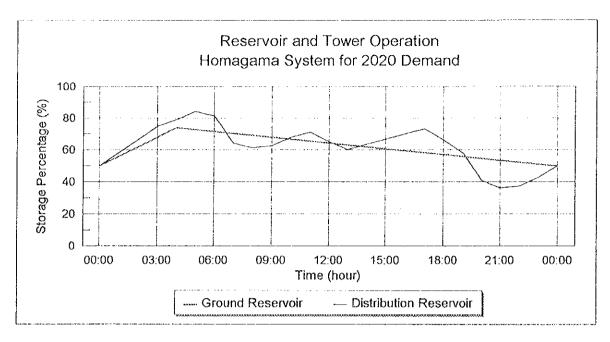


Ground Reservoir Capacity =

1,500 cu m (New Reservoir)

Distribution Reservoir Capacity =

1,500 cu m (New Reservoir)

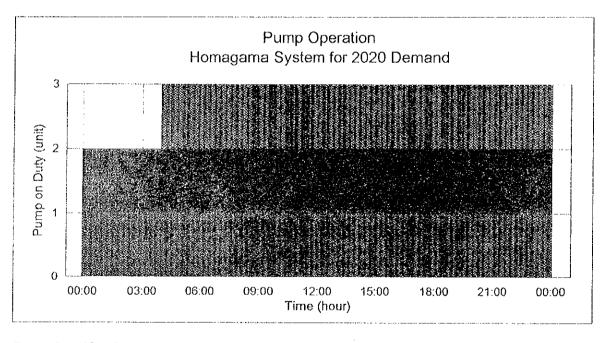

Pump Specifications

New Pumps

q = 30 l/sec

h = 25 m

3 units (incl. 1 stand-by)



Ground Reservoir Capacity =

1,500 cu m

Distribution Reservoir Capacity =

1,500 cu m

Pump Specifications

New Pumps

q = 30 l/sec

h = 25 m

4 units (incl. 1 stand-by)

Ref. No. 12.1

Subject: Project Cost Estimates

12

Title : Unit Construction Cost

Contents: Unit Construction Cost for Each Item of Construction Works

Unit Construction Cost

Construction Items	unit	unit	Foreign	Portion	Local Po	rtion
]	cost	ratio	cost	ratio	cost
	1	(Rs)	(%)	(Y)	(%)	(Rs)
Intake facilities				, ,		·\
1) excavation, common	- m3	800	65	1,144	35	280
including coffering						
2) excavation, rock	m3	2,000	65	2,860	35	700
including coffering	_				!	
3) excavation, common	m3	350	65	501	35	123
4) excavation, rock	m3	1,500	65	2,145	35	525
5) embankment	m3	450	65	644	35	158
6) concrete w/form and	m3	13,000	65	18,590	35	4,550
re-bar, 210 kg/cm2	2	14.000	CE	45 720	25	3 050
7) concrete w/form and re-bar, 180 kg/cm2	m3	11,000	65	15,730	35	3,850
8) re-bar	ŧ	60,000	90	118,800	10	6,000
9) backfilling	m3	300	65	429	35	105
10) office building	m2	25,000	50	27,500	50	12,500
11) steel sheet piling	m2	10,000	90	19,800	10	1,000
117 steer sheet paining	*****	10,000	35	10,000		,,505
Raw water transmission facilities						
4) steel nine DN4500		104 600	70	167 607	OE.	25 205
1) steel pipe,DN1500 mm,	m	101,580	75	167,607	25	25,395
w/fillings,						
supply & delivery	n	15,237	30	10,056	. 70	10,666
2) -do-, laying cost 15 % of 1) above	m	10,231	30	10,000	. 70	10,000
3) road reinstatement		5,079	30	3,352	70	3,555
	· m	5,078	30	3,332	70	3,000
5 % of 1) above						
(3.0 m2/m)		100 000	75	479 200	25	27 000
4) DIP,DN1500 mm,	m	108,000	75	178,200	25	27,000
w/fittings,						
Treatment facilities						
Treatment racinies					·	
1) excavation, common	m3	350	65	501	35	123
2) excavation, rock	m3	1,200	65	1,716	35	420
3) embankment	m3	450	65	644	35	158
4) concrete w/form &	m3	13,000	65	18,590	35	4,550
re-bar, 210 kg/cm2	11.0	10,000	0.0	10,000	O	1,000
5) re-bar	ŧ	70,000	90	138,600	10	7,000
6) backfilling	m3	300	65	429	35	105
7) control building	m2	25,000	50	27,500	50	12,500
8) staff house	m2	13,840	50	15,224	50	6,920
9) in-situ pile,400 dia.	m	9,000	65	12,870	35	3,150
						·
Clear water transmission & distribu	tion facilitie	s				
1) steel pipe,DN1650 mm,	, m	117,650	75	194,123	25	29,413
w/fittings,	m	117,000	75	184,123	25	29,413
w/tittings, supply & delivery						
	m	17,648	30	11,647	70	12,353
2) -do-, laying cost 15 % of 1) above	m	17,040	30	11,047	70	12,303
3) road reinstatement	rr:	5,883	30	3,882	70	4,118
5 % of 1) above	m	5,665	30	3,002	70	4,110
	:		i			
(3.3 m2/m) 4) DIP,DN1650 mm,		125,000	75	206,250	25	31,250
w/fittings,	m	125,000	13	200,200	20	31,230
supply & delivery			ì			
supply a delivery						
High level reservoir						
1) excavation, common	m3	400	65	572	35	140
2) excavation, rock	m3	1,500	65	2,145	35	525
3) excess soil treat	m3	300	65	429	35	105
4) embankment	m3	450	65	644	35	158
5) backfill	m3	380	65	543	35	133
6) concrete, 180 kg/cm2	m3	11,000	65	15,730	. 35	3,850
7) concrete, 100 kg/cm2	m3	13,000	65	18,590	35	4,550
17 concrete, 210 kg/cm2	1110	13,000	00	10,0301	301	4,000

Jnit Construction Cost

Construction Items			Foreign		Local Po	ITHOO
	unit	unit cost	ratio	cost	ratio	cost
		(Rs)	(%)	(Y)	(%)	(Rs)
8) re-bar	t	60,000	90	118,800	10	
9) access road, W=10m	m	5,000	65		35	
10) concrete pile	m	9,000	65		35	:
400*400, I=20 m	'''	0,000		1,010		5,100
400 400, 1-20 111					1	
(1) pipe and fittings						
(supply & delivery cost to cover (F colombo	custom duty.	nland treanspo	tation and fitting	cost)	
(ooppin) a delitery cost to cover a	J. Goldings	occount day,	l laria il dallopo		1	
1) D.l pipe, 1200 dia.	m	70,000	75	115,500	25	17,500
2) D.I pipe, 1000 dia.	m	52,500	75	86,625	25	13,125
3) D.I pipe, 900 dia.	m	42,000	75	69,300	25	10,500
4) D.I pipe, 800 dia.	m	34,500	75	56,925	25	8,625
5) D.I pipe, 600 dia.	m	17,600	75	29,040	25	4,400
6) D.I pipe, 500 dia.	m	13,600	75	22,440	25	3,400
7) D.I pipe, 400 dia.	m	11,000	75	18,150	25	2,750
8) D.I pipe, 350 dia.	m	9,000	75	14,850	25	2,250
9) D.I pipe, 200 dia.	1	5,000	75	8,250	25	1,250
10) PVC pipe, 200 dia.	m	2,400	0	0,250	100	2,400
1 ,	m	2,400	0	0	100	2,000
i11) PVC pipe, 150 dia.	m		0	0	100	1,600
12) PVC pipe, 100 dia.	m	1,600			1	1 ' 1
13) PVC pipe, 90 dia.	m	800	0	0	100	800
14) PVC pipe, 63 dia.	m	500	0	U	100	500
(laying cost, 15 % of suply & deliv	ery cost)					
1) D.I pipe, 1200 dia.	m	10,500	30	6,930	70	7,350
2) D.I pipe, 1200 dia.	1	7,875	30	5,198	70	5,513
	m		30	4,158	70 70	4,410
3) D.I pipe, 900 dia.	m	6,300				l :
4) D.I pipe, 800 dia.	m	5,175	30	3,416	70	3,623
5) D.I pipe, 600 dia.	m	2,640	30	1,742	70	1,848
6) D.I pipe, 500 dia.	m	2,040	30	1,346	70	1,428
7) D.I pipe, 400 dia.	m	1,650	30	1,089	70	1,155
8) D.I pipe, 350 dia.	m	1,350	30	891	70	945
9) D.I pipe, 200 dia.	m	750	30	495	70	525
10) PVC pipe, 200 dia.	m	360	30	238	70	252
11) PVC pipe, 150 dia.	m	300	30	198	70	210
12) PVC pipe, 100 dia.	m	240	30	158	70	168
13) PVC pipe, 90 dia.	m	150	30	99	70	105
14) PVC pipe, 80 dia.	m	120	30	79	70	84
(road reinstatement cost, 5 % of	supply & de	tivery cost)				
1) D.I pipe, 1200 dia.	m	3,500	30	2,310	70	2,450
2) D.I pipe, 1000 dia.	m	2,625	30	1,733	70	1,838
3) D.I pipe, 900 dia.	m	2,100	30	1,386	70	1,470
4) D.I pipe, 800 dia.	ın	1,725	30	1,139	70	1,208
5) D.I pipe, 600 dia.	m	880	30	581	70	616
6) D.i pipe, 500 dia.	m	680	30	449	70	476
7) D.I pipe, 400 dia.	m	550	30	363	70	385
8) D.I pipe, 350 dia.	m	450	30	297	70	315
9) D.I pipe, 200 dia.	m	250	30	165	70	175
10) PVC pipe, 200 dia.	m	120	30	79	70	84
11) PVC pipe, 150 dia.	m	100	30	66	70	70
12) PVC pipe, 100 dia.	m	80	30	53	70	56
13) PVC pipe, 90 dia.	m	50	30	33	70	35
14) PVC pipe, 80 dia.	m	40	30	26	70	28
			-			
(2) ground reservoir 1500 m3	m3	10,000	65	14,300	35	3,500
(3) graund reservoir, 2000 m3	m3	5,000	65	7,150	35	1,750
(4) pump station	kw	10,000	80	17,600	20	2,000
(5) water tower, 1000 m3	m3	15,000	65	21,450	35	5,250
(6) water tower, 2000 m3	m3	14,000	65	20,020	35	4,900
(7) public utilities	l.s	-	50	-	50	-

Ref. No. 12.2

Subject: Project Cost Estimates

Title : Unit Cost for Land Acquisition and Compensation

Contents: Unit Cost for Land Acquisition and Compensation

Unit Cost for Land Acquisition & Compensation

Area/location	unit	unit cost (Rs)
(land acquisition)		
Intake, UDUGAMA	m2	300
Intake, UDUWARA	m2	450
Treatment plant, UDUGAMA	m2	1,000
treatment plant, REMUNA	m2	
Storage facilities	m2	1,000
Distribution facilities		
(1) distribution main	m2	1,600
POKUNUWIRA-KUMBUKE		
- PALAMORUWA		
- KUHATHUDUWA		
(2) tower	m2	
(3) reservoir	m2	7
(compensation)		
house compensation		
- wooden	m2	1,500
- rubble masonry	m2	2,500
- wet masonry	m2	2,500
- reinforced concrete	m2	3,000

·			

Ref. No. 12.3

Subject: Project Cost Estimates

Title : Breakdown of Cost Estimates for Direct Construction Works

Contents: Construction Works for Stage 1 of Phase 1 (2010)

Construction Works for Stage 2 of Phase 1 (2010)

Priced Bill of Quantities for Direct Construction Works Stage 1 of Phase 1 (cost code: 100)

Cost Work items		Ţ	F.C	cost portion	L.C port	ion
item	unit	Q'ty	unit rate	amount	unit rate	amount
no.		ļl	(Y)	(Y)	(Rs)	(Rs)
101 Preliminary & general						
/01 insurances/bond	l.s		4	0		72,500,000
/02 temporary facilities	l.s	_	-	150,000,000		50,000,000
and services						, -
/03 all measures required	l.s	-	-	0		36,000,000
for maintenance of						
traffic flows & access	١,			2 600 600		0.500.000
/04 office/laboratoy	l.s	-	- '	3,200,000		2,500,000
/05 other incidentals	l.s	-	<u>.</u>	30,000,000		20,000,000
sub total of 101				183,200,000		181,000,000
102 Intake facilities	 	1				
(civil works)	ľ	1. 1				
/01 excavation, common	m3	4,100	1,114	4,567,400	280	1,148,000
w/coffering			0.000	10.150.000	400	
/02 excavation, rock w/	m3	4,600	2,860	13,156,000	700	3,220,000
coffering /03 excavation, common	m3	8,100	501	4,058,100	123	996,300
/03 excavation, common /04 excavation, rock	m3 m3	9,300	2,145		525	4,882,500
/05 concrete w/form &	m3	700	15,730		3,850	2,695,000
re-bar, 180 kg/cm2		1	10,700	,5,550	0,000	2,000,000
/06 concrete w/form &	m3	9,050	18,590	168,239,500	4,550	41,177,500
re-bar, 210 kg/cm2					·	
/07 backfill	m3	6,600	429	2,831,400	105	693,000
/08 excess soil	m3	19,400	429	8,322,600	105	2,037,000
/09 steel grating 11-set	m2	17	15,840	269,280	800	13,600
/10 ladder,SUS304,4-set	m	212	69,300	14,691,600	3,500	742,000
/11 handrail, SUS304	m	310 100	69,300	21,483,000	3,500	1,085,000
/12 pipe line, SP1500 mm /13 miscellaneous works	m I.s	100	207,900	20,790,000 8,681,051	31,500	3,150,000 1,855,197
(3 % of of above)	1.5] -	•	0,001,001	-	1,000,197
(0 % of drabote)	:]				
sub total				298,049,431		63,695,097
(mech. & elect. works)				1		
						0.000.000
/14 screen/gate	l.s	i ~	•	160,000,000		8,070,000
/15 pump,4-set,22.12 m3/m. /16 substation,receiving	l.s I.s]	-	172,725,300 207,000,000	-	8,723,500 10,480,000
panel	1.5		•	2.07,000,000	-	10,400,000
/17 pump control panel	l.s	-	•	37,570,000	_	4,170,000
/18 miscellaneous works	l.s	-	-	5,772,953	-	314,435
(1 % of above)						
sub total				583,068,253		31,757,935
				000,000,200		01,707,000
(building works)						
/19 pump house,300 m2*1	m2	300	27,500	8,250,000	12,500	3,750,000
/20 staff house,100m2*4	m2	400	15,224	6,089,600	6,920	2,768,000
,	1		, , , , , , , , , , , , , , , , , , , ,	1,000,000	_,	
sub total				14,339,600	,,. —,- ,	6,518,000
sub total of 102				895,457,284		101,971,032
103 Raw water transmission facilit	ee.			,		
TOO THE TRUCK HONORINGSHOT ROOM						
(supply & delivery cost for pipe &	k fittings)					
/01 transmission main	m	7,670	167,607	1,285,545,690	25,395	194,779,650
intake to WTP,						
DN1500 mm, steel p.						
(laying costinged reinstatement	net)					
(laying cost/road reinstatement of 02 laying cost, intake	ost) m	7,670	10,056	77,129,520	10,666	81,808,220
to WTP, DN 1500 mm	,,,,	1,010	10,000	11,120,020	10,000	01,000,220

Priced Bill of Quantities for Direct Construction Works Stage 1 of Phase 1 (cost code: 100)

				cost		
Cost Work items				portion	L.C porti	
item	unit	Q'ty	unit rate	amount	unit rate	amount (Rs)
no.		7.070	(Y) 3,352	(Y) 25,709,840	(Rs) 3,555	27,266,850
03 road reinstatement for item 103/02	m	7,670	3,352	25,709,640	3,000	27,200,000
sub total of 103				1,388,385,050		303,854,720
104 Treatment facilities					1	
(civil works)						
whole plant site				45 700 000	205 200	2 550 200
/01 clearing & stripping	ha	10	1,573,000	15,730,000	385,000	3,850,000
/02 excavation, common	m3	174,000	501	87,174,000	123	21,402,000
/03 excavation, rock	m3	16,700	2,145	35,821,500	525	8,767,500
/04 embankment	m3	104,300	644	67,169,200	158	16,479,400
/05 backfill	m3	61,000	429	26,169,000	105	6,405,000
/06 piping,1500 mm dia.	m	575	1,716	986,700	420	241,50
concrete made	m2	18,600	715	13,299,000	175	3,255,000
/07 inner roads	1112	10,000	713	10,200,000	110	
receiving well		27	18,590	501.930	4,550	122,85
/08 concrete w/form and	m3	21	10,090	301,330	7,000	122,00
re-bar, 210 kg/cm2	_		45.000	30,000	3,500	7,00
/09 concrete w/form and	m3	2	15,000	30,000	3,500	7,00
re-bar, 160 kg/cm2	,		407.007	04 000 000	25.305	3,733,06
/10 piping,1500 dia steel	m	147	167,607	24,638,229	25,395	
/11 piping,150 dia,DIP	m	322	7,000	2,254,000	1,000	322,00
12 piping 1000 dia.DIP	m	100	86,625	8,662,500	13,125	1,312,50
rapid mixing		:			•	
13 concrete w/form and	m3	16	18,590	297,440	4,550	72,80
re-bar, 210 kg/cm2			. , , , , , , ,		.,	•
flow splitting chamber			*			
114 concrete w/form and	m3	14	18,590	260,260	4,550	63,70
re-bar, 210 kg/cm2	0	· ' '	,0,000		.,	•
15 concrete w/form and	m3	3	15,000	45,000	3,500	10,50
re-bar, 160 kg/cm2						
/16 piping, 800 dia.DIP	m	232	56,925	13,206,600	8,625	2,001,00
/17 piping, 600 dia.DIP	m	87	29,040	2,526,480	4,400	382,80
flocculation & sedimentation bas	in ·					
/18 concrete w/form and	m3	5,020	18,590	93,321,800	4,550	22,841,00
re-bar, 210 kg/cm2						
/19 concrete w/form and	m3	420	15,000	6,300,000	3,500	1,470,00
re-bar, 160 kg/cm2			•			
20 cobble stone	m3	1,255	297	372,735	315	395,32
21 piping,500 dia,DIP	m	466	22,440	10,457,040	3,400	1,584,40
22 piping,200 dia,DIP	m	130	8,250	1,072,500	1,250	. 162,50
/23 piping,300 dia,DIP	m	92	13,000	1,196,000	1,800	165,60
/24 in-situ found.piling,	no.	1,905	64,350	122,586,750	15,750	30,003,75
400 dia.,l=5 m		,	•		·	
filter						
/25 concrete w/form and	m3	3,280	18,590	60,975,200	4,550	14,924,00
re-bar, 210 kg/cm2						•
26 concrete w/form and	m3	210	15,000	3,150,000	3,500	735,00
re-bar, 160 kg/cm2		400	007	404740	245	400.00
27 cobble stone	m3	420	297	124,740	315	132,30
28 filter sand	m3	515	2,310	1,189,650	2,450	1,261,75
29 filter gravel	m3	173	1,155	199,815	1,225	211,92
30 filter block	m3	258	6,600	1,702,800	3,000	774,00
31 piping,1000 dia.DIP	m	200	86,625	17,325,000	13,125	2,625,00
32 piping,1650 dia.steel	m	28	194,123	5,435,444	29,413	823,56
33 in-situ found.piling,	no.	847	64,350	54,504,450	15,750	13,340,25
400 mm dia., l≕5 m				. }	1	
clear water basin	ļ				į	•
34 concrete w/form and	m3	5,110	18,590	94,994,900	4,550	23,250,50
re-bar, 210 kg/cm2		-,	-1		.,	• • • • • • • • • • • • • • • • • • • •

Priced Bill of Quantities for Direct Construction Works Stage 1 of Phase 1 (cost code : 100)

Cost Work items	1			portion	L.C porti	
item	unit	Q'ty	unit rate	amount	unit rate	amount
no.		320	(Y) 15,000	(Y) 4,950,000	(Rs) 3,500	(Rs) 1,155,000
/35 concrete w/form and	m3	330	15,000	4,950,000	3,500	1,155,600
re-bar, 160 kg/cm2	m3	650	297	193,050	315	204,750
/36 cobble stone	1	40	86,625	3,465,000	13,125	525,000
37 piping,1000 dia,DIP	m	503	194,123	97,643,869	29,413	14,794,739
38 piping 1650 dia steel	m	270	5,000	1,350,000	800	216,000
39 piping. 100 dia,DIP 40 piping. 500 dia,DIP	m	150	22,400	3,360,000	3,400	510,000
40 piping, 500 dia,Dir	""		22,100	0,000,000	-,	3,5,5
thickning basin						
41 concrete w/form and	m3	1,820	18,590	33,833,800	4,550	8,281,000
re-bar, 210 kg/cm2		1	·			
/42 concrete w/form and	m3	220	15,000	3,300,000	3,500	770,000
re-bar, 160 kg/cm2						
43 cobble stone	m3	440	297	130,680	315	138,600
44 piping 150 dia DIP	m	347	7,000	2,429,000	1,000	347,000
/45 piping 200 dia DIP	m	283	8,250	2,334,750	1,250	353,750
		1			1	
sludge drying bed						
/46 concrete w/form and	m3	4,110	18,590	76,404,900	4,550	18,700,500
re-bar, 210 kg/cm2	İ	1		}		
/47 concrete w/form and	m3	1,090	15,000	16,350,000	3,500	3,815,000
re-bar, 160 kg/cm2		1				
/48 cobble stone	m3	1,640	297	487,080	315	516,60
/49 piping,150 dia.DIP	m	274	7,000	1,918,000	1,000	274,000
		[
pump sump & pump room					. 550	204.00
/50 concrete w/form and	m3	80	18,590	1,487,200	4,550	364,00
re-bar, 210 kg/cm2	ļ			455.55	2.500	25.00
/51 concrete w/form and	m3	10	15,000	150,000	3,500	35,000
re-bar, 160 kg/cm2				5040	. 245	0.20
/52 cobble stone	m3	20	297	5,940	315	6,300 365,000
/53 plping,150 dia,DIP	m	365	7,000	2,555,000	1,000	300,000
dirty washwater balancing basin						
/54 concrete w/form and	m3	320	18,590	5,948,800	450	144,00
re-bar, 210 kg/cm2	1 1110	020	10,000	0,010,000	.00	* * * * * *
/55 concrete w/form and	m3	40	15,000	600,000	3,500	140,00
re-bar, 160 kg/cm2	1110	1 70	10,000	000,000	*,***	
/56 cobble stone	m3	80	297	23,760	315	25,20
/57 piping, 1650 dia,DIP	m	56	206,250	11,550,000	31,250	1,750,00
757 piping, 1050 dia,011	"		200,200	11,000,000	V.,	
amount, civil works		1.		1,044,151,492	ĺ	236,560,918
		[.]		i `		
/58 miscellaneous works	l.s	-	-	31,324,545	-	7,096,82
(3 % of above)				ļ		
,		į l				
sub total, civil works	<u> </u>			1,075,476,037		243,657,746
(mech. & elect. works)		1				-
				000 000 000		20,000,00
/59 sedimentation tank	l.s	-	-	396,000,000	-	
/60 filter	l.s	-	-	207,700,000	-	10,500,00
/61 chemical dosing	l.s	-	-	41,360,000	-	2,100,00
/62 sludge disposal	l.s		-	21,639,000	-	1,100,00
/63 transmission pump	l.s	-	-	239,200,000	-	12,080,00
64 substation,receiving	l.s	^	- '	240,700,000	-	12,160,00
panel		1		464 000 000	Ĭ	23,280,00
/65 plant-control panel	l.s	-	-	461,000,000	-	
/66 miscellaneous works	l.s	-	-	16,075,990	-	812,20
(1 % of above)						
and Askal BANT				1 622 674 000		82,032,20
sub total, M/E works	<u> </u>			1,623,674,990		02,032,20
(building works)		1				
(building works) /67 chemical building	m2	600	1,760	1,056,000	7,200	4,320,00
azz armanuga DUMUMKI	1114	, 000	1,100	1,000,000	7,200	.,

Priced Bill of Quantities for Direct Construction Works Stage 1 of Phase 1 (cost code : 100)

			*************	cost		
Cost Work items				portion	L.C por	
item	unit	Q'ty	unit rate	amount	unit rate	amount
no. /69 main building	m2	1,000	(Y) 27,500	(Y) 27,500,000	(Rs) 12,500	(Rs) 12,500,000
770 work shop	m2	600				
/71 staff housing,100 m2	no.	45	1,522,400			31,140,000
in average	110.	1	1,022,400		002,000	01,110,000
in avolugo			-			1
sub total, building works			Í	98,472,000		53,720,000
sub total of 104				2,797,623,027		379,409,946
105 Clear water transmission faci	ilies, 1)					
(supply and delivery for pipe an	d fittings)	1				
/01 transmission main,	m	3,000	194,123	582,369,000	29,413	88,239,000
WTP to H.L.reservoir	1		•		· ·	
DN1650 mm steel pipe	1					
(laying cost/road reinstatement	roet)					
/02 laying transmission	m	3,000	11,647	34,941,000	12,353	37,059,000
main, WTP to HLR	""	0,000	71,017	0 1,0 11,000	12,000	07,000,000
DN1650 mm, steel pipe		ļ				
/03 road reinstatement	m	3,000	3,882	11,646,000	4,118	12,354,000
for item 105/02						
(high love) unter connectic \/-20	3000 m31					. *
(high level water reservoir, V=30 /04 excavation, rock	m3	81,960	1,716	140,643,360	420	34,423,200
/05 excess rock	m3	31,700	429	13,599,300	105	3,328,500
/06 backfill	m3	1,370	543	743,910	35	47,950
/07 embankment	m3	50,260	638	32,065,880	160	8,041,600
/08 concrete, 180 kg/cm2	m3	1,400	15,730	22,022,000	3,850	5,390,000
/09 concrete, 210 kg/cm2	m3	10,430	18,590	193,893,700	4,550	47,456,500
/10 pipe line, 1650 mm	m	200	194,123	38,824,600	29,413	5,882,600
/11 pipe line, 1200 mm	m	200	115,500	23,100,000	17,500	3,500,000
/12 pipe line, 400 mm	m	1,300	19,239	25,010,700	3,905	5,076,500
/13 valve, 1650 mm .	set	2	15,000,000	30,000,000	870,000	1,740,000
/14 valve, 1200 mm	set	2	9,000,000	18,000,000	500,000	1,000,000
/15 valve, 400 mm	set	2	2,000,000	4,000,000	110,000	220,000
/16 access road, W=10 m	m	1,300	7,150	9,295,000	1,750	2,275,000
/17 landscaping	l.s	-	• •	35,404,634	-	7,681,016
/18 miscellaneous works (3 % of above)	l.s	-	-	36,466,773	-	7,911,446
,					·	
sub total of 105				1,252,025,856		271,626,311
106 Clear water transmission, 2)	-					
(supply and delivery of pipe & fit	lings)					
01 HLR to Pokunuwita,	m	6,680	115,500	771,540,000	17,500	116,900,000
junction DN1200 mm, DIP		4= 6==	60.445	0.40.040.000	A 15-	
02 Pokunuwita to Pana-	m	15,250	22,440	342,210,000	3,400	51,850,000
dura Reservoir DN500 mm, DIP		200	22.440	6 700 000	2 400	4 000 000
03 Moratuwa Res.to new Moratuwa TW, DN500 mm, DIP	m	300	22,440	6,732,000	3,400	1,020,000
04 branch connection to	m	30	18,150	544,500	2,750	82,500
new Piliyandara tower	111	30	10,130	344,300	2,700	02,000
DN400 mm, DIP	•	j				
(laving cost/soud rejustatement						
(laying cost/road reinstatement of 05 laying cost, Rd.A8		6 600	6 030	46 202 400	7 000	40 000 000
DN1200 mm, DIP	m	6,680	6,930	46,292,400	7,350	49,098,000
06 road reinstatement	m	6,680	2,310	15,430,800	2,450	16,366,000
DN1200 mm, DIP, Rd.A8	111	. 0,000	2,510	10,700,000	ے مرابعات ا	10,000,000
07 laying & road reinstatement	m	15,550	1,795	27,912,250	1,904	29,607,200
Costs DN500 mm, DIP		.5,555	.,,55	21,012,200	1,504	10,001,200
08 laying & road reinstatement	m	30	1,452	43,560	1,540	46,200
Costs DN400 mm, DIP			,	,		,

Priced Bill of Quantities for Direct Construction Works Stage 1 of Phase 1 (cost code : 100)

				cost		
Cost Work items		1		portion	L.C por	tion
litem	unit	Q`ty	unit rate	amount	unit rate	amount
no.			(Y)	(Y)	(Rs)	(Rs)
sub total of 106				1,210,705,510		264,969,900
107 Distribution facilities						
(supply and delivery cost for pig	e and fitting	gs for Moratuw	a U.C. Low Zo	ne)		
/01 DN 600 mm, DIP	m	80	29.040		4,400	352,000
/02 DN 500 mm, DIP	m	630	22,440		3,400	
/03 DN 400 mm, DIP	m	1,330	18,150		2,750	
/04 DN 300 mm, DIP	m	3,940	14,000		2,750	
/05 DN 250 mm, DIP	m	860	10,000			
/06 DN 200 mm, PVC	""	4,730	10,000	0,000,000	1,400	
/07 DN 150 mm, PVC	i	3,820	-	0	2,400	
/08 DN 90 mm, PVC	m		0	0	2,000	7,640,000
708 DN 90 mm, PVC	m	85,000	0	0	800	68,000,000
(laying/road reinstatement costs	for Moratu	wa U.C. low zo	ne)	-]
/09 laying cost for item	m	6.840	1,300	8,892,000	1,400	9,576,000
107/01 to 107/05	1	","	1,000	0,002,000	1,400	3,570,000
/10 laying cost for item	m	93,550	200	18,710,000	200	18,710,000
107/06 to 107/08	'''	35,550	200	10,710,000	200	10,710,000
/11 reinstatement cost.	m	6,840	450	3,078,000	450	2 070 000
item 107/01 to 107/05	'''	0,040	450	3,076,000	450	3,078,000
/12 reinstatement cost.	l	02 550	70	0 540 500	70	0 = 10 = 0
item 107/06 to 107/08	m	93,550	70	6,548,500	70	6,548,500
10770010107108		[]		į		
(water tower, V=1500 m3 for M	oratuwa U.C	low zone)				
/13 foundation pile	no.	170	257.400	43,758,000	63,000	10,710,000
400 mm dia., I=20.0 m				.0,.00,000	00,000	10,7 10,000
/14 gravel	m3	90	572	51,480	140	12,600
/15 concrete, 180 kg/cm2	m3	35	15,730	550.550	3,850	134.750
/16 concrete, 210 kg/cm2	m3	2,000	18,590	37,180,000	3,850	7,700,000
/17 pipe line, 400 mm	m	480	19,239	9,234,720	3,905	1,874,400
/18 valve, 400 mm	no.	3	2,178,000	6,534,000		
/19 access road, W=10 m	m	200			110,000	330,000
/20 miscellaneous works	1	200	7,150	1,430,000	1,750	350,000
	l.s	-	_	7,209,815	-	4,837,553
(3 % of above)						
sub total of 107				247,536,965		166,089,303
total 101 to 107	,			7,974,933,692		1,668,921,212
				1,014,000,002		1,000,921,212
108 B.T.T (5 %)				0		264,694,554
Grand total				7,974,933,692		1,933,615,765
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Priced Bill of Quantities for Direct Construction Works Stage 2 of phase 1 (cost code : 100°)

Cost Work items		ا منا	unit rate	oortion amount	L.C portion	amount
item	unit	Q'ty	(Y)	(Y)	(Rs)	(Rs)
no. 101 Preliminary & general	·	<u> </u>				
io () (ominima) argument					ļ	E 000 000
01 insurances	l.s	! i	-	0	•	5,000,000
02 performance bond	l.s	-	-	0	-	6,400,000
03 temporary facilities and services	1.s	-	•	100,000,000	-	20,000,000
04 all measures required for maintenance of traffic flows & access	l,s	_	<u>.</u> .	0	-	7,200,000
05 engineers office	l.s] _	_	ol	-	·. (
	l.s	1 . 1	_	o l	_	· (
06 testing laboratory 07 other incidentals	l.s		-	30,000,000	-	5,000,000
sub total of 101				130,000,000		43,600,000
102 Intake facilities						•
604 intoko numa	l.s			154,570,000	-	7,800,000
/01 intake pump /02 pump-control panel	i,s	-	-	34,200,000	-	1,730,000
sub total of 102				188,770,000		9,530,000
103 Raw water transmission facilit	es				:	•
sub total of 103				0		
104 Treatment facilities (civil works)						
whole plant site	m2	30,000	501	15,030,000	123	3,690,000
01 excavation, common 02 backfill	m3 m3	9,100	429	3,903,900	105	955,50
flocculation & sedimentation bas	in					
/03 concrete w/form and	m3	5,020	18,590	93,321,800	4,550	22,841,00
re-bar, 210 kg/cm2 /04 concrete w/form and	m3	420	15,000	6,300,000	3,500	1,470,000
re-bar, 160 kg/cm2 /05 coble stone	m3	1,255	297	372,735	315	395,32
Ella e						
filter /06 concrete w/form and	m3	3,280	18,590	60,975,200	4,550	14,924,00
re-bar, 210 kg/cm2 /07 concrete w/form and	m3	210	15,000	3,150,000	3,500	735,00
re-bar, 160 kg/cm2				404740	245	122.30
/OB coble stone	m3	420	297	124,740	315	132,30
/09 filter, sand	m3	515	2,310	1,189,650	2,450	1,261,75
/10 filter, gravel	m3	172	1,155	198,660	1,225	210,70
/11 filter, block	m3	258	6,600	1,702,800	3,000	774,00
sub total, civil works		ļ <u></u>		186,269,485		47,389,57
(mech. & elect. works)						*****
/12 sedimentation tank	1.s	-	-	396,000,000		20,000,00
/13 filter	l.s	-	-	207,710,000	-	10,500,00
/14 sludge disposal	l.s	 -	-	20,990,000	-	1,060,00
/15 transmission pump	i.s	-		193,000,000	-	9,750,00
16 plant control panel	l.s	-	-	194,770,000	-	9,840,00
sub total, M/E works				1,012,470,000		51,150,00
sub total of 104		-	·	1,198,739,485		98,539,57
105 Clear water transmission facili	ties, 1					
sub total of 105				0		
106 Clear water transmission facili	ties, 2		.:	,		
	i	1		1		

Priced Bill of Quantities for Direct Construction Works Stage 2 of phase 1 (cost code : 100)

Cost Work items				portion	L.C porti	
item	unit	Q`ty	unit rate	amount	unit rate	amount
no.			<u>(Y)</u>	(Y)	(Rs)	(Rs)
/01 Piliyandara to Dehi-	m l	9,580	86,625	829,867,500	13,125	125,737,500
wala res., Rd. B5						
DN 1000 mm, DIP				40.450.000	4.000	0.750.000
/02 branch to Horana res.	m	2,200	8,250	18,150,000	1,250	2,750,000
DN 200 mm, DIP	1			4 000 500 000	47.500	207 500 000
/03 Pokunuwita J.to Pili-	m	17,000	115,500	1,963,500,000	17,500	297,500,000
yandara J. Rd. B5,				1		
DN1200 mm, DIP	j .			4 405 000	4.000	225 000
/04 branch connection to	m	180	8,250	1,485,000	1,250	225,000
exis,B'daragama tower						
DN 200 mm, DIP		1		į		
(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
(laying/reinstatement cost)	[0.500	5,198	49,796,840	5,513	52,814,540
/05 laying cost	m	9,580	5,150	49,730,040	0,515	52,014,040
DN 1000 mm, B5 road		9,580	1,733	16,602,140	1,838	17,608,040
/06 reinstatement cost DN 1000 mm, B5 road	m	9,000	1,700	10,002,140	1,000	11,000,040
/07 laying/reinstatement	m	17,000	9,240	157,080,000	9,800	166,600,000
DN 1200 mm, DIP	'''	11,000	0,240	107,000,000	0,000	
/08 laying/reinstatement	m	2,380	660	1,570,800	700	1,666,000
cost, DN 200 mm, DIP	'''	2,000	000	1,0.0,000	, , , ,	,,,
COST, DIV 200 HIRI, DIF	•					
sub total of 106				3,038,052,280		664,901,080
3db total of 100				-11	A M. W. V. V.	
107 Distribution facilities						
TO DIEMBER TO THE PROPERTY OF						•
(supply & delivery cost for pipe	& fittings for	Dehiwala M.	C. High Zone			
/01 DN 300 mm, DIP	m	610	14,000	8,540,000	2,000	1,220,000
/02 DN 250 mm, DIP	m	140	10,000	1,400,000	1,400	196,000
/03 DN 200 mm, PVC	m	1,550	0	0	2,400	3,720,000
/04 DN 150 mm, PVC	m	960	0	0	2,000	1,920,000
/05 DN 110 mm, PVC	m	170	0	0	1,800	306,000
/06 DN 90 mm, PVC	m	22,500	0	0	008	18,000,000
		-				
(laying/road reinstatement cost	for Dehiwala	M.C. high zo	ne)		•	
/07 DN 300 mm, DIP	m	610	990	603,900	1,070	652,700
/08 DN 250 mm, DIP	m	140	784	109,760	831	116,340
/09 DN 200 mm, PVC	m	1,550	317	491,350	336	520,800
/10 DN 150 mm, PVC	m	960	264	253,440	280	268,800
/11 DN 110 mm, PVC	m .	170	240	40,800	252	42,840
/12 DN 90 mm, PVC	m	- 22,500	132	2,970,000	140	3,150,000
	l	5		[
(supply & delivery cost for pipe			LOW ZONE)	27 527 500	6,250	5,687,500
/13 DN 700 mm. DIP	m	910	41,250	37,537,500	6,250 4,400	10,032,000
/14 DN 600 mm, DIP	m	2,280	29,040		3,400	1,734,000
/15 DN 500 mm, DIP	m	510	22,440		3,400	4,257,500
/16 DN 450 mm, DIP	m	1,310	21,450 14,850	28,099,500 22,720,500	2,250	3,442,500
/17 DN 350 mm, DIP	m	1,530	10,000		1,400	2,982,000
/18 DN 250 mm, DIP	m	2,130 2,740	10,000	21,300,000	2,400	6,576,000
/19 DN 200 mm, PVC	m	,	0	0	2,000	1,780,000
/20 DN 150 mm, PVC	m	890 390	0	0	1,800	702,000
/21 DN 110 mm, PVC	m		0	ol	800	26,800,000
/22 DN 90 mm, PVC	m	33,500	U		000	20,000,000
(laying/road reinstatement cost	for Debius!	M C low zon	a)		·	
		910	3,300	3,003,000	3,500	3,185,000
/23 DN 700 mm. DIP /24 DN 600 mm. DIP	m	2,280	2,323	5,296,440	2,464	5,617,920
	m	510	2,323 1,795	915,450	1,904	971,040
/25 DN 500 mm, DIP	m	1,310	1,793	2,247,960	1,820	2,384,200
/26 DN 450 mm, DIP	m	1,530	1,718	1,817,640	1,260	1,927,800
/27 DN 350 mm, DIP /28 DN 250 mm, DIP	m	2,130	784	1,669,920	831	1,770,030
	m .	2,130	317	868,580	336	920,640
/29 DN 200 mm, PVC	m	2,740 890	264	234,960	280	249,200
/30 DN 150 mm, PVC	m .	390	204	93,600	250 252	98,280
/31 DN 110 mm, PVC /32 DN 90 mm, PVC	m	33,500	132		140	4,690,000

Priced Bill of Quantities for Direct Construction Works Stage 2 of phase 1 (cost code : 100)

	Cost Work items	Į			portion	L.C port	on
item		unit	Q'ty	unit rate	amount	unit rate	amount
no:		1		(Y)	(Y) [(Rs)	(Rs)
(sup	ply & delivery for pipe & fi	ttings for Del	iwala M.C. No	rth Zone)	:		
33 DN	1 250 mm, DIP	m	360	10,000	3,600,000	1,400	504,000
/34 DN	1 200 mm, PVC	m	1,290	0	0	2,400	3,096,000
	150 mm, PVC	m	2,920	ő	lo ·	2,000	5,840,000
	90 mm, PVC	m	20,000	ő	ől	800	16,000,000
JO DIA	30 mm, FVC	į '''	20,000	U	Y Y	800	10,000,000
(lavir	ng/road reinstatement cos	t for Dehiwal	a M.C. north z	lane	i		
	250 mm, DIP	m	360	784	282,240	831	299,160
		1 .	I I				
	200 mm, PVC	m	1,290	317	408,930	336	433,440
	150 mm, PVC	m	2,920	264	770,880	280	817,600
40 DN	90 mm, PVC	m	20,000	132	2,640,000	140	2,800,000
	als D deliseus forming 0 64						4
	ply & delivery for pipe & fit	1 -	1 : 6		0.500.000	1 400	040.000
	250 mm, DIP	m	650	10,000	6,500,000	1,400	910,000
	200 mm, PVC	m ,	3,110	0	0	2,400	7,464,000
	150 mm, PVC	m	2,450	0	0	2,000	4,900,000
	110 mm, PVC	, m	1,780	0	o]	1,800	3,204,000
45 DN	90 mm, PVC	m	71,000	0	0	800	56,800,000
		1					
	ig/road reinstatement for h	√ipratuwa U.	C. high zone)		į		
46 DN	250 mm, DIP	m	650	784	509,600	831	540,150
47 DN	200 mm, PVC	m	3,110	317	985,870	336	1,044,960
48 DN	150 mm, PVC	m	2,450	264	646,800	280	686,000
	110 mm, PVC	m	1,780	240	427,200	252	448,560
	90 mm, PVC	m	71,000	132	9,372,000	140	9.940.000
	00 ///// 0	1 ""	71,000	102	5,012,000	140	5,546,600
(sunt	bly & delivery of pipe & fitti	ings for Pane	ura II C. Hidh	Zonal		. 1	
	200 mm, PVC	~	970	0	ام	2,400	2.328.000
		m			0		
	150 mm, PVC	m	710	0	0	2,000	1,420,000
	100 mm, PVC	m	910	0	0	1,600	1,456,000
54 DN	90 mm, PVC	m	22,000	0	0	800	17,600,000
(layin	g/road reinstatement cost	for Pandura	U.C. high zon	e)			
CC DN			070				207 222
	200 mm, PVC	m	970	317	307,490	336	325,920
	150 mm, PVC	m	710	264	187,440	280	198,800
	100 mm, PVC	m	910	211	192,010	224	203,840
58 DN	90 mm, PVC	m	22,000	132	2,904,000	140	3,080,000
				ļ		1	
	ly & delivery of pipe & fitti	ngs for Pand				1	
	400 mm, DIP	m	500	18,150	9,075,000	2,750	1,375,000
60 DN :	250 mm, DIP	m	440	10,000	4,400,000	1,400	616,000
51 DN :	200 mm, PVC	m	2,460	0	0	2,400	5,904,000
52 DN :	100 mm, PVC	l m l	580	0	o l	1,600	928,000
	90 mm, PVC	m	43,000	Ö	ől	800	34,400,000
	,		,			,-	- 1, 1-2,
(lavine	g/road reinstatement for P	anadura U.	C. low zone)				
	400 mm, DIP	m	500	1,452	726,000	1,540	770,000
	250 mm, DIP	m	440	784	344,960	831	365,640
	-					. 1	
	200 mm, PVC	m	2,460	317	779,820	336	826,560
	100 mm, PVC	m	580	211	122,380	224	129,920
งเกม	90 mm, PVC	m	43,000	132	5,676,000	140	6,020,000
	. A .d		_,			ŀ	
	y & delivery of pipe & fittin	Ti			*.		
	150 mm, PVC	m	1,010	0	0	2,000	2,020,000
	110 mm, PVC	m	2,530	0	0	1,800	4,554,000
1 DN	90 mm, PVC	m	5,000	0	0	800	4,000,000
		[]	1			9:1	
(laying	Iroad reinstatement for Ho	rana) İ			. }	*	1.
	150 mm, PVC	m	1,010	264	266,640	280	282,800
	110 mm, PVC	m	2,530	240	607,200	252	637,560
	90 mm, PVc	m	5,000	132	660,000	140	
,V	oo ning i vo] '''	3,000	132	000,000	140	700,000
		J.,	orogama agal		. 1	1.	
/erred					E		
	y & delivery of pipe & fittir	I* . I		ام		2 222	0.000.000
5 DN 1	y & delivery of pipe & fittir 110 mm, PVC 90 mm, PVC	m m	1,340 12,250	0	0	2,000 800	2,680,000 9,800,000

Fixing Bill of Quantities for Direct Construction Works Stage 2 of phase 1 (cost code : 100)

Cost Work items			F.C	portion	L.C portion	
item	unit	Q'ty	unit rate	amount	unit rate	amount
no.			(Y)	(Y)	(Rs)	(Rs)
777 DN 63 mm, PVC	m	3,340	0	0	500	1,670,000
(laying/road reinstatement for	r Bandaragama	east)				
778 DN 110 mm, PVC	m	1,340	240	321,600	252	337,680
779 DN 90 mm, PVC	m	12,250	132	1,617,000	140	1,715,000
/80 DN 63 mm, PVC	m	3,340	106	354,040	112	374,080
sub total of 107				276,977,000		338,367,760
Total, 101 to 107				4,832,538,765		1,154,938,415
108 B.T.T (5 %)				0		167,577,347
G. Total				4,832,538,765		 1,322,515,762

Ref. No. 12.4

Subject: Project Cost Estimates

Title : Cost for Land Acquisition and Compensation

Contents: Cost for Land Acquisition and Compensation

Land Acquisition & Compensation Cost (cost code : 200)

code cost items	unit	Q'ty	unit cost	amount
no.			(Rs)	(Rs)
201 land acquisition				
(1) intake facilities	m2	13,000	450	5,850,000
(2) raw water transmssion facilities	m2	0	-	0
(3) treatment facilities	m2	10,000	1,000	10,000,000
(4) clear water transmission facilities	m2	0	~	0
(5) high level reservoir	m2	25,000	1,000	25,000,000
(6) distribution facilities	m2	0	-	0
sub total]	}	40,850,000
		 		10,000,000
202 compensation			7	
(1) intake facilities	l.s	-	-	300,000
(2) raw water transmssion facilities	l.s	-	-	500,000
(3) treatment facilities		!		
1) wooden house 30 m2	no.	36	45,000	1,620,000
2) blick house,30 m2	no.	31	75,000	2,325,000
3) public facilities (temples, schools)	l.s	2	500,000	1,000,000
4) land (67-house x 100 m2)	m2	6,700	1,000	6,700,000
(4) clear water transmission facilities	l.s "	-	-	300,000
(5) storage facilities		1		
1) house on access road 30 m2	no.	2	45,000	90,000
(6) distribution facilities	l.s	-	-	5,000,000
sub total	•			17,835,000
Total				58,685,000

Ref. No. 12.5

Subject: Project Cost Estimates

Title : Cost Comparison for Ductile Iron Pipe and Steel Pipe

Contents: Cost Comparison for Ductile Iron Pipe and Steel Pipe

Cost Comparison, Ductitile Iron Pipe and Steel Pipe

Unit: Rs./m

Description	Diameter						
	800mm	9 9 0mm	1000mm	1200mm	1350mm	1500mm	1650mm
Ductile iron Pipe (JIS G 5526)					,		
CIF Colombo	23,000	28,000	35,000	47,000	65,000	75,000	94,000
Fittings, 25% of CIF	5,750	7,000	8,750	11,750	16,250	18,750	23,500
Total	28,750	35,000	43,750	58,750	81,250	93,750	117,500
Steel pipe (JIS 3443)						•	
CIF Colombo	23,500	26,000	33,000	45,000	52,000	60,000	73,000
Fittings, 5% of CIF	1,175	1,300	1,650	2,250	2,600	3,000	3,650
Welding 30% of CIF	7,050	7,800	9,900	13,500	15,600	18,000	21,900
	31,725	35,100	44,550	60,750	70,200	81,000	98,550

Note : 1) figure ______ is prefer by cost

^{: 2)} Excluding custom duty, inland transportation cost, laying and road reinstatement costs which were applied as the same price respectively.

Ref. No. 12.6

Subject: Project Cost Estimates

Title : Base Unit Costs

Contents: Daily Wage of Labor

Unit Price of Materials

Equipment Cost

Chemical Cost for Operation (2010)

Electricity Cost for Operation (2010)

Daily Wage of Labor

Description	Unit	Foreign Currency (US\$)	Local Currency (Rs.)
Foreman A	Day		497
Foreman B	Day		398
Operator A	Day		363
Operator B	Day		290
Driver A	Day		311
Driver B	Day		249
Mechanic A	Day		363
Mechanic B	Day		290
Electrician A	Day		363
Electrician B	Day		290
Carpenter	Day		311
Form Worker	Day		311
Reinforcement Worker	Day		311
Concrete Worker	Day		311
Driller	Day		311
Powder Man	Day		373
Common Labor, Tunnel	Day		249
Plumber	Day		311
Welder	Day		363
Mason	Day		311
Boring Worker	Day		311
Grout Worker	Day		311
Rigger	Day		363
Skilled Labor	Day		311
Common Labor	Day		207
Foreign Technician A	Day	300.00	
Foreign Technician B	Day	200.00	

Unit Price of Materials (1/2)

Description	Price at Site		Allocation		Unit Price	
	Unit	(Rs.)	F.C.	L.C.	F.C. (\$)	L.C. (\$)
		(1)	(2) 80%	(3)	(4) 0.21	(5)
Light oil (diesel)	lit.	13	80%	20%	0.58	7
Gasoline	lit.	36		20%	0.38	2
Kelosine	lit.	13	80%		0.70	8
Engine oil	lit.	44	80%	20%		24
Grease	kg	122	80%	20%	1.95	
Asphalt	lit.	24	80%	20%	0.38	4
Porland cement	ton	5,158	70%	30%	82.53	1,031
Detonator	p.c.	152	90%	10%	2.43	30
Dynamite	kg	383	90%	10%	6.13	76
Wiremesh 12' x 7', 50 x 50 mm	p.c.	748	70%	30%	11.97	149
Nail	kg	41	70%	30%	0.66	8
plywood 8' x 4', 6 mm	p.c.	911	90%	10%	14.58	182
ploywood 8' x 4', 9 mm	p.c.	1,313	90%	10%	21.01	262
ploywood 8' x 4', 12 mm	p.c.	1,515	90%	10%	24.24	303
ploywood 8' x 4', 15 mm	p.c.	1,716	90%	10%	27.46	343
ploywood 8' x 4', 18 mm	p.c.	1,867	90%	10%	29.87	373
Concrete pipe, 450 mm x 1 m	p.c.	1,873	70%	30%	29.97	374
Concrete pipe, 600 mm x 1 m	p.c.	2,746	70%	30%	43.94	549
Concrete pipe, 900 mm x 1 m	p.c.	4,999	70%	30%	79.98	999
Concrete pipe, 1200 mm x 1 m	p.c.	9,098	70%	30%	145.57	1,819
Air entraining agent	kg	120	90%	10%	1.92	24
Water reducing arent	kg	140	90%	10%	2.24	28
Quick setting agent	kg	100	90%	10%	1.60	20
Reinforcement bar, deformed	ton	29,137	90%	10%	466.19	5,827
Reinforcement bar, round	ton	29,137	90%	10%	466.19	5,827
H-shape steel	ton	33,074	90%	10%	529.18	6,614
Channel steel	ton	33,074	90%	10%	529.18	6,614
Steel plate	ton	31,192	90%	10%	499.07	6,238
Annealed iron wire	kg	44	70%	30%	0.70	8
Steel wire	kg	40	70%	30%	0.64	8
Anfo	kg	171	90%	10%	2.74	34
Timber	m3	33,518	90%	10%	536.29	6,703
Steel sheet pile (type III)	m	3,089	90%	10%		
Steel sheet pile (type IV)		3,918	90%			783
Bentonite	kg	14	90%			2
PVC water stop CF200	m	619	80%	ļ		
PVC water stop CF300	m	1,209	80%			
PVC water stop UC300		1,318	80%			
r v C water stop UC300	m	1,510	0070	L 2070	1 21.09	L

Unit Price of Materials (2/2)

Description	Price at Site		Allocation		Unit l	
	Unit	(Rs.)	F.C.	L.C.	F.C. (\$)	L.C. (\$)
		(1)	(2)	(3)	(4)	(5)
Flastic joint filler, 20 mm	m	409	80%	20%	6.54	81
Flastic joint filler, 25 mm	m	491	80%	20%	7.86	98
Perforated PVC pipe, 150 mm	m	572	80%	20%	9.15	114
Perforated PVC pipe, 200 mm	m	940	80%	20%	15.04	188
Metal form 300 x 1,500	p.c.	1,551	80%	20%	24.82	310
Metal form 200 x 1,500	p.c.	1,551	80%	20%	24.82	310
Metal form 100 x 1,500	p.c.	1,200	80%	20%	19.20	240
Steel pipe 100 mm x 5.5 m	m	613	80%	20%	9.81	122
Steel pipe 150 mm x 5.5 m	m	1,057	80%	20%	16.91	211
Rockbolt 25 mm	m	378	90%	10%	6.05	75
Regin 24 mm x 320 mm	p.c.	307	90%	10%	4.91	61
Electricity	kWh	4	50%	50%	0.06	0
Masonry stone	m3	471	40%	60%	7.54	94
Clamp	p.c.	49	90%	10%	0.78	9
cone	p.c.	15	90%	10%	0.24	3
Separator, 8 - 10 mm	m	30	90%	10%	0.48	6
Form oil	lit	169	80%	20%	2.70	. 33
Form tie, 250 mm	p.c.	42	90%	10%	0.67	8
Wire mesh welded 150 x 150 x 5	m2	113	90%	10%	1.81	22
Tire for 4 t Dump Truck	set	72,850	90%	10%	1,165.60	14,570
Tire for 8 t Dump Truck	set	131,850	90%	10%	2,109.60	26,370
Tire for 11 t Dump Truck	set	228,450	90%	10%	3,655.20	45,690
Cement	t	5000	60%	40%	80.00	1,000

Equipment Cost (1/2)

Description	Capacity	Unit	F.C. (\$)	L.C. (Rs.)	Total (Rs.)
			(1)	(2)	(3).
Bulldozer	11 ton	Hour	14.12	220	926
Bulldozer	15 ton	Hour	18.79	292	1231
Bulldozer	21 ton	Hour	33.18	510	2169
Bulldozer	32 ton	Hour	47.29	727	3091
Bulldozer W/ripper	21 ton	Hour	36.13	556	2362
Bulldozer W/ripper	32 ton	Hour	51.32	789	3355
Backhoe	0.35 m3	Hour	10.58	164	693
Backhoe	0.70 m3	Hour	22.70	353	1488
Backhoe	0.80 m3	Hour	23.72	369	1555
Backhoe	1.20 m3	Hour	34.56	538	2266
Crawler loader	1.40 m3	Hour	14.88	232	976
Crawler loader	2.20 m3	Hour	23,72	369	1555
Crawler loader	3.20 m3	Hour	35.32	550	2316
Wheel loader	1.40 m3	Hour	12.32	192	808
Wheel loader	2.30 m3	Hour	20.55	320	1347
Wheel loader	3.20 m3	Hour	28.74	447	1884
Crawler loader, side	1.50 m3	Hour	32.85	505	2147
Crawler loader, side	1.80 m3	Hour	43.13	663	2819
Dump truck	4 t	Hour	7.47	125	498
Dump truck	8 t	Hour	12.37	208	826
Dump truck	Il t	Hour	17.58	295	1174
Cargo truck	4 t	Hour	6.71	116	451
Cargo truck	8 t	Hour	9.08	157	611
Cargo truck	11.5	Hour	13.70	237	922
Truck crane	20 t	Hour	18.57	379	1307
Truck crane	32 t	Hour	43.74	895	3082
Grout pump	30 lit/min.	Hour	1.20	20	80
Grout pump	100 lit/min.,	Hour	2.24	38	150
Grout pump	200 lit/min.	Hour	2.79	47	186
Grout mixer	100 lit x 1	Hour	0.51	8	33
Grout mixer	200 lit x 2	Hour	1.20	20	80
Grout mixer	400 lit x 2	Hour	1.92	33	129
Boring machine	5.5 kW	Hour	4.23	72	283
Leg hammer	30 kg	Hour	0.75	8	45
Leg hammer	40 kg	Hour	0.73	9	51
Pick hammer	7 kg	Hour	0.10	1	6
Rock breaker	800 kg	Hour	9.07	103	556
Crawler drill	100 kg	Hour	53.83	838	3529
Crawler drill	150 kg	Hour	60.91	948	3993
Dust collector	150 kg 150 m3/min.	Hour	26.47	309	1632
Motor grader	3.1 m	Hour	17.10	304	
Motor grader	3.7 m	Hour	22.26	396	1159 1509
Macadum roller	10/12 t	Hour	11.27	200	763
Tire roller	8/20 t				
Tamping roller	13.5/20 t	Hour	12.73	227	863
Tractor for above	~~	Hour	13.45	238	910
Vibration roller	211 ps	Hour	28.63	446	1877
	4 t	Hour	7.28	129	493
Vibration roller	10 t	Hour	20.84	371	1413
Vibration roller	17 t	Hour	32.61	580	2210
Tamper	80 kg	Hour	0.64	6	38

Equipment Cost (2/2)

Description	Capacity	Unit	F.C. (\$)	L.C. (Rs.)	Total (Rs.)
Compostor	001.0	Hour	(1) 0.57	(2) 5	(3)
Compactor	90 kg 1.0 m3 x 1	Hour	103.95	1799	6996
Concrete plant Truck mixer	3.2 m3	Hour	12.13	189	795
Truck mixer	4.4 m3	Hour	17.62	274	1155
	55 m3/h	Hour	37.34	502	2369
Concrete pump truck	55 m3/h	Hour	53.72	721	3407
Concrete pump truck, boom	60 m3/h	Hour	59,99		
Concrete pump	· · · · · · · · · · · · · · · · · · ·]	856	3855
Concrete pump	95 m3/h	Hour	75.08	1018	4772
Agitator car	3 m3 4 m3	Hour	17.49	237	1111
Agitator car		Hour	21.96	297	1395
Agitator car	6 m3	Hour	30.20	409	1919
Asphalt plant	30 t/h	Hour	105.17	1836	7094
Asphalt finisher	2.4/5 m	Hour	48.63	969	3400
Asphalt kettle	200 lit.	Hour	0.97	11	59
Asphalt distributor	3,000 lit.	Hour	11.56	204	782
Asphalt sprayer	200 lit.	Hour	0.85	8	50
Sprinkler truck	6,000 lit.	Hour	7.90	137	532
Port air compressor	7.5 m3/min.	Hour	4.49	66	290
Port air compressor	10.5 m3/min.	Hour	6.89	101	445
Port air compressor	14.3 m3/min.	Hour	7.95	117	514
Port air compressor	17 m3/min.	Hour	8.07	119	522
St. air compressor	20 m3/min.	Hour	5.48	81	355
Submersible pump	80 mm	Hour	0.39	5	24
Submersible pump	100 mm	Hour	0.64	8	40
Submersible pump	150 mm	Hour	0.91	12	57
Submersible pump	200 mm	Hour	1.36	18	86
Diesel generator	100 kVA	Hour	3.69	54	238
Winch	55 kW	Hour	11.69	176	760
Grout measuring device	1,201/min.	Hour	5.02	66	317
Concrete bucket	1.0 m3	Hour	1.00	13	63
Concrete vibrator	40 mm	Hour	0.25	2	14
Concrete vibrator	60 mm	Hour	0.37	3	21
Form yibrator	0.4 kW	Hour	0.16	1	9
Port. bert conveyer	7 m	Hour	0.65	. 5	37
Shotcrete	10 m3/h	Hour	30.63	409	1940
Quick agent supply	2.4 lit/min.	Hour	1.84	21	113
Cement silo	200 t	Hour	6.93	117	463
Vibrating feeder	100 t/h	Hour	3.32	60	226
Jaw crusher	600 x 900	Hour	44.14	704	2911
Vib. screen	1,200 x 2,400	Hour	7.42	112	483
Cone cursher	1,000	Hour	37.74	605	2492
Rod mill	1,500 x 3,000	Hour	64.77	1046	4284
Spiral classifier	900 x 6,500	Hour	10.70	167	702
Vib. feeder	50 t/h	Hour	0.64	11	43
Cone cursher	600	Hour	18.03	289	1190
Vib. screen	900 x 1,800	Hour	6.08	91	395
Spiral elassifier	450 x 4,000	Hour	5.15	81	338
Belt conveyor	450 x 180 m	Hour	38.83	673	2614
Screen tower	15 t	Hour	12.74	113	750

Chemicals Cost for Operation (2010)

1. Unit Prices of Chemicals	(Presen 1994	Future 1994)	
Item	Alum	Lime	Chlorine
Present Cost	12,000 Rs/ton	10,500 Rs/ton	27,500 Rs/ton
Escalation Ratio	0 % per year	0 % per year	0 % per year
Future Cost	12,000 Rs/ton	10,500 Rs/ton	27,500 Rs/ton
2. Alum			
	C	2nd	· ·
Consumption	1,365 kg/day	1,365 kg/day	2,730 kg/day
Chemical Cost	16,380 Rs/day	16,380 Rs/day	32,760 Rs/day
Annual Cost	5,979 T-Rs/year	5,979 T-Rs/year	11,958 T-Rs/year
(Thousand-Rs/year)		·	
3. Lime	·		·
Stage	1st	2nd	Total
Consumption	683 kg/day	683 kg/day	1,366 kg/day
Chemical Cost	7,166 Rs/day	7,166 Rs/day	14,332 Rs/day
Annual Cost	2,616 T-Rs/year	2,616 T-Rs/year	5,232 T-Rs/year
(Thousand-Rs/year)			
4. Chlorine			
Stage	1st	2nd	Total
Consumption	182 kg/day	182 kg/day	364 kg/day
Chemical Cost	5,561 Rs/day	5,561 Rs/day	11,122 Rs/day
Annual Cost	2,030 T-Rs/year	2,030 T-Rs/year	4,060 T-Rs/year
(Thousand-Rs/year)			•
5. Total			
Stage	1st	2nd	Total
Production	91,000 m3/day	91,000 m3/day	182,000 m3/day
Chemical Cost	29,107 Rs/day	29,107 Rs/day	58,214 Rs/day
per m3	0.32 Rs/m3	0.32 Rs/m3	0.32 Rs/m3
Annual Cost (Thousand-Rs/year)	10,624 T-Rs/year	10,624 T-Rs/year	21,248 T-Rs/year

Electricity Cost for Operation (2010)

1. Electricity Tariff (Industrial Tariff)	
1) Rate I - 1:400/230 V, 10 to 50 kVA	
 Unit Charge 	4
Fixed Charge	205
2) Rate I - 2:>11,000 V, >50 kVA	
 Max. Demand Charge 	196
Unit Charge	3.65
Fixed Charge	408
2. Electricity Charge	
1) Main Equipment	
 Intake Facilities ** 	987.4 kW
- Treatment Plant **	3,540.9 kW
- Reservoir *	20.0 kW
2) Consumption	
 Intake Facilities 	23,698 kWH/day
 Treatment Plant 	84,982 kWH/day
- Reservoir	480 kWH/day
Total	109,160 kWH/day
3) Monthly Charge	
 Intake Facilities 	2,788,826 Rs
- Treatment Plant	9,999,910 Rs
- Reservoir	2,125 Rs
Total	12,790,861 Rs/month
4) Annual Charge	
(Thousand Rs)	153,490 Th. Rs

Ref. No. 12.7

Subject: Project Cost Estimates

Title : Cost Estimates for Lower Demand Scenario

Contents: Cost Estimates for Lower Demand Scenario

Lower demand scenario

Cost Work items	I		F.C	portion	L.C port	on
item	unit	Q'ty	unit rate	amount	unit rate	amount
no.	-		(Y)	(Y)	(Rs)	(Rs)
1. Supply & delivery costs of pi	pe and fittings					
1) DN 1350 mm, DIP	m	3,400	148,500	504,900,000	22,500	76,500,000
2) DN 1200 mm, DIP	m	8,200	115,500	947,100,000	17,500	143,500,000
3) DN 1000 mm, DIP	m	23,680	86,625	2,051,280,000	13,125	310,800,000
4) DN 500 mm, DIP	m	300	22,440	6,732,000	3,400	1,020,000
5) DN 400 mm, DIP	m	30	18,150	544,500	2,750	82,500
2. Laying cost					·	
1) DN 1350 mm, DIP	m	3,400	8,910		9,450	32,130,000
2) DN 1200 mm, DIP	m	8,200	6,930		7,350	60,270,000
DN 1000 mm, DIP	m	23,680	5,198		5,513	130,547,840
4) DN 500 mm, DIP	m	300	1,346	403,800	1,428	428,400
5) DN 400 mm, DIP	m	30	1,089	32,670	1,155	34,650
3. Road reinstatement cost						
1) DN 1350 mm, DIP	m	3,400	2,970	10,098,000	3,150	10,710,000
DN 1200 mm, DIP	m	8,200	2,310	18,942,000	2,450	20,090,00
DN 1000 mm, DIP	m]	23,680	1,733	41,037,440	1,838	43,523,84
4) DN 500 mm, DIP	m	300	449	134,700	476	142,80
5) DN 400 mm, DIP	m	30	363	10,890	385	11,55
4. Total cost per diameter, 4=1-	+2+3	-				
1) DN 1350 mm, DIP	m	3,400	_	545,292,000	-	119,340,00
2) DN 1200 mm, DIP	m	8,200	-	1,022,868,000	.	223,860,00
3) DN 1000 mm, DIP	m	23,680	-	2,215,406,080		484,871,68
4) DN 500 mm, DIP	_ m	300	-	7,270,500	-	1,591,20
5) DN 400 mm, DIP	m	30		588,060		128,70
G.Total				3,791,424,640		829,791,58

Ref. No. 16.1

Subject: Environmental Impact Assessment

Title : Definitions from Sri Lankan Environmental Legislation

Contents: Definition

16

DEFINITIONS FROM SRI LANKAN ENVIRONMENTAL LEGISLATION

- Environmental Scoping.
 - "Environmental Scoping "means determining the range and scope of proposed actions, alternatives, and impacts to be discussed in an Initial Environmental Examination Report or Environmental Impact Assessment Report.
- 2. Initial Environmental Examination Report.
 - "Initial Environmental Examination Report "means a written report wherein possible impacts of the prescribed project on the environment shall be assessed with a view to determining whether such impacts are significant, and as such requires the preparation of an environmental impact assessment report and such report shall contain further details, descriptions, data, designs and other information and details as may be prescribed by the minister.
- 3 Environmental Impact Assessment Report.
 - Environmental Impact Assessment Report " means a written analysis of the predicted environmental project and containing an environmental cost benefit analysis, if such an analysis has been prepared, and including a description of the project, and includes the avoidable and unavoidable a description of effects of the proposed adverse environmental proscribed project; a description of alternative to the activity which might be less harmful to the environment together with the reasons why such alternatives were rejected, and a description of any irreversible or irritrievable commitments resources required by the prescribed project.

Ref. No. 16.2

Subject: Environmental Impact Assessment

Title: Supplemental Assessment

Contents: Assessment of the Stream near the Proposed Treatment Plant

Site

Evaluation of the Potential Environmental Effects of the Proposed Kalu Ganga Treatment Plant on the Bolgoda Lake

System

ASSESSMENT OF THE STREAM NEAR THE PROPOSED TREATMENT WORKS SITE.

A visual inspection was made of the nearest significant watercourse to the proposed treatment works site on June 16 and 20. It flows from the west, looping north of the site to flow south, roughly parallel to the site's eastern boundary. The rising ground of the site is separated from the stream by approximately 300 M of flat rice paddy, most of which seemed to be abandoned on the eastern side.

Thick growths of trees and bushes are apparent along both banks of the stream restricting access to the water. On both of the inspection days the stream was about 200 mm to 400 mm deep, between 3 M to 4 M wide and flowing at about 0.5 M/s in the stretch near the eastern boundary of the site. The clarity of the water was very good on the first inspection day but quite cloudy on the second. Silt and mud deposits on the foliage beside the stream showed that the water depth had been at least 1.0 M higher in the recent past.

It would appear that the stream normally flows well below ground level and no evidence was found to suggest that the stream is used for irrigation purposes. Enquiries with local people indicated that the nearby paddy fields used only rainfall to water the crop. Some groundwater seepage from the edge of the hill forming the site is noticeable and also seems to be used as irrigation water. Hoof prints at various places on the banks of the stream show that cattle etc. frequently drink it's waters and distant noises suggested that children bathe in it.

It was not possible to inspect the whole length of the stream from the treatment works site to the Kalu Ganga due to the thick foliage along it's banks. However access was gained at two points, one close to a Temple about midway between the site and the river and the other at the site of a bridge and sluicegates close to the stream's estuary.

At both these locations the stream flowed between steep banks with evidence that it had recently overtopped the banks and caused flooding of surrounding land. It was difficult to make an accurate estimate as to the probable depth when the stream was in flood but it must have been about 5 M to 6 M.

Conclusions.

- (i) The stream is large enough to carry the waste water flow from the treatment works.
- (ii) Outside of the rainy season the normal stream flow is quite small and will be noticeably enhanced by the waste water discharge.
- (iii) The quality of the water in the stream is normally

much better than that of unsettled waterworks sludge and therefore sludge lagoons or drying beds must be provided.

(iv) With properly designed sludge lagoons or drying beds the supernatant water or filtrate will be of good quality, comply with the Sri Lankan discharge regulations, and be quite suitable for discharge to the Kalu Ganga via the nearby stream.

Comment.

Mention must be made of the rubber factory found to be under construction on the north west edge of the proposed treatment works site. This factory (presumably not actually on the land that the NWSDB has the option to purchase) was said to be ready for operation in early July according to the site manager. The study team were shown the tile lined tanks to be used in the rubber production process and were informed that the spent liquid would be discharged to the stream.

It was evident that no treatment was to be given to the liquid waste and it is most unlikely that such a discharge will come close to complying with the discharge regulations.

EVALUATION OF THE POTENTIAL ENVIRONMENTAL EFFECTS OF THE PROPOSED KALU GANGA TREATMENT WORKS ON THE BOLGODA LAKE SYSTEM.

- It is theoretically possible for the proposed new treatment works to affect the environment of the Bolgoda lakes in three ways:
 - (i) Abstraction of raw water for the treatment works may affect the flow into the Bolgoda lake system from the kalu Ganga during periods of low flow in the river.
 - (ii) Waste discharge from the treatment works into the river may affect the quality of the river water flowing into the lakes.
 - (iii) The increased volume of drinking water fed to the areas surrounding the lakes may find its way into the lake system, thereby increasing the pollutant load.

Taking these points in turn :

(i) Effect of abstraction.

Some 192,000 m3/d (2m3/s) will be required by the treatment works. Under average flow conditions this represents about 2% of the river flow and as such will make no significant difference to the conditions downstream.

The 30 year minimum at the point at which water flows into the Bolgoda lakes is approximately 11 m3/s. At such times the treatment works abstraction will lower this figure to 9 m3/s. Although this represents an 18% reduction in flow, it will not affect the flow into the Bolgoda lakes as such flows are governed by the hydraulic head in the river. The hydraulic head is directly related to the sea level as this stretch is tidal

(ii) Pollution Caused by the Treatment Works.

The only discharge from the treatment works will be the filtrate from the sludge drying beds. This waste water will be discharged to the Kalu Ganga via a small stream and will contain only a very small quantity of suspended solids. On many occasions the waste water will be of better quality than the stream water into which it is discharged.

The worst situation would occur if the drying beds were bypassed. Under this circumstance a high suspended solids load would flow into the stream. From the point of discharge to the stream to the Kalu Ganga is a distance of about one Km. Much of the suspended solids would settle out in this distance. If they should reach the main river, the inlet to the Bolgoda lakes is still some 20 Km downstream. Under these circumstances it is extremely unlikely that any deterioration in water quality will be found at the lake inlet.

(iii) Indirect Pollution of the Bolgoda Lakes.

The provision of increased supplies of drinking water to the areas surrounding the lakes will inevitably increase the quantity of sewage entering the lake system. No piped sewerage system exists in the area and many houses have no toilet facilities. Without the construction of properly designed septic tanks or sewers, increased pollution of the lakes cannot be avoided.

Conclusion.

In direct terms the operation of the treatment works will have no effect on the quality or quantity of water entering the Bolgoda lake system from the Kalu Ganga during periods of low flow in the river.

Indirectly, via increased supplies of drinking water, additional quantities of sewage may be expected to reach the lake system.

16

Ref. No.

16.3

Subject:

Environmental Impact Assessment

Title

Supplemental Recommendation

Contents:

Countermeasures against Environmental Effects

COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	RESETTLEMENT				
Contents	Land aquisition requiring resettlement of displaced persons.				
Cause	 Construction of the intake Construction of the treatment works Construction of the reservoir Construction of the pipelines 				
Environmental impact	1. Displacement of the local population from the construction site areas				
Elements for evaluation	1. Numbers to be resettled				
	2. Occupations of people affected				
Countermeasures	1. Careful selection of the site areas to minimise resettlement needs 2. Minimise the land area requirements 3. Careful selection of resettlement areas 4. Full consultation with affected people				
Related studies	 Population density in the affected areas Land use survey Possible resettlement areas 				

Table 16.4 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	ECONOMIC ACTIVITIES				
Contents	Economic activities that may be affected by the project				
Cause					
	 Construction of the intake Construction of the treatment works Construction of the reservoir Construction of the pipelines 				
Environmental impact					
	 Disruption or ending of the economic activities currently carried out at the construction sites 				
Elements for evaluation					
	 Economic activities currently carried out at the proposed sites 				
Countermeasures					
	 Careful selection of construction sites and pipeline routes Minimise areas required for construction 				
Related studies	1. Land use survey 2. Layout of intake, treatment works, reservoir and pipeline routes				

Table 16.5
COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	TRANSPORTATION AND INSTITUTION			
Contents	Interruption to transportation and the daily life of the community			
Cause	 Movement of site vehicles and construction plant Excavation and pipelaying along roadways 			
Environmental impact Elements for evaluation	1. Interruption to local traffic flow			
	 Traffic density in the affected areas Time period required for pipelaying activities 			
Countermeasures	1. Avoid roadways as far as possible for pipeline route 2. Restrict the movement of the construction vehicles 3. Avoid vehicle movements during peak traffic times			
Related studies	1. Population density in construction areas			

Table 16.6 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	SEPARATION OF THE COMMUNITY				
Contents	Affect on the social aspects of the communities in the project areas				
Cause	1. Construction site activities				
	2. Influx of outside construction site workers to the areas 3. Relocation of the displaced persons				
Environmental impact					
	 Alteration of the social structure of the communities Increase in crime and disturbances Creation of animosity between 				
	construction workers and the local communities				
Elements for evaluation					
	 Numbers of outside construction workers to be employed Numbers and occupations of displaced persons Possible resettlement areas 				
Countermeasures	or rossissic redectioner areas				
	 Prepare code of conduct for workers Restrict or prohibit access to certain areas Careful selection of resettlement areas 				
Related studies	 Population densities in the project areas Possible resettlement areas 				

Table 16.7 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	CULTURAL ASSETS AND ARCHEOLOGY					
Contents	Loss or damage to shrines, temples and archeological remains					
Cause	1. Construction of the intake 2. Construction of the treatment works 3. Construction of the reservoir 4. Construction of the pipelines					
Environmental impact						
	1. Damage or destruction of cultural assets and archeological remains					
Elements for evaluation						
	1. Location of cultural assets and archeological remains on or near to the construction sites					
Countermeasures						
	1. Careful selection of the construction sites and pipeline routes					
Related studies	1. Land use survey					

Table 16.8 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

effects on sanitation aspects e generated by the construction d of diseases
l of dispasse
d of dispasse
1 Of diseases
s of construction workers
in an adaguata number of
de an adequate number of designed latrines

Table 16.9 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	LAKE MARSH AND RIVER				
Contents	Effect of abstraction on river flows				
Cause	1. Abstraction of water from the Kalu Ganga during the operation of the treatment works				
Environmental impact					
	1. Reduction in river flow				
Elements for evaluation					
	 Volume of water to be abstracted Volume flowing in the river during low flow periods 				
Countermeasures					
	1. Locate intake where flow is highest in the required area 2. Reduce the volume abstracted during periods of low flow				
Related studies	 Flow survey of the Kalu Ganga Options for intake site Treatment plant design 				

Table 16.10 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	WATER POLLUTION				
Contents	Water pollution caused during construction and operation of the treatment plant, intake and pipelines				
Cause	1. Rainfall causing disturbed soil to be washed into watercourses 2. Sewage pollution from construction site workers 3. Sludge discharge from the treatment works				
Environmental impact					
Elements for	1. Pollution of watercourses causing siltation and damage to flora and fauna 2. Increased incidence of waterborne diseases 3. Degredation of water quality in watercourses due to sludge discharges				
evaluation					
	1. Nature of soils on construction sites 2. Probability of sludge discharges to watercourses and possible volume 3. Flow in watercourse at probable discharge point 4. Estimate of the number of construction site workers				
Countermeasures					
	1. Bunding to prevent soil run off during construction 2. Provide adequate latrines during construction phase 3. Provide drying beds or lagoons to prevent sludge entering watercourses				
Related studies	1. Flows in the Kalu Ganga 2. Surveys of intake, Treatment plant and reservoir sites and the pipeline routes 3 Design of treatment works				

Table 16.11 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	SOIL POLLUTION			
Contents	Soil pollution caused by sewage, fuel			
	and oil during construction phase			
Cause				
	 Sewage from construction site workers Spilt fuel and oil from storage tanks 			
Environmental impact				
	 Pollution of the ground on the construction sites causing damage to flora and fauna Increased incidence of disease 			
Elements for evaluation				
	 Number of construction site workers Quantity of fuel and oil to be stored 			
Countermeasures				
	 Provide adequate latrines Provide bunded storage areas Provide interceptor drains from plant maintainance areas 			
Related studies				

Table 16.12 COUNTERMEASURES AGAINST ENVIRONMENTAL EFFECTS

SUBJECT	NOISE AND VIBRATION			
Contents	Noise and vibration caused by plant an equipment			
Cause	 Movement of large vehicles and operation of large plant Piling operations Operation of treatment plant after 			
	construction			
Environmental impact				
	 Disturbance to local population Frightening of domestic animals Disturbance of wild animals causing migration from the area Vibration causing damage to nearby structures 			
Elements for evaluation				
	 Population densities in the surrounding areas Existance of animal rearing in the surrounding areas Existance of buildings or structures liable to vibration damage near to the construction sites The need for piling to be used for construction 			
Countermeasures	1. Use low noise producing plant and equipment where possible 2. Restrict working hours to minimise disturbance 3. Construct sound absorbing bunds or walls if possible 4. Avoid piling operations if posible 5. Careful selection of construction site areas			
Related studies	 Land use survey Geological and soil mechanics surveys Design of intake, treatment works, reservoir and pipeline routes 			

