Table D4.1.4 (1) Result of Flue Gas Measurement

No.	Name of enterprise	Source No.	Furnace name	Concentration of the exhaust gas																$\left[\begin{array}{l}\text { Veloa } \\ \text { ity } \\ \mathrm{m} / \mathrm{s}\end{array}\right.$	$\begin{array}{\|c\|} \hline \text { Gas } \\ \text { temp } \\ 0 \\ c \end{array}$	Dry exhaust				
				S02. pmm	$\frac{\mathrm{NOX} \times \mathrm{ppm}}{\text { N0x mg/m3 }}$	${ }_{\text {C0 }}^{\text {co ppm }}$ com	$\begin{aligned} & \text { Nox } \\ & \text { (02 } 48 \end{aligned}$	$\begin{aligned} & \frac{5 u m t}{\text { Dust }} \\ & \mathrm{g} / \mathrm{m} \end{aligned}$	$\begin{gathered} 02 \\ * \end{gathered}$	$\begin{gathered} \mathrm{CO2} \\ 8 \end{gathered}$	${ }_{\text {ppph }}^{\text {HC }}$	${ }_{\text {S0/ }}^{502}$	${ }_{\text {Nox }}^{\text {Nox }}$	Co/h		S02	Nox	${ }^{60} \mathrm{~kg} / \mathrm{hr}$	Dust				${ }_{\text {Natural }}^{\text {Nat }}$	Consunpt	Brown	Others
03/0	EMO. TEGLA ES CSEREPIPARI vallalat putnoki teglagyar	P002	No. 2 furnace	-345	44	7771	440	0.012	19.3	2.3	1,365	38.1	3.50	$\underline{37.3}$	0.46	500	200	$\frac{10.000}{}$	160	12.0	70	E 38.700	gas	oil		
		9014																								
		P014	No. 1 furnace	$\begin{array}{r} 50 \\ -143 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ -211 \\ \hline \end{array}$	$\begin{array}{r} 720 \\ -\quad 900 \\ \hline \end{array}$	106	0.025	19.4	1.1	-	3.90	0.561	24.6	0.68	0.75	70	3.500	56	14.7	80	27.300	-	-		-
04/1	BORSOOCHEX RT.	P062		$\frac{\mathrm{ND}}{\mathrm{ND}}$	$\frac{-308}{633}$		4.028	0.0023	19.7	0.9	75	NO	4.60	0.055	0.01	200	${ }^{400}$	${ }^{100}$	${ }^{30}$	6.7	177	7.280			-	Maste solvent
$05 / 0$	BORSODI ENERGETIKAT KFT.(BORSODI HOEROMU)	P001-1	No. 1 Hater tube	- 2,016	126	0	286	0.50	13.5	5.6	-	1.400	62.9	7.59	120	800	$\frac{\mathrm{mg} / \text { / } \mathrm{m} 3 \mathrm{3}}{240}$	$\frac{\mathrm{mg} / \mathrm{Am} 3}{12,000}$		17.8	159	243,000		-		
			boiler $100 \mathrm{t} / \mathrm{h}$																				m3/h		t/h	
			No. 3 Mater tube boiler $100 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 2.745 \\ -1843 \end{array}$	203 -417 -4	15 $-\quad 19$	308	-	9.8	8.6		1. 180	62.9	2.83	-	800	240	12.000	160	11.9	168	151.000	1.200	-	*33.95	-
		¢оо̄т-3	No. 3 Fater tub̄ boiler $100 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 2,240 \\ \frac{2,240}{6,400} \end{array}$	$-\frac{41}{182}-147$	--- $\begin{array}{r}30 \\ \hline 8\end{array}$	329	0.21	11.6	7.6	ND	1.090	63.9	6.41	40	800	240	12.000	160	14.1	173	171.000	1.500	---	* 35.9 th	
		P002-1	No. 4 Mater tube boiler $100 \mathrm{t} / \mathrm{h}$	$\begin{aligned} & \frac{1.582}{1.520} \\ & 4.520 \end{aligned}$	$\begin{array}{r} 160 \\ 329 \end{array}$	$\begin{array}{r} 60 \\ -75 \end{array}$	324	0.14	12.6	6.2		868	63.1	14.4	27	800	240	12,000	160	16.0	205	192.000	1.300	-	${ }^{* 33} 78$	-
07/0	PAINONGLAS TPART RT;SAJOSZENTPETERI UVEGGYAR	P015	No. 1 glass melting tank oven	NO	$\begin{array}{r} 2031 \\ \hline 2031 \\ 417 \end{array}$	$\frac{\mathrm{NO}}{\mathrm{NO}-1}$	437	0.045	13.1	4.6	ND		9.38		1.0		67	3,333	40	11.5	388	22.500	${ }^{\mathrm{m} 3 / \mathrm{h}} \mathrm{M}$	-	t/h	-
		P019	No. 2 glass melting tank oven		$\begin{array}{r} 421 \\ \hline \quad 220 \\ \hline 452 \end{array}$	$\begin{array}{r} 85 \\ -806 \\ \hline 106 \end{array}$	430	0.010	12.3	5.3	N0	0.475	9.40	2.21	0.21	-	67	3,333	40	10.2	378	20.800	m $3 / \mathrm{h}$ 930	-	-	-
08/0	BORSODI ERCELOKESZITO MUZSGORITO KFT.	P001-1	No. 1 Sintering furnace	$\begin{array}{r} 94 \\ \hline 969 \\ 269 \end{array}$	$\frac{144}{296}$	$\begin{array}{r} 8.831 \\ \hline 11,0441 \end{array}$	699	0.34	17.5	3.6	395	100	111	4. 130	130	300	300	10.000	160	16.0	106	374.000	m3/h	-	-	-
09/2	SAGROCHEM KFT.	P001	HLG Smoke tube boiler $20 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 5571 \\ -1.591 \end{array}$	$\begin{array}{r} 192 \\ \hline \end{array}$	$\frac{10 \mathrm{~N}}{\mathrm{NO}}$	261	0.0629	8.5	9.3	No	26.4	6.55	N0	1.0	87.5	35	1,750		9.7	223	16,600	-	${ }^{0.83}$	-	-
		P001	HLG Smoke tube boiler $20 \mathrm{t} / \mathrm{h}$		$\begin{array}{r}185 \\ \hline 80 \\ \hline\end{array}$	- ${ }_{\text {N0 }}$	235	0.055	7.6	10.5	N0	N0	7. 48	No	1.1	87.5	35	1.750		10.4	194	19.700	-	*0.97	-	
		P055	Incinerator (Waste solvent \& solid)	$\frac{N D}{N D}$	$\begin{array}{r} 500 \\ \hline 196 \\ \hline 403 \end{array}$	$\begin{array}{r} 75 \\ \hline 94 \\ \hline \end{array}$	813	0.040	16.9	2.6	ND	ND	0.962	0.224	0.096	$\begin{array}{r} 200 \\ 1 \mathrm{~m} 3 \end{array}$	- ${ }^{400}$	$\begin{array}{r} 100 \\ \mathrm{mg} / \mathrm{Nm}^{10} \end{array}$		6.8	35	2.390			-	asto solvent
10/0	DECEMBER 4. DROTMUVEK	P033-2	No. 2 smoke tube boiler $4 \mathrm{t} / \mathrm{h}$	$\begin{aligned} & \mathrm{ND} \\ & \mathrm{ND} \end{aligned}$	${ }^{65}$	$\begin{aligned} & \frac{10}{1021} \\ & \hline 10 \end{aligned}$	65		4.0	9.6	NO	Tid	0.295	NO		,	1.44	- 72	-29mi	-	223	2,210	${ }^{215}$	-	-	
13/0	dlosgyorl papiggyar	P002	No. 1 Sroke tube boiler $5 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} \mathrm{ND} \\ \hline \mathrm{NO} \end{array}$	111	$\frac{\mathrm{ND}}{\mathrm{ND}}$	55	0.0010	4.3	9.7	ND	N0	0.291	ND	0.0026	-	2.7	90	-		209	2,620	237	-	-	-
15/1	HAMOR RT.	P006-2	No. 5 Heating furnace	$\frac{\mathrm{NO}}{\mathrm{ND}}$	15	- 10	65	0.0013	17.1	2.2	ND	ND	0.631	N0	0.027		1.8	60			385	20.500		-		-
		P009	No. 3 Forge furnace	ND NO NO	147	$\begin{aligned} & \frac{\mathrm{ND}}{\mathrm{ND}} \\ & \hline \end{aligned}$	735	0.0014	17.6	1.8	N0	ND	3.35	ND	0.016	-	0.31	10	-	9.0	103	11. 100	2 213		-	
15/2	OIOSGYORI AGEL ES VASONTO	P014-1	1-A Heating furnace (Car type kiln)	$\begin{aligned} & \mathrm{ND} \\ & \hline \mathrm{ND} \\ & \hline \end{aligned}$	$\begin{array}{r} 22 \\ \hline \end{array}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	68	0.0043	15.5	2.9	N0	NO	0.423	NO	0.040	-	0.31	11		6.4	415	9.370	*314	-	-	
15/4	ONM DIOSGYORT NEMESACEL MUVEK FA.	$\begin{aligned} & \mathrm{P002-2} \\ & { }_{-3} \end{aligned}$	Forge furnace	$\frac{N 0}{N 0}$	$\frac{42}{25}$	$\begin{array}{r} \frac{10}{\mathrm{~N}} \\ \mathrm{NO} \end{array}$	101	0.0009	17.3	1.8	NO	-	0.244		0.0049	-	6	200	-	4.6	${ }^{215}$	5,410	m3/	-	-	
		P046	No. 2 pit furnace	$\stackrel{\text { ND }}{\text { NO }}$	$\begin{array}{r} 86 \\ 177 \end{array}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	340	0.0036	16.7	2.0	ND		3.09	-	0.063	-	6	200	-	5.0	287	17.500	-	-	-	-
		P095-1	HoK Snoke tube boiler $12 \mathrm{t} / \mathrm{h}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	$\begin{array}{r} 69 \\ 142 \\ \hline \end{array}$	$\frac{\mathrm{ND}}{\mathrm{NO}}$	104	0.0029	9.7	12.0	NO	N0	1.67	ND	0.03	-	42	1.400	-	4.7	177	11.800	${ }^{* 480}$	-	-	-
		P097-2	No. 5 Water tube boiler $24 \mathrm{t} / \mathrm{h}$	$-\mathrm{ND}$	${ }^{6} 12$	${ }_{1}^{90} 1$	10	0.0009	11.2	11.2	N0	-	0.594	5.42	0.043	-	60	2.000	-	-	188	48,200	$\begin{gathered} 430 \\ \mathrm{~m} \end{gathered}$	-	Blast	furnace gas $13000 \mathrm{~m} 3 /$
17/1	TEJOCSABAI CEHENT- ES MESZIPARI RT.	P010	$\begin{aligned} & \text { SP Cement kiln } \\ & 83 \mathrm{t} / \mathrm{h} \end{aligned}$	$\begin{array}{r} \mathrm{NO} \\ \mathrm{ND} \end{array}$	$\begin{array}{r} 127 \\ 533 \\ 1.095 \end{array}$	$\begin{array}{r} 105 \\ \hline 131 \\ \hline 105 \end{array}$	1.394	0.033	14.5	10.9	ND	ND	325	39.0	9.8	-	120	4.000	40	26.7	107	297,000	$\frac{\mathrm{m} 3 / \mathrm{h}}{7.970}$	300 1/7h		$13,000 \mathrm{~m} 3 / \mathrm{h}$
		P031	Shaft kiln for limestone $19 \mathrm{t} / \mathrm{h}$		$\begin{array}{r} 16 \\ -33 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ND} \\ & \mathrm{ND} \\ & \hline \end{aligned}$	21	0.0048	8.3	22.0	5	0.490	1.13	ND	0.16	40	40	1.333	20	12.2	95	34,300		asto	-	-
18/0	StRAbAG Hungaria Epito kft	P001	$\begin{aligned} & \text { Oryer for ageregate } \\ & 60 \mathrm{th} \end{aligned}$	$\begin{array}{r} 23 \\ -\quad 66 \\ \hline \end{array}$	$\begin{array}{r} 36 \\ -\quad 74 \\ \hline \end{array}$	$\begin{array}{r} 32 \\ \hline \end{array}$	185	0.19	17.7	1.7	21	1.75	1.97	1.07	5.1	18		360	5.4	20.1	126	26.700	$* 450$ m m/h	-	-	-
21/0	EmO. TEGLA ES CSEREPIPARI vallalat halyI teglagyara	P001	$\begin{aligned} & \text { No } 18 \text { \& No. } 2 \\ & \text { furnace } \end{aligned}$	$\begin{array}{r} \frac{15}{43} \\ \hline \end{array}$	$\begin{array}{r} 565 \\ 1651 \\ \hline \end{array}$	$\frac{15}{19}$	501	0.0013	19.1	1.5	16	1.45	3.89	0.63	0.044	150	150	5.000	80	4.6	189	33.800	($* 144$ $\mathrm{~m} / \mathrm{h}$	-	-	
22/0	MI SKOLCT UTEPITO KFT NYEK ASZFAL KKYERO	P001	$\begin{aligned} & \text { Dryer for agerogate } \\ & 70 \mathrm{t} / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{array}{r} 401 \\ \hline 9801 \\ \hline 2801 \end{array}$	$\begin{array}{r} 19 \\ \hline \quad 18 \\ \hline \quad 18 \end{array}$	$\begin{aligned} & 400 \\ & \hline 500 \\ & \hline \end{aligned}$	61	0.052	18.5	1.2	-	9.44	0.623	16.9	1.8	9.45	9.45	315	5.4	12.7	87	33.700	$\begin{array}{r} \mathrm{m} 3 / \mathrm{h} \mid \\ \hline 480 \\ \mathrm{~m} 3 / \mathrm{h} \\ \hline \end{array}$	-	-	-

Table D4.1.4 (2) Result of Flue Gas Measurement

No.	Name of enterprise	SourceNo.	Furnace name	Concentration of the exhaust gas								Emission				Emission standard				$\left[\begin{array}{l} \text { Veloc } \\ \text { ity } \\ \text { m/s } \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { Gas } \\ \text { temp. } \\ { }_{c} \mathrm{c} \end{array}$	Ory exhaust gas m3N/l	Fuel consumption				
				$\begin{aligned} & \mathrm{SO2} \mathrm{pmfi} \\ & \mathrm{~S} 02 \mathrm{mg} / \mathrm{m} 3 \end{aligned}$	W0x ppm Nox mp/m	$\frac{60 \mathrm{ppn}}{60 \mathrm{ma}}$	$\begin{aligned} & \text { Nox ppran } \\ & (0248 \% \end{aligned}$	Dust \& $/$ m	8	$\begin{gathered} 602 \\ 8 \end{gathered}$	$]_{\text {ppm }}^{\mathrm{HG}}$	$\begin{aligned} & \mathrm{SO2} \\ & \mathrm{~kg} / \mathrm{hr} \end{aligned}$		${ }_{\text {co }}^{\text {co }}$	$\begin{aligned} & \text { Dust } \\ & \mathrm{ke} / \mathrm{hr} \end{aligned}$	$\begin{aligned} & 502 \\ & \mathrm{k}_{\mathrm{B}} / \mathrm{hr} \end{aligned}$	$\left\|\begin{array}{l\|} \mathrm{NOx} \\ \mathrm{~kg} / \mathrm{hr} \end{array}\right\|$	co	$\begin{aligned} & \text { Dust } \\ & \mathrm{kg} / \mathrm{hr} \end{aligned}$				$\begin{aligned} & \text { Natural } \\ & \text { gas } \end{aligned}$ gas	Heavy oi	$\begin{aligned} & \text { Brown } \\ & \text { cool } \end{aligned}$	0thers	
23/1	TISZAI VEGYT KOMelnat rr.	P003-1	Nitric acid	N0	1.606	N0.	1.696		4.9	ND	ND	NO	210	ND			400			9.5	141	63.700	-		-		
		-3	manufactur ing plant	No	3. 298	No																					
		P021-1	$\begin{aligned} & \text { Incinerator } \\ & 1-610 \text { (Solid) } \end{aligned}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	$\begin{array}{r} 26 \\ 53 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ -\quad 19 \\ \hline \end{array}$	147	0.021	18.0	2.0	24	No	0.673	0.236	0.26	$\begin{array}{r} 200 \\ \mathrm{mg} / \mathrm{Nm} 3 \end{array}$	$\begin{array}{r} 400 \\ \mathrm{mg} / \mathrm{mm} \end{array}$	$\begin{array}{r} 100 \\ \mathrm{~m} / \mathrm{m} 3 \mathrm{~m} \end{array}$	$\mathrm{mg} / \mathrm{mm} 3$	8.6	107	12.600	-	-	-	Waste solid $300 \mathrm{~kg} / \mathrm{h}$	
		P021-2	Incinerator 1-620 (Solvent)	$\frac{\mathrm{ND}}{\mathrm{ND}}$	$\begin{array}{r} 20 \\ 41 \end{array}$	$\begin{gathered} \mathrm{NO} \\ \mathrm{ND} \end{gathered}$	81	0.013	16.8	2.5	12	ND	0.377	ND	0.12	250	100	5.000	60	22.2	257	9. 190	-	-	-	$\begin{array}{\|} \text { Wasto solvent } \\ \quad 100 \mathrm{~kg} / \mathrm{h} \\ \hline \end{array}$	
		P021-3	Incinerator 1-600 (Solvent)	$\begin{aligned} & \mathrm{ND} \\ & \hline \mathrm{NO} \end{aligned}$	18 37	$\begin{array}{r} \mathrm{NO} \\ \begin{array}{c} \mathrm{ND} \\ \mathrm{ND} \\ \hline \end{array} \end{array}$	87	0.0001	17.5	2.0	14	ND	0.481	ND	0.0013	250	100	5.000	60	24.8	231	13.000	-	-	-	Maste solvent $100 \mathrm{~kg} / \mathrm{h}$	
		P025-2	No. 2 Hater tube biler $25 \mathrm{t} / \mathrm{h}$	$\frac{\mathrm{NO}}{\mathrm{NO}}$	$\begin{array}{r} 72 \\ \hline 148 \\ \hline \end{array}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	122	0.0036	11.0	5.7	NO	ND	3.62	ND	0.088	500	100	5.000	-	9.6	134	24.500	$\begin{array}{r} \quad 1.450 \\ \text { m } 3 / \mathrm{h} \\ \hline \end{array}$	-	-		
24/0	H0L RT.	P004	F102 Heat madium boilar	$\frac{-\frac{1}{N D}}{N 0}$	$\begin{array}{r} 59 \\ 121 \end{array}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	68		6.2	8.3	-	N0	0.473	N0		500	200	10.000		-	60	3.900	2800				
$25 / 1$	TISZAT EROMU RT. 1. Hoerom	P001-1	No. 1 Mater tube boiler $125 \mathrm{t} / \mathrm{h}$	$\frac{2,468}{7051}$	$-\frac{236}{485}$	$\frac{60}{75}$	337	0.18	9.1	9.0	ND	1,100	75.6	11.7	28	375	150	7.50	90	13.1	189	156,000	$\begin{gathered} 700 \\ \mathrm{~m} / \mathrm{h} \end{gathered}$	-	$\begin{gathered} 33.29 \\ \mathrm{t} / \mathrm{h} \end{gathered}$		
		P001-2	No. 2 Water tube boilar $125 \mathrm{t} / \mathrm{h}$	$\begin{array}{\|r\|} \hline \\ \hline \end{array}$	$\begin{array}{r} 278 \\ -271 \\ \hline \end{array}$	$\begin{array}{r} 99 \\ 913 \end{array}$	422	0.094	9.8	9.0	5	1.270	101	19.9	17	375	150	7,500	90	13.9	175	177.000	$\begin{gathered} 900 \\ \mathrm{~m} 3 / \mathrm{h} \end{gathered}$	-	$\begin{array}{\|c\|c\|c\|} \hline 32.85 \\ t / h \end{array}$	${ }^{-}$	
		P002-1	No. 3 Water tube boilar $125 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 2.686 \\ \hline 7.674 \end{array}$	$\frac{194}{398}$	$-\frac{350}{438}$	330	0.51	11.0	7.4	ND	1.350	70.1	77.0	90	375	150	7.500	90	14.9	190	176.000	$\begin{aligned} & 70 \\ & \mathrm{~m} 3 \mathrm{~h} \end{aligned}$	-	*39.46	-	
		P002-2	No. 4 Matar tube boiler $125 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 1.549 \\ \hline-2.599 \\ \hline 7.409 \end{array}$	$\begin{array}{r}196 \\ \hline 403 \\ \hline\end{array}$	630 788	292	0.82	9.6	8.3	ND	1. 190	64.8	127	130	375	150	7.500	90	12.8	180	161,000	$\begin{gathered} 700 \\ \mathrm{~m} / \mathrm{h} \end{gathered}$	-	*48.69 ${ }_{\text {//h }}$		
		P003-1	No. 5 Water tube boiler $125 \mathrm{t} / \mathrm{h}$	$\left.-\frac{1,409}{-2,049} \right\rvert\,$	- 264	- 40	488	0.12	11.8	7.1	11	995	92.2	8.5	20	375	150	7.500	90	12.5	163	170.000	70	-	$\xrightarrow{* 30.11}$ t/h	- -	
25/2	TISZAT II HoEromit	P001	No. 1 water tube boiler $670 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 914 \\ 2.611 \end{array}$	325		333	0.25	4.4	12.8	ND	2.300	587	8.80	220	1.875	750	37,500		34.2	135	880,000	m3/h	40.0 t / h	-	$\begin{array}{c\|} \hline \text { Thert gas } \\ 19,300 \mathrm{~m} 3 / \mathrm{h} \\ \hline \end{array}$	
		P003	No. 3 Hater tube boiler $670 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 700 \\ 2.000 \end{array}$	$\begin{array}{r} 230 \\ \frac{472}{} \\ \hline \end{array}$	$\frac{\mathrm{ND}}{\mathrm{ND}}$	279	0.16	7.0	11.5	ND	1.810	428	N0	140	1.875	750	37.500	-	34.6	131	906,000	$\overline{\mathrm{m} 3 / \mathrm{h}}$	38.7 t	-	Inert gas $36.700 \mathrm{~m} 3 / \mathrm{h}$	
-	020 gomorkus kazauk	P001	Stnoke tube boiler (Marine boiler)	$\begin{array}{r} 182 \\ \hline \\ \hline 220 \\ \hline \end{array}$	52 107	$\begin{array}{r} 1,385 \\ 1,731 \\ \hline \end{array}$	184	0.0579	16.2	4.5	-	1.87	0.384	6.23	0.208	0.2	$\overline{0.27}$		0.12	2.4	125	3, 600			$\begin{aligned} & 0.13 \\ & t / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{0.102(10 / 2}{0.093} \\ t / \mathrm{h} \text { (wood) } \end{gathered}$	
	BEFAG LADI FATELEP	P001	Sinoke tube boiler (Locomotive boiler)	$\frac{\mathrm{ND}}{\mathrm{ND}}$	$\begin{aligned} & 76 \\ & \hline 156 \\ & \hline 150 \end{aligned}$	$\begin{array}{r} 5.669 \\ 7.0866 \end{array}$	137	0.543	11.6	9.2	-	N0	0.749	34	2.61	-	42	1.40	21	7.2	232	4.800				$\begin{array}{r} 0.5 \\ t / \mathrm{h} \text { (wood) } \end{array}$	
-	B0RSOOI SORGYAR RT. BOCS	P001	No. 5 Smoke tube boiler $20 \mathrm{t} / \mathrm{h}$	$\frac{N}{N D}$	$\begin{array}{r} 991 \\ 2031 \end{array}$	$\begin{array}{r} 5 \\ \hline \end{array}$	89		2.1	1.2	-	ND	3.0	0.094	${ }^{-}$	-	70	3.500	-	-	200	15.000	$\begin{aligned} & 1.422 \\ & \text { m } 3 / \mathrm{h} \\ & \hline \end{aligned}$				
02/1	OZOT KOHASRATI UZEMEK	P036	No. 10 Kater tube boiler $20 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 24 \\ 69 \end{array}$	3.2	$-\quad \frac{262}{328}$	26	7.89	18.9	4.0	-	11.0	1.06	52.7	1,270	8.2	6.0	428.6	2.9	-	${ }^{90}$	161.000	$\begin{gathered} 380 \\ \mathrm{~m} / \mathrm{h} \end{gathered}$		\pm / h^{2}		
12/0	EAEV. MUNKASSZALL0	P001	Cast iron boiler		$\begin{array}{r} 12 \\ 6 \end{array}$	$\left\lvert\, \begin{array}{r} 267 \\ \hline \end{array}\right.$		0.0047	21.0	0.6	-	0.037	0.08	2.20	0.031	5.4	5.4	180	2.7	3.5	50	6,500			0.056		
14/1	DIGEP II TELEP	P002	hater tube boiler	$\frac{\mathrm{NO}}{\mathrm{NO}}$	$\begin{array}{r} 577 \\ 117 \end{array}$	$\begin{aligned} & \mathrm{ND} \\ & \mathrm{ND} \\ & \hline \end{aligned}$	156	-	14.8	3.6	-	N0	16.74	ND			21	700	-	-	157	143,000	$\begin{gathered} 4.200 \\ \mathrm{~m} 3 / \mathrm{h} \end{gathered}$				
17/2	HEJOCSABAA CEMENT-ES MESZIPARI RT. KOBANY UZEM	P030	Cast iron boilor	$\begin{array}{r} 92 \\ 263 \\ \hline \end{array}$	$\begin{array}{r} 68 \\ 140 \end{array}$	$\begin{array}{r} 13 \\ 16 \\ \hline 16 \\ \hline \end{array}$	68	-	3.9	13.5	-	0.034	0.018	0.002	-	0.18	0.18		0.02		199	130				$\begin{array}{r} 0.015 \\ \text { t/h(Lightoil) } \end{array}$	
26/0	MISKOLCI HOSZOLGALTATO v. KILIAUI KAZANHAZA	P001	No. 2 Smoker tube boiler (hot water)	$\begin{gathered} \mathrm{NO} \\ \mathrm{NO} \end{gathered}$	$\begin{array}{r} 65 \\ 133 \end{array}$	$\begin{array}{\|} 690 \\ 863 \\ \hline \end{array}$	63	-	3.5	9.8	-	N0	0.32	2.07		-	2.	${ }^{90}$	-	-		2.400	$\begin{aligned} & 207.5 \\ & \text { m3/4. } \end{aligned}$				
26/3	hISKOLCI hoszolgaltaio y kOROSI CS. UTI KAZANHAZ	P001	Cast iron boiler (hot water)		$\begin{array}{r} 33 \\ 68 \\ \hline \end{array}$	$\begin{array}{r} 663 \\ \hline 829 \end{array}$	128	0.182	16.6	3.2	-	0.073	0.346	4.23	0.928	21	21	700	10.5	4.2	121	5,100			$\begin{gathered} 0.208 \\ t / h \end{gathered}$	$\begin{aligned} & \text { Czecho. Poland } \\ & \text { - } \mathrm{lral} / \text { coal } \end{aligned}$ -Ural/coal	
$26 / 4$	HISKOLCI HOSZOLGALTATO v. futouti kazanhaz	P001	Smoke tube boiler	$\begin{aligned} & \mathrm{ND} \\ & \mathrm{ND} \\ & \hline \end{aligned}$	$\begin{aligned} & 481 \\ & \hline 49 \\ & 99 \end{aligned}$	$\begin{array}{r} 681 \\ \hline 85 \\ \hline \end{array}$	61	${ }^{-}$	7.7	7.9	-	NO	0.187	0.162	-	-	2.7	${ }^{90}$	-	-	190	1,900	\% ${ }_{\text {m }}$				
26/6	WISKOLGI HOSZOL GALTATO	P001	No. 1 Hater tube	$\frac{10}{N 0}$	$-\frac{35}{72}$	$\frac{\mathrm{NO}}{\mathrm{ND}}$	52	0.0575	9.5	6.4	-	N0	0.553	ND	0.443	-	5.4	180	-	3.9	121	7.700	3300				
27/0	MISKOLCI FUTOMU KT	P002	FK4 water tube boiler (hot water)	$\begin{array}{r} 390 \\ 1.114 \end{array}$	$\begin{array}{r} 139 \\ \hline 285 \\ \hline \end{array}$	\|l		134	-	3.3	13.1	-	43.5	11.1	ND	-	1.800	1,800	60.000	-	-	178	39.000	$\begin{aligned} & \hline 1.000 \\ & \mathrm{~m} 3 / \mathrm{h} \end{aligned}$	t/h		
		P002	FK3 water tube boiler (hot water)	$\begin{gathered} 21 \\ 60 \\ \hline \end{gathered}$	$\begin{gathered} 97 \\ \hline 199 \end{gathered}$	$\begin{gathered} \mathrm{ND} \\ \frac{\mathrm{ND}}{} \\ \hline \end{gathered}$	85		1.5	11.3	-	3.54	11.8	ND	${ }^{-1}$	1.800	1.800	60.000	-	-	190	59,000	$\begin{aligned} & 5.700 \\ & \mathrm{~m} / \mathrm{h} \end{aligned}$				
$31 / 0$	HISKOLC EGYETEM FUTOMO	P001	$\text { No } 1 \text { moke tube }$ $\text { boiler } 7 \mathrm{t} / \mathrm{h}$	$\begin{array}{r} 996 \\ 2846 \\ \hline \end{array}$	$\begin{array}{r} 287 \\ \hline 589 \\ \hline \end{array}$		287	0.0977	4.0	13.7	-	15.4	3.18	0.007	0.528	120	120	4,000	60	5.8	218	5.400		$(\mathrm{F} 60 / 130)$			

Table D4.1.5 (1) Flue Gas Measurement Results

Outine of facility and of measurements

Facility

A Hoffman-type ring kiln is used for burning bricks. The right and left sides of the ring-shaped furnace were cut away and rebuilt into two tunnel furnaces so that trucks could be used. Among the raw materials, the brown coal and sawdust undergo self-sustained combustion and burning. At the ceiling of the burning chamber of the kiln there is a portal for loading pulverized coal, and coal is loaded as required while this portal is monitored by naked eye observation.

In order to conserve energy, the facility uses exhaust gas in the brick drying process.

Location of measurement

A measurement site installed on the lateral flue attached to the induced draft fan and the smokestack was used.

Problems and Countermeasures

As a measure against exhaust gases, imported coal of low sulfur was introduced on an experimental basis to replace brown coal, but its use was abolished because many defective items came as a result of its calorific value and ash melting point. Moreover, since the natural gas piping was laid out close to the plant, the plant side is studying the possibilities for changing fuels.

Since flourine is contained in the raw material clay, there is the problem that it decomposes during burning and is discharged into the exhaust gases. In addition, exhaust gas leaks into the building, and the flouride dust is dangerous to the human body. Consequently, strict regulations on exhausts are required to protect working environments.

Estimated effects of countermeasures

Table D4.1.5 (2) Flue Gas Measurement Results

No 03 / 0	Source No.P 014			Product Building bricks						
Name of company EMO TEGLA ES CSEREPIPARI VALLALAT PUTNOKI TEGLAGYAR	EMO TEGLA ES CSEREPIPARI VALLALAT PUTNOKI TEGLAGYAR									
Name of combustion facility No. 1 tunnel kiln										
Types of fuel used	Brown coal and sawdust					Fuel Consumption				
Rated load of furnace 2250 units/h	2250 units/h					Load at time of measurement 1600 units/h				
Burner type and rating -						Number. of bumers				
Measurement data										
Hem		SO2	NOx	CO	DUST	O 2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Mcasurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		50	10	720	25	19.4	1.1	80	27,300	-
O2 18% conversion value	ppm	94	19	1350	- \quad -					
	$\mathrm{mg} / \mathrm{m} 3$	269	54	3857	47					
Emission	kg / h	3.9	0.561	24.6	0.68					
Emission standard kg / h		0.75	70	3500	56					
Outline of facility and of measurements										
Facility										
This facility uses a tunnel kiln developed with Italian technology. Raw materiais and procedures are the same as for the No. 2 furnace. The height of the smokestack when this furnace was completed was 20 meters. Complaints about it were raised by local inhabitants. As a countermeasure, a duct was used to connect the smokestack to a 54 -meter smokestack which had been abolished.										

Location of measurement

A measurment site installed on the lateral flue in front of the smokestack was used.

Problems and Countermeasures

The SO 2 content exceeds the standard value and corrective measures must be taken.
Conversion to natural gas has already been accomplished at the MALYI plant of the EMO Company. What is more, such conversion is easy because piping has been laid out close to the plant, so total fuel conversion to natural gas should be made.

Estimated cffects of countermeasures
Significant reductions in SO 2 and dust will be made possible.

Table D4.1.5 (3) Flue Gas Measurement Results

Location of measurement

A measuring site installed at the center of the smokestack was used.

Problems and Countermeasures

The volume of NOx exceeds the standard value by a wide margin. At O 2 of 4% conversion, the reading is 4028 ppm , and it is suspected that nitrogen is contained in the products of incineration. To counter this situation, a twostage combustion burner must be introduced. In such a system, reduction combustion takes place at a primary air ratio of about 0.7 , and full combustion occurs with secondary air.

Estimated effects of countermeasures

With two-stage combustion, the reading at O 2 of 4% conversion can be reduced to anywhere from 150 to 200 ppm.

Table D4.1.5 (4) Flue Gas Measurement Results

Location of measurement
The measurement site installed at the rear of the electric dust collector was used. Since air gets into the exhaust gas from the air preheater and from the dust collector, the oxygen concentration was high. Problems and Countermeasures

Since sulfur is contained in the fuel, the SO 2 content far exceeds the standard value.
If the current fuel continues to be used henceforth, desulfurization will become necessary.
Details are presented separately.

Estimated effects of countermeasures

[^0]Table D4.1.5 (5) Flue Gas Measurement Results

[^1]Table D4.1.5 (6) Flue Gas Measurement Results

[^2]Table D4.1.5 (7) Flue Gas Measurement Results

Outline of facility and of measurements

Facility

A tank type glass melting tank oven rated at $100 \mathrm{t} / \mathrm{h}$ is used. At a melting temperature of $1500^{\circ} \mathrm{C}$ (by
pyrometer), a regenerator of 1380 to $1430^{\circ} \mathrm{C}$ is installed for energy conservation so heat collection takes place. Switchover time is 20 minutes.

The natural gas burner was developed by the company. It comes in sets of two burners each, and six sets are installed.

A German-made computer is used to control the oven.

Location of measurement

The smokestack intake behind the regenerator was used. Residual oxygen concentration at the measuring point is high because a regenerator is used.
Problems and Countermeasures
Dust, SO 2 , NOx, and CO all fall below the exhaust standard, but the NOx concentration at $8 \% 02$ is high at 334 ppm . An oxygen burner is recommended because the conventional low-NOx burner is not effective for adding heat to $1500^{\circ} \mathrm{C}$. Air pressurized to about $3 \mathrm{~kg} / \mathrm{cm} 2 \mathrm{~g}$ is separated into N 2 and O 2 by zeolite; O 2 alone is collected and burnt by an oxygen burner.

Estimated effects of countermeasures
Thanks to oxygen-enriched combustion, NOx will not exceed 10 ppm .

Table D4.1.5 (8) Flue Gas Measurement Results

Table D4.1.5 (9) Flue Gas Measurement Results

No 08/0	Source No.P 001-1				Sintered ore for steel making					
Name of company	BORSODI ERCELOKESZITO MUZSGORITO KFT.									
Name of combustion facility D.L. lype sintering furnace										
Types of fuel used	Coal, coke, natural gas					Fuel Consumption			$\begin{aligned} & \text { Coal + coke } 5.9 \mathrm{th} \\ & \text { Natural gas } 493 \mathrm{~m} 3 / \mathrm{h} \end{aligned}$	
Rated load of furna	88 th					Load at time of measurement			88 th	
Burner type and rating Natural gas burner for ignition						Number. of burners			1	
Measurement data										
Item		SO2	NOx	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	Nm3/h	\%
		94	144	8833	340	17.5	3.6	106	374,000	-
O2 6% conversion value	ppm	403	617	37860	:-					
	$\mathrm{mg} / \mathrm{m} 3$	1151	1267	30400	1460					
Emission	kg / h	100	111	4130	130					
Emission standard kg / h		300	300	10000	160					
Outline of facility and of measurements										
Four sintering furnace systems are available, but only one system is currently in operation. And this one system operates for three consecutive days, then is shut down for one day. A natural gas burner is used for firing the raw material. After firing, the coal and coke in the raw material undergoes self-sustained combustion while traveling over a belt and turns into the product. Equipment at the facility has undergone aging and deterioration. Plans call for introduction of a Japanese-made firing oven, but it is suspected that this process will be abolished because the government resolved in January 1994 to abolish the DNM blast furnace sometime in 1994. Consequently, studies are being made to determine how to reapply the system for other purposes such as melting and treatment of scrap iron, or pretreatment.										

Location of measurement

Measurement sites installed on the lateral flue at the outlet of the multicyclone were used.

Problems and Countermeasures

A multicyclone has been introduced as an environmental countermcasure, but it is poor in efficiency and produces $1.46 \mathrm{~g} / \mathrm{m} 3$ of dust. Items such as an electric dust collector must be introduced for the treatment of scrap.

Estimated effects of countermeasures

Dust will be reduced to about 0.05 to $2 \mathrm{~g} / \mathrm{Nm} 3$.

Table D4.1.5 (10) Flue Gas Measurement Results

Outline of facility and of measurements

Facility

This facility has one $20 \mathrm{t} / \mathrm{h}$ boiler and three $30 \mathrm{t} / \mathrm{h}$ boilers used to produce steam for precessing. The unit measured was the $20 \mathrm{t} / \mathrm{h}$ boiter. This is a smoke tube boiler made by the LANG Company. It has two flues, each of which is equipped with a rotary burner rated at $800 \mathrm{~kg} / \mathrm{h}$ and made by the SAACKE Company of Germany. This boiler has a triple-pass structure, and a super heater is attached at the outlet of the second pass. The fuel is heated by an oil heater to $100^{\circ} \mathrm{C}$ and burnt at 6000 rpm . Air preheating takes place by having the air pass over the boiler side wall, but there is no recuperator.

Both imports and domestically-produced heavy oil is used, at market prices. At the time of the survey, the oil used was produced in Slovakia at 2.06% sulfur content and $39.5 \mathrm{MJ} / \mathrm{kg}$. In the past, desulfurized oil at a sulfur content of 1.01% was used, but it is not used now because of 1000 Ft , which is high.

Location of measurement

Directly behind boiler outlet.

Problems and Countermeasures

1. Reduction of oxygen concentration so that smoke is not produced (3 to 4\%).
2. Conversion of fuel to low-sulfur heavy oil or gas oil.

Estimated effects of countermeasures
About 4% savings in energy by having the concentration of residual O 2 in the exhaust gas at 4%.

Table D4.1.5 (11) Flue Gas Measurement Results

No 09 / 2 S	Source No.P 055								
Name of company SAGROCHEM KFT.									
Name of combustion facility Incinerator for wastes									
Types of incinerated items Solids and waste solvents									
Rated load of fumace	Solids $60 \mathrm{~kg} / \mathrm{h}$, Liquids $100 \mathrm{~kg} / \mathrm{h}$				Load at time of measurementSolids $60 \mathrm{~kg} / \mathrm{h}$, Liquids $100 \mathrm{~kg} / \mathrm{h}$				
Burner type and rating	Company-made liquid treatment burner				Number. of burners				
Measurement data									
Item	SO2	NOx	CO	DUST	O2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value	ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
	ND	196	75	40	16.9	2.6	35	2,390	-
conversion value $\mathrm{mg} / \mathrm{m} 3$	ND	403	94	40					
Emission kg / h Emission standard kg / h	ND	0.962	0.224	0.096					
	200	400	100	30					
Outline of facility and of measurements									
Facility									
This is a company-made furnace made for incinerating liquid and solid wastes generated by processing. Solids are burnt by a liquid treatment burner. These solids are paper and urethane foam. The liquids are organic solvents and processing waste fluids. The exhaust gas undergoes water cleaning treatment and air dilution, then is released into the atmosphere.									

Location of measurement

Measurements were taken at locations where water cleansing and air dilution had been completed. Hence the oxygen concentration was high at 16.9% and the exhaust gas temperature was low at $35^{\circ} \mathrm{C}$.

Problems and Countermeasures

Black smoke and CO are produced when solid wastes undergo treatment. This is caused by incomplete combustion when massive lumps of solid waste are incinerated. Steps must be taken to reduce black smoke and CO by preparing solids in appropriate sizes for thorough incineration.

Converted at O 2 of 4%, the NOx measures 813 ppm . NOx should be reduced by introducing a two-stage combustion burner since it is suspected that items containing nitrogen are included among incinerated items.

Estimated effects of countermeasures
It should be possible to reduce NOx to anywhere from 150 to 200 ppm at O 2 of 4%.

Table D4.1.5 (12) Flue Gas Measurement Results

Location of measurement
Mcasurements were taken at the lateral flue by the boiler outlet.

Problems and Countermcasures

Gauges are well provided for regulation of fuel combustion, so favorable combustion takes place, but O 2 should be further reduced to about 2%.

[^3]Table D4.1.5 (13) Flue Gas Measurement Results

Table D4.1.5 (14) Flue Gas Measurement Results

[^4]Table D4.1.5 (15) Flue Gas Measurement Results
 oxygen burners.

Estimated effects of countermeasures

NOx can be reduced by more than 90% by introducing oxygen burners.

[^5]Table D4.1.5 (16) Flue Gas Measurement Results

[^6]Table D4.1.5 (17) Flue Gas Measurement Results

Location of measurement

The measurement site established at the base of the centralized smokestack for five furnaces was used. A large volume of air came from the furnaces not in use.

Problems and Countermeasures

The furnace doors are deformed and should be repaired so that the volumes of air getting into the furnaces can be reduced.

Estimated effects of countermeasures

Table D4.1.5 (18) Flue Gas Measurement Results

Location of measurement
Samples were taken from the measuring site established at the bottom of the smokestack. Since only three furnaces were in operation during measurements, it is suspected that considerable air came from the other nonoperating its.
Problems and Countermeasures
Lids are attached at the tops of the furnaces, but they have deteriorated so that flames blow out, and must be repaired.

NOx concentration is high because of air preheating, and low NOx burners should be introduced.

Estimated effects of countermeasures
NOx concentration could be lowered about 50% by introducing low-NOx burners.

[^7]Table D4.1.5 (19) Flue Gas Measurement Results

Location of measurement
The measuring site on the lateral flue directly in front of the smokestack was used.

Problems and Countermeasures

It is suspected that there are problems with the air and fuel mixtures because the flame exhibited an orange color, and black smoke is produced with O 2 at 4 percent. The burners should be replaced and the concentration of residual oxygen reduced to about 2 percent.

Estimated effects of countermeasures

Fuel could be reduced about 4 percent by lowering the air ratio from the current value of 1.86 to 1.16 .

* Estimated value

Table D4.1.5 (20) Flue Gas Measurement Results

No 15 / 4	Source No.P 097-2				Product	Air for processing				
Name of company DNM DIOSGYORI NEMESACEL MUVEK FA.										
Name of combustion facility \quad No. 2 water tube boil										
Types of fuel used	Natural gas; blast furnace gas					Fuel Consumption			natural gas $2400 \mathrm{~m} 3 / \mathrm{h}$ blast furnace gas $13000 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $24 \mathrm{t} / \mathrm{h} 32 \mathrm{bar} 420^{\circ} \mathrm{C}$						Load at time of measurement $15 \mathrm{t/h} 32 \mathrm{bar}$				
Burner type and rating Undetermined						Number. of burners			4	
Measurement data										
Item		SO2	NOX	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		ND	6	90	0.9	11.2	11.2	188	48,200	-
$\begin{aligned} & \mathrm{O} 23 \% \\ & \text { conversion value } \end{aligned}$	ppm	ND	11	174	- -					
	$\mathrm{mg} / \mathrm{m} 3$	ND	23	218	1.7					
Emission	kg / h	-	0.594	5.42	0.043					
Emission standard kg / h			60	2000	-					
Outine of facility and of measurements										
Facility										
Steam for processing in steel-production plants is produced. A water tube boiler made in 1953 is used. In the past, pulverized coal and blast furnace gas were consumed as fuel, but in 1990 these were replaced by a mixture of natural gas and blast furnace gas. The burner arrangement is tangential. In the past electric power was also generated, but it is not being produced at present.										

Location of measurement

The measurement site established directly behind the suction fan was used. Since the facilities have deteriorated, a large volume of air enter, and it is suspected that the concentration of O 2 at the combustion chamber outlet varies considerably from the measured concentration.
Problems and Countermeasures
Nothing in particular.

[^8]Table D4.1.5 (21) Flue Gas Measurement Results

No 17/1	Source No.P 010				Product Cement					
Name of company HEJOCSABAI CEMENT-ES MENSZIPARI RT.										
Name of combustion facility SP cement kiln (rotary kiln)										
Types of fuel used	Natural gas					Fuel Consumption $7970 \mathrm{~m} 3 / \mathrm{h}$ Liquid wastes $300 \mathrm{~kg} / \mathrm{h}$				
Rated load of furnace $83 \mathrm{t} / \mathrm{h}$						Load at time of measurement $73.7 \mathrm{t} / \mathrm{h}$				
Burner type and rating Kiln burner $10000 \mathrm{~m} 3 / \mathrm{h}$Precalciner $\quad 2000 \mathrm{~m} 3 / \mathrm{h}$						Number. of burners			1	
Measurement data										
Item		SO2	NOx	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Mcasurement value		ppm	ppm	ppm	mg/m3	\%	\%	${ }^{\circ} \mathrm{C}$	Nm3/h	\%
		ND	533	105	33	14.5	10.9	107	297,000	-
026% conversion value	ppm	ND	976	185	-					
	$\mathrm{mg} / \mathrm{m} 3$	ND	2004	231	58					
Emission	kg / h	ND	325	39	9.8					
Emission standard kg / h		-	120	4000	40					
Outline of facility and of measurements										
Facility										
This furnace is a rotary kiln for producing cement clinker. It has a suspension preheater and precalciner attached. The precalciner was installed in 1981. It did not result in increased output because it did not balance well with the processing capabilities of the mill and other peripheral equipment, but it did yield improved quality. Consequently, it is now being used for waste oil incineration. Approximately one-third of the cxhaust gas is used in the raw material drying furnace. The cooling air for clinker is also used as combustion air ($200^{\circ} \mathrm{C}$). The two kiln systems are rated at $1,500,000$ tons per year, but only one system is now in operation, at 500,000 tons per year. Everything is shut down during the winter when there is no demand.										

Location of measurement

The measurement site behind the electric dust collector was used. Oxygen concentration is high because exhaust gas from the raw material drying furnace is included.

Problems and Countermeasures

The NOx concentration is high because of combustion air preheating and because the cross sectional heat load in the furnace is high. To correct this situation, low-NOx burners should be introduced.

Estimated effects of countermeasures

NOx could be reduced about 60 percent by introducing low-NOx burners.

Table D4.1.5 (22) Flue Gas Measurement Results

Location of measurement
The measurement site behind the bag filter was used.

Problems and Countermeasures

The volumes of dust discharged from the smokestacks of both cement kilns and shaft kilns are low, but the volumes of finished and semi-finished products which have leaked and accumulated in the factory are large. Hence the problem of rescattering energes. Greenery has been planted around the factory compound and other measures have been taken to prevent scattering, but to prevent rescattering to surrounding areas, all areas in the factory compound should be cleaned.

Estimated effects of countermeasures

Table D4.1.5 (23) Flue Gas Measurement Results

No 18/1	Source No.P 001				roduct	sphal	mix			
Name of company			STRABAG HUNGARIA EPITO KFT.							
Name of combustion facility			Rotary kiln for aggregate drying							
Types of fuel used	Natural gas					Fuel Consumption			* $450 \mathrm{~mm} / \mathrm{h}$	
Rated load of furnace	$60 \mathrm{t} / \mathrm{h}$					Load at time of measurement			60 t h	
Burner type and rating Natural gas burner 450						Number. of burners			1	
Measurement data										
Item		SO2	NOx	CO	DUST	O2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		23	36	32	190	17.7	1.7	126	26,700	-
O2 18 \% conversion value	ppm	21	33	29	-					
	$\mathrm{mg} / \mathrm{m} 3$	60	74	40	172					
Emission	kg / h	1.75	1.97	1.07	5.1					
Emission standard kg / h		18	-	360	5.4					
Outline of facility and of measurements										
Facility Completed in 1993, this is a rotary kiln for aggregate drying. A bag filter is used to collect dust.										
Location of measurement The measurement site behind the bag filter was used.										
Problems and Countermeasures Nothing in particular.										
Estimated effects of countermeasures										

[^9]Table D4.1.5 (24) Flue Gas Measurement Results

No $21 / 0$	Source No.P 001				Product Building bricks					
Name of company EMO. TEGLA ES CSEREPIPARI VALLALAT MALYI TEGLAGYARA	EMO. TEGLA ES CSEREPIPARI VALLALAT MALYI TEGLAGYARA									
Name of combustion facility \quad No. $1 \&$ No. 2 ring kiln (Improved models of Hoffman kiln)										
Types of fuel used	Natural gas					Fuel Constumption $\quad 144 \mathrm{~m} 3 / \mathrm{h}$				
Rated load of furnace	1970 bricks/h					Load at time of measurement 1970 bricks/h				
Burner type and rating Natural gas burner $6 \mathrm{~m} 3 / \mathrm{h}$						Number of burners			Four sets of 6 burners each	
Measurement data										
Item		SO2	NOx	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	mg/m3	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		15	56	15	1.3	19.1	1.5			
$\begin{aligned} & \mathrm{O} 2 \quad 18 \% \\ & \text { conversion value } \end{aligned}$	ppm	24	88	24	-					
	$\mathrm{mg} / \mathrm{m} 3$	69	181	30	2.0					
Emission	kg / h	1.45	3.89	0.63	0.044					
Emission standard kg / h		150	150	5,000	80					
Outline of facility and of neasurements										
Facility This is an improved version of the Hoffman-type ring kiln. The curved portions to the right and left of the elliptical, doughnut-shaped ovens have been cut away, and the two ovens have been arranged in parallel. The unit was renovated so that a forklift can be used to load and unload material in the kiln. Four sets of six mobile-type natural gas burners have been arranged in series on the kiln ceiling. These burners move in accordance with the brick burning process. Under heating by natural gas, the raw material clay mixed with sawdust undergoes selfcombustion, and burning of brick interior progresses. Part of the exhaust gas is used in the product drying process.										

Location of measurement

The measurement site attached to the underground flue from the kiln to the smokestack was used. The concentration of residual oxygen was high because exhaust gas from the cooling process was also included. Problems and Countermeasures

Nothing in particular since the shift to natural gas has already been completed.

Estimated effects of countermeasures
\square

[^10]Table D4.1.5 (25) Fluc Gas Measurement Results

No 22 / 0	Source No.P 001				Product Asphalt mix					
Name of company	MISKOLCI UTEPITO KFT NYEKI ASZFALTKEVERO									
Name of combustion facility Rotary kiln for aggregate drying										
Types of fuel used	Natural gas					Fuel Consumption			$480 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $70 \mathrm{t} / \mathrm{h}$						Load at time of measurement $70 \mathrm{t} / \mathrm{h}$				
Burner type and rating $500 \mathrm{~m} 3 / \mathrm{h}$						Number. of burners			1	
Measurement data										
Item		SO2	NOx	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppin	mg/m3	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		98	9	400	52	18.5	1.2	87	33,700	-
$02 \quad 18 \%$ conversion value	ppm	118	11	480	-					
	$\mathrm{mg} / \mathrm{m} 3$	337	23	600	62					
Emission	kg / h	9.44	0.623	16.9	1.8					
Emission standard kg / h		9.45	9.45	315	5.4					
Outline of facility and of measurements										
Facility This is an aggr dust.	gate dry	ing rot	ary kiln	used for	for makin		alt mi	It is equippe	with a bag fil	ter to collect

Location of measurement

The measurement site attached to the smokestack was used.
Problems and Countermeasures
Nothing in particular.

Estimated effects of countermeasures

Table D4.1.5 (26) Flue Gas Measurement Results

Location of measurement

The measurement site attached to the lateral flue directly in front of the smokestack was used. The exhaust gas from 9 furnaces is concentrated and directed to onc smokestack.

Problems and Countermeasures

The NOx concentration in exhaust gas is $1,796 \mathrm{ppm}(\mathrm{O} 2 \cdot 3 \%)$ and countermeasures are required. The method of ammonia additive, which is currently being applied experimentally, is the normal method of denitration, but its efficiency is only about 70 percent. On the other hand, with the Pura Siv N method in which an oxidation catalyst function has been added to a molecular sieve, NOx concentration can be reduced to around 10 ppm by adsorption of NO 2 .

Estimated effects of countermeasures

Denitration of about 95% becomes possible.

Table D4.1.5 (27) Flue Gas Measurement Results

Table D4.1.5 (28) Flue Gas Measurement Results

No 23/1	Source No.P 021-2								
Name of company TVK									
Name of combustion facility Solvent waste incinerator 1-620									
Types of incinerated items Waste solvents									
Rated load of furnace	$100 \mathrm{~kg} / \mathrm{h}$				Load at time of measurement $100 \mathrm{~kg} / \mathrm{h}$				
Burner type and rating					Number. of burners			-	
Measurement data									
Item	SO2	NOx	CO	DUST	02	CO2	Exhaust gas	Exhaust gas	Combustion
Mcasurcment value	ppm	ppm	ppm	mg/m 3	\%	\%	${ }^{\circ} \mathrm{C}$	Nm3/h	
	ND	20	ND	13	168	25			
Conversion value $\mathrm{mg} / \mathrm{m} 3$				1					
	ND	0.377	ND	0.12					
	h 250	100	5000	60					
Outline of facility and of measurements									
Facility This unit is the 1-620 model, which is used to incinerate waste solvents from the process called TK466. A multicyclone has been installed to collect dust.									
Location of measurement The measurement site attached to the lateral flue directly in front of the central smokestack was used.									
Problems and Countermeasures Nothing in particular.									
Estimated effects of countermeasures									

Table D4.1.5 (29) Flue Gas Measurement Results

Location of measurement
The measurement site attached to the lateral flue directly in front of the central smokestack was used.
Problems and Countermeasures
Nothing in particular.

Estimated effects of countermeasures

Table D4.1.5 (30) Flue Gas Measurement Results

No 23 / 1	Source No.P 025-2				Product	Steam for processing				
Name of company TVK										
Name of combustion facility No										
Types of fuel used N		Natural gas; heavy oil				Fuel Consumption			Natural gas * $1450 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $25 \mathrm{t} / \mathrm{h} 40 \mathrm{bar}$						Load at time of measurement 21 th 38 bar				
Burner type and rating Gas oil burner						Number. of burners			2	
Measurement data										
Item		SO2	NOx	CO	DUST	02	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		ND	72	ND	3.6	11.0	5.8	134	24,500	
023% conversion value	ppm	ND	130	ND	-					
	$\mathrm{mg} / \mathrm{m} 3$	ND	267	ND	6.5					
Emission	kg / h	ND	3.62	ND	0.088					
	Emission standard kg / h	500	100	5000	-					
Outline of facility and of measurements										
Facility Made in 1992, this is a water tube boiler located inside a petrochemical plant. It is equipped with two burners for natural gas and oil mixture. A superheater, economizer and air preheater are also attached. Although mixed fuel burners are used, combustion of mixed fuel by the same burner does not take place. Use of gas and oil is divided up between two burners. At the time of measurement, only natural gas was being used. At a preheat temperature of $100^{\circ} \mathrm{C}$, oil is atomized with 11 bar of steam. The oil burner is also used to burn waste oil generated from the process of manufacturing olefin.										

Location of measurement

The measurement site attached to the lateral flue behind the air preheater was used. Oxygen concentration is high in the exhaust gas because air leaks from the air preheater.
Problems and Countermeasures
All the measured valucs satisfy exhaust standards, but the NOx at $3 \% \mathrm{O} 2$ conversion was 130 ppm , which is high for natural gas burning. An exhaust gas recirculator (E. G. R.) should be introduced as a countermeasure.

Estimated effects of countermeasures
In the case of natural gas combustion, NOx can be reduced to about 40 to 60 ppm by setting the exhaust gas recirculation volume at 10 to 14%.

[^11]Table D4.1.5 (31) Flue Gas Measurement Results

No 24/0	Source No.P 004				Product Heating medium oil					
Name of company MOL RT.										
Name of combustion facility F102 heat medium boiler										
Types of fuel used	Natural gas					Fuel Consumption $\quad 280 \mathrm{~m} 3 / \mathrm{h}$				
Rated load of furnace $3.65 \mathrm{Gcal} / \mathrm{h}$	$3.65 \mathrm{Gcal} / \mathrm{h}$					Load at time of measurement $277 \mathrm{Gcal} / \mathrm{h}$				
Burner type and rating Natural gas burner $450 \mathrm{~m} 3 / \mathrm{h}$						Number. of burners				
Measurement data										
Item		SO2	NOx	CO	DUST	O2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		ND	59	ND	-	6.2	8.3	60	*3,900	86.3
023% conversion value	ppm	ND	72	ND	-					
	$\mathrm{mg} / \mathrm{m} 3$	ND	148	ND	-					
Emission	kg/h	ND	0.473	ND	-					
Emission standard kg / h		500	200	1000	-					
Outline of facility and of measurements										
This boiler is used for preheating of oil product storage tanks. It heats dowtherm oil to $120^{\circ} \mathrm{C}$ in order to keep the tank interior at $70^{\circ} \mathrm{C}$. A natural gas burner of $450 \mathrm{~m} 3 / \mathrm{h}$ rating is installed at the ceiling of this upright boiler. It is structured so that oil in a spiral tube is heated.										

Location of measurement
The measurement site at the boiler outlet was used.
Problems and Countermeasures
Since the concentration of O 2 in the exhaust gas is high, it must be lowered to about 2 to 3 percent by adjusting the air volume.

Estimated effects of countermeasures

* Estimated value

Table D4.1.5 (32) Flue Gas Measurement Results

No 25/1	Source No.P 001-1				Product Steam for power generation and processing					
Name of company TISZAI EROMU RT. I. HOEROMU										
Name of combustion facility No. 1 water tube boiler										
Types of fuel used	Brown coal; Natural gas					Fuel Consumption			Brown coal * $33.29 \mathrm{t} / \mathrm{h}$;Natural gas $700 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $125 \mathrm{t} / \mathrm{h} 515^{\circ} \mathrm{C}$						Load at time of measurement $97 \mathrm{t/h} 502^{\circ} \mathrm{C}$				
Burner type and rating Pulverized coal burner; Natural gas burner						Number of burners			4 pulverized coal burners; 2 natural gas burners	
Measurement data										
Item		SO2	NOx	CO	DUST	02	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	$\%$	\%	${ }^{\circ} \mathrm{C}$	Nm3/h	\%
		2468	236	60	180	9.1	9.0	189	156,000	-
026% conversion value	ppm	3111	297	76	-					
	mg/m3	8889	610	95	225					
Emission	kg / h	1100	75.6	11.7	28					
Emission standard kg / h		375	112	7500	90					
Outline of facility and of measurements										
This power station has cight units of the same type of boiler. One smokestack is used with two boilers, and these stacks are designated from P001 to P004. These boilers are water-tube type units rated at $125 \mathrm{t} / \mathrm{h}$. They are used to make steam for power generation and for processing. These boilers have four pulverized coal burners at the furnace top, and two natural gas burners on the side surface of the furnace. A superheater, cconomizer and air preheater have been installed to conserve energy, and an electric dust collector to remove dust.										

Location of measurement

Gaseous substances were measured at the induced draft fan outlet behind the electric dust collector, and dust was measured at the electric dust collector outlet. The concentration of O 2 in the exhaust gas was high because of air entering from the air preheater and elsewhere.
Problems and Countermeasures
The volume of SO2 exhausts is about three times the standard value, and a desulfurization unit must be introduced.

Estimated effects of countermeasures
Desulfurization of 95 percent is possible.

* Estimated value

Table D4.1.5 (33) Flue Gas Measurement Results

* Estimated value

Table D4.1.5 (34) Flue Gas Measurement Results

* Estimated value

Table D4.1.5 (35) Flue Gas Measurement Results

No 25/1	Source No.P 002-2 Product Steam for power gencration and processing									
Name of company TISZAI EROMU RT. I. HOEROMU										
Name of combustion facility \quad No. 4 water tube bo										
Types of fuel used	Brown coal; Natural gas					Fuel Consumption			Brown coal * $48.69 \mathrm{t} / \mathrm{h}$; Natural gas $700 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace 12		/h 51				Load at time of measurement			$118 \mathrm{th} 504^{\circ} \mathrm{C}$	
Burner type and rating P		rized ral gas	coal bu burne			Number. of burners			4 pulverized coal burners; 2 natural gas burners	
Measurement data										
Item		SO2	NOx	CO	DUST	02	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	mg/m 3	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		2593	196	630	820	9.6	8.3	180	161,000	-
$\begin{aligned} & \mathrm{O} 26 \% \\ & \text { conversion value } \end{aligned}$	ppm	3412	258	829	-					
	$\mathrm{mg} / \mathrm{m} 3$	9749	530	1036	1079					
Emission	kg/h	1190	64.8	127	130					
Emission standard kg / h		375	112	7500	90					
Outline of facility and of measurements										
FacilitySame as P001-1.										
Location of measurement Same as P001-1.										
Problems and Countermeasures Same as P001-1.										
Estimated effects of countermeasures Same as P001-1.										

* Estimated value

Table D4.1.5 (36) Flue Gas Measurement Results

* Estimated value

Table D4.1.5 (37) Flue Gas Measurement Results

Outine of facility and of measurements

Facility

At this power station there are four boilers of the same type. Three types of fucl are used: residual oil from the neighboring oil refining plant, natural gas obtained from the Ukraine and domestically-produced inert gas (43\% CO2). There are eight mixed gas and oil combustion burners, and four of them burn inert gas mixtures. The ratings are as follows: oil, $7.5 \mathrm{t} / \mathrm{h}$; natural gas, $8000 \mathrm{~m} 3 / \mathrm{h}$; inert gas, $11000 \mathrm{~m} 3 / \mathrm{h}$. These burners are arranged in two rows of four burners each at the bottom of the boiler. At the time of measurement, oil and inert gas were mixed together and burnt. A superheater, economizer and air preheater were attached for energy conservation, but there were no measures against exhaust gas.

Location of measurement

Gas substance was measured from the lateral flue, and the measuring site installed near the top of the smokestack was used for measuring dust.

Problems and Countermeasures

SO 2 and NOx exceed the standard values. With respect to NOx, given the arrangement of burners, combustion at variable concentration must be used, or a denitration unit must be attached. With respect to SO 2 , the sulfur component in heavy oil fuel must be further reduced or a desulfurization unit must be introduced.

Estimated effects of countermeasures
Desulfurization and denitration of 90 to 95 percent are possible with introduction of desulfurization and denitration devices.

Table D4.1.5 (38) Flue Gas Mcasurement Results

Table D4.1.5 (39) Flue Gas Measurement Results

No - /	Source No.P 001				Product Meat processing plants					
OZD GOMORHUS KAZAUK										
Name of combustion facility Marine boiler										
Types of fuel used	Brown coal; Firewood					Fucl Consumption			Brown coal $0.13 \mathrm{t} / \mathrm{h}$ Firewood 0.093 th	
Rated load of furnace 2 th 13.5 bar						Load at time of measurement $0.6 \mathrm{t} / \mathrm{h} 4.5$ bar				
Burner type and rating Hand firing						Number. of burners			-	
Measurement data										
Item		SO2	NOx	CO	DUST	O2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	mg/m3	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		182	52	1385	57.9	16.2	4.5	125	3,600	-
O2. 6 conversion value	ppm	569	163	4328	-					
	$\mathrm{mg} / \mathrm{m} 3$	1.626	335	5410	181					
Emission	kg / h	1.87	0.384	6.23	0.208					
Emission standard kg / h		0.27	0.27	9	0.12					
Outline of facility and of measurements										
Facility Made in 1959, this is a cargo vessel boiler used to produce steam for processing in meat processing plants. It was taken from a ship after the ship had been scrapped. There is another boiler of the same type, and the two are used alternately. Complaints have been received on numerous occasions from nearby residents, so the volume of brown coal used has been reduced and firewood is used as a supplement. Studies are being made to introduce natural gas.										

Location of measurement
The measuring site installed at the bottom of the stone smokestack was used. Residual oxygen concentration was high because of air entering from the soot door and from the boiler not in operation.

Problems and Countermeasures

Since the smokestack is low at 16 meters, exhaust standards have been strictly set. Consequently, $\mathrm{SO} 2, \mathrm{NOx}$ and dust all exceeded the standards.

Since construction of natural gas piping has been completed, fuel conversion will be the best countermeasure.

Estimated effects of countermeasures

SO2, CO and dust can be reduced to near zero and NOx can be lowered to about 100 ppm at 3% oxygen.

Table D4.1.5 (40) Flue Gas Measurement Results

Location of measurement

The measurement site established at the boiler outlet was used.

Problems and Countermeasures

By preserving the temperature of the outer surface, the fuel consumption per production can be reduced. And by processing surplus sawdust, etc., into bio-briquette for example, added value could be escalated and marketed.

Estimated effects of countermeasures

Table D4.1.5 (41) Flue Gas Measurement Results

No /	Source No.P 001				roduct	Steam	for pro	cessing					
Name of company			BORSODI SORGYAR RT, BOCS										
Name of combustion facility			No. 5 flue and smoke tube boiler										
Types of fuel used	Natural gas					Fuel Consumption			$1422 \mathrm{~m} 3 / \mathrm{h}$				
Rated load of furnace $20 \mathrm{t} / \mathrm{h} 12 \mathrm{bar}$						Load at time of measurement $16 \mathrm{t} / \mathrm{h} 9.5 \mathrm{bar}$							
Burner type and rating Block type natural gas burner$1000 \mathrm{~m} 3 / \mathrm{h}$						Number of burners			2				
Measurement data													
Item		SO2	NOx	CO	DUST				O 2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%			
		ND	99	5	-	2.1	1.2	200	*15,000	81.7			
O2 3% conversion valuc	ppm	ND	94	5	-								
	$\mathrm{mg} / \mathrm{m} 3$	ND	193	6	-								
Emission	kg/h	ND	3.05	0.094	-								
Emission standard kg / h		-	70	3500	-								
Outline of facility and of measurements													
Facility This is a processing boiler for producing beer and carbonated drinks. It is a triple-pass type, flue and smoke tube boiler with a superheater installed at the second pass. Burners are of the block type and portions of the flame are orange in color, perhaps because oxygen is restricted to 2.1 percent. Traces of CO are also detected. Air for combustion is preheated to $20^{\circ} \mathrm{C}$ by steam. Since the return water is $113^{\circ} \mathrm{C}$, an economizer has not been installed.													
Location of measurement The boiler outlet.													
Problems and Countermeasures Nothing in particular.													
Estimated effects of countermeasures													

* Estimated value

Table D4.1.5 (42) Flue Gas Measurement Results

No 02/0	Source No.P 036				roduct	Steam	he			
Name of company OZDI KOHASRRTI VZEMEK										
Name of combustion facility No. 10 water tube										
Types of fuel used	Coal and natural gas					Fuel Consumption			Coal $2 \mathrm{t} / \mathrm{h}$ Natural gas $980 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $20 \mathrm{t} / \mathrm{h} 28 \mathrm{bar}$						Load at time of measurement			16 th 15 bar	
Burner type and rating See column below.						Number. of bumers			See column below.	
Measurement data										
Item		SO2	NOx	CO	DUST	O2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	Nm3/h	\%
		24	3.2	263	7890	18.9	4.0	90	*161,00	
026% conversion value	ppm	171	23	1879						
	$\mathrm{mg} / \mathrm{m} 3$	489	47	2349	56257					
Emission	kg / h	11.0	1.05	52.7	1270					
Emission standard kg / h		8.2	6.0	428.6	2.9					
Outline of facility and of measurements										
Facility Located in the OZD steel plant, this is a boiler for regional heating made in 1950. When the blast furnace was in operation, blast furnace gas was used, but now natural gas is used. This boiler is equipped with four pulverized coal burners and with four pulverized coal and gas mixture burners. Because of deterioration, the boiler cannot operate at high loads. The coal and gas fuels are used at a heat volume ratio of 50 percent each. Ukrainian coal and coal of low sulfur content from Poland are used; at the time of measurement, the sulfur content was 0.58 percent. An air preheater, cconomizer and superheater have been added for energy conservation. A cyclone has been installed to collect dust. Even if the No. 9 boiler of the same type is used, the heat volume is still inadequate for heating, so a used container-type gas boiler has been introduced as a supplement.										
Location of measurement The measuring site installed at the cyclone outlet was used. Residual oxygen concentration was high because of substantial leakage of air from throughout the unit.										
Problems and Count Dust and SO2 e	ermeas xceed th	stand	ards. T	he ideal	al counter	rmeas	is t	hif 100 per	to natural gas	

Estimated effects of countermeasures

By introducing natural gas, NOx can be lowered to around 80 to 100 ppm (3% oxygen) and SO2 and dust could be reduced to zero.

[^12]Table D4.1.5 (43) Flue Gas Measurement Results

No $12 / 0$	Source No.P 001			Product Steam for heating						
Name of company			EAEV. MUNKASSZALLO							
Name of combustion facility			Cast iron boiler							
Types of fuel used.	Coal, Brown coal					Fuel Consumption			$0.056 \mathrm{t} / \mathrm{h}$	
Rated load of furna	e undetermined					Load at time of measurement			undetermined	
Burner type and rat	g Han	d firing				Number. of burners			-	
Measurement data										
Item		SO2	NOx	CO	DUST	O2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		2	6	267	4.7	*20.7	0.6	50	6,500	-
$\begin{aligned} & \mathrm{O} 2-\% \\ & \text { conversion value } \end{aligned}$	ppm	-	-	-	-					
	$\mathrm{mg} / \mathrm{m} 3$	-	-	-	-					
Emission	kg / h	0.037	0.08	2.20	0.031					
Emission standard	kg / h	5.4	5.4	180	2.7					

Outline of facility and of measurements

Facility

Manufactured in Poland, these are cast iron boilers for heating buildings. Of the seven boilers available, only three are in operation. Coal mined in Poland is used as fuel. These boilers are scheduled to be shut down on April $15,1994$.

Location of measurement

The measuring site attached to the smokestack was used for measuring. Oxygen concentration of 20.7 percent was recorded because of large volumes of air entering from the boilers not in operation and elsewhere.
Problems and Countermeasures
Nothing in particular. (Scheduled for closure.)

Estimated effects of countermeasures

* Estimated value

Table D4.1.5 (44) Flue Gas Measurement Results

Location of measurement

The measurement site attached to the smokestack was used. The concentration of residual oxygen was high because air leaks from the inoperative boiler and from sundry devices.
Problems and Countermeasures
Nothing in particular.

Estimated effects of countermeasures

[^13]Table D4.1.5 (45) Flue Gas Measurement Results

[^14]Table D4.1.5 (46) Flue Gas Measurement Results

No 26/0	Source No.P 001				Product Hot water for heating					
Name of company MISKOLCI HOSZOLGALTATO V KILIAUI KAZANHAZA	MISKOLCI HOSZOLGALTATO V Killaul kazanhaza									
Name of combustion facility No. 2 water tube boiler										
Types of fuel used	Natural gas					Fucl Consumption			$207.5 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $180 \mathrm{t} / \mathrm{h}$ (hot water)	$180 \mathrm{t} / \mathrm{h}$ (hot water)					Load at time of measurement $180 \mathrm{t} / \mathrm{h}$ (hot water)				
Burner type and rating Block-type burner $400 \mathrm{m3/h}$						Number. of burners $\quad 1$				
Measurement data										
Item		SO2	NOx	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	$\mathrm{mg} / \mathrm{m} 3$	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		ND	65	690	-	3.5	9.8	-	*2,400	-
023% conversion value	ppm	ND	67	710	-					
	mg/m3	ND	138	888	-					
Emission	kg / h	ND	0.32	2.07	-					
Emission standard kg / h		-	2.7	90	-					
Outline of facility and of measurements										
Facility This is a hot w type with an air blo	ater boile wer buil	for re	gional re are	cating no air	which preheate	asse or 0	led in er cqu	side a conta ipment for	The burne gy conservat	the block

Location of measurement
Measurements were taken at the boiler outct.

Problems and Countermeasures

Since the concentration of CO in the exhaust gas is high, the burner must be adjusted. In particular, the air register must be inspected.

Estimated effects of countermeasures

* Estimated value

Table D4.1.5 (47) Flue Gas Measurement Results

Location of measurement
The measurement site established on the smokestack was used.
Problems and Countermeasures
Conversion to natural gas is scheduled for the summer of 1994.

Estimated effects of countermeasures

Table D4.1.5 (48) Flue Gas Measurement Results

Location of measurement
Mcasurements were taken at the boiler outlet.
Problems and Countermeasures
Since the load at the time of measurement was low at 50 percent, it was inevitable that the concentration of oxygen in the exhaust gas under normal conditions would be high. With combustion of natural gas, even though the oxygen concentration in the exhaust gas was 7.7 percent, CO was also produced and this poses as a problem. The burner must be checked.

Estimated effects of countermeasures

* Estimated value

Table D4.1.5 (49) Flue Gas Measurement Results

No 26/6	Source No.P 001				Product Hot water for heating					
Name of company			MISKOLCI HOSZOLGALTATO V. DIOSGYORI KAZANHAZA							
Name of combustion facility			No. 1 flue and smoke tube boiler						$300 \mathrm{~m} 3 / \mathrm{h}$	
Types of fuel used	Natural gas					Fuel Consumption				
Rated load of furnace	$6 \mathrm{Gcal} / \mathrm{h}$					Load at time of measurement			* $4.2 \mathrm{Gcal} / \mathrm{h}$	
Burner type and rating Block-type burner $700 \mathrm{~m} 3 / \mathrm{h}$						Number. of burners			1	
Measurement data										
Item		SO2	NOx	CO	DUST	O2	CO2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value		ppm	ppm	ppm	mg/m3	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
		ND	35	ND	5.75	9.5	6.3	121	7,700	-
$\mathrm{O} 23 \%$ conversion value	ppm	ND	55	ND	-					
	$\mathrm{mg} / \mathrm{m} 3$	ND	113	ND	9.00					
Emission	kg / h	ND	0.187	ND	0.443					
Emission standard kg / h		-	5.4	180	-					
Outline of facility and of measurements										
Facility This is a hot water boiler for regional heating. It is a triple-pass type, flue and smoke tube boiler. The facility has six boilers of the same type and four were in operation at the time of the survey. At a temperature of $75^{\circ} \mathrm{C}$, the hot water is circulated at $500 \mathrm{~m} 3 / \mathrm{h}$.										
Location of measurement The measurement site established on the underground lateral flue was used.										
Problems and Countermeasures Nothing in particular.										
Estimated effects of countermeasures										

[^15]Table D4.1.5 (50) Flue Gas Measurement Results

Location of measurement
Measurements were taken at the boiler outlet.

Problems and Countermeasures
Nothing in particular.

Estimated effects of countermeasures

Table D4.1.5(51) Flue Gas Measurement Results

Table D4.1.5 (52) Flue Gas Measurement Results

No 31/0	Source No.P 001			Product Steam for heating					
Name of company MISKOLC EGYETEM FUTOMU									
Name of combustion facility No. 1 flue and smoke tube boiler									
Types of fuel used Heavy oil	Heavy oil				Fuel Consumption			$480 \mathrm{~m} 3 / \mathrm{h}$	
Rated load of furnace $7 \mathrm{t} / \mathrm{h} 12 \mathrm{bar}$					Load at time of measurement $4.2 \mathrm{t} / \mathrm{h} 8 \mathrm{bar}$				
Burner type and rating Mechanical atomizer burner $600 \mathrm{~kg} / \mathrm{h}$					Number. of burners				
Measurement data									
Item	SO2	NOx	CO	DUST	O 2	CO 2	Exhaust gas temperature	Exhaust gas flow volume	Combustion efficiency
Measurement value	ppm	ppm	ppm	mg/m3	\%	\%	${ }^{\circ} \mathrm{C}$	$\mathrm{Nm} 3 / \mathrm{h}$	\%
	996	287	1	97.7	4.0	13.7	281	5,400	83.8
O2 3% conversion value	1055	304	1	-					
	3014	624	1	104					
Emission $\quad \mathrm{kg} / \mathrm{h}$	15.4	3.18	0.007	0.528					
Emission standard kg / h	120	120	4000	60					
Outline of facility and of measurements									
Facility This is a triple pass flue and smoke tube boiler for heating at MISKOLC University. The heavy oil is heated to $130^{\circ} \mathrm{C}$ by steam and electricity and atomized at a hydraulic pressure of 32 bar. Since it is used for heating, the boiler is operated from October 15th to April 15th of the following year.									
Location of measurement Measurements were taken at the boiler outlet.									
Problems and Countermeasures All the measured values cleared the standard values, but SO 2 and $\mathrm{NO} x$ were high. Huge reductions in NOx could be realized by shifting to natural gas, but if heavy oil continues to be used, a two-stage combustion burner should be introduced to lower NOx.									
Estimated effects of countermeasures									

Table D4.1.6 Breakdown of Samples of Questiomaire on Home Heating

Respondent	Tenant	Owner	School office	Total
	8	148	3	159

Type of building	Residence	School office	Home office	Workshop residence	Shop and residncece or apartment	Total
	154	1	1	1	2	159

Number of stories	1	2	3	4 or more	Total
	106	42	9	2	159

Floor area $\left(\mathrm{m}^{2}\right)$	$50 \mathrm{~m}^{2}$ and less	$51 \sim 100 \mathrm{~m}^{2}$	$101 \sim 150 \mathrm{~m}^{2}$	$151 \sim 200 \mathrm{~m}^{2}$	$201 \mathrm{~m}^{2}$ or more	Total
	12	94	38	10	5	159

Building structure	Brick Mortar	Silica brick Mortar	Concrcte Panel	Stone Loam	Total
102	47	2	8	159	

Number of familics	1	$2 \sim 3$	$4 \sim 6$	7 or more	Total
	136	22	0	1	159

Number of occupants	$1 \sim 2$	$3 \sim 5$	$6 \sim 10$	11 or more	Total
	40	101	16	2	159

Table D4.1. 7
Amount of Fuel Consumption by Heating Facilities and Fuel Type (From Nov. 1992 to Mar. 1993)

Heating system	Type of heating facilities	Type of fuel	Amount of fuel consumption*
Indivisual heating (54)	Stove(26)	Diesel(1)	1,4201
		Firewood(6)	26,350kg
		Firewood \& diesel (1)	1,080kg, 6301
		Coal \& diesel(1)	2,000kg, 2,0001
		Coal \& Firewood(17)	$75,820 \mathrm{~kg}, 36,860 \mathrm{~kg}$
	Small-sized hot-water heating(20)	Natural gas(20)	28,536m3
	Electrical heating(3)	Electric power(3)	29,232KWh
	Tailed stove(1)	Natural gas(1)	1,543m3
	Boiler(1)	Natural gas (1)	1,600m3
	Stove \& Small-sized hot-water heating(1)	Coal, Firewood \& Natural gas(1)	2,500kg, 1,000kg, 317m3
	Boiler \& Small-sized hot-water heating(2)	Coal \& Natural gas(1)	1,000kg, 675 m 3
	Stove \& Electrical heating(1)	Coal \& Electric power(1)	$9,000 \mathrm{~kg}, 7,300 \mathrm{KWh}$
Central heating	Boiler(104)	LPG gas (1)	1,620프
(104)		Diesel(1)	2,0001
		Firewood(1)	$4,800 \mathrm{~kg}$
		Firewood \& Wood dust(1)	2,600kg, 15,000kg
		Coal(12)	$109,930 \mathrm{~kg}$
		Coal \& Firewood(29)	233, $480 \mathrm{~kg}, 71,840 \mathrm{~kg}$
		Natural gas(57)	136,787m3
		Coal \& Natural gas(2)	$6,500 \mathrm{~kg}$, $3,180 \mathrm{~m} 3$
Both(1)	Boiler \& Stove(1)	Coal \& Firewood(1)	$90,000 \mathrm{~kg}, 35,000 \mathrm{~kg}$

Note) Numbers in parenthesis show the number of sample.

Coding for Tables D4.1.8 through D4.1.10

The Tables include quality parameters of each type of fuels and their places of origin which are referred by codes as follows.
a) Physical condition: the first two digits

11-14 solid: 11 black coal
12 brown coal
13 lignite
14 coke
21-28 liquid: 21 industrial heating oil (diesel oil)
22 medium heavy heating oil
23 heavy heating oil
24 residue oil
25 diesel oil (in the summer) (gas oil)
26 communal heating oil (kerosine)
27 leaded petrol - No. 92 (gasoline)
28 leaded petrol - No. 98 (gasoline)
31-33 gas: $\quad 31$ gas pipe "Testveriseg"
32 gas pipe at Hajduszoboszlo
33 inner gas
b) Area of origin: the third, fourth and fifth digits

100-170 domestic: from 110: Sajo valley
from 120: South Borsod
from 130: Matra region
from 140: Nograd county
from 150: North Dunantul
from 160: Middle Dunantul
from 170: South Dunantul
from 180: Hajdu county
from 190: Szolnok county
200-250 imported: from 210: Czench Republic
from 220: Slovac Republic
from 230: Poland
from 240: Russia
from 250: Belorussia
from 260: Ukraine
c) Grain dimension: the sixth digit (in mm)

0: liquid - gas
1: +40
2: $40-80$
$3:+20$
4: 20-40
5: 15-20
6: 10-20
7: 0-40
8: 0-20
9: 0-10
d) Standard calorific value $\left[\mathrm{GJ} / \mathrm{t} ; \mathrm{GJ} / \mathrm{m}^{3}\right]$
e) Standard $\mathrm{SO} 2\left[\mathrm{~kg} / \mathrm{l} ; \mathrm{kg} / \mathrm{m}^{3}\right]$
Table D4.1.8 (1) Result of Fuel Analysis - Solid Fuels (1)

(1)	$=$	
	-	
(1)		
复		

Result of Fuel Analysis－Solid Fuels（2）

\％	
（1）	
筫	

Table D4.1.8 (3) Result of Fuel Analysis - Solid Fuels (3) (Mercury Concentration in Coal Samples)

Number	a	de b	c	Location of Excavating or Selection	Mercury $\mathrm{Hg}(\mathrm{ng} / \mathrm{g})$	$\begin{gathered} \text { Average } \\ \mathrm{Hg}(\mathrm{ng} / \mathrm{g}) \end{gathered}$
1	12	110	1	Berente	93.3	
2	12	110	4	Berente	97.1	
3	12	110	4	Berente	110.0	
4	12	110	4	Berente	100.0	99.8
5	12	110	4	Berente	106.0	
6	12	110	8	Berente	100.0	
7	12	110	8	Berente	85.7	
8	12	110	9	Berente	106.0	
9	12	110	1	Feketevolgy	69.6	69.6
10	12	110	3	Rudolf	100.0	96.8
11	12	110	1	Rudolf	93.5	
12	12	110	7	Edeleny	113.0	113.0
13	12	110	8	Vadna	100.0	100.0
14	12	110	4	Putnok	92.5	
15	12	110	7	Putnok	71.0	83.0
16	12	110	8	Putnok	96.4	
17	12	110	9	Putnok	72.1	
18	12	110	1	Lyuko	97.4	
19	12	110	4	Lyuko	93.2	100.5
20	12	110	3	Lyuko	111.0	
21	12	150	1	Oroszlany	93.1	
22	12	150	4	Oroszlany	103.0	
23	12	150	8	Oroszlany	156.0	
24	12	150	5	Oroszlany	111.0	138.2
25	12	151	9	Oroszlany	188.0	
26	12	150	7	Oroszlany	127.0	
27	12	150	9	Oroszlany	189.0	
28	12	152	4	Dorogi briquet	192.0	192.0
29	12	161	7	Balinka	125.0	141.0
30	12	161	8	Balinka	157.0	
31	12	161	8	Dudar	94.8	94.8
32	12	161	1	Jager briquet	34.3	49.3
33		161	1	German briquet	64.3	
34	11	211	4	Czech coke	35.3	35.3
35	11	211	2	Czech	53.6	
36	11	211	4	Czech	72.0	
37	12	211	4	Czech	171.0	114.9
38	12	211	1	Czech	93.0	
39	11	211	5	Czech	197.0	
40	11	211	9	Czech	103.0	
41	12	221	2	Slovak	67.6	50.9
42	14	221	4	Slovak	34.2	
43	11	231	4	Polish	48.1	
44	11	231	5	Polish	32.5	45.4
45	11	231	6	Polish	55.6	
46	12	241	1	Russian	32.3	31.5
47	11	241	2	Russian	30.6	

Note Analysis of Mg is Made with Vaporization by Heating and Atomic Absorption Photometry Method.
Table D4.1.9 Result of Fuel Analysis - Liquid Fuels

Number		Proouct		$\begin{aligned} & \text { powt } \\ & \text { point } \\ & c \\ & \hline \end{aligned}$	$\begin{gathered} \text { poin } \\ \text { poin } \\ c \end{gathered}$	$\begin{aligned} & \text { visexity } \\ & \text { vinomic } \\ & \text { vc } \end{aligned}$	ns x	Conrachon \%	nimse	carboc C	sultir	bydroges H\%	vanacium $V_{p o m}$	poceminm $\underline{K}_{\text {gran }}$	mancixam Nagpm	$\begin{aligned} & \text { nidel } \\ & \text { Nippom } \end{aligned}$	
1	2	3	4	5	6	7	8	9	10	11	12	13.	14	15	16	17	18
1	21:000-41-3	NDUSTRIAL HEATMG OL (Eimed Oil)	0.8453	-29.2	6.6	$\underset{143}{\mathrm{v} / 100}$	0.92	0.15	0.1	83.10	0.17	1332	30	12	10	20	41250
2	22000. 41. 48	MEDIUM-HEAVY HEATING OLI	0.9514	13.3	139.5	74.4	0.33	0.08	0.2	76.20	2.51	14.54	9	12	15	20	4052
3	231000-40-58	heavy heatnig oll	0.9763	19.0	152.2	$\begin{gathered} \text { viso } \\ 155.4 \end{gathered}$	0.38	0.11	0.2	3275	295	12.65	102	11	16	38	40150
4	241000-40-58	GUDRON (Residuc Oil)	0.9882	293	279.3	$\begin{aligned} & \text { v } 100 \\ & 3620 \end{aligned}$	0.38	0.09	0.2	85.02	291	11.51	186	29	32	47	40123
5	251000. 41 - 3	FUEL (SUMMER-TYPE)	0.8434	5.2	65.0	v/3, 5.1	0.08	0.08	CBM	73.10	0.16	18.55	CBM	CBM	CBM	CBM	41218
6	261000. 42 - 4	comarnial on (Kersim)	0.8454	-83	69.2	4.6	0.09	0.04	CBM	75.20	0.22	15.36	CBM	CBM	с3,	CBM	$4: 910$
7	271000-44-	PETROL 92 (Geodine)	0.7506	-	-	-	cBm	CBM	-	-	0.04	CBM	CBM	свм	CRM	CBM	43610
8	281000-43. 1	${ }^{\text {PETROL.\&8 }} \text { (Candinx) }$	0.7335	-	-	-	CBM	CBM	-	-	0.04	CBM	CBM	CBM	CBM	CBM	42880

Lead concentration in gasoline:(Petro/92)0.15g/
CBM - CANNOT BE MEASURED
Table D4.1.10 Result of Fuel Analysis - Gas Fuels

NUMBER	$\begin{gathered} \text { CODE } \\ \text { abc. } \quad \mathrm{d} \quad \mathrm{e} \\ \hline \end{gathered}$	PRODUCT		$\begin{aligned} & \text { density } \\ & (\mathrm{C}=0) \\ & \mathrm{ky} / \mathrm{m} 3 \\ & \hline \end{aligned}$	molecular weight	methane CH4\%	echasne C2H6\%	propanc C3H8\%	carbonite dioxide CO2\%	nitrogen N\%	varadiam V\%	$\begin{gathered} \text { total } \\ \text { sulfur } \\ s \operatorname{mog} / \mathrm{m} 3 \end{gathered}$	sulfur hydrogene $\mathrm{H} 2 \mathrm{~S} \mathrm{mg} / \mathrm{m} 3$
1	2	3	3	6	7	8	9	10	11	12	13	14	15
1	311800-34-0.0070	NATIONAL SOURCE AT "Hzjdurmoboselo"	811833989	0.734	16.39	97.65	0.76	0.19	0.13	1.17	CBM	2.8	1.4
2	322500-34-0.0074	gas line testveriseg-	856535858	0.731	16.27	98.35	0.43	0.17	0.05	0.90	CEM	3.9	1.4
3	331900-16-0.0044	mert	$3860 \quad 16159$	1.346	29.98	43.94	0.81	0.31	44.16	10.46	CBM	2.2	1.3

Figure D4.2.1 Road Network and Existing Traffic Survey Points

Table D4.2.1 Traffic Volume (in the year 1990) in Study Area

Road Name	Counting Station (km)	Jurccion (kn)		Lenth (km)	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { lains }\end{array}$	Traffic Volume (unis/day)							Fig.4.2.1.1 point No.
						Code	Passenger Car	Bus	Truck			total	
		inutial	[ins]						Light	Heavy	Trailer		
3	128.940	127.54	131.030	3.526	$2 \cdot 1$	4461	4.858	334	444	1,037	1.140	7.813	
	131.970	131.080	132768	1.688	$2{ }^{4}$	3024	7,022	457	707	1,203	1,353	10,742	
	134.030	132.768	138.236	5.468	241	4462	6,647	246	499	1,155	1.185	9.732	
	140.850	138.236	140.858	2.622	$2 \cdot 1$	2025	7.610	240	396	1,308	1,385	10.939	
	154.860	140.858	157.118	16.260	$2 \cdot 1$	7691	***	***	***	***	***	***	
	163.535	157.118	163.646	6.528	24	7692	8,697	192	1,120	2,179	2.551	14,739	(1)
	172.500	163.646	173.045	9.392	2*2	2026	16,172	582	561	2,202	1,282	20,799	(2)
	175.400	173.045	177.274	4.229	$2 * 2$	3027	16.413	571	574	2,984	748	21,290	(3)
	179.063	177.274	179.063	1.789	24	4463	13,974	797	466	1.919	903	18.059	(4)
	180.450	179.063	181.205	2.142	$2 \cdot 1$	4464	15.790	683	388	1.651	808	19,320	(5)
	182.390	181.205	183.000	1.795	2*)	3078	9,276	830	844	1,400	790	13.140	(6)
	188.800	183.000	190.245	7.245	$2 \cdot 1$	4465	4.101	125	105	317	140	4,788	(7)
	191.800	190.245	193.803	3558	2.1	7694	4,187	159	58	442	153	4,999	(8)
	195.230	193.803	201.337	7.534	$2^{*} 1$	3029	3,842	97	88	365	93	4.485	(2)
	212.080	201.337	218.714	17.377	24	7695	2.756	80	54	235	95	3.220	
	233.270	218.714	225.332	7.118	241	4466	1.737	69	86	163	7	2,062	
	235.620	225.832	239.010	13.178	2^{21}	7696	1.083	59	47	47	9	1,245	
	240.373	239.010	240.373	1.363	$2 * 1$	3	1,117	40	0	16	0	1.173	
			:										
25	55.000	50.987	55.770	4.783	2*1	3379	1.464	90	70	234	96	1.954	(1)
	61.800	55.770	62.438	6.668	241	4467	2.333	151	132	232	145	2.993	(1)
	64.800	62.438	64.984	2.546	$2 \cdot 1$	7697	2.640	130	114	212	122	3.218	(1)
	65.950	64.984	66.174	1.190	24	2105	4,473	167	125	268	82	5,115	(3)
	67.000	68.174	69.632	3.458	$2 * 1$	4468	3.388	163	122	231	102	4.006	(1)
	72.800	69.632	81.483	11.851	24	7698	2.528	85	115	37.	136	3,235	(3)
26	2000	0.000	2992	2.992	$2 \cdot 2$	4469	16.526	889	505	1,316	696	19.932	(1)
	8.000	2.992	9.484	6.492	2*1	4470	7.436	641	221	1,654	1.291	11,243	(1)
	13.000	9.484	15.694	6.210	24.	3106	8.652	803	884	1.636	1,134	13,109	(1)
	17.600	15.694	21.136	5.442	29.	7699	4,773	434	604	633	530	6.974	0
	23.000	21.136	29.355	8.219	24	4771	3.957	284	373	675	445	5,734	(6)
	33.500	29.355	38.241	8.886	$2 \cdot 1$	3380	2,845	198	524	561	217	4,341	(2)
	38.870	38.241	45.130	6.889	$2 \cdot 1$	7701	3.514	217.	494.	596	191	5.012	(2)
27	1.000	0.000	5.685	5.685	201	7702	2,350	145	116	413	128	3,152	(3)
	9.500	5.685	10.930	5.245	2^{*}	2108	-2,080	279	395	296	129	3.179	(4)
	12.800	10.930	15.420	4.490	$2^{4} 1$	7703	1,544	99	94	256	70	2.063	(3)
	17.000	15.420	24.910	9.490	$2 \cdot 1$	7704	1.640	80	65	235	53	2.073	(2)
	26.000	24.910	26.500	1.590	$2 * 1$	7705	1.438	106	74	294	64	1.974	
	29.400	26.500	30.220	3.720	$2 \cdot 1$	3381	1,641	111	85	242	77	2.156	
	35.200	30.220	35.458	5.238	$2{ }^{2} 1$	7706	- $0 \cdot$	***	***	***	\cdots	$4 \times *$	
	38.400	35.458	38.572	3.114	24	7707	1.010	76	51	124	25	1.286	
	39.700	38.572	42622	4.050	$2 * 1$	4472	527	31	42	89	26	715	
	45.400	42.622	46.522	3.900	$2 * 1$	7708	539	5	43	107	17	757	
	53.963	46.522	53.963	7.44	$2 \cdot 1$	4930	112	2	3	6	0	123	
	54.178	53.963	54.178	0.215	$2 \cdot 1$	14	74	1	0	-	-	75	
35	1.500	0.000	6.106	6.106	241	4473	6,361	169	529	1.236	919	9.14	(6)
	10.000	6.106	18.520	12.414	2*1	3119	6.730	159	412	866	1.545	9.712	(8)
	18.640	18.520	22885	4.365	$2 \cdot 2$	4474	5,240	519	348	1,721	2.402	10.230	89
37	1.500	0.000	8.465	8.465	$2 * 1$	3382	6,458	146	103	866	530	8.103	(1)
	13.800	8.465	15,677	7.212	$2 * 1$	4475	4.401	85	167	633	633	5.919	(1)
	27.600	15.677	27.770	12.096	24	4476	4.903	107	466	950	409	6,835	
	38.000	27.770	39.771	12.001	$2 \cdot 1$	3378	2.894	82	295	574	483	4.328	
	46.000	39.771	49.956	10.185	24	7709	2,537	82	248	465	382	-3.714	
	53.000	49.956	58.981	9.025	$2 * 1$	7710	2,789	77	275	393	306	3,841	
	60.050	58.981	64.451	5.470	$2 \cdot 1$	4477	2.751	87	175	331	172	3,516	
	65.000	64.451	75.726	11.275	$2 \cdot 1$	3123	2.350	65	155	328	159	3.057	
	76.500	75.726	78.296	2.570	201	3124	4.650	169	98	226	31	5,174	
	80.341	78.296	80.31	2.045	$2 * 1$	15	773	15	0	7	0.	795	

Table D4.2.2 Hourly Traffic Volume by Direction and Vehicle Type (No.1)
measuring point: 1026,2026(R3)
date: 1993/6/17-18 (weekday)

time	Budapest \rightarrow Miskolc(1026)				Miskolc \rightarrow Budapest(2026)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	373	28	121	522	456	20	95	571	829	48	216	1093
7:00~ 8:00	541	17	120	678	551	29	158	738	1092	46	278	1416
8:00~ 9:00	491	15	153	659	566	98	190	854	1057	113	343	1513
9:00~10:00	519	32	155	706	538	35	201	774	1057	67	356	1480
10:00~ 11:00	522	23	152	697	622	46	157	825	1144	69	309	1522
11:00~ 12:00	470	22	119	611	635	66	162	863	1105	88	281	1474
12:00~ 13:00	590	11	144	745	518	31	169	718	1108	42	313	1463
13:00~ 14:00	460	12	119	591	507	18	136	661	967	30	255	1252
14:00~ 15:00	444	15	98	557	588	21	128	737	1032	36	226	1294
15:00~ 16:00	463	7	99	569	596	41	134	771	1059	48	233	1340
16:00~ 17:00	606	4	74	684	608	7	73	688	1214	11	147	1372
17:00~ 18:00	495	10	91	596	646	16	79	741	1141	26	170	1337
18:00~ 19:00	386	7	54	447	402	2	37	441	788	9	91	888
19:00~ 20:00	520	11	70	601	299	2	33	334	819	13	103	935
20:00~ 21:00	300	12	55	367	259	2	43	304	559	14	98	671
21:00~ 22:00	252	7	45	304	161	2	20	183	413	9	65	487
22:00~ 23:00	139	6	19	164	103	1	27	131	242	7	46	295
23:00~ 0:00	103	4	21	128	99	0	22	121	202	4	43	249
0:00~ 1:00	29	9	8	46	26	0	21	47	55	9	29	93
1:00~ 2:00	33	1	7	41	24	2	15	41	57	3	22	82
2:00~ 3:00	34	1	14	49	23	12	15	50	57	13	29	99
3:00~ 4:00	42	4	13	59	25	4	30	59	67	8	43	118
4:00~ 5:00	91	4	27	122	81	5	28	114	172	9	55	236
5:00~ 6:00	137	7	74	218	193	3	34	230	330	10	108.	448
Total	8040	269.	1852	10161	8526	463	2007	10996	16566	732	3859	21157

Figure D4.2.2 Hourly Traffic Volume by Vehicle Type (No.1)

Table D4.2.3. Hourly Traffic Volume by Direction and Vehicle Type (No.1)
measuring point: 1026,2026 (R3)
date: 1993/6/20-21 (Holiday)

time	Budapest \rightarrow Miskolc (1026)				Miskolc \rightarrow Budapest(2026)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	L.trick	total	car	S.truck	L.truck	total
6:00~ 7:00	173	4	31	208	182	3	42	227	355	7	73	435
7:00~ 8:00	291	3	77	371	408	-1	36	445	699	4	113	816
8:00~ 9:00	426	3	17	446	693	3	31	727	1119	6	48	1173
9:00~ 10:00	581	2	74	657	847	2	50	899	1428	4	124	1556
10:00~ 11:00	841	5	69	915	1204	11	62	1277	2045	16	131	2192
. 11:00~ 12:00	554	6	55	615	680	2	29	711	1234	8	84	1326
12:00~ 13:00	446	5	46	497	633	4	42	679	1079	9	88	1176
13:00~ 14:00	502	7	52	561	552	7	30	589	1054	14	82	1150
14:00~ 15:00	539	7	39	585	691	12	38	741	1230	19	77	1326
15:00~ 16:00	642	8	72	722	683	6	33	722	1325	14	105	1444
16:00~ 17:00	691	7	49	747	739	8	41	788	1430	15	90	1535
17:00~ 18:00	1049	5	31	1085	811	7	31	849	1860	12	62	1934
18:00~ 19:00	1086	9	51	1146	772	2	30	804	1858	11	81	1950
19:00~ 20:00	973	2	33	1008	588	4	21	613	1561	6	54	1621
20:00~ 21:00	663	3	31	697	436	,	12	448	1099	3	43	1145
21:00~ 22:00	189	3	10	202	200	0	7	207	389	3	17	409
22:00~ 23:00	152	1	23	176	93	O	7	100	245	1	30	276
23:00~ 0:00	123	1	24	148	58	0	11	69	181	1	35	217
0:00~ 1:00	45	0	10	55	46	3	8	57	91	3	18	112
1:00~ 2:00	20	0	9	29	30	4	22	56	50	4	31	85
2:00~ 3:00	41	7	21	69	27	1	17	45	68	8	38	114
3:00~ 4:00	24	4	13	41	29	3	20	52	53	7	33	93
4:00~ 5:00	46	10	27	83	71	6	26	103	117	16	53	186
5:00~ 6:00	76	19.	58	153	56	21	53	130	132	40	111	283
Total	10173	121	922	11216	10529	110	699	11338	20702	231	1621	22554

Figure D4.2.3 Hourly Traffic Volume by Vehicle Type (No.1)

Table D4.2.4 Hourly Traffic Volume by Direction and Vehicle Type (No.2)
measuring point: 1463,2463(R3)
date: 1993/6/17-18 (weekday)

time	Miskolc \rightarrow Szikso(1463)				Szikszo \rightarrow Miskolc(2463)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	Ltruck	total	car	S.truck	L.truck	total
6:00~ 7:00	331	8	94	433	398	15	127	540	729	23	221	973
7:00~ 8:00	450	9	116	575	495	12	120	627	945	21	236	1202
8:00~ 9:00	451	9	109	569	458	20	98	576	909	29	207	1145
9:00~ 10:00	485	11	120	616	454	24	107	585	939	35	227	1201
10:00~ 11:00	486	17	124	627	515	13	83	611	1001	30	207	1238
11:00~ 12:00	450	11	87	548	495	6	105	606	945	17	192	1154
12:00~ 13:00	425	10	112	547	448	23	92	563	873	33	204	1110
13:00~ 14:00	422	11	124	557	564	30	116	710	986	41	240	1267
14:00~ 15:00	473	11	123	607	561	19	85	665	1034	30	208	1272
15:00~ 16:00	510	11	92	613	487	9	51	547	997	20	143	1160
16:00~ 17:00	462	6	68	536	473	10	67	550	935	16	135	1086
17:00~ 18:00	449	6	53	508	307	8	43	358	756	14	96	866
18:00~ 19:00	342	7	43	392	267	3	24	294	609	10	67	686
19:00~ 20:00	276	1	41	318	311	7	27	345	587	8	68	663
20:00~ 21:00	230	2	28	260	190	1	21	212	420	3	49	472
21:00~ 22:00	171	2	17	190	167	6	34	207	338	8	51	397
22:00~ 23:00	90	1	15	106	65	2	13	80	155	,	28	186
23:00~ 0:00	70	2	9	81	53	1	15	69	123	3	24	150
0:00~ 1:00	58	1	17	76	52	0	16	68	110	1	33	144
1:00~ 2:00	34	0	11	45	31	0	11	42	65	0	22	87
2:00~ 3:00	21	0	6	27	14	3	9	26	35	3	15	53
3:00~ 4:00	40	0	9	49	68	3	19	90	108	3	28	139
4:00~ 5:00	72	2	22	96	140	7	40	187	212	9	62	283
5:00~ 6:00	183	5	75	263	251	15	81	347	434	20	156	610
Total	6981	143	1515	8639	7264	237	1404	8905	14245	380	2919	17544

Figure D4.2.4 Hourly Traffic Volume by Vehicle Type (No.2)

Table D4.2.5 Hourly Traffic Volume by Ditection and Vehicle Type (No.2) measuring point: 1463,2463(R3) date: 1993/6/20-21 (Holiday)

time	Miskolc \rightarrow Szikso(1463)				Szikszo \rightarrow Miskolc(2463)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	191	1	32	224	168	4	26	198	359	5	58	422
7:00~ 8:00	254	4	33	291	241	5	29	275	495	9	62	566
8:00~ 9:00	393	3	29	425	319	4	23	346	712	7	52	771
9:00~ 10:00	433	3	24	460	393	4	22	419	826	7	46	879
10:00~ 11:00	378	4	17	399	275	0	15	290	653	4	32	689
11:00~ 12:00	381	5	25	411	375	0	18	393	756	5	43	804
12:00~ 13:00	349	7	25	381	347	2	20	369	696	9	45	750
13:00~ 14:00	319	6	30	355	434	2	29	465	753	8	59	820
14:00~ 15:00	296	2	28	326	300	1	17	318	596	3	45	644
15:00~ 16:00	391	6	26	423	471	O	16	487	862	6	42	910
16:00~ 17:00	374	2	23	399	552	1	22	575	926	3	45	974
17:00~ 18:00	354	5	24	383	582	3	17	602	936	8	41	985
18:00~ 19:00	343	2	35	380	483	3	20	506	826	5	55	886
19:00~ 20:00	305	2	18	325	525	2	17	544	830	4	35	869
20:00~ 21:00	187	0	20	207	321	3	14	338	508	3	34	545
21:00~ 22:00	139	4	16	159	203	1	25	229	342	5	41	388
22:00~ 23:00	72	0	12	84	118	1	19	138	190	1	31	222
23:00~ 0:00	47	3	5	55	50	1	8	59	97	4	13	114
0:00~ 1:00	13	1	5	19	26	3	13	42	39	4	18	61
1:00~ 2:00	31	3	12	46	23	0	12	35	54	3	24	81
2:00~ 3:00	30	2	21	53	26	5	15	46	56	7	36	99
3:00~ 4:00	20	0	10	30	35	1	9	45	55	1	19	75
4:00~ 5:00	41	2	8	51	80	2	26	108	121	4	34	159
5:00~ 6:00	178.	8	54	240	213	12.	77	302	391	20	131	542
Total	5519	75	532	6126	6560	60.	509	7129	12079	135	1041	13255

Figure D4.2.5 Hourly Traffic Volume by Vehicle Type (No.2)

Table D4.2.6 Hourly Traffic Volume by Direction and Vehicle Type (No.3)
measuring point : 4469,6469(R26)
date: 1993/617.-18 (weekday)

time	Sajosentpeter \rightarrow Miskolc(4469)				Miskolc \rightarrow Sajosentpeter(6469)				Two-direcution total			
	car	Struck	L.truek	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	351	14	99	464	641	22	117	780	992	36	216	1244
7:00~ 8:00	542	14	133	689	862	30	118	1010	1404	44	251	1699
8:00~ 9:00	622	17	119	758	710	18	119	847	1332	35	238	1605
9:00~ 10:00	662	7	116	785	670	19	106	795	1332	26	222	1580
10:00~ 11:00	691	11	110	812	702	23	99	824	1393	34	209	1636
11:00~ 12:00	757	17	114	888	698	43	47	788	1455	60	161	1676
12:00~ 13:00	622	15	90	727	645	13	104	762	1267	28	194	1489
13:00~ 14:00	685	18	114	817	618	13	100	731	1303	31	214	1548
14:00~ 15:00	602	8	92	702	601	12	96	709	1203	20	188	1411
15:00~ 16:00	808	9	98	915	492	16	83	591	1300	25	181	1506
16:00~ 17:00	610	6	78	694	369	6	76	451	979	12	154	1145
17:00~ 18:00	440	4	60	504	403	7	59	469	843	11	119	973
18:00~ 19:00	338	5	50	393	496	6	54	556	834	11	104	949
19:00~ 20:00	283	,	49	333	273	,	45	321	556	4	94	654
20:00~ 21:00	209	0	31	240	183	1	32	216	392	1	63	456
21:00~ 22:00	97	2	27	126	123	2	25	150	220	4	52	276
22:00~ 23:00	48	0	27	75	67	0	30	97	115	0	57	172
23:00~ 0:00	40	0	18	58	36	0	16	52	76	0	34	110
0:00~ 1:00	25	0	8	33	28	0	13	41	53	0	1	74
1:00~ 2:00	21	0	8	29	18	0	3	21	39	0	11	50
2:00~ 3:00	20	0	5	25	11	0	7	18	31	0	12	43
3:00~ 4:00	39	4	7	50	29	7	14	50	68	1	21	100
4:00~ 5:00	90	5	31	126	97	11	34	142	187	16	65	268
5:00~ 6:00	173	4	61	238	323	6	84	413	496	10	145	651
Total	8775	161	1545	10481	9095	258	1481	10834	17870	419	3026	21315

Figure D4.2.6 Hourly Traffic Volume by Vchicle Type (No.3)

Table D4.2.7 Hourly Traffic Volume by Direction and Vehicle Type (No.3)

time	Sajosentpeter \rightarrow Miskolc(4469)				Miskolc \rightarrow Sajosentpeter(6469)				Two-direcution total			
	car	Struek	L.truck	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	136	1	33	170	247	1	36	284	383	2	69	454
7:00~ , 8:00	216	3	34	253	434	3	37	474	650	6	71	727
8:00~ 9:00	342	2	30	374	519	0	23	542	861	2	53	916
9:00~ 10:00	458	0	26	484	521	1	26	548	979	1	52	1032
10:00~ 11:00	461	6	21	488	461	0	26	487	922	6	47	975
11:00~ 12:00	511	1	34	546	334	1	30	365	845	2	64	911
12:00~ 13:00	469	1	23	493	289	3	24	316	758	4	47	809
13:00~ 14:00	357	1	35	393	427	1	21	449	784	2	56	842
14:00~ 15:00	327	2	24	353	354	1	25	380	681	3	49	733
15:00~ 16:00	479	4	32	515	274	2	33	309	753	6	65	824
16:00~ 17:00	368	0	25	393	313	1	26	340	681	1	51	733
17:00~ 18:00	324	2	27	353	358	0	29	387	682	2	56	740
18:00~ 19:00	371	3	23	397	448	0	22	470	819	3	45	867
19:00~ 20:00	319	0	20	339	334	0	21	355	653	0	41	694
20:00~ 21:00	209	0	12	221	223	1	19	243	432	1	31	464
21:00~ 22:00	145	0	19	164	142	1	18	161	287	1	37	325
22:00~ 23:00	65	0	12	77	79	0	21	100	144	0	33	177
23:00~ 0:00	38	0	13	51	38	0	17	55	76	0	30	106
0:00~ 1:00	19	0	8	27	28	0	6	34	47	0	14	61
1:00~ 2:00	11	0	16	27	7	0	6	13	18	0	22	40
2:00~ 3:00	19	1	14	34	11	0	6	17	30	1	20	51
3:00~ 4:00	39	4	14	57	14	6	10	30	53	10	24	87
4:00~ 5:00	61	8	24	93	42	9	32	83	103	17	56	176
5:00~ 6:00	153	4	62	219	223	16	77	316	376	20	139	535
Total	5897	43	581	6521	6120	47	591	6758	12017	90	1172	13279

Figure D4.2.7 Hourly Traffic Volume by Vehicle Type (No.3)

Table D4.2.8 Hourly Traffic Volume by Direction and Vehicle Type (No.4) measuring point : $3119.6119(\mathrm{R} 35)$ date: 1993/6/17-18 (weekday)

time	Miskolc \rightarrow Debrecen(3119)				Debrecen \rightarrow Miskolc(6119)				Two-direcution total			
	car	S.truck	Ltruck	total	car	Struck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	158	38	128	324	200	30	105	335	358	68	233	659
7:00~ 8:00	130	32	107	269	165	47	73	285	295	79	180	554
8:00~ 9:00	176	36	88	300	151	36	58	245	327	72	146	545
9:00~ 10:00	175	27	58	260	152	27	81	260	327	54	139	520
10:00~ 11:00	152	38	85	275	138	27	71	236	290	65	156	511
11:00~ 12:00	149	25	70	244	141	32	88	261	290	57	158	505
12:00~ 13:00	159	47	99	305	165	36	60	261	324	83	159	566
13:00~ 14:00	174	26	86	286	155	36	84	275	329	62	170	561
14:00~ 15:00	164	34	82	280	195	22	84	301	359	56	166	581
15:00~ 16:00	184	37	69	290	213	31	66	310	397	68.	135	600
16:00~ 17:00	212	46	54	312	169	24	41	234	381	70	95	546
17:00~ 18:00	203	31	47	281	196	51	47	294	399	82	94	575
18:00~ 19:00	136	2	29	167	133	3	15	151	269	5	44	318
19:00~ 20:00	167	4	24	195	117	2	28	147	284	6	52	342
20:00~ 21:00	136	2	20	158	86	1	15	102	222	3	35	260
21:00~ 22:00	83	1	12	96	70	2	14	86	153	3	26	182
22:00~ 23:00	38	0	10	48	29	,	19	49	67	,	29	97
23:00~ 0:00	29	0	15	44	26	1	10	37	55	1	25	81
0:00~ 1:00	31	1	12	44	15	2	6	23	46	3	18	67
1:00~ 2:00	18	2	6	26	20	0	8	28	38	2	14	54
2:00~ 3:00	19	0	7	26	18	1	16	35	37	2	23	61
3:00~ 4:00	24	2	15	41	24	3	25	52	48	5	40	93
4:00~ 5:00	28	4	18	50	35	2	40	77	63	6	58	127
5:00~ 6:00	86	2	47	135	89	5	56	150	175	7	103	127
Total	2831	437	1188	4456	2702	422	1110	4234	5533	859	2298	8690

Figure D4.2.8 Hourly Traffic Volume by Vehicle Type (No.4)

Table D4.2.9 Hourly Traffic Volume by Direction and Vehicle Type (No.4)

time	Miskolc \rightarrow Debrecen(3119)				Debrecen \rightarrow Miskotc(6119)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	L.tmek	total	car	S.truck	Letruck	total
6:00~ 7:00	90	5	21	116	105	3	18	126	195	8	39	242
7:00~ 8:00	105	7	29	141	145	4	17	166	250	11	46	307
8:00~ 9:00	138	0	13	151	198	0	17	215	336	0	30	366
9:00~ 10:00	190	4	10	204	213	5	11	229	403	9	21	433
10:00~ 11:00	208	1	8	217	223	1	15	239	431	2	23	456
11:00~ 12:00	212	0	10	222	185	1	18	204	397	1	28	426
12:00~13:00	183	2	8	193	164	5	8	177	347	7	16	370
13:00~ 14:00	147	0	11	158	219	0	5	224	366	0	16	382
14:00~ 15:00	240	0	7	247	222	0	10	232	462	0	17	479
15:00~ 16:00	194	-	15	209	255	0	16	271	449	0	31	480
16:00~ 17:00	282	0	11	293	284	2	12	298	566	2	23	591
17:00~18:00	365	2	15	382	380	2	14	396	745	4	29	778
18:00~19:00	303	0	5	308	285	2	19	306	588	2	24	614
19:00~ 20:00	320	0	7	327	300	3	11	314	620	3	18	641
20:00~ 21:00	200	1	11	212	180	1	30	211	380	2	41	423
21:00~ 22:00	112	1	9	122	97	0	10	107	209	,	19	229
22:00~ 23:00	37	0	6	43	54	2	12	68	91	2	18	111
23:00~ 0:00	32	1	15	48	26	1	14	41	58	2	29	89
0:00~ 1:00	23	3	10	36	26	1	11	38	49	4	21	74
1:00~ 2:00	38	0	11	49	18	1	9	28	56	1	20	77
2:00~ 3:00	33	3	14	50	25	0	14	39	58	3	28	89
3:00~ 4:00	40	5	24	69	27	2	18	47	67	7	42	116
4:00~ 5:00	74	5	27	106	95	4	40	139	169	9	67	245
5:00~ 6:00	150	9	42.	201	173	10	64	247	323	19	106	448
Total	3716	49	339	4104	3899	50	413	4362	7615	99	752	8466

Figure D4.2.9 Hourly Traffic Volume by Vehicle Type (No.4)

Table D4.2.10 Hourly Traffic Volume by Direction and Vehicle Type (No.5) measuring point: 1001,2001(R2505) date: 1993/6/17-18 (wcekday)

lime	Lillafured \rightarrow Miskotc(1001)				Miskolc \rightarrow Lillafured(2001)				Two-direcution total			
	car	S.trick	L.truck	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	107	1	15	123	114	1	18	133	221	2	33	256
7:00~ 8:00	135	3	24	162	139	2	30	171	274	5	54	33
8:00~ 9:00	120	7	35	162	96	2.	29	127	216	9	64	89
9:00~ 10:00	122	10	19	151	148	3	38	189	270	13	57	340
10:00~ 11:00	105	2	22	129	135	6	41	182.	240	8	63	11
11:00~ 12:00	114	9	24	147	121	8	26	155	235	17	50	302
12:00~ 13:00	85	5	18	108	108	3	19	130	193	8	37	238
13:00~ 14:00	93	4	27	124	123	5	26	154	216	9	53	278
14:00~ $15: 00$	116	0	24	140	127	6	24	157	243	6	48	297
15:00~ 16:00	125	2	21	148	138	8	20	166	263	10	41	314
16:00~ 17:00	91	3	19	113	125	6	22	153	216	9	41	266
17:00~ 18:00	147	0	9	156	168	1	11	180	315	1	20	336
18:00~ 19:00	95	0	2	97	117	0	8	125	212	0	10	222
19:00~20:00	79	0	7	86	118	0	6	124	197	0	13	210
20:00~ 21:00	52	0	6	58	88	0	3	91	140	0	9	149
21:00~ 22:00	16	0	2	18	32	0	4	36	48	0	6	54
22:00~ 23:00	15	0	4	19	24	0	3	27	39	0	7	46
23:00~ 0:00	7	0	1	8	7	0	0	7	14	0	1	15
0:00~ 1:00	7	0	2	9	8	0	0	8	15	0	2	17
1:00~ 2:00	3	0	1	4	5	0	1	6	8	0	2	10
2:00~ 3:00	3	0	0	3	4	0	1	5	7	0	1	8
3:00~ 4:00	5	1	4	10	9	0	1	10	14	1	5	20
4:00~ 5:00	7	3	5	15	17	0	3	20	24	3	8	35
5:00~ 6:00	38	1	12	51	63	1.	12	76	101	2	2.4	127
Total	1687	51.	303	2041	2034	52	346	2432	3721	103	649	4473

Figure D4.2.10 Hourly Traffic Volume by Vehicle Type (No.5)

Table D4.2.11 Hourly Traffic Volume by Direction and Vehicle Type (No.5) measuring poim: : 1001,2001 (R2505) date: 1993/6/20-21 (Holiday)

time	Lillafured \rightarrow Miskolc(1001)				Miskolc \rightarrow Lillafured(2001)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	42	0	5	47	46	0	5	51	88	0	10	98
7:00~ $8: 00$	71	1	5	77	58	0	5	63	12.9	1	10	140
8:00~ 9:00	130	0	8	138	85	0	6	91	215	0	14	229
9:00~ 10:00	150	1	6	157	111	1	4	116	261	2	10	273
10:00~ 11:00	171	4	8	183	122	0	7	129	293	4	15	312
11:00~ 12:00	144	1	5	150	97	1	6	104	241	2	11	254
12:00~13:00	109	1	5	115	123	0	4	127	232	1	9	242
13:00~ 14:00	131	0	6	137	128	0	7	135	259	0	13	272
14:00~15:00	134	0	5	139	142	0	5	147	276	0	10	286
15:00~ 16:00	129	1	7	137	136	0	7	143	265	1	14	280
16:00~ 17:00	150	0	5	155	200	0	4	204	350	0	9	359
17:00~ 18:00	145	1	7	153	216	0	2	218	361	1	9	371
18:00~19:00	153	0	3	156	238	3	3	244	391	3	6	400
19:00~ 20:00	117	0	5	122	222	0	3	225	339	0	8	347
20:00~ 21:00	70	0	1	71	112	1	2	115	182	1	3	186
21:00~ 22:00	41	0	4	45	66	0	2	68	107	0	6	113
22:00~ 23:00	22	0	1	23	27	0	2	29	49	0	3	52
23:00~ 0:00	14	0	1	15	6	0	0	6	20	0	1	21
0:00~ 1:00	6	0	0	6	5	0	0	5	11	0	0	11
1:00~ 2:00	4	0	0	4	3	0	0	3	7	0	0	7
2:00~ 3:00	3	0	0	3	3	0	0	3	6	0	0	6
3:00~ 4:00	3	0	0	3	7	0	0	7	10	0	0	10
4:00~ 5:00	6	1	1	8	13	0	3	16	19	1	4	24
5:00~ 6:00	27	0	13	40	51	2	14	67	78	2	27	107
Total	1972	11	101	2084	2217	8	91	2316	4189	19	192	4400

Figure D4.2.11 Hourly Traffic Volume by Vehicle Type (No.5)

Table D4.2.12 Hourly Traffic Volume by Direction and Vehicle Type (No.6) measuring point: 1002,2002(R3604) date: 1993/6117-18 (weekday)

Figure D4.2.12 Hourly Traffic Volume by Vehicle Type (No.6)

Table D4.2.13 Hourly Traffic Volume by Direction and Vehicle Type (No.6)
measuing poin: $1002,2002(\mathrm{R} 3604$) date: 1993/6/20-21 (Holiday)

time	Miskolc \rightarrow Kistokaj(1002)				Kistokaj \rightarrow Miskolc(2002)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.truck	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	59	2	7	68	102	2	8	112	161	4	15	180
7:00~ 8:00	67	0	8	75	57	2	4	63	124	2	12	138
8:00~ 9:00	93	1	5	99	61	2	5	68	154	3	10	167
9:00~ 10:00	146	0	10	156	99	0	5	104	245	0	15	260
10:00~ 11:00	114	3	8	125	71	1	5	77	185	4	13	202
11:00~ 12:00	96	4	8	108	82	6	5	93	178	10	13	201
12:00~ 13:00	6	1	11	18	86	2	6	94	92	3	17	112
13:00~ 14:00	87	1	8	96	63	1	6	70	150	2	14	166
14:00~ 15:00	98	0	8	106	68	3	8	79	166	3	16	185
15:00~ 16:00	157	4	11	172	150	3	6	159	307	7	17	331
16:00~ 17:00	142	6	7	155	193	6	7	206	335	12	14	361
17:00~18:00	168		10	179	210	6	10	226	378	7	20	405
18:00~ 19:00	249	8	10	267	232	3	9	244	481	11	19	511
19:00~ 20:00	195	3	6	204	192	0	5	197	387	3	11	401
20:00~ 21:00	176		10	188	110	2	8	120	286	4	18	308
21:00~ 22:00	78	2	7	87	64	0	6	70	142	2	13	157
22:00~ 23:00	42	0	4	46	53	0	6	59	95	0	10	105
23:00~ 0:00	21	0	4	25	40	0	5	45	61	0	9	70
0:00~ 1:00	28	0	3	31	40	0	0	40	68	0	3	71
1:00~ 2:00	8	0	1	9	36	0	0	36	44	0	1	45
2:00~ 3:00	6	0	3	9	21	0	0	21	27	-	3	30
3:00~ 4:00	17	0	4	21	22	0	4	26	39		8	47
4:00~ 5:00	23	2	7	30	37	2	10	49	58	4	17	79
5:00~ 6:00	77	6	13	96	80	7	15	102	157	13	28	198
Total	2151	46	173	2370	2169	48	143	2360	4320	94	316	4730

Figure D4.2.13 Hourly Traffic Volume by Vehicle Type (No.6)

Table D4.2.14 Hourly Traffic Volume by Direction and Vehicle Type (No.7)
measuring point: 1003,2003(Miskole) date: 1993/6/17-18 (weekday)

time	from Repter (1003)				to Repter (2003)				Two-direcution total			
	car	S.truck	L.truck	total	car	S.track	L.truck	total	car	S.truck	L.truck	total
6:00~ 7:00	140	7	46	193	146	5	29	180	286	12	75	373
7:00~ 8:00	182	6	49	237	194	6	52	252	376	12	101	489
8:00~ 9:00	225	11	36	272	215	3	46	264	440	14	82	536
9:00~ 10:00	249	3	36	288	183	7	28	218	432	10	64	506
10:00~ 11:00	304	5	41	350	213	5	39	257	517	10	80	607
11:00~ 12:00	415	7	35	457	165	11	37	213	580	18	72	670
12:00~ 13:00	147	5	42	194	117	2	28	147	264	7	70	341
13:00~ 14:00	128	3	43	174	111	5	28	144	239	8	71	318
14:00~ 15:00	126	0	23	149	116	2	36	154	242	2	59	303
15:00~ 16:00	112	3	18	133	106	3	25	134	218	6	43	267
16:00~ 17:00	84	1	10	95	78	2	13	93	162	3	23	188
17:00~ 18:00	79	1	4	84	70	2	12	84	149	3	16	168
18:00~ 19:00	57	1	4	62	48	1	10	59	105	2	14	121
19:00~ 20:00	32	0	4	36	40	0	3	43	72	0	7	79
20:00~ 21:00	21	0	4	25	26	0	2	28	47	0	6	53
21:00~ 22:00	17	0	6	23	19	0	5	24	36	0	11	47
22:00~ 23:00	10	0	3	13	8	1	5	14	18	1	8	27
23:00~ 0:00	3	0	1	4	3	0	1	4	6	0	2	8
0:00~ 1:00	1	0	0	1	8	0	3	11	9	0	3	12
1:00~ 2:00	4	0	1	5	7	0	0	7	11	0	1	12
2:00~ 3:00	2	0	1	3	5	1	1	7	7	1	2	10
3:00~ 4:00	1	0	1	2	7	0	5	12	8	0	6	14
4:00~ 5:00	11	1	1	13	53	0	8	61	64	1	9	74
5:00~ 6:00	54	1	23	78	176	3	35	214	230	4	58	292
Yotal	2404	55	432	2891	2114	59	451	2624	4518	114	883	5515

Figure D4.2.14 Hourly Traffic Volume by Vehicle Type (No.7)

[^0]: * Estimated valucs

[^1]: * Estimated values

[^2]: * Estimated values

[^3]: Estimated effects of countermeasures

[^4]: * Estimated values

[^5]: * Estimated values

[^6]: * Estimated value

[^7]: * Estimated value

[^8]: Estimated effects of countermeasures

[^9]: * Estimated value

[^10]: * Estimated value

[^11]: * Estimated value

[^12]: * Estimated value

[^13]: * Estimated value

[^14]: * Estimated value

[^15]: * Estimated value

