Source: JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Table 2.3 Irrigation Water Requirement in Ncoha II Project (1/4)

| State   Stat   |         | Annual |     |                           | 1.681           |                                                     | 329<br>335<br>334                           | 378<br>377<br>376                |                                      | ······                                       | 919             | 545<br>563<br>600                            | 8.750                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----|---------------------------|-----------------|-----------------------------------------------------|---------------------------------------------|----------------------------------|--------------------------------------|----------------------------------------------|-----------------|----------------------------------------------|-------------------------------------------|
| Signe : Note and Signe  |         |        | 7   | 91                        | 71              | 47                                                  |                                             | 195<br>195                       |                                      |                                              | 8               | 135                                          | 138                                       |
| None      |         | Dec    | -   | 15                        | 4.4.2<br>86     | an Z                                                |                                             | 183                              |                                      |                                              | 92              | 127                                          | 650                                       |
| Crops   Nobside Historian Fundament   Nobside Historian Historia   | ·       |        | 7   | 15                        | 5.17            |                                                     |                                             |                                  |                                      |                                              | 35              |                                              |                                           |
| Nonth   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Nov    | -   | 15                        | 5.17            |                                                     |                                             |                                  |                                      |                                              | 35              |                                              |                                           |
| North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        | 7   | 16                        | 91              | A MARIE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       | <del></del>                                 |                                  |                                      |                                              | 10              | <del></del>                                  |                                           |
| Crops   Nicoba-Hi-Crops   Ni   |         | Oct.   | -   | 15                        | 5.68            |                                                     |                                             |                                  |                                      |                                              | 0,              |                                              |                                           |
| Crops :   Nicoba-III   Sign   Nicoba-III   Sign     |         |        | 2   | 15                        | 5.45<br>82      |                                                     | <del></del>                                 |                                  |                                      |                                              | С               |                                              |                                           |
| Chops :   Nicoha-III   Nicoha   |         | Sep.   | -   | 15                        |                 |                                                     |                                             |                                  |                                      |                                              | 7               |                                              |                                           |
| Crops :   Nicoha-Ti.   Sign   Crops :   Nicoha-Ti.   Sign   Sig   |         | -      | 2   | 91                        |                 |                                                     |                                             |                                  |                                      |                                              |                 |                                              |                                           |
| Crops :   Nichard   Crops   Nichard   Crops :   Nichard   Crops    |         | Aug.   | -   | 15                        |                 |                                                     |                                             |                                  | -                                    | · · · · · · · · · · · · · · · · · · ·        | 0               | ٠                                            | <del> </del>                              |
| Chops   Nuclear II   Nuclear    |         | L      | 2   | 16                        |                 |                                                     | <del></del>                                 | <del></del>                      |                                      | ·<br>                                        | 6               |                                              |                                           |
| Site   Nicohard   North   Jan   Feb   Mar   Apr.   Apr.   May   Jun   Apr.   Apr.   Apr.   Apr.   Jun   Apr.   Apr.   Apr.   Apr.   Jun   Apr.     |         | E      |     | -15                       |                 |                                                     |                                             |                                  |                                      | ·                                            |                 |                                              |                                           |
| Crops : Nicoha-fi   Nicoha-f   |         | -      | ,   | 15                        |                 |                                                     | · · · · · · · · · · · · · · · · · ·         |                                  |                                      |                                              | 4               | <u> </u>                                     |                                           |
| Crops :   Nochaeff   Netherf   Net   |         | Jun.   | -   | 15                        |                 |                                                     |                                             |                                  |                                      |                                              | Ŋ               |                                              |                                           |
| Crops :   Nicoha-II   Mar.   Apr.   May    |         | -      | ^   | 191                       |                 |                                                     |                                             |                                  |                                      |                                              | œ               |                                              |                                           |
| Nicoha-fit   Nic   |         | May    | -   | 15                        |                 |                                                     |                                             |                                  |                                      | 1 .                                          | ∞               |                                              |                                           |
| Crops : Next Season Paddy   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | -      | l   | 12                        |                 | 00:0                                                | 0                                           |                                  |                                      | · .                                          | 19              | .0                                           | 00                                        |
| Crops : Norths-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Apr    | -   | - 2                       | 4.45            | 000<br>0.95                                         | 0 %                                         |                                  | 30                                   |                                              | 19              | 0 47                                         | 380                                       |
| Crops :   Nochast   Reb.   Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        | 1   | 16                        | 4.35            | 1000 1000                                           | 73 60                                       |                                  | 32                                   | 50                                           | 45              | 53<br>110                                    | 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| Crops :   Nichaell   2   1   2   1   2   1   2   1   2   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Mar    | -   | - 2                       | 4.35            | 55 PE 100 PE 100 PE                                 | 288                                         |                                  | 30 30                                | 50                                           | 42              | 50<br>107<br>57                              | 1,090                                     |
| Crops :   Nicoha-II   Feb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | -      | ı   | <sup>1</sup> <sup>4</sup> |                 |                                                     | 62                                          |                                  | 28 8<br>7 7 8<br>7 8 8               | 50                                           | 8               | 8 9 8                                        | 88                                        |
| Site :  Crops :  Crops :  (days)   15   15    (Eto) mm/day 4.20    | Som Pad | i,     | -   | - 4                       |                 | \$400 B000 B000                                     | 25<br>25<br>25                              |                                  | 78<br>78<br>78<br>78<br>78           | 92                                           | 8               | 888                                          | 740                                       |
| Site :  Crops :  Crops :  (days)   15   15    (Eto) mm/day 4.20    | coha-I) |        | 1   | 16                        | 4.20            | 110                                                 | 2 2                                         | \$                               | 32                                   | δ.                                           | 89              | 88<br>120<br>130                             | 1290                                      |
| Site:  Crops:  Crops:  Grops:  Hom  Wet Season Paddy Proposed cropping pattern / Crop coefficier  WP-1  WP-2  WP-2  WP-3  Top consumptive use (Etc)  WP-1  WP-2  WP-3  mm  WP-2  WP-3  mm  WP-2  MP-3  mm  WP-3  mm  WP-3  mm  WP-3  mm  WP-3  mm  WP-3  mm  WP-3  mm  WP-1  WP-1  MP-3  mm  WP-1  WP-1  MP-3  mm  WP-1  WP-1  mm  WP-1  WP-2  mm  WP-1  WP-1  mm  WP-1  MP-3  MP-3  mm  WP-1  MP-3  | 28      | Tan.   | -   | 15                        | 4.20<br>63      |                                                     | 95                                          | 182<br>182                       | 39                                   |                                              | æ               | 35<br>118<br>118                             | 1390                                      |
| Signature Spiration (Eto) Incomparation (Eto) Incomparation (Eto) Incomparation (Eto) Incomparation (Eto) Incomparation (Eto) Incomparation (IR) I |         | -      | L.  | . L                       | m/day<br>mm     | oefficie:                                           | uu uu                                       | un un                            |                                      |                                              | unu.            |                                              | mm<br>m3/ha                               |
| item  Yet Season Paddy Proposed cropping pattern  WP-1  WP-2  WP-2  WP-2  WP-3  and preparation (IR)  WP-2  WP-2  WP-3  and preparation (IR)  WP-2  WP-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ಹರ      | 4,50   | 3 1 | ays)                      |                 | / Crop c                                            |                                             |                                  |                                      |                                              |                 |                                              | · · · ·                                   |
| Item Item Item Item Item Item Item Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | N.     |     | j<br>I                    | spiration (Eto) | n Paddy<br>rropping pattern /                       | umptive use (Elc)                           | aration (IR)                     | E                                    | r replacement (R                             | ainfall (ER)    | r requirement                                | requirement                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |     | Item                      |                 | II. Wet Seaso<br>(1) Proposed (<br>- WP-1<br>- WP-2 | (2) Crop cons<br>- WP-1<br>- WP-2<br>- WP-3 | (3) Land prep WP-1 - WP-2 - WP-3 | (4) Percolation - WP-1 - WP-2 - WP-2 | (5) Water laye<br>. WP-1<br>. WP-2<br>. WP-3 | (6) Effective r | (7) Field wate<br>- WP-1<br>- WP-3<br>- WP-3 | (8) Diversion requirement                 |

Table 2.3 Irrigation Water Requirement in Ncoha II Project (2/4)

Site : Crops :

| Month                                                                       | thr            | Jan        |          | Feb.       | -           | Mar  | _             | Apr.   | -           | May        |               | Jun.  |           | Ę                                       |         | Aug.               |               | Sep.           | J           | Oct.       | Nov. |      | D<br>S   |      | T I I I    |
|-----------------------------------------------------------------------------|----------------|------------|----------|------------|-------------|------|---------------|--------|-------------|------------|---------------|-------|-----------|-----------------------------------------|---------|--------------------|---------------|----------------|-------------|------------|------|------|----------|------|------------|
| (p)                                                                         | 1              | -          | 2        | -          | 2           | -    | 2             | _      | 2           | -          | 2             | _     | 2         | Ļ                                       | 2       | ŀ                  |               |                |             | . 2        | 1    | 2    | -        | 2    |            |
| liem                                                                        | 1 /<br>2 /     | 15         | 19       | 14         | 14          | 15   | 16            | 15     | 15          | 15         | 16            | 15    | Ш         | 15                                      |         | 15                 | 16 15         |                | 3 15        | 1          | 15   | 15   | 15       | 16   |            |
| I. Evaporanspiration (Eto)                                                  | mm/day<br>mm   | 4.20<br>63 | 4.20     | 4.20<br>59 | 4.20<br>59  | 4.35 | 70            | 4.45 4 | 4.45        | 4.19       | 4.19 3.<br>67 | 3.99  | 3.99 4.29 | 29 4.29<br>64 69                        |         | 4.86 4.86<br>73 78 | 5.45<br>78 82 | 5 5.45<br>2 82 | 5.68        | 5.68<br>91 | 5.17 | 5.17 | 4.4<br>8 | 4.42 | 1.681      |
| Dry Scason Paddy     Proposed cropping pattern / Crop coefficient     Dro 3 | Crop coefficie | Ħ          |          |            | <del></del> |      |               |        | AJ.         | -<br>-     | 91            | 1 017 | 1.05      | 1.05 0.95                               | 95 000  | ΙQ                 |               |                |             |            |      |      |          |      |            |
| - IOP-7                                                                     |                |            |          |            |             |      |               |        |             |            |               |       |           | 1.05 1.05                               | 35 0.95 | 95 0.00            | ट             |                |             |            |      |      |          |      |            |
| . DP-3                                                                      |                |            |          |            |             |      | <u> -,</u>    |        |             |            |               | 8     |           | 1.10 1.05                               | 35 1.05 | 35 0.95            | 92            | ( <b>6</b> 1   |             |            |      |      |          |      |            |
| (2) Crop consumptive use (Etc)                                              |                |            |          |            |             |      |               |        | <del></del> |            |               |       |           |                                         |         | ć                  |               |                |             |            |      |      |          |      | Ş          |
| - DP-1                                                                      | am             |            |          |            |             |      |               |        |             |            | 4/            | 8 ;   |           |                                         |         |                    |               |                |             |            |      |      |          |      | r c        |
| - DP-2                                                                      | uu             |            |          |            |             |      |               |        |             |            |               |       | 8 ;       | 89                                      | 2/.     | و و                | 5 ;           |                |             |            |      |      |          |      | 341        |
| - DP-3                                                                      |                |            |          |            |             |      |               |        |             |            |               |       |           |                                         |         |                    |               | <b>-</b>       |             |            |      |      |          |      | લ          |
| (3) Land preparation (IR)  DP-1                                             | and            |            |          |            |             |      |               |        | 183         | 182        | 8             |       |           |                                         |         |                    |               |                |             |            |      |      |          |      | 365        |
| - DP-3                                                                      |                |            |          |            |             |      |               |        |             |            | 192           | 179   |           |                                         |         |                    |               |                |             |            |      |      |          |      | 37         |
| (4) Percolation                                                             |                |            |          |            | ·····       |      | ,             |        |             |            |               |       |           |                                         |         | c                  |               |                | <del></del> |            |      |      |          |      |            |
| . DP-2                                                                      |                |            |          |            |             |      |               |        |             |            |               | 88    | 300       | . E.                                    | 33      | <u>ک</u> و         | 0             |                |             |            |      |      |          |      |            |
| - DP-3                                                                      | mm             |            |          |            |             |      |               |        |             |            |               |       |           |                                         |         |                    | •             | 0              |             |            |      |      |          |      |            |
| (5) Water layer replacement (RW)                                            | S              |            |          |            |             |      |               |        |             |            |               |       |           | . {                                     |         |                    |               |                |             |            |      |      |          |      |            |
| . DP-1                                                                      | uu u           |            |          |            |             |      |               |        |             |            |               | 8     |           | ନ<br>ଜ                                  | 20      |                    |               |                |             |            |      |      |          |      |            |
| - DF-2<br>- DP-3                                                            | E E            |            |          |            | · · · · · · |      |               | •      |             |            |               |       |           | S                                       |         | 20                 |               |                | . <u>.</u>  |            |      |      |          |      |            |
| (6) Effective rainfall (ER)                                                 | wu             | \$         | 8        | 8          | 8           | 42   | 45            | 19     | <u>5</u>    | <b>∞</b> 0 | •             | ٧n    | 4         | -                                       | 7       | 0                  |               | 63             | φ<br>•      | 01         | 35   | 35   | 8        | 8    | 616        |
| (7) Field water requirement                                                 | 9              |            | <u>.</u> | •          |             |      | <del></del> - |        | <u>\$</u>   |            |               |       |           |                                         |         |                    |               |                |             |            |      |      |          |      | 95         |
| . DP-2<br>. DP-3                                                            | um<br>um       |            | <u> </u> |            | •           |      |               | *      |             | 174 1      | 186           | 174   | 92 29     | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 152     | 157<br>157         | 30.0          | -0             |             |            |      |      |          | -    | ₹ <b>%</b> |
| (8) Diversion requirement                                                   | E E            |            |          | ****       |             |      |               |        | <u>*</u>    | 178 2      |               |       |           | 1                                       |         |                    | *             |                |             |            |      |      |          |      | 1,468      |
|                                                                             | m3/h3          |            |          |            |             |      | _             |        |             |            |               |       |           |                                         |         |                    |               | ö              | _           |            |      |      |          | _    | 14.0       |

Source : JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Source: JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Table 2.3 Irrigation Water Requirement in Ncoha II Project (3/4)

Site : Crops :

| Monun<br>(days)                                                                                                                                |             | <br>         | 7        |                          | 7                                   |                                       | 7       | -             | C1           |                                | 77                         |                   | 77       |            | <u>l</u> | 1 2  |                                       | 1 2          | - 1            | 77                            | - 1                                                                               | 7              | -          | را لا    |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|--------------------------|-------------------------------------|---------------------------------------|---------|---------------|--------------|--------------------------------|----------------------------|-------------------|----------|------------|----------|------|---------------------------------------|--------------|----------------|-------------------------------|-----------------------------------------------------------------------------------|----------------|------------|----------|---------------------------|
| Item                                                                                                                                           | 1           | 15           | ۶        | 4                        | 4                                   | - 1                                   | <u></u> | 1             | -            | 15 1                           |                            | 2                 | 2        | 2          | 2        | -    |                                       |              |                |                               |                                                                                   | 2              |            | 2        | 1                         |
| Evapotranspiration (Eto) mm                                                                                                                    | mm/day      | 4.20 4       | 4.20     | 85.<br>58.               | 88                                  | 4.35 4.<br>65                         | 4.35 4  | 4.45 4.<br>67 | 67 67        | 4.19 4.19<br>63 67             | 2 3.99                     | 93.99             | 64.29    | 4.29       | 9 4.86   | 3 78 | 8 82                                  | 5.45         | 5.68           | 5.68                          | 5.17<br>78                                                                        | 5.17           | 4.42<br>66 | 4.42     | 1,681                     |
| II. Palawija(1), (2): Mungbans and Red onion (1) Proposed cropping pattern / Crop coefficient(Kc) - Pwj(1),(2)-1 - Pwj(1),(2)-2 - Pwj(1),(2)-3 | efficien    | on:<br>I(Kc) |          |                          | , , , , , ,                         |                                       | Ž       | Mungbeans     | 8            | 0.75 1.05<br>0.45 0.75<br>0.45 | 5 0.30<br>5 1.05<br>5 0.75 | 0 30<br>S 105     | 0.30     | real       |          |      | Red onion                             | nion<br>0.50 | 020            | 0.00<br>0.60<br>0.50          | 0.00<br>0.00                                                                      | 0.95           | 0.75       | <u> </u> |                           |
| (2) Crop consumptive usc(Etc) - Pwj(1),(2)-1 - Pwj(1),(2)-2 - Pwj(1),(2)-3 - Pwj(1),(2)-3                                                      | u u u       |              |          |                          |                                     |                                       |         |               | 90           | 7 28 2                         | 20 18<br>30 63<br>45       | 5 18              | 9.       | •          |          |      | ·                                     | 14           | 51 43          | 8 8 8<br>8 8 8                | 58<br>74<br>47                                                                    | 74             | 90         |          |                           |
| (3) Effective rainfall (ER) m                                                                                                                  | шш          | \$9          | 62       | *                        | प्र                                 | 14                                    | 4       | 20            | 20           | φ.                             |                            | <b>ب</b>          | <u>ر</u> | 0          | _        | 0    | 0                                     | 0            | :              | 12                            | 37                                                                                | 88             | z          | 22       |                           |
| (4) Field water requirement - Pwj(1),(2)-1 - Pwj(1),(2)-2 m - Pwj(1),(2)-3 m                                                                   | mm<br>mm    |              |          |                          |                                     |                                       |         |               | 10           | 38 61<br>19 41<br>21           | 113                        | 3<br>8 13<br>0 58 |          | •          |          |      |                                       | 14           | 32             | 4 6 6 6                       | 21<br>37<br>10                                                                    | 36             | 0          |          |                           |
| (5) Diversion requirement m3                                                                                                                   | mm<br>m3/ha |              |          |                          |                                     |                                       |         |               | 7 <u>7</u> % | 38 83<br>380 830               | 740                        | 4 47              | 27 13    | <b>~</b> ^ | <u></u>  |      |                                       | 27<br>270    | 28 48<br>80 84 | 00.1                          | 45<br>450                                                                         | 37             | 00         |          | 5,190                     |
| III. Palawija (3): Mungbeans (1) Proposed cropping pettern / Crop coefficient(Kc) - Pwj(3)-1 - Pwj(3)-2 - Pwj(3)-3                             | efficien    | (Kc)         |          |                          |                                     |                                       |         |               |              |                                |                            |                   |          |            |          |      | Mung                                  | Mungbeans    | 0.75           | 0.45<br>0.45                  | 0.0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 105 201        | 08:0       |          |                           |
| (2) Crop consumptive use(Etc) - Pwj(3)-1 m - Pwj(3)-2 m - Pwj(3)-3                                                                             | mm<br>mm    |              |          |                          | · · · · · · · · · · · · · · · · · · |                                       | · ·     |               |              |                                |                            |                   |          |            |          |      | · · · · · · · · · · · · · · · · · · · | 37           | 2 %            | 88<br>14                      | 23<br>81<br>58                                                                    | 23             | . 8        |          |                           |
| (3) Effective rainfall (ER) m                                                                                                                  | mm          | \$6          | 62       | æ                        | *                                   | 14                                    | 4       | 22            | 8            | 0.                             | - 6                        | ٧,                |          | 0          | -        | .0   | 0                                     | 0            | 11             | 12                            | 33                                                                                | 38             | *          | 25       |                           |
| (4) Field water requirement m - Pwj(3)-1 m - Pwj(3)-2 m - Pwj(3)-3 m (5) Diversion requirement m                                               |             |              | <u> </u> | S. Market Market San Jan |                                     | · · · · · · · · · · · · · · · · · · · |         |               |              |                                |                            |                   |          |            |          |      |                                       | 37 28        | 53<br>53<br>53 | 83<br>86<br>87<br>112<br>1120 | 044 44                                                                            | 28 43<br>28 43 | 0.00       |          | 173<br>128<br>93<br>2,630 |

T - 11

Table 2.3 Irrigation Water Requirement in Ncoha II Project (4/4)

|      | è                      |
|------|------------------------|
|      | Cabbage                |
|      | ূৰ                     |
|      | ¥                      |
|      | ě                      |
|      | 9                      |
| S    | 18                     |
| ij   | ē                      |
| 30   |                        |
| Š.   | 0                      |
|      | 2                      |
| 7    | 2                      |
| 55   | 1 3                    |
| 즐    | 1                      |
| 9    | ğ                      |
| Ž    | Palawija (2/2): Tomate |
| E03Z | Pater                  |
| 00Z  | Pater                  |
| ••   |                        |
| ••   |                        |
| ••   |                        |
| ••   | Crops : Pater          |

| Annual | <br> <br> | _    | 1,681                    |                                                                                                                          |                                                            | 591                     | 331<br>294<br>242                                                     | 577<br>5,780              |                                                                                                                 | <u> </u>                                                       | 291                         | 259<br>217<br>147                                                                     | 4,150    |
|--------|-----------|------|--------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|----------|
| ľ      | 2         | 16   | 4.42                     |                                                                                                                          | ···                                                        | 57                      |                                                                       |                           |                                                                                                                 |                                                                | 57                          |                                                                                       |          |
| Dec.   | -         | 15   | 4.42<br>66               | 0900                                                                                                                     | 04                                                         | 54                      | . 0                                                                   | 00                        | 08:0                                                                                                            | 53                                                             | 8                           | · ö ' c                                                                               | 00       |
|        |           | 15   | 5.17                     | 090                                                                                                                      | 47                                                         | 38                      | e 42                                                                  | 220                       | 88 8                                                                                                            | 62                                                             | 38                          | 32 32                                                                                 | 370      |
| Nov    | -         | 15   | 5.17<br>78               | 0.00                                                                                                                     | 47<br>62<br>81                                             | 37                      | 10<br>25<br>44                                                        | 53<br>530                 | 0.90                                                                                                            | 62<br>70<br>74                                                 | 33                          | 23.82                                                                                 | 930      |
|        | ~1        | 16   | 5.68                     | 10.80                                                                                                                    | 9,83                                                       | 12                      | 83                                                                    | 1,520                     | 8 8 6                                                                                                           | % % <b>%</b>                                                   | 12                          | 52 SE                                                                                 | 8        |
| Oct.   |           | 15   | 5.68<br>85               | 1.05                                                                                                                     | 8 8 4                                                      | 11                      | 78<br>78<br>53                                                        | 1400<br>1,400             | 0.95<br>0.70<br>0.45                                                                                            | 81<br>60<br>38                                                 | Ξ                           | 64 57 P                                                                               | 970      |
| 1      | 2         | 15   | 5.45                     | 0.75<br>0.45                                                                                                             | 86<br>61<br>37                                             | 0                       | 86<br>61<br>37                                                        | 1,230                     | 0.00                                                                                                            | 37                                                             | 0                           | 37.25                                                                                 | 630      |
| Sep.   | -         | 15   | 5.45<br>82               | 0.75                                                                                                                     | 37                                                         | 0                       | 37                                                                    | 65<br>650                 | \$ <del>6</del>                                                                                                 | 37                                                             | 0                           | 37.                                                                                   | 250      |
| ١.     | 7         | 16   | 4.86                     | 0.45                                                                                                                     | 35                                                         | 0                       | 35                                                                    | 23                        | Cabbage                                                                                                         | ·                                                              | 0                           |                                                                                       |          |
| Aug.   | -         | 15   | 4.86                     | Tomato                                                                                                                   |                                                            | 0                       |                                                                       |                           | S                                                                                                               |                                                                | •                           |                                                                                       |          |
|        |           | 16   | 69                       |                                                                                                                          |                                                            | ō                       |                                                                       |                           |                                                                                                                 |                                                                | 0                           | _,                                                                                    | -        |
| Jū     | -         | 15   | 4.29<br>42               |                                                                                                                          |                                                            | 0                       |                                                                       |                           | •                                                                                                               |                                                                | 0                           |                                                                                       |          |
|        | 1         | 15   | 3,98                     |                                                                                                                          |                                                            | ν.                      |                                                                       |                           |                                                                                                                 |                                                                | 'n                          |                                                                                       |          |
| Jun.   |           | 15   | 3.98<br>8.08             |                                                                                                                          |                                                            | 3                       |                                                                       |                           |                                                                                                                 |                                                                | 5                           | =                                                                                     |          |
| Ţ      |           | 91   | 4.19                     |                                                                                                                          |                                                            | 9,                      |                                                                       |                           |                                                                                                                 |                                                                | 0                           |                                                                                       |          |
| May    | ]-        | 15   | 4.19<br>63               |                                                                                                                          |                                                            | ο.                      |                                                                       |                           |                                                                                                                 |                                                                | σ                           |                                                                                       |          |
| 1      | 7         | 15   | 4.45                     |                                                                                                                          |                                                            | 22                      |                                                                       |                           |                                                                                                                 |                                                                | 70                          |                                                                                       |          |
| Apr.   | ŀ         | 15   | 4,45<br>67               |                                                                                                                          |                                                            | 20                      |                                                                       |                           |                                                                                                                 |                                                                | 20                          |                                                                                       |          |
|        |           | 19   | 4.35                     |                                                                                                                          |                                                            | 4                       | , , , , , , , , , , , , , , , , , , ,                                 |                           |                                                                                                                 |                                                                | 4                           | · · · · · · · · ·                                                                     |          |
| Mar.   | -         | 55   | 4.35                     |                                                                                                                          |                                                            | 4                       |                                                                       |                           |                                                                                                                 |                                                                | 4                           |                                                                                       | ,        |
|        | 7         | 14   | 4.20                     |                                                                                                                          |                                                            | 54                      |                                                                       |                           |                                                                                                                 |                                                                | \$                          |                                                                                       |          |
| Feb.   | -         | 4    | 4.20<br>59               |                                                                                                                          |                                                            | \$                      |                                                                       |                           |                                                                                                                 |                                                                | ¥                           |                                                                                       |          |
|        | 7         | 16   | 4.20                     |                                                                                                                          |                                                            | 62                      |                                                                       |                           |                                                                                                                 |                                                                | 62                          | · · · · · · · · · · · · · · · · · · ·                                                 |          |
| Jan.   | -         | 15   | 4.20<br>63               | mt(Kc)                                                                                                                   |                                                            | 59                      |                                                                       |                           | m(Kc)                                                                                                           |                                                                | 86                          |                                                                                       |          |
|        | <br>م     |      | mm/day                   | op coefficie                                                                                                             | ###<br>###                                                 | Ē                       | E E E                                                                 | тт<br>т3/ћа               | op coefficie                                                                                                    | E E E                                                          | E C                         |                                                                                       | т3/ћа    |
| Month  | (davs)    | Jiem | Evapotranspiration (Eto) | II. Palawija(4): Tomato<br>(1) Proposed cropping pauern / Crop coefficient(Kc)<br>- Pwj(4)-1<br>- Pwj(4)-2<br>- Pwj(4)-3 | Crop consumptive usc(Etc) - Pwj(4)-1 - Pwj(4)-2 - Pwj(4)-3 | Effective rainfall (ER) | (4) Field water requirement<br>- Pwj(4)-1<br>- Pwj(4)-2<br>- Pwj(4)-3 | (5) Diversion requirement | III. Palawija (5): Cabbage (1) Proposed cropping pattem / Crop coefficient(Kc) - Pwj(5)-1 - Pwj(5)-2 - Pwj(5)-3 | (2) Crop consumptive use(Etc) - Pwj(S)-1 - Pwj(S)-2 - Pwj(S)-3 | (3) Effective rainfall (ER) | (4) Field water requirement - Pwj(5)-1 - Pwj(5)-3 - Pwj(5)-3 (5) Divorcion remirement |          |
| 1      | ·         |      | <u> </u>                 | <b>E</b> C                                                                                                               | 8                                                          | 6                       | <u> </u>                                                              | 9                         | <del>i</del> e                                                                                                  | (3)                                                            | (3) E                       | <u>4</u> . 6                                                                          | <u>.</u> |

Source: JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Table 3.1 Estimated Catchment Rainfall in Ncoha II Embung Site

|          | Annual     |          | 1.<br>2 | 1,471 | 699   | 1 227          | 1.066        | 1,197 | 1,023      | 1,243    | 1,272 | 616       | 617      | 1,154    | 722        | 186        | 1,328 | 1,188 | 1329     | 1,452      | 38   | 003          | 1374         | 1.1  |
|----------|------------|----------|---------|-------|-------|----------------|--------------|-------|------------|----------|-------|-----------|----------|----------|------------|------------|-------|-------|----------|------------|------|--------------|--------------|------|
|          |            | II       | 99      | 145   | 53    | 50             | 113          | 61    | 128        | 123      | 91    | 0         | 111      | 35       | 2          | 45         | Ó     | 15    | 4        | 169        | 108  | 6            | 231          | 79   |
| Unit: mm | Dec        | I        | 69      | 151   | 257   | 5              | 6            | 149   | 193        | <u>3</u> | 4     | 0         | 152      | 87       | 12         | 0          | 110   | 149   | 128      | 479        | 4.   | 136          | 141          | 127  |
| ñ        | _          | 11       | 110     | 119   | 17    | 6              | 183          | 98    | 98         | 59       | 18    | 0         | 46       | 105      | 9          | 261        | 57    | 117   | 22       | 1.14       | 173  | 43           | œ            | 83   |
|          | voN        |          | 174     | 101   | _     | , <u>7</u>     | 30           | 8     | 9          | 0        | 52    | 0         | m        | 86       | 0          | 30         | 35    | _     | 33       | 13         | 36   | <del>%</del> | 0            | 41   |
|          | _          |          | 0       | 35    |       | 7.             | 35           | 52    | 86         | 0        | 36    | 0         | 0        | 0        | 0          | 88         | (4    | 10    | *        | 0          | 4    | 9            | 22           | 29   |
|          | ĕ          | H        | 9       | 0     | · C   | ) C            | ) (°         | . 5   | 0          | 0        | 22    | Ö         | ō        | 6        | Ö          | 19         | 13    | 0     | 0        | 0          | \$   | 0            | 2            | 7    |
|          | _          | _        |         |       |       |                |              | , (n  |            |          |       |           |          |          |            |            |       |       |          |            |      |              |              | 5    |
| -        | Sep        | II       |         |       |       |                |              | 201   |            |          |       |           |          |          |            |            |       |       |          |            |      |              | 0            | 9    |
|          |            | -        |         |       |       |                |              |       |            |          |       |           |          |          |            |            |       |       |          |            |      |              |              |      |
|          | Aug        | I        | 0       |       |       |                | -            | 0     |            |          | 7     | -         |          | _        | _          |            | 0     | 0     | 0        | , to       | 0    | 0            | 0            |      |
|          | Ā          |          | С       |       |       |                | 5 0          |       | 0          | C        |       |           |          |          |            | 0          |       |       |          |            |      |              |              |      |
|          |            | Ξ        | С       | · C   | · C   | > 0            | 7.0          | - C   | 0          | · C      | · (r  | C         | 0        | · c      | C          | 0          | 0     | 0     | C        | 0          | 0    | 26           | ō            | 2    |
|          | F          | -        | c       | ) OC  | - C   | 1 0            |              | ) C   | 0          | 0        | ç     | 3 0       | 0        | · C      | · C        | 0          | 0     | 0     | <u> </u> | 'n         | 0    | 7            | 7            | 3    |
|          | -          | <u></u>  | -       | ò     | S C   | ) r            | - 6          | ) C   | - C        | · Č      | 2     | <u> </u>  | · C      | <u> </u> | · C        | 0          | 14    | 0     | 34       | 4          | 0    | 61           | 0            | 7    |
|          | E          |          | 1.1     | ; •   | > <   | > <            | > <          | > <   | o C        | · C      | , 4   | 3 %       | ; =      | ` ;      | ; c        | ·-         | . 0   | 21    | 4        | 0          | oc   | 29           | m            | 101  |
|          |            | -        |         | , v   | } <   | <b>5</b> 6     | <del>?</del> | 1 [   |            | o C      | 2 0   | ۲ رد<br>م | 2 2      | 1.5      | <u> </u>   | ~          | 10    | 4     | · C      | ) C        | · (* | 25.          | 0            | 12   |
|          | Sep.       |          |         | Ý     | ١     | <u>ح</u> د     | , n          | 1 4   | 2 -        | 7        | 10    | 1 00      | , c      | 77       | -          | > :_       | ç     | 2     | · C      | , <u>-</u> | , Q  | 4            | 23           | 18   |
|          | L          |          | 128     | 3,5   | 3 -   | <del>,</del> t | 47           | 11    |            | > <      | ) r   | - C       | - C      | ) ¢      | > <        | 2 4        | 30    | 4     | 3        | 8 4        | · (* | 17           | 00           | 21   |
|          | Amr        | -        |         | - [   | 2 2   | 3              | 4 :          | 5.5   |            | 7.5      |       | ţc        | <u> </u> | : 5      | <u> </u>   | 2 2        | 3 30  | ; -   | . 2      | 3 4        | 0    | <u>(m</u>    | 0            | 8    |
|          | -          | ļ-       | 1       |       |       |                |              | _     | -1         |          | •     |           |          |          |            |            |       |       | _        | •          |      |              |              |      |
|          | Mar        | ŀ        | 1       | Ì     | •     |                |              | 172   |            |          |       |           |          |          |            |            |       |       |          |            | Ì    |              |              |      |
|          |            | -        |         |       |       |                |              | Ø Y   |            |          |       |           |          |          |            |            |       |       |          |            |      |              |              |      |
|          | Hoh<br>Yes | -        | 1       |       |       |                |              | 747   |            |          |       |           |          |          |            |            |       |       |          |            |      |              |              |      |
|          | à          | -        | 153     | 325   | 707   | 3              | 132          | 1 00  | 2 0        | 2 5      | 2 6   | 7 6       | 2 6      | 770      | <b>1</b> 0 | 9 6        | 326   | 3.5   | 3 5      | 1 0        | 8    | 1,6          | 7            | 100  |
|          |            |          | 565     | 200   | 3     | 14             | 3:           | 4.2   | <u>.</u> ч | 2,00     | 3 5   | N 6       | 1 1      | - 2      | 7 6        | <u>.</u> c | ξ     | 27.2  | 1 0      | 3 4        | 3,5  | 3            | <del>7</del> | 4:   |
|          | ,          | 14       | 00      | è     | 2 1   | 5              | 9            | 5 ,   | 0 0        | 000      | 5     | 200       | 3 5      | 7 9      | 011        | 200        | 74    | 5 6   | 7        | 200        | 1.5  | . 0          | 213          | 120  |
|          | -          | <u>.</u> | 3 8     | 2.5   | - 176 | 972            | 973          | 4/6   | 27.0       | 27.0     | 20.   | 0,0       | 7 6      | 2 2      | 100        | 7 60       | 087   | 086   | 200      | 080        | 080  | 080          | 8            | 1620 |
|          | L          |          | الد     |       |       | _              | =            |       |            |          |       |           |          |          |            |            |       |       |          |            |      |              |              | 1    |

Table 3.2 Estimated Discharge at Ncoha II Embung Site

| Annual |     | 1 4.930 | 6 19   | 4 2.797 | 3 5,271      | 3 4,484  | 9 4,933 |              |              |          | `    | ``   | _        |     | _            | 0 5,672        | 0 5,015      | 0 5.671    | 5 6,226  | 5 057 | 0 4,137        | 5,936 |   |
|--------|-----|---------|--------|---------|--------------|----------|---------|--------------|--------------|----------|------|------|----------|-----|--------------|----------------|--------------|------------|----------|-------|----------------|-------|---|
| Dec    |     | 162 40  | _      | 33      | <del>2</del> | 77 49.   | 57 269  |              |              |          |      | _    | <u>x</u> |     |              | <del>2</del> 2 | 2            | 3          | 12 74    | 26 47 | ¥              | 101   |   |
|        | -   | L       | 25     | 0 1.13  | 23           | 30       | 657     | _            |              | 0 15     | 0    |      | 384      |     |              |                |              |            | 3 2,11   | 326   | _              | 0 622 |   |
| Nov    | II  | 767 485 |        | 0       | 36           | 52       | 375     | 3,           |              | 23       | 0    | 0 41 | 32       | 0   | 32 1,151     | <u>x</u>       | 0 51         | 32         | <u>ه</u> | 26    | <u>8</u>       | 0     |   |
|        | ľ   | 0       | ₹<br>4 | 0       | 0            | <u>¥</u> | 25      | 20           | <del>ö</del> | 23<br>26 | 0    | 0    | <u>0</u> | 0   | 388          | <del>5</del>   | 0            | <u>0</u> 2 | 0        | 0     | <del>=</del> = | 26    |   |
| ĕ      | =   | 0       | 0      | 0       | ō            | 5        | 0       | 3            | 0            | 97       | 0    | ó    | 0        | Ö   | 0            | 0              | 0            | 3          | 0        | 282   |                | 0     |   |
| -      |     | 0       | 0      | 0       | 0            | 0        | 0       | 0            | 0            | 0        | 0    | 0    | 110      | 0   | 0            | 234            | 0            | 0          | 0        | 0     | 0              | 0     |   |
| Sep    |     | 0       | 0      | 0       | 0            | 0        | 0       | 0            | 0            | 0        | 0    | 0    | 123      | 0   | 0            | 132            | 0            | 0          | 0        | 0     | 0              | 0     |   |
| _      |     | 0       | 0      | 0       | 0            | 0        | 0       | <u></u>      | 0            | 0        | ō    | 0    | 0        | 0   | <del>-</del> | ō              | 0            | ō          | 0        | 0     | 0              | 0     |   |
| Aug    |     | Ö       | 0      | 6       | 0            | Ó        | 0       | <del>-</del> | <del>-</del> | 0        | 0    | 0    | 0        | 0   | ô            | 0              | <del>-</del> | 0          | 0        | 0     | 0              | 0     |   |
| -      | =   | 0       | 0      | 0       | Ö            | 0        | 0       | 0            | 0            | 0        | 0    | 0    | 0        | 0   | 0            | Ö              | 0            | 0          | 0        | 0     | 115            | 0     |   |
| 3      | -   | ٥       | 0      | 0       | 0            | 0        | 0       | 0            | 0            | 132      | 0    | 0    | 0        | 0   | 0            | ō              | 0            | 0          | 0        | Ö     | 0              | 0     | , |
|        | =   | 0       | 0      | 0       | 0            | 0        | 0       | 0            | 0            | 0        | 0    | 0    | 0        | 0   | 0            | 0              | 0            | 150        | 0        | 0     | 569            | 0     |   |
| L      |     | 0       | 0      | 0       | 0            | 0        | 0       | 0            | 0            | 115      | 0    | 0    | 225      | 0   | 0            | ō              | 93           | Ö          | 0        | 0     | 128            | 0     | i |
| >      |     | 0       | 0      | 0       | 306          | C        | 0       | 0            | 0            | 0        | 150  | C    | 0        | 0   | 0            | O              | 0            | C          | C        | 0     | 110            | 0     |   |
| May    | -   | 0       | 0      | C       | 243          | 9 0      | 203     | 0            | 0            | 0        | 286  | -    | Š        | C   | 0            | 221            | Ç            | ¢          | · C      | 128   | 0              | 46    |   |
| 'n     | F   | 357     | 110    | C       | 2            | 30       | 202     | 0            | 0            | c        | · C  | · C  | 0        | • = | C            |                | 8            |            |          | 0     | 0              | 0     |   |
| Apr    |     | -       |        |         |              |          |         |              |              |          | _    |      |          |     |              |                |              |            |          | 172   |                |       |   |
| Mar    | =   | 1       | _      | •       |              |          |         |              |              |          |      |      |          |     |              |                |              |            |          | 930   |                |       |   |
| 2      | -   | 1       |        |         |              |          |         |              |              |          |      |      |          |     |              |                | -            | •          |          | ğ     |                |       |   |
| Hoh    | =   |         |        |         |              |          |         |              |              |          |      |      |          |     |              |                |              |            |          | \$ 0  |                |       |   |
|        | -   | 1       |        |         |              |          |         |              |              |          |      |      |          |     |              |                |              |            |          | 3 5   |                |       | ı |
| an.    |     | 1       |        |         |              |          |         |              |              |          |      |      |          |     |              |                |              |            |          | 207   |                |       | ļ |
| -      | ŀ   | +       |        |         |              |          |         |              |              |          |      |      |          |     |              |                |              |            |          | 3,5   |                |       |   |
|        | 100 |         | 107    | 8       | 1072         | 6        | 1074    | 97.0         | 2.6          | 1070     | 0.00 | 0.00 | 200      | .00 | 000          | 8              | Š            | 3 8        | 000      | 8 6   | 8              | 8     |   |

Table 3.3 Probable Flood Discharge at Ncoha II Embung Site

|                                                                                                                                                                                                                                                          |                                                             |                                                        | i. |      |     |     |          |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|----|------|-----|-----|----------|-----|
| Characteristics of the catchment area Catchment Area (km2) Eelevation at Dam Site (1) (m) Maximum elevation in the catchment area (2) (m) Height (3)=(2)-(1) (h) Length of Catchment Area (1 (m) Flow velocity W2 (km/hr) Time of concentration T2 (hrs) | (km2)<br>(m)<br>(m)<br>(h)<br>(h)<br>V2 (km/hr)<br>T2 (hrs) | 12.60<br>100<br>1000<br>900<br>10,000<br>16.98<br>0.59 |    |      |     |     |          |     |
| Probable Flood Discherge                                                                                                                                                                                                                                 | rge                                                         |                                                        |    |      |     |     |          |     |
| Return Period                                                                                                                                                                                                                                            | (years)                                                     | 2                                                      | 5  | 10   | 20  | 20  | 100      | 200 |
| Rainfall                                                                                                                                                                                                                                                 | (mm/day)                                                    | 62                                                     | 86 | 109  | 120 | 133 | 143      | 152 |
| Rainfall intensity within the time of concentration                                                                                                                                                                                                      | (mm)                                                        | 21                                                     | 26 | 29   | 32  | 35  | 38       | 40  |
| Probable Flood Discharge                                                                                                                                                                                                                                 | (m3/s)                                                      | 59                                                     | 73 | <br> | 89  | 66  | 107      | 113 |
| Specific Discharge                                                                                                                                                                                                                                       | (m3/s/km2)                                                  | 5                                                      | 9  | 9    | 7   | ∞   | <b>∞</b> | 6   |

To estimate design rainfall, the Log Pearson III method is adopted. The rational method is adopted for estimation of the design flood discharge. C=0.8 is used to estimate designed flood discharge by the rational method.

## Volume 9 - 3

Table 3.4 Result of Water Quality Test in Ncoha II Embung Site

|     | DESCRIPTION                              | UNIT                 | 1                              | 2           | 3           | 4                                | Max. Limit of B Class    |
|-----|------------------------------------------|----------------------|--------------------------------|-------------|-------------|----------------------------------|--------------------------|
|     |                                          |                      | Upstream of<br>proposed embung | Embung Site | Embung Site | downstream of<br>proposed embung | by GR. NO. 20/1990       |
| i.  | PHYSICS                                  |                      |                                |             |             |                                  |                          |
| 1   | Temperature                              | С                    |                                |             |             | 30.00                            | Normal water temperature |
|     | Dissolved solid matter                   | mg/liter             |                                |             |             | 346.00                           |                          |
|     | Electric Conductivety                    | umhos/cm             |                                |             |             | 472.00                           |                          |
| II. | CHEMISTRY                                |                      |                                |             |             | •                                |                          |
|     | a. Unorganic chemistry                   |                      |                                |             |             |                                  |                          |
|     | **                                       |                      | 4                              |             |             |                                  |                          |
|     | Mercury                                  | mg/liter             |                                |             |             | 0.00                             |                          |
|     | Ammonia                                  | mg/liter             |                                |             |             | 0.00                             |                          |
|     | Aroenic                                  | mg/liter             |                                |             |             | -                                | 0.05                     |
|     | Barium                                   | mg/liter             |                                |             |             | -                                | 5                        |
|     | Fеrro                                    | mg/liter             |                                |             |             | 0.00                             | •                        |
|     | Fluoride                                 | mg/liter             |                                |             | •           | 0,44                             | 1.5                      |
| 7   | Cadmium                                  | mg/liter             |                                |             |             | 0.00                             | 0.005                    |
| 8   | Chloride                                 | mg/liter             |                                |             |             | 41.80                            | . 600                    |
| 9   | Chronium, valense-6                      | mg/liter             |                                |             |             | 0.00                             | 0.05                     |
| 10  | Manganese                                | mg/liter             |                                |             |             | 0.00                             | 0.5                      |
| 11  | Nitrate, N                               | mg/liter             |                                |             |             | 0.18                             |                          |
| 12  | Nitrie, N                                | mg/liter             |                                |             |             | 0.11                             |                          |
| 13  | Dissolved Oxygen                         | mg/liter             |                                |             |             | 1.72                             |                          |
|     | рН                                       | -                    |                                |             |             | 6.80                             |                          |
|     | Selenium                                 | mg/liter             |                                |             |             | . 0.00                           | 0.0                      |
|     | Zinc                                     | mg/liter             |                                |             |             | 0.00                             |                          |
|     | Cyanide                                  | mg/liter             |                                |             |             | 0.00                             |                          |
|     | Sulphate                                 | mg/liter             |                                |             |             | 16.30                            |                          |
|     | Sulfide, H2S                             | mg/liter             |                                |             |             |                                  |                          |
|     | •                                        |                      |                                |             |             | 0.00                             |                          |
|     | Copper<br>Lead                           | mg/filer             |                                |             |             | 0.00                             |                          |
| 21  | Leau                                     | mg/liter             |                                |             |             | 0.00                             | 0.1                      |
|     | b. Organic Chemistry                     |                      |                                |             |             |                                  |                          |
| 1   | Aldrin and Dieldrin                      | mg/liter             |                                |             |             | 0.00                             | 0,013                    |
| 2   | Chlordane                                | mg/liter             |                                |             |             | 0.00                             |                          |
| 3   | DDT                                      | mg/liter             |                                |             |             | 0.00                             |                          |
|     | Endrine                                  | nik/liter            |                                |             |             | 0.00                             |                          |
|     | Fenol                                    | mg/liter             |                                |             |             | 0.00                             |                          |
| _   | Heptachlor and Heptachlor Epoxi-         |                      |                                |             |             | U.M.                             | 0.018                    |
|     | Carbon Cloroform Ektract                 | mg/liter             |                                |             |             | •                                | 0.01                     |
|     | Lindane                                  | mg/liter             |                                |             |             | 0.00                             |                          |
|     | Methoxychlor                             | mg/liter             |                                |             |             | U.(A.                            |                          |
|     | Oil and Fat                              | mg/liter             |                                |             |             | A no                             | 0.033                    |
|     |                                          |                      |                                |             |             | 0.00                             |                          |
|     | Organofosphate and Carbomate PCB         | mg/liter             |                                |             |             | 0.00                             |                          |
|     |                                          | mg/liter             |                                |             |             |                                  | Ni                       |
|     | Senyawa atife biru (Sulfaktan) Toxaphene | mg/liter<br>mg/liter |                                |             |             | 0.50<br>0.00                     |                          |
| Ш   | MICRO BIOLOGY                            | •-                   |                                | :           |             |                                  |                          |
| i   | Coliform tinja                           | per 100 m            | ı                              |             |             | 12 00                            | 3.000                    |
|     | Total Coliform                           |                      |                                |             |             | 13,000                           | •                        |
|     | roiai Comonii                            | per 100 m            | 1                              |             |             | 22,000                           | 10,000                   |

Heavy metals are classified into dissolved matter.

Source: JICA's Water Quality Test

NOTE:
\* = The water level shall be more than or equal to 6.
mg = miligram
ml = Milimeter
Bq = Bequerel

Table 7.1 Summary of Construction Cost in Ncoha II Project

|          | Item                                  | Amount (Rp. million) |
|----------|---------------------------------------|----------------------|
| I.       | Direct Construction Cost              | (sp. minon)          |
| 1.1      | Preparatory Works                     | 406                  |
| 12       | Embung Construction                   |                      |
|          | 1) Main dam                           | 4,251                |
| ·        | 2) Spillway                           | 2,846                |
|          | 3) Diversion Tunnel                   | 0                    |
|          | 4) Seepage protection works           | 0                    |
|          | 5) Miscellaneous                      | 710                  |
|          | Sub-total of 1.2                      | 7,807                |
| 1.3      | Irrigation Facilities                 | 313                  |
| 1.4      | Domestic Water Supply                 | 0                    |
| 1.5      | Embung Operation and Maintenance Road | 0                    |
|          | Sub-total of I.                       | 8,526                |
| II.      | Administration Cost                   | 426                  |
| III.     | Engineering Services                  | 1,279                |
|          | Sub-total of I, II & III              | 10,231               |
| IV.      | Physical Contingency                  | 1,535                |
|          | Sub-total of I, II, II, & IV          | 11,766               |
| V. :     | Contract Tax                          | 1,134                |
| VI.      | Land Acquisition Cost                 | 43                   |
|          | Sub-total I, II, III, IV, V & VI      | 12,942               |
| VII.     | Price Contingency                     | 2,588                |
| <i>y</i> | GRAND TOTAL                           | 15,531               |

Table 7.2 Direct Construction Cost in Ncoha II Project (1/2)

| ltem                                              | Unit | Unit Price<br>Rp. | Quantity | Total<br>1000 Rp. |
|---------------------------------------------------|------|-------------------|----------|-------------------|
| I. Dam                                            |      |                   |          |                   |
| 1. Main Dam                                       |      |                   |          |                   |
| 1.1 Earth/stone works                             |      |                   |          |                   |
| 1) Clearing                                       | m2   | 400               | 3,300    | 1,320             |
| 2) Excavation, common                             | m3   | 3,500             | 4,900    | 17,150            |
| , weathered rock                                  | m3   | 7,500             | 92,100   | 690,750           |
| , rock                                            | m3   | 11,500            | 2,000    | 23,000            |
| 3) Embankment, impervious soil                    | m3   | 8,000             | 81,700   | 653,600           |
| , filter                                          | m3   | 12,000            | 41,700   | 500,400           |
| , transition                                      | m3   | 12,000            | 71,700   |                   |
| , random material                                 | m3   | 6,000             | 331,200  | 1,987,200         |
| 4) Stone masonry                                  | m3   | 80,000            | 331,200  | 1,767,200         |
| 5) Rip-rap protection                             | m3   | 15,000            | 11,700   | 175 500           |
| 1.2 Grouting                                      | m    |                   | 11,700   | 175,500           |
| 1.3 Other miscellaneous works                     | 111  | 71,000            | 0        | 202,446           |
| Sub-total of 1.                                   |      |                   |          | 4,251,366         |
| 2. Spillway                                       |      |                   |          |                   |
| 2.1 Earth works                                   |      |                   |          |                   |
| 1) Clearing                                       |      | 400               | 12 200   | 4.000             |
| 2) Excavation, common soil                        | m2   |                   | 12,200   | 4,880             |
| , weathered rock                                  | m3   | 3,500             | 25,500   | 89,250            |
| , weathered rock                                  | m3   | 7,500             | 63,700   | 477,750           |
| 3) Backfill                                       | m3   | 11,500            | 38,200   | 439,300           |
| 2.2 Concrete works                                | m3   | 5,200             | 5,800    | 30,160            |
| 1) Concrete - A                                   |      | 250 000           | 220      | 00.500            |
|                                                   | m3   | 250,000           | 330      | 82,500            |
| 2) Concrete - B                                   | m3   | 170,000           | 6,270    | 1,065,900         |
| 3) Reinforcement bar                              | ton  | 1,500,000         | 17       | 25,500            |
| 4) Form                                           | m2   | 15,000            | 33,000   | 495,000           |
| 2.3 Other miscellaneous works                     | L.S  |                   |          | 135,512           |
| Sub-total of 2.                                   |      |                   |          | 2,845,752         |
| 3. Miscellaneous & Others                         |      |                   |          | 709,712           |
| Total - I.                                        |      |                   |          | 7,806,830         |
|                                                   |      |                   |          |                   |
| II. Irrigation Facilities                         | 1    |                   | İ        |                   |
| Canal works ( including the rehabilitation works) |      | l İ               | ļ        |                   |
| 1.1 Earth works                                   | ŀ    |                   |          |                   |
| 1) Clearing                                       | m2   | 400               | 21,300   | 8,520             |
| 2) Excavation                                     | m3   | 5,000             | 2,200    | 11,000            |
| 3) Embankment                                     | m3   | 6,300             | 3,300    | 20,790            |
| 1.2 Stone masonry                                 | m3   | 80,000            | 2,500    | 200,000           |
| 1                                                 | ""   | 00,000            | 2,500    | 200,000           |
| Sub-total of 1.                                   |      |                   |          | 240,310           |
|                                                   |      |                   |          |                   |
|                                                   |      |                   |          |                   |
|                                                   |      |                   | ·        | ·                 |
| <u> </u>                                          | 1    | .                 |          | 4.4               |

Table 7.2 Direct Construction Cost in Ncoha II Project (2/2)

| Item                                                                               | Unit         | Unit Price<br>Rp.                 | Quantity | Total<br>1000 Rp. |
|------------------------------------------------------------------------------------|--------------|-----------------------------------|----------|-------------------|
| Related structures     Turnout                                                     | nos.         | 2,540,000                         | 3        | 7,620             |
| 2.2 Syphon 2.3 Aqueduct                                                            | nos.         | 5,500,000<br>5,975,000            | 1        | 5,500<br>0        |
| 2.3 Cross drain     2.4 Irrigation division box     2.5 Division box for livestock | nos.<br>nos. | 4,700,000<br>900,000<br>1,170,000 | 1<br>29  | 4,700<br>26,100   |
| Sub-total of 2.                                                                    |              |                                   |          | 43,920            |
| 3. Miscellaneous & Others                                                          | L.S          |                                   |          | 28,423            |
| Total - II                                                                         |              |                                   |          | 312,653           |
| GRAND TOTAL                                                                        |              |                                   |          | 8,119,483         |

Table 8.1 Economic Construction Costs and Annual Disburement Schedule

Ncoha II Project

(Unit: Rp. million)

|   | Item                            | SCF  | Total cost | 1st year | 2nd year | 3rd year |
|---|---------------------------------|------|------------|----------|----------|----------|
| 1 | Direct Construction Cost        |      | 5,549      | 144      | 2,370    | 3,035    |
|   | 1) Preparatory Works            | 0.71 | 288        | 144      | 144      | 0        |
|   | 2) Dam Construction             |      |            |          |          |          |
|   | - Main dam                      | 0.71 | 3,018      | 0        | 1,509    | 1,509    |
|   | - Spillway                      | 0.71 | 2,021      | 0        | 606      | 1,415    |
|   | - Diversion tunnel              | 0.71 | 0          | 0        | 0        | 0        |
|   | - Seepage protection works      | 0.71 | 0          | 0        | 0        | 0        |
|   | Sub-total                       |      | 5,039      | 0        | 2,115    | 2,924    |
|   | 3) Irrigation Facilities        | 0.71 | 222        | 0        | 111      | 111      |
|   | 4) Domestic Water Supply System | 0.71 | 0          | 0        | 0        | 0        |
|   | 5) Dam O & M Road               | 0.71 | 0          | 0        | 0        | 0        |
| 2 | Administration Cost             | 0.90 | 383        | 10       | 164      | 209      |
| 3 | Engineering Services            | 0.90 | 528        | 210      | 159      | 159      |
| 4 | Physical Contingency            |      | 833        | 22       | 356      | 455      |
|   | Total                           |      | 7,293      | 386      | 3,049    | 3,858    |

Note: Standard Conversion Factors (SFC). Source; Pedoman Pengamatan dan Evaluasi Proyek-Proyek Pengairan, Direktorato Jeneral Pengairan, 1985

Table 8.2 Financial and Economic Prices of Farm Inputs and Outputs in NTB

|   |                |             |          | Lon       | bok      | Sum       | bawa                                    |
|---|----------------|-------------|----------|-----------|----------|-----------|-----------------------------------------|
|   |                |             |          | Financial | Economic | Financial | Economic                                |
|   | Item           |             | Unit     | Price *1  | Price *2 | Price *1  | Price *2                                |
| 1 | Farm Products  |             |          |           |          |           | - 10                                    |
|   | Paddy *3       |             | kg       | 280       | 397      | 260       | 394                                     |
|   | Maize *3       | •           | kg       | 200       | 220      | 200       |                                         |
|   | Mungbeans *    | 3           | kg       | 1,000     | 906      | 1,000     |                                         |
|   | Soybeans *3    | •           | kg       | 900       | 647      | 900       |                                         |
|   | Red onion *4   |             | kg       | 900       | 704      | 800       |                                         |
|   | Tobacco *5     |             | kg       | 900       | 522      | 900       |                                         |
| 2 | Seeds          |             | J        | ·         |          | 700       | 32.                                     |
|   | Paddy          | Certified   | kg       | 605       | 605      | 605       | 605                                     |
|   | ·              | Own         | kg       | _         | 325      | -         | 325                                     |
|   | Maize          | Certified   | kg       | 922       | 922      | 922       |                                         |
|   |                | Own         | kg       | _         | 297      | _         | 29                                      |
|   | Mungbeans      | Certified   | kg       | 1,383     | 1,383    | 1,383     |                                         |
|   | •              | Own         | kg       | -         | 893      | -,000     | 89:                                     |
|   | Soybeans       | Certified   | kg       | 617       | 617      | 617       | 61′                                     |
|   | ,              | Own         | kg       | _         | 606      | _         | 60                                      |
|   | Red onion      |             | kg       | 850       | 850      | 850       |                                         |
|   | Tobacco        |             | kg.      | 25,000    | 25,000   | 25,000    |                                         |
| 3 | Fertilisers    |             | •        | •         | ,        | .,        | ,,                                      |
|   | Urea           |             | kg       | 350       | 414      | 350       | 419                                     |
|   | TSP            |             | kg       | 400       | 486      | 400       | 49                                      |
|   | KCl            |             | kg       | 400       | 416      | 400       | 42                                      |
| 4 | Agro-chemicals |             | •        |           |          |           |                                         |
|   | Insecticides   | Liquid type | lit      | 10,000    | 10,000   | 10,000    | 10,000                                  |
|   |                | Powder type | kg       | 3,000     | 3,000    | 3,000     | •                                       |
|   | Rodenticides   |             | kg       | 5,500     | 5,500    | 5,500     |                                         |
| 5 | Labour         |             | _        |           | ·        | ,         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|   | Hired labour 3 | *6          | man-day  | 3,000     | 2,250    | 2,500     | 1,87                                    |
|   | Family labour  | r           | man-day  |           | 2,250    | -         | 1,875                                   |
| 6 | Draft Animal   |             | ,        |           | ,        |           | 2,076                                   |
|   | Hired          |             | head-day | 6,000     | 6,000    | 5,000     | 5,000                                   |
|   | Own            |             | head-day |           | 6,000    | .,        | 5,000                                   |
| 7 | Farm Machinery |             |          |           | -,       |           | 5,000                                   |
|   | Tractor        |             | ha       | 250,000   | 250,000  | 200,000   | 200,000                                 |

Remarks: \*1; As of 1994

<sup>\*2;</sup> Projected prices in 2005 at 1994 constant prices

<sup>\*3;</sup> Dry grain

<sup>\*4;</sup> Fresh

<sup>\*5;</sup> Fresh leaves

<sup>\*6:</sup> Economic conversion factor is 0.75.

Table 8.3 Economic Crop Budget per Ha

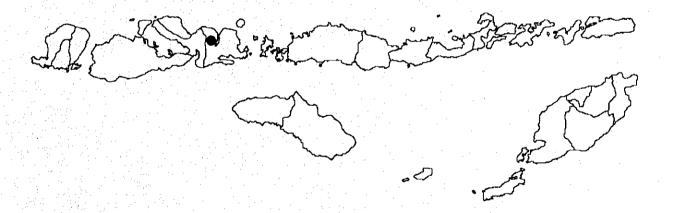
| Item   Gross Production Value Paddy Soybean Mungbean Red onion |          |              |             |             |                                      | Witho       | Without Project                    |                        |                                                     |          |                                      | WIE           | With Project                            |             |                                          |
|----------------------------------------------------------------|----------|--------------|-------------|-------------|--------------------------------------|-------------|------------------------------------|------------------------|-----------------------------------------------------|----------|--------------------------------------|---------------|-----------------------------------------|-------------|------------------------------------------|
| Gross Production Value Paddy Soybean Mungbean Red onion        | ë°∂      | O'ty<br>of J | Value (Rp.) | Pa<br>(Imi, | Paddy<br>(Irrigated)<br>/ Am't (Rp.) | (Ra<br>O'ty | Paddy<br>(Rainfed)<br>/ Am't (Rp.) | Mungbea<br>(R)<br>Q'ty | Mungbean (2nd crop)<br>(Rainfed)<br>Q'ty Am't (Rp.) | Q'Y      | Paddy<br>(Irrigated)<br>y Am't (Rp.) | Mu<br>(Image) | Mungbean<br>(Irrigated)<br>y Am't (Rp.) | Red<br>(Im) | Red Onion<br>(Irrigated)<br>y Am't (Rp.) |
| Paddy<br>Soybean<br>Mungbean<br>Red onion                      | -        | ۱,           | 304         | 900         | 1182 000                             | 0000        | 788 000                            |                        | c                                                   | 4 500    | 1 773 000                            | 0             | O                                       | C           |                                          |
| Soybean<br>Mungbean<br>Red onion                               | ¥        | οÚ           | ţ           |             | 1,104,000                            | 3,4         | 200,000                            | > <                    | •                                                   | 2        | 2006                                 | •             | > 0                                     | 0 0         |                                          |
| Mungbean<br>Red onion                                          | <u>`</u> | b(i          | 642         | 0           | 0                                    | 0           | 0                                  | •                      | 0                                                   | <b>•</b> | <b>&gt;</b>                          | <b>&gt;</b>   | <b>-</b>                                | <b>-</b>    |                                          |
| Red onion                                                      | -        | i bi         | <u>2</u>    | 0           | 0                                    | 0           | 0                                  | 8                      | 450,500                                             | 0        | 0                                    | 1,200         | 1.081.200                               | <b>•</b>    |                                          |
|                                                                | í "×í    | , X          | 669         | 0           | 0                                    | 0           | 0                                  | 0                      | Q                                                   | 0        | 0                                    | 0             | 0                                       | 7.500       | 5.242.500                                |
| 2 Production Cost                                              |          |              |             |             |                                      |             |                                    |                        |                                                     |          |                                      |               |                                         |             |                                          |
| Seed                                                           |          |              |             |             |                                      |             |                                    | •                      | •                                                   | 1        | 1                                    | (             | ·                                       | :           |                                          |
| Paddy Certified                                                |          | kg           | <u>8</u>    | S<br>S      | 30,250                               | 0           | 0                                  | O                      | 0                                                   | 52       | 15.125                               | 0             | 0                                       | 0           |                                          |
|                                                                |          | । হ <b>র</b> | 325         | 0           | 0                                    | જ           | 16,250                             | 0                      | 0                                                   | 0        | 0                                    | 0             | 0                                       | 0           |                                          |
| Sovbean Certified                                              | ed       | i caj        | 617         | 0           | 0                                    | 0           | 0                                  | 0                      | 0                                                   | 0        | 0                                    | 0             | 0                                       | C           |                                          |
| _                                                              |          | k<br>K       | 909         | 0           | 0                                    | 0           | 0                                  | 0                      | 0                                                   | 0        | 0                                    | 0             | 0                                       | 0           | ٠                                        |
| Munobean Certified                                             | jed      | ı ba         | 1,383       | 0           | 0                                    | 0           | 0                                  | 7                      |                                                     | 0        | 0                                    | 01            | 13.830                                  | ¢           |                                          |
|                                                                |          | , tal        | 893         | 0           | 0                                    | 0           | 0                                  | 28                     | 25,004                                              | 0        | 0                                    | 20            | 17.860                                  | <b>\$</b>   |                                          |
| Red onion Certified                                            | jed      | , g          | 850         | 0           | 0                                    | 0           | 0                                  | 0                      | 0                                                   | 0        | 0                                    | 0             | 0                                       | 2.000       | 1,700,000                                |
| Fertiliser                                                     |          |              |             |             |                                      |             |                                    |                        | ,                                                   | ;        |                                      | i             | •                                       | 4           | 1                                        |
| Urea                                                           | ¥        | الخ          | 419         | 225         | 94,275                               | 150         | 62,850                             | 20                     | 8,380                                               | 8        | 125.700                              | 75            | 31.425                                  |             | 125.700                                  |
| TSP                                                            | ķ        | çi           | 491         | 75          | 36.825                               | ୪           | 24,550                             | <del>4</del>           | 19,640                                              | <u>≅</u> | 49.100                               | 3             | 49.100                                  | 500         | 98.200                                   |
| KCI                                                            | ¥        | K<br>P       | 421         | 35          | 14,735                               | 0           | 0                                  | 20                     | 8,420                                               | 20       | 21,050                               | <b>%</b>      | 21.050                                  | 8           | 42.100                                   |
| Agro-chemicals                                                 |          |              |             |             |                                      |             | ,                                  | ,                      | ,                                                   | •        | 4                                    | 4             | 0                                       |             | •                                        |
| Insecticide Lquid                                              |          |              | 0000        | 2.0         | 20.000                               | 0.5         | 5,000<br>,                         | 0.0                    | <b>)</b>                                            | 2.0      | 20,000                               | 7.0           | 20.000                                  | 0.01        | 100,000                                  |
| Powder                                                         |          | g<br>S       | 3,000       | 0.0         | 0                                    | 0.0         | <b>&gt;</b>                        | 0.0                    | o (                                                 | 0.0      | 0                                    | 0.0           |                                         | 0.0         |                                          |
| Rodenticide                                                    | Ā        | ρήn          | 5,500       | 2.0         | 11.000                               | 0.5         | 2,750                              | 0.0                    | <b>)</b>                                            | 2.0      | 11,000                               | 2.            | 2.500                                   | 3.0         | 16.500                                   |
| Labor                                                          |          |              |             |             |                                      |             |                                    | . ;                    | - 1                                                 |          |                                      | ć             | 000                                     | į           |                                          |
| Family                                                         | Ξ        | шq           | 1,875       | 127         | 238,125                              | \$3         | 121,875                            | 50                     | 37,500                                              | 172      | 322,500                              | ⊋ '           | 150.000                                 | :CI         | 283.125                                  |
| Hired                                                          | E        | шq           | 1.875       | 13          | 24,375                               | 9           | 18,750                             | 0                      | 0                                                   | <u>m</u> | 24,375                               | <b>O</b>      | <b>Þ</b>                                | 32          | 185.625                                  |
| Draft Animal                                                   |          |              |             |             |                                      |             |                                    |                        | •                                                   | 1        | •                                    | *             | 4                                       | •           | 4                                        |
| Family                                                         | ă        | ad           | 2,000       | 20          | 100,000                              | റ്റ         | 50,000                             | Φ.                     | 0                                                   | 20       | 100,000                              | 2             | 20.000                                  | 20          | 100.000                                  |
| Hired                                                          | þ        |              | 5,000       | 0           | 0                                    | 0           | 0                                  | 0                      | 0                                                   | 0        | 0                                    | 0             | 0                                       | 0           |                                          |
| Tractor                                                        | Ë        | 77           | 200,000     | 0           | 0                                    | 0           | Ò                                  | 0                      | • ·                                                 | 0        | Ο,                                   | 0             | 0                                       | 0           |                                          |
| Total production cost                                          |          |              |             |             | 569.585                              |             | 302,025                            |                        | 108,625                                             | ٠        | 688,850                              |               | 358,765                                 |             | 2.651.250                                |
| 2 Mat Droduction Value                                         |          |              |             |             | 612415                               |             | 485.975                            |                        | 341.875                                             |          | 1.084.150                            |               | 722,435                                 |             | 2,591,250                                |

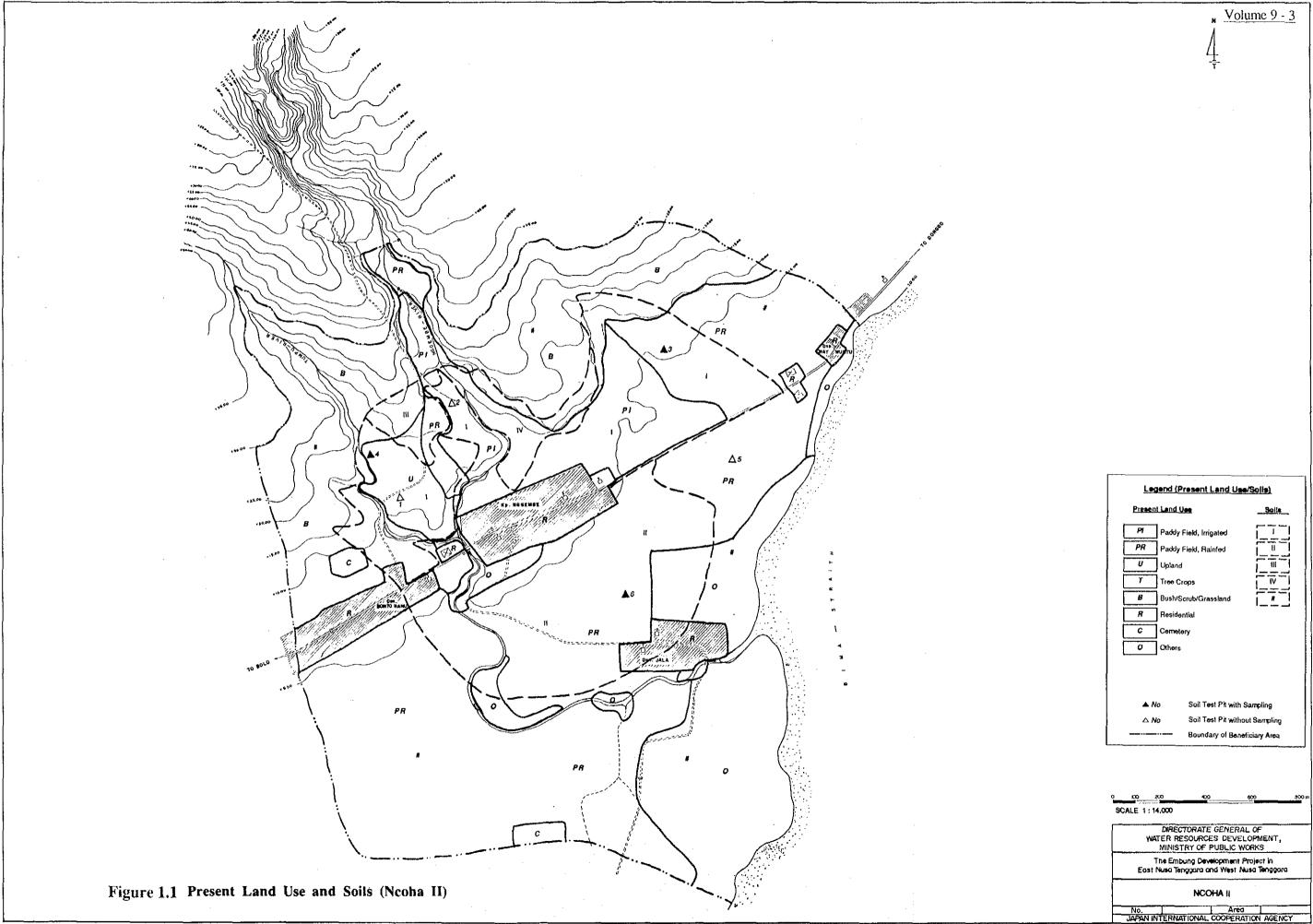
Table 8.4 Economic Costs and Benefits Flow

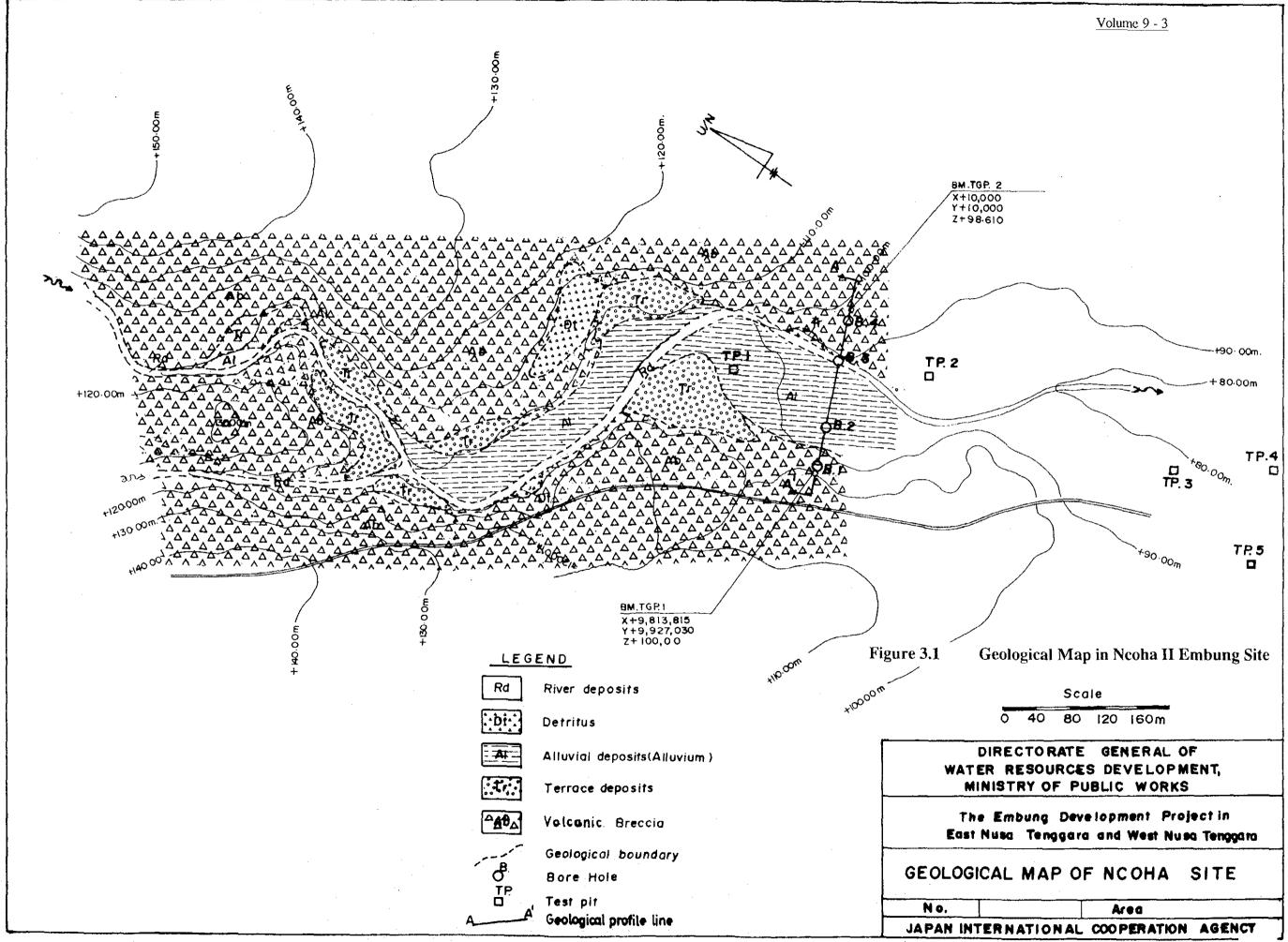
Ncoha II ProjectUnit : Million Rp.YearCostBenefitIncrement

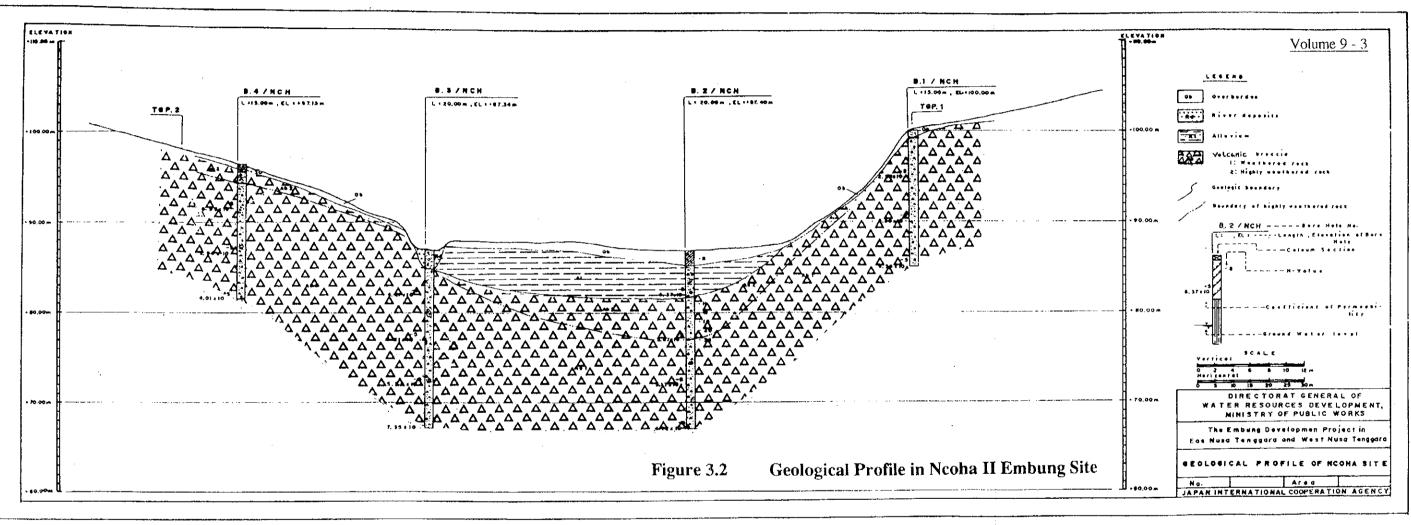
| Year |         | Cos     | st  | <u> </u> |            | Benefit  |       | Increment |
|------|---------|---------|-----|----------|------------|----------|-------|-----------|
|      | Capital | Replace | O&M | Total    | Irrigation | Negative | Total |           |
| 1.   | 386     | 0       | 0   | 386      | 0          | -1       | -1    | -387      |
| 2.   | 3,049   | 0       | 0   | 3,049    | 0          | -1       | -1    | -3,050    |
| 3.   | 3,858   | 0       | 0   | 3,858    | 0          | -1       | -1    | -3,859    |
| 4.   | 0       | 0       | 30  | 30       | 361        | -1       | 360   | 330       |
| 5.   | 0       | 0       | 30  | 30       | 421        | 0        | 421   | 391       |
| 6.   | 0       | 0       | 30  | 30       | 482        | 0        | 482   | 452       |
| 7.   | 0       | 0       | 30  | 30       | 542        | 0        | 542   | 512       |
| 8.   | 0       | . 0     | 30  | 30       | 602        | 0        | 602   | 572       |
| 9.   | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 10.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 11,  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 12.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 13.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 14.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 15.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 16.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 17.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 18.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 19.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 20.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 21.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 22.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 23.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 24.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 25.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 26.  | 0       | 0       | 30  | 30       | 602        | 0        | 602   | 572       |
| 27.  | 0       | 0       | 30  | 30       | 602        | . 0      | 602   | 572       |
| 28.  | . 0     | 0       | 30  | 30       | 602        | . 0      | 602   | 572       |

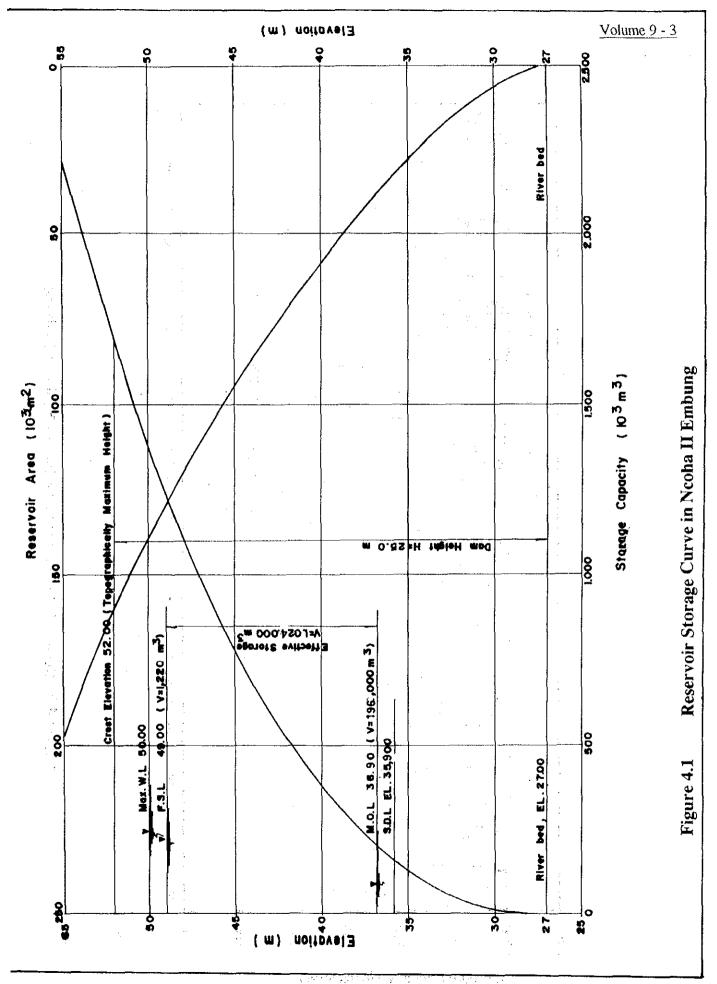
EIRR = 5.0 %


Table 8.5 Financial Crop Budget per Ha


| Ncoha Il Project         |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
|--------------------------|-----------|-----------|-----------------|------------|---------------------|------------|--------------------|------------|---------------------|----------|-------------------|----------|--------------|----------|-----------------------|
| -                        |           |           |                 |            |                     | Withc      | Without Project    |            |                     |          |                   | With     | With Project |          |                       |
|                          |           | O. to     | Value           | F. F.      | Paddy<br>(Imposted) | g. 8       | Paddy<br>(Rainfed) | Mungbea    | Mungbean (2nd crop) | P.       | Paddy (Irrioated) | Mun      | Mungbean     | Red      | Red Onion             |
| Melli                    |           | Unit      | (Rp.)           | O'ty       | Am't (Rp.)          | Q'ty       | Am't (Rp.)         | Q'ty       | Am't (Rp.)          | Q'ty     | Am't (Rp.)        | Q'ty     | Am't (Rp.)   | Q'ty     | kgateu/<br>Amit (Rp.) |
| 1 Gross Production Value | ue        |           |                 |            |                     | 0          | 000                | 4          | •                   | 0        |                   |          | :            |          |                       |
| Paddy                    |           | <b>X</b>  | 260             | 3.000      | 780,000             | 2,000      | 520.000            | 0          | 0                   | 4,500    | 1.170,000         | ٥        | Ç            | 0        | 0                     |
| Soybean                  |           | ķ         | 906             | 0          | 0                   | 0          | 0                  | 0          | 0                   | 0        | 0                 | 0        | C            | C        | С                     |
| Mungbean                 |           | χ.<br>Ω   | 000             | 0          | 0                   | 0          | 0                  | 200        | 500,000             | 0        | 0                 | 1.200    | 1,200,000    | 0        | 0                     |
| Red onion                |           | X<br>Sh   | 800             | 0          | 0                   | 0          | 0                  | 0          | 0                   | 0        | 0                 | 0        | •            | 7.500    | 6.000,000             |
| 2 Production Cost        |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
| Seed                     |           |           | • (             | Ç          | 000                 | <          | Ċ                  | ç          | ć                   | Ċ        | 1.<br>1.<br>1.    | <        | 6            | ;        | :                     |
| Paddy                    | Certified | XI<br>CIJ | 6U3<br>,        | <u>ک</u> ر | 50.250              | ⊃ <u>;</u> | î                  | <b>5</b> ( | <b>&gt;</b>         | 3        | 571.61            | <b>-</b> | <b>=</b>     | <b>-</b> | 0                     |
|                          | Own       | λ<br>bi   | 0               | 0          | 0                   | ος<br>•    | 0                  | Ф,         | 0                   | <b>-</b> | 0                 | <b>-</b> | <b>=</b>     | C        | C                     |
| Soybean                  | Certified | Х<br>ЭП   | 617             | 0          | 0                   | 0          | 0                  | 0          | 0                   | <b>O</b> | 0                 | 0        | ¢            | ¢        | C                     |
|                          | Own       | kg<br>g   | 0               | 0          | 0                   | 0          | 0                  | 0          | 0                   | 0        | 0                 | 0        | <b>\$</b>    | <b>-</b> | 0                     |
| Mungbean                 | Certified | χ<br>g    | 1,383           | 0          | 0                   | 0          | 0                  | 7          | 9.681               | 0        | 0                 | 01       | 13.830       | 0        | С                     |
| •                        | Own       | X<br>Pi   | 0               | 0          | 0                   | 0          | 0                  | 28         | 0                   | 0        | 0                 | 20       | 0            | 0        | 0                     |
| Red onion                | Certified | N<br>OI   | 820             | 0          | 0                   | 0          | 0                  | 0          | 0                   | 0        | 0                 | 0        | 0            | 2.000    | 1.700.000             |
| Fertiliser               |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
| Urea                     |           | kg<br>g   | 320             | 225        | 78.750              | 150        | 52,500             | 20         | 7.000               | 38       | 105,000           | 75       | 26.250       | 300      | 105,000               |
| TSP                      |           | AY<br>OI) | 400             | 75         | 30,000              | S          | 20,000             | 40         | 16,000              | 8        | 40.000            | 8        | 40.000       | S<br>S   | 80,000                |
| KCI                      |           | k<br>g    | <del>4</del> 00 | 35         | 14.000              | 0          | 0                  | 50         | 8:000               | 20       | 20,000            | S        | 20.000       | 8        | 40.000                |
| Agro-chemicals           |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
| Insecticide              | Lquid     | lit       | 10.000          | 2.0        | 20,000              | 0.5        | 5.000              | 0.0        | 0                   | 2.0      | 20,000            | 5.0      | 20.000       | 10.0     | 100,000               |
|                          | Powder    | ş<br>S    | 3.000           | 0.0        | 0                   | 0.0        | 0                  | 0.0        | 0                   | 0.0      | 0                 | 0.0      | <b>O</b>     | 0.0      | 0                     |
| Rodenticide              |           | ķ         | 5.500           | 2.0        | 11.000              | 0.5        | 2,750              | 0.0        | 0                   | 2.0      | 11,000            | 1.0      | 5.500        | 3.0      | 16.500                |
| Labor                    |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
| Family                   |           | рш        | 0               | 127        | 0                   | 65         | 0                  | 70         | 0                   | 172      | 0                 | 08       | 0            | 151      | 0                     |
| Hired                    |           | рш        | 2.500           | 13         | 32,500              | 10         | 25.000             | 0          | 0                   | 13       | 32.500            | C        | 0            | 66       | 247,500               |
| Draft Animal             |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
| Family                   |           | aq        | 0               | 20         | 0                   | 10         | 0                  | 0          | 0                   | 20       | 0                 | 9        | 0            | 50       | С                     |
| Hired                    |           | ad        | 5,000           | 0          | 0                   | 0          | 0                  | 0          | 0                   | 0        | 0                 | 0        | С            | ¢        | 0                     |
| Tractor                  |           | ha        | 200,000         | 0          | 0                   | 0          | 0                  | 0          | 0                   | 0        | 0                 | 0        | C            | C        | 0                     |
| Total production cost    | on cost   |           |                 |            | 216,500             |            | 105.250            |            | 40,681              |          | 243,625           |          | 125,580      |          | 2.289.000             |
|                          |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |
| 3 Net Production Value   |           |           |                 |            | 563.500             |            | 414.750            |            | 459.319             |          | 926,375           |          | 1.074.420    |          | 3.711.000             |
|                          |           |           |                 |            |                     |            |                    |            |                     |          |                   |          |              |          |                       |


The Study on The Embung Development Project in East Nusa Tenggara and West Nusa Tenggara


Feasibility Study on Ncoha II Embung Development Project


Figures











F - 7

p . 4

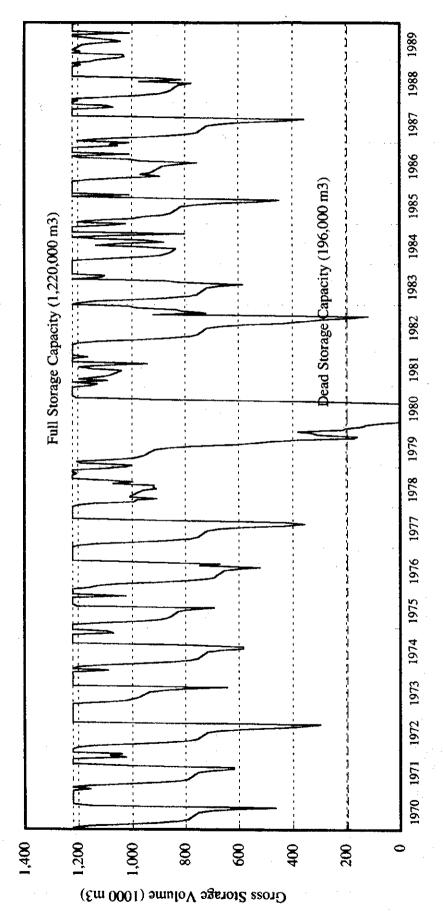
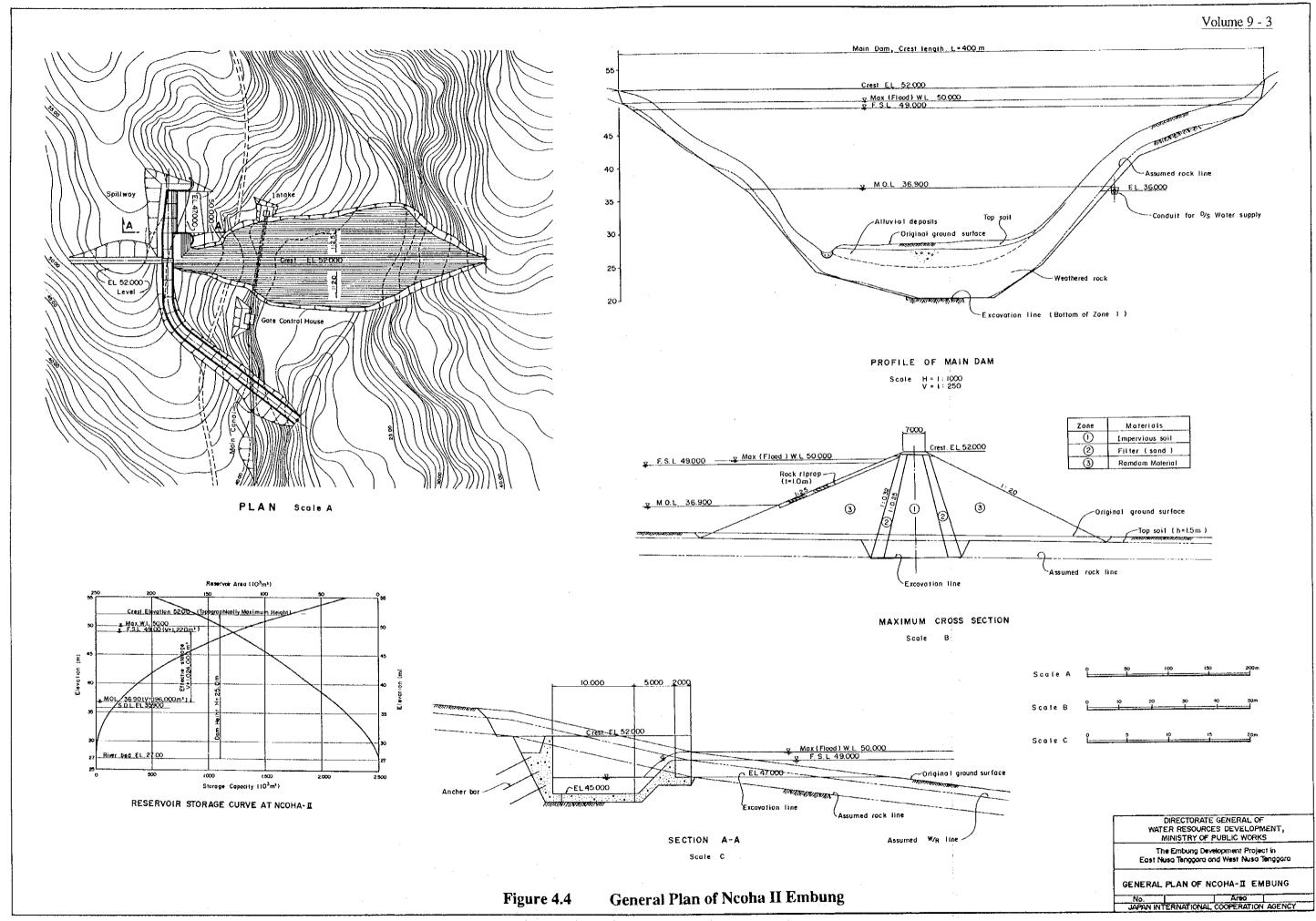
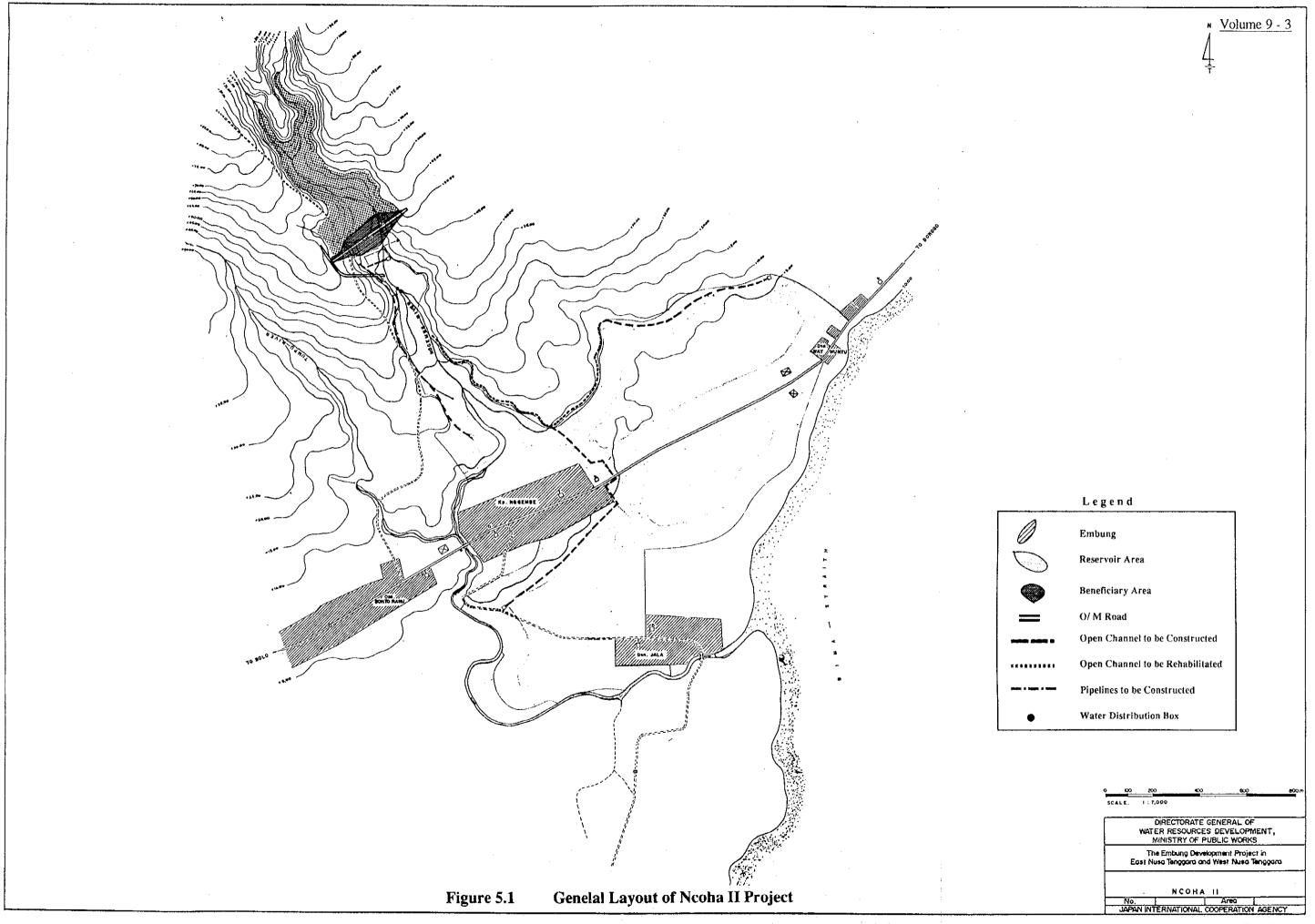





Figure 4.2 Result of Reservoir Operation in Ncoha II Embung

| 'n       | ha         |     |                      |      |      |   | 157           |                                 |                   |               |               |        |          |             |                            |                  |           |           |           |          |              |       |                                                           |
|----------|------------|-----|----------------------|------|------|---|---------------|---------------------------------|-------------------|---------------|---------------|--------|----------|-------------|----------------------------|------------------|-----------|-----------|-----------|----------|--------------|-------|-----------------------------------------------------------|
| Area     | %          | 100 | 8                    |      | 0/ 7 | 8 | 5             | 3                               | <del>.</del><br>8 | 9             |               | 700    | 0        | · · · · · · | O                          |                  |           |           |           |          |              |       |                                                           |
|          | <br>ပ္ပဲ   |     |                      |      |      |   |               |                                 |                   |               |               |        |          |             |                            | 28.5             |           | 15.0      | 43.5      |          |              |       |                                                           |
|          | Dec.       |     |                      |      |      |   |               | <u>.</u>                        |                   |               |               |        |          |             | _                          | 12.5             |           | 55.0      | 67.5      |          | <u> </u>     |       |                                                           |
| ;        | Nov.       |     |                      |      |      |   | Ę             |                                 |                   |               |               |        |          |             |                            | 9.5              |           | 53.5      | 63.0      | $\perp$  | $\downarrow$ | _     |                                                           |
| Oct.     |            | Ш   |                      |      |      |   | d onic        | 57.0h                           |                   |               |               |        |          |             | _                          | 7.5              |           | 14.0      | 22.5      | 4        | $\perp$      | -     |                                                           |
|          |            |     | Red onion<br>157.0ha |      |      |   |               | _                               |                   |               | 5 14.0        | 5 14.0 | $\dashv$ | +           | -                          | ect              |           |           |           |          |              |       |                                                           |
| -        |            | H   |                      |      |      |   |               |                                 |                   |               |               |        |          |             | +                          | -                |           | 44.0 54.5 | 44.0 54.5 | $\dashv$ | +            | -     | Figure 4.3 Proposed Cropping Pattern for Ncoha II Project |
| ١        | yep.       |     |                      |      |      |   |               | !                               |                   |               |               |        |          |             |                            | $\vdash$         |           | 0.0       | 0.0       |          | 1            |       |                                                           |
|          |            |     |                      |      |      |   |               | !                               |                   | , <del></del> | <del> ,</del> | -,,-   |          |             |                            | <u> </u>         |           |           | 00        |          |              | +     | oha                                                       |
| •        | Aug.       |     |                      |      |      |   |               |                                 |                   |               |               |        |          | 0.0         |                            | +                |           | Ž         |           |          |              |       |                                                           |
| Jul.     |            |     |                      |      |      |   |               | -                               |                   |               |               |        |          | ·           |                            |                  | 4.5       |           | \$        |          | 1            |       | n fo                                                      |
|          |            | ,   |                      |      |      |   |               | <u>.</u>                        |                   |               |               |        |          |             |                            |                  | 5.6       |           | 9.5       |          |              |       | tter                                                      |
|          | Jun.       |     |                      |      | ٠    |   | ٠             | 2                               |                   |               |               |        |          |             |                            |                  | 5.5       |           | 5.5       |          |              |       | Pa Pa                                                     |
| Ľ        | <u>-</u> _ |     | Mungbeans<br>157.0ha |      |      |   |               | _                               | <u> </u>          | 0.6           |               | 9.0    |          | _           |                            | pin              |           |           |           |          |              |       |                                                           |
|          | May.       |     |                      |      |      |   | X             | 15                              |                   |               | •             |        |          |             |                            | _                | 12.0      |           | 12.0      |          | _            |       | rop                                                       |
| -        |            | -   |                      |      |      |   |               |                                 |                   |               |               |        |          |             | _                          | 8.0              | 9.0       |           | 5 17.0    |          | $\perp$      |       | g                                                         |
|          | Apr.       |     |                      |      |      |   |               | -                               |                   |               |               |        |          |             |                            | 0 14.0           | 0 30.5    |           | 0 44.5    |          | -            | -     | Sodi                                                      |
| $\vdash$ |            | +   |                      |      |      |   |               |                                 |                   |               |               |        |          |             | $\perp$                    | 8.0 13.0         | 0.0       |           | 8.0 13.0  |          | $\dashv$     | -     | Pro                                                       |
| ,        | Mar.       |     |                      | •••• |      |   | 1.0           |                                 |                   | 8 0.1         | -             | +      | $\dashv$ | 4.3         |                            |                  |           |           |           |          |              |       |                                                           |
| $\vdash$ |            | T   | Paddy<br>157.0ha     |      |      |   |               | $\vdash$                        | 0.1               |               |               | 1.0    | $\dashv$ | +           | +                          | ure              |           |           |           |          |              |       |                                                           |
| '        | Feb.       |     |                      |      |      |   |               |                                 | 18.0              |               |               | 18.0   |          |             |                            | 퍮                |           |           |           |          |              |       |                                                           |
|          | -i         |     |                      |      |      |   |               | 1                               | 25.5              |               |               | 25.5   |          |             |                            |                  |           |           |           |          |              |       |                                                           |
| ,        | Jan.       |     |                      |      | .,   |   |               |                                 |                   |               |               |        |          |             |                            | 38.5             |           |           | 38.5      |          |              |       |                                                           |
| Month    | Pattern    |     |                      |      |      |   | Dedde Manchan | raddy - Mungoean -<br>Red Onion | Cl = 300 %        |               |               |        |          |             | Proposed Labor Requirement | Paddy unit means | Mungbeans | Red Onion | Total     |          |              | Total |                                                           |

F-9





| 4th Year<br>J F M A M J J |                                                               | Reservoir Water Impounding                      |                       |                                           | Water Supply                        | Touse                   |                            |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------|-----------------------|-------------------------------------------|-------------------------------------|-------------------------|----------------------------|
| 3rd Year<br>JFMAMJJASOND  |                                                               | Reservoir                                       |                       | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □     | Concrete Valve installation         | Concrete Valve House    | ths                        |
| 2nd Year<br>JFMAMJJASOND  | Award of Contract                                             | paao                                            | Mobilization          | Excavation                                | Excavation                          |                         | Contract Period, 26 Months |
| 1 F M A M J J A S O N D   | Tender Calling                                                | Pre-Qualification Tender Open Notice to Proceed | Woo                   |                                           |                                     |                         |                            |
|                           | Detailed Design: (Inc. Preparation of T/D) Bidding Procedure: | - Construction:                                 | (1) Preparatory Works | (2) Kiver Diversion Chaine:  (3) Main Dam | (4) Spillway (5) Water Summy System | (5) Imgation Facilities |                            |

Figure 6.1 Construction Time Schedule for Ncoha II Project

Figure 6.1 Construction Time Schedule for Ncoha II Project

(3) Main Dam

(4) Spillway



Japan International Cooperation Agency (JICA)



Directorate General of Water Resources Development, Ministry of Public Works

### The Study

on

#### **The Embung Development Project**

(Small Scale Imponding Pond Development Project)

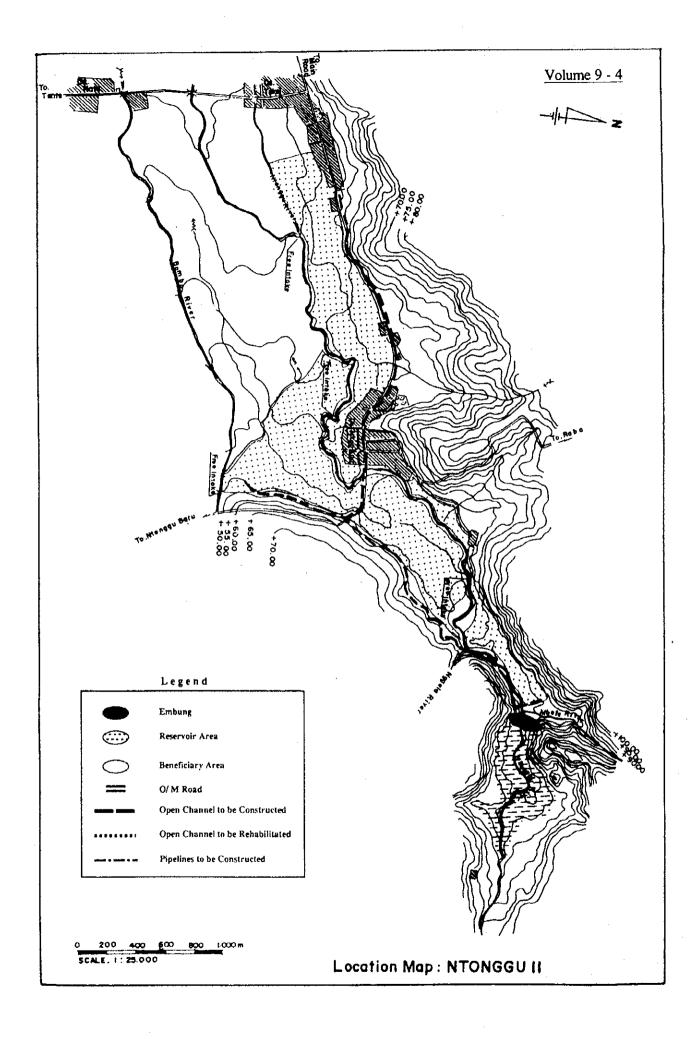
in

East Nusa Tenggara and West Nusa Tenggara

in

The Republic of Indonesia

**Final Report** 


Volume 9-4

Feasibility Study on Ntonggu II Embung Development Project



May 1995

Nippon Koei Co., Ltd.



# THE STUDY ON THE EMBUNG DEVELOPMENT PROJECT (SMALL SCALE IMPOUNDING POND DEVELOPMENT PROJECT) IN EAST NUSA TENGGARA AND WEST NUSA TENGGARA IN THE REPUBLIC OF INDONESIA

#### FINAL REPORT

#### VOLUME 9-4

# FEASIBILITY STUDY ON NTONGGU II EMBUNG DEVELOPMENT PROJECT

#### Table of Contents

| Locat | ion of N | Itonggu II Embung Development Project       | Pag  |
|-------|----------|---------------------------------------------|------|
| 1.    | PRES     | ENT SITUATION OF THE PROJECT AREA           | 1    |
|       | 1.1      | Location and Topography                     | 1    |
|       | 1.2      | Climate and Hydrology                       | 1    |
|       | 1.3      | Geology                                     | - 1  |
|       | 1.4      | Soils and Land Use                          | 1    |
|       | 1.5      | Demography                                  | 2    |
|       | 1.6      | Domestic Water Use                          | 3    |
|       | 1.7      | Social Infrastructures                      | 3    |
|       | 1.8      | Agriculture and Livestock                   | 3    |
|       | 1.9      | Irrigation Facilities                       | 5    |
|       | 1.10     | Agro-economy                                | 5    |
| 2.    | DEVI     | ELOPMENT NEEDS AND CONCEPTS                 | 7    |
|       | 2.1      | Development Needs and Constraints           | 7    |
|       | 2.2      | Development Concepts and Approach           | . 8  |
|       | 2.3      | Land Potential                              | 8    |
|       | 2.4      | Agricultural and Livestock Development Plan | ·    |
|       | 2.5      | Water Demand                                | . 11 |

## <u>Volume 9 - 4</u>

| 3. | EXA  | MINATION OF EMBUNG DEVELOPMENT POTENTIAL                |
|----|------|---------------------------------------------------------|
|    | 3.1  | Topographic Condition                                   |
|    | 3.2  | Geological Condition                                    |
|    | 3.3  | Availability of Construction Materials                  |
|    | 3.4  | Availability of Water Resources                         |
| 4. | ЕМВ  | SUNG DEVELOPMENT PLAN                                   |
|    | 4.1  | Optimization of Development Scale                       |
|    | 4.2  | Delineation of Beneficiary Area                         |
|    | 4.3  | Embung Development Plan                                 |
| 5. | PREI | LIMINARY DESIGN OF FACILITIES                           |
|    | 5.1  | Preliminary Design of Embung                            |
|    | 5.2  | Preliminary Design of Irrigation Facilities             |
|    | 5.3  | Preliminary Design of O & M Road                        |
| 6. | ЕМВ  | UNG CONSTRUCTION PLAN                                   |
|    | 6.1  | Construction Schedule                                   |
| -  | 6.2  | Construction Plan of Embung                             |
|    | 6.3  | Construction Plan of Irrigation Facilities and O&M Road |
|    | 6.4  | Institutional Arrangement for Project Implementation    |
| 7. | COS  | T ESTIMATE                                              |
|    | 7.1  | Basic Assumption of Cost Estimate                       |
|    | 7.2  | Construction Cost                                       |
|    | 7.3  | Operation and Management Cost                           |
| 8. | PRO. | JECT JUSTIFICATION                                      |
|    | 8.1  | Satisfaction of BHN                                     |
|    | 8.2  | Economic Consideration                                  |
|    | 8.3  | Environmental Impact Assessment                         |
|    | 8.4  | Contribution to Women in Development                    |
| 9. | CON  | CLUSION AND RECOMMENDATIONS                             |
|    | 9.1  | Conclusion                                              |

| 9.2       | Recommendations                                                          | 35     |
|-----------|--------------------------------------------------------------------------|--------|
|           | List of Tables                                                           |        |
|           |                                                                          | Page   |
| Table 1.1 | Monthly Rainfall Record in Sila                                          | T - 1  |
| Table 1.2 | Climate Data in Godo                                                     | T - 2  |
| Table 1.3 | Typical Soil Profile in the Ntonggu II Project Area                      | T - 3  |
| Table 1.4 | Result of Soil Laboratory Test in the Ntonggu II Project Area            | T - 4  |
| Table 1.5 | Soil Classification in the Ntonggu II Project Area                       | T - 5  |
| Table 1.6 | Summary of Farm Household Economic Survey in the Ntonggu II Project Area | T - 6  |
| Table 2.1 | Estimated Evapotranspiration in Ntonggu II Project                       | T - 7  |
| Table 2.2 | Effective Rainfall in Ntonggu II Project                                 | T - 8  |
| Table 2.3 | Irrigation Water Requirement in Ntonggu II Project                       | T - 9  |
| Table 3.1 | Estimated Catchment Rainfall in Ntonggu II Embung Site                   | T - 13 |
| Table 3.2 | Estimated Discharge at Ntonggu II Embung Site                            | T - 14 |
| Table 3.3 | Probable Flood Discharge at Ntonggu II Embung Site                       | T - 15 |
| Table 3.4 | Result of Water Quality Test in Ntonggu II Embung Site                   | T - 16 |
| Table 7.1 | Summary of Construction Cost in Ntonggu II Project                       | T - 17 |
| Table 7.2 | Direct Construction Cost in Ntonggu II Project                           | T - 18 |
| Table 8.1 | Economic Construction Costs and Annual Disbursement Schedule             | T - 20 |
| Table 8.2 | Financial and Economic Prices of Farm Inputs and Outputs in NTB          | T - 21 |
| Table 8.3 | Economic Crop Budget per Ha                                              | T - 22 |
| Table 8.4 | Economic Costs and Benefits Flow                                         | T - 23 |
| Table 8.5 | Financial Crop Budget per Ha                                             | T - 24 |

<u>Volume 9 - 4</u>

#### List of Figures

|            |                                                                                                                | Page   |
|------------|----------------------------------------------------------------------------------------------------------------|--------|
| Figure 1.1 | Present Land Use and Soils (Ntonggu II)                                                                        | F - 1  |
| Figure 3.1 | Geological Map in Ntonggu II Embung Site                                                                       | F - 3  |
| Figure 3.2 | Geological Profile in Ntonggu II Embung Site                                                                   | F - 5  |
| Figure 4.1 | Reservoir Storage Curve in Ntonggu II Embung                                                                   | F - 7  |
| Figure 4.2 | Result of Reservoir Operation in Ntonggu II Embung                                                             | F - 8  |
| Figure 4.3 | Proposed Cropping Pattern in Ntonggu II Project                                                                | F-9    |
| Figure 4.4 | General Plan of Ntonggu II Embung                                                                              | F - 11 |
| Figure 5.1 | General Layout of Ntonggu II Project                                                                           | F - 13 |
| Figure 6.1 | Construction Time Schedule for Ntonggu II Project                                                              | F - 15 |
|            | A CANADA CAN |        |

in the second

#### 1. PRESENT SITUATION OF THE PROJECT AREA

#### 1.1 Location and Topography

The Project area is located in Ntonggu Village in Kecamatan Belo of Kabupaten Bima. The proposed Embung site is located upstream of the Ntonggu river about 35 km south from Bima on Sumbawa Island of Nusa Tenggara Barat (NTB).

Topographical condition of the catchment area is fairly steep slope up to the mountain zone, while the reservoir area is rather flat.

Beneficiary area is situated along the Ntonggu river between the mountainous zone and coastal area of Bima bay.

#### 1.2 Climate and Hydrology

The nearest climate station from the proposed Embung site is Godo station while there are three rainfall stations near the proposed Embung site; Sila, Raba, and Teke. The wet season usually starts from late November and ends late March in the Project area with the average annual rainfall of 1,030 mm. Mean annual temperature is 27.8 °C with the average maximum temperature of 33.0 °C and the average minimum temperature of 22.4 °C. Mean relative humidity is 84.8 %. Average sunshine hours are 3 to 5 hr/day during the wet season and increase to 6 to 7 hr/day in the dry season. Winds are stronger from June to September and weaker from December to March with the average wind velocity of 4.8 km/hr. Tables 1.1 and 1.2 show monthly rainfall record at the Sila station and climate data at the Godo station, respectively.

The Ntonggu river rises in the mountain area where the altitude is approximately 700 m and follows a westerly course. It then flows into the Karanu river which flows westwards and discharges into Bima Bay. The surface of the catchment area is mostly covered with forest. The catchment area at the proposed Embung site is 6.2 km<sup>2</sup>. There is no gauging station on this river.

#### 1.3 Geology

The proposed Embung site is underlain by mainly volcanic rock of the Tertiary and unconsolidated deposits of the Quaternary. The geological formation is: dacitic lava and breccia composed of dacita to dacitic breccia of the Tertiary age, being moderately hard to hard rock; terrace deposits composed of mainly sand and gravel, forming terrace with flat to gentle slope; alluvium composed of sand, silt and gravel forming lowland; detritus composed of soil with rock fragments and distributed at foot of slope or gentle valley; and, river deposits composed of sand, silt, gravel and boulder, and distributed along the existing river bed.

#### 1.4 Soils and Land Use

The Project area of Ntonggu II is located in the bottom of U-shaped valley and the alluvial fan. The north and east boundaries of the Project area are mountain ranges making the valley. The Ntonggu river runs in the center of the valley from east to west and the Bombo river runs on the southern border of the Project area. The land slope of the bottom area is about 1 to 2 %.

Soils of the Project area extend on basaltic rocks or alluvial materials. Soil drainage of farmland is well to poor and soil permeability is slow to moderate. Soil depth is very deep recording more than 100 cm. Soil texture of surface soil varies from clay to sandy loam.

The results of the soil survey are shown in Table 1.3 on a typical soil profile out of 14 soil test pits, Table 1.4 on soil laboratory tests for soil samples taken from three representative pits out of 14 pits and Table 1.5 on the soil classification.

Most of the valley bottom area is used as the wet paddy field, covering 393 ha in total. The gentle slope area on the northern range is the dry upland field covering 54 ha. The steep hill slope areas in the north and south remain as bush/scrub covering 95 ha.

In the Project area, there are three intake weirs of which two are on the Ntonggu river and another is on the Bombo river. The total area of the irrigated paddy field is 321 ha, comprising 71 ha in the right bank area of the Ntonggu river, 40 ha in the left bank area of the Ntonggu river and 210 ha in the right bank area of the Bombo river. The remaining 72 ha of the wet paddy field are still under the rainfed condition.

The present land use is classified on the 1/5,000 topographic map and it is summarized below.

Present Land Use on the Project Area of Ntonggu II

|                      |           |         |        | Unit: ha |
|----------------------|-----------|---------|--------|----------|
| Land Use             | Irrigated | Rainfed | Others | Total    |
| Paddy field          | 321       | 72      |        | 393      |
| Upland               | 0         | 54      |        | 54       |
| Tree crops           | 0         | 0       |        | 0        |
| Bush/Scrub/Grassland |           |         | 95     | 95       |
| Residential          |           |         | 36     | 36       |
| Cemetery             |           |         | 2      | 2        |
| Others               |           |         | 3      | 3        |
| Total                | 321       | 126     | 136    | 583      |

Source: The JICA Study Team

The present land use and soil classification of the Project area are illustrated in Figure 1.1.

#### 1.5 Demography

The demographic condition in the Project area as of 1993 is revealed by a total population of 2,307 and a total number of households of 424 including farm households of 412 as shown below. The average family size is 5.4 persons. Dominant ethnic is originated from Bajonese and the majority of inhabitants embrace Islam religion. Their education attainment is commonly primary school grade.

Present Demographic Condition

| Village    | Sub-<br>Village | Total<br>Population<br>(person) | Total<br>Household<br>(No.) | Family<br>Size<br>(person) | Farm<br>Household<br>(No.) |
|------------|-----------------|---------------------------------|-----------------------------|----------------------------|----------------------------|
| Ntonggu II | Wudu Udu        | 2,307                           | 424                         | 5.4                        | 412                        |

Source: JICA Water Use Survey

#### 1.6 Domestic Water Use

Available water source facilities are dug and pump wells for supplying domestic water and river flow and dug wells for getting livestock water in the Project area. The present water use in each sub village clarified under the Study is summarized below:

In Wudu Udu Sub Village, there are 18 pump wells and 12 dug wells both used as drinking water sources nearby inhabitants' houses. Among these, eight hand pump wells are presently broken. Breeding households depend their livestock water on dug wells and the Ntonggu river flowing nearby the village. The length of prevailing water shortage period is five months from August to December for drinking and livestock water.

#### 1.7 Social Infrastructures

The access from Mataram, the provincial capital of NTB, to the Project area is the Mataram-Labuhan Lombok road, Lombok-Sumbawa ferry between Labuhan Lombok and Alas, and trans-Sumbawa road. The proposed Embung site is linked by a gravel road with the trans-Sumbawa road. The existing rural electrification network has already been extended to the Project area.

Inhabitants are generally using private toilets outside their houses for defecating purposes. There are an integrated health service center within the Project area and an auxiliary hospital 3.0 km away.

#### 1.8 Agriculture and Livestock

#### (1) Present cropping pattern and intensity

The average annual planted areas of major crops are summarized below.

Present Cropping Pattern and Intensity

| Cropping Pattern         | Net<br>Area<br>(ha) | Planted<br>Area<br>(ha) | Proportion of<br>Planted Area<br>(%) | Cropping<br>Intensity<br>(%) |
|--------------------------|---------------------|-------------------------|--------------------------------------|------------------------------|
| (1) Paddy - Palawija     | 233.0               | 289.0                   | 71.7                                 | 124                          |
| (2) Paddy - Fallow       | 65.0                | 65.0                    | 16.1                                 | 100                          |
| (3) Upland crop - Fallow | 49.0                | 49.0                    | 12.2                                 | 100                          |
| Total / Average          | 347.0               | 403.0                   | 100.0                                | 117                          |

Source: The JICA Land Use Survey and Inventory Survey

#### (2) Farming practice and farm inputs

About one fourth of the irrigated paddy field, farmers practice two cropping of the irrigated wet season paddy and the rainfed dry season soybean and groundnut as Palawija crops. Single cropping of the wet season paddy predominates on the remaining irrigated and rainfed paddy field. Maize is grown on dry upland.

As for paddy, most farmers carry out land preparation with an animal-drawn plough and harrow their paddy field once or twice at the beginning of the wet season, while this work done by other marginal farmers depends on their own man power. High yielding rice varieties such as IR36, IR64 and Krueng Aceh are grown. Rice seed is sown on a nursery bed of which area is in the ratio of one twentieth against the main paddy field. Manual weeding is usually made one to three times throughout the rice growing period. Harvesting

is carried out by using a sickle and hand threshing is conducted by beating rice plants against a frame.

Common farming practices of Palawija and upland crops are very simple and local varieties are broadly used. Land preparation, planting, weeding and harvesting are done by hand.

Farm inputs and labor requirements currently used for growing these crops are given below.

Present Farm Inputs and Labor Requirements

|                        |        |           |         |            | * 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|--------|-----------|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description            | Unit   | Wet Paddy | Soybean | Groundnut  | Mungbean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Farm Inputs            |        |           |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Seed                   | kg/ha  | 50        | 50      | 60         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fertilizer             |        |           |         |            | -3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Urea                   | kg/ha  | 300       | 50      | 50         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TPS                    | kg/ha  | 100       | 100     | 100        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KCI                    | kg/ha  | - 50      | 25      | 25         | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Agro-chemicals         | lit/ha |           |         |            | or and a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second |
| Labor Requirements     |        | •         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nursery                | md/ha  | 4         | -       | -          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Land preparation       | md/ha  | 2         | 3       | 10         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | ad/ha  | 5         | · -     |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Planting               | md/ha  | 3         | 3       | 4          | 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Transplanting          | md/ha  | 15        | _       | · <u>-</u> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Weeding                | md/ha  | 10        | 4       | 4          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pest & disease control | md/ha  | 2         | 2       | 2          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Farm management        | md/ha  | 2         | 2       | $\bar{2}$  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Harvesting             | md/ha  | 15        | 10      | 10         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Transportation         | md/ha  | 5         | 5       | 5          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Others                 | md/ha  | 4         | 2       | 2          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total                  | md/ha  | 62        | 31      | 39         | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u> </u>               | ad/ha  | 5         | -       |            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Source: The JICA Farm Economy Survey

#### (3) Crop yield and production

The present crop yield and production in the Project area are estimated as shown below. Unit yield of major crops remains extremely low due to the shortage of irrigation water, insufficient farm input supply and traditional farming practices.

Present Crop Yield and Production

| Crops               | Planted Area (ha) | Unit Yield<br>(ton/ha) | Production<br>(ton) |
|---------------------|-------------------|------------------------|---------------------|
| Wet Paddy Field     |                   |                        | ·····               |
| Irrigated           |                   |                        |                     |
| Wet season paddy    | 289               | 3.00                   | 867                 |
| Rainfed             | ů.                |                        |                     |
| Wet season paddy    | 65                | 2.00                   | 130                 |
| Dry season Palawija |                   |                        |                     |
| Soybean             | 50                | 0.60                   | 30                  |
| Groundnut           | 20                | 1.50                   | 30                  |
| Upland Field        |                   |                        |                     |
| Maize               | 49                | 1.00                   | 49                  |

Source: The JICA Inventory Survey

#### (4) Livestock population

Various kinds of livestock are raised in the Project area and their numbers are given below. Cows and buffaloes play important roles in land preparation and as draft power source. Goat and sheep are raised for self-consumption.

#### Current Population of Livestock

|                       |     |         |       |                |     | Unit: head       |
|-----------------------|-----|---------|-------|----------------|-----|------------------|
| Breeding<br>Household | Cow | Buffalo | Horse | Goat<br>/Sheep | Pig | Chicken/<br>Duck |
| 187                   | 115 | 245     | 26    | 259            | 0   | 0                |

Source: The JICA Water Use Survey

#### 1.9 Irrigation Facilities

In the Project area, there exists paddy field of 89 ha in gross on the right bank and 98 ha on the left bank of the Ntonggu river. Both areas have been irrigated mainly by the existing weirs situated at around 1.1 km, 2.5 km and 3.9 km downstream of the proposed Embung site, respectively. These weirs are functioning rather well. Irrigation water taken by these weirs is led by the existing canals to the existing irrigation areas. These canals are earth-canal and functioning well. Due to the shortage of surface water of the river and poor conditions of the existing facilities, the paddy field of Project area has been irrigated in the wet season.

#### 1.10 Agro-economy

#### (1) Farmers group

Farmers are members of Agricultural Cooperative (KUD). From its branch shop, they commonly purchase fertilizers and use credit services. Some farmers are also members of Village Youth Association or Village Program of Women Education. About three fourth of farmers have been memberships of Water Users' Association (P3A/HIPPA) established in 1990 for the purpose of maintaining on-farm irrigation service facilities and managing irrigation water distribution.

#### (2) Agricultural supporting services

Agricultural extension services are provided to farmers by field extension workers (PPL) attached to a rural extension center (BPP) in Belo. Usually, farmers receive PPL's visiting service very few because of limited budget for field operation in BPP. Some PPLs are livestock specialists to provide various services under the instructions of a specialized agricultural extension agent assigned to a district center for agricultural extension. Veterinary care services are given to breeding households through an animal health center of the Veterinary Service of the Department of Livestock. The present level of livestock extension services is similar to that of the agricultural extension services.

Credit services are available in KUD as well as in the service network of the Indonesian People's Bank (Bank Rakyat Indonesia) both handling "Credit for Farmer (KUT)" and "Income Generating Project for Marginal and Landless Farmers (P4K)". Financial sources of these credits are the Government for KUT and IFAD for P4K aiming at group financing.

Sumbawa Water Resources Development and Conservation Project Office (Proyek PKSA Sumbawa) under the NTB Provincial Public Works Service (DPUP) is responsible for new water resource development and watershed management. New development of

irrigation system is the responsibility of Sumbawa Irrigation Project Office, while upgrading and rehabilitation works are the main task of Provincial Project Office for Rehabilitation and Upgrading of Irrigation. Operation and maintenance (O&M) works of all facilities are conducted by Provincial Project Office for Operation and Maintenance (PPO&M APBD). These project offices are under the direction of DPUP.

#### (3) Farmers' Household Economy

The results of agro-economy survey carried out in the Project area under the Study reveal that the average income and expenditure of 15 sample farmers amount to Rp. 2.74 million and Rp. 2.77 million, respectively. Some sample farmers make up for deficit in their household economy by selling their livestock. Table 1.5 shows the summary of replies of 15 respondents.

#### 2. DEVELOPMENT NEEDS AND CONCEPTS

#### 2.1 Development Needs and Constraints

#### (1) Population increase

The future population in the Project area is anticipated by referring to "Projection of Population for Kabupaten/Kotamadya in Indonesia 1990-2000" prepared by National Statistic Bureau and the Second Long Term Development Plan (PJPT II). The total number of inhabitants living in the Project area will increase from 2,307 persons as at 1993 to 2,461 persons in 1998, 2,611 persons in 2003, 2,855 persons in 2008, 2,983 persons in 2013 and 3,100 persons in 2018.

#### (2) Basic human needs (BHN)

The inhabitants in the Project area are unsatisfied with the present condition of rural infrastructures because the existing 23 dug wells have not enough supply capacity to cover drinking and livestock water requirements for three months between October and December and no electricity is distributed to this area. The on-going rural electrification scheme is planned to be extended to the Project area. If these dug wells are used only to get drinking water, inhabitants will be able to secure their drinking water during the dry season. Therefore, the pressing need is to solve water shortage problems for their livestock due to lack of water sources for the above three month period.

#### (3) Economic development needs

All of 412 farm households have principally consumed their farm products for their own use and then sold the remaining amount to local markets. There is not much possibilities of developing manufacturing and service sector industries in and around the Project area so as to offer new job opportunities to farmers. It is therefore indispensable for promoting public investment to economic infrastructures, especially for irrigation water source facilities, which encourage farmers to improve their farming system and enable them to increase their agricultural production. Increasing farm outputs could clue farmers themselves to upgrade their living standard and to catch up with faster economic growth of other sectors and places.

#### (4) Inhabitants' intention to development pattern

Inhabitants in the Project area intend to use their farm land more intensive because no expansion of land holding size can be expected. To do so, they need all year-round water source facilities from which they will be able to get sufficient irrigation water for growing the dry season crops. Those who are suffering from livestock water shortage problems from October to December have to bring their cattle to far places where water is available because cattle are the staff of life for the Sumbawanese. They also intend to utilize the time presently spent to remove cattle for productive purposes. In this connection, they need permanent water source facilities which enable them to secure stable livestock water throughout a year.

#### (5) Development constraints

The present constraints against social upgrade and economic development in the Project area are featured by the condition that available surface runoff of the river has not been fully utilized. The reason is that the existing intake weirs established on the Ntonggu river can divert only the wet season discharge as no discharge is available in the river during the dry season. Due to such situation, no more utilization of the Ntonggu river can be expected unless countermeasures to regulate the wet season runoff are practiced.

In order to supplement insufficient livestock water during the dry season, breeding households bring their cattle to far places where perennial water is available. Such limited water resources have acted as the barrier to meet BHN and to promote development of intensive agriculture.

#### 2.2 Development Concepts and Approach

#### (1) Development concepts

The existing gap of economic status between NTB and other Provinces is caused by insufficient fulfillment of BHN, slow pace of poverty alleviation and less concerns about a balanced investment to regional development. In harmony with the national policy to correct this economic imbalance, the development concept is formed aiming at improvement of social and economic infrastructures with the highest priority so as to meet BHN and increase agricultural outputs. Among others in the Project area, it is prerequisite to pay special attention to how to solve irrigation and livestock water shortage problems originated from insufficient use of potential water resources in the Ntonggu river basin.

#### (2) Development strategies and approach

To overcome development constraints prevailing in the Project area, water resources seasonally available are to be regulated by means of constructing Embung as the water reservoir on the Ntonggu river. Approach to development planning of the potential Embung is as follows:

- To put the first priority to supply irrigation water and the second to livestock water taking into account inhabitants' needs and intention;
- To project the future water demand for irrigation and livestock use at the target year of 2008 being the last year of Pelita VIII;
- To examine development potential of the Ntonggu II Embung from the technical viewpoints;
- To determine the optimum development scale of the Embung;
- To make preliminary design and cost estimate; and
- To conduct investment justification from the viewpoints of economic soundness, social satisfaction and environmental impact.

#### 2.3 Land Potential

All of the existing paddy field could be irrigated from the viewpoint of the topographical condition. To irrigate the paddy field of 36 ha between the Ntonggu river and its tributary, an aqueduct is required to be installed over the river.

A part of the upland could be transformed into the irrigated paddy field in future. The newly developed area with a gentle slope from 2 to 5% is estimated at 27 ha in total.

Rainfed paddy field -> Irrigated paddy field 72 ha
Rainfed upland -> Irrigated paddy field 27 ha

In conclusion, the future land use plan of the Project area is offered as shown below.

Future Land Use Plan on the Project Area of Ntonggu II

|                      |           |         |        | Unit: ha |
|----------------------|-----------|---------|--------|----------|
| Land Use             | Irrigated | Rainfed | Others | Total    |
| Paddy field          | 420       | 0       |        | 420      |
| Upland               | 0         | 27      | •      | 27       |
| Tree crops           | 0         | 0       |        | 0        |
| Bush/Scrub/Grassland |           |         | 95     | 95       |
| Residential          |           |         | 36     | 36       |
| Cemetery             |           |         | . 2    | 2        |
| Others               |           |         | 3      | 3        |
| Total                | 420       | 27      | 136    | 583      |

Source: The JICA Study Team

There is the rainfed paddy field in the impounding area of the proposed Embung. The area of the impounding paddy field is estimated at 30 ha. Although the land transformation from the rainfed paddy field of 72 ha and the upland of 27 ha into the irrigated paddy field could be proposed within the Project area, this new irrigation area is not enough for the alternative land resource. Therefore, the alternative land resource need to be found in other area, or cash payment would be required for compensation.

#### 2.4 Agricultural and Livestock Development Plan

#### (1) Alternative cropping patterns

In formulating the future cropping patterns in the Project area, the following basic principles have been adopted:

- Higher benefit for farmers;
- Optimum use of irrigation water:
- Practical farming system for family labor; and,
- Crops and cropping patterns acceptable to farmers.

Wet paddy is the most predominant crop in the Project area and acceptable to farmers as they have long experience in rice cultivation. Therefore, they could easily master irrigated rice cultivation methods to realize higher production and thereby large irrigation benefit under the condition of "With Project". Aiming to determine the optimum development scale of the proposed Embung, the following alternative cropping patterns are established.

#### Alternative Cropping Patterns

| • •               |       | •               | *************************************** | Dry s           | eason           |                 |
|-------------------|-------|-----------------|-----------------------------------------|-----------------|-----------------|-----------------|
| Pattern Code      | Wet   | season          | First cr                                | opping          | Second Cropping |                 |
|                   | Сгор  | Coverage<br>(%) | Crop                                    | Coverage<br>(%) | Crop            | Coverage<br>(%) |
| With Project C-12 | Paddy | 100             | Paddy                                   | 100             |                 |                 |
| With Project C-22 | Paddy | 100             | Mungbean                                | 100             | Tomato          | . 33            |
|                   |       |                 |                                         |                 | Cabbage         | 33              |
|                   |       |                 |                                         |                 | Red onion       | 34              |
| With Project C-23 | Paddy | 100             | Paddy                                   | 100             | Mungbean        | 100             |

Remarks: \*; Mixed with groundnut

#### (2) Farm input and labor requirements

Under the "With Project" condition, farmers who are depending on unreliable rainfall, river flow or irrigation water can be expected to get stable irrigation water supply. They will be able to increase farm inputs to the optimal level with less risk. Proposed farm inputs are estimated in consideration of the present input level in advanced irrigation areas as well as data collected from BPPs. Labor requirements are also expected to increase substantially in cultivation under the technical irrigation system. On the other hand, farm input and labor requirements are expected to remain at present level under the "Without Project" condition.

| Proposed | <u>Farm</u> | Input | and | Labor | Requirements |
|----------|-------------|-------|-----|-------|--------------|
| •        |             | _     |     |       | _            |

| Item           | Unit   | Wet Paddy | Mungbean | Tomato | Cabbage | Red Onion |
|----------------|--------|-----------|----------|--------|---------|-----------|
| Farm Inputs    |        | •         | •        |        |         |           |
| Seed           | kg/ha  | 25        | 30       | 14     | 15      | 2,000     |
| Fertilizer     | -      |           |          |        |         |           |
| Urea           | kg/ha  | 300       | 75       | 350    | 350     | 300       |
| TPS            | kg/ha  | 100       | 100      | 400    | 400     | 200       |
| KCl            | kg/ha  | 50        | 50       | 400    | 400     | 100       |
| Agro-chemicals | lit/ha | 2         | 2        | 10     | 10      | 10        |
| Rodenticide    | kg/ha  | 2         | 1        | 3      | 3       | 3         |
| Labor          | md/ha  | 185       | 80       | 150    | 200     | 250       |
| Draft Animal   | ad/ha  | 20        | 10       | 20     | 20      | 20        |

#### (3) Proposed farming practices

Proposed farming practices for wet paddy are as follows:

- High yielding rice varieties to be used under the With Project condition are IR64, Krueng Aceh, Pelita, C4 and IR36 with maturing periods of 110 to 135 days.
   These varieties are moderately resistant or resistant to several major rice pests and diseases. Land preparation on wet paddy field has to be done by animal ploughing and harrowing;
- Fertilizers need to be applied three times; the first application at the final stage of land preparation, and the second and third applications as top-dressing at the 20th and 37th day after transplanting, respectively. The top-dressing will be applied while water depth on wet paddy field is shallow. The phosphorous (TPS) and potassium (KCl) fertilizers have to be applied at the final stage of land preparation. The required amount of fertilizers is 60 kg/ha of N, 30 kg/ha of P and 30 kg/ha of K;
- Seed rates are 20 to 40 kg/ha for nursery. The best period for transplanting is 3 to 4 weeks after sowing, when the seedlings have 5 to 6 leaves. Ratio of the nursery bed to the main wet paddy field is about one twentieth. Planting density is about 2 to 3 plants per hill and spacing of hill is 20 cm x 20 cm;
- Weeding is required to be performed two to three times during the rice growing period according to weed growth. Irrigation water supply needs to be guaranteed during the most critical stages of the plant growth such as tillering, booting, flowering and germination stages. Timely control of insects, pest and diseases is necessitated on the basis of advice by PPLs and their assistants; and
- It is desirable to carry out harvesting when the ears are nearly ripened and are still in slight green. Harvesting is made by labors using a sickle. Harvested paddy plants need to be dried on the field for 3 to 4 days.

For growing Palawija crops under the irrigated condition, advanced farming practices similar to irrigated wet paddy cultivation and high yielding varieties are to be adopted. Land preparation will require animal-draft in order to enhance efficiency and accuracy of the work. Proper fertilization matching with soil conditions and timely insect/disease control are also indispensable. These farming practices need to be applied for, following technical instructions of PPLs.

#### (4) Anticipated crop yield

It is anticipated that the future yield of proposed crops under the "With Project" condition increases to 4.5 ton/ha for wet paddy, 1.1 ton/ha for mungbean, 0.6 ton/ha for tomato, 30.0 ton/ha for cabbage and 7.5 ton/ha for red onion. These targets are estimated in due consideration of the present yield level in well established irrigation areas of Kabupaten Bima as well as introduction of high yielding varieties and advanced farming practices, stable irrigation water supply and optimum use of farm inputs. As for build-up period to attain the anticipated yield, it is also prospected that crop yield level is 60% of the target in the first year, 70% in the second year, 80% in the third year, 90% in the fourth year and 100% from the fifth year and onward.

#### (5) Projected livestock population

The future livestock population in the Project area for the target year 2008/2009 is projected as shown below taking into account the actual growth rate of each livestock in Kabupaten Bima during the Pelita V period.

#### Projected Population of Livestock

|     |         |       |                |     | Unit: head       |
|-----|---------|-------|----------------|-----|------------------|
| Cow | Buffalo | Horse | Goat<br>/Sheep | Pig | Chicken/<br>Duck |
| 299 | 99      | 7     | 141            | 0   | 0                |

#### 2.5 Water Demand

#### (1) Livestock Water Demand

The future livestock water consumption level in NTB is set to be 40 lit/day/head for cow, buffalo and horse, 5 lit/day/head for sheep and goat, 6 lit/day/head for pig and 0.6 lit/day/head for poultry according to "The Study for Formulation of Irrigation Development Program in the Republic of Indonesia". Additional water demand for buffalo's bathing is considered to be 20 lit/day/head.

Following the future livestock population projected, the future livestock water demand is estimated to be  $6,900 \text{ m}^3$ . The breakdown of this livestock water demand is  $4,400 \text{ m}^3$  for 299 cows,  $1,400 \text{ m}^3$  for 99 buffaloes,  $100 \text{ m}^3$  for 7 horses and  $300 \text{ m}^3$  for 141 chickens as well as  $700 \text{ m}^3$  for bathing water of buffaloes.

#### (2) Irrigation water demand

In order to optimize the development scale and delineate the beneficiary area of the Project, irrigation water demand for each proposed crop is estimated for unit irrigation area of 1 ha on the semi-monthly base taking into account crop consumptive use, evapotranspiration, crop coefficient, effective rainfall and irrigation efficiency both for wet paddy and Palawija crops as well as land preparation water, layer replacement and percolation loss only for wet paddy. As described in Attachment 1, irrigation water demand

in the Project area is calculated by referring to the standard quoted in "Irrigation Design Standard, KP-01" by DGWRD.

Tables 2.1 and 2.2 show the calculation results of evapotranspiration and effective rainfall, respectively, and Table 2.3 presents the unit irrigation water demands for each crop.

#### 3. EXAMINATION OF EMBUNG DEVELOPMENT POTENTIAL

#### 3.1 Topographic Condition

The Ntonggu II Embung site is selected in the upstream side on the basis of comparative/alternative study for the upstream and downstream sites. River bed elevation at the proposed Embung site shows El. 53.0 m and the width of valley is 260 m at El. 70.0 m on both abutment of the dam site. Gradient of the river bed around the proposed Embung site is gentle as 1/160 in comparison with the upstream of the Ntonggu river.

#### 3.2 Geological Condition

The proposed Embung site is underlain by dacitic tuff breccia and alluvium. The foundation is mainly formed of dacitic tuff breccia on the both left and right banks, and alluvium at river bed. The drilling survey shows that the N-value of alluvium is ranging from 6 to 31. The coefficient of permeability varies from  $5.1 \times 10^{-5}$  to  $9.8 \times 10^{-6}$  cm/sec for alluvium and from  $2.6 \times 10^{-4}$  to  $1.1 \times 10^{-5}$  cm/sec for dacitic tuff breccia. Ground water is present at 0.6 to 3.0 m deep in alluvium.

The reservoir area is mainly underlain by dacitic tuff breccia, terrace deposits and alluvium. No major fault and landslide are recognized in the reservoir area. However, some lineation supposed to the fault are recognized by interpretation of aerial photographs. Geological map and profile are shown in Figures 3.1 and 3.2.

#### 3.3 Availability of Construction Materials

In and around the proposed Ntonggu II Embung site, there are sufficient materials suitable for constructing a homogeneous earthfill dam. The borrow area for impervious soil and the quarry site for sand and gravel materials are investigated from the technical and economical viewpoints. The following shows a summary of the selected location and the availability of the materials.

#### Availability of Construction Materials

| Material               | Location                                      | Description                                                       |  |  |
|------------------------|-----------------------------------------------|-------------------------------------------------------------------|--|--|
| 1. Impervious soil     | Reservoir area and downstream of the dam site | Clayed sandy silt estimated to be more than 300,000m <sup>3</sup> |  |  |
| 2. Drain material      | Ntonggu river                                 | Sand & gravel from river deposits                                 |  |  |
| 3. Toe rock material   | Ntonggu river                                 | Boulders from river deposits                                      |  |  |
| 4. Concrete aggregates | Ntonggu river                                 | Sand & gravel from river deposits                                 |  |  |

#### 3.4 Availability of Water Resources

#### (1) Catchment yield

As for the river where the Ntonggu II Embung will be constructed, there is no record of discharge. Accordingly, runoff at the proposed Embung site is estimated by use of the rainfall record near the site. The Sila rainfall station which is located in the west of the Ntonggu II Embung catchment has rainfall record of nearly consecutive 23 years and is considered to represent catchment rainfall. The blank data of the Sila station was

supplemented by that of the Raba station. The climate is strongly influenced by altitude and the rainfall in the low elevated area is considerably low comparing to the high elevated area. Furthermore, most rainfall stations are located in the low elevated area. To convert the station rainfall to the catchment rainfall, the adjustment coefficient of 1.3 is multiplied by use of isohyetal map. The generated catchment rainfall is given in Table 3.1. A runoff coefficient of 0.35 is adopted considering the characteristics of the catchment area and the previous hydrological analysis in the Sumbawa Island. Using this runoff coefficient and rainfall record at Sila, river flow at proposed site is estimated.

The following conditions are considered for estimation of the half monthly discharge:

- Catchment area of the proposed Embung site is 6.2 km<sup>2</sup>; and,
- Less than 20 mm of half monthly rainfall is ignored for estimation.

This estimation is made based on the rainfall record from 1970 to 1990. The estimated half monthly discharge is given in Table 3.2 and monthly discharge is summarized below.

#### Mean Monthly Discharge

|      | i <u> </u> |      |      |     |      |      |      |      |      |      | Unit: | 1,000 m <sup>3</sup> |
|------|------------|------|------|-----|------|------|------|------|------|------|-------|----------------------|
| Jan. | Feb.       | Mar. | Арг. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec.  | Annual               |
| 596  | 572        | 414  | 135  | 55  | 32   | 7    | 0    | 19   | 86   | 310  | 524   | 2,750                |

#### (2) Floods

The flood analysis is made to determine the design discharge of the structures, such as spillway, diversion tunnel, and so on. Taking availability of the flood record and size of the catchment area into account, the rational formula is adopted to estimate the flood discharge in the Study. The formula is:

#### Q = 0.2778 f r A

where, Q : Peak discharge (m<sup>3</sup>/s)

f : Runoff coefficient

r : Average rainfall intensity within time of concentration (mm/hr)

A : Catchment area (km)

#### 1) Design rainfall

Design rainfall is estimated by the Log Pearson Type III method, which is widely used in NTB. In this Study, 20 years rainfall data of the Sila station from 1970 to 1993 are analyzed by the method. The result of probability analysis is summarized below.

#### Design Rainfall

|               | Unit: mm        |
|---------------|-----------------|
| Return Period | Design Rainfall |
| 1 in 2 year   | 79              |
| 1 in 5 year   | 98              |
| 1 in 10 year  | 109             |
| 1 in 20 year  | 120             |
| 1 in 50 year  | 133             |
| 1 in 100 year | 143             |
| 1 in 200 year | 152             |

#### 2) Design flood

The following is the Ruziha's formula to estimate the flood travel time:

$$T = L/V$$
  
 $V = 72(H/L)^{0.6}$ 

where, T: Flood travel time (hr)

L : Horizontally projected length of river course (km)

H: Difference of elevation (m)
V: Velocity of flood (km/hr)

The rainfall intensity within concentration time of the flood is estimated by an empirical formula prepared by Dr. Mononobe as follows:

$$r = (R_{24}/24) \times (24/T)^{2/3}$$

where; r : Maximum average rainfall intensity within concentration time (mm/hr)

R<sub>24</sub>: Daily rainfall (mm)
T: Time of concentration (hr)

The runoff coefficient is estimated at 0.8 considering the condition of the catchment area.

Based on the above condition, the peak floods in various return period are estimated. The result is shown in Table 3.3 and summarizes below.

#### Probable Flood

|               | Unit: m <sup>3</sup> /s |
|---------------|-------------------------|
| Return Period | Probable Flood          |
| 1 in 2 year   | 54                      |
| 1 in 5 year   | 67                      |
| 1 in 10 year  | 75                      |
| 1 in 20 year  | 82                      |
| 1 in 50 year  | 91                      |
| 1 in 100 year | 98                      |
| 1 in 200 year | 104                     |

#### (3) Sediment load

There is no available data on sediment load on the river, where the Ntonggu II Embung will be constructed. The Technical Report I (Embung Study Program) in the Sumbawa Water Resources Development Planning Study Extension Phase in 1982 indicates that the sedimentation rate is 0.5 mm/year/km $^2$ . Taking data availability and characteristics of the catchment area into account, 0.4 mm/year/km $^2$  is adopted in this Study.

#### (4) Water quality

On October 28, 1994, water samplings were carried out at the proposed Embung site and upstream and downstream of the site for the clarification of the water quality. The result of the test is shown in Table 3.4.

#### 4. EMBUNG DEVELOPMENT PLAN

#### 4.1 Optimization of Development Scale

The water balance study aims to clarify the relationship among the proposed Embung scale, irrigable area and cropping pattern. According to the water demand and procedure to be described below, the water balance study of the Pelangan Embung Project is conducted.

#### (1) Methodology

The simulation equation is as follows:

$$W_2 = W_1 + I - L - S_P - O_D - O_L - O_I$$

| where, | I              | : | inflow to reservoir at the half monthly period (m <sup>3</sup> )                               |
|--------|----------------|---|------------------------------------------------------------------------------------------------|
|        | L              | : | water losses from the reservoir caused by evaporation during the half monthly period (m3)      |
|        | SP             | : | flow of water over the spillway during the half monthly period (m3)                            |
|        | OD             | : | outflow needed for domestic water during the half monthly period (m3)                          |
|        | OL             | : | outflow needed for livestock water during the half monthly period (m3)                         |
|        | OI             | ; | outflow needed for irrigation water during the half monthly period (m3)                        |
|        | $\mathbf{w_1}$ | : | volume of water in the reservoir at the beginning of the half monthly period (m <sup>3</sup> ) |
|        | $W_2$          | : | volume of water in the reservoir at the end of the half monthly period (m <sup>3</sup> )       |

#### 1) Inflow

Since there is no gauging station on the Ntonggu river, discharge is generated from rainfall of the Sila station.

#### 2) Reservoir storage curve

Reservoir storage curve with surface area is shown in Figure 4.1 in relation to the elevation at the proposed Embung site.

#### 3) Losses

Evaporation from inundation area can be estimated as "1.1 x ETo", indicating, "open water evaporation", which is employed in the Design Criteria KP-1.

#### 4) Spill out discharge from reservoir

Spill out discharge is considered if there is any excess storage which exceeds the maximum storage capacity of dam.

#### 5) Water Demand

The 100% dependability of the above demand shall be secured by the proposed Ntonggu II Embung.

To meet 80% dependability of irrigation water, reservoir capacity will be determined.

#### 6) Water level of reservoir

Minimum water level is estimated at El. 58.3 m considering sedimentation volume for 25 years and 1.0 m allowance. Maximum water level for the simulation is equal to the crest elevation of spillway

#### (2) Optimum development scale

The optimum development scale of Ntonggu II Embung coincides with the maximum scale which can be decided by the available run-off from the catchment area at the proposed Embung site. From the hydrological viewpoint, the Embung height is unable to go beyond 17.0 m. The optimum development scale is thus in line with the height of 17.0 m and effective storage capacity of 1.159 MCM. The result of the reservoir operation is shown in Figure 4.2.

#### 4.2 Delineation of Beneficiary Area

#### (1) Delineation of beneficiary irrigation area

By developing available water resources of the Ntonggu river through construction of the proposed Ntonggu II Embung at the scale to utilize the maximum runoff, irrigation water can be supplied to wet paddy field of 187 ha in net for the wet season and 65 ha for the dry season. The beneficiary area of the proposed Embung comprises the presently irrigated paddy field of 122 ha and the existing rainfed paddy field of 65 ha. Taking such limited water supply condition into account, the future cropping pattern under the "With-Project" condition needs to be revised to two cropping of the fully irrigated wet season paddy and the dry season mungbean both irrigated and rainfed as shown below and illustrated in Figure 4.3.

Under the "Without-Project" condition, no new irrigation water source can be developed so that the future cropping pattern is to remain in the same condition of the present pattern.

|                 | ,     | Wet season      |              | D        | Dry Season      |              |  |  |
|-----------------|-------|-----------------|--------------|----------|-----------------|--------------|--|--|
| Condition       | Crop  | Water<br>Supply | Area<br>(ha) | Crop     | Water<br>Supply | Area<br>(ha) |  |  |
| With Project    | Paddy | Irrigated       | 187          | Mungbean | Irrigated       | 65           |  |  |
|                 |       |                 |              | Mungbean | Rainfed         | 122          |  |  |
| Without Project | Paddy | Irrigated       | 122          | Soybean  | Rainfed         | 10           |  |  |
|                 | Paddy | Rainfed         | 65           | (Fallow) |                 |              |  |  |

**Future Cropping Pattern** 

#### (2) Delineation of beneficiary area for livestock water supply

With regard to livestock water demand in the Project area, it is possible to meet the whole amount by using excess reservoir water of the proposed Embung. Thus, the livestock water for 423 equivalent heads of cow is to be distributed by installing new water pipeline networks.

#### 4.3 Embung Development Plan

Following the results of the geological and material surveys as well as the optimization study, the proposed development plan of Ntonggu II Embung is determined. In terms of dam type, homogeneous earth type is applied in due consideration of the foundation strength and the availability of embankment materials.

The main components of Ntonggu II Embung are the main dam, spillway, river diversion conduit and water supply facility as shown in Figure 4.4. In order to provide the reservoir with the optimum storage capacity of 1.159 MCM in the reservoir, the full supply level (F.S.L.) is set at El. 66.0 m. Taking overflow depth of spillway and freeboard into account, the dam height of Ntonggu II Embung becomes 17.0 m above the river bed. order to release the flood discharge during the construction period, an open river diversion is provided. The spillway is designed on the left bank of the main dam to release the flood discharge of 106.0 m<sup>3</sup>/sec from the catchment area of 6.2 km<sup>2</sup>. For the purpose of supplying domestic water to the beneficiary area, such related facilities are provided as an intake structure in the reservoir, water supply pipe with a diameter of 300 mm below the dam body and valve house at the downstream of the main dam.

The principal features of Ntonggu II Embung are summarized below.

#### **(1)** Reservoir

| 2                 |
|-------------------|
| ) m               |
| m                 |
| 00 m <sup>3</sup> |
| ) m <sup>3</sup>  |
| $00 \text{ m}^3$  |
| m                 |
|                   |

#### (2) Main dam

| _ | Type                    | Homogeneous earthfill dam |
|---|-------------------------|---------------------------|
| - | Height                  | 17.0 m above river bed    |
| - | Crest elevation         | El. 70.0 m                |
| - | Crest length            | 260 m                     |
| - | Crest width             | 7.0 m                     |
| - | Upstream slope          | 1:4.5                     |
| - | Downstream slope        | 1:3.0                     |
| - | Total embankment volume | 252,000 m <sup>3</sup>    |

#### (3) Spillway

| - | Design flood (1/100 year)        | 106 m <sup>3</sup> /sec |
|---|----------------------------------|-------------------------|
| - | Type                             | Overflow weir           |
| - | Crest elevation of overflow weir | El. 66.0 m              |
| - | Width of overflow weir           | 20.0 m                  |
| - | Discharge capacity               | 110 m <sup>3</sup> /sec |
| - | Overflow depth                   | 2.0 m                   |
| - | Length                           | 160 m                   |
|   |                                  |                         |

#### (4) River diversion

| - | Design flood (1/5 year) | 73 m <sup>3</sup> /sec |
|---|-------------------------|------------------------|
| - | Туре                    | Open channel           |
| - | Diameter                | 10.0 m x 4 m           |
| - | Length                  | 170 m                  |

#### Water supply system (5)

| - | iniei structure  | 1.0 x 1.0 m square         |
|---|------------------|----------------------------|
|   |                  | with trash racks           |
| - | Pipe diameter    | $\phi$ 300 mm pipe culvert |
| - | Length           | 140 m                      |
| - | Design discharge | 200 lit/sec.               |
| - | Valve house      | Right abutment of dam site |

Type Through valve

# <u>Volume 9 - 4</u>

- Diameter
- Outlet elevation

φ 300 mm El. 57.0 m

#### 5. PRELIMINARY DESIGN OF FACILITIES

#### 5.1 Preliminary Design of Embung

#### (1) Dam height

Resulting from the optimization study based on irrigation benefit and the construction cost, the dam height is decided on the basis of "Reservoir Storage Curve" as shown Figure 4.1.

#### (2) Freeboard

The freeboard of main dam is designed taking into consideration the rise of reservoir water surface due to extraordinary flood discharge and wave uprush on the slope.

The following formula is applied for the design of the Ntonggu II Embung.

$$Hf = 0.05h + 1.0 (m)$$

where, Hf

freeboard

h

height from river bed to the designed flood level.

#### (3) Horizontal filter drain and toe rock drain

In order to reduce the seepage line within the dam body under the full reservoir water condition, horizontal filter drain (drainage mattress) and toe rock drain are provided below body and at toe portion of the main dam as shown in Figure 4.4.

#### (4) River diversion tunnel during construction

During the dam construction period, river flow including floods has to be diverted to avoid inundation of the Embung construction site. This can be effectively and economically made by providing a random-filled cofferdam and an open channel river diversion with a trapezoidal shape of 10 m in width and 4 m in height. A 5-m high cofferdam with a crest level of El. 58.0 m would suffice to contain the flood inflow of 73 m<sup>3</sup> /sec having a return period of five years.

#### (5) Spillway

The spillway is located on the left abutment of main dam, which is composed of overflow weir and chuteway. The over flow weir is designed to cope with the inflow design flood with a flood surcharge space provided above F.S.L. The inflow design flood is determined at 100 year probable flood having a peak discharge of 106 m<sup>3</sup>/sec.

Base on comparative study on combination of overflow depth and width of the spillway, the overflow depth at 2.0 m and the width of 20.0 m are decided so as to minimize the costs of the spillway and the main dam.

A non-gated ogee crest would be set at El. 66.0 m to coincide with F.S.L. A bridge would be provided over the throughway of the spillway.

#### (6) Water supply system

In order to supply the water to the downstream irrigation area, the water supply system is provided to release the water of 200 lit/sec. The water supply system consists of intake structure, pipe line and valve house. The intake structure is located at the front of

diversion tunnel above the sediment deposition level of El. 57.3 m. Fixed trashracks are provided on the intake structure. Pipe culvert with diameter of 300 mm is connected from the intake structure to the downstream through the main dam foundation.

A value house would be constructed near the downstream toe of the dam. The guard valve and control devices with a diameter of 300 mm would be installed in the valve house.

#### 5.2 Preliminary Design of Irrigation Facilities

#### (1) Basic concept

The following basic concepts are applied for the preliminary design of irrigation facilities in line with the development strategy:

- Irrigation water impounded by the Embung is supplied firstly to the existing cropped field, irrigated or rainfed, in the beneficiary area;
- Irrigation area is defined taking into consideration the available cropped field and the effective storage capacity of Embung;
- Irrigation canals from the outlet of Embung to the head of existing cropped field is constructed in the form of open channel as much as possible from the economic viewpoint;
- Irrigation system in the existing cropped field is be developed by farmers themselves, as the irrigation system commands around 50 ha only. No consideration is taken into in terms of new land reclamation;
- Proper design of canal alignment for gravity irrigation is considered paying special attention to avoid adverse effect on environment; and,
- Drainage improvement is not required for the existing cropped field since the beneficiary area is situated on well drained land.

#### (2) Irrigation plan

The outlet works of the Embung are planned to be used for dual purposes of supplying irrigation and domestic water. The water taken from the reservoir is led to the valve house through the cast iron pipe provided in the left abutment of the dam.

Irrigation water is discharged to the irrigation inlet box to make the open flow from the pipe pressure flow. From the irrigation inlet box, irrigation water is led to the existing irrigation field by newly constructed open channel. On the way, livestock water is diverted.

General layout is shown in Figure 5.1 including the layout of irrigation canals.

#### (3) Design discharge and initial water level

Design discharge for canal and related structures are decided based on the irrigation water requirement and proposed cropping pattern. Peak semi-monthly base diversion requirement for the unit irrigation area of 1.0 ha is defined as a design discharge after multiplying the irrigation area. Peak diversion requirement occurs in the first half month of January for the wet season paddy crop and its design discharge is estimated at 200 lit/sec for the net irrigation area of 187 ha. This design discharge is enough to flow design discharge for the dry season Palawija crops of net area of 187 ha at peak time.

Initial water level at the irrigation inlet box is decided taking into consideration the elevation at the box. As a result, the initial water level is El. 57.0 m at the irrigation inlet box.

#### (4) Irrigation facilities

The proposed canal layout and design of irrigation facilities are made based on the 1/5,000 topographic map prepared under Study and in accordance with the following considerations:

- Canal alignment is to be straight and short as much as possible;
- The alignment is to be planned pass outside villages and give no damages to public facilities;
- The types of canal related structures are to be minimized as much as possible; and,
- The structures are to be simplified as much as possible.

Irrigation canal to lead the water to the wet paddy field from the Embung is constructed as a stone masonry trapezoid canal taking into account the design discharge of the canal, steep topographic condition, construction method and available construction materials in the Project area. Canal related structures required are irrigation inlet box, turnouts, siphon, cross drain and irrigation division boxes. Required irrigation facilities are summarized below.

#### Irrigation Facilities Requirements

|   | Facilities                                           | Quantities |
|---|------------------------------------------------------|------------|
| - | Valve house (including in the facilities for Embung) | 1 No.      |
| - | Irrigation inlet box                                 | 1 No.      |
| - | Masonry canal to be constructed                      | 5,4 km     |
| - | Turnout                                              | 2 Nos.     |
| - | Siphon                                               | 1 No.      |
| - | Aqueduct                                             | 1 No.      |
| - | Cross drain                                          | 1 No.      |
| - | Irrigation division box                              | 54 Nos.    |
| _ | Division box for livestock                           | 14 Nos.    |

#### 5.3 Preliminary Design of O & M Road

No all weathered road is available in and around the Embung site. It is therefore planned to provide O&M road to the dam site aiming at smooth undertaking of O&M works after completion of the Embung. Main features are summarized below.

Main Features of O&M Road

| Item            | Unit | Quantities |
|-----------------|------|------------|
| Required length | km   | 0.98       |
| Width           | m    | 7.0        |
| Pavement        |      | Gravel     |

#### 6. EMBUNG CONSTRUCTION PLAN

#### 6.1 Construction Schedule

#### (1) Basic condition

All the construction works will be carried out by a local contractor selected by local competitive bidding.

The construction plan is based on the mode of construction and the target schedule of construction works as well as local conditions such as availability of construction labor, material and equipment, as well as weather and topographic conditions of the construction site.

It is assumed that 200 working days per year are available for conducting the earthfill embankment works, 270 days per year for the filter and rock embankment works and 300 days per year for concreting works in view of the daily rainfall distribution in the Project area. For each working day, 8-hour shift is applied.

#### (2) Construction schedule

The overall construction schedule is determined as shown in Figure 6.1 taking into account the necessary time of detailed design, bidding procedure including the time of tender evaluation and award of the contract. The major points of construction schedule are described below.

#### 1) Mobilization and preparation works

Immediately after received the "Notice to Proceed", the contractor would commence the mobilization of the construction equipment and key staffs to the site from beginning of November in the first year. Following the above, preparatory works would be commenced at the Project site.

#### 2) Setting out and excavation works

During the mobilization, setting out of all the structures would be commenced by the contractor at the Project site. Construction of temporary access roads such as access to the borrow area and access to major structural sites shall be started by using equipment available at the Project site. The excavation works for the river diversion channel and the main dam would be commenced at the beginning of March in the second year.

#### 3) Embankment works and excavation of spillway and water supply conduit

After the river water divert into the diversion channel around June in the second year, embankment works for the main dam shall be commenced and completed before the rainy season in the third year. Excavation works for the spillway and water supply conduit shall also be commenced and completed before October in the second year.

#### 4) Concrete works of spillway and water supply conduit

Concrete work of the spillway will be commenced in March and completed before October in the third year. Concrete works of the water supply conduit will be completed before re-starting the embankment of the main dam in the dry season in the third year.

#### 5) Commencement of reservoir water impounding

Commencement of the reservoir water impounding will be done at beginning of October in the third year after completion of the main dam embankment and spillway construction. Considering the rainfall in November and December in the third year, the Ntonggu II reservoir would be quite full, the water can be supplied from the reservoir to the water users from January in the fourth year.

#### 6) Water distribution system

Construction works for the water distribution system will be executed in parallel with the Embung construction works by using mainly manpower because the work quantities are not so much. These works shall be completed by the end of December in the third year before supplying the reservoir water to the beneficiary area.

#### 6.2 Construction Plan of Embung

#### (1) Preparatory works

The preparatory works consist of preparation of temporary buildings, construction plant and repair shop, arrangement power and water supply systems as well as communication system, construction of access and haul roads, and so on. All of these works will be conducted from November in the first year to February in the second year.

#### 1) Temporary buildings and yards

The temporary buildings required for the construction would include office, quarters, workshop, warehouse and storage yards. These temporary buildings will be built by the contractor.

#### 2) Water and power supply

The water required for the construction works and the daily use in the construction camp is planned to be taken from the rivers or springs near the Embung site or the wells drilled in the contractor's yard.

The electric power for the construction camp is planned to be supplied by the contractor's diesel generators.

#### (2) River diversion works

The river flow will be released through the river diversion channel during the second and third year, which is provided along the right bank of the Ntonggu river.

In the dry season of the third year, the river diversion channel below the main dam will be filled by the embankment materials of the main dam. In this period, the river water shall be released to the downstream through the water supply pipe culvert to be constructed below the dam foundation.

#### (3) Main dam works

Following the foundation excavation and completion of the river diversion channel, the embankment works will be commenced at the beginning of July in the second year. Considering a total embankment volume of 252,000m <sup>3</sup> and the dry season in the second and

third year the daily embankment volume is to be 800m<sup>3</sup> which is quarried from the borrow area around the Embung construction site.

### (4) Spillway construction

Excavation of the spillway will be scheduled to be performed for about five months from March to September in the second year. Most of the excavated materials may be used for the main dam embankments so that the excavated material will be stocked on the designated area.

After completion of the spillway excavation, concrete works for overflow weir and chuteway will be commenced. Before starting the reservoir water impounding at the beginning of October in the third year, major concrete works of the spillway shall be completed in order to release the flood discharge in the following wet season.

### (5) Water supply system

Inlet structure of the water supply system is constructed above the sediment load disposition level of El. 57.3m in the reservoir area. Connecting with the inlet structure, pipe culvert with a diameter of 300 mm is constructed up to the downstream end of the main dam. Construction of the water supply conduit should be completed before re-starting the main dam embankment at the beginning of March in the third year.

The valve house of the water supply system will be constructed before the reservoir water breaches to F.S.L. of El. 66.0m around the end of December in the third year.

### 6.3 Construction Plan of Irrigation Facilities and O&M Road

Since the irrigation facilities and O&M road to be constructed are rather small in work quantities and scattering in the beneficiary area in comparison with the Embung construction works, almost all the works except earth works for irrigation canal and road will be basically executed by manpower. Earth works for the irrigation canal and road such as clearing, stripping, excavation and embankment works for the canal and road will be executed by using heavy construction equipment including bulldozer, excavator, compactor, and so on. All of these works will be executed in parallel with the Embung construction works.

### 6.4 Institutional Arrangement for Project Implementation

### (1) Responsible organization for Project implementation

In the course of Project implementation, DPUP of NTB, after getting approval from DGWRD, will direct the PKSA Sumbawa Project Office to commence undertaking of detailed investigation work of the Ntonggu II Embung. This work will be done by the Survey Section of the said Project Office. Under the PKSA Sumbawa Project Office, the Sub Project Office in charge of East Region of Sumbawa will be responsible for carrying out detailed design work. Based on the cost estimate, DPUP of NTB will disburse budget for land acquisition and construction of Embung and related facilities to the Project Office using development budget allocated from the Central Government. Before starting construction work, land acquisition work will be carried out by the Land Acquisition Section of the Project Office. Supervision of construction works, being entrusted to a contractor through tendering, will be the responsibility of the said Sub Project Office.

### Volume 9 - 4

### (2) Technical resources input

In due consideration of the current availability of engineers and technical staff as well as the annual development target in the PKSA Sumbawa Project Office, it is necessary to utilize technical resources outside the Project Office to the maximum extent for enabling the Project Office to realize its target. In this connection, undertaking of detailed investigation and design works for the Ntonggu II Embung need to be entrusted to consultants aiming to secure smooth implementation of the Project in accordance with the implementation program made by the Project Office.

### (3) Organization for O&M

After completing all of the Project works for Ntonggu II Embung, DPUP of NTB will submit its completion report to the Minister for Public Works through DGWRD and therefrom the notice of Project completion will be transferred to the Minister for Home Affairs. After receiving the Minister's direction, the Governor of NTB Province will order DPUP of NTB to take a necessary action for O&M of the said Project facilities. Following this, DPUP of NTB will direct its Provincial O&M Project Office to arrange O&M works and disburse the Provincial Government's budget to DPUP Kabupaten Bima Office.

### (4) Water User's Association (P3A)

In the Project area, the existing P3A has been active since 1990. It is therefore necessitated to make the new beneficiary farmers become members of this P3A and to train them by using training materials and modules prepared by the Water User Training Program under DGWRD.

### 7. COST ESTIMATE

### 7.1 Basic Assumption of Cost Estimate

Project cost of the proposed works for developing the Ntonggu II Embung is estimated on the basis of assumptions as follows:

- All the civil works of the Project will be executed on the contract basis. Contractor(s) will be selected through the competitive bidding;
- Project cost includes the physical contingency of 15% of the construction costs in view of the preliminary nature of the estimate. The price contingency of 20% is also included in the cost estimate taking into account the recent price escalation of construction materials in Indonesia;
- The associated costs to be financed by the Government, such as the cost for strengthening the extension services, facilities of the Water Users' Association and improvement of the social infrastructures except for those included in the proposed Project works, are not included in the cost estimate;
- The direct construction cost is estimated based on the calculated work quantities of the Project works and unit prices of the works. The unit prices of the works are estimated based on the current prices in NTB as of October 1994 and the data collected from the on-going projects in NTT and NTB. The basic prices for construction works include delivery cost of construction materials to the Project site;
- The contract tax, which is a value added tax imposed by the government at a rate of 10% against the total contract cost, is included in the estimate of the Project cost;
- Engineering service cost for the consultants in conducting detailed design and construction supervision is estimated based on such assumption as 15% of direct construction cost;
- Administration cost consists of PRWS's staff salary for construction management, vehicle running cost and other related cost only for the Project implementation. Administration cost is estimated at around 5% of the direct construction cost with reference to the recent other project costs in NTT and NTB:
- Land acquisition cost including the purchase of the Embung site, reservoir area, borrow areas, and land of pipe line, irrigation canal and permanent structures and is estimated at 0.5 % of the direct construction cost taking into consideration the present condition of the Project area based on the survey results under the Study; and,
- The currency for cost estimate is expressed in Indonesian Rupiah (Rp.) since all construction materials are available in Indonesia and the payment for construction works will be executed with Indonesian Rupiah.

### 7.2 Construction Cost

The Project cost, as an initial investment by the Project, is composed of direct construction cost, administration cost, engineering service cost, physical contingency,

### **Volume 9 - 4**

contract tax, land acquisition cost and price contingency. The total Project cost for constructing the Ntonggu II Embung is estimated at Rp. 11,229 million as shown in Table 7.1. Detail of direct construction cost estimated based on the calculated work quantities of the proposed Project works and unit prices of the works is shown in Table 7.2 together with work quantities of the main work items and unit prices.

The total Project cost for constructing the Ntonggu II Embung is summarized below.

Summary of Project Cost for Ntonggu II Embung

|                                  | Unit: Rp. Million |
|----------------------------------|-------------------|
| Item                             | Project cost      |
| I. Direct construction cost      | 6,165             |
| 1.1 Preparatory works            | 294               |
| 1.2 Embung construction          | 5,389             |
| 1.3 Irrigation facilities        | 425               |
| 1.4 Domestic water supply        | 0                 |
| 1.5 Operation & maintenance road | 57                |
| II. Administration cost          | 308               |
| III. Engineering services        | 925               |
| IV. Physical contingencies       | 1,110             |
| V. Contract tax                  | 820               |
| VI. Land acquisition             | 31                |
| VII. Price contingency           | 1,872             |
| Grand Total                      | 11,229            |

### 7.3 Operation and Management Cost

The O&M costs consist of salaries of O&M staff, cost for maintaining the Project facilities, material and labor cost for repairing works, and running cost of Project facilities. The annual O&M costs are estimated at Rp. 56.1 million, which is equivalent to 0.5 % of the Project cost.

### 8. PROJECT JUSTIFICATION

### 8.1 Satisfaction of BHN

The benefit of livestock water supply to 423 equivalent heads of cow fed by beneficiary breeding households in Ntonggu II Village could be indicated as the net value of additionally increasing cattle weight, either cow or buffalo, attributable to stabilized livestock water supply condition. In order to estimate this net value, it is assumed that a cow or buffalo aged 1.5 to 2 years old and with the initial weight of 200 kg will get an additional increase of 0.6 kg/day in weight during four months of the dry season as a result of stable supply of livestock water. Further assumptions made for other unit values are Rp. 2,500/kg for the both initial and increasing weights, Rp. 490,000/head for the overall feeding cost and Rp. 24,000/head for by-products.

The direct construction cost is broken down into the cost for Embung, dam O&M road and preparatory works of Rp. 5,740 million and irrigation facilities of Rp. 425 million. The annual water demand is 0.008 MCM for livestock use and 1.81 MCM for irrigation use, totaling 1.818 MCM. The direct construction cost is allocated as shown below.

### Allocation of Direct Construction Cost

| Item                     | Unit                | Total<br>demand | Domestic<br>water | Livestock<br>water | Irrigation water |
|--------------------------|---------------------|-----------------|-------------------|--------------------|------------------|
| Annual water demand      | '000 m <sup>3</sup> | 1,818           | 0                 | 8                  | 1,810            |
| Direct construction cost | Million Rp.         | 8,526           | 0                 | 25                 | 8,501            |

Thus, the value of livestock water is estimated to be Rp. 3,125/m<sup>3</sup>. As the unit net value of additionally increasing cattle weight is estimated to be Rp. 180,000/head, the total net value can be expected to be Rp. 76.1 million by supplying stable livestock water being worth Rp. 25.0 million to 423 equivalent heads of cow fed by beneficiary breeding households.

### 8.2 Economic Consideration

### (1) Economic cost

The financial costs are to be converted into the economic costs by applying the economic conversion factor (ECF) established by DGWRD in 1985. The ECFs applied are: 0.71 for preparatory works and all civil works including Embung, irrigation facilities, domestic water supply system and road networks; 0.75 for unskilled on-farm labor and farm labor; 0.80 for land clearing, on-farm development and operation and maintenance cost; and tertiary irrigation system development, 0.90 for design and survey works and administration; and 1.00 for O&M equipment and replacement cost.

When the financial cost is converted to the economic cost, the contract tax, land acquisition cost and price contingency are fully excepted. In this Study, only the purchasing cost of consumables and goods appropriated in the administration cost is to be converted to the economic administration cost, as the normal payment to civil servants is principally appropriated in the operation budget of the Government. As the construction cost of dam and engineering cost estimated include some allowance to cover additional cost for expatriates, 50% of the engineering cost is to be converted to the economic cost in order to make the estimated cost equal to the level of local cost.

### Volume 9 - 4

The economic cost converted and its annual disbursement schedule are shown in Table 8.1.

### (2) Economic benefit

The irrigation benefits of the Project are principally derived from increased crop production attributable to stable irrigation water supply, full utilization of available farm land resources and optimum farm input supply. Table 8.2 gives financial and economic prices of farm inputs and outputs estimated for major islands. Based on the proposed quantity of farm inputs, anticipated crop yield and economic farm gate prices, the economic crop budget is estimated as shown in Table 8.3.

The annual net incremental benefit is thus estimated to be Rp. 203.7 million. This increment benefit will accure from the first year when irrigation water can be released from the Ntonggu II Embung. Taking the present agricultural situation and farmers capability into account, it is assumed that five years are needed as the build-up period to attain the anticipated crop yield level. In the proposed reservoir area, rainfed paddy field of 27 ha will be under the reservoir water after completion of the proposed Ntonggu II Embung, the total amount of production foregone is estimated to be around Rp. 14 million.

### (3) Economic evaluation

The economic internal rate of return (EIRR) is examine as shown in Table 8.4 on costs and benefits as at August 1994. The result of economic analysis reveals that there is no economic merit in developing the proposed Ntonggu II Embung because the economic benefit attributed to the Embung development is too small compared with the required capital cost as the reservoir capacity of Embung is limited according to small runoff from the catchment area resulting in reduction of possible dry season irrigation area of 65 ha compared with the wet season irrigation area of 187 ha. Although the cattle feeding in Desa Ntonggu II can be stabilized by constant supply of livestock water to 423 equivalent heads of cow throughout the year, the investment efficiency is as low as 3.1 times when the value of additionally increasing cattle weight is compared with the value of livestock water.

### (4) Farm budget analysis

With the implementation of the Ntonggu II Embung Project, the net on-farm income of farmers holding a unit farm size of 1.0 ha can be expected to increase by Rp. 3,972,200/year from Rp. 456,400/year under the "Without Project" condition with the cropping intensity of 105% to Rp. 4,428,600/year under the "With Project" condition with the cropping intensity of 200% as shown in Table 8.5 and below. Such improvement of farm budget would give much incentive for farmers to make further investment in improvement of their living standard and also could increase their payment capacity enabling beneficiary farmers to pay irrigation water charge to some extent.

| Farm | Rudget  | for | Unit Farn | 0 Siza | of 1 | IJа |
|------|---------|-----|-----------|--------|------|-----|
| rann | DUULECT | 101 | onu ram   | n Size | OI E | rta |

|          |                       | Without I             | Project         | With Pr               | oject        |
|----------|-----------------------|-----------------------|-----------------|-----------------------|--------------|
| Crop     | Watering<br>Condition | Crop<br>Intensity (%) | Income<br>(Rp.) | Crop<br>Intensity (%) | Income (Rp.) |
| Paddy    | Wet/Rainfed           | 34.8                  | 144,333         | -                     |              |
| -        | Wet/Irrigated         | 65.2                  | 367,402         | 100.0                 | 926,375      |
| Soybean  | Dry/Rainfed           | 5.3                   | 26,650          |                       | _            |
| Mungbean | Dry/Rainfed           |                       | -               | 65.2                  | 548,769      |
|          | Dry/Irrigated         | -                     | _               | 34.8                  | 373,898      |
| Total    |                       | 105.3                 | 538,385         | 200.0                 | 1,849,042    |

### 8.3 Environmental Impact Assessment

Environmental impact assessment for the Project is carried out in consideration of the development objectives the Project.

### (1) Environmental features of the Project area

The principal features of human and physical environment in the Ntonggu II Project area are summarized as below.

### Environmental Features in the Ntonggu II Project Area

| Item                                                                              | Description                                                                                   |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1. Human Environment                                                              |                                                                                               |
| Social intention                                                                  | Insufficiency of reliable water sources and facilities for irrigation and livestock water use |
| Human use                                                                         | Use of well water                                                                             |
| Economic activities                                                               | Cultivation of irrigated paddy and Palawija, and livestock farming                            |
| Health and sanitation                                                             | Prevalence of waterborne intestinal diseases                                                  |
| 2. Physical environment                                                           |                                                                                               |
| Geology/land                                                                      | Volcanic rocks of Tertiary, limestone of Triassic to Permian                                  |
| Physical environment<br>Geology/land<br>Surface/ground water<br>Endemic fauna and | Surface water is not perennially observed                                                     |
| Endemic fauna and                                                                 | None                                                                                          |
| flora                                                                             |                                                                                               |
| 3. Others                                                                         | None                                                                                          |

### (2) Environmental Impact Assessment

Potential negative impact by Embung development in this Project area is only involuntary resettlement caused by land expropriation in the proposed reservoir area. The land of 27 ha in the reservoir area is utilized as cultivation, so that it is necessary that the land is expropriated. In Indonesia, land expropriation regarding development project is usually carried out by means of recommending an alternative land. In case of this Project, it is expected that the alternative land resources are ensured in the beneficiary area of the Project. Therefore, the land users can acquire more agricultural productivity than current status by means of a stable irrigation water supply. However, the land transfer shall force the land users/owners to resettle nearby their new farmland. It may result in resistance or apprehension against new customs and activities among the settled inhabitants, and further of discord between them and inhabitants who have lived there.

The mitigatory measure to alleviate this potential negative impact is to provide equivalent or better social basis as possible. In addition, meeting and hearing with regard to project implementation should be held with participation of the both inhabitants, so that it is possible to reduce such discords or other troubles as mentioned above.

### (3) Primary information of environmental assessment

To support environmental analysis presentation for this Project implementation on the Indonesian rule, primary information on environmental assessment is compiled in the Attachment to the Volume 4.

### 8.4 Contribution to Women in Development

Since housewives in the Project area manage their family budgets, an increase of the farmer's income would encourage women in investing surplus in improvement and diversification of their income sources.

### 9. CONCLUSION AND RECOMMENDATIONS

### 9.1 Conclusion

On the basis of categorization of 157 candidate schemes for the Study, the Ntonggu II Embung scheme is selected representing a typical sample scheme of which potential beneficiary area has its irrigation water intake on the source river of the proposed Embung, good farming system, and inhabitants' demand for further use of irrigation and livestock water. The proposed Ntonggu II Embung site has physically irrigable land resources of 187 ha in net and the annual discharge of 3.0 MCM from its catchment area of 6.7 km<sup>2</sup>. Breeding households with a total of 423 equivalent heads of cow projected for the year of 2008 need to solve livestock water shortage problem during the dry season.

The runoff condition at the proposed Embung site is the determining factor in the optimization of development scale. To store inflow into the proposed reservoir to the maximum level, the dam height of Ntonggu II Embung is thus set to be 17.0 m with the total and effective storage capacities of 1.27 and 1.16 MCM, respectively. Under such condition, it can be expected to practice irrigated cropping of the wet season paddy fully but irrigated cropping of the dry season Palawija crop with low irrigation water demand partly. It can be expected to grow rainfed Palawija crop depending on soil moisture available in the early dry season and also to meet increasing livestock water demand of 423 equivalent heads of cow in the beneficiary area.

The structural components are main dam, spillway and dam O&M road as well as irrigation water distribution system. The homogeneous embankment dam is constructed with the crest length of 260 m, embankment volume of 252,000 m <sup>3</sup> and side-channel typed spillway having design flood discharge of 106 m<sup>3</sup>/sec and overflow weir width of 20 m. The required investment cost amounts to Rp. 11.2 billion of which direct construction cost is estimated to be 6.2 billion.

The results of feasibility study reveal that construction of the candidate Embung at the proposed site is technically unsound and economically impossible because of limited runoff from the catchment area of the proposed Embung. The increasing livestock water demand of 423 equivalent heads of cow in the Project area could be fully met by creating a new water source through construction of the proposed Ntonggu II Embung, but the investment efficiency is not so high. Therefore, such type of Embung is worthless implementing from the technical and economic viewpoints.

### 9.2 Recommendations

If further development of irrigation water source is required in the Ntonggu II area, it is recommended to rehabilitate the existing intake weirs on the Ntonggu river instead of the proposed Embung development from the viewpoint of investment cost saving.

The Study on The Embung Development Project in East Nusa Tenggara and West Nusa Tenggara

Feasibility Study on Ntonggu II Embung Development Project

Tables

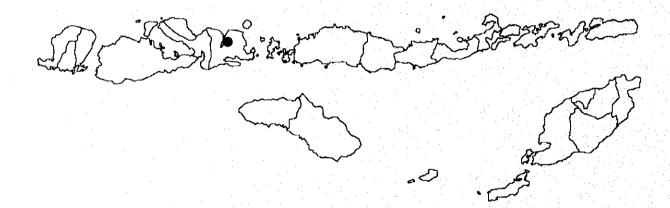



Table 1.1 Rainfall Record in Sila

Station : Sila Kec,Kab. : Bolo/Bima Elevation : + 20 m Location : BT 118 37 55 Location : LS 08 28 00

| 2    | Σ     |       |       |          |          |      |          |      |       |            |      |      |       |      |      |       |       |       |          |              |            |           |       |          | -    | ١         |
|------|-------|-------|-------|----------|----------|------|----------|------|-------|------------|------|------|-------|------|------|-------|-------|-------|----------|--------------|------------|-----------|-------|----------|------|-----------|
|      | Amual | 1,084 | 1,338 | ŝ        | 1,14     | 971  | 1,087    | 927  | 1,130 | 1,156      | 26   | •    | 1,048 | •    | 8    | 1,207 | 0.079 | 1,209 | 1,322    | 1.087        | 912        | ,         | 1,038 | 1.070    | 1    | 1,036     |
| Š    | Π,    | 9     | 132   | <b>₹</b> | 8        | Š    | 22       | 116  | 112   | 83         | 0    | õ    | 32    | 56   | 4    | 0     | 14    | 13    | 35       | 86           | 1,         | 210       | 8     | <u>1</u> | •    | 73        |
| 2    | 1     | 63    | 137   | 234      | 8        | 8    | 135      | 175  | 122   | 9          | 0    | 138  | 5     | Ξ    | ∞    | 8     | 135   | 116   | 435      | 67           | 178        | 128       | 27    | 238      | ١    | 122       |
|      | II    | 100   | 108   | 35       | 55       | 148  | 78       | 78   | 8     | 16         | 0    | 88   | 95    |      | 237  | \$2   | 92    | 20    | <u>5</u> | 157          | 36         | ۲-        | 84    | 83       |      | 79        |
| ON.  | 1     | 158   | 6     | 0        | 5        | 54   | 56       | 'n   | 0     | 47         | 0    | m    | 68    | •    | 27   | 32    | -     | 27    | 12       | 33           | 3]         | ٥         | 56    | 46       | ,    | 33        |
|      | 11    | 0     | 32    | 0        | ø        | 33   | 138      | 78   | 0     | 33         | 0    | 0    | 0     |      | õ    | CI    | o,    | 92    | 0        | 33           | 5          | ನ         | 0     | 0        |      | 92        |
| Ş.   |       | ç     | 0     | 0        | 0        | ۳    | 17       | 0    | 0     | 2          | 0    | 0    | ×     |      | 13   | 12    | 0     | 0     | 0        | 28           | 0          | 7         | 0     | 0        | ,    | ٥         |
|      | _     | 2     | 0     | 0        | 90       | 0    | e.       | 0    | 0     | 01         | 0    | 0    | 23    |      | 0    | 84    | 0     | 0     | 0        | <b>•</b>     | 0          | ٥         | 0     | 0        | ,    | 4         |
| Sep. |       | 5     | 0     | 0        | ~        | C1   | <u>~</u> | 0    | 0     | 2          | 0    | 0    | 23    |      | 0    | 27    | 0     | 7     | 0        | 4            | 0          | 0         | 0     | 0        |      | 5         |
|      | 1     | 0     | 0     | 0        | 0        | 0    | 0        | 0    | 0     | 10         | 0    | 0    | c     |      | 0    | 0     | 0     | 0     | ίω       | 0            | 0          | 0         | 0     | 0        |      | -         |
| Ags. | -     | 0     | 0     | 0        | 0        | 0    | 0        | 0    | 0     | <b>!~</b>  | 0    | 0    | 0     |      | 0    | 77    | 0     | 0     | 0        | 0            | 0          | 0         | 0     | 0        |      |           |
|      | 1     | ٥     | 0     | 0        | 0        | 9    | 0        | 0    | 0     | 'n         | 0    | ,    | 0     | ,    | 0    | 0     | 0     | 0     | C        | 0            | 7,         | 0         | 4     | 0        | ,    | <b>C1</b> |
| Jul. | =     | 0     | ~     | 0        | 9        | 0    | 0        | 0    | 0     | 27         | 0    |      | 0     |      | 0    | 0     | 0     | 0     | 'n       | 0            | <b>(-)</b> | 9         | 21    | 0        | ,    | 3         |
|      |       | 0     | 1     | 0        | ø        | 0    | 0        | 0    | 0     | 17         | 0    |      | 0     |      | 0    | 13    | 0     | 31    | 4        | 0            | 55         | 0         | 0     | 0        | 26   | 7         |
| Jun. | I     | 15    | S     | 0        | 0        | 0    | 0        | 0    | 0     | 24         | 16   |      | 46    |      |      | 0     | 61    | 13    | Φ,       | ۲-           | 26         | 3         | 0     | 0        | 0    | œ         |
|      | Ī     | 13    | 4     | 0        | \$       | 4    | 15       | 0    | 0     | <u>82</u>  | 31   |      | 11    | ,    | 61   | 00    | 13    | 0     | 0        | 'n           | 23         | 0         | 0     | 50       | 4    | 11        |
| Mc   | II    | 13    | 14    | 0        | 50       | 21   | 42       | 0    | 12    | <b>~</b> 1 | 53   |      | 40    |      | 10   | 45    | 0     | 0     | 0        | 26           | 5          | 20        | 0     | 60       | 7    | 16        |
|      | _     | 4     | 23    |          |          | _    |          | 0    | 0     | 9          | 0    |      | 0     |      | 13   | 23    | 41    | 33    | 4        | <del>س</del> | 35         | ۲-        | 84    | 57       | 11   | 34        |
| Apr. | П     | 9     |       | 92       | 8        | =    | 43       | =    | ž     | <u>\$</u>  | 0    |      | 3     | ,    | 92   |       |       | 4     | 4        | 33           | 2          | 0         | 25    | ~<br>[2  | 28   |           |
|      | -     |       |       | <br>     | ČI<br>ČI | 7    |          |      |       | بر<br>درا  | c    | ,    | 200   | ć.   | 2    | 5     | 6     |       | ₹        | g)           | 4          | <u>st</u> | 5 15  |          |      |           |
| Мà   | Ħ     |       |       |          |          |      |          |      |       |            |      |      | 89    |      |      |       |       |       |          |              |            |           |       |          |      |           |
|      |       | 1     |       |          |          |      |          |      |       |            |      |      |       |      |      |       |       |       |          |              |            |           |       |          |      | H         |
| Feb. |       |       |       |          |          |      |          |      |       |            |      |      | 4 68  |      |      |       |       |       |          |              |            |           |       |          |      | l         |
|      | -     |       |       |          |          |      |          |      |       |            |      |      | 224   |      |      |       |       |       |          |              |            |           |       |          |      | Ш         |
| Jin. | Ħ     |       |       |          |          |      |          |      |       |            |      |      | 51    |      |      |       |       |       |          |              |            |           |       |          |      | 2         |
|      | -     | ž     | 8     | 30       | 8        | 8.   | \$       | 125  | 135   | 190        | 86   |      | 107   | 4.   | 208  | 9     | _     | 282   | 138      | 4            | S          | 20.       | 272   | 166      | 0    | 117       |
| Year |       | 0261  | 161   | 1972     | 1973     | 1974 | 1975     | 1976 | 161   | 1978       | 6261 | 0861 | 1861  | 1982 | 1983 | 2861  | 1985  | 1986  | 1987     | 886;         | 686:       | 0661      | 1661  | 1992     | 1993 | Rata-rata |

note, : x => data not available

# Table 1.2 Climate in Godo

Godo Woha / Bima + 5 m BT. 118 38' 30" LS. 08 32'00" Station Kec./Kab Elevation Location

|                                | 1       | 1     | 40    | Mon   | -     |       | <u>.</u> | 3     | 3 <b>0</b> V | Çey   | į     | Z     | 2     | Annual | Year        |
|--------------------------------|---------|-------|-------|-------|-------|-------|----------|-------|--------------|-------|-------|-------|-------|--------|-------------|
| Description                    | Omit    | J.    | reo.  | Mai.  | Ybi.  | IAICI | July.    | 5     | 282          | 3     | 7     |       | 33.2  |        |             |
| Mean Temperature               | O       | 28.1  | 28.0  | 28.0  | 28.1  | 27.9  | 26.9     | 26.3  | 26.5         | 27.7  | 29.0  | 29.2  | 28.4  | 27.8   | 1976 - 1985 |
| Mean Maximum Temperature       | Ü       | 32.6  | 32.3  | 32.6  | 33.4  | 33.1  | 32.1     | 28.2  | 32.7         | 34.0  | 35.6  | 35.4  | 33.7  | 33.0   | 1976 - 1985 |
| Mean Minimum Temperature       | Ç       | 23.8  | 23.6  | 23.5  | 22.8  | 22.4  | 21.5     | 20.8  | 20.4         | 21.1  | 22.1  | 23.6  | 23.3  | 22.4   | 1976 - 1985 |
| Mean Relative Humidity         | %       | 88.0  | 89.0  | 88.0  | 86.0  | 0.98  | 85.0     | 84.0  | 81.0         | 80.0  | 82.0  | 83.0  | 86.0  | 84.8   | 1976 - 1985 |
| Mean Maximum Relative Humidity | %       | 94.0  | 94.0  | 95.0  | 95.0  | 93.0  | 91.0     | 0.06  | 0'68         | 88.0  | 87.0  | 0.68  | 92.0  | 91.4   | 1976 - 1985 |
| Mean Minimum Relative Humidity | 200     | 78.0  | 80.0  | 78.0  | 73.0  | 72.0  | 73.0     | 73.0  | 0.89         | 0.99  | 67.0  | 71.0  | 74.0  | 72.8   | 1976 - 1985 |
| Mean Dew Point                 | S       | 25.2  | 24.8  | 25.1  | 24.8  | 24.4  | 23.5     | 22.9  | 22.5         | 23.4  | 24.8  | 25.5  | 25.2  | 24.3   | 1976 - 1985 |
| Mean Sunshine Hours            | 8       | 33.0  | 36.0  | 47.0  | 0.09  | 62.0  | 0.09     | 65.0  | 70.0         | 0.69  | 0.99  | 53.0  | 40.0  | 55.1   | 1976 - 1985 |
| Mean Solar Radiation           | Cal/Cm2 | 294.0 | 295.0 | 316.0 | 312.0 | 288.0 | 281.0    | 291.0 | 309.0        | 351.0 | 345.0 | 338.0 | 310.0 | 310.8  | 1976 - 1982 |
| Mean Wind Velocity             | Km/hr   | 3.7   | 3.2   | 3.0   | 3.1   | 4.5   | 5.9      | 6.9   | 6.4          | 6.7   | 6.4   | 5.0   | 3.3   | 4.8    | 1976 - 1985 |
| Mean Evaporation               | mm/day  | 5.3   | 8.4   | 5.5   | 6.3   | 8.9   | 8.9      | 7.4   | 8.2          | 6.8   | 8.6   | 9.8   | 6.1   | 7.0    | 1976 - 1985 |
| Mean Monthly Rainfall          | шш      | 187.0 | 171.0 | 137.0 | 0.09  | 51.0  | 16.0     | 17.0  | 8.0          | 12.0  | 19.0  | 119.0 | 188.0 | 985.0  | 1977 - 1985 |

Table 1.3 Typical Soil Profile in the Ntonggu II Project Area

|               | 2                                                                                                                                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on:           | Ustic Endoaquerts                                                                                                                                                                 |
|               | Alluvial fan                                                                                                                                                                      |
|               | Almost flat (0 - 4 %)                                                                                                                                                             |
| ation:        | Irrigated paddy field                                                                                                                                                             |
|               | Alluvium material                                                                                                                                                                 |
|               | Well                                                                                                                                                                              |
| ble:          | 5 - 10 m                                                                                                                                                                          |
|               | Slow (0.41 cm/hr)                                                                                                                                                                 |
| gy:           | Cracking 3 cm width, 35 cm depth                                                                                                                                                  |
| Depth<br>(cm) | Description                                                                                                                                                                       |
| 0 - 20        | Gray-light brownish gray (2.5Y 6/1, dry); clay loam; strong, angular blocky, coarse structure; sticky, plastic, very firm, very hard consistency; abrupt, smooth horizon boundary |
| 20 - 63       | Black (2.5YR2/1, dry); clay loam; strong, angular blocky, cparse structure; sticky, plastic, very firm, very hard structure; abrupt, smooth horizon boundary                      |
| 63 - 110+     | Very dark grayish brown (2.5YR 3/2, dry); clay; light olive brown (2.5Y 5/4), few, fine, prominant mottling; sticky, plastic, very firm, very hard consistency                    |
|               | Depth (cm) 0 - 20                                                                                                                                                                 |

Source: Soil survey carried out by the local consultant under supervision of the JICA Study Team

Table 1.4 Results of Soil Laboratory Test in the Ntonggu II Project Area

| Soil | Layer |             | Texture     |             | Permeability | Hd    | 띥     | Organic | Total N | Ava. P | CEC       | Ex. Na                                            | Ex. Ca     | Ex. K     | Ex. Mg    | Base           | EC      |
|------|-------|-------------|-------------|-------------|--------------|-------|-------|---------|---------|--------|-----------|---------------------------------------------------|------------|-----------|-----------|----------------|---------|
| Pit  | 1     | Sand<br>(%) | Silt<br>(%) | Clay<br>(%) | (cm/hr)      | (H2O) | (KCI) | matter  | (%)     | - 1    | (me/100g) | (me/100g) (me/100g) (me/100g) (me/100g) (me/100g) | me/100g) ( | (me/100g) | (me/100g) | Saturation (%) | (mS/cm) |
| ,    | 4     | 5 2         | 17.3        | 31.3        | 0.4          | 7.4   | 5.7   | 1.18    | 90.0    | 3.49   | 17.62     | 4.0                                               | 6.19       | 0.55      | 2.53      | 55             | 0.14    |
| 1    | , E   | 20.6        | 35.0        | 35.5        | 2.0          | 7.4   | 5.7   | 1.05    | 0.0     | 3.75   | 19.65     | 0.48                                              | 5.46       | 0.58      | 2.25      | <del>4</del> 5 | 0.08    |
|      | Bw2   | 36.1        | 19.3        | 44.6        |              | 7.6   | 6.4   | 0.63    | 0.04    | 1.73   | 22.42     | 0.51                                              | 6.54       | 0.58      | 2.54      | 45             | 0.12    |
| v    | Ą     | 50.4        | 13.3        | . 36.3      | 0.3          | 7.2   | 5.6   | 1.33    | 0.07    | 2.18   | 20.81     | 0.39                                              | 9.60       | 0.20      | 1.85      | 58             | 0.12    |
| ,    | , ¢   | 77.6        | 15.4        | 7.0         | 1.3          | 7.3   | 5.6   | 0.59    | 0.03    | 2.01   | 15.68     | 0.24                                              | 7.81       | 0.23      | 1.36      | 19             | 90:0    |
|      | 3A    | 89.2        | 5.5         | 5.3         |              | 7.2   | 5.7   | 0.35    | 0.03    | 1.83   | 17.60     | 0.19                                              | 7.32       | 1.64      | 1.23      | 59             | 90.0    |
| 12   | Αn    | 36.6        | 31.3        | 32.1        | 5.7          | 7.6   | 6.3   | 1.17    | 0.04    | 2.96   | 16.05     | 0.88                                              | 8.08       | 0.42      |           | 99             | 0.28    |
| 1    | , C   | 70.2        | 25.3        | 4.5         | 9.1          | 7.7   | 6.4   | 0.57    | 0.05    | 3.30   | 18.67     | 0.70                                              | 9.45       | 0.44      |           | 63             | 0.24    |
|      | 3A    | 46.6        | 32.4        | 21.0        |              | 7.4   | 6.5   | 0.94    | 0.02    | 3.64   | 21.85     | 0.68                                              | 8.70       | 0.68      |           | 55             | 0.18    |
|      |       |             |             |             |              |       |       |         |         |        |           |                                                   |            |           | -         |                |         |

Soil survey carried out by the local contractor under supervision of the JICA Team

Source:

Table 1.5 Soil Classification in the Ntonggu II Project Area

| -   | Land | Description                                                          | Physiography         | Physiography Topography | Pote                      | Potential Suitability | lity    | Area |      |
|-----|------|----------------------------------------------------------------------|----------------------|-------------------------|---------------------------|-----------------------|---------|------|------|
| _   | Unit |                                                                      |                      |                         | Paddy                     | Soybean               | Maize   | (ha) | (%)  |
|     | -    | Typic Haplusterts                                                    | Alluvial fan-        | Flat-undulating         | S1/S2                     | S1                    | \$1/\$2 | 19   | 10%  |
| . • |      | deep; very fine clay-coarse loamy; neutral; moderate CEC; slow-very  | mountain foot        | (1-6%)                  |                           |                       |         |      |      |
|     |      | slow permeability                                                    | slope                |                         |                           |                       |         |      |      |
|     | II   | Ustic Endoaquerts                                                    | Alluvial fan         | Flat                    | $\mathbf{S}_{\mathbf{I}}$ | S1                    | SI      | 95   | 16%  |
|     |      | deep; fine loam-coarse loamy; neutral; moderate CEC; slow-moderate   |                      | (0-4%)                  |                           |                       |         |      |      |
|     |      | permeability; moderately well-well drainage                          |                      |                         |                           |                       |         |      |      |
|     | III  | Oxyaquic Ustifluvents                                                | Alluvial fan         | Flat                    | S1                        | S1                    | SI<br>S | 125  | 21%  |
|     |      | deep; fine loam-coarse loamy: neutral; moderate CEC; moderate-rapid  |                      | (0-2%)                  |                           |                       |         |      |      |
|     |      | permeability; well drainage                                          |                      |                         |                           |                       |         |      |      |
|     | Σ    | Oxyaquic Ustipsamments                                               | Middle alluvial Flat | Flat                    | <b>S</b> 2                | SI                    | S2      | 37   | 269  |
|     |      | deep; coarse loamy; neutral; moderate CEC; slightly rapid            | fan                  | (0-1%)                  |                           |                       |         |      |      |
|     |      | permeability; well drainage                                          |                      |                         |                           |                       |         |      |      |
|     | >    | Mollic Ustifluvents                                                  | Middle alluvial Flat | Flat                    | $S_1$                     | S1                    | SI      | 25   | 4%   |
|     |      | deep; fine loamy; neutral; moderate CEC; slightly slow permeability; | fan                  | (0-1%)                  |                           |                       |         |      |      |
|     |      | well drainage                                                        |                      |                         |                           |                       |         |      |      |
|     | Ϋ́   | Oxyaquic Ustropepts                                                  | Middle alluvial Flat | Flat                    | <b>S</b> 2                | SI                    | S2      | 18   | 3%   |
|     |      | very deep; very fine clay; neutral; moderate CEC; moderate           | fan                  | (0-1%)                  |                           |                       |         |      |      |
|     |      | permeability; well drainage                                          |                      |                         |                           |                       | ٠       |      |      |
|     | VII  | Tropic Fluvauents                                                    | Alluvial fan         | Flat                    | S1                        | SI                    | S1      | 19   | 3%   |
|     |      | deep; fine loamy; low CEC; moderate permeability; poor drainage      |                      | (0-1%)                  |                           |                       |         |      |      |
|     | #    | Unclassified                                                         |                      |                         |                           |                       |         | 203  | 35%  |
|     |      | Total                                                                |                      |                         |                           |                       |         | 583  | 100% |
|     |      |                                                                      |                      |                         |                           |                       |         |      |      |

Source: Soil survey carried out by the local consultant under supervision of the JICA Team

Table 1.6 Summary of Farm Household Economic Survey in the Ntonggu II Project Area

| Age Mainly Member M. M. Side Job ha Aramland ha armland ha avision ha armland ha ha ha ha ha ha ha ha ha ha ha ha ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 42 Mate 36<br>/F-2 M-2/F-4<br>man Entrepre.<br>0.77 0.00<br>0.20 1.50<br>0.45 0.50<br>0.45 0.50<br>0.45 0.50<br>0.45 0.50<br>0.45 0.50<br>0.45 0.50<br>0.00 0.00<br>0.00 0.00<br>0.00 0.00 | Male 42 M-1/F-2 Craftman 0,75 0,20 0,00 0,00 0,45 1,40 0,05 0,05 0,05 0,05            | Male 45 1<br>M-1/F-2<br>Civil Sv. 2.20<br>0.00<br>0.00<br>1.16<br>1.16<br>1.15<br>1.75<br>0.00 | 二 二                                                         |                                                           | Male 39 1<br>Civil Sv.<br>1.00<br>0.00<br>1.00<br>1.00<br>1.00<br>0.00 | Male 40 Male 37 M-3/F-2 M-3/F-2 None Middlemen 1.53 0.30 0.00 0.00 0.00 0.80 1.50 1.50 1.50 1.50 0.00 0.00 0.00 0.0 |                                                                    | Male 50 N.3/F-2 Seller 0.74 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.5 | Male 32<br>M-1/F-1<br>Trainner<br>0.69<br>0.00 | Male 34 M-3/F-2 |            | Male 43  | Male 38   | 00       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------|------------|----------|-----------|----------|
| No. of Family Member  No. of Family Member  No. of Family Member  No. of Family Member  No. of Family Member  Own Familand  Rented Familand  Rented Familand  Rented Familand  Paddy field)  Raddy field  Cow/Buffalo  Raddy field  Raddy field  Cow/Buffalo  Raddy field  Cow/Buffalo  Raddy field  Raddy field  Cow/Buffalo  Raddy field  Cow/Buffalo  Raddy field  Raddy field  Cow/Buffalo  Raddy field  Cow/Wr  Raddy field  Cow/Wr  Cow/Wr  Fapendinure  Raddy field   |                                                                                                                                                                                              | M-1/F-2 Craftman Craftman C.75 C.20 C.00 C.00 C.45 C.45 C.45 C.45 C.45 C.45 C.45 C.45 |                                                                                                | 工                                                           |                                                           |                                                                        | ₹                                                                                                                   |                                                                    |                                                                    |                                                |                 |            |          | •         | viale 39 |
| No. of Family Member  Type of Side Job  Own Farmland ha  Rented Farmland ha  Yield Division ha  (Paddy field) ha  Cropped Area ha  (Paddy) ha  (Padwija) ha  (Others) ha  (Others) ha  (Others) ha  (Others) head  Horse head  Goau/Sheep head  Fig head  Crop) Rp.000/yr  (Crop) Rp.000/yr  (Crop) Rp.000/yr  (Side job) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                            | Craftman<br>0.75<br>0.20<br>0.00<br>0.45<br>1.40<br>0.95<br>0.95                      |                                                                                                | 工                                                           | 2.14<br>3.14<br>0.00<br>1.00<br>1.00                      |                                                                        | ⋝                                                                                                                   |                                                                    |                                                                    | Trainner<br>0.69<br>0.00<br>0.00               |                 | M-2/F-2    | M-2/F-3  | M-2/F-1   | M-2/F-2  |
| Type of Side Job Own Farmland ha Rented Farmland ha Yield Division ha (Paddy field) ha Cropped Area ha (Padwija) ha (Others) ha (Others) ha Gow/Buffalo head Horse head Goau/Sheep head Fig head Gross Income Rp.000/yr (Crop) Rp.000/yr (Livestock) Rp.000/yr (Miscellaneous) Rp.000/yr Expenditure Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr (Miscellaneous) Rp.000/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fu <b>r</b>                                                                                                                                                                                  | Craiman<br>0.75<br>0.20<br>0.00<br>0.45<br>1.40<br>0.95<br>0.00                       | 220<br>220<br>0.00<br>0.00<br>1.16<br>2.91<br>1.16<br>1.75<br>0.00                             |                                                             | 2                                                         | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                | 1.53<br>0.30<br>0.80<br>0.80<br>0.80<br>0.80<br>0.00                                                                | 1.55<br>0.00<br>0.00<br>5.00<br>5.00<br>1.00                       |                                                                    | 0.69<br>0.00<br>0.00                           | 1               | Seller     | Labourer | Civil Sv. |          |
| Own Farmland ha Rented Farmland ha Yield Division ha (Paddy field) ha (Cropped Area ha (Paddy) ha (Paddy) ha (Paddy) ha (Others) ha (Others) ha (Others) ha Gow/Sheep head Horse head Goav/Sheep head Pig head Crocken/Duck head Gross Income Rp.000/yr 1. (Crop) Rp.000/yr 1. (Livestock) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              | 0.75<br>0.20<br>0.00<br>0.45<br>0.45<br>0.95<br>0.00                                  | 2.20<br>0.00<br>0.00<br>1.16<br>2.91<br>1.16<br>1.75<br>0.00                                   | 2, 2, 0, 4, 9, 4, 6, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, | 3.10<br>9.10<br>9.10<br>9.10<br>9.10<br>9.10<br>9.10      | 6.50<br>6.50<br>6.50<br>6.50<br>6.50<br>6.50<br>6.50<br>6.50           | 0.30<br>0.80<br>0.80<br>0.80<br>0.80<br>0.80<br>0.00                                                                | 6.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00<br>0.00<br>0.50<br>0.50<br>0.50<br>0.70                       | 0.00                                           | 0.53            | 1 35       | 440      | 20.0      | 1 33     |
| Rented Farmland hay Yield Division ha Cropped Area ha (Paddy) ha (Palawija) ha (Others) ha (Food/Sheep head (Chicken/Duck head (Chicken/Duck head (Cricken/Duck head ( |                                                                                                                                                                                              | 0.20<br>0.00<br>0.45<br>1.40<br>0.45<br>0.00<br>2                                     | 0.00<br>0.00<br>1.16<br>2.91<br>1.16<br>1.75<br>0.00                                           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00 1 4 1.00<br>0.00 0 0 0 0                             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 0.30<br>0.80<br>0.80<br>0.80<br>0.90                                                                                | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00  | 0.90<br>0.80<br>1.20<br>0.50<br>0.70                               | 0.00                                           | 0.33            |            | 8 8      | 5 6       | 55.0     |
| Yield Division ha (Paddy field) Cropped Area ha (Paddy) (Palawija) (Othors) |                                                                                                                                                                                              | 0.00<br>0.45<br>0.45<br>0.05<br>0.00<br>0.00                                          | 0.00<br>1.16<br>2.91<br>1.16<br>1.75<br>0.00                                                   | 0.00<br>0.04<br>0.00<br>0.00<br>0.00<br>0.00                | 0.00<br>0.1.4.1.0<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>1.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 0.00<br>0.80<br>0.80<br>1.50<br>0.00                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.00<br>0.50<br>1.20<br>0.50                                       | 0.00                                           | 0.50            | <b>X</b> 5 | 0.00     | 8.8       |          |
| Paddy field) Cropped Area (Paddy) (Palawija) (Others) (Ot |                                                                                                                                                                                              | 0.45<br>0.45<br>0.95<br>0.00<br>0.00                                                  | 1.16<br>2.91<br>1.16<br>1.75<br>0.00                                                           | 0.4.00<br>0.00.4.00<br>0.00.00                              | 00.1                                                      | 1.00<br>1.00<br>0.00                                                   | 0.80<br>0.80<br>0.90<br>0.00                                                                                        | 0.1.50<br>0.2.4.00<br>0.1.00<br>0.1.00                             | 0.50<br>1.20<br>0.50<br>0.70                                       |                                                | 0.00            | 90.5       | 0.00     | 33.       | 90.0     |
| Cropped Area ha (Paddy) (Paddy) (Palawija) (Others) (Ow/Buffalo haad Horse Goau/Sheep head head Pig head Chicken/Duck head Gross Income Rp.000/yr (Crop) (Crop) (Crop) (Crop) (Rp.000/yr 1) (Crop) (Cr |                                                                                                                                                                                              | 1.40<br>0.45<br>0.00<br>2                                                             | 2.91<br>1.16<br>1.75<br>0.00                                                                   | 90.4.0                                                      | 8.1. 6<br>8.0. 8                                          | 2.00<br>1.00<br>0.00                                                   | 2.30<br>0.80<br>1.50<br>0.00                                                                                        | 8.8<br>8.9<br>8.9<br>8.9                                           | 1.20<br>0.50<br>0.70                                               | 0.30                                           | 0.80            | 8.5        | 0.30     | 8.5       | S 6      |
| (Paddy) (Paddy) (Paddy) (Paddy) (Alawija) (Ala |                                                                                                                                                                                              | 0.45<br>0.95<br>0.00<br>2                                                             | 1.16<br>1.75<br>0.00<br>0                                                                      | 4.00                                                        | 8.5                                                       | 1.00<br>0.00<br>0.00                                                   | 0.80<br>1.50<br>0.00                                                                                                | 0.0°<br>0.0°<br>0.0°                                               | 0.50                                                               | 0.95                                           | 99              | 3.20       | S. 5     | 3.00      | 71.7     |
| (Palawija) ha (Othors) ha Cow/Buffalo head Horse head Goau/Sheep head Pig head Chicken/Duck head Gross Income Rp. 000/yr 1. (Crop) Rp. 000/yr 1. (Livestock) Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Fapenditure Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                              | 0.95                                                                                  | 1.75<br>0.00<br>0                                                                              | 6                                                           | 8                                                         | 0.00                                                                   | 0.00                                                                                                                | 8.8                                                                | 0.70                                                               | 0.30                                           | 0.80            | 90.1       | 0.30     | 3:        | CI.I     |
| (Others) ha  Cow/Buffalo head  Horse Goat/Sheep head  Pig head  Chicken/Duck head  Gross Income Rp. 000/yr 1.  (Crop) Rp. 000/yr 1.  (Livestock) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  Expenditure Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.  (Miscellaneous) Rp. 000/yr 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              | 0.00                                                                                  | 0.00                                                                                           | 3.                                                          | 3                                                         | 0.00                                                                   | 0.00                                                                                                                | 8                                                                  |                                                                    | 0.65                                           | 0.80            | 2.20       | 0.60     | 2.00      | 1.57     |
| Cow/Buffalo head Horse Goal/Sheep head Pig head Chicken/Duck head Gross Income Rp.000/yr 1. (Crop) Rp.000/yr 1. (Side job) Rp.000/yr Expenditure Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Miscellaneous) Rp.000/yr 1. (Mi |                                                                                                                                                                                              | 7                                                                                     | 0                                                                                              | 0.0                                                         | 000                                                       |                                                                        | m                                                                                                                   | G.                                                                 | 0.00                                                               | 0.00                                           | 0.00            | 000        | 0.00     | 0.00      | 00       |
| Cow/Bulfato Horse Horse Horse Horse Hoad Goau/Sheep Head Chicken/Duck Head Gross Income Rp. 000/yr 1. (Crop) Rp. 000/yr 1. (Side job) Rp. 000/yr Rp. 000/yr Expenditure Rp. 000/yr 1. (Miscellaneous) Rp. 000/yr 1. (Food/drink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                           | 1 0                                                                                   | •                                                                                              | C                                                           | 4                                                         | æ                                                                      |                                                                                                                     | 0                                                                  | 0                                                                  | 0                                              | 0               | 7          | 0        | 9         | 7        |
| Horse head by grant Coau/Sheep head big head Chicken/Duck head Gross Income Rp.000/yr 1. (Livestock) Rp.000/yr 1. (Side job) Rp.000/yr Rp.000/yr Side job) Rp.000/yr Expenditure Rp.000/yr Cood/drink) Rp.000/yr 1. (Food/drink) R |                                                                                                                                                                                              |                                                                                       | _                                                                                              | · c                                                         | 0                                                         | 0                                                                      | 0                                                                                                                   | 0                                                                  | 0                                                                  | 0                                              | 0               | 0          | 0        | 0         | 0        |
| Pig head Pig head Pig head Chicken/Duck head Gross Income Rp.000/yr 1.  (Livestock) Rp.000/yr 1.  (Side job) Rp.000/yr 1.  (Miscellaneous) Rp.000/yr Expenditure Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr  (Food/drink) Rp.000/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              | , c                                                                                   | , ,                                                                                            |                                                             | -                                                         | 0                                                                      | 0                                                                                                                   | 0                                                                  | 14                                                                 | 0                                              | 73              | 0          | 0        | 4         | 2        |
| Pig head Chicken/Duck head Cross Income Rp. 000/yr 11 Crop) Rp. 000/yr 11 (Livestock) Rp. 000/yr 13 (Miscellaneous) Rp. 000/yr Expenditure Rp. 000/yr (Food/drink) Rp. 000/yr 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              | 0 0                                                                                   | i                                                                                              | • =                                                         |                                                           | 0                                                                      | 0                                                                                                                   | 0                                                                  | 0                                                                  | 0                                              | 0               | 0          | 0        | 0         | ٥        |
| Chicken/Duck head Gross Income Rp.000/yr 1. (Crop) Rp.000/yr 1. (Livestock) Rp.000/yr 1. (Side job) Rp.000/yr Expenditure Rp.000/yr (Food/drink) Rp.000/yr 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                                                                                                                                                          | > <b>v</b>                                                                            | , (                                                                                            | n د                                                         | ξ.                                                        | · c                                                                    | 0                                                                                                                   | c                                                                  | Π                                                                  | 178                                            | 10              | Ø          | 7        | 0         | 9        |
| Gross Income Rp.000/yr 1 (Crop) Rp.000/yr 1 (Livestock) Rp.000/yr 1 (Miscellancous) Rp.000/yr Expenditure Rp.000/yr (Food/drink) Rp.000/yr 1 (Trice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                       | , 0000                                                                                         | 9                                                           | 0.000                                                     | 2060                                                                   | 18600                                                                                                               | 3.975.0                                                            | 3.035.0                                                            | 1.963.5                                        | 3,290.0         | 5,473.0    | 2,085.0  | 6,145.0   | 3,503.5  |
| (Grop) Rp.000/yr I. (Livestock) Rp.000/yr Side job) Rp.000/yr (Miscellancous) Rp.000/yr Expenditure Rp.000/yr I. (Food/drink) Rp.000/yr II. (Food/drink) Rp. |                                                                                                                                                                                              |                                                                                       | 5,200.0                                                                                        | 0.000, 0                                                    | 0.000                                                     | 1 230.0                                                                | 0.0991                                                                                                              | 3.075.0                                                            | 1100                                                               | 451.5                                          | 1.810.0         | 3,473.0    | 885.0    | 2,875.0   | 2,296.6  |
| (Livestock) Rp.000/yr (Side job) Rp.000/yr (Miscellaneous) Rp.000/yr Expenditure Rp.000/yr (Good/drink) Rp.000/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,5                                                                                                                                                                                          | 1.140.0                                                                               |                                                                                                | 0.000,                                                      | 0.704.0                                                   | 0.077.1                                                                | 2000                                                                                                                | 00                                                                 | 125.0                                                              | 0.0                                            | 40.0            | 200.0      | 0.0      | 150.0     | 49.3     |
| (Side job) Rp.000/yr (Miscellaneous) Rp.000/yr Expenditure Rp.000/yr 2 (Good/drink) Rp.000/yr 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                       | 0.00                                                                                           | 3 6                                                         | 777                                                       | 2007                                                                   | 000                                                                                                                 | 0000                                                               | 800                                                                | 1,512.0                                        | 1.440.0         | 1.800.0    | 1,200.0  | 3,120.0   | 1,157.6  |
| (Miscellaneous) Rp. 000/yr 2 Expenditure Rp. 000/yr 2 (Food/drink) Rp. 000/yr 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ń                                                                                                                                                                                            | 432.0                                                                                 | 2000                                                                                           | 0 0                                                         | 0.0                                                       | 200                                                                    | 000                                                                                                                 | 0.0                                                                | 0.0                                                                | 0.0                                            | 0.0             | 0.0        | 0.0      | 0.0       | 0.0      |
| Expenditure Rp. 000/yr 2 (Food/drink) Rp. 000/yr 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                       | 0.0                                                                                            | 0.0                                                         | 2 602 5                                                   | 3 266.0                                                                | 20840                                                                                                               | 3.069.5                                                            | 3.542.8                                                            | 3.094.1                                        | 2,426.0         | 3,008.8    | 1,502.9  | 3,102.3   | 2,854.4  |
| ink) Rp. 000/yr 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                       | 6.151.2                                                                                        | 7.717.4                                                     | 1 201 0                                                   | 1 561 2                                                                | 1 224 0                                                                                                             | 1 224 0                                                            | 1.638.0                                                            | 1.737.6                                        | 1,324.8         | 1,332.0    | 0.096    | 1,356.0   | 1,338.3  |
| 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | →                                                                                                                                                                                            | -                                                                                     | 0.261,1                                                                                        | 2.886.1                                                     | 2,120,1                                                   | 2010                                                                   | 214.0                                                                                                               | 0.808                                                              | 613.0                                                              | 1.005.0                                        | 471.4           | 532.0      | 270.2    | 537.0     | 534.6    |
| (Living) Kp. Walyr 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                       | 528.0                                                                                          | 0.4.0                                                       | 5 6                                                       | 7 7                                                                    | 2000                                                                                                                | 0.000                                                              | 0000                                                               | 00                                             | 207 \$          | 4560       | 20.5     | 381.0     | 278.4    |
| (Education) Rp.'000/yr 250.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250.0 251.0                                                                                                                                                                                  | 175.0                                                                                 | 205.0                                                                                          | 741.0                                                       | 200.0                                                     | 0.000                                                                  | 29.0                                                                                                                | 0.000                                                              | 40.00                                                              | 361.5                                          | 5,000           | 0 007      | 252.2    | 8783      | 703 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333.5 526.5                                                                                                                                                                                  | 475.5                                                                                 | 872.8                                                                                          | 2,305.0                                                     | 900.3                                                     | 742.8                                                                  | 50/.0                                                                                                               | 5.74%                                                              | 491.0                                                              | 2000                                           | 444.3           | 0.000.0    | 597 1    | 2000      | 7401     |
| cit Ro '000/vr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -85.8 530.6                                                                                                                                                                                  | -836.5                                                                                | 502.2                                                                                          | 2,480.8                                                     | 1,555.6                                                   | 406.0                                                                  | -224.0                                                                                                              | 905.5                                                              | -507.8                                                             | -1,130.6                                       | 0.400           | 7:404.7    | 1000     | 7.000     |          |
| Rp.'000/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | 0.0                                                                                   | 180.0                                                                                          | 180.0                                                       | 120.0                                                     | 120.0                                                                  | 0.0                                                                                                                 | 0:0                                                                | 0.09                                                               | 0.0                                            | 0.0             | 120.0      | 0.0      | 180:0     | 8        |

Source: JICA Agro-economy Survey

Table 2.1 Estimated Evapotranspiration in Ntonggu II Project

Site: Ntonggu II Meteorological Station: Godo

|                    |          | Ian   | Feb   | Mar   | Apr   | May    | Jun    | Jul    | Aug    | Sep    | Öct    | Nov    | Dec   |
|--------------------|----------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|
| Tmean              | C        | 28.10 | 28.00 | 28.00 | 28.10 | 27.90  | 26.90  | 26.30  | 26.50  | 27.70  | 29.00  | 29.20  | 28.40 |
| RH mean            | 8        | 88.00 | 89.00 | 88.00 | 86.00 | 86.00  | 85.00  | 84.00  | 81.00  | 80.00  | 82:00  | 83.00  | 86.00 |
| U km/dav           | km/dav   | 88.80 | 76.80 | 72.00 | 74.40 | 108.00 | 141.60 | 165.60 | 153.60 | 160.80 | 153.60 | 120.00 | 79.20 |
| ea                 | mbar     | 37.80 | 37.59 | 37.59 | 37.80 | 37.38  | 35.28  | 34.02  | 34.44  | 36.96  | 39.87  | 40.33  | 38.49 |
| RH/100             |          | 0.88  | 0.89  | 0.88  | 98.0  | 0.86   | 0.85   | 0.84   | 0.81   | 0.80   | 0.82   | 0.83   | 98.0  |
| ed                 | mbar     | 33.26 | 33.46 | 33.08 | 32.51 | 32.15  | 29.99  | 28.58  | 27.90  | 29.57  | 32.69  | 33.47  | 33.10 |
| (ea-ed)            | mbar     | 4.54  | 4.13  | 4.51  | 5.29  | 5.23   | 5.29   | 5.44   | 6.54   | 7.39   | 7.18   | 98.9   | 5.39  |
| f(n)               |          | 0.51  | 0.48  | 0.46  | 0.47  | 0.56   | 0.65   | 0.72   | 89.0   | 0.70   | 0.68   | 0.59   | 0.48  |
| (1-W)              |          | 0.23  | 0.23  | 0.23  | 0.23  | 0.23   | 0.24   | 0.25   | 0.25   | 0.23   | 0.23   | 0.22   | 0.23  |
| (1-W)f(u)(ea-ed)   | mm/day   | 0.53  | 0.46  | 0.48  | 0.57  | 0.68   | 0.84   | 0.97   | 1.10   | 1.22   | 1.11   | 0.91   | 0.60  |
| Ra                 | mm/day   | 16.40 | 16.30 | 15.50 | 14.20 | 12.80  | 12.00  | 12.40  | 13.50  | 14.80  | 15.90  | 16.20  | 16.20 |
| п                  | hr/day   | 2.64  | 2.88  | 3.76  | 4.80  | 4.96   | 4.80   | 5.20   | 5.60   | 5.52   | 5.28   | 4.24   | 3.20  |
| Z                  | hr/day   | 12.60 | 12.40 | 12.10 | 11.80 | 11.60  | 11.50  | 11.60  | 11.80  | 12.00  | 12.30  | 12.60  | 12.70 |
| (0.25+0.50n/N)     |          | 0.35  | 0.37  | 0.41  | 0.45  | 0.46   | 0.46   | 0.47   | 0.49   | 0.48   | 0.46   | 0.42   | 0.38  |
| Rs                 | mm/dav   | 5.82  | 5.97  | 6.28  | 6.44  | 5.94   | 5.50   | 5.88   | 6.58   | 7.10   | 7.39   | 6.78   | 6.09  |
| Rns                | mm/day   | 4.65  | 4.77  | 5.03  | 5.15  | 4.75   | 4.40   | 4.70   | 5.26   | 5.68   | 5.91   | 5.42   | 4.87  |
| f(T)               | •        | 16.30 | 16.30 | 16.30 | 16.30 | 16.26  | 16.06  | 15.94  | 15.98  | 16.22  | 16.50  | 16.54  | 16.38 |
| f(ed)              |          | 0.08  | 0.08  | 80.0  | 0.08  | 0.0    | 0.0    | 0.10   | 0.10   | 0.10   | 0.08   | 0.08   | 0.08  |
| f(n/N)             |          | 0.29  | 0.31  | 0.38  | 0.47  | 0.48   | 0.48   | 0.50   | 0.53   | 0.51   | 0.49   | 0.40   | 0.33  |
| Rnl=f(T)f(ed)f(n/N | ) mm/day | 0.38  | 0.41  | 0.51  | 0.64  | 0.68   | 0.72   | 0.81   | 0.87   | 0.80   | 0.67   | 0.54   | 0.44  |
| Rn =Rns-Rnl        | •        | 4.27  | 4.37  | 4.52  | 4.51  | 4.07   | 3.68   | 3.90   | 4.39   | 4.88   | 5.24   | 4.88   | 4.43  |
| ×                  |          | 0.77  | 0.77  | 0.77  | 0.77  | 0.77   | 0.76   | 0.75   | 0.75   | 0.77   | 0.77   | 0.78   | 0.77  |
| W Rn               |          | 3.29  | 3.36  | 3.47  | 3.47  | 3.13   | 2.79   | 2.93   | 3.31   | 3.74   | 4.06   | 3.79   | 3.42  |
| ၁                  |          | 1.10  | 1.10  | 1,10  | 1.10  | 1.10   | 1.10   | 1.10   | 1.10   | 1.10   | 1.10   | 1.10   | 1.10  |
| Eto                | mm/day   | 4.20  | 4.20  | 4.35  | 4.45  | 4.19   | 3.99   | 4.29   | 4.86   | 5.45   | 2.68   | 5.17   | 4.42  |

Source: JICA Study Team estimation by Modified Penman Method based on the meteorological data at the Godo staiton.

Table 2.2 Effective Rainfall in Ntonggu II Project

Site: Ntonggu II

Meteorological Station: Sila

| Month     | Evapotrans-    |         |          | Annual-base | Effective | Rainfall |
|-----------|----------------|---------|----------|-------------|-----------|----------|
|           | piration (ETo) | Average | Rainfall | Dependable  | Paddy     | Palawija |
|           | _              |         |          | Rainfall    |           |          |
|           | [1]            | [2]     | [3]      | [4]         | [5]       | [6]      |
|           | (mm)           | (mm)    | (%)      | (mm)        | (mm)      | (mm)     |
| January   | 130            | 221     | 21.4%    | 188         | 132       | 121      |
| February  | 117            | 202     | 19.5%    | 172         | 120       | 108      |
| March     | 135            | 146     | 14.1%    | 124         | 87        | 85       |
| April     | 133            | 63      | 6.1%     | 54          | 38        | 40       |
| May       | 130            | 27      | 2.6%     | 23          | 16        | . 18     |
| June      | 120            | . 15    | 1.4%     |             | 9         | 10       |
| July      | 133            | 5       | 0.5%     | 4           | 3         | " 0      |
| August    | 151            | 2       | 0.2%     | 2           | 1         | . 0      |
| September | 164            | 9       | 0.9%     | 8           | 5         | 0        |
| October   | 176            | 32      | 3.1%     | 27          | 19        | 23       |
| November  | 155            | 118     | 11.4%    | 100         | 70        | 75       |
| December  | 137            | 195     | 18.8%    | 166         | 116       | 111      |
| Total     | 1,681          | 1,035   | 100.0%   | 881         | 617       | 591      |

### Note;

- [1]: Estimated by Modified Penman Method based on Godo station
- [2]: Rainfall data in station compiled by P3SA (1970-1992)
- [3]: Percentage of monthly rainfall to annual rainfall, calculated from column [2]
- [4]: 881 mm (Calculated 80 % dependable annual rainfall) x [3]
- [5]: [4] x 0.70
- [6]: Derived by USDA SCS Method introduced by Design Criteria KP-01, where effective storage is assumed 75 mm

Source; JICA Study Team estiamtin based on the rainfall data at the Sila statin

Table 2.3 Irrigation Water Requirement in Ntonggu II Project (1/4)

|                                | Dec. Annual | 2 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 15 16 | 5.17 4.42 4.42<br>78 66 71 1.681 | 41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 329<br>335<br>334                                   | 183 195 378<br>195 377<br>376                         |                                               |                                                       | 35 56 60 616                | 127 135 545<br>135 563<br>600             | 65 138 876<br>650 1,380 8,750           |
|--------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------|
|                                | Nov.        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15       | 5.17                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                                               |                                                       | 35                          |                                           |                                         |
|                                | Oct.        | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 16    | 8 5.68<br>5 91                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 10.100                                                |                                               |                                                       | 01 6                        |                                           |                                         |
|                                |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 1     | 5.68<br>82 85                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                                               |                                                       | m                           |                                           |                                         |
|                                | Sep.        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15       | 5.45 5.45<br>82 82               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                                               |                                                       | 2                           | -                                         | ·                                       |
| ·                              | منه         | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91       | 4.86                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                                               | · • • • • • • • • • • • • • • • • • • •               |                             |                                           |                                         |
|                                | Aug         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15       | 73                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       | ÷.                                            |                                                       | 0                           |                                           |                                         |
|                                | Jul         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 16    | 4.29 4.29<br>64 69               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                                               |                                                       | H                           |                                           | . ===================================== |
|                                | -           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15       | 8.8<br>4.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       |                                               |                                                       | 4                           |                                           |                                         |
|                                | Jun.        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15       | 3.98<br>5.08                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                       | ·                                             |                                                       | 5                           |                                           |                                         |
|                                | av          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16       | 4.19                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                   |                                                       |                                               |                                                       | ∞                           | <del></del>                               |                                         |
|                                | May         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13       | 4.19                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                       | - · · -                                       |                                                       | ∞                           |                                           |                                         |
| •                              | Apr         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 15    | 4.45 4.45<br>67 67               | 000 <u>560</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 63 0                                            |                                                       | 30                                            |                                                       | 61 61                       | 0 0 47                                    | 380 0                                   |
|                                |             | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16       | 4.35 4.                          | 0.00<br>0.95<br>0.95<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 98 5                                              |                                                       | 323                                           | - 20                                                  | 45                          | 0<br>53<br>110                            | 840                                     |
|                                | Mar         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15       | 4.35 4                           | 0.95 0<br>1.05 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 888                                                 |                                                       | 888                                           | 50                                                    | 42                          | 50<br>107<br>57                           | 1,090                                   |
| (p)                            | -           | 'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14       | 4.20                             | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62                                                  |                                                       | % 8 8<br>7 7 7<br>8 7 8 8                     | 50                                                    | 8                           | 8 9 8                                     | 96 6                                    |
| Ntonggu-II<br>Wet Season Paddy | Feb         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14       | 4.20<br>S9                       | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65<br>65<br>65                                      |                                                       | 28<br>28<br>28<br>28                          | 8                                                     | 8                           | 8 8 8                                     | 740                                     |
| Nionge<br>Wet Se               | lan i       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 4.20<br>67                       | 1, 10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, 1,10, | 47                                                  | 194                                                   | 32                                            | 0,5                                                   | 89                          | 88<br>38<br>126                           |                                         |
|                                | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 151      | y 4.20                           | cient<br>LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$                                                  | 182                                                   | 30                                            |                                                       | 2                           | 35                                        | 139                                     |
| Site :<br>Crops :              | ٤           | ; :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>.</i> | mm/day<br>mm                     | rop coeffi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm<br>mm                                            | man<br>man<br>man                                     | man<br>man<br>man                             |                                                       | шш                          | HH<br>HH<br>HH<br>HH                      | тт<br>т3/ћа                             |
|                                | Month       | TOTAL THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | Ilem     | I. Evapotranspiration (Eto)      | II. Wet Season Paddy (1) Proposed cropping pattern / Crop coefficient - WP-1 - WP-2 - WP-2 - WP-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) Crop consumptive use (Etc) . WP-1 . WP-2 . WP-3 | (3) Land preparation (IR) - WP-1 - WP-2 - WP-2 - WP-3 | (4) Percolation<br>: WP-1<br>- WP-2<br>- WP-3 | (5) Water layer replacement (RW) - WP-1 - WP-2 - WP-3 | (6) Effective rainfall (ER) | (7) Field water requirement - WP-1 - WP-3 | (8) Diversion requirement               |

Table 2.3 Irrigation Water Requirement in Ntonggu II Project (2/4)

Site : Crops :

| Annual |    |      | 1,681                    |                                                                                     | 335                                           | 329         | 365<br>376<br>373                              |                                      |                                                       | 919                         | 257<br>241<br>262                                | 1,468                     |
|--------|----|------|--------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------|-------------|------------------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------|--------------------------------------------------|---------------------------|
|        | 7  | 2    | 4.42<br>71               |                                                                                     | <del></del>                                   |             |                                                |                                      | <del> </del>                                          | 8                           |                                                  | •                         |
| Dec.   | 1  | 15   | 4.42                     |                                                                                     |                                               |             |                                                |                                      |                                                       | 98                          |                                                  |                           |
|        | 2  | 15   | 5.17                     |                                                                                     |                                               |             |                                                | ····                                 | ·                                                     | 35                          | * *********                                      |                           |
| Nov.   | 1  | 15   | 5.17<br>78               |                                                                                     |                                               |             |                                                |                                      |                                                       | 32                          |                                                  |                           |
| Н      | 2  | 91   | 5.68                     |                                                                                     |                                               |             |                                                |                                      |                                                       | 9                           |                                                  |                           |
| Oct.   |    | 15   | 5.68                     |                                                                                     |                                               |             |                                                |                                      |                                                       | 0                           |                                                  |                           |
| -      | 2  | 15   | 5.45                     |                                                                                     |                                               |             |                                                |                                      |                                                       | m .                         |                                                  |                           |
| Sep.   | -  | 15   | 5.45<br>82               | 3                                                                                   | 8                                             | 0           |                                                | . 0                                  |                                                       | 7                           | 0                                                | 00                        |
|        | 2  | 19   | 78                       | 000                                                                                 | <u>v</u>                                      | 4           |                                                | 32                                   |                                                       |                             | 0                                                | 28                        |
| Aug.   | -  | 15   | 4.86<br>73               |                                                                                     | 50 0 8                                        | <i>H</i>    |                                                | 0 00 00                              | 99                                                    | 0                           | 0 8 151<br>157                                   | 131                       |
|        | 77 | 9    | 4.29                     | \$60                                                                                | 20 S t                                        | 12          |                                                | 32                                   | 20                                                    | 2                           | 145<br>152<br>102                                | 205                       |
| Ju     |    | 15   | 4.29<br>48               | F 338 ( 338) [ 32                                                                   | 27 88 8<br>8 8                                | 3 5         |                                                | 888                                  | 50 %                                                  | -                           | 97                                               | 2010                      |
|        | 1  | 13   | 8.8                      | 676688 S05685 S05                                                                   | 2 8                                           | 3,8         |                                                | 888                                  | 8                                                     | 4                           | 98                                               | 1,650                     |
| Jun    | 1  | 15   | 3.99                     | 14688 4468 24                                                                       | 4 8 8                                         | 3           | 179                                            | 30 %                                 | %                                                     | ٧n                          | 141<br>91<br>174                                 | 2,080                     |
|        |    | 16   | 4.19                     | 91 d d                                                                              | T 42                                          | <del></del> | 194<br>194                                     | 32                                   |                                                       | œ                           | 98<br>186<br>186                                 | 241                       |
| May    | -  | 15   | 4.19<br>63               | lal a                                                                               |                                               |             | 182                                            |                                      |                                                       | œ                           | 47.1<br>47.1                                     | 1,780                     |
|        |    | 15   | 4.45                     | ā                                                                                   |                                               |             | 183                                            |                                      |                                                       | 61                          | 26                                               | 26 3                      |
| Apr    | _  | 15   | 4.45                     |                                                                                     |                                               |             |                                                |                                      |                                                       | 19                          |                                                  |                           |
|        | 2  | 16   | 4.35                     |                                                                                     |                                               |             |                                                |                                      |                                                       | 45                          | <u> </u>                                         |                           |
| Mar.   | -  | 15   | 4.35                     |                                                                                     |                                               |             |                                                |                                      |                                                       | 42                          |                                                  |                           |
|        | 2  | 14   | 4.20<br>59               |                                                                                     |                                               |             |                                                | •                                    |                                                       | 8                           |                                                  |                           |
| Feb.   | -  | 14   | 4.20<br>59               |                                                                                     |                                               |             |                                                |                                      |                                                       | 8                           | -                                                |                           |
|        | 2  | 16   | 4.20<br>67               |                                                                                     |                                               |             |                                                |                                      | ·                                                     | 8                           |                                                  |                           |
| Ian    | -  | 15   | 4.20                     | JIC<br>SIJI                                                                         |                                               |             |                                                |                                      |                                                       | 2                           |                                                  |                           |
| ج      | 1  |      | mm/day<br>mm             | rop coefficie                                                                       | CLC CLC                                       |             | mm<br>mm                                       |                                      | mm<br>mm<br>mm                                        | um.                         |                                                  | mm<br>m3/ha               |
| Month  |    | i    | Evapotranspiration (Eto) | Dry Season Paddy     Proposed cropping pattern / Crop coefficient     DP-1     DP-2 | - DP-3  (2) Crop consumptive use (Etc) - DP-1 |             | ration (IR)                                    |                                      | (5) Water layer replacement (RW) - DP-1 - DP-2 - DP-3 | infall (ER)                 | requirement                                      | equirement                |
|        | 1  | Item | Evapotrans               | II. Dry Season Paddy (1) Proposed cropping - DP-1 - DP-2                            | . DP-3<br>Crop consulting . DP-1              | - DP-3      | (3) Land preparation (IR) - DP-1 - DP-2 - DP-3 | (4) Percolation - DP-1 - DP-2 - DP-3 | 5) Water layer<br>- DP-1<br>- DP-2<br>- DP-3          | (6) Effective rainfall (ER) | (7) Field water requirement - DP-1 - DP-2 - DP-3 | (8) Diversion requirement |
| Ľ.     |    |      | l <del></del>            | <u> </u>                                                                            | <u> </u>                                      |             | T - 10                                         | <u> </u>                             | <u> </u>                                              | <u> </u>                    | <u> </u>                                         | <u> </u>                  |

Source: JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Source: JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Table 2.3 Irrigation Water Requirement in Ntonggu II Project (3/4)

Site : Crops :

| Momth (days)                                                                                                                                                                                           |                      |                    |              | 원<br>-     | 7     | Zar. | 7       | Pit.                                    | 7    | χ<br>May         | 7                  | ğ _            | 72               |              | 77 | - Aug | 7        |            | 2               | 5                                              | 7                                                    | 1                                                 | 2                  | 1 2                                    | [c]                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------|------------|-------|------|---------|-----------------------------------------|------|------------------|--------------------|----------------|------------------|--------------|----|-------|----------|------------|-----------------|------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------|----------------------------------------|----------------------------------|
| ltem                                                                                                                                                                                                   | 1                    | 15                 | 191          | 14         | 1     | 5    | 192     | 15                                      | 15   | 15               | 9                  | 15             | 2                | 15           | 卢  | 15    | 2        | 15         | 15              |                                                | 19                                                   | 15                                                | 15                 |                                        | 100                              |
| I. Evapotranspiration (Eto) m                                                                                                                                                                          | mm/day<br>mm         | 4.20<br>63         | 4.20         | 4.20<br>59 | 59.80 | 4.35 | 70      | 4.45                                    | 4.45 | 4.19 4           | 67 3               | 3.99 3         | 99.<br>60.       | 4.29<br>4.29 | 69 | 4.86  | 8.4.86   | 5.45<br>82 | 82 5            | 5.68 5.<br>85                                  | 5.68 5.                                              | 5.17 5.7<br>78                                    | 5.17 4.42<br>78 66 | 4.42                                   | 1,681                            |
| <ul> <li>II. Pahawija(1), (2): Mungbans and Red onion</li> <li>(1) Proposed cropping pattern / Grop coefficient(Kc)</li> <li>- Pwj(1),(2)-1</li> <li>- Pwj(1),(2)-2</li> <li>- Pwj(1),(2)-3</li> </ul> | Red on               | <b>юн</b><br>л(Кс) | <del>-</del> |            |       |      | Σ       | Mungbeans 0.4                           |      | 0.75 1<br>0.45 0 | 0 1.0%<br>0 45 0 0 | 0.30<br>0.75   | 0 30 1<br>0 30 1 | 0:0          | ·  |       | <u> </u> | Red onion  | 8               | 0 0 0                                          | 0.00 0.00<br>0.00 0.00<br>0.00 0.00                  | 75<br>0.75<br>0.095                               | 8 8 975            | C T                                    | •                                |
| (2) Crop consumptive use(Etc) - Pwj(1),(2)-1 - Pwj(1),(2)-2 - Pwj(1),(2)-3                                                                                                                             |                      |                    |              |            |       |      |         |                                         | 30   | 44<br>28         | ୧୫୫                | 18<br>63<br>45 | 63.8             | 19           |    |       |          |            | - 14            | . <del>5</del> 3                               | 88<br>55<br>55                                       | 82 <del>7</del> 74                                | 28<br>74<br>50     | _                                      |                                  |
| (3) Effective rainfall (ER)                                                                                                                                                                            | mar                  | \$                 | 62           | 잓          | 54    | 41   | 4       | 20                                      | 20   | ο.               | 6                  | <b>∧</b>       | ٧.               | 0            | -  | 0     | 0        | 0          | 0               | 11                                             | 12                                                   | 37                                                | 38 54              | 75 1                                   | 7 591                            |
| (4) Field water requirement - Pwj(1),(2)-1 - Pwj(1),(2)-2 - Pwj(1),(2)-3                                                                                                                               | an an                |                    |              |            |       |      |         |                                         | 10   | 19 38            | 24.2               | 58<br>40<br>88 | 13               | 19           |    |       |          |            | 14              | <del>8</del> 8                                 | 4 <del>2 2</del> 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 337                                               |                    | 0                                      | 282                              |
| (5) Diversion requirement                                                                                                                                                                              | mm<br>m3/ha          |                    |              |            |       |      |         |                                         | - 6  | 380 8            | 830                | 47 740         | 470              | 130          |    |       |          |            | 270             | 48 1<br>480 1,0                                | 000,1                                                | 450 33                                            | 370                | 00                                     | 519<br>5,190                     |
| (I) Palewija (3): Mungbeans (1) Proposed cropping pattern / Crop coefficient(Kc) - Pwj(3)-1 - Pwj(3)-2 - Pwj(3)-3                                                                                      |                      | nt(Kc)             |              |            |       |      |         |                                         |      |                  |                    |                |                  |              |    |       | ž        | Mungbeans  | 100             | 0.75 0                                         | 1.05 0.30<br>0.75 1.05<br>0.45 0.75                  | 25 1.03<br>1.03                                   | 6 50<br>0.30       |                                        |                                  |
| (2) Crop consumptive use(Etc) - Pwj(3)-1 - Pwj(3)-2 - Pwj(3)-3                                                                                                                                         |                      |                    |              |            |       |      |         |                                         |      |                  |                    |                |                  |              |    |       |          |            | 37              | \$ <b>%</b>                                    | 26 8 14                                              | 23<br>88 2                                        | 23 81 20           | _                                      | ·· <del>·</del>                  |
| (3) Effective rainfall (ER)                                                                                                                                                                            | uu<br>u              | 89                 | 62           | 45         | *     | 4    | 4       | 22                                      | 8    | ٥.               | ō.                 | ν,             | vo.              | 0            | 0  | 0     | 0        | • ·        | 0               | ==                                             | 12                                                   | 37 3                                              | 38 54              | 57                                     | . 29                             |
| (4) Field water requirement  - Pwj(3)-1  - Pwj(3)-3  - Pwj(3)-3  (5) Diversion requirement                                                                                                             | mm<br>mm<br>mm<br>mm |                    |              |            |       |      | ······· | . • • • • • • • • • • • • • • • • • • • |      |                  |                    |                |                  |              |    |       |          |            | 37<br>250<br>36 | 53 83<br>27 56<br>29 29<br>53 112<br>530 1,120 | ч                                                    | 0<br>21<br>24<br>44<br>29<br>29<br>29<br>29<br>29 |                    | ······································ | 173<br>128<br>93<br>263<br>2,630 |

T - 11

Table 2.3 Irrigation Water Requirement in Ntonggu II Project (4/4)

| Month                                                                                                          | Ja                | Jan.       | Ŗ,    | Feb.     | Mar  | !   | Apr        |      | May  |                                       | Jun. | ا ا  | Jul           |      | Aug    | Li         | Sep.         | H                    | Oct.                 | <del> </del>         | Nov.                 | _            | Dec.        |      | Annuai                   |
|----------------------------------------------------------------------------------------------------------------|-------------------|------------|-------|----------|------|-----|------------|------|------|---------------------------------------|------|------|---------------|------|--------|------------|--------------|----------------------|----------------------|----------------------|----------------------|--------------|-------------|------|--------------------------|
| (days)                                                                                                         |                   | 7          | -     | 2        | 1    | ~;  |            | 7    | ,    | 71                                    | -    | 2    | -             | 7    | _      | 7          |              | 7                    | -                    | 7                    | -                    | 7            | -           | 7    |                          |
| Item                                                                                                           | 15                | 16         | 14    | 14       |      |     |            | - 1  | 15   | 91                                    | 15   | 15   | 15            | 92   | 15     | 16         | 25           | 2                    | 5]                   | ᆰ                    |                      | 2            | 15          | 2    |                          |
| Evapotranspiration (Eto) mm/day                                                                                | /day 4.20<br>m 63 | 4.20<br>67 | 4.20  | 65<br>59 | 4.35 | 435 | 4,45<br>67 | 4,45 | 4.19 | 4.19                                  | 3.98 | 3.98 | 62.4<br>64.29 | 4.29 | 4.86   | 4.86<br>78 | 5.45<br>82   | 5.45                 | 5.68<br>             | 5.68 5               | 5.17 5               | 78 4         | 4.42 4      | 4,42 | 1,681                    |
| II. Palawija(4): Tomato (1) Proposed cropping pautem / Crop coefficient(Kc) - Pwj(4)-1 - Pwj(4)-2 - Pwj(4)-3   | efficient(Kc      |            |       |          |      |     |            |      |      |                                       |      |      |               |      | Tomato | 0.45       | 0.75<br>0.45 | 1.05<br>0.75<br>0.45 | 1.05<br>1.05<br>0.75 | 0.80<br>1.05<br>1.05 | 0,60<br>0.80<br>1.05 | 09:0<br>09:0 | <b>09</b> 0 |      |                          |
| Crop consumptive use(Etc)  - Pwj(4)-1  - Pwj(4)-2  - Pwj(4)-3  mm                                              | 888               |            |       |          |      |     |            |      |      |                                       |      |      |               |      |        | 35         | 37           | 86<br>61<br>37       | 8 8 4                | 73<br>95             | . 47<br>62<br>81     | 47           | 40          |      |                          |
| (3) Effective rainfall (ER)                                                                                    | m 59              | 62         | \$    | 3        | 4    | 4   | 8          | 8    | 6    | 0,                                    | ,5   | ٠,   | Ο,            | 0    | 0      | 0          | 0            | 0                    | 11                   | 12                   | 37                   | 38           | 22          | 57   | 591                      |
| (4) Field water requirement - Pwj(4)-1 - Pwj(4)-2 - Pwj(4)-3 - mm                                              | 5 F S             |            |       |          |      |     |            |      |      |                                       |      |      |               |      |        | 35         | 37           | 86<br>61<br>37       | 78<br>78<br>53       | 12 88 88             | 10<br>25<br>4        | 0 4          | 0           |      | 331<br>294<br>242        |
| (5) Diversion requirement mm3/ha m3/ha                                                                         | <u>ل</u> ے ع      |            |       |          |      |     |            |      |      |                                       |      |      |               |      |        | 230        | 650 1        | 1,230                | 1,400 1,             | 1,520                | 530                  | 220          | 00          |      | 5.780<br>5.780           |
| III. Palawija (5): Cabbage (1) Proposed cropping pauem / Crop coefficient(Kc) - Pwj(5)-1 - Pwj(5)-2 - Pwj(5)-3 | efficient(Kc)     |            |       |          |      |     |            |      |      | · · · · · · · · · · · · · · · · · · · |      | ÷ .  | :             |      | Ç      | Cabbage    | 0.45         | 0.70                 | 0.95 (<br>0.70 (     | 080                  | 080                  | ି  <br>      | 080         |      |                          |
| (2) Crop consumptive use(Etc)  • Pwj(S)-1  • Pwj(S)-2  mm  • Pwj(S)-3  mm                                      | <b>855</b>        |            |       |          |      |     |            | :    |      | . '                                   |      |      |               |      |        |            | 37           | 37                   | 81<br>88<br>38       | 25 % <b>2</b>        | 62<br>70<br>74       | 62           | 23          |      | •                        |
| (3) Effective rainfall (ER) mm                                                                                 | m 59              | 62         | . \$5 | 5        | 4    | 4   | 20         | 20   | ον , | 6                                     | Ś    | ٠ کې | o ·           | 0    | 0      | 0          | 0            | 0                    | 11                   | 12                   | 37                   | 38           | 54          |      | 591                      |
| (4) Field water requirement  - Pwj(5)-1  - Pwj(5)-2  mm  - Pwj(5)-3  mm  (5) Diversion requirement             | द्वद द            |            | ·     |          |      | · · |            |      |      |                                       | 4-4- |      | adille .      |      |        |            | 37           | 37 83                |                      |                      | . 33 33 25<br>       | 32           | • •         |      | 259<br>217<br>147<br>415 |
| -                                                                                                              | lla<br>I          |            |       |          |      |     |            |      | ٠.   | :                                     |      |      |               |      |        |            | 250          | 630                  | 970 1,               | <u>0</u>             |                      | 370          | 0           |      | t,15                     |

Source: JICA Study Team estimate based on the meteorological data at the Godo and the Sila station

Table 3.1 Estimated Catchment Rainfall in Ntonggu II Embung Site

|          | Annual  |         | 1,411 | 1.741     | 79             | 1.451 | 1,263 | 1,414    | 1706          | 1,471   | 50   | 727  | 729  | 1,363       | 855      | 1.157 | 1521 | -<br>69<br>- | 1,572 | 1,719 | 1,413    | 1.187 | 1.624 | 1.313      |
|----------|---------|---------|-------|-----------|----------------|-------|-------|----------|---------------|---------|------|------|------|-------------|----------|-------|------|--------------|-------|-------|----------|-------|-------|------------|
| c        |         | II      | 78    | 172       | 62             | 124   | 134   | 72       | 151           | 4       | 108  | 0    | 131  | 42          | <u>4</u> | 33    | 6    | <u>8</u>     | 17    | 28    | 127      | 22    | 273   | 94         |
| Unit: mm | Dec     | Ĭ       | 82    | 178       | 8              | 62    | 107   | 176      | 528           | 129     | 25   | 0    | 179  | 103         | 4        | 2     | 130  | 176          | 151   | 200   | .87      | 231   | 166   | 151        |
| ,,,      |         | п       | 130   | 5         | 20             | 80    | 192   | 101      | 101           | 34      | 21   | 0    | 111  | 124         | 7        | 308   | 8    | 138          | . 65  | 135   | 200      | 51    | 6     | 88         |
|          | Nov     | _       | 205   | 120       | 0              | 182   | 2     | <u>¥</u> | _             | 0       | 6    | 0    | 4    | 116         | 0        | 33    | 42   |              | 32    | 16    | 43       | 4     | 0     | 84         |
|          |         | П       | 0     | 5         | 0              | 00    | 4     | 179      | 101           | <u></u> | 43   | ਰ    | 0    | 6           | 0        | ই     | ë    | 12           | 8     | 0     | 17       | 55    | 26    | 35         |
|          | Ö       | _       | 7     | 0         | 0              | 0     | 4     | 22       | 0             | 0       | 56   | 0    | 0    | 10          | 0        | 22    | 16   | 0            | 0     | 0     | 75       | 0     | 3     | 6          |
|          |         | 11      | 3     | Ó         | 0              | 10    | Ö     | 4        | 0             | ō       | 13   | 0    | 0    | 30          | 0        | 0     | 62   | 0            | 0     | 0     | 0        | 0     | 0     | 9          |
|          | Sep     | <br> -  | -     | 0         | 0              | m     | m     | 23       | 0             | 0       | 17   | 0    | 0    | 33          | 0        | 0     | 32   | 0            | 18    | 0     | 'n       | 0     | Ó     | 7          |
|          |         | =       | 0     | 0         | 0              | 0     | 0     | 0        | 0             | ō       | 13   | 0    | 0    | <del></del> | 0        | 0     | 0    | 0            | 0     | 4     | 0        | 0     | 0     | Ī          |
|          | Aug     | _       | 0     | Ö         | 0              | 0     | 0     | 0        | 0             | 0       | O,   | 0    | 0    | 0           | 7        | 0     | 5    | 0            | 0     | 0     | 0        | 0     | 0     | -          |
|          | -       | =       | 0     | 0         | 0              | 0     | œ     | 0        | 0             | 0       | 4    | 0    | 0    | 0           | 0        | 0     | 0    | 0            | 0     | 0     | 0        | 31    | 0     | 2          |
|          | ŢΠ      | )a      | 0     | 9         | 0              | ∞     | 0     | 0        | 0             | 0       | 35   | 0    | 0    | 0           | 0        | 0     | 0    | 0            | 0     | 4     | 0        | æ     | ∞     | 3          |
|          | -       | ==      | 0     | 0         | 0              | ∞     | 0     | 0        | <del></del>   | 0       | 22   | Ó    | Ö    | O           | 0        | 0     | 17   | 0            | 4     | 'n    | 0        | 72    | 0     | 8          |
|          | Zin.    | -<br> - | 20    | 7         | 0              | Ó     | 0     | Ö        | 0             | 0       | 31   | 23   | 0    | 9           | 0        | _     | Ó    | 52           | 17    | 12    | 6        | 34    | 4     | 11         |
|          |         | =       | 16    | <u>00</u> | 0              | 83    | S     | 8        | Ö             | 0       | 23   | 4    | 4    | 4           | 0        | 3     | 2    | 1.7          | 0     | 0     | 4        | 30    | 0     | 14         |
|          | May     | -       | 17    | 18        | 0              | 65    | 13    | 55       | 0             | 16      | m    | 69   | 0    | 52          | 0        | 13    | 29   | 0            | 0     | 0     | 8        | 17    | 56    | 22         |
|          | -<br> - | H       | 8     | 30        | 'n             | 50    | 13    | 26       | 0             | 0       | œ    | 0    | 0    | ō           | 0        | 17    | 69   | 53           | 69    | 57    | 4        | 20    | 6     | 25.        |
|          | Apr     | -       | 90    | 19        | <del>2</del> 6 | 52    | 53    | 186      | 14            | 72      | \$   | 0    | 20   | 17          | 55       | 98    | 77   |              | 122   | ~     | 46       | 16    | 0     | 45         |
|          | -       | ш       | 13    | 278       | 43             | \$    | 13    | 174      | <del>\$</del> | 28      | 224  |      | 31   | 62          | 43       | 4     | 150  | 12           | 8     | 4     | 252      | 90.   | 31    | 88         |
|          | Mar     | -       | 98    | 72        | 163            | 117   | 8     | 53       | 장             | 122     | 8    | 131  | 7    | 116         | 147      | 98    | ኤ    | 322          | 82    | 4     | 53       | 36    | 181   | 133        |
|          |         | F       | 203   | 151       | 31             | 116   | 286   | 22       | 4             | 233     | 220  | 54   | 56   | 88          | 172      | 47    | 5    | 233          | 183   | 151   | 20       | 191   | 153   | <u>1</u> 2 |
|          | Feb     | -       | 179   | 121       | 47             | 156   | ğ     | 83       | 152           | 121     | 114  | 27   | 34   | 291         | 103      | 56    | 385  | 74           | 168   | 142   | 109      | 78    | ¥     | 130        |
|          |         | =       | 157   | 278       | 17             | 101   | 22    | \$       | 7             | 283     | 82   | 169  | 91   | 99          | 91       | 0     | 118  | 321          | 6     | 195   | 25<br>26 | 8     | 289   | 134        |
|          | Jan     | -       | ᅙ     | 112       | 65             | 129   | 83    | 8        | 163           | 176     | 247  | 127  | 51   | 139         | 182      | 270   | S    | 0            | 367   | 179   | 99       | 82    | 252   | 141        |
|          |         | Я       | 1970  | 1671      | 1972           | 1973  | 1974  | 1975     | 1976          | 1977    | 1978 | 1979 | 1980 | 1981        | 1982     | 1983  | 1984 | 1985         | 1986  | 1987  | 1988     | 6861  | 1990  | Mean       |

Table 3.2 Estimated Discharge at Ntonggu II Embung Site

| Annua |    | 3,096 | 8   | 1,756 | 3,316   | 2,823     | 3.261        | 2,763 | 3.413            | 3,369 | 1.697 | 8        | 3,090 | 1,<br>0 <u>8,</u> | 2.610        | 3,564 | 3 148 | 3.564 | 3,914 | 3,176     | 2,654 | 3.731    | 2,971 |      |
|-------|----|-------|-----|-------|---------|-----------|--------------|-------|------------------|-------|-------|----------|-------|-------------------|--------------|-------|-------|-------|-------|-----------|-------|----------|-------|------|
| ì     | == | 183   | 603 | 145   | 291     | 314       | 169          | 354   | 8,52             | 253   | 0     | 307      | 8     | 8                 | 124          | 0     | 0     | 0     | 69    | 538<br>78 | 52    | <b>₹</b> | 215   | 9    |
| ន័    | -  | 192   | 417 | 713   | 145     | 251       | 413          | 535   | 373              | 122   | 0     | 450      | 242   | 0                 | 0            | 305   | 413   | 35    | 1327  | 502       | 542   | 38       | 38    | 20   |
| ,     | =  | 305   | 328 | 0     | 230     | 450       | 237          | 237   | 98               | 64    | 0     | 98       | 23    | 0                 | 722          | 159   | 324   | 152   | 317   | 478       | 2     | 0        | 52    | _    |
| λON   | -  | 481   | 783 | 0     | 427     | <u>\$</u> | <b>&amp;</b> | 0     | 0                | 143   | 0     | 0        | 272   | 0                 | 22           | 86    | 0     | 82    | Ö     | 10        | \$    | 0        | =     | 33   |
| _     | =  | 0     | 8   | 0     | <u></u> | 86        | 420          | 237   | 0                | 101   | 0     | ö        | 0     | Ő                 | <del>4</del> | ō     | 0     | 232   | 0     | 0         | 129   | 19       | 1     |      |
| 3     | -  | 0     | 0   | 0     | 0       | 0         | 25           | 0     | 0                | 61    | 0     | 0        | 0     | 0                 | 25           | 0     | 0     | 0     | 0     | 176       | 0     | 0        | 19    | 93   |
| -     | =  | 0     | ö   | 0     | 0       | 0         | 0            | 0     | 0                | 0     | 0     | 0        | 20    | 0                 | 0            | 145   | 0     | 0     | 0     | 0         | 0     | ٥        | 2     |      |
| Sep   | I  | 0     | 0   | 0     | Ö       | 0         | 54           | 0     | Ö                | 0     | 0     | 0        | 7     | 0                 | 0            | 82    | 0     | 0     | 0     | 0         | 0     | 0        | 10    | 50   |
|       | 11 | 0     | 0   | 0     | 0       | 0         | 5            | 0     | 0                | 0     | 0     | 0        | 0     | 0                 | 0            | 0     | Ö     | 0     | 0     | Õ         | 0     | 0        | 0     | <br> |
| Aug   | ı  | 0     | 0   | 0     | 6       | 0         | 0            | 0     | 0                | 0     | 0     | 0        | 0     | 0                 | 0            | Ö     | 0     | 0     | 0     | Ö         | 0     | 0        | 0     | 0    |
|       | =  | 0     | 0   | 0     | ô       | 0         | 0            | 0     | 0                | 0     | 0     | 0        | 0     | 0                 | o            | 0     | 0     | 0     | 0     | 0         | 73    | 0        | 3     | _    |
| Ħ     |    | 0     | 0   | 0     | 0       | 0         | 0            | 0     | 0                | 82    | ō     | 0        | ō     | 0                 | 0            | 0     | 0     | 0     | 0     | 0         | 0     | 0        | 4     | 7    |
|       | =  | 0     | 0   | 0     | 0       | 0         | 0            | 0     | 0                | 25    | 0     | 0        | 0     | 0                 | 0            | 0     | õ     | 8     | 6     | 5         | 169   | 0        | 15    |      |
| Jun   | -  | 0     | 0   | 0     | 0       | 0         | 0            | 0     | 0                | 73    | 4     | 0        | 141   | 0                 | 0            | 0     | 8     | 0     | 0     | 0         | 8     | 0        | 16    | 2    |
|       | п  | 0     | 0   | 0     | 195     | 0         | 0            | 0     | 0                | 7     | 8     | 0        | 0     | 0                 | 0            | 0     | 0     | 0     | 0     | 0         | 92    | 0        | 20    | H    |
| May   | i- | 0     | 0   | 0     | 152     | 0         | 129          | 0     | 0                | 0     | 162   | 0        | 122   | 0                 | 0            | 138   | 0     | 0     | 0     | 80        | 0     | 19       | 9     | 8    |
| _     | =  | 225   | 0/  | 0     | 89      | 0         | 131          | 0     | 0                | ō     | 0     | 0        | 0     | 0                 | 0            | 162   | 12,   | 162   | 134   | 0         | 0     | 0        | 51    |      |
| Apr   | L  | 0     | 0   | 08    | 122     | 124       | 436          | 0     | 99               | 150   | 0     | 0        | 0     | 129               | 202          | 181   | 0     | 286   | 0     | 108       | ó     | 0        | 56    | 14   |
|       | F  | 0     | 652 | 101   | 220     | 0         | 408          | 113   | 256              | 525   | 0     | 73       | 145   | 101               | 108          | 352   | 0     | 155   | 103   | 591       | 256   | 73       | 202   | -    |
| Mar   | _  | 202   | 169 | 382   | 274     | 8         | 124          | 455   | 286              | 150   | 307   | 0        | 272   | 345               | 202          | 223   | 755   | 8     | _     | 124       | 22    | 454      | 246   | 248  |
|       | =  | 476   | 282 | 73    | 272     | 179       | 25           | 8     | 546              | 516   | 328   | 131      | 98    | 69                | 110          | 328   | 34    | 429   | 35.   | 0         | 378   | 359      | 312   | -    |
| Feb   | _  | 420   | 284 | 110   | 366     | 4         | 35           | 356   | 35,              | 267   | 63    | <u>0</u> | 682   | 242               | 131          | 8     | 174   | 36    | 333   | 256       | 183   | 455      | 308   | ×18  |
|       | =  | 368   | 652 | 0     | 251     | 122       | 150          | 0     | , <del>2</del> 5 | 132   | 396   | 213      | 155   | 213               | 0            | 277   | 753   | 3     | 457   | 619       | 232   | 8/9      | 312   | -    |
| Jan   | -  | 244   | 263 | 152   | 303     | 8         | 211          | 382   | 413              | 579   | 298   | 130      | 326   | 427               | 633          | 211   | C     | 198   | 420   | 14        | 8     | 591      | 332   | 13/2 |
|       | l  | 1     |     | _     |         |           |              |       |                  |       |       |          |       | _                 |              |       |       |       |       |           |       |          | L     | L    |

Table 3.3 Probable Flood Discharge at Ntonggu II Embung Site

| Characteristics of the catchment area Catchment Area (km2) Eelevation at Dam Site (1) (m) Maximum elevation in the catchment area (2) (m) Height (3)=(2)-(1) (h) Length of Catchment Area (I, (m) Flow velocity W2 (km/hr) Time of concentration T2 (hrs) | (km2)<br>(m)<br>(m)<br>(h)<br>1.(m)<br>W2 (km/hr)<br>T2 (hrs) | 6.70<br>70<br>700<br>630<br>4,000<br>23.75<br>0.17 |    |     |     |     |     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|----|-----|-----|-----|-----|-----|
| Probable Flood Discherge                                                                                                                                                                                                                                  | rge                                                           |                                                    |    |     |     |     |     |     |
| Return Period                                                                                                                                                                                                                                             | (years)                                                       | 7                                                  | S  | 10  | 702 | 50  | 100 | 200 |
| Rainfall                                                                                                                                                                                                                                                  | (mm/day)                                                      | 79                                                 | 86 | 109 | 120 | 133 | 143 | 152 |
| Rainfall intensity within the time of concentration                                                                                                                                                                                                       | (mm)                                                          | 39                                                 | 49 | 54  | 8   | 99  | 71  | 76  |
| Probable Flood Discharge                                                                                                                                                                                                                                  | (m3/s)                                                        | 65                                                 | 73 | 81  | 89  | 99  | 106 | 113 |
| Specific Discharge                                                                                                                                                                                                                                        | (m3/s/km2)                                                    | 6                                                  | 11 | 12  | 13  | 15  | 16  | 17  |

To estimate design rainfall, the Log Pearson III method is adopted. The rational method is adopted for estimation of the design flood discharge. C = 0.8 is used to estimate designed flood discharge by the rational method.

## Volume 9 - 4

Table 3.4 Result of Water Quality Test in Ntonggu II Embung Site

|    | DESCRIPTION                      | UNIT      | 1                              | 2           | 3           | 4                                | Max. Limit of I | 3 Class  |
|----|----------------------------------|-----------|--------------------------------|-------------|-------------|----------------------------------|-----------------|----------|
|    |                                  |           | Upstream of<br>proposed embung | Embung Site | Embung Site | downstream of<br>proposed embung | by GR. NO. 20,  | /1990    |
|    | PHYSICS                          |           |                                |             |             |                                  |                 |          |
|    | -                                |           | 20.00                          | 20.00       |             | 20.00                            |                 |          |
|    | Temperature                      | C         | 28.00                          | 28.00       | 28,00       | 30.00                            | Normal water    |          |
|    | Dissolved solid matter           | mg/liter  | 481.00                         | 484.00      | 473.00      | 649.00                           |                 | 1000     |
| 3  | Electric Conductivety            | umhos/cm  | 654.00                         | 657.00      | 644.00      | 883.00                           |                 | 1.       |
|    | OHIONATOMPS!                     | -         |                                |             |             |                                  | •               | 25       |
| I, | CHEMISTRY a. Unorganic chemistry |           |                                |             |             |                                  |                 | •        |
|    |                                  |           | •                              |             |             |                                  |                 | . *      |
| 1  | Mercury                          | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 | 0.00     |
| 2  | Ammonia                          | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 | 0.       |
| 3  | Aroenic                          | mg/liter  | -                              | · <u>-</u>  | -           |                                  |                 | 0.0      |
| 4  | Barium                           | mg/liter  | 1.0                            | •           | -           | -                                |                 |          |
| 5  | Ferro                            | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             | : :             | * *      |
| 6  | Fluoride                         | mg/liter  | 0.50                           | 0.55        | 0.18        | 0.08                             |                 | 1.3      |
|    | Cadmium                          | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 | Ó.00.    |
|    | Chloride                         | mg/liter  | 41.80                          | 44.70       | 28.40       | 40.50                            |                 | 60       |
|    | Chronium, valense-6              | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 | 0.0      |
|    | Manganese                        | mg/liter  | 0.00                           | 0.28        | 0.00        | 0.00                             |                 | 0.0      |
|    | Nitrate, N                       | mg/liter  | 0.00                           | 0.00        | 0.61        | 0.90                             |                 | 1        |
|    | Nitric, N                        |           | 0.00                           | 0.00        | 0.00        |                                  |                 |          |
|    |                                  | mg/liter  |                                |             |             |                                  |                 | `.       |
|    | Dissolved Oxygen                 | mg/liter  | 7.89                           | 8.07        | 6.42        | 4.03                             |                 |          |
|    | pH                               | -         | 7.30                           | 7.20        | 6.80        | 6.70                             | 1               | 5-       |
|    | Selenjum                         | mg/liter  | -                              | -           | -           | -                                |                 | 0.0      |
|    | Zinc                             | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | •        |
| 17 | Cyanide                          | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 | 0.       |
| 18 | Sulphate                         | mg/liter  | 20.00                          | 21.60       | 25.00       | 16.60                            | ٠,              | 40       |
| 19 | Sulfide, H2S                     | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             | ı               | 0.       |
|    | Copper                           | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 |          |
|    | Lead                             | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | . 0.     |
|    |                                  |           |                                |             |             |                                  |                 | ,/-<br>a |
|    | b. Organic Chemistry             |           |                                |             |             |                                  |                 |          |
| 1  | Aldrin and Dieldrin              | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             | 1               | 0.01     |
|    | Chlordane                        | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | 0.00     |
|    | DDT                              | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | 0.04     |
|    | Endrine ·                        | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | 0.00     |
|    | Fenol                            | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | 0.00     |
| -  | Heptachlor and Heptachlor Epoxi  |           | 0.00                           | 0.00        | ().(A)      | . 0.00                           | ,               | 0.00     |
|    | Carbon Cloroform Ektract         |           | -                              | -           | -           | -                                |                 |          |
|    |                                  | mg/liter  |                                |             |             |                                  |                 | 0.       |
|    | Lindane                          | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             | , ,             | 0.05     |
|    | Methoxychlor                     | mg/liter  |                                | -           | -           |                                  |                 | 0.03     |
|    | Oil and Fat                      | mg/liter  | 0.00                           | 0.00        | 0.00        |                                  |                 | N        |
|    | Organofosphate and Carbomate     | mg/liter  | 0.00                           | 00.00       | 0.00        | 0.00                             |                 | 0.       |
|    | 2 PCB                            | mg/liter  | -                              | -           | -           |                                  | •               | N        |
| 13 | 3 Senyawa atife biru (Sulfaktan) | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             | )               | 0.       |
| 14 | Toxaphene                        | mg/liter  | 0.00                           | 0.00        | 0.00        | 0.00                             |                 | 0.00     |
| Ш  | MICRO BIOLOGY                    |           |                                |             |             |                                  |                 |          |
|    | Coliform tinja                   | per 100 m | il . 2,600                     | 7,900       | 18,000      | 14,000                           | )               | 2,00     |
|    | 2 Total Coliform                 | per 100 m |                                | 17,000      | 28,000      |                                  |                 | 10,00    |

Heavy metals are classified into dissolved matter.

Source : JICA's Water Quality Test

NOTE:

\* = The water level shall be more than or equal to 6.

mg = miligram

ml = Milimeter

Bq = Bequerel

Table 7.1 Summary of Construction Cost in Ntonggu II Project

Scheme: Ntonggu II

|            | Item                                                                   | Amount (Rp. millión) |
|------------|------------------------------------------------------------------------|----------------------|
|            |                                                                        | (Rp. mimon)          |
| l.         | Direct Construction Cost                                               |                      |
| 1,1        | Preparatory Works                                                      | 294                  |
| 1.2        | Embung Construction                                                    |                      |
|            | 1) Main dam                                                            | 2,471                |
|            | 2) Spillway                                                            | 2,428                |
|            | 3) Diversion Tunnel                                                    | . 0                  |
|            | <ul><li>4) Seepage protection works</li><li>5) Miscellaneous</li></ul> | 0                    |
|            | 5) Miscellaneous                                                       | 490                  |
|            | Sub-total of 1.2                                                       | 5,389                |
| 1.3        | Irrigation Facilities                                                  | 425                  |
| 1.4        | Domestic Water Supply                                                  | C                    |
| 1.5        | Embung Operation and Maintenance Road                                  | 57                   |
|            | Sub-total of I.                                                        | 6,165                |
| II.        | Administration Cost                                                    | 308                  |
| 111.       | Engineering Services                                                   | 925                  |
|            | Sub-total of I, II & III                                               | 7,397                |
| IV.        | Physical Contingency                                                   | 1,110                |
|            | Sub-total of I, II, II, & IV                                           | 8,507                |
| <b>V</b> . | Contract Tax                                                           | 820                  |
| VI.        | Land Acquisition Cost                                                  | 31                   |
|            | Sub-total I, II, III, IV, V & VI                                       | 9,358                |
| VII.       | Price Contingency                                                      | 1,872                |
|            | GRAND TOTAL                                                            | 11,229               |

# <u>Volume 9 - 4</u>

Table 7.2 Direct Construction Cost in Ntonggu II Project (1/2)

| Item                                                | Unit | Unit Price<br>Rp. | Quantity | Total<br>1000 Rp. |
|-----------------------------------------------------|------|-------------------|----------|-------------------|
| I. Dam                                              |      |                   |          | -                 |
| 1. Main Dam                                         |      | į                 |          |                   |
| 1.1 Earth/stone works                               |      |                   |          |                   |
| 1) Clearing                                         | m2   | 400               | 21,200   | 8,480             |
| 2) Excavation, common                               | m3   | 3,500             | 26,700   | 93,450            |
| , weathered rock                                    | m3   | 7,500             | 2,100    | 15,750            |
| , rock                                              | m3   | 11,500            | 900      | 10,350            |
| 3) Embankment, impervious soil                      | m3   | 8,000             | 239,700  | 1,917,600         |
| , filter                                            | m3   | 12,000            | 12,500   | 150,000           |
| , transition                                        | m3   | 12,000            | . 0      | •                 |
| , random material                                   | m3   | 6,000             | 0        | •                 |
| 4) Stone masonry                                    | m3   | 80,000            | 0        | £                 |
| 5) Rip-rap protection                               | m3   | 15,000            | 10,500   | 157,500           |
| 1.2 Grouting                                        | m    | 71,000            | 0        | C                 |
| 1.3 Other miscellaneous works                       |      |                   |          | 117,657           |
|                                                     | 1    |                   |          |                   |
| Sub-total of 1.                                     |      |                   |          | 2,470,787         |
|                                                     |      |                   | İ        |                   |
| 2. Spillway                                         |      |                   |          |                   |
| 2.1 Earth works                                     |      |                   |          |                   |
| 1) Clearing                                         | m2   | 400               | 12,400   | 4,960             |
| <ol><li>Excavation, common soil</li></ol>           | m3   | 3,500             | 37,200   | 130,200           |
| , weathered rock                                    | m3   | 7,500             | 24,800   | 186,000           |
| , rock                                              | m3   | 11,500            | 20,700   | 238,050           |
| 3) Backfill                                         | m3   | 5,200             | 2,900    | 15,080            |
| 2.2 Concrete works                                  |      | ·                 |          |                   |
| 1) Concrete - A                                     | m3   | 250,000           | 340      | 85,000            |
| 2) Concrete - B                                     | m3   | 170,000           | 6,540    | 1,111,800         |
| 3) Reinforcement bar                                | ton  | 1,500,000         | 17       | 25,500            |
| Form     Other miscellaneous works                  | m2   | 15,000            | 34,400   | 516,000           |
| 2.3 Other miscenaneous works                        | L.S  |                   |          | 115,630           |
| Sub-total of 2.                                     |      |                   |          | 2,428,220         |
| 3. Miscellaneous & Others                           |      |                   |          | 489,901           |
| Total - I.                                          |      |                   |          | 5,388,907         |
|                                                     |      |                   |          | - <b>,-</b> ,-    |
| II. Irrigation Facilities                           |      |                   | ł        |                   |
| 1. Canal works (including the rehabilitation works) |      |                   |          | •                 |
| 1.1 Earth works                                     |      |                   |          |                   |
| 1) Clearing                                         | m2   | 400               | 33,200   | 13,286            |
| 2) Excavation                                       | m3   | 5,000             | - 3,300  | 16,500            |
| 3) Embankment                                       | m3   | 6,300             | 4,900    | 30,876            |
| 1.2 Stone masonry                                   | m3   | 80,000            | 3,200    | 256,00            |
| Sub-total of 1.                                     | Ì    |                   | 1        |                   |
| Sub-total of 1.                                     |      |                   |          | 316,650           |
|                                                     |      |                   |          |                   |
|                                                     |      | [                 | İ        |                   |
|                                                     |      |                   |          |                   |
|                                                     |      | [ ]               |          |                   |
|                                                     |      |                   | į        |                   |
|                                                     |      | ]                 |          |                   |
|                                                     |      | [                 | İ        |                   |
|                                                     |      |                   |          |                   |
| <u> </u>                                            | Ì    |                   | •        |                   |

Table 7.2 Direct Construction Cost (2/2)

| Item                                                                   | Unit     | Unit Price<br>Rp. | Quantity       | Total<br>1000 Rp. |
|------------------------------------------------------------------------|----------|-------------------|----------------|-------------------|
| 2. Related structures                                                  |          |                   |                |                   |
| 2.1 Turnout                                                            | nos.     | 2,540,000         | 2              | 5,080             |
| 2.2 Syphon                                                             | nos.     | 5,500,000         | 1              | 5,500             |
| 2.3 Aqueduct                                                           |          | 5,975,000         | il             | 5,975             |
| 2.3 Cross drain                                                        | nos.     | 4,700,000         | il             | 4,700             |
| 2.4 Irrigation division box                                            | nos.     | 900,000           | 54             | 48,600            |
| 2.5 Division box for livestock                                         |          | 1,170,000         | 14             | 10,000            |
| Sub-total of 2.                                                        |          |                   |                | 69,855            |
| 3. Miscellaneous & Others                                              | L.S      |                   |                | 38,651            |
| Total - II                                                             |          |                   |                | 425,156           |
| III. Dam Operation and Maintenance Road  1. Road Works 1.1 Earth works |          |                   |                |                   |
|                                                                        |          | 400               | 0.000          |                   |
| Clearing     Excavation                                                | m2<br>m3 | 400               | 9,000          | 3,600             |
| 3) Embankment                                                          | m3       | 5,000             | 1,300          | 6,500             |
| 4) Pavement (lime stone)                                               | m3       | 6,300<br>15,000   | 3,800<br>1,200 | 23,940<br>18,000  |
| 2. Related structures                                                  |          |                   |                |                   |
| 2.1 Cross drain                                                        | nos.     | 4,700,000         | 0              | 0                 |
| 3. Miscellaneous and others                                            | L.S      |                   |                | 5,204             |
| Total - III                                                            |          |                   |                | 57,244            |
| GRAND TOTAL                                                            |          |                   |                | 5,871,306         |

Table 8.1 Economic Construction Costs and Annual Disburement Schedule

Ntonggu II Project

(Unit: Rp. million)

|                                 |      |            | <ul> <li>3.1 (15) (16)</li> </ul> | and the second second |          |
|---------------------------------|------|------------|-----------------------------------|-----------------------|----------|
| Item                            | SCF  | Total cost | lst year                          | 2nd year              | 3rd year |
| 1 Direct Construction Cost      |      | 4,029      | 105                               | 1,669                 | 2,255    |
| 1) Preparatory Works            | 0.71 | 209        | 105                               | 104                   | 0        |
| 2) Dam Construction             | ·    |            |                                   |                       | •        |
| - Main dam                      | 0.71 | 1,754      | 0                                 | 877                   | 877      |
| - Spillway                      | 0.71 | 1,724      | 0                                 | 517                   | 1,207    |
| - Diversion tunnel              | 0.71 | 0          | 0                                 | 0                     | 0        |
| - Seepage protection works      | 0.71 | 0          | 0                                 | 0                     | 0        |
| Sub-total                       |      | 3,478      | 0                                 | 1,394                 | 2,084    |
| 3) Irrigation Facilities        | 0.71 | 302        | Ó                                 | 151                   | 151      |
| 4) Domestic Water Supply System | 0.71 | 0          | 0                                 | 0                     | 0        |
| 5) Dam O & M Road               | 0.71 | 40         | 0                                 | 20                    | 20       |
| 2 Administration Cost           | 0.90 | 277        | 7                                 | 115                   | 155      |
| 3 Engineering Services          | 0.90 | 383        | 153                               | 115                   | 115      |
| 4 Physical Contingency          |      | 598        | 16                                | 247                   | 335      |
| Total                           |      | 5,287      | 281                               | 2,146                 | 2,860    |

Note: Standard Conversion Factors (SFC). Source; Pedoman Pengamatan dan Evaluasi Proyek-Proyek Pengairan, Direktorato Jeneral Pengairan, 1985

Table 8.2 Financial and Economic Prices of Farm Inputs and Outputs in NTB

|     |                |             |          | Lon       | ıbok     | Sum                                   | bawa     |
|-----|----------------|-------------|----------|-----------|----------|---------------------------------------|----------|
|     |                | ٠           |          | Financial | Economic | Financial                             | Economic |
|     | Item           |             | Unit     | Price *1  | Price *2 | Price *1                              | Price *2 |
| 1   | Farm Products  |             |          |           |          | , , , , , , , , , , , , , , , , , , , |          |
|     | Paddy *3       |             | kg       | 280       | 397      | 260                                   | 394      |
|     | Maize *3       |             | kg       | 200       | 220      | : 200                                 |          |
| . • | Mungbeans *3   | 3           | kg       | 1,000     | 906      | 1,000                                 |          |
|     | Soybeans *3    |             | kg       | 900       | 647      | 900                                   |          |
| • • | Red onion *4   |             | kg       | 900       | 704      | 800                                   | 699      |
|     | Tobacco *5     |             | kg       | 900       | 522      | 900                                   |          |
| 2   | Seeds          |             |          |           |          | •                                     | :        |
|     | Paddy          | Certified   | kg       | 605       | 605      | 605                                   | 605      |
|     | •              | Own         | kg       | · ·       | 325      | · · · · -                             | 325      |
|     | Maize          | Certified   | kg       | 922       | 922      | 922                                   |          |
|     |                | Own         | kg       | _         | 297      | -                                     | 297      |
|     | Mungbeans      | Certified   | kg       | 1,383     | 1,383    | 1,383                                 |          |
|     |                | Own         | kg       |           | 893      |                                       | 893      |
|     | Soybeans       | Certified   | kg       | 617       | 617      | 617                                   |          |
|     |                | Own         | kg       | -         | 606      |                                       | 606      |
|     | Red onion      |             | kg       | 850       | 850      | 850                                   | 850      |
|     | Tobacco        |             | kg       | 25,000    | 25,000   | 25,000                                |          |
| 3   | Fertilisers    |             |          |           |          | : 1                                   |          |
|     | Urea           |             | kg       | 350       | 414      | 350                                   | 419      |
|     | TSP            |             | kg       | 400       | 486      | 400                                   | 491      |
| ٠.  | KCl            |             | kg       | 400       | 416      | 400                                   | 421      |
| 4   | Agro-chemicals |             |          |           |          |                                       |          |
|     | Insecticides   | Liquid type | lit      | 10,000    | 10,000   | 10,000                                | 10,000   |
|     |                | Powder type | kg       | 3,000     | 3,000    | 3,000                                 | 3,000    |
|     | Rodenticides   |             | . kg     | 5,500     | 5,500    | 5,500                                 | 5,500    |
| 5   | Labour         |             |          |           |          |                                       |          |
|     | Hired labour * | 6           | man-day  | 3,000     | 2,250    | 2,500                                 | 1,875    |
|     | Family labour  | •           | man-day  | •         | 2,250    |                                       | 1,875    |
| 6   | Draft Animal   |             |          |           |          |                                       |          |
|     | Hired          |             | head-day | 6,000     | 6,000    | 5,000                                 | 5,000    |
|     | Own            |             | head-day | • • • -   | 6,000    | -                                     | 5,000    |
| 7   | Farm Machinery |             | Ť        |           |          |                                       |          |
|     | Tractor        | ;           | ha       | 250,000   | 250,000  | 200,000                               | 200,000  |

Remarks: \*1; As of 1994

<sup>\*2;</sup> Projected prices in 2005 at 1994 constant prices

<sup>\*3;</sup> Dry grain

<sup>\*4;</sup> Fresh

<sup>\*5;</sup> Fresh leaves

<sup>\*6 ;</sup> Economic conversion factor is 0.75.

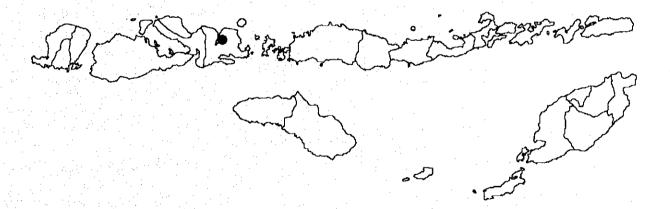
Table 8.3 Economic Crop Budget per Ha

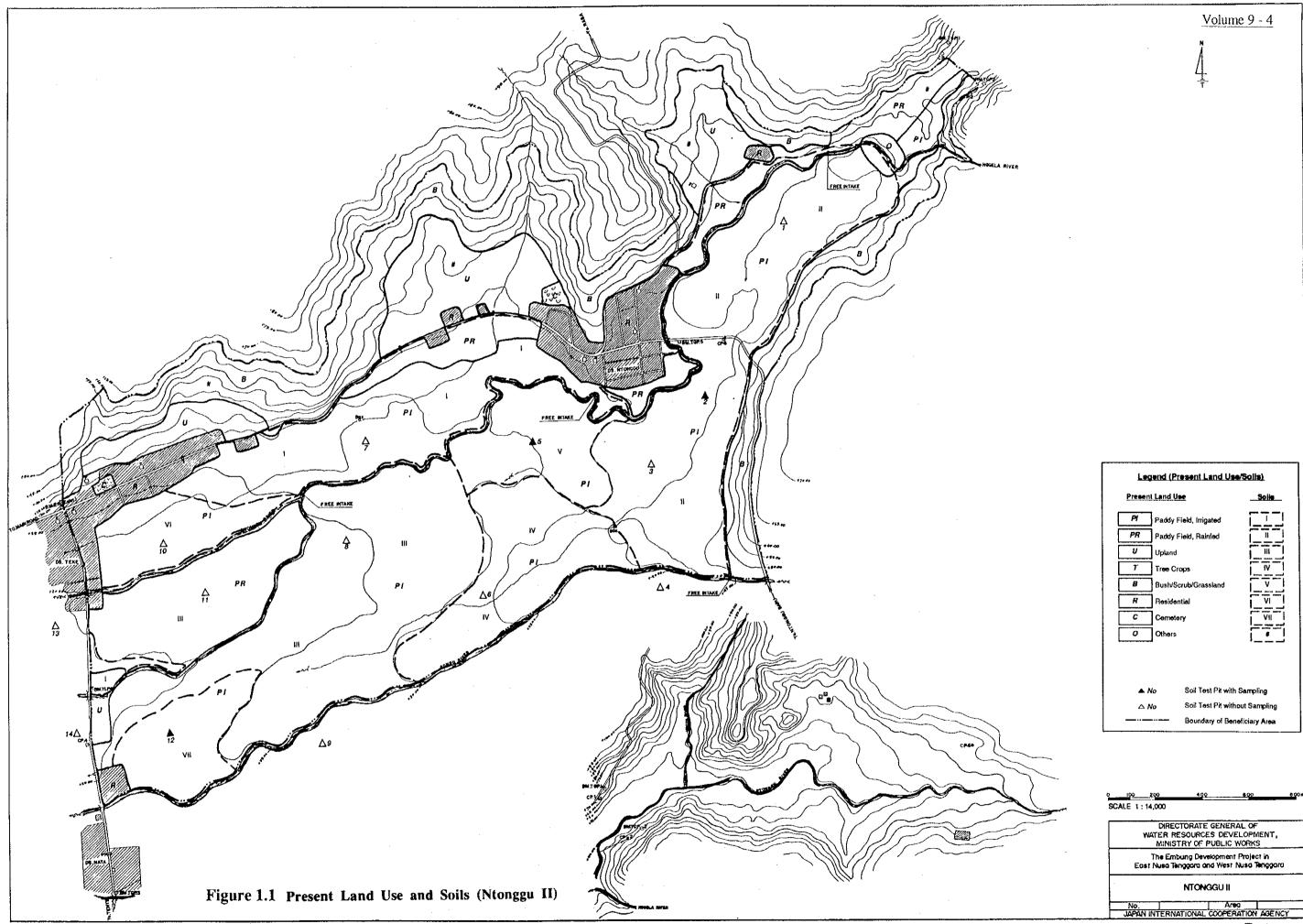
| Soybean (2n (Rainfe Q'ty Am) 600 3 600 3 600 3 600 3 600 600 600 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Without Project |                             |                      | With Project          |                       |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|----------------------|-----------------------|-----------------------|------------|
| Unit (Rp.) Q'ry Àm't(Rp.) Q'ry Am't(Rp.) Q'ry Am't Q'ry Am't Q'ry Am't Q'ry Q'ry Q'ry Q'ry Q'ry Q'ry Q'ry Q'ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | ean (2nd crop)<br>(Rainfed) | Paddy<br>(Irrigated) | Mungbean<br>(Imgated) | Mungbean<br>(Rainfed) | g (p       |
| Nature   Kg   394   3.000   1,182,000   2,000   788,000   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Am't (Rp.)      | / Am't (Rp.)                | Q'ty Am't (Rp.)      | Q'ty Am't (Rp.)       | Q'ty Am               | Am't (Rp.) |
| Certified kg 699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,               | 0                           | 4 500 1 773 000      |                       | . С                   | <b>-</b>   |
| Kg   642   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000           |                             |                      |                       |                       |            |
| kg         901         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-          |                             |                      |                       |                       |            |
| Certified kg 699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | o ·                         | ٠                    | 1.081.20              | 950                   | 000.008    |
| Certified kg 605 50 30.250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                             |                      | 0                     | C                     | <b>C</b>   |
| Certified kg 605 50 30,250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                             |                      |                       |                       |            |
| ty         Certified kg         605         50         30,250         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |                      |                       |                       |            |
| Own         kg         325         0         50         16.250         0           pean         Certified         kg         617         0         0         0         0         0         10         10           gbean         Certified         kg         606         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0</td> <td></td> <td>15.12</td> <td>-</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0               |                             | 15.12                | -                     | 0                     | 0          |
| cean         Certified kg         617         0         0         0         10           opean         Certified kg         606         0         0         0         0         0         0         10           opean         Certified kg         606         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16,250          |                             | 0 0                  | 0                     | 0                     | C          |
| Own         kg         606         0         0         0         30           spean         Certified         kg         1.383         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td><b>C</b></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               |                             |                      | 0                     | 0                     | <b>C</b>   |
| onion Certified kg 1.383 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0               | 30 18.180                   |                      |                       |                       | C          |
| Own         kg         893         0         0         0         0           onion         Certified         kg         850         0         0         0         0           f         kg         491         75         36.825         50         24.550         40           emicals         kg         491         75         36.825         50         24.550         40           emicals         kg         421         35         14.735         0         20         20           cricide         Lquid         lit         10.000         2.0         0.0         0         0         0           enticide         kg         5,000         2.0         11,000         0.5         2,750         0.0           enticide         kg         5,500         2.0         11,000         0.5         2,750         0.0           ily         md         1,875         127         238,125         65         121,875         20           ily         ad         5,000         20         100,000         0         0         0         0           d         ad         5,000         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                             | 0                    |                       |                       | 13.830     |
| onion Certified kg 850 0 0 0 0 0  I kg 419 225 94,275 150 62.850 20  kg 491 75 36,825 50 24,550 40  emicals cricide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0  emicide kg 3,000 0.0 0 0.0 0 0.0  emicide kg 3,500 2.0 11,000 0.5 2,750 0.0  illy md 1,875 127 238,125 65 121,875 20  inimal ad 5,000 20 100,000 10 50,000 0  d ad 5,000 0 0 0 0  larged shape seed as 200,000 0 0 0 0  larged shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed shape seed sha |                 | 0                           | 0                    | 17.8                  |                       | 17.860     |
| the kg 419 225 94,275 150 62.850 20 kg 491 75 36,825 50 24,550 40    emicals civide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0    emicide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0    emicide kg 3,000 0.0 0.0 0.0 0.0 0.0    emicide kg 5,500 2.0 11,000 0.5 2,750 0.0    ily md 1,875 127 238,125 65 121,875 20    inimal ad 5,000 20 100,000 10 50,000 0    d ad 5,000 0 0 0 0 0 0    large shown cost    sequence of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the cost of the c |                 |                             |                      | 0                     | 0                     | 0          |
| kg 419 225 94,275 150 62.850 20 kg 491 75 36,825 50 24,550 40 kg 491 75 36,825 50 24,550 40 cemicals cricide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0 centicide kg 3,000 0.0 0 0.0 0 0.0 0 0.0 centicide kg 5,500 2.0 11,000 0.5 2.750 0.0 cinimal ad 5,000 20 100,000 10 50,000 0 cinimal ad 5,000 0 0 0 0 0 0 0 0 cinimal ad 5,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                             |                      |                       |                       |            |
| kg 491 75 36,825 50 24,550 40 kg 421 35 14,735 0 0 20 cmicals cricide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0 cmicide kg 3,000 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62,850          |                             | _                    |                       |                       | 25.140     |
| emicals  cticide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0  enticide Powder kg 3,000 0.0 0.0 0.0 0.0 0.0  enticide kg 5,500 2.0 11,000 0.5 2,750 0.0  ily md 1,875 127 238,125 65 121,875 20  uimal ad 5,000 20 100,000 10 50,000 0  d ad 5,000 0 0 0 0 0  ha 200,000 0 0 0 0 0  ha 200,000 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24,550          | _                           |                      |                       |                       | 39.280     |
| emicals         Lquid         lit         10.000         2.0         20.000         0.5         5.000         0.0           enticide         Powder         kg         3,000         0.0         0.0         0.0         0.0           enticide         Powder         kg         5,500         2.0         11,000         0.5         2,750         0.0           ily         md         1,875         127         238,125         65         121,875         20           d         md         1,875         13         24,375         10         18,750         0           inimal         ad         5,000         20         100,000         10         50,000         0           d         ha         200,000         0         0         0         0         0           d         ha         200,000         0         0         0         0         0           d         ha         200,000         0         0         0         0         0           o         pa         200,000         0         0         0         0         0           o         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0               | 20 8.420                    | 50 21,050            | 50 21.050             | 9                     | 16.840     |
| cticide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0 cticide Lquid lit 10,000 2.0 20,000 0.5 5,000 0.0 cticide Rg 3,000 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4               |                             |                      |                       |                       | 9          |
| Powder         kg         3,000         0.0         0.0         0.0           enticide         kg         5,500         2.0         11,000         0.5         2.750         0.0           ily         md         1,875         127         238,125         65         121,875         20           d         md         1,875         13         24,375         10         18,750         0           inimal         ad         5,000         20         100,000         10         50,000         0           d         ad         5,000         0         0         0         0         0           d         ha         200,000         0         0         0         0         0           d         ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,000<br>,      |                             | 70.07                | 7.O.7                 | 0.7                   | 20.1M.0    |
| ily md 1,875 127 238,125 65 121,875 0.0 d d md 1,875 13 24,375 10 18,750 0 0 inmal ad 5,000 20 100,000 10 50,000 0 d ha 200,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               | n 0''                       |                      |                       |                       | 0 6        |
| ily md 1,875 127 238,125 65 121,875 20 inmal md 1,875 13 24,375 10 18,750 0 inmal ad 5,000 20 100,000 10 50,000 0 d ha 200,000 0 0 0 0 0 0 0 0 lha 200,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,750           |                             | 2.0 11,000           | 1.0 5.500             | 1.0                   | 5.500      |
| ily md 1,875 127 238,125 65 121,875 20 d md 1,875 13 24,375 10 18,750 0 ilmal ad 5,000 20 100,000 10 50,000 0 d ad 5,000 0 0 0 0 0 0 ha 200,000 0 0 0 0 0 ha 200,000 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                             |                      |                       | Š                     | 000        |
| d md 1.875 13 24,375 10 18,750 0 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121,875         | 37,50                       | 172 322,500          | Jon Ct                | ≅ °                   | 130,000    |
| ily ad 5,000 20 100,000 10 50,000 0 0 d ad 5,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 0 0                         | 13 24.375            | ĵ<br>ĵ                | 0                     | 0          |
| ily ad 5,000 20 100,000 10 50,000 0 d ad 5,000 0 0 0 0 0 ha 200,000 0 0 0 0 0 lymoduction cost 559,585 302,025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                             |                      | •                     |                       | 000        |
| d ad 5,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                             | 180,82               | 20.06                 | _                     | 30.00      |
| ha 200,000 0 0 0 0 0 0 1 modulation cost 569.585 302,025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 0                           | 0                    | 0                     | 0                     | O (        |
| 569.585 302.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |                      |                       |                       | ٥          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 302,025         | 98,290                      | 688,850              | 358.765               |                       | 338.450    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |                             |                      | 307 000               |                       | 004        |
| 3 Net Production Value 612,415 485,975 286.9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 485.975         | 786,910                     | 1,084,150            | 122,435               |                       | WC./16     |

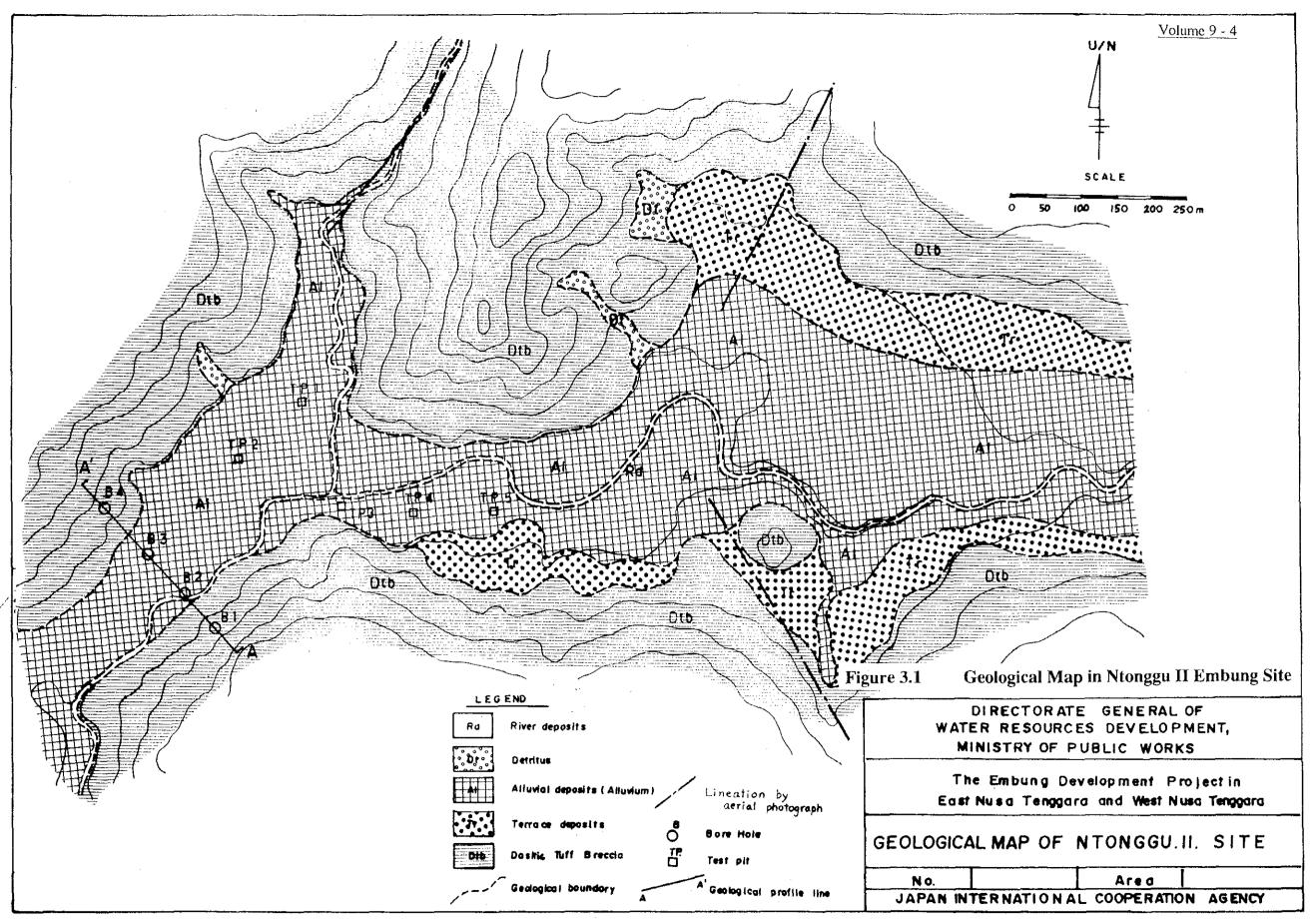
**Table 8.4 Economic Costs and Benefits Flow** 

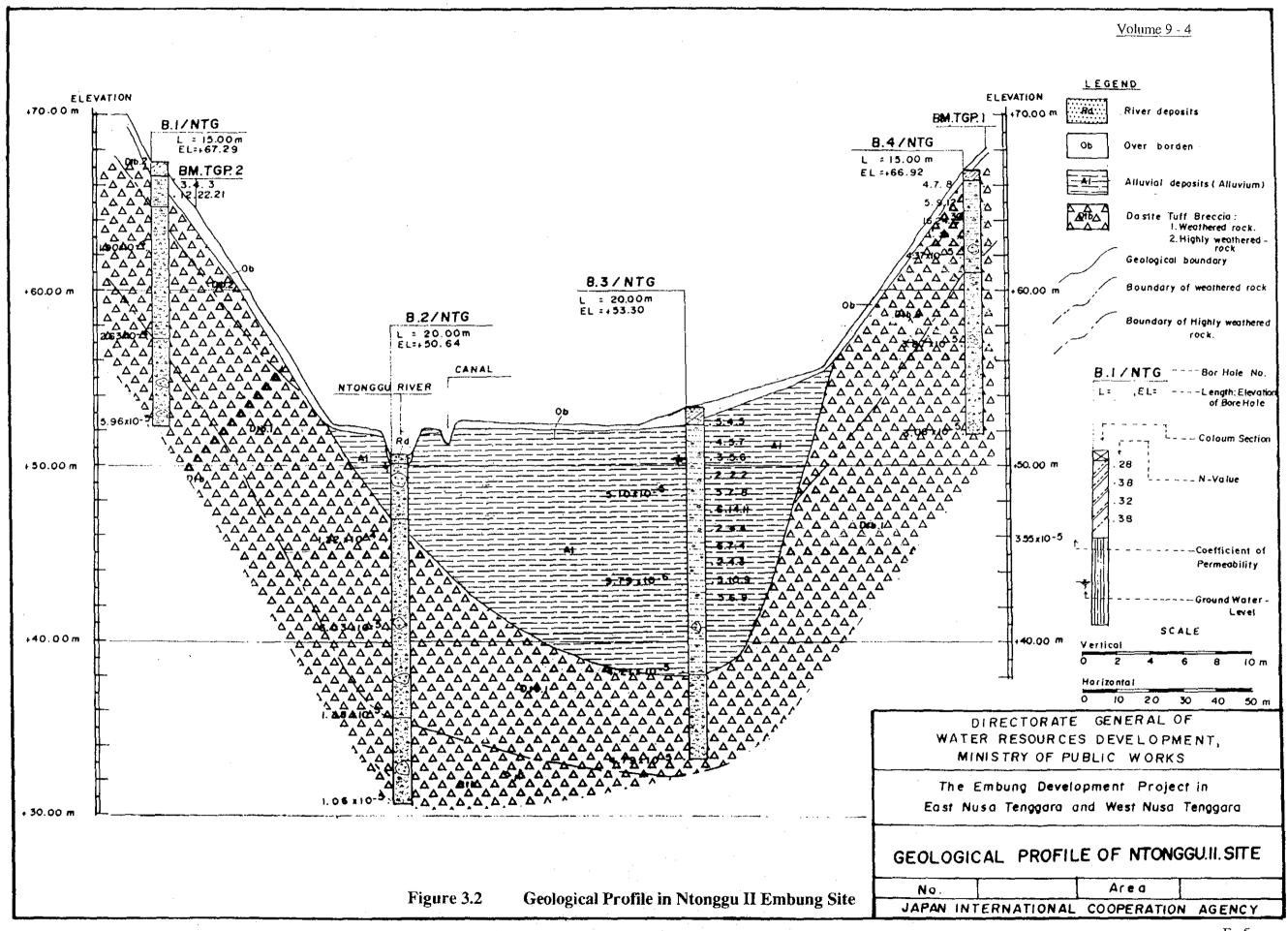
| Year |         | Cos     | st  |       |            | Benefit  |       | Increment |
|------|---------|---------|-----|-------|------------|----------|-------|-----------|
|      | Capital | Replace | O&M | Total | Irrigation | Negative | Total |           |
| 1.   | 281     | 0       | 0   | 281   | 0          | -14      | -14   | -295      |
| 2.   | 2,146   | 0       | 0   | 2,146 | 0          | -14      | -14   | -2,160    |
| 3.   | 2,860   | 0       | 0   | 2,860 | 0          | -14      | -14   | -2,874    |
| 4.   | 0       | 0       | 21  | 21    | 122        | -6       | 116   | 95        |
| 5.   | 0       | 0       | 21  | 21    | 143        | -4       | 139   | 118       |
| 6.   | 0       | 0       | 21  | 21    | 163        | -3       | 160   | 139       |
| 7.   | 0       | 0       | 21  | 21    | 184        | -1       | 183   | 162       |
| 8.   | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 9.   | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| .10. | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 11.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 12.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 13.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 14.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 15.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 16.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 17.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 18.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 19.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 20.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 21.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 22.  | 0       | . 0     | 21  | 21    | 204        | 0        | 204   | 183       |
| 23.  | .0      | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 24.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 25.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 26.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 27.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |
| 28.  | 0       | 0       | 21  | 21    | 204        | 0        | 204   | 183       |

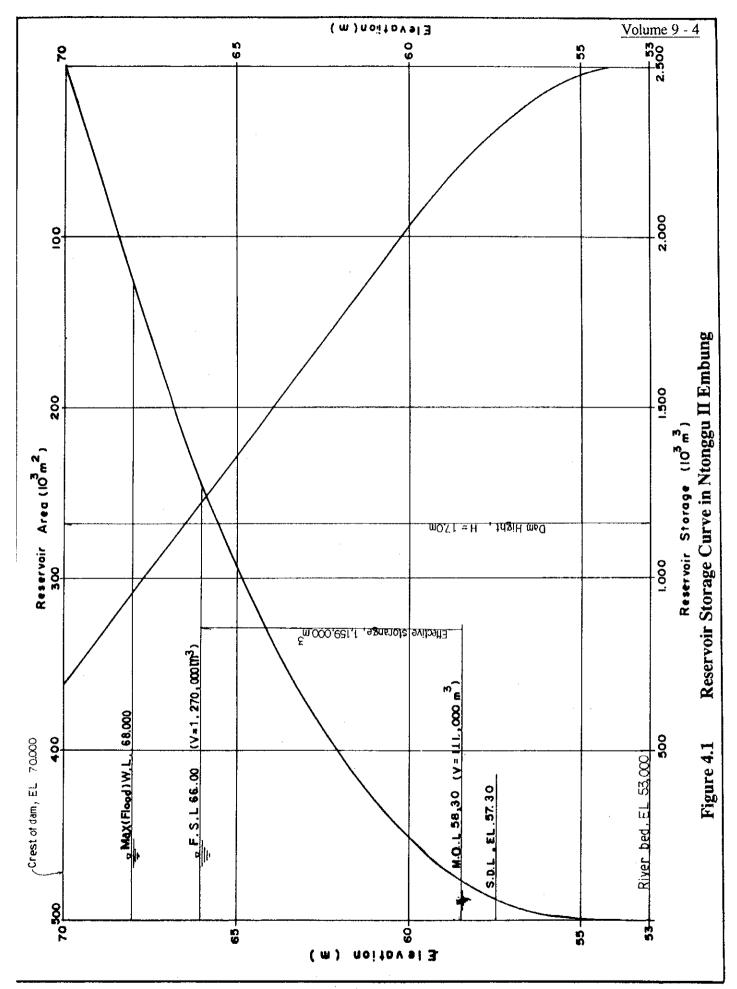
EIRR = #NUM! %


Table 8.5 Financial Crop Budget per Ha


|                          |           |                    |             |          |                                   | Withc       | Without Project                    |                        |                                              |        |                                      | Witt               | With Project                            |                    |                                       |
|--------------------------|-----------|--------------------|-------------|----------|-----------------------------------|-------------|------------------------------------|------------------------|----------------------------------------------|--------|--------------------------------------|--------------------|-----------------------------------------|--------------------|---------------------------------------|
| Item                     |           | Q'ty<br>of<br>Unit | Value (Rp.) | EI)      | Paddy<br>(Imgaæd)<br>y Am't (Rp.) | (Ra<br>Q'ty | Paddy<br>(Rainfed)<br>/ Am't (Rp.) | Soybean<br>(Ra<br>Q'ty | Soybean (2nd crop) (Rainfed) Q'ty Am't (Rp.) | In (Im | Paddy<br>(Irrigated)<br>y Am't (Rp.) | Mu<br>(Irr<br>Q'ty | Mungbean<br>(Irrigated)<br>y Am't (Rp.) | Mur<br>(Ra<br>Q'ty | Mungbean<br>(Rainfed)<br>y Am't (Rp.) |
| 1 Gross Production Value | en        | kg                 | 260         | 3.000    | 780,000                           | 2,000       | 520.000                            | 0                      | 0                                            | 4,500  | 1.170.000                            | 0                  | 0                                       | 0                  | - C                                   |
| Sovbean                  |           | אר.<br>אר          | 8           | 0        | 0                                 | 0           | 0                                  | 909                    | 540,000                                      | 0      | 0                                    | 0                  | 0                                       | Ç                  | 0                                     |
| Mungbean                 |           | <b>X</b>           | 1.00        | 0        | Q                                 | 0           | 0                                  | 0                      | 0                                            | 0      | .0                                   | 1.200              | 1,200,000                               | 950                | 0000056                               |
| Red onion                |           | , Sp               | 800         | 0        | 0                                 | 0           | 0                                  | 0                      | 0                                            | 0      | 0                                    | 0                  | 0                                       | =                  | C                                     |
| 2 Production Cost        |           |                    |             | -        |                                   |             |                                    |                        |                                              |        |                                      |                    |                                         |                    |                                       |
| Paddy                    | Certified | χ                  | 605         | 20       | 30,250                            | 0           | 0                                  | 0                      | 0                                            | 25     | 15,125                               | 0                  | 0                                       | 0                  | 0                                     |
|                          | Own       | א<br>א             | 0           | 0        | 0                                 | 20          | 0                                  | 0                      |                                              | 0      | 0                                    | 0                  | С                                       | 0                  | C                                     |
| Soybean                  | Certified | <b>አ</b><br>ነ የነ   | 617         | 0        | 0                                 | 0           | 0                                  | 10                     | 6,17                                         | 0      | 0                                    | 0                  | 0                                       | C                  | С                                     |
|                          | Own       | N<br>Oi            | 0           | 0        | 0                                 | 0           | 0                                  | 30                     |                                              | 0      | 0                                    | 0                  | C                                       | 0                  | 0                                     |
| Мипареап                 | Certified | 하                  | 1,383       | 0        | 0                                 | 0           | 0                                  | 0                      | 0                                            | 0      | 0                                    | 10                 | 13.830                                  | 0.5                | 13.830                                |
|                          | Own       | ķ                  | 0           | 0        | 0                                 | 0           | 0                                  | 0                      | 0                                            | 0      | 0                                    | ୍ଷ                 | 0                                       | 50                 | C                                     |
| Red onion                | Certified | ķ                  | 820         | 0        | 0                                 | 0           | 0                                  | 0                      | 0                                            | 0      | 0                                    | 0                  | 0                                       | C                  | 0                                     |
| Fertiliser               |           | į                  | 0.50        | ć        | 036.06                            | 031         | 60 800                             | ć                      | 7000                                         | 300    | 000 501                              | 31                 | 26.250                                  | 9                  | (x/2)                                 |
| Urea                     |           | د بد<br>د بد       | 88          | 27       | 30.000                            | 3 6         | 20.000                             | 04                     | 00057                                        | 86     | 40.000                               | 2 2                | 62:0 <del>4</del>                       | 8 8                | 32 (30)                               |
| KCI CX                   |           | الم<br>الم         | 8 8         | 35       | 14,000                            | 0           | 0                                  | 20                     | 8,000                                        | 20     | 20,000                               | 8                  | 20,000                                  | 9                  | 16,000                                |
| Agro-chemicals           |           | ù                  |             |          |                                   |             |                                    |                        |                                              |        |                                      |                    |                                         |                    |                                       |
| Insecticide              | Lquid     | Ħ,                 | 10,000      | 2.0      | 20,000                            | 0.5         | 5.000                              | 0.0                    | 00                                           | 2.0    | 20,000                               | 2.0                | 20.000                                  | 0.0                | 20,000                                |
|                          | Powder    | X<br>D)            | 3.00        | 0.0      | 0                                 | 0.0         | 0                                  | 0.0                    | <b>&gt;</b> (                                | 0.0    | 0 000                                | 0.0                |                                         | 0.0                | > ;                                   |
| Rodenticide              |           | A<br>Ci            | 5.500       | 2.0      | 11.000                            | 0.5         | 2,750                              | 0.0                    | 0                                            | 2.0    | 11.000                               | 1.0                | 5.500                                   | 1.0                | 5.500                                 |
| Labor                    |           |                    | •           | ţ        | Ċ                                 | ,           | •                                  | ć                      | (                                            | ,      | •                                    | S                  |                                         | ŝ                  | ;                                     |
| Family                   |           | Ē,                 | )<br>(      | /71      | 00100                             | 8 9         | 000                                | 9 9                    | <b>&gt;</b>                                  | 7/1    |                                      | <b>3</b> °         | 9                                       | <b>2</b> °         | )                                     |
| Hired                    |           | E<br>E             | 2.500       | <b>₹</b> | 32,300                            | 2           | 25,000                             | 0                      | >                                            | CT     | 32,300                               | >                  | =                                       | =                  | 3                                     |
| Draft Animal             |           |                    |             |          | ,                                 | :           | 4                                  | •                      | 4                                            | •      | •                                    |                    | ŧ                                       | 4                  |                                       |
| Family                   |           | aq                 | 0           | 20       | 0                                 | 2           | 0                                  | <b>O</b> ,             | 0                                            | 50     | 0                                    | o ;                | 0                                       | 01                 | 0                                     |
| Hired                    |           |                    | 5.000       | 0        | 0                                 | 0           | 0                                  | 0                      | 0                                            | 0      | 0                                    | 0                  | 0                                       | <b>-</b>           | ¢                                     |
| Tractor                  |           | ha                 | 200.000     | 0        | 0                                 | 0           | 0                                  | 0                      | 0                                            | 0      | 0                                    | 0                  | 0                                       | C                  | С                                     |
| Total production cost    | on cost   |                    |             |          | 216.500                           |             | 105,250                            |                        | 37.170                                       |        | 243.625                              |                    | 125.580                                 |                    | 108.330                               |
| 3 Net Production Value   |           |                    |             |          | 563.500                           |             | 414.750                            |                        | 502.830                                      |        | 926.375                              |                    | 1.074.420                               |                    | 841.670                               |
|                          |           |                    |             |          |                                   |             |                                    |                        |                                              |        |                                      |                    |                                         |                    |                                       |

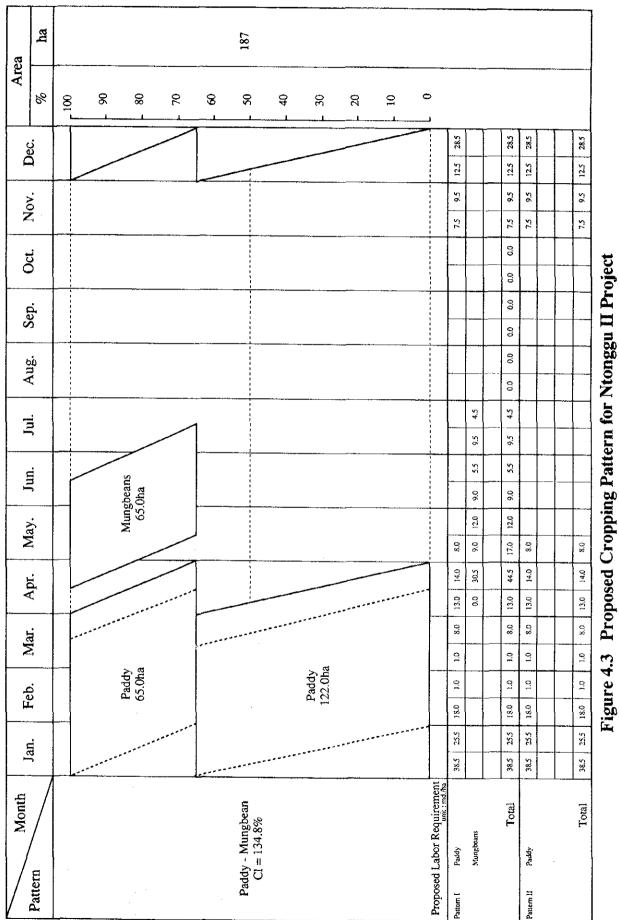

The Study on The Embung Development Project in East Nusa Tenggara and West Nusa Tenggara


Feasibility Study on Ntonggu II Embung Development Project

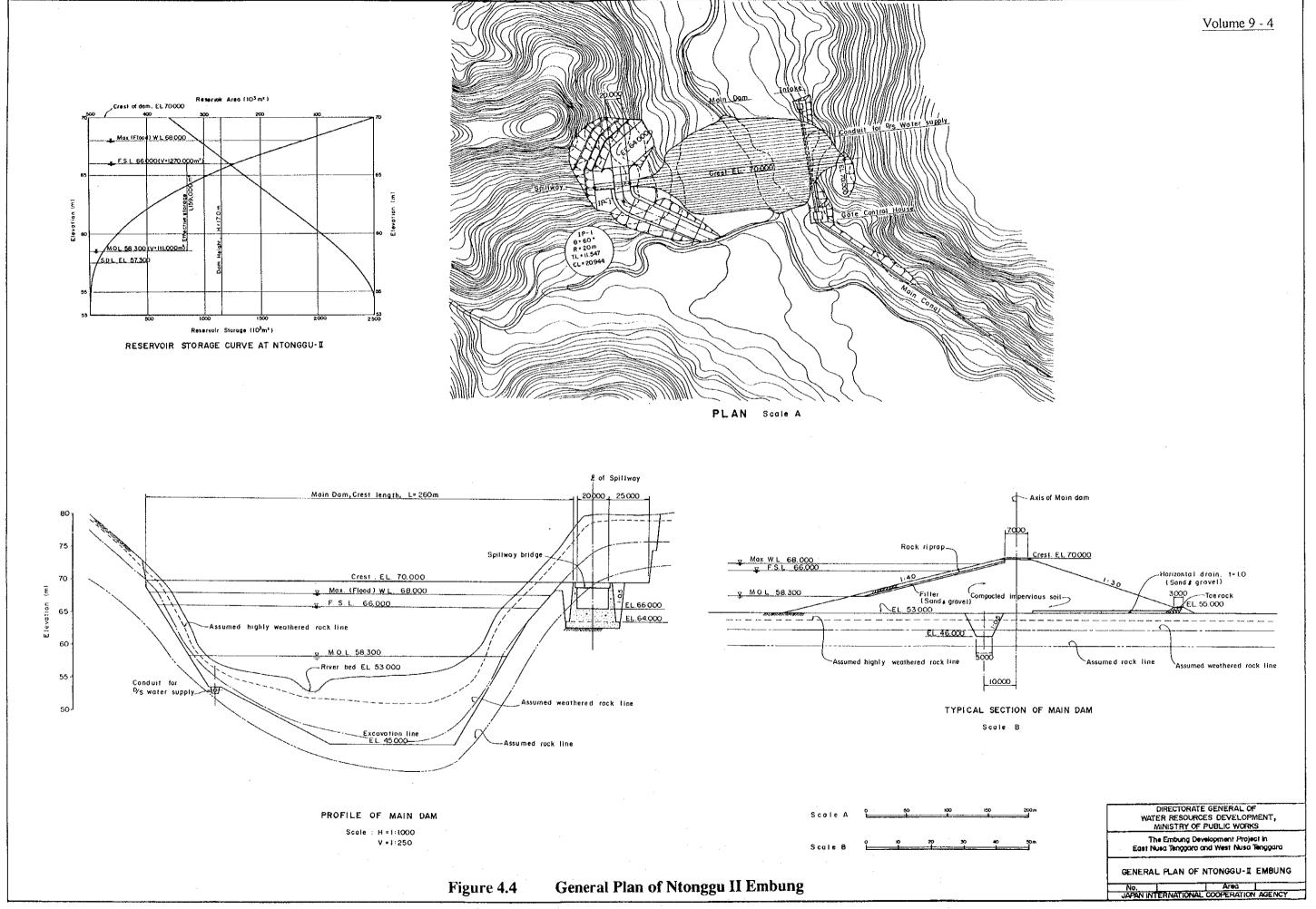

Figures










F - 7

Figure 4.2 Result of Reservoir Operation in Ntonggu II Embung



F - 9

