E-4. Project Implementation Program

E-4.1. Construction Management

The Executive Agency for the Project would be Ministry of Water Resources (MWR). The MWR would be responsible for the planning, design, bidding and supervision of the project works, keep close coordination with the agencies concerned on the finance and project implementation. project approval, Project would be implemented under the present organization of the MWR and required to be of great importance in the coordination of activities among the departments and institutes concerned. Prior to the start of project works, the Project Manager would be appointed under the Construction Department, MWR, who would rest with the day-to-day works. Under him, aiming at the smooth implementation, Administration section, Planning & Engi-Construction section. Mechanics & Material section. neering section and Right-of-way Coordination section. Administration section would serve the works in charge of office operation, personnel, finance and others not concerned to the other sections. Planning & Engineering section would have the works for planning and monitoring of construction works, design of force account works and engineering support to the construction, etc. Construction section would supervise the contract works and execute the force account works. Mechanics & Material section would be responsible for procurement and management of equipment and materials for the force account works. every material tests with quality control and management of regard to the construction office equipment. Right-of-way & Coordination section would deal with Land acquisition, education/training to farmers, management of claim during the construction. For this project office set-up, the number of project engineers and staffs would be increased.

E-4.2. Construction Mode and Method

The procurement of mechanical and electrical equipment, construction of pumping station and major irrigation and/or drainage canals and structures as well as construction of fish ponds would be executed by the contract work, the open international competitive bidding would be conducted in case of the project with financial assistance from international institution. The procedures of pre-qualification and bidding for the contract

works have not been authorized. According to the draft procedure, The Awarding Committee chaired by a leader of the ministry would be created under the MWR. Every matters would be dealt with by the department concerned under the present organization and approved by the committee, through administrative arrangement of Construction Department or Planning Department.

The construction of small irrigation and drainage canals have depended on the farmers concerned. In case of leaving those construction works to the farmers, it is so often seen that the canals have been untouched and/or have not coincided with the plan. Consequently, effects of such project might not be expected. Therefore, it is suggested for the small irrigation and drainage canals to be implemented by the force account works under the Project.

E-4.3. Construction Schedule

Upon the project approved, the detailed design as well as bidding documents, specifications and others documents/drawings necessary for the approval and implementation of the project works should be commenced and at the same time the selection of consultants would be carried out. The consultants would be selected first by the technical proposal. After approval of the selection, the contract conditions would be concluded. The prequalification documents would be reviewed by the consultants upon the commencement of consulting services and advertised after the Approval. The procurement of construction equipment for the force account works would be bidden in the early stage of the project so as not to delay the schedule of the force account works. The contract works would be bidden upon the approval of detailed design and construction drawings and started in the construction. The bidding for the procurement of mechanical and electrical parts of the pumping station would be completed at least 18 months before the completion of the building of the station. The arrangement of all right-of-way should be accomplished before the construction with every efforts. These preconstruction activities are estimated to take about one year and little more.

The construction would be implemented by the approved construction schedule, according to the specifications and construction drawings. In principal, the construction of irrigation

canals would be carried out from the upstream and the drainage canals would be constructed starting from the downstream. In the rainy season, specially in July to September, the construction would be controlled in a certain parts of the works, to prevent damages due to heavy rain. The deep foundation of the pumping station and fish ponds would be constructed in the dry season. These construction would be supervised by the staff of Construction section according to the construction supervision manuals. The project would be completed by six to seven years, while the construction works are expected to be accomplished within five years.

APPENDIX F

AGRICULTURAL INFRASTRUCTURE

APPENDIX F

PROJECT FACILITIES AND COST

CONTENTS

	Page
F-1 ROADS AND TRANSPORTATION	F-1
F-1.1 Existing Roads Net Works	F-1
F-1.2 Present Transportation	F-1
F-1.3 Farm Road Improvement	F-6
F-1.4 Improvement of Main Farm Road	F-6
F-2 PROPOSED FACILITIES	F-9
F-2.1 Scope of Facility Plan	F-9
F-2.2 Pumping Station	F-9
F-2.3 Irrigation Canal and Appurtenant Structures	F-17
F-2.4 Drainage Canal and Appurtenant Structures	F-27
F-3 PROJECT COST	F-40
F-3.1 Method of Cost Estimates	F-40
F-3.2 Project Cost	F-48
F-3.3 Disbursement Schedule	F - 89
F-3.4 Consulting Services Manning Schedule	F-116
F-4 OPERATION AND MAINTENANCE COSTS	F-117

F-1 ROADS AND TRANSPORTATION

F-1.1 Existing Road Net Work

The existing road net work of the Project area is shown in the Figure F-1.1 Plan of Road Net Work which shows the existing net work and the improvement of roads. The total length of roads are 405.5 km including village roads in Tien Son district. There are a National road, 5 provincial roads, 11 district roads, 16 commune roads, village roads and 3 Special roads. Length of different type of roads in Tien Son and the project area are summarized as below, and Table F-1.1 show the road net work in the Tien Son district.

Length of Different types of Roads

	Tien Son District	Project Area
National Road	11 km;	5 km;
Provincial Road	s 41 km;	22 km;
District Roads	67.5 km;	45 km;
Commune Roads	38.5 km;	1.8 km;
Village Roads	243 km;	95 km;
Special Roads	3.5 km;	1 km;
Bridges	15 bridges;	6 bridges;
Culverts	627 pls;	247 pls;

F-1.2 Present Transportation

There are regular services of a railway and buses between Hanoi City and the area. Small regular buses and irregular omnibus links major communes and towns. There are only four services of

the railway a day. According the Plan for the rural transport and transportation development of Tien Son district in Phase 1994-2000, there some conflict in the development though the requirement of a quick development of transport means;

Table F-1.1 Road network in Tien Son District
(Existing situation)

No	Nam of road	Length (m)	Width (m)	Surface type	Road class
1	2	3	4	5	6
I	National Roads				
1 -	National road No1A	11,000	8-10	Asphalt	5
II	Provincial Roads	41,000			r = 5
1	Road No 288			e se e	
	- Bac Ninh - Ho	10,000	5-7	Asphalt	6
2	Road No 295				
	- Tu Son - Cau Net	4,800	6-7	sandgravel	6
^	- Tu Son - Cau Chat	5,300	6-7	,,	6
3	Road No 270	~ '000	- .		
	- Lim - Cau Sop	7,000	5-6	. ,,	6
4	- Lim - An Phu	6,000	3-5	,,	no class
4	Road No. 271	F 000			
-	- Tu Son - Van Ho	5,000	6-7	Asphalt	6
5	Road No 298	2 000	7.6		
	- Phu Khe - Cau to	3,000	5-6	Asphalt+ sandgravel	6
Ш	District Roads	67,500		Sunagravos	
1	Chua Dan - Da Hoi	3,000	3-5	sandgravel	no class
2	Tuong Giang-Cau Cho	5,300	,,	,,,	,,
3	Trinh Xa - Dong Ky	3,000	,,	,,	7.3
4	Phu Khe - Mai Dong	2,200	,,	,,	,,
5	Cam Thu - Phat Tich	8,000	,,	,,	,,

^{&#}x27;The State run transport means are much declined;

^{*}The individual transport means are much increased, the individuals quickly catch up market demands and expanse their extent.

6 Phu Chan-Tri Phuong 5,750 """"""""""""""""""""""""""""""""""""						
8 Noi Due - Phat Tich 6,200 ,, <t< td=""><td>6</td><td>Phu Chan-Tri Phuong</td><td>5,750</td><td>,,</td><td>,,</td><td>,,</td></t<>	6	Phu Chan-Tri Phuong	5,750	,,	,,	,,
9	7	Phu Chan-Hap Linh	12,000	,,	,,	,,
10 Cho Son-Minh Dao 4,000 ,, <td>8</td> <td>Noi Due - Phat Tich</td> <td>6,200</td> <td>,,</td> <td>,,</td> <td>, ,</td>	8	Noi Due - Phat Tich	6,200	,,	,,	, ,
11 Dong Nguyen-Tam Son 2,000 2-4 ,, ,, IV Commune Roads 38,500 ,, ,, 1 Phu Khe-Nghia Lap 1,500 2-3 sandgravel no class 1 Me - Mai Dong 2,200 ,, ,, ,, 3 Tu Son - Trang Liet 1,500 ,, ,, ,, 4 Tu Son - Xom Nieu 2,700 ,, ,, ,, 5 Duong Loi - Huc 2,000 ,, ,, ,, ,, 5 Duong Loi - Huc 2,000 ,, ,, ,, ,, ,, 6 Dong Phu - Vinh Phuc 1,750 ,,<	. 9	Bach Mon-So Dong	8,000	,,	,,	, ,
IV Commune Roads 38,500	10	Cho Son-Minh Dao	4,000	,,	,,	,,,
Phu Khe-Nghia Lap	11	Dong Nguyen-Tam Son	2,000	2-4	,,	,,
1 Me - Mai Dong 2,200 """ """ 3 Tu Son - Trang Liet 1,500 """ """ 4 Tu Son - Xom Nieu 2,700 """ """ 5 Duong Loi - Huc 2,000 """ """ 6 Dong Phu - Vinh Phuc 1,750 """ """ 7 Tam Tao - Ha Giang 1,750 """ """ 8 Cong Ba - Dong Khu 2,500 """ """ 9 Dinh Bang - Phu Luu 1,700 """ """ 10 Vieng - Le Xuyen 1,000 """ """ 11 Bue - Lung Son 3,200 """ """ 12 Va - Ba Duyen 6,000 """ """ "" 13 Cho Son - Doc Coc 2,400 """ """ "" 14 Dong So - Dong Co 3,500 """ """ "" 15 Cau Sop - Ren 2,000 """ """ "" V Village Roads 243,000 about 70 % paved with bricks VI Spec	IV	Commune Roads	38,500			
3 Tu Son - Trang Liet 1,500 """ """ 4 Tu Son - Xom Nieu 2,700 """ """ 5 Duong Loi - Huc 2,000 """ """ 6 Dong Phu - Vinh Phuc 1,750 """ """ 7 Tam Tao - Ha Giang 1,750 """ """ 8 Cong Ba - Dong Khu 2,500 """ """ 9 Dinh Bang - Phu Luu 1,700 """ """ 10 Vieng - Le Xuyen 1,000 """ """ 11 Bue - Lung Son 3,200 """ """ 12 Va - Ba Duyen 6,000 """ """ """ 13 Cho Son - Doc Coc 2,400 """ """ """ 14 Dong So - Dong Co 3,500 """ """ """ 15 Cau Sop - Ren 2,000 """ """ """ 16 Huc - Dai Trung 2,800 """ """ """ V Village Roads 3,500 """ """ """ """<	1	Phu Khe-Nghia Lap	1,500	2-3	sandgravel	no class
4 Tu Son - Xom Nieu 2,700 ,, ,, ,, 5 Duong Loi - Huc 2,000 ,, ,, ,, 6 Dong Phu - Vinh Phuc 1,750 ,, ,, ,, 7 Tam Tao - Ha Giang 1,750 ,, ,, ,, 8 Cong Ba - Dong Khu 2,500 ,, ,, ,, 9 Dinh Bang - Phu Luu 1,700 ,, ,, ,, 10 Vieng - Le Xuyen 1,000 ,, ,, ,, 11 Bue - Lung Son 3,200 ,, ,, ,, 12 Va - Ba Duyen 6,000 ,, ,, ,, 13 Cho Son - Doc Coc 2,400 ,, ,, ,, 14 Dong So - Dong Co 3,500 ,, ,, ,, 15 Cau Sop - Ren 2,000 ,, ,, ,, 16 Huc - Dai Trung 243,000 about 70% paved with bricks V Village Roads 3,500 1 Tan Lap - Den Rong 1,500 </td <td>1</td> <td>Me - Mai Dong</td> <td>2,200</td> <td>. ,,</td> <td>,,</td> <td></td>	1	Me - Mai Dong	2,200	. ,,	,,	
5 Duong Loi - Huc 2,000 ,, ,, ,, 6 Dong Phu - Vinh Phuc 1,750 ,, ,, ,, 7 Tam Tao - Ha Giang 1,750 ,, ,, ,, 8 Cong Ba - Dong Khu 2,500 ,, ,, ,, 9 Dinh Bang - Phu Luu 1,700 ,, ,, ,, 10 Vieng - Le Xuyen 1,000 ,, ,, ,, 11 Bue - Lung Son 3,200 ,, ,, ,, 12 Va - Ba Duyen 6,000 ,, ,, ,, ,, 12 Va - Ba Duyen 6,000 ,, ,, ,, ,, 13 Cho Son - Doc Coc 2,400 ,, ,, ,, ,, 15 Cau Sop - Ren 2,000 ,, ,, ,, ,, 16 Huc - Dai Trung 2,43,000 about 70% paved with bricks V Vilage Roads 3,500 ,, <	3	Tu Son - Trang Liet	1,500	"	,,	5 7
6 Dong Phu - Vinh Phuc 1,750 ,, ,, 7 Tam Tao - Ha Giang 1,750 ,, ,, 8 Cong Ba - Dong Khu 2,500 ,, ,, 9 Dinh Bang - Phu Luu 1,700 ,, ,, 10 Vieng - Le Xuyen 1,000 ,, ,, 11 Bue - Lung Son 3,200 ,, ,, 12 Va - Ba Duyen 6,000 ,, ,, 13 Cho Son - Doc Coc 2,400 ,, ,, 14 Dong So - Dong Co 3,500 ,, ,, 15 Cau Sop - Ren 2,000 ,, ,, 16 Huc - Dai Trung 2,800 ,, ,, V Village Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	4	Tu Son - Xom Nieu	2,700	2.3	,,	,,
7 Tam Tao - Ha Giang 1,750 """ </td <td>5</td> <td>Duong Loi - Huc</td> <td>2,000</td> <td>,,</td> <td>,,</td> <td>,,</td>	5	Duong Loi - Huc	2,000	,,	,,	,,
8 Cong Ba - Dong Khu 2,500 ,, ,, ,, 9 Dinh Bang - Phu Luu 1,700 ,, ,, ,, 10 Vieng - Le Xuyen 1,000 ,, ,, ,, 11 Bue - Lung Son 3,200 ,, ,, ,, 12 Va - Ba Duyen 6,000 ,, ,, ,, 13 Cho Son - Doc Coc 2,400 ,, ,, ,, 14 Dong So - Dong Co 3,500 ,, ,, ,, 15 Cau Sop - Ren 2,000 ,, ,, ,, 16 Huc - Dai Trung 2,800 ,, ,, ,, V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	6	Dong Phu - Vinh Phuc	1,750	,,	,	
9 Dinh Bang - Phu Luu 1,700 ,, ,, ,, 10 Vieng - Le Xuyen 1,000 ,, ,, ,, 11 Bue - Lung Son 3,200 ,, ,, ,, 12 Va - Ba Duyen 6,000 ,, ,, ,, 13 Cho Son - Doc Coc 2,400 ,, ,, ,, 14 Dong So - Dong Co 3,500 ,, ,, ,, 15 Cau Sop - Ren 2,000 ,, ,, ,, 16 Huc - Dai Trung 2,800 ,, ,, ,, V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	7	Tam Tao - Ha Giang	1,750	,,	,,	,,
10 Vieng - Le Xuyen 1,000 """ """ """ """ 11 Bue - Lung Son 3,200 """ """ "" 12 Va - Ba Duyen 6,000 """ "" "" 13 Cho Son - Doc Coc 2,400 """ "" "" 14 Dong So - Dong Co 3,500 """ "" "" 15 Cau Sop - Ren 2,000 """ "" "" 16 Huc - Dai Trung 2,800 "" "" V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	8	Cong Ba - Dong Khu	2,500	,,	,,	,,
11 Bue - Lung Son 3,200 """ """ 12 Va - Ba Duyen 6,000 """ """ 13 Cho Son - Doc Coc 2,400 """ """ 14 Dong So - Dong Co 3,500 """ """ 15 Cau Sop - Ren 2,000 """ """ 16 Huc - Dai Trung 2,800 """ """ V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 """ 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	9	Dinh Bang - Phu Luu	1	,,	,,	,,
12 Va - Ba Duyen 6,000 """ """ """ "" 13 Cho Son - Doc Coc 2,400 """ """ "" """ """ "" 14 Dong So - Dong Co 3,500 """ """ "" """ "" 15 Cau Sop - Ren 2,000 """ "" """ "" 16 Huc - Dai Trung 2,800 """ "" """ "" V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	10	Vieng - Le Xuyen	•	,,	,,	,,
13 Cho Son - Doc Coc 2,400 """ </td <td>11</td> <td>Bue - Lung Son</td> <td>1</td> <td>,,</td> <td>,,</td> <td>,,</td>	11	Bue - Lung Son	1	,,	,,	,,
14 Dong So - Dong Co 3,500 """ """ 15 Cau Sop - Ren 2,000 """ """ 16 Huc - Dai Trung 2,800 """ """ V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	12	Va - Ba Duyen		,,	,,	,,
15 Cau Sop - Ren 2,000 7,	13	Cho Son - Doc Coc		,,	,,	,,
16 Huc - Dai Trung 2,800 ,, ,, ,, V Village Roads 243,000 about 70% paved with bricks VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	14.	Dong So - Dong Co	, ,	,,	,,	,,
V Village Roads VI Special Roads 1 Tan Lap - Den Rong 2 Road to Tu Son market 243,000 about 70% paved with bricks 1,500 1,000	15	Cau Sop - Ren	1 '	,,	,,	,,
VVillage Roads243,000about 70% paved with bricksVISpecial Roads3,5001Tan Lap - Den Rong Road to Tu Son market1,500 1,000	16	Huc - Dai Trung	2,800	,,	,,	,,
VI Special Roads 3,500 1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000						,,
1 Tan Lap - Den Rong 1,500 2 Road to Tu Son market 1,000	v	Village Roads	243,000	about	70% paved v	vith bricks
2 Road to Tu Son market 1,000	VI	Special Roads	3,500			
2 Road to Tu Son market 1,000	1	Tan Lap - Den Rong	1,500			
	1		1 '			
			1 '			

TOTAL:

- National Roads :	11 km	- Bridges	15 pieces
- Provincial Roads:	41 km	L =	8-32 m
- District Roads :	67.5 km	- Culverts	627 pieces
- Commune Roads:	38.5 km	with diam	eter of 40-3,00

- Village roads: 243 km

Source; Tien Son District Office

The development of transport means

(1990 - 1992)

Type of means	Unit	1990	1991	1992
1- Vehicles				
- Sedan	piece	5	6	7
- Bus	,,	7	19	35
- Truck of 2-5 T	,,	6	10	27
2- Carts				
Ox cart + horse carriage		132	86	70
3- Small Vehicles			60	
- Cong Nong - Xe Lam		47 15	68 32	110 40

Source; Tien Son district

-Number of transport means is getting higher, but these means are not strictly controlled. Regulations of specific branches are not seriously applied. Transport means are being operated but without:

- Registration permission;
- License for running;
- License for transportation business;
- Transport fees and insurance;
- Paying taxes.

Because the management of transportation is not well controlled, many vehicles break transport & transportation regulations. Accidents caused by vehicles increase.

In addition, due to the uncontrolled management, the State losses a great amount from taxes and fees. The State also finances investment in reparation, maintenance of roads and on-road structures which are damaged by transport means.

Transportation management is a very complicated work. It requests all efforts of all institutions, all people.

Under these situation the Tien Son district plans to the year of 2000 for the transportation means as follows.

- Resuming to develop forces of the individual transport means.
- Increasing number of transportation, but not encourage high load vehicles that should be suitable with rural roads.
- Simple transport means (ox carts, horse carriages, bamboo boats) are still employed.
 - Good management for the individual transport means in accordance with transport laws, regulations.
 - At a certain time and at any place if it is reasonable, individual establishments under companies Ltd. or enterprises for transport & transportation should be founded.

F-1.3 Farm Road Improvement

The district office has a development for improvement in the whole area of the Tien Son in the period of 1944 - 2000. The objectives of the improvement are resuming to improve quality of road system in order to allow trucks to be able to move on all village roads with following demands.

- Main roads' width is 6.0 m;
- Some roads are improved using a grain distributed measure.
- Repairing and improving bridge, culvert system that ensures load higher H-8 to be able to move on.
- Finding every financial source to improve and asphalt some important district roads and roads serving places within high economic potentials.
- Maintaining movement of village road construction taken through people's contribution in order to change face of rural areas.

The table F-1.3 show the development plan.

F-1.4 Improvement of Main Farm Roads

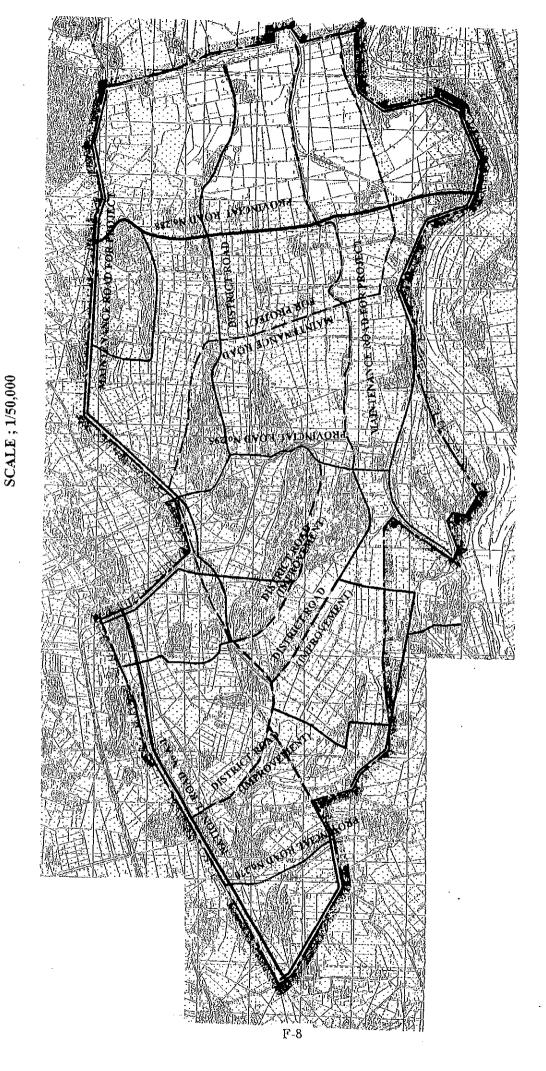

According to the Plan for the transport and transportation of Tien Son district, Most of Main farm road will be improved up to the year of 2000 by the other projects, so that improvement of main farm roads is limited, to improve the dike or levee of the irrigation and drainage canals and their crossing structures for the project.

Table F-1.3 General on project development

		Length	19	93 - 1995	19	996-2000
No	NAM OF ROAD	(m)	Class	Surface type	Class	Surface type
I	Provincial Roads	23,000				
1	Lim - Cau Sop	7,000	6	Asphalt		
2	Lim - Phu Lam 💥	6,000	6	Sandgraval		Asphalt
3	Tu Son - Cau Chat	5,000	6			Asphalt
4	Tu Son - Cau Net *	5,000	6	Asphalt		
II	District Roads	46,000		,		
1	Bach Mon - Lac Ve ※	5,000	6	Sandgravel		
2	Cam Thu - Phat Tich	8,000			6	Asphalt
3	Chua Dan - Da Hoi	5,000	6			Asphalt
4	Chua Dan - Hap Linh	15,000			6	Sandgravel
5	Tuong Giang - Cho ※	5,300	6	Asphalt		
6	Phu Chan - Tri Phuong	5,700			6	Sandgravel
7	Dong Nguyen-Tam Son ※	2,000	6	Sandgravel		
ш	Commune Roads					
1	Dinh Bang - Phu Luu 💥	2,000			6	Sandgravel
2	Cho Son - Doc Coc	2,400			6	Sandgravel·
IV	Village Roads					
	Village Roads	Paved with b	ı ricks, co			
v	Special Roads				1	
	- Lim area	2,000	6	Asphalt		
	- Tu Son market area	1,000	6	Asphalt		
VI	Bridges, Culverts Constru	ction		l .	I	
	- Bridges	80 m	Le Xu	yen, Tan Trac	, Cau T	ieu, Cau Noi
	- Culverts	120 pieces		ent types, φ 40-3		, =

SOURCE; TIENSON DISTRICT OFFICE

* ; OUT OF F.S.Area

F-2 PROPOSED FACILITIES

F-2.1 Scope of Facility Plan

The scope of facility plan is to plan, pre-design, establish of the construction method and estimate the project costs for the project facilities.

The project facilities are composed of a drainage pumping station, the drainage & irrigation canals with their related facilities, and fish ponds. The road facilities planing is excluded except the maintenance roads for the drainage and irrigation canals.

F-2.2 Pumping Station

The two pumping stations are planed for two alternative areas in accordance with the drainage system analysis. One is planed to construct at the side of existing Tan Chi pumping Station to drain the Tan Chi area, and Other is planed at Han Quang area to drain the excess water of Han Quang area and Tan Chi area. Both of them covers whole areas of two alternatives with existing pumping Tan Chi station.

The existing Tan Chi pumping station covers 6,420 ha. of the drainage area with 68 units of pumps which are installed in the year of 1975, maximum 54 pumps of which are operated due to rotation operating method. All pumps are maintained in good conditions by the technicians in spite of financial shortage.

The capacity of pumps are reportedly estimated by the B.D.I.E. as approximately 80% of the manufacturer's discharge which are nearly equaled to the discharge test of 10 pump units at the sluice

gate by using current meter. These poor discharge comes due to the long time operation so that renovation of pumps seems to be required in order to reduce the maintenance and repairing cost as well as improve the discharge capacity.

The pump type and numbers are decided from the tables of comparison of Table 2-2.-1 and Table 2-2-2.

Determination of total head and motor output.

Basic Conditions

Tan Chi Han Quang 'Total pump station capacity = 16 m3/s $= 2.6 \, \text{m}3/\text{s}$ 'Nos of pump unit = 4 *Pump capacity per unit = 4.0 m3/s= 4.33 m3/s*Water level condition ∇ + 2.0 Suction side LWL : ∇ + 1.5 ∇ + 9.13 ∇ + 9.13 Discharge side HWL ∇ + 10.51 ∇ + 10.51 HHWL

Determination of the total head

*Static head Ha = 7.63 = 7.63 HWL ∇ +9.63 - LWL ∇ +2.0 HWL ∇ 9.13 - LWL ∇ +1.5 *Total head HT = 7.63 + 0.58 = 8.21 $\stackrel{.}{=}$ 8.5 m (Loss head Hf = Screen loss Hf1 + Straight pipe loss Hf2 + Butterfly valve H3 + Enlarge pipe loss Hf4 + Flap Valve loss Hf5 + Residual loss Hf6) = 0.58 m

Table 2-2-1 Comparison on pump type (Pump capacity: 4m3/s)

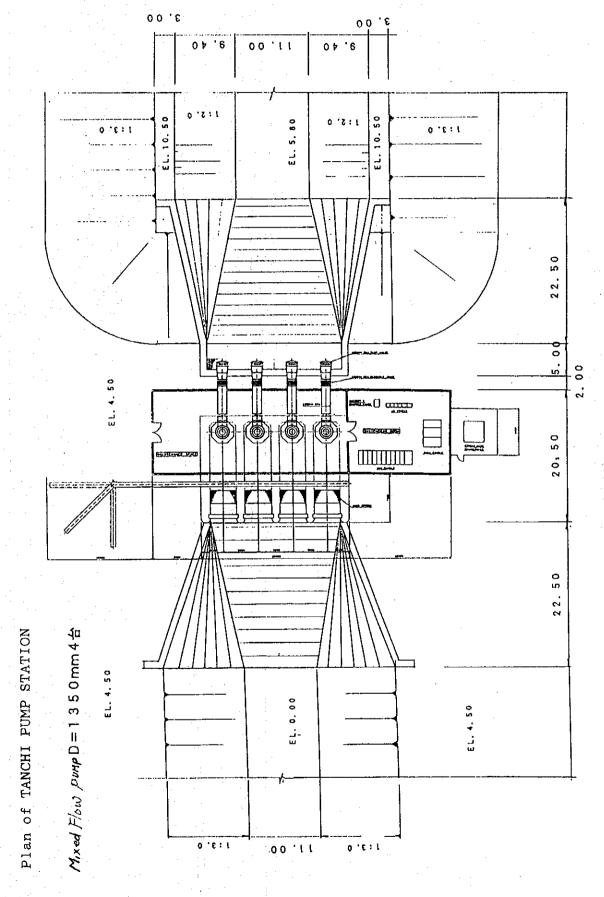
	or Imp id is		
Screw pump	Screw pump is usually used for sewage water since screw pump does not have a problem for clogging. Maximum total head is approx. 8m.	THE TANK IN THE TA	75%
Vertical axial flow pump	This type is also used for drainage Screw pump is usually used for and irrigation. Maximum total head is limited to 5m to 8m. Clogging. Maximum total head approx. 8m.		Since pump total head is 8.5m (above 8m), axial flow pump is not suitable. High efficiency as mixed
Vertical mixed flow pump	Usually, this type is used for drainage and irrigation. Maximum total head is approx. 30m.		83.5%
Pump type	Application	Construction	Pump efficiency

Comparison on pump type (Pump capacity: 4m3/s) Table 2-2-2(2)

Pump type	Vertical mixed flow pump	Vertical axial flow pump	Screw pump
Required motor output	410.5kw	N.A.	484.0kw
(gear efficiency : 97%)			
Pump dia.	1350mm	1350mm	3500mm
Station space	390m2	390m2	550m2
(excluding switchgear room)			
Operation	Easy	Easy	Easier
	Cavitation and / or air voltex		Cavitation and air voltex problem
	phenomena should be checked.		can be ignored.
Maintenance	Easy	Easy	Easier
			Nos of parts of the pump are less
			than others.
For	Good	Good	Not so good
Environment			Since usually screw pump is
			installed outside, cover /
			protection for the pump is required
			to prevent odour and / or noise.

Comparison on pump nos. (Type: Vertial mixed flow pump) Table 2-2-2(1)

Pump nos.	Three (3)	Four (4)	Five (5)
Capacity per pump	5.4m3/s	4m3/s	3.2m3/s
Pump dia.	1500mm	1350mm	1200mm
Pump total head	8.5m	8.5m	8.5m
Pump efficiency	84%	83.5%	83%
Required motor output			
(Gear efficiency : 97%)	550.9kw	410.5kw	330.4kw
Total required motor output as	550.9kw x 3	410.5kw x 4	330.4kw x 5
station	=1652.7kw	=1642kw	=1652kw
	0	0	0
Station space	26m x 14m=364m2	30m x 13m=390m2	33m x 12m=396m2
(excluding switchgear room)	0	0	4
Safetyness for drainage	5.4m3/s x 2 / 16m3/s	4m3/s x 3 / 16m3/s	3.2m3/s x 4 / 16m3/s
(Station capacity in case of	% <u>/</u> 9=	=75%	%08 =
one pump breakdown)	abla	0	0
Maintenance	Since nos of pump are less than		
	others, time for maintenance is less.		-
	0	0	


Determination of the motor output

$$L = 0.163 \times \frac{1 \times Q \times H}{\eta p \times \eta q} \times 1.1$$

$$= 0.163 \times \frac{1 \times 240 \times 8.5}{0.835 \times 0.97} \times 1.15 = 472.1 \text{kw Say 500kw}$$

The type of prime mover will be determined in accordance with the electric supply and operating conditions calculating water power and shaft power. Generally a electric motor type is selected in a place to obtain easy electricity and to operate ordinary, and a diesel engine type might be selected in a place far from electric source and of rare operation of the pumps. The detail comparison will be made to select suitable type of prime mover from a economical view points taking operation & maintenance cost and equipment cost into account.

The Han Quang pump station might obtain the electric supply from the transformer station (2 x 1000 kw 35/0.4) of tributary transmission line of No. 372 (35KV) in vicinity of the Tan Chi pump station with 3 km of extended distance or from the transformer station (35/0.4) of other tributary transmission line of N. 372 in vicinity of Thai Hoa pumping station with 6 km of extended distance.

F-15

. Layer 5 Fine to medium sand yellow ash grey saturated medium dense . Layer 4 Layer 1 with red spots slitly weathered slightly laterized stiff plastic-hard Clay, sandy clay yellowish brown bluish grey Clay sandy clay with some gravels brownwish yellow whitish grey Silt, silty clay, brown, soft-stiff plastic Sandy clay, clay blackish grey, ash greywith organic matters soft plastic liquid plastic EL. 10. 50 22.50 5 .00 2.00 PUMP ROOM 1350-M DIA YERTEAL MINED FLOW PINE AUTO SERFEN 22.50 EL 0.00 F-16

Figure F-2.2-2 LONGITUDINAL SECTION OF TANCH

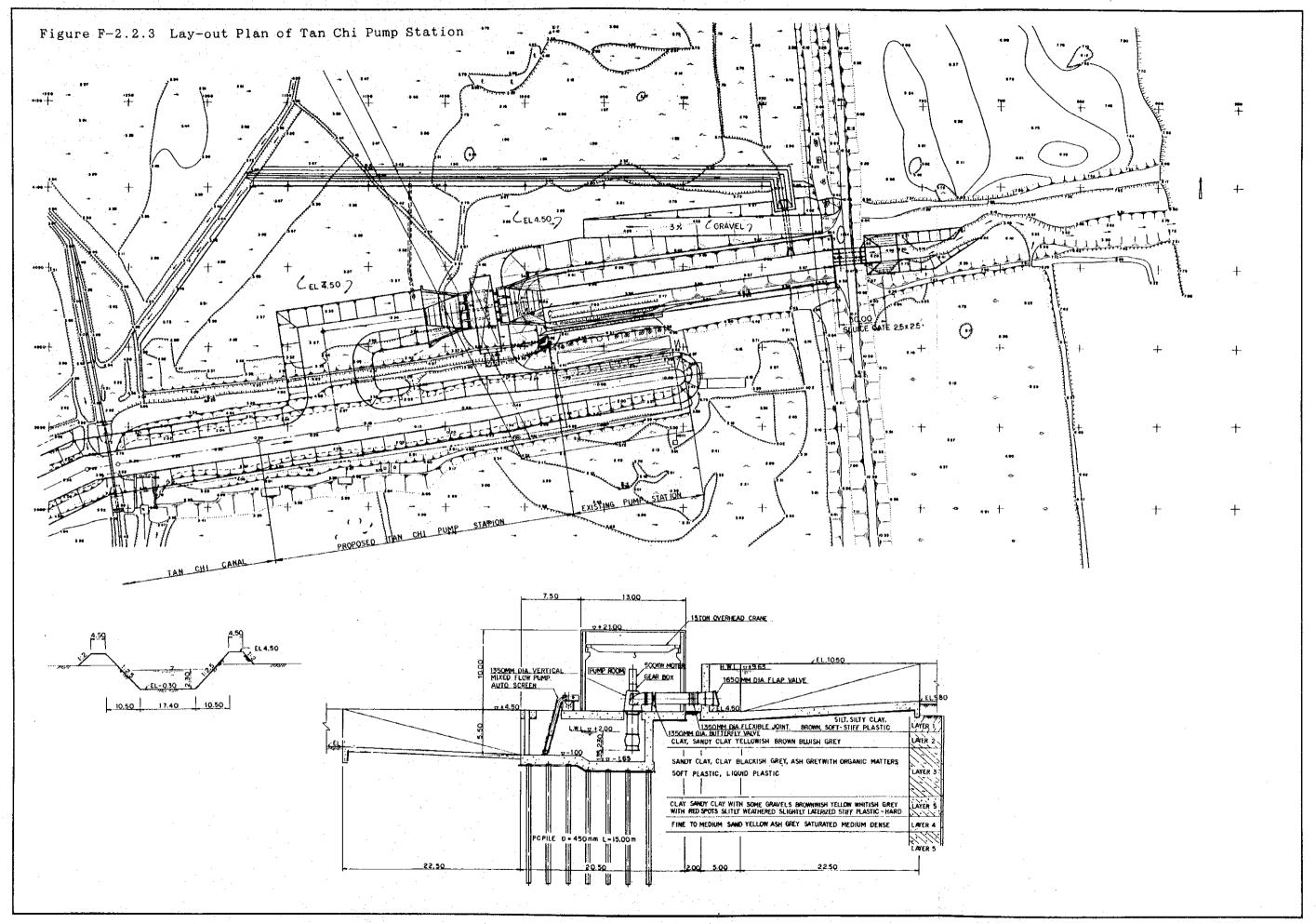
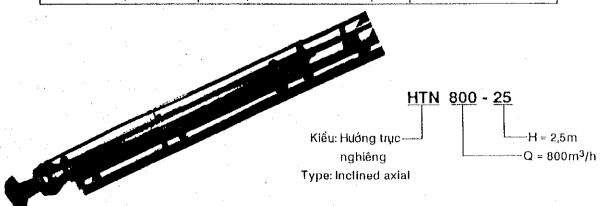


Table F-2.2-3

I.1.2 - Bom hướng trục đứng và nghiêng Vertical and inclined axial flow pumps


HTD 3600 - 4,5

Kiểu: Hướng trục đúng — H = 4,5m

Type: Vertical Axial Q = 3600m³/h

	Kí hiệu	Thôn	g số kỉ th Spe	uật và k ecificati		c cơ bả	ın	Công dụng
	Туре	Q (m³/h)	H (m)	n (v/p) (Rpm)	Nd,cd motor (Kw)	D _h (mm)	D _x (mm)	Uses
	HTD 1100-3 HTD 1100-2	1000-1100 1100	3,5-3 2	1460 1460	20 14	300 300	360 360	Dùng cấp tiêu nước trong nông nghiệp, khu
	HTD 1900-4,5 HTD 2100-3,5	1800-2100 2100-2500	4,5-3,5 3,5-2,2	970	37 37	430 430	500 500	dân cu Suplying and draining
	HTD 2300-7 HTD 3600-4,5 HTD 8400-5,2		7 4,5-2,5 6,5-4	735 735 585	75 75 200	500 600 750	600 600 1000	water in agricuture population's area
	HTD 8000-5,6 HTD 8000-9	·	6.8-4	585 585	200	750 750 750	1000	
	HTN 80-17 HTN 800-2,5	40-120 800	2,1-1,1 2,5	2900 1960	4Hp 20	100 300	100 300	Có công dụng như trên. Đặc điểm: dễ di chuyển,
	HTN 800-7 HTN 800-7x2	800 800	7 14	980 980	33 75	350 350	400 400	thích ứng với nơi có mực nước daođộng hoặc trạm
	HTN 1800-2,3 HTN 4000-4,7	1800 4000	2,3 4,7	980 730	33 75	400 700	400 580	di động. Uses: Like HTD.
:								Easy to move, suitable the place where water level can oscilate, or
								to the mobile station.

The sluice gates at the levee of the Duong River are determined as follows.

	Tan Chi Han Quang
*Discharge Capacity Q (m3/s	31.11 26.0
*Nos of Sluice gate (pcs)	= 4
*Size of gate H x W (m)	= 2.0 x 2.0 2.0 x 2.0
*Velocity of flow (m/s)	= 2.0 m/s $2.0 m/s$
'Head Loss (m)	= 0.40

The Figure F-2.2-1 and F-2.2-2 show the plan and section of Tan Chi pumping station. The Figure F-2.2-3 shows a lay out plan of Tan Chi pumping station. Table F-2.2-1 shows a list of the vertical and inclined axial flow pumps manufactured by Hai Duong pump manufacturing plant.

F-2.3. Irrigation Canal and Related Facilities

A cross section of irrigation canal is planned as an unlined trapezoid type from an economical viewpoint, when the existing canal capacity is enough for the proposed design discharge.

The longitudinal bed slope of a canal is selected considering the maximum and minimum allowable velocities in the canal and the present topographic conditions as well as the existing canal's slopes.

The maximum allowable velocity is to be 0.6 m/sec considering the soil characteristics of this area, and the minimum, 0.3 m/sec, as a non-silting and a non-weed velocity. The Manning's formula is used as a mean velocity formula to plan canals, as presented

below:

$$V = 1/n$$
 • R2/3 • I 1/2
 $Q = A$ • V

where, V; Mean velocity (m/sec)

n; Coefficient of roughness = 0.03 (earth), 0.015 (brick)

R; Hydraulic mean radius (m)

I; Canal slope

A; Cross sectional area (m2)

Q; Design canal discharge (m3/sec)

The following empirical formula is used obtain the optimal water depth to a bed width.

 $d = b/(2 \tan \theta/2)$ where, d; Water depth (m)

b; Canal bed width (m) heta; Angle between side slope and horizontal line

Keeping the optimal relation between the bed width and water depth obtained by the above formula, the optimal water depth to each discharge was studied. And then it was revised considering such economic aspects as the earth work cost, and the land acquisition cost considering the brick lining to reduce coefficient of roughness.

As a result, the side slopes of the canals are planned as shown in the following table:

Embankment height	Side s	lope
(m)	(inside)	(outside)
less than 2.5 /	1:1.5/	1 : 2.0
2.5 ~ 3.0	1 : 2.0	1 : 2.0
3.0 ~ 3.5	1 : 2.5	1 : 2.0
3.5 ~ 4.0	1:3.0	1 : 3.0
above 4.0	above 3.5	above 3.5

The side slopes of the cutting embankments of the canals are planned as 1:1.5. The bank top width for one side of the main canals is to be $4.5\ mas$ an inspection road, and that for the other side, $3.0\ m.$

As for the standard canal cross sections, which are satisfied with the above-mentioned criteria and of least cost, the following canal types are proposed for the main canals and the secondary canals as shown in Figure F-2.3-1 and Table F-2.3-1 and F-2.3-2.

Figure F-2.3-1 Typical Cross Section of Irrigation Canals

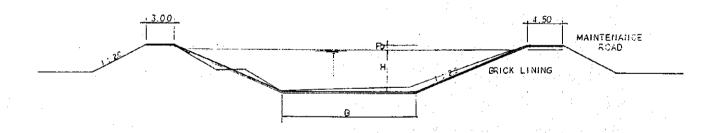


Table F-2.3-1 Dimensions of South Irrigation Canal

	Q	В	H	Fb	Н,	I	Pavement	Length
Canals	(m3/s)	(m)	(m)	(m)	(m)	(m)		(m)
M-1	21.52	5.0	2.9	0.3	3.2	1/25,000	Brick	1,560
M-2	17.62	3.3	2.9	0.3	3.2	1/25,000	1 1	4,028
M-3	15.33	2.2	2.9	0.3	3.2	1/25,000) 3	6,935
M-4	10.04	4.4	2.9	0.3	3.2	1/25,000	Earth	1,131
M-5	8.54	3.0	2.9	0.3	3.2	1/25,000) 1	3,866
M-6	7.03	1.6	2.9	0.3	3.2	1/25,000	3 }	2,980

Table F-2.3-2 Dimensions of Secondary Irrigation Canals

	Q	B .	Н	Fb	н,	Ī	Pavement	Length
Canals	(m3/s)	(m)	(m)	(m)	(m)			
N11	0.35	0.6	0.8	0.3	1.1	1/10,000	Brick	1,000
Noi Loc	0.04	0.3	0.4		0.7	5 1	Earth	700
N4	1.42	0.8	1.1	1 1	1.4	1 1	Earth	5,500
N5	0.38	0.7	0.7	, ,	1.0	1 1	Brick	2,430
N13	0.26	0.6	0.7	, 1	1.0	, ,	Brick	3,000
Cau Ngatu	0.13	0.5	0.5	1.1	0.8	, ,	Earth	1,400
N15	0.42	0.7	0.8	3 3	1.1	1.1	Brick	2,000
Ban Thong	0.06	0.3	0.5	, ,	0.8	, ,	Earth	700
Nam Nui Che	0.36	0.6	0.8	, 1	1.1	, ,	Brick	4,650
Bac Nui Che	0.22	0.6	0.7	3)	1.0	j ,	Earth	4,000
Nghia Trung	0.07	0.3	0.5	, ,	0.8) 1	1 1	480
Che Doc	0.03	0.3	0.4	1 1	0.7	, , ,	j j	450
K10 Van Tuong	0.35	0.6	0.9	, ,	1.2	3 F) 1	3,200
Thuong Lam	0.67	0.5	0.5	, ,	0.8	1)	1)	900
Benh Vien	0.07	0.4	0.5	, ,	0.8	, ,	1 ,	1,000
Hoai Trang	0.07	0.4	0.5	1 1	0.8)]	1 1	350
N6	2.40	1.8	1.8	. 1.1	2.1	2 1	1 1	13,000
Hoai Thi	0.10	0.5	0.5) 1	0.8	3 1		1,080
Lang Tuong	0.07	0.4	0.5	1 1	0.8	1)	, ,	500
M22	0.14	0.6	0.7	,,	1.0	, ,	1 1	327
M25	0.10	0.3	0.6		0.9	1 1	, ,	1,600
M24	0.31	0.4	0.5	1 1	0.8	1 1	, ,	400
N8	0.82	0.8	1.1	1 >	1.4	· · · · · · · · · · · · · · · · · · ·	Brick	5,200
N35	0.21	0.4	0.7	1.7	1.0		Earth	1,600

Table F-2.3-3 and F-2.3-4 show the hydraulic conditions of the south irrigation and secondary canals. Figure F-2.3-2 and F-2.3-3 show the plan of irrigation canals and the longitudinal section of South irrigation canal.

There are 35 places of existing turn-out structures on the Irrigation Canal from beginning point to 17k+520 (Crossing provincial road) with 25 type and/or size of culverts. Most of gates are too old to operate precisely so that all of these turn-out facilities are proposed to replace as show below.

Turn-outs

Size of Gate
$$\Phi$$
400 Φ 600 Φ 800 Φ 1000 0.9x0.9 1.0x1.0 1.5x1.8 Flow Area 0.07 0.12 0.50 0.78 0.81 1.00 2.70 Gate No. 7 10 11 4 1 1 2

There are existing 3 check gates on the irrigation canal to regulate the water surface, which are also too old and too heavy to operate the gates timely and frequently. These are proposed to replace with new gates with electric movers.

Check-Gate

	K4+725	K11+840	K17+520
	W H	W H	W H
Size of Gate	1.50x4.00	1.60x3.00	2.00x2.70
Number of Gates	.3	2	1 - 1

The 14km length and 5m width of maintenance roads are proposed along the right side of the irrigation canal with asphalt pavement as well as 15 number of 5m width of farm bridges.

Table F-2.3-3 HYDRAULIC CONDITION FOR SOUTH IRRIGATION CANAL

1	able $F-Z$.	<u> </u>	n i DKAU				2001u				
	N	DISTA	NCE	EXIST		NDITIO		· · · · · · · · · · · · · · · · · · ·		NDITIO	
1		ACUM.	INTYL.	BED	DIKE	BED	CANAL		BED	W. S.	SLOPE
İ	STATION			EL.	EL.	WIDTH	WIDTH	* *	EL.	EL.	I
	·	(m)	(m)	(m)	(m)	(m)		(m3/s)		(m)	
1	<u> </u>			3. 20	7.33		·			7.000	0.00004
	1 K+	1000	1000	4.10			21.80			6.960	
	1 K+ 510	1510	510	3.54	7.14	11.00	23.40			6.940	
	1 K+ 560	1560	50	3.60							1. 65X3. 75X
	2 K+	2000	440	4.00	7.43	+	25.00			6.920	
	3 K+	3000	1000	4.00	7. 23		23.00			6.880	
	3 K+ 780	3780	780			9.6	23.10			6.849	
:	4 K+	4000	220	3.90	7.20		21.90	1	3.940	6.840	
1	4 K+ 725	4725	725	4.00	6.91		22.00				1.5X3.98X4
1	5 K+	5000	275	4.00	7. 21	8.40	24.60		3.900	6.800	
	5 K+ 588	5588	588	2.0	7.21	11.30	23.80			6.701	0.00004
7	6 K+	6000	412	4.00	7.26		24.50		3.785		
1	7 K+	7000	1000	3.95	6.61		17.60			6.645	
	8 K+	8000	1000	4.00	6.74	9.60	17.60			6.605	
	9 K+	9000	1000	3.72	6.92		18.00			6. 565	
	10 K+	10000	1000	3. 73	6.60		18.00			6. 525	
ď	11 K+	11000	1000	3.70	6.39	+	17.60			6.485	
	11 K+ 840	11840	840	3. 10	6.15		17.10			6.451	1.6X3.0X2
	12 K+	12000	160	3.68	6.09	7.00	16.80		3.545	6.445	
1		12523	523	3.50	6.10		16.90			6.349	0.00004
	13 K+	13000	477	3. 55	6.02		18.20			6.330	
:	13 K+ 654	13654	654	3.60	5.86		17.00	8.54		6. 229	0.00004
	14 K+	14000	346	3.60	5.77	7.10	17.00	ļ <u> </u>		6. 215	
	15 K+	15000	1000	3.53	6, 15	8.10	17.00		3. 275	6. 175	
	16 K+	16000	1000	3.40	5.97		16.30			6. 135	
:	16 K+ 767	16767	767	3.40	5.94	4.90	14 20		3. 204	6.104	<u> </u>
	17 K+	17000	233	3.45	5.92	5.00	14.20		3.195	6.095	
i		17520	520	3.40	5.96	5. 20	15. 20	7.03	3.099	5. 999	0.00004
٠.	20 K+ 500	20500	2980	3.40	5.96	5.20	15. 20		2.980	5.880	<u> </u>

STATION	I	Н	В	S	A	P	R	R^2/3	n	γ	Q	Ft	o(m)
	*	(m)	(m)		(n2)	(m)	(m)	ļ		(m/s)	(m3/s)	CALC.	MINM.
K+	0.00004	2. 90	5. 00	2. 50	35. 53	20.62	1.723	1.437	0.015	0.61	21. 53	0. 21	0.30
1 K+ 510	0.00004	2.90	3. 30	2. 50	30.60	18. 92	1.617	1. 378	0.015	0.58	17.77	0. 21	0. 30
5 K+ 588	0.00004	2. 90	2. 20	2. 50	27.41	17.82	1. 538	1. 332	0.015	0. 56	15. 40	0. 21	0.30
12 K+ 523	0.00004	2.90	4.40	2.50	33. 79	20.02	1.688	1.418	0.030	0.30	10.10	0. 20	0.30
13 K+ 654	0.00004	2. 90	3. 00	2.50	29. 73	18.62	1. 597	1.366	0.030	0. 29	8. 56	0.20	0.30
17 K+ 520	0.00004	2.90	1.60	2. 50	25. 67	17. 22	1. 491	1. 305	0.030	0. 28	7.06	0. 20	0.30

TABLE F-2.3.4 (1) Hydraulic Conditions of Secondary Canals

STATION SECONDARY	_ E	TIDTH HEIG	TIDTH HEIGHTBED	BED EI	S.		→	REGRESSIVI	FLON AREA	PRWTR	NN DPTH		SURFACE SLOPE	YLCTY		ROUGHNSS
CANAL	(<u>u</u>	38(m) 0 50	(E) 40	(E) 72	T (m)	TION I	(E)	(m3/s)	У(ш2)	F(a)	R(m)	X (2/3)		V(m/s)	0(m3/s)	*
2 CANAL	10000	. 50	1.80		6. 99 LEFT		3640	4. 732	7,560	166.7	0.946	0.964	0.0001	0.642	4.857	0.015
X+510 B1 CANAL	1450	0.80	1.50	08	6. 98 RIGHT		205	0.267	4.575	6. 209	0.737	0.816	-	0.272	1.244	0.030
K+533 ITRINE NGUYEN TA	009	09.0	1. 20		6. 98 LEFT	\sqcup	9	0.078	2.880	4.927	0.585	0.699		0.233	0.671	0.030
				4 08	86	E										
				4.07	6.97 RI	RIGHT				,					4	
		0.80	0.80		6.96 RI	RIGHT										
B2' CANAL	1140	0.70	1.00	5.55	8	E	8	0.078	2. 200	4.306	0.511	0.639	0.0001	0.213	0.469	0.030
				4.04	94	FT	-			Α.						
K+775 DAY GANG	852		1.70		6. 93 LEFT	딮	18	0.023	5. 525	6.830			0.0001	0.289	1.599	0.030
2 K+170 DONG BONG	1060		1.50	5. 14	93	Ħ	28	0.034	4, 425	6.109	0.724	0.807	0,0001	0.269	1.190	0.030
		0.50	0.75	5. 78	6.91 RI	RIGRT										
				4.00	6.90		L									
					90	RIGHT										
		1.00		4.00	6. 90 RI	RIGHT	_							-		
		0.80		2	8	RIGHT	-									
DAU DOT	1650	0. 70	1. 20		6.86 RI	RICHT	28	0.075	3.000	5. 027	0.597	0.709	0.0001	0.236	0. 709	0.030
	I			30	6.90	1										
,		0.65	0.95	95	6. 85 LEFT	Н								:		
3 K+780 CONG THON	4700	3.00	20	95	85	RIGHT 1;	1260	1.638	16.875	12.015	1.404	1.254	0.0001	0.418	7.055	0.030
4 K+ 64 N3A CANAL	3500	0.80	1. 10	23	84	_	170		2. 695	4. 767	0.565	0.684	0.0001	0.228	0.614	0.030
4 K+ 90 N3B CANAL	1960	0.80	1.40	22	6.84 LEFT		134	0.174	4.060	5.848	0.694	0.784		0.261	1.061	0.030
		0.40	0.45		83				0.484	2. 023	0.239	0.385	******	0.128	0.062	0.030
		20	Н	91					1.360	3, 385	0.402	0.545		0.182	0.247	0:030
5 K+145 NI1 CANAL	1000	90	80	20	79	\dashv	285	0.345	1.440	3.485	0.413		_	0.370	0.533	
5 K+145 NOI LOC	700	0, 30	0. 40	22	6. 79 RIGHT	<u>.</u>	_	0.036	0.360	1.742	0 207	0.349	0.0001	0.116	0 042	0.030
			1	_	2	一;		!								
5 X+583 N4 CANAL	2500		2	4.55	:e :		1031	1.418			0.565	0.08	0.0001	0.456	1. 228	0.015
		0. 50 0. 50	0. 30 0.		2 8	- 1	+	1	0. 625	2. 303	0.2/1	0.419	0.0001	0. 140	7 00	0.030
			+	00.00	0. 08 Left	_ 5	-									
10000	1	0.40	5	1 00	3 8	╀	+	000 0		700 6	000		1000	036	001 0	210 0
ATCHE IN CANAT	2000	0.0	0.0		C SE FFF	1	282	0.000	1. 663	927 .0	0.000	0.363	0.000	24.9	0.450	0.015
7 X4970 CAN NCATH	5 5	3 2	9 6	2 6	3 8	-	-	0.130	1000	203	0.00	0.70	0 0001	0.040	0.087	0.030
2000		2 %	3 -	2	3 2	╀	1-		0 461	1 079	766 U	380	0 000	0 197	0.058	0.030
		3 8	2	200	3 6	i .	\perp		72	21.0		20				
8 K+ 73 N15 CANAL	_	12	0.80	52	8	╀	321	0.417	1. 520	3, 585	0.424	0.564	0.0001	0.188	0.286	0.030
8 K+925 BAN THONG	700	83	\$	20	2	-	╙	0.056	0.440	1.942		0.372	0.0001	0.124	0.055	0.030
9 K+ 85 NAM NUI CHE		8	8	7.5		L	L	0.364	1.440	3.485		0.555	0.0001	0.370	0.533	0.015
9 K+454 BAC NUI CHE		08 .0	1.00	4.77 6	6. 55 RIGHT	H	166	0.216	2.300	4.406	0.522	0.648	0.0001	0.216		0.030
9 X+570 NCHIA TRANG	480	30		75	-			0.065	0.525	2. 103	0.250	0.396	0.0001	0. 132	0.069	0.030
		40	-	2	6. 53 LEFT	<u>+</u>				:	-					

TABLE F-2.3.4 (2) Hydraulic Conditions of Secondary Canals

) : -		DIALISTON	1	1	2	ייייייייייייייייייייייייייייייייייייייי		d Lind	MY POTE		1001	7.1	Janjac	oon on oa
		HIDIN METCHIBED B(m) B(m) (m)	3	(m) TION	3 E	MEUREANI AKEA		rxar Park	R(n) R'(R-(2/3)	1	V(m/s)		NOUGERIASSI N
450	0.30	0.40	Π		24	0.031	0.360	1.742	0.207	9.349	0.0001	0.116	0.042	0.030
3200	0. 70	0.90	4. 79	49 LEFT	-	0.352		3, 945	0.468	0.602	0.0001	0. 201	0.371	0.030
800	0.40	0.50	4. 19	6. 47 RIGHT	-	0.666	1	2, 203	0.261	0.408	0.0001	0.136	0.078	0.030
1000	0.40	1000 0. 40 0. 50 4	83	6. 47 LEFT	23	0.069	0.575	2. 203	0.261	0.408	0.0001	0.136	0.078	0.030
, L	9 9	0.00	7.70	45 LEFT			0.575	9 903		0 408	0 0001	138	0.078	0.030
	- 1	000	3 2	6 44 RTGHT	1847	2, 401	7 920	200.3	0.967	<u> </u>		0.328	2. 581	0.030
	0.50	0.50	45	34 RICHT	+		0.625	2.303	<u>.</u>	1	┿	0.140	0.087	0.030
200	0.40	0.50	. 20	6. 32 LEFT	+	l i	0.575	2. 203	0.261	0		0.136	0.078	0.030
8500	0.80	1. 20	53	. 21 LEFT			3. 120	5. 127	0.609			0.479	1.494	0.015
327	0.80	0.70	t. 57	. 18 RIGHT			1, 155	3. 124	0.370			0.172	0.198	0.030
1600	0.30	0.60	t. 01	. 15 LEFT		0.104	0.720	2, 464	0.292	0.440	o O	0.147	0.108	0.030
400	0.40	0.50 3	3.93	. 13 RIGHT	_	0.306	0.575	2, 203		0.408	0.0001		0.078	
1180	0.50	0.80	90	13 LEFT	_	0.438	1 360	3, 385	0.402	0.545	0.0001	0.363	0.494	0.015
	0.30	7	74	. 12 RIGHT										
	0.30	4	49 6	. 10 RIGHT										
	0.40	0.65 4	. 50 6	. 10 LEFT			0.894				_		,	
300	0.30	0.30 4	. 50 6	. 08 LEFT		0.036	0. 225	1.382	0. 163	0.298		0.139	0.045	0.015
5200	0.80	1.10 4	. 20 6	. 08 RIGHT	631	0.820	2. 695	4. 757	0.565	0.684		0.342	0.921	0.020
1600	0.40	0.70 4	. 20 5.	. 92 RIGHT	_	0.209	1.015	2.924	0.347	0.494	0.0001	0. 165	0. 167	0.030
3800	0.80	1.00 4	. 95 5.	. 92 LEFT		0.650	2.300	4.406	0.522	0.648	0.0001	0.432	0.894	0.012
2000	0.80	1.00	S	. 92 RIGHT	_	0.456	2.300	4.406	0.522	0.648	힉	0.216	0.497	0.030
2700	0.80	1.00 5		85 PIGHT	_	0.875	2.300	4.406	0.522	L	o	0. 432	0.994	0.015
1000	1.00	1.20 4	29	84 LEFT	1	1.476	3.360	5. 327	0.631		0.0001	0.490	1.647	0.015
3500	8.00	2. 40 4.		70 RIGHT		1.478	27.840	16.654	1.672		0.0001	0.470	13.071	0.030
3200	2.00	2. 20		70 LEFT	_	4. 183	11.660	9.933	1.174	<u> </u>	0.0001	0.371	4. 325	0.030
220	0. 70	0.90	5.02 5.	67 RIGHT		0.174	1.845	3.945	0.468	9	0.0001	0. 201	0.37	0.030
80	0.60	0.80		67 LEFT		0. 117	1.440	3.485	0.413	= c	0.000	0.183	007.0	000.00
808	0.60	0.80	~>	65 L271	1_	0.022	1. 440	2000	0.415	ء اد	0.0001	607 0	0. 200	0.030
200	0.0	08.0	77	5. 48 KIGH!	1 20	0.043	1.040	487	0.400	1	0.000	0. 185	0.268	0.030
2000	000	00.00	. r.	45 RIGHT	_ 1 .	0.127	1 845	3 945	0.468	d	0.0001	0.201	0.371	0.030
000	0.0	0.80	208	45 LEFT		0.065	1.440	3, 485	0.413	c	0.0001	0.185	0.286	
800	0.60	0.80	2	43 LEFT	1	0.026	1.440	3, 485	0.413		0.0001	0. 185	0.266	0.030
400	09 0	0.80	-	41 RIGHT		0.091	1.440	3, 485	0.413	0.555	0.0001	0.185	0.266	0.030
000	0.70	0.0	6	33	228	0.296	1.845	3.945	0.468	0.602	0.0001			0.030
8	0. 70	0. 90	5.		231	0.300	1.845	3.945	0.468	0.602	0.0001	0. 201	0.371	0.030
	_													
										`				
			-											T
	_		+											
							-					_		-

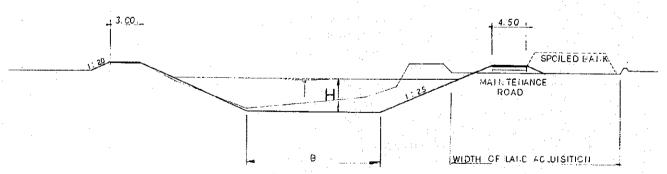
LEGEND

Figure F-2.3.2 PLAN OF IRRIGATION FACILITIES

SCALE; 1/50,000

SOK 0000Z M32(13KF220) W 6 17K+520 660.€ 6665 N9(17K440) 19K+191 M 24(16K+DD) M27 MS2(12Ke ς Σ 00091 Tek WSS(14K+439) NI(ItK+Ido 13K+924 677.9 3.329 LANG TUONG(13K+150) M 4 HOAI THI(12K+653) 3.496 6,349 15K+253 И6(12K+70) НОА! ТRUNG J1K+840 LOONG TYM (11K+310) BENH AIEN(11K40D) VAN TUONO(10K+900); Figure F-2.3.3 Longitudinal Section for South Irrigation Canal CHR DOC (10k+320) IOK 10000 NOHIA TRANG(9K+570) BAC NUI CHI (9K+654) NAM VUICI E(9K+85) BAN THONG (8K+925) CHECK GATE (5K4590) Σ MI2(8K+13) CAU NGATU(+ 270) M13(9K+615) И2(6К+299) \$8¢+X¢ 4(2K+283) 04.9 3.80 MII(2K+142) 0009 28 4K+132 N3 A(4K+64) N\$B(4K+30) СОИӨ ТНОИ(ЭК+780 3K+380 Σ DAY DOT(3K+101) DONG BONG(\$\$\psi\$+130) DAY GANG(22/ 775) 1K+200 1K+210 ¢6'9 40.4 1000 IK <u> 1</u>18 исплеи ТА(0К+533) Z BI(0K+210) B2(0K+300) 000 0X+000 0ľ¢ 00°L 000 WATER SURF 4.00 3.00 2.00 1.00 7.00 9.00 5.00 ELEVATION CANAL BED PROPOSED DISTANCE ACCUM. STATION

F-26


F-2.4 Drainage Canals and Related structures

Natural channels; Tao Khe creek, will be improved by dredging so as to be constituted main drainage canal. Main drainage canal is designed under the conditions of non-lined canal with inverted trapezoid shape of 1:2.50 side slopes, 0.6m/sec of allowable flow velocity in maximum, 0.3m/sec of minimum velocity and applying Manning's formula with 0.03 of roughness coefficient.

Where the existing cross sections of drainage canals are smaller than the designed canal flow area, the existing canal will be dredged to fit with it. Where the existing canals' crossing area are more than the designed area, then no treatment is required. The designed dimensions of drainage canals are sown as Figure F-2.4.1 and Table F-2.4.1

The maintenance roads with 4.5m of width are proposed on the left side of Tao Khe creek and Secondary canals accessing to the district roads with Gravel paving, Additional 10 farm bridges with 5.0m of width are proposed on Tao Khe Creek.

FIGURE F-2.4.1 TYPICAL CROSS SECTION OF DRAINAGE CANALS

Results of hydraulic calculations are shown in the Table F-2.4.2 and Figure 2-4.2 shows the longitudinal section of Tao Khe creek.

Table F-2.4.1 Dimensions of Drainage Canals

Canals	Q(m3/s)	B(m)	H(m)	Ī	Length(m)
Tan Chi Area					
Tao khe Creek	23.45	20.5	2.00	1/10,000	8,900
KT Trinh XA	10.64	16.0	1.76	1/20,000	6,440
KT 6 XA	6.63	6.7	1.99	1/20,000	6,500
KT Phat Tich	4.32	4.5	1.84	1/20,000	4,200
KT 4 XA	7.61	13.1	1.61	1/20,000	1,400
KT Cau Nau	7.25	10.2	1.76	1/20,000	4,300
KT Cau Nau-1	2.64	4.5	1.44	1/20,000	3,200
KT Cau Nau-2	2.74	4.5	1.54	1/20,000	3,300
KT Tan Chi	31.11	17.4	2.30	1/ 7,000	1,500
Han Quang Area					
Tao khe Creek	23.29	20.5	2.00	1/10,000	12,750
Con Ten Creek	3.85	6.3	1.54	1/20,000	3,050
KT Han Quang	26.00	22.8	2.00	1/10,000	1,100
KT Tan Chi	15.11	10.1	1.97	1/ 7,000	1,500

TABLE F-2.4.2 (1) HYDRAULIC CONDITION FOR TAO KHE CREEK 4.846 Q/sec/ha

	DISTA	NCE	EXIST	ING CO	NDITIO	NS	DESIG	NED CO	NDITIO	NS
	ACUM.	INTVL.	BED	W. S.	BED	W. S.		BED	W.S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
13 K+ 650	0	0		1. 1.1				0.200	1.664	0.0001
14 K+ 0	350	350	1.11			67.00	6.40	0.235	1.699	
15 K+ 0	1350	1000	1.05	2. 25	32.00	39.00		0.335	1.799	
15 K+ 500	1850	500		•				0.385	1.849	
16 K+ 0	2350	500	0.97			28.00		0.435	1.899	
17 K+ 0	3350	1000	1.04	2.24	11.00	15.00		0.535	1.999	
17 K+ 5.3	3850	500		<u> </u>			23.45		2.124	0.0001
18 K+ 0	4350	500	1. 33	2. 33	13.00	19.00		 	2.174	
18 K+ 400	4750	400	1 00		10.00	40.00			2. 214	
19 K+ 0	5350	600	1.38	2. 38	12.00	18.00		† 	2. 274	
19 K+ 750	6100	750	0.00	0.10	10.00		21. 14		2.424	0.0001
20 K+ 0	6350	250	0.86	2.46		15.00			2.449	
21 K+ 0	7350	1000	1.50	2.48	0.00	6.00	ļ		2.549	
22 K+ 0	8350	1000	2.04	2.50	0.00	15.00	7 05	*	2.649	0 0001
22 K+ 300	8650	300	1 00	0 50	0 00	04 00	7. 25	· • ·····	2.754	0.0001
23 K+ 0	9350	700	1.96	2. 56	6.00	34.00 14.00	5. 35	0.825 1.040	2. 824 3. 039	0.0001
24 K+ 400	10750	1400	2.66	3. 11 3. 11	7.00	34.00	3. 33	1.040	3.099	0.0001
25 K+ 0	11350 12350	1000	2. 14	3. 74	6. 20	12.90		1.200	3. 199	
26 K+ 0 26 K+ 400	12750	400	2. 22	0.14	0.20	12.00	-	1. 240	3. 239	

STATION	I	H	В	S	A	Р	R	R^2/3	n	γ .	Q
		(m)	(m)		(m2)	(m)	(m)	· .		(m/s)	(m3/s)
13 K+ 650	0.0001	1.46	8.80	2.50	18.24	16.68	1.093	1.061	0.030	0.35	6.45
17 K+ 750	0.0001	2.00	20.50	2.50	50.97	31.26	1.630	1. 385	0.030	0.46	23. 53
19 K+ 750	0.0001	2.00	18.20	2.50	46.37	28.96	1.601	1.369	0.030	0.46	21.15
22 K+ 300	0.0001	2.00	4.50	2.50	18.99	15. 26	1.244	1.157	0.030	0.39	7. 32
24 k+ 400	0.0001	2.00	2.50	2.50	14.99	13.26	1.130	1.085	0.030	0.36	5.42

TABLE F-2.4.2 (2) HYDRAULIC CONDITION FOR KT TRINH XA

	DISTA	NCE	EXIST	ING CO	NDITIO	NS	DESIG	NED CO	NDITIO	NS
	ACUM.	INTYL.	BED	W.S.	BED	W. S.		BED	W.S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
0 K+ 0	0	0	2. 12	2.72	3.00	10.00	10.71	0.830	2.829	0.00005
1 K+ 0	1000	1000	1.80	2.48	3.00	13.00		0.880	2.879	
1 K+ 300	1300	300					9.86	0.970	2.969	0.00005
2 K+ 0	2000	700	1.60	2.31	5.00	15.00		1.005	3.004	
3 K+ 0	3000	1000	1.24	2. 20	6.00	19.00		1.055	3.054	
4 K+ 0	4000	1000	1.26	2.18	4.00	15.00		1.105	3.104	
5 K+ 0	5000	1000	1.58	2. 20	15.00	25.00		1.155	3.154	
5 K ÷ 500	5500	500					7.40	1.255	3. 254	0.00005
6 K+ 0	6000	500	0.90	2. 2	6.60	13.00		1.280	3. 279	
6 K+ 440	6440	440							3.301	

ſ	STATION		1	Н	В	S	A	P	R	R^2/3	n	γ	Q
				(m)	(m)		(m2)	(m)	(m)			(m/s)	(m3/s)
l	0 K ±	0	0.00005	2.00	9.70	2.50	29. 38	20.46	1.436	1.273	0.030	0.30	8.81
	1 K+ 3	0 (0.00005	2.00	7.90	2.50	25. 78	18.66	1.381	1.240	0.030	0.29	7. 54
	5 K+	0	0.00005	2.00	4.50	2.50	18.99	15. 26	1.244	1.157	0.030	0.27	5. 18

TABLE F-2.4.2 (3) HYDRAULIC CONDITION FOR KT 6 XA

	DISTA	NCE	EXIST	ING CO	NDITIO	NS	DESIG	NED CO	NDITIO	NS
	ACUM.	INTVL.	BED	W.S.	BED	W.S.		BED	W.S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(n)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
0 K+ 0	0	0_	1.95	2.49	3.00	5.00	6.67	1.330	3. 329	0.00005
1 K+ 0	1000	1000	2. 20	2.54	3.00	7.50		1.380	3.379	
2 K+ 0	2000	1000	2.29	3.40	4.00	7.00		1.430	3.429	
2 K+ 600	2600	600					4.75	1.535	3. 534	0.00005
3 K+ 0	3000	400	2.51	3.65	3.00	9.00		1.555	3. 554	
3 K+ 800	3800	800					3.30	1.670	3.669	0.00005
4 K+ 0	4000	200	3.05	3, 67	4.00	3.00		1.680	3.679	
5 K+ 0	5000	1000						1.730	3.729	
6 K+ 0	6000	1000						1.780	3.779	
6 K+ 500	6500	500						1.805	3.804	, , , , , , , , , , , , , , , , , , , ,

STATION		I	H	В	S	A	P	R	R^2/3	n	V	Q
	ļ		(m).	(m)		(m2)	(m)	(m)			(m/s)	(m3/s)
0 K+	0	0.00005	2.00	6.70	2.50	23.38	17.46	1.339	1.215	0.030	0.29	6.70
2 K+	0	0.00005	2.00	3.90	2.50	17.79	14.66	1.213	1.137	0.030	0.27	4.77
4 K+	0	0.00005	2.00	1.70	2.50	13.39	12.46	1.074	1.049	0.030	0.25	3. 31

TABLE F-2.4.2 (4) HYDRAULIC CONDITION FOR KT PHAT TICH

	DIST	NCE	EXIST	ING CO	NDITIO	NS	DESIG	NED CO	NDITIO	NS
	ACUM.	INTVL.	BED	W.S.	BED	V.S.		BED	W. S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(n)	
0 K+ 0	0	0			I		4.35	1.110	3.114	0.00005
1 K+ 0	1000	1000		100				1.160	3.164	
2 K + 0	2000	1000						1.210	3.214	
3 K+ 0	3000	1000			Į.			1.260	3. 264	
3 K+ 200	3200	200					3.52	1.345	3.349	0.00005
4 K + 0	4000	800						1.385	3. 389	
4 K+ 200	4200	200					1.06	1.975	3.474	0.00005
										1 1

STATION	I	H	В .	S	A	P	R	R^2/3	n	V	Q
		(n)	(n)		(m2)	(m)	(m)			(m/s)	(m3/s)
_ 0 K+ 0	0.00005	2.00	4.50	2.50	19.06	15. 29	1.246	1.158	0.030	0.27	5. 20
2 K+ 0	0.00005	2.00	3.00	2.50	16.05	13.79	1.164	1.106	0.030	0.26	4.19
4 K+ 200	0.00005	1.50	0.00	2.50	5. 62	8.07	0.696	0.785	0.030	0.19	1.04
							- 11				

TABLE F-2.4.2 (5) HYDRAULIC CONDITION FOR KT 4 XA

		5	DISTA	NCE	EXIST	ING CO	NDITIO	NS.	DESIG	NED CO	NDITIO	NS :
			ACUM.	INTVL.	BED	W. S.	BED	W.S.		BED	V.S.	SLOPE
	STATIO	V			EL.	EL.	WIDTH	WIDTH	Qd ·	EL.	EL.	I
			(m)	(m)	(m)	(m)	(n)	(w)	(m3/s)	(m)	(m)	
	0 K+	0	0	0				100	7.66	0.200	2. 199	0.00005
١	_ 1 K+	0	1000	1000		1.3				0.250	2.249	
Į	1 K+	400	1400	400	. :					0.345	2.344	0.00005

STATION	I .	H	В	S	A	P	R	R^2/3	n	V	Q
		(m)	(m)		(m2)	(m)	(m)			(m/s)(m3/s)
0 K+ 0	0.00005	2.00	13.20	2.50	36.38	23.96	1.518	1.321	0.030	0.31 1	1.32
1 K+ 400	0.00005	2.00	0.00	2.50	9.99	10.76	0.928	0.951	0.030	0.22	2. 24

TABLE F-2.4.2 (6) HYDRAULIC CONDITION FOR KT CAU NAU

								100		
	DISTA	NCE	EXIST	ING CO	OITION	NS	DESIG	NED CO	NDITIO	NS
	ACUN.	INTVL.	BED	W.S.	BED	W.S.		BED	W. S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
0 K+ 0	. 0	.0					7.30	0.420	2.419	0.00005
0 K+ 800	800	800					4.64	0.535	2. 534	0.00005
1 K+ 0	1000	200							2.544	
2 K+ 0	2000	1000						0. 595	2.594	
2 K+ 500	2500	500							2.694	0.00005
3 K+ 0	3000	500							2.719	
4 K+ 0	4000	1000							2.769	
4 K+ 300	4300	300							2.784	

STATION	1.	II.	В	S	A	P	R	R^2/3	n	γ	Q
e ser e		(m)	(m)		(m2)	(m)	(m)			(m/s)	(m3/s)
0 K+ 0	0.00005	2.00	7.60	2.50	25. 18	18.36	1.371	1. 234	0.030	0.29	7. 33
0 K+ 800	0.00005	2.00	3.80	2.50	17.59	14.56	1.207	1. 134	0.030	0.27	4.70
2 K+ 500	0.00005	1.50	0.60	2.50	6.52	8.67	0.751	0.827	0.030	0.19	1. 27
			4								

TABLE F-2.4.2 (7) HYDRAULIC CONDITION FOR KT CAU NAU-1

	DISTA	NCE	EXIST	ING CO	ONDITIO	NS	DESIG	NED CO	NDITIO	NS '
	ACUM.	INTVL.	BED	W.S.	BED	W.S.		BED	W.S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
0 K+ 0	. 0	0					2.66	0.985	2.609	0.00005
1 K+ 0	1000	1000						1.035	2.659	
1 K+ 700	1700	700					0.97	1.370	2.769	0.00005
2 K+ 0	2000	300						1.385	2.784	
2 K+ 200	2200	200						1.395	2.794	
3 K+ 0	3000	800						1.435	2.834	
3 K+ 200	3200	200					<u> </u>	1.445	2.844	0.00005
	T .		T						<u> </u>	

STATION	I	Н	В	S	A	P	R	R^2/3	n	V.	Q
		(m)	(m)		(m2)	(m)	(m)			(m/s)	(m3/s)
0 K+ 0	0.00005	1.62	3.00	2.50	11.47	11.75	0.976	0.984	0.030	0. 23	2.66
1 K+ 700	0.00005	1.40	0.30	2.50	5. 31	7.83	0.678	0.772	0.030	0.18	0.97
3 K+ 200	0.00005	1.40	0.00	2.50	4.89	7.53	0.649	0.750	0.030	0.18	0.86

TABLE F-2.4.2 (8) HYDRAULIC CONDITION FOR KT CAU NAU-2

	DISTA	NCE	EXIST	ING CO	OITIONC	NS	DESIG	NED CO	NDITIO	NS
	ACUM.	INTYL.	BED	W.S.	BED	W.S.		BED	W.S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	\mathbf{I}
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
0 K+ 0	0	0					2.76	1.270	2.769	0.00005
1 K+ 0	1000	1000			1		1.1	1.320	2.819	
2 K + 0	2000	1000						1.370	2.869	
3 K + 0	3000	1000				1		1.420	2.919	
3 K+ 300	3300	300					1.07	1.510	3.009	0.00005
										*

STATI	ION	I	Н	В	S	A	P	Ŕ	R^2/3	n	V	Q
	4.55		(m)	(m)		(m2)	(n)	(m)		1.5	(m/s)	(m3/s)
0 K	0	0.00005	1.50	4.20	2.50	11.91	12. 27	0.971	0.980	0.030	0.23	2. 75
3 K		0.00005	1.50	0.10	2.50	5. 77	8.17	0.706	0.793	0.030	0.19	1.08
1 1	1				-				1 200		115 1	
										sattle of	1	

TABLE F-2.4.2 (9) HYDRAULIC CONDITION FOR TAN CHI CANAL

	DISTA	NCE	EXIST	ING CO	NDITIO	NS	DESIG	NED CO	NDITIO	NS
	ACUM.	INTYL.	BED	V.S.	BED	W. S.		BED	W. S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I
	(m)	(m)	(m)	(n)	(n)	(n)	(m3/s)	(m)	(m)	
0 K+ 0	0	0					31.11	-0.30	2.000	0.0001429
1 K+ 0	1000	1000						-0.16	2.143	
1 K+ 500	1500	500				1	31.11	-0.09	2. 214	0.0001429
		7				1.				

STATION	I	Н	В	S	A	P	R	R^2/3	n	γ	Q
		(m)	(n)	,	(m2)	(m)	(m)			(m/s)(m3/s)
0 K+ 0	0.0001429	2.30	17.40	2.50	53. 22	29.78	1.787	1.473	0.030	0.59 3	1:22
-											

TABLE F-2.4.2 (10) HYDRAULIC CONDITION FOR KON TEN CREEK

	DIST	NCE	EXIST	ING CO	OITIONC	NS	DESIG	NED CO	NDITIO	NS .
	ACUM.	INTVL.	BED	W.S.	BED	W.S.		BED	W.S.	SLOPE
STATION			EL.	EL.	WIDTH	WIDTH	Qd	EL.	EL.	I ï
	(m)	(m)	(m)	(m)	(m)	(m)	(m3/s)	(m)	(m)	
0 K+ 0	0	0					3. 87	0.275	1.739	0.00005
1 K+ 0	1000	1000	<u> </u>					0.325	1.789	
1 K+ 950	1950	950						0.448	1.912	0.00005
2 K+ 0	2000	50						0.450	1.914	0,0000
3 K+ 0	3000	1000			1	···		0.500	1.964	
3 K ± 50	3050	50			1				2.042	0.00005

STATION	I	Н	В	8	A	P	R	R^2/3	n	V.	Q
	:	(m)	(n)		(m2)	(m)	(m)			(m/s)	(m3/s)
0 K+ 0	0.00005	1.46	7. 20	2.50	15.90	15.08	1.054	1.036	0.030	0. 24	3. 88
1 K+ 950	0.00005	1.46	6.20	2.50	14.44	14.08	1.025	1.017	0.030	0. 24	3.46
3 K+ 50	0.00005	1.464	0.00	2.50	5.36	7.88	0.680	0.773	0.030	0.18	0.98
L											

TABLE F-2.4.2 (11) STRUCTURES AT TAO KHE CREEK

	T	DVIOR	INC CO	NDITIO	MO		DDADA	OPD DI	MENCIO	NO	
OW LT LON	NAME OF OTDUCTUDES		ING CO			00.00		SED DI			LENCEL
STATION	NAME OF STRUCTURES		HEIGHT			LOCATE	1			NUMBER	
			H(m)					$\phi B(m)$		N(pcs)	
	TRAM BRIDGE	2. 4	2.6	2		CLVRT.	0.00	2.4	2.6	3	20
	KT 4 XA SLUICE	1.0		2		LEFT	7.61	3.8	2.5	1	20
	SLUICE(PIPE)	1.5		1	20	LEFT		1.0	2.5	1	20
	SLUICE(PIPE)	1.5		1	20	RIGHT		1.0		1	20
		NEW		1		RIGHT	1.12	1.1	1.1	1	20]
K19+300	SLUICE(PIPE)	1.4		1	18	LEFT		1.0		1	20
K19+300	SLUICE(PIPE)	1.4	` '	1	18	RIGHT		1.0		1	20
K19+700	N6 ELEVATED FLUNE	1.5	1.0	1	30	CLVRT.	21.00	3. 5	2.5	3	20
K19+750	KT TKV2	NEW				LEFT	0.71	1.0		1	20
K20+100	SLUICE(PIPE)	1.4		1	15	LEFT		1.0		1	20
K20+100	MINH DAO SLUICE	1.4		1	15	RIGHT	1.10	1.1	1.1	1	20
K21+ 50	SLUICE(PIPE)	1.3		1	10	LEFT		1.0		1	20
K21+300	LIEN AP SLUICE	NEW		1		LEFT	0.61	1.0		1	20
K21+300	LIEN AP BRIDGE	5.0	3. 1	1	10.9	CLVRT.	21.00	3. 5	2.5	3	20
K22+ 0	SLUICE(PIPE)	1. 2		1	12	LEFT		1.0		1	20
K22+ 0	TAN HUNG SLUICE	1. 2		1	12	RIGHT	0.75	1.0		1	20
K22+300	KT TRINH XA SLUICE	2.0	1.7	2		LEFT	10.64	2. 7	2. 5	2	20
K22+300	SLUICE(PIPE)	1. 1		1	10	LEFT		1.0		1	20
K23+200	CANH HUNG SLUICE	NEW				RIGHT	1.31	1. 2	1.1	1	20
K23+500	SLUICE(PIPE)	1.4		1	10	LEFT		1.0		1	20
K23+500	SLUICE(PIPE)	1.4		1	10	RIGHIT		1.0		1	20
K23+600	DONG MAI BRIDGE	10.9	3. 1	1		CLVRT.	7. 21	3.6	2. 5	1	20
K23+850	SLUICE(PIPE)	1.1		1	15	RIGHT		1.0		1	20
K24+400	SLUICE(PIPE)	NEW	1			LEFT	1.01	1.0	1.0	1	20
K24+400	KT PHAT TICH SLUICE	10.9	3. 1	1	15	LEFT	4. 32	2. 2	2. 5	1	20
K24+500	 	1. 2		1	10	CLOSED		1			

TABLE F-2.4.2 (12) STRUCTURES AT KT TRINH XA

***************************************	. I.D (ID) DIROUTORDO II		11111 1111								
		EXIST	ING CO	NDITIO	NS		PROPO	SED DI	MENSIO	NS	
STATION	NAME OF STRUCTURES	HTDIW	HEIGHT	NUMBER	LENGTH	LOCATE	DISCH.	WIDTH	HEIGHT	NUMBER	LENGTH
		ϕ B(m)	H(m)	N(pcs)	L(m)		Q(m3)	$\phi B(m)$	H(m)	N(pcs)	L(m)
K0+700	NGO THAI SLUICE	1.1			10	RIGHT	0.85	1.0		1	20
K1+300	PHUC NGHIEM BRIDGE	1.5		4	10	CLVRT.	9.79	2. 5	2. 5	2	20
K1+300	PHUC NGHIEM SLUICE	1.5		1	20	RIGHT		1.3	1. 2	1	20
K1+800	THUC PHAM SLUICE	1.5		1	20	RIGHT		1.0		1	20
K2+200	VIET DOAN BRDIGE	10.3	3.6	1		BRIDGE	9.79	2. 5	2.5	2	20
K3± 50	DAI TAO BRIDGE	2.0	1.5	3	18	CLVRT.	9.79	2. 5	2. 5	2	20
K3+ 60	DAI TAO RIGHT SLUICE	1.4		1	18	RIGHT		1.0		1	20
	DAI TAO LEFT SLUICE	1.4	<u> </u>	1		LEFT		1.0		1	20
K4+250	NAM TRINH XA SYPHON	2.0	1.5	3	50	CLVRT.	9.79	2.0	1.5	3	50
K4+500	DUONG MONG SLUICE	1 4	:	1	15	RIGHT	0.73	1.0		1	20
K5+ 0	SLUICE(PIPE)	1.4	1.4	1	15	LEFT		1.4	1.4	1	20
	SLUICE(PIPE)	0.9		2	10	RIGHT		0.9		1	20
K5+500	KT 6 XA SLUICE	1.0	1.3	2	10	RIGHT	6.63	1.5	1.5	3	20

TABLE F-2.4.2 (13) STRUCTURES AT KT 6 XA

		EXIST	ING CO	NDITIO	NS .		PROPO	SED DI	MENSIO	NS	
STATION	NAME OF STRUCTURES	WIDTH	HEIGHT	NUMBER	LENGTH	LOCATE	DISCH.	WIDTH	HEIGHT	NUMBER	LENGTH
		$\phi B(m)$	H(m)	N(pcs)	L(m)		Q(m3)	ϕ B(m)	H(m)	N(pcs)	
K0+ 50	SLUICE(PIPE)	0.6		1	13	LEFT		0.6		1	20
K0+300	SLUICE(PIPE)	0.4		1	9	RIGHT		0.6		1	20
K0+400	BRIDGE(CULVERT)	5.0		111	15	CLVRT.	6.63	3.0	2.5	1.	20
K1+100	DUONG MONG BRIDGE	5.0		1		CLYRT.	6.63	3.0	2. 5	1	20
K1+150	SLUICE(PIPE)	1.3		1		RIGHT		1.3		11_	20
K1+750	BRIDGE(CULVERT)	4.0		11_	2	CLYRT.	6.63	3.0	2.5	1	20
K1+850	SLUICE(PIPE)	1.5		1	10	RIGHT		1		1	20
K1+900	BRIDGE(CULVERT)	5.0		1	2	RIGHT	6.63	3.0	2.5	1	20
K2+700	SLUICE(PIPE)	2. 5		1	10	RIGHT		1.0		11	50
K3+300	SLUICE(PIPE)	1.5		1		RIGHT		1.0		1	20
K3+600	KAU SAT SLUICE	1.4	1.4	2	15	CLVRT.	3. 27	1.3	1.3	2	20
						<u> </u>	<u> </u>				L.,

TABLE F-2.4.2 (14) STRUCTURES AT KT PHAT TICH

				NDITIO]	PROPOSED DIMENSIONS				
STATION	NAME OF STRUCTURES	WIDTH	HEIGHT	NUMBER	LENGTH	LOCATE	DISCH.	WIDTH	HEIGHT	NUMBER	LENGTH
		$\phi B(m)$	H(m)	N(pcs)	L(m)	<u> </u>	Q(m3)	$\phi B(m)$	H(m)	N(pcs)	L(m)
K1+300	SLUICE(PIPE)	1.4		1	16	RIGHT		1.0		1	20
K1+600	BRIDGE(CULVERT)	NEW		1		CLVRT.	4.32	2. 5	2. 5	11_	20
K2+150	BRIDGE (CULVERT)	NEW		1		CLVRT.	4.32	2.5	2. 5	1	20
K1+100	DUONG MONG BRIDGE	5.0		1	5	CLYRT.	6.63	3.0	2. 5	1	20
K1+400	SLUICE(PIPE)	1.5		1	15	RIGHT		1.0		1	20

TABLE F-2.4.2 (15) STRUCTURES AT KT 4 XA

				NDITIO			PROPOSED DIMENSIONS				
STATION	NAME OF STRUCTURES	WIDTH	HEIGHT	NUMBER	LENGTH	LOCATE	DISCH.	WIDTH	HEIGHT	NUMBER	LENGTH
		$\phi B(m)$	H(m)	N(pcs)	L(m)		Q(m3)	φ B(m)	H(m)	N(pcs)	L(m)
K0+800	BRIDGE(CULVERT)	1.0		3		CLVRT.	7.61	3.8	2. 5	11	20
K0+900	SLUICE(PIPE)	1.4		1	9	RIGHT		1.0		1	20
K1+150	BRIDGE(CULVERT)	1.0		3		CLVRT.	7.61	3.8	2.5	1	20
K1+300	SLUICE(PIPE)	1.4		1	13	CLVRT.		1.0		1	20
K1+400	KT CAU NAU	NEW				RIGHT	7.61	3.8	2. 5	1	20
		T								J	

TABLE F-2.4.2 (16) STRUCTURES AT KT CAU NAU

		EXIST	ING CO	NDITIO	NS		PROPO	SED DI	PROPOSED DIMENSIONS				
STATION	NAME OF STRUCTURES					LOCATE	DISCH.	WIDTH	HEIGHT	NUMBER	LENGTH		
				N(pcs)						N(pcs)			
K0+500	SLUICE(PIPE)	1.0		1	10	LEFT		1.0		1	20		
K0±800	KT KAU NAU-1 SLUICE	NEW		1		LEFT	2.64	1.7	2.0	1	20		
K1+300	SLUICE(PIPE)	1.0		1	9	LEFT		1.0		1	20		
K1+300	SLUICE(PIPE)	1.0		1	9	RIGHT		1.0		1	20		
K2+ 0	N6 IRRIGATION SYPHON	1.0		3	20	CLVRT.	4.64	2. 9	2.0	1	20		
K2+500	KT KAU NAU-2 SLUICE	NEW				LEFT	2.76	1.7	2	1	20		
K2+800	SLUICE(PIPE)	1.1		1	5	RIGHT		1.0		1	20		
								-					

TABLE F-2.4.2 (17) STRUCTURES AT KT TAN CHI

		EXIST	ING CO	OITION	NS		PROPO	SED DI	MENSIO	NS	
STATION	NAME OF STRUCTURES	WIDTH	HEIGHT	NUMBER	LENGTH	LOCATE	DISCH.	WIDTH	HEIGHT	NUMBER	LENGTH
		$\phi B(m)$	H(m)	N(pcs)	L(m)		Q(m3)	$\phi B(m)$	H(m)	N(pcs)	L(m)
K0+600	N6 ELEVATED FLUNE	1.5	1.0	1	25	CLVRT.	31.11	3.9	2.5	4	40
								1.2			:
						1.		75.1			

Figure F-2.4.2 Longutudinal Section of Tao Khe Creek

Figure F-2.4.2 Longutudinal Section C	1
	-S 7 K -13000
nice) at Thich gaktalid pat Thich Regulator	-5.6 K -1 200C
E Thich &	-5 2 K -1 1000 l-
tion Canal) KT Trim ka 22ki 300 (Be Cay Stuice) KT Pat Thich Regulato Pat Thich Regulato	70°A - 100001- N 62-
27 July (188	- 0000s - x £ 2.
	22 K - 6000 - 275
TI II TI T	
Conal 1884400 Irrigation Canal. Ejewated Canal. (M6 Irrigation (Annal.) Ejewated Canal	0000 - × 12
inted Company	20 K: -, 6000 - 0.43 242
Se Regulator 1718 1981 400 green Camal 1981 400 gre	13 K - 2000 - 361
Tream Bridge Regulator Tran Chi Canal 1884 400 KT 4 Xa KT 4 Xa KT 4 Xa Chi Canal 1884 400 KT 4 Xa KT 4	18K - 4000 - 3 5:12
	3000 - × 21
Camal Camal	1000 - HS
1.0 1.0 D1 -1.0 D1 -2.0 D1	0 - ж.
84 0.0 0.0 1.0 0.0 1.0 0.0 1.2 0.0 0.0 1.2 0.0 0.0 1.2 0.0 0.0 1.2 0.0 0.0 1.2	99:7 + 02:0 - 029+ - U 9
	PROPOSEC. WATER SURE CANAL BED ELEVATION ACCUM. DISTANCE
F-38	0 × 0 × 0 × 0

SCALE; 1/50,000 F-39

Figure F-2.4.3 PLAN OF DRAINAGE FACILITIES

F-3 PROJECT COST

F-3.1 Method of Cost Estimates

The construction cost in Vietnam will be estimated in accordance with the guideline issued by the People's Committee of Ha Bac province on June 15th, 1994 based on the controlling price of construction materials, equipment in civil works issued by Interministry of Finance-Pricing Board of Government. Cost estimatin method is summarized as below.

a) Direct cost includes; (A) material costs. $a_1 + Cv_1 = A$ where. a₁; Listed cost Cvi: Difference between actual and estimated cost $B_1 \times Factor = B$ (B) labour cost, where, B₁: Listed cost Factoris; Adjsting factor of groups (C) construction cost, $C_1 \times C = M$ C₁; Listed cost construction where, equipment C; Adjustinf factor (T) Sub-total of. (A+B+M)=T (T_1) other cost. $T \times n = T_1$ where, percentage of direct cost(T) for wall painting, land leveling 0.5% for comon works 0.7% for special works 0.4% for industrial works 0.2% (T₂) Cost for electricity. Lightning protection, water drainage & supply

 $T \times v\% = T_2$

b) General expenditures; (C) = $T \times p$

where, p; regulated ratio Sub-total of $(T+T_1+T_2+C)$

c) Regulating profit;

 $(L) = (T+T_1+T_2+C) \times m$

where, in; regulated profit

d) Construction cost;

 $(Cx1) = T+T_1+T_2+C+L$

e) Cost of equipment;

(Gtb)..... including installation cost

f) Others:

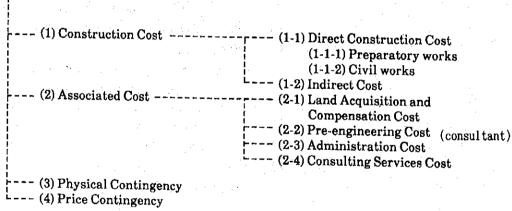
(Gkt)..... including costs as shown below

Survey & design cost

Managing cost

Land, crops compensation

g) Reserve stocks;


 $(Gdp) = (gkl+Gtb+Gkt) \times 10\%$

(contingency)

Total cost of civil works; Gx1+Gtb+Gkt+Gdp = Gtdt

The project cost is estimated with the following components;

Project Cost

According to the Ha Bac regulations for the construction cost, some unit prices are estimated as shown below applying the material price in the list issued by the Ha Bac People Committee.

UNIT; VIETNUM, DONG

No.	Name of Works	Unit	General Unit Price	Remarks
1	Concrete M200	ทใ	600,000.00	Beam
2	Concrete M200	пĩ	760,899.29	Sluice
3	Plaster 2cm	m²	10,402.29	Concrete M100
4	Ash coal concrete	ពាំ	104,825.30	
5	Brick Masony M50	mÎ	273,902.50	
6	wall plaster	m²	11,825.49	
7	Paving Floor tile	m²	81,347.52	
8	Reinforcing bar	kg	5,347.47	,
9	foundation earth excavation	ໜື	12,160.24	by Manual,class2 distance=50m
10	Rock Masony M100	ıń	249,345.70	·
11	Demolish Rock Masony	mi	33,325.56	
12	Concrete fishing	. m²	7,100.78	
13	Steel Work	kg	7,642.49	
14	PVC-KN92 Joints	m	154,515.40	
15	Earth Fill class 2	nî	17,012.16	by Manual, class2 distance=50m
16	Earth Fill	m³	3,030.78	by Buldozer, class2 distance=50m
17	Demolishing old concrete	π³	103,045.20	by Manual
18	Gravel	m	76,388.43	
19	Filling Eath road	ni	3,030.78	by Buldozer,class2 distance=50m
20	Placing & Grading t=10cm	ពាំ	6,444.54	
21	Pumping water	day	121,988.50	
22	Demolishing Earth road by Buldozer	ที่	3,803.00	
23	Filling Eath Coffer dam	m	17,012.16	by Manual

Foreign and local currency portion on major construction materials are separated as follows:

Materials	Foreign (%)	Local (%)
Aggregate	80	20
Lumber	40	60
Reinforcing bar/ Nail/ Hardware	90	10
Cement	80	20
Asphalt/Bituminous	80	20
Fuel	80	20
R.C. products	70	30
Steel plate/ Angle/ Pipe	90	10
Equipment	80	20

The exchange rate employed for the cost estimate is US\$1.00=D10,996= ¥ 100.00.

TABLE F-3.1.1 List of Unit Cost Construction Works

Vorks	Description	UnitUnit CosRemarks (US \$)	Unit Cost F/C L/C	Rate(%) F/C L/C
Earth Works	Dreadging Strct. Ex.(mannl) Strct. Ex.(mech) Strct.Fil(mannl) Canal Ex.(mannl) Canal Fil(mech) Canal Fil(mannl)	cu.m 2.37 PS200 Dredger cu.m 1.83 W/Dewatering cu.m 2.40 Back Hoe cu.m 2.92 L=50m cu.m 1.22 cu.m 0.30 Bull L=50m cu.m 1.70 L=50	1.73 0.64 0.12 1.70 1.86 0.54 0.24 2.68 0.00 1.22 0.24 0.06 0.00 1.70 0.00 7.10	7 93 78 22 8 92 0 100 8 80 20 0 100
Works	Pleng. Gravel eRFC. (Pump St.) RFC. (Canal St.) Lean Conc.	cu.m 52.40 M100	103.55 308.52 77.73 250.40 35.52 84.40	2 63 37 61 39 68 32
Other Works	Brick Work Mortar Rock Masonry Demolish Conc. Steel Works	cu.m 30.20 M75 cu.m 67.61 cu.m 32.41 cu.m 13.40 kg 0.99	44.63 22.98 3.24 29.17 1.34 12.06 0.79 0.20	9 66 34 7 10 90 3 10 90 0 80 20
Pipe Works	Conc. Finishing Dmlsh Earthfill RCP. D=1000mm	sq.m 9.23 cu.m 4.94 m 58.69 m 45.41 m 31.28 pcs 1014.60 L=15m	0.92 8.31 3.96 0.99 27.71 30.98 18.34 27.0 12.69 18.56 909.40 105.20	9 80 20 3 47 53 7 40 60 8 41 59

•	TABLE F-3.1	1.2 (1)	LI	ST OF	UNIT COST	•		ina 🖎		
•	D			H. Saff	D	· m . 1	Unit Cost			ite L
		on wood a			ase Prc.	Total	F/C	L/C	F/C	L/C
		M300 Conc			Station	00 50	00.00	00.50	00	00
	Material			bag		38.70		38.70	80	20
*		Gravel	0.90	cum.	7.60	6.84	5.47	6.84		20
		Sand	0.45	cum.	5.00	2.25	1.80	2.25	80	20
		RSB	80	kg	0.60	48.00	43.20	24.00	90	10
		Tie Wire	0.44	kg	1.80	0.79	0.71	0.40	90	10
		F.Lumber	0.05	cum.	140.00	7.00	2.80	21.00		60
		CWN	1.75	kg	1.30	2.28	2.05			10
• •	•	Plywood	0.18	cum.	230.00	41.40	16.56	124.20		
	Labor	1 1 1	1.00	LS	8.00	8.00	0.00	40.00		100
			1.00	LS	10.00	10.00	0.00	50.00	0	100
	Equip.Spa	re P.Fuel		LS	4.20	0.00	0.00	0.00	80	20
	Total					165.26	103.55	308.52	63	37
			·		•					
		M250 Conc				00 50	00.00	00 ===		00
	Material	Cement	9.00	bag		38.70	30.96	38.70		20
	•		0.90		7.60	6.84	5.47	6.84		20
		Sand	0.45		5.00	2.25	1.80	2.25		20
		RSB	40	kg	0.60	24.00		12.00		10
		Tie Wire				0.72	0.65	0.36		10
		F.Lumber	0.03	cum.	140.00	4.20	1.68	12.60		60
		CWN	1.00	kg	1.30	1.30	1.17	0.65		10
		Plywood	0.12		230.00	1.30 27.60	11.04	82.80		
	Labor		1.00	LS	0.00	0.00	0.00	40.00		100
				LS	10.00	10.00	V.UU			100
	Equip.Spa	re P.Fuel	1.00	LS	4.20	4.20	3.36	4.20	80	20
•	Total				•	127.81	77.73	250.40	61	39
	4 21									
	(3) Class	M100 Conc	reet/Le	an Coi	ncreet.					
	Material				4.30	30.10	24.08	30.10	80	20
4		Gravel	1.00			7.60	6.08	7.60		
		Sand	0.50		5.00	2.50	2.00	2.50		20
	Labor		1.00	LS		8.00		40.00		
		re P.Fuel	1.00		4.20	4.20	3.36	4.20		20
	-1L.mlp	1				1.40	3.00	1.20		
	Total	· · ·	•			52.40	35.52	84.40	68	32
	(A) Watte	ed Brick Ri	nran				•			
	Material		0.98	cum.	9.90	9.72	0.00	48.62	Λ	100
	HAUCHTAL	Mortar		cum.	52.01	2.48	1.68	3.99		32
	Labour	noi cai	1.00	LS	8.00	8.00	0.00	40.00		100
	Labour	-	1.00		10.00	10.00	0.00	50.00		100
			1.00	יייי	TA+AÁ	10.00	0.00	50.00	U	100
	Total					30.20	1.68	142.61	6	94

TABLE F-3.1.2 (2)	LIST OF UN	IT COST		Unit Cost	(IIC 4)	Rate
Description	Qunt. UnitRase	e Prc.	Total			F/C L/C
(5) Dreadging (200PS Material Electric Consumer Maint. Miscel. Otherboats Labour H.R.sailor Sailor	4.67 kwh 1.00 LS 1.00 LS 1.00 LS 1.00 LS	Vessel 0.04 0.05 0.18 0.01 1.88 0.01 0.02	0.19 0.05	0.04 0.04 0.14 0.01 1.50 0.00 0.00	e) 40m3/h 0.15 0.01 0.04 0.00 0.38 0.01 0.05	20 80 80 20 80 20 80 20 80 20 0 100 0 100
Total			2.37	1.73	0.64	73 27
(6) Structure Excaval Labour Pumping Water Total	1.00 LS	1.22 0.61	(Mannual) 1.22 0.61 1.83	0.00 0.12 0.12	1.22 0.49 1.70	20 80
(7) Structure Excava Labour Operator Equip.Spare P.Fuel	1.00 LS		0.07 2.32	0.00 1.86	0.07 0.46	
Total			2.40	1.86	0.54	78 22
(8) Structure Backfi Labour Pumping Water Total	1.00 LS 1.00 LS	1.70 1.22	1.70 1.22 2.92	0.00 0.24 0.24	1.70 0.98 2.68	20 80
(9) Canal Fill (Buld Equip.Spare P.Fuel		0.30	0.30	0.24	0.06	80 20
Total			0.30	0.24	0.06	80 20
(10) Canal Fill (Man Labour	nual) 1.00 LS	1.70	1.70	0.00	1.70	0 100
Total			1.70	0.00	1.70	0 100
(11) Placing Gravel Material Gravel Laabour	t=10 1.03 cum. 1.00 LS	7.34 0.30	7.56 0.30	0.76 0.00	6.80 0.30	
Total			7.86	0.00	7.10	0 100

TABLE F-3.1.2 (3)	LIST OF UNIT COST	-	11.4.0	(110.4)	5
Descfiption (12) RCP D=1000mm	Qunt. UnitRase Prc.	Total	Unit Cost F/C		Rate F/C L/C
Material Cement Gravel Sand RSB Tie Wire Labour Equip.Spare P.Fuel Sub-total Installation	2.71 bag 4.30 0.22 cu.m 7.60 0.11 cu.m 5.00 14.85 kg 0.60 0.10 kg 1.80 1.00 LS 1.24 1.00 LS 1.25		9.32 0.33 0.11 7.13 0.14 0.00 1.00	2.33 1.34 0.44 1.78 0.04 1.24 0.25 7.42	80 20 20 80 20 80 80 20 80 20 0 100 80 20 71 29
Material Cement Gravel Sand RSB	1.00 LS 12.64	0.20 4.38 0.11 10.53 12.64	0.04 3.50 0.09 2.11 0.00	0.86 0.49 0.16 0.88 0.02 8.42 12.64 0.09 23.56 30.98	80 20 20 80 20 80 80 20 80 20 20 80 0 100 80 20 29 71 47 53
(13) RCP D=600mm Material Cement Gravel Sand RSB Tie Wire Labour Equip.Spare P.Fuel Sub-total	1.00 LS 8.67		6.26 0.23 0.08 4.69 0.12 0.00 0.67 12.04	1.57 0.91 0.30 1.17 0.03 8.67 0.17 12.82	80 20 20 80 20 80 80 20 80 20 0 100 80 20 48 52
Installation Material Cement Gravel Sand RSB Tie Wire F.Lumber Labour Equip.Spare P.Fuel Total	0.72 bag 4.30 0.06 cu.m 7.60 0.03 cu.m 5.00 4.52 kg 0.60 0.05 kg 1.80 1.88 LS 3.29 1.00 LS 7.59 1.00 LS 0.28	3.10 0.46 0.15 2.71 0.09 6.19 7.59 0.28 20.55 45.41	2.48 0.09 0.03 2.17 0.07 1.24 0.00 0.22 6.30 18.34	0.62 0.36 0.12 0.54 0.02 4.95 7.59 0.06 14.25 27.07	80 20 20 80 20 80 80 20 80 20 20 80 0 100 80 20 31 69 40 60

TABLE F-3.1.2 (4)	LIST OF UNI	T COST			100	The second
				Unit Cost	(US \$)	Rate
Descfiption	Qunt. UnitRase	Prc.	Total	F/C	L/C	F/C L/C
(14) RCP D=450mm	•					
Material Cement	1.22 bag	4.30	5.25	4.20	1.05	80 20
Gravel	0.10 cu.m	7.60	0.76	0.15	0.61	20 80
Sand	0.05 cu.m	5.00	0.25	0.05	0.20	20 80
RSB	7.72 kg	0.60	4.63	3.71	0.93	80 20
Tie Wire	0.08 kg	1.80	0.14	0.12	0.03	80 20
Labour	1.00 LS	7.09	7.09	0.00	7.09	0 100
Equip.Spare P.Fuel	1.00 LS	0.56	0.58	0.45	0.11	80 20
Sub-total	the state of the state of		18.69	8.67	10.02	
Installation	.*					
Material Cement	0.45 bag	4.30	1.94	1.55	0.39	80 20
Gravel	0.04 cu.m	7.60			0.24	
Sand	0.02 cu.m	5.00		0.02	0.08	
RSB	3.65 kg	0.60	2.19		0.44	
Tie Wire		1.80	0.07		0.01	
F.Lumber		1.48	2.09		1.67	20 80
Labour	1.00 LS	5.69	5.69		5.69	
Equip.Spare P.Fuel	and the second s	0.21	0.21		0.04	
53227 15721 5 11 402	2100 20		12.59	4.02	8.56	
Total			31.28	12.69	18.58	
				,-		
(15) Prestress Conc	rete Pile D=450m	m L=15m				
Material P.C. Pile	1 pcs 10	10.00	1010.00	909.00	101.00	90 10
Inst. Labour	1 LS	2.60	2.60	0.00	2.60	
Equi.Spare P.Fuel	1 LS	2.00	2.00	0.40	1.60	
			1014.6	909.4	105.2	90 10