19.0
DEMOBILIZATION	11/27-29	4	4	0	16	2.0
TOTAL	11/07-29	45	44	1	176	22.5
DEPTH PLANNED	500.00	(m)	DRILLING	26.32	(m/drilli	ng day)
DEPTH DRILLED	500.00	(m)	SPEED	22.22	(m/total	working day)
OVER BURDEN	1.70	(m)	CASING	1.70	HWCP(m)	
CORE LENGTH	446.54	(m)		195.90	NXCP(m)	
CORE RECOVERRY	89.61	(%)			<u> </u>	

MJCV-5	PERIOD	TOTAL	WORKING	DAY OFF	TURN	DAYS
:		TURNS	TURNS	TURNS	*WORKER	
MOBILIZATION	11/29-12/01	4	3	1	12	2.0
DRILLING	12/01-17	33	33	0	132	16.5
DEMOBILIZATION	12/18-23	12	6	6	24	6.0
TOTAL	11/29-12/23	49	42	7	168	24.5
DEPTH PLANNED	400.00	(m)	DRILLING	24.24	(m/drilling	g day)
DEPTH DRILLED	400.00	(m)	SPEED	16.33	(m/total wo	orking day)
OVER BURDEN	1.45	(IB)	CASING	3.05	HWCP(m)	
CORE LENGTH	366.10	(m)		167.95	NXCP(m)	
CORE RECOVERRY	91.86	(%)	[.			

TOTAL	PERIOD	TOTAL	WORKING	DAY OFF	TURN	DAYS
		TURNS	TURNS	TURNS	*WORKER	
MOBILIZATION	11/07-	12	. 9	3	36	6.0
DRILLING	11/08-12/22	162	162	0	648	81.0
DEMOBILIZATION	-12/23	22	15	7	60	11.0
TOTAL	11/07-12/23	196	186	10	744	98.0
DEPTH PLANNED	2050.00	(m)	DRILLING	25.35	(m/drillin	g day)
DEPTH DRILLED	2053.00	(m)	SPEED	20.95	(m/total w	orking day)
OVER BURDEN	3.15	(m)	CASING	23.60	HWCP(m)	***************************************
CORE LENGTH	1833.49	(m)		776.55	NXCP(m)	
CORE RECOVERRY	89.45	(%)				

2-2 Operation Condition

The site investigation period for the drilling survey was from 29th October 1993 to 31st December 1993. Of that time the period of drilling work was from 7th November 1993 to 23rd December 1993. The drilling machines used for the work and consumption supplies are shown in Table II-2-2 and Table II-2-3 respectively; drilling work charts for each boring hole and the drilling progress charts are shown in Table II-2-4 and Table II-2-5.

Drilling operations were carried out as shown in the drilling progress chart, with size of HX, NX, BX; and a core recovery rate of 89.45% including surface soil and talus was achieved. Drilling efficiency varied greatly depending on the geological conditions, due in particular to the crumbling of holes in clay areas and inundation in and around the fracture zone. The average drilling efficiency for individual holes was 16.33 - 26.92 m/total working day, the overall average being 20.95 m/total working day.

2-3 Result of Survey

As stated above, the core recovery rate by drilling was good. Color photographs were taken of the cores collected, and visual appraisal of the cores was made; samples were also taken for ore analysis. The remaining cores after the samples had been taken were placed in 4 m lengths in lidded wooden boxes and stored in a local warehouse. The appendix A shows the columnar boring section on a scale of 1:200 drawn up from the visual appraisal of the boring cores.

For the ore analysis, each core was split in half using a diamond cutter, and analytic samples taken every metre. The results of the analysis are listed in the appendix B.

For observation of the boring cores, samples of ore and rock deemed necessary were taken and subjected to polished thin-section observation and X-ray diffraction, and this was used as a reference in the analysis of the boring columnar section and the boring profile. Table II-2-6 shows the results of the polished thin-section observation; and Table II-2-7 shows the results of the X-ray diffraction analysis.

The geological state of each boring hole and the state of mineralization alteration, will be explained fully in the section on each hole.

2-3-1 MJCV-1

1. Outline

(1) Reasons for drilling

This hole is located 400 m west of the peak of the Cerro Veraguas. From the fact that in the zone of hydrothermal alteration around the hole the breccia structure accompanied by hematite is developed and is thought to have been a passage for ore solution, and that a CSAMT (ENAMI, 1993) found it was in a medium resistivity band of 100-300 ohm.m, the existence of underlying mineral indications may be expected.

(2) Summary of results

The hole is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration. The hydrothermal alteration can be divided into intensely silicified, quartz-sericitized, siliceous argillized and chloritized zones. The porphyry is disseminated with pyrite, and minute amounts of copper minerals, such as chalcopyrite, chalcocite, covelline etc., may be observed. In particular, there is a tendency for the copper grade to be high around the border between the porphyry and the andesitic volcanics.

The position coordinates of the hole and drilling details are as given below:

Coordinates:

7,145,750.00N

400,850.00E

1,830,00m above sea level

Drilling details: Direction N90°W

Inclination -65°

Depth 402.00m

2. Geology

(1) Litho-Units

Depth	Original rock	Alteration Zone	Mineralization
0.00- 72.05m	andesite lava	intense silicified & quartz sericitized	hematite dissemination
72,05-123.75m	andesite autobrecciated lava	siliceous argillized	hematite dissemination
123.75-148.85m	Ditto(fracture zone)	siliceous argillized	jarosite,limonite,hematite prominent
148.85-196.40m	andesite autobrecciated lava	siliceous argillized	jarosite,limonite,hematite dominant
187,40-292.20m	рогрһугу	siliceous argillized	pyrite dissemination
292.20-318.00m	andesite autobrecciated lava	siliceous argillized	jarosite,limonite,hematite dominant
318.00-333.00m	fracture zone	siliceous argillized	jarosite,limonite,hematite dominant
333.00-353.50m	andesite autobreceiated lava	siliceous argillized	hematite dissemination
353.50-400.00m	porphyry	propylite, potassium addition in parts	pyrite dissemination

(2) Alteration

The intensely silicified and quartz-sericitized zones cover the peak area to a depth of approximately 70m. The border between the two zones is not clearly defined. Underlying these, a siliceous argillized zone of mainly kaolinite extends for a depth of approximately 300m. In and around the NW-SE, NE-SW fracture zone the kaolinization is dominant, and is accompanied by conspicuous concentrations of jarosite, limonite and hematite. In the lower part of the siliceous argillized zone, chloritization becomes stronger, and shifts gradually into the chloritized zone.

(3) Mineralization

Hematite dissemination and/or film occurs in the intensely silicified, quartz-sericitized and siliceous argillized zones with andesite as the original rock. Pyrite dissemination and/or film occurs in the siliceous argillized and chloritized zones with porphyry as the original rock, larger amounts being contained in the latter. Under the microscope, chalcopyrite, chalcocite and covelline are found associated with pyrite.

3. Results of Ore Analysis

Places where the grade of T.Cu is 500ppm or above are shown below as the range of mineralization.

There is a tendency for the copper grade to be higher near the borders of the andesitic lava and porphyry of the siliceous argillized and chloritized zones.

Depth	Range	T.Cu	S.Cu	Мо	Au	Åg	T.Fe	Original	Alteration
m - m	m.	ppm	ppm	ppm	ppm	ppm	%	Rock	Zone
194 195	1	820	520	8	<0.04	0.7	4.38	2	Siliceous argillized zone
208 209	1	910	590	9	<0.04	0.6	4.00	Porphyry	Siliceous argillized zone
291 292	1	540	400	6	<0.04	0.5	3.35	Porphyry/Andesite	Siliceous argillized zone
352 354	2	670	375	22	<0.04	0.8	4.54	Andesite/Porphyry	Chloritized zone

4. Comparison with CSAMT results

From the fact that the siliceous argillized zone is in the medium resistivity band of 100-300 ohm.m corresponds to the siliceous argillized zone.

2-3-2 MJCV-2

1. Outline

(1) Reasons for drilling

This hole is located 150m east of the peak of the Cerro Veraguas, 550m east of MJCV-1. From the fact that the low-to-medium resistivity band of 0-300 ohm.m by CSAMT (ENAMI, 1993) is widely distributed, some mineral indications may be expected.

(2) Summary of results

The hole is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration. The hydrothermal alteration belongs to the siliceous argillized zone, but at 235.30m and below there are continuous fracture zones with intense kaolinization, and concentrations of jarosite, limonite and hematite. The porphyry is disseminated with pyrite, and in parts covelline and chalcocite are found in film and disseminate form. In particular, there is a tendency for the copper grade to be high in the fracture zone developed within the porphyry.

The position coordinates of the hole and drilling details are as given below:

Coordinates: 7,145,750.00N

401,400.00E

1,800.00m above sea level

Drilling details: Direction N90°W

Inclination -60°

Depth 350.00m

2. Geology

(1) Litho-Units

Depth

Original rock

Alteration Zone

Mineralization

0.00- 57,10m	andesitic lava	siliceous argillized	hematite dissemination
57.10- 91.80m	andesitic pyroclastic rock	siliceous argillized	hematite dissemination
91.80-112.10m	andesitic lava	siliceous argillized	hematite dissemination
112.10-132.00m	fracture zone	siliceous argillized	jarosite,limonite,hematite prominent
132.00-158.20m	andesitic autobrecciated lava	siliceous argillized	hematite dissemination
158.20-235.30m	dioritic porphyry		pyrite dissemination
235.30-350.00m	fracture zone	siliceous argillized	jarosite,limonite,hematite prominent

(2) Alteration

The siliceous argillized zone lies to a depth of approximately 300m from the surface. It is expected that in the lower parts this zone shifts into a chloritized zone, but no evidence of this is seen at this hole. In and around the NW-SE, NE-SW fracture zone the kaolinization is dominant and is accompanied by concentrations of jarosite, limonite and hematite.

(3) Mineralization

Pyrite disseminate and/or film occurs in the dioritic porphyry. Between 158.00m-165.00m covelline accompanies pyrite, and between 206.75-207.15m sphalerite and galena are seen in film. In addition, under the microscope chalcopyrite and pyrrhotite accompanies pyrite.

3. Results of Ore Analysis

Places where the grade of T.Cu was 500ppm or above are shown below as the range of mineralization.

There is a tendency for the copper grade to be higher in the fracture zone generated in the siliceous argillized porphyry.

									· · · · · · · · · · · · · · · · · · ·	
Dep	th	Range	T.Cu	S.Cu	Мо	Au	Ag	T.Fe	Original	Alteration
m -	m	, m ,	ppm	ppm	ppm	ppm	ppm	%	Rock	Zone
160	161	1	744	305	6	<0.04	1.0	7.04	Diolitic porphyry	Siliceous argillized zone
237	239	2	897	240	18	< 0.04	0.9	4.52	Ditto(Fracture zone)	Siliceous argillized zone
245	246	1	750	45	11	< 0.04	<0.4	5.84	Ditto(Fracture zone)	Siliceous argillized zone
291	293	2	1100	376	7	< 0.04	0.5	3.24	Ditto(Fracture zone)	Siliceous argillized zone
296	297	1	502	256	5	< 0.04	0.8	4.40	Ditto(Fracture zone)	Siliceous argillized zone

4. Comparison with CSAMT results

The siliceous argillized zone is in a low-to-medium resistivity band of 0-300 ohm.m. From the fact that the fracture zone with marked argillization and concentrations of jarosite, limonite and hematite is in the 0-100 ohm.m range, and the dioritic porphyry disseminated with pyrite that has undergone weak kaolinization is the 100-300 ohm.m range, it may be considered that the resistivity values are affected by the degree of argillization and the presence of sulfide.

2-3-3 MJCV-3

1. Outline

(1) Reasons for boring

This hole is located 1,000m south of MJCV-1, on the southern hillside of the Cerro Veraguas. From the fact that the zone of hydrothermal alteration around this hole corresponds to the low resistivity range of 0-100 ohm.m by CSAMT (ENAMI, 1993), some mineral indications may be expected.

(2) Summary of results

The hole is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration. The hydrothermal alteration can be divided into intensely silicified, siliceous argillized and chloritized zones in descending order. The porphyry belonging to the chloritized zone is disseminated with pyrite, and in parts minute traces of copper minerals - chalcopyrite, chalcocite and covelline - can be found. In particular, there is a tendency for the copper grade to be high around the border with the andesitic volcanics.

The position coordinates of the hole and drilling details are as given below:

Coordinates:	7,144,750.00N	400,850.00E	1,717.32m above sea level
Drilling details	s: Direction	Inclination -90°	Depth 401.00m

2. Geology

(1) Litho-Units

Depth	Original rock	Alteration Zone	Mineralization
0.00- 68.50m	andesitic lava	intensely silicified	hematite dissemination
68.50- 92.50m	andesitic lava	síliceous argillized	hematite dissemination
92.50-123.20m	fracture zone	siliceous argillized	jarosite,limonite,hematite prominent
123.20-207.60m	рогрһуту	siliceous argillized	hematite dissemination
207.00-215.50m	andesitic autobrecciated lava	siliceous argillized	hematite dissemination
215.50-229.50m	porphyry	siliceous argillized	hematite dissemination
229.50-256.20m	andesitic autobrecciated lava	siliceous argillized	hematite dissemination
256.20-279.60m	fracture zone	siliceous argillized	jarosite,limonite,hematite prominent
279.60-317.70m	andesitic autobrecciated lava	siliceous argillized	hematite dissemination
317.70-349.00m	porphyry	propylite	pyrite dissemination
349.00-368.35m	andesitic autobrecciated lava	propylite	hematite dissemination
368.35-401.00m	porphyry	propylite	pyrite dissemination

(2) Alteration

The intensely silicified zone covers the mountainside to a depth of approximately 70m. Underlying this, a siliceous argillized zone of mainly kaolinite extends for a depth of 200-300m. In and around the NW-SE, NE-SW fracture zone the kaolinite argillization is dominant, and is accompanied by concentra-

tions of jarosite, limonite and hematite. In the lower part of the siliceous argillized zone, chloritization becomes stronger, and shifts gradually into the chloritized zone.

(3) Mineralization

The pyrite dissemination in porphyry that has undergone chloritization below 317.70m is conspicuous. Chalcocite film and/or dissemination occurs, in addition to which under the microscope chalcopyrite and covelline accompanies pyrite, between 331.90m-349.00m and between 368.10m-371.20m.

3. Results of Ore Analysis

Places where the grade of T.Cu was 500ppm or above are shown below as the range of mineralization.

There is a tendency for the copper grade to be higher in the porphyry of the chloritized zone, and particularly in the area close to the border with the andesitic volcanics.

		:							
Depth	Range	T.Cu	S. Cu	Мо	Au	Ag	T.Fe	Original	Alteration
m-m	m	ppm	ppin	ppm	ppm	ppm	%	Rock	Zone
305 307	7 2	76	17	203	<0.04	<0.4	6.01	Andesite	Siliceous argillized zone
315 316	1	1100	804	69	<0.04	<0.4	2.58	Andesite/Porphyry	Siliceous argillized zone
321 323	3 2	505	252	- 21	<0.04	<0.4	3.23	Porphyry	Chloritized zone
326 327	7 1	80	53	213	<0.04	< 0.4	3.15	Porphyry	Chloritized zone
332 333	3 1	770	396	36	<0.04	<0.4	2.68	Porphyry	Chloritized zone
336 338	3 2	560	198	70	<0.04	<0.4	2.36	Porphyry	Chloritized zone
346 349) 3	1587	511	13	<0.04	<0.4	1.48	Porphyry/Andesite	Chloritized zone
358 359) 1	86	13	206	<0.04	<0.4	4.00	Andesite	Chloritized zone
368 369) 1	7000	1263	24	<0.04	<0.4	7.42	Andesite/Porphyry	Chloritized zone
369 370) 1	2300	954	36	<0.04	<0.4	6.48	Porphyry	Chloritized zone
377 378	3 1	948	86	12	<0.04	<0.4	6.24	Porphyry	Chloritized zone
389 390) 1	1400	443	16	0.07	<0.4	6.80	Porphyry	Chloritized zone
395 396	3 1	700	138	16	<0.04	1.3	10.24	Porphyr y	Chloritized zone

4. Comparison with CSAMT results

The intensely silicified zone to a depth of 68.50m from the surface corresponds to a high resistivity band of >300 ohm.m. From the fact that the high resistivity band displays a configuration that hangs down deep on both the east and west sides of the hole, it may be expected to develop toward the lower part of the silicified zone. The siliceous argillized zone is in a low-to-medium resistivity band of 0-300 ohm.m. Within this, the markedly argillized fracture zone with concentrations of jarosite, limonite and hematite is in the range 0-100 ohm.m. The pyrite-disseminated porphyry in the chloritized zone below 317.70m is also in the range 0-100 ohm.m, but this may be considered to be due to the influence of the alteration above it.

2-3-4 MJCV-4

1. Outline

(1) Reasons for drilling

This hole is located on the eastern foot of the Sierra Overa, approximately 1,500 m southeast of the

Since the San Juan deposits and geochemical anomalies in Cu and Mo distribute in the vicinity of the hole, and from the fact of low-to-medium resistivity band range of 0-300 ohm.m by CSAMT some mineral indications may be expected.

(2) Summary of results

The hole is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration. The hydrothermal alteration can be divided into quartz-sericitized, siliceous argillized, and chloritized zones. The andesitic volcanics and porphyry belonging to the siliceous argillized and chloritized zones below 206 m are disseminated with pyrite. The pyrite dissemination is particularly conspicuous in the chloritized zone accompanying the potassium addition and albitization below 404.30 m, and is accompanied by chalcopyrite. There is a tendency for the copper grade to be high in the places mentioned above and around the border between the andesitic volcanics and the porphyry.

The position coordinates of the hole and drilling details are as given below:

Coordinates: 7,143,220.00N

399,180.00E

1,459.98m above sea level

Drilling details: Direction N90°W

Inclination -35°

Depth 500.00m

2. Geology

(1) Litho Units

Depth	Original rock	Alteration Zone	Mineralization
0.00- 62.90m	andesitic autobrecciated lava	quartz-sericite	hematite dissemination
62.90-171.50m	fracture zone	siliceous argillized	jarosite,limonite,hematite prominent
171.50-206.00m	andesitic autobrecciated lava	siliceous argillized	hematite dissemination
206.00-270.00m	porphyry	siliceous argillized	pyrite dissemination
270.00-331.15m	andesitic autobrecciated lava	siliceous argillized	pyrite dissemination
331.15-467.50m	andesitic lava	propylite, potassium addition in parts	pyrite dissemination
467.50-500.00m	porphyry	propylite, potassium addition in parts	pyrite dissemination

(2) Alteration

The quartz-sericitized zone covers the ground surface to a depth of approximately 50m. Underlying this, a siliceous argillized zone of mainly kaolinite extends for a depth of 100m. Due to the influence of a N-S fracture zone running adjacent to the hole, the greater part of the siliceous argillized zone shows intense kaolinization with concentrations of jarosite, limonite and hematite. In the lower part of the siliceous argillized zone the kaolinization grows weaker as chloritization grows stronger and shifts gradually to a chloritized zone. Potassium addition and albitization accompany chloritization in depth-ranges of 448.15m-467.5m and 478.90m-493.50m.

(3) Mineralization

Pyrite dissemination and/or film occurs in the porphyry and andesitic volcanics of the siliceous argillized and chloritized zones below 206.0m. The pyrite dissemination is particularly marked below 404.30m, where the chloritization is strong and accompanies potassium addition; here chalcopyrite dissemination can be found at depths of 430.00m-448.15m and 467.5m-500m.

3. Results of Ore Analysis

Places where the grade of T.Cu was 500ppm or above are shown below as the range of mineralization.

There is a tendency for the copper grade to be higher near the borders of the andesitic volcanics and porphyry in the lower parts of the siliceous argillized and chloritized zones.

Depth	Range	T.Cu	S.Cu	Мо	Au	Ag	T.Fe	Original	Alteration
m - m	m	ppm	ppm	ppm	ppm	ppm	%	Rock	Zone
206 209	3	2167	<10	7	0.06	<0.4	3.01	Andesite/Porphyry	Siliceous argillized zone
238 239	1	1860	68	7	<0.04	<0.4	3.84	Porphyry	Siliceous argillized zone
316 317	1	506	38	20	<0.04	0.6	4.24	Andesite	Siliceous argillized zone
399 400	1	710	<10.	10	<0.04	0.6	5.60	Andesite	Chloritized zone
430 433	3	675	26	11	<0.04	1.2	7.81	Andesite	Chloritized zone
437 438	1.	666	16	14	<0.04	<0.4	5.68	Andesite	Chloritized zone
471 474	3	611	19	24	<0.04	<0.4	4.32	Porphyry	Chloritized zone
492 493	1	85	<10	20	4.80	<0.4	5.68	Porphyry	Chloritized zone

4. Comparison with CSAMT results

The intensely argillized fracture zone with concentrations of jarosite, limonite and hematite found at this hole at a depth of 62,90-171.50m corresponds to a low resistivity band of <100 ohm.m. Porphyry and andesitic volcanics with pyrite dissemination in the siliceous argillized and chloritized zones below 206.0m, correspond to a medium resistivity area of 100-300 ohm.m.

2-3-5 MJCV-5

1. Outline

(1) Reasons for boring

This hole is located on the southwestern hill side of the Sierra Overa (1,681m). From the fact that low-to-medium resistivity band of 0-300 ohm.m by CSAMT survey (ENAMI, 1993) is widely distributed, some mineral indications may be expected.

(2) Summary of results

The hole is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration. The hydrothermal alteration can be divided into intensely silicified, siliceous argillized and chloritized zones in descending order. The dioritic porphyry belonging to the chloritized zone below 363.9m is

disseminated with pyrite, and minute traces of cuprite dissemination may be found under the microscope. There is a tendency for the copper grade to be higher in the porphyry and fracture zones.

The position coordinates of the hole and drilling details are as given below:

Coordinates: 7,142,000.00N 396,400,00E 1,550.98m above sea level

Drilling details: Direction N90°W Inclination -55° Depth 400.00m

2. Geology

(1) Litho-Units

Depth	Original rock	Alteration Zone	Mineralization
0.00-219.10m	andesitic lava	intensely silicified	hematite dissemination
219.10-321.40m	fracture zone	siliceous argillized	jarosite,limonite,hematite prominent
321.40-363.90m	porphyry	siliceous argillized	hematite dissemination
363.90-400.00m	dioritic porphyry	propylite	pyrite dissemination

(2) Alteration

The intensely silicified zone covers the mountainside to a depth of approximately 200m. The siliceous argillized zone underlying the silicified zone extends for a depth of 100-300m.

Due to the influence of a N-S fracture zone running adjacent to the hole, the greater part of the siliceous argillized zone shows intense kaolinization with concentrations of jarosite, limonite and hematite. The porphyry occurring below 321.4m shifts at 363.9 from siliceous argillized to chloritized zones.

(3) Mineralization

Pyrite dissemination is marked in the dioritic porphyry of the chloritized zone below 363.90m. Below 385.25m cuprite dissemination may be found associated with pyrite.

3. Results of Ore Analysis

Places where the grade of T.Cu was 500ppm or above are shown below as the range of mineralization.

There is a tendency for the copper grade to be higher in the fracture zone occurring in the border area between the dioritic porphyry and andesitic volcanics of the chloritized zone, and in the dioritic porphyry.

Depth	Range	T.Cu	S.Cu	Мо	Au	Ag	T.Fe	Original	Alteration
m - m	m	ppin	ppm	ppm	ppm	ppm	%	Rock	Zone
280 292	12	540	127	<5	<0.04	<0.4	6.24	(Fracture Zone)	Siliceous argillized zone
364 367	3	1041	469	6	<0.04	<0.4	5.44	Diolitic porphyry	Chloritized zone

4. Comparison with CSAMT results

The intensely silicified zone to a depth of 206.90m from the surface corresponds to a medium-to-high resistivity band of >100 ohm.m. Especially, from the fact that high resistivity band displays a configuration that hangs down deep in the lower part of the hole, it may be expected to develop toward the

lower part of the silicified zone.

The range of the siliceous argillized zone corresponds to a low resistivity band of 0-100 ohm.m. Of this, the extremely low resistivity band of 0-16 ohm.m is thought to be due to the influence of the markedly kaolinized fracture zone with jarosite, limonite and hematite. The porphyry weakly disseminated with pyrite below 363.90 m is also within the 0-16 ohm.m range, but this is thought to be due to the influence of the alteration above it.

2-3-6 Consolidation of Survey Results

The rocks observed at each hole are andesitic volcanics of Cretaceous Aeropuerto formation, porphyry intruding into them, and altered rocks originating from these rocks. Below are given the characteristics of each type of rock.

1. Andesitic volcanics

These rocks are made up of porphyritic and/or aphanitic andesitic lava, autobrecciated lava, tuff and lapilli tuff, and form the basement of the region.

These rocks have undergone silicification, kaolinization, sericitization and chloritization and the initial minerals have altered; in many places the texture of the original rock is indistinct.

2. Porphyry

Porphyry occurs as small bodies comprised of andesite- or diorite-porphyry penetrating the andesitic volcanics; to the naked eye, porphyry displays sub volcanic texture like a tuff and/or autobrecciated lava, and there are places where the border with andesitic volcanics is indistinct. Porphyry has phenocryst of quartz and plagioclase, but these primary minerals have altered through undergoing silicification, kaolinite argillization, sericitization, chloritization and potassium addition.

3. Altered rocks

These rocks are originally the rocks described above that have undergone hydrothermal alteration; they form the mass of the Cerro Veraguas and the Sierra Overa. ENAMI (1987) has divided them into 4 groups; intensely silicified, quartz-sericitized, siliceous argillized and chloritized(propylitized) zones; based on the main altered minerals.

(1) Intensely-silicified, quartz-sericitized zones

These zones cover the ridge of the Cerro Veraguas and the Sierra Overa to a depth of 50-200m. The boundary between the two zones is indistinct. The zones are an aggregate of fine massive secondary quartz, filled by sericite and kaolinite between the crystals; film of alunite and natroalunite, and hematite dissemination and film, are also observed.

(2) Siliceous argillized zone

This zone occurs to a thickness of 100-300m beneath the intensely silicified and quartz-sericitized zones, and is also markedly developed along the fracture zone. It is made up mainly of quartz, kaolinite,

sericite and pyrophylite, and films of alunite, natroalunite and gypsum are observed. Hematite dissemination and film may be observed throughout the zone, and along the fracture zone concentrations of hematite, limonite, jarosite and natrojarosite occur together with kaolinite clay.

Also, towards the lower part of this zone, the kaolinization becomes weaker and there is a gradual shift into the chloritized zone. Together with the appearance of the chlorite, pyrite dissemination and film may be observed.

(3) Chloritized zone

In this zone the primary mafic minerals of the original andesite and porphyry have undergone chloritization; the texture of the original rocks remains. Observation under the microscope shows that the quartz has undergone corrosion and the plagioclase has undergone sericitization and kaolinization. At MJCV-4, in addition to the development of films of gypsum and anhydrite, the potassium addition and albitization accompanying the chloritization dominate below 448.15m.

4. Mineralization

Hematite dissemination may be observed throughout the intensely silicified, quartz-sericitized and siliceous argillized zones with andesite volcanics as the original rock. In particular, there are strong concentrations of hematite, limonite and jarosite along the fracture zones developed along a N-S, NE-SW and NW-SE directions.

Pyrite dissemination and/or film dominates in the porphyry and andesitic volcanics in the lower part of the siliceous argillized zone and in the chloritized zone, and is accompanied by chalcopyrite, chalcocite, covelline, cuprite, sphalerite and galena.

Minerals observed at each hole are shown below.

Drill Hole	Cu Minerals	Other Ore Minerals
MJCV-1	chalcopyrite, chalcocite, covelline	
MJCV-2	chalcopyrite	sphalerite, galena
MJCV-3	chalcopyrite, chalcocite, covelline	v.
MJCV-4	chalcopyrite	•
MJCV-5	chalcopyrite, covelline, cuprite	

The results of the ore analysis show a maximum copper grade of 7000ppm, and did not lead directly to the discovery of deposits, but copper mineralization was discovered in the following places:

- 1) The displacement area of the chloritized and siliceous-argillized zones within the porphyry. (MJCV-4)
- 2) The border area between the porphyry and the andesitic volcanics in the lower part of the siliceous-argillized and the chloritized zone. (MJCV-1,3,4)
- 3) Within the porphyry and the adjacent fracture zone. (MJCV-2,5)

Of these, overlapping the copper mineralization below 300m in the MJCV-3 hole (max. 7000ppm T.Cu, 368m-369m), molybdenum mineralization (average 52.4ppm Mo (300m-375m), max. 213ppm Mo) was discovered, indicating the special features of porphyry copper deposits. Furthermore below 490m in the MJCV-4 hole around the potassic zone, gold mineralization (0.6ppm-4.8ppm Au) was also discovered.

5. Comparison with CSAMT results

Comparison of the above geological, conditions with the CSAMT results (ENAMI, 1993) clarified the following correspondences.

1) High resistitivity band (>300 ohm.m)

Intensely silicified zone or new rocks. The deep hanging-down of the high resistitivity areas seen in and around the MJCV-3 and MJCV-5 holes is predicted to indicate the downwards development of the strongly-silicified zone.

Also, it is predicted that deep high resistitivity bands indicate the occurrence of a fresh or weakly-altered intrusive rocks.

2) Medium resistitivity band (100-300 ohm.m)

Pyrite-disseminated andesite and porphyry in the chloritized and the lower part of siliceous-argillized zones.

3) Low resistitivity band (<100 ohm.m)

Siliceous-argillized zone. In particular, fracture zones with marked argillization correspond to a range of 20 ohm.m and under.

2-4 Considerations

2-4-1 Geology and Mineralizing Alteration

Using the data from the 5-holes, 2,053m boring carried out in this phase, drilling geological profiles and synthetic columns were drawn up and a study was made of the geological structure, the spread of the mineralization effect and the connection between the two. The drilling geological profile for each hole is shown in Fig. II-2-1 (1)-(4), and the synthetic columns in Fig. II-2-2 (1)-(5).

1. Cerro Veraguas summit district (MJCV-1 & MJCV-2)

The district is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration, and the conjugate fracture zones with a NE-SW and NW-SE direction are developed. From the fact that porphyry made continuous appearances at a height above sea level of about 1,650m in both MJCV-1 and MJCV-2, it is supposed that it intruded controlled by the fracture zone with a NE-SW direction close to the east-west section.

Hydrothermal alteration is zonalized, from the top down, into intensely silicified/quartz-sericitized

transition zone, siliceous-argillized zone and chloritized zone. In the lower part of the siliceous-argillized zone and in the chloritized zone, quartz, sericite and pyrite are found universally, as well as kaolinite and chlorite, corresponding to the phillic zone of the hydrothermal alteration classification of porphyry copper deposits according to Lowell and Guilbert (1970). Each zone possesses a brecciated or pseudobrecciated structure, the matrix has undergone kaolinization and sericitization, and hematite, limonite and jarosite are developed in stockwork form; from which it may be considered that brecciation occurred at the time of hydrothermal activity.

Copper mineralization is found in the border area between the porphyry and andesitic volcanics in the lower part of the siliceous-argillized and the chloritized zone and along the fracture zone within the porphyry, but since the copper grade at T.Cu 500-1100ppm is low, and is accompanied as shown in the MJCV-2 hole by the mineralization effect of small amounts of lead and zinc, it is supposed that the region is some distance from the center of the mineralization.

2. Cerro Veraguas southern district (MJCV-3)

The district is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration, and the conjugate fracture zones with a NE-SW and NW-SE direction are developed. From the fact that porphyry cuts the andesitic volcanics like a dike in shape at depths below 1,600 m above sea level, it is assumed that it split from the surrounding stock-form porphyry.

Like the Cerro Veraguas summit district, hydrothermal alteration is zonalized, from the top down, into intensely silicified/quartz-sericitized transition zone, siliceous-argillized zone and chloritized zone. In the lower part of the siliceous-argillized zone and in the chloritized zone, quartz, sericite and pyrite are found universally, as well as kaolinite and chlorite, corresponding to the phillic zone of the hydrothermal alteration classification of porphyry copper deposits according to Lowell and Guilbert (1970). Each zone possesses a brecciated or pseudobrecciated structure, the matrix has undergone kaolinization and sericitization, and hematite, limonite and jarosite are developed in stockwork form, from which it may be considered that brecciation occurred at the time of hydrothermal activity.

Also, from the CSAMT results, on both the east and west sides of the MJCV-3 hole the fact that the high resistitivity band corresponding to the intensely-silicified zone displays a form that hangs down deep suggests that the intensely silicified zone has developed downwards as a result of its being at the center of the hydrothermal alteration.

Copper mineralization was discovered in the porphyry of the chlorite zone below 300m of the MJCV-3 hole, in particular in the border area with the andesitic volcanics, and at 10 points, a total of 14m, had a 500-7000ppm T.Cu.

In these spots there is also an overlapping with molybdenum mineralization, an average of 52.4ppm Mo between 300m-375m, with a maximum of 213ppm Mo, indicating the special features of porphyry copper deposits. Thus the existence of porphyry copper deposits in this area may be expected, and there

is a need for prospecting to continue.

3. Sierra Overa eastern district (MJCV-4)

The district is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration, and a fracture zone is developed in a N-S direction. From the fact that porphyry cuts the andesitic volcanics like a dike in shape at altitudes below 1,350 m above sea level, it is assumed that it split from the surrounding stock-form porphyry.

The hydrothermal alteration is zonalized, from the top down, into a quartz-sericitized zone, a siliceous-argillized zone and a chloritized zone. The lower part of the siliceous-argillized zone and the chlorite zone, below 206m of the MJCV-4 hole, are made up of quartz, sericite, gypsum, anhydrite and pyrite, as well as kaolinite and chlorite, and the chloritized zone, between 448.15m-467.5m and between 478.9m-493.5m, is rich in albite and potassium feldspar. Thus the former corresponds to the phillic, and the latter to the potassic, zone of the hydrothermal alteration classification of porphyry copper deposits according to Lowell and Guilbert (1970).

These zones of alteration possess an brecciated or pseudobrecciated structure, the matrix has undergone silicification, kaolinization and sericitization, and hematite, jarosite and limonite are developed in stockwork form, from which it may be considered that brecciation occurred at the time of hydrothermal activity.

In addition, the fracture zone between 62.9m-171.5m shows marked kaolinization, with concentrations of hematite, jarosite and limonite; from this it is possible that the fracture zone in a N-S direction may have been a passage for hydrothermal solution.

Copper mineralization was found in/around the border area between the porphyry and andesitic volcanics in the lower part of the siliceous-argillized zone and in the chloritized zone and around the potassic zone mentioned above below 206m of the MJCV-4 hole, and 7 points a total of 13m had a 500-3200ppm T.Cu. Around the potassic zone below 490m, a gold mineralization (0.6-4.8ppm Au) was also discovered.

From the existence of geochemical anomalies in copper and molybdenum in and around the area, and the existence of the San Juan mine some 1,500m to the NW from the hole MJCV-4, the existence of porphyry copper deposits in this area may be expected, and there is a need for prospecting to continue.

4. Sierra Overa southwest district (MJCV-5)

The district is made up of andesitic volcanics and porphyry that have undergone hydrothermal alteration, and a fracture zone is developed in a N-S direction. From the fact that the porphyry is continuous below 1,300m above sea level, the existence of stock-form porphyry may be presumed.

From the fact that a intensely silicified zone continues from the ground surface to 206.9m of the hole MJCV-5 and corresponds to a CSAMT high resistitivity zone, it may be forecast to display a formation that hangs down deep. The siliceous-argillized zone and the chloritized zone below 206.9m are made up

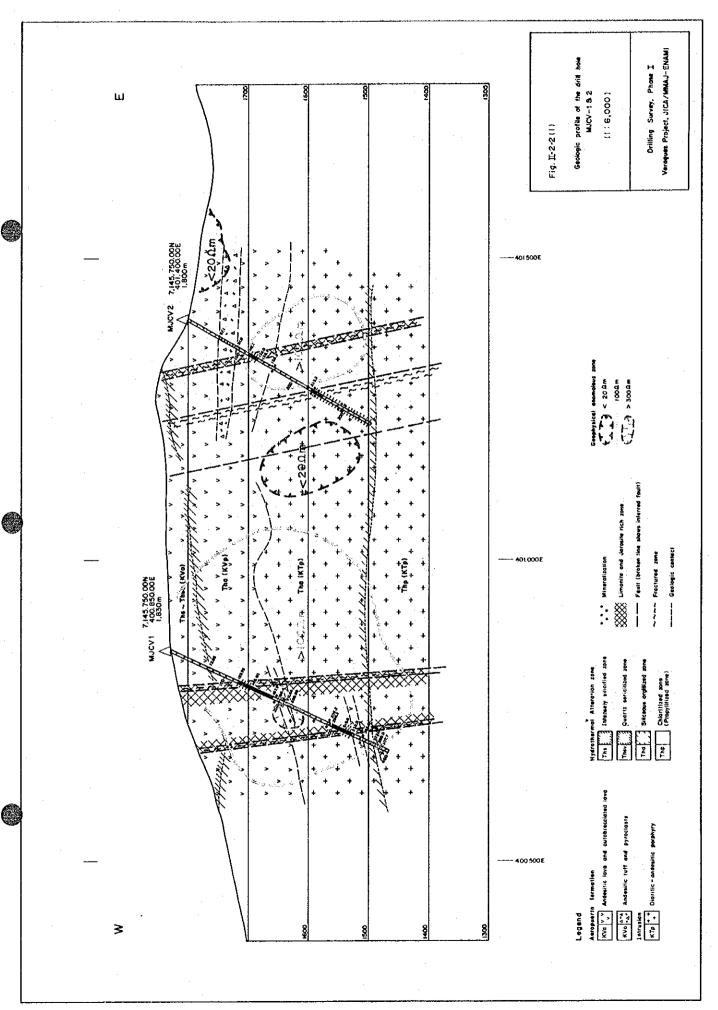
of quartz, sericite, gypsum, anhydrite and pyrite as well as kaolinite and chlorite, corresponding to the phillic zone of the hydrothermal alteration classification of porphyry copper deposits according to Lowell and Guilbert (1970).

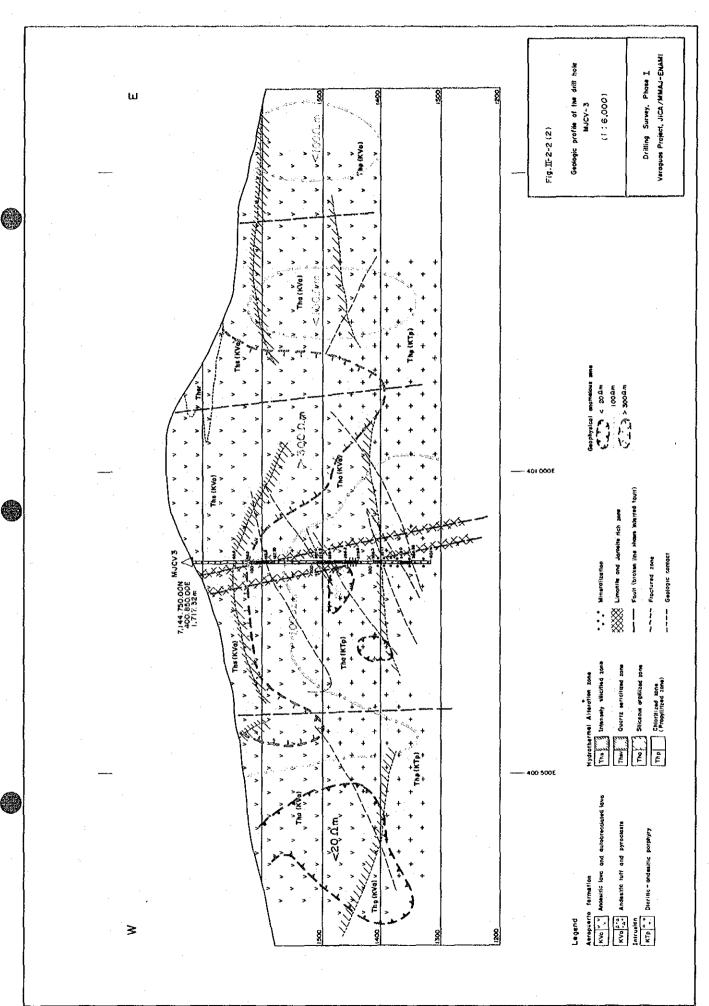
These zones of alteration are massive and compact, with few places displaying an brecciated structure; but the fracture zone between 219.1m-321.4m shows marked kaolinization with concentrations of hematite, jarosite and limonite; from which it is possible that the fracture zone in a N-S direction may have been a passage for hydrothermal solution.

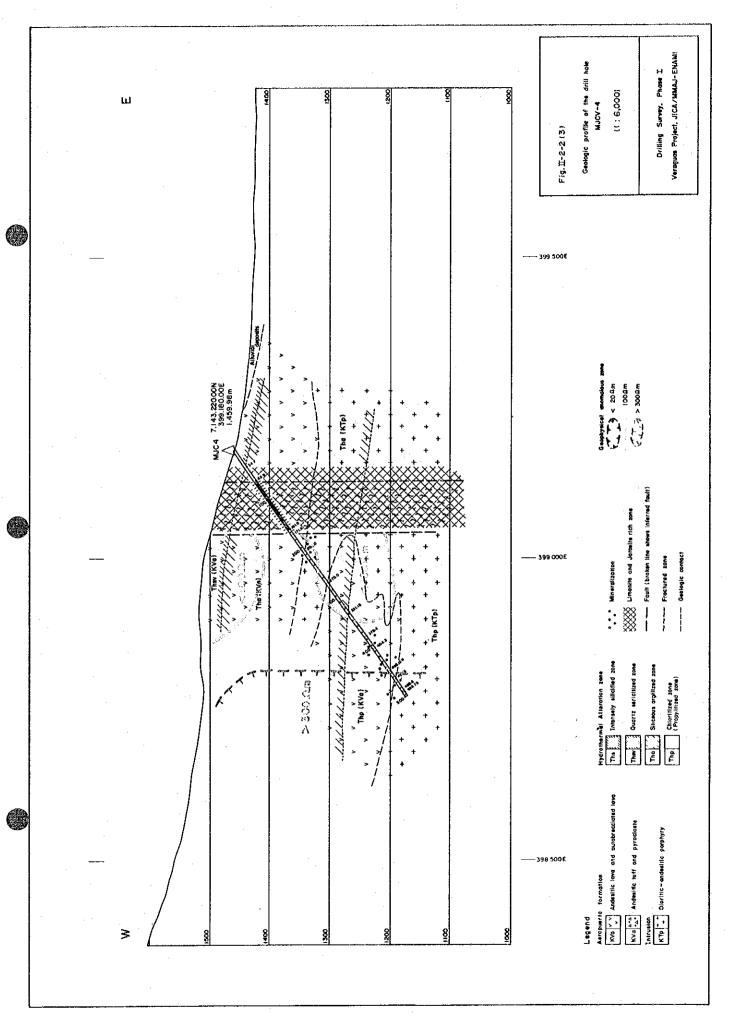
Copper mineralization was discovered between 280m-292m, where the porphyry and N-S fracture zone intersect, an average of 540ppm T.Cu, and between 364m-367m, the border area of the chlorite and siliceous clay bands within the porphyry, an average of 1,041ppm T.Cu; from this it is surmised that the copper mineralization was controlled by changes in the alteration environment within the porphyry, and by the N-S fracture zone of a passage for hydrothermal solution.

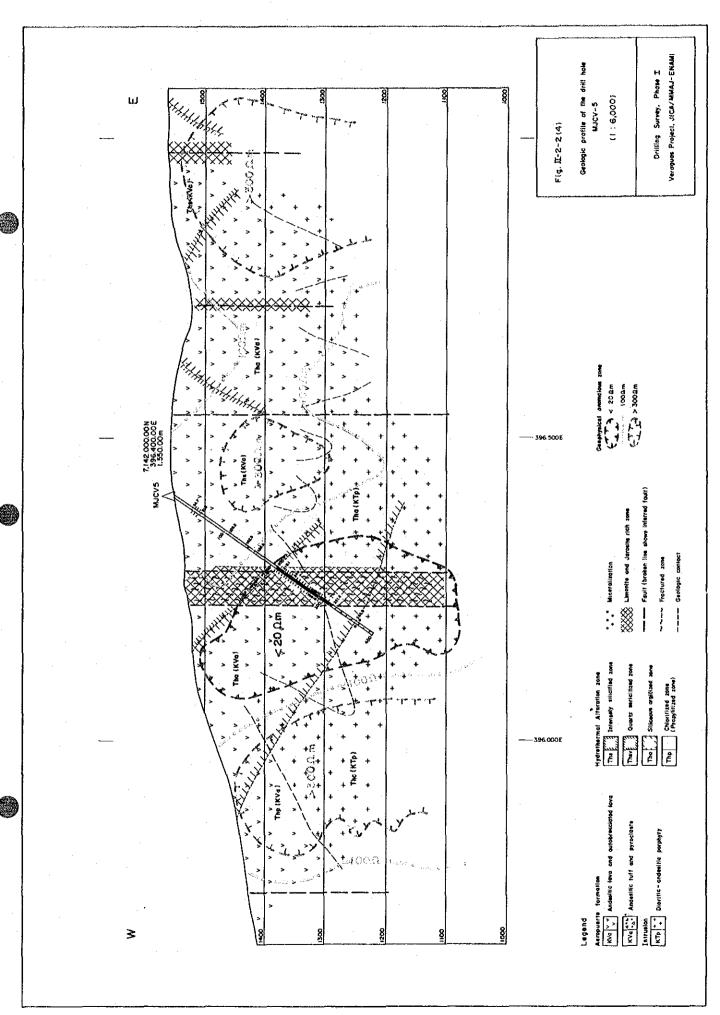
2-4-2 Homogenization temperature measurement of fluid inclusion

With regard to 14 samples of white mineral veins in the drilling core samples, double-side-polished thin sections were made, and homogenization temperature measurements of fluid inclusions were carried out; the measurements were taken in 9 samples except for those 5 samples in which no fluid inclusions were found.

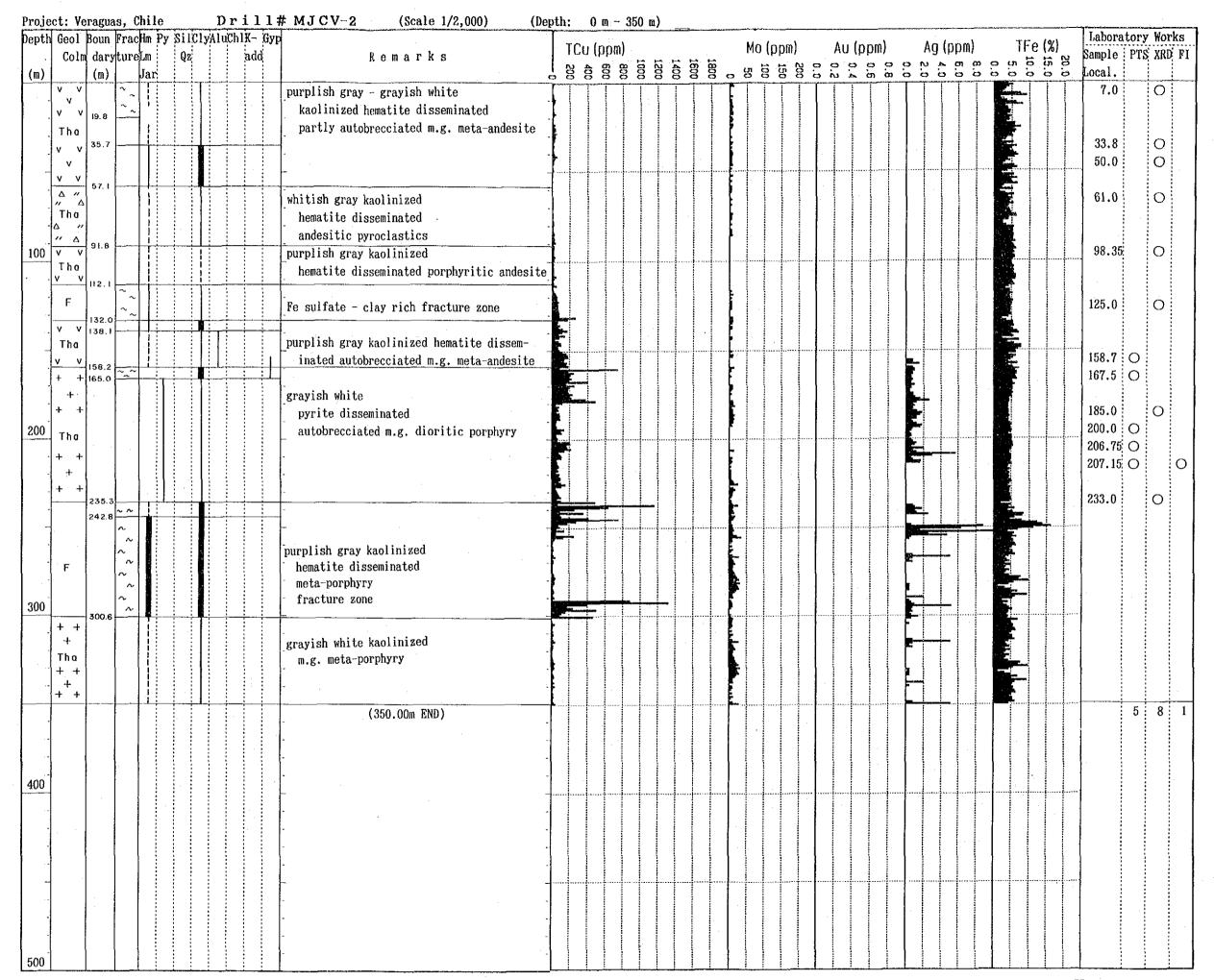

For the homogenization temperature measuring a Metler FP5 (Control Unit) and FP52 (Hot Stage) were used for the temperature controller and heating stage, respectively. The temperature at which bubbles disappeared was measured to an accuracy of 1°C.

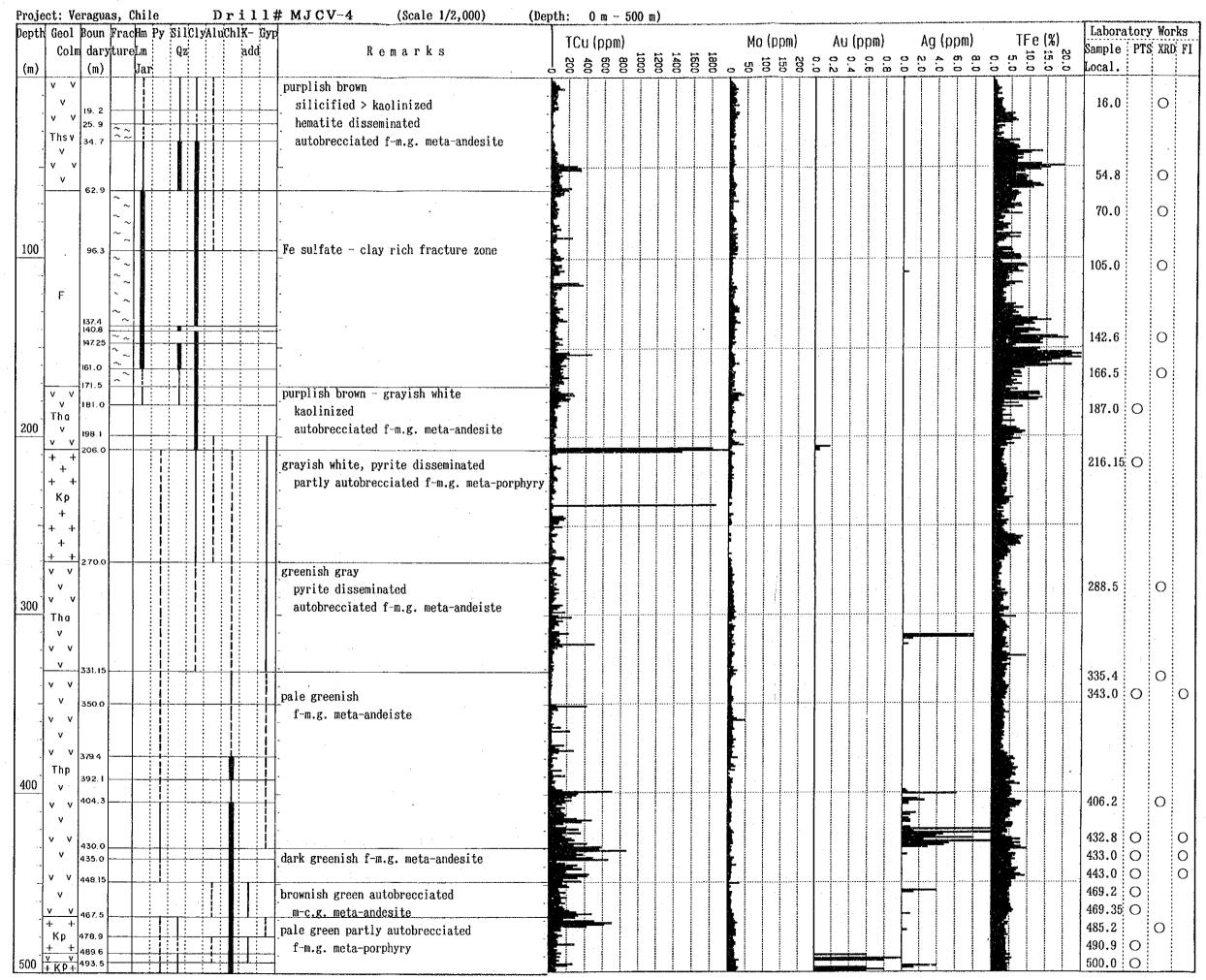

Minerals, used for the measuring, were quartz in 8 samples, calcite in one sample and anhydrite in one sample, and all the fluid inclusions were made up of both a liquid and a gas phase.


These inclusions are of primary origin and of 2-25 micro meter in size, and many of them showing an irregular granule form. The experimental results of the 121 inclusions measured are given in Table II-2-8. Fig. II-2-4 shows the distribution of the fluid inclusion homogenization temperatures.


The homogenization temperatures are distributed in the range 128°C-364°C. From the fact that homogenization temperatures of 300°C and over are all quartz or anhydrite veins in places accompanying copper mineralization within a chloritized zone, there may be considered to be a connection with the formation temperature of primary copper minerals such as chalcopyrite. Even in the same chloritized zone, most of the quartz and calcite veins in places accompanying potassium addition show a homogenization temperature of less than 200°C, thought to be the influence of hydrothermal solution on the primary mineralization.

Also, the homogenization temperature of quartz in intensely silicified zone was 176°C-297°C, and this is thought to indicate the crystallization temperature of secondary quartz due to silicification.





:			
-			
h			
,			

oth Geo			s, (ilc					# MJCV-1		(pc	Ja16 1)	/2,000)		epth:				10)	COLOR MANAGEMENT OF STREET	<u>,</u>	 1	Mo li	ppm)	 \	۸.	ı (pp	m)	٨	g (pp	m)	TF	e (%)	Labora		
		dary				Qz			ad		,	R +	e m a	r k s			1	UU ((ppm) m 15	₽.	. <u> </u>	18		ןן טויו ביבי	րբ Միայլ	ا ري ⇔	HL O	o o hh	iii)	ο Nic	صن 16 ناب	, ,	ဗ ဟ ဇိ ဗ ဗ ဗ	; it, is	Sample	PTS	XRD F
n)		(m)	_	Jar						<u> </u>			·			 -	9 6	8 8	g	8 8	8	8 8	8	0 6	3 8 1 1	8 1	8 6 T T	<u> </u>	<u> </u>	<u>. 60 . 6</u>	9 6	0 0	<u> </u>	000		Local.		
. ^ ,	ŀ		~~								purplish gra				te				Ì				-												-			
			^_	i i							silicified			ızed			-							•				ļ										
Th	, ,	26.8	~		\dashv		\Box	H		<u> </u>	m.g. meta-	-ande	site				-							Į.		İ								F		38.2	5.	00
Th	sr		~	i i	į				:		-						-				1																1	
- "		50.0		+		1 ÷		÷		-										 -		-		· •	-		†											
	v 📗				į												-				į					ļ				Ì			ļ					
V		72.05		Hi:				1		+-	purplish gr	rav		······•																								
	i i	84. 5	2.2		i	1		-	-	-	kaolinized	-	ilicif	fied			- 1							r C												88.0		0
00 тե	ا	89.6	<u> </u>						-	П	hematite o	disse	minate	ed			1							Ē														
						1		! !			partly aut	tobre	cciate	ed m.g	. meta-a	ndesite	.]													ļ						106.0	O	
v	v	112.35 118.0			- 1		<u> </u>			\pm	1.													•												}	:	
	_	123.75	~			<u> </u>		Ļ	\dashv	+1		·					-							Į.												131.0		0
. F	-		~~								Fe sulfate	– cla	y rich	h fruc	ture zon	е	-							Ł									İ	E		148.0	•	0
-	_	148.85	~			- :		-	- 	-	<u> </u>													}														
								:	:	•	Fe sulfate -	مما	1:5:42	يد اه	_									-							-	i				168.1		0
Th.	na		ļ								re surrate -	– као	11111 6	e cray	•			:					i	Ł												1		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v							:			-													Ē							- 1		-]		
00 V TI	hov	187. 9	-	┪┩				-		+-	kaolinized a	autob	reccia	ated m	n.g. meta	-andesi	te 📒			+				Ì.														
+ _{TI}	ha .	211.65	^ ~								kaolinized a									- Land				-												208.4		0
y Ti	ha V		<u>~</u>	T	-1-			- †	-		kaolinized a	autob	reccia	ated m	n.g. meta	-andesi	te							A							E							
+	+	220.8		*			T		П		-													F							-					232.9		
_ _	+			ĺ	1						grayish whi			zed			-							ŧ							F					436.9		
+	+				l						py dissemi													.	-						F.							
TI	ha	253.0			T				1		partly au			ea					Ì											.	-					262.7	0	0
	+								1		m.g. meta-	-borb	Hyr.y	-			- E							Ę							#							
	+										-							_					.										i					
00 +	+ V	292. 2				:	1		Lį.	+	-						<u> </u>		-															. E				
1		308.0	~ ~								Fe sulfate	- cla	у																	ļ						301.7		0
v	v	318.0													· · · · · · · · · · · · · · · · · · ·		<u> </u>							F						İ						205 0		
v	F	310.0	~ ^								Fe sulfate	- cla	y ricl	h fruc	cture zon	e	-							F												325.0		0
. V	إ	333.0	\ ~					T	+															ŀ							Γ							
T V	ha v	,						1		;	kaolinized	autob	reccia	ated m	n.g. meta	-andesi	te					1		-							-							
+		353.5 360.2						1	T.	+	chlorite, po			+:		, .	-							ſ												368.0	0	(
Ti	امه	372.0		<u> </u>			L		Ш	Ļ.	f-m.g. me						·																			368.2		0
		380,0 387,0		+:		-	╁	+	1:	 -	f.g. porphy						E				:			-											1	389.5	Ο	
		390, 5 397, 7			T	-	1:		H	+	chlorite ri				andesi te		-														F					402.0		О
	_ L	ege	nd								<u> </u>								Ţ																			
``]		Aeroj	vert	for	mati	on					Hydro	othern	al Alte	eration	zone		Grade	of al	terat	ion																-	5	11
	V	V		ndes	itic	lava	and	i au	tobre	ccia	ted lava Ths		Strongl	iy silic	cified zone	-	s	trong	- ve	ry str	ong															-		
-		Δ 3							eccia																													
	[Å	// A		ndes	itic	tuff	and	i py	rocla	stic	s Thsr	`	Quartz	sericit	tized zone	_		edium				-			+						1-1							
	_ 1	Intrus	ion								Tha		Apg(11:	ized zon	14		W	esk	- 1/01	ry wea	k .												-			1		
-	+	+	1	iori	tic-	ındes	sitic	poi	rphyr	у	Ina		ui.Riiij	.26U ZON	ic		· - W	uan	V C	. j nea				1														
	L	·•	_ 								Thp		Chlorit	tized zo	опе																						}	
	1	Ð	1,	ract	ire :	one					L													1							1		i				;	: :

	ct: Ve Geol	Boun	Fra	cHm	y S	•	 ChlK	Gyr		(Dept	Tr	`u (n	വസ)					М	la (c	pm)		Αι	ı (pr) m)		Aq	(ppn	n)	TF	e (%)			ory V	
(m)	Çolı	m dar; (m)	ytur	1 (:	Qz	a	ld	Remarks	}	හ	9, 6, 3, 6,	3 8	19	12 6	160		_ <u>_</u>	5	15 5	3 5	0	0 2	0	0	ر بن	, o	8 9	5 (m	i ii	o roca		PTS X	ין עא
	Ths			Jar					purplish brown silicified autobrecciated f-m.g. meta-andesite			0																			31 32			
100	v v Tha v v		~						grayish white kaolinized > silicified meta-andesite	-									444444444444444444444444444444444444444			- A A A A A A A A A A A A A A A A A A A										.65		
, , , , , , , , , , , , , , , , , , ,	+ + + + Tho	123.2	~ ~ ~						Fe sulfate - clay rich fracture zone grayish white kaolinized hematite disseminated m-c.g. meta-porphyry		F																				136 141 175 182	.0 (0	
00	+ + + + + + + + + + + + + + + + + + +	229.5							purplish white m-c.g. meta-andesite purplish white m-c.g. meta-porphyry greenish white m-c.g. meta-andesite																							.6		
00	F v v	256, 2 279, 6 282, I	~ ~ ~						Fe sulfate - clay rich fracture zone greenish gray kaolinized autobrecciated f-m.g. meta-andeiste													-									273	.0	C)
	+ + Thp + + V V Thp	349.0							creamy yellow autobrecciated f-m.g. meta-porphyry purplish gray	-				:										***************************************					المنازية وأحماله		356		C)
00	v v + + Thp + +	368.35 375.0							autobrecciated m.g. meta-andeiste pale green chlorite rich m.g. meta-porphyry					-					-											-	368		С	
500									(401.00m END)																								6 1	:

			s, Chile				epth:	0	m - 4	00 ш)		····	····								~			****	~		
Pepth			FracHm Py tureLm	SilCly/ Qz	AluChlK- Gy add	r Remarks	1	Cu ((mqq					Mc	(ppn	n)	Þ	u (p	pm)		Ag (p	(mqc		TFe (%)	Labora Sample		
(m)		(m)	1 1 1	Q.D			0 50	6	800 800	1000	128	1600	1800 00	<u>ගු</u>	19 15	200	0 0	0	0 0 0 0	0.0	a v	0 0	0 0	TFe (1 10 5 0	Local.		ALL II
	V V V V Ths		~ ~			purplish brown - grayish white silicified hard rock weakly hematite disseminated	-																			16.15		0
100	v v v v v v		~					***************************************																		49.0)
100	v v v v v Ths	142.5				purplish gray silicified > kaolinized hematite disseminated f-m.g. meta-andesite	-																			129.5 139.0	- 1	0
200	v v v v v	194.2	~~~																							201.5)
		206.9 219.1 228.0 240.1	~~			purplish gray hm dis, kal rich meta-andesite Fe sulfate - clay rich fructure zone																				220.0		
300	F	302.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~																							262.8 270.55 283.5 307.9)
	+ + + + Tha + +		~ ~ .		<u> </u>	grayish white kaolinized m.g. meta-porphyry																				351.05	0	
1 1	+ + KP + +	350.75 363.9 368.0 382.0				pale greenish gray kal-chl, pyrite disseminated dioritic porphyry (400.00m END)										***************************************										364.35 371.2 385.25 399.7	0 0	O O 0 4
						-	-												-									
500							-						111111111111111111111111111111111111111	***************************************		***************************************		74 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										

	•	•		
•				
•				
•				
•				
·				
ı				
•				
:				
!				

Table II-2-6 Results of the microscopic observation (Polished thin section)

Sample Wilson Phenocryst Original Tature Alterlation Mineral Ore Mineral Ore Mineral	Renarks					Cu minerals included in Py	-		later stage veinlet of Pb & In		later stage veinlet of Pb & Zn	later stage veinlet of Pb & Zn									high Cu content	high Cu content	high Cu content	high Cu content	high Cu content	high Cu content	high Cu content	***************************************							DA MATT					
France Phenocryst Original Inture Alterlation Mineral		Mt H m L m G e	-													•			•															0.00000	1 - Sucat no					
Sample Phenocryst Original Texture Alterlation Mineral Alternation Alternation Mineral Alternation A	Minera	Se Cu G n S p			0			•	<u> </u>	<u>:</u>	•							•		•					•						0	اک			n	D spharerite	t memetite	m.hematite	atimonita	**************************************
Sample Sample Phenocryst Original Texture Alterlation Alterl	S.	OMCCDCVC		4	•	•			•								•	•				0	0	Ō	0	1	4						יים ומשפה [ב							
Sample Sample Phenocryst Original Texture Alterlation Alterl	ત	р БрсаРун			0	0	0	0	:	0	0	0		·	0		Ø	0			0	0	Ø	© 4	0 0	4			6	0	0	- -	(Xf.no.	, ,	. τ. τ. τ. τ. τ.	7 E	0	; ;; ; ;		,
Drill Depth Driginal Alt. Q 2 P Remarks igneous rock direct Q 2 Q 2 Multiplier Mult	on Mine	o o	◁	O									•		٠	٠						ō	o	₫	4	4	4		• ©	·	۵	÷		4:4:10	hydrite	TISCH TISCH	rbonate			
Drill Depth Driginal Alt. Q. 2 P. Remarks Green rock Hale (a) Rock Zone Alt. Q. 2 P. Remarks Green rock Hale (a) Rock Zone Corrosion Gr. Green rock Hale (a) Rock Zone Green rock Green rock Green rock Hale (a) Rock Zone Green rock	terlat	C)	0	0	ō		\vdash	0	0	0	_		•	Ø	0	0		-			0	٥	0	◁			9	-	†	О	О	٥	n-dinen				· ·)		
Sample Phenocryst		L					stro				tic	tic	tic	tic	tic	tic		stro	stro	stro	stroi	stro	stro	_	tic	tic	+	stro	stro	-	<u> </u>		[Minera]		A 4. €. €. €.	B t.bid.	0 0	Ch:ch		
Drill Depth Driginal Alt. Q 2 P 1 Hole (m) Rock Zone Phe s Hole (m) Rock Zone Phe s Hole (m) Rock Zone Phe s 1 282.30 Kp Tha O © 1 388.00 Kp Tha O © © 2 200.00 Kp Tha O © © 2 200.00 Kp Tha O © © 3 382.00 Kp Tha O © © 3 382.00 Kp Tha O © © 4 433.00 Kp Th O © © 4 433.00 Kp Th O © © 4 433.00 Kp Th O © © 4 433.00 Kp Th O © © 5 384.35 Kp Th O © © 6 448.20 Kp Th O © © 7 120 Kp Th O © © 8 13.00 Kp Th O © © 8 13.00 Kp Th O © © 9 13.00 Kp Th O © © 1 22.85.25 Kp Th O O © 1 385.25 Kp Th O O © 1 385.25 Kp Th O O © 1 385.25 Kp Th O O © 2 339.70 Kp Th O O © 2 339.70 Kp Th O O O O O O O O O O O O O O O O O O	4	igneous							porphyri			_	_	_	porphyri	porphyr1			z)						porphyri	porphyri	porphyri	***************************************			porphyri	porpnyri								
Drill Depth Driginal Alt. Hole	enocrys	- H		corrosion					o				corrosion	:	0				corrosion				0		(0)	0	9				0	0	Praj names)	GII9 FF2	placing	2				
Drill Depth Original Hole (a) Rock MCV-1 106.00 Kva 1 232.90 Kp 1 282.70 Kp 1 282.70 Kp 2 207.15 Kp 2 207.15 Kp 2 207.15 Kp 3 362.00 Kva 3 362.00 Kva 3 362.00 Kva 3 362.00 Kva 4 433.00 Kva 5 364.35 Kp 5 385.25 Kp	면						(lhp	ha	FE SE		-	\neg	_	_	å	_;	-	dı			ė.	_	_		0	4	₫	Ser) a	Ę.	a	, pb	[Kin	Ğ	7 0.					
Samp Drill Depth Hole (m) MCV-1 106.00 1 222.90 1 282.70 1 282.70 2 206.75 2 206.75 2 206.75 2 206.75 3 340.50 3 340.50 4 433.00 4 433.00 4 443.00 4 443.00 4 443.00 4 443.00 6 391.05 5 386.25 5 386.35 6 371.20 MCV-4 187.00 A 443.00 A 530.00 A 6 330.00 A 6 330.00 A 7.20 A 6 330.00 A 7.20 ø.																_													ļ	ļ		-	. +	•	-					
Drill Hole	នឧធាភ្		106.00	232.90	262.70	368.00	389.50	158.70	167.50	200.00						362.00	368.20			216.15	343.00	432.80	43.80	43.00	469.20	490.30	2000	351 05	364.35	371.20	385.25	399.70	Spandance	. O. shandar	Como	∆:minor	. rare			
N		No Drill Hole			3	1	5 1		:	:	;	- 1						_	÷	₹	4	4	1 4		4		_													

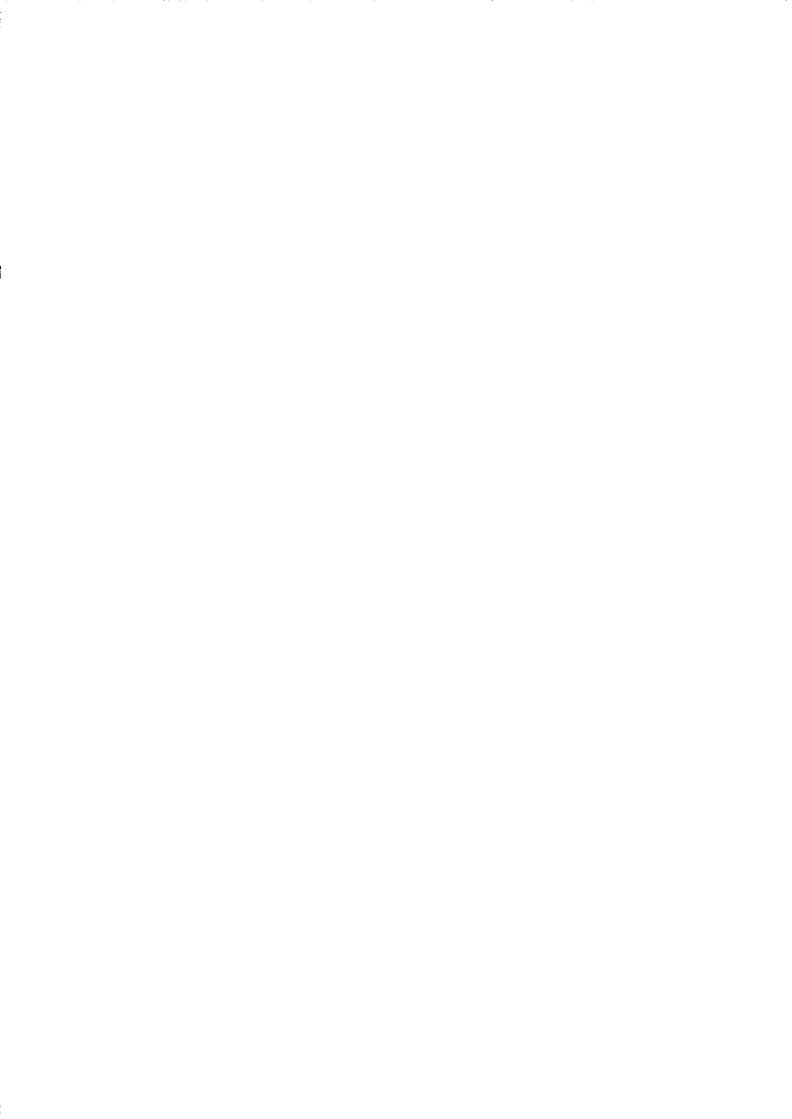


Table II-2-7 Results of the powder X-ray diffraction

Classif	cation	Abbr.	Mineral Name	Chemical Formula	28. 100m 13. 25m 13. 25m 13. 25m 13. 25m 140. 00m 140. 00m 150. 00m 160. 00m 160. 00m 170. 00m
					1 HICKY 1 HICKY 1 1 HICKY 1 HI
	Silica		Quartz	S102	
ate	Clay	Chi Chi	Chamosite Chlorite	(Fe,A1,Hg)6(Si,A1)4010(OH)8 (Hg,Fe,A1)12(Fe,A1,Si)8020(OH)16	
1 1	}	Dck	Dickite	A12Si205(0H)4	
	1	Kal	Kaolinite	A12S1205(OH)4	
\	ļ	Nac	Nacrite	A1251205(011)4	
		Hal	Halloysite	A1251205(OH)4-2H20 A1S14010(OH)2	
Į· Į		Pyrf	Pyrophyllite Muscovite	K-A12(S13A1)010(OH,F)2	
] ;		Tic	Talc	Hg2Si4010(OH)2	
1 1		Prg	Paragoni te	NaA12(A1S13010)(OH)2	
]]	Cu	Sht	Shattuckita	Cu5(Si03)4(OH)2 (Na,Ca)(A1,Si)408	
	0ther	01g Ab	Oligoclase Albite	(Na,Ca)(Al,Si)408	
1		0r	Orthoclase	(K, Na)(Al, Si)408	
		Hic	Microcline	KAISi308	
{			Diposide	CaMg(SiO3)2 Ca2(Mg)5Si8O22(OH)2	
		Act	Tremolite Actinolite	Ca2(Hg, Fe)5Si8022(OH)2	
1 1		Rie	Riebeckite	(Na,Ca)2(Mg,Fe)5Si8022(OII)2	
		Bt	Biotite	K(Mg, Fe)2A1Si3010(OH)2	
		Tur	Tourmaline	(Na, Ca)Al3(Al, Fe, Mn)6(OH, F)4(BO3)3	
0.16	0.	Zny	Zunyite Jarosite	A13S15020(OH, F)18C1 (K)Fe3(S04)2(OH)6	
Sulf- ate	Fe	Jar Na-Jar	Natrojarosite	(K,Na)Fe3(504)2(0II)6	
""		Btl	Butlerile	Fe(SO4)(OH)-2H2O	
		Prb	Parabutlerite	Fe(SO4)(OH)-2H2O	<u>┈┈┈┦┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈┧┈</u>
1 1		Crl	Kornelite	Fe(SO4)3·7H2O Fe(SO4)·4H2O	╼╼═┩╃ ╒ ╬╕╃╃╃╃╃╃╫╫┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
		Rzn Sdr	Rozenite Siderotil	Fe(S04)-5H20	
1 1	Cu	Cln	Chalcanthite	Cu(\$04) · 5H20	
		Ant	Antrelite	Cu3(SO4)(OH)4	───┃╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
[211	Brc	Brochanthite	Cu4(SO4)(OH)6 (K)A13(SO4)2(OH)6	
	Other	Alu Na-Alu	Alumite Natroalumite	(K,Na)A13(S04)2(OH)6	
]		Kda	Kademite	A1(S04)(OH)4-5H2O	
1 . 1		Alg	Alunogen	A12(S04)3-18H20	
]		Anh	Anhydrite	Ca(SO4) Ca(SO4)-2H2O	
Sulph-	Fo	Gyp Po	Cypsum Pyrrhotite	Fe7S8	
ide		Ару	Arsenopyrite	FeAsS	
		Py	Pyrite	FeS2	
·	Cu	Tet	Tetrahedrite Chalcosine	Cu12\$b4\$13 Cu2\$	
	j	Ccs	Djurleite	Cu31S16	
		Ena	Enargite	Cu3AsS4	
		Cov	Coveline	CuS	
0xide &	Fe	Hø/Ht Hgh	Hematite Maghemite	Fe203 Fe203	
Hydro		Ht	Magnetite	Fe304	
oxide	,	Akg	Akaganeite	FeO(OH)	
		Frx	Feroxyhyite	FeO(OH)	
}	Other	Goe	Goethite Akdalaite	FeO(OH) (A1203)4-H2O	
	Other	Bay	Bayerite	A1(0H)3	
		Dsp	Dispore	(HD)OIA	
[]		Crp	Cryptomelans	K-Yin8016	
Other	- Fe	Scr	Groutite	MnO(OH) Fe(AsO4)-2H2O	
orner.	. 1.0	Fal	Ferrimolybdit	Fe2(NoO4)3:nH20	
		Pbk	Pseudobrookite	Fe2(Ti03)02	
]		Prt	Pseudorutile	Fe2(Ti03)09	╧═╣┊╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏
	Cu	Crb	Cornubite Atacamite	Cu(As04)2(0H)4 Cu2Cl(0H)3	
[Chn	Chnevixite	Cu2Fe2(As04)2(0H)2-H20	
]		Clc	Clinoclase	Cu3(As04)(0H)3	
}	Other	Azf	Sulphur	S	
I		Rut	Rutile	Ti02	

•	

	S.D. (°°)		31.7	23.1	39.0			19.9	78.9	11.6	41.1				
	Ave. (C°)		253.9	223.4	236.4			312.2	237.4	161.4	190.5				
	Max. (C°)		290	286	297	277		334 241	320	189	258			364	
nclusion	Min. (C°)		209	509	176			268	128	150	149				
t of fluid i	Numbers of inclusions	0	8	20	20	1	0	11	20	20	20	0	0	,4	0
Homogenization temperature measurement of fluid inclusion	grain size(μ) Min. Max.	n	$5 \times 2 \sim 20 \times 10$	3×3~20×10	$5 \times 3 \sim 25 \times 10$	5×2	u	$6 \times 3 \sim 20 \times 10$ $10 \times 3 \sim 20 \times 12$	$6\times4\sim25\times10$	$8 \times 4 \sim 20 \times 10$	$5 \times 3 \sim 20 \times 10$	u	ដ	10×6	ц
ation temper	Mineral	no inclusion	quartz	quartz	quartz	quartz	no inclusion	quartz anhydrite	quartz	calcite	quartz	no inclusion	no inclusion	quartz	no inclusion
omogeniz	T.Cu ppm	5	73	80	16	7,000	26	898	898	366	294	14	14	1,620	182
TableII-2-8 H	Alteration zone	Ths	Thp	Tha	Ths	Thp	Thp	Thp	Thp	Thp	Thp	Ths	Ths	Thp	Thp
Tal	Original rock	Kva	Кр	Кр	Kva	Kva	Kva	Kva	Kva	Kva	Кр	Kva	Kva	Kp	Kp
	Depth (m)	38.25	368.20	207.15	31.50	368.20	343.00	432.80	433.00	443.00	469.35	16.15	139.00	364.35	385.25
	Drill Hole	MJCV-1	MJCV-1	MJCV-2	MJCV-3	MJCV-3	MJCV-4	MJCV-4	MJCV-4	MJCV-4	MJCV-4	MJCV-5	MJCV-5	MJCV-5	MJCV-5

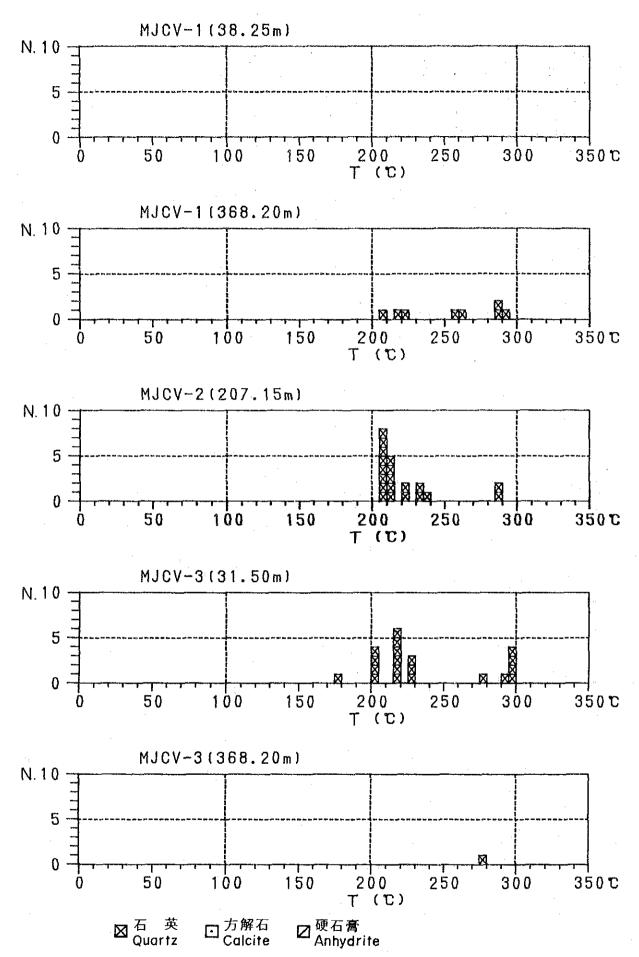


Fig. II-2-4 Distribution of homogenization temperature of fluid inclusion (1)

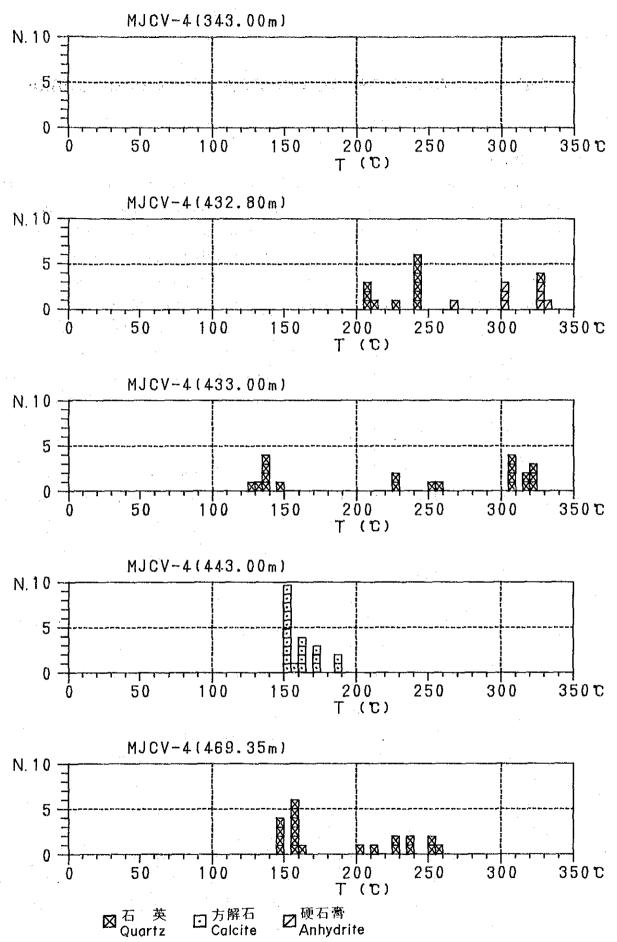


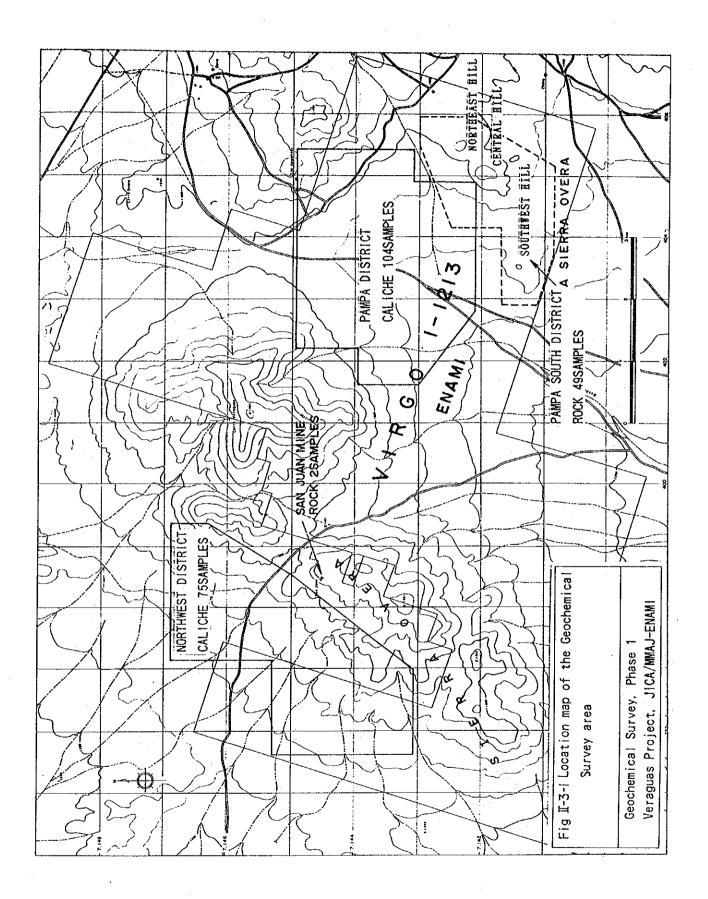
Fig. II-2-4 Distribution of homogenization temperature of fluid inclusion (2)

CHAPTER 3 GEOCHEMICAL SURVEY IN THE VERAGUAS AREA

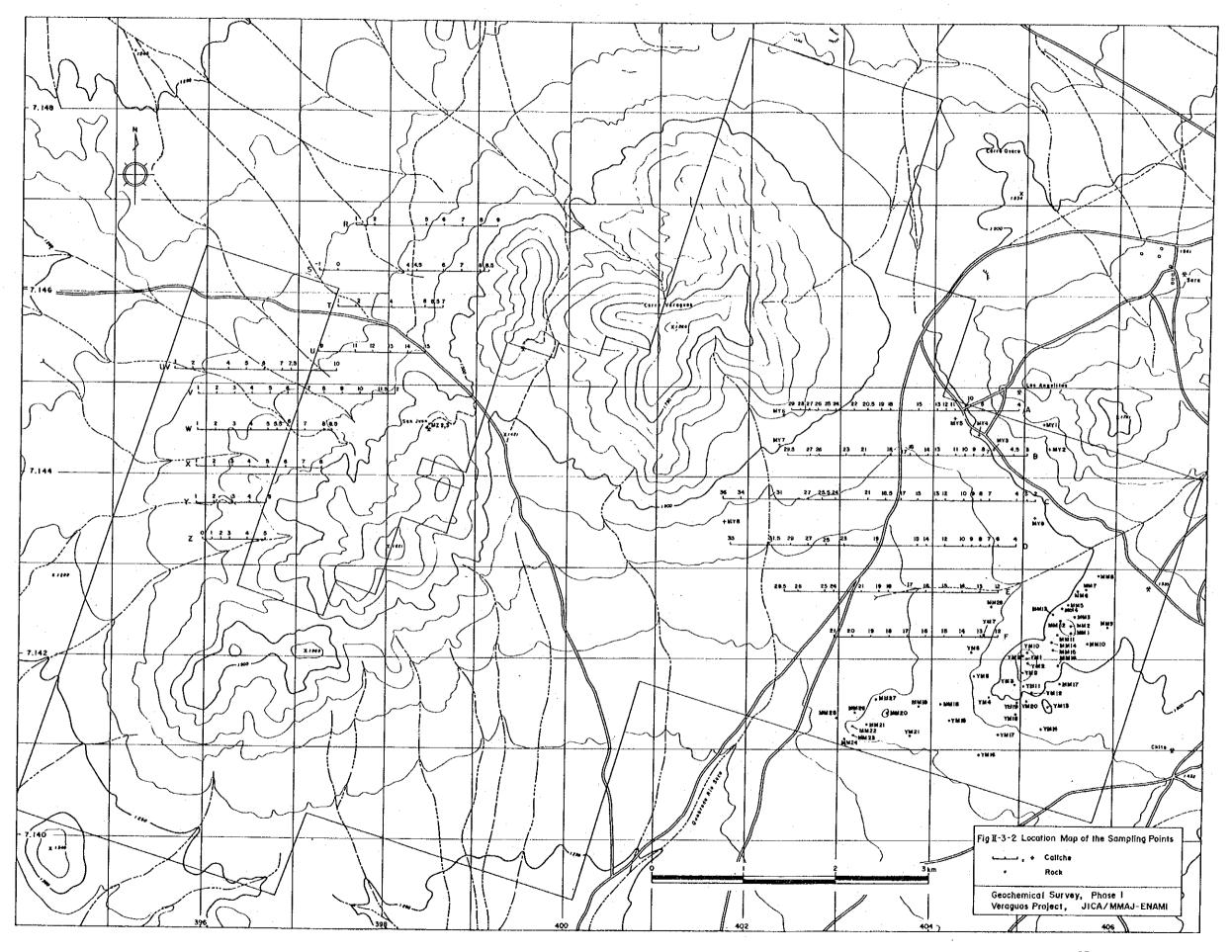
3-1 Purpose

The survey is conducted in two methods; geochemical survey of caliche and rock. Caliche is the crust formed on the surface of the earth when salts dissolved in underground water rise to the surface through capillary action under dry climatic conditions where evaporation exceeds precipitation. It has been reported (Erickson and Marranzino, 1960) that in Utah, in the United States of America, marked anomalies in copper are observed in the caliche that cement to the pebbles close to the surface of the pebble stratum that covers the copper deposits over several tens of meters. This occurs under dry climatic conditions when mineral deposits exist below alluvium and colluvium; metal elements are carried to the surface by the evaporation of moisture and are fixed in the caliche. Thus it may be considered that geochemical anomalies in the caliche suggest the existence of mineral deposits beneath alluvium and colluvium. For this reason a geochemical survey was applied to the caliche in the areas of alluvium and colluvium in the survey area, the aim being to confirm the effectiveness of this method and to pinpoint new areas with prospective mineral deposits.

The geochemical survey of rock was done in the hilly area affected by mainly silicification in the southeast part of the survey area. Since this alteration zone is located in isolation on the outskirts of the survey area, no basic survey has been carried out systematically by ENAMI. Thus a geochemical survey of rock was carried out in order to understand the nature of the alteration zone and to study its relationship with the mineralization.


3-2 Survey Method

3-2-1 Sampling method


The areas of sizable distribution of caliche are the east and west parts of the San Juan to Veraguas hills, and these are the Pampa and Northwest districts where the samples of caliche were collected. Samples of rock were collected in the Pampa South district, southeast part of the survey area where the hills affected by alteration. (See Fig. 1) A location map of the sampling points is given in Fig. 2.

104 samples of caliche were collected from the Pampa District and 75 from the Northwest District, making a total of 179 samples. 49 samples of rock were collected from the Pampa South District and 2 from the San Juan Mine, making a total of 51 samples.

For the caliche, sampling lines were drawn up east to west, and samples were collected as a general rule at 200 metre intervals. As a general rule the sampling lines were spaced 500 metres apart in the Pampa District and 400 metres apart in the Northwest District. Where there was no caliche at a scheduled

•			
;			
•			
•			
:			
:			

sampling point, but one of the pits known as Cata existed nearby and caliche was found either at the bottom of the pit or in dugout earth, this was taken as the sample. The size of each sample was roughly 200g. Where the caliche contained pieces of rock fragment, the rock fragment was as far as possible removed.

Rock samples were collected at intervals of 100 to 400 metres, keeping the sampling points as evenly spaced as possible. Samples were broken up in the field, and pieces with a minimum of weathered surface were taken. The size of each sample was roughly 200gm.

3-2-2 Chemical analysis and powder X-ray diffraction

Chemical analysis of the 179 samples of caliche and 51 samples of rock was carried out. The work was performed by the Chilean analysts, CESMEC LTDA. Components analyzed, detection limits and analytical methods, are as shown in Table 1.

In addition, powder X-ray diffraction was carried out on 10 representative samples of caliche in order to determine the variety of minerals. X-ray diffraction was also carried out on the 51 samples of rock to determine the alteration characteristic. The work was carried out at the Mitaka R&D Center of Nittetsu Mining Ltd.

3-3 Result of Survey

3-3-1 Geochemical survey of caliche

1. Statistical treatment of chemical analysis values

Table 2 shows the statistical parameters for the chemical analysis values, and Table 3 shows the correlation matrix. In the matrix it is characteristic that SiO_2 , Fe_2O_3 and Cl show a mutually positive correlation, while this group shows a negative correlation with S. Concerning Cu, the largest correlation coefficient is 0.384033 between T.Cu and S.Cu, any significant correlation is not indicated with other chemical components, it may be considered that the behavior of Cu is independent of the behavior of the other chemical components. This suggests that the concentration of Cu is not carried out selectively in the salts of specific chemical components, but that the concentration of Cu in caliche is owing to the existence of mineral deposits.

In the statistical parameters (Table 2), values greater than the average value + standard deviation were taken to be geochemical anomalies, and where two or more geochemical anomalies occurred adjacent on the sampling line, this was considered to be a geochemical anomaly area. However, the following three instances were considered exceptions.

- *Exception 1: Where the distance between two adjacent points of geochemical anomaly was 300m or more, this was not considered a geochemical anomaly area.
- *Exception 2: Where a supplementary sample taken from between the sampling lines showed a geochemical anomaly, and the distance between this sample and one or more

Table II-3-1 Analytical method and detectable limits of the chemical analysis

Component	Detection limit	Analytical method
Cl	0.1 %	Volumetric
C02	0.1 %	Combution
T.Cu	10 ppm	Atomic Absorption
S.Cu	10 ppm	Atomic Absorption
Si02	0.2 %	Fusion-Gravimetry
Fe0	0.05%	Volumetric
Fe203	0.05%	Atomic Absorption
S	0.1 %	Fusion-Gravimetry
S04	0.1 %	Leaching-Gravimetry

Table II-3-2 Statistical parameter of caliche geochemistry (179 samples)

	Geometric average	Standard deviation	$M+1/2\sigma$	M + 0
C 1	0. 11%	0.53240	0.20%	0.38%
002	0.15%	0.37805	0.23%	0.36%
T. Cu	mdd 8 E	0.94490	1 1 2 ppm	3 3 3 ppm
s. Cu	1 5 ppm	0.38351	2 4 ppm	3 7 ppm
S i 0 2	20.1%	0.21363	25.7 %	32.8 %
О Ф [ъ.	0.26%	0.35927	0.39%	0.59%
F e 2 O 3	1. 16%	0.48181	2.03%	3. 53%
S	10.5%	0.27661	14.4 %	19.8 %
S 0 4	8 . 8	0.22046	12.1 %	15.5%

M : Geometric average

o : Standard deviation (logrithm)

Table II-3-3 Matrix of the correlation coefficients of caliche geochemistry (179 samples)

Cl CO2 Cu(total)		C u (t	otal)	Cu (soluble)	S i O 2	با O O	F e 203	ω	S 04
1.000000	·								
-0.274130 1.000000	1.000000								
0.034167 0.021159 1.00		1.00	1.000000						
-0.064651 0.252002 0.38		0.38	0.384033	1.000000					
0.444277 -0.460078 0.028721		0.02	8721	-0.152339	1.000000				
-0.566777 0.275972 -0.026804		-0.02	6804	0.086318	-0.092928	1.000000		-	
0.442740 -0.416133 0.12	-0.416133	0.12	0.120085	0.061605	0.762872	-0.207961	1.000000		
-0.555028 0.401023 -0.1		-0.1	-0.107414	0.044791	-0.782289	0.344057	-0.647946	1.000000	ş.,
-0.296923 0.138774 -0.0		-0.0	-0.061406	0.039615	-0.413341	0.233086	-0.329591	0.731009	1.000000

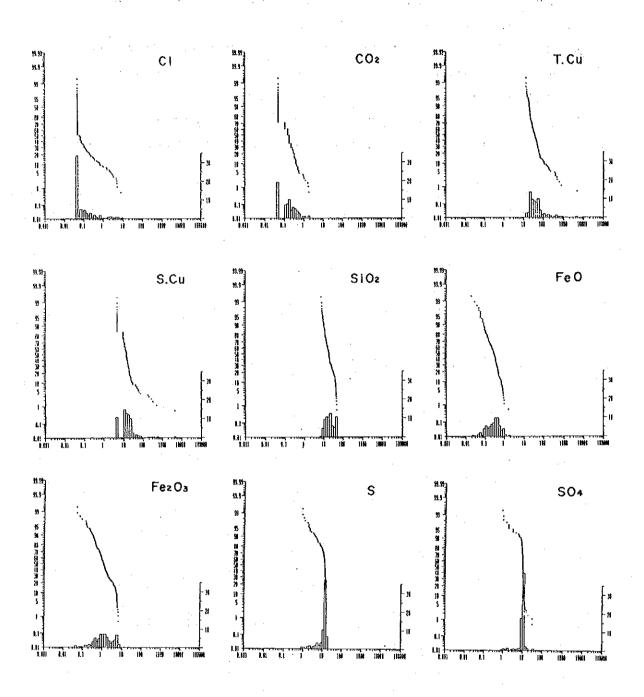


Fig II - 3-3 Frequency distribution and cumulative distribution of the chemical analysis results of caliche

samples taken on the sampling line showing geochemical anomaly was less than 300m, this was treated as a geochemical anomaly area.

*Exception 3: In the case of S, there were no samples showing values greater than the average value + standard deviation, and so values greater than the average value + 2/3 standard deviation were taken to be geochemical anomalies.

In the case of S, as the histogram in Fig. 3 shows, there is a large dispersion in the lower chemical analysis values, so that no samples exist that show a value greater than average value + standard deviation.

The geochemical anomalies for each component and the geochemical anomaly area for the Pampa District and the Northwest District are shown in Figs. 4 to 15. Samples of T.Cu and S.Cu showing values greater than the average value + 1/2 standard deviation are also shown for reference.

2. Geochemical anomalies in the Pampa District

T.Cu: Four points of geochemical anomaly exist around the Pampa Mine, and 2 samples in just vicinity of the mine form a geochemical anomaly area. Six samples showing values greater than average values + 1/2 standard deviation are also distributed around the Pampa Mine.

S.Cu: A geochemical anomaly area consisting of 8 samples is formed around the Pampa Mine. Of 10 samples showing values greater than average values + 1/2 standard deviation, 6 are distributed around the geochemical anomaly area.

FeO: Geochemical anomalies exist from the Pampa Mine towards the SSW of the area, and a geochemical anomaly area is formed on sampling line D. Geochemical anomalies are also scattered in the western part of the district, and in general there is a tendency for anomaly to occur in NNW/SSE trend.

 Fe_2O_3 : Near to the Pampa Mine, one sample shows geochemical anomaly. Geochemical anomalies are also observed scattering around the western part of the district. A geochemical anomaly area comprising 2 samples exists in the SW part of the area. Only one sample overlaps with anomaly in FeO.

- S: Two geochemical anomaly areas, each comprised of 2 samples, and scattered 6 samples showing geochemical anomaly, exist around the Pampa Mine. On the west side of sampling line A also, there exist 4 samples showing geochemical anomaly.
- SO_4 : One sample showing geochemical anomaly exists on sampling line D, roughly in the center of the district. This does not overlap with the geochemical anomalies of S.
- SiO₂: 10 samples showing geochemical anomaly are scattered, all but one being in the west part of the district.
- CO₂: Scattered points of geochemical anomaly and three geochemical anomaly areas, each comprising two samples, occurred around and to the south of the Pampa Mine.
- Cl: Points of geochemical anomaly are scattered through the SW part of the district. There are also 2

samples of geochemical anomaly on sampling line A.

3. Geochemical anomalies in the Northwest District

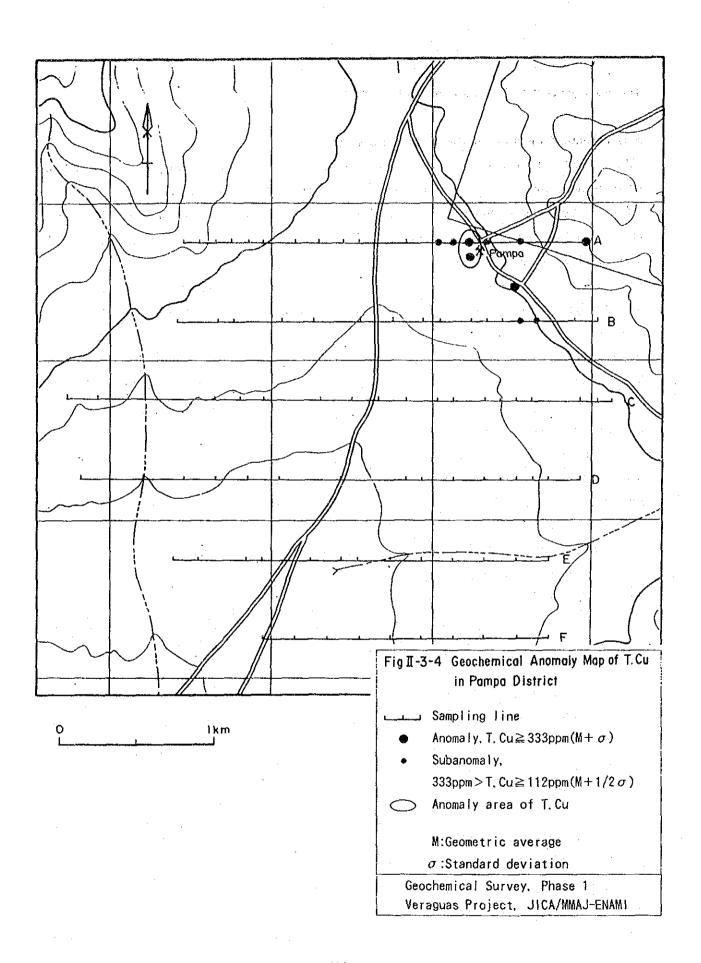
T.Cu: There is a geochemical anomaly area comprising two samples on sampling line W. Nearby are three samples showing values greater than the average value $+ \frac{1}{2}$ standard deviation.

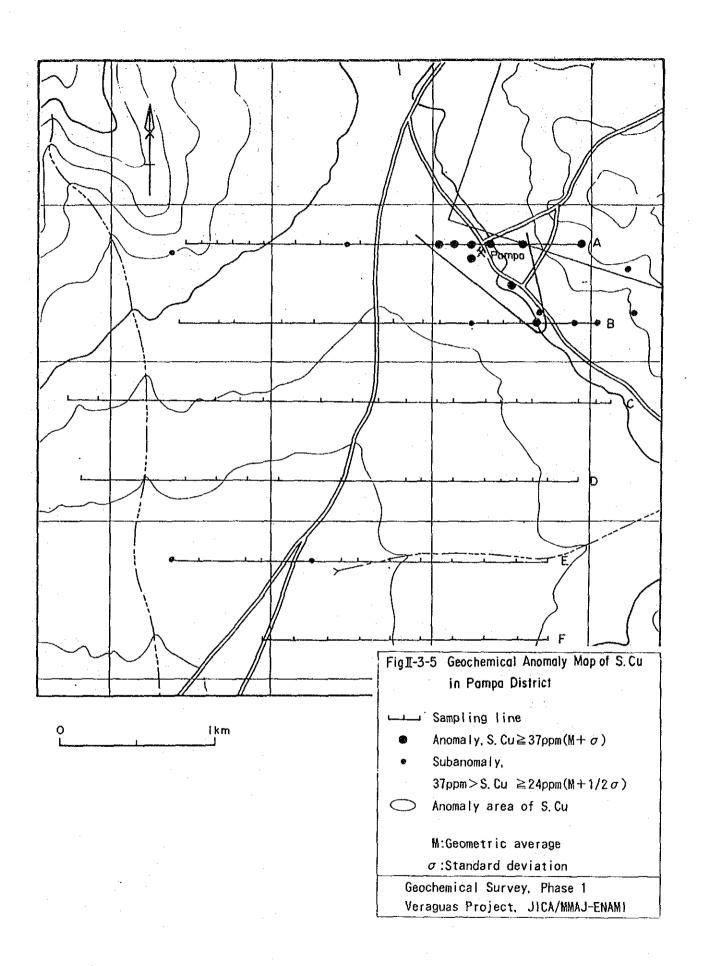
S.Cu: There is a geochemical anomaly area comprising three samples on sampling line W. This includes the geochemical anomaly area of T.Cu. Nearby are two samples showing values greater than the average value + 1/2 standard deviation.

FeO: Geochemical anomaly areas occur in two places along sampling line W. The geochemical anomaly area comprising three samples located toward the east duplicates the geochemical anomaly area of S.Cu.

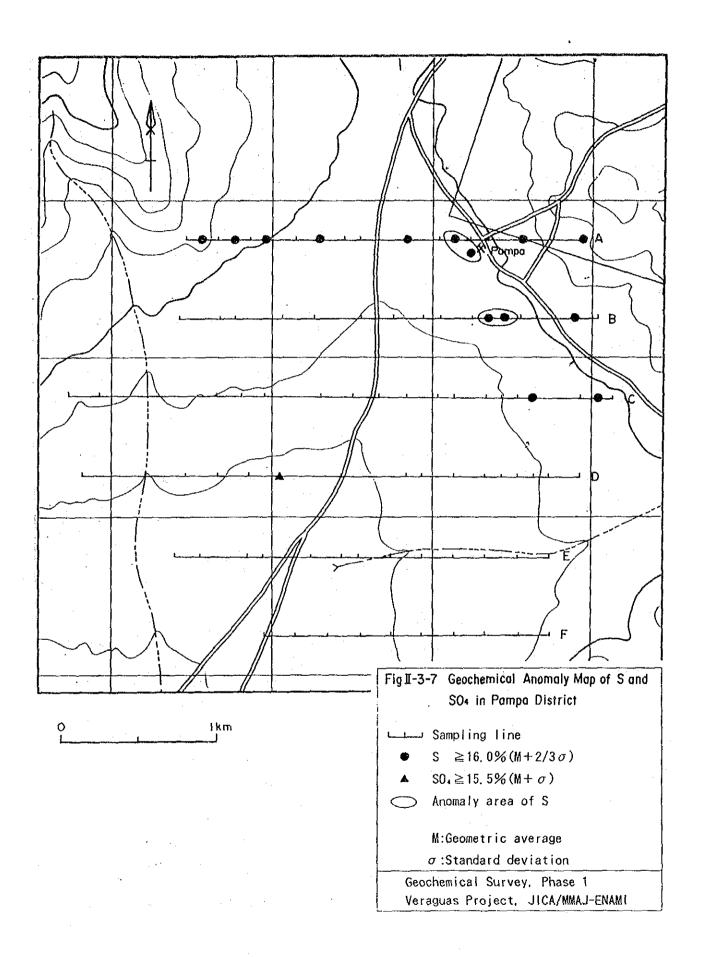
Fe₂O₃:Geochemical anomaly areas are distributed in 5 places. Of these, the areas on sampling lines S and T, sampling lines V, W and X, and sampling lines Y and Z, show a large area of distribution. The geochemical anomaly area comprised of 10 samples on sampling lines V, W and X includes two samples that overlap anomalies of T.Cu, S.Cu and FeO.

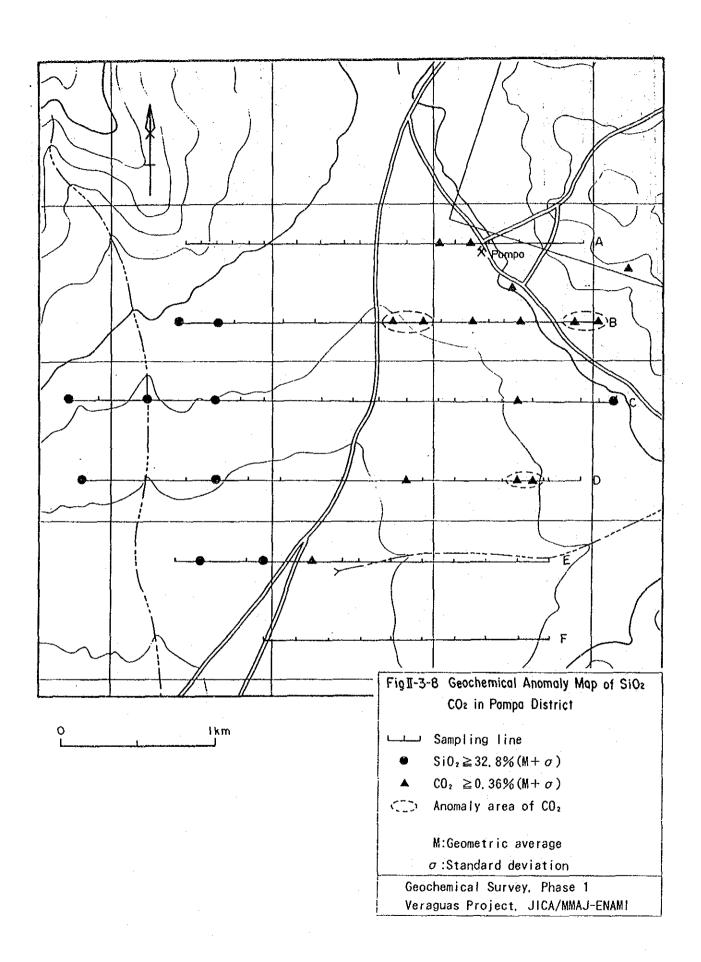
- S: There is a geochemical anomaly area comprising two samples on sampling line X.
- SO₄: Four samples in the north part of the district show geochemical anomaly. Of these, the two samples on sampling line T form a geochemical anomaly area. This does not overlap the anomalies of S.
- SiO_2 : Relatively large geochemical anomaly areas occur in three places. These harmonize well with the distribution of geochemical anomalies of Fe_2O_3 .
- CO₂: There are two geochemical anomaly areas. Of these the geochemical anomaly area on sampling line W includes the distribution of a geochemical anomaly area of FeO.
- C1: There are three geochemical anomaly areas, each comprising two samples. Of these, the areas on sampling line S and sampling line Z are included in geochemical anomaly area of SiO_2 and Fe_2O_3 .

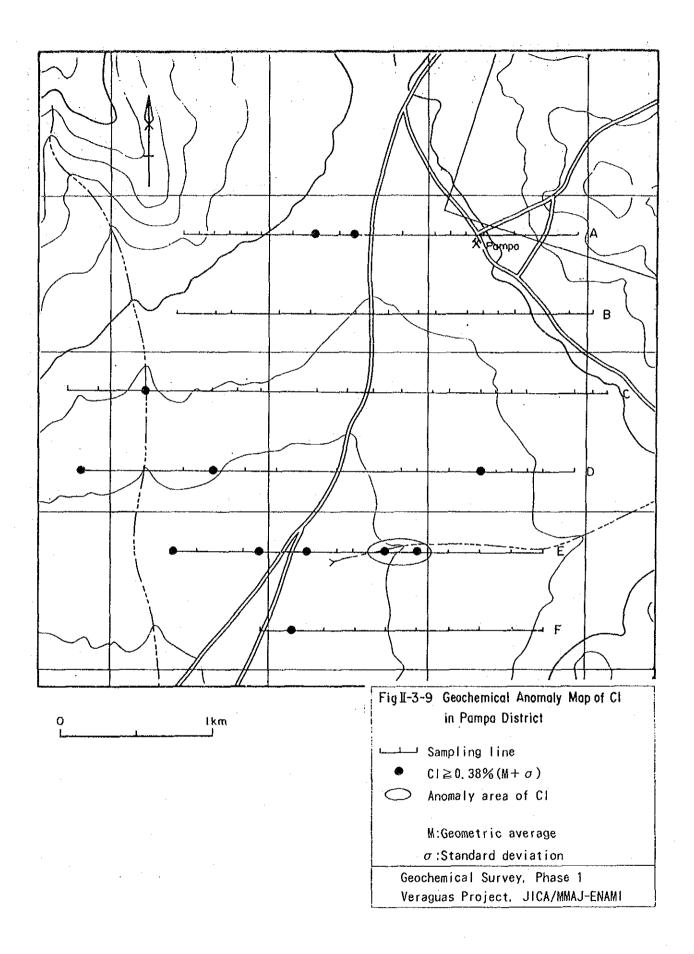

4. Results of powder X-ray diffraction

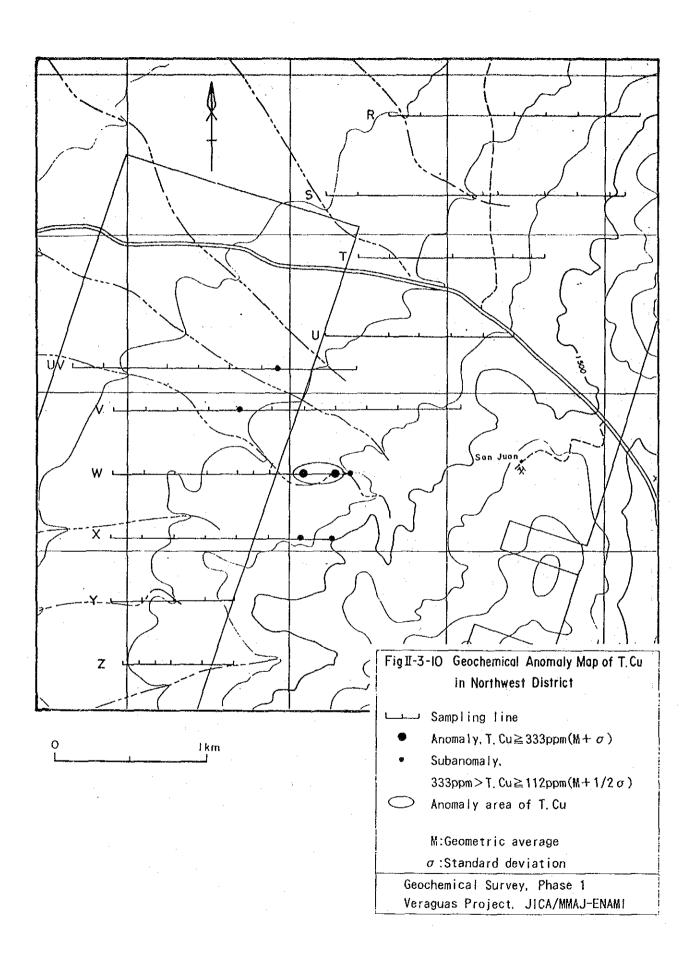

As a result of powder X-ray diffraction carried out on 10 representative samples (Table 7), gypsum was detected in 9 samples; albite in 8 samples; and quartz in 7 samples. It was ascertained that caliche is basically made up of gypsum, albite and quartz. Other minerals detected were one instance each of niter, halite and sepiolite.

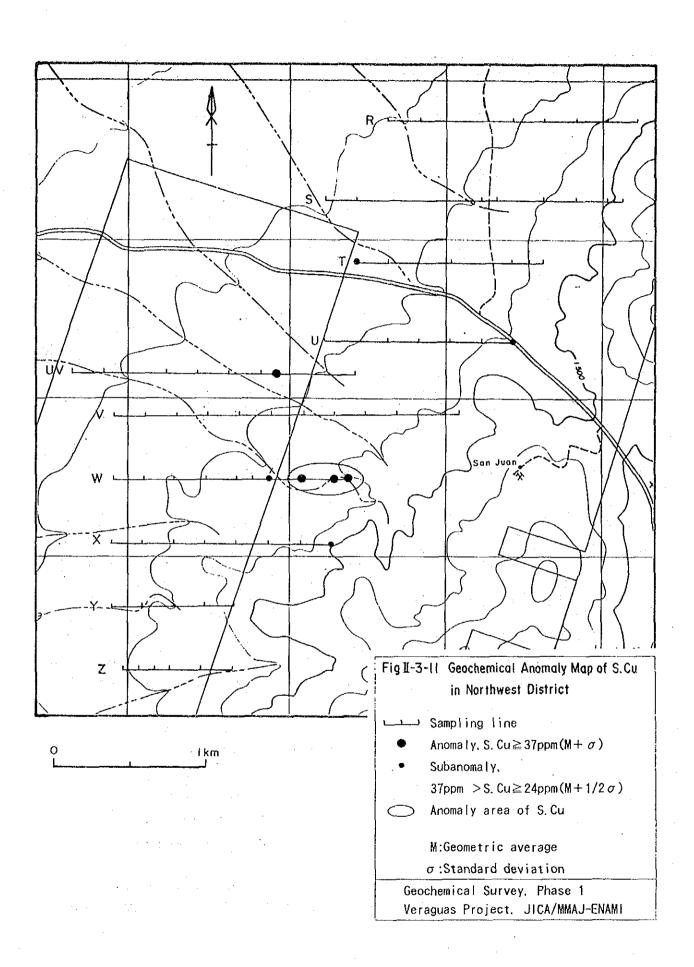
3-3-2 Geochemical survey of rock

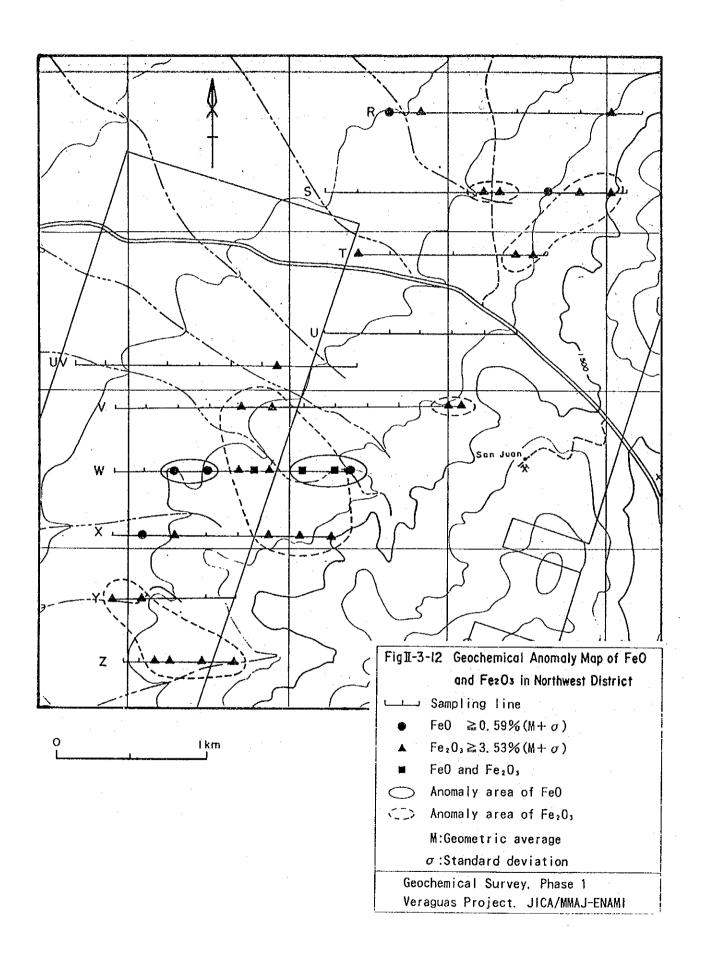

1. Statistical treatment of chemical analysis values

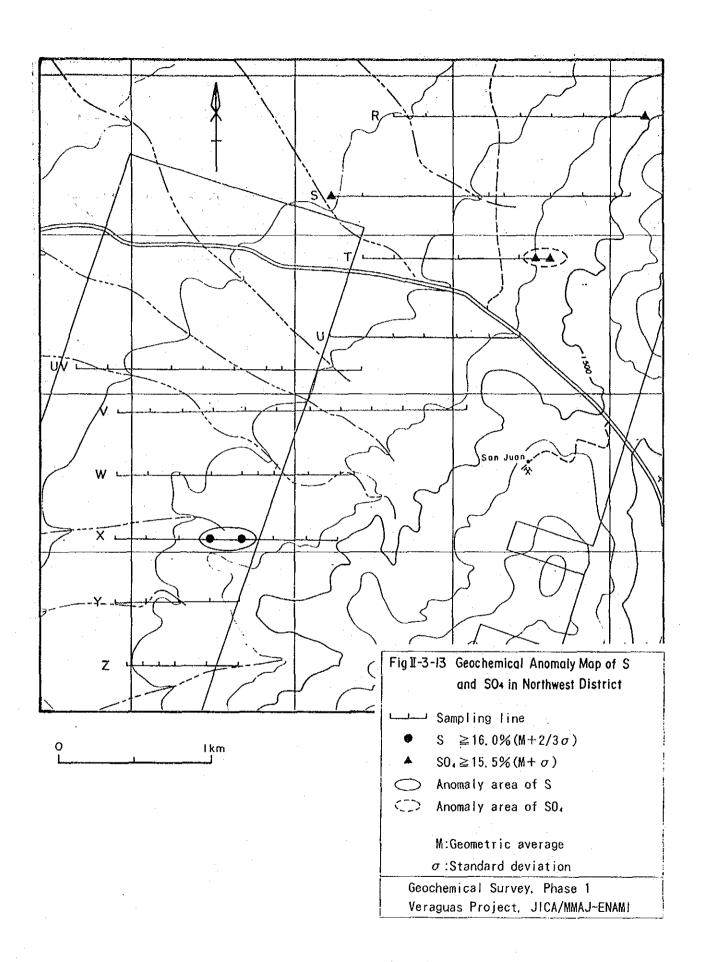

Table 4 shows the statistical parameters for the chemical analysis values, and Table 5 shows the correlation matrix. Noteworthy character in the statistical parameters is that the average value of SiO_2 is

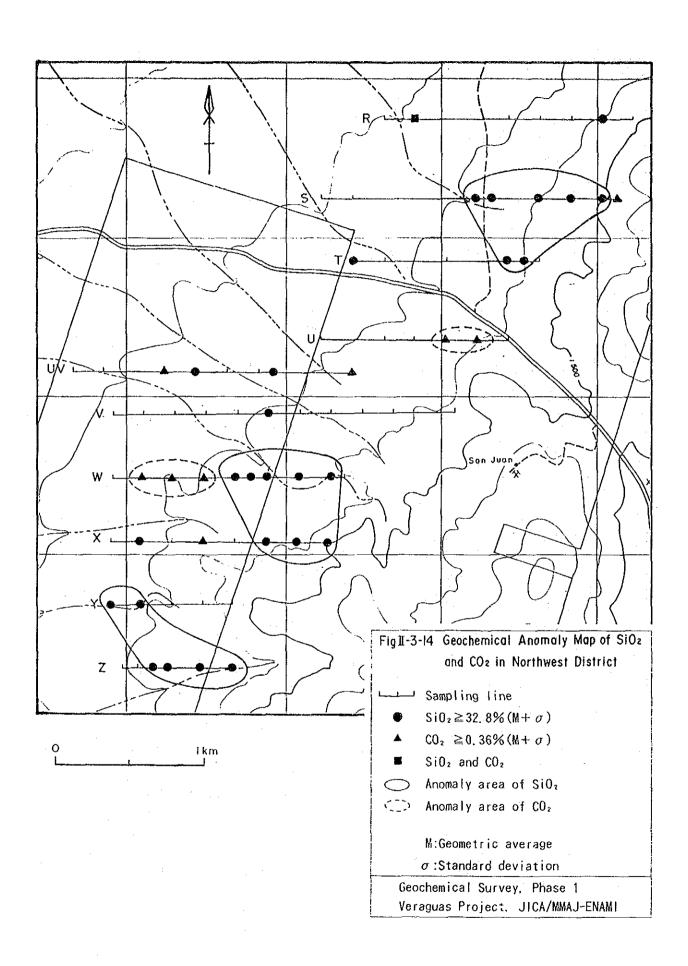


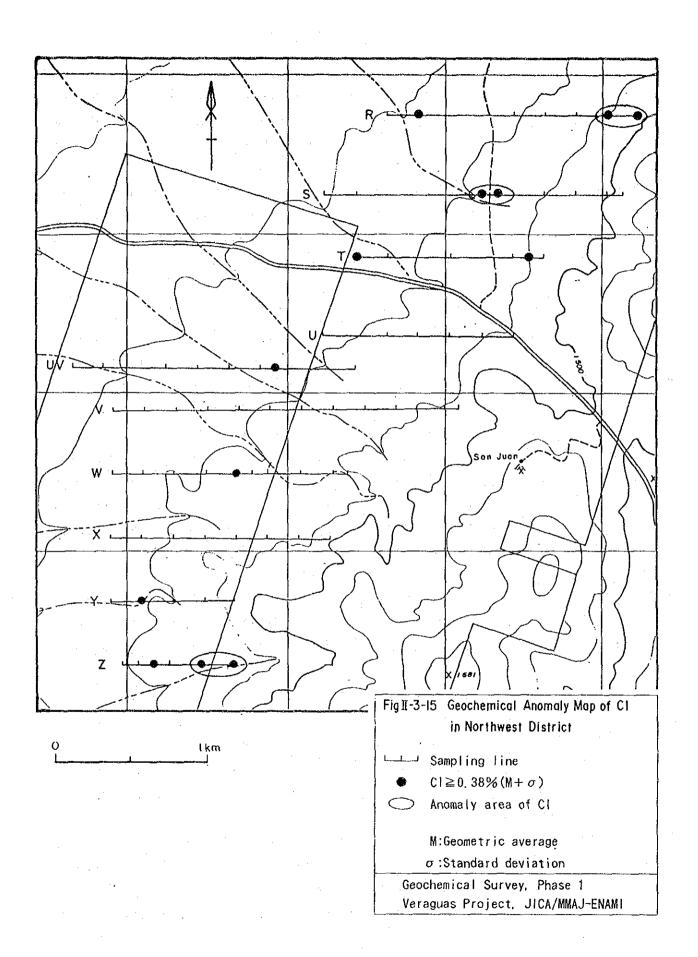












48.7wt%. The rock from which samples were taken are altered rocks that were originally volcanic rocks, and intrusive rock (Fig. 18); most of the altered rock can be seen by the naked eye to have undergone silicification or strong silicification, and it may be imagined that it underwent the addition of SiO_2 ; even so, an average value of 48.7% for SiO_2 suggests that the original rock was basaltic rocks. It is also characteristic that, while according to R.A. Daly (1933) in the average chemical composition of basalt the values for FeO and Fe_2O_3 are 6.37% and 5.38% respectively, the samples studied in the present survey show markedly low values, at 0.97% and 1.49% respectively. In the matrix the only combinations that show an absolute value of 0.5 or more are T.Cu-S.Cu and S-SO₄, where the chemical composition is similar. Although with absolute values of less than 0.5 the correlation is weak, it may be noted that S shows a negative correlation with T.Cu and Fe_2O_3 .

In the statistical parameters values greater than the average value + standard deviation were taken to be geochemical anomalies, and where two or more geochemical anomalies occurred adjacent to each other, this was considered to be a geochemical anomaly area. However, where the distance between such points was 500m or more, this was not considered a geochemical anomaly area.

Of the nine components that were subjected to chemical analysis, comment will be made on T.Cu, S, FeO and Fe₂O₃; the analytical values for the other components will merely be given in Table 8. The reason for this is that S.Cu shows a high positive correlation with T.Cu, and SO₄ (soluble S) shows a high positive correlation with S (total S), and the behavior of copper and sulfur can be represented by T.Cu and S. As for SiO₂, CO₂ and Cl, no geochemical anomalies worth commenting on were obtained. Geochemical anomalies and geochemical anomaly areas are shown on Figs. 19 and 20.

2. Geochemical anomalies

In describing geochemical anomalies, the three groups of hills running NE to SW which make up the area under discussion, will be called, from the NE, the Northeast Hill, Central Hill and Southwest Hill (Fig. 1).

T.Cu: 7 samples showed geochemical anomaly. Of these 4 samples are distributed on the northeast of the Northeast Hill, and here a geochemical anomaly area comprising 2 samples is formed. A geochemical anomaly area comprising 2 samples is also located between the Central Hill and Southwest Hill.

S: 3 samples showing geochemical anomaly occur around the summit of the Northeast Hill, and 2 of these forms geochemical anomaly area. Single samples of geochemical anomaly also occurs south of the Central Hill and southwest of the Southwest Hill.

FeO: A geochemical anomaly area comprising 3 samples is located on the northeast of the Northeast Hill. Of these 2 samples also show geochemical anomaly of T.Cu. There was also a geochemical anomaly area comprising 3 samples on the east of the Central Hill.

Fe,O₃:A geochemical anomaly area comprising 2 samples is located on the east of the Southwest Hill,