Table XI.2.2 MONTHLY WORKABLE DAYS FOR CONSTRUCTION WORKS Unit: day | | | | | | | | . Mo | nth | | | | | | Total | |------|---|------|------|------------|------|------|------|------|------------|------|-------------|------------|------------|--------------| | | Item | Jan. | Feb. | Mar. | Apr. | May | Jún. | Jul. | Aug. | Sep. | Oct. | Nov. | | iotai | | (1) | Rainy Day & Suspended Day | | | | | | • | | | , | *********** | | | | | | Calender Day | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | 365 | | | 5 <r<10 :="" day<br="" mm="" rainy="">: Suspended Day
(Rainy day x 0.0)</r<10> | | | 1.5
0.0 | | | | | 0.7 | | | 2.5
0.0 | | 21.4 | | | 10 <r<15 :="" day<br="" mm="" rainy="">: Suspended Day
(Rainy day x 0.0)</r<15> | | | 1.5
0.0 | | | | | | | | 1.7 | | 14.6 | | • | 15 <r<30 :="" day<br="" mm="" rainy="">: Suspended Day
(Rainy day x 1.0)</r<30> | | | 3.2
3.2 | | | | | 0.5
0.5 | | 1.5
1.5 | | 3.1
3.1 | 25.5
25.5 | | | 30 mm < : Rainy Day : Suspended Day (Rainy day x 3.0) | | | 1.8
5.4 | | | | | | | | 1.9
5.7 | | 24.2
72.6 | | (2) | Total of Rainy Day | 14.0 | 10.3 | 8.0 | 7.7 | 6.2 | 3.8 | 3.3 | 2.8 | 4.4 | 4.7 | 8.8 | 11.7 | 85.7 | | (3) | Total of Suspended day | 18.8 | 13.9 | 8.6 | 7.7 | 8.1 | 4.0 | 3.4 | 3.2 | 4.5 | 6.0 | 8.4 | 11.5 | 98.1 | | (4) | Suspended Rate : (3)/(1)% | 60.6 | 49.6 | 27.7 | 25.7 | 26.1 | 13.3 | 11.0 | 10.3 | 15.0 | 19.4 | 28.0 | 37.1 | 26.9 | | (5) | Sunday & National Holiday | 5.0 | 5.0 | 6.0 | 7.0 | 7.0 | 5.0 | 5.0 | 6.0 | 5.0 | 4.0 | 5.0 | 5.0 | 65.0 | | (6) | Rainy Day in Sunday & National Holiday (5)x(4) | 3.0 | 2.5 | 1.7 | 1.8 | 1.8 | 0.7 | 0.5 | 0.6 | 8.0 | 8.0 | 1.4 | 1.9 | 17.5 | | (7) | Non Horkable day : (3)+(5)-(6) | 20.8 | 16,4 | 12.9 | 12.9 | 13.3 | 8.3 | 7.9 | 8.6 | 8.8 | 9.2 | 12.0 | 14.6 | 145.6 | | (8) | Workable Day : (1)-(7) | 10.2 | 11.6 | 18.1 | 17.1 | 17.7 | 21.7 | 23.1 | 22.4 | 21.3 | 21.8 | 18.0 | 16.4 | 219.4 | | (9) | Workable Rate : (8)/(1)% | 33.0 | 41.4 | 58.3 | 57.0 | 57.2 | 72.2 | 74.7 | 72.3 | 70.8 | 70.2 | 60.0 | 52.8 | 60.1 | | (10) | Applied Workable Day | 0 | 0 | 0 | 18 | 18 | 22 | 23 | 22 | 21 | 22 | 18 | 16 | 180 | Note: Data of average rainy day is given from 1979 to 1991 at Semarang Meteorological Station (BMG) Table XI.3.1 WORK ITEM AND QUANTITIES FOR URGENT PROJECT | Item | | Quantity | Unit | |---|--|--------------------|------------| | No. 10 Maril 1 | | . 1 | L.S. | | . Preparatory Works | | | L.3. | | . West Floodway Improvemen | | 220 000 | 2 | | Excavation; | Common 1-F | 339,000
226,000 | m3
m3 | | • | Common 2-F
River Mouth | 98,000 | m3 | | (2) Retaining Wall; | Type B | 3,000 | m | | (3) Revetment; | Type A | 6,580 | m2 | | (b) Revealed | Type B | 3,020 | m2 | | . Garang River Improvement | Works | • | | | (1) Excavation; | Common 1-G | 276,800 | m3 | | • • | Common 1-EM. | 10,200 | m3 | | | Common 2-G | 72,000 | m3 | | (2) Embankment | | 10,200 | m3 | | (3) Revetment; | Type A | 2.110 | m2
2 | | 4-1 a 111 | Type B | 32,200 | m2 | | (4) Sodding | Time A | 3,880 | m2
m3 | | (5) Ground Sill; | Type A | 1,040
110 | 1113
m3 | | | Type B | 30 | m3 | | | Type C
Type D | 390 | m3 | | | турс о | 330 | 1113 | | . Reconstruction of Simong | | 1 | LS | | Diversion Works & Dew Demolition | aternig | 12,000 | m3 | | (3) Excavation; | Common 2-G | 6,710 | m3 | | (4) Revetment; | Type C | 1,110 | m2 | | (5) Sodding | .jpc s | 570 | m2 | | (6) Reinforced Concrete | | 6,790 | m3 | | (7) PC Foundation Pile; | D=500mm,L=12m | 216 | рc | | , , | D=400mm, L=12m | 135 | рс | | | D=350mm,L=12m | 480 | pc | | (8) Sheet Pile; | t=0.2m | 1,380 | m2
 | | (9) Main Gate 1 | | 236 | m2
 | | (10)Main Gate 2 | * D | 54 | m2
m | | (11)Retaining Wall: | Type C | 80
2 920 | m
m2 | | (12)Concrete Block; | t=0.5m | 2,830
2,020 | m2 | | (13)Gabion Mattress; | t=0.5m | 1,040 | m2 | | (14)Bridge
(15)Control House & Gate | House | 1,040 | LS | | (16)Steel Stop Log | nouse | î | LS | | . Intake Structure | | | | | (1) Demolition | | 350 | m3 | | (2) Excavation; | Common 2 | 150 | m3 | | (3) Reinforced Concrete | | . 510 | m3 | | (4) PC Foundation Pile; | D=350mm, L=12m | 60 | рс | | (5) Sheet Pile; | t=0.2m | 240 | m2 | | (6) Gate | | 30 | m2 | | (7) Retaining Wall; | Type C | 55 | m | | . Others | Type D | 80 | m | | (1) Railroad Bridge | 4 | 1 | L.S. | | (2) Retaining Wall for PD | AM. Tune F | 200 | m | | (3) Flap Gate; | 1.0m x 1.0m | 2 | рc | | (0) 1 Jup 04401 | 1.5m x 1.5m | 0 | рс | | · * | 2.0m x 2.0m | 14 | рс | | | to the contract of contrac | | | Table XI.4.1 WORK ITEM AND QUANTITIES OF FLOOD CONTROL PLAN FOR MASTER PLAN | Item | Unit | Blorong
River | Bringin
River | Silandak
River | West floodway / Garang River | Garang River
Garang | East
Floodway | Babon
River | |--|----------|--------------------------|------------------|-------------------|------------------------------|------------------------|------------------|----------------| | I. River Improvement Portion | | | | | | | | | | 1. Preparatory Works | ۱.5. | | Н | | - | . • | - | - | | | 땉 | 74,400 | 97,000 | 213,400 | | 474.500 | 593.400 | 1,016,700 | | | £ | 94,600 | 18,300 | 30,500 | 204,800 | 0 | 452,100 | 114,200 | | | <u>m</u> | 91,200 | 1,216,000 | 1,100 | | 6,900 | 108,000 | 152,600 | | 5. Revetment; Type 8 | m2 | 51,000 | 15,200 | 21,300 | 9,400 | 34,600 | 77,200 | 124,000 | | | ш5 | 22,300 | 17,900 | 3,000 | • | 4,300 | 19,500 | 26.700 | | | E | 0 | 241 | 61 | 85 | 0 | 79 | 62 | | | m2 | 43 | 2,487 | 1,102 | 0 | 0 | 2.624 | 4.691 | | | L.S. | 0 | 0 | 0 | ~ | - | ; | | | | ۲.5. | 0 | 0 | 0 | | | | ď | | | L.S. | 0 | 0 | 0 | - | | | C | | | L.S. | 0 | 0 | 0 | 0 | | | · C | | 13. Intake Structure | L.S. | 0 | 0 | 0 | 0 | | C |) C | | 14. Drainage Outlet | L.S. | 0 | 0 | 0 | | | 0 | o | | 15. Reconstrction of Pucanggading Weir | L.S. | . 0 | 0 | 0 | 0 | | 0 | | | | r.s. | 0 | 0 | 0 | 0 | C | C | | | 17. Miscellaneous Works | L.S. | е | ਜ਼ | | i −4 | | ·
• ਜ | ı H | | II. Flood Control Dam portion | | | | | | | | | | | | : «
- | | | | | | | | 1. Name of Dam 2. Dam Type | ٠. | Kedung Suren
Rockfill | .i i | | Ja | Jatibarang
Concrete | 1 | • | | 3. Dam Volume | | 4,120,000 m3 | ' | | 17 | 170,000 m3 | | | | | | | | - | | | | ı | Table XI.4.2 WORK ITEM AND QUANTITIES OF URBAN DRAINAGE PLAN FOR MASTER PLAN | | | | | | | | | , | | | |---|------|-----------------------|-----------------------|-----------|-----------------------|-------------|------------|-----------------------|-------------|----------| | | . ! | Eastern Semarang Area | Eastern Semarang Area | Cent | Central Semarang Area | lrea
man | | Western Semarang Area | larang Area | | | Item | 5 | Siringin | Tenggang | Semarang | Banger | Bulu | Ronggolawe | Ronggolawe Karangayu | Tawang | Silandak | | 1. Preparatory Works | L.S. | 1 | - | ₩. | بنم | | | -1 | ⊢ ⊀ | - | | 2. Primary Channel Improvement | | | | | | | | | | | | 1) Open Channel (Type A) | E | 6,120 | 4,350 | 0 | 2,090 | 0 | 0 | 0 | 0 | 0 | | 2) Open Channel (Type B) | E | 0 | 0 | 2,360 | 0 | 0 | 0 | 0 | 0 | 0 | | Open Channel | ε | 3,100 | 7,900 | 2,150 | 3,460 | 1,750 | 2,250 | 1,100 | 1,200 | 850 | | Open Channel | E | Ó | 1,450 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Open Channel (Type E) | E | 0 | 0 | 0 | 1,130 | 0 | 1,000 | 1,580 | 0 | 0 | | | E | 0 | 0 | 5,770 | 0 | 0 | O | 0 | 0 | 0 | | 7) Covered Channel (Type G) | E | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3. Related Structure | | | | | | | | | | | | 1) Pump Station | L.S. | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 2) Gate Structure | TI2 | 0 | 0 | ∞ | 0 | 0 | | 0 | 0 | 0 | | Railway
Bridge | E | 0 | 22 | 50 | 20 | 0 | Ω | e | 0 | ω. | | 4) Road Bridge | m2 | 414 | 2,678 | 1,503 | 1,263 | 6 | 0 | 83 | 0 | 0 | | 5) Box Culvert | m3 | 0 | 0 | 726 | 1,148 | 607 | 394 | 606 | 810 | 0 | | 6) Inspection Road | ш2 | 55,320 | 73,500 | 14,160 | 33,300 | 10,500 | 13,500 | 6,600 | 0 | 5,100 | | 4. Miscellaneous Works | L.S. | . | 1 | t | | н | H | | H | 1 | | | | | | | | | | | | | Table XI.5.1 (1/2) WORK ITEM AND QUANTITIES OF JATIBARANG DAM FOR FEASIBILITY STUDY | Item | Quantity | Unit | |--|----------|------------| | | | | | | | : | | . Construction Base Cost (Dam) | | | | Preparatory Works Main dam | 1 | L.S. | | - Excavation (Ripping & Blasting) | 115,000 | m3 | | - Dam Concrete | 206,000 | m3 | | - Spillway Concrete (Reinforced) | 13,000 | m3 | | - Foundation Treatment (Grouting) | 15,000 | m | | - Intake Facility | 1 | L.S. | | - Maintenance Bridge | 350 | m2 | | 3. Left Side Ridge Treatment | | | | - Excavation (Ripping) | 12,000 | m3 | | - Embankment | 0 | m3 | | - Water Leakage Treatment (Grouting) 4. Auxiliary Spillway | 6,000 | m | | - Excavation (Ripping) | 26,000 | m3 | | - Embankment | 0 | m3 | | - Invert Concrete | 2,300 | m3 | | - Water Leakage Treatment (Grouting) | 2,300 | m | | 5. Diversion Tunnel | 350 | m | | 6. Relocation Road | 17,500 | m2 | | 7. Relocation of Electrical Tower | 10 | pc | | 8. Protection Works for Gore Caves | 0 | L.S. | | 9. Miscellaneous Works | 1 | L.S. | | I. Construction Base Cost (Exclusive to Hydro) | | | | 1. Preparatory Works | 1. | L.S. | | 2. Powerhouse | | | | - Excavation (Ripping & Blasting) | 11,000 | m3 | | - Reinforced Concrete | 900 | m3 | | - Powerhouse Building | 1 | L.S. | | 3. Tailrace | 0.000 | | | - Excavation (Ripping & Blasting) | 2,000 | m3 | | - Common Concrete | 150 | • т3 | | - Reinforced Concrete | 400 | m3 | | 4. Electrical & Mechanical Equipment | | | | - Turbine ; 1,500 kw | 1 | set | | - Generator ; 1,700 kVA | 1 | ser | | - Transformer ; 6.6/20 kVA | 1 | set | | - Inlet Valve | 1 | set | | | | set | | - Control & Switchyard Equipment | 1 | | | - Draft Gate | 2 | set | | - Draft Gate
- Outlet Gate | 2 | set
set | | - Draft Gate | 2 | set | Table XI.5.1 (2/2) WORK ITEM AND QUANTITIES OF URBAN DRAINAGE PLAN FOR FEASIBILITY STUDY | Item | Quantity | Unit | Remarks | |---|----------|-------|-----------| | 1. Preparatory Works | 1 | L.S. | | | 2. Bandanhania Wast | | | | | Bandarharjo West Pumping Station | 1 | place | 0.78 m3/s | | 2) Gate Structure | 1 | place | 5110 1107 | | 3) Retarding Basin | 1 | place | 0.84 ha | | 4) Channel Improvement | • | p | ••• | | - Open Channel: Type D | 800 | m | | | 5) Related Structure | 000 | | | | - Inspection Road | 3,250 | m2 | | | 3. Asin River Basin | | | | | 1) Pumping Station | 1 | place | 5.70 m3/s | | 2) Gate Structure | . 1 | place | | | 3) Retarding Basin | 1 | place | 2.67 ha | | 4) Channel Improvement | | | | | - Open Channel; Type D | 1,300 | m | | | 5) Related Structure | | | | | - Bridge | 1 | рc | | | - Inspection Road | 20,050 | m2 | | | 4. Bandarharjo East | • | | | | 1) Pumping Station | 1 | place | 2.00 m3/s | | 2) Gate Structure | ī | place | | | 3) Retarding Basin | . 1 | place | 0.93 ha | | 4) Channel Improvement | | | | | - Open Channel; Type D | 700 | m | | | 5) Related Structure | | | | | - Inspection Road | 5,600 | m2 | • | | 5. Semarang River | | | | | 1) Channel Improvement | | | • | | - Open Channel; Type A | 2,350 | m | | | - Open Channel; Type D | 500 | m | | | - Open Channel; Type F | 4,020 | m | | | 2) Related Structure . | | | | | - Revetment: Type D | 9,530 | m2 | | | - Revetment; Type E | 2,840 | m2 | | | - Inspection Road | -25,500 | m2 | | | 6. Baru River | | _ | | | 1) Gate Structure | 1 | place | | | 2) Channel Improvement | | | | | - Open Channel (Type D) | 300 | m | | | - Open Channel (Type G) | 500 | m | | | 2) Related Structure | | _ | | | - Inspection Road | 6,400 | m2 | | | 7. Miscellaneous Works | 1 | L.S. | | # FIGURES | ltem | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1,998 | 1999 | 2000 | |----------------------|------|------|------|------|------|------|-------|------|------| | Feasibility Study | | : | | | : | | | : : | | | Application for Loan | | | - | | | | | | | | Detailed Design | | | | | | | | | | | P/Q and Tendering | | | | | | | | | | | Construction | | : | | | | | | | | MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS JAPAN INTERNATIONAL COOPERATION AGENCY Fig. XI. 3.1 IMPL IMPLEMENTATION SCHEDULE FOR URGENT PROJECT | Item | Quantity | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |---|--------------|--------------|--|----------------|----------------|--|---------------|--| | 1. Preparatory Works | | | | | | | | | | 2. W-Floodway Improvement Works | | | | | | | | | | (1) Excavation Common 1-F | 339,000 m3 | | | | | 医 图: | 1 1 | | | Common 2-F | 226,000 m3 | | | | la de co | | | | | River Mouth | 98,000 m3 | | : : | 1.1. | | | | | | (2) Retaining Wall Type B | 3,000 m | | | | : 25 | | są s f | | | (3) Reverment Type A | 6,580 m2 | | 1 /) | | EE | 14354 | | | | Туре В | 3,020 m2 | | | | | | | | | 3. Garang R. Improvement Works | | | | | | 1 1 | | | | (1) Excavation Common 1-G | 276,800 m3 | | | | | | | | | Common 1-EM | 10,200 m3 | | | | | | | | | Common 2-G | 72,000 m3 | | | | | | | | | | | | | | | | | | | (2) Embankment | 10,200 m3 | | · : | | | tracered. | | | | (3) Revetment Type A | 2,110 m2 | | | | | | | | | Туре 8 | 32,200 m2 | | · ` · · · · · · | | | | | <u> </u> | | (4) Sodding | 3,880 m2 | | | | | | | | | (5) Groundsill Type A | 115 | | 1 | <u> </u> | | The state of s | | ļ <u>.</u> | | Туре В | 1LS | | | | | | | | | Туре С | 1 LS | 1 1 1 | 1 1 1 | | | | | 1 | | Туре D | 1 LS | | | | | | | | | 4. Reconstruction of Simongan Weir | | | 7 . | | | | | | | (1) Diversion Works & Dewatering | 11.5 | . : | i | , | | | | 1 | | (2) Demolition | 12,000 m3 | | | 1 1 | | | 3 | | | (3) Excavation Common 2-G | 6,710 m3 | | | 1 1 | (Table 1) | 1 1 | 1. | | | (4) Revetment Type C | 1,110 m2 | | | - : | 1 : | | | | | (5) Sodding | 570 m2 | | | | | | | | | (6) Reinforced Concrete | 6,790 m3 | | | | | | | | | | 216 pc | · · · · · · | | | | | | | | (7) Foundation Pile D=500mm,L=12m D=400mm,L=12m | 135 pc | - | | | | | - | : | | | 480 pc | | | | | | | - | | D=350mm,L=12m | | | | | | E==== | | | | (8) Sheet Pile t=0.2m | 1,380 m2 | | <u> </u> | | | | | | | (9) Main Gate 1 | 236 m2 | | | | | | | ļ | | (10) Main Gate 2 | 54 m2 | | | <u> </u> | | . 22 | 1 | | | (11) Retaining Wall Type C | 80 m | | | <u> </u> | | | | | | (12) Concrete Block t=0.5m | 2,830 m2 | | | <u> </u> | 圝 | | | | | (13) Gabion Mattress t=0.5m | 2,020 m2 | 1 1 | 1 1 1 | | | | | <u> </u> | | (14) Bridge | 1,040 m2 | , | | | | | | : | | (15) Control House & Gate House | 1 LS | | | 1 | | . : | | | | 5. Intake Structure | | | | . : | | | | : | | (1) Demolition | 350 m3 | | | | | : | ■: | | | (2) Excavation Common 2-G | 150 m3 | | | | | 1- | 自 | ļ <u> </u> | | (3) Reinforced Concrete | 510 m3 | | · · · | | | | | | | (4) Foundation Pile D=350mm,L=12m | 60 pc | ļ | | | | | a | | | | 240 m2 | - | | : | <u> </u> | | a | | | | 30 m2 | | | · · · · · | | | | | | | 55 m | | | | | l | | | | (7) Retaining Wall Type C | | | | : | | ļ | | | | Type O | 80 m | | | | | · | | | | 6. Others | |
 | <u> </u> | | . | | | | | (1) Railroad Bridge | 1 LS | | - | <u> </u> | to the same of | | | ļ | | (2) Retaining Wall for PDAM | 200 m | <u> </u> | <u> </u> | | 11.00 | | - <u></u> - | | | (3) Flap Gate 1.0m x 1.0m | 2 pc | | | | 1 1 1 | 1 1 1 | | | | 1.5m x 1.5m | 0 pc | 1.1 | 1.1 | | | | | | | 2.0m x 2.0m | 14 pc | | : : ! | | 1 1 | | | | | 7. Miscellaneous Works | | | | T | | | | | MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS JAPAN INTERNATIONAL COOPERATION AGENCY Fig. XI. 3.2 CONSTRUCTION SCHEDULE FOR URGENT PROJECT #### FLOOD CONTROL PLAN 1999 2000 2001 2002 2003 2004 2005 2006 2007 Description 1995 1996 1. Babon River Babon River Improvement CONTRACTOR OF THE SOUR POUR Babon Floodway 2. East Floodway East Floodway Improvement menteral programme a programme and the 3. Garang River/West Floodway PARAGONAL PROPERTY OF THE Garang River Improvement THE STREET West Floodway Improvement Jatibarang dam 4, Silandak River Silandak River Improvement 5. Bringin River **Bringin River Improvement** AND DESCRIPTION OF THE PERSON 6. Blorong River Biorong River improvement परस्था का नामका के स्वयं का का Kedung Suren Dam 777777 On-going Project 14 FEET FEET Implemented by Master Plan #### URBAN DRAINAGE PLAN NAMES DE DES COMO DE DE COMO DE SEGUE SE SE DE SEGUE SE SE DE SEGUE SE SE DE SEGUE SE SEGUE SE SEGUE SE SEGUE S | Description | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |---------------------|---------|-------|---------|-----------|--------|-------|---------|-----------|-------------|-----------|----------|---------|-----------|--------------------|------|----------|-----------|-------------|---------|------|--------| | 1. Eastern Semarang | | İ | | Stringtn River | | 777 | 777 | ZZ | | | | | | | | | | | | + 404 | vyre- | 5288 C | 145.62 | 2015 | 303.55 | | Tenggang River | Z | ZZ | /// | 77.2 | | | | | | | | | esta (g | भाग्य | 3:56 | L. P. AR | 15.5 P.24 | or response | e) = 1% | 44.4 | 772-8 | | 2. Central Semarang | | e : | Semarang River | | 24.9% | XV-14-5 | 7 to 1 to | 72.812 | d7.89 | cw3(+4- | 1.357.76× | 12 17 18 19 | ત્રવાકુક | - PERSON | ಸವನ | इक्त हैं | | | | | | | | | | Banger River | 72 | 772 | ZZZ | 72 | | | | 78. F | (2.525) | 438-238 | 24×3. | 161.62° | | | | | | | | | | | Bulu River | 77 | 777 | 777 | | | | | | | × 7,855×c | A 4087 | ্কেছ | | | | | | | | | | | 3. Western Semarang | | | | | | | | - | | | | | | | | | | | | | | | Ronggolawe River | | 77. | | : | | | | | | | | ×4.845 | #30 X 200 | क <u>म्बद्ध</u> ान | | | | | | | | | Karangayu River | | | | | | | | | | | | 2112.00 | -303-4 | 5025 | | | | | | | | | Tawang River | | | - | | | | | | | | | STORES. | 133 | 21 mg | | | | | | | | | Silandak Channel | | | | | | | | | | | | GENES. | est in | 4500 | | | | | | | | [272722] On-going Project Implemented by Master Plan #### WATER RESOURCES DEVELOPMENT PLAN | Description | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 201 | |------------------------|------|-------|---------|--------|-----------|----------|----------|-------|-----------|------------|-------|-----------------|-------|---------|-------|------|-------|-------------|------|------|-----| | 1. Babon Dam | | | | | | | | | - | SHE | 1 | G-5461 | Tap y | :143:34 | anta: | 2012 | 440.3 | 1874 | | | | | 2. Jatibaráng Dam | | ere i | of Fig. | ne per | emoint #V | F-635 | | | | | | | | | | | | | | į, | | | 3. Mundingan Dam | | | | | Traf. | Kara a I | 120 | 31.35 | | | | | | | | | | | | | | | 4. Interbasin Transfer | | | | | | | į | ALLE | K.35.) | <i>(1)</i> | 3142 | | | | | | | | | | | | 5. Kedung Suren Dam | Kedung Suren Dam | | | | | PR-Self- | i se | 340 250r | | . 647. W. | EA-AA) | #F354 | 528 (1) | reix. | | | | | | | | | | Conveyance Channel | 1 1 | | | | | | | | 7 | 14 P | | KNEFF | 1 | | | | | | | | | Implemented by Master Plan STEER AND GOOD ST MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS JAPAN INTERNATIONAL COOPERATION AGENCY Fig.XI 4.1 IMPLEMENTATION SCHEDULE FOR MASTER PLAN XI - 30 MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS JAPAN INTERNATIONAL COOPERATION AGENCY Fig. XI. 5.1 IMPLEMENTATION SCHEDULE FOR FEASIBILITY STUDY PROJECT | ltem | Quantity | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | |-------------------------|--|------|-------------|--|---|---|--|-------------------------| | Preparatory Works | 1 LS | | | | | | | | | | | 1 1 | | | | | | | | Bandarharjo West | <u> </u> | | | 1 1 | | | | 11: | | 1) Pumping Station | 0.78 m3/s | | 111 | 1 1 1 | | | 日本 | Attenda VI | | 2) Gate Structure | 1 place | | 1 1 1 | | | | | | | 3) Retarding Basin | 0.84 ha | | 1 1 | | | | | La hall of state of the | | Channel Improvement | | | | 1.5 | | | | 111 | | - Open Channel ; Type D | 800 m | | | | | | | - Principal | | 5) Related structure | | | | | | | | | | - Inspection Road | 3,250 m2 | | | | | | | | | | | | | | | | | | | 3. Asin River basin | | | | | |] | | | | 1) Pumping Station | 5.70 m3/s | | | | | | | | | 2) Gate Structure | 1 place | | | | | | | 44 | | 3) Retarding Basin | 2.67 ha | | | | | - - - | 1 | | | 4) Channel Improvement | | | | | | | | +++ | | - Open Channel ; Type D | 1,300 m | | | | | | | 1 1 1 | | 5) Related structure | | | | | | | | | | - Bridge | 1 pc | | | | | | | | | - Inspection Road | 20,050 m2 | | | | | 1 | | | | | | | | | 111 | | | -1-1-1 | | 4. Bandarharjo East | | | | | | | | | | 1) Pumping Station | 2.00 m3/s | | | | | | | 444 | | 2) Gate Structure | 1 place | | | | | | | | | 3) Retarding Basin | 0.93 ha | | | | | | | | | 4) Channel Improvement | | | | | _ _ | | | | | - Open Channel ; Type D | 700 m | | | | | | | ++ | | 5) Related structure | | | | | | | | | | - Inspection Road | 5,600 m2 | | | 1 ! : | | | | | | | | | 11. | | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | . [] | 1 1 | | | 5. Semarang River | ļ | - | | <u> </u> | | | - | 1 1 1 | | Channel Improvement | <u> </u> | | | | | | | 1 1 | | - Open Channel ; Type A | 2,350 m | | | | | | | | | - Open Channel ; Type D | 500 m | | | | _ - - | | | | | - Open Channel ; Type F | 4,020 m | | | | | | | | | 2) Related Structure | | - | | | | | | 111 | | - Revetment ; Type D | 9,530 m2 | | 圖 | 1 ! ! | 111 | 1 1 1 - | | +++ | | - Revetment ; Type E | 2,840 m2 | | | | 111- | | 1 | ++- | | - Inspection Road | 25,500 m2 | | | | | | | -1-1- | | | | | | | -1-1- | 1.4 | 1 1 1 | +++ | | 6. Baru River | | | | | 11-1- | | | +++ | | 1) Gate Structure | 1 place | | 圖 | 1 | _ - - | | | | | 2) Channel Improvement | 1 | | | | 111 | - | | | | - Open Channel ; Type D | 300 m | | | | | | * 1 4 | | | - Open Channel ; Type G | 500 m | | | | | | | | | 3) Related Structure | <u> </u> | | | | | | | | | - Inspection Road | 6,400 m2 | | | | | | | | | 7 12 11 11 11 11 | - | | ST. ST. ST. | | | | | | | 7. Miscellaneous Works | 1 LS | | | | | | | | | | | | | | - 1 1 1 | | 1 1 1 | | | | | | | 1 | | | # 1 1
1 1 | | | | 1 | - | |) | | | | 111 | | | | | | | | | | | MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS JAPAN INTERNATIONAL COOPERATION AGENCY Fig. Xl. 5.2 (1/2) CONSTRUCTION SCHEDULE OF URBAN DRAINAGE FOR FEASIBILITY STUDY PROJECT | ltem | Quantity | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |--------------------------------------|------------|------|---------|---------|------------|-------------|----------|---------| | I. Jatibarang Dam | 1. Preparatory Works | | | | | | | | | | 2. Main Dam | | | F 3 (2) | | | | | | | - Excavation (Ripping &Blasting) | 115,000 m3 | | | | | · 1. 1. | - 1-1 | 1 | | - Dam Concrete | 206,000 m3 | | | 1 1 1 1 | | | | | | - Spillway Concrete (Reinforced) | 13,000 m3 | 1 | | | 25 1 | (産業 | | 1 1 | | - Foundation Treatment (Grouting) | 15,000 m3 | | | | | | | | | Intake Facility | 1 LS | | | | | in the same | | | | - Maintenance Bridge | 350 m2 | : | | | 1 | | G | 14 | | 3. Left Side Ridge Treatment | | | | | | 10.00 | | | | - Excavation (Ripping) | 12,000 m3 | | | | | | | | | - Embankment | 0 m3 | | | | | | | | | - Water Leakage Treatment (Grouting) | 6,000 m | | 7 | | | | 7:: | | | 4. Auxiliary Spillway | | | | | | | | | | - Excavation | 26,000 m3 | | | 1 1 | 1 | | | | | - Embankment | | | | | | | | | | - Invert Concrete | 2,300 m3 | | | 1 | | | | | | - Water Leakage Treatment (Grouting) | 2,300 m | | | | | | | | | 5. Diversion Tunnel | 350 m | 1 11 | | | | | 1.5 | | | 6. Relocation Road | 17,500 m2 | 7 | | | | | . T | | | 7. Relocation of Electrical Tower | 10 pc | | | | 3 . | F 1 1 | | 1 1 | | 8. Miscellaneous Works | 118 | | | | | | | | | | | | | | | 1.11 | 1 | | | II. Hydropower Generation | | 10.0 | | | | 1-3-3- | | | | | | | | | 1 1 1 | 1.4.4 | | 1 - 1 | | Preparatory Works | i | 4 1 | | | 2 | | | | | 2, Power House | | | | | | 10.3 | | | | - Excavation (Ripping &Blasting) | 11,000 m3 | | | | E | al and i | | 1. | | - Reinforced Concrete | 900 m3 | | | | . 🚞 | 1 | | | | - Powerhouse Building | 1 LS | | | | | | | | | 3. Tailrace | | | | | | 1 1 | | | | - Excavation (Ripping & Blasting) | 2,000 m3 | |
 | | year 1 | | | | - Common Concrete | 150 m3 | | | | ভ | | | | | - Reinforced Concrete | 400 m3 | | | | | | | | | 4. Electrical & Mechanical Equipment | | 1 | | 1 | | | | 1, 1 2: | | - Turbin ; 1,500 kw | 1 set | | | 1 1 1 | | | | 1 1 | | - Generator ; 1,700 kw | 1 set | 100 | | | | | | 1 | | - Transformer | 1 set | | | | 15.7 | | | | | - Inlet Valve | i set | 1.11 | 1 | | | | | | | - Control & Switchyard Equipment | 1 set | | | | 1 1 1 | | | 111 | | - Draft Gate | 2 sel | | | | | | | | | - Outlet Gate | 1 set | | | | | | | 7.7 | | | 1 LS | | | | | | | | | 5. Distribution Line | | | | | | | | | MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS JAPAN INTERNATIONAL COOPERATION AGENCY Fig. XI. 5.2 (2/2) CONSTRUCTION SCHEDULE OF JATIBARANG DAM FOR FEASIBILITY STUDY PROJECT ## XII PROJECT COST ESTIMATE ## XII PROJECT COST ESTIMATE ## TABLE OF CONTENTS | | | <u>Paqe</u> | |-----------|----------------------------------|-------------| | CHAPTER 1 | GENERAL | XII-1 | | CHAPTER 2 | BASIS OF COST ESTIMATE | XII-2 | | 2.1 | Planning Criteria | XII-2 | | 2.2 | Unit Price and Compensation Cost | XII-4 | | 2.3 | Method of Cost Allocation | XII-6 | | CHAPTER 3 | URGENT PROJECT STUDY | XII-7 | | 3.1 | Objective Project | XII-7 | | 3.2 | Unit Cost of Construction Works | XII-7 | | 3.3 | Cost for Alternative Study | XII-7 | | 3.4 | Project Cost | XII-8 | | CHAPTER 4 | MASTER PLAN STUDY | XII-9 | | 4.1 | Unit Cost of Construction Works | XII-9 | | 4.2 | Flood Control Plan | XII-9 | | 4.3 | Urban Drainage Plan | XII-11 | | 4.4 | Water Resources Development Plan | XII-13 | | CHAPTER 5 | FEASIBILITY STUDY | XII-15 | | 5.1 | Objective Plans | XII-15 | | 5.2 | Unit Cost of Construction Works | XII-15 | | 5.3 | Cost for Alternative Study | XII-16 | | 5.4 | Project Cost | XTT-17 | ## LIST OF TABLES | Table
No. | <u>Title</u> | Page | |--------------|---|--------| | XII.2.1 | Basic Labour Wages | XII-19 | | XII.2.2 | Unit Prices of Construction Materials | XII-19 | | XII.2.3 | Unit Prices of Heavy Equipment | XII-20 | | XII.2.4 | Work Unit Costs of Heavy Equipment | XII-21 | | XII.3.1(1) | Unit Costs of Construction Works for Urgent Project (Financial) | XII-22 | | XII.3.1(2) | Unit Costs of Construction Works for Urgent Project (Economic) | XII-23 | | XII.3.2 | Cost Comparison of Alternatives for Simongan Weir | XII-24 | | XII.3.3 | Cost Comparison of Alternatives for West Floodway | XII-25 | | XII.3.4 | Cost Comparison of Alternatives for Garang River | XII-26 | | XII.3.5 | Summary of Urgent Project Cost (Financial) | XII-27 | | XII.3.6 | Annual Disbursement Schedule for Urgent Project (Financial) | XII-28 | | XII.3.7 | Cost Breakdown for Urgent Project (Financial) | XII-29 | | XII.3.8 | Annual Disbursement Schedule for Urgent Project (Economic) | XII-30 | | XII.3.9 | Annual OMR Cost for Urgent Project (Economic) | XII-31 | | XII.4.1 | Unit Costs of Construction Works for Master Plan | XII-32 | | XII.4.2 | Unit Costs of Channel Improvement Works for Master Plan | XII-33 | | XII.4.3(1) | Cost Breakdown for Blorong River Improvement | XII-34 | | XII.4.3(2) | Cost Breakdown for Bringin River Improvement | XII-35 | | XII.4.3(3) | Cost Breakdown for Bringin | XII-36 | | Table
<u>No.</u> | <u>Title</u> | Page | |---------------------|---|--------| | XII.4.3(4) | Cost Breakdown for Silandak River Improvement | XII-37 | | XII.4.3(5) | Cost Breakdown for Garang River Improvement | XII-38 | | XII.4.3(6) | Cost Breakdown for West Floodway Improvement | XII-39 | | XII.4.3(7) | Cost Breakdown for East Floodway Improvement | XII-40 | | XII.4.3(8) | Cost Breakdown for Babon River Improvement | XII-41 | | XII.4.4(1) | Cost Allocation for Kedung Suren | XII-42 | | XII.4.4(2) | Cost Allocation for Jatibarang Dam | XII-43 | | XII.4.4(3) | Cost Allocation for Mundingan Dam | XII-44 | | XII.4.4(4) | Cost Allocation for Babon Dam | XII-45 | | XII.4.5(1) | Relationship between Project Cost and Dam Height of Kedung Suren Dam | XII-46 | | XII.4.5(2) | Relationship between Project Cost and Dam Height of Jatibarang Dam | XII-47 | | XII.4.5(3) | Relationship between Project Cost and Dam Height of Mundingan Dam | XII-48 | | XII.4.5(4) | Relationship between Project Cost and Dam Height of Babon Dam | XII-49 | | XII.4.6 | Annual Disbursement Schedule of Flood Control Plan for Master Plan | XII-50 | | XII.4.7 | Annual OMR Cost of Flood Control Plan for Master Plan | XII-51 | | XII.4.8(1) | Cost Breakdown for Urban Drainage Plan of Eastern and Central Semarang | XII-52 | | XII.4.8(2) | Cost Breakdown for Urban Drainage Plan of Western Semarang | XII-53 | | XII.4.8(3) | Cost Breakdown for Pump Station | XII-54 | | XII.4.9 | Cost Breakdown for Urban Drainage
Plan of Eastern and Central
Semarang (Including Secondary | | | | Channell | XII~55 | | | | | | • | |---|------------|---|--------|---| | | Table | <u>Title</u> | Page | | | | XII.4.10 | Annual Disbursement Schedule of Urban Drainage Plan for Master Plan. | XII-56 | | | | XII.4.11 | Annual Disbursement Schedule of Urban Drainage Plan for Master Plan (Including Secondary Channel) | XII-57 | | | | XII.4.12 | Annual OMR Cost of Urban Drainage Plan for Master Plan | XII-58 | 4 | | | XII.4.13 | Cost Allocation for Multiple-Purpose Dam | XII-59 | ¥. | | | XII.4.14 | Cost Breakdown for Interbasin Transfer | XII-60 | | | | XII.4.15 | Cost Breakdown for Conveyance Channel | XII-61 | ÷ | | | XII.4.16 | Annual Disbursement Schedule of Water Resources Development Plan for Master Plan | XII-62 | | | | XII.4.17 | Annual OMR Cost of Water Resources
Development Plan for Master Plan | XII-63 | | | | XII.5.1 | Unit Costs of Dam Construction Works for Feasibility Study | XII-64 | ā | | | XII.5.2 | Unit Costs of Urban Drainage Works for Feasibility Study | XII-65 | .Comp. | | | XII.5.3 | Cost Comparison of Alternatives for Jatibarang Dam Crest Level | XII-66 | | | | XII.5.4(1) | Cost Breakdown for Feasibility Study of Garang River Improvement | XII-67 | | | · | XII.5.4(2) | Cost Breakdown for Feasibility Study of West Floodway Improvement | XII-68 | | | | XII.5.5 | Cost Allocation for Feasibility Study of Jatibarang Dam | XII-69 | | | | XII.5.6 | Relationship between Project Cost and Dam Height of Jatibarang Dam for Feasibility Study | XII-70 | Švěživá | | | XII.5.7(1) | Cost Comparison of Alternatives for Pump Drainage System in Asin River Basin Area | XII-71 | *************************************** | | | XII.5.7(2) | Cost Comparison of Alternatives for
Pump Drainage System in Bandarharjo | VTT 70 | | | Table | <u>Title</u> | <u>Page</u> | |-------------|---|-------------| | XII.5.8(1) | Summary of River Improvement Project Cost for Feasibility Study (Financial) | XII- | | XII.5.8(2) | Summary of Jatibarang Dam Project Cost for Feasibility Study (Financial) | XII-7 | | XII.5.8(3) | Summary of Urban Drainage Project Cost for Feasibility Study (Financial) | XII-7 | | XII.5.9(1) | Annual Disbursement Schedule of River Improvement Works for Feasibility Study (Financial) | XII-7 | | XII.5.9(2) | Annual Disbursement Schedule of Jatibarang Dam Construction Works for Feasibility Study (Financial) | XII-7 | | XII.5.9(3) | Annual Disbursement Schedule of Urban Drainage Works for Feasibility Study (Financial) | XII-7 | | XII.5.10(1) | Cost Breakdown for Feasibility Study of River Improvement Works (Financial) | XII-7 | | XII.5.10(2) | Cost Breakdown for Feasibility Study of Jatibarang Dam Construction Works (Financial) | XII-8 | | XII.5.10(3) | Cost Breakdown for Feasibility Study of Urban Drainage Works | XII-8 | | XII.5.10(4) | Cost Breakdown of Pump Station | XII-8 | | XII.5.10(5) | Cost Breakdown of Gate Structure | XII-8 | | XII.5.11(1) | Annual Disbursement Schedule of Flood Control Plan for Feasibility Study (Economic) | XII-8 | | XII.5.11(2) | Annual Disbursement Schedule of Urban Drainage Plan for Feasibility Study (Economic) | XII-8 | | XII.5.11(3) | Annual Disbursement Schedule of Water Resources Development Plan for Feasibility Study (Economic) | XII-8 | | XII.5.11(4) | Annual Disbursement Schedule of Jatibarang Dam Construction Works for Feasibility Study (Economic) | XII~8 | | | Table | <u>Title</u> | Page | |------|-------------|--|--------| | ·. : | XII.5.11(5) | Annual Disbursement Schedule of Hydropower Generation Works for Feasibility Study (Economic) | XII-88 | | | XII.5.12(1) | Annual Disbursement Schedule of Flood Control Plan for Feasibility Study (Alternative 1, Economic) | XII-89 | | | XII.5.12(2) | Annual Disbursement Schedule of Flood Control Plan for Feasibility Study (Alternative 2, Economic) | XII-90 | | | XII.5.13(1) | Summary of Annual OMR Cost for Feasibility Study | XII-91 | | | XII.5.13(2) | Annual OMR Cost of River Improvement Works for Feasibility Study | XII-92 | | - | XII.5.13(3) | Annual OMR Cost of Jatibarang Dam Construction Works for Feasibility Study | XII-93 | | | XII.5.13(4) | Annual OMR Cost of Urban Drainage Works for Feasibility Study | XII-94 | | | XII.5.13(5) | Annual OMR Cost of Hydropower Generation Works for Feasibility Study | XII-95 | #### CHAPTER 1 GENERAL This sector of the supporting report presents the estimate of project cost based on the design and the construction plan. Labour wages, unit prices of construction materials and unit prices of heavy equipment were estimated and canvassed in Semarang City. Annual disbursement schedules were made according to the Implementation Schedule. #### CHAPTER
2 BASIS OF COST ESTIMATE ## 2.1 Planning Criteria Project cost is estimated on the basis of the design, the construction plan and the following basic conditions. (1) Price Level All unit costs are expressed based on the price level in July 1992. (2) Currency Conversion Rate Currency conversion rates are assumed at US\$1.00 = Rp. 2,033 and \$1.00 = Rp. 16.20. (3) Constitution of Project Cost Project cost is composed of construction base cost, compensation cost, administration cost, engineering service cost, price contingency, physical contingency and value added tax. Calculation is carried out based on the following: - (a) Construction Base Cost = Work Volume x Unit Cost - (b) Compensation Cost = Area of Land to be Acquired and Number of Houses to be Evacuated x Unit Cost - (c) Administration Cost = 7% of [(a) + (b)]. - (d) Engineering Service Cost - (e) Price Contingency (Financial Cost only) = Annual Escalation Rate (Foreign Currency, 3% and Local Currency, 8% of each cost). - (g) Value Added Tax (Financial Cost only) = 10% of [(a) + (b) + (c) + (d) + (e) + (f)]. - (4) Financial Cost and Economic Cost Financial cost is estimated as real expenses of the project owner. On the other hand, project cost in economic evaluation is reckoned in terms of usage of real sources. Therefore, contractor's profit, price contingency and value added tax are not considered in the economic cost. In addition, market prices are converted to economic prices in the economic evaluation. Economic prices are described in SECTOR XIV, ECONOMIC EVALUATION. (5) Foreign Currency and Local Currency Portion Project cost consists of the foreign currency portion (F.C.) and the local currency portion (L.C.). The components of each item are given as follows: | | Particulars | F.C. (%) | L.C. (%) | |----|--|--|--| | 1. | Labour Wage | 0 | 100 | | 2. | Owning Cost of Heavy Equipment | 100 | 0 | | 3. | Material Unit Cost | | e e e e e e e e e e e e e e e e e e e | | | - Cement - Aggregate - PC and RC Pile - RC Sheet Pile - Fuel - Oil - Reinforced Bar - Flap Gate - Structural Steel | 50
0
50
50
50
50
80
100 | 50
100
50
50
50
50
20
0 | | 4. | Contractor's Profit | 0 | 100 | | 5. | Compensation Cost | 0 | 100 | | 6. | Administration Cost | 0 | 100 | #### 2.2 Unit Price and Compensation Cost ## Unit Price #### (1) Labour Wage Basic labour wages of foreman, operator, mechanic, mason, driver, common labour, etc., were determined as shown in Table XII.2.1. ## (2) Unit Prices of Materials Unit prices of construction materials available in the local market were canvassed in Semarang and unit prices of materials to be imported were modified in consideration of the prevailing market prices in Japan. The unit costs of materials are shown in Table XII.2.2. ## (3) Work Unit Cost of Heavy Equipment Unit prices of heavy equipment were canvassed in Semarang City (refer to Table XII.2.3). The work unit costs of heavy equipment are composed of owning cost, operation cost and maintenance cost. Owning cost is calculated in consideration of unit price, economic life, depreciation value and interest. Operation cost includes fuel, oil, grease and operator cost. The work unit costs of heavy equipment are shown in Table XII.2.4. #### Compensation Cost The unit costs of compensation items consisting of land acquisition and house evacuation are estimated as follows: | Con | npensation Item | Unit Cost | |-----|--|---| | 1. | Land Acquisition | | | | - Residential Area
(Grade A)
(Grade B)
(Grade C) | 50,000 Rp./m ² 20,000 Rp./m ² 5,000 Rp./m ² | | | - Commercial Area
(Grade A)
(Grade B) | 80,000 Rp./m ²
40,000 Rp./m ² | | - | - Paddy Land
(Urban)
(Rural) | 15,000 Rp./m ²
10,000 Rp./m ² | | | - Upland Cultivation | $3,000 \text{ Rp./m}^2$ | | | - Plantation (Teak Wood) | $8,000 \text{ Rp./m}^2$ | | | - Fishpond | $3,000 \text{ Rp./m}^2$ | | 2. | House Evacuation | | | | <pre>- Class A (Permanent) - Class B (Semi-permanent) - Class C (Temporary) - Class D (Marginal)</pre> | 15,000,000 Rp./unit
7,000,000 Rp./unit
3,000,000 Rp./unit
1,000,000 Rp./unit | #### 2.3 Method of Cost Allocation Since a multiple-purpose project serves some groups of beneficiaries, it is necessary to allocate the cost between flood control purpose, water supply purpose and so on. This is generally calculated by the alternative justifiable - expenditure method, and the allocation is done based on the following costs: - (1) Multiple-purpose project cost - (2) Separable costs - (3) Alternate single-purpose cost - (4) Joint costs Separable costs are clearly chargeable to a single-purpose function. These costs are estimated as the multiple-purpose project cost less the estimated cost with that function omitted. Joint costs are estimated as the multiple-purpose cost less the sum of the separable costs. These costs are distributed in proportion to the differences between the separable costs and a single-purpose cost. The total allocated costs are obtained to add the joint costs to the separable costs. #### CHAPTER 3 URGENT PROJECT STUDY ### 3.1 Objective Project River improvement works for West Floodway/Garang River is formulated as the Urgent Project for the stretch of 9.54 km starting from the river mouth up to the confluence of Garang River and Kreo River. #### 3.2 Unit Cost of Construction Works Construction base cost is estimated by multiplying the unit cost and the corresponding work quantities. Preparatory and miscellaneous works are estimated on lump sum basis as 10% of main works, respectively. The unit cost for each work item consists of the costs of materials, labour and equipment. Contractor's indirect cost is incorporated in the unit costs of work items. The unit costs of construction works for the Urgent Project are given in Table XII.3.1. #### 3.3 Cost for Alternative Study The construction cost of the alternative plan for Simongan Weir is estimated as shown in Table XII.3.2, while those of West Floodway and Garang River are estimated as shown in Table XII.3.3 and Table XII.3.4, respectively. #### 3.4 Project Cost ## Financial Project Cost and Annual Disbursement Schedule Based on the implementation schedule, the financial project cost and the annual disbursement schedule are estimated as shown in Table XII.3.5 and Table XII.3.6, respectively. The breakdown of financial construction base cost also is shown in Table XII.3.7. The financial project cost for the Urgent Project is estimated as follows: | | Cost Items | Total (mill. Rp.) | |----|--------------------------|-------------------| | | | : | | 1. | Construction Base Cost | 45,049 | | 2. | Compensation Cost | 0 | | 3. | Administration Cost | 3,154 | | 4. | Engineering Service Cost | 8,969 | | 5. | Price Contingency | 17,996 | | 6. | Physical Contingency | 7,025 | | 7. | Value Added Tax | 8,219 | | | Total | 90,412 | #### Economic Annual Disbursement Schedule The annual disbursement schedule for the economic evaluation is given in Table XII.3.8. ## Operation, Maintenance and Replacement Cost The annual operation, maintenance and replacement (OMR) cost for the proposed Urgent Project is estimated as shown in Table XII.3.9. #### CHAPTER 4 MASTER PLAN STUDY #### 4.1 Unit Cost of Construction Works The calculation method for construction base cost applied to the Urgent Project described in CHAPTER 3 is employed for the Master Plan. The financial unit costs for the Master Plan are given in Table XII.4.1. The channel improvement cost per meter of the urban drainage plan were estimated based on the unit cost mentioned above (refer to Table XII.4.2). #### 4.2 Flood Control Plan #### Objective Rivers The flood control master plan is formulated for six (6) major rivers; namely, Blorong River, Bringin River, Silandak River, West Floodway/Garang River, East Floodway, and Babon River. ## Project Cost of Alternative Plan To determine the optimum flood control plan, the relationships between the downstream design discharge and the project cost are estimated based on the corresponding work volume. The project cost of river improvement and flood control dam are given in Tables XII.4.3 and XII.4.4, respectively. Details of the alternative study are described in SECTOR V, FLOOD CONTROL PLAN. Project cost of the flood control dam is allocated by means of the alternative justifiable - expenditure method based on the relationship between the project cost and dam height (refer to Table XII.4.5). #### Project Cost The project costs of the optimum flood plans are estimated as follows: #### Project Cost (Unit: Mill. Rp.) 11,329 Cost* Name of River Babon River 52,854 - River Improvement Babon Floodway 46,022 2. East Floodway Floodway Improvement 30,642 West Floodway/Garang River 3. 47,634 River Improvement 14,006 Floodway Improvement 23,413** Jatibarang Dam 5. Bringin River - River Improvement 25,988 6. Blorong River - River Improvement 7,742 - Kedung Suren Dam 86,305** ### Annual Disbursement Schedule Silandak River River Improvement The annual disbursement schedule for economic evaluation to study higher priority river systems is shown in Table XII.4.6 in accordance with the implementation schedule. ^{*} Price Contingency and Value Added Tax are excluded. ^{**} Cost allocated for the Flood Control Project. #### OMR Cost The annual operation, maintenance and replacement (OMR) cost is estimated as shown in Table XII.4.7. The cost of dredging river channel siltation is considered in the OMR cost based on the sediment balance described in SECTOR VIII, SEDIMENT CONTROL PLAN. In case of a multiple-purpose dam, OMR
cost is distributed in proportion to the allocated project cost. ### 4.3 Urban Drainage Plan ## Objective Areas The urban drainage plan is formulated for three (3) drainage areas; namely, Eastern Semarang Area, Central Semarang Area and Western Semarang Area. #### Project Cost The project costs of the proposed urban drainage works, which consists of surveyed primary channel improvement, are estimated as shown in Table XII.4.8 and summarized as follows. #### Project Cost (Unit: Mill. Rp.) | Nan | e of Drainage | Cost | |-----|--|----------------------------------| | | | | | 1. | Eastern Semarang | | | : 1 | Siringin RiverTenggang River | 18,571
40,029 | | 2. | Central Semarang | | | | Semarang RiverBanger RiverBulu River | 60,671
21,449
3,480 | | 3. | Western Semarang | | | | Ronggolawe RiverKarangayu RiverTawang RiverSilandak Channel | 8,771
8,449
2,116
1,876 | Note: Improvement cost of surveyed primary channels are considered. Price Contingency and Value Added Tax are excluded. #### Project Cost for Economic Evaluation For the economic evaluation, project costs including those for surveyed and other primary and secondary channels are estimated as shown in Table XII.4.9. ## Annual Disbursement Schedule The annual disbursement schedule is shown in Table XII.4.10 and the annual disbursement schedule for the economic evaluation is also shown in Table XII.4.11. #### OMR Cost Operation, maintenance and replacement (OMR) cost will mainly comprise administration cost, repairing cost of civil works and equipment of the pump station, and dredging works. Annual OMR cost is estimated as shown in Table XII.4.12. ## 4.4 Water Resources Development Plan #### Objective Facilities The water resources development plan proposes five (5) facilities; namely, Babon Dam, Jatibarang Dam, Mundingan Dam, Interbasin Transfer, and Kedung Suren Dam. #### Allocated Project Cost The cost allocation for a multipurpose dam is executed under the alternative justifiable - expenditure method. The total allocated costs are shown in Table XII.4.13. Project costs of the interbasin transfer and the conveyance channel are estimated as shown in Tables XII.4.14 and XII.4.15, respectively. These are summarized in the following table. Project Cost (Unit: Mill. Rp.) | Name of Dam | Flood
Control | Water
Supply | |---------------------|------------------|-----------------| | | | | | Babon | - | 291,391 | | Jatibarang | 23,413 | 40,064 | | Mundingan | | 115,560 | | Interbasin Transfer | | 7,772 | | Kedung Suren | 86,305 | 175,380 | | Conveyance Channel | | 8,854 | Note: Price Contingency and Value Added Tax are excluded. #### Annual Disbursement Schedule In accordance with the implementation schedule, the annual disbursement schedule for the Water Resources Development Master Plan is prepared as shown in Table XII.4.16. #### OMR Cost The annual operation and maintenance cost (OMR) for the Master Plan is estimated as shown in Table XII.4.17, taking the design scale of the dam into account. In case of a multiple-purpose dam, OMR cost is also distributed in proportion to the allocated project cost. #### CHAPTER 5 FEASIBILITY STUDY ## 5.1 Objective Plans The following projects have been identified as the priority projects with appropriate measures proposed in the master plan: - (1) Flood Control Plan for Garang River Basin - (a) River Improvement Works for West Floodway/Garang River; and - (b) Construction of Jatibarang Dam. - (2) Urban Drainage Plan for Semarang River Basin - (a) Construction of three (3) pumping stations; - (b) Channel improvement works in the Semarang river basin; and - (c) Construction of gate structure in Baru River. - (3) Water Resources Development Plan - (a) Construction of Jatibarang Dam; and - (b) Construction of Hydropower Station. ## 5.2 Unit Cost of Construction Works The calculation method of construction base cost and unit costs are applied to the Urgent Project described in CHAPTER 3. The other financial and economic unit costs are given in Table XII.5.1 and Table XII.5.2, respectively. ## 5.3 Cost for Alternative Study ### Alternative Study for Dam Crest Level To determine the optimum dam crest level, the construction base cost and the compensation cost for alternatives are estimated as shown in Table XII.5.3. Details of the alternative study are given in SECTOR IX, DAM ENGINEERING. ## Alternative Study for Flood Control Plan To determine the optimum flood control plan, the relationship between the downstream design discharge and the corresponding project cost of the river improvement is estimated as shown in Table XII.5.4, and the relationship between the downstream design discharge and the corresponding project cost of Jatibarang Dam is allocated for the flood control purpose as shown in Table XII.5.5. The cost allocation is executed under the alternative justifiable - expenditure method based on the relationship between the project cost and dam height (refer to Table XII.5.6). Details of the alternative study are given in SECTOR V, FLOOD CONTROL PLAN. ### Alternative Study for Urban Drainage Plan To determine the optimum pump drainage system, the construction base cost and the compensation cost of the alternatives for Asin River Basin and Bandarharjo Area are estimated as shown in Table XII.5.7. Details of the alternative study are given in SECTOR VI, URBAN DRAINAGE PLAN. ## 5.4 Project Cost # Financial Project Cost and Annual Disbursement Schedule Financial costs are given in Table XII.5.8 and summarized as follows: (Unit: Mill. Rp.) | Cos | t Item | River Improvement for West Floodway/ Garang River | Jatibarang
Dam | Urban
Drainage
Plan | |-----|-----------------------------|---|-------------------|---------------------------| | 1. | Construction
Base Cost | 45,049 | 59,793 | 27,844 | | 2. | Compensation
Cost | 0 | 5,582 | 1,429 | | 3. | Administration
Cost | 3,154 | 4,576 | 2,050 | | 4. | Engineering
Service Cost | 8,969 | 17,579 | 4,180 | | 5. | Price
Contingency | 17,996 | 29,399 | 17,855 | | 6. | Physical
Contingency | 7,025 | 10,989 | 4,931 | | 7. | Value Added Tax | 8,219 | 12,793 | 5,829 | | | Total | 90,412 | 140,711 | 64,118 | Financial project costs allocated for each purpose are summarized as follows: | ~~~ | Purpose | Project Cost | |---|---|------------------| | 1. | Flood Control Plan | 132,223 | | | River Improvement for West
Floodway/Garang RiverJatibarang Dam | 90,412
41,811 | | 2. | Urban Drainage Plan | 64,118 | | 3. | Water Resources Development Plan (Jatibarang Dam) | 79,881 | | 4. | Hydropower Generation Plan | 19,019 | | *************************************** | Total | 295,241 | The annual disbursement schedules are given in Table XII.5.9 and the breakdown of cost is in Table XII.5.10. # Economic Project Cost and Annual Disbursement Schedule The annual disbursement schedule for the economic evaluation is given in Table XII.5.11. To study the simultaneous implementation of river improvement and the construction of Jatibarang Dam, the annual disbursement schedule for staged implementation is as given in Table XII.5.12. Details of the study are given in SECTOR V, FLOOD CONTROL PLAN. ### OMR Cost The annual operation and maintenance cost (OMR) for the Feasibility Study is estimated as given in Table XII.5.13. OMR cost is distributed in proportion to the allocated project cost. **TABLES** Table XII.2.1 BASIC LABOUR WAGES | | Item | Unit | Wages (Rp.) | |----|------------------|------|-------------| | 1 | Foreman | mcl | 12,000 | | 2 | Dredger Operator | md | 12,000 | | 3 | Ne lder | md | 10,000 | | 4 | Operator | md | 8,000 | | 5 | Electrician | md | 8,000 | | 6 | Dredger Crew | md | 8,000 | | 7 | Mechanic | md | 8,000 | | 8 | Mason | - md | 7,000 | | 9 | Painter | md | 7,000 | | 10 | Oriver | md | 7,000 | | 11 | Concrete Worker | md | 7,000 | | 12 | Steel Worker | md | 7,000 | | 13 | Asphalt Worker | mct | 7,000 | | 14 | Carpenter | md | 7,000 | | 15 | Skilled Labour | md | 6,000 | | 16 | As Operator | md | 6,000 | | 17 | As Driver | md | 5,000 | | 18 | Common Labour | md | 4,000 | Table XII.2.2 UNIT PRICES OF CONSTRUCTION MATERIALS | | Item | Unit | F.C.(Rp.) | L.C.(Rp.) | Total (Rp.) | |-----|----------------------------------|------|------------|------------|-------------| | 1 | Portland Cement | ton | 70,000 | 70,000 | 140,00 | | 2 | Conc.Aggregate; Coarse | m3 | 0 | 18,500 | 18,50 | | 3 | Conc.Aggregate; Fine | m3 | 0 | 17,500 | 17,50 | | 4 | River Stone | m3 | 0 | 9,000 | 9,00 | | 5 | Raw Crushed Stone | m3 | 0 | 12,000 | 12,00 | | 6 | Crushed Stone | m3 | . 0 | 15,000 | 15,00 | | 7 | Formwork Timber | m3 | 0 | 200,000 | 200,00 | | 8 | Metal Form | m2 | 13,600 | 3,400 | 17,00 | | 9 | Log Pile (D=100mm,L=3m) | рс | 0 | 4,000 | 4,00 | | 10 | RC Pile (D=350mm,L=12m) | рс | 260,000 | 260,000 | 520,00 | | 11 | PC Pile (D=400mm,L=12m) | рс | 320,000 | 320,000 | 640.00 | | 12 | PC Pile (D=500mm,L=12m) | рс | 492,000 | 492,000 | 984,00 | | 13 | PC Pile (0≈500mm,L=15m) | рс | 615,000 | 615,000 | 1,230,00 | | 14 | RC Sheet Pile (BO.5m*tO.2m,L=3m) | рс | 100,000 | 100,000 | 200,00 | | 15 | PC Sheet Pile (80.5m*t0.3m,L=15m |) pc | 750,000 | 750,000 | 1,500,00 | | 16 | Re-bar: Deformed | kg | 720 | 180 | 90 | | 17 | Gabion Mattress Wire | kg | 1,280 | 320 | 1,60 | | 18 | Fuel: Diesel Oil | ltr | 150 | 150 | 30 | | 19 | Lubricant Oil | ltr | 1,700 | 1,700 | 3,40 | | 20 | Hydraulic Oil | ltr | 1,700 | 1,700 | 3,40 | | 21 | Grease | kg | 2,000 | 2,000 | 4,00 | | 22 | Asphalt | kg | 200 | 200 | 40 | | 23. | Drain Pipe: PVC(D50mm) | m | 1,250 |
1,250 | 2,50 | | 24 | Water Stop; t=250mm | m | 35,000 | 0 | 35,00 | | 25 | Flap Gate: 1.0m x 1.0m | рс | 13,500,000 | 0 | 13,500,00 | | 26 | Flap Gate: 1.5m x 1.5m | рс | 41,000,000 | 0 | 41,000,00 | | 27 | Flap Gate; 2.0m x 2.0m | рс | 68,000,000 | 0 | 68,000,00 | | 28 | Slide Gate: 1.0m x 1.0m | рс | 34,400,000 | 8,600,000 | 43,000,00 | | 29 | Slide Gate: 1.5m x 1.5m | рс | 41,600,000 | 10,400,000 | 52,000,00 | | 30 | Slide Gate: 2.0m x 2.0m | pc - | 64,000,000 | 16,000,000 | 80,000,00 | Table XII.2.3 UNIT PRICES OF HEAVY EQUIPMENT | No. | Kind of Equipment | Power | Total
Weight of
Equipment | Economic
Life | Annual
Working
Hour | Hourly
Fuel
Consumption | Price | |-----|--|----------------|---------------------------------|------------------|---------------------------|--|-------------| | | | (HP) | (ton) | (year) | (hr/year) | (ltr/hr) | (1,000 Rp.) | | | | 104.4 | 10.95 | 5 | 2,000 | 13.00 | 201,000 | | | Bulldozer; 11 ton | 104.0
145.0 | 15.05 | 5
5 | 2,000 | | 249,000 | | | Bulldozer; 15 ton | | 22.85 | 5
5 | 2,000 | 26.00 | 400,000 | | 3 | Bulldozer; 21 ton | 211.0 | 26.00 | 5 | 2,000 | | 436,000 | | 4 | Bulldozer; 21 ton; with Ripper | 224.0 | 39.00 | . 5 | 2,000 | | 619,000 | | 5 | Bulldozer: 32 ton; with Ripper | 315.0 | 16.05 | 5 | 2,000 | | 259,000 | | 6 | Swamp Bulldozer: 16 ton | 141.0
70.0 | 10.75 | 5
5 | 2,000 | 9.00 | 136,000 | | 7 | Backhoe; 0.35 m3 | | | 5 | 2,000 | 15.00 | 237,000 | | 8 | Backhoe; 0.60 m3 | 120.0 | 19.05 | 5 | 2,000 | 16.00 | 292,000 | | 9 | Backhoe: 0.70 m3 | 127.0
220.0 | 7.40 | | 2,000 | 8.60 | 101,000 | | 10 | Truck Mixer; 3.0 m3 | | | | 2,000 | 6.60 | 52,000 | | 11 | Truck; 4.5 ton | 183.0
253.0 | 7.10 | | 2,000 | 9.90 | 99,000 | | 12 | Dumptruck: 8 ton | | 9.55 | | 2,000 | | 140,000 | | 13 | Dumptruck: 11 ton | 334.0
96.0 | 22.40 | | 2,000 | 6.30 | 287,000 | | 14 | Crawler Crane; 16 ton | | 27.75 | 5 | 2,000 | 7.60 | 363,000 | | 15 | Crawler Crane; 27 ton | 115.0 | 37.35 | | 2,000 | 7.70 | 509,000 | | | Crawler Crane: 37 ton | 117.0 | | | | 7.70 | 322,000 | | 17 | Truck Crane: 16 ton | 230.0 | 19.80
10.10 | | 2,000 | | 127,000 | | 18 | Tire Roller; 8 ton | 99.0 | | | 2,000 | | 710,000 | | | Oiesel Hammer; 2.5 ton | 102.0 | 59.50 | | 2,000 | | 149,000 | | 20 | Portable Concrete Mixer; 0.5 m3 | 7.4 | 7,40 | | 2,000 | | 810,000 | | 21 | Concrete Plant; 1.0 m3 | 49.0 | 50.00 | | 2,000 | | 36,000 | | 22 | Compressor; 5.0 m3/min | 50.0 | 0.95
1.50 | | 2,000 | | | | 23 | Compressor; 7.6 m3/min | 81.0 | 0.57 | | 2,000 | | 15,000 | | 24 | Generator; 10 kVA | 15.4
27.0 | 0.37 | | 2,000 | | 30,000 | | 25 | Generator; 20 kVA | 54.4 | 1.20 | | 2,000 | | 37,000 | | 26 | Generator; 45 kVA | | 2.80 | | 2,000 | the state of s | 87,000 | | 27 | Generator; 150 kVA | 187.5
47.0 | | | 2,000 | | 62,000 | | 28 | Wheel Loader: 0.6 m3 | | 4.65 | | 2,000 | | 78,000 | | 29 | Wheel Loader; 0.8 m3 | 54.0 | 4.00 | 15 | 2,000 | | 377,000 | | 30 | Pontoon Barge; 200 ton | : | - | 15 | 2,000 | | 131,000 | | 31 | Scow; 150 m3
Backhoe with Breaker; 600 kg | 120.0 | 18.97 | | 2,000 | | 299,000 | Table XII.2.4 WORK UNIT COSTS OF HEAVY EQUIPMENT | | | Owning Cost *1 | | Operation Cost *2 | ost *2 | Maintenance Cost | e Cost | | Total | | |----------|------------------------------|-------------------|------------|-------------------|------------|-------------------|---------|---------------------------------|----------|----------| | <u>8</u> | Kina of Equipment | F.C. L.C. | | F.C. | L.C. | | L.C. | i
i
i
i
i
i
i | L.C. | Total | | | | (Rp./hr) (Rp./hr) | (<u>C</u> | (Rp./hr) (Rp./hr) | Rp./hr) | (Rp./hr) (Rp./hr) | Rp./hr) | (Rp./hr) | (Rp./hr) | (Rp./hr) | | - | Bulldozer; 15 ton | 37,350 | ó | 4,639 | 9,159 | 4,980 | 2,490 | 46,969 | 11,649 | 58,618 | | 8 | 2 Backhoe; 0.60 m3 | 35,550 | 0 | 3,796 | 8,316 | 4,740 | 2,370 | 44,086 | 10,686 | 54,772 | | m | Dumptruck; 11 ton | 15,284 | | 5,858 | 5,454 | 2,651 | 1,325 | 23,793 | 6,779 | 30,572 | | 4 | Tire Roller; 8 ton | 19,050 | 0 | 1,703 | 6,723 | 2,540 | 1,270 | 23, 293 | 7,993 | 31,286 | | ហ | Diesel Hammer; 2.5 ton | 106,500 | 0 | 3,374 | 7,894 | 14,200 | 7,100 | 124,074 | 14,994 | 139,068 | | 9 | Wheel Loader; 0.8 m3 | 11,700 | 0 | 1,395 | 5,915 | 1,560 | 780 | 14,655 | 6,695 | 21,350 | | ~ | Concrete Plant; 1.0 m3 | 67,500 | 0 | 200 | 15,260 | 16,200 | 8,100 | 84,200 | 23,360 | 107,560 | | ω | Generator; 150 kVA | 13,050 | 0 | 5,483 | 9,683 | 1,740 | 870 | 20,273 | 10,553 | 30,826 | | თ | Crawler Crane; 37 ton | 76,350 | 0 | 2,043 | 7,063 | 10,180 | 2,090 | 88,573 | 12,153 | 100,726 | | 10 | Truck Mixer: 3.0 m3 | 15,150 | 0 | 2,239 | 4,474 | 2,020 | 1,010 | 19,409 | 5,484 | 24,893 | | 11 | Truck Crane; 16 ton | 48,300 | 0 | 2,077 | 6,017 | 6,440 | 3,220 | 56,817 | 9,237 | 66,054 | | 12 | Pontoon Barge; 200 ton | 21,363 | 0 | 0 | 0 | 3,770 | 1,885 | 25, 133 | 1,885 | 27,018 | | 13 | Scow; 150 m3 | 7,423 | 0 | 0 | © , | 1,310 | 655 | 8,733 | 655 | 9,388 | | 14 | Backhoe with Breaker; 600 kg | 44,850 | 0 | 3,796 | 8,316 | 5,980 | 2,990 | 54,626 | 11,306 | 65,932 | | 15 | Truck; 4.5 ton | 7,800 | 0 | 1,607 | 3,687 | 1,040 | 520 | 10,447 | 4,207 | 14,654 | | ļ | | | | | | | | | | | Notes: *1 Owning cost is composed of Depreciation value, interest, etc. ^{*2} Operation cost includes fuel,oil,grease and operator cost. Table XII.3.1 (1/2) UNIT COSTS OF CONSTRUCTION WORKS FOR URGENT PROJECT (FINANCIAL) | ٠ | Description | lle i k | | Unit Cost | | |----------|--|----------------|---------------|---------------|--------------------| | | Description | Unit - | F.C.
(Rp.) | L.C.
(Rp.) | Total
(Rp.) | |
1 | Excavation; Common 1 in West Floodway | m3 | 4,600 | 1,200 | 5,800 | | 2 | Excavation; Common 1 in Garang River | m3 | 6,700 | 1,800 | 8,500 | | 3 | Excavation: Common 1 for Embankment | m3 | 3,800 | 1,000 | 4,800 | | 4 | Excavation: Common 2 in West Floodway | m3 | 5,300 | 1,400 | 6,700 | | 5 | Excavation; Common 2 in Garang River | m3 | 7,400 | 2,000 | 9,400 | | | Excavation; River Mouth | m3 | 6,400 | 1,900 | 8,300 | | 7 | Embankment | m3 | 2,000 | 600 | 2,600 | | 8 | Reinforced Concrete for Weir | m3 | 254,000 | 254,000 | 508,000 | | 9 | Reinforced Concrete for Pier | m3 | 163,000 | 176,000 | 339 000 | | 10 | Reinforced Concrete for Fixed Weir | m3 | 189,000 | 213,000 | 402,000 | | 11 | Retaining Wall: Type A | m | 154,000 | 210,000 | 364,000 | | 12 | Retaining Wall; Type B | · m | 87,000 | 144,000 | 231,000 | | 13 | Retaining Wall; Type C (H=9.0 m) | m | 3,800,000 | 2,970,000 | 6,770,000 | | 14 | Retaining Wall; Type D (H=6.0 m) | m | 2,270,000 | 1,890,000 | 4,160,000 | | 15 | Retaining Wall; Type E | m | 3,230,000 | 3,020,000 | 6,250,000 | | 16 | Ground Sill; Type A | m3 | 335,000 | 344,000 | 679,000 | | 17 | Ground Sill; Type B | m3 | 352,000 | 388,000 | 740,000 | | 18 | Ground Sill; Type C | m3 | 352,000 | 388,000 | 740,000 | | 19 | Ground Sill; Type D | m3 | 352,000 | 388,000 | 740,000 | | 20 | Revetment; Type A | m2 | 26,400 | 35,900 | 62,300 | | 21 | Revetment: Type B | m2 | 28,000 | 36,400 | 64,400 | | 22 | Revetment; Type C | m2 | 41.300 | 58,800 | 100,100 | | 23 | Pile Driving (D=350mm,L=12m) | pc | 466,000 | 376,000 | 842,000 | | 24 | Pile Driving (D=400mm,L=12m) | pc | 565,000 | 465,000 | 1,030,000 | | 25 | Pile Driving (D=500mm,L=12m) | pc | 810,000 | 700,000 | 1,510,000 | | 26 | Pile Driving (D=500mm,L=15m) | pc | 1,000,000 | 870,000 | 1,870,000 | | 27 | Sheet Pile Driving (t=0.2m,L=3m) | m2 | 109,000 | 92,000 | 201,000 | | 28 | Sheet Pile Driving (t=0.3m,L=15m) | m2 | 146,000 | 135,000 | 281,000 | | 29
29 | Log Pile (D=100mm,L=3m) | pc | 2,900 | 6,400 | 9,300 | | 30 | Demolition of Concrete | m3 | 19,500 | 7,100 | 26,600 | | 31 | Concrete Block; t=0.5m | m2 | 24,700 | 52,500 | 77,200 | | 32 | Gabion Mattress; t=0.5m | m2 |
12,800 | 17,800 | 30,600 | | 33 | Sodding | m2 | 100 | 1,000 | 1.100 | | 34 | Flap Gate; 1.0m x 1.0m | L.S. | 24,300,000 | 7,000,000 | 31,300,000 | | 35 | Flap Gate: 1.5m x 1.5m | L.S. | 64,600,000 | 8,900,000 | 73,500,000 | | 36 | Flap Gate: 2.0m x 2.0m | L.S. | 110,800,000 | 17,800,000 | 128,600,000 | | 37 | Culvert with Slide Gate; 1.0m * 1.0m | L.S. | 213,000,000 | 164,000,000 | 377,000,000 | | 38 | Culvert with Slide Gate; 1.5m * 1.5m | L.S. | 261,000,000 | 202,000,000 | 463,000,000 | | | Culvert with Slide Gate; 1.5m * 2.0m | L.S. | 342,000,000 | 255,000,000 | 597,000,000 | | 40 | Main Gate 1 | m2 | 25,200,000 | 10,800,000 | 36,000,000 | | 41 | Main Gate 2 | m2 | 26,600,000 | 11,400,000 | 38,000,000 | | 42 | Small Roller Gate for Intake | m2 | 29,400,000 | 12,600,000 | 42,000,000 | | 42
43 | Bridge for Weir (Superstructure) | m2 | 29,400,000 | 210,000 | 420,000 | | 43
44 | Control House & Gate House | L.S. | 28,000,000 | 112,000,000 | 140,000,000 | | 44 | | | | 1,400,000 | 9,400,000 | | | Railway Bridge (Superstructure) Concrete Bridge (Superstructure) | m ² | 8,000,000 | | | | 46 | | m2 | 260,000 | 260,000 | 520,000
629,000 | | 47
40 | Retaining Wall; Type A-2B | TÎ) | 264,000 | 365,000 | - | | 48 | Retaining Wall; Type 8-18 | m | 131,000 | 219,000 | 350,000 | Table XII.3.1 (2/2) UNIT COSTS OF CONSTRUCTION WORKS FOR URGENT PROJECT (ECONOMIC) | | | | | | Unit Cost | | |-----|---------------------------------------|---|--------|-------------|-------------|-------------| | | Description | | Unit . | F.C. | L.C. | Total | | | | | | (Rp.) | (Rp.) | (Rp.) | | 1 | Excavation; Common 1 in West Floodway | | m3 | 4,200 | 1,100 | 5,30 | | 2 | Excavation: Common 1 in Garang River | | m3 | 6,100 | 1,700 | 7,80 | | 3 | Excavation; Common 1 for Embankment | | m3 | 3,500 | 900 | 4,40 | | | Excavation; Common 2 in West Floodway | | m3 | 4,800 | 1,300 | 6.10 | | 5 | Excavation; Common 2 in Garang River | | m3 | 6,700 | 1,800 | 8,50 | | 6 | Excavation: River Mouth | | m3 | 5,800 | 1,700 | 7,50 | | 7 | Embankment | | m3 | 1.800 | 500 | 2,30 | | 8 | Reinforced Concrete for Weir | | m3 | 230,000 | 225,000 | 455,00 | | 9 | Reinforced Concrete for Pier | | m3 | 148,000 | 157,000 | 305,00 | | 0 | Reinforced Concrete for Fixed Weir | | m3 | 171,000 | 190,000 | 361,00 | | 1 | Retaining Wall; Type A | | m | 140,000 | 189,000 | 329,00 | | 2 | Retaining Wall: Type B | | m | 79,000 | 130,000 | 209.00 | | 3 | Retaining Wall; Type C (H=9.0 m) | | m | 3,430,000 | 2,660,000 | 6,090,00 | | 4 | Retaining Wall: Type D (H=6.0 m) | | m | 2,050,000 | 1,700,000 | 3,750,00 | | 5 | Retaining Wall: Type E | | m | 2,920,000 | 2,740,000 | 5,660,00 | | 6 | Ground Sill: Type A | | m3 | 304,000 | 306,000 | 610,00 | | 7 | Ground Sill; Type B | | m3 | 319,000 | 338,000 | 657,00 | | 8 | Ground Sill: Type C | | m3 | 319,000 | 338,000 | 657,00 | | 9 | Ground Sill; Type D | | m3 | 319,000 | 338,000 | 657,00 | | 0 | Revetment; Type A | | m2 | 23,900 | 32,200 | 56,10 | | 1 | Revetment; Type B | | m2 | 25,500 | 32,500 | 58,00 | | 2 | Revetment; Type C | | m2 | 37,500 | 53,000 | 90,50 | | 3 | Pile Driving (D=350mm,L=12m) | | рс | 423,000 | 340,000 | 763,00 | | 4 | Pile Driving (D=400mm,L=12m) | | рс | 511,000 | 420,000 | 931,00 | | 5 | Pile Driving (D=500πm,L=12m) | | рс | 740,000 | 640,000 | 1,380,00 | | 6 | Pile Driving (D=500mm,L=15m) | | рс | 900,000 | 790,000 | 1,690,00 | | 7 | Sheet Pile Driving (t=0.2m,L=3m) | | m2 | 99,000 | 84,000 | 183,00 | | В | Sheet Pile Driving (t=0.3m,L=15m) | | m2 | 132,000 | 123,000 | 255,00 | | 9 | Log Pile (D=100mm,L=3m) | | рс | 2,700 | 5.800 | 8,50 | | 0 | Demolition of Concrete | | m3 | 17,800 | 6,300 | 24,10 | | ı | Concrete Block; t=0.5m | - | m2 | 22,700 | 46,700 | 69,40 | | 2 | Gabion Mattress; t=0.5m | | m2 | 11,600 | 15,200 | 26,80 | | 3 | Sodding | | m2 | 100 | 800 | 90 | | 1 | Flap Gate: 1.0m x 1.0m | | l.S. | 22,100,000 | 6,200,000 | 28,300,00 | | 5 | Flap Gate: 1.5m x 1.5m | | L.S. | 58,700,000 | 8,000,000 | 66,700,00 | | 5 | flap Gate: 2.0m x 2.0m | | L.S. | 101,200,000 | 16,200,000 | 117,400,00 | | 7 | Culvert with Slide Gate; 1.0m * 1.0m | | L.S. | 195,000,000 | 148,000,000 | 343,000,00 | | 3 | Culvert with Slide Gate; 1.5m * 1.5m | | L.S. | 238,000,000 | 182 000 000 | 420,000,00 | | } ' | Culvert with Slide Gate; 2.0m * 2.0m | | L.S. | 312,000,000 | 230,000,000 | 542,000,00 | |) | Main Gate 1 | | m2 | 22,900,000 | 9,800,000 | 32,700,00 | | ì | Main Gate 2 | | m2 | 24,200,000 | 10,400,000 | 34,600,000 | | 2 | Small Roller Gate for Intake | | m2 | 26,700,000 | 11,500,000 | 38,200,00 | | 3 | Bridge for Weir (Superstructure) | | m2 | 190,000 | 190,000 | 380,000 | | 1 | Control House & Gate House | | L.S. | 25,500,000 | 101,800,000 | 127,300,000 | | 5 | Railway Bridge (Superstructure) | | m | 7,300,000 | 1,300,000 | 8,600,00 | | 5 | Concrete Bridge (Superstructure) | | m2 | 236,000 | 236,000 | 472,000 | | 7 | Retaining Wall; Type A-28 | | m | 239,000 | 328,000 | 567,000 | | | Retaining Wall; Type 8-18 | | m | 119,000 | 196,000 | 315,000 | Table XII.3.2 COST COMPARISON OF ALTERNATIVES FOR SIMONGAN WEIR | *************************************** | | CASE 1
Roller Gate | l
Gate | CASE
Radia | CASE 2
Radial Gate | CASE 3
Rubber Gate | 3
Gate | CASE 4 Tilting Gate | at e | |---|-----------------------------------|-----------------------|--------------------------|--------------------|--------------------------|-----------------------|--------------------------|---------------------|--------------------------| | ua1 | | Quantity | Total Cost
(Mill.Rp.) | | 1. Civil Works | | | 6,813 | | 865,8 | | 6,211 | | 6,406 | | (1) Diversion Works & Dewatering | tering | | | | | | | | 305 | | Demolition | | _ | m3 319 | | 319 | _ | 3 319 | | 319 | | Excavation; | n 2-6 | - | | | | | | | 99 | | (4) Revetment; Type C | | 1,110 m
520 m | | 1,110 m2
570 m2 | | 1,110 m2
520 m2 | | 1,110 m2 | 111 | | | | | m | | | | | | 3.124 | | Foundation Pile: | mm, L=12m | | | | | | | | 272 | | D=400r | D=400mm, L=12m | | | | | | | | 148 | | | D=350mm,L=12m | | | | | | | | 404 | | Sheet Pile; | £ | | | | | | | 1,380 m2 | 27.7 | | | • | | | | | | | | 545 | | (10)Concrete Block: t=0.5m | = 6 | | m2 219 | | 219 | | | 2,830 m2 | 219 | | (12)Bridge | = | | | | | | | | 436 | | (13)Control House & Gate House | onse | | | | | | 120 | | 120 | | 2. Steel Works | | | 11,198 | | 12,457 | | 12,149 | | 11,451 | | (1) Main Gate 1; Gate Leaf | Leaf | | | 244 m | | | 2 7,236 * | .249 m2 | 4,656 | | Guide | Guide Frame | | | 1 1.5 | | 0 | | I LS | 762 | | Hoist | Hoisting Equipment | | | | | | | | 3,048 | | | rage | | | | | | ÷ | | 0 | | (2) Main wate 2; wate Lear | wate Lear | | | 4C - | | 20. | | | 1,128 | | PO TO | dulue rigue
Hoistina Fauinment | -1
-
-1 | 534 | 3 -
- | | 7 - | | 3 2 | 503 | | Anchorage | rage | 0 | : | : <u>-</u> | | . 0 | | 4 0 | 777 | | (3) Steel Stop Log | | - | S 650 |
 | 5 510 |
 | | 1 | 970 | | | | | | | | | | | | | Total | | | 18,011 | | 19,055 | | 18,360 | | 17,857 | | | | | | | | | | | | Note: * The cost of the rubber gate was made double, because its working life is the half of others. Antimetro Table XII.3.3 COST COMPARISON OF ALTERNATIVES FOR WEST FLOODWAY | | | | Alt.1
Excavat | | Alt
Emban | | |--|------------------|----------|------------------|--------------------------|--------------|------------------------| | | Item | | Quantity | Total Cost
(Mill.Rp.) | Quantity | Total Cos
(Mill.Rp. | | I.Construction Works | | *** | | 11.158 | | 20.876 | | 1.Preparatory Works | | | | 1,015 | | 1,898 | | 2.River Improvement Work | cs · | | | 5,591 | | 3,360 | | (1) Excavation; | Common 1-F | m3 | 339,000 | 1,966 | 0 | (| | , -, | Common 2-F | m3 | 226,000 | 1,514 | 0 | | | | River Mouth | m3 | 98,000 | 813 | Ō | | | (2) Retaining Wall: | Type A | m | 0 | 0 | 1,800 | 65 | | (dy notaliting marry | Type 8 | m | 3,000 |
693 | 5.520 | 1.93 | | (3) Revetment: | Type A | m2 | 6.580 | 410 | 9.280 | 57 | | (a) maratmane, | Type B | m2 | 3,020 | 195 | 3,020 | 19 | | 3.Reconstruction of Rail | | | | 1.767 | 5,020 | 1.78 | | (1) Demolition | Dad Di lago | m3 | 1.050 | 27 | 1.050 | 2 | | (2) Excavation: | Common 2-F | m3 | 11,600 | 77 | 11.600 | 7 | | (3) Back Filling | COMMON E-1 | m3 | 10,700 | 27 | 10,700 | 2 | | (4) Reinforced Concrete | , | m3 | 960 | 325 | 1,000 | 33 | | | D=500nm,L=15m | DC · | 100 | 187 | 100 | 18 | | (6) Superstructure | b ovviin, c rain | . M | 98 | 921 | 98 | 92 | | (7) Approaches | | LS | 1 | 47 | î | 4 | | (8) Temporary Bridge | | LS | i | 156 | i. | 15 | | 4.Reconstruction of Road | Rridge . | | | 0 | | 3.19 | | (1) Demolition | bi rage | т3 | 0 | ŏ | 4,080 | 109 | | (2) Excavation: | Common 2-D | m3 | ň | ŏ | 33,300 | 22 | | (3) Back Filling | CONTROLL E | m3 | ŏ | Ŏ | 30,900 | 8 | | (4) Reinforced Concrete | . | m3 | ŏ | ŏ | 2,450 | 83 | | () | D=500mm, L=15m | DC | ŏ | ň. | 240 | 44 | | (6) Superstructure | 5-300mm; E-15m | ĹŠ | Ŏ | Ŏ. | 2,088 | 1.08 | | (7) Approaches | | LS | ŏ | ő | 1 | 13 | | (8) Temporary Bridge | | LS | 0 | ŏ | î | 27 | | 5.0thers | | | | 1,863 | | 8.91 | | (1) Flap Gate: | 1.0m x 1.0m | рс | 2 | 63 | 0 | 0,52 | | (1) I sup date; | 1.5m x 1.5m | pc | | 0 | ő | | | | 2.0m x 2.0m | DC
DC | 14 | 1,800 | . 0 | i | | (2) Culvert with Gate; | | DC | 0 | 1,000 | . 5 | 1,88 | | (2) carver c with date, | 1.5m x 1.5m | DC | 0 | ő | 1 | 463 | | | 2.0m x 2.0m | DC | 0 | 0 | 11 | 6.56 | | 6.Miscellaneous Works | 2.001 A 2.001 | | | 922 | | 1,725 | | I.Compensation Cost | ·. · | | | 0 | | . (| | 1.Land Acquisition; Resi | dential Grade A | m2 | 0 | ŏ | 0 | Ò | | The state of s | Grade B | | Ö | ő | Ŏ | à | | Paddy | Land | m2 | Õ | ŏ | Ŏ | Č | | • | Class A | DC DC | ŏ | ŏ | .0 | . (| | - | Class B | DC | Ö | ŏ | Õ | ò | | | Class C | pc . | ŏ | Ŏ | Ō | č | | Total | · | | | 11,158 | <u> </u> | 20,876 | Table XII.3.4 COST COMPARISON OF ALTERNATIVES FOR GARANG RIVER | | | | Excava | Alt,2
ation with | A
Movable Weir | Alt.
Embankment wit | | |---|--------------------|----------|-----------|---------------------|--------------------------|------------------------|------------------------| | | Item | Unit | | Quantity | Total Cost
(Mill.Rp.) | Quantity | Total Cos
(Mill.Rp. | | I Construction Works | | | | | 33,891 | | 30,619 | | 1.Preparatory Works | • | | | | 3,081 | | 2,78 | | 2.River Improvement Work | S | - ~ - | | | 6,414 | رمرج مرحاحات | 4,79 | | Excavation; | Common 1-G | m3 | | 276,800 | 2,353 | 0 | | | 4 | Common 1-EM | m3 | | 10,200 | 49 | 23,100 | 111 | | | Common 2-G | m3 | | 72,000 | 677 | 0 | (| | (2) Embankment | • | m3 | | 10,200 | 26 | 23,100 | - 60 | | (3) Revetment; | Type A | m2 | | 2,110 | 132 | 13,100 | 816 | | | Type B | m2 | | 32,200 | 2,074 | 29,800 | 1,919 | | (4) Sodding | | m2 | | 3,880 | 4 | 6,940 | | | (5) Retaining Wall; | Type A | m | | . 0 | 0 | 2,150 | 1,35 | | (6) Ground \$111; | Type A | m3 | | 1,040 | 706 | - 0 | . (| | • | Type B | m3 | | 110 | 82 | 110 | 83 | | • | Туре С | m3 | | 30 | 23 | 30 | 2: | | | Type D | m3 | | 390 | 288 | 390 | 288 | | (7) Maintenance Road | | LS | | 0 | . 0 | 1 | 136 | | 3.Reconstruction of Simo | | | . | | 18,011 | | 7,398 | | (1) Diversion Works & D | ewatering | LŞ | | 1 | 324 | 1 | 31. | | (2) Demolition | | m3 | | 12,000 | 319 | 12,000 | 319 | | | Common 2-G | m3 | | 6,710 | 63 | 7,950 | 7! | | | Туре С | m2 | | 1,110 | 111 | 1,110 | 11 | | (5) Sodding | | m2 | | 570 | 1 | 570 | | | (6) Reinforced Concrete | | m3 | | 6,790 | 3,450 | 8,800 | 3,53 | | | D≈500mm, L=12m | рс | | 216 | 326 | 126 | 19 | | | D=400mm, L=12m | рc | | 135 | 139 | 180 | 18 | | | D=350mm, L=12m | рc | | 480 | 404 | 480 | 40 | | (8) Sheet Pile: | t≈0.2m | m2 | | 1,380 | 277 | 1,380 | 27 | | (9) Main Gate 1 | | m2 | | 236 | 8,496 | 0 | 9 | | (10)Main Gate 2 | | m2 | | 54 | 2,052 | 0 | | | (11)Scouring Sluice | - · | m2 | | 0 | 0 | 18 | 828 | | | Type C | m | | 80 | 542 | 20 | 13 | | | Type 0 | m | | 0 | 0 | 60 | 249 | | (14)Concrete Block; | t=0.5m | m2 | | 2,830 | 219 | 2,830 | 219 | | (15)Gabion Mattress; | t=0.5m | m2 | | 2,020 | 62 | 2,020 | 67 | | (16)Bridge | . a. Harria | m2 | | 1,040 | .436 | 1,040 | 431 | | (17)Control House & Gat | e House | LS | | 1 | 140 | 1 | 51 | | (18)Steel Stop Log
4.Intake Structure | | LS | | 1 | 650 | 0 | 1 01 | | (1) Demolition | | | | 350 | 2,334
9 | 350 | 1,81 | | | Common 2-G | m3
m3 | | 150 | 1 | 0
0 | . (| | (2) Excavation; (3) Reinforced Concrete | | m3 | | 510 | 260 | 440 | 22 | | | :
D=350mm,L=12m | | | 60 | C3 | 60 | - | | <pre>(4) Foundation Pile; (5) Sheet Pile;</pre> | t=0.2m | pc
m2 | | 240 | 48 | 240 | 5.
48 | | (6) Gate | L=0.2111 | m2 | | 30 | 1,260 | 22 | 92 | | (7) Retaining Wall; | Type C | m. | | 55 | 372 | 0 | 32. | | (7) Necalling hall; | Туре С
Туре D | m | | 80 | 333 | 135 | 56: | | 5.0thers | Type b | | | | 1,250 | 133 | 11,293 | | (1) Retaining Wall for | DOAM. Two F | m2 | | 200 | 1,250 | 200 | 1,250 | | (2) Flap Gate: | I.Om x I.Om | pc | | 0 | 1,230 | 200
g | 287 | | (3) Culvert with Gate: | | рc | | 0 | ő | 15 | 5,65 | | (3) culver (with date, | 1.5m x 1.5m | pc | | 0 | ő | 5 | 2,31 | | | 2.0m x 2.0m | рс | | ŏ | ŏ | 3 | 1,79 | | 6.Miscellaneous Works | Crom x Crom | | - | | 2,801 | | 2,53 | | I.Compensation Cost | | | | | 0 | | 688 | | 1.Land Acquisition; Resi | dential Grade | A m2 | | 0 | ő | 3,000 | 150 | | Areana magaintion, Resi | Grade | | | 0 | . 0 | 3,000 | 12(| | Dado | ly Land | m2 | | 0 | ŏ | 3,000 | 4 | | | Class A | pc | | 0 | ŏ | 3,000 | 7. | | Trionise Cyacout ion, | Class B | pc | | Ö | 0 | 25 | 17 | | | Class C | рc | | ő | . 0 | 106 | 318 | | Tota l | | | | | 33,891 | | 31,307 | Table XII.3.5 SUMMARY OF URGENT PROJECT COST (FINANCIAL) | | | | · · · · · · · · · · · · · · · · · · · | V | | |--|---------------------|-------------------|---------------------------------------|--------------|-----------| | Description | | Amount | | Total | Total | | | F.C.
(Mill.Rp.)(| L.C.
Mill.Rp.) | Total
(Mill.Rp.) | (1,000 US\$) | (Mill.Yen | | I. Construction Base Cost | 34,700 | 24,646 | 59,346 | 29,191 | 3,663 | | 1. Preparatory Works | 2,659 | 1,436 | 4,095 | 2,014 | 253 | | 2. West Floodway Improvement Works | 3,904 | 1,687 | 5,591 | 2,750 | 345 | | 3. Garang River Improvement Works | 3,940 | 2,474 | 6,414 | 3,155 | 396 | | 4. Reconstruction of Simongan Weir | 11,330 | 6,681 | 18,011 | 8,859 | 1,112 | | 5. Intake Structure | 1,465 | 869 | 2,334 | 1,148 | 144 | | 6. Others | 3,536 | 1,344 | 4,880 | 2,400 | 301 | | 7. Miscellaneous Works | 2,418 | 1,306 | 3,724 | 1,832 | 230 | | Sub-total | 29,252 | 15,797 | 45,049 | 22,159 | 2,781 | | 8. Price Contingency : F.C.3% & L.C.8% | 5,448 | 8,849 | 14,297 | 7,032 | 883 | | II. Compensation Cost | 0 | 0 | 0 | 0 | 0 | | III. Administration Cost | 0 | 4,924 | 4,924 | 2,422 | 304 | | 1. Administration | . 0 | 3,154 | 3,154 | 1,551 | 195 | | 2. Price Contingency ; F.C.3% & L.C.8% | 0 | 1,770 | 1,770 | 871 | 109 | | IV. Engineering Service | 6,948 | 3,950 | 10,898 | 5,361 | 673 | | 1 Deballed Dealer | 2,958 | 1,385 | 4,343 | 2,136 | 268 | | Detailed Design Construction Supervision | 3,172 | 1,303 | 4,626 | 2,275 | 286 | | 2. Construction Supervision | 3,172 | 1,101 | 1,020 | 2,2,3 | 200 | | 3. Price Contingency ; F.C.3% & L.C.8% | 818 | 1,111 | 1,929 | 949 | 119 | | V. Physical Contingency; 10% of I+II+IV | 4,165 | 2,860 | 7,025 | 3,455 | 434 | | VI. Total (I+II+III+IV+V) | 45,813 | 36,380 | 82,193 | 40,429 | 5,074 | | VII .Value Added Tax ; 10% of VI | 0 | 8,219 | 8,219 | 4,043 | 507 | | VIII.Grand Total | 45,813 | 44,599 | 90,412 | 44,472 | 5,581 | | Grand Total (1,000 US | \$) 22,535 | 21,937 | 44,472 | | | | Grand Total (Mill.Yen |) 2,828 | 2,753 | 5,581 | • | | Notes: *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 = Rp.2,033, 1 Yen = Rp.16.20 Table XII.3.6 ANNUAL DISBURSEMENT SCHEDULE FOR URGENT PROJECT (FINANCIAL) | | | | | | | | | | | | | | | | nn . | Unit: Million Rp. | Αp. | |---|----------------|--------|--------|------------|----------|-----------|-------|----------------|------|--------|-----------|---------------|-----------|-----------|-------|-------------------|-----| | | | Amount | | 1994/1995 | 995 | 1995/1996 | 9661 | 1996/1997 | . 16 | 1661 | 8661/1661 | 1998/1999 | 1999 | 1999/2000 | 2000 | 2000/2001 | 001 | | Description | F.C. | ۱. د. | Total | F.C. | ١, ٥, | n. 7. | L.C. | F. C. | | F.C. | ۱. ۵. | F.C. | ;;
[-] | F.C. | 1:0 | й.
С | | | I. Construction Base Cost | 34,700 | 24,646 | 59,346 | 0 | 0 | 0 | 0 | 0 | ٥ | 14,011 | 9,457 | 14,075 | 10,680 | 6,614 | 4,509 | 0 | 0 | | 1. Preparatory Works | 2.659 | 1,436 | 4,095 | 0 | ٥ | ٥ | 0 | 0 | 0 | 1,330 | 718 | 1,329 | 718 | 0 | O | o | C | | | 3,904 | 1,687 | 5,591 | 0 | 0 | 0 | | 0 | 0 | 2,787 | 1,180 | 1,117 | 503 | 0 | 0 | 0 | 0 | | | 3,940 | 2,474 | 6,414 | 0 | 0 | 0 | 0 | 0 | 0 | 797 | 359 | 2,689 | 1,784 | 454 | 331 | 0 | 0 | | | 11,330 | 6,681 | 18,011 | 0 (| 0 | 0 | 0 0 | 0 • | ٥ (| 4,898 | 2,849 | 2,500 | 3,147 | 932 | 685 | 0 (| 0 | | Intake Structure Others | 3,536 | 34.50 | 4.880 | - 0 | 3 0 | - 0 | , o |) 0 | 90 | 2.549 | 938
6 | 387 | 143 | 1,424,1 | 263 | ට ට | ۵ c | | Miscellaneous Works | 2,418 | 1,306 | 3,724 | 0 | 0 | 0 | 0 | 0 | 0 | 725 | 335 | 725 | 392 | 896 | 522 | 0 | ò | | Sub-total | 29,252 | 15,797 | 45,049 | 0 | 0 | 0 | 0 | 0 | 0 | 12,086 | 6,436 | 11,788 | 6,730 | 5,378 | 2,631 | 0 | 0 | | 8. Price Contingency ; F.C.3% & L.C.8% | 5,448 | 8,849 | 14,297 | 0 | o | ٥ | 0 | 0 | 0 | 1,925 | 3,021 | 2,287 | 3,950 | 1,236 | 1,878 | ٥ | 0 | | II. Compensation Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
 0 | 0 | 0 | | III. Administration Cost | 0 | 4,924 | 4,924 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 1,906 | 0 | 2,057 | 0 | 1961 | 0 | 0 | | l. Administration | 0 | 3,154 | 3,154 | ٥ | 0 | 0 | 0 | 0 | 0 | Ģ. | 1,297 | 0 | 1,296 | O | 199 | 0 | | | 2. Price Contingency : F.C.3% & L.C.8% | 0 | 1,770 | 1,770 | 0 | 0 | O | 0 | 0 | 0 | 9 | 609 | 0 | 761 | 0 | 400 | ٥ | 0 | | IV. Engineering Service | 6,948 | 3,950 | 10,898 | 1,569 | 807 | 1,616 | 873 | 0 | 0 | 1,512 | 879 | 1,557 | 949 | 694 | 442 | 0 | 0 | | Detailed Design Construction Supervision | 2,958
3,172 | 1,385 | 4,343 | 1,479 | 692
0 | 1,479 | 693 | 00 | 00 | 1,304 | 0
598 | 1,30 | 598 | 0
564 | 0 | G 0 | 00 | | | 818 | 1,111 | 1,929 | 8 | 115 | 137 | 380 | 0 | ٥ | 208 | 281 | 253 | 351 | 130 | 184 | 8 | • | | V. Physical Contingency; 10% of I+II+IV | 4,165 | 2,860 | 7,025 | 157 | 81 | 162 | 87 | 0 | 0 | 1,552 | 1,034 | 1,563 | 1,163 | 731 | 495 | 0 | 0 | | VI. Total (1+II+)II1+;V+V) | 45,813 | 36,380 | 82,193 | 1,726 | 888 | 1,778 | 960 | 0 | 0 | 17,075 | 13,276 | 17,195 | 14,849 | 8,039 | 6,407 | 0 | 0 | | VII .Value Added Tax ; 10% of VI | O | 8,219 | 8,219 | c | 261 | 0 | 274 | 0 | 0 | 0 | 3,035 | 0 | 3,204 | 0 | 1,445 | 0 | 0 | | VIII.Grand Total | 45,813 | 44,599 | 90,412 | 1,726 | 1,149 | 1,778 | 1,234 | .0 | o | 17,075 | 16,311 | 17,195 18,053 | 18,053 | 8,039 | 7,852 | 0 | 0, | | | | | | | | | | | | | | | | | | | l | Notes : *1 Price Level in July, 1992 *2 Conversion Rate USS 1.00 - Rp.2,033, 1 Yen - Rp.16.20 Burne Table XII.3.7 COST BREAKDOWN FOR URGENT PROJECT (FINANCIAL) | | Item | Quantity | | Unit F | rice | | Amount | | |-------------------------------|------------------|----------------|----------|----------------------|--------------------|--------------------|--------------------|--------------------| | | I felit | quantity | | F.C.
(1,000Rp.) | L.C.
(1,000Rp.) | F.C.
(Mill.Rp.) | L.C.
(Mill.Rp.) | Total
(Mill.Rp. | | 1.Preparatory Works | | | | | | 2,659 | 1,436 | 4,095 | | 2.West Floodway Improv | vement Works | | | | | 3,904 | 1,687 | 5,591 | | (1) Excavation; | Common 1-F | 339,000 | m3 | 4.6 | 1.2 | 1,559 | 407 | 1,966 | | | Common 2-F | 226,000 | m3 | 5.3 | 1.4 | 1,198 | 316 | 1,514 | | * | River Mouth | 98,000 | | 6.4 | 1.9 | 627 | 186 | 813 | | (2) Retaining Wall; | | 3,000 | | 87.0 | 144.0 | 261 | 432 | 693 | | (3) Revetment; | Type A | 6,580 | | 26.4 | 35.9 | 174 | 236 | 410 | | | Type B | 3,020 | m2 | 28.0 | 36.4 | 85 | 110 | 195 | | 3.Garang River Improve | | | | | | 3,940 | 2,474 | 6,414 | | Excavation; | Common 1-G | 276,800 | _ | 6.7 | 1.8 | 1,855 | 498 | 2,353 | | | Common 1-EM | 10,200 | m3 | 3.8 | 1.0 | 39 | 10 | 49 | | (0) = 1 | Common 2-G | 72,000 | m3 | 7.4 | 2.0 | 533 | 144 | 677 | | (2) Embankment | * i | 10,200 | m3 | 2.0 | 0.6 | 20 | 6 | 26 | | (3) Revetment: | Type A | 2,110 | m2 | 26.4 | 35.9 | 56 | 76 | 132 | | (a) calusta | Type B | 32,200 | m2 | 28.0 | 36.4 | 902 | 1,172 | 2,074 | | (4) Sodding | Time 1 | 3,880
1,040 | | 0.1
335.0 | 1.0
344.0 | 0
348 | 4 250 | 706 | | (5) Groundsill; | Type A | 110 | m3
m3 | 352.0 | 388.0 | 340
39 | 358
43 | 82 | | • | Type B | 30 | m3 | 352.0 | 388.0 | 11 | 12 | 23 | | | Type C
Type D | 390 | | 352.0 | 388.0 | 137 | 151 | 288 | | 4.Reconstruction of Si | | | | 332.0 | 300.0 | 11,330 | 6,681 | 18,011 | | (1) Diversion Works | | 1 | | 166,000.0 | 158,000.0 | 166 | 158 | 324 | | (2) Demolition | a beliater mg | 12,000 | | 19.5 | | 234 | 85 | 319 | | (3) Excavation: | Common 2-G | 6,710 | m3 | 7.4 | | 50 | 13 | 63 | | (4) Revetment: | Type C | 1,110 | | 41.3 | 58.8 | 46 | 65 | 111 | | (5) Sodding | 1,700 0 | 570 | m2 | 0.1 | 1.0 | Õ | 1 | 1 | | (6) Reinforced Concr | ete | 6,790 | | 254.0 | 254.0 | 1,725 | 1,725 | 3,450 | | (7) Foundation Pile; | D=500mm,L=12m | 216 | рс | 810.0 | 700.0 | 175 | 151 | 326 | | | D=400mm,L=12m | 135 | рс | 565.0 | 465.0 | 76 | 63 | 139 | | | D=350mm, L=12m | 480 | рс | 466.0 | 376.0 | 224. | .180 | 404 | | (8) Sheet Pile: | t=0.2m | 1,380 | m2 | 109.0 | 92.0 | 150 | 127 | 277 | | (9) Main Gate 1 | | 236 | m2 | 25,200.0 | 10,800.0 | 5,947 | 2,549 | 8,496 | | (10)Main Gate 2 | | 54 | m2 | 26,600.0 | 11,400.0 | 1,436 | 616 | 2,052 | | (11)Retaining Wall; | | 80 | m | 3,800.0 | 2,970.0 | 304 | 238 | 542 | | (12)Concrete Block; | | 2,830 | m2 | 24.7 | 52.5 | 70 | 149 | 219 | | (13)Gabion Mattress; | t=0.5m | 2,020 | m2 | 12.8 | 17.8 | 26 | 36 | 62 | | (14)Bridge | | 1,040 | m2 | 210.0 | | 218 | 218 | 436 | | (15)Control House & | Gate House | 1 | LS | 28,000.0 | 112,000.0 | 28 | 112 | 140 | | (16)Steel Stop Log | | 1 | LS | 455,000.0 | 195,000.0 | 455 | 195 | 650 | | 5.Intake Structure | | 250 | | | | 1,465 | 869 | 2,334 | | (1) Demolition | 0 | 350 | | 19.5 | 7.1 | 7 | 2 | 9 | | (2) Excavation: | Common 2 | 150 | | 7.4 | 2.0 | . l | 120 | 260 | | (3) Reinforced Concr | | 510 | | 254.0 | 254.0 | 130 | 130 | 260 | | (4) Foundation Pile; | | 940 | pc | 466.0 | 376.0 | 28 | 23 | 51
49 | | | t=0.2m | 240 | | 109.0 | 92.0 | . 26 | .22 | 1 260 | | (6) Gate | Tuno C | | m2 | 29,400.0 | | 882 | 378
163 | 1,260 | | (7) Retaining Wall; | | 55
80 | | 3,800.0 | 2,970.0 | 209
182 | 163
151 | 372
333 | | 6.0thers | Type D | 80 | 181 | 2,270.0 | 1,890.0 | | 1,344 | 4,880 | | (1) Railway Bridge | | | 15 | 1,290,000.0 | 477,000.0 | 3,536
1,290 | 477 | 1,767 | | (2) Retaining Wall f | or PDAM. Tune 5 | | | 3,230.0 | 3,020.0 | 646 | 604 | 1,250 | | (3) Flap Gate: | 1.0m x 1.0m | 200 | nc | 24 300 n | 7 000 O | 49 | 14 | 63 | | fol 1 inh nace! | 1.5m x 1.5m | 2 | pc | 24,300.0
64,600.0 | 7,000.0
8,900.0 | 0 | 0 | . 03 | | : | 2.0m x 2.0m | 14 | pr
pr | 110,800.0 | 17,800.0 | 1,551 | 249 | 1,800 | | 7.Miscellaneous Works | | | | 120,00010 | ,500,0 | 2,418 | 1,306 | 3,724 | | Total | | | | | | 29,252 | 15,797 | 45,049 | | | 1 | | | | | | , | | Table XII.3.8 ANNUAL DISBURSEMENT SCHEDULE FOR URGENT PROJECT (ECONOMIC) | | | | Amount | | | 1994/1995 | 35 | 1995/1996 | 966 | 1996/1997 | 1997 | 1997 | 1997/1998 | 1998, | 1998/1999 | 1999/ | 1999/2000 | 2000/2001 | 2001 | |---|------|----------------|---------|--------|---|-------------|---------------|---------------|-------------|---------------|---------------|--------|-----------|------------|-----------|----------|------------|---------------|------| | Description | 1 | F.C. | L.C. | Total | 1 | ۳.
تن. | ,
 ;; | F.C. | L.C. | F.C. | L.C. | | L.C. |
 | [:0: | F.C. | L.C. | F.C. | 1.0. | | . Construction Base Cost | | 26,583 | 14, 263 | 40,846 | | 0 | 0 | o | 0 | 0 | 0 | 10,982 | 5,824 | 10,712 | 990'9 | 4,889 | 2,373 | • | 0 | | ************************************** | | 5 417 | 1 207 | 2 71.4 | | c | c | c | | c | c | 900 | 079 | 300 | 9 | < | c | • | | | | | 71477 | 1,53/1 | ****** | | . | , | > < | . | • | , | 1,50 | 8 6 | 202.1 | ę ę | 00 | 3 (| > (| 20 | | 2. Company Diver Improvement Monte. | | , c | 4,0 | 280,4 | | > < | > c | > c | э с | > c | 5 C | £ 67. | 2/0/1 | 20,1 | 705 |) ; | ၁ စွ | - | 90 | | | | 20,00 | 200 | 7,014 | | > < | > < | | | | | 7 4 | 3,50 | 200 | 3 6 | 114 | 067 |) | 9 6 | | 4. Reconstruction of Simongan well | | 10,233 | 0,010 | 10,51 | | . | > c | . | > | . | - | 90,4 | 0/6'7 | 4 | 7,832 | ж с
с | 970 | O • | 5 (| | 5. Intake structure | | 7,50 | \$ 5 | 111.7 | | > | > < | > < | |) | > c | 2 . | ခ | ž į | 9 5 | 1,289 | 647 | 0 | 0 | | o. Utners7. Miscellaneous Works | | 2,241 | 1,179 | 3,376 | | 00 | 90 | 00 | - 0 | 00 | 90 | 659 | 35.4 | 659
659 | 35.55 | 1,461 | 239
471 | 0 0 | 00 | | Sub-total | • | 26,583 | 14,263 | 40,846 | : | 0 | | 0 | 0 | 0 | 0 | 10,982 | 5,824 | 10,712 | 990'9 | 4,889 | 2,373 | 0 | | | 8. Price Contingency ; F.C.0% & L.C.0% | 8 | ٥, | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | `. o | | 0 | 9 | Ü | | II. Compensation Cost | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | III. Administration Cost | | 0 | 3,154 | 3,154 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,297 | 0 | 1,296 | 0 | 561 | 0 | | | 1. Administration | | 0 | 3,154 | 3,154 | | 0 | | 0 | o | 0 | 0 | | 1,297 | | 1,296 | | 561 | 0 | J | | 2. Price Contingency ; F.C.O% & L.C.O% | 3 | • | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | ٥. | 6 | Ŭ. | | IV. Engineering Service | | 6,130 | 2,839 | 8,969 | | 1,479 | 269 | 1,479 | 693 | 0 | 0 | 1,304 | 598 | 1,304 | 598 | 564 | 258 | 0 | | | Detailed Design Construction Supervision | | 2,958
3,172 | 1,385 | 4,343 | | 1,479 | 692
0 | 1,479 | 693 | 00 | . 00 | 1,304 | 0
598 | 1,304 | 965 | 56 O | 0
528 | • • | 00 | | 3. Price Contingency ; F.C.O% & L.C.O% | 8 | 0 | 0 | .0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | Ü | | V. Physical Contingency; 10% of I+II+IV | (+IV | 3,274 | 1,709 | 4,983 | | 148 | 69 | 148 | 69 | 0 | 0 | 1,230 | 642 | 1,203 | 999 | 58. | 263 | 0 | ° | | VI. Total (I+II+III+IV+V) | | 35,987 | 21,965 | 57,952 | | 1,627 | 761 | 1,627 | 762 | 0 | 0 | 13,516 | 8,361 | 13,219 | 8,626 | 5,998 | 3,455 | 0 | 0 | | VII .Value Added Tax ; 0% of VI | | 0 | 0 | 0 | | 0 | 0 | O | 0 | 0 | o | 0 | 0 | 0 | 0 | a | 0 | 0 | 0 | | VIII.Grand Total | | 35,987 | 21,965 | 57,952 | | 1,627 | 192 | 1,627 | 762 | 0 | . 0 | 13,516 | 8,361 | 13,219 | 8,626 | 5,998 | 3,455 | 0 | 0 | Notes : *1 Price Level in July, 1992 *2 Conversion Rate US\$ 1.00 - Rp.2,033, 1 Yen - Rp.16.20 Table XII.3.9 ANNUAL OMR COST FOR URGENT PROJECT (ECONOMIC) | I+am | | Quantit | | Unit | Price | | Amount | |
---|---------------|-------------|--------|----------|-----------------------------|---------|--------|-------------------| | Item | | quantit | y | F.C. | L.C.
(1,000Rp.) | F.C. | L.C. | Total
Mill.Rp. | | I. Civil Works | | | | | | - 103.1 | 61.5 | 164.6 | | 1.West Floodway | | | | | | 18,1 | 8.5 | 26.6 | | (1) Excavation; | Common 1-F | 1.700 | m3 | 4.2 | 1.1 | 7.1 | 1.9 | 9.0 | | | | 1,100 | | | | 5.3 | 1 4 | 6.7 | | | River Mouth | 500 | m3 | 5.8 | 1.7 | 2.9 | 0.9 | | | (2) Retaining Wall;
(3) Revetment; | Tyne B | 20 | m | 79.0 | 130.0 | 1.6 | 2.6 | 4.2 | | (3) Revetment. | Type A | 30 | m2 | 23.9 | 130.0
32.2 | 0.7 | | 1.7 | | (a) Heactingtiel | Type R | 20 | m2 | 25.5 | 32.5 | 0.5 | | 1.2 | | 2.Garang River | type o | 20 | 1112 | | | 19.2 | 12.3 | 31.5 | | /1) Evapuation | Common 1-G | 1 400 | m3 | 6.1 | 1.7 | 8.5 | 2.4 | 10.9 | | Excavation; | Common 1-EM | 50 | 1112 | 3.5 | | 0.2 | 0.0 | 0.2 | | • | | | | | | 2.7 | | | | (0) (1) | Common 2-G | 400 | 1113 | | | | | 3.4 | | (2) Embankment | | 50 | m3 | 1.8 | | 0.1 | 0.0 | | | (3) Revetment: | Type A | 10 | m2 | 23.9 | | 0.2 | 0.3 | 0.5 | | | Type B | 200 | m2 | 25.5 | 32.5 | 5.1 | 6.5 | 11.6 | | (4) Ground Sill
3.Simongan Weir | | 1 | LS | 2,390.0 | 2,400.0 | 2.4 | 2.4 | 4.8 | | 3.Simongan Weir | . - | ~ | | | | 31.8 | 22.7 | | | (1) Francisch 2 am - | C | 20 | 3 | 6.7 | 1.8 | 0.2 | 0.1 | 0.3 | | (1) Excavation; (2) Revetment; (3) Sodding (4) Reinforced Concr (5) Main Gate 1 (Pai (6) Main Gate 2 (Pai (7) Retaining Wall; (8) Concrete Block; (9) Gabion Mattress; (10)Bridge | Type C | 10 | m2 | 37.5 | | 0.4 | 0.5 | 0.9 | | (3) Sodding | | 10 | m2 | 0.1 | 8.0 | 0.0 | 0.0 | 0.0 | | (4) Reinforced Concr | ete | 30 | m3 | 230.0 | 225.0 | 6.9 | | 13.7 | | (5) Main Cate 1 /Pai | nting) | 1 | 15 | 13 200.0 | 6,600.0 | 13.2 | 6.6 | 19.8 | | (6) Main Cate 2 (Pai | nting) | 1 | 15 | 3 020 0 | 1,510.0 | 3.0 | 1.5 | 4.5 | | (2) Determine No.11. | Time C | 1 | 12 | 3,430.0 | | 3.4 | 2.7 | 6.1 | | (7) Retaining wair; | type c | 30
T | F3 | 22.7 | | 0.5 | 0.9 | 1.4 | | (8) College Block; | t=0.5m | 10 | 1117 | 11 6 | | | | | | (9) Gabion mattress; | t=U.5M | 10 | mz | 11.6 | 15.2 | 0.1 | 0.2 | 0.3 | | (10)Bridge (11)Control House & (12)Steel Stop Log (| | 1 | L2 | 990.0 | 990.0 | 1.0 | 1.0 | 2.0 | | (11)Control House & | Gate House | I. | ĽŽ | 255.0 | 1,018.0 | 0.3 | 1.0 | 1.3 | | (12)Steel Stop Log (| Painting) | 1 | LS | 2,800.0 | 1,400.0 | 2.8 | 1.4 | 4.2 | | 4. Intake Structure | | | | | | 0.5 | 6.3 | 14.8 | | (2) Excavation; | Common 2-G | 10 | m3 | 6.7 | | 0.1 | 0.0 | 0.1 | | (3) Reinforced Concr | ete
Type C | 5 | m3 | 230.0 | 225.0 | 1.2 | 1.1 | 2.3 | | (6) Gate (Painting) | | 1 | LS | 1,680.0 | 840.0 | 1.7 | 0.8 | 2.5 | | (7) Retaining Wall; | Type C | 1 | LS | 3,430.0 | 840.0
2,660.0
1,700.0 | 3.4 | 2.7 | 6.1 | | | Type D | 1 | L2 | 2,050.0 | 1,700.0 | 2.1 | | 3.8 | | 5.0thers | | | | | | 16 1 | 6.1 | 22.2 | | (1) Railway Bridge | | 1 | LS | 5.880.0 | 2.170.0 | 5.9 | 2.2 | 8.1 | | (2) Potaining Wall f | or PDAM+ Type | Fi | is | 2.920.0 | 2 740 0 | 2.9 | | 5.6 | | (1) Railway Bridge (2) Retaining Wall f (3) Flap Gate; | 1 fm v 1 fm | 5 | nc | 111 0 | 31 0 | 0.2 | 0.1 | 0.3 | | (3) Flap date, | 1.0m × 1.0m | ñ | PC. | 204 0 | 40.0 | 0.0 | 0.0 | 0.0 | | • | 2.0m x 2.0m | 14 | ρ¢ | 506.0 | 81.0 | 7.1 | 1.1 | 8.2 | | 6.Miscellaneous Works | 2.0M X 2.0M | | рс
 | | 01.0 | 9.4 | 5.6 | 15.0 | | I. Administration Cost | | | | | | - 0.0 | 55.4 | 55.4 | | 1.Electrical Charge - | | | | <u>-</u> | | 0.0 | 24.0 | 24.0 | | 2.Administration Cost | | - | | | | 0.0 | 31.4 | 31.4 | | Total | | | | | | 103.1 | 116.9 | 220.0 | Table XII.4.1 UNIT COSTS OF CONSTRUCTION WORKS FOR MASTER PLAN | | · · | llait | | Unit Cost | | |---------|---|-----------|---------------|---------------|----------------| | | Description | Unit | F.C.
(Rp.) | L.C.
(Rp.) | Total
(Rp.) | | | | m3 | 5.100 | 1,400 | 6.500 | | 1. | Excavation; Common 1 | m3 | 3,800 | 1.000 | 4.800 | | Z | Excavation: Common 1 for Embankment | m3 | 5,800 | 1.500 | 7.300 | | 3 | ,* | m3 | 2,000 | 600 | 2,600 | | 4 | Embankment | M : | 154,000 | 210,000 | 364,000 | | 5 | Retaining Wall; Type A | n m | 87,000 | 144.000 | 231,000 | | 6
7 | Retaining Wall; Type B Retaining Wall; Type C (H=9.0 m) | 10)
TO | 3,800,000 | 2.970.000 | 6,770,000 | | 7.
8 | Retaining Wall; Type C (N=9.0 m) | · m | 2,270,000 | 1,890,000 | 4,160,000 | | 9 | Retaining Wall; Type E | m | 3,230,000 | 3,020,000 | 6,250,000 | | 9
10 | Ground Sill | m3 | 352,000 | 388,000 | 740,000 | | 11 | Revetment | m2 | 28,000 | 36,400 | 64,400 | | 12 | Demolition of Concrete | m3 | 19,500 | 7,100 | 26,600 | | 13 | Concrete Block: t=0.5m | m2 | 24,700 | 52,500 | 77,200 | | 14 | Gabion Mattress; t=0.5m | m2 | 12,800 | 17,800 | 30,600 | | 15 | Sodding | m2 | 100 | 1,000 | 1,100 | | 16 | Railway Bridge | m. | 13,000,000 | 5,000,000 | 18,000,000 | | 17 | Concrete Bridge | m2 | 830,000 | 700,000 | 1,530,000 | | 18 | Relocation Road | m2 | 20,000 | 30,000 | 50,000 | Table XII.4.2 UNIT COSTS OF CHANNEL IMPROVEMENT WORKS FOR MASTER PLAN for 1m | | *** | · Un | it Cost 1 | 1 | Un ' | it Cost 2 | *2 | |-------|--------------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------| | 1 | Item | F.C.
(1,000Rp.) | L.C.
(1,000Rp.) | Total
(1,000Rp.) | F.C.
(1,000Rp.) | L.C.
(1,000Rp.) | Total
(1,000Rp.) | | Ι, | Open Channel (Type A) | | | | | | | | | 1. Siringin | 327 | 101 | 428 | 327 | 101 | 428 | | | 2. Tenggang | 458 | 140 | 598 | 458 | 140 | 598 | | | 3. Banger | 371 | 113 | 484 | 371 | 113 | 484 | | II. | Open Channel (Type B) | | | | | | • | | | 1. Semarang | 451 | 448 | 899 | 451 | 448 | 899 | | 111 | Open Channel (Type C) | | | • | | | | | 1111 | 1. Siringin | 490 | 689 | 1,179 | 426 | 653 | 1,079 | | | 2. Tenggang | 449 | | 1,132 | 426 | 682 | 1.108 | | | 3. Semarang | 410 | | 1.001 | 410 | 591 | 1,001 | | | 4. Banger | 543 | 695 | 1,238 | 543 | 695 | 1,238 | | | 5. Bulu | 249 | 443 | 692 | 248 | 443 | 691 | | | 6. Ronggolawe | 381 | 588 | 969 | 381 | 588 | 969 | | | 7. Karangayu | 364 | | 943 | 364 | 579 | 943 | | | 8. Tawang | 359 | 593 | 952 | 359 | 593 | 952 | | | 9. Silandak | 316 | 479 | 795 | 316 | 479 | 795 | | IV. | Open Channel (Type D) | | | | | | | | | 1. Tenggang | 690 | 988 | 1,678 | 690 | 988 | 1,678 | | . : | 2. Banger | 0 | | 0 | 461 | 844 | 1,305 | | ٧. | Open Channel (Type E) | | | | | | | | • | 1. Banger | 1,183 | 944 | 2,127 | 1,183 | 944 | 2,127 | | | 2. Ronggolawe | 1,148 | 935 | 2,083 | 1,148 | 935 | 2,083 | | *. | 3. Karangayu | 1,110 | 925 | 2,035 | 1,110 | 925 | 2,035 | | VI. | Open Channel (Type F) | | | | | | | | | 1. Semarang | 1,144 | 934 | 2,078 | 1,144 | 934 | 2,078 | | VII. | Covered Channel (Type G) | | | | | | | | | 1. Banger | 0 | 0 | 0 | 620 | 605 | 1,225 | | | 2. Bulu | 0 | 0 | 0 | 431 | 428 | 859 | | VIII. | Box Culvert | | | | | | | | | for 1m3 | 104 | 103 | 207 | 104 | 103 | 207 | Notes: *1 The improvement costs of the surveyed primary channels. : *2 The improvement costs of the surveyed and other primary channels. Table XII.4.3 (1/8) COST BREAKDOWN FOR BLORONG RIVER IMPROVEMENT | | | | | | | Unit : Million Rp. | |---|--|--|---|---|---|---| | Item | Design Discharge
(Q=60m3/s) | Design Discharge
(Q≈10ຫີ3/s) | Design Discharge
(Q=300m3/s) | Design Discharge
(Q=400m3/s) | Design Discharge
(0=500m3/s) | Design Discharge
(Q=630m3/s) | | | Quantity Unit Cost | | I. Construction Base Cost | 5,352 | 5,799 | 25,037 | 31,389 | 39,697 | 60,852 | | 1. Preparatory Works 2. Excavation; Common 1 3. Excavation; Common 2 4. Embankment 5. Revetment; Type 8 6. Sodding 7. Railway Bridge 8. Road Bridge 9. Miscellanens Works | 34,500 m3 224
46,300 m3 338
128,300 m3 334
53,300 m2 3,432
24,300 m2 26
0 m 0
45 m2 69 | 527
74,400 m3 483
94,600 m3 691
91,200 m3 237
51,000 m2 3,284
22,300 m2 24
0 m 0
48 m2 74 | 2,276
1,544,800 m3 10,041
455,100 m3 3,323
175,500 m3 456
50,200 m2 3,233
25,000 m2 2,33
80 m 1,440
1,419 m2 2,171 | 2,019,500 m3 13,126
647,800 m3 4,729
169,300 m3 441
52,900 m2 3,407
24,700 m2 3,407
88 m 1,584
1,717 m2 2,527 | 2,615,100 m3 16,998
887,400 m3 6,478
176,600 m3 6,478
58,300 m2 3,754
26,300 m2 29
102 m 1,835
2,126 m2 3,253 | 5,532
4,415,900 m3 28,703
1,334,700 m3 9,743
172,900 m3 450
67,900 m2 4,373
29,600 m2 33
160 m 2,880
2,686 m2 4,109
5,029 | | / 1 | 0 | 0 | 3,533 | 6,220 | 8,885 | 16,074 | | 1.Land Acquisition Residential Area; Grade A Residential Area; Grade B Residential Area; Grade C Paddy Land; Urban Paddy Land; Wral | 0.00 ha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.00 ha | 0.00 ha
0
0.00 ha 0
3.00 ha 150
0.00 ha 0
26.50 ha 2,690 | 0.00 ha 0 0.00 ha 0 0 0.00 ha 265 0.00 ha 0 0 0 0 47.30 ha 4,730 | 0.00 ha 0
0.00 ha 0
7.50 ha 375
0.00 ha 0 | 0.00 ha 0
0.00 ha 0
13.60 ha 680
0.00 ha 0
122.30 ha 12,230 | | Chass A Class B Chass B Chass C | 000
000
000 | 000
222
000 | 0 bc 693
99 bc 693 | 0 pc 0
175 pc 1,225
0 pc 0 | 0 pc 0
250 pc 1,750
0 pc 0 | 0 pc 0
452 pc 3,154
0 pc 0 | | III. Administration Cost | 375 | 406 | 2,000 | 2,633 | 3,401 | 5,385 | | IV. Engineering Cost | 803 | 870 | 3,756 | 4,708 | 5,955 | 9,128 | | V. Physical Contingency | 616 | 299 | 3,233 | 4,232 | 5,454 | 8,605 | | VI. Total | 7,146 | 7,742 | 37,559 | 49,182 | 63,392 | 100,044 | | | | | | | | | Remarks : The design discharge of 100 m3/s is selected as the optimum plan. A. Sandala Chimbala. Table XII.4.3 (2/8) COST BREAKDOWN FOR BRINGIN RIVER IMPROVEMENT | Item | Design Discharge
(Q=120m3/s) | Design Discharge
(Q=220m3/s) | Design Discharge
(Q=270m3/s) | Design Discharge
(Q=320m3/s) | |---|--|--|--|--| | | Quantity Unit Cost | Quantity Unit Cost | Quantity Unit Cost | Quantity Unit Cost | | I. Construction Base Cost | 5,214 | 7,974 | 11,320 | 15,813 | | 1. Preparatory Works 2. Excavation; Common 1 3. Excavation: Common 2 | <u> </u> | E E | E . | e e | | 4. Embankment
5. Revetment; Type 8 | 113,800 m3 296
9,300 m2 599 | 일일일 | 733,700 m3 1,907
14,100 m2 908 | 1,216,000 m3 3,162
15,200 m2 979 | | o. Sodanng
7. Railway Bridge
8. Road Bridge
9. Miscellaneous Works | | 15,500 m2 18
123 m 2,214
1,471 m2 2,251
659 | 2 e 2 | | | II. Compensation Cost | 2,287 | 4,169 | 4,169 | 4,169 | | 1.Land Acquisition Residential Area; Grade A | r a | 0.00 ha 0
3.30 ha 660 | | | | | 0.00 ha 0
0.00 ha 0
16.50 ha 1,650 | 0.00 ha 0
0.00 ha 0
29.90 ha 2,990 | 0.00 ha 0
0.00 ha 0
29.90 ha 2,990 | 0.00 ha 0
0.00 ha 0
29.90 ha 2,990 | | Z.House Evacuation
Class A
Class B
Class C | 13 pc 195
7 pc 49
11 pc 33 | 25 pc 375
12 pc 84
20 pc 60 | 25 pc 375
12 pc 84
20 pc 60 | 25 pc 375
12 pc 84
20 pc 60 | | III. Administration Cost | 525 | 850 | 1,084 | 1,399 | | IV. Engineering Cost | 782 | 1,196 | 1,698 | 2,372 | | V. Physical Contingency | 828 | 1,334 | 1,719 | 2,235 | | VI. Total | 9,636 | 15,523 | 066'61 | 25,988 | Remarks : The design discharge of 320 m3/s is selected as the optimum plan. Table XII.4.3 (3/8) COST BREAKDOWN FOR BRINGIN FLOODWAY | . : | . 1 | | | | | | | | | | |---------------------------------|---------------|---------------------------|--|---------------------------------------|--|-------------------------------|--------------------------|----------------------|-------------------------|-----------| | harge
s) | Cost | 25,457 | 2,314
0
2,677
140
637
22
26
5,052
11,204
2,104 | 2,531 | 0
404
0
0
1,817 | 225
49
36 | 1,959 | 3,819 | 3,181 | 36,947 | | Disc
On3/ | Jnit | | 33 33 33 33 33 33 33 33 33 33 33 33 33 | | क क क क | 8 8 8
8 | | | | | | Design Discharge
(Q=200m3/s) | Quantity Unit | | 366,700
54,000
9,900
20,000
37
366 | | 0.00
2.02
0.00
0.00
18.17 | 15 | | | | | | harge
's) | Cost | 18,501 | 1,682
0
1,582
140
412
22
378
310
6,104
6,178 | 1,673 | 266
0
0
0
0
1,198 | 150
35
24 | 1,412 | 2,775 | 2,295 | 26,656 | | Disc
00m3/ | Unit | | m3
m2
m2
m2
m2
m2
m2
m2
m2
m3
m3
m3
m3
m3
m3
m3
m3
m3
m3
m3
m3
m3 | | क द द द द द द द द द द द द द द द द द द द | ጸጸጸ | | | | | | Design Discharge
(Q=100m3/s) | Quantity Unit | | 216,700
54,000
6,400
20,000
21
203
1 | | 0.00
1.33
0.00
0.00
11.98 | 10
8
8 | | | | | | charge
() | Cost | 15,439 | 1,404
0
790
140
412
22
216
185
7,157
1,80
3,657
1,276 | 976 | 154
0
0
0
696 | 90
21
15 | 1,149 | 2,316 | 1,873 | 21,753 | | Disc
Om3/s | Unit | | 133
133
1.8. | | <u> है से दे</u> है | 888 | | | • | | | Design Discharge
(Q≈50m3/s) | Quantity Unit | | 108,300
54,000
6,400
20,000
121
121
1 | | 0.00
0.77
0.00
0.00
6.96 | വസയ | | | | | | Item | | I. Construction Base Cost | 1. Preparatory Works 2. Excavation, Common 1 3. Excavation, Common 2 4. Embankment 5. Revetment; Type 8 6. Sodding 7. Railway Bridge 8. Road Bridge 9. Fixed Weir 10. Diversion Gate 11. Ground Sill 12. Miscellaneous Works | Compensation Cost | 1.Land Acquisition Residential Area; Grade A Residential Area; Grade B Residential Area; Grade C Paddy Land; Urban Paddy Land; Urban Paddy Land; Rural | Class A
Class 8
Class C | III. Administration Cost | IV. Engineering Cost | V. Physical Contingency | VI. Total | Table XII.4.3 (4/8) COST BREAKDOWN FOR SILANDAK RIVER IMPROVEMENT | Item | Design
(Q=1 | Design Discharge
(Q=120m3/s) | ව ූ | Remarks | |---|----------------|---------------------------------|----------------|---------| | | Quantity | Unit | Cost | | | Construction Base Cost | | | 6,983 | | | | | | 635 | | | | 213,400 |
 | 1,387 | | | Excavation; Common 2
Embankment | 1,100 | <u> </u> | °77 | | | Revetment; Type B | 21,300 | 22 | 1,371 | | | Souding
Railway Bridge | 9,000 | <u> </u> | 1,098 | | | Road Bridge
Miscellaneous Works | 1,102 | m2 | 1,686 | | | Compensation Cost | | | 1.715 | | | and Arministion | | | | | | rea; Grade | 0.00 | na
na | 0 | | | | 4.90 | ha | 980 | | | Area; Grade | 00.0 | ha | 0 | | | Paddy Land; Urban | 4.90 | na | 735 | | | Paddy Land; kurai
2.House Evacuation | 0.00 | pa | 5 | - | | Class A | Ó | သူ | 0 | | | Class B | | ŭ. | 0 | | | lass C | 0 | Dd. | O , , | | | Administration Cost | | | 609 | | | Engineering Cost | | ٠ | 1,047 | | | Physical Contingency | | | 975 | | | Total | | | 11,329 | | | | | | | | Table XII.4.3 (5/8) COST BREAKDOWN FOR GARANG RIVER IMPROVEMENT | Item | Design Discharge (Q=740m3/s) | Design Discharge
(Q=770m3/s) | Design Discharge
(Q=850m3/s) | Design Discharge
(Q=900m3/s) | Design Discharge
(Q=980m3/s) | |---|--------------------------------|---------------------------------|---|---------------------------------|---------------------------------| | | Quantity Unit Cost | | I. Construction Base Cost | 31,138 | 33,901 | 1,619 | 40,113 | 43,858 | | | 2,831
432,000 m3 2,808 | | 557,900 | 3,64
m3 4,39 | 3,987
866,100 m3 5,630 | | | 8,900 m3 23 23 34,100 m2 2,196 | 6,900 m3 18
34,600 m2 2,228 | 35,800 m2 2,305 | 14,600 m3 38
36,200 m2 2,332 | 12,800 m3 34
37,200 m2 2,396 | | 5. Sodding
7. Railway Bridge | Z = £ | ž e i | 4,000 m2
m 0 | Z = 1 | 2 000.c | | 6. Kodo Bringe
10. Retaining Wall
11. Ground Sill | | -,- | 1 L S: | . r. § | 1 L.S. | | | 11.5 | | LL: | 1 1.5. 21,060 | d and smd : | | <pre>14. Intake Structure 15. Miscellaneous Works</pre> | 1 L.S. 2,334
2,573 | 1 L.S. 2,334
2,802 | 1 1.5. | | 1.5. | | II. Compensation Cost | | | 0 197 | 3,599 | 099*6 | | tion | j | | • | | | | Residential Area; Grade A
Residential Area; Grade B
Posidential Area; Grade C | 0.00 ha | 0.00
0.00
0.00
0.00 | 0 0.00 ha 0.00 | 5.50 na 2,809
0.00 na 0 | 15.05 ha 7,525
0.00 ha 0 | | 3 | | e c | 000 | n e | a e e | | 2. House Evacuation | | <u> </u> | | į į | | | Class B
Class C | 388 | | 2 pc 3 14 0 14 0 13 14 0 14 0 15 0 15 0 15 0 15 0 15 0 15 0 | 25 pc 175
23 pc 69 | 68 pc 476
63 pc 189 | | III. Administration Cost | 2,180 | 2,373 | 2,6 | m | · . | | IV. Engineering Cost | 6,743 | 7,245 | 8,019 | 8,544 | 9,322 | | V. Physical Contingency | 3,788 | 4,115 | 4,584 | 5,226 | 6,284 | | VI. Total | 43.849 | 47,634 | 33.055 | | 928 62 | Remarks : The design discharge of 770 m3/s is selected as the optimum plan. S.MESSA. Table XII.4.3 (6/8) COST BREAKDOWN FOR WEST FLOODWAY IMPROVEMENT | Item | Design Discharge
(Q=740m3/s) | Design Discharge
(Q=770m3/s) | Design Discharge
(Q≈850m3/s) | Design Discharge
(Q=900m3/s) | Design Discharge (Q=980m3/s) | |--
--|--|--|--|---| | | Quantity Unit Cost | | I. Construction Base Cost | 10,140 | 10,491 | 1 22,243 | 3 23,973 | 26,739 | | | 922
397,900 m3 2,586
200,500 m3 1,464
0 m3 9,300 m2 599 | m3 2,
m3 1, | 519,100 m3
229,700 m3
0 m3
9,500 m2 | 2,
600,100 m3 3,
244,800 m3 1,
0 m3 | 2,431
732,700 m3 4,763
268,900 m3 1,963
0 m3 518 | | 6. Sodding 7. Railway Bridge 8. Road Bridge 9. Retaining Wall 10. Drainage Outlet 11. Relocation Road 12. Miscellaneous Works | m2 1. | 0 m2
98 m 1,764
0 m2
0 L.S. 693
1 L.S. 693
1 L.S. 1,328
1 L.S. 867 | | | | | Compensation Cost | 0 | | | | 17,198 | | 1.Land Acquisition Residential Area; Grade A Residential Area; Grade B Residential Area; Grade C Paddy Land; Urban Paddy Land; Rural | 0.00 ha h | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0 8.50 ha 4,250
0 0.00 ha 0
0.00 ha 0
0 0.00 ha 0 | 0 15.50 ha 7,750
0 0.00 ha 0
0 0.00 ha 0
0 0.00 ha 0
0 0.00 ha 0 | 26.80 ha 13,400 0.00 ha 0 0 0.00 ha 0 0.00 ha 0 0.00 ha 0 0.00 ha 0 0 0.00 ha | | c.nouse Evacuation
Class A
Class B
Class C | 222 | 222
000 | 0 55 pc 825
0 38 pc 266
0 35 pc 105 | 5 101 pc 1,515
6 70 pc 490
5 65 pc 195 | 175 pc 2,625
120 pc 840
111 pc 333 | | III. Administration Cost | 710 | 734 | 4 1,938 | 8 2,375 | 3,076 | | IV. Engineering Cost | 1,521 | 1,574 | 4 3,336 | 3,596 | 4,011 | | V. Physical Contingency | 1,166 | 1,207 | 7 3,103 | 3 3,752 | 4,795 | | VI. Total | 13,537 | 14,006 | 990,98 | 5 43,646 | 55.819 | Remarks : The design discharge of 770 m3/s is selected as the optimum plan. Table XII.4.3 (7/8) COST BREAKDOWN FOR EAST FLOODWAY IMPROVEMENT | Item | Design
(Q≕3 | Design Discharge
(0=350m3/s) | ırge | Remarks | | |--|----------------|---------------------------------|--------------|---------|---| | | Quantity | Unit | Cost | | | | . Construction Base Cost | | | 22,418 | | | | | ; | | 2,038 | | | | Excavation; Common 1 Excavation: Common 2 | 593,400 | <u>ا</u> ا | 3,857 | ÷ | | | Embankment | 108,000 | <u> </u> | 281 | | | | | 77,200 | 잩 | 4,972 | | | | b. Sodding
7 Railway Bridge | 19,500 | E e | 1 122 | : | | | 8. Road Bridge | 2,624 | . 일 | 4,015 | | | | 9. Retaining Wall
10. Miscellaneous Works | F | L.S. | 658
1 853 | | | | II. Compensation Cost | | | 610 | | | | 1.Land Acquisition | | | | | | | rea; Grade | 1.14 | ha | 570 | | | | Area: | 0.00 | ha | 0 | ٠ | | | Area: Grade | 0.00 | па | 0 | | | | | 0.00 | ę. | 0 (| | | | 2.House Evacuation | 00.0 | <u> </u> | 3 | | | | Class A | 2 | ပ္ | 30 | | | | Class B | | <u>ა</u> | 7 | | | | Class C | 1 | <u>Б</u> | m | | | | III. Administration Cost | | | 1,612 | | | | IV. Engineering Cost | | | 3,363 | | - | | V. Physical Contingency | | | 2,639 | i * | | | VY Total | | | 60 | | | Table XII.4.3 (8/8) COST BREAKDOWN FOR BABON RIVER IMPROVEMENT | Item | Design Discharge
(Q=150m3/s) | Design Discharge
(Q=200m3/s) | Design Discharge
(0=300m3/s) | Design Discharge
(Q=420m3/s) | |---|-----------------------------------|------------------------------------|---|--| | | Quantity Unit Cost | Quantity Unit Cost | Quantity Unit Cost | Quantity Unit Cost | | Construction Base Cost | 17,235 | 19,803 | 25,200 | 31,533 | | | £ | - E | 2 | | | Excavation; Common Embankment | 22,900 m3 167
132,600 m3 345 | | 73,300 m3 535
134,600 m3 350 | | | 5. Sodding | 2
2
2 | 걸일 | ¥ 2 | 걸일 | | Railway Bridge
Road Bridge | | 45 m 810
2,883 m2 4,411 | | m 2 | | Reconstrction of Pucanggading
10. River Side Channel Miscellaneous Works | 1 L.S. 410
1 L.S. 836
1,424 | 1 L.S. 538
1 L.S. 836
1,637 | 1 L.S. 941
1 L.S. 836
2,083 | r.s.
r.s. | | II. Compensation Cost | 1,358 | 2,501 | 5,392 | 9,194 | | | , c | | ç | | | Residential Area, Grade B | e C | 0.00 ha | | <u> </u> | | | 0.00 ha 0.00 9.20 6.20 | 1 7 | 1.94 ha 97
0.00 ha 0
36.80 ha 3.880 | 3.30 ha 165
0.00 ha 0 | | 2.House Evacuation | 2 | 1
<u>1</u> | <u> </u> | D D | | Class A
Class B
Class C | 20 pc 300
11 pc 77
12 pc 36 | 36 pc 540
20 pc 140
22 pc 66 | 78 pc 1,170
43 pc 301
48 pc 144 | 133 pc 1,995
74 pc 518
82 pc 246 | | III. Administration Cost | 1,302 | 1,561 | 2, | . 5 | | IV. Engineering Cost | 2,585 | 2,970 | 3,780 | 4,730 | | V. Physical Contingency | 2,118 | 2,527 | 3,437 | 4,546 | | VI. Total | 24.598 | 29.362 | 30 050 | i d | Remarks : The design discharge of 420 m3/s is selected as the optimum plan. Table XII.4.4 (1/4) COST ALLOCATION FOR KEDUNG SUREN DAM | | | | 76c=xem'n | 5 /011750 | S / C≡200+=xemiÒ | 40 CH2/ 3 | i Komb | \$ /211062=xpillh | S / Child D = Yehili | 1 | , (m) | e / calcot - vanis | - YEAL | (max=bum3/s | |---|--|---|---|---|---|---|---|---|--|---|--|--|--|--| | | Item | | Flood
Control
Dam | Water
Supply
Dam | | Reference Point Gmax
Required Capacity | . Gmax
ty | (m3/s)
(MCM) | 592
2.441 | 52.366 | 1 | 52.366 | 293 | 52.366 | 1 | 52.366 | 10.726 | 52.366 | 60
13.426 | 52.366 | | Multiple- R
Purpose 1 | Sediment Capacity
Required Capacity
Total Capacity
Dam Crest | (MCM)
(MCM)
(MCM)
(EL.m)
(M111.Rp.) | 19.700
54.807
74.507
75.04
249,496 | 19.700
54.807
74.507
75.04
249,496 | 19.700
56.300
76.000
75.20
251,527 | 19.700
56.300
76.000
75.20
251,527 | 19.700
58.199
77.899
75.40
254,067 | 19.700
58.199
77.899
75.40
254,067 | 19.700
60.099
79.799
75.60
256,606 | 19.700
60.099
79.799
75.60
256,606 | 19.700
63.092
82.792
76.00
261,685 | 19.700
63.092
82.792
76.00
261.685 | 19.700
65.792
85.492
76.20 | 19.700
65.792
85.492
76.20
264,224 | | Alternate S
Single- R
Purpose I
Cost E | Sediment Capacity
Required Capacity
Total Capacity
Dam Crest
Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(M111.Rp.) | 3.940
2.441
6.381
59.22
115,280 | 19.700
52.366
72.065
74.70
246,306 | 3.940
3.934
7.874
60.35
122,058 | 19.700
52.366
72.066
74.70
246,306 | 3.940
5.833
9.773
61.19
127,096 | 19.700
52.366
72.066
74.70
246,306 | 3.940
7.733
11.673
62.03
132,134 | 19.700
52.366
72.066
74.70
246,306 | 3.940
10.726
14.666
63.35
140,051 | 19.700
52.366
72.066
74.70
246,306 |
3.940
13.426
17.365
64.54
147.189 | 19.700
52.366
72.066
74.70
246,306 | | Separable 7 | Sediment Capacity (MCM) Other Purpose Capacity (MCM) Total Capacity (MCM) Dam Crest (EL.m Constructon Cost (Mill | (MCM)
(MCM)
(MCM)
(EL.m)
(Mill.Rp.) | 19.700
52.366
72.066
74.70
246,306
3,190 | 19.700
2.441
22.141
65.86
159,294
90,202 | 19.700
52.366
72.066
74.70
246,306
5,221 | 19.700
3.934
23.634
66.20
162,989
88,538 | 19.700
52.366
72.066
74.70
246,306
7,761 | 19.700
5.833
25.533
66.64
167,770
86,297 | 19.700
52.366
72.066
74.70
246,306
10,300 | 19.700
7.733
27.433
67.07
172,443
84,163 | 19.700
52.366
72.066
74.70
246,306
15,379 | 19.700
10.726
30.426
67.76
179,941
81,744 | 19.700
52.366
72.066
74.70
246,306
17,918 | 19.700
13.426
33.126
68.38
186,679
77,545 | | Alternate Cost less
Allocated Joint Cost | Alternate Cost less Separable Cost
Allocated Joint Cost | (Mill.Rp.)
(Mill.Rp.) | 112,090 | 156,104
90,853 | 116,837
67,051 | 157,768 | 119,335 | 160,009
91,685 | 121,834
69,559 | 162,143
92,584 | 124,672
70,926 | 164,562
93,636 | 129,271 | 168,761
95,519 | | Total Allocated Cost | 1 Cost | (Mill.Rp.) | 68,441 | 181,055 | 72,272 | 179,255 | 76,085 | 177,982 | 79,859 | 176,747 | 86,305 | 175,380 | 91,160 | 173,064 | Table XII.4.4 (2/4) COST ALLOCATION FOR JATIBARANG DAM | | | | Qmax=968m3/s | 13/S | Qmax≖8 | Qmax=845m3/s | Qmax=802m3/s | 02m3/s | Qmax=770m3/s | s / cwo / | Click / #Xpiil | 45HO/5 | (max=/ | Omax=735m3/s | |---|--|---|--|---|--|---|--|--|--|--|--|--|--|---| | | ltem | | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Hater
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | | Reference Point (Max
Required Capacity | nt (max
city | (m3/s)
(MCM) | 968 | 15.740 | 845
2.280 | 14.600 | 802
3.260 | 13.620 | 770 | 12.550 | 749 | 11.660 | 736 | 10.680 | | Multiple-
Purpose
Cost | Sediment Capacity Required Capacity Total Capacity Dam Crest | (MCM)
(MCM)
(MCM)
(EL.m)
(M111.Rp.) | 6.800
16.880
23.680
162.00
63,477 6.800
16.880
23.580
162.00
63,477 | 6.800
16.880
23.680
162.00
63,477 | 6.800
16.880
23.680
162.00
63,477 | | Alternate
Single-
Purpose
Cost | Sediment Capacity Required Capacity Total Capacity Dam Crest Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(M111.Rp.) | 1.360
1.140
2.500
134.62
31,283 | 6.800
15.740
22.540
161.00 | 1.360
2.280
3.640
137.36 | 6.800
14.600
21.400
160.00
59,840 | 1.360
3.260
4.620
139.59
34,768 | 6.800
13.620
20.420
159.00
58,485 | 1.360
4.330
5.690
141.39
36,617 | 6.800
12.550
19.350
157.91
57,009 | 1.360
5.220
6.580
142.78
38,179 | 6.800
11.660
18.460
157.00 | 1,360
6,200
7,560
144,31
39,899 | 6.800
10.680
17.480
156.00
54,421 | | Separable
Cost | Sediment Capacity
Other Purpose Capacity
Total Capacity
Dam Crest
Constructon Cost
Separable Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(M111.Rp.) | 6.800
15.740
22.540
161.00
61,659
1,818 | 6.800
1.140
7.940
144.91
40.573
22,904 | 6.800
14.600
21.400
160.00
59,840
3,637 | 6.800
2.280
9.080
146.35
42,191
21,286 | 6.800
13.620
20.420
159.00
58,485
4.992 | 6.800
3.260
10.060
147.58
43.573
19,904 | 6.800
12.550
19.350
157.91
57,009
6,468 | 6.800
4.330
11.130
148.91
45,068
18,409 | 6.800
11.660
18.460
157.00
55,776
7,701 | 6.800
5.220
12.020
150.02
46,320
17,157 | 6.800
10.680
17.480
156.00
54.421
9,056 | 6.200
13.000
151.11
47,797
15,680 | | Alternate Cost less Allocated Joint Cost | Alternate Cost less Separable Cost | (Mill.Rp.)
(Mill.Rp.) | 29,465
16,742 | 38,755
22,013 | 29,567 | 38,554 | 29,776 | 38,581 | 30,149 | 38,600 | 30,478 | 38,619 21,588 | 30,843 | 38,741 | | Total Allocated Cost | ited Cost | (Mill.Rp.) | 18,560 | 44,917 | 20,369 | 43,108 | 21,813 | 41,664 | 23,413 | 40,064 | 24,732 | 38,745 | 26,218 | 37,259 | | | | | Qmax=875 | 5m3/s | Qmax=6 | Qmax=831m3/s | Qmax=£ | Qmax=811m3/s | Qmax≖. | Qmax=780m3/s | О́тах=7 | Qmax=770m3/s | Отах≖. | Qmax=766m3/s | |---|---|---|---|---|---|---|---|---|---|--|---|--|--|--| | | Item | · | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Mater
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | | Reference Point Qmax
Required Capacity | int Qmax
acity | (m3/s)
(MCM) | 875
0.912 | 27.588 | 831 | 27.588 | 811
2.055 | 27.588 | 780 | 27.588 | 770 | 27,588 | 766
4.896 | 27.588 | | Multiple-
Purpose
Cost | Sediment Capacity
Required Capacity
Total Capacity
Dam Crest
Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(Mill.Rp.) | 7.400
28.500
35.900
230.00 | 7.400
28.500
35.900
236.00 | 7.400
29.072
36.472
230.20
116,792 | 7.400
29.072
36.472
230.20
116,792 | 7.400
29.643
37.043
230.40
118,024 | 7.400
29.643
37.043
230.40
118,024 | 7.400
30.786
38.186
230.80 | 7.400
30.786
38.186
230.80 | 7.400
31.674
39.074
231.11
122,398 | 7.400
31.674
39.074
231.11 | 7.400
32.484
39.884
231.39
124.122 | 7.400
32.484
39.884
231.39
124,122 | | Alternate
Single-
Purpose
Cost | Sediment Capacity
Required Capacity
Total Capacity
Dam Crest
Constructon Cost | (MCM)
(MCM)
(MCN)
(EL.m)
(MI11.Rp.) | 1.480
0.512
2.392
204.97
28,395 | 7.400
27.588
34.988
229.60
113,553 | 1.480
1.484
2.964
206.13
30,044 | 7.400
27.588
34.988
229.60
113,553 | 1.480
2.055
3.535
207.27
31,665 | 7.400
27.588
34.988
229.60
113,553 | 1.480
3.198
4.678
209.56
34,921 | 7.400
27.588
34.988
229.60
113,553 | 1.480
4.086
5.566
210.77
37,845 | 7.400
27.588
34.988
229.60
113,553 | 1.480
4.896
6.376
211.72
40,679 | 7.400
27.588
34.988
229.60
113,553 | | Separable
Cost | Sediment Capacity Other Purpose Capacity Total Capacity Dam Crest Constructon Cost Separable Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(Mill.Rp.) | 7.400
27.588
34.988
229.60
113,553
2,007 | 7.400
0.912
8.312
213.97
47,393
68,167 | 7.400
27.588
34.988
229.60
113,553
3,239 | 7.400
1.484
8.884
214.63
49,362
67,430 | 7.400
27.588
34.988
229.60
113,553
4,471 | 7.400
2.055
9.455
215.20
51,063
66,961 | 7.400
27.588
34.988
229.60
113,553
6,935 | 7.400
3.198
10.598
216.08
53,689
66,799 | 7.400
27.588
34.988
229.60
113,553
8,845 | 7.400
4.086
11.486
216.76
55,718
66,680 | 7.400
27.588
34.988
229.60
113,553 | 7.400
4.896
12.296
217.38
57,568
66,554 | | Alternate Cost less
Allocated Joint Cost | Alternate Cost less Separable Cost
Allocated Joint Cost | (Mill.Rp.)
(Mill.Rp.) | 26,388
16,702 | 45,386 | 26,805 | 46,123 | 27,194
17,192 | 46,592 | 27,986 | 46,754 | 29,000
17,905 | 46,873
28,968 | 30,110 | 46,999 | | Total Allocated Cost | ited Cost | (Mill.Rp.) | 18,709 | 96,851 | 20,212 | 96,580 | 21,663 | 96,361 | 24,421 | 96,067 | 26,750 | 95,648 | 28,899 | 95,223 | | | | | | | | | | ٠ | | | | | | | Table XII.4.4 (4/4) COST ALLOCATION FOR BABON DAM | | | | Qmax=184m3/s | tm3/s | О́тах≂] | Qmax=132m3/s | Отах≖() | Qmax≂86m3/s | Qnax= | Qnax=81m3/s | |--
--|---|---|--|---|--|---|--|--|--| | Item | | , | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Control
Dam | Water
Supply
Dam | Flood
Cortrol
Dam | Water
Supply
Dam | | Reference Point On
Required Capacity | яах | (m3/s)
(MCM) | 184 | 35.924 | 132
2.951 | 35.924 | 3.827 | 35.924 | 81.703 | 35.924 | | Multiple- Requ
Purpose Tote
Cost Dam | Sediment Capacity Required Capacity Total Capacity Dam Crest Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(M111.Rp.) | 10.200
38.000
48.200
75.00
291,391 | 10.200
38.000
48.200
75.00 | 10.200
38.875
49.075
75.20
293,139 | 10.200
38.875
49.075
75.20
293,139 | 10.200
39.751
49.951
75.40
294,887 | 10.200
39.751
49.951
75.40
294,887 | 10.200
40.627
50.827
75.60
296,635 | 10.200
40.627
50.827
75.60
296,635 | | Alternate Sedi
Single- Requ
Purpose Tota
Cost Dam | Sediment Capacity Required Capacity Total Capacity Dam Crest Constructon Cost | (MCM)
(MCM)
(MCM)
(MCM)
(EL.M) | 2.040
2.076
2.076
4.116
55.51
119,255 | 10.200
35.924
46.124
74.40
286,018 | 2.040
2.951
4.991
56.32
125,483 | 10.200
35.924
46.124
74.40
286,018 | 2.040
3.827
5.867
57.13
131,711 | 10.200
35.924
46.124
74.40
286,018 | 2.040
4.703
6.743
57.94
137,939 | 10.200
35.924
46.124
74.40
286,018 | | Sedi
Othe
Cost Dam
Cost Sepe | Sediment Capacity Other Purpose Capacity Total Capacity Dam Crest Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(Mill.Rp.) | 10.200
35.924
46.124
74.40
286,018
5,373 | 10.200
2.076
12.276
61.85
171,151
120,240 | 10.200
35.924
46.124
74.40
286,018
7,121 | 10.200
2.951
13.151
62.34
175,753
117,386 | 10.200
35.924
46.124
74.40
286,018
8,869 | 10.200
3.827
14.027
62.83
180,355
114,532 | 10.200
35.924
46.124
74.40
286,018
10,617 | 10.200
4.703
14.903
63.32
184,956
111,679 | | Alternate Cost less
Allocated Joint Cost | Alternate Cost less Separable Cost
Allocated Joint Cost | (Mill.Rp.) | 113,882 67,472 | 165,778
98,306 | 118,362 69,476 | 168,632 | 122,842 | 171,486 99,976 | 127,322 | 174,339 | | Total Allocated Cost | Cost | (Mill.Rp.) | 72,845 | 218,546 | 76,597 | 216,542 | 80,379 | 214,508 | 84,188 | 212,447 | Table XII.4.5 (1/4) RELATIONSHIP BETWEEN PROJECT COST AND DAM HEIGHT OF KEDUNG SUREN DAM | | Height=46m (EL.76.0m) | Height=45m (EL.75.0m) | Height=40m (EL.70.0m) | Height=35m (EL.65.0m) | |--|---|---|---|--| | i celli | Quantity Unit Total (Mill.Rp.) | | i. Construction Base Cost | 145,301 | 139,075 | 117,880 | 87,905 | | Embankment Volume
Relocation Road
Relocation of Electrical Tower | 4,120,000 m3 143,376
38,500 m2 1,925
0 L.S. 0 | 3,920,000 m3 137,200
37,500 m2 1,875
0 L.S. 0 | 3,060,000 m3 116,280
32,000 m2 1,600
0 L.S. 0 | 2,220,000 m3 86,580
26,500 m2 1,325
0 L.S. 0 | | 11. Compensation Cost | 54,990 | 52,161 | 37,886 | 25,255 | | 1. Land Acquisition | 2 | | | | | Residential Area, Grade C
Paddy Land; Rural | 68.6 na 3,430
330.5 ha 33,050 | 312.0 ha 31,200 | 41.0 na 2,050
234.2 ha 23,420 | 20.2 na 1,010
165.1 ha 16,510 | | Upland Cultivation | ha | | | ha
ha | | Plantation | ha. | pq . | 폍. | | | Forest
2. House Evacuation; Class C | 598.1 ha 5,981
1,470 unit 4,410 | 564.5 ha 5,645
1,470 unit 4,410 | 427.2 ha 4,272
930 unit 2,790 | 304.6 ha 3,046
458 unit 1,374 | | III. Administration Cost | 14,020 | 13,387 | 10,904 | 7,921 | | IV. Engineering Services | 24,859 | 22,947 | 20,034 | 15,955 | | V. Physical Contingency | 22,515 | 21,418 | 17,580 | 12,912 | | Total | 261,685 | 248,988 | 204,284 | 149,948 | | | | | | | Table XII.4.5 (2/4) RELATIONSHIP BETWEEN PROJECT COST AND DAM HEIGHT OF JATIBARANG DAM | 1+pm | Height=77m (EL.162.0m) | Height=75m (EL.160.0m) | Height=65m (EL.150.0m) | Height=55m (EL.140.0m) | |--|---|---|---|---| | | Quantity Unit Total (Mill.Rp.) | | I. Construction Base Cost | 38,025 | 35,995 | 26,995 | 19,465 | | Concrete Volume
Relocation Road
Relocation of Electrical Tower | 170,000 m3 36,505
16,000 m2 800
10 L.S. 720 | 158,000 m3 34,500
15,500 m2 775
10 L.S. 720 | 107,000 m3 25,650
12,500 m2 625
10 L.S. 720 | 71,000 m3 18,270
9,500 m2 475
10 L.S. 720 | | Compensation Cost | 6,040 | 5,505 | 4,577 | 3,634 | | Land Acquisition
Residential Area; Grade C | n
B | 0.0 ha 0 | ha | ps | | Paddy Land; Rural
Upland Cultivation | 28.0 ha 2,800
108.0 ha 3,240 | | 25.1 ha 2,510
68.9 ha 2,067 | 20.2 ha 2,020
53.8 ha 1.614 | | Plantation
Forest | h
Fa | 0.0 ha 0.0 | ्त <u>.</u> | | | 2. House Evacuation; Class C | - | unit | | na
unit | | III. Administration Cost | 3,085 | 2,905 | 2,210 | 1,617 | | IV. Engineering Services | 10,837 | 10,259 | 8,503 | 7,299 | | V. Physical Contingency | 5,490 | 5,176 | 4,008 | 3,040 | | Tota] | 63,477 | 59,840 | 46,293 | 35,055 | Table XII.4.5 (3/4) RELATIONSHIP BETWEEN PROJECT COST AND DAM HEIGHT OF MUNDINGAN DAM | | | Height=50m (EL.230.0m) | (E) | 230.0m) | Height=40m (EL.220.0m) | .220.0m) | Height=30m (EL.210.0m) | .210.0m) | |-----|---|-----------------------------|---------------|--|-----------------------------|---------------------|------------------------|---------------------| | | , rem | Quantity Unit Total (Mill.R | Unit
() | Total
(Mill.Rp.) | Quantity Unit Total (Mill.R | Total
(Mill.Rp.) | Quantity Unit Total | Total
(Mill.Rp.) | | | I. Construction Base Cost | | | 54,240 | | 28,200 | | 14,300 | | | Concrete Volume
Relocation Road | 188,000 | E 2 | 50,760 | 95,000 m3
32,000 m2 | 1,600 | 45,000 m3
16,000 m2 | 13,500 | | II. | Relocation of Electrical lower
Compensation Cost | 10 () | · | 29,996 | | 18,936 | 0 5.3. | 10,032 | | - | 1. Land Acquisition | 6 | ņ | ************************************** | a
a
m | 009 | | 256 | | | Paddy Land; Rural | 256.8 | i i | 26,680 | 171.0 ha | 17,100 | 90.7 ha | 9,070 | | | Upland Cultivation | 25.2 | ņa. | 756 | 16.7 ha | 501 | 8.5 ha | 255 | | | Plantation
Forest | 0.0 | יבי ד
עם ע | 0 6 | 0.0 ha | 00 | 0.0 ha | 00 | | 5 | House Evacuation; Class C | 470 | | 1,410 | | 645 | - 3 | 342 | | - | III. Administration Cost | | | 5,897 | | 3,300 | | 1,703 | | IV. | Engineering Services | | | 15,458 | | 9,306 | | 6,435 | | ۸. | Physical Contingency | | | 696'6 | | 5,644 | | 3,077 | | | Total | | | 115,560 | | 65,386 | | 35,547 | | | | | | | | | | | Table XII.4.5 (4/4) RELATIONSHIP BETWEEN PROJECT COST AND DAM HEIGHT OF BABON DAM | : | , 4 p | Height≃45m (EL.75.0m) | Height=40m (EL.70.0m) | Height=35m (EL.65.0m) | Height≂30m (EL.60.0m) | |-------|--|---|---|---|--| | | reall | Quantity Unit Total (Mill.Rp.) | | , | Construction Base Cost | 185,090 | 157,580 | 128,440 | 97,930 | | | Embankment Volume
Relocation Road
Relocation of Electrical Tower | 5,890,000 m3 182,590
50,000 m2 2,500
0 L.S. 0 | 4,570,000 m3 155,380
44,000 m2 2,200
0 L.S. 0 | 3,420,000 m3 126,540
38,000 m2 1,900
0 L.S. 0 | 2,470,000 m3 96,330
32,000 m2 1,600
0 L.S. 0 | | 11. | Compensation Cost | 35,249 | 28,754 | 22,605 | 16,793 | | ŗ. | Land Acquisition | | | | | | | Residential Area; Grade C | 74.2 ha 3,710 | ь́а | 48.2 ha 2,410 | 36.3 ha 1,815 | | | Paddy Land; Rural | 217.5 ha 21,750 | 179.0 ha 17,900 | ha | ha 1 | | | Upland Cultivation | 193.3 ha 5,799 | 151.1 ha 4,533 | 111.1 ha 3,333 | 73.5 ha 2,205 | | | Plantation | 0.0 ha 0. | 0.0 ha 0 | 0.0 ha 0 | 0.0 ha 0 | | | Forest | 0.0 ha 0. | 0.0 ha 0 | 0.0 ha 0 | 0.0 ha 0 | | 2. | 2. House Evacuation; Class C | 1,330 unit 3,990 | 1,092 unit 3,276 | 864 unit 2,592 | 651 unit 1,953 | | 1111. | III. Administration Cost | 15,424 | 13,043 | 10,573 | 8,031 | | IV. | Engineering Services | 30,540 | 26,001 | 21,828 | 17,774 | | > | Physical Contingency | 25,088 | 21,234 | 17,287 | 13,250 | | | Total | 291,391 | 246,612 | 200,733 | 153,778 | | | | | | | | Table XII.4.6 ANNUAL DISBURSEMENT SCHEDULE OF FLOOD CONTROL PLAN FOR MASTER PLAN | Description | Total | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2002 | 2006 | 2002 | 2008 | 5002 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|------------------|-------------|--------|-------------|--------|----------|---------|-------|--------|---------|--------|-------------|----------|----------|-------------|----------|------------|------------|-------|------------|-------------------|----------| | 1. Babon River
Babon River Improvement
Babon Floodway | 58,139
50,624 | 00 | 0 0 8 | 0 14 356 | 0 289 | 0.13,330 | 0 2.621 | 00 | 00 | 00 | | 1,431 | 1,431 | 7,099 2 | 22,111 1 | 17,378 | 8,689
0 | 00 | 00 | . 00 | 00 | | | 2. East Floodway | | • | | | | • | • | • | | 5 | | | 320 61 | . 171 | c | | | c | c | | ć | c | | | 33,706 | 0 | > | > | > | 5 | Þ | > | 1,018 | 0 to 1 | • | | 666,33 | */1.0 | > | 9 | > | > | > | o | > | • | | Garang River Improvement | 52,397 | 2,104 | 2,191 | 0 | o. | | 8,644 | 0 | .0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | Ü | | West Floodway Improvement | 15,407 | 458 | 476 | | | 5,936 | 2,601 | 0 | 0 | 0 | 0 (| 0 (| 0 (| 0 (| 0 0 | 0 | 0 | 0 (| 0 | 0 (| 0 0 | 0 1 | | Jatibarang Dam | 25,754 | 0 | 2,594 | 6,736 | on. | | 2,046 | 0 | 0 | • | 5 | Þ | э | . | > | 5 | > | 5 | 9 | 5 | Þ | , | | | 12,462 | ٥ | 0 | 0 | 0 | Ο, | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 634 | 1,324 | 6,655 | 3,849 | 0 | 0 | | 5. Bringin River
Bringin River Improvement | 28,587 | ٥ | 0 | ٥ | 0 | ٥ | 0 | 0 | 0 | 0 | oʻ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,436 | 3,219 1 | 15,220 | 8,712 | | 6. Blorong River
Blorong River Improvement
Kedungsuren Dam | 8,516
94,936 | 00 | 00 | 00 | 00 | 2,382 | 2,382 | 9,336 | 10,384 | 11,331 | 22,325 | 0
16,709 | 0 16,709 | 3,378 | 00 | 00 | | 257 | 00 | 7,989 | 00 | 00 | | | | | | | Ι, | | 500 | 325 | | - 1 | 707 00 | 900 | 30, 05 | 15.661 | 1 2 2 | 17 270 | 33.3 | | 60 | 15.067 | 000 | 2,5 | | Total | 380,528 | 2,562 | 11,289 | 260,12 | 67.143 | 46,500 | 10,234 | 5,530 | 11,402 | 14, 549 | | | | | 111 | 0/2/2 | 3,363 | 1,001 | 160 | | 13,440 | 1,0 | | אינה ני אפוער מתחבת נפע יש יוורותמרכן מהי וויכר במיניוושנוים יש מיניורנים (בריחימת לי להבל) | | ,
,
, | 2 | | | | | | | | | | | | | | | | | . un | Vait: Million Ro. | on
Ro | | (Economic Cost) | | : | | | | | | | | | | | | | | | | | | 5 | | 2 | | Description | Total | 1994 | 1995 | 1996 | 1997 | 1938 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 5003 | 2010 | 2011 | 2012 | 2013 | 2014 | | 1. Babon River | 27.5 | c | | c | | c | , | c | - | c | c | 301 | 30 | | | . 14 411 | 7 205 | . 6 | c | c | c | | | Babon Floodway | 38,777 | 0 | | 11,039 | 10,950 | 10,176 | 1,961 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | East Floodway Improvement | 28,107 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 925 | 925 | 388 | 10,504 | 10,245 | 5,120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3. Garang River | 43 005 | . 69 | 1 997 | | | 16.407 | 7 187 | c | | | O | G | o | | c | Ċ | C | c | c | c | ¢ | | | West Floodway Improvement | 12.851 | 416 | 433 | 0 | 4,923 | 4, 923 | 2,156 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ó | | - 7 | 21,627 | Ö | 2,236 | 5,694 | | 5,995 | 1,707 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥, | 0 | 0 | | 0 | 0 | _ | | Silandak River Improvement | 10,372 | 0 | 0 | . 0 | 0 | | 0 | 0 | • | Ó | 0 | 0 | 0 | 0 | 0 | 0 | 576 | 1,091 | 5,514 | 3,191 | 0 | 0 | | 5. Bringin River
Bringin River Improvement | 23,791 | 0 | 0 | 0 | . 0 | ۵ | 0 | 0 | 0 | 0 | | . • | | ۰ | 0 | o | . 0 | o | 1,305 | 2,651 | 12,603 | 7,227 | | 6. Blorong River | | • | • | ć | • | • | • | • | • | ć | ć | c | | c | | • | < | , | • | | • | | | Blorong Kiver improvement
Kedungsuren Dam | 79,039 | 0 4 | - 0 | 00 | 90 | 2,165 | 2,165 | 069,7 | 8,578 | 9,375 | 18,514 | 13,872 | 13,872 | 2,808 | 0 | 0 0 | 00 | 4,
2, 0 | 00 | 6,625
0 | 00 | 30 | | Total | 313,949 | 2,329 | 9,312 | 16,733 | 38,275 | 39,666 | 15,176 | 7,690 | 9,503 | 10,300 | 18,902 | 25,677 | 25,418 | 13,776 | 18,309 | 14,411 | 7,781 | 1,570 | 6,819 | 12,467 | 12,608 | 7.22.7 | A Contract Table XII.4.7 ANNUAL OMR COST OF FLOOD CONTROL PLAN FOR MASTER PLAN (Economic Cost) Unit : Milliin Rp. | Description | Operation
&
Administration | Maintenance
&
Replacement | Dredging | Total | |---|----------------------------------|---------------------------------|----------|-----------------| | 1. Babon River | , | | | | | Babon River Improvement
Babon Floodway | 14
14 | 144
158 | 62
31 | 220
203 | | 2. East Floodway
East Floodway Improvement | 12 | 102 | 66 | 180 | | 3. West Floodway / Garang River | | | | | | Garang River Improvement
West Floodway Improvement
Jatibarang Dam | 34
4
20 | 129
47
25 | 6 6 | 169
57
45 | | 4. Silandak River | , | | | | | Silandak River Improvement | 8 | 32 | 80 | 120 | | 5. Bringin River | | | | | | Bringin River Improvement | 10 | 41 | 106 | 157 | | 6. Blorong River | | ٠ | | | | Blorong River Improvement
Kedungsuren Dam | 4
29 | 27
86 | 22 | 53
115 | | Total | 149 | 791 | 379 | 1,319 | Table XII.4.8 (1/3) COST BREAKDOWN FOR URBAN DRAINAGE PLAN OF EASTERN AND CENTRAL SEMARANG | | | Semarang Area | | Central Semarang Area | | |---|----------------------------------|--------------------------------|---------------------------------------|----------------------------------|-------------------------------| | Item | samenessamenessamens
Siringin | ввикинекаличентенный температу | Semarang *2 | Banger | 8u lu | | | Quantity Unit Cost (Mill.Rp.) | Quantity Unit Cost (Mill.Rp.) | Quantity Unit Cost (Mill.Rp.) | Quantity Unit Cost
(Mill.Rp.) | Quantity Unit Cost (Mill.Rp.) | | I. Construction Base Cost | 8,713 | 22,822 | 44,149 | 13,242 | 1,701 | | دی | 792. | 2,075 | 4,014 | 1,204 | 155 | | 1) Open Channel Improve (Type | 6,120 п | E 1 | 6 1 | E f | | | Open Channel (1ype
Open Channel (Type | 3,100 m 3,655 | 7,900 m 8,943 | 2,150 m 2,153 | 3,460 m 4,284 | 1,750 m 1,211 | | | ⊒ 6 2 8 | . E E | : ∈ £ | . E E | : E E | | 7) Covered Channel (Type | | : E | | | | | s. Kelated Structure
Pump Station
Cate Structure | 0 E.S. 0 | | 1 L.S. 16,841
8 m ² 496 | 0 L.S. 0 | 0 L.S. 0 | | Railway Bridge | . 63 | | E 6 | E | l e 8 | | Sox Culvert
Inspection Road | i E E | 73,500 m2 389 | 726 m3 151
14,160 m2 75 | 1,148 m3 237
33,300 m2 176 | 607 m3 126
10,500 m2 55 | | 4. Miscellaneous Works | 72 | | | | | | II. Compensation Cost | 5,931 | 8,172 | 1,481 | 3,223 | 1,034 | | 1. Land Acquisition
Residential Area; Grade B
Residential Area; Grade C | 26.82 ha 5,364
0.00 ha 0 | 35.33 ha 7,066 | 0.44 ha 88
4.12 ha 206 | 7.75 ha 1,550
0.00 ha 0 | 2.02 ha 404
0.00 ha 0 | | Fish Pond
2. House Evacuation | œ | eg. | . Ba | 22 | eg
C | | Class B | 81 pc 567 | 158 pc 1,106 | 165 pc 1,155 | 239 pc 1,673 | 90 bc 630 | | III. Administration Cost | 1,025 | 2,170 | 3,194 | 1,153 | 161 | | IV. Engineering Cost | 1,307 | 3,423 | 6,622 | 1,986 | 255 | | V. Physical Contingency | 1,595 | 3,442 | 5,225 | 1,845 | 599 | | VI. Total | 18,571 | 40,029 | 179'09 | 21,449 | 3,480 | | | | | | | | Notes: *1 The improvement costs of the surveyed primary channels are considered. : *2 The improvement cost of Asin River is included. an Justice. Gestale Table XII.4.8 (2/3) COST BREAKDOWN FOR URBAN DRAINAGE PLAN OF WESTERN SEMARANG | | | | Western Semarang Area | arang Area | | |----------|--|-------------------------------|-------------------------------|-------------------------------|-------------------------------| | | Item | Ronggolawe | Karangayu Karangayu | яконинения
Тамалд | Silandak | | | | Quantity Unit Cost (Mill.Rp.) | | | Construction Base Cost | 5,453 | 5,636 | 1,585 | 1,025 | | ~ € | 1. Preparatory Works | 496 | 512 | 144 | | | ۷ . | 1) Open | Ė | E | 8 | E | | | Open Channel (| 2,250 m 2,180 | 0 m 0
1,100 m 1,037 | 0 m 0
1,200 m 1,143 | 0 m 0
850 m 676 | | | | E | E & | e e | EE | | | | E E | | E E | e e | | . | ×. | ۲.5. | 0 L.S. | ۲.5. | ۲. ۵. | | | Gate Structure
Railway Bridge | 2E E | 25 5 6 | | | | | Road Bridge
Box Culvert | 0 m2 0 | 83 m2
900 m3 | 0 m2 0 | 143
0 0 0 | | 4 | . 2. | | 6,600 | 일일 | | | ·II | Compensation Cost | 1,274 | . 791 | 0 | 434 | | | 1. Land Acquisition
Residential Area; Grade B | pq. | Ъ | na
er | ha | | r | KeSidential Area; Grade
Fish Pond | 0.00 ha 0.00 0 | 0.00 ha 0.00 o.00 ha | 0.00 ha 0
0.00 ha 0 | 0.00 ha 0
0.00 ha 0 | | 7 | Class B | 100 pc 700 | 69 pc 483 | 0 od 0 | 20 pc 140 | | III | III. Administration Cost | 471 | 450 | 111 | 102 | | IV. | Engineering Cost | 818 | 845 | 238 | 154 | | > | Physical Contingency | 755 | 727 | 182 | 161 | | VI. | Total | 8,771 | 8,449 | 2,116 | 1,876 | | | | | | | | Note : *1 The improvement costs of the surveyed primary channels are considered. Table XII.4.8 (3/3) COST BREAKDOWN FOR PUMP STATION | , t t t t t | P1 (Q=0.8m3/s) | P2 (Q=5.7m3/s) | P3 (Q=1.5m3/s) | ŀ | |---|--|--|--|----------------------------| | | Quantity Unit Cost | Quantity Unit Cost | Quantity Unit Cost | iotai | | 1.Civil Hork | | | | | | Excavation; Common
Embankment | <u>۾</u> ۾ | <u>ي</u> ۾ | 5 5 | 2,233 | | Revetment; Type A PC Pile; D=400mm,L=20m Sheet Pile; L=3m Reinforced Concrete | 1,000 m3 62
100 pc 163
130 m3 26
800 m3 264 | 1,000 m3 62
175 pc 286
290 m3 59
1,400 m3 462 | 1,000 m3 62
120 pc 196
150 m3 30
1,000 m3 330 |
186
645
115
1,056 | | buliding Works
Sub-Total | | ٠.
ب | | 1,276 5,529 | | 2.Mechanical & Electrical Works | | | | | |) Pump
) Main Motor
) Pipe & Valve
) Fine**** | 1 L.S. 341
1 L.S. 97
1 L.S. 74 | 1 L.S. 2,112
1 L.S. 624
1 L.S. 526 | 1 L.S. 638
1 L.S. 182
1 L.S. 139 | 3,091
903
739 | | Crane & Spare Parts Gate Leaf | ·. | | ન
 | 368
368
87 | | noist machine
 Installation
 Miscellaneous Works | | | | 58
953
837 | | Sub-Total | 1,622 | 6,649 | 3,041 | 11,312 | | Total | 2 685 | 717 0 | 1 440 | 100 21 | Table XII.4.9 COST BREAKDOWN FOR URBAN DRAINAGE PLAN OF EASTERN AND CENTRAL SEMARANG (INCLUDING SECONDARY CHANNEL) | | | Eastern Sem | Semarang Area | 1 | Central Semarang Area | | |------|--|---|--|-------------------------------|-------------------------------|---------------------------------| | | Item | onnoncountrice neoskanana
Siringin | Tenggang | Semarang | Banger | Bulu | | | | Quantity Unit Cost
(Mill.Rp.) | Quantity Unit Cost
(Mill.Rp.) | Quantity Unit Cost (Mill.Rp.) | Quantity Unit Cost (Mill.Rp.) | Quantity Unit Cost (Mill.Rp.) | | | Construction Base Cost | 32,291 | 82,895 | 44,149 | 20,191 | 1,906 | | , | | 2,936 | 7,536 | 4,014 | 1,836 | 173 | | ~ં | Main Channel Impr
1) Open Channel | 2,61 | 4,350 m 2,601 | Œ | E | e | | | Open Channel | E : | EΙ | 2,360 | 8 1 | E 1 | | | Open thannel (1ype t) Open Channel (Type D) | 10,09 | E≅ | ₩ 0
1 0
1 0 | E E | E E | | | Open Channel | • | & ; | E : | E 1 | e i | | | 6) Open Channel (1ype +)7) Covered Channel (Type 6) | 2 C | E E | 086,11 m 0//,c | 780 m 956 | 200 m 172 | | ฑ่ | Related Structure | | | | | | | | Pump Station | | ٠ | 1 L.S. | | ۲.S. | | | Sate Structure
Railway Bridge | | | 7 E | 7 <u>1</u> E | 7 15 | | | Road Bridge | 414 m2 634 | | 1,503 | 1,263 m2 1,932 | | | | Box Culvert | الم
الم | <u>~</u> | 726 m3 | 을
' | <u>ر</u> | | 4 10 | Inspection Road Secondary Channel Improvement * Miscellaneous Works | 97,320 m2 516
1 L.S. 12,019
2,669 | 200,100 m2 1,060
1 L.S. 25,787
6,851 | 14,160 m2
0 L.S. | S.
1. | 10,500 mZ 55
0 L.S. 0
158 | | II. | | 10,332 | 20,524 | | 5,634 | 1,034 | | - | land Acquisition | - | | | | | | | Residential Area; Grade B | ha 8,86 | e . | 0.44 ha | | ęų. | | | Residential Area; Grade C
Fish Pond | 0.00 ha 0 | 0.00 ha 0 | 4.12 na 206
1.05 ha 32 | 0.00 ha 0.00 | 0.00 na
0.00 ha | | 2. | × | 210 pc 1,470 | 568 pc 3,976 | | 490 pc 3,430 | 90 pc 630 | | 111. | III. Administration Cost | 2,984 | 7,239 | 3,194 | 1,808 | 206 | | IV. | Engineering Cost | 4,844 | 12,434 | 6,622 | 3,029 | 286 | | ۷. | Physical Contingency | 4,747 | 11,585 | 5,225 | 2,885 | 323 | | VI. | Total | 55,198 | 134,677 | 60,671 | 33,547 | 3,755 | | | | | | | | | Note: * The improvement costs of the surveyed and other primary, and secondary channels are considered. Table XII.4.10 ANNUAL DISBURSEMENT SCHEDULE OF URBAN DRAINAGE PLAN FOR MASTER PLAN | (Financial Cost) | | ** | | | | | | | | | | | | | | | ٠ | | | Unit | Unit: Million Rp. | . Вр. | |--|----------------------------------|-----------------------|-------------------------------------|-------|-------------------|-----------------|-------|-------|-------|-------------------|----------------------|-----------------------|-------------------------|-----------------------------------|----------------------------------|-------|--------------|--------------|----------------|--------|-------------------|----------------| | Description | Total | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 5003 | 2010 | 2011 | 2012 | 2013 | 2014 | | 1. Eastern Semareng
Siringin
Tenggang | 20,428
44,032 | 2,189 | 1,680 | 1,680 | 2,241
2,190 | 00 | 00 | 00 | 0,0 | 00 | 00 | 00 | . 00 | 0 763 | 962 | 2,527 | 287
5,983 | 287
5,983 | 2,771
5,983 | 5,385 | 3,486
4,300 | 2,511
3,799 | | 2. Central Semarang
Semarang
Banger
Bulu | 66,738
23,594
3,828 | 2,292
2,292
508 | 2,004
2,292
508 | 2,294 | 382
2,294
0 | 6,464
0
0 | 6,464 | 7,679 | 7,680 | 7,300
367
0 | 7,300
1,268
86 | 7,300
7,959
743 | 6,083
4,461
1,306 | 6,078 | 000 | 000 | 000 | 000 | 000 | 000 | .000 | 000 | | 3. Western Semarong
Ronggolawe
Karangayu
Tawang
Silandak | 9,648
9,294
2,328
2,064 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | | 0000 | 0000 | 0000 | 0000 | 479
512
144
94 | 1,583
1,018
0
558 | 7,256
7,764
2,184
1,412 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | | Total | 181,954 | 1 1 | 4,989 9,003 8,844 7,107 6,464 6,464 | 8,844 | 7,107 | 6,464 | 6,464 | 7,679 | 8,047 | 7,667 | 8,654 | 6,002 | 13,079 | 8,654 16,002 13,079 10,000 19,412 | 1 1 | 2,527 | 6,270 | 6,270 | 8,754 | 10,526 | 7,786 | 6,410 | Notes: This financial cost is made under the implementation schedule considering the priority sequence and the on-going projects. Value added tax is included, but Price contingency is excluded. The improvement costs of the surveyed primary channels are considered, Table XII.4.11 ANNUAL DISBURSEMENT SCHEDULE OF URBAN DRAINAGE PLAN FOR MASTER PLAN (INCLUDING SECONDARY CHANNEL) | (Economic Cost) | Un1 | Unit: Million | on Rp. | |---|-------------------------------------|----------------------|-----------------------|-----------------------|-------------------|---|-----------------|---------|-------------------|-------------------|------------------------|------------------------|-------------------------|-------------------|----------------------------------|-----------------|----------|-------------------|-------------------|-------------------------|--------------------------|----------------------------------| | Description | Total | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 5009 | 2010 | 2011 | 2012 | 2013 | 2014 | | l. Eastern Semarang
Siringin
Tenggang | 50,512
123,302 | 00 | 0.0 | 00 | 00 | 50 | 00 | 00 | 00 | 00 | 0,0 | 00 | 00 | 3,146 | 3,282 | 0 6,527 2 | 1,332 | 1,332 | 5,477 | 16,546
18,344 | 14,757 | 11,068 | | 2. Central Semanang
Semarang
Banger
Bulu | 55,651
30,710
3,431 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 1,822 | 1,822 | 315 | 5,358 | 5,358 | 6,367
0
0 | 6,367 | 6,053
833
0 | 6,053
833
0 | 6,053
2,987
157 | 5,043
16,828
1,096 | 5,040
9,229
2,178 | | 3. Western Semanang
Ronggolawe
Karangayu
Tawang
Silandak | 8,032
7,741
1,943
1,717 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 450
465
131
85 | 1,351
838
0
460 | 6,231
6,438
1,812
1,172 | | Total | 283,039 | 0 | 0 | 0 | ٥ | Ö | 0 | 0 | 0 | 0 | 1,822 | 1,822 | 315 | 3,504 | 8,640 1 | 12,894 2 | 28,219 2 | 28,738 | 32,883 | 45,218 | 56,541 | 57,443 | | Notes: This economic cost will be used to identify the priority sequence of The Improvement costs of the surveyed and other primary, and secondar (Economic Cost) | oe used to ideni
the surveyed an | tify the
nd other | priority,
primary, | and sec | °5≥ | drainage area.
y channeis are considered | ed.
are cons | idered. | | | | | | | | | | | | şun | Unit: Million Rp. | on Rp. | | Description | Total | 1994 | 1995 | 1996 | 1997 | 1998 | 1 999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | | l. Eastern Semarang
Siringin
Tenggang | 50,512
123,302 | 0 | 1,396 | 1,395 | 1,867 | 00 | 00 | 00 | 00 | 00 | 00 | . 00 | 00 | 2,960 | 3,089 | 0 6,141 1 | 1,209 | 1,209 | 4,971 | 15,020 | 13,396 | 10,049 | | 2. Central Semanang
Semarang
Banger
Bulu | 55,651
30,710
3,431 | 1,909 | 1,822
1,908
421 | 1,822
1,908
562 | 315
1,908
0 | 5,358 | 5,358
0
0 | 6,367 | 6,367
626
0 | 6,053
626
0 | 6,053
2,245 1
94 | 6,053
12,645
647 | 5,043
6,935
1,285 | 5,040 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | 3. Western Semanan
Ronggolawe
Karangayu
Tawang
Silandak | 8,032
7,741
1,943
1,717 | 0000 | 275
0
0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 435
465
131
85 | 1,304
838
0 | 6,018
6,438
1,812
1,172 | 0000 | | 0000 | 0000 | 0000 | 0000 | 0000 | | Total | 283,039 | 4,154 | 7,645 | 7,510 | 5,913 | 5,358 | 5,358 | 6,367 | 6,993 | 6,679 | 8,392 1 | 19,345 1 | 14,379 1 | 10,602 | 18,529 | 6,141 2 | 20,515 2 | 20,515 2 | 24,277 | 32,279 | 28,609 | 23,479 | Notes: This economic cost is made under the implementation schedule considering the priority sequence and the on-going projects. The improvement costs of the surveyed and other primary, and secondary channels are considered. Table XII.4.12 ANNUAL OMR COST OF URBAN DRAINAGE PLAN FOR MASTER PLAN (Economic Cost) Unit: Milliin Rp. | Description | Operation
&
Administration | Maintenance
&
Replacement | Dredging | Total | |---|----------------------------------|---------------------------------|------------------|---------------------| | 1. Eastern Semarang | | | | | | Siringin
Tenggang | 12
27 | 116
299 | 29
63 | 157
389 | | 2. Central Semarang | | | | | | Semarang
Banger
Bulu | 85
8
3 | 267
73
7 |
19
20
4 | 371
101
14 | | 3. Western Semarang | | | | : | | Ronggolawe
Karangayu
Tawang
Silandak | 4
4
3
2 | 20
21
5
4 | 6
5
2
2 | 30
30
10
8 | | Total | 148 | 812 | 150 | 1,110 | Table XII.4.13 COST ALLOCATION FOR MULTIPLE-PURPOSE DAM | | | | Jat | Jatibarang Dam | ď | Kedu | Kedung Suren Dam | me | |---|------------------------|-----------------|-----------------------------|----------------------------|---|---|----------------------------|---------| | Description | uo | | Flood
Control
Purpose | Water
Supply
Purpose | Total | Flood
Control
Purpose | Water
Supply
Purpose | Total | | Reference Point (max
Required Capacity | | (m3/s)
(MCM) | 770 | 12.550 | 1 I | 100 | 52.366 | | | | Sediment Capacity | (MCM) | !
!
!
!
!
! | | 6.800 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 |
 | 19,700 | | Multiple-Purpose | Required Capacity | (MCM) | ı | • | 16.880 | ı | 1 | 63.092 | | Cost | Total Capacity | (MCM) | 1 | 1 | 23.680 | ı | ı | 82.792 | | | Dam Crest | (EL.m) | ı | 1 | 162.00 | 1 | • | 76.00 | | | Constructon Cost | (Mill.Rp.) | ı | 1 | 63,477 | 1 | ı | 261,685 | | | Sediment Capacity | (MCM) | 1.360 | 6.800 | | 3.940 | 19,700 |
 | | Alternate | Required Capacity | (MCM) | 4.330 | | ı | 10.726 | 52.366 | • | | Single-Purpose | Total Capacity | (MCM) | 5.690 | | 1 | 14.666 | 72.066 | 1 | | Cost | Dam Crest | (EL.m) | 141.39 | | • | 63,35 | 74.70 | ı | | | Constructon Cost | (Mill.Rp.) | 36,617 | 57,009 | 93,626 | 140,051 | 246,306 | 386,357 | | | Sediment Capacity | (MCM) | 6.800 | 6.800 | 1 | 19.700 | 19.700 | ı | | | Other Purpose Capacity | (MCM) | 12.550 | | 1 | 52,366 | 10.726 | , | | Separable | Total Capacity | | 19,350 | _ | i | 72.066 | 30.426 | 4 | | Cost | Dam Crest | (EL.m) | 157.91 | | 1 | 74.70 | 67.76 | ì | | | Constructon Cost | (Mill.Rp.) | 57,009 | 45,068 | 1 | 246,306 | 179,941 | , | | | Separable Cost | (Mill.Rp.) | 6,468 | | 24.877 | 15,379 | 81,744 | 97,123 | | Alternate Cost less Separable Cost | able Cost | (Mill.Rp.) | 30,149 | 1
1
1 | 68,749 | 124,672 | 164,562 | 289,234 | | Allocated Joint Cost | | (Mill.Rp.) | 16,945 | 21,655 | 38,600 | 70,926 | 93,636 | 164,562 | | Total Allocated Cost | | (Mill.Rp.) | 23,413 | 40,064 | 63,477 | 86,305 | 175,380 | 261,685 | | | | | | | | | | | Table XII.4.14 COST BREAKDOWN FOR INTERBASIN TRANSFER | | Item | Quantity | Unit | Cost
(Mill.Rp.) | |------|-----------------------------|----------|------|--------------------| | ī. | Construction Base Cost | · | | 5,574 | | 1. | Preparatory Works | | | 507 | | 2. | Tuunel | 1,600 | m i | 4,320 | | 3. | Intake Weir | • | | | | | 1) Concrete | 300 | m3 | 150 | | | 2) Gate | 1 | L.S. | 42 | | | Revetment | 200 | m2 | 12 | | | 4) Maintenance Bridge | 120 | m2 | 50 | | | Open Channel | 100 | m | 32 | | 5. | Miscellaneous Works | | | 461 | | II. | Compensation Cost | | | 20 | | 1 | Land Acquisition | • ; | | • | | ٨. | Paddy Land; Rural | 2.00 | ha | 20 | | 2. | House Evacuation | 2.00 | | 20 | | _, | Class 8 | 0 | рс | 0 | | | | | • | | | III. | Administration Cost | | | 392 | | IV. | Engineering Cost | | | 1,115 | | ٧, | Physical Contingency | | | 671 | | VI. | Total | | | 7,772 | Table XII.4.15 COST BREAKDOWN FOR CONVEYANCE CHANNEL | | . Item | Quantity | Unit | Cost
(Mill.Rp.) | |------|---------------------------|----------|------|--------------------| | Ι. | Construction Base Cost | | | 6,446 | | 1. | Preparatory Works | | | 586 | | 2. | Conveyance Channel | 19,000 | m | 5,130 | | 3. | Related Structure | 1 | L.S. | 62 | | | Tuune 1 | 1 | L.S. | 135 | | 5. | Miscellaneous Works | | | 533 | | II. | Compensation Cost | | | 212 | | 1. | Land Acquisition | | | | | | Residential Area: Grade C | 2.90 | ha | 145 | | | Paddy Land; Rural | 6.70 | ha | 67 | | 2. | House Evacuation | | | | | | Class B | 0 | рc | 0 | | III. | Administration Cost | | | 466 | | IV. | Engineering Cost | • | | 967 | | ٧. ً | Physical Contingency | | | 763 | | VI. | Total | | : | 8,854 | Table XII.4.16 ANNUAL DISBURSEMENT SCHEDULE OF WATER RESOURCES DEVELOPMENT PLAN FOR MASTER PLAN | Description (10ta) 1904 1905 1906 1907 1908 1909 1909 1909 1909 1909 1909 1909 | (2000) | - | |--|---|-------------------|----------|----------|---------|------|--------|-------|--------|--------|------|--------|--------|-----------------|----------------|------|--------|--------|---------------|--------|-------|-------------------|---------| | SEGN_559 0 0 0 0 0 0 0 0 0 | Description. | Totaj | 1994 | 1995 | 1996 | l | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | | 127.116 0 0 4,439 11,527 12,299 12,543 5,560 27,799 7,915 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1. Babon Dam | 320,530 | 0 | ٥ | 0 | 0 | ٥ | 0 | .0 | . 0 | 0 | 8,869 | 8,869 | 18,147 | | 1 | | 64,357 | 64,357 | 13,016 | Q. | .0 | | | nster 8,549 0 0 4,489 23,979 27,413 35,550 27,799 7,016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2. Jatibarang Dam | 44,070 | 0 | 4,439 | 11,527 | | 12,299 | 3,506 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | | | 0 4,839 4,839 18,972 21,102 23,026 45,365 33,952 5,871 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3. Mundingan Dam | 127,116 | 0 | 0 | 4,489 | 6 | | | 667,73 | 7,916 | Ö | 0 | o | 0 | ٥ | 0 | 0 | o | 0 | O | 0 | 0 | | | 0 4,839 18,972 21,102 23,026 45,365 33,952 33,952 6,871 0 0 36,278 44,551 43,865 46,771 29,693 23,051 57,958 47,804 55,650 38,831 34,742 81,543 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 10,257 2,925 0 <td< td=""><td>4. Interbasin Transfer</td><td>8,549</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>675</td><td>52</td><td>3,139</td><td>4,710</td><td>c</td><td>0</td><td>0</td><td>0</td><td>. 0</td><td></td><td>o</td><td>0</td><td>o</td><td></td></td<> | 4. Interbasin Transfer | 8,549 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 675 | 52 | 3,139 | 4,710 | c | 0 | 0 | 0 | . 0 | | o | 0 | o | | | 36,278 44,551 43,665 46,771 29,693 23,051 57,956 47,804 55,650 38,831 34,742 81,543 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 10,257 10,257 2,925 0 | 5. Kedungsuren Dam
Kedungsuren Dam
Conveyance Channel | 192,918
9,739 | 00 | 00 | 00 | 00 | 4,839 | | | | | | | 33,952
3,551 | 6,871
5,330 | | 00 | 00 | 00 | 00 | 00 | | | | 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 10,257 10,257 2,925 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Total | 702,922 | 0 | 4,439 | 16,016 | I . | | | 1 | | | | | | | | | 64,357 | 64,357 | 13,016 | 0 | 0 | | | Total 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2008 2077 2078 2077 2078 2077 2078 2077 2078 2077 2078 2077 2078 2077 2078 2077 2078 2077 2078
2078 | Note : Value added tax is incli | uded, but Price c | ontingen | cy 1s ex | cluded. | | | | | | | | | | | | | | • | | | | | | 267,154 0 </td <td>(Economic Cost)</td> <td></td> <td></td> <td>!</td> <td></td> <td>:</td> <td></td> <td></td> <td>Unite</td> <td>Unit: Million Rp.</td> <td>ξ.
Ε</td> | (Economic Cost) | | | ! | | | | | | | | | | | | | | : | | | Unite | Unit: Million Rp. | ξ.
Ε | | 267,154 0 0 0 0 0 0 0 8,063 8,063 14,946 22,026 28,772 67,634 37,008 0 3,826 9,743 10,257 2,525 0 25,25 2,944 4,419 0 0 0 0 0 0 0 <t< td=""><td>Description</td><td>Total</td><td>1994</td><td>1995</td><td>1996</td><td>1997</td><td>1998</td><td>1999</td><td>2000</td><td>2001</td><td>2002</td><td>2003</td><td>2004</td><td>2005</td><td>2006</td><td>2007</td><td>2008</td><td>2009</td><td>2010</td><td>1102</td><td>2012</td><td>2013</td><td>2014</td></t<> | Description | Total | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 1102 | 2012 | 2013 | 2014 | | 37,008 0 3,826 9,743 10,257 2,925 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1. Babon Dam | 267,154 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 8,063 | | 14,946 | | L | 67,634 | 53,416 | 53,416 | 10,818 | 0 | 0 | | | 106,296 0 0 4,081 20,149 22,738 29,543 23,184 6,601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2. Jatibarang Dam | 37,008 | 0 | 3,826 | | | 10,257 | 2,925 | 0 | 0 | 0 | 0 | o | ο. | . oʻ | 0 | ٥ | 0 | 0 | 0 | 0 | Ö | | | 7,157 0 0 0 0 4,399 4,399 15,627 17,430 19,051 37,622 28,188 28,188 5,707 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3. Mundingan Dam | 106,296 | 0 | 0 | 4,081 | | | | 23,184 | 6,601 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | | | am 160,611 0 0 0 0 4,399 4,399 15,627 17,430 19,051 37,622 28,188 28,188 5,707 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4. Interbasin Transfer | 7,157 | 0 | 0 | O | 0 | 0 | 0 | O | 614 | 21 | 2,609 | 3,913 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | | | 586,346 0 3,826 13,824 30,406 37,394 36,867 38,811 24,645 19,072 48,826 40,389 46,078 32,132 28,772 67,634 | 5. Kedungsuren Dam
Kedungsuren Dam
Conveyance Channel | 160,611
8,120 | 90 | | 00 | 00 | 4,399 | | | | | | | 28,188 | 5,707 | 00 | . 00 | 00 | 00 | 0,0 | 00 | 00 | | | | Total | 586,346 | 0 | 3,826 | 13,824 | | | 1 | 1 | 24,645 | | 48,826 | 40,389 | 1 | | | Ł | 53,416 | 53,416 10,818 | 10,818 | 0 | 0 | | | | | | | | | | | | | | | | - | | | | | | | | | | | Table XII.4.17 ANNUAL OMR COST OF WATER RESOURCES DEVELOPMENT PLAN FOR MASTER PLAN (Economic Cost) Unit : Milliin Rp. | Description | Operation
&
Administration | Maintenance
&
Replacement | Dredging | Total | |---------------------------------------|----------------------------------|---------------------------------|----------|-----------| | 1. Babon Dam | 113 | 333 | | 446 | | 2. Jatibarang Dam | 34 | 43 | _ | 77 | | 3. Mundingan Dam | 59 | 97 | - | 156 | | 1. Interbasin Transfer | 2 | 25 | - | 27 | | 5. Kedungsuren Dam | | | | - | | Kedungsuren Dam
Conveyance Channel | 58
3 | 176
29 | 13 | 234
45 | | Total | 269 | 703 | 13 | 985 | Table XII.5.1 UNIT COSTS OF DAM CONSTRUCTION WORKS FOR FEASIBILITY STUDY (FINANCIAL) | | Description | Unit | | Unit Cost | | |----|---------------------------------|------|---------------|---------------|----------------| | | Social Include | onre | F.C.
(Rp.) | L.C.
(Rp.) | Total
(Rp.) | | 1 | Excavation (Ripping & Blasting) | m3 | 7,500 | 5,500 | 13,000 | | 2 | Excavation (Ripping) | m3 | 5,600 | 1,500 | 7,100 | | 3 | Embankment | m3 | 12,000 | 8,000 | 20,000 | | 4 | Dam Concrete | m3 | 60,000 | 60,000 | 120,000 | | 5 | Spillway Concrete (Reinforced) | m3 | 125,000 | 155,000 | 280,000 | | 6 | Invert Concrete | m3 | 100,000 | 110,000 | 210,000 | | 7 | Foundation Treatment (Grouting) | m | 130,000 | 80,000 | 210.000 | | 8 | Intake Facility | L.S. | 760,000,000 | 430,000,000 | 1,190,000,000 | | 9: | Maintenance Bridge | m2 | 260,000 | 260,000 | 520,000 | | 10 | Diversion Tunnel | m | 4,800,000 | 3,200,000 | 8,000,000 | | 11 | Relocation Road | m2 | 20,000 | 30,000 | 50.000 | | 12 | Relocation of Electrical Tower | рс | 50,400,000 | 21,600,000 | 72.000.000 | ## (ECONOMIC) | | Description | Unit | | Unit Cost | | |-----|---------------------------------|------|---------------|---------------|----------------| | | beset the ton | onre | F.C.
(Rp.) | L.C.
(Rp.) | Total
(Rp.) | | 1 | Excavation (Ripping & Blasting) | m3 | 6.800 | 5,000 | 11,800 | | 2 | Excavation (Ripping) | m3 | 5.100 | 1,400 | 6,500 | | - 3 | Embankment | m3 | 10,900 | 7,300 | 18,200 | | 4 | Dam Concrete | m3 | 54,500 | 54,500 | 109,000 | | 5 | Spillway Concrete (Reinforced) | m3 | 114,000 | 141,000 | 255,000 | | 6 | Invert Concrete | m3 | 90,900 | 100,000 | 190,900 | | 7 | Foundation Treatment (Grouting) | m | 118,000 | 73,000 | 191.000 | | 8 | Intake Facility | L.S. | 691,000,000 | 391,000,000 | 1.082,000,000 | | 9 | Maintenance Bridge | т2 | 236,000 | 236,000 | 472,000 | | 10 | Diversion Tunnel | m | 4,360,000 | 2,910,000 | 7,270,000 | | 11 | Relocation Road | m2 | 18,200 | 27,300 | 45,500 | | 12 | Relocation of Electrical Tower | рс | 45,800,000 | 19,600,000 | 65,400,000 | Table XII.5.2 UNIT COSTS OF URBAN DRAINAGE WORKS FOR FEASIBILITY STUDY | | Unit | Cost (Fina | incial) | Unit | Cost (Ecor | nomic) | |----------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|--------------------| | Item | F.C.
(1000Rp.) | L.C.
(1000Rp.) | Total
(1000Rp.) | F.C.
(1000Rp.) | L.C.
(1000Rp.) | Total
(1000Rp.) | | I. Open Channel (Type A) | | | | | | | | 1. Semarang | 195 | 53 | 248 | 178 | 49 | 227 | | II. Open Channel (Type D) | | ~- | | | | | | 1. Bandarharjo West | 309 | 494 | 803 | 281 | 449 | 730 | | 2. Asin | 407 | 663 | 1,070 | 371 | 603 | 974 | | 3. Bandarharjo East | 325 | 521 | 846 | 296 | | 770 | | 4. Semarang | 572 | 814 | 1,386 | 521 | | 1,26 | | 5. Balu | 343 | 634 | 977 | 312 | | 889 | | III. Open Channel (Type F) | 0.10 | | | | | | | 1. Semarang | 49 | 13 | 62 | 45 | 12 | 57 | | IV. Open Channel (Type G) | | | | | | | | 1. Baru | 1,255 | 1,417 | 2,672 | 1,142 | 1,290 | 2,43 | | V. Revetment | -, | -, | | | • | | | 1. Revetment: Type D | 12 | 27 | - 39 | 11 | 25 | 36 | | 2. Revetment; Type E | 66 | 73 | 139 | 60 | 66 | 126 | | 3. Revetment; Type F | 93 | 103 | 196 | 85 | 94 | 179 | | VI. Drain Ditch | | | | | | | | 1. Drain Ditch | 23 | 37 | 60 | 21 | 33 | 54 | | VII. Retaining Wall | , 20 | • | | | | | | 1. Retaining Wall | 641 | 739 | 1,380 | 583 | 674 | 1,25 | | VIII. Road Bridge | 011 | | -, | | • • • | -, | | 1. Road Bridge | 129,966 | 119,284 | 249,250 | 117,894 | 108,417 | 226,311 | | IX. Operation Bridge | 223,500 | , | -1.7,200 | | | , | | 1. Bandarharjo West | 7.823 | 4,932 | 12,755 | 7,119 | 4,483 | 11,602 | | 2. Asin | 33,692 | 20,323 | 54,015 | 30,656 | 18,468 | 49,124 | | 3. Bandarharjo East | 29,023 | 35,387 | 64,410 | 26,454 | 32,167 | 58,621 | | X. Overflow Section | | | | • | . • | | | 1. Bandarharjo West | 32,817 | 30,337 | 63,154 | 29,847 | 27,143 | 56,990 | | 2. Asin | 147,570 | 135,588 | 283,158 | 134,239 | 122,317 | 256,556 | | 3. Bandarharjo East | 34,474 | 32,814 | 67,288 | 31,392 | 29,827 | 61,219 | | XI. Retarding Pond | | | • | | • | | | 1. Bandarharjo West | 219,723 | 107,334 | 327,057 | 200,577 | 97,558 | 298,13 | | 2. Asin | 827, 339 | 383,274 | 1,210,613 | 755,164 | - | 1,105,31 | | 3. Bandarharjo East | 518,990 | 488,130 | 1,007,120 | 472,649 | 445,233 | 917,882 | Table XII.5.3 COST COMPARISON OF ALTERNATIVES FOR JATIBARANG DAM CREST LEVEL | | :
: | Alt.1
Crest EL.160.5m | .1
.160.5m | Alt.2
Crest EL.164.0m | .2
.164.0m | Alt.3
Crest EL.167.0m | .3
.167.0m | Alt.4
Crest EL.170.0m | .4
.170.0m | |--|------------|---------------------------------------|---------------------|--------------------------|--------------------|--------------------------|---------------------|--------------------------|--------------------| | ltem | 11
15 | Quantity (| Total
(Mill.Rp.) | Quantity (| Total
Mill.Rp.) | Quantity (| Total
(Mill.Rp.) | Quantity (| Total
Mill.Rp.) | | I. Construction Base Cost | | | 42,878 | | 49,936 | - | 63,784 | | 78,559 | | 1. Preparatory Works | ۲۰۶۰ | 1 | 3,898 | | 4,540 | | 5,799 | | 7,142 | | ک. Main dam Excavation (Ripping & Blasting) اکس Conserts | E E | 94,000 | 1,222 | 115,000 | 1,496 | 146,000 | 1,898 | 184,000 | 2,392 | | - Spillway Concrete (Reinforced) | 를 일 | 12,000 | 3,360 | 13,000 | 3,640 | 14,000 | 3,920 | 15,000 | 4,200 | | Foundation Treatment (Grouting) Intake Facility | E- | - 14,000
1 | 2,940 | 15,000 | 3,150
1,190 | 17,000 | 3,570 | 19,000 | 3,990
1,428 | | - Maintenance
Bridge | m2 | 350 | 182 | 350 | 182 | 350 | 182 | 350 | 182 | | Left Side Ridge Treatment Excavation (Ripping) | m
3 | 7,500 | 53 | 12,000 | 85 | 101,000 | 718 | 123,000 | 874 | | - Embankment | <u>۾</u> | 0 00 | 0.00 | 0 000 | 3,60 | 27,000 | 540 | 53,000 | 1,060 | | - Mater Leakage Treatment (ulouting)
4. Auxiliary Spillway | <u>=</u> | ,
t | r
, | 3 | 2021 | 2 | 252 | 222 | 2 | | Excavation (Ripping) | EE . | 69,000 | 490 | 26,000 | 185 | 26,000 | 185 | 26,000 | 185 | | - Embankment | <u>۾</u> ج | 2000 | 0 887 | 0 200 | 0 888 | 500 | 1 512 | 3,200 | 40 6 | | Invert Concrete Water Leakage Treatment (Grouting) | 2 = | 1,100 | 231 | 2,300 | 483 | 4,000 | 840 | 6,800 | 1,428 | | 5. Diversion Tunnel | Œ | 350 | 2,800 | 350 | 2,800 | 350 | 2,800 | 350 | 2,800 | | 6. Relocation Road
7. Delocation of Electrical Tower | 같 | 16,000 | 800 | 17,500 | 875 | 18,800 | 940 | 20,000 | 1,000 | | 8. Protection Works for Goa Cave | r.s. | 20 | 0 | 0 | 0 | 7 | 1,800 |) r=4 | 3,600 | | 9. Miscellaneous Works | L.S. | - | 3,544 | . | 4,127 | . - | 5,271 | ← 1 | 6,493 | | II. Compensation Cost | | e e e e e e e e e e e e e e e e e e e | 5,214 | | 5,582 | | 5,901 | | 6,217 | | 1. Land Acquisition
. Daddo Land Rural | | 24.0 | 2 400 | 24.8 | 2 480 | 25.5 | 2.550 | 76.2 | 2, 620 | | - Upland Cultivation | ha
unit | 93.8
8.0
0 | 2,814 | 103.4 | 3,102 | 111.7 | 3,351 | 119.9 | 3,597 | | כי וותחשב באמרתמניותון | 3. | ? | > | | > | 2 | | | o . | | Total | | | 48,092 | | 55,518 | | 69,685 | | 84,776 | Same Table XII.5.4 (1/2) COST BREAKDOWN FOR FEASIBILITY STUDY OF GARANG RIVER IMPROVEMENT | Item | Design Discharge
(Q=740m3/s) | Design Discharge
(0=770m3/s) | Design Discharge
(Q=850m3/s) | Design Discharge
(Q=900m3/s) | Design Discharge
(Q=980m3/s) | |--|--|--|---|--|--| | | Quantity Unit Cost | | I. Construction Base Cost | 31,138 | 33,891 | 37,619 | 40,113 | 43,858 | | | | | 332,800 | | E | | Excavation; Common 2 Embankment | 66,000 m3 620
8,900 m3 66 | <u>و</u> و | 85,000 m3
12,900 m3 | <u> </u> | <u> </u> | | 5. Revetment; Type A & B 6. Sodding | 22 | 34,310 m2 2,206
4,300 m2 4 | 34,800 m2
4,600 m2 | 35,100 m2 2,261
4,700 m2 5 | 36,300 m2 2,337
5.000 m2 6 | | 7. Railway Bridge
8. Road Bridge | 0 = 0 | E | | | | | 10. Retaining Wall | ຸ່ | L.S. 1,25 | 1 L.S. | 1 1.5. 1.250 | N. C | | | 1 L.S. | | 1 [.5. | | | | Reconstruction of Simongan Heir Intake Structure Miscellaneous Works | 1 L.S. 17,270
1 L.S. 2,334
2,573 | 1 L.S. 18,011
1 L.S. 2,334
2,801 | yed pad | 1 L.S. 21,060
1 L.S. 2,334
3.315 | 1 L.S. 22,860
1 L.S. 2,334
3,625 | | II. Compensation Cost | 0 | | | 3,599 | 099'6 | | 1.Land Acquisition | - | | | | | | Area;
Area; | na
na | | 0.30 ha 15
0.00 ha | ha 2,80
ha | ्
ह्यं
इं | | kesidential Area; Grade C
Paddy Land; Urban
Paddy Land; Rural | 0.00 ha 00.00 ha 00.00 | 0.00
0.00
0.00
at at | 0 0.00 ha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.00 ha | 0.00 ha 0 | | 2. House Evacuation | ! - ; | | · · | 1 | 2 | | Class 8
Class C | 200 | 0 0 0
0 0 | 2 pc 30
2 pc 14
3 pc 3 | 37 pc 555
25 pc 175
23 pc 69 | 98 pc 1,470
68 pc 475
63 pc 189 | | III. Administration Cost | 2,180 | 2,372 | 2,647 | 3,060 | 3,746 | | IV. Engineering Cost | 6,743 | 7,245 | 8,019 | 8,544 | 9,322 | | V. Physical Contingency | 3,788 | 4,114 | 4,584 | 5,226 | 6,284 | | VI. Total | 43,849 | 47,622 | 53,066 | 50,542 | 72,870 | | | | | | | | Remarks : The design discharge of 770 m3/s is selected as the optimum plan. Table XII.5.4 (2/2) COST BREAKDOWN FOR FEASIBILITY STUDY OF WEST FLOODWAY IMPROVEMENT | Item | Design Discharge
(Q=740m3/s) | Design Discharge
(Q=770m3/s) | Design Discharge
(Q=850m3/s) | Design Discharge
(Q=900m3/s) | Design Discharge
(Q=980m3/s) | | |--|--|--|--|---|---|---| | | Quantity Unit Cost | | | I. Construction Base Cost | 10,370 | 11,158 | 22,492 | 24,232 | 27,008 | | | 1. Preparatory Works 2. Excavation; Common 1 3. Excavation; Common 2 4. Embankment 5. Revertment; Type A & B | 277,800 m3 1,611
293,500 m3 2,107
0 m3 2,107
9,300 m2 586 | | | 2,203
509,100 m3 2,953
337,800 m3 2,426
0 m3 0
9,600 m2 605 | 2,455
660,200 m3 3,829
361,900 m3 2,598
0 m3 0
9,600 m2 605 | | | | ਜੋ ਜੋ
 | 98 m 1,767
0 m2
0 m2
1 L.S. 693
1 L.S. 1,863
1 L.S. 0 | U m2
104 m 1,872
4,733 m2 7,241
15. 693
1 L.S. 1,863 | 0 m2 0 113 m 2,034 5,141 m2 7,866 1 L.S. 693 1 L.S. 1,863 1 L.S. 1,863 1 L.S. 1,586 | 0 m2 0 127 m 2,286 5,792 m2 8,861 1 L.S. 693 1 L.S. 1,583 1 L.S. 1,583 1 L.S. 1,583 | | | <pre>12. Miscellaneous Works II. Compensation Cost</pre> | 857 | 922 | | | | | | 1.Land Acquisition Residential Area; Grade Residential Area; Grade Residential Area; Grade Paddy Land; Urban Paddy Land; Rural | A 0.00 ha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.00 ha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8.50 ha 4,250
0.00 ha 0
0.00 ha 0
0.00 ha 0 | 15.50 ha 7,750
0.00 ha 0
0.00 ha 0
0.00 ha 0 | 26.80 ha 13,400
0.00 ha 0
0.00 ha 0
0.00 ha 0 | | | Z.House Evacuation
Class A
Class B
Class C | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 55 pc 825
38 pc 266
35 pc 105 | 101 pc 1,515
70 pc 490
65 pc 195 | pc 2,52
pc 84,02 | | | III. Administration Cost | 726 | 781 | 1,956 | 2,393 | 3,094 | • | | IV. Engineering Cost | 1,556 | 1,674 | 3,374 | 3,635 | 4,051 | | | V. Physical Contingency | 1,193 | 1,283 | 3,131 | 3,782 | 4,826 | | | VI. Total | 13,845 | 14,896 | 36,399 | 43,992 | 56,177 | | Remarks : The design discharge of 770 m3/s is selected as the optimum plan. Table XII.5.5 COST ALLOCATION FOR FEASIBILITY STUDY OF JATIBARANG DAM | | | | Qmax=890m3/s | 3/s | (max=849m3/s | | Qmax=796m3/s | | Qmax=770m3/s | | Qmax=739m3/s | | |---|--|---|---|--|--|--|--|---|--|---|---|---| | | Item | | Flood Water
ControlSupply
Dam Dam | Hydro-
Power | Flood Mater Hydro
ControlSupply Power
Dam Dam | | flood Water
ControlSupply
Dam Dam | Hydro-
Power | Flood Water
ControlSupply
Dam Dam | Hydro-
Power | Flood Water
ControlSupply
Dam Dam | Hydro-
Power | | Reference Point Qmax
Required Capacity | oint Qmax
pacity | (m3/s)
(MCM) | 890 -
1.760 21.050 | ; 1 | 849 - 2.230 20.080 - | , ri | 796
3.340 18.230 | 1 1 | 770 - 4.330 16.700 | 1 1 | 739 -
5.930 14.900 | | | Multiple-
Purpose
Cost | Sediment Capacity Required Capacity Total Capacity Dam Crest Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(Mill.Rp.) | 6.800
22.810
29.610
164.00
82,667 | 1
t
1
t
1
t | 6.800
22.310
29.110
164.00
82.667 | ;
;
;
;
; | 6.800
21.570
28.370
164.00
82,667 | | 6.800
21.030
27.830
164.00
82.667 | | 6.800
20.830
27.630
164.00
82,667 | | | Alternate
Single-
Purpose
Cost | Sediment Capacity Required Capacity Total Capacity Dam Crest Constructon Cost | (MCM)
(MCM)
(MCM)
(EL.m)
(Mill.Rp.) | 1.360 6.800
1.760 21.050
3.120 27.850
137.76 163.95
36,953 82,507 | 1
1
1
1
1
1 1 1 1 1 1
1
1 | 1.360 6.800
2.230 20.080
3.590 26.880
138.75 163.17
37,922 80,013 | 116,410 | 1.360 6.800
3.340 18.230
4.700 25.030
140.88 161.68
40,006 75,248 | 1 1 1 1 4 | 1.360 6.800
4.330 16.700
5.690 23.500
142.79 160.44
41,875 71,357 | 1 1 1 1 1 | 1.360 6.800
5.930 14.900
7.290 21.700
145.26 158.81
44,391 68,150 | | | Separable
Cost | Sediment Capacity Required Capacity Other Purpose Capacity Dam Crest Constructon Cost Separable Cost | (MCM)
(MCM)
y (MCM)
(EL.m)
(M111.Rp.) | 6.800 6.800
1.760 21.050
27.850 8.560
163.95 146.18
82,507 45,638
160 37,029 | 6.800
0.075
29.535
163.946
82,494
212 | 6.800 6.800 6.22.230 20.080 0.26.880 9.030 29.163.17 146.89 163.80,013 46,600 82,2554 36,067 | 6.800 6.
0.073 3.
29.037 25.
63.937 161
82,466 75. | 6.800 6.800
3.340 18.230
25.030 10.140
161.68 148.30
75,248 48,512
7,419 34,155 | 6.800
0.068
28.302
163.945
82,491 | 6.800 6.800
4.330
16.700
23.500 11.130
160.44 149.54 1
71,357 50,193 | 6.800
0.065
27.765
(63.951
82,510 | 6.800 6.800
5.930 14.900
21.700 12.730
158.81 151.54
68,150 53,847
14,517 28,820 | 6.800
0.061
27.569
163.953
82,517 | | Alternate Cost less Allocated Joint Cost | Alternate Cost less Separable Cost (Mill.Rp.) Allocated Joint Cost (Mill.Rp.) | t (Mill.Rp.) | 36,793 45,478
20,234 25,032 | 0 0 | 35,268 43,946
19,467 24,278 | 0 32,
0 18, | 32,587 41,093
18,085 22,832 | 00 | 30,565 38,883
17,039 21,687 | 00 | 29,874 39,330
16,926 22,254 | 00 | | Total Allocated Cost | ated Cost | (Mill.Rp.) | 20,394 62,061 | 212 | 22,121 60,345 | 201 25, | 25,504 56,987 | 176 | 28,349 54,161 | 157 | 31,443 51,074 | 150 | Table XII.5.6 RELATIONSHIP BETWEEN PROJECT COST AND DAM HEIGHT OF JATIBARANG DAM FOR FEASIBILITY STUDY | 1 | : | Crest EL.145.0m |
e | Crest EL.150.0m | .150.0m | Crest El.160.5m | .160.5m | Crest EL.164.0m | .164.0m | |--|----------|---------------------------------------|---------------------|-----------------|---------------------|-----------------|---------------------|-----------------|---------------------| | item | unit | Quantity Total | Total
(Mill.Rp.) | Quantity | Total
(Mill.Rp.) | Quantity (| Total
(Mill.Rp.) | Quantity (| Total
(Mill.Rp.) | | . Construction Base Cost | | 25 | 25,175 | | 29, 524 | · | 42,878 | | 49,936 | | 1. Preparatory Works | L.S. | 1 2 | 2, 289 | н | 2,684 | | 3,898 | r 4 | 4,540 | | nain dam
- Excavation (Ripping & Blasting)
- Nam Conracte | සි සි | 55,000 | 716 | 69,000 | 898 | 94,000 | 1,222 | 115,000 | 1,496 | | - Spillway Concrete (Reinforced) | E 1 | | 2,661 | 10,000 | 2,800 | 12,000 | 3,360 | 13,000 | 3,640 | | roundation irearment (Grouting) 3. Diversion Tunnel | ≡ | | 2,640 | 335 | 2,680 | 350 | 2,800 | 350 | 2,800 | | | m2 | | 550 | 12,500 | 625 | 16,000 | 800 | 17,500 | 875 | | Relocation of Electrical TowerA. Other Works | . S | | 720
1,204 | 10 | 720
1.407 | 01 | 720
3.434 | 0 | 720
3.868 | | 7. Miscellaneous Works | L.S. | | 2,080 | | 2,440 | - -1 | 3,544 | F-1 | 4,127 | | II. Compensation Cost | | ••• | 3,642 | | 4,282 | | 5,214 | | 5,582 | | 1. Land Acquisition | : | | | | | | | | | | - Paddy Land; Rural | er
er | 20.1 | 2,010 | 23.5 | 2,350 | 24.0 | 2,400 | 24.8 | 2,480 | | 2. House Evacuation | unit | | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | | III. Administration Cost | | | 2,017 | | 2,366 | | 3,366 | | 3,886 | | IV. Engineering Services | • | • • • • • • • • • • • • • • • • • • • | 9,384 | | 10,240 | | 13,825 | | 16,101 | | V. Physical Contingency | | | 3,820 | | 4,405 | | 6,192 | | 7,162 | | [ota] | | 7 | 44.038 | | 50.817 | | 71,475 | -
:
: | 82 667 | to with ESA Table XII.5.7 (1/2) COST COMPARISON OF ALTERNATIVES FOR PUMP DRAINAGE SYSTEM IN ASIN RIVER BASIN AREA | · · · · · · · · · · · · · · · · · · · | | Alt.1 | ٠ | | Alt.2 | | | Alt.3 | | |---------------------------------------|----------|-------|-------------------|----------|-------|-------------------|----------|-------|------------------| | Item | Quantity | | Cost
Hill.Rp.) | Quantity | | Cost
Mill.Rp.) | Quantity | | Cost
Mill.Rp. | | I. Construction Base Cost | | | 2,193 | | | 4,384 | | | 2,632 | | 1. Preparatory Works | | | 199 | | | 399 | | | 239 | | 2. Pump Station | 0 | L.S. | 0 | 1 | L.S. | 1,500 | : 0 | L.S. | 0 | | 3. Retarding Pond | | • | 1,444 | | | 1,754 | | | 1,337 | | 1) Excavation: Common | 91,200 | m3 | 666 | 91.400 | m3 | 667 | 74,960 | m3 | 547 | | 2) Revetment; Type F | 3,650 | | 715 | 5,160 | | 1,011 | 3,710 | | 727 | | 3) Drain Ditch | 1,050 | | 63 | 1,270 | | 76 | 1,060 | | 63 | | 4. Channel Improvement | | | 369 | | | 369 | | | 838 | | 1) Excavation; Common | 12,000 | m3 | 88 | 12,000 | m3 | 88 | 36,300 | m3 | 265 | | 2) Embankment | 2,500 | m3 | 7 | 2,500 | m3 | 7 - | 6,300 | m3 | 17 | | 3) Revetment; Type D | 2,080 | m2 | 81 | 2,080 | | 81 | 5,510 | | 215 | | 4) Revetment; Type E | 1,390 | m2 | 193 | 1,390 | m2 | 193 | 2,450 | m2 | 341 | | 5. Miscellaneous Works | | | 181 | | | 362 | | | 218 | | II. Compensation Cost | | | 1,687 | - | | 1,212 | | | 751 | | 1. Land Acquisition | | | 1,405 | | | 930 | | | 699 | | Residential Area; Grade (| 0.00 | ha | 0 | 0.00 | | 0 | 3.17 | ha | 634 | | Residential Area; Grade A | 4 2.81 | ha | 1,405 | 1.43 | | 715 | 0.13 | ha | 65 | | Paddy Land: Urban | 0.00 | ha | 0 | 1.43 | ha | 215 | 0.00 | ha | 0 | | 2. House Evacuation | | | 282 | | | 282 | | | 52 | | Class C | 94 | рс | 282 | 94 | рс | 282 | 0 | рс | 0 | | Class D | . 0 | рс | 0 | 0 | рc | 0 | 52 | pc | 52 | | Total | | | 3,880 | | | 5,596 | | | 3,383 | Table XII.5.7 (2/2) COST COMPARISON OF ALTERNATIVES FOR PUMP DRAINAGE SYSTEM IN BANDARHARJO AREA | | Itom | • | Alt.1 | | | Alt.2 | | Damayl - | |----|--|--------------------|---------------|-------------------|----------------------|-----------|-------------------|---------------------------------------| | | Item | Quantity | | Cost
Hill.Rp.) | Quantity | | Cost
Mill.Rp.) | Remarks | | Ι. | Construction Base Cost | | | 2,943 | | | 1,587 | | | 1. | Preparatory Works | | | 268 | | • | 144 | | | 2 | Pump Station | 0 | L.S. | 0 | 0 | L.S. | 0 | | | 3. | Retarding Pond | | | . 802 | | | 531 | | | | 1) Excavation; Common
2) Revetment; Type F
3) Retaining Wall | 15,200
0
500 | m3
m2
m | 111
0
691 | 31,750
1,527
0 | | 232
299
0 | * * * * * * * * * * * * * * * * * * * | | 4. | Channel Improvement | | | 1,630 | | | 781 | | | | 1) Open Channel; Type O
2) Open Channel; Type G | 300
500 | m
m | . 293
1,337 | 800
0 | m
m | 781
0 | | | 5. | Miscellaneous Works | | ÷ | 243 | | ٠ | 131 | | | Ι. | Compensation Cost | | | 84 | | | 1,156 | | | ı. | Land Acquisition | | | | | | | | | | Commercial Area; Grade 8 | 0.21 | ha | 84 | 1.39 | ha | 556 | ř. | | 2. | House Evacuation | | | | | | | | | | Warehouse | 0 | рс | 0 | 4
(11,800 | pc
m2) | 600 | | | | Total | | | 3,027 | : | | 2,743 | | Table XII.5.8 (1/3) SUMMARY OF RIVER IMPROVEMENT PROJECT COST FOR FEASIBILITY STUDY (FINANCIAL) | Description | | Amount | | To to 3 | Tokal | |--|--|--------------------|---------------------|-----------------------|-----------------| | Descr (pt 100) | F.C.
(Mill.Rp.) | L.C.
(Mili.Rp.) | Total
(Mill.Rp.) | Total
(1,000 US\$) | Total (Mill.Yen | | I. Construction Base Cost | 34,700 | 24,646 | 59,346 | 29,191 | 3,663 | | 1. Preparatory Works | 2,659 | 1,436 | 4,095 | 2,014 | 253 | | 2. West Floodway Improvement Works | 3,904 | 1,687 | 5,591 | 2,750 | 345 | | Garang River Improvement Works | 3,940 | 2,474 | 6,414 | 3,155 | 396 | | 4. Reconstruction of Simongan Weir | 11,330 | 6,681 | 18,011 | 8,859 | 1,112 | | 5. Intake Structure | | | | | | | | | - | | | 301 | | /. Miscellaneous Works | 2,418 | 1,300 | 3,/24 | 1,832 | 230 | | Sub-total | 29,252 | 15,797 | 45,049 | 22,159 | 2,781 | | 8. Price Contingency ; F.C.3% & L.C.8% | Miscellaneous Works 2,418 1,306 3,724 1,832 Sub-total 29,252 15,797 45,049 22,159 2, Price Contingency ; F.C.3% & L.C.8% 5,448 8,849 14,297 7,032 Compensation Cost 0 0 0 0 Idministration Cost 0 4,924 2,422 Administration 0 3,154 3,154 1,551 Price Contingency ; F.C.3% & L.C.8% 0 1,770 1,770 871 Ingineering Service 6,948 3,950 10,898 5,361 Detailed Design 2,958 1,385 4,343 2,136 Construction Supervision 3,172 1,454 4,626 2,275 | 883 | | | | | II. Compensation Cost | 0 | 0 | 0 | 0 | 0 | | III. Administration Cost | Intake Structure 1,465 869 2,334 1,148 14 Others 3,536 1,344 4,880 2,400 30 Miscellaneous Works 2,418 1,306 3,724 1,832 23 Sub-total 29,252 15,797 45,049 22,159 2,78 Price Contingency; F.C.3% & L.C.8% 5,448 8,849 14,297 7,032 88 ompensation Cost 0< | 304 | | | | | 1. Administration | | 195 | | | | | 2. Price Contingency ; F.C.3% & L.C.8% | | 109 | | | | | IV. Engineering Service | | 673 | | | | | 1 Notailed Nesian | 2 958 | 1 385 | 4 343 | 2 136 | 268 | | | | | | | 286 | | 3. Price Contingency : F.C.3% & L.C.8% | Sub-total 29,252 15,797 45,049 22,159 2,7 Price Contingency ; F.C.3% & L.C.8% 5,448 8,849 14,297 7,032 8 Compensation Cost 0 0 0 0 0 Administration Cost 0 4,924 4,924 2,422 3 Administration 0 3,154 3,154 1,551 1 Price Contingency ; F.C.3% & L.C.8% 0 1,770 1,770 871 1 Engineering Service 6,948 3,950 10,898 5,361 6 Detailed Design 2,958 1,385 4,343 2,136 2 Construction Supervision 3,172 1,454 4,626 2,275 2 | 119 | | | | | | | | · | | | | V. Physical Contingency; 10% of I+II+IV | 4,165 | 2,860 | 7,025 | 3,455 | 434 | | VI. Total (I+II+III+IV+V) |
45,813 | 36,380 | 82,193 | 40,429 | 5,074 | | VII .Value Added Tax ; 10% of VI | 0 | 8,219 | 8,219 | 4,043 | 507 | | VIII.Grand Total | 45,813 | 44,599 | 90,412 | 44,472 | 5,581 | | Grand Total (1,000 | US\$) 22,535 | 21,938 | 44,473 | | | | Grand Total (Mill. | Yen) 2,828 | 2,753 | 5,581 | | | | | | | | | | Table XII.5.8 (2/3) SUMMARY OF JATIBARANG DAM PROJECT COST FOR FEASIBILITY STUDY (FINANCIAL) | December 100 | 4 | Amount | | Ya4-1 | Yatal | |---|---------------------|--------------------|---------------------|-----------------------|------------------| | Description | F.C.
(Mill.Rp.)(| L.C.
(Mill.Rp.) | Total
(Mill.Rp.) | Total
(1,000 US\$) | Total (Mill.Yen) | | I. Construction Base Cost | 40,258 | 39,972 | 80,230 | 39,464 | 4,952 | | 1. Preparatory Works 2. Main dam | 2,388
17,649 | 2,152
16,729 | 4,540
34,378 | 2,233
16,910 | 280
2,122 | | 3. Left Side Ridge Treatment | 847 | 498 | 1,345 | 662 | 83 | | 4. Auxiliary Spillway | 675 | 476 | 1,151 | 566 | 71 | | 5. Diversion Tunnel 6. Relocation Road | 1,680
350 | 1,120
525 | 2,800
875 | 1,377
430 | 173
54 | | 7. Relocation of Electrical Tower | 504 | 216 | 720 | 354 | 44 | | 8. Miscellaneous Works | 2,171 | 1,956 | 4,127 | 2,030 | 255 | | 9. Hydropower | 7,741 | 2,116 | 9,857 | 4,848 | 608 | | Sub-total . | 34,005 | 25,788 | 59,793 | 29,411 | 3,691 | | 10. Price Contingency ; F.C.3% & L.C.8% | 6,253, | 14,184 | 20,437 | 10,053 | 1,262 | | II. Compensation Cost | 0 | 7,898 | 7,898 | 3,885 | 488 | | 1. Compensation | 0 | 5,582 | 5,582 | 2,746 | 345 | | 2. Price Contingency ; F.C.3% & L.C.8% | 0 | 2,316 | 2,316 | 1,139 | 143 | | III. Administration Cost | 0 | 7,051 | 7,051 | 3,468 | 435 | | 1. Administration | . 0 | 4,576 | 4,576 | 2,251 | 282 | | 2. Price Contingency ; F.C.3% & L.C.8% | 0 | 2,475 | 2,475 | 1,217 | 153 | | IV. Engineering Service | 14,268 | 7,482 | 21,750 | 10,698 | 1,343 | | Detailed Design Construction Supervision | 5,197
7,182 | 2,488
2,712 | 7,685
9,894 | 3,780
4,867 | 474
611 | | 3. Price Contingency ; F.C.3% & L.C.8% | 1,889 | 2,282 | 4,171 | 2,052 | 257 | | V. Physical Contingency; 10% of I+II+IV | 5,453 | 5,536 | 10,989 | 5,405 | 678 | | VI. Total (I+II+III+IV+V) | 59,979 | 67,939 | 127,918 | 62,921 | 7,896 | | VII .Value Added Tax ; 10% of VI | 0 | 12,793 | 12,793 | 6,293 | 790 | | VIII.Grand Total | 59,979 | 80,732 | 140,711 | 69,213 | 8,686 | | Grand Total (1,000 US | \$) 29,503 | 39,711 | 69,214 | | | | Grand Total (Mill.Yen |) 3,702 | 4,983 | 8,685 | • | | Notes : *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 = Rp.2,033, 1 Yen = Rp.16.20 Table XII.5.8 (3/3) SUMMARY OF URBAN DRAINAGE PROJECT COST FOR FEASIBILITY STUDY (FINANCIAL) | : | | • | | | | | |--|--------------------------|--------------------------------------|---------------------|---------------------|--------------|------------| | Description | | \$4 54 50 50 TH THE VO THE 40 TH ST. | Amount | | Total | Total | | | | F.C.
(Mill.Rp.)(| L.C.
(Mill.Rp.)(| Total
(Mill.Rp.) | (1,000 US\$) | | | I. Construction Base (| Cost | 25,880 | 15,701 | 41,581 | 20,453 | 2,567 | | 1. Preparatory Works | | 1,802 | 730 | 2,532 | 1,245 | 156 | | 2. Bandarhario West | | 2,735 | 839 | 3,574 | 1,758 | 221 | | 3. Asin River Basin | | 7,544 | 2,288 | 9,832 | 4,836 | 607 | | 4. Bandarharjo East | | 3,964 | 1,349 | 5,313 | 2,613 | 328 | | Semarang River | | 1,252 | 1,173 | 2,425 | 1,193 | 150 | | 6. Baru River | | 884 | 983 | 1,867 | 918 | 115 | | Secondary Channel | | 0 | 0 | 0 | 0 | • (| | 8. Miscellaneous Work | .\$ | 1,638 | 663 | 2,301 | 1,132 | 142 | | Sub-total | | 19,819 | 8,025 | 27,844 | 13,696 | 1,719 | | 9. Price Contingency | ; F.C.3% & L.C.8% | 6,061 | 7,676 | 13,737 | 6,757 | 848 | | II. Compensation Cost | | 0 | 2,184 | 2,184 | 1,074 | 135 | | 1. Compensation | | 0 | 1,429 | 1,429 | 703 | 88 | | 2. Price Contingency | ; F.C.3% & L.C.8% | 0 | 755 | 755 | 371 | 47 | | III. Administration Cost | | 0 | 4,050 | 4,050 | 1,992 | 250 | | 1. Administration | • | 0 | 2,050 | 2,050 | 1,008 | 127 | | 2. Price Contingency | ; F.C.3% & L.C.8% | 0 | 2,000 | 2,000 | 984 | 123 | | V. Engineering Service | : | 3,221 | 2,322 | 5,543 | 2,727 | 342 | | 1. Detailed Design 2. Construction Super | vision | 1,629
1,087 | 877
587 | 2,506
1,674 | 1,233
823 | 155
103 | | 3. Price Contingency | ; F.C.3% & L.C.8% | 505 | 858 | 1,363 | 670 | 84 | | /. Physical Contingenc | y; 10% of I+II+IV | 2,910 | 2,021 | 4,931 | 2,425 | 304 | | /I. Total (I+II+III+IV+ | v) | 32,011 | 26,278 | 58,289 | 28,671 | 3,598 | | /II .Value Added Tax | ; 10% of VI | 0 | 5,829 | 5,829 | 2,867 | 360 | | /III.Grand Total | | 32,011 | 32,107 | 64,118 | 31,540 | 3,958 | | | Grand Total (1,000 US\$) | 15,746 | 15,793 | 31,539 | | | | | Grand Total (Mill.Yen) | 1,976 | 1,982 | 3,958 | | | | | | | | | | | Notes: *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 = Rp.2,033, 1 Yen = Rp.16.20 Table XII.5.9 (1/3) ANNUAL DISBURSEMENT SCHEDULE OF RIVER IMPROVEMENT WORKS FOR FEASIBILITY STUDY (FINANCIAL) | | | Amount | | 1994/1995 | 1995 | 1995/1996 | 966 | 1996/1997 | 764 | 1997/1998 | 966 | 1998/1999 | g. | 1999/2000 | 2 | 2000/2001 | | 2001/2002 | 20 | 2002/2003 | 88 | 2003/2004 | OA 2004/200 | 2004/2005 | |---|----------------|---------------|--------------|---------------|---------------|----------------|----------|-----------|-----------------------|-----------|------------|---------------|------------|-----------|-------------|-----------|------|-----------------------|--------|-----------|-------|---------------|-------------|-----------| | Description | F.C. | -1
-1 | Total | F.C. | 5 | F.C. L. | ٰ
ن ا | F.C. 1 | ; "
; ; | 7. | | F.C. | L.C. P. | F.C. 1.C. | : | F.C. L.C. | F.C. | , L.C. | 7.5 | | F. C. | L. C. | 7. | 1.0 | | l. Construction Base Cost | 34,700 | 24,646 | 59,346 | 0 | 0 | 0 | 0 | 0 | 0 14 | 14,011 9, | 9,457 14, | 14,075 10,680 | İ | 6,614 4, | 4,509 | 0 | 0 | 0 | 0 | 0 | ° | 0 | 0 | 0 | | | . 6 | 436 | | c | c | < | ď | c | | . 655 | - | 200 | 9:5 | 4 | c | - | | | | | • | • | | • | | | 6,003 | 3 3 | | > 0 | > 0 | | > < | > < | | 500.1 | | | 2 5 | > < | > 0 | | | | | | | > ' | 9 (| | | | | 8 | | . | > (| э (| <u>.</u> | э (| | | 3 5 | | | | ٠ : | | | | | | | 0 | , | 0 | | | 3,940 | 2,474 | | 0 | 0 , | 0 | 0 1 | 0 | | | | 2,689 1,7 | 1,784 | <u> </u> | 331 | | 0 | | | | | 0 | 0 | 0 | | | _ | 6,681 | | 0 | Ö | 0 | ο. | 0 | | 4,898 2, | 2,849 | | | | | | | | | | | 0 | C) | 0 | | | 1,465 | 8 | 2,33 | 0 | 0 | O 1 | 0 1 | 0 | 0 | 0 | 0 ; | | | 1,424 | සු | 0 | 0 | | 0 | 0 | 0 | 0 | Ö | 0 | | | 3,536 | Ž. | | 0 | 0 | 0 | 0 | 0 | | SX : | 82 | | | | 563 | 0 | ۰. | | | | | 0 | 0 | 0 | | 7. Miscellaneous Works | 2,418 | 1,306 | | 0 | 0 | 0 | 0 | 0 | 0 | 725 | 392 | 725 | 392 | 99 | 225 | 0 | 0 | | | | | o | 0 | 9 | | Sub-total | 29,252 | 15,797 | 45,049 | 0 | • | 0 | | 0 | 0 12 | 12,086 6, | 6,436 11, | 11,788 6, | 6,730 5, | 5,378 2, | 2,631 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 8. Price Contingency | 5,448 | 8,849 | 8,849 14,297 | ٥ | 0 | 0 | 0 | 0 | 0 | 1,925 3 | 3,021 2, | 2,287 3,9 | 3,950 1,6 | 1,236 1, | 1,878 | : 0 | 0 | | ;
; | 0 | 0 | 0 | | ٥ | | II. Compensation Cost | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ပ | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | III. Administration Cost | 0 | 4,924 | 4,924 | ٥ | 0 | 0 | ٥ | 0 | 0 | 0 | 1,906 | 0 2,0 | 2,057 | 0 | 196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | ٥ | | 1. Administration | 0 | 3,154 | 3,154 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,297 | .1 | 1,296 | Ö | 19 5 | 0 | 0 | | 0 | 0 | | | 0 | | | 2. Price Contingency | 0 | 1,770 | 1,770 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 609 | 0 | 761 | | 400 | 0 | 0 | 0 | 0 | 0 . 0 | 0 | 0 | Ö | | | IV. Engineering Service | 6,948 | 3,950 | 10,898 | 1,569 | 807 | 1,616 | 873 | 0 | 0 | 512 | 879 1, | 1,557 | 949 | \$69 | <u>4</u> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | O | 0 | | Detailed Design Construction Supervision | 2,958
3,172 | 1,385 | 4,343 | 1,479 | 692 | 1,479 | 693 | 00 | 00 | 1,304 | 0
598 | 1,304 | 598 | 0 35 | 0
258 | 00 | 00 | | 00 | 00 | 00 | 00 | 00 | 00 | | 3. Price Contingency | 818 | 1,111 | 1,929 | 06 | 115 | 137 | 180 | 0 | 0 | 808 | 281 | 253 | 351 | 8 | 184 | • | 0 | 0 | 0 | 0 | 0 | b | 0 | Ö | | V. Physical Contingency | 4,165 | 2,860 | 7,025 | 157 | 81 | 162 | 87 | 0 | 0 | 1,552 1 | 1,034 | 1,563 1, | 1,163 | 731 | 495 | 0 | 0 | | 0 0 | 0 | 0 | 0 | O | 0 | | VI. Total (I+II+III+IV+V) | 45,813 | 38,380 | 82,193 | 1,726 | 888 | 1,778 | 096 | 0 | 0 17 | ,075 | 13,276 17, | 17,195 14,849 | | 8,039 6, | 6,407 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | VII .Value Added Tax | Q | 8,219 | 8,219 | 0 | 261 | o _, | 274 | 0 | 0 | 0 | 3,035 | 0 3,7 | 3,204 | 0 | 1,445 | 0 | 0 | •
•
•
•
• | 0 | 0 | 0 | 0 | 0 | 0 | | VIII.Grand Total | 45,813 | 45,813 44,599 | 90,412 | 1,726 | 1,149 | 1,778 1 | 1,234 | 0 | 17 0 | 670, | 16,311 17, | 17,195 18,0 | 18,053 8,0 | 6,039 7, | 7,852 | 0 | 0 | | 0 | 0 | 0 | 0 | ٥ | 0 | | | | | | | | | | | | | | - | | | | | | | | | | | | | Notes : *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 - Rp.2,033, 1 Yen - Rp.16.20 A. Constitution ANNUAL DISBURSEMENT SCHEDULE OF JATIBARANG DAM CONSTRUCTION WORKS FOR FEASIBILITY STUDY (FINANCIAL) Table XII.5.9 (2/3) | | Amount | | 1994/1995 | | 1995/1996 | 199 | 1996/1997 | 1997 | 1997/1998 | 1998/1999 | 8 | 1999/2000 | | 2000/2001 | 5(| 2001/2002 | 500 | 2002/2003 | 2003/2004 | 72004 | 2004/2005 | 8 | |---|------------------------------------|-------|-----------|----------------|----------------|--------------|-----------|--------
------------|-----------|---------------|------------|-----------|-----------|------|-----------|----------|------------|-------------|---------------|---------------|------------| | Description | F.C. L.C. Total | | F.C. L.C. | | F.CL.C. | F.C. | L.C. | F.C. | ۲. ۲. | F.C. | L.C. F | F.C. L | L.C. F.C. | . L.C. | F.C. | L.C. | J. H. | r. c. | F.C. | , C | F.C. | ,
C | | I. Construction Base Cost | 40,258 39,972 80,230 | 330 | ٥ | 0 | 0 0 | 5,049 | 4,788 | 11,374 | 10,971 1 | 13,451 14 | 14,444 10, | 10,384 9, | 9,769 | 0 | | 0 0 | O | 0 | 0 | 0 | 0 | . 0 | | | 2 163 | 6 | • | | | 673 | 903 | 314 | 242 | ć | • | | : | | | | • | • | | | • | . • | | 2. Main dan | 17.649 16.729 34.378 | 37.8 | ٥ ٥ | : | 90 | 5.05 | 288 | 5,100 | | 7 844 7 | 430 | 300 | 388 | | | 9 0 | . | o c | - | | o c | o c | | | 498 | 35.5 | . 0 | | | 69 | 3 °° | 780 | | [| - | | 3 = | | ٠. | | | 9 0 | . | > C | > 0 | , c | | | 476 | 121 | , 0 | | . 0 | ; 0 | 0 | 146 | ጸ | 23. | 253 | 262 | , ¥ | | | | , 0 | 9 0 | , 0 | , 0 | , 0 | , 0 | | 5. Diversion Tunnel | 1,120 | 2,800 | 0 | | | 1,680 | 1,120 | 0 | 0 | Ö | 0 | | 0 | | | | 0 | , c | , 0 | , 0 | , 0 | ٥, ١ | | | 525 | 875 | 0 | | | 240 | 999 | 110 | 165 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | | Relocation of Electrical Tower Miscallaneous Monte | 504 216 7 | 720 | 00 | 00 | 00 | ğ | 80 | 202 | % & | 0 090 | 0 % | 0 9 | 0 66 | 0.0 | 00 | 00 | 00 | 00 | O 0 | 00 | 00 | 0 0 | | | 3 | : | | | | • | • | 7 | 760 | 3 | 20. | 9 | 70, | | | | • | > | > | 3 - | э. | > | | 9. Hydropower | 7,741 2,115 9,8 | 9,857 | 0 | 0 | 0 | 0 | 0 | 2,322 | 635 | 2,323 | 635 3, | 3,096 | 946 | 0 | | 0 0 | 0 | 0 | 0 | 0 | 0 | | | Sub-total | 34,005 25,788 59,793 | . 67 | 0 | 0 | 0 | 4,486 | 3,519 | 9,811 | 7,467 1 | 11,265 9 | 9,102 8 | 8,443 5, | 5,700 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | | 10. Price Contingency | 6,253 14,184 20,437 | 437 | 0 | 0 | 0 | 563 | 1,269 | 1,563 | 3,504 | 2,186 5 | 5,342 | 1,941 4, | 4,069 | ٥ | | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | | II. Compensation Cost | ,7 898,7 0 | 7,898 | 0 | 0 | 0 | 0 | 3,797 | 0 | 4.101 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | | - | | | | | | | | | | | | , | , | | | | | • | , | , | , | · | | 1. Compensation | 0 5,582 5, | 5,582 | 0 | 0 | 0 | 0 | 2,791 | 0 | 2,791 | 0 | 0 | Б | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2. Price Contingency | 0 2,316 2, | 2,316 | 0 | 0 | 0 | • | 1,006 | 9 | 1,310 | o | 0 | 0 | 0 | | 0 | 0 | | | 0 | 0 | 0 | 0 | | III. Administration Cost | ,7 120,7 0 | 7,051 | ٥ | 0 | 0 | ٥ | 1,027 | 6 | 2,064 | 2 0 | 2,263 | 0 | 1,697 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | | 1. Administration | 0 4,576 4, | 4,576 | 0 | 0 | 0 | 0 | 755 | 0 | 1,405 | 0 | 1,426 | .00 | 066 | • | 0 | 0 . | 0 | 0 | 0 | ٥ | O | 0 | | 2. Price Contingency | 0 2,475 2,4 | 2,475 | 0 | 0 | 0 | 0 | 272 | 0 | 699 | 0 | 837 | Ö | 207 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | IV. Engineering Service | 14,268 7,482 21,750 | 750 | 0 | 0 2,839 | 9 1,567 | 3,939 | 2,143 | 2,412 | 1,155 | 2,899 | 1,450 2 | 2,179 1, | 1,167 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 1. Detailed Design
2. Construction Supervision | 5,197 2,488 7,1
7,182 2,712 9,0 | 7,685 | 00 | 0 2,598
0 0 | 8 1,244
0 0 | 2,599
901 | 1,244 | 2,081 | 786 | 2,428 | 914 | 1,772 | 0
681 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | | 3. Price Contingency | 1,889 2,282 4, | 4,171 | 0 | 0 241 | 1 323 | 439 | 288 | 331 | 369 | 471 | 536 | 407 | 486 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | Φ | | V. Physical Contingency | 5,453 5,536 10,989 | 586 | 0 | 0 284 | 4 157 | 668 | 1,073 | 1,379 | 1,623 | 1,635 1 | 1,589 1 | 1,256 1, | 7,094 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | VI. Total (1+II+III+IV+V) | 59,979 67,939 127,918 | 918 | 0 | 0 3,123 | 3 1,724 | 9,887 | 12,828 | 15,165 | 19,914 1 | 17,985 19 | 19,746 13,819 | | 13,727 | 0 | 0 | 0 | 0 | ٥ | | 0 | 0 | 0 | | VII .Value Added Tax | 0 12,793 12,793 | 793 | 0 | 0 | 0 485 | 0 | 2,272 | 0 | 3,508 | 0 | 3,773 | 0 | 2,755 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | | VIII.Grand Total | 117,041 357,08 979,98 | 711 | 0 | 0 3,123 | 3 2,209 | 9,887 | 15,100 | 15,165 | 23,422 | 17,985 2 | 23,519 13 | 13,819 16, | 16,432 | | | 0 | 0 | 0 | 0 | 0 | . 6 | 0 | | | | | ŀ | Notes: *! Price Level in July,1992 *2 Conversion Rate US\$ 1.00 = Rp.2,033, 1 Yen • Rp.16.20 Table XII.5.9 (3/3) ANNUAL DISBURSEMENT SCHEDULE OF URBAN DRAINAGE WORKS FOR FEASIBILITY STUDY (FINANCIAL) Unit: Million Rp. | | | Amount | | 1994/1995 | 565 | 1995/1996 | 8 | 1996/1997 | 25 | 1997/1998 | 856 | 1998/1999 | 666 | 1999/2000 | 8 | 2000/2001 | 1, | 2001/2002 | | 2002/2003 | 25 | 2003/2004 | 8 | 2004/2005 | | |---|--------|--------------|----------------|------------|------------|------------|----------|---------------|------------|---------------|---------------|-----------|---------------|--------------|----------|------------|---------------|-----------|------------|-----------|----------|-----------|----------|-----------|-------| | Description | F.C. | L.C. | Total | F.C. 1 | L.C. 1 | F.C. L.C | , | F.C. L. | 1.C. | F.C. 1 | .0. | F.C. 1 | L.C. F | F.C. 1 | L.C. F | F.C. L. | L.C. F. | F.C. L. | L.C. F. | 7.
 | 2.0 | F.C. L | S. | F. C. | ن | | Construction Base Cost | 25,880 | 15,701 | 41,581 | o | ٥ | 0 | 0 | 0 | 0 | 0 | 0 2, | 2,282 2, | 2,802 3, | 3,702 1, | 1,919 4, | 4,787 1,8 | 1,869 4,0 | 4,013 2,7 | 2,791 4,3 | 4,372 2,. | 2,373 3, | 3,509 2, | 2,084 3, | 3,215 1, | 1,863 | | | - | 190 | 2 | | | < | 6 | < | | • | c | 96 | 4 | 5 | 010 | 1 090 | , | 6 | 133 | 6 | į. | 99 | ŕ | 4 | • | | 2. Bandarbarto West | 2.735 | 8 | 3.574 | 9 0 | , a | . 0 | • • | , 0 | 0 | , 0 | 9 0 | 30 | | , 0 | | | | 0 | . 0 | 30 | . 0 | 800 | 23.7 | | ĝ | | | 7,544 | 2,288 | 9,832 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 1,719 | 299 3, | 3,257 | 7 | 568 | 190 | | 0 | ٥ | • | | 0 | | | 3,964 | 349 | 5,313 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | _ | 0 | 0 | 0 2,745 | | 893 1,7 | ,219 | 456 | 0 | 0 | | 5. Senarang River | 1,252 | 1,173 | 2,425 | 0 (| 0 | 0 0 | 0 (| 0 0 | 0 0 | 0.0 | O 6 | 713 | 999 | 85 : | <u></u> | 0 (| 0 6 | 0 1 | 0 0 | 0 | φ. | 0 (| 0 | 0 | 0 | | Baru Kiver Secondary Chancel Improvement | | 200 | | - • | |) < |)
) C | > < |) c | > ¢ | > c | 0
0 | <u>د</u>
د | g c | 9 0 | 5 6 | > c | | 5 C | . | o c | o c | 00 | 0 (| 0 0 | | | 1,6 | 963 | 2,301 | 00 | 00 | | 90 | 00 | • • | 9 0 | 00 | | • | . 2 8 | - 38 | 162 | - 18
- 18 | | 135
3 | 328 | | 328 | | 328 | 133 | | Sub-total | 19,819 | 8,025 27,844 | 27,844 | 0 | 0 | 0 | 0 | 0 | | ٥ | 0 | 1,911 | 1,766 3, | 3,010 1, | 1,120 3, | 3,779 1,0 | 1,010 3,0 | 3,076 1,3 | 1,396 3,2 | 3,253 1,0 | 1,099 2, | 2,535 | 894 2, | 2,255 | ₹ | | 9. Price Contingency | 6,061 | 7,676 | 13,737 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 371 | 980, | 259 | 799 1. | 1,008 | 859 | 937 1,3 | 1,395 1,1 | 1,119 | 1,274 | 974 1, | 1,190 | 960 | 1,123 | | II. Compensation Cost | 0 | 2,184 | 2,184 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1, | 1,049 | 0 | 1,135 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1. Compensation | 0 | 1,429 | 1,429 | 0 | 0 | 0 | 0 | | 0 | ٥ | 714 | 0 | 517 | 0 | o | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | O | | 2. Price Contingency | 0 | 755 | 755 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 335 | • | 450 | 0 | . 0 | 0 | C | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | | III. Administration Cost | 0 | 4,050 | 4,050 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | ٥ | 487 | 0 | 495 | 0 | 029 | 0 | 929 | 0 | 823 | ٥ | 350 | 0 | 53 | | 1. Administration | 0 | 2,050 | 2,050 | 0 | o | 0 | 0 | 0 | 0 | 0 | 8 | ,0 | 307 | | 582 | 0 | 335 | 0 | 313 | 0 | 305 | | 240 | o | 211 | | 2. Price Contingency | 0 | 2,000 | 2,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53 | 0 | 88 | | 508 | 0 | 285 | 0 | 313 | | 353 | 6 | 320 | 0 | 320 | | IV. Engineering Service | 3,221 | 2,322 | 5,543 | 0 | 0 | 891 | 553 | 916 | 596 | 0 | ٥ | 171 | 122 | 198 | 149 | 238 | 191 | 227 | 188 | 228 | 961 | 185 | 168 | 191 | 159 | | 1. Detailed Design
2. Construction Supervision | 1,629 | 877
587 | 2,506
1,674 | 00 | 00 | 815 | 439 | 814 | 4.38
0 | 0.0 | 00 | 143 | 0 27 | 0 191 | 0 % | 188 | 0 0
103 | 0
174 | o 2. | 0
170 | 0 16 | 0 45 | 0 22 | 0 | o B | | 3. Price Contingency | 505 | 828 | 1,363 | 0 | G | 37. | 114 | 102 | 158 | 0 | 0 | 28 | 45 | 33 | 29 | 25
25 | 88 | 53 | 8. | 83 | 105 | 5 | 8 | 20 | æ | | Physical Contingency | 2,910 | 2,021 | 4,931 | 0 | 0 | 89 | 55 | 92 | 90 | Q. | 105 | 245 | 406 | 390 | 207 | 503 | 506 | 424 | 298 | 460 | 257 | 369 | 225 | 338 | 202 | | VI. Total (I+II+IV+V) | 32,011 | 26,278 | 58,289 | 0 | 0 | 86 | 608 1, | 1,008 | 959 | 0 1, | 1,227 2 | 2,698 4 | 4,952 4, | 8 | 2,770 5, | 5,528 2,6 | 2,886 4,664 | İ | 3,903 5,0 | 5,060 3,4 | 3,484 4, | 4,063 3, | 3,037 3, | 3,720 2, | 2,755 | | VII .Value Added Tax | 0 | 5,829 | 5,829 | 0 | 0 | 0 | 159 | 0 | 166 | . 0 | 123 | 0 | 765 | 0 | 706 | 0 | 841 | 0 | 857 | 0 | 854 | 0 | 710 | 0 | 28 | | VIII.Grand Total | 32,011 | 32,107 | 64,118 | 0 | 0 | 086 | 767 1, | 1,008 | 822 | 0 1 | 1,350 2 | 2,698 5 | 5,717 4, | 4,290 3 | 3,476 5, | 5,528 3,7 | 3,727 4,6 | 4,564 4,7 | 4,760 5,0 | 5,060 4, | 4,338 4, | 4,063 3, | 3,747 3, | 3,720 3, | 3,403 | (| Notes: *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 - Rp.2,033, 1 Yen - Rp.16.20 ## Table XII.5.10 (1/5) COST BREAKDOWN FOR FEASIBILITY STUDY OF RIVER IMPROVEMENT WORKS (FINANCIAL) | | ltem | Quantity | | Unit F | Price | | Amount | | |---------------------------------------|------------------|-----------------|----------|--------------------|--------------------|--------------------|--------------------|--------------------| | | T COM |
Quarterty | | F.C.
(1,000Rp.) | L.C.
(1,000Rp.) | F.C.
(Mill.Rp.) | L.C.
(Mill.Rp.) | Total
(Mill.Rp. | | 1.Preparatory Works - | | | | | ****** | | 1,436 | 4,095 | | 2.West Floodway Improv | vement Works | | | | | 3,904 | 1,687 | 5,591 | | Excavation; | Common 1-F | 339,000 | m3 | 4.6 | 1.2 | 1,559 | 407 | 1,966 | | | Common 2-F | 226,000 | | 5.3 | 1.4 | 1,198 | 316 | 1,514 | | | River Mouth | 98,000 | | 6.4 | 1.9 | 627 | 186 | 813 | | (2) Retaining Wall; | | 3,000 | | 87.0 | 144.0 | 261 | 432 | 693 | | (3) Revetment; | Type A | 6,580 | | 26.4 | 35.9 | 174 | 236 | 410 | | | Туре В | 3,020 | | 28.0 | 36.4 | 85 | 110 | 195 | | 3.Garang River Improve | | | | | | 3,940 | 2,474 | 6,414 | | Excavation; | Common 1-G | 276,800 | | | 1.8 | 1,855 | 498 | 2,353 | | | Common 1-EM | 10,200 | m3 | 3.8
7.4 | 1.0
2.0 | 39
533 | 10
144 | 49
677 | | (O) Embandadad | Common 2-G | 72,000 | | 2.0 | 0.6 | 20 | 5 | 26 | | (2) Embankment | Tuna A : | 10,200
2,110 | m3
m2 | 26.4 | 35.9 | 56 | 76 | 132 | | (3) Revetment; | Type A
Type B | 32,200 | m2 | 28.0 | 36.4 | 902 | 1,172 | 2,074 | | (A) Coddina | type b | 3.880 | | 0.1 | 1.0 | 0 | 4 | 4 | | (4) Sodding (5) Groundsill; | Type A | 1,040 | m3 | 335.0 | 344.0 | 348 | 358 | 706 | | (a) groundsiti; | Type B | 110 | m3 | 352.0 | 388.0 | 39 | 43 | 82 | | - | Type C | 30 | | 352.0 | 388.0 | 11 | 12 | 23 | | | | 390 | | 352.0 | 388.0 | 137 | 151 | 288 | | 4.Reconstruction of Si | Type D | 390 | UIJ | | | | 6.681 | 18,011 | | (1) Diversion Works | | 1 | 15 | 166,000.0 | 158,000.0 | 166 | 158 | 324 | | | a bewatering | 12,000 | | 19.5 | 7.1 | 234 | 85 | 319 | | (2) Demolition | Common 2-G | 6,710 | m3 | 7.4 | 2.0 | 50 | 13 | 63 | | | Type C | 1,110 | | 41.3 | 58.8 | 46 | 65 | 111 | | <pre>(4) Revetment; (5) Sodding</pre> | Type C | 570 | m2 | 0.1 | 1.0 | 0 | 1 | 111 | | (6) Reinforced Concr | nata | 6,790 | | 254.0 | 254.0 | 1,725 | 1,725 | 3,450 | | (7) Foundation Pile; | | 216 | pc | 810.0 | 700.0 | 175 | 151 | 326 | | (7) Foundation Fire; | 0=400πm,L=12m | 135 | pc | 565.0 | 465.0 | 76. | 63 | 139 | | | D=350mm, L=12m | 480 | pc | 466.0 | 376.0 | 224 | 180 | 404 | | (8) Sheet Pile; | t=0.2m | 1,380 | m2 | 109.0 | 92.0 | 150 | 127 | 277 | | (9) Main Gate 1 | C-012 | 236 | m2 | 25,200.0 | 10,800.0 | 5,947 | 2,549 | 8,496 | | (10)Main Gate 2 | | 54 | | 26,600.0 | 11,400.0 | 1,436 | 616 | 2,052 | | (11)Retaining Wall; | Type C | 80 | m | 3,800.0 | | 304 | 238 | 542 | | (12)Concrete Block; | | 2,830 | m2 | 24.7 | 52.5 | 70 | 149 | 219 | | (13)Gabion Mattress; | t=0.5m | 2,020 | m2 | 12.8 | 17.8 | 26 | 36 | 62 | | (14)Bridge | | 1.040 | | 210.0 | 210.0 | 218 | 218 | 436 | | (15)Control House & | Gate House | 1 | LS | 28,000.0 | 112,000.0 | 28 | 112 | 140 | | (16)Steel Stop Log | | 1 | LS- | 455,000.0 | 195,000.0 | 455 | 195 | 650 | | 5. Intake Structure | | | | | | 1,465 | 869 | 2,334 | | (1) Demolition | | 350 | m3 | 19.5 | 7.1 | 7 | 2 | 9 | | (2) Excavation; | Common 2 | 150 | m3 | 7.4 | 2.0 | 1 | 0 | 1 | | (3) Reinforced Concr | | 510 | m3 | 254.0 | 254.0 | 130 | 130 | 260 | | (4) Foundation Pile; | D=350mm, L=12m | 60 | рс | 466.0 | 376.0 | 28 | 23 | 51 | | (5) Sheet Pile; | t≃0.2m | 240 | m2 | 109.0 | 92.0 | 26 | 22 | 48 | | (6) Gate | | 30 | m2 | 29,400.0 | 12,600.0 | 882 | 378 | 1,260 | | (7) Retaining Wall; | Type C | 55 | m | 3,800.0 | 2,970.0 | 209 | 163 | 372 | | | Type D | 80 | m | 2,270.0 | 1,890.0 | 182 | 151 | 333 | | 6.0thers | | | | | | 3,536 | 1,344 | 4,880 | | (1) Railway Bridge | | | | 1,290,000.0 | 477,000.0 | 1,290 | 477 | 1,767 | | (2) Retaining Wall f | for PDAM; Type E | | m | | 3,020.0 | 646 | 604 | 1,250 | | (3) Flap Gate; | 1.0m x 1.0m | 2. | | 24,300.0 | 7,000.0 | 49 | 14 | 63 | | | 1.5m x 1.5m | | рс | 64,600.0 | 8,900.0 | 0 | . 0 | 0 | | | 2.0m x 2.0m | 14 | рc | 110,800.0 | 17,800.0 | 1,551 | 249 | 1,800 | | 7.Miscellaneous Works | | | | | | 2,418 | 1,306 | 3,724 | | Total | | | | | | 29,252 | 15,797 | 45,049 | | ,0.41 | | | | | | , | | • | Table XII.5.10 (2/5) COST BREAKDOWN FOR FEASIBILITY STUDY OF JATIBARANG DAM CONSTRUCTION WORKS (FINANCIAL) | Item | Quantity | Unit P
(1,000 | rice
Rp.) | ∕ Ama
(Mi | ount
11.Rp.) | Yotal | |---|---------------------------------------|------------------|--------------|--------------|-----------------|---------------| | | · · · · · · · · · · · · · · · · · · · | F.C. | L.C. | F.C. | L.C. | (Mill.Rp. | | . Construction Base Cost (Dam) | | | | 26,264 | 23,672 | 49,93 | | 1. Preparatory Works | 1 L.S. | | | 2,388 | 2,152 | 4,54 | | 2. Main dam | | | | 17,649 | 16,729 | 34,37 | | - Excavation (Ripping & Blasting) | 115,000 m3 | 7.5 | 5.5 | 863 | 633 | 1,49 | | - Dam Concrete
- Spillway Concrete (Reinforced) | 206,000 m3 | 60.0 | 60.0 | 12,360 | 12,360 | 24,720 | | - Spillway Concrete (Reinforced) | 13,000 m3 | 125.0 | 155.0 | 1,625 | 2.015 | 3,640 | | - Foundation Treatment (Grouting) | 15,000 m | 130.0 | 80.0 | 1,950 | 1,200 | 3,150 | | - Intake Facility - Maintenance Bridge 3. Left Side Ridge Treatment | 3EU3 | 760,000.0 | 430,000.0 | 760 | 430 | 1,19 | | - maintenance bringe | 350 MZ | 260.0 | 260.0 | 91 | 91 | 183 | | Exception (Pinning) | 12,000 m3 | E 6 | 1.5 | 847 | 498 | 1,34 | | Excavation (Ripping)Embankment | 0 m3 | 5.6
12.0 | 8.0 | 67 | 18 | 8 | | - Water Leakage Treatment (Grouting) | 6-000 m | 130.0 | 80.0 | 0
780 | 480 | 1 260 | | 4. Auxiliary Spillway | 0,000 iii | 130.0 | | 675 | 480
476 | 1,260
1,15 | | - Excavation (Ripping) | 26 000 m3 | 5.6 | | 146 | 39 | 18 | | | | 12 A | 0.0 | 0 | . 0 | . 10. | | - Invert Concrete | 2:300 m3 | 100.0 | 110.0 | 230 | 253 | 483 | | - Water Leakage Treatment (Grouting) | 2.300 m | 130.0 | 80.0 | 299 | 184 | 483 | | - Invert Concrete - Water Leakage Treatment (Grouting) 5. Diversion Tunnel 6. Relocation Road | 350 m | 4.800.0 | 3,200.0 | 1,680 | 1,120 | 2,800 | | 6. Relocation Road | 17.500 m2 | 20.0 | 30.0 | 350 | 525 | 87 | | 7. Relocation of Electrical Tower | 10 pc | 50,400.0 | 21,600.0 | 504 | 216 | 720 | | 8. Protection Works for Goa Cave | ois. | 0.0 | 0.0 | 0 | 0 | | | 7. Relocation Road | 1 L.S. | | | 2,171 | 1,956 | 4,12 | | I. Construction Base Cost (Exclusive to | Hydro) | | | - 7,741 | 2,116 | 9,857 | | 1. Preparatory Works2. Powerhouse | 1 L.S. | | | 704 | 192 | 896 | | | | | r r | 1096 | 1083 | 2,179 | | - Excavation (Ripping & Blasting) | 11,000 m2 | 7.5 | 5.5 | 83 | 61 | 144 | | - Remitorcea Concrete | 2 1 1 | 123.0 | 0,000 000 | 113 | 122 | 235 | | - Reinforced Concrete - Powerhouse Building 3. Tailrace | 1 4.3. | 300,000.0 | 900,000.0 | 900
73 | 900
74 | 1,800 | | - Excavation (Ripping & Blasting) | 2 000 m3 | 7.5 | 5.5 | 15 | 11 | 147 | | - Common Concrete | 150 m3 | 52.0 | 63.0 | 8 | _ | 1. | | - Reinforced Concrete | | 125.0 | | 50 | 54 | 104 | | 4 Flectrical & Mechanical Equipment - | | | | 5,193 | 577 | 5,770 | | - Turbine ; 1,500 kw | 1 set | 1,620,000.0 | 180,000.0 | 1,620 | 180 | 1,800 | | - Turbine ; 1,500 kw - Generator ; 1,700 kVA - Transformer ; 6.6/20 kVA - Inlet Valve | 1 set | 765,000.0 | 85,000.0 | 765 | 85 | 850 | | - Transformer ; 6.6/20 kVA | 1 set | 180,000.0 | 20,000.0 | 180 | 20 | 200 | | - Inlet Valve | 1 set | | | 180 | . 20 | 200 | | | 1 set | | | 2,070 | 230 | 2,300 | | - Draft Gate | 2 set | 108,000.0 | 12,000.0 | 216 | .24 | 240 | | - Outlet Gate | 1 set | 162,000.0 | 18,000.0 | 162 | 18 | . 180 | | 5. Distribution Line; 20 kV 6. Miscellaneous Works | 1 L.S. | 35,000.0 | 15,000.0 | 35 | 15 | 50 | | 6. Miscellaneous Works | 1 L.S. | | | 640 | 175 | 815 | | Construction Base Cost Total | | | | | 25,788 | 59,793 | | II.Compensation Cost | | | | | 5,582 | 5,582 | | 1. Land Acquisition | | | | . 0 | £ 600 | | | | 0.0 ha | n .n | 50,000.0 | 0 | 5,582
0 | 5,582
0 | | | 0.0 Ha | 0.0 | 100,000.0 | . 0 | 2,480 | | | - Residential Area; Grade C | /4 × na | | 100.000.0 | U | Z,400 | 2,480 | | - Residential Area; Grade C
- Paddy Land: Rural | | 0.0 | | ٨ | 3 102 | 3 100 | | - Residential Area; Grade C
- Paddy Land; Rural
- Upland Cultivation | 103.4 ha | 0.0 | 30,000.0 | 0 | 3,102
0 | | | - Residential Area; Grade C
- Paddy Land: Rural | | 0.0
0.0 | | 0
0
0 | 3,102
0
0 | 3,102
0 | Table XII.5.10 (3/5) COST BREAKDOWN FOR FEASIBILITY STUDY OF URBAN DRAINAGE WORKS (FINANCIAL) | ٠. | Item | Quantity | | (1,000 | Price
Rp.) | Amot
(Mill) | .Rp.) | Total
(Mill.Rp. | |----|--|--------------|----------|------------------|--------------------|----------------|------------|--------------------| | | | | _ | F.C. | | F.C. | | (интикр. | | • | Construction Base Cost | | | | | - 19,819 | 8,025 | 27,8 | | 1. | Preparatory Works | | | | | - 1,802 | 730 | 2,5 | | 2. | Randarhario West | | | | | ~ 2,735 | 839 | 3,5 | | | 1) Pumping Station | 0.80 | m3/s | | | 2,061 | 252 | 2,3 | | | Z) date structure | | | : | | 206 | 69 | 2 | | | Retarding Basin | 0.84 | ha | | | 220 | 107 | 3 | | | 4) Channel Improvement | | | 200.0 | 404.0 | 247 | 395 | 6 | | | - Open Channel; Type D | 800 | m | 309.0 | 494.0 | 247 | 293 | , | | | 5) Related Structure | 3,250 | m2 | 0.4 | 4.9 | 1 | 16 | | | 2 | - Inspection Road Asin River Basin | 3,230 | 1112, | 0.7 | 7.5 | | 2,288 | 9,8 | | ٠. | 1) Pumoing Station | 5.70 | m3/s | | | 5.338 | 639 | 5,9 | | | 2) Gate Structure | 5.70
1 | place | ; | | 712 | 187 | 8 | | | 3) Retarding Basin | 2.67 | ha | | | 827 | 383 | 1,2 | | | 4) Channel Improvement | | | | | 1 | | | | | - Open Channel; Type D | 1,300 | m | 407.0 | 663.0 | 529 | 862 | 1,3 | | | 5) Related Structure | _ | _ | | | 120 | 110 | | | | - Bridge | | pc | 0.4 | 4.0 | 130 | 119
98 | 2 | | | - Inspection Road | 20,050 | mZ | 0.4 | 4.9 | 8
- 3,964 | 1,349 | 5,3 | | 4. | Bandarharjo East | 2.00 | m3/c | | | 3,904 | 405 |
3,4 | | | 1) Pumping Station 2) Gate Structure | 2.00 | | | | 178 | 64 | 2,2 | | | 3) Retarding Basin | 0.93 | | • | | 519 | 488 | 1,0 | | | 4) Channel Improvement | 0175 | | | | | | • | | | - Open Channel; Type D | 700 | m | 325.0 | 521.0 | 228 | 365 | 5 | | | 5) Related Structure | | | 6 - A | | | | | | | - Inspection Road | 5,600 | m2 | 0.4 | 4.9 | 2 | 27 | | | 5. | Semarang River | ~ | | | | 1,252 | 1,173 | 2,4 | | | 1) Channel Improvement | 0.250 | | 105.0 | E2 0 | 450 | 125 | . 5 | | | - Open Channel; Type A | 2,350 | | 195.0
572.0 | 53.0
814.0 | 458
286 | 125
407 | 6 | | | - Open Channel: Type D | 500
4,020 | | 49.0 | 13.0 | 197 | 52 | . 2 | | | - Open Channel; Type F 2) Related Structure | 4,020 | . 111 | 73.0 | 13.0 | 137 | 36 | - | | | - Revetment; Type D | 9,530 | m2 | 12.0 | 27.0 | 114 | 257 | 3 | | | - Revetment; Type E | 2.840 | | 66.0 | 73.0 | 187 | 207 | 3 | | | - Inspection Road | 25,500 | | 0.4 | 4.9 | . 10 | 125 | 1 | | 6. | Baru River | | | | | - 884 | 983 | 1,8 | | | 1) Gate Structure | 1 | place | ; | | 150 | 53 | 2 | | | 2) Channel Improvement | 200 | | 242 0 | C24 A | 102 | 100 | • | | | - Open Channel (Type D) | 300 | | 343.0
1,255.0 | 634.0 | 103
628 | 190
709 | 2
1,3 | | | - Open Channel (Type G) 2) Related Structure | 500 | Ш | 1,200.0 | 1,417.0 | 020 | 709 | 1,3 | | | - Inspection Road | 6,400 | m2 | 0.4 | 4.9 | 3 | 31 | | | 7 | Socondary Channel Improvement | | | | | - 0 | 0 | | | 8. | Miscellaneous Works | | | | | - 1,638 | 663 | 2,3 | | | Compensation Cost | | | | | | 1,429 | 1,4 | | - | • | | | | | | | | | | 1. Land Acquisition | | | - | | - 0 | 1,167 | 1,1 | | | Residential Area: Grade A | 0.35 | ha | 0.0 | 500,000.0 | U | 175 | 1 | | | Residential Area; Grade B | 4.54 | | | 200,000.0 | 0 | 908 | 9 | | | | 0.21 | ha | 0.0 | 400,000.0 | 0 | 84 | 9 | | | 2. House Evacuation | 20 | | ^ ^ | 7 000 0 | - 0
0 | 262
210 | 2
2 | | | Class B | | pc | 0.0 | 7,000.0
3,000.0 | 0 | 210 | 2. | | | Class C
Class D | 0
52 | pc
pc | $0.0 \\ 0.0$ | 1,000.0 | 0 | 52 | | | | C1422 D | JŁ | þ¢ | 0.0 | 1,000.0 | v | JL | | Table XII.5.10 (4/5) COST BREAKDOWN OF PUMP STATION | Item | Unit | Banda:
P1 (| Bandarharjo West
Pl (Q=0.80m3/s) | | Asin
P2 | Asin River Basin
P2 (Q=5.70m3/s) | | Banda
P3 | Bandarharjo East
P3 (Q=2.00m3/s) | | Total | |------------------------------------|----------|----------------|-------------------------------------|---------|------------|-------------------------------------|---------|-------------|-------------------------------------|---------|------------| | : | | Quantity | F.C. | ۲.۵. | Quantity | F.C. | ۲.۲. | Quantity | F.C. | L.C. | | | 1.Civil Work | | | | | | | | | | | | | 1) Excavation; Common | Ę | 972 | 5,638 | 1,458 | 2,690 | 15,602 | 4,035 | 1,400 | 8,120 | 2,100 | 36,953 | | 2) Embankment | <u></u> | 55 | 110 | 33 | 542 | 1,084 | 325 | . 559 | 1,118 | 335 | 3,005 | | | E | 525 | 1,566 | 470 | 1,173 | 3,519 | 1,056 | 623 | 1,869 | 561 | 9,041 | | 4) Foundation Pile; D=500mm, L=15m | 8, | 34 | 34,000 | 29,580 | 99 ; | 66,000 | 57,420 | 52 | 52,000 | 45,240 | 284,240 | | | 달 ' | 23 | 705.2 | 2,116 | 921 | 13,734 | 266,11 | 108 | 11,772 | 9.936 | 51,657 | | | <u> </u> | 414 | 058,66 | 68,310 | 1.02/ | 138,645 | 169,455 | 089 | 91,800 | 112,200 | 636,300 | | | <u> </u> | 0,7
7,0 | 1,160 | 1,400 | 25. | 3,306 | 3,990 | ę, | 2,088 | 2,520 | 14,464 | | 8) Concrete Block: t=0.5m | 2 | 0 | 0 | 0 | 160 | 3,952 | 8,400 | 100 | 2,470 | 5,250 | 20,072 | | 9) Building Works | L.S. | H | 30,261 | 31,010 | | 73,753 | 76,882 | r=1 | 51,371 | 53,443 | 316,720 | | 10) Others | S | | 6,557 | 6,719 | - | 15,980 | 16,658 | pr-4 | 11,130 | 11,579 | 68,623 | | Sub-Total | ٠. | | 137,689 | 141,096 | | 335,575 | 349,813 | | 233,738 | 243,164 | 1,441,075 | | 2.Mechanical & Electrical Works | | | | | | | | | | | | | 1) Pump & Motor | L.S. | | 709,000 | 0 | | 2,083,000 | | ,I | 968,000 | 0 | 3,750,000 | | 2) Generator | L.S. | 1 | 283,000 | 0 | 1 | 862,000 | 0 | 7 | 569,000 | 0 | 1,714,000 | | 3) Valve | L.S. | - | 113,000 | 0 | - | 302,000 | 0 | | 152,000 | 0 | 267,000 | | | L.S. | Н | 386,000 | 0 | | 485,000 | 0 | ~ 4 | 451,000 | 0 | 1,322,000 | | 5) Miscellaneous Works | L.S | m | 358,000 | 0 | - | 1,078,000 | 0 | | 555,000 | 0 | 1,991,000 | | 6) Installation | S | - | 74,000 | 111,000 | | 192,000 | 289,000 | | 108,000 | 162,000 | 936,000 | | Sub-Total | | | 1,923,000 | 111,000 | | 5,002,000 | 289,000 | | 2,803,000 | 162,000 | 10,290,000 | | Total | | | 2,060,689 | 252,096 | | 5,337,575 | 638,813 | - | 3,036,738 | 405,164 | 11,731,075 | | | | | | | | | | | | | | Table XII.5.10 (5/5) COST BREAKDOWN OF GATE STRUCTURE | #a+ | 4 | Band | Bandarharjo West | lest | Asi | Asin River Basin | as in | Band | Bandarharjo East | East | | Baru River | . | | |---|-------------|----------|------------------|--------|----------|------------------|---------------|----------|------------------|------------|----------|------------|----------|---------| | | | Quantity | F.C. | 1.0. | Quantity | U
L | L.C. | Quantity | F.C. | 1.0. | Quantity | F.C. | 1.0. | Total | | 1.Civil Work | | | | | | | | | | | | | | | | | EII. | 388 | 2,256 | 584 | 776 | 4.501 | 1.164 | 5.64 | 3 155 | 818
818 | 212 | 1 230 | 9,5 | 14.000 | | | <u>1</u> 33 | 188 | 564 | 169 | 138 | 414 | 124 | 261 | 783 | 235 | 217 | 264 | 975 | 14,024 | | Foundation Pile; D=500mm, L=15m | | 33 | 33,000 | 28,710 | 20 | 50,000 | 43,500 | 24 | 24.000 | 20,880 | 3 61 | 19.000 | 16,530 | 235 520 | | | m2 | 52. | 5,668 | 4,784 | 189 | 20,601 | 17,388 | 99 | 7,194 | 6.072 | 99 | 7.194 | 6.072 | 74 973 | | | 띹 | 104 | 14,040 | 17,160 | 367 | 49,545 | 60,555 | 122 | 16.470 | 20 130 | 108 | 14 580 | 17 820 | 270 300 | | | <u></u> | 15 | 870 | 1,050 | 43 | 2,494 | 3,010 | 18 | 1.044 | 1 260 | - 1 | 870 | 050 | 11 648 | | | m2 | 100 | 2,470 | 5,250 | 400 | 088 | 21,000 | 100 | 2,470 | 5.250 | 20 | 1.235 | 2,625 | 50.180 | | 8) Others | L.S. | - | 2,943 | 2,885 | +t | 6.872 | 7,337 | ~ | 2,756 | 2,732 | p=4 | 2,219 | 2,225 | 29,969 | | Sub-Total | | | 61,811 | 60,592 | , | 144,307 154,078 | 154,078 | | 57,872 | 57,375 | | 46,592 | 46,719 | 629,346 | | 2.Mechanical & Electrical Works | | | | | | | | | | | | | | | | 1) Gate Leaf | <i>y</i> | • | 56 900 | c | - | 212 900 | c | • | | ć | • | | | | | 2) Hoist Machine | ;
_ | • e | 300 | | ٠, . | 201,000 | | ٠, | 25, 100 | . | щ. | 47,000 | 0 | 372,800 | | 3) Miscellaneous Works | | -1 r | 10,200 | > < | ~ - | 000,182 | > 6 | | 21,800 | ɔ (| ⊶ . | 45,400 | 0 | 460,100 | | A) Inc+a]la+ion | ;
;
; | - F | 200 | 2 6 | ٠ ٠ | 40,400 | | - | 9,000 | 0 | | 7,400 | 0 | 66,700 | | 4) 1113481 941011 | ۲.3. | | 2,500 | 8,300 | - | 21,800 | 32,700 | | 4,600 | 9 300 | | 4,000 | 6,000 | 89,800 | | Sub-Tota} | | 1 | 144,000 | 8,300 | | 567,600 | 32,700 | | 120,100 | 006'9 | | 103,800 | 6,000 | 989,400 | | Total | | | 205 811 | 68 802 | | 044 301 400 114 | 044 201 | | 2.0 | 1 0 | | | | | Table XII.5.11 (1/5) ANNUAL DISBURSEMENT SCHEDULE OF FLOOD CONTROL PLAN FOR FEASIBILITY STUDY (ECONOMIC) | Description | Amount | 1994/1995 | i | 1995/1996 | 1996 | 1996/1997 | 1997/ | 1997/1998 | 1998, | 1998/1999 | 1999/2000 | 2000 | 2000/2001 | Ö | 2001/2002 | . 8 | 2002/2003 | 53 | 2003/2004 | Š | 2004/2005 | |---|--|--------------------------|-----------------------|------------|-------|-------------|--------|-----------|-----------------------------------|----------------------------|-----------|---------|-----------|------|-----------|-----|-----------|------|-----------|----|-----------| | | F.C. L.C. Total | F.C. L.C. | u. | | F.C. | ۲٠.۵. | F.C. | : | n. | زن | F.C. | ن
ان | F.C. | ان ا | F.C. L | 3. | F.C. L.C. |
 | 0, 1 | T. | F.C. L.C. | | 1. Construction Base Cost | 34,766 21,643 56,409 | 0 | 0 | 0 | 1,398 | 1,098 | 13,315 | 7,953 | 13,498 | 8,705 | 6,555 | 3,887 | . 0 | 0 | . 0 | 0 | | | 0 | 0 | 0 | | 1. River Improvement Works
2. Jatibarang Dam | 26,583 14,263 40,846
8,183 7,380 15,563 | 00 | 00 | | 1,398 | 1,098 | 10,982 | 5,824 | 10,712
2,786 | 6,0 66
2,639 | 1,566 | 2,373 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | | Compensation Cost | 0 1,740 1,740 | ٥ | 0 | 0 | ٥ | 870 | 0 | 870 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | III. Administration Cost | 0 4,487 4,487 | 0 | 0 | 0 | O | 259 | 0 | 1,708 | 0 | 1,714 | ٥ | 98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | IV. Engineering Service | 10,044 4,445 14,489 | 1,479 692 | 692 2 282 | 1,072 | 1,112 | 493 | 1,971 | 83 | 2,090 | 887 | 1,110 | 458 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 0 | 0 | 0 | | 1. Detailed Design
2. Construction Supervision | 4,564 2,143 6,707
5,480 2,302 7,782 | 1,479 692 2,282
0 0 0 | 2,282 | 1,072 | 309 | 379-
114 | 1,971 | S 8 | 2,090 | 0887 | 011,1 | 0 854 | 00 | 00 | | 00 | 00 | 00 | 00 | 00 | 00 | | V. Physical Contingency | 4,482 2,783 7,265 | 148 69 | 228 | 6 1 | 251 | 246 | 1,529 | 296 | 1,569 | 656 | 797 | 435 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | VI. Total (I+II+II+IV+V) | 49,292 35,098 84,350 1,627 | | 761 2,510 1,179 2,761 | 1,179 | 2,761 | 2,966 | 16,815 | 12,341 | 2,966 16,815 12,341 17,147 12,265 | | 8,432 | 5,586 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | • | | VII .Value Added Tax | 0 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | G | 0 | | VIII.Grand Total | 49,292 35,098 84,390 1,627 | 1,627 761 | 761 2,510 1,179 | 1,179 | 2,761 | 2,966 | 6,815 | 12,341 | 16,815 12,341 17,147 12,265 | 2,265 | 8,432 | 5,586 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | Notes: *1 Price Level in July,1992 *2 Conversion Rate USS 1.00 - Rp.2,033, 1 Ven - Rp.16.20 Table XII.5.11 (2/5) ANNUAL DISBURSEMENT SCHEDULE
OF URBAN DRAINAGE WORKS FOR FEASIBILITY STUDY (ECONOMIC) | eg . | Unit: Million Rp. | You Rp. | l | |---|---------------|----------------|---------|------------|-------|-----------|-------|-----------|------------|---------------|------------|-----------|-------|-----------|--------|---------------|---------|------------|------------|-----------|-----------------------|-------------|-------------------|------------|-------| | , no co | | unt | | 1994/1995 | 395 | 1995/1996 | 966 | 1996/1997 | 265 | 1997/1998 | 988 | 1998/1999 | 1999 | 1999/2000 | 006 | 2000/2001 | ,
5 | 2001/2002 | 202 | 2002/2003 | 93 | 2003/2004 | 3 | 2004/2005 | 8 | | pescription | F.C. L.C | L.C. Total | | F.C. t | t.C. | F.C. 1 | ۲.с. | F.C. 1 | L.C. | F.C. | ۲۰: | F,C. | L.C. | F.C. | L.C. | F.C. L | ۱.с. ۶ | F.C. L | L.C. 8 | 7.C. | ن | F.C. L. | L.C. F | F.C. L. | ن: | | I. Construction Base Cost | 17,124 6,4 | 6,465 23 | 23,589 | 0 | ٥ | 0 | 0 | 0 | 0 | ٥ | 0 | 1,292 | 1,194 | 2,388 | 695 3 | 3,415 | 897 2, | 2,777 1, | 1,249 2, | 2,934 | 2 086 | 2,282 7 | 789 2, | 2,036 € | 961 | | 1. Preparatory Works | | | ,145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 311 | 118 | 467 | 176 | 311 | 118 | 156 | 59 | 156 | . 65 | 156 | | | 0 | | 2. Bandarharjo West | | | 3,251 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | | | | 0 | 0 | | 210 1, | | 챬 | | 3. Asin River Basin | 6,864 2,0 | 2,081 8 | 8,945 | 0 | 0 | 0 | ٥. | 0 | 0 | 0 | 0 | 0 | 0 | 1,563 | 272 2 | 2,963 | cv | ,138
1, | | | | | 0 ; | 0 | 0 | | 4. Bandarharjo East | | | 1,832 | 0 | 0 | 0 | 0 | 0 | φ. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 2,495 | ~ | 201, | 414 | 0 0 | 0 (| | 5. Semarang River | 392 | 332 | 797 | 00 | 0 0 | o c | 0 0 | o e | ə c | > C | o c | 218 | 9 2 | 1/4 | 5
5 | > c | o c | > c | > ¢ | o c | 5 C | > | > c | ə c | o c | | Secondary Channel Improvement Mirrellaneur Unite | | | 308 | 000 | 900 | 000 | 000 | 000 | , o c | | 000 | 800 | 00 | 0 2 | ၂၀ ဌ | 0 2 | . O [| ,0 % | . 0 5 | 383.0 | . 0 5 | 300 | | | 0.5 | | | - 1 | } | | · [| · [· | . | . ! . | . | . [. | | | | | | | | | 1 | • | | | | | | | | Sub-total | 17,124 6, | 6,465 23 | 23, 589 | o , | 0 | 0 | 0 | 0 | 0 | 0 | | 1,292 | \$ 1 | 2,388 | 695 | 3,415 | 7. | 2,111 1, | 1,249 2, | \$5,2 | 2
2
3
3
3 | 7,282,7 | , z
26/ | Z,036 | g | | 9. Price Contingency | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | ٥ | | II. Compensation Cost | 0 1, | 1,299 1 | 1,299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 649 | 0 | 650 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | c | 0 | 0 | | l. Compensation | 0 | 1,299 | 1,299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 648 | 0 | 999 | 0 | 0 | 0 | 0 | 0 | 0 | O | 0 | 0 | 0 | 0 | Ö | | 2. Price Contingency | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | Ö | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | III. Administration Cost | 0 2, | 2,050 2 | 2,050 | 0 | 0 | | 0 | 0 | 0 | 0 | æ | 0 | 307 | 0 | 289 | ٥ | 335 | 0 | 313 | 0 | 305 | 0 | 240 | 0 | 217 | | 1. Administration | 0 2, | 2,050,2 | 2,050 | 0 | 0 | 0 | 0 | ٥ | 0 | O | 8 | 0 | 307 | 0 | 582 | | 335 | 0 | 313 | 0 | 305 | 0 | . 540 | 0 | 211 | | 2. Price Contingency | 0 | o | 0 | | IV. Engineering Service | 2,716 1, | 1,464 | 4,180 | 0 | .0 | 915 | 439 | 814 | 438 | 0 | 0 | 143 | 77 | 161 | 48 | 188 | 133 | 174 | \$ | 170 | g | ¥ | 72 | 117 | ß | | 1. Detailed Design
2. Construction Supervision | 1,629 | 877 2
587 1 | 2,506 | 00 | 00 | 815 | 439 | 814 | 438 | 00 | 00 | 0 143 | 77 | 0
161 | 97 | 188 | 103 | 0 | ° ន | 0
170 | 9:0 | o 25 | 72 | 0 | 0 B | | 3. Price Contingency | 0 | 0 | 0 | 6 | o | 0 | | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ó | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | | V. Physical Contingency | 1,984 | 923 2 | 2,907 | 0 | o | 83 | 45 | 18 | 44 | 0 | 65 | 144 | 192 | 255 | 78 | 360 | 81 | 295 | 134
134 | 310 | 107 | 242 | 98 | 215 | 72 | | VI. Total (1+11+111+1V+V) | 21,824 12,201 | ٠. | 34,025 | o | O | 897 | 484 | 895 | 482 | | 764 | 1,579 | 2,420 | 2,804 | 1,149 | 3,963 1, | 1,435 3 | 3,246 1 | 1,790 3, | 3,414 1, | 1,483 2 | 2,658 1, | 1,187 2. | 2,368 1, | 1,007 | | VII .Value Added Tax | 0 | 0 | 0 | 0 | o | ٥ | 0 | o | 0 | o | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | VIII.Grand Total | 21,824 12, | 12,201 3 | 34,025 | 0 | 0 | 768 | 484 | 895 | 482 | 0 | 764 | 1,579 | 2,420 | 2,804 | 1,149 | 3,963 1, | 1,435 3 | 3,246 1 | 1,790 3 | 3,414 1, | 1,483 2 | 2,658 1, | 1,187 2 | 2,368 1, | 1,007 | Notes : *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 ~ Rp.2,033, 1 Yen * Rp.16.20 Table XII.5.11 (3/5) ANNUAL DISBURSEMENT SCHEDULE OF WATER RESOURCES DEVELOPMENT PLAN FOR FEASIBILITY STUDY (ECONOMIC) | | | | Amount | | 1994/1995 | 1995 | 1995, | 1995/1996 | 1996 | 1996/1997 | 1997 | 1997/1998 | 188 | 1998/1999 | 1999 | 1999/2000 | 2000/2001 | 5001 | 2001/2002 | 200 | 2002/2003 | £03 | 2003/2004 | オ | 2004/2005 | |---|---------------------------------|----------|----------------------|----------------------------|-----------|------|-----------|-----------|-------|------------|---------|-----------|-------|-----------|-------------|-----------|-----------------|------------|-----------|--------|-----------|--------|-----------|--------|-----------| | Description | _ | ٦.
ن. | F.C. L.C. Total | Total | F.C. L.C. | | F.C. L.C. | ن
د | | | ٦.
ن | 1.0 | F.C. | L.C. | F.C. | 1.0. | F.C. | ٦.٦ | F.C. | L.C. F | F.C. L | l.C. 1 | F.C. L | L.C. F | F.C. L.C. | | I. Construction Base Cost | e Cost | 15,633 | 15,633 14,101 29,734 | 29,734 | 0 | 0 | 0 | 0 | 2,670 | 5,099 | 4,457 | 4,068 | 5,323 | 5,042 | 3,183 | 2,892 | ٥ | 0 | 0 | 0 | 0 | 0 | ė | G | ο, | | 1. Jatibarang Dam | - | 15,633 | 15,633 14,101 29,734 | 29,734 | 0 | 0 | 0 | 0 | 2,670 | 2,099 | 4,457 | 4,068 | 5,323 | 5,042 | 3,183 | 2,892 | ė | 0 | 0 | 0 | O | 0 | | 0 | 0 | | II. Compensation Cost | - | 0 | 0 3,324 3,324 | 3,324 | o | 0 | ٥ | 0 | 0 | 1,662 | ٥ | 1,662 | 0 | Þ | 0 | 0 | o | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | | III. Administration Cost | ost | 0 | 0 2,547 | 2,547 | 0 | 0 | 0 | 0 | 0. | 495 | 0 | 785 | 0 | 799 | 0 | 468 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | | IV. Engineering Service | ice | 7,480 | 7,480 3,070 10,550 | 10,550 | 0 | 0 | 1,534 | 725 | 2,125 | 942 | 1,275 | 468 | 1,502 | 295 | 1,044 | 383 | 0 | 0 | 0 | | 0 | 0 | 0 | 9 | 0 | | 1. Detailed Design
2. Construction Supervision | erv1s1on | 3,069 | 1,450 | 1,450 4,519
1,620 6,031 | 00 | 00 | 1,534 | 725 | 1,535 | 725
217 | 1,275 | 468 | 1,502 | 552 | 1,044 | ဝဗ္ဗ | 0 0
: | o o | 00 | 00 | | 00 | 00 | 00 | 00 | | V. Physical Contingency | tency | 2,312 | 2,312 2,050 4,362 | 4,362 | 0 | 0 | 153 | 73 | 480 | 470 | 573 | 620 | 683 | 559 | 423 | 328 | 0 | c. | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | | VI. Total (I+II+III+IV+V) | -Iv+v) | 25,425 | 25,425 25,092 50,517 | 50,517 | 0 | 0 | 0 1,687 | 798 | 5,275 | 5,668 | 6,305 | 7, 603 | 7,508 | 6,952 | 4,650 4,071 | 4,071 | 0 | 0 | Ð | 0 | 0 | . 0 | C) | 0 | 0 | | VII . Value Added Tax | ,
,
,
,
,
,
, | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | Ф | 0 | 0 | 0 | 0 | Ö | 0 | 0 | o | | VIII.Grand Total | | 25,425 | 25,425 25,092 50,517 | 50,517 | 0 | ٥ | 0 1,687 | 798 | 5,275 | 5,668 | 6,305 | 7,603 | 7,508 | 6,952 | 4,650 4,071 | 4,071 | o | o | 0 | | 0 | 0 | ¢ | 0 | 0 | Notes: *1 Price Level in July,1992 *2 Conversion Rate USS 1.00 - Rp.2,033, 1 Yen * Rp.16.20 ANNUAL DISBURSEMENT SCHEDULE OF JATIBARANG DAM CONSTRUCTION WORKS FOR FEASIBILITY STUDY (ECONOMIC) Table XII.5.11 (4/5) | , and a district of the second | | Amount | | 1994/1995 | 1995 | 1995/1996 | 1996 | 1996/1997 | 1997 | 1997/1998 | /1998 | 1998/1999 | 6661 | 1999/2000 | 8 | 2000/2001 | • | 2001/2002 | 200 | 2002/2003 | 2003 | 2003/2004 | 2004/2005 | 3005 |
--|----------------|---------------|--------|---------------|------------|------------|-------|--------------|---------|-----------|---------|------------|-----------|-------------------|----------|-----------|---------------|-------------|-----|-----------|---------------|------------|-----------|------| | ספפרו יותר נסוג | F.C. | ۲, د. | Total | F.C. L.C. | r.c. | F.C. L. | ٦.٠ | F.C. | L.C. | F.C. | L.C. | F.C. | ۲. ۲. | ۶,C. 1 | L.C. F | F.C. L.C. |
 | ن
د
د | | .0. |]
 | L.C. | 3.0 | ij | | I. Construction Base Cost | 30,899 | 23,446 | 54,345 | 0 | 0 | 0 | 0 | 4,076 | 3,203 | 8,914 | 6,786 1 | 10,236 8 | 8,273 7 | 7,673 5, | 5,184 | | . 0 | 0 | 0 | 0 | 6 | ٥ | ٥ | 6 | 1. Preparatory Works | 2,169 | 1 957 | | 00 | 00 | 0 0 | 0 0 | 1,518 | 370 | 651 | 587 | | 754 | | 0 7 | 0 0 | | 00 | | 0 6 | 0 0 | 0 0 | 0 | 0.0 | | 3 left Side Bidge Treatment | 769 | | | > C | o c | > C | | <u>;</u> [| | | P S | 071', | | י
סולי
סולי | ţ c | . | | | | > < | > < | o c | | > c | | 4. Auxiliary Spillway | 613 | 4 | 780 | • • | · c |) C | | ; = | | | 3 15 | 200 | , E | 27 | , 2 | | > C | , , | | > c | • | | ه د | > < | | 5. Diversion Tunnel | 1.526 | - | | • 0 | • 0 | | | 1.526 | 1.019 | 90 | 30 | 30 | 3 0 | | 3 0 | | | , , | | | > C | o c | , c | 2 0 | | | ī | | ì | 0 | 0 | 0 | | 219 | 338 | . 55 | . 65 | • • | 0 | o o | 0 | | | | | 0 | 0 | 0 | 0 | 0 | | Relocation of Electrical Tower Miscellaneous Works | r 458
1.972 | 196 | 3,751 | 00 | 00 | 00 | 00 | 275 | 118 | 394 | 35. | 789 | 0 212 | 789 | 0 217 | 00 | | 00 | 00 | 00 | o 'c | 00 | 00 | 00 | | | | | | | | | | 1 | | | | į | | | | | | | | • | | , | , | • | | 9. Hydropower | 7,038 | 1,924 | 8,962 | 0 | 0 | ٥ | 0 | ø | ٥ | 2,111 | 27.2 | 2,112 | 577 2 | 2,815 | 077 | ٥ | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | | Sub-total | 30,899 | 23,446 | 54,345 | 0 | 0 | 0 | 0 | 4,076 | 3,203 | 8,914 | | 10,236 | 7 8,273 7 | 7,673 5, | 5,184 | 0 | | 0 0 | | 0 | 0 | 0 | 0 | 0 | | 10. Price Contingency | O | 0 | 0 | 0 | ٥ | 0 | Ο, | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 0 | ٥ | Ó | ٥ | O | 0 | 0 | | II. Compensation Cost | 0 | 5,074 | 5,074 | 0 | 0 | 0 | 0 | ٥ | 2,537 | 0 | 2,537 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | | 1. Compensation | 0 | 5,074 | 5,074 | ٥ | 0 | 0 | 0 | 0 | 2,537 | 0 | 2,537 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | | 2. Price Contingency | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | O | ó | 0 | | III. Administration Cost | 0 | 4,576 | 4,576 | 0 | 0 | 0 | 0 | 0 | 755 | 0 | 1,405 | 0 | 1,426 | 0 | 066 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1. Administration | 0 | 4,576 | 4,576 | 0 | 0 | a | 0 | 0 | 755 | 0 | 1,405 | 0 | 1,426 | 0 | 066 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2. Price Contingency | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | | IV. Engineering Service | 12,379 | 5,200 | 17,579 | 0 | 0 | 2,598 | 1,244 | 3,500 | 1,575 | 2,081 | 785 | 2,428 | 914 1 | 1,772 | 681 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Detailed Design Construction Supervision | 5,197
7,182 | 2,488 | 7,685 | 00 | 00 | 2,598
0 | 1,244 | 2,599
901 | 1,244 | 2,081 | 788 | 2,428 | 914 | 1,772 | 0
681 | 00 | 00 | 00 | 00 | 00 | 00 | .00 | 00 | 00 | | 3. Price Contingency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ø | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V. Physical Contingency | 4,329 | 3,373 | 7,702 | 0 | 0 | 260 | 124 | 758 | 73% | 1,100 | 1,011 | 1,266 | 916 | 245 | 587 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | VI. Total (1+II+III+1V+V) | 47,507 | 41,669 | 89,276 | 0 | 0 | 2,858 | 1,368 | 8,334 | 8,902 1 | 12,095 | 12,525 | 13,930 | 11,532 10 | 7 066,01 | 7,442 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | | VII .Value Added Tax | 0 | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | VIII.Grand Total | 47,607 | 47,607 41,669 | 89,276 | 0 | 0 | 2,858 | 1,368 | 8,334 | 8,802 1 | 12,095 | 12,525 | 13,930 1 | 11,532 10 | 10,390 7 | 7,442 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Notes: *1 Price Level in July,1992 *2 Conversion Rate USS 1.00 * Rp.2,033, 1 Yen - Rp.16.20 ANNUAL DISBURSEMENT SCHEDULE OF HYDROPOWER GENERATION WORKS FOR FEASIBILITY STUDY (ECONOMIC) Table XII.5.11 (5/5) Unit: Million Rp. | ١ | |---|-------------|----------------------|--------------------|-----------|-----------|-----------|-----------|----------------|------|-----------|-----------|-------------|-----------|-----------|----------|-----------|---------|-----------|------|-----------|-----|-----------|------|-----------|----| | | | Amount | | 1994/ | 1994/1995 | 1995 | 1995/1996 | 1996/1997 | 1997 | 1997/1998 | 1998 | 1998/1999 | 6661 | 1999/2000 | | 2000/2001 | | 2001/2002 | 305 | 2002/2003 | 83 | 2003/2004 | | 2004/2005 | | | Description | F.C. | i | L.C. Total | F.C. L.C. |
 | F.C. L.C. | .c. L.c. | F.C. | L.C. | F.C. | L.C. | F.C. | L.C. | F.C. | L.C. F | F.C. 1 | , r. c. | F.C. L | 1.6. | F.C. L. | ن | F.C. L.C. | | F.C. L.C. | 1 | | Construction Base Cost | 7,083 | 7,083 1,965 | 9,048 | 0 | 0 | 0 | 0 | 60 | Ð | 2,124 | - 685 | 2,127 | ? 265 | 2,824 | 877 | . 0 | 0 | o | 0 | | . 0 | 0 | | | 0 | | 1. Jatibarang Dam
2. Exclusive to Hydro | 45
7,038 | 45 41
7,038 1,924 | 8,962
8,962 | | 00 | 00 | 00 | & O | 90 | 13 2,111 | 12
577 | 15
2,112 | 15
577 | 2,815 | 8
770 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | | II. Compensation Cost | 0 | 2 | 0.1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | v. | o | 0 | 0 | ٥ | 0 | 0, | ٥ | 0 | 0 | 0 | 0 | | 0 | ٥١ | | III. Administration Cost | 0 | 969 | 969 | 0 | 0 | 0 | 0 | 0 | - | 0 | 503 | 0 | 503 | 0 | 27.7 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | | IV. Engineering Service | 985 | 526 | 1,508 | 0 | 0 | 260 | 140 | 262 | 141 | 139 | 73 | 139 | 74 | 182 | 85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1. Detailed Design
2. Construction Supervision | 520
462 | 280
245 | 88
88
88 | 00 | 99 | 260
0 | 140 | 560
260 | 140 | 139 | 73 | 0 65 | 0 27 | 0
182 | 0 88 | 00 | 00 | 00 | 0.0 | 90 | 00 | 00 | . 00 | | 00 | | V. Physical Contingency | 907 | 251 | 1,058 | O | Ö | 52 | 14 | 27 | £1 | 226 | . 69 | 223 | 62 | ଛ | 88 | 0 | 0 | 0 | o | o. | 0 | 0 | 0 | 5 | 0 | | VI. Total (I+II+III+IV+V) | 8,872 | 3,448 | 8,872 3,448 12,320 | 0 | Ð | 286 | 32 | 262 | 891 | 2,489 | 8 | 2,493 | 945 | 3,307 | 1,241 | | 0 | | . 0 | ٥ | 0 | . 0 | 0 | 0 | 0 | | VII . Value Added Tax | 0 | 0 | 0 | Ö | 0 | 0 | 0 | 0 | ۵ | ٥ | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | ٥ | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | | VIII.Grand Total | 8,872 | 3,448 | 8,872 3,448 12,320 | o | 0 | 586 | 紫 | 297 | 891 | 2,489 | 8 | 2,493 | 942 | 3,307 | 1,241 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | ľ | Notes : "I Price Level in July, 1992 "2 Conversion Rate US\$ 1.00 - Rp.2,033, 1 Yen - Rp.16.20 d'avental. | | | | | | | | | | | | | | | | | ÷ | | | | | | | Unft | Unit: Million Rp. | n Rp | | | |---|-----------------|-----------------|--|---------|-----------|--------------------|-----------|-----------|----------|----------------|--------------|--------------|------------|-----------|------------|-----------|-------|-----------|---|-----------|-----------|----------------|----------------------------|-------------------|---------------|-----------|--| | Decruintion | | Amount | | 2651 | 1994/1995 | | 1995/1996 | 1996/1997 | | 1997/1998 | 8661 | 1998/ | 1998/1999 |
1999/2000 | ,2002 | 2000/2001 | 2001 | 2001/2002 | 3003 | 2002/2003 | | 2003/2004 | | 2004/2005 | | 2005/2006 | | | 201141 1760 | F.C. | F.C. L.C. Total | Total | ٦.
ن | | F.C. L.C. F.C. L.C | | F.C. L.C. | | F. C. | ٦. د. | F.C. | ۲.۵. | F.C. | ۲, ۵, | F.C. 1.C. | | F.C. 1 | L.C. | F.C. L. | L.C. F. | F.C. L.C. | | F.C. L.C. | <u>ن</u>
ن | 1,0. | | | I. Construction Base Cost | 34,766 | 21,643 | 34,766 21,643 56,409 | Ø | 0 | 0 | ٥ | 0 | 0 10,982 | | 5,824 10,712 | | 990'9 | 4,889 | 2,373 | 0 | 0 1 | 1,398 1, | 1,098 2,333 | | 2,129 2,7 | 2,785 2,6 | 339 1,6 | 2,639 1,566 1,514 | 0 | 0 | | | 1. River Improvement Works
2. Jetibarang Dam | 26,583
8,183 | 14,263 | 26,583 14,263 40,845
8,183 7,380 15,563 | 00 | 00 | 00 | 00 | . 00 | 97
0 | 10,982 | 5,824 1 | 10,712 | 6,066
0 | 4,889 | 2,373 | 00 | 0 0 0 | | 1,098 2, | 2,333 2,1 | 2,129 2,7 | , 0
786 2,6 | 0 0 0
2,786 2,639 1,686 | 0 0 0 | 0.0 | | | | II. Compensation Cost | 0 | 1,740 | 0 1,740 1,740 | 0 | 0 | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 870 | 0 | 870 | 0 | 0 | 0 | 0 | 0 | | | III. Administration Cost | 0 | 4,487 | 0 4,487 4,487 | 0 | 0 | 0 | 0 | o | 0 | 0 | 1,297 | a | 1,296 | 0 | 156 | 0 | 0 | 0 | 259 | | 411 | 0 | 418 | 0 245 | 9 | 0 | | | IV. Engineering Service | 10,044 | 4,445 | 10,044 4,445 14,489 1,479 | 1,479 | | 692 1,479 | 693 | ٥ | 0 | 1,38
8 | 598 | 1,38
48,1 | 598 | 564 | 258 | 803 | 379 1 | 1,112 | 493 | 299 | 245 | 786 | 289 5 | 546 200 | 0 | 0 | | | 1. Detailed Design
2. Construction Supervision | 4,564
5,480 | 2,143 | 4,564 2,143 6,707 1,479 692 1,479
5,480 2,302 7,782 0 0 0 | 1,479 | 860 | 1,479 | 693 | 00 | 00 | 30,30 | 598 | 1,304 | 0
598 | o 22. | 258 | 803 | 379 | 303 | 379
114 | 0 299 | 0 245 | 0.887 | 289 5 | 0 0
546 200 | 00 | 00 | | | V. Physical Contingency | 4,482 | 4,482 2,783 | 7,265 | 148 | 69 | 148 | 69 | 0 | 0 1 | 1,229 | £8 | 1,202 | 999 | 35 | 5 8 | 8 | æ | 251 | 246 | 8 | 324 | 357 | 293 2 | 221 171 | 0 | 0 | | | VI. Total (I+II+III+IV+V) | 49,292 | 35,098 | 49,292 35,098 84,390 1,627 761 1,627 | 1,627 | 761 | 1,627 | 762 | 0 | 0 13,515 | | 8,362 13,218 | | 8,626 | 5,999 | 3,456 | 883 | 417 2 | 761 2 | 417 2,761 2,966 3,300 3,979 3,929 3,639 2,433 | 300 3,5 | 979 3,6 | 329 3,6 | 539 2,4 | 33 2,130 | 0 | 0 | | | VII .Value Added Tax | 0 | ٥ | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | ó | 0 | 0 | 0 | 0 | 0 | 0 | | | VIII.Grand Total | 49,292 | 35,098 | 49,292 35,098 84,390 1,627 761 1,627 762 | 1,627 | 761 | 1,627 | 762 | 0 | 0 13 | 0 13,515 8,362 | 3,362 1 | 13,218 | 8,626 | 5,999 | 3,456 | 883 | 417 2 | 761 2 | 417 2,761 2,966 3,300 3,979 3,929 3,639 | 300 3,5 | 979 3,5 | 3,6 | 339 2,433 | 33 2,130 | ° | 0 | | Notes : *1 Price Level in July,1992 *2 Conversion Rate US\$ 1.00 - Rp.2,033, 1 Yen - Rp.16.20