

THE REPUBLIC OF INDONESIA DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT MINISTRY OF PUBLIC WORKS

THE MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS

FINAL REPORT

(SUPPORTING REPORT)

NOVEMBER 1993

JAPAN INTERNATIONAL COOPERATION AGENCY

SSS JR 93-123

THE REPUBLIC OF INDONESIA DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT MINISTRY OF PUBLIC WORKS

THE MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS

FINAL REPORT

(SUPPORTING REPORT)

27890

NOVEMBER 1993

JAPAN INTERNATIONAL COOPERATION AGENCY

þ

国際協力事業団 27890 ŧ:

LIST OF REPORTS

MAIN REPORT

SUPPORTING REPORT

DATA BOOK

The cost estimate was based on July 1992 price level and expressed in Rupiah according to the exchange rate of US\$1.00 = Indonesian Rupiah 2,033 and Japanese Yen 1.00 = Indonesian Rupiah 16.20 as of July 1992.

SUPPORTING REPORT

XV TOPOGRAPHIC SURVEY

圝

XVI ORGANIZATION FOR OPERATION AND MAINTENANCE

METEOROLOGY AND HYDROLOGY

Ĩ

I METEOROLOGY AND HYDROLOGY

TABLE OF CONTENTS

ş

Page

CHAPTER 1	GENERAL	I-1
CHAPTER 2	CLIMATE	I-2
2.1	Existing Observatory	I-2
2.2	Climatic Characteristics	I-3
CHAPTER 3	RAINFALL ANALYSIS	I-5
3.1	Selection of Representative Rainfall Station	I5
3.2	Rainfall Intensity-Duration Curves	I-5
3.3	Probable Rainfall Intensities	I-6
3.4	Equations and Curves to Express Rainfall Intensity-Duration- Frequency	I-7
3.5	Model Hyetograph of Point Rainfall	I-8
CHAPTER 4	FLOOD RUN-OFF ANALYSIS	I-11
4.1	Procedure of Run-off Analysis	1-11
4.2	Storage Function Model	I-12
	4.2.1 Method of Storage Function Model	I-12
	4.2.2 Model for Simulation	I-15
•	4.2.3 Constants of Storage Function Model	I-16
4.3	Probable Peak Discharge at Simongan Weir	I-18
4.4	Area Reduction Factor	I-18
4.5	Model Hydrograph and Peak Discharge	I-19

- i -

4.6 Probable Peak Discharge at Proposed I-20 Dam Site for Master Plan..... 4.7 Probable Maximum Precipitation (PMP) and Probable Maximum Flood (PMF) for Jatibarang Dam..... 1-21 Probable Peak Discharge at 4.8 Jatibarang Dam Site..... I-24 Evaluation of January 1993 Flood.... 4.9 I-25 CHAPTER 5 INUNDATION ANALYSIS..... I-27 5.1 Objectives and Procedure of Inundation Analysis..... I-27 Field Survey for Inundation Model... I-27 5.2 Establishment of Inundation Model... 5.3 I-28 Simulation by Inundation Model..... 5.4 I-28 Results of Simulation..... I-29 5.5 I-31 CHAPTER 6 LOW FLOW ANALYSIS..... 6.1 Daily Rainfall Analysis..... I-31 6.2 Low Flow Analysis..... I-32 CHAPTER 7 TIDAL ANALYSIS..... I - 357.1 Observed Tidal Data..... I-35 7.2 Chart Datum of Observed Tidal Level...... I-35 7.3 Annual Mean Tidal Level..... I - 36

Page

- ii -

		LIST OF TABLES	
· .	Table <u>No.</u>	Title	Page
	1.2.1	Inventory of Rainfall Gauging Station	1-38
	r.2.2	General Climatological Data of Semarang Ahmad Yani	I-39
	1.2.3	General Climatological Data of Ungaran Station	I-42
	I.2.4	Monthly Discharge and Annual Maximum Peak Discharge at Automatic Water Level Recorder	I-44
	1.2.5	Annual Maximum Discharge at Simongan Weir	I-45
	1.3.1	Annual Maximum Rainfall Intensities.	I-46
	1.3.2	Probable Point Rainfall Intensities by Gumbel Method	I-48
	1.3.3	Conformity of Equations Developed for Rainfall Intensity-Duration Curves	I-49
	1.3.4	Equations Developed for Rainfall Intensity-Duration Curve	I-52
	I.3.5	Model Hyetograph	I-53
	1.4.1	Constants for Storage Function Model	I-54
	I.4.2	Probable Run-off Discharge Based on Observed Data at Simongan Weir	I-55
	I.4.3	Probable Maximum Precipitation (PMP) for Jatibarang Dam Catchment Area Estimated by Hershfield Method	I-56
	I.4.4	Hourly Distribution of Probable Maximum Precipitation (PMP) and Probable Maximum Flood Runoff	т Б 7
	1.4.5	Discharge (PMF) Probable Point Rainfall Intensities by Gumbel Method	I-57
. *	1.6.1	Annual Rainfall at Selected Gauging Stations	I-60
· .	1.6.2	Monthly Basin Rainfall	I-61
	 	- iii -	

Table <u>No.</u>	Title	Page
1.6.3	Flow Regime and Balance in Observed Records	I-64
1.6.4	Flow Regime Calculated by Tank Model Simulation	I-65
I.7.1	Monthly and Annual Tidal Level Observed at Semarang Harbor	I-68

LIST OF FIGURES

Figure <u>No.</u>	Title	Page
1.1.1	Location Map of Meteorological and Water Level Gauging Station	I-69
1.1.2	Direction of Trade Wind	I-70
1.2.1	Isohyetal Maps of Daily Rainfall for Major Rainfall	I-71
1.3.1	Probable Point Rainfall Intensities.	I-75
1.3.2	Rainfall Intensity-Duration Curve	I-78
1.3.3	Rainfall Duration and Accumulated Rainfall Rate of Annual Maximum Rainfall	1-80
1.4.1	Model Diagram for Storage Function Model Simulation	I-81
1.4.2	Available Actual Hydrograph and Hyetograph for Simulation	I-82
1.4.3	Simulated Flood of the Garang River Gauging Station	I-83
1.4.4	Probable Flood Run-off Hydrograph at Simongan Weir	I-84
I.4.5	Area Reduction Factor	I-85
1.4.6	Probable Flood Run-off Hydrograph	I-86
I.4.7	Peak Discharge and Maximum Recorded Floods in Indonesia	I-88
I.4.8	Adjustment Factors Developed by Hershfield for Estimation of PMP	I-89

A.S. Tables

Figure No.	Title	Page
I.4.9	Statistical Coefficient of Hershfield's Formula for Estimation of PMP	1-90
I.4.10	Area Reduction Curve for Point PMP	1-91
1.4.11	One-day PMP Estimated for Dams in Indonesia	I-92
1.4.12	Rainfall Intensity-Duration Curve of PMP for Jatibarang Dam	I-93
I.4.13	Model Hyetograph and Hydrograph of PMP for Jatibarang Dam	1-94
I.4.14	Design Peak Inflow Discharge of Emergency Spillway for Dams in Indonesia	1-95
1.5.1	Comparison of Inundation Area in 1990 between Field Survey and Simulation Model of Garang River	I-96
1.5.2	Probable Inundation Area of Garang River Without Project (10-year to 100-year Return Period)	I-97
1.5.3	Probable Inundation Area of Garang River With Project (50-year and 100-year Return Period)	1-101
I.5.4	Probable Inundation Area of Babon River (5-year to 100-year Return Period)	I-103
I.5.5	Probable Inundation Area of East Floodway (10-year to 100-year Return Period)	I-108
1.5.6	Probable Inundation Area of Silandak and Bringin Rivers (5-year to 100-year Return Period)	I-112
I.5.7	Probable Inundation Area of Blorong River (5-year to 100-year Return Period)	I-117
I.6.1	Location of Hydrological Stations and Thiessen Polygon	I-123
1.6.2	Relation between Point and Basin Rainfall	I-124
I.6.3	Flow-Duration Curves of Observed Daily Discharge	1-125
	- v -	

Figure <u>No.</u>	Title	Page
1.6.4	Tank Model Parameters	I-127
1.6.5	Comparison between Calculated and Observed Hydrograph	I-128
I.6.6	Calculated Flow-Duration Curves	I-129

- vi -

CHAPTER 1 GENERAL

The study area lies between latitude 110°10'E to 110°31'E and longitude 6°56'S to 7°11'S in Jawa Island. It includes Semarang City which is the capital of Central Jawa Province as shown in Fig. I.1.1.

The northern side of the study area, which is the center of the city, is located in a coastal plain along Jawa Sea. Semarang City is bounded on the west by Kabupaten Kendal and on the east by Kabupaten Demak. About 23 km south of the city is Mt. Ungaran which rises to an elevation of 2,050 m. Six (6) objective rivers flow generally toward north. They are from east to west, Babon River, East Floodway, West Floodway/Garang River, Silandak River, Bringin River and Blorong River. The total catchment area of the six rivers is approximately 510 km².

As shown in Fig. I.1.2, the study area is under the influence of northwest and southeast trade winds. Climate is divided into two (2) seasons, namely, rainy season and dry season. The rainy season lasts between November and April with wet northwest winds from the Jawa Sea bringing rainfall, while the dry season lasts between May and October with southeast winds.

1-1

CHAPTER 2 CLIMATE

2.1 Existing Observatory

An inventory of meteorological and rainfall gauging stations in the study area and neighboring areas is given in Table I.2.1. The location of these stations is indicated in Fig. I.1.1.

There are three (3) meteorological stations in the study area, namely, two stations (Semarang and Ungaran stations) operated by the Institute of Meteorology and Geophysics (BMG) and one station at Semarang Ahmad Yani (Semarang Airport) for the observation of temperature, sunshine duration, wind velocity, hourly and daily rainfall, and evaporation.

There are 52 rainfall stations in the study area. Forty-one (41) of these stations are maintained by the Ministry of Public Works (DPU) and they include the four stations for daily rainfall observation in relation to the Jratunseluna Project. Three (3) rainfall stations are maintained by the Institute of Hydraulic Engineering (IHE) for the observation of hourly rainfall, and eight (8) other stations send daily rainfall data to BMG. The rainfall data were therefore collected from the DPU, the BMG and the IHE.

Two (2) water level gauging stations in Garang River and Blorong River are maintained by the IHE. The daily discharge data and annual maximum hydrographies of the two stations were collected from the IHE.

1-2

Meteorological data collected at the Semarang Airport station and the Ungaran station are relatively more reliable than those of other stations.

2.2 Climatic Characteristics

<u>Climate</u>

The Semarang station is located in the coastal plain. Temperature at the Semarang Airport station ranges between 21°C and 35°C and average annual temperature is 27.4°C. Average annual humidity is 76% and mean annual wind velocity is 4 knots.

The Ungaran station is located 300 m above mean sea level. Temperature ranges between 18°C and 35°C and average annual temperature is 26.2°C. Average annual humidity is 78%.

The climatic conditions are shown in Tables I.2.2 and I.2.3.

<u>Rainfall</u>

In rainy seasons rainfall is generally brought about by northwest wet winds blowing from Jawa Sea. Rainfall continues for approximately 2 to 12 hours, starting in the afternoon until midnight in general. Annual rainfall amounts to 2,460 mm at Semarang Airport station and 2,065 mm at Ungaran station. Isohyetal maps of daily rainfall for the major rainfalls from 1972 to 1990 are shown in Fig. I.2.1.

River Discharge

Annual average discharge observed at the Garang River Gauging station (C.A. = 185 km^2) and the Blorong

River Gauging station (C.A. = 158km^2) are listed in Table I.2.4. Annual average flow (Q) is 10.7 m³/s at Garang River Gauging Station and 8.0 m³/s at Blorong River Gauging station.

At Simongan Weir, annual maximum water levels were observed from 1961 to 1990. The annual maximum peak discharges were then estimated, as shown in Table I.2.5. Maximum discharge is 901 m^3/s in 1963 and 1990.

I-4

3.1 Selection of Representative Rainfall Station

The distribution of rainfall depth is different in every rainfall. In the storm on January 25, 1990 which caused a big flood, rainfall at the mountainous areas was recorded at more than 200 mm/day, while that at Semarang City was only 35 mm/day. In consideration of the above condition, it is important to analyze rainfall in the coastal plain area and in the mountainous area.

Among the rainfall gauging stations, two stations can provide data for the study. These are the Semarang Meteorological Station (BMG) located in Semarang City and the Kaligading Automatic Rainfall Gauging Station (IHE) located on the foot of Mt. Ungaran.

The Semarang Meteorological Station (BMG) can provide rainfall intensity observed for short and long time durations ranging from five minutes to two days. Kaligading Automatic Rainfall Gauging Station (IHE) can provide rainfall intensity observed for a long time duration of one hour to two days.

3.2 Rainfall Intensity-Duration Curves

Two (2) types of rainfall intensity-duration curve were developed according to ranges of rainfall for the urban drainage plan and the flood control plan, as follows.

(1) Short Duration Curves

The curves were developed on the basis of annual maximum rainfall intensities observed for the duration of less than 120 minutes and preferably used for planning urban drainage where the run-off concentration time is less than 120 minutes. The rainfall intensity data of the Semarang Meteorological Station were used for this analysis [refer to Table I.3.1(1/2)].

(2) Long Duration Curves

curves of two stations were developed on The maximum rainfall the basis of annual intensities observed for time ranges of one hour to a few days preferably used for run-off analysis of hourly hydrographies in the flood In this study, the curves of control plan. Semarang Meteorological Station were applied to the planning of pump drainage for the Urban That of the Kaliqading Drainage Plan. Automatic Rainfall Gauging Station was applied to the run-off analysis for the flood control Those curves were used to estimate the plan. probable run-off hydrographies. The data are shown in Table I.3.1.

deh

3.3 Probable Rainfall Intensities

The recurrence probability analysis on point rainfall intensity of various durations was made by Gumbel Method using the annual maximum rainfall intensity series observed at Semarang and Kaligading gauging stations. As the results of the analysis, the probable point rainfall intensity for rainfall durations ranging from 5 minutes up to 48 hours were estimated as shown in Table I.3.2 and Fig. I.3.1.

3.4

Equations and Curves to Express Rainfall Intensity-Duration-Frequency

The following equations are generally applied to express the relationship between rainfall intensity and duration:

(a)	Talbot Type Equation	:	I = a /	(T + b)
(b)	Sherman Type Equation	:	I = a /	T^n
(C)	Kuno Type Equation	:	I = a /	$(T^{0.5} + b)$
(d)	Horner Type Equation	• :	1 = a /	$(T + b)^n$

where,

I	;	Rainfall	Intensity
T	:	Rainfall	Duration
a.b	. n :	Constants	ŝ

The probable rainfall intensities were estimated from the equations and compared with the values estimated from the observed data as shown in Table I.3.3. Constants of the rainfall intensity-durationfrequency equations were estimated by least-square regression analysis for the relation between the probable rainfall intensities and corresponding rainfall duration. The equations for each station and each type are shown in Table I.3.4.

The Horner Type Equation which shows the smallest difference between observed data and estimated data is the most applicable equation to express the rainfall intensity-duration curves as shown in Fig. I.3.2. In the report of Semarang Drainage Project (May 1982), rainfall intensity curves were estimated for the records of 13 years (1959-1981) and these curves show nearly the same numerical values as those presented in this report.

3.5 Model Hyetograph of Point Rainfall

The model hyetographs showing distribution of point rainfall intensities of the study area were developed taking the following major factors into consideration.

纏

100

(1) Entire Rainfall Duration

The standard value of the entire rainfall duration is an important factor for the model hyetograph run-off analysis of river basins. In this connection, surveyed were the actual rainfall continuation times of the 12 major storms recorded at the Semarang Meteorological Station for the period from 1979 to 1991, and 11 major storms recorded at the Kaligading Automatic Gauging Station for the period from 1980 to 1990. Consequently, the entire rainfall duration of the model hyetograph is assumed at 12 hours, which is the dominant rainfall continuation time in the past major storms, as shown in Fig. I.3.3.

(2) Ti

Time Distribution of Rainfall Depth

The time when the peak rainfall depth occurred in each storm was analyzed on the basis of the hourly rainfall depth observed in the above 23 major storms. As a result of the analysis, it is assumed that the model hyetograph has such a pattern that the rainfall depth gradually increases at regular time intervals until it reaches the peak at midpoint of the entire rainfall duration and then, gradually decreases at regular intervals. The assumption of rainfall depth is made as follows:

Rain at I	fall Depth Distributed ntervals of "dt"	Time of Occurrence
(a)	$Highest = F(dt) \ x \ dt/60$	Tc (mid. of duration)
(b)	2nd Highest	
()	$= F(dt \times 2) \times dt \times 2/60$	
	$-F(dt) \times dt/60$	Tc + dt
(C)	3ro Hignest	
	$= \mathbf{F}(\mathbf{a}\mathbf{L} \times \mathbf{S}) \times \mathbf{a}\mathbf{L} \times \mathbf{S}/\mathbf{b}0$	$T_{a} = dt$
	$- F(al \times 2) \times al \times 2/00$	10 - 00
(d)	4th Highest	
	= F(dt x 4) x dt x 4/60	
	- F(dt x 3) x dt x 3/60	$Tc + dt \times 2$
(e)	5th Highest	
	$= F(dt \times 5) \times dt \times 5/60$	
	- F(dt x 4) x dt x 4/60	Tc - dt x 2
_		
wher	·e,	
	F = rainfall intensity ex	pressed by function
	of rainfall duration	(dt x 1, 2, 3,)
	dt= time interval of mode	el hyetograph
	Trc= midnoint time in enti	re duration of model

鰳

The model hyetographs were developed on the basis of factors (1) and (2) above and the rainfall intensity-

I-9

hyetograph

duration equation described in Section 3.4. As an example, Table I.3.5 presents the model hyetographs of 5-minute and 1-hour intervals which were developed from the Horner Type Rainfall Intensity-Duration Equation.

Summer of

CHAPTER 4 FLOOD RUN-OFF ANALYSIS

Flood run-off analysis has been carried out to provide the standard design discharge for the formulation of the Flood Control Plan for the six (6) objective rivers; Babon River, East Floodway, West Floodway/Garang River, Silandak River, Bringin River and Blorong River. The six rivers flow down generally toward north, and the features of each river basin are as follows:

River	Catchment Area (km2)	Reference Point	Length of Stream (km)	Highest Elevation (EL. m)
Babon River	77.0	Pucanggading Weir	30.0	375
East Floodway	29.7	Kaligawe Bridge	12.0	250
West Floodway/ Garang Rive	204.0	Simongan Weir	32.0	2,050
Silandak River	8.5	Confluence of Channel	11.0	175
Bringin River	32.1	Bringin Bridge	15.5	225
Blorong River	157.0	Pengilon Weir	60.0	725

4.1 Procedure of Run-off Analysis

Garang River is the only river in the study area with complete data such as hourly discharge data of several major floods, hourly rainfall data of same floods, isohyetal maps of the same days and annual maximum discharge data for estimation of probable peak discharge. Therefore, the run-off analysis was made focusing on Garang River by the following procedure:

- (1) The run-off model for Garang River is established by the storage function model with actual rainfall and discharge data, and it will be applied to the other five (5) rivers.
- (2) Probable peak discharge at a reference point of Simongan Weir is estimated from actual discharge data.
- (3) Area reduction factor for the Garang river basin is calculated to convert point rainfall into average rainfall in the river basin. The area reduction factor for Garang River is estimated by the probable peak discharge at Simongang Weir and the model hyetograph. The area reduction factors for the other five (5) river basins are estimated based on the their catchment areas (km^2) and the area reduction factor for Garang River.
- (4)

The probable peak discharge of the other rivers are calculated by storage function model with the area reduction factors estimated for each river basin.

4.2 Storage Function Model

4.2.1 Method of Storage Function Model

In order to calculate the flood discharges for each river, it is necessary to estimate the model hydrograph from the model hyetograph by run-off analysis. The storage function model is employed to simulate the design floods in this study, because N.CO.

various experimental values for the constants have been developed for this model and it is suitable to be applied for river basins with a few data for verification.

Storage Function Model for River Basin

The storage function model has been developed to express non-linear characteristics of run-off phenomena introducing the following function between the storage volume (S1) of a basin or a river channel and the discharge (Q1) from the same:

$$SI = K \cdot QI^{p} \tag{1}$$

where, K and p are constants.

This equation is used with the equation of motion which expresses run-off as proportional to the exponent of storage volume. In this equation, the run-off phenomenum is considered to be similar to the run-off from the notch of a container filled with water.

Run-off calculation is performed in combination with the following equation of continuity for a basin.

$$\frac{dS_1}{dt} = \frac{1}{3.6} \cdot f \cdot r_{ave} \cdot A - Q1$$
(2)

where,

鰳

s_1	:	apparent storage volume in the basin(m ³ /s/hr)
f	:	inflow coefficient
rave	:	basin's average rainfall (mm/hr)
A	:	area of the basin (km^2)
Q1=Q(t+T1)	: direct run-off height with lag time (m^3/s)
m1		lag time (hr)

I-13

Run-off calculations for a basin are generally made by dividing the above two basic equations (1) and (2) by the area of a basin in order to express them by the storage height s (mm) and run-off height q(mm/hr). Accordingly, the basic equations are expressed as follows:

$$s_1 = k \cdot q_1^p \tag{3}$$

$$\frac{dS_1}{dt} = f \cdot r_{ave} - ql \tag{4}$$

The constant f in the above equation is to estimate the effective rainfall. In the storage function model, the coefficient f is not related to rainfall but to the drainage area A; namely, it is assumed that in the early stages of rainfall, f is f_1 (termed the primary run-off rate) and that run-off occurs only from the area f_1A (called the run-off area). When accumulated rainfall exceeds R_{sa} (saturation rainfall), then f=1 (this is termed the saturated run-off rate), and the run-off occurs also from the remaining part $(1-f_1)A$ (infiltration area) due to the rainfall after R_{sa} .

In this model, run-off from both the run-off area and the infiltration area is calculated separately by equations (3) and (4) until the end of the flood. The total run-off from the whole basin is given by the sum of run-off from both areas plus the base flow, as shown in the following equation.

$$Q = \frac{1}{3.6} \cdot f1 \cdot A \cdot q1 + \frac{1}{3.6} \cdot (1 - f1) \cdot A \cdot q_{sat} + Q1 \quad (5)$$

I - 14

where		
f1	:	primary run-off rate
q1	:	run-off height caused by total rainfall (mm/hr)
qsat	:	<pre>run-off height caused by rainfall after saturation (mm/hr)</pre>
Q1	;	base flow (m ³ /s)
A	:	total drainage basin (km²)

Storage Function Model for River Channel

The storage function of the river channel is expressed as follows:

$$dS/dt = Oi(t) - Qo(t+T1)$$
⁽⁶⁾

$$S = k \cdot Qo(t+T1)^P \tag{7}$$

where,

BS :	storage volume in the river channel (m ³ /s/hr)
Qi(t) :	inflow discharge of the channel (m^3/s)
Qo(t+tl):	outflow discharge of the channel (m^3/s)
k, pf :	constant
T1 :	lag time (hr)

4.2.2 Model for Simulation

In the storage function model, the basin is divided into sub-basins with catchment areas of 10 to $1,000 \text{ km}^2$; mostly less than 300 km². In this study, the river basins are divided into 23 sub-basins with catchment areas ranging from 1.3 to 70.9 km² and containing 22 river channels, as illustrated in Fig. I.4.1. As for the data on flood hydrograph at Garang River from 1986 to 1990, hourly rainfall hyetographs at Kaligading and daily rainfall data in Garang River are available only for 1987 and 1990 as shown in Fig. I.4.2. Hourly rainfall in the basin is calculated proportionately between the daily data of Kaligading and the average rainfall of the Garang river basin estimated from isohyetal maps as shown in Fig. I.2.1(4/4).

4.2.3 Constants of Storage Function Model

Constants for River Basin

The basin's storage function is expressed as below (refer to Subsection 4.2.1):

$$S1 = K \bullet Q1^p$$

Constants K and p are determined as follows:

$$K = 5.5 \cdot A^{0.14}$$

$$p = 0.6$$

$$TI = 0.95 \cdot A^{0.14} \cdot r_e^{-0.4}$$

where,

A : catchment area (km²)

 r_e : height of net supply rainfall calculated from peak discharge volume $(Q_p); r_e = 3.6 \cdot Q_p / A$

Constants for River Channel

The river channel's storage function is expressed as:

$$S = K \cdot Q1(t + T1)^p$$

as explained above. Constant K is expressed in the form of:

$$K = L \cdot B^{0.4} \cdot (n/I^{0.5})^{0.6} / 3.6$$

where,

B	:	average channel width (m)
$\boldsymbol{L}^{'}$:	channel length (km)
n	:	Manning's roughness coefficient
I	:	average channel slope

The constant "p" takes the value of 0.6 from the Manning's Formula for Steady Flow.

The lag time Tl is expressed by the following equation:

$$TI = L \cdot k \cdot p_c / I_*^{1-p_c}$$

where,

L : catchment length (km) k : (N/s^{0.5})^P N : roughness coefficient P_C : 0.6 I_{*} : maximum inflow volume (m³/s)

The constants were decided as shown in Table I.4.1 after some trial calculations. The results of the simulation show almost the same values as the observed data at Garang River Gauging Station as shown in Fig. I.4.3.

I - 17

4.3 Probable Peak Discharge at Simongan Weir

The probable peak discharge at Simongan Weir is estimated by the Gumbel Method from the annual maximum discharge data for 1961 to 1990 (refer to Table I.2.5). The estimated amounts of probable peak discharge are as shown in Table I.4.2.

4.4 Area Reduction Factor

In the calculation of the model hydrograph of 5 to 100-year return period at Simongan Weir by the Storage Function Model, the results of the model hyetograph were multiplied by the area reduction factors decided temporarily. This calculation is repeated until the results become almost the same as the probable peak discharge calculated from the observed data. The probable peak discharges at Simongan Weir shown in Fig. I.4.4 and the area reduction factors were estimated as follows:

Return Period (year)	Probable Peak Discharge (m3/s)	Reduction Factor	
5	520	0.44	
10	630	0.46	
25	770	0.47	
50	880	0.47	
100	980	0.49	

Probable Peak Discharge at Simongan Weir

The area reduction factors were estimated from area average rainfall divided by maximum rainfall on the isohyet of rainfall. The area reduction factors from actual rainfall records are shown in Fig. I.4.5. The adequacy of the area reduction factors of 0.44 to 0.49 for the Garang river basin (C.A. = 204 km^2) is verified by plotting in Fig. I.4.5. The area reduction factor curves are drawn between point zero (0) to the points on the chart as shown in Fig. I.4.5. Fig. I.4.5 gives the basin rainfall reduction factors for 5-year to 100-year return periods as follows:

· · ·	Garang	Babon	East	Silandak	Bringin River	Blorong
Area(km2)	204.0	77.0	29.7	8.5	32.1	157.0
Return Perio	d	·	Reduction	n Factor		• •• •• •• •• •• ••
5 10 25 50 100	0.44 0.46 0.47 0.47 0.49	0.66 0.70 0.70 0.70 0.73	0.78 0.82 0.82 0.83 0.83	0.84 0.89 0.89 0.89 0.89 0.93	0.77 0.81 0.81 0.82 0.85	0.50 0.54 0.53 0.53 0.53 0.55

The area reduction factors given in the report prepared by THE STUDY ON URBAN DRAINAGE WASTE WATER DISPOSAL PROJECT IN THE CITY OF JAKARTA (MARCH 1982) show nearly the same numerical values as those given in this study report.

4.5 Model Hydrograph and Peak Discharge

翻

The probable peak discharges of the other rivers were decided in the same way as West Floodway/Garang River. Each river basin was divided into several sub-basins and river channels as illustrated in Fig. I.4.1. The constants of the storage function model for each sub-basin and river channel were estimated as shown in Table I.4.1. The probable peak discharges of 5 to 100-year return period for five (5) rivers were estimated from the model hyetograph (refer to Table I.3.5) as follows:

I-19

	Probable Peak Discharge (m3/s)*						
Return Period (Year)	Garang River	Babon River	East Floodway	Silandak River	Bringin River	Blorong River	
5	520	407	199(130)	68	195	431	
10	630	494	240(157)	84	237	5.49	
20	740	552	267 (175)	94	264	628	
25	770	578	280(183) ·	99	277	664	
50	880	630	306 (201)	110	315	739	
100	980	710	342(225)	120	342	845	

* Peak discharge at reference point

() Peak discharge of East Floodway in front of confluence with Bajak River

> The probable flood run-off hydrographs of 20, 25, 50 and 100-year return period for the six (6) rivers are shown in Fig. I.4.6. The peak discharge of the six (6) rivers plotted and published by DPU in 1984 in the Maximum Record Floods in Indonesia are as shown in Fig. I.4.7. The peak discharges are distributed in appropriate range compared with the maximum records of other rivers in Indonesia.

4.6 Probable Peak Discharge at Proposed Dam Site for Master Plan

> A master plan of flood control is proposed for four (4) dam sites. Design flood discharge at the dam site is necessary to be decided for further study. The probable peak discharge of 100-year return period at the dam site is calculated to provide the design flood discharge as follows:

Dam	Jatibarang	Mundingan	Kedung Suren	Babon
Area(km2) A.R.F P.P.D (m3/s)	53.00 0.82 569.00	45.70 0.84 500.00	146.50 0.58 864.00	51.90 0.82 545.00
A.R.F : A	rea Reductio	n Factor at	dam site	· · · · ·

P.P.D : Probable Peak Discharge

4.7 Probable Maximum Precipitation (PMP) and Probable Maximum Flood (PMF) for Jatibarang Dam

> The probable maximum precipitation (PMP) and the corresponding probable maximum flood (PMF) for Jatibarang Dam were estimated to determine the design flood water level (DFWL) and the spillway design discharge for the dam.

(1) Probable Maximum Precipitation (PMP)

Since climatic records of dewpoint and wind velocity in and/or around the dam catchment area are not available, it is virtually difficult to carry out a comprehensive study on based on the climatic storm РМР the maximization. Under the circumstances, the PMP was estimated by the simple statistical Hershfield method using a series of annual maximum precipitation observed at Kaligading The entire duration of PMP Rainfall Station. is herein assumed at one (1) day, in due consideration of the past storm durations recorded at the gauging station.

The Hershfield method is recommended by the World Meteorological Organization (WMO) for areas where rainfall record is available but other climatic records are hardly obtained. The following equation has been developed as the principal approach of the Hershfield method:

 $Xpmp = Xn + Km \cdot Sn$

(Eq. I.4.1)

where,

Xpmp	:	Point PMP
Xn	:	Adjusted average of a series of the annual maximum precipitation.
Sn	:	Adjusted standard deviation of a series of the annual maximum precipitation.
Km	:	Statistical Coefficient

The adjusted average and standard deviation values (Xn and Sn) in the above equation (Eq. I.4.1) are estimated from:

- (a) The unadjusted average and standard deviation values of the observed annual maximum precipitation, multiplied by
- (b) The adjustment factors developed by Hershfield (refer to Table I.4.3 and Fig. I.4.8).

The statistical coefficient (Km) in the equation (Eq. I.4.1) is also estimated from the relationship of the Km and Xn values developed by Hershfield (refer to Fig. I.4.9).

The point PMP could be estimated through the above Eq. I.4.1, and converted into the aerial average PMP using the area reduction factor curves. The area reduction curves were developed by the World Meteorological Organization (WMO) based on average values obtained from the depth-area-duration (DAD) analysis of major general-type storms in the world (refer to Fig. I.4.10). The estimated area average PMP with time durations of 1, 6 and 24 hours are as shown in Table I.4.3, corresponding to 1.65 to 2.66 times the 100year point probable rainfall, as follows:
(1) Rainfall Duration	(2) 100-year Rainfall	(3) PMP	(4) Multiplier [(2)/(3)]
1-hour	120 mm	198 mm	1.65
6-hour	197 mm	424 mm	2.15
24-hour	260 mm	691 mm	2.66

The aerial average one-day PMP estimated for Jatibarang Dam is, further, compared with the PMP estimated for other dams in Indonesia as shown in Fig. I.4.11, from which the PMP for Jatibarang Dam is evaluated to be within an appropriate range. The PMP for Jatibarang and adjacent dams are given below:

Dam	Catchment Area (km2)	One-day PMP (mm)
Jatibarang	53	691
Jragung	94	690
Maung	213	459
Kedung Ombo	614	580
Glapan	796	548

(2)

*

Probable Maximum Flood (PMF)

The model hyetograph for PMP was developed as follows, based on the rainfall intensityduration curve and hourly rainfall distribution pattern:

 (a) The rainfall intensity-duration curve for the PMP was developed, as shown in Fig. I.4.12, from the above 1, 6, and 24hour PMP using the Horner Type Equation.

1-23

(b) The hourly rainfall distribution was assumed to have a pattern such that the one-hour rainfall intensity gradually increases until it reaches the peak at the midpoint of the entire rainfall duration, and then gradually decreases.

The model hydrograph for the PMF was developed from the model hyerograph through the flood run-off calculation. The flood run-off calculation was made by the Storage Function Model.

The model hyetograph and hydrographs for PMF developed as above are shown in Table I.4.4 and Fig. I.4.13. The peak discharge in the model hydrograph of PMF for Jatibarang Dam is about $1,800 \text{ m}^3/\text{s}$ which could be within the proper limits of the PMF enveloped curve for all dams in Indonesia (refer to Fig. I.4.14). The peak discharge of PMF for Jatibarang Dam is compared with the PMF peak discharge for adjacent dams as below:

(1) Dam	(2) Catchment Area (km2)	(3) Peak PMF (m3/s)	(4) Specific Peak PMF (m3/s/km2)
Jatibarang	53	1,800	34
Jragung Maung	213	6,000	28
Kedung Ombo Glapan	614 796	8,000 10,000	13 13

4.8 Prob

Probable Peak Discharge at Jatibarang Dam Site

Jatibarang Dam has been proposed as a priority project for the Feasibility Study. The design flood discharge at the dam site is necessary to be decided

1-24

in designing the dimensions of the auxiliary spillway. The probable peak discharge of each return period at the dam site is calculated to provide the design flood discharge as shown below:

Return				·	
Period (year)	2	100	200	5,000	10,000
Discharge (m3/s)	254	569	636	865	911

4.9 Evaluation of January 1993 Flood

In January 1993, a powerful monsoon storm hit most parts of Jawa Island, particularly Central Jawa. The storm occurred quite recently during the later part of the Master Plan Study, and its hydrological conditions could not be incorporated into the Master Plan Study. Therefore, a supplementary hydrological study was carried out during the Feasibility Study to review the detailed storm conditions based on the recorded hydrological data.

The probable rainfall intensities were estimated with the supplementary data recorded until 1993 and the results of estimation for the probable rainfall intensities are shown in Table I.4.5. The recurrence probabilities of rainfall intensities for shorter durations of less than 12 hours were estimated at 5year to 25-year return periods at Semarang Meteorological Station and shorter durations less than 6 hours are less than 10-year, 12 hours is less than 20-year at Kaligading Gauging Station. However, the rainfall intensities for longer durations of 1 day and 2 days show longer return periods of about 20- and 70-year return period, respectively, at both stations.

The flood hydrograph in the January 1993 flood is substantially attributed to one-day rainfall. The maximum one-day rainfall of the January 1993 flood is recorded at 232 mm, which corresponds to about 20year return period.

The peak flow at Simongan Weir is determined at around 700 m^3/s judging from the field reconnaissance and the records of the Garang Automatic Gauging Station. The recurrence probability is estimated at the scale of about 20-year return period.

The design scales adopted for the flood control master plan are 20 to 100-year return periods, exceeding the above recurrence probability of the January 1993 flood. Accordingly, further study on design scales of the Master Plan will not be necessary despite the recent recurrence of flood in January 1993.

5.1 Objectives and Procedure of Inundation Analysis

Inundation analysis for the six (6) rivers was carried out to estimate the flood damage area of flooding conditions of 5-year to 100-year return period. Results of the inundation analysis were used for the flood damage calculation and economic evaluation of the improvement plan for the six (6) rivers.

For the inundation analysis, the computer simulation model was established based on the field survey. As for the field survey, flood mark survey for the six (6) rivers was carried out by the JICA Study Team to confirm the inundation area as well as the water depth of the flood on January 26, 1990, as shown in Fig. I.5.1.

The inundation model was established to simulate the probable inundation area both without- and with-the-project conditions.

5.2 Field Survey for Inundation Model

1

From the field survey, the features of flooding in the inundation area are given as follows:

- (1) The flood area is flat with a slight slope towards the sea along the river stretches. (Refer to Figs. 1.5.2 to 1.5.7)
- (2) Overbank flow spreads along the river course in the upper reaches.

(3) Overbank flow spreads to the shoreline area in the lower reaches.

Considering the above features, flooding in the area shows the storage type and the flow/diffusion type. Therefore, the Two Dimensional Unsteady Flow Model is employed.

3

5.3 Establishment of Inundation Model

The flood inundation model for each river was established with the following conditions:

- (1) The whole inundation area is divided into mesh blocks of 200 m by 200 m as shown in Figs. I.5.2 to I.5.7.
- (2) The average ground height of each mesh is obtained using the topographic map with a scale of 1/10,000 prepared in this Study.
- (3) Structures such as roads and railways which may hamper the smooth flow of inundation water are taken into consideration assuming them as barriers between mesh blocks.

5.4 Simulation by Inundation Model

The maximum inundation depth and inundation area were examined under the probable flood discharge of 5year, 10-year, 25-year, 50-year, 100-year return period. As the initial condition for computation, it was necessary to give the overflow discharge to the inundation area and the overflow section. The following initial conditions were taken into account: (1) The overflow sections selected are of the poor flow capacity sections determined by the nonuniform calculation method (refer to Fig. V.2.6). The overflow sections of each return period are marked with arrows on the mesh map as shown in Figs. I.5.2 to I.5.7.

(2) It is assumed that in the probable flood hydrograph, the surplus discharge over the flow capacity overflows at the overflow section. The overflow discharge (dQ) at the overflow section is given by the surplus discharge (Q)minus the flow capacity (q) at the overflow section in the hydrograph as follows:

dQ = Q - q

5.5 Results of Simulation

Hydrographs and flood marks of the 1990 flood in the Garang river basin are available. The simulation model of Garang River is adequate to the inundation record of the flood in 1990 based on the flood mark survey on Garang River as shown in Fig. I.5.1.

The probable inundation area and water depth which correspond to the probable flood of the six (6) rivers are shown in Figs. I.5.2 to I.5.7, and the inundation areas occasioned on each return period are shown in the following table. The inundation duration is less than 24 hours in all cases.

	, , , , , , , , , , , , , , , , , , ,	Inu	ndation Ar	ea (km2)		
Return Period (Year)	West Floodway	Babon River	East Floodway	Silandak River	Bringin River	Blorong River
		Inundati	on Area Wi	thout Projec	t	
5		10.0(1.1)		2.3(0.1)	8.6(1.6)	27.2(2.2)
10	1.6(0.0)	12.2(5.8)	3.4(0.2)	2.3(0.1)	8.8(2.0)	29.3(6.0)
25	3.4(0.4)	12.8(6.8)	4.5(0.3)	2.6(0.2)	8.8(3.0)	30.9(8.7)
50	5.0(0.6)	13.9(7.3)	5.0(0.5)	2.6(0.3)	8.9(3.7)	31.4(10.0)
100	7.0(2.1)	15.8(8.0)	18.2(0.8)	2.6(0.6)	9.0(4.5)	32.5(12.6)
		Inunda	tion Area V	Nith Project		
25	~ •	 	-	-	·	30.9(8.7)
50	0.6(0.0)	13.9(7.3)	5.0(0.5)	2.6(0.3)	8.9(3.7)	31.4(10.0)
100	1.3(0.4)	15.8(8.0)	18.2(0.8)	2.6(0.6)	9.0(4.5)	32.5(12.6)

100

() Inundation area of depth more than 50 cm

CHAPTER 6 LOW FLOW ANALYSIS

6.1 Daily Rainfall Analysis

(1) Selection of Rainfall Station

There are 52 rainfall stations in and around the study area as mentioned in CHAPTER 2. These stations have different observation periods and reliability of records. Taking the length of observation period, amount of missing data and areal distribution into account, 12 rainfall stations are selected. The location of the selected stations is shown in Fig. I.6.1 and the annual rainfall of each station for 33 years is summarized in Table I.6.1.

(2) Calculation of Basin Rainfall

All stations, even though they are selected on the above-mentioned criteria, have plenty of missing data as shown in Table I.6.1. Judging from the difficulty and inaccuracy to interpolate the missing data among these records, the following procedure was adopted to estimate the basin rainfall which means average depth over a catchment:

- (a) Daily basin rainfall is calculated by the Polygon Method (refer to Fig. I.6.1) using the records of 12 rainfall stations in 1980 where whole data are complete;
- (b) Representative station is selected for river basins showing the highest correlation between daily point and basin rainfall in 1980;

- (c) Missing data of representative station records are interporated by the linear regression method from simultaneous records at nearby stations; and
- (d) Basin rainfall for 33 years are calculated on a daily basis by the linear regression method using the filled-in records of the representative station.

Fig. I.6.2 shows the relationship of daily rainfall and regression coefficient between point rainfall at the representative station and basin rainfall based on the records in 1980. Table I.6.2 presents calculation results of basin monthly rainfall in the Babon, Garang and Blorong river basins, respectively.

6.2 Low Flow Analysis

(1) River Flow Condition

There are three water level stations under operation in the study area, namely, Pucanggading Weir station in Babon River, Panjangan station in Garang River and Pucung station in Blorong River. Their locations are shown in Fig. I.6.1.

Flow regime and balance in observed records are summarized in Table I.6.3 and the flow-duration curves are presented in Fig. I.6.3. Calculated annual loss in Table I.6.3 varies widely, but the reliable range of annual loss seems to be from 1,000 mm to 1,400 mm in comparison with annual loss and run-off ratio.

(2) Low Flow Model

The Tank Model is one of the notable models, so-called distributed conceptual models, which has been devised for the synthesis of streamflow data.

The Tank Model is defined as a single basin model encompassing basins covered by existing water level stations. In this case, rainfall data input into this model is daily basin rainfall which is calculated in CHAPTER 3, Rainfall Analysis, as described before.

Amount of evaporation is also input into this model, and this value is equivalent to the annual run-off loss. As described before, the average run-off loss approximately ranges from 1,000 to 1,400 mm based on the observed streamflow records. On the other hand, the value of pan evaporation at Semarang Meteorology Station is 1,740 mm/year. Actual value of evaporation commonly ranges from 60 to 70% of pan evaporation, therefore, the daily loss is determined from the monthly variation pattern of pan evaporation, and all values are scaled down to 60%.

(3)

) Model Calibration

The parameters of the Tank Model as shown in Fig. I.6.4 are determined by the trial and error method until the calculated daily hydrograph shows well fitness to the observed one. The observed and calculated hydrographs are compared as shown in Fig. I.6.5. (4) Synthesis of Streamflow Data

The daily discharge at three stations for 30 years are estimated by Tank Model simulation. The calculated flow regime are given in Table I.6.4, and the typical flow-duration curves by the respective rivers are presented in Fig. I.6.6.

.

7.1 Observed Tidal Data

Tidal level in the study area has been continuously observed by an automatic water level gauge at Semarang Harbor which is located between the river mouths of West Floodway and East Floodway, and the observation period extends more than ten (10) years. The automatic water level gauge was, however, replaced once during the harbor improvement project and the tidal data observed before replacement of the gauge has not been preserved. The present available data that could be furnished from the Harbor is limited to the hourly tidal level from January 1989 to April 1992.

The tidal level data observed by the old automatic gauge was supplemented from the Report on the "Study of Drainage and River Improvement, Ministry of Public Works, July 1985." In the Report, described are the annual mean high water level (MHWL), mean sea level (MSL) and mean low water level (MLWL) at Semarang Harbor. The year adopted to estimate these annual mean tidal levels is not explained in the Report, but could be assumed to be, at least, before 1985, the completion year of the Report.

7.2 Chart Datum of Observed Tidal Level

The chart datum of the old automatic water level gauge was set at 0.506 m below the annual mean sea level (MSL) of Jakarta Harbor (Tanjung Priok) which was observed in 1925 and thereafter used as the datum plane of first order leveling for all topographic surveys in Jawa and also, for all elevations in this study.

On the other hand, the chart datum of the new automatic water level gauge has not yet been related to the MSL of Jakarta Harbor. Therefore, the tidal level observed by the new automatic gauge is not converted into the absolute elevation. To cope with this problem, leveling survey was carried out by the JICA Study Team and it was confirmed that the chart datum of the new automatic water level recorder is 0.90 m below MSL of Jakarta Harbor.

7.3 Annual Mean Tidal Level

Based on the tidal data observed and the chart datum clarified as stated above, the annual mean tidal level at Semarang Harbor was estimated in terms of the elevation above MSL of Jakarta Harbor as below (refer to Table I.7.1).

	· .		(Unit:	EL. m)
Item	Before 1985	1989	1990	1991
MHWL MSL MLWL	0.54 0.09 0.33	0.59 0.05 -0.44	0.58 0.07 -0.39	0.60 0.09 -0.37

Recently, tidal inundation has occurred frequently at the low-lying coastal areas leading to serious flood damage, particularly, in Semarang City. The related government agencies had tried to trace the causes of inundation, presuming that one of the possible causes was the recent upward tendency of the tidal level.

As shown above, however, the annual mean tidal levels of the recent three (3) years have the difference of less than 10 cm as compared with those observed before 1985. This proves that no definite long-term transition or upward tendency of the tidal level has occurred.

The MHWL will be used to determine the design high water level for the flood control plan. Therefore, the long-term transition of tidal level is not required to be incorporated into the determination of the design high water level.

TABLES

Table I.2.1 INVENTORY OF RAINFALL GAUGING STATION

.

٨

9

		Chabian Name Over																	Ye	ar	01	Ť	Rec	or	d												•
'n	0.coue	Data	Collected	T	,5 1	0		T	•	 r r	 T		60			 T T	 T	т.		7	0	(т	r	T -	 T 1	т	r	8	0	т	 T	T		 1 1	T	9	0 +
				- 1	1	÷.	. 1	1	1 1		1	1 1		1	1.	7 7	1	Ţ		1	Ť		1	1	1 3	. 1	ï	1	. 1		T	1.			. 1	1	т
	(1) 0	AILY RAINFALL DATA	0.011 0.110								• •		ė.																				~	•			
	2 23	Bologa	OPULBENG			B	A	19	R		30 38	B	A	0 D 8 R	Ð R	A	ос RF) D 1 R	A	0 0 8 8	B	D A	0 0 8 8	1 B	R	в i Я i	n # A A	L A	A	BI	0 0 8 8	1 8	o R	Ð	Α.	к 0 4 8	
	3 25	Ketanang	OPUL.BMG			8	A	18	B	A	3 B	8	BI	8 B	8	B	BE	3 B	A	B B	8	A	8 B	B	A	A	BA	Â	A	81	3 8	B	8	B	A	A B	
	4 25 a	Brongsang	DPU.BMG			Ť			-		B	8	B	8 B	B	В	BE	3 B	B	B B	в	B	88	B	A	A	A A	A	A	B	A 8	B	8	8	8	BB	
	5 25 b	Sikopek	DPU.BMG			8	A E	3 B	В	Bŧ	3 B	В	B	B B	8	8	Β£	38	B	B∙B	B	A	88	в	۸	٨	A /	Â	A	A J	A 8	B	A	B	A	BB	
	6 25 d	Tambakboto	DPU .BMG			B	AI	38	B	A	3 B	В	B	8 B	8	В	Βŧ	38	A	3 B	₿	A	88	B	A	A I	A A	۱A	A	A /	8 4	B	8	B	8	BB	
	7 25 d	Podowaras	DPU BHG			₿	A E	3 8	B	Αí	3 B	B	8	BB	8	8	88	38	B	3 B	8	BI	88	B	8	A I	A A	۱A	A	A I	A 8	B	A	B	A	8 B	
	8 25 e	Blorok -	DPU BHG			B	A E	38	8	B {	3 B	В	8	B 8	8	8	BE	3 B	AI	3 B	8	AI	B 8	B	A	A I	A A	۱A	A	AI	4 8	₿	B	B	B	BB	
* .	9 25 f	Kebonadem	DPU.BMG	AE	3 B	B	BE	38	8	B	38	8	AI	8 8 • •	8	A	A A	A A	A	A A	. A	Α.	A A	A	8	Bi	A A	I A	A	A	A A	A	A	A	Β.	A A	
1	0 25 g	Kd.Pucung	UPU BMG	At	5 8	B	At	58	8	63	5 A 3 D	A D	8 J 6 J	A A 0 0	A	A	A F D T	ч А 5 п	A J A J	ч A ъ п	A	A.	А <i>А</i> 6 в	A N	A	A I D	A	. А 	A	A	а <i>я</i> а п	A	8	A n	A .	A U A D	
1	1 20	irompo	010.800			в	Bi	58	в	81	3 8	B	81	88 88	В D	A D	0 C 0 C) B 1 D	01	3 B 0 C	8	A I A I	8 8 6 8		ь В	р I В I	4 C	F A	A	51	58 20	9 19 10	ъ В	ы Б	н. •	н 8 л 0	
1	2 21	Depandon	DPU DRM			R	۵ ۶	2 8	8	۵ ۵	1 8	B	A 1		á	٥ ۵	0 U 8 F	, 0 1 B	RI	A R	B	RI	0 0 R A	R	8	Δi			Λ Δ	RI	2 9	R	R	R	<u>م</u>	A B	
1	4 30	Pusuh	DPU. BNG			В	AI	3 B	8	BI	3 8	B	8	6 6	8	A	8 E	8 8	BI	3 B	8	A I	B 8	B	8	A	A B	À	Ä	BI	88	B	8	B	A	AB	
i	5.32 e	Plantaran	DPU BHG	ВВ	3 8	В	B 8	3 B	8	B	3 B	B	8	B 8	B	8	BE	38	BI	3 B	8	A	88	B	Ā	A	A E	A	B	A	4 8	B	8	8	A	A Đ	
1	6 33.	Ka i twungu	DPU BMG			В	8 1	3 B	8	88	3 B	B	8	B 8	В	B	88	8 8	B (3 B	8	A I	B 8	B	À	A J	A A	۱A	A	B	A B	B	A	8	A	BB	
_ 1	7 33 a	Plumbon	DPU BHG								8	В	A I	B	B	B	8 E	8 8	BI	3 B	8	A I	B 8	B	A	AÌ	A A	A	A	A I	8	B	A	B	A	B 8	
1	8 33 b	Gambilangu	DPU .BMG	E	38	В	A E	3 B	B	88	38	В	8	8 8	B	8	88	3 B	8	3 B	8	A	B 8	B	8	A I	A A	۱A	A	A I	A 8	B	A	B	A	BB	
1	9 33 d	Panggung	OPU BMG	E	38	B	Βŧ	3 B	8	AE	38	B	A 1	B 8	В	8	88	3 B	8 1	3 B	8	A	88	B	A	A I	A E	I A	A	A	18	B	8	B	B	BB	
2	033e	Gambilangu (B8)	BMG					8	8	BE	38	B	BI	BB	В					В	8	AI	88	B	A	A /	A A	I A	A	BI	3 B	B	B	8	в.	A B	
* 2	1 33 f	Karangtengah	DPU.BMG	AL	38	8	BE	58	В	At	58	B	81	88	ß	B.	A F D C	A A	A I	א A חוו	A	A .	A A D D	A	A	AI	A F	I A	A	AI	A A A D	A	A	A	Α.	A A	
2 4.0	2 33 Q 2 34	Nessesses (Cincercie	DPU BMG	AL	3 10	8	A 8	5 U 1 D	5	80	30	0	01	6 6 6 6	13 D	B B	8 C A 7		8 I 8 J	56 \ \	0	A 1	D D D Å	5	А	А 1 Л 7	н. 	і А 	A ,	н I Л I			0	D A	A	K D D O	
* 2	5 34 1 37	Ngareanak / Singureju Roja	OPU-DHO			Ð	р I	ם נ	Б	А (0	~ '		D	D	n /	• *	. i	2 4	A	А : А :	6 A	۸. ۵	A	, הי פ	n n	۲. ۲. ۵	R	R /	1 0	B	Δ	۵ ۵	R	RR	
* 2	5 30	limbannan .	DPUL BMG			R	8 F	18	в	84	3 B	8	R 1	R A	8	R .	A A	A	A	A A	B	A	RR	A	A	8 1	A B	A	A	A	A A	A	A	A	8	A A	
2	6.41	Tuqu	DPU.BMG			Ű		, ,	Ľ		B	8	B		Ŭ		В	B	A	38	В	A	BB	В	A	AI	A B	A	A	A	18	В	Ä	8		ВВ	
2	741a	A. Yani Airport	AYA								B	B	A		8		B 8	3 B	A	3 8	B	A	B B	В	B	1	A A	A	В	BE	3 8	В	8	8	A	BB	
2	B 41 c	Hangkangwaduk	8MG								8	B	8 (B B	8	8	B 8	8 8	Ą (38	B	A I	B 8	B	Α	A /	A A	A	A	A /	18	В	B	8	A I	8 B	
* 2	9 41 d	Bringinmangkang	8MG								В	В					A A	A A	A I	۹ A	A	A	A A	A	A:	A /	A A	A	A	Ă I	۱A	A	Α	A	B	A A	
3	D 41 e	Sta.klimetologi smg	8MG																Bi	۱A	A	A I	A A	B	A	A /	A : A	A	A	B /	۱A	A	A	8	A a	A A	
3	1 42	Simongan	OPU BHG								8	B			_	_	8	B	A E	38	8	A I	38	B	8	A I	A A	A	В	A /	I B	8	A	Β.	A I	3 B	
3	2 42 a	Kalisari	DPU.BMG									B	AI	88	B	B	8 E	5 8	88	3 B	A	AI	38	B	A	A /	ч А	A	8	A 4	ŧВ	8	Α.	В.	AI	38	
* 3	3 44	Mijen	DPU, BMG								8	B	A /	Α. Β	в	B	ң р	I A	A I	1 8	A	A I	5 A	A	8	A J	ч <i>А</i>	A	A O	A J D r	1 A 1 D	A	А А	A. n	А I А I	ч А 5	
3	4:40 ⊊ /∩ ∍	Sumungpat i Notoo Navitim	0P0.80%																		ß	В 1	. .	8	R	٨	່ອ	۵	٥ ۵	о с 8 б	20	R	R	D. R	я I I	9 R	
ر ج	5 43 0 5 62	Pandeanlamner	BMG																		Ů		B			~ '	, ,		^			U	Ű	Ű	Î	38	
* 3	7 59	Canol	BMG								B	8	A 1	ΒA	A	A	ΒA	A	A /	۱A	А	A /	٩Ã			A A	٩A	A	A	A E	A	В	8	Α.	A	ΑB	
3	3 63 b	Kd.Banbkong	PU.BMG																			•				ļ	A A	A	В	B 8	3 8	В	A	8.	A 1	3.	
3	64	Susukan	BMG								·B	8	A E	8 B	B	8	8 8	8	B 8	3 8	B	A I	3 B	В	A	A A	٩A	8	В	Βŧ	8 8	B	B	B .	À I	3 B	
4	65	Ungarang	BMG						•														•	A	Α	A A	۱A	A	A	A Ø	A	A	A	Α.	A /	٩A	
* 4	l 65 c	Sumurjurang	PU.BMG				8 E	8	B	A 8	A	-A	8 /	A A	Α	A	BA	B	B /	A A	8	A E	3 A	В	A	BA	۱A	A	8	A A	A	8	В	A	A /	۱A	
* 4	2 68 5	Klepu(kendal)	BMG			₿	A E	8	B	Be	A	A.	8/	AA	A	A	BA	B	AE	3 B	8	BE	38	B	8	A #	۱A	Α.	B	A 8	B	8	В	B	B 8	38	
4	3 93	Sayung/Purwosar i	PŲ.8MG					•			. 8	8	8 t	3 B	В	BI	8 B 5 D	i B	8 t	3 8	8	88	38	B	A •	A	1 A	. A	8	8 F A D	. 8	8	В	8 / 0	At	5	
.4	4 94 5 06	Genuk Develuen (Mesesse)	PU-BMG								8 0	ъ o	0 ł 	36	ь о	в I р I	55	0	87 86	13	р р	н (1 л (3 B 3 D	8	н -	н, ғ л, т	5 A 5 A	. A 	ю. р	н : л :	5 15 1 10	0	А А	в I П	н I Л Л) \ D	
* 4	5 90	Brumbung (mranggen) Plamondan	PULBHC								0 . A	о. А	Λ C Δ Z		Δ	R A		R	A () 0 A	Á	л (А <i>і</i>	5 D 5 A	Δ	Δ.	n 7 A 4	1 1	Δ.	Δ.	n (Δ	Δ	A .	A /	1 D 1 A	
4	7 98	Pucanonadina	PILBMG								B	8	88	3 B	8	81	38	8	л, В 8	8 8	B	BI	3 B	B	B .	A A	۱. A	A	B	B A	8	в	A	B	A E	3	
* 4	3 99	Banyumenéng	PU.BMG							A A	Ā	Ā	B #	λ B	A	A	٩ A	8	A E	A 1	Ā	B /	ÀA	Ā	Â.	A A	۱.A	A	Ā.	A A	A	Ä	Α.	Ă A	A A	۰ A	
4) Smg32	Jimbaran(HL2)	JSP																			1	۱A	A	A	B A	۱۸	8	A	B /	A	A	Α.	A I	A E	3	
5). Smg33	Karangjati	JSP																			1	۱A	A	Α.	A E	3	В	A	BA	A	Α	8	В			
5	l Smg34	Barangan	JSP																				8	A	Α.	A A	۱A	A	A.	A A	A	A	B	BI	B		
5	2 Smg35	Sabiroto	JSP																			5	3 A	A	Α.	A A	۱A	A	A,	A 8	A	A	Α.	A i	A E	}	
	10.	AUALU BLYNGI								÷																			•								
* -	(2)H	UUKLY RAINFALL DATA	our																								,	^		R /		0	۵	п.	Δ,		
- D. F	> 410 /1~	A Vani Atenant	0570 AVA																								А	A	~	ч и р	R	л р	л А	0 / R (RF	1 A 1 A	
* 5	, 410 5 5	Xalicadino	THE																									в	A.	A A	A	8	A .	Ā	8 F	A	
		Jraduna	THE																							B	18	Ă	8	R B	B	Ā	A	8 1	8 8	3	
- 5	, 9		A 116																										-								

Notes *

:Selected Station for Rainfall & Runoff Analysis A : Complete Data :Pekerjaan Umum (Public Works) B : Incomplete with missing :Badan Meteorologi dan Geofisika (Institute of Meteorogy and Geophysics) DPU

8MG

AYA JSP :A.Yani

:Jratunseluna River Basin Development Project

IKE :Institute of Rydraulic Engineering

Table I.2.2 (1/3) GENERAL CLIMATOLOGICAL DATA OF SEMARANG AHMAD YANI

•			-	-									
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
		00.0		07.5	00.3	07.7		07 F	00 0		07.7		
1980	20.5	20.0	20.9	27.5	20.3	27.0	2/.4	27.5	20.0	20.3	27.7	20./	2/.4
1901	20.9	20.1	2/10	27.9	2/ ./	27.0	20.9	26.6	26.0	20.7	22.0	20.0	27.9
1902	23.7	20.2	20.0	27.0	27 8	27.4	20.0	20.0	20.3	20.0	20.3		27 6
1903	27.0	26 1	26.7	27.7	27.0	27 1	27.0	27 3	27 1	28.0	27 7	26 5	27 1
1095	26 8	27 0	26.0	27 3	27.8	27.2	26.8	27.3	27.6	28.3	27 7	26.8	27.3
1096	26 1	26.3	26.7	27.7	28.2	27 6	27 0	26 8	27.6	28 0	21.11		27 2
1097	20.1	20.5	20+1	28.6	28 5	28.2	27 0	27 2	28.7	20.2	28.6	27 1	28.2
1088	27 3	27 1	27.5	2010	2013	LOIL	21.5	L/ 1L		2012	L010		2012
1989 1990	L7 80		2710										
Average	26.4	26.5	27.1	27.8	28.0	27.6	27.1	27.2	27.8	28.4	28.0	26.9	27.4
Monthly	Maximur	n Temper	rature	(°C)									No. and
Voan		Fob	Mar	Apr	May	Jun	.]u]	Δυα	Son	Oct	Nov	Dec	May
Tear	Jan	rep.	riai •		nay	Juli	our.	nug i	Jep.				
1980	30.2	30.6	31.5	32.2	33.6	33.1	32.4	33.4	34.3	33.7	33.0	30.8	34.3
1981	29.2	29.8	32.1	32.6	32.6	32.8	32.4	33.5	33.4	34.1	31.7	30.5	34.1
1982	29.4	29.8	30.9	32.6	33.3	33.2	33.4	33.7	34.1	35.0	34.3	31.7	35.0
1983	32.2	· · -	32.1	32.3	32.3	33.2	33.6	34.4	34.8	-		-	34.8
1984	29.8	30.0	30.7	32.1	32.5	32.8	32.7	33.1	32.7	33.1	32.6	30.4	33.1
1985	30.7	31.0	31.1	31.8	33.2	32.4	32.0	33.2	33.2	32.3	30.3	30.8	33.2
1986	29.7	30.4	30.7	32.4	33.8	32.6	33.0	32.8	33.4	32.8	-	-	33.8
1987		-	·	33.4	33.3	33.6	33.6	34.3	34.8	34.7	33.1	30.6	34.8
1988 1989	30.7	31.0	31.6	-	6 •		-	-	-	-	-	-	
Maximum	32.2	31.0	32.1	33.4	33.8	33.6	33.6	34.4	34.8	35.0	34.3	31.7	35.0
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Min
				0.2 5							<u></u>	01 5	00.7
1980	23.5	23.4	23.2	23.0	24.0	23.1	23.7	22.7	22.9	23.4	23.5	23.5	22.7
1981	23.2	23.1	24.0	24.1	23.8	23.0	22.8	22.8	23.5	23.0	23.7	23.0	22.8
1982	23.3	23.2	23.0	23.5	23.0	23.4	22.4	21.5	22.5	23.5	24.Z	24.5	21.5
1983	24.2	02.4	24.9	24.9	25 1	23.3	22.1	22.1	23.0	22.0	22 7	22.2	22.1
1984	23.5	23.4	23.5	24.4	24.3	21.0	23.1	23.0	23.3	23.9	23.1	23.3	21.0
1900	23.6	23.9	23.0	24.0	24.3	23.3	22.1	22.4	23.6	23.3	23.0	23.0	22.4
1027	23.0	6314	2J.1	24.5	24.5	24.0	23.6	21.3	23.5	24 6	24 Q	24.2	21 3
1988 1989	24.5	24.1	24.7	27.5			20.0	21.0	20.0		2415		
Minimum	23.2	23.1	23.0	23.5	23.6	21.5	22.1	21.3	22.3	23.4	23.5	23.3	21.3
Monthly	Rainfal	11 (mm)											
Year	Jan	Feb	Mar	Apr	Mav	.lun		Aua	Sen	Oct	Nov.	Dec	Total
		100.											
1980			340		190	17	120	191	33	80	276	321	-
1981	824	576	199	355	71	134	137	47	162	89	195	534	3323
1982	726	374	112	261	66	108	13	2	-	1.1	201	155	-
1983	299		79	.94	304	15	.8	Ŭ Î	3				
1984	391	301	364	204	109	60	87	10	321	176	301	615	2939
1985	283	554	243	219	256	126	92	165	60	241	178	60	2477
1986	521	161	216	131	43	216	66	66	173	150			
1987				81	133	79	9	12	0.	- 32	145	246	-
1988 1989	423	305	463		1		÷ . ·		•				
Average	495	379	252	192	147	94	67	62	107	128	216	322	2460

Monthly Mean Temperature (°C)

I-39

Gifferen

海路

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1980 1981 1982 1983	47 36 63	62 54 60	76 77 63 77	72 73 71 67	87 75 86 65	87 91 86 93	92 73 92	90 95 96	93 83 98	85 88 92	74 45 89	44 64 65	76 71 77 81
1984 1985 1986 1987	50 73 38	56 64 73	60 69 63	74 69 80 84	75 86 93 90	88 86 82 86	94 90 90 97	88 97 89 99	78 92 82 96	90 86 86 97	78 72 75	.54 62 56	74 79 78 87
1988 1989	53	65	62	U1		00	01						
Average	51	62	68	74	82	87	90	93	89	89	72	58	76

Duration of Bright Sunshine (%)

ja)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec. A	verage
1980 1981 1982 1983 1984 1985 1985 1986 1987 1988 1989	9.9 11.0 10.8 12.5 9.9 11.7 9.9 10.5	11.0 10.7 10.6 9.0 7.5 11.2 10.6	11.5 12.4 10.8 11.9 11.0 10.4 10.1 9.1	10.6 11.4 11.2 10.6 10.3 9.5 10.6 11.9	11.2 10.3 11.4 10.9 10.3 9.6 10.6 12.1	11.7 11.5 12.8 11.8 11.4 11.5 10.4 12.0	12.2 11.0 13.2 12.4 11.2 12.1 12.5 13.4	12.9 12.3 13.6 13.0 11.9 12.1 11.9 13.5	12.9 11.8 14.0 12.6 11.6 12.4 12.9 13.5	12.0 12.0 12.8 12.7 12.2 12.8 12.7	11.0 10.4 11.7 11.3 11.1 11.5	10.0 11.4 11.3 9.5 10.9 11.8	11.4 11.4 12.0 12.0 10.8 10.9 11.3 12.5
Average	10.8	10.1	10.9	10.8	10.8	11.6	12.3	12.7	12.7	12.5	11.2	10.8	11.4

Monthly Mean Humidity (%)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1980	84	82	79	79	72	70	74	68	66	69	75	81	75
1981 1982 1083	83 86 83	84 86	78 82 81	76 80 70	77 74 78	76 73 69	77 71 65	70 67 62	72 68 62	68 63	78 71	82 80	75 72
1984 1985	82 82	83 82	81 81	77 80	74 77	72 77	75 74	73 71	78 72	75 72	78 77	82 81	78
1986 1987	85	82	83	78 75	74 74	78 74	74 70	70 67	74 63	75 67	75	84	72
1988 1989	83	83	82										
Average	84	83	81	78	75	74	73	69	69	70	76	82	76

Monthly Mean Force of Wind (knots)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1980 1981 1982 1983 1984 1985 1986 1987 1988 1988	6 7 6 4 5 2 4 2	5 5 4 5 3 3 3	2 4 4 5 2 2 4	36565432	4 3 6 4 3 3	4 4 6 3 4 3 3	4 4 5 6 3 4 3 3	55453334	4 4 6 3 3 3 4	4 4 3 3 2 4	3 3 4 3 2 3	3 4 3 2 2 3	4 5 4 5 4 3 3 3
Average	5	4	3	4	4	4	. 4	4	4	3	3	3	4

Direction of Wind

······	<u> </u>	· · · · · · · · · · · · · · · · · · ·		······								····· - ···	-
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	
1980 1981 1982 1983	NW SW W	NW W W	NH NW N	NW E E NW	E E E	EEEE	E	E E E	E W NW	E E NW	E NW E	W W NW	• : :
1984 1985 1985	NW NW	NW NW	NW NW NW	N N N	SE	SE	SE SE	NW SE	N N NW	N NH	NW N	NW N	· · · ·
1987	ч.	"-	un 	E	N	E	ŠE	Ē	ас Е	n NW	N	พ	
$1988 \\ 1989$	N	NW	W	- .*	-	-	-	-	-	-		- -	:
Monthly	/ Maxim	um Forc	e of Wi	nd (kno	ts)								-
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Max.
1980	23	-22	17	15	20	15	16	17	20	18	19	20	23
1982	20	20	20	15	12	15	16	- 1/	13	15	18	47	47
1983	ĩã		16	15	20	17	17	11	15		40	10	
1984	15	15	12	ĪŌ	13	ĨÓ	20	12	12	15	15	22	22
1985	11	25	18	17	10	12	13	13	12	14	10	14	25
1986	16	29	15	12	12	15	12	-18	16	-12			- 29
1987 1988 1989	14	20	13		. 11	12	12	. 14	15	. 15	15	16	16
Max imum	28	29	20	17	20	17	20	18	20	18	45	47	47
·													
Monthly	Evapo	ration	(mn) (Se	emarang	Climate	ologica	ì Statio	on)					
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec,	Tota]
1982 1983	88 108	96 110	113 134	119 113	144 109	138 148	167 172	186 204	191 211	211 161	177 137	127 123	1756 1731

龞

Table I.2.3 (1/2) GENERAL CLIMATOLOGICAL DATA OF UNGARAN STATION Monthly Mean Temperature (°C)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1980 1981 1982 1983 1984	24.8	25.3	25.3	25.9	26.9	26.5	26.2	26.3	27.2 26.9	27.5	27.0	25.9	26.2 26.9
1985			24.7	25.6	26.0	25.7	25.7	26.5	26.4	27.3	27.1	26.4	26.1
1986	25.4	25.8	26.1	26.4	26.9	26.5	26 4	26.5	26.3	26.4	26.5	26.1	26.3
1987	25.5 25.4	25.7	26.0	20.1	20.0	25.8	25.0	20.3	27.3	20.3	25.8	26.9	20.4
1989	25.5	24.4	25.1	24.9	26.2	25.8	2010	2002	2710		26.2	2012	
1990	-				<u>.</u>	. <u> </u>							
Average	25.3	25.3	25.5	25.9	26.5	26.1	25.8	26.4	26.9	27.4	26.7	26.1	26.2
Monthly	Maximu	m Tempe	rature	(°C)									
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Max.
1000			20.2	20.7	21 5	21.7	21 7		22 4	22.2	21 7	20.8	33 4
1980 1981	20.4	28.0	30.3	JU./	51.5	-		51.5 -	33.4 31.2	52.5	- 11	- 23.0	33.4 31.2
1982													
1983 1984													
1985		·											
1986		60 0	00.0	00.0	00.0	00.0	20.0	20 6	12.4	24: 6	20.2	20.1	24.0
1987	28.4	28.3	29.0	29.2	29.9	29.9	30.0	32.2	31.8	34.0	30.3	29.1	34.0
1989	29.5	27.6	29.0	30.3	30.8	30.3	-	-	-	-	30.5	-	30.8
Maximum	29.5	30.5	30.7	31.4	31.9	32.0	32.0	32.2	33.4	34.6	32.3	29.8	34.6
Monthly Year	Minimu 	m Temper	nature Mar	(°C) 	May	.lun	.lu1.	Aur.	Sen.	Oct.	Nov.	Dec.	Min.
icai											<u>.</u>		
1980 1981 1982 1983 1984	22.5	21.8	22.0	22.9	22.9	23.1	22.9	22.8	24.1 22.3	23.4	22.5	22.7	21.8
1985	21 6	21 7	22.2	22.7	23.1	23.1	22.5	22.8	22.2	22.3	22.1	21.7	21.7
1987	21.1	21.6	21.8	22.2	22.4	22.4	22.6	22.3	22.3	22.1	21.7		21.1
1988 1989	19.8	20.4	19.9	19.3	18.2	19.1 18.2	19.0	19.2	18.9		18.6 18.9	18.4	18.4
Minimum	19.8	20.4	19.9	19.3	18.2	18.2	19.0	19.2	18.9	22.1	18.6	18.4	18.2
Honthly	Rainfa	11 (mm)	·									-	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1980 1981 1982 1983		427	280	279	104	12	93	26	3 169	147	334	622	
1984 1985			104	208	215	54	85	70	116	219	123	230	
1986	431	150	283	143	26	132		52	98	156	197	257	
1987	332	390	145	108	54	35	18		0	23	191	370	
1988 1989	293 138	388 46	254 103	243 84	63	52 242	40	19	/3		45 261	302	
\verage	299	280	210	193	105	88	59	57		136	192	370	2065
			<u>.</u>										· · · ·

۲

I-42

Table I.2.3 (2/2) GENERAL CLIMATOLOGICAL DATA OF	UNGARAN	STATION
--	---------	---------

Duration of Bright Sunshine (%)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun	Jul.	Aug.	Sep.	Oct.	Nov.	Dec./	Average
1980 1981 1982 1983	49	53	62	61	82	82	76	79	79 77	68	69	50	68 77
1984 1985 1986 1987	29	47	51 36	53 46	75 63	81 47	86	93 71	76 51	73	67	61	72 49
1988 1989		:			·						87		
Average	39	50	50	53	73	70	81	81	71	71	74	56	64

Monthly Mean Atmospheric Pressure (+1,000mb)

·				•	=						$2^{-1} + 2^{-1} + 2^{-1}$		
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1980 1981 1982 1983											: .		
1984 1985 1986 1987	1.0	1.0	2.3	2.0 1.0	1.9	2.0	1.9	2.7 1.8	2.1 1.4	2.1 1.4	2.0 1.0	1.7	2.1 1.2
$\begin{array}{c} 1988 \\ 1989 \end{array}$	3.1	2.8	2.5	2.6	2.9	а 1	•					· ·	
Average	2.1	1.9	2.4	1.9	2.4	2.0	1.9	2.3	1.8	1.8	1.5	1.7	2.0
Monthly	Mean Hi	umidity	of Air	(%)									
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1980 1981 1982 1983	83	82	82	83	75	75	76	72	66 74	71	76	83	77 74
1984 1985 1986 1987 1988	84 84 87	83 83 88	83 84 79 86	82 83 74 82	78 74 84	74 70 82	75 73 82	68 70 70 80	74 72 63 80	73 73 66	78 77 75 84	80 78 84 87	77 78 75
1989 Average	85	87	83	81	84 79	77	77	72	72	71	78	82	78
1985 1986 1987 1988 1989 Average	84 87 85 85	83 83 88 87 85	83 84 79 86 86 86	82 83 74 82 84 81	78 74 84 84 79	74 70 82 83 77	75 73 82 77	68 70 70 80 72	74 72 63 80 72	73 73 66 71	78 77 75 84 78	80 78 84 87 87 82	

Anthread

Table I.2.4 MONTHLY DISCHARGE AND ANNUAL MAXIMUM PEAK DISCHARGE AT AUTOMATIC WATER LEVEL RECORDER

(Garang River Gauging Station A=185.2km2)

Unit : m3/sec

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Anual Max Peak Dis.	Specific Runoff
						_ , ,								
1986	28.9	34.5	35.3	37.2	5.2	8.1	5.1	3.6	3.9	3.2	8.1	11.1	480.0	2.59
1987	23.1	29.7	24.7	12.1	6.4	5.1	3.5	2.5	1.9	2.1	3.8	8.9	318.0	1.72
1988	16.2	20.7	22.7	10.7	6.7	2.9	2.5	1.7	1.8	3.5	4.2	11.4	368.0	1.99
1989	9.9	49.1	16.5	10.6	9.4	10.2	3.9	3.0	1.9	4.1	7.4	15.2	549.0	2.96
1990	17.5	12.5	12.7	7.8	7.1	5.2	3.6	3.1	2.2	1.7	2.6	13.5	1022.0	5.52
Average	19.1	29.3	22.4	15.7	6.9	6.3	3.7	2.8	2.3	2.9	5.2	12.0		

Annual Averag 10.7 m3/sec (Specific Runoff 0.057 m3/sec/km2)

(Blorong River Gauging Station A=157.9km2)

Unit : m3/sec

Year	Jan	Feb.	Mar.	Apr.	Mav	Jun.	յսլ.	Aug.	Sep.	Oct.	Nov.	Dec.	Anual Max Peak Dis.	Specific Runoff
	oun.	100.							· · · · · ·					
1980	13.6	0.4	. 15.3	11.5	9.0	3.2	2.5	2.9	115	2.4	4.0	9.7	268.5	1.70
1981	27.8	21 7	14.3	14.8	10.8	7.9	10.5	2.8	2.8	1.8	3.1	19.3	193.9	1.23
1982	27.6	23.6	13.8	14.7	4:0	2.7	2.0	1.1	0.9	0.8	1.0	3.5	195.8	1.25
1983	15.6	10.4	7:9	9.3	13.1	4.2	1.8	1.1	0.7	3.9	8.0	7.6	141.7	0.90
1984	11.5		14.9		5.9				6.6	2.7	4.0		130.7	0.83
1985	26.8		1110	13.5	7.1	6.1	3.7	2.0	2.1	4.1			265.7	1.68
1986	2010		20.9	13.5	5.9	6.1			2.2	1.4	6.6	6.7	126.0	0,80
1987	13.4	14.6	12.8	7.6	5.9	2.7	2.7	1.0	0.7	0.7	1.5	6.2	115.0	0.73
1988	7.3	11.1	9.5	6.9	4.6	2.8	2.2	1.7	1.3	3.2	3.6	13.6	177.0	1.12
1989	10.0	22.6	11.6	13.8	9.0	8.3	4.7	2.5	1.5	3.2	6.1	32.5	93.8	0.59
1990	23.9	13.3	9.4	5.6	6.9	3.9	2.8	3.5	1.7	1.1	1.1	6.0	101.0	0.64
Average	17.7	15.8	13.0	11.1	7.5	4.8	3.6	2.1	2.0	2.3	3.9	11.7		

Annual Averag 8.0 m3/sec (Specific Runoff 0.051 m3/sec/km2)

Table 1.2.5 ANNUAL MAXIMUM DISCHARGE AT SIMONGAN WEIR

Year	Annual Max.	Water Depth	Velo- city	Overflow Head	Discharge over Fixe	** Flowing d Weir	Discharge through	*** Passing Gates	Tota) Discharge
	Water Level (EL. m)	(h1) (m)	Head (h2) (m)	(H≈h1+h2) (m)	Cl (Co- efficient)	Q1 (m3/s)	C2 (Co- efficient)	Q2 (m3/s)	(Q1+Q2) (m3/s)
1961	7.9	2.3	0.08	2.38	1.52	362	0.52	96	458
1962	7.3	1.7	0.07	1.77	1.50	228	0.51	87	315
1963	9.4	3.8	0.12	3,92	1.57	785	0.53	116	901
1964	6.9	1.3	0.07	1.37	1.48	153	0.50	80	233
1965	7.4	1.8	0.07	1.87	1.50	249	0.51	88	337
1968	6.6	1.0	0.07	1.07	1.46	103	0.47	72	175
1969	7.1	1.5	0.07	1.57	1.49	189	0.50	83	272
1970	7.0	1.4	0.07	1.47	1.48	170	0,50	82	252
1971	7.0	1.4	0.07	1.47	1.48	170	0.50	82	252
1972	6.9	1.3	0.07	1.37	1.48	153	0.50	80	233
1973	6.9	1.3	0.07	1.37	1.48	153	0.50	80	233
1974	7.8	2.2	0.08	2.28	1.52	338	0.51	94	433
1975	6.9	1.3	0.07	1.37	1.48	153	0.50	80	233
1976	7.9	2.3	0.08	2.38	1.52	362	0.52	96	458
1977	7.5	1.9	0.08	1.98	1.51	270	0.51	90	360
1978	7.5	1.9	0.08	1.93	1.50	260	0.51	89	349
1979	7.2	1.6	0.07	1.67	1.49	208	0.51	85	293
1980	6.7	1.1	0.07	1.17	1.46	119	0.48	75	194
1981	8.1	2.5	0.09	2.59	1.53	412	0.52	99	510
1982	7.7	2.1	0.08	2.18	1.51	315	0.51	93	408
1983	7.4	1.8	0.07	1.87	1.50	249	0.51	88	337
1984	7.3	1.7	0.07	1.77	1.50	228	0.51	87	315
1985	8.2	2.6	0.09	2.69	1.53	437	0.52	100	537
1986	7.4	1.8	0.07	1.87	1.50	249	0.51	88	337
1987	7.7	2.1	0.08	2.18	1.51	315	0.51	93	408
1988	7.8	2.2	0.08	2.23	1.52	327	0.51	94	420
1989	7.6	2.0	0.08	2.08	1.51	292	0.51	92	384
1990	9.4	3.8	0.12	3.92	1.57	785	0.53	116 *	901 (1022)

Note : Discharges were estimated from observed annual maximum water level

*; () Peak discharge recorded at Garang River Water Level Gauging Station in upstream of Simongan Weir

** ; Q1 = C1 x B1 x H**1.5

*** ; Q2 = C2 x B2 x (2g x h1)**0.5

where;

C1, C2: Coefficient

B1 : Fixed Weir Width (=64.6 m)

B2 : Gate Weir Width (=11.8 m)

1940 C

Table I.3.1 (1/2) ANNUAL MAXIMUM RAINFALL INTENSITIES

(Semarang Meteorological Station : BMG)

(1) Rainfall Depth

휇

9

Unit : mm

				D	uration	(Minutes)						
No.	Year	5'	10'	15'	30'	45'	60'	120'	180'	360'	720'	1Day	2Days
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1959 1960 1961 1962 1963 1964 1965 1976 1978 1978 1978 1980 1981 1982 1983 1984 1985 1986 1985 1986 1987 1988 1988 1989 1990 1991 1992 1993 MAX	20 18 21 11 22 21 11 27 17 17 15 14 20 10 18 16 10 12 16 24 31	25 22 26 20 31 30 20 25 24 28 40 10 36 27 25 46 32 26 21 20 22 32 46	30 32 28 25 25 25 42 18 34 32 36 29 62 50 16 54 35 35 62 37 36 30 31 31 32 43 62	50 46 40 30 38 62 28 43 43 60 37 82 65 47 73 47 55 72 60 51 44 58 80 82	53 46 43 35 40 78 38 50 59 72 50 82 70 61 71 55 59 48 80 90 90	53 47 44 38 40 80 54 56 91 80 69 93 67 96 100 881 80 59 50 85 98 100	55 51 50 45 44 89 41 72 107 98 99 175 113 80 99 175 102 102 102 65 62 92 116 175	55 57 66 52 62 91 44 80 107 102 114 185 120 103 96 83 149 123 93 101 100 68 89 100 118 185	55 67 87 70 98 91 90 135 115 126 192 204 131 96 85 149 96 117 108 81 130 103 151 204	55 71 116 100 125 91 183 115 125 192 228 131 126 192 228 131 247 130 138 174 142 100 137 104 221 247	75 87 124 100 120 166 115 126 192 253 157 91 253 138 174 142 115 137 104 276 276	115 270 249 149 126 192 260 247 116 128 282 130 155 198 226 125 198 226 125 135 185 135 429 429

(2) RAINFALL INTENSITY

Unit : mm/hr

		-	·	D	uration	(Minutes)	:					
No.	Year	5'	10'	15'	30'	45'	60'	120'	180'	360'	720'	1Day	2Days
1 2 3 4 5 6 7 8 9 10 112 13 4 5 6 7 8 9 10 112 13 14 5 16 7 18 9 221 223 24 25 223 24 25 223 24 5 223 24 5 5 6 7 8 9 10 11 2 11 2 11 2 11 2 11 2 11 2 11 2	1959 1960 1961 1962 1963 1965 1966 1976 1978 1978 1980 1981 1982 1983 1984 1985 1984 1985 1988 1987 1988 1988 1989 1990 1991 1992	240 218 247 130 266 250 132 318 204 204 204 204 182 166 240 119 218 180 371 329 180 192 125 149 192 288	150 132 154 120 	120 128 111 101 100 166 73 137 126 144 146 248 200 65 218 140 140 247 146 144 120 124 146 144 120 124 146	$\begin{array}{c} 100\\ 92\\ 80\\ 60\\ 76\\ 125\\ 57\\ 86\\ 86\\ 120\\ 74\\ 163\\ 130\\ 95\\ 145\\ 94\\ 109\\ 144\\ 120\\ 101\\ 88\\ 103\\ 81\\ 116\\ 160\\ 20\end{array}$	71 61 57 47 53 103 51 67 79 96 67 109 93 - 82 94 - 94 73 78 64 107 120	53 47 48 40 40 40 57 58 59 100 80 96 96 96 96 80 80 96 80 80 80 80 80 80 80 80 80 80 80 80 80	27 26 22 22 22 22 22 22 22 22 22 22 22 22	18 19 22 17 21 30 5 27 36 34 38 62 40 34 32 28 41 31 33 23 30 33 92	9 11 15 12 16 15 15 22 19 21 32 34 22 16 14 25 216 20 18 14 22 17 25	560 1006 1008 155100 111188 21111122 15512281 11112281 1121515151 11215151 11215151 11215151 11215151 11215151 11215151 112151	345 4547 -955 811 744 11 56 76 56 422	2 6 - 533455236334534396

Data of 1992 and 1993 are supplemented for the evaluation on scale of January 1993 flood.

Table I.3.1 (2/2) ANNUAL MAXIMUM RAINFALL INTENSITIES

(Kaligading Automatic Rainfall Gauging Station)

(1) Rainfall Depth

((1) Raiı	nfall De	pth									Uni	it:mm
				10-10-10-10	Duration	(Minutes)							
No.	Year	5'	10'	15'	30'	45'	60'	120'	180'	360'	720'	1Day	2Days
1 2 3 4 5 6 7 8 9 10 11 12 13	1980 1981 1982 1983 1984 1985 1985 1985 1987 1988 1990 1991 1991 1992 1993 MAX	· · ·					98 69 67 75 71 77 58 63 66 89 54 41 98	103 108 80 129 95 96 85 87 63 94 121 90 61 129	103 133 115 130 101 97 87 106 - 98 127 90 87 133	113 145 143 163 113 97 90 117 - 139 128 90 158 163	113 145 143 175 144 156 109 126 - 150 128 90 219 219	216 201 158 175 144 159 113 126 	226 234 270 193 171 192 173 218 170 128 120 440 440
. (2) Rain	nfall In	tensity	:								Unit :	mm/hr
				· I	Duration	(Minutes)							
No.	Year	5'	10'	15'	30'	45'	60'	120'	180'	3601	720'	10ay	2Days
1 2 3 4 5 6 7 8 9 10 11 12 13	1980 1981 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 MAX						98 69 64 97 75 71 77 58 63 66 89 54 41 98	51 54 64 48 48 42 44 63 47 61 45 31 64	34 44 38 43 32 29 35 - 35 42 30 29 44	19 24 24 27 19 16 15 19 - 23 21 15 26 27	9 12 12 15 12 13 9 11 12 11 12 11 8 18	9 8 7 6 7 5 5 5 - 6 5 4 10 9	5 5 6 4 4 4 4 5 - 4 3 3 9 6

Data of 1991,1992 and 1993 are supplemented for the evaluation on scale of January 1993 flood.

I-47

の

Table I.3.2 PROBABLE POINT RAINFALL INTENSITIES BY GUMBEL METHOD

(Short Duration) Semarang Meteorological Station

B

灥

Unit : mm/hr

Return Period -			Rair	ifall Dura	tion		
Year)	5 min.	10 min.	15 min.	30 min.	45 min.	60 min.	120 min.
2	200.0	148.2	133.1	96.7	72.7	64.7	40.0
3	.227.8	168.4	153.0	108.2	80.5	73.1	47.0
5	258.7	190.9	175.1	120.9	89.1	82.4	54.8
8	285.2	210.2	194.2	131.9	96.5	90.3	61.
10	297.5	219.1	203.0	137.0	100.0	94.0	64.
20	334.7	246.2	229.7	152.3	110.4	105.2	73.9
25	346.5	254.8	238.1	157.2	113.7	108.8	76.9
30	356.1	261.8	245.0	161.2	116.4	111.7	79.3
50	382.9	281.2	264.2	172.2	123.9	119.7	86.
70	400.5	294.0	276.8	179.5	128.8	125.0	90.
-80	407.4	299.1	281.8	182.3	130.8	127.1	.92.3
100	419.0	307.5	290.1	187.1	134.0	130.6	95.3
150	440.1	322.8	305.2	195.8	139.9	136.9	100.
200	455.0	333.7	315.9	202.0	144.1	141.4	104.2
300	476.0	348.9	331.0	210.7	150.0	147.7	109.
•	•		·				

(Long Duration) Unit : mm/day (Long Duration) Unit : mm/day Semarang Meteorological Station Kaligading Rainfall Gauging Station

Return	Rain	fall Dura	ation	Return	Rain	Rainfall Duration nours 1 day 2 days nours 1 day 2 days 78.4 156.0 98.4 97.6 168.0 105.6 21.6 184.8 115.2 13.2 196.8 122.4 50.4 204.0 124.8 79.2 223.2 134.4 38.8 228.0 136.8 36.0 232.8 139.2 7.6 247.2 146.4 29.6 254.4 151.2			
(Year)	12 hours	1 day	2 days	(Year)	12 hours	1 day	2 days		
2	242.4	132.0	88.8	2	278.4	156.0 168.0	98.4 105.6		
5	328.8	177.6	115.2	5	321.6	184.8	115.2		
10	367-2 384-0	196.8	127.2 132.0	· 8 10	343.2 350.4	196.8 204.0	122.4		
20	439.2	232.8	148.8	20	379.2	223.2	134.4		
- 25	456.0	242.4 249.6	153.6	25 30	388.8 396.0	228.0	136.8		
50	508.8	268.8	170.4	50	417.6	247.2	146.4		
80	532.8 544.8	283.2	180.0	80	429.0	259.2	151.2		
100	561.6 500 4	297.6 312.0	187.2	100	444.0 458 4	264.0 273.6	156.0 160.8		
200	612.0	324.0	201.6	200	470.4	283.2	165.6		
- 300	043.2	338.4	Z11.Z	300	48/•Z	292.8	1/0.4		

I - 48

Table I.3.3 (1/3) CONFORMITY OF EQUATIONS DEVELOPED FOR RAINFALL INTENSITY-DURATION CURVES

Semarang Meteorological Station (Rainfall Duration : less than 120 minutes)

			Rainfall	Intensitle	s Estimate	d	Difference of Rainfall Intensities				
Return Period (Year)	Rainfall Duration (min)	(1) Observed Data (nm/hr)	(2) Eq. of Talbot (mm/hr)	(3) Eq. of Sherman (mm/hr)	(4) Eq. of Kuno (mm/hr)	(5) Eq. of Horner (mm/hr)	(1)-(2) (mm/hr)	(1)-(3) (mm/hr)	(1)-(4) (mm/hr)	(1)-(5) (mm/hr)	
2	5.0	200.0	185.5	215.0	212.7	192.4	14.5	15.0	12.7	7.6	
	10.0	148.2	157.9	152.3	151.9	156.3	9.7	4.1	3.7	8.1	
	30.0	96.7	99.0	88.2	88.6	94.6	2.3	8.5	0.5 8.1	21	
	45.0	72.7	77.4	72.1	72.6	75.1	4.7	0.6	Ŏ.Î	2.4	
	60.0	64.7	63.5	62.5	62.9	63.0	1.2	2.2	1.8	1.7	
	120.0	40.0	37.0	44.3	44.6	40.1	3.0	4.3	-4.6	0.1	
5	Average 5.0	258.7	238.8	274.6	273.2	257.2	19.9	15.0	5.0 14.5	3.2	
.	10.0	190.9	203.5	195.2	195.4	199.2	12.6	4.3	4.5	8.3	
	15.0	175.1	177.2	159.9	160.3	166.6	2.1	15.2	14.8	8.5	
	30.0	120.9	127.8	113.6	114.1	118.0	6.9	7.3	6.8	2.9	
	45.0	89.1	99.9	93.1 80.8	93.4	94.9	10.8	4.0	4.3	5.8	
	120.0	54.8	47.8	57.4	57.5	54.4	7.0	2.6	2.7	0.4	
	Average						8.5	7.3	7.0	4.1	
10	5.0	297.5	274.6	314.3	314.0	299.7	22.9	16.8	16.5	2.2	
	10.0	219.1	233.8	223.6	224.3	227.3	14.7	4.5	5.2	8.2	
	30.0	137.0	146.7	130.4	130.8	133.9	9.7	19.7	6 2	3 1	
	45.0	100.0	114.6	106.9	107.1	108.3	14.6	6.9	7.1	8.3	
	60.0	94.0	94.1	92.8	92.9	92.8	0.1	1.2	1.1	1.2	
	120.0	64.5	54.8	66.0	65.9	63.5	9.7	1.5	1.4	1.0	
20	Average	334 7	308.0	359 9	353 1	340.4	10.3	8.2	8.1	5.4	
20	10.0	246.2	263.0	250.8	252.0	253.9	16.8	4.6	5.8	7.7	
	15.0	229.7	228.9	205.6	206.6	210.2	0.8	24.1	23 . 1	19.5	
	30.0	152.3	164.9	146.4	146.9	149.2	12.6	5.9	5.4	3.1	
	45.0	110.4	128.8	120.1	120.2	121.1	18.4	9.7	9.8	10.7	
	120.0	73.9	61.5	74.3	73.9	72.3	12.4	0.9	0.9	1.6	
	Average		0110	7.000		1210	12.5	9.0	9.1	7.0	
25	5.0	346.5	319.8	364.2	365.5	353.1	26.7	17.7	19.0	6.6	
	10.0	254.8	272.2	259.4	260.8	262.4	17.4	4.6	6.0	7.6	
	30.0	230.1	237.0	151 6	152 0	217.0	13.4	25.4	24.3	21.1	
	45.0	113.7	133.3	124.3	124.4	125.3	19.6	10.6	10.7	11.6	
	60.0	108.8	109.4	108.0	107.9	107.9	0.6	0.8	0.9	0.9	
	120.0	76.9	63.7	76.9	76.5	75.0	13.2	0.0	0.4	1.9	
50	Average	382.0	363 6	401 2	101 0	302 6	13.2	9.2	9.5	7.5	
30	10.0	281.2	300.8	286.0	288.0	288.4	19.6	4.8	6.8	9.1 7 2	
	15.0	264.2	261.7	234.6	236.0	237.9	2.5	29.6	28.2	26.3	
	30.0	172.2	188.4	167.2	167.7	169.2	16.2	5.0	4.5	3.0	
	45.0	123.9	147.2	137.2	137.2	137.9	23.3	13.3	13.3	14.0	
	120.0	86.1	70.3	119.2	84.3	83.5	15.8	0.5	0.7	2.6	
	Average	00.1	70.0	0310		0010	15.4	10.4	10.9	9.0	
100	5.0	419.0	387.0	438.2	442.4	431.3	32.0	19.2	23.4	12.3	
	10.0	307.5	329.2	312.4	315.1	314.4	21.7	4.9	7.6	6.9	
	15.0	290.1	200.4	250.3	255.1	259.0	3.7	JJ 8	32.0	31.1	
	45.0	134.0	160.9	149.9	149.9	150.5	26.9	15.9	15.9	16.5	
	60.0	130.6	131.9	130.3	130.0	130.3	1.3	0.3	0.6	0.3	
	120,0	95.1	76.8	92.9	92.1	91.8	18.3	2.2	3.0	3.3	
200	Average	ACE A	400 E	A7A D	190 6	470 0	17.5	11.5	12.3	10.5	
200	5.0 10 0	405.0	357 5	338 7	400.0 342 N	340.0	04.0 27 R	Е U ТА*А	20.0 8 3	U.CŁ N.A	
	15.0	315.9	311.0	278.0	280.1	279.9	4.9	37.9	35.8	36.0	
	30.0	202.0	223.6	198.3	198.8	199.3	21.6	3.7	3.2	2.7	
	45.0	144.1	174.5	162.7	162.6	163.1	30.4	18.6	18.5	19.0	
	50.0 120 0	141.4	143.1	141.4	140.9 00 0	141.4 100.0	1.7	0.0	0.5	0.0	
	Average	104.6	03.2	100.9	55.0	100.0	10 7	12.5	4.4 13.8	4.2 11 0	

I-49

畿

Table I.3.3 (2/3) CONFORMITY OF EQUATIONS DEVELOPED FOR RAINFALL INTENSITY-DURATION CURVES

Semarang Meteorological Station (Rainfall Duration : from 2 to 48 hours)

	e E e e	:	Rainfall	Intensitie	s Estimate	i.	Differ	ence of Ra	infall Inte	ensities
Return Period (Year)	Rainfall Duration (min)	(1) Observed Data (mm/hr)	(2) Eq. of Talbot (mm/hr)	(3) Eq. of Sherman (mm/hr)	(4) Eq. of Kuno (mm/hr)	(5) Eq. of Horner (mm/hr)	(1)-(2) (mm/hr)	(1)-(3) (mm/hr)	(1)~(4) (mm/hr)	(1)-(5) (mm/hr)
2	60.0 120.0	64.7 40.0 29.2	58.7 41.9 32.5	66.2 39.1 28.8	77.9 35.7 25.2	67.5 38.9 28.5	6.0 1.9 3.3	1.5 0.9 0.4	13.2 4.3 4.0	2.8 1.1 0.7
	360.0 720.0 1,440.0	17.3 10.1 5.5	19.5 10.8 5.7	17.0 0.1 6.0	15.2 9.7 6.4	16.8 10.0 6.0	2.2 0.7 0.2	0.3 0.0 0.5 0.2	2.1 0.4 0.9	0.5 0.1 0.5
5	2,000.0 Average 60.0	82.4	76.5	87.5	103.4	86.6	2.1 5.9	0.5 5.1	3.7 21.0	0.8
	120.0 180.0 360.0	54.8 38.9 22.7	55.0 42.9 25.8	51.8 38.1 22.6	47.4 33.5 20.0	51.9 38.3 22.7	0.2 4.0 3.1	3.0 0.8 0.1 0 3	7.4 5.4 2.5 0.8	2.9 0.6 0.0
	720.0 1,440.0 2,880.0 Average	13.7 7.4 4.8	7.6 3.9	7.9	8.5 5.8	7.9	0.2 0.9 2.1	0.5 0.1 1.4	1.1 1.0 5.6	0.5 0.1 1.2
10	60.0 120.0 180.0 360.0	94.0 64.5 45.3 26.3	88.3 63.6 49.6 30.0	1.5 0.6 44.2 26.2	120.6 55.1 38.9 23.4	99.2 60.5 44.8 26.6	5.7 0.9 4.3 3.7	7.5 4.4 1.1 0.1	26.6 9.4 6.4 2.9	5.2 5.0 0.5 0.3
	720.0 1,440.0 2,880.0	16.0 8.6 5.5	46.7 8.9 4.6	15.5 9.2 5.4	14.9 9.9 6.7	15.6 9.2 5.4	0.7 0.3 0.9 2 4	0.5 0.6 0.1 2.0	1.1 1.3 1.2 7.0	0.4 0.6 0.1
20	Average 60.0 120.0 180.0 260.0	105.2 73.9 51.4 20.8	99.8 71.9 56.2 33.9	115.1 68.1 29.7 29.7	137.3 62.6 44.1 26.5	111.4 68.7 51.0 30.3	5.4 2.0 4.8 4.1	9.9 5.8 1.3 0.1	32.1 11.3 7.3 3.3	6.2 5.2 0.4 0.5
	720.0 1,440.0 2,880.0	18.3 9.7 6.2	18.9 10.1 5.2	17.6 0.4 6.2	16.9 11.2 7.6	17.8 10.4 6.0	0.6 0.4 1.0 2.6	0.7 0.7 0.0 2.6	1.4 1.5 1.4 8 3	0.5 0.7 0.2 2 0
25	Average 60.0 120.0 180.0 360.0	108.8 76.9 53.4 30.9	103.5 74.6 58.3 35.2	119.4 70.7 52.0 30.8	142.8 64.9 45.8 27.5	115.2 71.3 53.0 31.5	5.3 2.3 4.9 4.3	10.6 6.2 1.4 0.1	34.0 12.0 7.6 3.4	6.4 5.6 0.4 0.6
	720.0 1440.0 2880.0	19.0 10.1 6.4	19.7 10.4 5.4	18.2 10.8 6.4	17.6 11.6 7.9	18.4 10.7 6.2	0.7 0.3 1.0 2.7	0.8 0.7 0.0 2.8	1.4 1.5 1.5 8.8	0.6 0.6 0.2 2.0
50	60.0 120.0 180.0 360.0	119.7 86.1 59.4 34.3	114.6 82.7 64.7 39.1	132.6 78.5 57.8 34.2	159.1 72.2 50.9 30.5	127.3 79.3 59.0 35.1	5.1 3.4 5.3 4.8	12.9 7.6 1.6 0.1	39.4 13.9 8.5 3.8	7.6 6.8 0.4 0.8
	720.0 1,440.0 2,880.0 Average	21.2 11.2 7.1	$\begin{array}{c} 21.9\\ 11.6\\ 6.0\end{array}$	20.2 12.0 7.1	19.5 12.9 8.7	20.5 11.9 6.9	0.7 0.4 1.1 3.0	1.0 0.8 0.0 3.4	1.7 1.7 1.6 10.1	0.7 0.7 0.2 2.4
100	60.0 120.0 180.0 360.0	130.6 59.1 65.4 37 7	125.6 90.8 71.1 43.1	145.5 86.2 63.5 37.6	174.9 79.5 56.1 33.6	139.1 87.2 65.1 38.7	5.0 4.3 5.7 5.4	14.9 8.9 1.9 0.1	44.3 15.6 9.3 4.1	8.5 7.9 0.3 1.0
	720.0 1,440.0 2,880.0	23.4 12.4 7.8	24.1 12.8 6.6	22.3 13.2 7.8	21.5 14.2 9.6	22.7 13.2 7.6	0.7 0.4 1.2 3.2	1.1 0.8 0.0 4.0	1.9 1.8 1.8 11.3	0.7 0.8 0.2 2.8
200	60.0 120.0 180.0 360.0	141.4 104.2 71.3 41 0	136.9 98.9 77.4 46.8	458.7 93.9 69.1 40.9	191.7 86.7 61.0 36.6	150.7 95.1 71.1 42.3	4.5 5.3 6.1 5.8	17.3 10.3 2.2 0.1	50.3 17.5 10.3 4.4	9.3 9.1 0.2 1.3
	720.0 1,440.0 2,880.0	25.5 13.5 8.4	26.2 13.9 7.2	24.2 14.3 8.5	23.3 15.4 10.4	24.7 14.3 8.2	0.7 0.4 1.2 3 4	1.3 0.8 0.1 4.6	2.2 1.9 2.0 12.7	0.8 0.8 0.2 3.1

0

9

Table 1.3.3 (3/3) CONFORMITY OF EQUATIONS DEVELOPED FOR RAINFALL INTENSITY-DURATION CURVES

Kaligading Automatic Rainfall Gauging Station (Rainfall Duration : from 1 to 48 hours)

	· . ·			Intensitie	s Estimate	d .	Difference of Rainfall Intensities				
Return Period (Year)	Rainfall Duration (min)	(1) Observed Data (mm/hr)	(2) Eq. of Talbot (mm/hr)	(3) Eq. of Sherman (mm/hr)	(4) Eq. of Kuno (mm/hr)	(5) Eq. of Horner (mm/hr)	(1)-(2) (m/hr)	(1)-(3) (mm/hr)	(1)-(4) (om/hr)	(1)-(5) (mm/hr)	
2	60.0 120.0 180.0 360.0 720.0 1,440.0	71.5 45.5 35.1 20.1 11.4 6.5	66.1 47.5 37.0 22.3 12.4 6.6	75.8 44.9 33.0 19.5 11.5 6.8	89.3 41.0 29.0 17.4 11.1 7.4	74.7 45.0 33.3 19.7 11.6 6.8	5.4 2.0 1.9 2.2 1.0 0.1	4.3 0.6 2.1 0.6 0.1 0.3	17.8 4.5 6.1 2.7 0.3 0.9	3.2 0.5 1.8 0.4 0.2 0.3	
5	2,880.0 Average 60.0 120.0 180.0 360.0 720.0 1,440.0 2,880.0	4.1 83.6 53.3 39.7 23.6 12.9 7.7 4.8	3.4 76.9 55.2 43.0 25.9 14.4 7.7 3.9	4.0 87.8 52.0 38.3 22.7 13.4 8.0 4.7	5.0 103.3 47.5 33.6 20.2 12.9 8.6 5.8	4.0 87.5 52.0 38.3 22.7 13.4 8.0 4.7	$\begin{array}{c} 0.7\\ 1.9\\ 6.7\\ 1.9\\ 3.3\\ 2.3\\ 1.5\\ 0.0\\ 0.9\\ 0.9\\ \end{array}$	0.1 1.2 4.2 1.3 1.4 0.9 0.5 0.3 0.1	$\begin{array}{c} 0.9\\ 4.7\\ 19.7\\ 5.8\\ 6.1\\ 3.4\\ 0.0\\ 0.9\\ 1.0\end{array}$	0.1 0.9 3.9 1.3 1.4 0.9 0.5 0.3 0.1	
10	Average 60.0 120.0 360.0 720.0 1,440.0 2,880.0	91.6 58.4 42.7 26.0 13.9 8.5 5.2	84.1 60.3 47.0 28.3 15.7 8.3 4.3	95.8 56.7 41.8 24.7 14.6 8.7 5.1	112.8 51.8 36.6 22.1 14.1 9.3 6.3	95.5 56.8 41.8 24.8 14.6 8.7 5.1	2.4 7.5 1.9 4.3 2.3 1.8 0.2 0.9	1.2 4.2 1.7 0.9 1.3 0.7 0.2 0.1	5.3 21.2 6.6 6.1 3.9 0.2 0.8 1.1	1.2 3.9 1.6 0.9 1.2 0.7 0.2 0.1	
20	Average 60.0 120.0 180.0 360.0 720.0 1,440.0 2,880.0	99.3 63.3 45.6 28.3 14.9 9.3 5.6	91.0 65.2 50.8 30.6 17.0 9.0 4.6	103.5 61.3 45.1 26.7 15.8 9.4 5.5	121.8 56.0 39.6 23.8 15.3 10.1 6.8	103.1 61.4 45.2 26.8 15.8 9.4 5.5	2.7 8.3 1.9 5.2 2.3 2.1 0.3 1.0	1.3 4.2 2.0 0.5 1.6 0.9 0.1 0.1	5.7 22.5 7.3 6.0 4.5 0.4 0.8 1.2	1.2 3.8 1.9 0.4 1.5 0.9 0.1 0.1	
25	Average 60.0 120.0 180.0 360.0 720.0 1440.0 2880.0	101.7 64.9 46.5 29.0 15.2 9.5 5.7	93.3 66.7 52.0 31.2 17.4 9.2 4.7	106.1 62.8 46.2 27.3 16.2 9.6 5.7	124.9 57.3 40.5 24.3 15.6 10.3 7.0	105.5 62.8 46.3 27.4 16.2 9.6 5.6	3.0 8.4 1.8 5.5 2.2 2.2 0.3 1.0	1.3 4.4 2.1 0.3 1.7 1.0 0.1 0.0	6.1 23.2 7.6 6.0 4.7 0.4 0.8 1.3	1.2 3.8 2.1 0.2 1.6 1.0 0.1 0.1	
50	Average 60.0 120.0 180.0 360.0 720.0 1,440.0 2,880.0	109.2 69.7 49.4 31.2 16.2 10.3 6.1	100.1 71.6 55.7 33.5 18.6 9.9 5.1	113.6 67.2 49.5 29.3 17.3 10.3 6.1	133.7 61.4 43.4 26.1 16.7 11.1 7.5	112.9 67.3 49.6 29.4 17.4 10.3 6.0	3.0 9.1 1.9 6.3 2.3 2.4 0.4 1.0	1.4 4.4 2.5 0.1 1.9 1.1 0.0 0.0	8.3 24.5 8.3 6.0 5.1 0.5 0.8 1.4 6	1.3 3.7 2.4 0.2 1.8 1.2 0.0 0.1	
100	Average 60.0 120.0 180.0 360.0 720.0 1,440.0 2,880.0	116.6 74.5 52.2 33.4 17.1 11.0 6.5	106.8 76.3 59.4 35.6 19.8 10.5 5.4	121.0 71.6 52.7 31.2 18.4 10.9 6.5	142.7 65.4 46.2 27.8 17.8 11.8 8.0	120.6 71.7 52.8 31.2 18.5 10.9 6.4	9.8 1.8 7.2 2.2 2.7 0.5 1.1	1.4 4.4 2.9 0.5 2.2 1.3 0.1 0.0	26.1 9.1 6.0 5.6 0.7 0.8 1.5	1.3 4.0 2.8 0.6 2.2 1.4 0.1 0.1	
200	Average 60.0 120.0 180.0 360.0 720.0 1,440.0 2,880.0 Average	124.0 79.3 55.0 35.6 18.1 11.8 6.9	113.5 81.1 63.1 37.9 21.1 11.2 5.7	128.4 76.0 56.0 33.1 19.6 11.6 6.9	151.3 69.5 49.1 29.5 18.9 12.5 8.5	127.8 76.1 56.1 33.2 19.6 11.6 6.9	3.6 10.5 1.8 8.1 2.3 3.0 0.6 1.2 3.9	1.6 4.4 3.3 1.0 2.5 1.5 0.2 0.0 1.8	7.1 27.3 9.8 5.9 6.1 0.8 0.7 1.6 7.5	1.6 3.8 3.2 1.1 2.4 1.5 0.2 0.0 1.8	

Sector

Table 1.3.4 EQUATIONS DEVELOPED FOR RAINFALL INTENSITY-DURATION CURVE

Semarang Meteorological Station (Applicalbe Range of Rainfall Duration : less than 120 minutes)

Return (1) Period Talbot Type (Year) Equation		(1) Talbot Type Equation	(2) Sherman Type Equation		(3) Kuno Type Equation	(4) Horner Type Equation		
2	T=	5.314 /(T+23.65)	= 479 /ĭ [^] 0.50	Ĭ≖	493 /(T ⁰ .5+0.08)	I=	1.400 /(T+10.19)^0.73	
5	∙ I=	6.867 /(T+23.75)	= 607 /T ^{0.49}	Ī=	635 /(T ⁰ .5+0.09)	- I≕	$1.000 / (T+ 4.49)^{0.60}$	
10	- I=	7.874 /(T+23.68)	= 693 /T 0.49	I=	727 /(T^0.5+0.08)		968 /(T+ 2.93)^0.57	
20	I=	8.838 /(T+23.61)	= 775 /T ^{0.49}	I =	815 /(T ⁰ .5+0.07)	Ī=	973 /(T+ 1.96) 0.54	
25	I=	9.148 /(T+23.61)	= 800 /1 ^{0.49}	I=	843 /(T ^{0.5+0.07})	I=	980 /(T+ 1.73)^0.54	
30	I =	9.395 /(T+23.58)	= 822 /T ^{0.49}	I=	866 /(T^0.5+0.07)	I=	989 /(T+ 1.58)^0.53	
50	I ==	10,086 /(T+23.53)	= 881 /T 0.49	I=	929 /(T^0.5+0.06)	I=	1,012 /(T+ 1.18)^0.52	
100	I ==	11.010 /(T+23.53)	= 961 /T 0.49	I ==	1,014 /(T^0.5+0.06)]=	1,060 /(T+ 0.82)^0.51	
200	Ī≖	11,936 /(T+23.38)	= 1,041 /T ^{0.49}	I =	1,097 /(T [^] 0.5+0.05)	I=	1,109 /(T+ 0.53)^0.50	

Semarang Meteorological Station (Applicalbe Range of Rainfall Duration : from 1 to 48 hours)

Return (1)		· :	(2)	(3)			(4)		
Period Talbot Type			Sherman Type	Kuno Type			Horner Type		
(Year) Equation			Equation	Equation			Equation		
2 I= 5 I= 10 I= 20 I= 25 I= 30 I=	8,734 /(T+88.60) 11,705 /(T+93.01) 13,599 /(T+93.90) 15,436 /(T+94.70) 16,014 /(T+94.76) 16,516 /(T+95.20)	I = I = I = I = I = I =	1,472 /T ^{0,70} 1,929 /T ^{0,76} 2,245 /T ^{0,70} 2,545 /T ^{0,70} 2,646 /T ^{0,70} 2,714 /T ^{0,70}	I= I= I= I= I=	211 /(T ^{0.5-5.03}) 281 /(T ^{0.5-5.03}) 326 /(T ^{0.5-5.05}) 369 /(T ^{0.5-5.06}) 382 /(T ^{0.5-5.07}) 394 /(T ^{0.5-5.06})	l = l = l = l = l = l =	1,313 /(T + 5.40)^0.74 2,050 /(T + 2.95)^0.76 2,600 /(T + 7.20)^0.78 3,136 /(T +10.31)^0.78 3,346 /(T +11.64)^0.79 3,450 /(T +11.91)^0.79		
50 I=	17,823 /(T+95.40)	I=	2,931 /T [^] 0.70]=	425 /(T^0.5-5.08)	I=	3,832 /(T +13.36)^0.79		
100 I=	19,680 /(T+96.60)	I=	3,197 /T [^] 0.70]=	468 /(T^0.5-5.07)	I=	4,324 /(T +15.15)^0.80		
200 I=	21,357 /(T+96.00)	I=	3,510 /T [^] 0.70]=	507 /(T [^] 0.5-5.10)	I=	4,984 /(T +17.65)^0.80		

Kaligading Automatic Rainfall Gauging Station (Applicalbe Range of Rainfall Duration : from 1 to 48 hours)

Return Period (Year)	Return (1) Period Talbot Type (Year) Equation		:	(2) Sherman Type Equation	(3) Kuno Type Equation			(4) Horner Type Equation		
			•	1 COF 17 ⁰ 0 70				1 000 1/7 . 4 00 \^0 77		
2	<u>i</u> =	10,103 /(1+92,90)	1 ⇔	1,085 /1 0.76	1=	243 / [0.5~5.03]	1=	1,852 /(1 + 4.60) 0.77		
5	I =	11,739 /(T+92,72)	I =	1,935 /T 0.76	I =	282 /(1 0.5-5.01)	I ==	1,966 /(T + 0.76) 0.76		
10	I =	12,770 /(T+91.82)	I≕	2,120 /T 0.76	I =	308 /(T^0.5-5.02)	I =	$2,165 / (T + 1.02)^{0.76}$		
20	I≂	13,797 /(T+91.54)	Ì≕	2,287 /T 0.76	I =	333 /(T ^{0.5-5.01})	I=	2,350 /(T + 1.30)^0.76		
25	I =	14,067 /(T+90.74)	I= ·	2,357 /T [^] 0.76	I≖	340 /(T [^] 0.5-5.03)	I =	2,438 /(T + 1.62)^0.76		
30	I = '	14,337 /(T+90.68)	I⊨	2,404 /T [^] 0.76	I =	346 /(T ⁰ .5-5.03)	I≓	2,508 /(T + 2.05)^0.76		
50	I =	15,089 /(T+90.79)	I =	2,515 /T 0.76	. I =	364 /(T^0.5-5.02)	I= '	2,612 /(T + 1.83) ⁰ .76		
100	I≖	16.043 /(T+90.17)	I=	2,684 /T [^] 0.76	Ĭ≂	388 /(T^0.5-5.03)	I=	$2,740 / (T + 1.00)^{0.76}$		
200	I≈	17,063 /(T+90.34)	I ≈	2,837 /T ^{0.76}	I=	412 /(T^0.5-5.02)	I =-	2,914 /(T + 1.30)^0.76		

Table I.3.5 MODEL HYETOGRAPH

Semarang Meteorological Station (5-Minute Interval)

_

5-Minute	e Interva	1) .				:					
Time			Rainfall	Distribut	ion in Re						
(min)	2-year (mm)	5-year (mm)	10-year (mm)	20-year (mm)	25-year (mm)	30-year (mm)	50-year (mn)	100-year (mn)	200-year (mm)		
5 10 25 30 35 40 45 50 55 60 65 55 60 65 70 75 80 85 90 95 100 105 110 115 120	$1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2.0 \\ 2.4 \\ 3.0 \\ 3.0 \\ 5.6 \\ 10.0 \\ 16.0 \\ 7.2 \\ 4.6 \\ 3.4 \\ 2.7 \\ 2.2 \\ 1.9 \\ 1.7 \\ 1.5 \\ 1.4 \\ 1.2 \\ 1.$	2.0 2.1 2.2 2.4 2.6 2.3 3.5 4.1 5.8 11.9 21.66 5.8 5.8 5.8 3.3 2.7 5.2 2.3 2.7 2.3 2.1 2.0 2.1 2.1 2.1 2.4 2.6 3.5 1.5 1.5 1.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	2.3 2.5 2.6 2.8 3.0 4.0 4.6 5.4 12.7 24.8 2.3 5.0 3.4 5.0 3.4 12.7 24.8 2.5 2.4 2.7 2.5 4.3 3.4 12.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	$\begin{array}{c} 2.9\\ 3.0\\ 3.2\\ 3.4\\ 3.6\\ 3.9\\ 4.3\\ 4.7\\ 5.4\\ 6.5\\ 8.4\\ 14.0\\ 28.4\\ 28.4$	$\begin{array}{c} 3.0\\ 3.1\\ 3.3\\ 3.5\\ 3.8\\ 4.5\\ 5.9\\ 7.3\\ 29.2\\ 14.5\\ 5.4\\ 8.5\\ 4.3\\ 3.6\\ 3.6\\ 3.2\\ 3.0\\ 2.9\end{array}$	$\begin{array}{c} 3.1\\ 3.3\\ 3.5\\ 3.7\\ 3.9\\ 4.6\\ 5.1\\ 5.8\\ 6.9\\ 14.6\\ 30.4\\ 10.8\\ 7.7\\ 6.3\\ 5.4\\ 4.4\\ 4.1\\ 3.6\\ 4.3\\ 3.4\\ 3.2\end{array}$	$\begin{array}{c} 3.4\\ 3.8\\ 4.2\\ 4.0\\ 5.5\\ 5.5\\ 6.3\\ 4.2\\ 5.5\\ 6.3\\ 15.3\\ 32.4\\ 15.3\\ 32.4\\ 4.4\\ 3.9\\ 7.5\\ 3.5\\ 3.5\\ 3.5\\ \end{array}$	$\begin{array}{c} 3.8\\ 4.0\\ 4.2\\ 4.4\\ 5.5\\ 5.5\\ 6.1\\ 10.3\\ 16.5\\ 36.0\\ 12.4\\ 9.0\\ 7.4\\ 5.8\\ 5.3\\ 4.9\\ 4.5\\ 5.8\\ 5.3\\ 4.9\\ 4.3\\ 4.1\\ 3.9\end{array}$	$\begin{array}{c} 4.3\\ 4.5\\ 4.7\\ 5.0\\ 5.3\\ 5.6\\ 11.2\\ 17.7\\ 39.4\\ 9.9\\ 8.2\\ 7.1\\ 4.8\\ 5.9\\ 4.6\\ 4.4\end{array}$		
Total	80.3	110.7	124.7	145.5	146.6	155.5	167.1	183.8	202.1		

Semarang Meteorological Station (1-Hour Interval)

Time Rainfall Distribution in Return Period									
(hour)	2-year (mm)	5-year (mm)	10-year (mm)	20-year (mm)	25-year (mm)	30-year (mn)	50-year (mm)	100-year (mm)	200-year (mn)
1 2 3 4 5 6 7 8 9 10 11 12 12	2.8 3.3 4.0 5.2 7.7 68.0 10.6 6.2 4.5 3.6 3.1 2.7	3.7 4.4 5.4 7.2 11.5 88.0 17.8 8.8 6.1 4.8 4.0 3.5	3.9 4.6 5.7 7.8 13.0 97.6 21.1 9.7 6.6 5.1 4.2 3.6	4.7 5.6 7.0 9.6 16.3 113.7 26.8 12.0 8.1 6.2 5.1 4.4 219.8	4.5 5.4 6.8 9.5 16.3 114.5 27.1 11.9 7.9 6.1 4.9 4.2 219.2	4.7 5.6 7.1 9.8 16.8 117.7 28.1 12.3 8.2 6.2 5.1 4.4 226.0	5.2 6.3 7.9 11.0 19.0 128.7 31.8 13.8 9.2 7.0 5.7 4.9 250.5	5.3 6.4 8.2 11.4 20.1 136.5 34.2 14.5 9.5 7.2 5.8 4.9 264.2	6.2 7.5 9.6 13.4 23.9 153.2 40.6 17.1 11.1 8.4 6.8 5.8 303.7

Kaligading Automatic Rainfall Gauging Station (1-Hour Interval)

Time			Rainfall	Distribut	ion in Re	turn Peri	od		
(hour)	2-year (mm)	5-year (mm)	10-year (mm)	20-year (mm)	25-year (mm)	30-year (mm)	50-year (mm)	100-year (mm)	200-year (mm)
1 2 3 4 5 6 7 8 9 10 11 12 12 Total	3.0 3.6 4.4 6.0 9.8 74.8 15.4 7.4 5.1 4.0 3.3 2.8 139.6	3.5 4.1 5.1 6.8 10.7 86.7 16.2 8.2 5.8 4.6 3.8 3.3 158.8	3.9 4.6 5.6 7.5 11.8 95.2 17.9 9.1 6.4 5.0 4.2 3.6 174.8	4.2 5.0 6.1 8.1 12.9 102.9 19.6 9.9 7.0 5.5 4.6 3.9 189.7	4.4 5.2 6.4 8.4 13.4 106.4 20.5 10.3 7.2 5.7 4.7 4.1 196.7	4.5 5.3 6.6 8.7 13.9 108.9 21.3 10.6 7.5 5.9 4.9 4.2 202.3	4.7 5.5 6.8 9.1 14.4 113.7 22.1 11.0 7.8 6.1 5.1 4.4 210.7	4.9 5.8 7.1 9.4 15.0 120.5 22.7 11.5 8.1 6.4 5.3 4.6 221.3	5.2 6.2 7.6 10.1 16.0 127.6 24.3 12.3 8.6 6.8 5.7 4.9 235.3

Statistics.

sthaile.

Constants for Sub-Basin

鹴

Base Flow (m3/s)	A (km2)	F1	Ť] (hr)	p	K	River Sub-Basin
						Babon R.
2.0	38.80	0.86	0.39	0.60	9.20	8A8-1
0.7	13.10	0.86	0.34	0,60	7.90	BAB-2
1.3	25.10	0.86	0.37	0.60	8,60	BAB-3
					,	East Floodway
1.1	19.80	0.86	0.33	0.60	8.40	EAB-1
0.5	9.90	0.86	0.30	0.60	7.60	EAB2
						Garang R.
3.4	70.90	0.86	0.54	0.60	10.00	GAB-1
0.9	14.00	0.86	0.43	0,60	8.00	GAB-2
1.8	34.00	0.86	0.48	0.60	9.00	GAB-3
0.1	1.60	0.86	0.32	0.60	5.90	GAB-4
2.4	45.70	0.86	0.50	0.60	9.40	GAB-5
0.5	7.30	0.86	0.39	0.60	7.30	GAB-6
0.6	10.40	0.86	0.41	0.60	7.60	GAB-7
0.1	1.30	0.86	0.31	0.60	5.70	GAB-8
0.6	18.80	0.86	0.45	0.60	8.30	GAB-9
						Silandak R
0.4	8.50	0.86	0.27	0.60	7.40	SI8-1
						Bringin R.
0.6	12.00	0.86	0.31	0.60	7.80	BRB-1
0.6	11.90	0.86	0.31	0.60	7.80	BRB-2
0.4	8.20	0.86	0.30	0.60	7.40	BRB-3
						Blorong R.
3.0	50.50	0.86	0.51	0.60	9.50	BLB-1
2.6	46.50	0.86	0.59	0.60	9.40	BLB-2
1.0	20.40	0.86	0.45	0.60	8.40	BL.B-3
1.3	29.10	0.86	0.47	0.60	8.70	BLB-4
0.6	10.50	0.86	0.42	0.60	7,90	BLB-5
	10.40 1.30 18.80 8.50 12.00 11.90 8.20 50.50 46.50 20.40 29.10 10.50	0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	0.41 0.31 0.45 0.27 0.31 0.31 0.30 0.51 0.59 0.45 0.47 0.42	0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60	7.60 5.70 8.30 7.40 7.80 7.80 7.80 7.40 9.50 9.40 8.40 8.70 7.90	GAB-0 GAB-7 GAB-8 GAB-9 Silandak R. SIB-1 Bringin R. BRB-1 BRB-2 BRB-3 Blorong R. BLB-1 BLB-2 BLB-3 BLB-4 BLB-5

Constants for River Channel

River Channel	К	Ρ	T1 (hr)
Babon R.			
BAR-1	2.13	0.60	0.13
BAR-2	6.04	0.60	0.28
BAR-3	3.91	0.60	0.18
East Floodwa	ау		
EAR-1	4.81	0.60	0.28
Garang R.			
GAR-1	4.73	0.60	0.24
GAR-2	5.85	0.60	0.24
GAR-3	2.80	0.60	0.17
GAR-4	2.47	0.60	0.13
GAR-5	4.83	0,60	0.24
GAR-6	4.01	0.60	0.16
GAR-7	1.45	0.60	0.05
GAR-8	0.93	0.60	0.02
GAR-9	7.26	0.60	0.17
Silandak R			
SIR_1	1.74	0.60	0.20
Bringin R.			
BRR_1	2.28	0.60	0.16
BRR-2	1.11	0.60	0.08
BRR_3	2.48	0.60	0.17
Blorong R	2110		
	4 18	0.60	0.25
BLR_2	10.93	0.60	0.14
RIR_3	2.74	0.60	0.26
RIP_4	11.45	0.60	0.77
81 R_5	4.11	0.60	0.16

Probable Discharge (m3/s)
350 520 630
740 770 800 840 880
920 940 980
1,040 1,080 1,140 1,220

Cuild a

Table I.4.2 PROBABLE RUN-OFF DISCHARGE BASED ON OBSERVED DATA AT SIMONGAN WEIR

.....

Description Rainfall Rainfall Rainfall Rainfall Rainfall Rainfall Rainfall Annual Maximum Point Rainfall Observed Year at Kaligading Gauging Station 1980 98 mm 113 mm 216 m 1981 69 mm 145 mm 201 m 1982 64 mm 143 mm 158 mm 117 mm 216 mm 1982 64 mm 143 mm 158 mm 117 mm 168 mm 117 mm 166 mm 139 mm 159 mm 113 mm 159 mm 159 mm 159 mm 159 mm 150 mm 159 mm 150 mm 160 mm 160 mm 160 mm 160 mm 160 mm 150 mm <td< th=""><th></th><th colspan="4"></th><th>i</th><th colspan="2">24-hour</th></td<>						i	24-hour	
Annual Maximum Point Reinfall Observed at Kaligading Gauging Station Year 1980 Year 98 mm 113 mm 216 m 1981 69 mm 145 mm 201 m 1982 64 mm 143 mm 158 mm 1982 64 mm 143 mm 158 mm 1982 75 mm 113 mm 167 mm 1984 75 mm 113 mm 159 mm 1984 75 mm 113 mm 167 mm 1985 71 mm 90 mm 113 mm 150 mm 1990 66 mm 113 mm 128 mm 128 mm 2.1 For att observed data series (Xn, n=10) 76.40 mm 124.80 mm 157 mm 2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 m 2.3 Xm/Xn 0.97 0.97 0.96 1.05 1.05 1.05 3.1 Adjustment factor effected by the highest observed data 1.05 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 127.6 mm 31.15 m 4.2 Exclude the highe	Description		Rainfall		Rainfall		Rainfall	
At Kaligading Gauging Station 120 98 mm 113 mm 216 m at Kaligading Gauging Station 1981 69 mm 143 mm 216 m 1981 69 mm 143 mm 128 m 121 mm 216 m 1982 64 mm 143 mm 158 m 121 mm 143 mm 158 m 1984 75 mm 113 mm 144 mm 159 m 159 m 159 mm 150 mm 160 mm 128	Annual Maximum Point Rainfall Observed	Year	:		-			
1 100	at Kalinading Gauging Station	1980	98	ጣጠ	113	mm	216	ការ
1982 64 mm 143 mm 158 m 1983 97 mm 163 mm 175 mm 1984 75 mm 113 mm 144 m 1985 71 mm 97 mm 178 mm 1986 77 mm 90 mm 113 mm 1986 77 mm 90 mm 113 mm 1987 58 mm 117 mm 126 mm 1990 66 mm 128 mm 128 mm 128 mm 2.1 For all observed data series (Xn, n=10) 76.40 mm 124.80 mm 157.00 m 2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 m 2.3 Xm/Xn 0.97 0.97 0.96 Adjustment of Xn 1.05 1.05 1.05 1.05 3.1 Adjustment factor effected by the highest observed data length 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 13.16 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 m 4.3 sm/sn 0.88 0.85 0.82 1.30 1.30 1.30 1.30	at katigading dadging otation	1081	07. 03	mm	145	mm.	201	тол.
1983 97 mm 163 mm 175 mm 1984 75 mm 113 mm 114 mm 1985 71 mm 97 mm 159 mm 1986 77 mm 90 mm 113 mm 1987 58 mm 117 mm 126 mm 1990 66 mm 139 mm 128 mm 128 mm 2.1 For all observed data series (Xn, n=10) 76.40 mm 124.80 mm 157.00 mm 2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 mm 2.3 Xm/Xn 0.97 0.97 0.96 Adjustment of Xn 1.05 1.05 1.05 1.06 3.1 Adjustment factor effected by the observed data length 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 13.16 mm 31.14 mm 4.1 For all observed data series (Sn, m= 9) 11.63 mm 18.60 mm 25.46 mm 4.3 Sm/Sn 0.88 0.85 0.82 0.82 0.82 Adjustment of Sn 1.4djustment factor effected by the highest observed data 1.07 1.03 1.00 5.1 Adjustment facto		1982	40	mm	143	mm	158	100
1984 75 mm 113 mm 114 m 1985 71 mm 97 mm 159 mm 1985 71 mm 97 mm 159 mm 1985 71 mm 97 mm 159 mm 1986 77 mm 90 mm 113 mm 1987 58 mm 117 mm 113 mm 1980 66 mm 139 mm 128 mm 128 mm 2.1 For all observed data series (Xn, n=10) 76.40 mm 124.80 mm 157.00 mm 2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 m 2.3 Xm/Xn 0.97 0.97 0.96 Adjustment factor effected by the highest observed data 1.05 1.05 1.05 3.1 Adjustment factor effected by the highest observed data 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 13.16 mm 21.76 mm 31.15 m 4.1 For all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (ength 1.30 1.30 1.30 1.30 5.1 Adjustment factor effected by the highest o		1083	07	mm	145	mm	175	m
108 17 mm 97 mm 198 1985 77 mm 90 mm 113 m 1986 77 mm 90 mm 113 m 1986 77 mm 90 mm 113 m 1987 58 mm 117 mm 126 mm 137 130 133 133 134 133 133 133 134 133 133 133 133 133 133 134 131 131 131		1984	75	 	113	in m	144	m
1066 17 mm 90 mm 113 mm 1986 77 mm 90 mm 113 mm 126 mm 1990 66 mm 139 mm 128 mm 128 mm 1991 89 mm 128 mm 128 mm 128 mm 2.1 For all observed data series (Xn, n=10) 76.40 mm 124.80 mm 157.00 mm 2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 mm 2.3 Xm/Xn 0.97 0.97 0.96 Adjustment of Xn 1.05 1.05 1.05 1.05 3.1 Adjustment factor effected by the observed data length 1.05 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 137.59 mm 171.44 m Standard Deviation of Observed Annual Haximum Point Rainfall 4.1 for all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 1.60 mm 25.46 m 5.1 Adjustment factor effected by the observed data length 1.30 1.30 1.30 5.2 Adjustment factor effected by the observed data length 1.63		1985	71	mm	07	mm	150	m
1987 138 mm 117 mm 126 mm 1990 66 mm 139 mm 150 mm 1991 89 mm 128 mm 128 mm 128 mm 2.1 For all observed Annual Maximum Point Rainfall 2.2 Exclude the highest observed data series (Xn, n=10) 76.40 mm 124.80 mm 157.00 mm 2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 mm 2.3 Xm/Xn 0.97 0.97 0.97 0.96 Adjustment of Xn 1.05 1.05 1.05 1.05 3.1 Adjustment factor effected by the observed data length 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 127.6 mm 31.15 mm Standard Deviation of Observed Annual Maximum Point Rainfall 1.05 1.06 mm 25.46 mm 4.1 for all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 mm 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 1.00 1.30 1.30 5.1 Adjustment factor effected by the highest observed data 1.07 1.03 1.00 5.2 Adjustment factor effected by the observed data lengt		1986	77	mm	90	mm	113	
10010010010010066 mm130 mm130 mm19066 mm132 mm128 mm<		1987	58	mm	117	mm	126	m
1991100100100199189mm128m128m128m128m128m128m128m128m128m128m138m128m138m138m138<td colspan="</td> <td></td> <td>1000</td> <td>66 66</td> <td>mm</td> <td>130</td> <td>mm</td> <td>150</td> <td></td>		1000	66 66	mm	130	mm	150	
Average of Observed Annual Maximum Point Rainfall2.1 For all observed data series $(Xn, n=10)$ 76.40 mm 124.80 mm 157.00 m2.2 Exclude the highest observed data $(Xm, m= 9)$ 74.00 mm 120.56 mm 150.44 m2.3 Xm/Xn0.970.970.970.970.96Adjustment of Xn1.051.053.1 Adjustment factor effected by the observed data length1.051.053.2 Adjustment factor effected by the observed data length1.051.053.3 Adjusted Xn ((2.1) x (3.1) x (3.2))84.23 mm 137.59 mm 171.44 mStandard Deviation of Observed Annual Maximum Point Rainfall4.1 for all observed data series(Sn, n=10)4.2 Exclude the highest observed data (Sm, m= 9)11.63 mm 18.60 mm 25.46 m6.3 Sm/Sn0.880.855.1 Adjustment factor effected by the highest observed data1.071.035.3 Adjustment factor effected by the observed data length1.301.305.4 Adjustment factor effected by the observed data length1.301.305.3 Adjustment factor effected by the observed data length1.301.305.4 Adjustment factor effected by the observed data length1.301.305.3 Adjusted Sn ((4.1) x (5.1) x (5.2))18.33 mm 29.13 mm 40.49 mm6.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP ((3.2) + (6.1) x (5.3))194 mm 429 mm 698 mm6.3 Adjustment for fixed observational time interval1.131.026.4 Adjusted Point PMP ((6.2) x (6.3))219 mm 437 mm 705 mm6.5 Adjustment for fixed observati		1991	89	ភាព	128	тm	128	m
Average of Observed Annual Form Kinnak2.1 For all observed data series $(Xn, n=10)$ 76.40 mm 124.80 mm 157.00 m2.2 Exclude the highest observed data $(Xm, m= 9)$ 74.00 mm 120.56 mm 150.44 m2.3 Xm/Xn0.970.973.1 Adjustment factor effected by the highest observed data1.051.053.2 Adjustment factor effected by the observed data length1.051.053.3 Adjusted Xn ((2.1) x (3.1) x (3.2))84.23 mm 137.59 mm 171.44 m4.1 For all observed data series(Sn, n=10)13.18 mm 21.76 mm 31.15 m4.2 Exclude the highest observed data (Sm, m= 9)11.63 mm 18.60 mm 25.46 m6.3 Sm/Sn0.880.850.82Adjustment factor effected by the observed data length1.301.305.1 Adjustment factor effected by the highest observed data1.071.036.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP(6.1) x (5.2)18.33 mm 29.13 mm 40.49 mm6.3 Adjustment for fixed observational time interval1.131.026.4 Adjusted Point PMP ((6.2) x (6.3))219 mm 437 mm 705 m7.1 Areal Ackinge PMP for Jatibarang Dam Watershed0.900.970.987.1 Areal Ackinge PMP ((6.4) x (7.1))198 mm (24 mm 691 mm	Average of Observed Annual Havimum Doint Painfall							
2.1 For all observed data series $(Xn, n=10)$ 76.40 mm 124.80 mm 157.00 m 2.2 Exclude the highest observed data $(Xm, m= 9)$ 74.00 mm 120.56 mm 150.44 m 2.3 Xm/Xn 0.97 0.97 Adjustment of Xn 0.97 0.97 3.1 Adjustment factor effected by the highest observed data 1.05 1.05 3.2 Adjustment factor effected by the observed data length 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 137.59 mm 171.44 m Standard Deviation of Observed Annual Maximum Point Rainfall 4.1 For all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 m 6.3 Sm/Sn 0.88 0.85 0.82 Adjustment factor effected by the highest observed data length 1.30 1.30 5.1 Adjustment factor effected by the highest observed data length 1.30 1.30 1.30 5.3 Adjusted Sn ((6.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 m 6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3)) 194 mm 429 mm 698 m 6.3 Adjustment for fixed observational time interval 1.13 1.02	. Average of observed Annual Haxmidin Forne Karmate							
2.2 Exclude the highest observed data (Xm, m= 9) 74.00 mm 120.56 mm 150.44 m 2.3 Xm/Xn 0.97 0.97 0.96 Adjustment of Xn 1.4djustment factor effected by the highest observed data 1.05 1.05 1.04 3.2 Adjustment factor effected by the observed data length 1.05 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 137.59 mm 171.44 m Standard Deviation of Observed Annual Haximum Point Rainfall 4.1 For all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 m 6.3 Sm/Sn 0.88 0.85 Adjustment factor effected by the highest observed data 1.07 1.03 1.00 5.2 Adjustment factor effected by the highest observed data 1.07 1.03 1.30 5.3 Adjustment factor effected by the highest observed data 1.07 1.03 1.30 6.1 Adjustment factor effected by the highest observed data 1.07 1.03 1.30 7.4 Adjustment factor effected by the observed data length 1.30 1.30 1.30 6.1 Statistical Coefficient Km 6 10 13	2.1 For all observed data series (Xn, n=10)		76.40	mm	124.80	т	157.00	m
2.3 Xm/Xn 0.97 0.97 0.96 Adjustment of Xn 3.1 Adjustment factor effected by the highest observed data 1.05 1.05 1.04 3.2 Adjustment factor effected by the observed data length 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 137.59 mm 171.44 m Standard Deviation of Observed Annual Maximum Point Rainfall 4.1 For all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 m 4.3 Sm/Sn 0.88 0.85 0.82 Adjustment factor effected by the highest observed data 1.07 1.03 1.00 5.1 Adjustment factor effected by the observed data length 1.30 1.30 1.30 5.1 Adjustment factor effected by the observed data length 1.30 1.30 1.30 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 mm Point PMP 6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3)) 194 mm 429 mm 698 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Poin	2.2 Exclude the highest observed data (Xm, m= 9)		74.00	mm	120.56	៣៣	150,44	m
Adjustment of Xn3.1 Adjustment factor effected by the highest observed data1.051.051.043.2 Adjustment factor effected by the observed data length1.051.051.053.3 Adjusted Xn ((2.1) x (3.1) x (3.2))84.23 mm 137.59 mm 171.44 mmStandard Deviation of Observed Annual Maximum Point Rainfall4.1 for all observed data series(Sn, n=10)13.18 mm 21.76 mm 31.15 mm4.2 Exclude the highest observed data (Sm, m= 9)11.63 mm 18.60 mm 25.46 mm4.3 Sm/Sn0.880.85Adjustment of Sn0.880.855.1 Adjustment factor effected by the highest observed data length1.301.305.3 Adjusted Sn ((4.1) x (5.1) x (5.2))18.33 mm 29.13 mm 40.49 mm6.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3))194 mm 429 mm 698 mm6.3 Adjusted Point PMP ((6.2) x (6.3))219 mm 437 mm 705 mm7.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP (6.4) x (7.1)198 mm 624 mm 691 mm	2.3 Xm/Xn		0.97		0.97		0.96	
3.1 Adjustment factor effected by the highest observed data 1.05 1.05 1.05 1.04 3.2 Adjustment factor effected by the observed data length 1.05 1.05 1.05 1.05 3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 nm 137.59 nm 171.44 m Standard Deviation of Observed Annual Maximum Point Rainfall4.1 For all observed data series $(Sn, n=10)$ 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 mm 4.3 Sm/Sn 0.88 0.85 0.82 Adjustment factor effected by the highest observed data5.1 Adjustment factor effected by the observed data length 1.30 1.30 5.2 Adjustment factor effected by the observed data length 1.33 mm 29.13 mm 40.49 mm 6.1 Statistical Coefficient Km6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP ($(3.3) + (6.1) \times (5.3)$) 194 mm 429 mm 698 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ($(6.2) \times (6.3)$) 219 mm 437 mm 705 mc Areal Average PMP for Jatibarang Dam Watershed7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 m 7.2 Areal Average PMP ($(6.4) \times (7.1)$) 198 mm 624 mm 621 mm	. Adjustment of Xn							
3.2 Adjustment factor effected by the observed data length1.051.051.053.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) $84.23 \text{ mm} 137.59 \text{ mm} 171.44 \text{ mm}$. Standard Deviation of Observed Annual Maximum Point Rainfall4.1 for all observed data series: $(Sn, n=10)$ 13.18 mm 21.76 mm 31.15 mm4.2 Exclude the highest observed data (Sm, m= 9)11.63 mm 18.60 mm 25.46 mm4.3 Sm/Sn0.880.850.82. Adjustment of Sn0.880.850.825.1 Adjustment factor effected by the highest observed data (ength 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2))18.33 mm 29.13 mm 40.49 mm. Point PMP6.1 Statistical Coefficient Km610136.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm 437 mm 705 mm705 mm. Areal Average PMP for Jatibarang Dam Watershed0.900.970.987.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Aceal Average PMP (6.4) x (7.1))198 mm 424 mm 691 mm	3.1 Adjustment factor effected by the highest observ	ed data	1.05		1.05		1.04	
3.3 Adjusted Xn ((2.1) x (3.1) x (3.2)) 84.23 mm 137.59 mm 171.44 m Standard Deviation of Observed Annual Maximum Point Rainfall 4.1 For all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 m 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 m 0.88 0.85 0.82 Adjustment of Sn 0.88 0.85 0.82 5.1 Adjustment factor effected by the highest observed data (ength 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 1.30 1.30 1.30 1.30 1.30 1.30 Point PMP 6.1 Statistical Coefficient Km 6 10 13 1.00 1.3 1.00 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.31 1.02 1.01 1.33 1.02 1.01 1.34 1.37 mm 705 mm Areal Average PMP for Jatibarang Dam Watershed 0.90 0.97 0.98 1.24 mm 424	3.2 Adjustment factor effected by the observed data	length	1.05		1.05		1.05	
Standard Deviation of Observed Annual Haximum Point Rainfall 4.1 for all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 mm 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 mm 4.3 Sm/Sn 0.88 0.85 0.82 Adjustment of Sn 0.88 0.85 0.82 3.1 Adjustment factor effected by the highest observed data 1.07 1.03 1.00 5.2 Adjustment factor effected by the observed data length 1.30 1.30 1.30 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 mm 6.1 Statistical Coefficient Km 6 10 13 6.98 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mm 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mm 7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP (6.4) x (7.1) 198 mm 424 mm 691 mm	3.3 Adjusted Xn ((2.1) x (3.1) x (3.2))	· ·	84.23	៣៣	137.59	ጠጠ	171.44	mo
4.1 For all observed data series (Sn, n=10) 13.18 mm 21.76 mm 31.15 mm 4.2 Exclude the highest observed data (Sm, m= 9) 11.63 mm 18.60 mm 25.46 mm 4.3 Sm/Sn 0.88 0.85 0.82 Adjustment of Sn 0.88 0.85 0.82 5.1 Adjustment factor effected by the highest observed data [ength 1.07 1.03 1.00 5.2 Adjustment factor effected by the observed data [ength 1.30 1.30 1.30 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 mm 6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP (3.3) + (6.1) x (5.3)) 194 mm 429 mm 688 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mm Areal Average PMP for Jatibarang Dam Watershed 0.90 0.97 0.98 7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.11)) 198 mm 424 mm 601 mm	. Standard Deviation of Observed Annual Maximum Point R	ainfall						
4.2 Exclude the highest observed data $(Sm, m= 9)$ 11.63 mm18.60 mm25.46 mm4.3 Sm/Sn0.880.850.82Adjustment of Sn0.880.850.825.1 Adjustment factor effected by the highest observed data1.071.031.005.2 Adjustment factor effected by the observed data length1.301.301.305.3 Adjusted Sn ((4.1) x (5.1) x (5.2))18.33 mm29.13 mm40.49 mmPoint PMP6.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3))194 mm429 mm698 mm6.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mmAreal Average PMP for Jatibarang Dam Watershed7.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP ((6.4) x (7.1))198 mm424 mm601 mm	4.1 For all observed data series (Sn, n=10)		13.18	ភាព	21.76	ពាព	31.15	កម
4.3 Sm/Sn 0.88 0.85 0.82 Adjustment of Sn 5.1 Adjustment factor effected by the highest observed data 1.07 1.03 1.00 5.2 Adjustment factor effected by the observed data (ength) 1.30 1.30 1.30 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 mm Point PMP 6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3)) 194 mm 429 mm 698 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mm 7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	4.2 Exclude the highest observed data (Sm, m= 9)		11.63	mm	18.60	лл	25.46	m
Adjustment of Sn5.1 Adjustment factor effected by the highest observed data1.071.031.005.2 Adjustment factor effected by the observed data length1.301.301.305.3 Adjusted Sn ((4.1) x (5.1) x (5.2))18.33 mm29.13 mm40.49 mmPoint PMP6.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3))194 mm429 mm698 mm6.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mmAreal Average PMP for Jatibarang Dam Watershed0.900.970.987.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP ((6.4) x (7.1))198 mm424 mm691 mm	4.3 Sm/Sn		0.88		0.85		0.82	
5.1 Adjustment factor effected by the highest observed data 1.07 1.03 1.00 5.2 Adjustment factor effected by the observed data length 1.30 1.30 1.30 1.30 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 mmPoint PMP6.1 Statistical Coefficient Km6 10 13 6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3)) 194 mm 429 mm 698 mm6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mmAreal Average PMP for Jatibarang Dam Watershed7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	Adjustment of Sn		:				• •	
5.1 Adjustment factor effected by the observed data length 1.30 1.30 5.2 Adjustment factor effected by the observed data length 1.30 1.30 1.30 5.3 Adjusted Sn ((4.1) x (5.1) x (5.2)) 18.33 mm 29.13 mm 40.49 mm Point PMP 6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3)) 194 mm 429 mm 698 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mm Areal Average PMP for Jatibarang Dam Watershed 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	5.1 Adjustment feater offerted by the highest abserv	ad data	1 07		1 03		1 00	
5.2 Adjustment factor effected by the observed data tendth1.301.301.305.3 Adjusted Sn ((4.1) x (5.1) x (5.2))18.33 mm29.13 mm40.49 mm. Point PMP6.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3))194 mm429 mm698 mm6.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mm. Areal Average PMP for Jatibarang Dam Watershed0.900.970.987.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP ((6.4) x (7.1))198 mm424 mm691 mm	5.7 Adjustment factor offected by the algebra data	Longth	1 30		1 30		1 30	
Point PMP 6.1 Statistical Coefficient Km 6 10 13 6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3)) 194 mm 429 mm 698 mm 6.3 Adjustment for fixed observational time interval 1.13 1.02 1.01 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mm . Areal Average PMP for Jatibarang Dam Watershed 0.90 0.97 0.98 7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	5.3 Adjusted Sn ((4.1) x (5.1) x (5.2))	tength	18.33	mm	29.13	mm	40.49	វារព
6.1 Statistical Coefficient Km610136.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3))194 mm429 mm698 mm6.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mmAreal Average PMP for Jatibarang Dam Watershed0.900.970.987.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP ((6.4) x (7.1))198 mm424 mm691 mm	Point PMP							
6.2 Unadjusted Point PMP ((3.3) + (6.1) x (5.3))194 mm429 mm698 mr6.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mrAreal Average PMP for Jatibarang Dam Watershed0.900.970.987.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP ((6.4) x (7.1))198 mm424 mm691 mm	6.1 Statistical Coefficient Km		6		10		13	
6.3 Adjustment for fixed observational time interval1.131.021.016.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mm6.4 Adjusted Point PMP ((6.2) x (6.3))219 mm437 mm705 mm7.1 Areal Reduction Factor (53 km2)0.900.970.987.2 Areal Average PMP ((6.4) x (7.1))198 mm424 mm691 mm	6 2 Unadjusted Point DMD (13 3) + 16 1) y 15 3)		10/	កាញ	420	mm	с. 808	mo
6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mr 6.4 Adjusted Point PMP ((6.2) x (6.3)) 219 mm 437 mm 705 mr 7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	6.3 Adjustment for fixed observational time interval		1 17	131146	1 02		1 01	
Areal Average PMP for Jatibarang Dam Watershed 7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	6.4 Adjusted Point PMP ((6.2) x (6.3))		219	mm	437	វាហា	705	ការ
7.1 Areal Reduction Factor (53 km2) 0.90 0.97 0.98 7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	Areal Average PMP for Jatibarang Dam Watershed	÷.						
7.2 Areal Average PMP ((6.4) x (7.1)) 198 mm 424 mm 691 mm	7.1 Areal Reduction Factor (53 km2)		0.90		0.97		0.98	
	7.2 Areal Average PMP ((6,4) x (7.1))		198	ጠጦ	424	mm	691	ក្រាត

Table 1.4.3 PROBABLE MAXIMUM PRECIPITATION (PMP) FOR JATIBARANG DAM CATCHMENT AREA ESTIMATED BY HERSHFIELD METHOD

.

9

酚

ð

Table 1.4.4 HOURLY DISTRIBUTION OF PROBABLE MAXIMUM PRECIPITATION (PMP) AND PROBABLE MAXIMUM FLOOD RUNOFF DISCHARGE (PMF)

L'Indiana

dini în

Vilia.

100 A. 100 A. 100 A.	and the second second					1.
Time	Probable Maximum	Probable Maximum		Time	Probable Maximum	Probable Maximum
	Rainfall	Flood			Rainfall	Flood
(hour)	(mm/hr)	(m3/s)		(hour)	(mm/hr)	(m3/s)
· <u>························</u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1	10	4		25	· · · · ·	147
2	11	11		26		104
3	12	36		27	e4 .	73
4	13	76		28		55
5.	14	109		29	-	43
6	15	140		30	-	35
7	17	176		31	_	28
8	20	215	•	32	~ .	24
9	25	264		33		20
10	32	335		34	-	17
11	51	479		35	· -	15
12	198	1429	•	36	-	14
13	76	1777		37	_	12
14	39	1092		-38	-	11
15	28	702		39	- '	10
16	22	509		40		9
17	19	399		41	—	8
18	16	336		42	-	8
19	15	284		43	. .	. 7
20	13	253		44		7
21	12	225		45	-	6
22	11	206		46	-	6
23	11	189		47	-	6
24	10	175		48 .	-	6

I--57
Table 1.4.5 (1/2) PROBABLE POINT RAINFALL INTENSITIES BY GUMBEL METHOD

				· · · · · · · · · · · · · · · · · · ·			
Return			Rain	fall Dura	tion		
(Year)	5 min.	10 min.	15 min.	30 min.	45 min.	60 min.	120 min.
2 3 5 8 10 20 25 30 50 70 80 100 150 200 300	202.5 229.8 260.1 286.2 298.2 334.8 346.4 355.9 382.2 399.4 406.3 417.7 438.3 453.0 473.7	148.9 168.5 190.4 209.3 218.0 244.4 252.7 259.5 278.5 290.9 295.9 304.1 319.1 329.6 344.5	134.0 153.2 174.7 193.1 201.6 227.5 235.7 242.3 260.9 273.1 278.0 286.0 300.6 311.0 325.6	99.5 111.6 125.0 136.6 141.9 158.1 163.3 167.4 179.1 186.7 189.8 194.8 204.0 210.5 219.6	75.8 84.6 94.4 102.8 106.7 118.4 122.2 125.2 133.7 139.2 141.4 145.1 151.8 156.5 163.1	66.5 75.0 84.5 92.6 96.4 107.7 111.4 114.3 122.5 127.8 130.0 133.5 140.0 144.5 151.0	40.8 47.6 55.2 61.7 64.7 73.9 76.8 79.1 85.7 90.0 91.7 94.6 99.7 103.4 108.5
Scale	<8-year	<8-year	<5-year	<25year	<25year	<20year	<8year

(Short Duration) Semarang Meteorological Station

1

Unit : mm/hr

(Long Duration) Semarang Meteorological Station Unit : mm/hr

Return			Rain	fall Dura	tion		
(Year)	1 hr.	2 hr.	3 hr.	6 hr.	12 hr.	1-day	y 2-day
2 3 5 8 10 20 25 30 50 70 80 100 150 200 300 1993 Scale	66.5 75.0 84.5 92.6 96.4 107.7 111.4 114.3 122.5 127.8 130.0 133.5 140.0 144.5 151.0 98.0 <20-year	40.8 47.6 55.2 61.7 64.7 73.9 76.8 79.1 85.7 90.0 91.7 94.6 99.7 103.4 108.5 57.8 <8-year	29.7 34.1 39.1 43.3 45.3 51.2 53.1 54.7 59.0 61.8 62.9 64.8 68.1 70.5 73.9 39.2 <8-year	17.5 20.1 22.9 25.3 26.4 29.9 30.9 31.8 34.3 35.9 36.5 37.6 39.5 40.9 42.8 25.1 <8-year	10.3 12.0 13.9 15.6 16.3 18.6 19.3 19.9 21.6 22.7 23.1 23.8 25.1 26.0 27.3 17.5 <20-year	5.7 6.6 7.7 8.6 9.1 10.4 10.8 11.1 12.0 12.6 12.9 13.3 14.0 14.6 15.3 11.5 <50-year	3.8 4.5 5.3 5.9 6.3 7.2 7.5 7.7 8.4 8.9 9.0 9.3 9.9 10.2 10.8 8.9 =70-year

Table 1.4.5 (2/2) PROBABLE POINT RAINFALL INTENSITIES BY GUMBEL METHOD

Ka i yau iiy i	Kalinali uauyi	ny station				
Return		Rainfa	all Durat	ion		.*
(Year) 1	hr. 2 hr.	3 hr.	6 hr.	12 hr.	1-day	2-day
2 3 5 8 10 20 10 25 11 30 10 50 1 70 1 80 1 100 1 200 1 300 1 1 20 1 30 1 50 1 1 20 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 50 1 1 30 1 1 50 1 1 30 1 1 50 1 1 30 1 1 50 1 1 1 50 1 1 1 50 1 1 1 20 1 1 1 1 1 20 1 1 1 1 20 1 1 1 20 1 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 20 1 1 200 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 300 1 20 1 300 1 2 2 2 2 2 2 2 2 2 2 2 2 2	68.2 45.0 75.1 49.1 82.8 53.6 89.4 57.6 92.4 59.4 01.7 64.9 04.6 66.6 07.0 68.1 13.7 72.0 18.0 74.6 19.8 75.7 22.7 77.4 27.9 80.5 31.6 82.7 36.8 85.8 41.0 30.5 year <2-year	34.5 36.8 39.4 41.6 42.6 45.8 46.8 47.6 49.8 51.3 51.9 52.8 54.6 55.9 57.6 28.8 <2-year =	20.1 21.8 23.8 25.5 26.3 28.6 29.4 30.0 31.7 32.8 33.3 34.0 35.3 36.3 37.6 26.3 10-year <	11.3 12.5 13.8 14.9 15.4 17.0 17.5 18.0 19.0 19.7 20.0 20.5 21.4 22.0 22.9 18.1 50-year	6.7 7.3 8.0 9.0 9.8 10.1 10.4 11.0 11.4 11.6 11.8 12.3 12.7 13.2 9.7 <20-year <	4.1 4.9 5.7 6.4 6.7 7.6 8.0 8.2 9.9 9.4 9.5 9.9 10.4 10.8 11.3 9.2 70-year

(Long Duration) Kaligading Rainfall Gauging Station

1000

Same of

Unit : mm/hr

I.6.1 ANNUAL RAINFALL AT SELECTED RAINFALL GAUGING STATIONS

Table

(mu

••

Unit

Code

Station

Rainfall

-k × × ÷x Boja Candi Banyumeneng 6 × * * 2024004 - 40404400000004040440440004404 608004004004008008084604006 4080042004008008040084604006 4080044000400908080808080400904406 16 * * ******* * ******* * 8044044040 804404040 8040408 8040408 8040408 8040408 8040408 8040408 804040 804040 804040 804040 804040 800 189 * ** * * * * ÷ * * * Ngareanak Mijen Plamongan 129 * ** * * * ** * иннанананаланой нанамалогоономиа иниметороводово иниметорово инимет 10 440 049 or unreliable data 33; Karangtengah 41; Bringinmangkang 4 68; Klepu *** ĸ ** -* Найнч чайийайайнайайайайайнчайайай 44,004 чайийайайайайайайайайайайа 44,004 чайийайайайайайайа 44,004 чайийайайайайа 18,004 чайийайа 18,004 чайийайа 18,004 чайийайа 18,004 чайийа 19,004 чайий 19,004 чайий 19,004 чайи 19,004 чайи 19,004 чайи 19,004 ча 44 ****** ** * 41 * ** *** ****** ЧЧО ччомичичичичичи мичииччачийой
ччомичай
чтомичай
чтоми Ы ion Ion including missing o 25; Kebonadem 39; Limbangan 65; Sumurjurang ** * ** * * * * ****** in M × * * ** **** 14 **** .¥ Name ie Station ** * * * Note 101 ŀ Year

Table 1.6.2(1/3) MONTHLY BASIN RAINFALL

BABON RIVER BASIN

Yest .					Month	ly F	Rainfa	11 (mm)				Annual -Rainfall
1 CAL	1	2	3	4	5	6	7	8	9	10	11	12	(mm)
						: .	, ,						
1958	294	590	304	250	170	107	217	154	60	140	167	234	2,687
1959	337	324	350	210	187	90	177	10	50	137	47	347	2,266
1960	420	514	394	227	220	77	53	33	60	77	244	130	2,449
1961	537	150	220	120	214	0	30	0	~ 37	10	140	194	1,652
1962	364	570	324	404	227	- 40	43	63	30	60	187	257	2,569
1963	697	254	330	190	27	7	0	0	0	87	50	154	1,796
1964	314	287	180	277	140	80	13	77	63	227	163	127	1,948
1965	634	303	520	150	40	43	. 7	33	-Q	27	120	227	2,104
1966	404	364	410	210	63	83	10	- 0	53	217	117	214	2,145
1967	304	417	297	367	70	0	0	0	0	13	90	340	1,898
1968	497	280	273	300	200	227	164	110	77	43	200	274	2,645
1969	344	530	564	570	20	67	43	0	13	127	170	334	2,782
1970	340	234	334	274	194	137	120	0	97	90	294	577	2,691
1971	590	390	347	320	167	227	23	0	43	210	247	227	2,791
1972	490	254	414	60	117	13	0	0	0	0	137	180	1,665
1973	383	170	260	177	157	87	107	17	113	247	297	247	2,262
1974	417	197	507	240	117	13	33	57	77	284	163	334	2,439
1975	290	197	427	267	170	50	0	20	217	207	337	210	2,392
1976	697	330	490	53	17	27	3	13	0	50	207	173	2,060
1977	324	240	467	163	120	87	· 0	0	0	- 0	120	350	1,871
1978	580	354	334	. 73	83	: 110	67	33	163	107	114	200	2,218
1979	454	474	330	357	200	97	33	17	83	87	163	127	2,422
1980	544	244	247	310	190	0	53	93	27	130	287	427	2,552
1981	307	290	70	0	144	83	150	0	. 0	. 0	50	320	1,414
1982	274	204	464	394	0	0	0	0	0	0	97	190	1,623
1983	330	163	150	230	267	17	0	0	0	267	220	70	1,714
1984	177	394	187	104	50	57	70	40	320	70	184	304	1,957
1985	53	190	124	167	.27	0	73	63	87	160	194	224	1,362
1986	450	194	430	160	57	180	37	73	97	73	117	147	2,015
1987	564	480	220	43	93	40	53	0	Ó	7	223	564	2,287
1988	427	440	347	257	143	27	27	- 53	23	167	154	657	2,722
1989	287	934	390	264	187	170	93	10	40	120	260	274	3,029
1990	564	187	230	127	73	127	43	60	40	40	140	464	2,095
Average	415	338	331	222	126	72	53	31	57	105	173	276	2,198

Cheer.

Table I.6.2(2/3) MONTHLY BASIN RAINFALL

GARANG RIVER BASIN

Voar					Month	ily F	ainfa	11 (mm)				Annual Rainfall
rear	1	2	3	4	5	6	7	8	9	10	11	12	(mm)
1958	308	621	319	277	173	111	228	160	63	150	182	262	2,854
1959	349	344	362	224	192	94	181	9	52	146	54	384	2,391
1960	437	531	415	251	237	78	62	36	63	83	261	139	2,593
1961	554	158	238	127	224	• 0	35	0	.37	12	146	214	1,745
1962	384	596	348	423	237	48	44	67	32	65	201	275	2,720
1963	725	267	345	210	27	6	0	0	0	91	51	168	1,890
1964	330	301	190	288	144	86	15	78	72	238	174	128	2,044
1965	664	317	549	156	45	46	9	38	0	29	129	245	2,227
1966	432	386	418	215	70	87	9	0	59	229	127	227	2,259
1967	318	432	312	381	69	0	0	. 0	0	15	93	357	1,977
1968	517	306	285	304	217	238	176	113	83	45	212	293	2,789
1969	353	556	578	592	23	68	44	0	15	136	177	344	2,886
1970	359	246	343	281	205	142	124	0	102	92	301	599	2,794
1971	614	404	354	336	173	239	24	0	44	218	254	247	2,907
1972	509	261	432	- 65	122	15	ō	Ō	0	0	139	195	1,738
1973	402	177	279	178	160	92	109	18	117	257	317	254	2,360
1974	437	211	531	249	122	19	42	58	86	292	172	348	2,567
1975	297	206	436	284	180	45	0	24	231	213	362	229	2,507
1976	730	348	517	59	18	27	3	15	0	54	219	182	2,172
1977	346	2.58	496	169	120	93	0	0	0	. 0	120	371	1,973
1978	586	370	347	77	92	112	78	33	169	118	127	208	2,317
1979	477	499	346	369	212	101	32	18	88	91	174	129	2,536
1980	564	250	264	321	203	0	55	98	29	139	302	442	2,667
1981	326	296	76	0	164	91	164	0	0	0	57	330	1,504
1982	286	214	480	407	0	0	0	0	0	0	103	204	1,694
1983	352	172	155	238	279	18	0	0	0	286	231	77	1,808
1984	196	416	195	111	56	55	78	44	336	77	194	319	2,077
1985	64	198	133	175	33	0	76	65	90	172	215	253	1,474
1986	476	209	445	173	58	182	43	84	107	80	123	156	2,136
1987	583	502	226	47	100	39	58	0	0	6	234	591	2,386
1988	450	466	366	268	155	27	.27	59	28	181	165	689	2,881
1989	297	978	406	275	202	182	100	12	41	131	272	285	3,181
1990	592	204	241	130	83	138	47	66	45	45	162	482	2,235
Average	434	355	346	232	133	75	56	33	60	112	183	292	2,312

Ð

Table I.6.2(3/3) MONTHLY BASIN RAINFALL

BLORONG RIVER BASIN

Year .					Month	ly R	ainfa	11 (mm)				Annual Rainfall
	1	2	3	4	5	6	7	8	· 9	10	11	12	(mm)
1958	296	417	306	306	202	158	257	249	122	168	207	256	2,944
1959	331	176	320	384	187	143	143	12	114	97	114	386	2,407
1960	454	431	356	324	286	121	48	39	63	110	507	22 9	2,968
1961	620	373	244	168	259	33	50	.3	0	25	160	203	2,138
1962	351	545	465	386	246	109	174	128	36	122	235	436	3,233
1963	608	250	356	222	66	94	· 0	11	11	70	168	194	2,050
1964	313	251	170	209	223	116	- 74	34	137	445	151	318	2,441
1965	623	194	240	102	47	31	48	. 0	0	0	113	300	1,698
1966	358	376	328	206	162	77	6	0	56	137	277	318	2,301
1967	306	496	404	300	51	0	0	0	0	79	311	492	2,439
1968	314	523	616	264	307	282	196	121	58	28	301	509	3,519
1969	360	349	397	445	51	82	36	· 0	17	125	377	137	2,376
1970	413	531	540	391	51	111	0	. 0	69	107	491	336	3,040
1971	522	326	285	312	201	201	87	3	0	402	274	3.58	2,971
. 1972	495	228	457	170	233	0	· . 0	0	· · 0	-26	119	197	1,925
1973	334	384	259	289	366	171	34	19	244	194	261	231	2,786
1974	410	264	270	252	185	98	136	182	303	219	276	335	2,930
1975	368	324	286	164	170	18	61	47	331	264	279	217	2,529
1976	321	190	288	199	69	11	4	45	· 0	93	262	254	1,736
1977	269	175	270	146	56	247	• 0	0	- 8	19	162	225	1,577
1978	382	197	291	145	182	185	124	145	221	177	138	330	2,517
1979	248	309	313	499	178	165	28	- 34	177	113	246	422	2,732
1980	354	261	509	213	238	0	109	18	26	155	337	428	2,648
1981	544	291	287	371	210	155	302	62	171	82	132	464	3,071
1982	515	344	247	457	37	53	9	4	0	. • .0	160	299	2,125
1983	501	392	309	256	347	47	· 0	Q	: O ·	268	454	228	2,802
1984	404	485	323	203	115	88	80	58	318	133	188	482	2,877
1985	342	462	452	324	212	42	61	35	61	374	240	299	2,904
1986	469	280	563	287	156	174	150	11	125	122	322	362	3,021
1987	433	307	383	211	136	33	15	0	16	58	214	532	2,338
1988	309	242	528	34	90	39	23	.19	0	239	210	310	2,043
1989	332	565	163	272	261	123	105	60	104	168	270	282	2,705
1990	949	239	201	123	147	32	28	39	35	22	106	512	2,433
Average	420	339	346	262	174	98	72	42	86	141	244	330	2,552

124

がた

Service.

Table I.6.3 FLOW REGIME AND BALANCE IN OBSERVED RECORDS

۲

9

Run-off Patio	DT DT	0.557	0.321	0.507	0.382	0.197	0.835	0.689	0.506	0.524	0.409	0.555	0.543	0.402	0.410	0.448	0.445	0.420	0.466	0.587	0.455	
Annual	(uu)	604	1,368	1,128	1,683	2,431	346	743	1,423	I,063	1,565	1,366	972	1,675	1,697	I,603	l,677	1,355	1,090	1,118	1,326	
Annual ainfall		1,362	2,015	2,287	2,722	3,029	2,095	2,386	2,881	2,235	2,648	3,071	2,125	2,802	2,877	2,904	3,021	2,338	2,043	2,705	2,433	
Annual Pun-off E		758	647	1,159	1,039	598	I,749	Т,64 3	l,458	1,172	1,083	1,705	1,153	1,127	1,180	1,301	1,344	983	953	1,587	1,107	
Mean	(m3/s)	1.85	1.58	2.83	2.53	1.46	4.27	9.65	8.54	6.88	6.34	10.01	6.77	6.62	6.91	7.64	7.89	5.77	5.58	9.32	6.50	
F	linimum.	0.00	0.04	00.00	0.00	00.00	10.0	1.50	0.38	1.30	1.00	1.07	0.52	0.57	1.07	0.89	0.85	0 4 0	0.35	1.22	0.54	
	1 20	00.0	0.11	0.00	0.00	0.00	10.0	1.64	1.16	1.30	1.02	1.15	0.55	0.59	1.21	0.98	0.92	0.43	0.85	1.22	0.57	
(m3/s)	62%	0.11	0.25	00.00	0.01	0.00	0.06	1.77	1.44	1.40	1.20	1.49	0.67	0.70	1.48	1.28	1.16	0.51	1.03	1.28	0.78	
Regime	75%	0.89	0.59	0.22	0.30	0.25	0.37	2.45	2.10	2.50	2.10	2.62	0.99	191	2.29	2.93	2.61	1.03	1.86	2.50	2.02	
Flow]	1 20 1 1 1	1.42	0.88	1.09	0.95	0.99	0.97	5.12	4.37	5.56	4.68	6.64	2.13	4.53	4.36	5.68	5.38	3.05	3.60	8.20	3.92	
		2.34	2.11	2.45	2.14	1.8 4	1.78	10.50	10.70	9.14	8.11	14.40	11.20	9.06	7.84	10.60	10.80	8.20	7.72	10.20	8.92	
:	Maximum	14.00	11.00	39.50	163.20	35.30	354.06	99.20	123.00	74.40	31.50	47.30	65.00	39.00	49.20	67.50	44.90	42.40	53.90	93.80	57.20	
No.	Records	365	364	334	350	. 272	363	357	344	341	351	342	349	352	328	329	331	359	349	322	344	
1000 1000 1000		Babon 1985	(C.A= 77.0km2)1986	1987	1988	1989	1990	Garang 1987	(C.A=185.2km2)1988	1990	Blorong 1980	(C.A=157.0km2)1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	

Annual Run-off=Mean Discharge(m3/s)x365or366(day)x86,400/C.A(km2)/1,000

Note :

							FLOW RE	17ml amra:	ŝ						-	Annual
1	Maximum	5%	15%	25%	352	452	50%	55%	652	752	85%	952	266	Minimum	Mean	Kaintall (目)
1961	24.75	6.02	3.23	2.43	2.12	2.00	1.77	1.52	1.10	0.64	0.34	0.13	0.09	0-09	2.15	I,652
1962	21.55	7.95	5.41	4.10	3.08	2.50	2.36	2.22	1.86	1.51	1.12	0.85	0.82	0.80	3.18	2,569
1963	79.73	6.75	4.43	2.82	2.33	2.03	1.75	1.48	1.08	0.59	0.25	0.11	0.09	0.07	2.61	1,796
1964	14.31	5.20	3.26	2.29	1.56	1.37	1.24	I.16	0.95	0.68	0.61	0.56	0.39	0.21	1.31	I,948
1965	26.38	10.64	4.60	2.94	2.23	1.87	1.64	1.48	1.04	0.69	0.30	0.13	0.08	0.07	2.76	2,104
1966	15.28	6.54	4.24	2.96	2.17	1.90	1.79	1.62	1.23	0.88	0.63	0.47	0.40	0.38	2.38	2,145
1967	50.65	6.46	4.17	2.90	2.22	1.90	1.72	1.65	1.20	0.71	0.23	0.00	00.00	00*0	2.38	1,898
1968	28.09	7.45	4.52	3.51	2.73	2.22	2.07	2.03	1.92	1.62	1.49	1.21	I.16	1.15	3.10	2.645
1969	32.57	12.25	7.03	5.02	3.55	3.20	2.99	2.77	2.27	1.75	1.36	1.16	1.11	1+09.	4.24	2,782
1970	30.26	7.04	5.18	4.22	3.49	3.05	2.79	2.57	2.40	2.04	1.61	1.26	1.15	1.11	3.48	2,691
1721	19.71	10.79	7.18	5.60	4.61	3.61	3.49	3.30	2.93	2.41	2.04	1.68	1.63	1.62	4.47	2,791
972	35.44	7.85	4.86	2.96	2.62	2.35	2.09	1.86	1.30	0.83	0.40	0.20	0.10	0.08	2.73	1,665
973	25.54	5.53	3.53	2.55	1.88	1-55	1.46	1.43	I.32	1.09	0.90	0.68	0.65	0.64	2.19	2,262
974	20.21	8.32	5.35	4.12	3, 02	2.59	2.40	2.19	1 87	1.56	1.27	1.15	1.01	0,96	3.24	2,439
975	18.19	6.75	4.77	3.86	3.08	2.58	2.51	2.41	2.09	1.79	I.53	1.34	1.27	1.26	3.07	2,392
976	35.42	10.86	5.60	3.60	3.06	2.55	2.29	2.05	1.55	1.09	12.0	0.47	0.38	0.37	3.38	2,060
776	18.54	6.65	3.75	2.52	1.94	1.76	1.57	1.41	1.06	0.63	0.27	0.04	0.00	00.00	2.13	1,871
978	18.86	7.61	4.20	2.64	2.07	1.83	1.77	1.66	1.42	1.14	0.98	0.86	0.79	0.78	2.59	2,218
979	23.77	8.37	5.52	4.18	3.18	2.71	2.52	2.33	1.90	1.42	1.18	1.01	0.97	0.95	3.30	2,422
980	67.97	7.24	5.07	3.83	2.93	2.38	2.27	2.13	1.84	1.48	1.19	0.80	0.62	0.61	3.23	2,552
981	11.05	5.16	3.29	2.45	1.95	1.67	1.60	1.44	1.33 [`]	0.81	0.35	0,.00	00"0	00-00	1.88	1,414
982	27.35	6.78	3.43	2.02	1.72	1.38	1.18	1.00	0.61	0.25	0.02	00.00	00-00	00.0	1.89	1,623
983	14.89	5.06	2.97	1:87	1.45	1-21	1.08	0.99	0.80	0.46	0.23	0.02	0*00	0.00	1.58	1,714
984	8.64	4.96	3.15	1.91	1.34	1.25	1.12	1.05	0.85	0.69	0.54	0.48	0.34	0.33	I.68	1,957
985	15.64	3.43	1.66	1.16	1.09	1.00	0.93	0.85	0.55	0.45	0.26	0.10	00-0	0.00	1.11	1,362
986	25.45	6.38	3.75	2.63	1.95	1.71	1.64	1.54	1.28	0.99	0.75	0.62	0.58	0.56	2.30	2,015
18	29.87	9.15	5.17	3.32	2.11	1.89	1.76	1.61	1.22	0.84	0.33	00.0	00-00	00-00	2.87	2,287
988	24.40	9.90	6.20	4.48	3.32	2.65	2.52	2.29	1.86	1.42	1.02	0.77	0.72	0.72	3.54	2,722
686	41-07	11.36	6.67	5.15	4.31	3.66	3.43	3.30	2.92	2.40	1.94	1.58	1.54	1.51	4.70	3,029
690	33.28	6.68	4.70	3.39	2.78	2.53	2.42	2.28	1 - 91	1.48	1.05	0.71	0.64	0.60	3.04	2,095
age 1	27.96	7.50	4.56	3,25	2.53	2.16	2.01	1.85	1.52	1.14	0.83	0_61	0.55	0.53	2.77	2.171
									. •							

總網

35.2km2)	Annual Rainfall	() 	59 1,745	58 2,720	30 1,890	98 2,044	38 2,227	54 2,259	01 1,977	56 2,789	97 2,886	16 2,794	45 2,907	76 1,738	10 2,360	53 2,567	18 2,507	62 2,172	82 1,973	94 2,317	81 2,536	59 2,667	94 1,504	18 I,694	68 1,808	87 2,077	25 I,474	37 2,136	78 2,386	68 2,881	34 3,181	94 2,235	39 2,282
(C.A-18		Rea	5.4	1 8.1	3 6.1	5 . 4.	0 7.	3 6.	0 6.1	6 8.	5 10.	1 9.	8 11.	0 6.	3 6.	7 8.	5 8.	98.	0 5.	0 6.	98.	80 80	0 4.	о	0 4.	5 4	e G	1.00	ō 7.	14 9 .	5 12.	4 7.	8 7.
		Minimu	0.0	1.51	0.0	0.2	0.0	0.5	0.0	2.3(2.0	2.0	3°0	ŏ. 0	1-1	8	2.3	÷ 0	ō-0	1.7	1.7	6.0	0.0	0.0	0.0	0.6	0.0	1.2	0.0	I.3	3.0	1.1	0.9
ANCAN		266	00*0	I.54	0.00	0.63	0.00	0.54	0.00	2.41	2.08	2.10	3.14	00*0	1.14	1.96	2.41	0.49	0.00	1.72	1.83	1.01	0.00	00.0	00.0	0.74	00.0	1.26	0.0	1.37	3.08	1.25	1.02
ER : PANJ		95%	0.01	1.64	0.00	0.99	0.03	0.82	00*0	2.89	2.23	2.45	3.43	0.14	1.26	2.32	2.61	0,66	0.00	1.79	1.96	1.36	0.00	0.00	0.00	10-1	60.0	I.43	0.00	1.60	3.20	1.43	1.18
RANG RIVE		852	0.88	2.33	0.33	1.18	0.70	1.29	0.26	3.43	2.97	3.49	4.45	0.84	1.84	2.89	3.52	1.35	0.41	2.18	2.45	2.54	0.54	0.00	0.47	1,28	0.71	1.95	0.49	2.44	4.14	2.40	1.79
GA		152	1.55	3.51	1.18	1.59	1.49	2.25	1.17	4.06	3.97	4.46	5.56	1.81	2.53	3.58	4.38	2.26	1.40	2.85	3.31	3.42	1.65	0.47	1.14	1.70	1.12	2.35	1.66	3.32	5.38	3.33	2.62
NOLL	(s)	652	2.53	4.34	2.25	2.21	2.47	3.04	2.34	4.55	5.09	5.78	6.56	2.80	2.96	4.38	5.04	3.42	2.38	3.40	4.22	4.34	2.66	1.42	2.04	2.11	1.64	3.01	2.78	4.20	6.55	4-24	3.49
EL SIMULA	sime (m3/	252	3.43	5.07	3.37	2.81	3.42	3.77	3.53	5.61	6.15	7.05	7.74	3.95	3.98	5.15	6.04	4.51	3.42	3.73	5.15	5.28	3.20	2.28	2.61	2.54	2.08	3.55	3.57	5.05	8.54	5.15	4.39
TANK MOD	Flow Re	50%	3.92	6.04	3.86	3,06	3.86	4.13	4.16	6.14	6.73	7.88	8.60	4.46	4*46	5.52	6.73	5.02	3.68	4.03	5.68	5.91	3.45	2.76	2.95	2.74	2.23	3.84	3.92	5.55	6.44	5.59	4.88
ULATED BY		452	4.35	7.17	4.36	3.53	4.20	4.60	4.65	6.71	7.26	8.42	9.83	4.84	5.01	6.43	7.54	5.62	4.02	4.30	7.63	7.08	3.85	3.27	3.65	3-09	2.36	4.17	4.25	7.37	95*6	6.25	5.53
GIME CALC		352	5.80	9.37	5.47	5.00	4.85	6.75	6.55	8 14	96-6	9.76	12.53	5.59	6.01	8,93	8.94	6.55	5.65	5.38	9.20	8.74	5.20	4.10	4.93	4.42	2.83	5.68	5.90	10.12	11.80	7.67	7.06
ELOW RE		257	7.46	12.15	8.74	6.82	8,89	9.47	8.76	10.18	14.23	11 92	15-21	7.68	7.76	11 39	10.82	10.72	7.43	8.09	12.19	11.05	7.36	6.90	6.58	6.65	3.80	8.23	10.52	13.64	14.02	9.78	9.61
6.4 (2/3)		152	9.62	15.79	12.63	9.80	13.83	12.38	12.24	13.60	19,90	14.22	19.07	13.74	10.35	15.51	13.48	16.07	11.53	12.64	15.90	13.90	9.92	10.76	90.6	9.78	5.45	11.24	15.33	17.72	17 87	12.85	13.21
Table I.		52	16.19	22.08	19.34	14.73	29.37	19.09	17.38	21.43	33.89	19.27	28.90	20.86	15.05	22.16	18.38	29.07	18.69	21.14	23.04	20.03	14.27	19.02	IS.23	14.91	11.02	19.12	25.91	29.53	32.66	18.89	21.02
		aximm	64.23	55.85	199.58	38.20	70.460	42.29	61.90	71.38	84.40	78.50	50.49	89.45	66.12	52.74	46.42	92.01	46.98	47.91	62.37	169.50	29.07	68.58	39.96	25.52	40.64	64.33	77.52	64.33	103.96	83.92	69.63
•		Leat T	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	Average

		Table I	.6.4 (3/3	I) FLOURE	EGIME CALC	ULATED BY	TANK MOL	DEL SIMUL	NJION	H	ORONG RIV	TER : PUCU	NG	ŝ	.A-157.0	km2)
A			-				Flow Re	sgime (m3)	(s)							Annual Rainfall
Tear	Maximum	52	152	252	35%	452	502	552	65%	752	85%	226	266	Minimum	Mean) []
1961	74.06	19.32	12.48	9.4I	6.79	5.10	4.69	4.35	3.55	2.83	2.23	1.71	1.64	1.63	7.27	2,138
1962	72.54	20.39	14.42	12.38	9.89	7.93	7.21	6.65	5.03	4.17	3.50	2.95	2.87	2.81	9.12	3,233
1963	143.19	16.91	11.74	9.25	7.25	5.42	4.63	4.30	3.58	2.78	2.08	1.78	1.73	I.68	7.05	2,050
1964	56.60	15.84	10.15	7.29	5.63	4.49	4.08	3.75	2.93	2.67	2.24	1.87	1-70	1.61	5.97	2,441
1965	48.59	17.51	9.80	6.46	4.66	3.48	3.17	2.94	2.40	1.69	0.96	0.36	0.15	0.09	5.31	I,698
1966	33.85	15.12	10.20	7.92	5.90	4.39	3.47	2.95	2.45	1.86	1.31	0.78	0.69	0.69	5.38	2,301
1961	48.98	17.19	12.06	9.07	6.89	4.71	3.70	3.38	2.75	1.96	1.35	0.75	0.60	0.60	6.39	2,439
1968	60.64	24.01	16.67	12.99	10.87	90°6	8.13	7.48	6.19	5.00	4.27	3.47	3.12	3.03	10.25	3,519
1963	61.53	20.05	14.71	11.10	8 24	5.80	5.41	5.05	4.46	3.92	3.10	2.55	2.25	2.20	8.18	2,376
1970	58.74	24.09	16.45	13.23	9.19	6.90	6.02	5.17	4.62	3.78	2.99	2.36	2.25	2.24	9.11	3,040
1971	44.79	18.72	14.35	11.80	10.14	8.70	7.97	7.47	6.29	4.81	4.08	3.23	2.86	2.78	9.20	2,971
1972	35.95	19.42	13.14	9.13	6.58	5.06	4.69	4.30	3.56	2.90	2.07	1.50	1.40	1.39	6.38	I,925
1973	50.54	17.42	11.70	9.39	7.74	6.51	5.98	5.45	4.6L	3.62	2.97	2.45	2,33	2.28	7.30	2,786
1974	53.58	16.63	12.13	9.87	8.51	7.26	6.72	6.18	5.12	4.30	3.89	3.56	3.41	2.93	8.01	2,930
1975	37.89	15.82	11.79	9.70	8.27	7.12	6.76	6.44	5.66	4.53	4.02	3.41	3.21	3.18	7.81	2,529
1976	30.75	12.53	8.84	7.66	6.56	5.41	4.43	4.09	3.33	2.47	1.86	1.44	1.39	1.38	5.49	1,736
1977	23.62	10.44	7.14	5.75	4.65	2.94	2.77	2.65	2.37	1.67	0.96	0.43	0.30	0.25	3.98	1,577
1978	31.72	12.57	8.39	6.45	5.23	4.55	4.16	3.86	3.31	2.87	2.39	2.23	2.18	2.14	5.32	2,517
1979	47.45	16.95	12.71	10.16	8.24	6.81	6.17	5.51	4.30	3.81	3.21	2.71	2.51	2.43	7.82	2,732
1980	56.61	17.51	12.31	10.22	8.66	7.23	6.29	5.70	4.30	3.80	3.17	2.45	2.32	2.24	7.79	2,648
1981	61.62	18.28	14.06	12-21	I0.47	8.68	7.87	7.25	5.67	4.76	4.25	3.70	3.55	3.50	9.29	3,071
1982	58.99	18.96	13.86	10.78	8.04	5.49	5.14	4.79	3.99	3.19	2.39	1.68	1.60	1.59	7.69	2,125
1983	47.60	20.23	13.79	10.95	61.6	7.46	6.51	5.61	4.03	3.26	2.59	1.84	1.61	1.57	8.11	2,802
1984	35.72	18.75	14.69	10.53	8.24	6.95	6.22	5.45	4.17	3.63	3.20	2.97	2.89	2.85	8.06	2,877
1985	49.63	19.15	14.63	12.16	10-21	8.76	8.05	7.11	5.38	4.88	4.26	3:45	3.16	3.07	9.21	2,904
1986	49.61	19.82	15.71	12.29	9.89	8.05	7.16	6.60	5.66	5.04	4.28	3.77	3.60	3.51	9.35	3,021
1987	69.31	19.16	14.41	11.02	8.80	6.73	5.75	4.93	4.22	3.35	2.54	1.97	1.86	1.84	7.95	2,338
1988	42.90	14.35	10.51	8.01	5.78	4.30	4.00	3.79	3.35	2.81	2.17	1.44	I.15	1.07	6.00	2,043
1989	72.48	16.78	11.80	9.25	7.43	6.30	5.62	5.10	3.92	3.52	2.97	2.42	2.28	2.27	7.30	2,705
1990	88.15	24.09	12.09	8.95	6.43	4 47	4.16	3.90	3.19	2.48	1.95	1.36	1-30	1.30	7.72	2,433
Average	54-92	17.93	12.56	9.85	7.81	6.20	5.56	5.07	4.15	3.41	2.78	2.22	2.06	2.00	7.48	2,530

調整

.

Table I.7.1 MONTHLY AND ANNUAL TIDAL LEVEL OBSERVED AT SEMARANG HARBOR

(Unit: EL.m)

B

.

IEdr: 19	 	Tear	1441 :	••	อ	dr: 1992	•
HML LWL	: TSW	НМГ	LWL	MSL :	HWL	LWL	: JSM
	••	-		••			••
: 0.54 -0.50	0.04 :	0.59	0.39	0.03 :	0.50	-0.30	0.06:
: 0.52 -0.30	0.07 :	0.56 -	.0.27	0.07 :	0.52	-0.34	0.04
: 0.50 -0.36	-0.01 :	0.68 -	-0.30	0.14 :	0.60	-0.31	: 60.0
: 0.69 -0.40	: 60.0	0.67 -	.0.39	0.11 :	0.65	-0.36	0.12:
: 0.68 -0.38	0.10 :	0.71 -	.0.42	0.19 :			••
: 0.63 -0.40	0.14 :	0.65 -	-0.36	0.13 :			
: 0.56 -0.37	: 60.0	0.62 -	-0.44	0.08 :			••
: 0.56 -0.37	0.10 :	0.52 -	-0.33	0.04 :			
: 0.56 -0.31	: 60.0	0.48 -	-0.34	0.03 :			
: 0.58 -0.39	0.07 :	0.59 -	-0.38	0.08 :			
: 0.60 -0.46	0.07 :	0.62	-0.44	0.08 :	-		
: 0.59 -0.42	0.03:	0.65 -	-0.42	0.10 :			••
	•••			••			
: 0.58 -0.39	0.07 :	0.61 -	-0.37	: 60.0	0.57	-0.33	0-08
	••••						
: 0.69 -0.50	• ••	0.71 -	-0.44	• ••	0.65	-0.36	0.08
•••				••			
••	••			••			

HWL: Monthly and annual highest tidal level.
LWL: Monthly and annual lowest tidal level.
MSL: Monthly and annual average tidal level.
All tidal levels are presented as the elevation above MSL observed at Jakarta Harbour (Tanjung Priok) in 1925.

FIGURES

STATES IN

I--78

ANK A

the second

۲

Strains

24 1/100-year 1/50-year 1/25-year 1/20-year 1/10-year К С 1/5-year 2 ົ້ 80 8 စ္ ထူ . ۲ PROBABLE FLOOD RUNOFF HYDROGRAPH 9 AT SIMONGAN WEIR IN GARANG RIVER ĥ 13 14 Time (hr) <u>N</u> ę က ω ~ ശ ŝ 4 က പ 8 600 400 800 200 0 80,00 Discharge (m3/sec) MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS Fig. 1.4.4 PROBABLE FLOOD RUN-OFF HYDROGRAPH AT SIMONGAN WEIR JAPAN INTERNATIONAL COOPERATION AGENCY

NAME OF TAXABLE

Note C :Creager Number 1 od Year Others 200 Year 50 Year 5 7 93 ñ B di Fed ٩ đ 100,000 ò 10,000 MAXIMUM RECORDED FLOODS IN INDONESIA Catchment Area (km2) ;≡50 ¢ PEAK DISCHARGE AND 6 (1984 VERSION) 1,000 ٥ . ÷, Blorohd fiar an 2 4 Babon 00 1 Bringin **1** Silandar Eást ဓ IXK. 용 문 Flood Peak Discharge (m3/s) 10,000 ę . MASTER PLAN ON WATER RESOURCES DEVELOPMENT AND FEASIBILITY STUDY FOR URGENT FLOOD CONTROL AND URBAN DRAINAGE IN SEMARANG CITY AND SUBURBS Fig. 14.7 PEAK DISCHARGE AND MAXIMUM RECORDED FLOODS IN INDONESIA JAPAN INTERNATIONAL COOPERATION AGENCY

۲

۲

