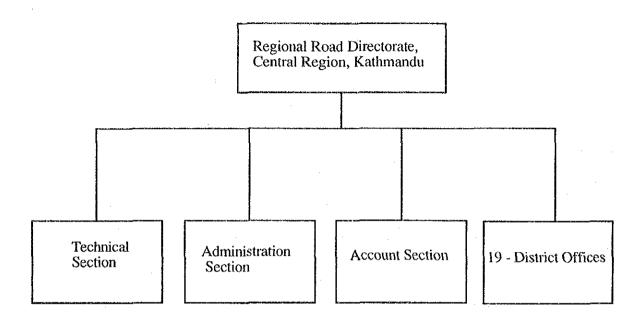

Figure 5-1 Present Organization of Central DOR



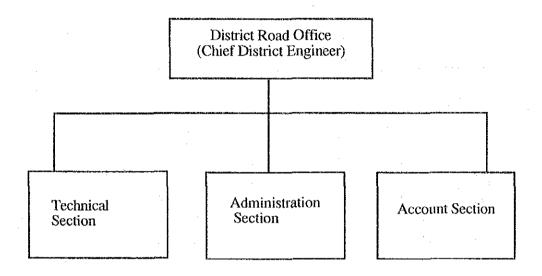
(2) DOR, Regional Road Directorate

The Directorate of Central Region, where Sindhuli Road is located, is presently headed by Deputy Director General (DDG) for Maintenance and he is responsible for inspection, supervision and monitoring of road construction and maintenance projects within the central region.

The present organization of Central Regional Road Directorate is shown in Figure 5-2.

Figure 5-2. Present Organization of Central Road Directorate, DOR.

NOTE: Out of 19 districts offices, only 15 have been established to date.


The present staffing of the Central Regional Road Directorate is very limited and are only one Divisional Engineer, 5- Assistant Engineers and a few administrative staff.

(3) DOR District Road Office

The District Road Office is headed by Chief District Engineer who is responsible for carrying out planning, design, implementation of road construction and maintenance within his jurisdiction. He has also responsibility to work with Local District Development Council for district level road projects.

The District Road Offices are classified into 3 classes depending upon the total road network and their physical locations. HMG/N has planned to establish District Road Offices in all 75 districts, but so far 44 District Road Offices have been established. Out of 19 Districts in the Central Region, only 15 District Road Offices have been established to date. In the Districts of Ramechap, Sindhuli and Kavrepalanchowk, where the Sindhuli Road passes through, the District Offices are not established yet. The general organization of the District Office is depicted in Figure 5-3.

Figure 5-3 General Organization of District Office, DOR

5.3 Budget Allocation and DOR Financial Situation

For the construction of new roads and maintenance and rehabilitation of the existing roads, the budget allocation is annually made by the Ministry of Finance (MOF) to DOR at the beginning of each fiscal year (June/July). Over the past five years, the allocated budget are tabulated in Table 5-1. The budget divided into HMG and foreign sources, and break down into construction and maintenance are shown in Figure 5-4 and 5-5 respectively.

Table 5-1 Budget Allocation Over the Past 5 Years.

Fiscal Year	Total Budget	HMG Source	(Unit in Million NRs) Foreign Source
88/89	1,953.0	757.0 (38%)	1,196.0 (62%)
89/90	2,070.0	757.0 (36%)	1,313.0 (63%)
90/91	1,571.0	464.0 (30%)	1,107.0 (70%)
91/92	2,202.0	886.0 (40%)	1,316.0 (60%)
92/93	2,810.0	928.0 (33%)	1,882.0 (67%)

Figure 5-4 Budget Allocation Divided into HMG and Foreign Sources

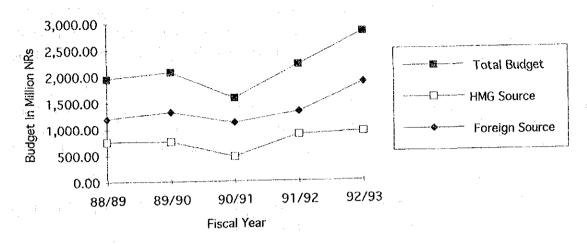


Figure 5-5 Budget Allocation Broken Down Construction and Maintenance

As revealed by the above figures and table, the followings are findings with regard to DOR's financial situation.

- (1) In an average, 65% of the total annual budget is provided by the various foreign sources such as ADB, IDA (World Bank), and Grant Aid from ODA, Japan, India, China.
- (2) The annual total budget has gradually increased, especially 30-40% increase annually after F/Y 90/91. From the funding source view point, the percentage difference in HMG source between 91/92 budget and 92/93 is less than 5%, while in the foreign source, the percentage is more than 40% increase which is quite considerable.

- (3) Although the total budget in F/Y 90/91 decreased due to the political change, the budget for maintenance has gradually increased over the past five years, especially from F/Y 91/92 to 92/93, 57% increase, while only 10% increase in the construction budget is seen during the same period. This trend could not be changed in the future taking into account the necessity of maintenance of the existing roads.
- (4) Assuming that total construction cost and annual maintenance cost of Sindhuli Road Project is 3,000 million NRs. and 20 million NRs respectively, the construction cost is more than three times of the HMG source annual budget, and the maintenance cost shares 2% of the HMG source budget in F/Y 92/93.

In view of the above assumption, the development scale and implementation program of the Project should be formulated to minimize a burden to HMG.

5.4 Present Road Construction and Maintenance Projects

In the current fiscal year 92/93, DOR has been undertaking 10-major highway construction projects, 21-feeder road construction projects, 11-road maintenance and rehabilitation projects, 42-urban road projects, 10-bridge construction projects 7-district level and suspension bridge projects and 9-minor miscellaneous projects. A summary of the above projects together with targeted quantities and the grand total budget allocated is tabulated in Table 5-2 and major projects of each category are shown in Table 5-3.

Table 5-2 Summary of Road Construction and Maintenance Projects On Going

Project Category	No's of Projects	Target Qty	Allocated Budget in Million NRs
Highway Construction	10	1050 km.	619.5
Feeder Road Construction	21	929 km.	308.1
Maintenance & Rehabilitat	tion 11	718 km.	1,243.6
Urban Roads Construction	n 4	-	61.0
Bridges Construction	10	14 No.	151.7
District Level and Suspens	sion	- .	
Bridges	7	_	334.7
Miscellaneous Projects	9		<u>91.6</u>
Total	72.		2810.2

Table 5-3 List of Major Projects On Going

Name of Project A. Construction	Type of Work	Implementation Mode	Budget for 1992/93 in Million NRs	Funding Source
Kohalpur Mahakali	Highway Construction	Contract basis	135.00	India and IDA
Pokhara Baglung	Hill road construction	Turnkey	105.00	China
Phidim Taplejung	Hill road construction	Force Account and Contract basis	40.00	
Patan-Baitadi-Darchula	Hill road construction	Force Account and Contract basis		HMG
Charali-Ilam	Hill road construction	Contract Basis	106,00	· · · · · · · · · · · · · · · · · · ·
Godawari-Bhatkanda- Patan	Hill road construction	Contract Basis	33.50	
Bhatkarda-Doti	Hill road construction	Contract Basis	120.00	ADB
M.R.MGaighat	Hill road construction	Force Account and Contract basis	55.00	HMG
Silgadi-Sanfebagar	Hill road construction	Force Account and Contract basis	60.00	ADB
Bhalubang-Pyuthan	Hill road construction	Force Account and Contract basis	70.00	HMG
B. Maintenance and R	ehabilitation			
Road Resealing works	Pavement Improvement works	Contract basis	50.00	OPEC
Second Road Improvement Project	Highway widening & pavement construction	Contract basis	500.00	ADB
Lamosangu-Jiri	Hill road maintenance	Force Account and Contract basis	22.17	SDC
Arniko Highway Maintenance Project	Slope protection & pavement construction	Contract basis	18.23	SDC
M.R.M. Belbari- Chaurahara	Highway widening & pavement construction	Contract basis	150.00	ADB
Naubise-Mugling	Widening of Road and pavement construction	Contract basis & partly management contract	75.00	IDA and ODA
Road Flood Rehabilitation Project	Road & Bridge works with slope protection & river training	Contract basis	230.00	IDA
Road Maintenance (Different Roads)	All type of road Maintenance work	Force Account and Contract basis	130.00	HMG
Eastern Region Road maintenance	Maintenance and Rehabilitation	Force Account and Contract basis	50.00	ODA
C. Bridges	Г	· · · · · · · · · · · · · · · · · · ·		TABLA
Valley Bridges	Bridge Construction	Turnkey	100.00	JAPAN CT7
Trishulee Bridge	Bridge Construction	Contract basis	10.00	GTZ
D. Other Projects	City Road, Road Bridge, Suspension Bridge, Track and Trails	Force account and Contract basis	721.00	
Total			2810.20	_

As shown in Table 5-3, modes of project implementation depends on the funding agencies in general. The projects financed by ADB and IDA are usually implemented on a contract basis, in which the contractors undertake the project construction. While the project financed by HMG are usually executed either on a force account basis or on a contract basis depending on the scale or type of the projects. In general, the road maintenance projects with a small to medium scale are being implemented by DOR on a force account basis.

For this purpose, certain construction equipment are available in the Heavy Equipment Division in DOR. For instance, in the Central Regional Road Directorate, DOR, located in Kathmandu, following major equipment are available and operational.

	Station	Total in	
Equipment	Kathmandu	Hetauda	Central Region
Track Dozers	4	5	9
Wheel Dozers	4	1	5
Wheel Loaders	8	8	: 16
Graders	4	6	10
Rollers	15	17	32
Tipping Truck	34	25	59
Flat Bed Trucks	5	6	11

On the other hand, the projects under grant aid are generally implemented on a turnkey basis except Jogbani - Dhankuta Road Project which is under grant-aid from ODA, is being implemented on both contract basis and force account basis.

Institutional data and information on Dharan-Dhankuta Road Project and Lamosangu-Jiri Road Project are presented for reference purpose in Appendix-E.

FORMULATION OF DEVELOPMENT SCHIEME ALTERNATIVES

CHAPTER 6

FORMULATION OF THE DEVELOPMENT SCHEME ALTERNATIVES

6.1 General

As briefly mentioned in Chapter 1, main reasons of the Project being successfully not yet implemented to date, in spite of HMG's keen emphasis, are (1) huge construction cost (NRs 3,884 million) is required resulting from the development and design policies adopted in the previous F/S and consequently (2) no funding sources are available or no funding agencies are interested in the Project implementation.

Taking into account the above reasons, which are also the background of the Study, the purpose of this study presented herein is to formulate the realistic and practical development schemes which should be materialized within the earliest possible time. The scheme alternatives including several options are prepared based on expected roles of the Road, basic concepts for the development, and the results of traffic forecast and environmental impact assessment carried out. DOR's project implementation capability as well as financial situation are also taken into account in formulating the schemes. In light of these scheme alternatives, the succeeding studies such as the preliminary design, construction scheduling, cost estimate are carried out and the optimum development scheme among the alternatives is selected in the project evaluation in Chapter 10.

6.2 Roles of Sindhuli Road

In the present road network in Nepal especially for the roads connecting Kathmandu Valley and Terai Plain that is the main agricultural belt of Nepal, followings are insufficient and deficient points;

- (1) Sole trunk road available is not stable and reliable in the rainy season because of the frequent landslides and slope failure.
- (2) Roundabout road linking in between Kathmandu Valley and Eastern Terai where the main part of agricultural production center is located.
- (3) Lagged road development linking north and south because of hindrance due to the ranges which stretch in east-west direction and are of steep topography and fragile geology.

In full consideration of the above three points with regard to the present road network, Sindhuli Road is planned to form a new road link connecting Kathmandu Valley and Eastern Terai with aim of the following four aspects;

- (1) playing an alternative trunk road in the function of serving as "the second backbone" to ensure security, economic growth and expansion in Kathmandu,
- (2) providing a reliable transport route for international trade between Kathmandu and India, especially for the traffic to and from Calcutta Port which handles about 95% of Nepalese overseas trade except that with India,
- (3) reducing the travel distance as well as time for all the traffic between Kathmandu Valley and Eastern Terai Plain, especially for the traffic transporting agricultural products in Eastern Terai Plain, and
- (4) stimulating and enhancing social and economic activities in the remote hill area of Central Development Region especially in Sindhuli, Ramechhap and Kavrepalanchok Districts.

In view of the above roles and expected function of Sindhuli Road, it is concluded that the Road shall be defined as "National Highway" in accordance with Nepal Road Standards.

6.3 Basic Concepts in the Formulating Development Scheme Alternatives

Recognizing the necessity to materialize the Project within the earliest possible time, following basic concepts are applied in formulating the realistic and practical development scheme alternatives.

(1) Opening to Traffic in Entire Section of the Road

In view of the expected function of Sindhuli Road, i.e. alternative trunk road, and the shortest transportation route connecting Kathmandu Valley and Eastern Terai Plain, it is beneficial that entire section of the route shall be opened to the traffic rather than stage wise opening in length. Thus, basic concept with regard to opening to the traffic is in the entire section in principle, but stage wise opening concept is not discarded and be maintained as an alternative in the project implementation schedule from conservative view point.

(2) Introduction of Stage Wise Construction

The function of road serving as "National Highway" and the result of traffic demand forecasts study leads the requirement of double lane road in principle.

While single lane road at the initial stage, provided the future widening to double lane is considered as an alternative taking into account the initial traffic volume, minimizing adverse environmental effect and initial construction cost as well as early opening to the traffic. Consequently, it is prudent to prepare two basic alternatives as listed below in order to enable to select the most viable development scheme.

- Double lane road for the entire section (full construction alternative), and
- Single lane road at the first stage and the widening to double lane at the second stage (stage construction alternative)

In the full construction alternative and the second stage of the stage wise alternative, the concept of all weather road is totally introduced in accordance with the requirements of National Highway, while this concept is not fully applied in the first stage of the stage wise construction alternatives in order to reduce the initial construction cost. As the concrete examples, low cost river crossing structures such as causeways & submersible bridges and partial slope protection works, which sometimes cause traffic interruption during rainy season for removing river deposits and sledded materials, are applied in the first stage of the stage wise construction. And in the second stage of the stage wise construction alternatives, it is planned to replace the major low cost river crossing structures by bridges and to install full scale slope protection after the demolishing the partial slope protection and widening the road width.

Furthermore, stage wise construction concept is introduced in pavement design in order not only to reduce the initial cost but also to result in cost effective approach. In view of those points, there would be two alternatives consisting of gravel surface, and penetration macadam pavement.

(3) Introduction of "Kid - Glove" Approach

As most of the route passes through steep slope on the mountainous topography and on the fragile geology, the construction of road is a massive interference with the environment and should be undertaken with the utmost care. In other words, if one has to tread without leaving load imprints, it is better to tread lightly. It is therefore significant to apply "Kid - Glove Approach" toward the road and bridge construction which was applied in the Lamosangu - Jiri Road Project and led the project construction with success. This concept will be reflected especially in selecting route alignment and balancing cut and fill volume, and in designing slope protection and channel treatment works.

(4) Maximum Usage of Local Materials Available and Know - How Developed

It was observed that huge amount of boulders, cobble stones, and sand have been deposited on the river beds along or across the route. The concept with regard to maximum usage of these available materials without special treatments leads to apply gabion and masonry structures instead of reinforced concrete structures applied in the previous F/S, and consequently results in the cost saving.

Furthermore, vegetation structures developed from bio-engineering view point in Dharan-Dhankuta Road Project will be applied for stabilizing slopes as much as possible.

(5) Strengthening DOR Maintenance Formation.

At present, there are no DOR district offices in Sindhuli and Kavre Palanchok Districts where most of the proposed route passes through. However, introduction of the above concepts in the study requires routine inspection and maintenance works such as removal of falling debris, river deposited on the causeways, sediments in side ditches, resurfacing, and so on. Cost for these maintenance works will be estimated separately and will be taken into account in the project evaluation. On the other hand, it is requisite to establish new maintenance offices at several locations along the route. Location, organization, staffing, type and number of required equipment, etc. regarding this issue will be further studied after an optimum development scheme is selected. The future maintenance program with the above requirements should be also formulated as a part of the project implementation program in the Study.

6.4 Possible Features of the Road Elements

Based on the basic concepts mentioned in the previous section, concrete pictures and definite figures for major road elements are studies and the possible features are presented below.

6.4.1 Roadway Widths

(1) Double Lane (Full Construction Alternative and Final Stage)

The standard carriage way width of National Highway is 7.0 meters with double lanes according to the Nepal Road Standard (NRS) (2027). However, the reduced carriageways of 6.0-5.5 m were applied in the previous F/S considering topographic condition and those in the existing similar trunk roads such as Narayangadh-Mugling Road, Dharan-Dhankutta Road etc. In this Study, the

following criteria which are the same width as those in the previous F/S are applied based on the same reasons:

(a) Flat and Rolling Section (Especially in Section-I)

Carriageway width

6.00 m

Shoulder width

0.75 m x 2

Roadway width

7.50 m

(b) Mountainous and Steep Section (Especially in Section-II)

Carriageway width

5.50 m (Intermediate lane width on

NRS 2027)

Shoulder width

 $0.50 \,\mathrm{m} \times 2$

Roadway width

6.50 m

(2) Single Lane (First Stage of Stage Construction)

:

In the stage wise construction, a single lane road having 4.75 m road width is recommended according to the NRS (2027) i.e.; 3.75 m carriageway and 0.5 m shoulder width at both sides. In this case, passing places having additional 2.75 m wide and 20 m long are provided at certain intervals depending upon the topographic condition as well as curves and sight distance applied. Furthermore, hairpin bend sections and high cut sections that could be too difficult to widen the road in the second stage are considered to be widened as much as possible even in the first stage. It should be noted from traffic capacity view point that the single lane road, of which traffic volume capacity is expected to be 4250 pcu/day, can cope with the traffic volume estimated upto a year of 2010, assuming the first stage is completed in 2000.

(a) Flat, Rolling and Mountainous Section (Basically for entire Section)

Carriageway width

3.75 m

Shoulder width

0.50 m x 2

Roadway width

4.75 m

(b) Extremely Steep Section (As an Exceptional Section)

Carriageway width

3.00 m

Shoulder width

 $0.50 \,\mathrm{m} \,\mathrm{x} \,2$

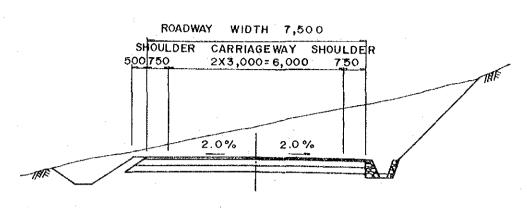
Roadway width

4.00 m

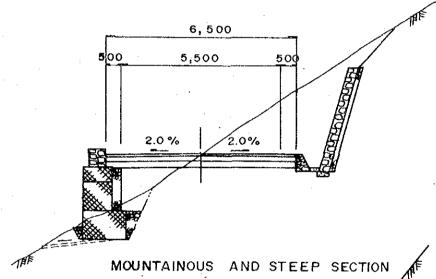
In the sections where topography is extremely steep and/or geology is very fragile, minimal width of 4.0 m (3.0 m carriageway plus 0.5 m shoulder at both sides) will be applied as an exceptional case in the first and final stage construction.

With regard to bridge width, 6.5 m and 4.75 m between curbs will be generally applied in double lane (final stage) bridge and single lane bridge (initial stage) respectively. In case of single lane bridge, 4.0 m width between curbs is considered as a minimal alternative.

6.4.2 Outline of Typical Cross Sections

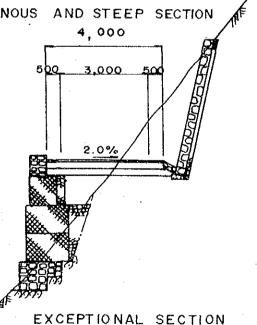

Typical cross sections of the double lane road are roughly designed based on the following basic concepts and these are shown in Figures 6-1 and 6-2.

- (1) To balance cut and fill volume in a section, especially in steep slope section,
- (2) To retain fill by certain structures, in other word, to avoid exposed fill slope,
- (3) To install breast walls at toe of cut slope, and
- (4) To drain surface water to both sides

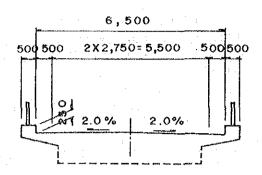

While, the typical cross sections for the single lane road, provided the future widening to double lane, are outlined taking into account not only the above basic concepts (1) and (2), but also minimizing adverse environmental effect ι^1 and double investment in costly structures ι^2 , of which idea is illustrated in Figure 6-3.

Figures 6-4 shows the typical cross sections for the fist stage road construction, i.e. the single lane road provided the future widening to double lane.

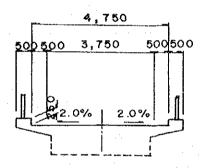
- Notes: L¹ In the first stage construction, it is too difficult to haul the excavated materials to a specific spoil area because of limited spoil area and less hauling access. It is inevitable to dispose the surplus material to the valley side, which method will generate severe adverse environmental effect. As such, it is appropriate to position the center line in the valley sides rather than in the mountain side taking into account balance of cut and fill volume in a section.
 - Widening to double lane road requires some demolition of the structures installed in the first stage such as side ditches in mountain side or retaining wall in the valley side. Based on cost comparison between those structures, it is desirable to position the center line in the valley side to minimize double investment in costly structures.



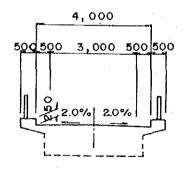
LEVEL AND ROLLING SECTION


Notes:

- The slope protections will be selected according to the geological and topogrphical conditions of the slope.
- The dimentions are mill metar.
- Not to scale
- Tenfatative drawing only

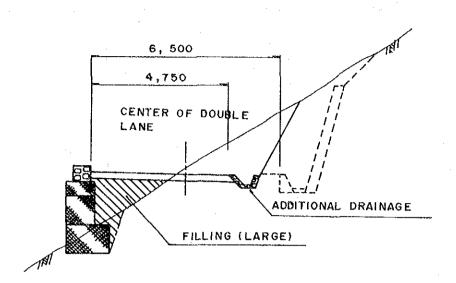


AFTERCARE STUDY FOR SINDHULI ROAD CONSTRUCTION **PROJECT**

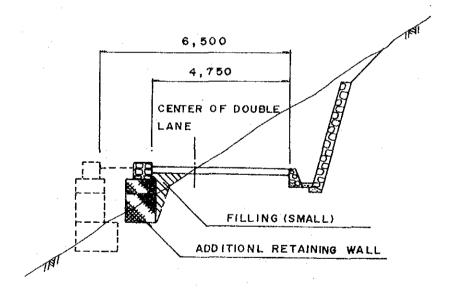

Figure 6-1 TYPICAL CROSS SECTIONS OF DOUBLE LANE ROAD

TYPICAL CROSS SECTION OF DOUBLE LANE BRIDGE (FINAL STAGE)

TYPICAL CROSS SECTION OF SINGLE LANE BRIDGE (ALT -1)


TYPICAL CROSS SECTION OF SINGLE LANE BRIDGE (ALT-2AS EXCEPTIONAL CASE)

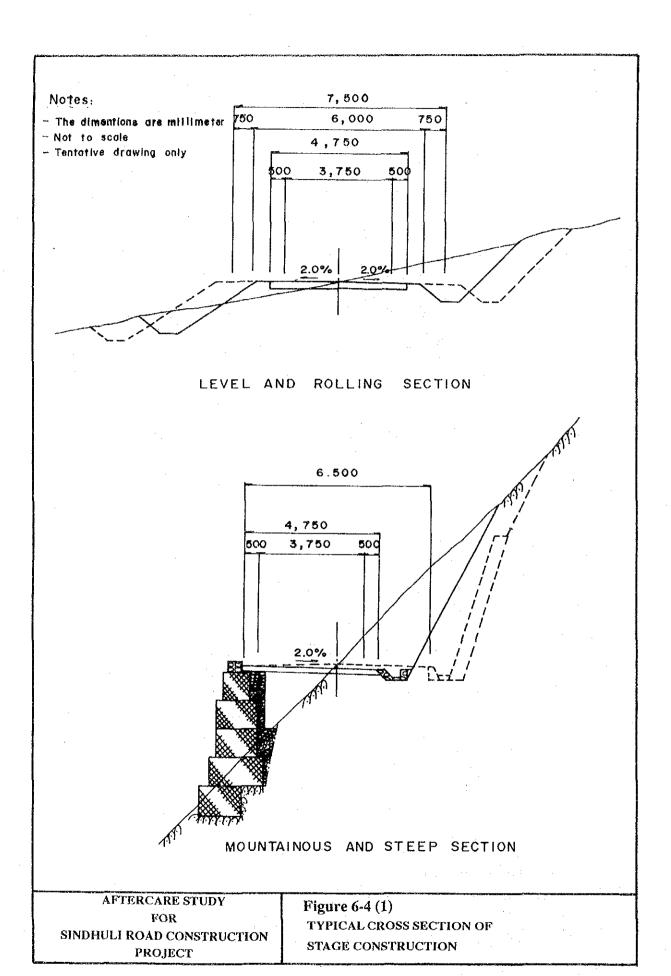
Notes:

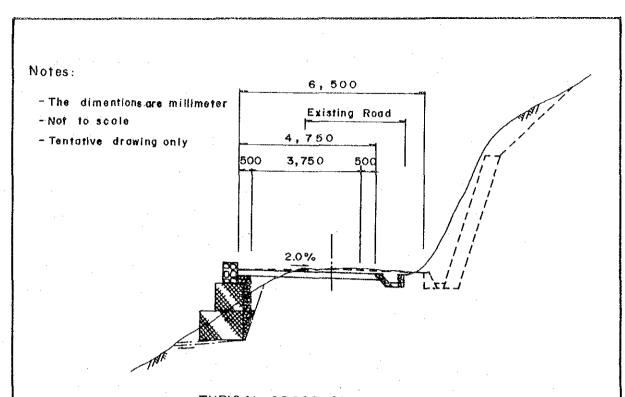

- The dimentions are millimeter,
- Not to scale
- Tentative drawing only

AFTERCARE STUDY
FOR
SINDHULI ROAD CONSTRUCTION
PROJECT

Figure 6-2
TYPICAL CROSS SECTIONS OF BRIDGE

TYPICAL CROSS SECTION TO CONSTRUCT SINGLE LANE ROAD ON VALLEY SIDE OF DOUBLE LANE ROAD


TYPICAL CROSS SECTION TO CONSTRUCT SINGLE LANE ROAD ON MOUNTAIN SIDE OF DOUBLE LANE ROAD.


Notes:

- The dimentions are millimeter
- Not to scale
- Tentative drawing only

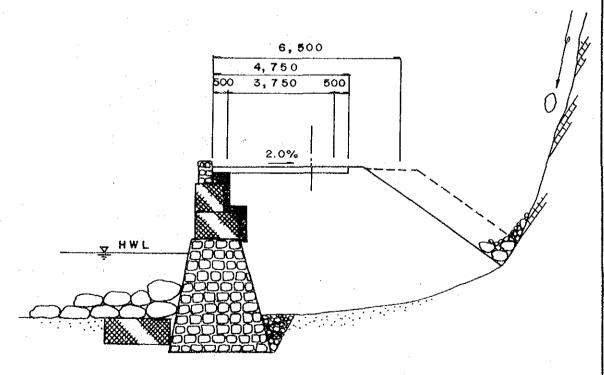

AFTERCARE STUDY FOR SINDHULI ROAD CONSTRUCTION PROJECT

Figure 6-3
TYPICAL CROSS SECTIONS SHOWING
ALTERNATIVE OF EXTENTION PLAN

TYPICAL CROSS SECTION OF SINGLE LANE ROAD ALONG EXISTING ROAD

TYPICAL CROSS SECTION OF SINGLE LANE ROAD ALONG RIVER

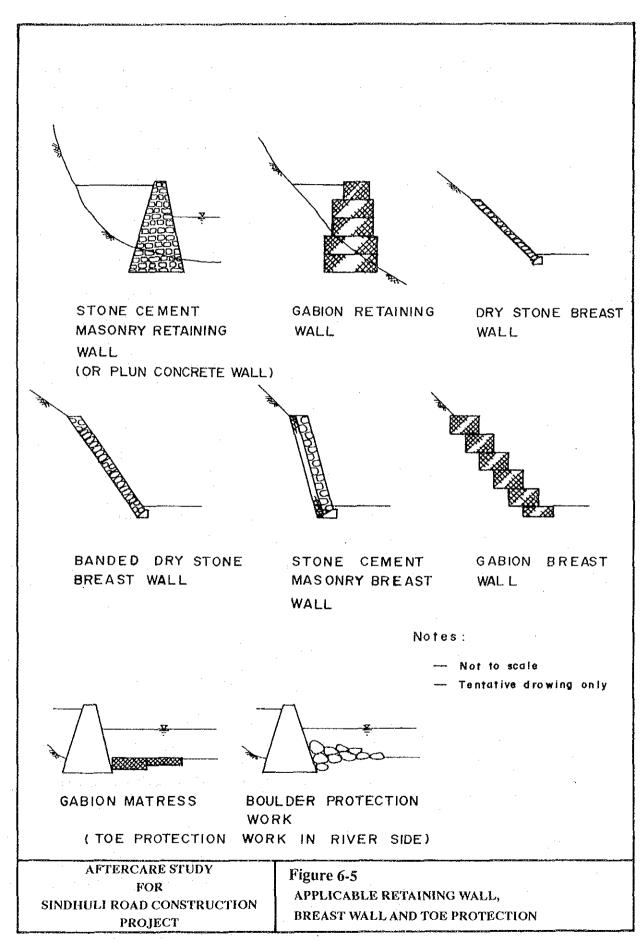
AFTERCARE STUDY
FOR
SINDHULI ROAD CONSTRUCTION
PROJECT

Figure 6-4 (2)
TYPICAL CROSS SECTION OF
STAGE CONSTRUCTION

6.4.3 Road Alignment

Basically, the proposed road alignments in the Study will follow those planned in the previous F/S, except the following sections;

- (1) In the section where the bridges were planned in the previous F/S and those have been changed to causeways in the first stage of the stage construction alternative.
- (2) In the sections where the alignment in the F/S did not follow the existing roads and footpaths, the proposed alignment in this study will be shifted to follow the existing road alignment.
- (3) In the sections where the minor bridges were planned to span valleys in the F/S, the alignment will be shifted to the mountain side and the bridges will be altered to R.C. culverts.
- (4) In the section where the existing serious disasters such as land slides and rock fallings are processing, the alignment will be modified to minimize the effect due to the disasters and to mitigate the risk by bypassing the area.
- (5) In the sections where the alignment has hitted several permanent houses and buildings, the alignment will be modified to avoid the effect.


6.4.4 Retaining and Breast Walls, and Slope Protection

The retaining walls and slope protection will be designed based on the following concepts.

- To adopt the local materials and techniques such as gabion, dry stone pitching, stone masonry etc. as much as possible.
- To adopt the bio-technical stabilization method.
- To adopt the disaster mitigation structures such as gabion wall, surface and subsoil drains, etc. instead the prevention structures such as rock shed, rock bolts, rock fence, rock net and concrete spray adopted in the previous F/S Report.

The retaining and breast walls and slope protection structures to be adopted in the Project Road are shown in Figure 6-5.

In the first stage construction as a single lane road, the breast walls will be provided to the minimum requisite sections only in order to avoid the double investment.

6.4.5 Drainage Structures

The high concentration of precipitation in the project area makes it very difficult to achieve a controlled and slow water run-off. The basic concept which is almost the same as that applied in the previous F/S is to collect not only the water from the slope above the road, but the whole road surface too in the mountain side side ditch and lead it to the nearest natural rivulet or brook. In addition, the following concepts are also taken into account:

- To adopt concentrated drainage system in hairpin bend sections,
- To apply inlet and outlet treatment works to the rivulet and brook, and
- To apply minimum dimension of sideditchs in the first stage construction of single lane road.

6.4.6 Pavement

In the preliminary design, the following two types of pavement will be considered as alternatives taking into account the initial traffic volume, and stage wise construction aiming the deduction of initial construction cost.

Gravel Surface.

Gravel Surface is considered as "The Lowest Grade Pavement" and is applicable to the Project in the initial stage, provided routine/ frequent maintenance and the future upgrading to bituminous penetration macadam (BPM) in the entire section. However, in steep longitudinal gradient section, bituminous surface treatment or other surface treatment is requisite from road serviceability and maintenance view point.

Bituminous Penetration Macadam

Bituminous surface treatment is considered as "Medium Grade Pavement" and is applicable to the Project, provided routine/periodical maintenance.

6.5 Possible Features of Major River Crossing Structures.

River crossing structures are broadly divided into causeways and bridges. The former are applicable in the first stage of the stage construction alternative to the sites of rivers and creeks with flash type flood. The latter are applicable to the inevitable sites where the causeways will not cope with the river conditions such as flood duration and frequency and flood stage.

From the basic concepts mentioned in the previous section, concrete pictures for major river crossing structures are studied and the possible features are presented herein.

6.5.1 Basic Concepts for Selection of Major River Crossing Structures

(1) Application of Causeways in the First Stage

Basic concept for selection of major river crossing structures should basically depend upon natural characteristics at the crossing sites such as topography, river scale, catchment area, cross section, maximum high flood level, longitudinal gradient, flood velocity, etc. as well as the approach road alignment and construction condition.

The natural characteristics of river crossings sites in Section-I and Section-II are quite different in regarding topography, geology and river characteristics such as longitudinal gradient, type of river deposit and velocity. A brief natural characteristics of river crossing sites in Section-I and Section-II are summarized herein under.

Section	Topography	Geology		River Deposit			
		Zone	Characteristics	Longitudinal Gradient	Velocity	Deposit Type	Deposit Grading
I	Flat to Hill	Siwalik Zone	Neogene's sandstone and mudstone, soffrocks	0.5 to .2 (%)	2 to 3 (m/sec)	Coarse sand and Gravel	0.6 to 200 mm
П	Mountain	Mahabharat , Sunkosi- Tectonic, Chaunri Zone	The Mesozoic's hard rocks. But almost rocks have been weathered and decomposed to soft rocks. Faults, and joints have been developed.	3 to 6 (%)	3 to 6 (m/sec)	Gravel & Boulders	200 to 4000 mm

From the above findings, it is conclusive that the characteristics at river crossing sites in Section-I are in stable/gentle from topographic and geological view points and are of long flood duration with relatively high flood level resulting from the higher rainfall intensity, while those in Section II are primitive and harsh condition; (i.e. continuos process of debris deposite resulting from high probability of landslide), and are of flash type of flood with short duration.

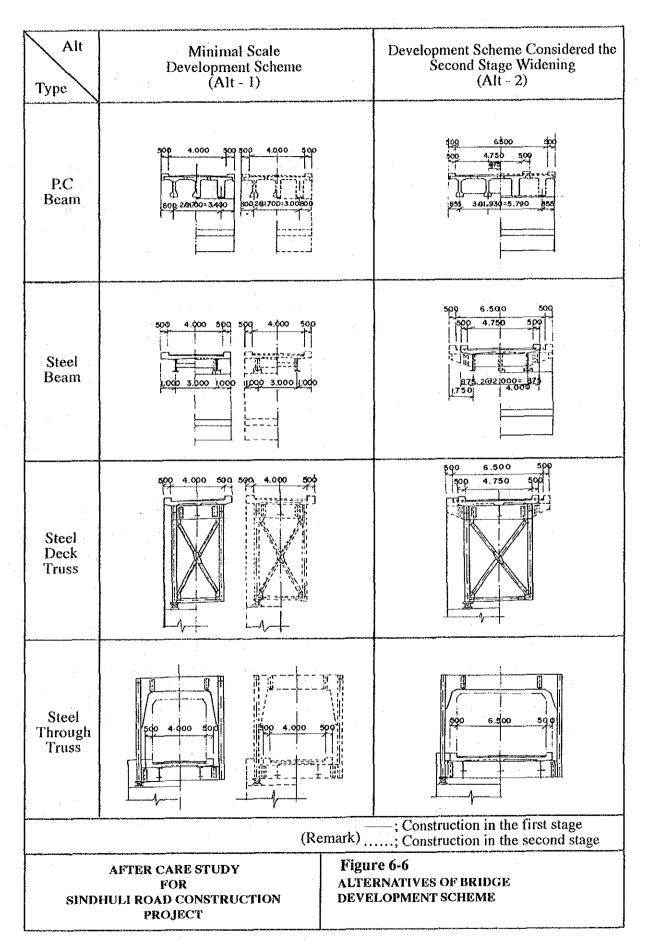
Under such conditions, bridges are definitely required as a river crossing structure in Section-I to span the above rivers. While in Section-II, causeways which cope with the river conditions and are classified as a low cost river crossing structure are adopted to reduce the initial construction cost in the stage wise construction alternative, provided that (1) frequent maintenance (removal of debris) is required especially during monsoon season, and (2) consequently inevitable traffic interruption will arise during peak flood period.

It is planned that the major causeways constructed in the first stage are replaced in the second stage by bridges in accordance with the basic concept of all weather road which is applicable to the full stage construction alternative and the second stage of the stage wise alternative. The replacement results in decrease of the traffic interruption and maintenance work volume remarkably.

(2) Alternatives of Bridge Development Scheme

As mentioned in Section 6.3, stage wise construction is likely to be practical and realistic taking into account the background and purposes of the Study. From the basic concept in terms of the stage wise construction method as well as the bridge cost which is relatively high, and the bridge function which is strategically important in road links, the following two alternatives are established for the further study.

(a) Minimal Scale Development Scheme (Alt - 1)


Recognizing expensive cost of bridge construction, roadway width of 4.0 m (3.0 m carriageway plus 0.5 m shoulders at both sides) which is exceptional case in the roadway typical cross sections is applied to this scheme. In the first stage, single lane bridge with 4.0 m wide will be constructed and the same type of bridge including substructure and superstructure will be constructed in the second stage, besides the first bridge location.

(b) Development Scheme Considering the Second Stage Widening (Alt - 2)

In the above minimal scheme, it is not cost effective to twice implement the temporary work such as coffer dams and river access roads installation, preparation and clearing of erection yard. In view of the above disadvantageous aspect, the development scheme considered the second stage widening is formulated. This scheme includes construction of full-substructure and partial-superstructure having 4.75 m road width in the first stage and provision of widening to dual lane (6.5 m wide) by installation of additional girders at one side or cantilever brackets at both sides.

It should be noted that a through type truss bridge is required to construct full width of 6.5 m at the first stage, because of the difficulty of widening.

The above two alternatives are illustrated by bridge type in Figure 6-6.

6.5.2 Possible Features of Major River Crossing Structures

Major river crossing structures are broadly divided into causeways and bridges. Possible features of these are studied and presented herein.

(1) Causeways

The causeways are classified into three types consisting of bed level type, vented type and submersible bridges. The application of these causeways depends on flood discharge, debris flow, flood velocity, flood depth, flood duration and cross section of a crossing site. The type of the causeway and the corresponding application criteria by the above parameters are summarized below:

Parameters	Application Criteria								
Type of Causeway	Flood Run-of	Velocity	Flood depth	Duration of flood	Floating debris	Profile			
Bed level causeway	Small to medium	Slow/fast	Shallow	Short	A little or considerable	Generally Flat			
Vented causeway	Small to medium	Slow/fast	Shallow to deep	Short	A little	Flat			
Submersible bridge	Considerable	Slow/fast	Considerably deep	Relatively Short	A little or considerably	Eroded Section			

It is recommended to apply causeway width of 6.5 m since the initial stage taking into account rooms for river deposit and maintenance equipment. The typical cross section of each type of causeways is shown in Figure 6-7. Referring to the above application criteria, possible river crossing sites confirmed in the field reconnaissance are assessed and causeway type is tentatively selected for each site. The tentative selection results in this regard are tabulated in Table 6-1.

(2) Bridges

In general, bridge structures shall be adopted as river crossing structures in case as (a) considerable flood discharge, (b) long flood duration, (c) perennial river, (d) river cross section of deep valley shape.

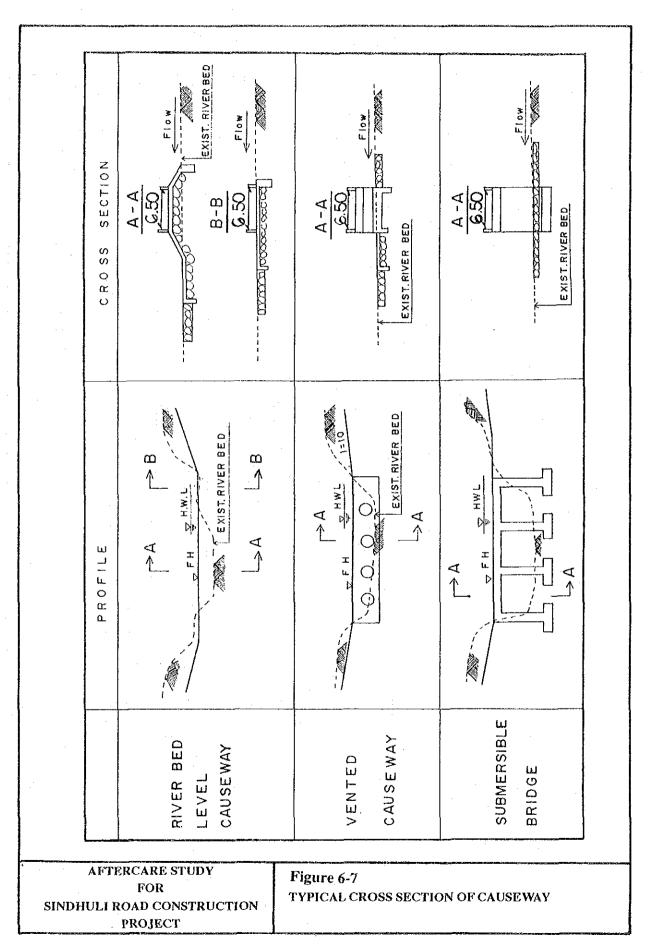


Table 6-1 List of Major Causeways And Selected Types

Section	Name of Causeway	Station No.	Total	Type & Length of	Run of	Preva		Profile
	,		length	Causeway	Peak	reaso		(# 2)
}	;		(m)		(m ³ /sec)	selec		
			r			(#	1)	
1	SHINDHUSE	282 + 10	70	BLC	80	A-1		70
	E			(70)				
11:1	ANDHERI	401 + 40	160 -	BLC + SB	,390		1)-2	, 160
\ '''		t		(120) (40)		ļ .	F. 2	
							F-2	
	NIGAURI	43 + 80	190	BLC + SB	405		D-2	190
		1	;	(160) (30)			E-2	
]					ļ <u>.</u>	C-2	F-2	
1	ARUBOTE	93 + 80	80	BLC	301		D-1	5.0
				(80)			F-1	
ļ	WALLA DI	106 + 95	90	BLC	108		D-1	
	KHAHARE	100 + 95	90	(90)	100		15-1	<u>}9</u> 2
	•			(20)			F-1	
11-2	BHOTE	153 + 95	70	BLC + SB	267	1	D-2	70
11-2	I I I I I I I I I I I I I I I I I I I	120		(50) (20)			E-2	
1				·		C-2	F-2	<u>(III)</u>
	GANGATE	183 + 85	140	BLC + SB	343	1		80 60
1				(110) (30)		İ	E-2	
					<u> </u>	C-2	F-2	
1	DHAMILE	202 + 05	.50	BLC + VC	500	İ	D-2	 50
		1		(20) (30)		C-2	I: 1 I'-2	<u>(5 o</u> F— →
1			100	BLC	170	C-Z	D-1	
l	SANDI	230 ± 50	100	(100) BTC	170	ļ	19-1	100
i		=		(100)		C-I	* .	:
-	GHAMPE	12 + 20	330	BLC + SB	332	 	D-2	, 330
1	CHARAMI 12	12 120	1	(260) (70)			E-2	
]				F-2	
11-3	MANII	41 + 80	90	BLC + VC + SB	319		D-2	90
		1	}	(30) (30) (30)			E-2	
1.		·			ļ	C-2	F-2	والللومي
	BHYAKURE	100 + 80	140	BLC	442			140
			1	. (140)			12.4	
<u> </u>		1		<u> </u>	<u> </u>	C-1	1-1	L

REMARKS

(#1): A-1: Flood Volume is relatively small
A-2: Flood Volume is relatively much
B-1: Velocity is relatively slow

D-1: Duration of flood is realtively short
D-2: Duration of flood is realtively long
(Numbers of flood and time of impossible traffic)
F-1: Floating debris is relatively a little

B-2: Velocity is relatively fast E-2: Floating debris is relatively much
C-1: Water depth is relatively shallow F-1: Crossing river or main stream shape is flat

C-2: Water depth is relatively deep F

(# 2) : Bed Level Causeway (BLC)

[20] : Vented Causeway (VC)

[IIIIII] : Submersible Bridge (SB)

Crossing river or main stream shape is channel

In selection of appropriate bridge types, the following evaluation aspects shall be taken into account;

- Low construction cost
- Less maintenance
- Short construction period
- Easy construction

Referring to respective characteristics at each river crossing site, especially of availability of erection yard and access roads and the above evaluation aspects, following bridge types are tentatively selected:

- Prestressed Concrete Girders (P.C.G)
- Steel Beams (S.B.)
- Steel Deck Truss (S.D.T.)
- Steel Through Truss (S.T.T.)

For the span arrangement, the minimum span determined by the following formula, topographic and geological conditions, and river conditions including size of floating debris and boulders are considered:

The minimum span of bridge as per the peak run off discharge of rivers is as:

L=20+0.005 O

Where,

L=Minimum span of bridge in meter

Q=Peak run off discharge of river in m³/sec

Based on the above initial study, bridge configuration and type of bridge at each of 17-major river crossing sites are outlined as listed in Table 6-2

It should be noted that sidewalk on a bridge will be provided if the bridge is located in populated area or in its proximity with institutional public facilities such as schools, hospitals, temples and other landmarks to the bridge.

6.6 The Development Scheme Alternatives

The alternatives of road and bridge elements such as no's of lane, river crossing structures, pavement structure, and slope protection were formulated in the previous sections. Based on combination of the alternatives of each element, Sindhuli Road's development scheme alternatives are established as listed below and a summary of these are tabulated in Table 6-3.

Table 6-2 List of Major Brid as And Selected Types

-								()!!!	Des Glo
Section	Name of Bridge	Station No.	Total	Span	Type of	Availabity	Run of	Prevailing	Profile (# 2)
	•		length	Arrange-	Bridge	of erection	Peak	reasons of selection (# 1)	(# 2)
			(m)	ment (m)		yard	(m ³ /sec)	Selection (# 1)	
	BHOGATE	77 + 90	75	3@25	P.C.Beam	Available	199	R-1	3×25=75 Δ Δ Δ Δ
	KAREKARE	82 + 05	50	2@25	P.C.Beam	Available	157	R-I	2×25=50 A A A
		82 + 90	25	1@25	P.C.Beam	Available	1 2	R-I	25
	RATU	125 + 25	175	7@25	P.C.Beam	Available	960	R-1	7X25 = 175
1	KAMALA	289 + 60	120	4@30	P.C.Beam	Available	2,857	R-I	4X30 = 120
	PHITTANG	323 + 65	60	2@30	P.C.Beam	Available	246	R-I	2×30=60
	BUKA	344 + 40	50	2@25	P.C.Beam	Available	406	R-I	2 x 25 = 50 A A A
	GADEULI	352 + 60	60	2@30	P.C.Beam	Available	779	R-1	2 X 30 = 60 A A A
	GWANGU	79 + 55	40	2@20	Steel Beam	Not Available	418	R-1 R-2	2X20=4P A A A
11-1	SIURANI	81 + 90	40	2@20	Steel Beam	Not Available		R-1 R-2	2×20=40 5 8 8
		90 + 00	40	2@20	Steel Beam	Not Available		R-1 R-2	2X20=40
		31 + 10	20	1@20	Steel Beam	Not Available	·	R-1 R-2	<u>1,50</u> 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50
	DAUNE	135 + 85	50 .	1@50	Steel Deck Truss	Not Available	213	R-2	[<u>50</u>]
11-3	NARKE	159 + 50	60	1@60	Steel Deck Truss	Not Available	343	R-2	
	ROSI	213 + 15	65	1 @65	Steel Through Truss	Not Available	3,258	R-2	\$\frac{65}{1}
		249 + 35	30	2 @15	(#3) Steel Beam	Not Available		R-2	2xi5=30
		285 + 55	25	1@25	P.C.Beam	Available		R-I	25 5 A

REMARKS (#1) R-1 : Economical view point

R-2 : Short construction period

(# 2) : All the bridges are simply supported types applied.

(# 3) : This bridges shall be built with double lane as an exceptional case because widening is required due to small radius curvature widening of road plan curve.

ALTERNATIVE-1 STAGE WISE CONSTRUCTION OF MINIMAL DEVELOPMENT SCHEME

Single lane with gravel surface and minimal slope protection, and minimal 1 lane bridges and causeways in the first stage. Widening to double lane with installation of bituminous pavement and full slope protection, and adding 1 lane bridge and replacement of causeways by bridges in the second stage.

ALTERNATIVE -2 STAGE WISE CONSTRUCTION OF MINIMAL DEVELOPMENT SCHEME CONSIDERING BRIDGE WIDENING

Single lane with gravel surface and minimal slope protection, and 1 lane bridge considering the second stage widening and causeways in the first stage. Widening to double lane with installation of bituminous pavement and full slope protection, and widening to 2 lane bridge and replacement of causeways by bridges in the second stage.

ALTERNATIVE-3 STAGE WISE CONSTRUCTION OF MEDIUM DEVELOPMENT SCHEME WITH BITUMINOUS PAVEMENT

Single lane with bituminous pavement and minimal slope protection, and minimal 1 lane bridges and causeways in the first stage. Widening to double lane with installation of full slope protection, and adding 1 lane bridge and replacement of causeways by bridges in the second stage.

ALTERNATIVE-4 STAGE WISE CONSTRUCTION OF MEDIUM DEVELOPMENT SCHEME WITH BITUMINOUS PAVEMENT AND BRIDGE WIDENING

Single lane with bituminous pavement and minimal slope protection, and 1 lane bridge considering the second stage widening and causeways in the first stage. Widening to double lane with full slope protection, and widening to 2 lane bridge and replacement of causeways by bridges in the second stage.

ALTERNATIVE-5 FULL SCALE CONSTRUCTION

Construction of double lane road with bituminous pavement and full scale slope protection and 2 lane bridges.

Table 6-3 Summary of Development Scheme Alternatives

ſ 				· · · · · · · · · · · · · · · · · · ·		
				MAJOR RIVER		
i	ELEMENTS	NO'S OF LANE	PAVEMENT	CROSSING S	STRUCTURES	SLOPE
TERNATIV	ES .	/1		BRIDGE	CAUSEWAY/I	PROTECTION
ALT-1	lst Stage	1 Lane	<i>Qo p:0</i> . o. o. o. Gravel	Minimal I Lane	Applicable	Minimum
	2nd Stage	Widening To 2Lane	As. Macadam	Adding Bridge	Replaced By Bridge.	Full Construction
ALT-2	1st Stage	ILane	0.0.0.0.00 0.0.0.000 Gravel	1 Lane Bridge	Applicable	Minimum
	2nd Stage	Widening To 2lane	As. Macadam	Widening	Replaced by Bridge.	Full Construction
ALT-3	1st Stage	1 Lane	As. Macadam	Minimal I Lane	Applicable	Minimum
	2nd Stage	Widening To 2lane	widening	Adding Bridge	Replaced By Bridge	Full Construction
ALT-4	1st Stage	1 Lane	As. Macadam	1 Lane Bridge	Applicable	Minimum
	2nd Stage	Widening To 2Lane	Widening	Widening	Replaced by Bridge.	Full Construction
	[0.0:000			A CONTRACTOR OF THE CONTRACTOR
ALT-5		2Lane Const.	As. Macadam	2 Lane Bridge	2 Lane Bridge	Full Construction
NOTES	1) 41: 1:0 0	**** 1-4 are in stage const				-

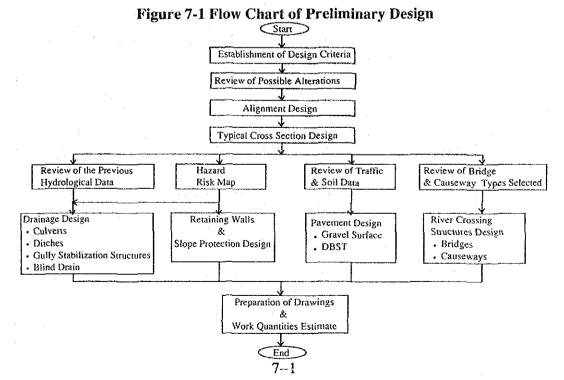
NOTES 1) Alt-1 to Alt-4 are in stage construction.

²⁾Alt-5 is a plan to implement the full scale construction.

^{/1} Most of the causeways installed in the 1st stage are replaced by bridges in 2nd stage.

CHAPTER 7

PRELIMINARY DESIGN


CHAPTER 7

PRELIMINARY DESIGN

7.1 General

The purposes of preliminary design covering all the development scheme alternatives are to determine size and dimension of the various road and bridge elements, and to estimate the work quantities. These study results are subsequently utilized in the construction planning project cost estimate and project evaluation.

Prior to conducting the preliminary design, design criteria are established and subsequently, review of the possible alterations identified in the field reconnaissance follows. At the beginning of the preliminary design, the alignment design is carried out for sections where the original alignments have been modified and the typical cross sections are scrutinized referring to basic concepts applied in formulating the development scheme alternatives. Following these design, river crossing structures design, pavement design, drainage design retaining, slope protection design are carried out simultaneously. Finally, the preliminary design drawings are prepared based on the above design results and the respective work quantities are estimated. The preliminary design flow is depicted in Figure 7-1 which also indicates the interrelationship of above work items.

7.2 Design Criteria

In view of the project development scheme alternatives formulated in the previous Chapter, design criteria to be applied for the Project Road are established in this section referring to Nepal Road Standard (2027), those established in the previous F/S and the other relevant standards. The design criteria cover mainly geometric criteria, bridge design criteria, drainage design criteria and right of way requirements. Based on these criteria, the preliminary design is carried out in the succeeding sections.

7.2.1 Geometric Design Criteria

The geometric design criteria to be applied in the study is in principle based on NRS (2027) except where the standard is not clear, then the Japan Road Standard published by Japan Road Association is applied.

In establishing geometric design criteria, applicable design speed which directly affect the construction cost is carefully assessed taking into account not only the requirements stipulated in the above Standards, but also terrain where the project road runs through, the traffic volume estimated and the project viability. Based on the assessment results, the design speed is firstly determined and accordingly the other geometric elements are decided.

Geometric design criteria recommended to be applied in the Study are tabulated in Table 7-1.

Table 7-1 Geometric Design Criteria

Classification of Terrain

Geometric Elements Design Speed (km/hr)	Flat/Rolling 40-50	Mountainous 30-40 (20)L ¹	Extremely Steep Section 20
Super elevation (%)	2 (4)L ²	2 (4)L ²	$2(4)\iota^{2}$
Max. Super elevation (%)	10	10	10
Minimum Radius (m)	70 (at 50 km/hr)	45 (at 40 km/hr)	$10L^{3}$
` ,	45 (at 45 km/hr)	25 (at 30 km/hr)	
	` , ,	101^{3} (at 20	
		km/hr)	
Maximum Gradient (%)	6	9	9
Minimum Stopping Sight	65 (at 50 km/hr)	45 (at 40 km/hr)	20
Distance (m)	45 (at 40 km/hr)	30 (at 30 km/hr)	
		20 (at 20 km/hr)	

Notes:

- L1: The design speed of 20 km/hr shall be adopted as an exceptional case for (i) the sections where hairpin bends are planed in mountainous area, and (ii) the sections where the alignment will be shifted to the mountain side to alter minor bridges to R.C. culverts.
- L²: The super elevation of 4% shall be applicable to the gravel road.
- L³: The minimum radius of 10 m shall be only applicable to the hairpin bend sections.

7.2.2 Bridge Design Criteria

Applicable Standards

The Design Standard to be applied for bridge design is in principle RNS (2027) published by Department of Roads of HMG. In case of no design specifications covered in NRS (2027), Highway Bridge Specification (HBS) published by Japan Road Association (JRA) shall be applied in the Study. However, local requirements arising from natural phenomenon such as wind, earthquake and temperature follow on the Indian Road Congress (I.R.C.), Bridge Code.

Loads

Dead load, live load, impact fraction, wind load, earthquake load, thermal effects, stream current force and earth pressure are taken into account in the preliminary bridge and structure design.

Design Live Load

TL-20, which is equivalent to HS20-44 in AASHTO, shall be applied as design live load in accordance with HBS in Japan.

Seismic Load

Horizontal seismic coefficient of 0.14 shall be applied in accordance with Indian Standard, Criteria for Earthquake Resistant Design of Structure, Third Revision 1980.

7.2.3 Drainage Design Criteria

The review with regard to the hydrological study in the previous F/S report indicates that the analysis results are reliable and acceptable. Thus, these results are utilized in this Study expect the following criteria.

Return Period

Ten years and two years of return period shall be applied to culvert design and ditch design respectively.

Allowable Velocity

The minimum allowable velocity should be 0.8 m/sec to prevent sedimentation and the maximum velocity be 3.5 m/sec to avoid scour.

7.2.4 Right of Way (ROW)

The right of way width varies in general depending on the heights of cut and embankment. The minimum ROW width required for the Project road should be in collaboration with DOR and other Government Agencies concerned. In this regard, 50 m width for the whole section is determined in accordance with the HMG's regulation.

7.3 Highway Design

7.3.1 General

The preliminary highway design was conducted by means of Computer Aided Design (CAD) for the whole streches, using a topographic map with a scale of 1: 2,000.

The results of the preliminary highway design were presented in the following drawing forms and a set of the drawing is enclosed in Volume II Drawings as a separate booklet.

<u>Drawings</u>	<u>Scale</u>	Nos	of Sheets
Plans	1:2,000	:	65
Profiles	V=1:500, H=1:2,000		139
Typical Cross Section	ons 1: 100		7

7.3.2 Methodology

The highway design was carried out by means of Computer Aided Design (CAD) system for the respective alternatives mainly comprising of 1 lane case and 2 lane case. In this system, various data such as topographic data, the previous horizontal and vertical alignment data with the proposed horizontal alignment of altered sections, the typical cross

sections are initially inputted in the computer. Secondly, the first draft outputs such as vertical alignment, cross sections on the monitor screen are reviewed and revised for optimization of each road element taking into account design criteria and construction cost. This work was repeated until optimizing the road elements. After the optimization work, final plans showing horizontal alignment, profiles, individual cross sections were outputted in a form of drawings by means of CAD system.

The above design work was carried out for each alternative of 1 lane and 2 lane and various work quantities such as cut and fill volumes, slope protection, retaining walls are also calculated in the system.

The above highway design flow is depicted in Figure 7-2 which also indicates interrelationship of the above work items.

 Topographic Data · Horizontal and Vertical Alignment Data of the Previous F/S · Proposed Horizontal Alignment of the Sections Alterated Tentative Elevations of the Above Sections Calculation of Main Horizontal Points Typical Cross Sections (TCS) Stationing of Applicable TCS Optimization Full & Stage Construction Alternatives Draft Output (Plans, Profiles, Cross Sections, Q'ty) Legend : Input No Preview of Draft Outputs Output Ϋes : Judgement · Forms of Drawings and Quantities Calculation]: Process in Computor · Plans, Profiles, Cross Sections Quantities Calculation Sheets · Alignment Calculation Sheets, etc. End

Figure 7-2 Flow of Highway Design

7.3.3 Design Speed

Referring to the geometric design criteria established in the previous Section 7.2, the design speeds ranging from 50 km/hr to 20 km/hr were adopted according to the terrain where the route passes through. A summary of design speed applied to respective stretches are shown in Table 7-2.

Table 7-2 Summary of Design Speed Applied

Section	Stretch	Length	Dominant Design Speed	Minimum Design Speed
Section-I	Sta 00-Sta 37	35 km	40 km/hr	30 km/hr
Section II-1	Sta 00-Sta 7	7 km	30 km/hr	20 km/hr
	Sta 7-Sta 37/1 Sta 37 -Sta 39	30 km 2 km	30 km/hr 30 km/hr	20 km/m -
Section II-2	Sta 0-Sta 6	6 km	30 km/hr	20.1
	Sta 6-Sta 14/1 Sta 14-Sta 30	8 km 16 km	30 km/hr 30 km/hr	20 km/hr
Section II-3	Sta 0-Sta 31	31 km	40 km/hr	<u>-</u>
	Sta 31 - Sta 47/1	16 km	30 km/hr	20 km/hr

Notes; /1 The design speed of 20 km/hr was adopted as an exceptional case for (i) the hairpin bend sections and the section where terrain is extremely steep.

7.3.4 Alignment Design

Due to the very severe natural preconditions in the mountains of the Project area, the choice of alignment should be made very carefully to find the best alternative within the 30m band taking into account the road's function, safety for traffic, its service life, influence on the environment, and its economy.

In the alignment design, possible re-alignment sections identified in the field reconnaissance were firstly scrutinized referring to the design criteria, hazard risk map, location and elevation of the major structures, environmental parameters causing adverse effects.

On the basis of these refinement works, the following sections were selected to revise the previous alignments in the F/S Report.

- (1) Sections where realignment was made in relation to the alteration of river crossing structures from bridges to causeways (This realignment is applicable only in the first stage.)
 - It is planned that the sections in which the major causeways are replaced by bridges will be realigned again to the original position in the second stage.
- (2) Sections where realignment was made so as to reduce the cut and fill volumes.
- (3) Sections where realignment was made due to extremely steep topography and/or fragile geology in order to minimize the environmental adverse effects.
- (4) Sections where realignment was made to minimize land acquisition and compensation cost.

In terms of the road width, the following are exceptional sections regardless the stages.

(1) Sections where double lane width is applied even in the first stage considering difficulty of the future widening.

<u>Section s</u>
<u>Section II-2</u>

<u>N/A</u>

Sta 126.90-127.15(L=25m)
Sta 251.25-Sta 251.75(L=50m)
Sta 268.60-268.90(L=30m)

 $\underline{\text{Total L=4,975 m}}$ $\underline{\text{Total L=105 m}}$

(2) Sections where single lane is applied even in the final stage and the full construction alternative taking into account magnitude of the hazard risks

Sections

Section II-1 Sta183.50-193.25(L=975m) Sta200.50-211.25(L=1,075) Sta278.75-283.75(L=500m) Sta296.25-302.00(L=575m) Sta326.75-330.25(L=350m)		Section II-3 Sta134.00-137.75(375m)
Total I -2 A75m	I 2 325m	I275m

L=2,325m

L=375m

7.3.4 Cross Section Design

(1) Typical Cross Section Design

As already mentioned, the alignments were basically fixed in a way to achieve a mass balance within a sectional area and the single lane road in the stage construction alternative is widened to the M/S in the 2nd stage in principle taking into minimizing the adverse environmental effects and double investment.

Referring to the final alignment selected, the typical cross sections were classified into the following three types and configuration of respective types were designed with the corresponding design concepts as outlined below;

Type of Section Fill Type (1)	Application Criteria River side sections along the Sun Kosi River and the Rosi River	Design Concept Fill(H1.5:V1.0) with vegetation and provision of room for falling debris in the M/S, and installation of solid revetment structure in the R/S.
Half Cut and Half Fill Type(1)	Half cut and half fill sections in flat and rolling terrain	Fill (H1.5:V1.0) with sodding and provision of lined ditch at slope toe in the R/S, and cut (H1.0:V1.0 in common soil) and provision of lined side ditch in the M/S.
Half Cut and half Fill Type(2)	Half cut and half fill sections in mountainous terrain	

Notes: M/S means mountain side. R/S means river side.

Respective typical cross sections mentioned in above are shown in Volume-II -Drawings.

(2) Cross Section Design

Based on stationing applicable typical cross sections for the whole stretch, individual cross sections were taken off from the topographical map with a scale of 1:2,000 and drawn in a scale of 1:200. The interval of cross section was 25 m. The cut and fill area at each station were computed in the computer and earth volumes were derived from those by the End Area Method.

7.4 River Crossing Structures Design

7.4.1 General

River crossing structures are broadly divided into bridges and causeways. The former are applicable to the inevitable sites where the causeways will not cope with the river conditions. The latter are applied to the river sites and creeks, that have flash type flood. The causeways are applied in the initial stage of the stage construction alternative and a part of them, which are crossing large to medium scale rivers, are replaced by bridges in the final stage

In the river crossing structure design, structure types and their configuration which were tentatively determined in Chapter 6 were scrutinized referring to bridge planing criteria and bridge alternative study results presented in the previous F/S report and taking into account the final alignment selected and the river conditions. Subsequently, individual structures were designed in preliminary level based on the design criteria and relevant standards. The design results are presented in a drawing form as attached in Volume II and the work quantities were estimated as attached in Appendix-F accordingly.

The river crossing structures are divided into three scale groups depending on total structure length as defined below.

Major Structure-----Total structure length > 50m Medium Structure-----20m<Total structure length < 50m Minor Structure-----10m<Total structure length < 20m

7.4.2 Bridge Design

(1) Scrutiny of Bridge Types Selected

The bridge alternative study carried out in the previous F/S indicated that concrete bridges are superior to steel bridges from construction and maintenance cost view points, provided that fabrication yard is available beside the bridge site and

accessibility to the bridge site is good. These study results were reflected in the bridge type selection. Namely, concrete bridges are selected to the bridge site where fabrication yard is available and good accessibility is provided, i.e. work progress of the bridge construction does not interfere with the further progress of road construction beyond the bridge site.

On the other hand, steel bridges are limitedly applied to the bridge sites where fabrication yard is not available and the accessibility is poor, i.e. work progress of the bridge construction interfere with road construction progress beyond the bridge site.

In light of the above principle, the bridge type, tentatively selected in the previous Chapter was reviewed and after the bridge configuration were designed taking into account the final alignment, bridge site profiles as well as peak run-off discharge, length of drifting logs, size of boulders, local scouring depth, free board and sediment deposition. Through the above exercise, the following bridge types and configurations were selected for preliminary bridge design.

Table 7-3 List of Bridge Selected				
Station	<u>Name of</u> <u>Bridge</u>	Type	Length	Main Reason of Bridge Type Selected
SECT-I		•		
78+35.0	Bhogate	PCCB	50.0m=2@25	Availability of fabrication yard and good accessibility
82+30.0	Karekare	PCCB	40.0m=2@25	ditto
126+87.5	Ratu	PCCB	175.0m=7@20	ditto
291+50.0	Kamala	PCCB	120.0m=4@30	ditto
323+90.0	Phittang	PCCB	50.0m=2@25	ditto
343+20.0	Buka	PCCB	50.0m=2@25	ditto
351+35.0	Gadeuli	PCCB	50.0m=2@25	ditto
SECT-II-1				
80+00.0	Gwangu	НВСВ	40.0m=2@20	No fabrication yard and poor accessibility
82+30.0	Siurani	HBCB	40.0m=2@20	ditto
90+30.0		HBCB	20.0m=1@20	ditto
SECT-II-3			_	
32+00.0		HBCB	20.0m = 1@20	ditto
133+50,0	Daune	D.Truss	50.0m	ditto
162+97.3	Narke	D.Truss	55.0m	ditto
216+75.0	Rosi	T.Truss	65.0m	ditto
252 + 2.5	Dapcha	HBCB	25.0m=1@25	ditto
288+30.0		PCCB	20.0m=1@20	Availability of fabrication yard and good accessibility

Notes PCCB means prestressed concrete composite beam bridge.

HBCB means H sharp beam bridge.

D. Truss means Deck type steel truss bridge.

T.Truss means Through type steel truss bridge.

It is noted that each bridge has two alternatives consisting of minimal scale development scheme and development scheme considering the second stage widening by superstructure.

(2) Bridge Design

In the preliminary bridge design, beam arrangement of each bridge type was firstly assessed for each alternative referring to bridge design data and main dimensions of superstructure such as deck slab thickness, beam size were analyzed according to the design criteria. Secondly, stability calculation of substructure comprising abutments and piers was carried out based on design criteria, reaction force, and soil data to determine dimensions of each structure. Finally, all the analysis results were transferred to a drawing form as listed below:

Title of Drawings	No of Sheets
General View of Major Bridge	9
Standard Medium Scale Bridge	2

7.4.3 Causeway Design

(1) Scrutiny of Causeway Types Selected

Because of the river characteristics in Section-II and in order to reduce the initial investment cost, causeways as a low cost river crossing structure were introduced in the initial stage of the stage wise development scheme and a part of them crossing major rivers are planned to be replaced by bridges in the final stage.

The causeways applied in this Study are broadly divided into three types comprising of river bed level causeway(RBLC), vented type causeway and submersible bridge(SB).

To this end, the causeway type and length were tentatively determined based on the flood information obtained from the field interview, the field distance measurement, the qualitative application criteria of the respective causeways.

In this subsection, the above application criteria was reviewed to establish as qualitative as possible and the previous study results were scrutinized based on the profile of river crossing site taken from leveling survey, in addition to the flood information.

Type of Causeway

Application Criteria

River Bed Level Causeway

Normal flood depth is shallow, say less than 2 m,. Flood duration per a flood is short, say less than 2 hr. and flood frequency during rainy season is not often, say less than 10 times/3 months rainy season. Drifting logs and debris flow are accepted.

Vented Causeway

Flood condition is more or less the same as the above, but it is desirable to apply this type to perennial streams without drifting logs and debris flow.

Submersible Bridge

Normal flood depth is relatively deep, say more than 2m but less than 4m, Flood duration per a flood is relatively short, say less than 5-6 hr flood frequency during rainy season is not often, say less than 10 times. It is desirable to apply this type to perennial streams without drifting logs.

Referring to the above application criteria, suitable causeway type was selected taking into account mainly the flood conditions and the profile of each river crossing site. In this selection work, the causeways which are replaced by bridges in the 2nd stage are also identified from maintenance view point, (i.e. it is inevitable to interrupt the traffic due to peak flood and river deposits during and after the flood in the causeway over several times during rainy season and consequently to reduce traffic benefit. In order to minimize the traffic interruption, major causeways are planned to be replaced by the bridges.)

Following is a list of the causeways together with the 2nd stage replacement plan.

Table 7-4 List of Causeways with the 2nd Stage Replacement Plan

	Initial Stage	ial Stage 2nd Stage		
Station	Causeway	Length	Bridge Type(Name)	Length
	<u>Type</u>			
SECT-I	DDI G	(0.0)	NT/A	•
172+50.0	RBLC	60.0M	N/A	-
183+75.0	RBLC	30.0M	Ñ/A	-
194+20.0	RBLC	40.0M	N/A	•
201+20.0	RBLC	40.0M	N/A	-
212+00.0	RBLC	30.0M	N/A	- -
217+90.0	RBLC	30.0M	N/A	-
223+35.0	RBLC	30.0M	N/A	-
226+90.0	RBLC	40.0M	N/A	**
229+80.0	RBLC	60.0M	N/A	-
234+45.0	RBLC	60.0M	N/A	-
239+15.0	RBLC	40.0M	N/A	. .
246+60.0	RBLC	80.0M	N/A	_
250+15.0	RBLC	80.0M	N/A	
258+65.0	RBLC	30.0M	N/A	-
261+00.0	RBLC	30.0M	N/A	-
265+90.0	RBLC	.80.0M	N/A	. =
272+55.0	RBLC	50.0M	N/A	-
282+95.0	RBLC	40.0M	PCCB(Shindhuse)	50.0M=-2@25
SECT-II-1	*			
378+50.0	RBLC	30.0M	N/A	÷ '
376+15.0	RBLC+VC	100+35=135M	PCCB(Andheriel)	125M=5@25
381+40.0	RBLC	30.0M	N/A	-
SECT-II-2			·	-
3+85.0	RBLC	50.0M	N/A	-
18+50.0	RBLC	20.0M	N/A	-
23+25.0	RBLC	20.0M	N/A	
54+51.0	RBLC+VC	182+8=190M	PCCB(Nigauli)	150M=6@25
108+85.0	RBLC	70.0M	PCCB(Arubote)	100M=5@25
121+45.0	RBLC	90.0M	PCCB(Khahare)	50M = 2@25
167+55.0	RBLC+VC	40M+30=70M	PCCB(Bhote)	75M = 2@25
201+81.0	RBLC+VC	212+36=248M	PCCB(Gangate)	50=2@25,25M
219+80.0	RBLC+VC	20M+30M	PCCB(Dhamile)	75M = 3@25M
247+55.0	RBLC	90.0M	PCCB(Sandi)	100M=4@25M
SECT-II-3		, , , ,		
13+62.5	RBLC+SB	270+55=325M	PCCB(Ghyampe)	300=10@30M
40+95.0	VC+SB	50M+40M	PCCB(Mamti)	100=4@25M
98+92.5	RBLC	125.0M	PCCB(Bhyakure)	100=4@25M
102+75.0	RBLC	50.0M	PCCB	40=2@20M
113+43.0	RBLC+VC	81+25M	N/A	-
195+95.0	RBLC	30.0M	N/A	_
175175.0	KDDO	JOIOITE	- 1/ - 2	

Notes: RBLC means River Bed Level Causeway.

VC means Vented type Causeway.

SB means Submersible Bridge.

PCCB means Prestressed Concrete Composite Beam Bridge.

N/A means Not Applicable.

(2) Causeway Design

The river bed level causeway was designed referring to Design Specification for the river bed protection works stipulated in Technical Specification for River and Sabo Works published by Ministry of Construction in Japan, while the vented type causeways and the submersible bridges were also designed referring to Design Specification for the submersible fixed weirs in the said Specification.

Typical sections of respective causeways are illustrated in Volume II - Drawings.

7.5 Drainage Structure Design

7.5.1 General

The project road runs through steep mountainous terrain and the annual average rainfall in the project area is assumed to vary from 1,000 mm to 1,500 mm in Section-II and from 2,000 mm to 2,500 mm in Section-I. In these conditions, the extremely high concentration of precipitation makes it very difficult to achieve a controlled and slow water run-off. Taking into account the possible road disasters mainly due to poor water management, it is essential to install adequate drainage facilities to keep the road function and to minimize maintenance cost, even in the initial stage of the stage wise construction alternative.

The drainage structures applied in the Study are broadly divided into three types comprising of cross drainage structures, side ditches and the other facilities such as subsurface drains, gully stabilization structures.

7.5.2 Cross Drainage Structure Design

The cross drainage structures applied in this Study included the following 9 types:

Reinforced Concrete Pipe D=0.6m (R.C.P, D=0.6)(R.C.P, D=0.9) Reinforced Concrete Pipe D=0.9m *Corrugated Metal Pipe D=0.6 m (C.M.P. D=0.6)*Corrugated Metal Pipe D=1.0m (C.M.P, D=1.0)Reinforced Concrete Box H2.0mxW2.0m (R.C.B,2x2) (C.M.A.R=1.5)*Corrugated Metal Arch R=1.5 m Reinforced Concrete Box H3.0mxW3.0m (R.C.B.3x3) (C.M.A,R=2.5)*Corrugated Metal Arch R=2.5m Reinforced Concrete Slab L=5.0m (R.C.S L=5)

Reinforced Concrete Slab L=10.0m (R.C.S L=10) Selection criteria of the above structures depends on catchment area i.e. whether assumed run off discharge is small, medium or large, accessibility i.e. whether the work progress of a specific drainage structure will or will not interface with the further progress of the road construction beyond the drainage site, and site terrain i.e. whether gully shape or flat shape.

Taking into account above three selection parameters, selection flow of the drainage structures is depicted in Figure 7-3.

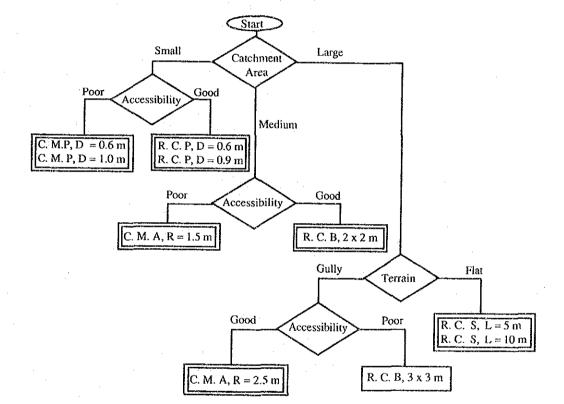


Figure 7-3 Selection Flow of Drainage Structures

7.5.3 Ditch Design

The basic principle in the mountain road design is to collect not only the water from the slope above the road, but the whole road surface water too immediately in the side ditch and lead it to the nearest natural rivulet or the cross drainage structures. Therefore, side ditches should be provided in all the cut sections at the M/S and in the fill sections at the toe of the R/S slope in principle and are lined by grouted rip rap to prevent erosion and to provide easy maintenance.

The following four types of side ditches are designed with the corresponding application criteria.

(i) Side Ditch in Cut Sections

Type A(Trapezoidal section W=50 cm, D=30 cm) is applicable to all the cut sections in the initial stage and was designed considering provision of the minimum requirements, since this ditch is demolished in the 2nd stage.

Type B(Trapezoidal section W=75cm, D=50 cm) is applicable to all the cut section in the 2nd stage and the full construction alternative.

(ii) Side Ditch in Fill Sections

Type C (Rectangle section W=40 cm, D=30 cm) is installed at toe of the fill slope which is located beside rice field in order to not only use irrigation channel but the toe protection.

Type D(Trapezoidal section W=140cm, D=30cm) is installed at toe of the fill slopes to drain the water from road surface to the nearest rivulets.

7.5.4 Other Drainage Facilities Design

The drainage facilities classified in the others are gully stabilization structures and sub-surface drains.

(1) Gully Stabilization Structures

Where side drain water is discharged into a rivulet or brook, the previous run off volume is considerably increased and side as well as depth erosion of the gully is the consequence. Therefore, gully stabilization structures made by series of checkdams or checkwalls (so called as "Cascade") as a energy dissipater have to be provided at such gullies as far down as they are endangered in erosion in order to break the velocity.

The gully stabilization structures applied in the Study are divided into check wall type and checdam type depending on a scale of the gully.

(i) Checkwall Type (Cascade)

This type is applicable to a small scale gully in general and consists of series of checkwalls and aprons made by gabion or grouted rip rap. The gabion checkwall type is applied to the small scale gully in flat to rolling terrain, while the rip rap checkwall type is in mountainous terrain.

(ii)Checkdam Type

This type is applicable to a medium to large scale gully and comprises series of gabion checkdams and aprons. The checkdams should not be higher than 4m in order to avoid a too high water energy built up. The crown of the checkdam as well as its steps are protected by concrete or masonry slabs too where the water flows to avoid the destruction of the gabion wire

(2) Sub-Surface Soil Drain

Where seepage is expected and sections run beside a rice field, sub-surface drains are provided beneath side ditch installed at cut sections in order to prevent saturation of the pavement materials

7.6 Pavement Design

7.6.1 General

The pavement structures including several alternatives for the project road were designed in accordance with the AASHTO GUIDE FOR DESIGN OF PAVEMENT STRUCTURES, 1986.

The pavement alternatives applied in the Study consist of aggregate surface and cold mixing asphalt surface (penetration macadam) as stated in the previous Chapter. Taking into account these alternatives and the other development scheme alternatives such as number of lanes and timing of asphalting as well as traffic volume estimated, the following design cases were formulated in the design.

Case-1- 1 lane with aggregate surface and the future widening to 2 lane with asphalted surface.

Case-2 1 lane with asphalted surface and the future widening to 2 lane with the same surface type.

1999	Asphaltic Surface		sphaltic Surface	2020
1	Single Lane	1	Double Lane	-
	During 10 Years	Overlay	During 10 Years	•

Case-3 2 lane with asphalted surface and the future overlay by the same surface type.

7.6.2 Design Condition

The following design conditions were applied in the pavement design.

(1) Traffic Load

The traffic load are based on cumulative expected 18-kip equivalent single axle loads(ESAL) during design period. The mixed traffic volume estimated in Chapter 2 were converted into the 18 kip ESAL units and the results are shown in below.

Case	Section	ESAL in the first 10 years	ESAL in the last 10 years
Case-1	Section-I	1,550,000	2,964,000
	Section-II	1,468,000	2,975,000
Case-2	Section-I	1,550,000	2,964,000
	Section-II	1,468,000	2,975,000
Case-3	Section-I	1,299,000	2,964,000
	Section-II	1,229,000	2,975,000

(2) Indices and Engineering Values

The following indices and engineering values are applied for each section in the design.

Indices and Engineering Value	Section-I	Section-II
Reliability,R	80%	80%
Overall Standard Deviation So	0.45	0.45
Effective Resilient Modules of	10,600 (CBR=15)	7,300 (CBR=8)
Roadbed Material, MR		
Design Serviceability Loss	2.5	2.5
Structural Number, SN Case-1	N/A(3.2)	N/A(3.6)
Case-2	3.0(3.2)	3.3(3.2)
Case-3	2.9(3.2)	3.2(3.2)

Note: The figures in () indicate SN in the last 10 years.

7.6.2 Pavement Structures

In accordance with the above design conditions, respective pavement structures were designed as attached in Appendix-F and the results are summarized below:

Cases	Layers	Pavement the First 1	Structure in O Years	Pavemen in the S Years	t Structure Second 10
		Section-I	Section-II	Section-I	Section-II
Case-1	Surface	N/A	N/A	5 cm	5 cm
	Base	N/A	N/A	25 cm	24 cm
	Sub-Base	30 cm	30 cm	35 cm	45 cm
Case-2	Surface	5 cm	5 cm	5 cm	5 cm
	Base	21 cm	18 cm	25 cm	24 cm
gerta et a	Sub-Base	35 cm	45 cm	35 cm	45 cm
Case-3	Surface	5 cm	5 cm	5 cm	5 cm
	Base	19 cm	17 cm	25 cm	24 cm
	Sub-Base	35 cm	45 cm	35 cm	45 cm

7.7 Slope Protection Design

7.7.1 General

The design concept with regard to slope protection applied in this Study is broadly divided into two categories, one is applicable for the initial stage of the stage wise construction alternative and the other is for the 2nd stage construction and for the full construction alternative of 2 lane highway. The former concept is installation of full scale slope protection work at R/S and of minimal scale slope protection work at M/S in general, to

minimize the double investment since the road is planned to be widened to the M/S in the 2nd stage. The latter is installation of full scale protection work wherever sections are required at both sides. In addition to the above concept, followings are applicable to all the stages.

- •To adopt the local materials, techniques and structures such as gabions, dry stone pitching, etc. as much as possible.
- •To adopt the bio-technical slope stabilization method.
- •To apply the disaster mitigation in stead of the prevention measures.

The slope protection works are mainly twofold;

- (1) Cut slope protection by breast walls, slope treatments such as guite shooting, concrete frame with rock anchors.
- (2) Fill slope protection by retaining walls, slope treatments such as sodding, concrete rip rap, etc.

7.7.2 Cut Slope Protection

As mentioned in above, the applicable cut slope protection work is divided into two categories comprising of the minimal scale under the single lane case and the full scale under double lane case.

(1) Minimal Scale Cut Slope Protection Under Single Lane Case

-Banded Dry Stone Masonry -----This type of breast wall is applicable to where rock fissures developed regularly is expected and where the slant direction of these fissures coincides with slant direction of the face of the cut slope. Range of height shall be less than 8.0m and front batter is H 0.3: V 1.0.

(2) Full Scale Cut Slope Protection Under Two Lane Case

-Dry Stone Breast Wall-----Is installed where soil classification is common soil in flat and rolling terrain and constant height is 1.0m with front batter of H 0.3: V 1.0. Above the wall, cut slope treated by sodding.

-Banded Dry Stone Masonry -----Is applicable to where soil classification is common soil in mountainous terrain and where rock fissures developed regularly and where the slant direction of these fissures coincides with slant direction of the face of the cut slope. Range of height shall be less than 8.0m front batter is H 0.3:V 1.0.

-Concrete Frame with Rock Anchor Breast Wall ------Is applicable to where rock fissures extremely developed is expected and which the slant direction coincides with slant direction of the face of the cut slope. Range of height shall be less than 8m and the front batter is the same as the above.

-Stone Masonry Breast Wall ------Is applicable to where colluvial deposit is expected. Range of height shall be less than 6m and the front batter is H 0.3: V 1.0.

-Gabion Breast Wall -------Is applicable to where soft foundation and seepage condition is assumed. Range of height shall be less than 6m and the front batter is H 0.5: V 1.0.

-Gunite Shooting------Is installed above the breast walls and where rock fissures developed is assumed on cut slope of H 0.5:V 1.0.

-Gunite Shooting with Rock Anchors------Is installed above the breast walls and rock fissures extremely developed and which the slant direction coincides with slant direction of the face of the cut slope

It is noted that alignments of certain stretches where huge amount of falling debris are expected have been shifted to R/S and run along the river bank with room for the debris.

7.7.3 Fill Slope Protection

Because of limited access roads for the construction, especially in Sections II-1 to II-2, the development concept with regard to local material usage, and steep topography and fragile geology in most of the project area, gabion walls are applied in principle, with exceptional sections. They act as a homogeneous and monolithic system and are very flexible against deformation without losing its strength.

In the above mentioned exceptional sections that alignment runs through flat and rolling terrain, fill slopes are protected by installation of vegetation, and in the alignment running along the Rivers, fill slopes are retained by solid masonry structures.

As a summary, the following types of fill slope protection were applied in this Study.

-Gabion Retaining Wall Without Rock Anchors-------Is applicable to most of the sections, except where topography is flat and geology is stable. Range of height shall be less than 5.0m and the front batter is H 0.1:V 1.0.

-Stone Masonry Retaining Wall -------Is applicable where the alignment runs on the river banks along the Sun Kosi River and Rosi Khola. The front batter and embedded depth are determined based on the runoff discharge and the local scouring effect. Height of the wall above the river bed depends on high water level and free board. Armored stones and gabion mattress are also provided as a foot protection at toe of the wall.

Concrete Rip rap------Is applicable to the fill slopes above the Stone Masonry Retaining Wall at the above sections with a slope of H 1.5:V 1.0 to prevent the surface erosion

Vegetation------Is applicable to all the fill slopes except the above sections

It should be noted as a special case that series of gabion retaining walls with adequate berms are provided at the sections running on deep gullies.

7.8 Drawings And Work Quantities

All the results of the preliminary design were compiled in a drawing form as enclosed in VolumeIII- Drawings, while the work quantities of the major pay items were also estimated as attached in Appendix -F.

CONSTRUCTION PLANNING AND FORMULATING DOR'S MAINTENANCE FORMATION

CHAPTER 8

CONSTRUCTION PLANNING AND FORMULATING DOR'S MAINTENANCE FORMATION

8.1 General

In this Chapter, the construction plan and schedule of the respective alternatives are formulated based on the work quantities derived from the preliminary design, and taking into account the topographic, geological and meteorological conditions of the project site as well as minimizing environmental adverse effects.

Furthermore, DOR's maintenance formulation including the offices, staffing equipment for Sindhuli Road are presented based on assessment of the maintenance work items and assumed quantities after completion of the Road.

8.2 Construction Plan And Method

(1) Construction Section

The four construction sections as divided in the previous F/S report were applied in this study The sections were determined due consideration of topographical condition, section length and work volumes, difficulty of the construction, and location of towns and villages, and these sections are as follows:

Section	From Town To Town		Length
Section I	Bardibas-Sindhuli Bazar		37 km
Section II-1	Sindhuli Bazar - Khurkot		39 km
Section II-2	Khurkot - Nepalthok		32 km
Section II-3	Nepalthok - Dhulikhel		50 km
		Total	158 km

(2) Basic Conditions

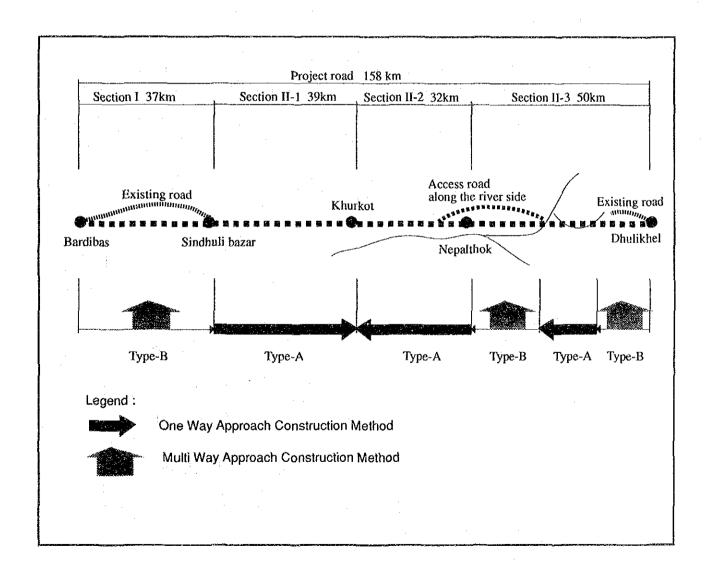
Following basic conditions are taken into account in the construction planning.

- -Rainy season from June up to the end of September
- -Following access roads are considered to be usable with specific conditions.

Access Routes	Specific Conditions
Banepa-Shreekhandapur- Buchakot-Bhakundebesi Road	Usable but requires the maintenance and strengthening work of the two existing bridges
Roshi Khola River Bed from the Junction with Dapcha Khola to Nepalthok	Usable only during dry season, except a few sections
Sunkoshi River Bed Route From Nepalthok to Khurkot	Usable only during dry season

- -The construction for Section II is tackled from the both ends.
- -Mechanical construction method is applied to the work items of earth work, base and subbase courses, and structural excavation in principle.
- -Labor intensive construction method is applied to the work items of retaining walls, drainage structures,, and slope protection.
- -Bridges are erected using track cranes together with supporting.

(3) Typical Construction Methods


Typical construction methods applicable to Sindhuli Road are broadly divided into two categories mainly depending on availability of access roads. One is named "One Way Approach Construction Method" that is to construct on a work item by work item basis in a certain sequence and to proceed to the further stations due to limited access roads available, and which is applicable to the whole sections of II-1 and II-2 and one fifth of section II-3 in length. The other is "Multi Way Approach Construction Method" that is to commence the construction at any stations and of any work items because of availability of access roads and which is applicable to the entire section-I and the rest part of Section II-3.

In the one way approach construction method, the concrete work sequence is firstly installation of gabion retaining walls at V/S and road cutting at M/S and filling at R/S follows. Subsequently, the drainage work such as installation of culverts and side ditches comes next. Finally pavement crew proceeds. In this method, the gabion retaining walls are installed by men power, while mechanical construction method is applied in the cutting and filling works. As such, installation of gabion walls will be critical items in the construction scheduling.

In the mult- way approach construction method, construction can be initiated at any stations or for any work items in principle. For instance, earth work and drainage work can be carried out simultaneously at different stations. However, in the earth work operation, installation of gabion retaining walls shall be in advance before cutting and filling operation. As such, the gabion walls can be installed at any places, so that cutting and filling work by using equipment could be critical item in the construction scheduling but depending on a number of equipment.

The above concepts with regard to two types of the construction method are illustrated in Figure 8-1.

Figure 8-1 Concept of Typical Construction Method

8.3 Construction Schedule

In the construction schedule, construction period of the main work items were firstly analyzed based on the assumed workable day, unit progress rate and the estimated quantities, and subsequently, the construction schedule of the each alternative was established applying the period analyzed.

(1) Workable Day

An average workable days per year for earth work which is the most critical item are estimated based on the meteorological data and it is assumed to be 12 days (40 % of a month) during rainy season and 21 days (70 % of a month) during dry season, and 211 days (58 %) of a year in an average.

(2) Unit Progress Rate

Based on the production rate of each pay item to be implemented by a set of equipment combined or a set of combination of equipment and manpower, or by labor intensive method, unit progress rate of each major work item was analyzed. The unit progress rate of major and critical work items are tabulated in Table 8-1.

Table 8-1 Unit Progress Rate

Description	Kind of work	Capacity
Excavation Rock	Mechanical work	85m3/day-party
Excavation Common	Mechanical work	370m3/day-party
Gabion box	Hand work	3:6m3/day-party(20persons)
Road side structure (Stone mansonry parapet)	Hand work	2m3/day-party(20persons)
Pavement Base, Subbase course	Mechanical work	500m2/day-party
Pavement Surface course	Hand work	224m2/day-party(20persons)

(3) Work Quantities and Construction Period

Referring to the above unit progress rate and the estimated total work quantity of major work items on a alternative by alternative, construction period of the major and critical work items were estimated. The total quantity and corresponding construction period of each major work items are shown in Table 8-2

(4) Construction Schedule of Each Alternative

Taking into account the typical construction method applicable to respective sections, i.e. Section -I is implemented by the mult way approach construction method, Sections -II-1 and II-2 by the one way approach construction method, and Section II-3 by combination of both methods, required construction period of the major work item was arranged in the work sequence order and the overall construction schedule of each alternative was formulated and these are shown in Table 8-3 to 8-5.

In scheduling the second stage construction for the respective alternatives, the basic conditions especially for availability of access roads (i.e. completed Sindhuli Road with one lane in the first stage), and the work quantities are almost the same for all the alternatives. Therefore, it is concluded that the second stage construction takes 4 years for all the alternatives, and is recommended that the construction commences in 2006 and complete by the end of 2009 in order to cope with the estimated traffic volume.

Table 8-2 Work Quantity and Construction Period

Unit Section I Quantuty party m3 106,000 3.0 m3 303,000 2.0 m3 7,600 5.0 m3 600 1.0 m2 5,700 1.0 m2 5,700 1.0 m2 5,700 1.0									,						
m3 106,000 3.0 m3 106,000 5.0 m3 303,000 2.0 m3 m3 600 1.0 m2 5,700 1.0 m2	Description	Alternatives	Unit	- 3	Section I		S	Section II-1			Section II-2	2	S	Section II-3	8
m3 106,000 m3 303,000 m3 7,600 m3 600 m2 5,700 m2 5,700				Quantuty	party	Period(year)	Quantuty	party	Period(year)	Quantuty	party	Period(year)	Quantuty	party	Period(year)
m3 106,000 m3 303,000 m3 7,600 m3 600 m2 5,700 m2 5,700	on , Rock	Alternative-1-4	m3				245,000	3.0	4.5	56,000	1.6	1.9	142,000	3.1	2.5
m3 303,000 m3 7,600 m3 600 m2 5,700 m2 5,700		Alternative-5	E	106,000	3.0	2.0	528,000	4.5	6.5	185,000	2.6	4.0	283,000	6.4	2.5
m3 303,000 m3 7,600 m3 600 m2 5,700 m2 5,700	on, Common	Altemative-1-4	EH.				000'889	2.0	4.4	309,000	2.1	6,1	484,000	2.5	2.5
m3 7,600 m3 600 m2 5,700 m2 5,700 m2 2,77,000		Alternative-5	m3	303,000	2.0	6.1	755.000	1.5	6.4	397,000	1.3	3.9	810,000	4.2	2.5
m3 7,600 m3 600 m2 5,700 m2 5,700 m2 2,77,000	, vo	Alternative-1-4	m3				93,400	27.0	4.5	47,400	31.0	2.0	58,700	33.0	2.3
m3 600 m2 5,700 m2 5,700 m2 277,000		Altemative-5	. En	7,600	5.0	2.0	000'66	29.0	4.5	50,100	19.0	3.5	62,000	35.0	2.3
m3 600 m2 5,700 m2 5,700 m2 277,000	structure	Alternative-1-4	E		- -		6,200	3.7	4.0	3,600	4.2	2.0	4,500	. 1	2.5
m2 5,700 m2 5,700 m2 277,000		Altemative-5	EII	009	1.0	6.0	6,200	3.7	4.0	3,600	2.5	3,4	4,500	4.2	2.5
m2 5,700 m2 277,000 m2	1 Subbase course	Alternative-1,3	112	5,700	1.0	0:0	000'561	0.1	6:0	158,000	1.0	0.7	251,000	1.0	1.2
Alternative-5 m2 277,000 Alternative-1,3 m2	t Base, Subbase course	Alternative-2,4	132	5,700	1.0	0.1	000'561	1.0	1.8	158,000	1.0	1.5	251,000	1.0	2.4
Alternative-1.3 m2		Alternative-5	2	277,000	2.0	1.3	292,000	1.0	2.8	237,000	1.0	2.2	376,000	1.5	2.4
000	1 Surface course	Alternative-1.3	m2				81,000	1.0	$ c_1 $	48,000	1.0	1.0	51,000	1.0	1.1
3,700		Alternative-2,4	m2	5,700	1.0	0.1	195,000	1.1	3.7	158,000	1.7	2.0	251,000	2.0	2.6
Alternative-5 m2 277,000 3.0		Alternative-5	m2.	277,000	3.0	1.9	292,000	1.6	3.8	237,000	2.0	2.5	376,000	2.5	3.2

Table 8-3 Construction Schedule of Alternative 1 and 3

	-19	993			19	94			19	95		04740	19	96	i de serioie		19	97			199	8		19	99	and the second	 20	00		200)1
Section I		T				,							Γ					<u> </u>					1								T
Earth works				200,300	cice	-	and and		SERVE	SING	-																			1	İ
Pavement works					4676	-		-	-	_																				i	
Drainage works					-		di sala	-	CYAN	1 1 1	-											Ì	1							1	
Slope protection works				-	:2050k		-		-		-			ŀ	Ì																ļ
Road furnitures					giane.	 	_	_	-	-	-	ł									ĺ										
River crossing structures					_			-		-			:							į											
Bridge								_	_	-																				-	
Miscellaneous			_			-					_	ļ	ļ_		_	L	_			_		1	\perp	_			 ļ				
Section II-1													ļ										-								ļ
Earth works						*	-			-	-	-	1	-		-	-			-	+	-	\dagger							-	
Pavement works								ŀ						_		-		-			-		-	333			! :				
Drainage works								ļ		-	_			┢	-	-	-	-		-	+	-	-	+					į		-
Slope protection works					'		-	_	"	-		-	150		-	-		-		-			7							1	
Road furnitures					:			1								┪	-			-	-	+	\dagger	1						Ì	
River crossing structures										-	-	┝	┝	_	-	_	-	_			+	┿	+	†			í		۱	1	
Bridge		1						l	-	-	-	-	┢	_		┢	-	•	Н	_	-	+	+	†			1			İ	Ì
Miscellaneous		ļ.,							_	-	_						-				_		+	+-					-	_	
Section II-2															ļ								İ	İ						Ì	
Earth works																-	-				-	+	7					,	-		
Pavement works																			1			_		+							
Drainage works																						+		†			<u> </u>		-	j	
Slope protection works														 	-					-	-	-	1							-	
Road furnitures								İ						-							1		十	_			j j				
River crossing structures												l			-	Ι-					+										
Bridge													İ					٠.	-									ĺ			
Miscellaneous		-	ļ		ļ. 		ļ	<u> </u>	L	<u> </u>		L	-		 	_									-		 _		_	_	
Section II-3										1		ľ															İ		ļ		
Earth works					. '	-	-	1	-	-	-	-	1		1	_		-			-	_									İ
Pavement works										_	_	-	+	-		_		-	Н		+		+	+							
Drainage works							-	-	-		-	-			-	-	-	-			-	+	+				-		ļ	.	
Slope protection works							-	-	-	-		-	-	-		-	-	-	-	-	-	-									
Road furnitures		-											+	┪		-		-	Н		-	+	┿	43						ļ	
River crossing structures						1		-		-		-	-		-	-				-	-	-) manual of	
Bridge										-	-	1	+	*		-]						
Miscellaneous					٠							<u> </u>			-						_		+		ŧ						

Table 8-4 Construction Schedule of Alternative 2 and 4

	1993	1994	1995	1996	1997	1998	1999	2000	2001
Section I				TII					
Earth works									
Pavement works						} } }			1 1
Drainage works									
Slope protection works									
Road furnitures									
River crossing structures			++++						
Bridge									
Miscellaneous									_
Section II-1									
Earth works			 	- - -				-	
Pavement works				-		╘╺			
Drainage works							┡╍ ┩╏╏		
Siope protection works						┝═┿╼╇╸			
Road furnitures									
River crossing structures									
Bridge				┿┿					
Miscellaneous									
Section II-2									
Earth works	.								
Pavement works									
Drainage works									
Slope protection works						┝╇╌┼╌┼╌			
Road furnitures									
River crossing structures									$\cdot $
Bridge									
Miscellaneous									
Section II-3									
Earth works		·		+++					
Pavement works				+++					
Drainage works		+	┿┿┿			┢┼┼┼			
Slope protection works		 		- - - -					
Road furnitures							┝╍┿╸╿╴╿		
River crossing structures			╅╅┪	- - -		 - - - 	[
Bridge			++++	+++-		1			
Miscellaneous									

Table 8-5 Construction Schedule of Alternative 5

eric champilare de la momenta, de periodo como calculo como en maso en el como en el como en el como en el como	teradini	199	3	T	19	994			19	95	ellençi i		199	96			19	97	-		199	8		1	999			20	00		0. VA. 1. () 4	200)l
Section I			T	+	1	T											_	T				T	+	7	T		-	7.	Ţ-				
Earth works				-				<u>L</u> .		50000A																							
Pavement works									-			٠												Ì	İ		İ						
Drainage works							-	-															-		ļ								
Slope protection works					380					-														:					١				
Road furnitures						-	_				-													Ì		ĺ							
River crossing structures				ļ.,	_	_						ı																					
Bridge				Ļ	_		-	_	_														ı			Ì							
Miscellaneous				-		<u> </u>			-	_		,												Ì									
Section II-1		\dashv	+	+	\dagger	-																\dagger	十		\dagger	\dagger	╁╴	1			7		<u> </u>
Earth works					İ	85	ļ.,	L							_								4	+	+	-	╄-	ļ.,	_		-		.
Pavement works													ļ			-				-			_		-		 -				-	===	
Drainage works										-	_	_		_	_					_			4		_	_	<u>Ļ</u>	-				-	Ī
Slope protection works						<u> </u>				-			_		_					_	_	4		_	4	_	ļ.,	_		_	-	•	i i
Road furnitures	. }		-						1														-	-	+	-	L	_		_	1	_	
River crossing structures	ļ				Ī																		ļ				_	ļ.,,			-		
Bridge		Ì												-						į	_	-		_	_	ļ.,	_			_			
Miscellaneous						Ļ			_					_			_						4	-	ļ	_	-				Ĺ	_	
Section II-2		1	\top	†	1							-	1		\dashv	-	-			1	-	\top	\top	-	1	1	\vdash			1	1	7	+
Earth works	į	l											ĺ		ļ	-		_		-	_	4	+	_	-	ļ.,	ļ	-	-	4			
Pavement works	ļ		Ì																			-	+	+	\downarrow	-	Ļ	<u> </u>		_			
Drainage works	ļ							.	į	ļ											1	_	4	 -	+	+	_		-	_	_	-	
Slope protection works					Ì									į	4						4		4	-	4	ļ.,	-	-		_		=	
Road furnitures		İ							į														Ļ					ļ		_	-	-	
River crossing structures	-							İ			İ				-				ļ	4	_	-	+	_			-	-	-	-			
Bridge									İ			Ì		١							Ì											Ì	
Miscellaneous			-							.					-			-	-	-	-		-	-	-	-	-	-					
Section II-3	-	Ì		T	1					1				_							7		1		T	1						Ť	7
Earth works			Ì						_	-		_	-	-	_					١													
Pavement works									ļ	-				_	_				_		-	_											
Drainage works							-				_	-	-	_	-	-	-		-	-	-									-			
Slope protection works						-			-	-	_		_		-	-		-		-	73/16												
Road furnitures									-				ļ	_					_	_	4	_	4										
River crossing structures					-				į		_		_	-					4		_										į		
Bridge	İ									_	_			_	4			_	-	-	_												
Miscellaneous						_		_	-					_	_	-	-		_		_		_			İ					-	-	

8.4 Maintenance Features

As mentioned in the previous chapter 6, all the development scheme alternatives, especially in the stage construction plans, were formulated on condition with provision of the road and bridge maintenance to secure the construction investment, and to provide the road serviceable in all the time. It is therefore absolutely necessary and requisite to conduct inspection and maintenance of Sindhuli Road on a DOR's force account basis, not only after substantial completion of certain sections and structures, but also after handing over the whole sections from Bardibas to Dhulikhel.

In this regard, it is assumed that the partial maintenance operation and the full swing maintenance operation by DOR should initiate tentatively in 1996 and 2000 respectively, referring to the construction schedule as formulated in the previous section.

As a matter of fact, it is reported that in the Lamosangu - Jiri Road Project, 2.1% per year of the construction cost was allocated to the road maintenance, and the Multi Agency Seminar Paper on December 1990 stated that the maintenance cost of hill road in Nepal were amounted to NRs 293,000 for graveled roads and NRs 268,000 for black topped roads (Notes; The cost including expenses of routine, periodic and emergency maintenance and the unit is per kilo meter per year for single lane road)

For Sindhuli Road, the required maintenance work items and the assumed work quantities are roughly assessed to formulate DOR maintenance formation to be set up and to estimate the maintenance cost, referring to the preliminary design of each development scheme alternative and the construction schedule.

The maintenance to be carried out by DOR includes three types comprising routine maintenance, periodic maintenance and emergency maintenance, and the work items and assumed quantities of each type are as follows;

(1) Routine Maintenance

This type of maintenance is conducted including the work needed to further prevent deterioration and other minor works which are repetitive and technically simple.

Work Items	Assumed Quantities
-Potholes patching	5 m2x5 places/kmx 157km = 4,000m2
drainage structures including catch-basins	10 labors /km x 157 km= 1,570 m/m
-Removal of river deposits and drifts on causeways/1	250 m3/ place x 2 times/6 months x 37 places = 18,500 m3
-Removal of surface sledded materials	50 m3/ place x 5 places/km x2 times/ 6 month x 70 km= 35,000 m3
-Regravelling/2	50 m3/km x 157 km= 8,000 m3
-Minor repairs of structures made by stone masonry, grouted riprap, gabions	20 m3/place x 3 places /km x 157 km = 9,420 m3
-Sodding and replanting	200 m2/km x 157 m2 =31,400 m2
-Installation of traffic signs and other misllenious works	10 % of the above in terms of cost

Notes;/1:

This activity is applicable to the maintenance period after completion of the first stage of alternatives 1, 2, 3 and 4.

72: This activity is applicable to the maintenance period after completion of the first stage of alternatives 1 and 2.

(2) <u>Periodic Maintenance</u>

Work Items	Assumed Quantities
-Overlay by DBST	4.75m x 157,000 m=746,000 m2 (T=3 cm)
-Repainting of steel bridges	3,000 ton x 18 m2 /ton = 54,000 m2
-Replacement of expansion joints	
-Reinstallation of deteriorated structures	10 % of the above in terms of cost

(3) Emergency Maintenance

The emergency maintenance is carried out in connection with unusual circumstances such as large scale land slide, collapse of retaining walls, washed out structures ,etc. due to heavy monsoon or earthquake.

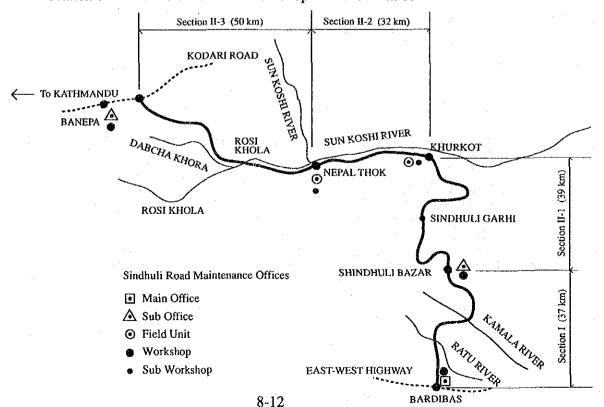
Work Items	Assumed Quantities
-Removal of land slided	According to Mult- Agency Seminar
materials	Paper, it is reported that 400 to 700 m3 due
-Slope stabilization work	to landslides per km per year are occurring
-Restoration of road failures	in the hill roads in Nepal, and 10 to 25
	percent of hill roads following river valley
washed out culverts or retaining	are completely washed out every 4 to 5
walls	years./1

Note /1

Taking into account this fact, the preliminary design were carried out to prevent these failures. However, it is so difficult to estimate the quantities for emergency maintenance.

8.5 DOR's Road Maintenance Formation for Sindhuli Road

Due to limited maintenance budget and shortage of experienced staff and equipment, road maintenance activities by DOR are not well organized except that in Dharan - Dhankuta Road and Lamosangu - Jiri Road. These roads were constructed under grant aid and the maintenance has been still on going with the donors' assistance.

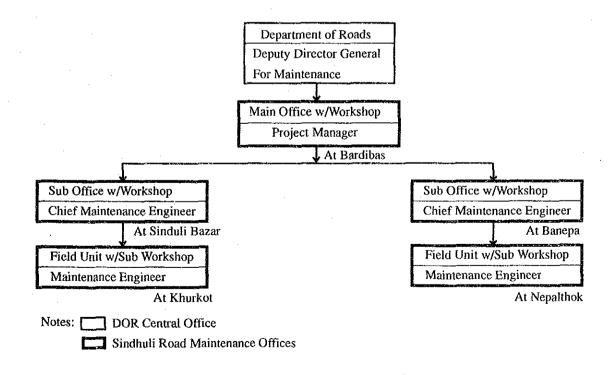

While, the various types and huge work volumes with regard to maintenance of Sindhuli Road are required as revealed in the previous section, but presently, these are no DOR district offices in Sindhuli and Kabhre Districts where nearly 90 % in length of Sindhuli Road passes through. In view of this situation, this section presents DOR's road maintenance organization, staffing, offices and required equipment which are strictly used for Sindhuli Road.

(1) Maintenance Offices

Taking into account the maintenance features and their locations as well as the present office available at Bardibas, following offices and workshops are proposed to establish on a timely manner.

Location	Type of Office and Workshop	Remarks
Bardibas	Main Office and Workshop	Utilized existing Facilities
Sindhuli Bazar	Sub-Office and Work shop	Newly Installed
Banepa	Sub-Office and Work shop	Newly Installed
Khurkot	Field Unit and sub - work shop	Newly Installed
Nepalthok	Field Unit and sub-work shop	Newly Installed

Location of the above offices and workshops are shown in below.


(2) Required Maintenance Equipment

The equipment required to carry out adequate maintenance are listed in below considering the work items and volumes assumed.

					Unit	; Number of	Equipment
Type	Capacity	Bardubas	Sindhuli	<u>Banepa</u>	Khurkot	Nepalthok	Total
			<u>Basar</u>				
Wheel Loade	r 1.4 m3	1	1	1	1	1	5
Backhoe	0.6 m3	1	1	1	-		3
Grader	2.5m	1	1	1	. 1	1	5
Dump Truck	8 ton	3	3	3	1	1	11
4 Wheel Jeer		3	3	3	1	1	11
Compactor	5-6 ton	1	1	1	1	1	5
Movable	10 ton/	' 1	1	1	-		3
Crusher	hr						•
Concrete	0.5 m3	1	1	1	-	-	3
Mixer							
Truck crane	4 ton	1	1	1	1	l	5
Generator	60 kva	2	2	2	1	1	8

(3) Maintenance Organization

A successful management and implementation of the maintenance rely on the organization and staffing. Interrelations between the above offices and DOR Central and the offices are illustrated below;

(4) Staffing of Each Office

The quality of maintenance work generally depends on the staffing and their capability and working experience. The staffing requirements of each office is

recommended as follows;

Position	Main Office At Baidibas	Sub- Office At Sindhuli	Sub- Office At Banepa	Field Unit At Khurkot	Field Unit At Nepalthok	Total
		<u>Bazar</u>				
Project Manager Chief Maint. Eng'er	1	1	1	**	L	1 2
Sr. Maintenance Eng'er	1	-	-	1	1	3
Sr. Mechanical Engineer	1	1	1	-	-	3
Mechanical Engineer	-	-	-	1	1	2
Chief Inspector	2	2	2	1	1	8
Forman	3	3	3	2	2	13
Mechanical Technician	3	3	3	2 -	2	13
Operator/ Drivers	10	10	10	4	4	38
Administration Staff	6	4	4	2	2	18

CHAPTER D

PROJECT COST ESTIMATE

CHPATER 9

PROJECT COST ESTIMATE

9.1 General

The project cost estimate started with an extensive data collection exercise, field survey at several construction sites and interview survey to material suppliers to ensure that the unit price analysis and results are firmly based on the real situation in Nepal. The project cost estimate was carried out for the each development scheme alternative on the basis of the preliminary design and the construction plan and schedule, assuming that the project implementation is executed by an international contractor.

9.2 Basic Conditions

The following assumption and conditions were applied in the project cost estimate.

- (1) Price level of labor, material and equipment is based on March, 1993.
- (2) The exchange rate applied to convert the US Dollar to Japanese Yen and Nepalese Rupees are;US \$1.00=Yen 115.08 =NRs 45.88 (NRs.1.0=Yen 2.51)
- (3) The costs are divided into foreign currency (indicated in NRs.) and local currency (indicated in NRs.) portions. The foreign and local currency components of each unit price are computed based on the following classification of basic cost elements.

The foreign currency componet includes the cost of;

- -Imported equipment, materials and supplies;
- -Imported materials in the local market;
- -Wages of expatriate personnel;
- -Overhead and profit.

The local currency component includes the cost of:

-Domestic materials and supplies;

- -Wages of local personnel;
- -Duties and tax.
- (4) Major material items included in the unit costs are cement, galvanised gabion wire, crushed stone, rebars, structural steel, P.C tendon, and fuel.
- (5) Imported equipment and materials are assumed to be exempted from tax and duty by Nepalese Government.
- (6) Production rate in the unit price analysis is in general based on standard production rates of various work items in Japan after some modification was made with due consideration of Nepalese local conditions.
- (7) Except for the direct cost, other costs such as contractor's overhead and profit, engineering cost are computed using the multiplier factors.

9.3 Structure of Project Cost

The project cost on a contract basis consist of construction cost, land aquisition and compensation, and engineering cost. The construction cost is divided into direct conctruction cost and indirect construction cost. The main cost items are briefly described below;

(1) Direct Construction Cost

The direct cost comprises of labour coat, material cost and equipment cost.

(2) Indirect Construction Cost

This item includes contractor's overhead and profit, transportation cost and expendirtures to run contractor's site warehous, and laboratory and for other common temporary works. It is assumed to be 35.0 % of the direct construction cost, taking into account the construction by an international contractor.

(3) Enginnering Cost

The engineering cost consists for detailed design and supervision and it assumed to be 10.0 % of the direct construction cost.

(4) Land Acquisition and Compensation Cost

This cost items are estinmated on the basis of unit cost data obtained from DOR.

9.4 Unit Rate

(1) Material Cost

The material cost applied in the coat estimate are on the basis of price level on March 1993. The unit rates of the major materials are shown in Table 9-1.

(2) Labours' Unit Rate

The labours' unit rate was derived from daily wage rate obtained from the DOR. Following is the unit rate by major labour classification.

Table 9-2 Labour Unit Rate

				Unit: NRs
Description	Unit	Foreign	Local	Total
		currency	currency	
Forman	m.d		105	105
Skilled labor	m.d	30	70	100
Unskilled labor	m.d	18	42	60
Driver	m.d	30	70	100
Operator(plant)	m.d	30	70	100
Mechanic	m.d	30	70	100
Carpenter	m.d	30	70	100
Reinforcement worker	m.d	30	70	100

(3) Equpiment Unit Rate

The equipment unit rates are the privailing prices on March 1993, in Japan. The equipment cost is divided into foreign and local currency portions. The former includes depreciation cost, spare parts and comsumable cost, while the latter includes the cost of mechanical repair and administration expenses. The unit rates of major construction equipment are tabulated in Table 9-3.

(4) Land Acquisition and Compensation Costs

The land acquisition and compensation costs are calculated based on the area to be acquired and on land prices and compensation cost obtained from DOR.

Classification
Developed Area
Less developed Area
Compensation of houses

Unit Rate NRs. 600,000/ha NRs. 200,000/ha NRs. 200,000/each

Table 9-1 Material Unit Rate

				· l	init : NRs.
Description	Unit	Foreign	Local	Duty Tax	Total
		currency	currency		
Hard wood	m3	137	47,173	9,423	56,733
Medium wood	m3	137	35.395	7,067	42,599
Soft wood	m3	137	8,156	1,620	9,913
Plywood 12mm for concrete work	m2	407	0	0	407
R.C.C hume pipe (NP3) 600mm	m	868	851	168	1,887
R.C.C hume pipe (NP3) 900mm	m	1,549	1,520	300	3,369
Cement	kg	3.5	0.1	0.9	4.4
Dieset	litre	10	0	2	12
Petrol	litre	21	0	9	29
Keroşine	litre	9	. , 0	10	10
Asphalt 80/100	ton	13,350	150	650	14,150
Asphalt emulsion	ton	13,350	150	650	14,150
Reinforcement	ton	32,332	0	. 0	32,332
Gabion wire	kg	31.9	0.4	4.5	36.7
Corrugated pipe 600mm, 1.6mm	m	4,164	0	0	4,164
Corrugated pipe 1000mm, 2.0mm	m	7.907	0	0	7,907
Corrugated pipe (arch)H3090,B1560,3.2mm	m	22,675	0	0	22,675
Corrugated pipe (arch) H5000,B2560,5.3mm	m	61,698	0	0	61,698
Explosive (jlatine)	kg	0	78	0	78
Cape (Detonator) General	pc.	2	0	0	. 3
Cape (Detonator) Electric	pc.	. 5	0	.0	5
Fuse	m	. 3	. 0	0	3
Cord	m	6	0	0	6

1S = NRs.45.88 = Y 115.08

Table 9-3 Equipment Rate

·				U	nit : NRs
Description .	Unit	Foreign currency	Local	Duty Tax	Total
Bulldozer 15ton	hr	2,291	354	36	2,681
Bulldozer 21ton	hr	3.638	554	53	4,245
Backhoe 0.6m3	hr	1,817	254	32	2,103
TRactor shovel 1.4m3	br	1,430	232	18	1,680
Dump truck 2ton	hr	594	65	9	. 668
Dump truck 11ton	hr	1,954	167	27	2,148
Truck 8ton	ħr	. 717	120	17	854
Truck crane 4.8-4.9ton	hr	1,069	173	26	1.268
Truck crane 20ton	ħr	2,229	369	16	2,614
Motor grader 3.1m	hr .	1,522	261	17	1,800
Macadam roller 10ton	hr	936	172	14	1,123
Tire roller 8-20ton	hr	1,045	190	15	1,250
Vibrating roller Iton	ħr	325	59	2	386
Water sprinkler 5500liue	þr	779	134	11	92
Asphalt sprayer 200liue	đay	286	70	22	37
Air compressor 3.7m3/min	day	1,061	159	10	1,23
Air compressor 10m3/min	đay	3,184	445	, 64	3,69
Diesel generator 10kva	day	631	73	22	72
Diesel generator 45kva	day	1,690	196	78	1,96
Diesel generator 60kva	day	2,092	233	109	2.43
Breaker 1,300kg with base equipment	hr	3,253	400	32	3,68

1\$ = NRs.45.88 = Y 115.08

9.5 Unit Price Analysis

In order to analyze unit price of the respective work items, required material kinds, equipment types and labour kinds are listed and the unit quantity of each item is firstly calculated based on standard construction methods.

It is, however, difficult to estimate the accurate production rate of respective items in each pay item because of the lack of cost break down data in Nepal.

To this end, the following procedures are taken so as to ensure the analysis results are as precise as possible.

- (1) The production rate stated in the Cost Estimate Manual published by the Ministry of Construction in Japan is modified taking into account labours' skillfulness, unit material usage, efficiency of equipment, operator's capability and so on in Nepal as well as based on those in the similar proejcts.
- (2) Applying the modified production rates of the various items, the unit prices are calculated.
- (3) The production rates applied in the above calculation is calibrated based on comparison with unit prices obtained from DOR and market research.
- (4) Finally, the unit price of each work item is recalculated using the calibrated production rate.

9.6 Project Cost Estimate

The project cost on a contract basis for each development scheme alternative were estimated on the basis of the equantities estimated in the preliminary design and the unit price for each pay item.

The total project cost estimated based on March 1993 are summarized in Table 9-4 and the cost break down of each alternative are shown in Table 9-5 to Table 9-9

Table 9-4 Summary of Project Cost On a Contract Basis

Unit: Million NRs

Alterna	atives	Major Cost Item	Foreign Currency	Local currency	Total Cost
		Const.Cost	2,929	633	3,562
:	Initial Stage	Engling Cost	356		356
-		Land Acg'tion Cost	- ,	279	279
Alt-1		Sub-Total	3,285	912	4,197
		Const.Cost	4,542	586	5,128
	Final Stage	Engling Cost	513	• • • • • • • • • • • • • • • • • • •	513
• •	· T. · .	Land Acq'tion Cost	- ·	•	-
		Sub-Total	5,055	586	5,641
1		Const.Cost	3,154	637	3,791
	Initial Stage	Engling Cost	379	 ,	379
		Land Acq'tion Cost	<u>.</u> :	279	279
Alt-2	4.4	Sub-Total	3,533	916	4,449
		Const.Cost	4,308	579	4,887
	Final Stage	Engling Cost	489	_	489
:		Land Acq'tion Cost	. -	1. 1 -	•
•		Sub-Total	4,797	579	5,376
		Const.Cost	3,477	704	4,181
	Initial Stage	Engling Cost	418		418
	U	Land Acq'tion Cost	-	279	279
Alt-3		Sub-Total	3,895	983	4,878
		Const.Cost	4,126	506	4,632
	Final Stage	Enging Cost	463	a - 1 - 1 - 1	463
	_	Land Acq'tion Cost		- •	- .
		Sub-Total	4,589	506	4,795
		Const.Cost	3,703	707	4,410
	Initial Stage	Eng'ing Cost	441	-	441
	_	Land Acq'tion Cost	- .	279	279
Alt-4	. 1	Sub-Total	4,144	986	5,130
		Const.Cost	3,930	519	4,449
	Final Stage	Engling Cost	445	-	445
	,	Land Acq'tion Cost	<u>.</u>	· .	-
	·	Sub-Total	4,375	519	4,894
		Const.Cost	6,515	1,051	7,566
Alt-5		Engling Cost	756		756
		Land Acq'tion Cost	-	279	279
	•	Sub-Total	7,271	1,330	8,601

Note; Figures shown in bold mean the total project cost of each stage.

Table 9-5 Project Cost Break Down of Alternative - 1

USS 1.0 * NR 45.88 * Yen 115.08

Table 9-5 Cost Break Down of Alternative -1

	-					-										-					-	1			
			й 	Section [-		Sec.	Section II-1		1		Section	Section II-2		-		Settion II-3	2		-	1			
Duscription		Foreign	LAKHI DA	Duty &	Total	Equiv.	Foreign	() lexes	Daty & Tr	Found Edu	Equiv. Por	od rganol	Jacat Day	Duty & Total	d Equiv.	ім. Ропиря	teor) us	Deny &	Total	lique.	i iuraiga	facel	Soly &	Total	i i
	1	annancy 6	currency	Tax		Yen	cuurency cu	силенку 1	Tax	*	Yen	cilurency cum	currency 'l'ax	2	Yes	en countries	ncy cumency	al. (or		Yen	CHERRY	currency	ž		χ.
	Ġ.	(1,000NRs) (1	(1,000NRs) (1,0	(1) (FRN00)	(1,000NRs) (1,000NRs) (1,000Yen)	1) (1a,000,000)	(1,DUONRs) (1,0	(1,000NRs) (1,00	(1,000NRs) (1,000NRs)		(1,000Yen) (1,000	(1,000NRs) (1,000	(1,000NRs) (1,000	(1,000NRs) (1,000NRs)	Nks) (1,0001'ca)	(1,000NRs)	VRs) (1,000NRs)	VRs) (1,000NRs)	(L,000NNa)	Na) (1,000Ycm)	(1,000Nks)	(2KN000,1) (2	(1,000NRs)	(1,000Nls)	(1,000Ycm)
GINEKAI.	N. Stage	5	0		٥	0	12,150	12,150	0	24,300 ((66,993	2,700	2,700	9	2,400	13,554 17	21 051721	12,150	0 242	24,300 60,993	993 27,000	00 27,000		54,000	135,540
	2nd. Stage	Ð	Đ	o,	5	- 5	12,150	12,150	9	24,300	60,003	2,705	2,700	9	5,400 [2	13,554 12	12,150 12	12,150	0 24,	24,300 60,993	27,000	27,500	9	54,000	135,540
EARTH WORKS	lst. Stage	9119	1,112	Ξ	10,542	26,460	393,747	51,916	5,087	450,750 1,13	1,131,383	199,949 2	24,596	722 997,2	727,381 ST	570,726 284	284,190 36	36,985 3.	3,778 324,953	953 815,632	327,255	55 114,609	9 11,762	1,013,626	2,544,201
	Zad, Stage 1	184,478	22,578 2	2,405		528,257	318,903	37,906	3,954 3	359,863 91	2 963,239	270,616	106'66	3,423 313	313,940 78	787,989 401	401,598 48	48,428 4,	4,901 454,927	927 1,141,867	1,180,695	95 143,813	3 14,683	161'608'1	3,361,369
PAVISHWIT WORKS						4,710	72 161	7,622					5,889												
	2nd. Singe 3	242,651	24,112 5	5,023	271,736	682,183	22. 96!	001'61	4,496	220,063 3	1175,522	159,362	15,492	7,647	178,501 44	448,038, 252	252,575 24	24.554 5,	5,780 282,909	909 710,102	102 851,060	852,53	18,946	953,264	2,392,693
DRAINAGI: WORKS	1st. Slage	2,067	168	<u>.</u>	3,092	7,761	136,522	32,178	7,565	176,265	142,425	101.974	25,484	5,943 133	133,401 33	334,837 151	151,446 39	39,777 10,	10,049 201,272	272 505.193	193 392,009	98,333	1 23,688	514,030	1,290,215
	2nd. Stage	51.641	22,488 3	3,699	77,828	195,348	18,996	\$\$ <i>C</i> 'R	1,287	29,038	72,885	13,436	6,193	910 20	20,539 \$	51,553 24	24,529 11	11,305 1,	1,662 37,	37,496 94,115	115 108,502	48,741	1 7558	164,901	413,902
SLOPE PROTECTION WORKS	1st. Stage		. 5	3	່ສ	5	168,753	COR'6L	14,586 2	263,232 64	112	. 118,311	46,196	12,960 177	177,467 440	415,442	143,209 73	73,210 21,	21,450 287,869	122,551	551 480,273	25,290 E	9 42,9%	728,568	828,706
-	2nd, Stage	42,712	30,232 3	3,228	221 99	166,092	150,345	53,709	12,399 2	216,453 \$	30,297	139,415	12,039	281 BC1,11	182,592 451	458,306 131	138,930 51	51,544 11,	797,102 592,11	767 505,435	435 471,402	02 157,524	4 38,058	666,984	1,674,130
NOAD SURVITURE!	S. Slave	a	2		8	•	×278	2 622	ž	× × ×	24 647	0,440	2 540	×	K 568		8083	3,662	£20 12.	12.283 30.3		97.5	. 238	30,666	76.97
	-	4,701		302	7,136	116,71		0	•		5	. 5	5				_								
STORMATICAL AND STORMATICAL ST		č		į			ì	9	900	34		,								•	<u>-</u>	2	į	100	Š
		, p	99.5] a			071	0	3 5		}	0	i a		3 0	,	a D	n 0	ř :	701		1			
		;				· 		,	:			:					i								
אינאסע שעונאטן:	2nd, Stage 3	329,929	2,732	71,7 288	333,549	837,208	120,731	1,427	439	U 122,597 . 31	307,718	579,299	6,846	2,107 588	U SX8,252 1,470	0 121 1,476,513 603	121,213	088 6,392 i.	430 122,138	122,138 306,300	500, 442, 583 677, 1, 633, 798	51 4,020 98 17,397	5,425	029'959'1	4,158,116
		. 8	į	<u> </u>			;	į	\$			•	:	,											
	2nd, Singe	23,735	324	<u>§</u>	24,188	50,712	50,160	(00)	372	51,739	508,421	> 0	. .	o	o 5	9 B	43,504 17,904	7967	23 E	38,789 97,360	360 112.019	286 51	, ti, 3	114,716	TEV THE
MISCHAL ANIOHS	N. San	=	=	9	9	·	. 54.0	9 467	. 976	6.00	228 CK	9	7418	3	20 7 th	600 20	144	3	11	756 R5C 6A1 701	233 605	% %	3 2790	244714	510 197
T.	Zini, Singe	e	•	0	5	- 0	53,400	5,637	KOX			34,553	3.647												
& Kenwyd of Othis)											:														
TV.I.O.I.	Ist. Stage 3	356,059	10,863	3,908	370,830	930,783	933,932	16 921,861	31,20% 1,16	1,164,316 2,92	2,922,433 588	588,305 121	121,690 26,	16,776 736,771		1,849,295	708'961 015	107 42,825	5 1,290,142	42 3,238,256	56 2,928,806	9C5'825 9	104,717	3,562,059	8,940,768
	2nd. Stage 8	126,973	95,538	15,655 9	991,120 2,	2,487,711	920,457	139,691	23,755 1,08	2,72 200,580,1	2,720,597 1,20	1,205,381 100	100,818 21,	21,748 1,327,947	,947 3,333,147	3,147 1,535,919	728,151 919,	26,829	572,4575 R	75 4,328,683	83 4,541,684	497,874	7.46,73	5,127,545	12,870,138
																-									

Table 9-6 Project Cost Break Down of Alternative - 2

Table 9-6 Cost Break Down of Allemative -2

				Scenier 1				Ser	Johnson 16-1				See	Section II-2				×	Section II-3				Total			
Description		Foreign	jewy	Dury &	l'cust	Equa.	Fureign	Luqui	thuy &	Tixal	Ispany, 1	Pureign	Lancaí D	Duty & 1	Total	Espaiv.	Foreign	Taxal D	Days	Total	Papiav. S	femily	facul	Daty &	[Seal	Equiv.
		contains	спасису	Tax		γ.	cautainey	. Конплед	T.		۲	enniency ex	сиптенту	Tax		, de	сянныем сл	currency	Tax		, es	cautescy o	Cumming	ï,		5
		(LOUGNIEs) ((NNOON)) (98000R)	(LDGGNRs) (LDGGNRs) (LDGGNRs) (LDGGYea)		(1,000NRa) (1	(1,000NRs) (1,	(1) (58,000)	(1.000NRs) (1.)	(L)NOOYen) (I.)	(1,000NKa) (3,	(1,000NNs) (1,0	(1,000NKs) (1,0	(1,000NR4) (1,	(1,000 Yen) (1,	(1,000NRs) (1,0	(1,000NRs) (1,0	(1,000NRs) (1	(1,000NKs) (1,	(1,000Yest) (1,4	(1,000)NRs) (1,	(1,000NSIA) (1,	(1,000Nks) (5.	(1,0000RL)	(1,000Yea)
GENERAL	ia, Siage	Đ	0	0	9	5	12,150	12,150	0	24,300	60,993	2,700	2,700	9	5,400	13,554	81.5	12,150	•	24,300	66,993	27,000	27,000	Þ	% 00,	25,540
	2nd. Stage	⊋	n	÷	5	ò	12,150	12,150	9	24,300	C(v(,t))	2,700	2,700	6	5,400	13,554	051,51	12,150	c	24,300	166,993	27,000	27,000	٠.	34.00	095,261
Control of the Contro	:																į	;		,		j				
FARTH WORKS	st Stage	9,119	1,112	Ξ	10,543	36,460	393,747	51,916	5,087	450,750 1,	1,131,383	199,999	34.5%	2,786	227,381	570,726	284 190	36,985	3,778	324,953		817,235	114,609	11 762 11	1,013,626	254,20
	2nd. Stage	184,478	\$72,CC	2,405	210,461	528,257	318,003	37,906	3,954	359,863	903,256	276,616	106'66	3,423	313,940	787,989	401,598	48,428	4,901	454,927	1,141,867	1,180,695	143,813	14,683	161,935,191	3,361,369
PAVEMWST WORKS	Lat. Stage	\$293	183	13	CKN	27.6	72.165		330	81.102	200	40.5 P.P.	5 889	9.49	62.136	155.961	X2.902	3,900	1330	93.134	233 766	212.036	22.596	3 620	238.252	598 013
	2nd, Stage	242,651	24,112	\$,003	271,786	6K2,1X3	£/3/9/(I	19,100	968		552,371	159,362	15,492	3,647	178,501	44K,0DK	252,575	24,554	5,780	282,909	710,102	M51,060	\$2,C\$	1X,946		2,392,643
DRAINAGI: WORKS	Ist. Stage	2,067	968	<u>5</u>	3,002	1,761	136,522	32,178	7,565	176,265	442,425	101,974	25,484	5,943	133,401	334,637	151,446	39,777	610,019	201,272	505,193	392,009	98,333	23,68x	514,030	212,092,1
	2nd. Stage	51,641	22,488	3,699	77,828	85,348	18,996	8,755	1,287	29,038	72,8XS	13,436	6.193	910	20,539	51,553	24,529	11,305	1,662	37,496	¥,	108,602	48,741	7,558	164,901	413,902
SLOPLI PKOTIEČTION WORKS	lst, Nage	2	9	5	э	5	168,753	79,893	14.5%	263,232	.212.	116,811	46.196	12,960	177,467	445,442	193,209	73,216	21,450	287,509	72,551	480,273	667661	986	328.508	807.308
		;		:									7									i				
	2nd. Stage	51 <u>7</u> 13	20,232	2,228	66,172	166,692	150,345	\$3,709	12,399	216,453	\$43,297	139,415	32,039	11,138	182,592	45%,306	138,930	\$2.52	11,293	792,105	506,435	471,402	157,524	38,058	9860,984	1,674,130
ROAD FURNITURE	lst. Stage	9	Þ	0	9	5	6.478	2,952	408	¥58.4	24,693	5,670	2.540	358	8,568	21,506	8,081	3,662	220	12,263	30,780	20,229	×1.0	1,286	30,669	76,579
	2nd. Stage	4,76!	2,072	303	7,136	17,911	0	٥	0	0	ō	٥	0	o	c	3	9	0	0	0	0	4,764	2,072	Ę	7,136	116'21
RIVIR CROSSING STRUCTURES	st, Stage	37,576	6,3 88	2,823	46,587	116,933	13,275	2,051	925	16,251	v67,0%	42,714	6,867	3,119	52,700	132,277	62,263	8,183	3,716	74,162	186,147	155,828	23,289	10,583	002,621	476,147
	2nd. Stage	Ð	٥	0	a	0	٥	0	9	0	5	ø	9	9	0	ø	0	9	0	ø	Э	o	÷	ø	O	
Should be seen as a second sec		Ş		į	c c			:	!				-	:		 ;			: }							
	athere are	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7415		Ctc'/s	107		e (> {		2	0	3			-	rog'sel		7 3		•	264,303	576			3,4 70,987
	2	000 TO	0.00	2	65,50 65,00		167,051	75.	ĝ	166777	307,118	142,015	o kk	<u>)</u>	7.C7 28C	(1C'0/\$*)	97 86	8/6	6	C C C C C C C C C C C C C C C C C C C	7,70,52	900'(or')	Ž.	4.617	280 085 1	100,404,4
MINNIE BRIDGE	St. Stage	32,966	7,	173	33,613	8,360 8,360	76,319	1,423	52	78,796	177.778		oʻ	Ó	9	-5	53,599	2,877	715	161,73	143,549	163,384	4,77,4	, k	009,691	83,59
	2nd. Stage	28,944	0	0	28,944	72,649	73,440	0	0	73,440	184,334	5	Þ	.	0	-6	041,04	0 .	o .	49,140	ž,	151,524	٥	8	151,524	380,325
STOCKY TOUGH		c	5	c	c	·	20 A 00	LOPE	ž	063	200	77.	. 5	9	940.41	24.000	5	073 07	=			200	6	,	27.7.7.2	
	2nd Stane		: =		, <	_	1 60	6617	2		16031) i	1 4.67	įį	e Letter and	301 20	9	2012	72.0	2		60.00			100	
of debris))				•	,	i		}				2					i.		ì				}		
************	3	400 700					100							- 1	- 1	- 1									1	
70197	and and and and and and and and and and	FN0.074	12,493	C(4,4		257, 503	: GE DOG	199,592					21 690			292, 198,	\$ <u></u>	97.245				3,153,923	53,020		3.790,605	9,514,419
	Zrid. Staye	717,187	93,052	14,834	825,373	2,071,686	9-13,537	138,684	12360	1,105,604 2,	2,715,000	1,205,381	30.31	21,748	S S S S S	3,333,147 1,447,042	447,047	160,482	26,265	, 688,830,1	4,088,511) 4	4308,447	493.03	20 330 A	PARTERS 123 ARACI	2768.4111

Table 9-7Project Cost Break Down of Alternative - 3

Table 9-7 Cost Break Down of Alternative -3

	-					f					-										-	-			
٠.	L		37	Section 1				Sect.	tection II-I		_		Sertic	Section II-2		_		Section (1-3	1353				1901		
Description		Poreign	Local D	Duty ak T	Total F	Equiv.	Noreign	uCl Exx.1	Duly & To	Total Eq	Equiv. No	Yoreign L	Local Dur	Chury de Toual		Equits. Poreign		a Court	leto.T 35	lżąnie,	v. Foreign	lexal re	Duty &	निकार विकास	Paguiy.
		cantracty ci	carrency	T. X.		الم الم	спиненсу св	сыпцесу Т	Tax	>-	Yen	cuurency cur	eurency Tax	×	,	Yen courency		currency Tax		کر ق	Сименсу	су сиптансу	y Tas		ş X
	<u>್</u> _	(L) (sales/les) (O.	O,000NRs) G,0	(1,000NRs) (1,000NRs) (1,000Ycm)	OUNKs) (1,0		(1.000NRs) (1,0	(1,000N%s) (1,00	1,000NKs) (1,000NKs)		C.D ChubYen) (I.D	noti transport	CLOUDENS COUNTY	(LOGONIA) (LOGONIA)		(LOKITOR) (LOGINES)		(1,000NBs) (1,000NBs)	CRA) (LJOORGA)	- 1	(1,000 Ven) (1,000 NA)	Ka) (1,000NRA)	(1,000NBa)	(1,000NPs)	(t/000Y-on)
GINRAL IN	Iv. Nagge.	0	a	9	æ		05(1,5)	12,350		24,300	60,993	2,700	2,700	c	\$,400	13,554	12,150	12,159	0 24,	24.30 e	60,993 27.	,75 400,72	27,500	0 54,000	00 135,540
ā	2nd. Stage	0	٥	p	Đ	- 5	12,150	12,150	0		66,993	2,700	2,700	0	5,400	13,554 12	12,150	12,150	0 24	24,300 6	60,993 27,	27,000 27,	27,000	0 54,000	US,25E1 US
EAICTH WORKS	Ivi. Stage	9319	317	=	10,542	26,463	393,347	31,916	\$ 1383	1,1 455,026	CRC'tCt't	346,941	24,596	2,786	27.381 S	570,726	284,1960	36.985	3,778 324,	324,953 811	815,632 887	887,255 114,609		25,E10,1 597,11	26 2,544,201
	2nd, Shape	184,478	23,57K			52k,257	COO'RIC	37,906				270,616						48,429.	4,901 454	454,927 1,341	1,141,867 1,180,695	595 143,813		14,683 1,539,191	91 3,361,389
PAVEMWNT WORKS	fat. Stage	166,395	16,559	3,411	186,365	467,776	2+1'981	619,81	3,739 2	208,500 5	522,235	150,9%	15,103	3,033 16	169,132 4	424,521 229	239,329	23,939	4,NUS 263.	262,976 67.	672,871 742,	742,862 74;	74,220 143	14,991 832,073	73 2,088,503
•	2nd. Slage	120,084	11,123	3.375	134,582	337,801	126,357	11,706	3,553		355,531	102,522	965'6	2,883	2. (36)	288,402 162	162,536	15,055	4,570 182,161		457,224 511.	511,529 47,	47,380 14,	14,381 573,290	90 1,438,958
DRAINAGII WOKKS	lst. Stage	19,860	7,430	1,084	28,383	71,241	136,522	32,178	7,565	176,265 4	442,425	101,974	25,484	5,943 13	133,401 3	334,837	151,446)) <i>mr</i> ,90	10,049 201,	201,272 500	505,193 409	409,811 104,	104,869 24,641	41 539,321	21 1,353,696
ā	2nd. Stage	14,390	6,632	27.0	21,997	55,212	18,996	8,755	1,287	29,038	72,885	13,436	6,193	2 016	20,539	51,553	24,529	11,305	1,662 37,	37,4% %	71.115	71,351 32,	32,885 4,	4,834 109,070	70 273,766
SLOPH PROTRICTION WORKS	Stal Sust	0	0	0	٥	5	168,753	29,893	14,586 2	263,232	212	118,311	46,196	12,960	77.467	+15,442 192	, 602,209	12 012.07	21,450 287.	27. 649, 722	722,551	480,273 199,	199.299 4%	48,996 728,568	907.823.1 89
ř.	2nd, Stage	42,712	20,232	3,228	571,50	166,097	137,861	524,75		•	495,349	(29,345	27,420		167,272 4	419,853 (22	, 626,123	44,169 10	19,209 171,	m we m	445,041 432	432,895 139,	.èz 25,716	15,450 608,121	11 1,526,314
ROAD FURNITURE	is: Shape	٥	5	0	٥	5	6,478	2,952	408	acs'6	24,603	5,670	2,540	328	8,568	21,506	8,081	3,662	520 12,	. 2,263 34	30,780	20,229 9.	21.54	12% 30,669	76,97
	2nd. Stage	1921	2,072	300	7,136	116,71	0	.	0		5	9	٥	э	0	0	0	9	0	•	4	4,76! 2.	2,072	303	7,136 17,911
RIVIR CROSSING STRUCTURIS 15	lat, Stage	37,576	6,188	2,823	46,587	116,933	13,275	1,051	925	16,251	40,793	42,714	6,867	3,119 \$	1 00/25	132,2771 63	62,263	8,183	3,716 74,	74,162 180	186,147 155	.cz 823,221	101 682.02	007,691 682,01	90 476,147
rs.	2nd. Stage	5	5	9	0	5	0	Ð	9	2	5	0	٥	o	O	5	÷	0	Ð	0	8	0	0	0	0
MAJOR DRIDGE	lst, Stage	281,667	2,163	712	284,542	114,200	9	Ð	. •	0	- 0	9	9	9	9	0	121,214	888	236 122	122,138 300	305,566 402	402,881 2,	2,853	948 406,680	79C,1400,1 08
4	2nd. Stage	329,929	2,772	888	333,549	802,7EE	120,731	1,425	139	122,597 3	H17,705	\$79,299	6,846	2,107 58	588,252 1,4	1,476,513 600	6CR,C00	6,392	1,991 612,	612,222 1,534	1,536,677 1,633,798		17,397 5.	5,425 1,656,620	20 4,158,116
MINNISK BIRIDGIS	1st. Stage	23,755	ğ	35	24,188	21/13	96,360	1,007	372	1 467,12	129, H65	9	Þ	5	Ð		43,574	2,682	633 46	11 6889	711 169,711	117,689	4,013 1,	1,114 122,816	16 306,368
a	2nd. Stage	23,755	324	3	24,188	60,712	90,360	1,007	372	1 (62,12	129 865	9	÷	9	0	-5-	37,904	550	228 38	38,789 9	97,360 112	112,019	1,988	709 114,716	16 287.937
MISCELLANIOUS	1st. Stage	o	o	a	0	. 6	80,486	9,407	946	50,839	228,000	61,639	7,418	33	1 812'69	174,992 9.	1,481	10,568	201 [211]	105,162 25	28,937	73,606 71	27,399	\$17,625 027,2	506,1935
(Maintain of serces road 2)	2nd. Stage	5	0	0	9	5	53,400	5,637	808	59,845	150,211	34,553	3,647	523	38,723	97,195	64,394	151.79	27 27	72,165 18	181,134 152	152,347 16,	16,081 2,	2,305 170,733	33 428,540
al Removal of didens)		•																÷							
101/AL	lst. Stupe	538,581	33,776	8,250	\$80,607	1,457,324	1,047,913	210,173	33,62% 1,	3,5 117,185,1	3,242,202	694,003	130,904	28,860 84	843,767 2,1	2,117,855 1,20	1,206,937 2	211,844 40	46,303 1,465,084	1	3,677,961 3,477,434	1	190,711 799,832	MI 4,181,172	72 10,494,742
2	2nd. Stage	720,109	66,693	11,283	798,085	2,003,193	837,888	126,543	21,967	986,398 2,4	2,475,859 1.	912,801,1	90,203	20,305 1,24	,249,027 3,3	3,135,058 1,42	1,429,879	144,953 2.	24,535 1,599,367		4,014,411 4,126,395	- 1	428,392 78,	18,090 4,632,877	11,628,57

Table 9-8 Project Cost Break Down of Alternative - 4

Table 9-8 Cost Break Down of Alternative -4

	-			Sertion		1		9	Suction (1.1				3	Carrier 11.2				3	Coming B.3				5	US\$ 1.0 = NRa.45.88 = Yen 115.08	45.88 ± Ye	115.08
Description	,	Noneign	E E	Duty &	lase!	Facily	Porcigo	[men]	Doty &	lago!	Squiv.	Poreign	- Took	Sy's.	Tional	Jauin,	loreign	local	ı	l'otal	Ecusiv	Poreign	100	Dury &	Total	l'inuive,
-				۾ .				,	á	!			,	; ; 								٠.	٠.			
-		, man	Ì	<u>[</u>		<u>.</u>	Ì		•		_			Ę				2								
		(1,0kr/Sks) (1,0kuSks) (1,000Sks) (1,000Sks)	I,UKUN'Ra) (, (28N000, 1	1,000N(s)	(1,000Yen)	(1,000NRs) (1,000NRs)	í	(1,000NRs) (1,000NRs)		(1,000Yen) ((1,000NKs) (1,	(1,000NR4) (1,	(1,000NRs) (1	(1,000NRs) (I	(1,000Yen) ((1,000NRs) (I	(1,000)NRs) (1,	(1,000NRs) (1,	(1,000NRz) (1	(1,000Yen)	(1,000NRs) (1	(1,000NYs) (1	(1,000/NKs) ()	(1,000NKs)	(1,000Ycm)
`	•																									
GINBRAL	1xt. Singe	9	0	. 3	0	0	12,150	12,150	٥	24,300	(4,993	2,700	2,700	0	5,400	13,554	12,150	12,350	0	24,300	56,99	27,000	27,000		54,000	135,540
	2nd. Stage	0	p	a	0	9	12,150	12,150	o .	24,300	66,993	2,700	2,700	0	5,400	13,554	12,156	12,150	0	24,300	66,993	27,000	27,000		54,000	135,540
									:																	
EARTH WORKS	3st. Singe	9319	1,112	Ξ	10.542	26,460	393,747	51,916	5,087	450,750	1,131,383	666,861	24,596	2,786	227,383	570,726	284,190	36,985	3,778	324,953	815,632	\$87,255	114,009	11,762	1,013,626	2,544,701
	2nd. Nage	184,478	23,578	2,405	210,461	528,257	000'R16	37,906	3,954	354,463	903,236	276,616	33,901	3,423	313,940	986,787	401,598	48,428	1,901	454,927	1,141,867	1,180,695	143,813	14,683	1,339,791	3,361,369
SEAOW TRANSPARE	9	900.331	97 91	175	376 401	, i	60.000	217.51	ç	COS POR	£	500.051	5		540 143	5.5	270 220	71 630	90.0	700 036	 \$	COR CPL	56. FE	9	25	250
CANDA ICAMETANE	23.4	8.5	60E'01	-	corres	40/1/10	9001	619/81	6.0	me gor	ctt, e.c	066,000	for's	con'c	261,701	176,474	30.60	66,63	500,	0/0'807	1/8/70	700'767	المسرا	K.	K15,043	7,000,000
	2nd. Stage	120,084	11,123	3,275	134,582	137,801	126,387	11 706	3,553	141,546	165,531	102,522	967'5	2,883	114,90	288,402	162,536	\$\$0'\$1	4,570	182,161	457,224	\$11,529	47.380	14,781	573,280	1,438,958
DRAINAGE WORKS	lst. Stage	19,869	7,430	1,084	28,383	18,15	136,522	32,178	7,565	176,265	442,425	101,974	25,484	5,943	133,401	334,837	151,446	39,777	10,049	201,272	505,193	409,811	104,869	24,641	539,321	1,353,696
	2nd. Suge	199,12	22,48B	3,699	77,828	195,348	18,996	8,755	1287	K£0,62	72,885	13,436	6,193	910	20,539	53,18	24,529	305,11	1,662	37,496	¥,115	709'801	48,741	7,558	164,901	413,902
STATE OF THE PROPERTY OF THE P	4	ć	4					. !				1		Š	į			Š	Ş	,		į				
SECOND PROTECTION WORKS	ISI. Stage	0	⇒ .	5	0	5	168,733	79.893	14.586	260,232	212	118,311	961.99	12,960	14.46	58. 58.	(93,20)	13,210	12.00	503 232	12,551	400,775	Ž.	85.936	725,568	1,828,706
	2nd. Stage	42,712	20,232	3238	571,80	166,092	137,861	47,955	11,554	025,791	495,399	129,393	27,420	10,459	<i>TLT 19</i> 1	419,853	122,929	19.	10,209	177,307	445,041	432,895	139,776	35,450	608,121	,526,354
KOAD FURNITURIE	Yr. Stage	5	o	٥	Đ	-5	6,478	2,952	408	858.4	24,693	5,670	2,540	35%	\$,568	21,506	1,081	3,662	220	12,263	30,780	20,229	42.	1,216	30,665	76.979
	2nd. Slage	4,761	2,072	303	7,136	116,71	9	0	0	0	· •	0	0	9	0	-5	0	٥	Ç	0	o	192)	2,072	303	7,136	17.911
				-																						
RIVIS CROSSING STRUCTURISS	1st. Stage	37,576	6,188	2,823	46,587	116,933	13,275	2,051	925	16,251	066,04	42,714	6,867	3,119	52,700	132,277	62,263	8,183	3,716	74,162	136,147	155,828	23,283	10,583	189,700	476,147
	2nd. Stage	a	5	o	Đ	0	9	.	9	0	э	Ç	ə	0	၁	5	9	•	0	٥	ō	٠	ο.	•	5	" \$
MAJOK BRIDGE	1st. Stage	392,440	3,642	1,235	397,215	997,261	9	0	0	э	- 3	9	Ð		o	- 5	189,863	88	332	191,126	479,726	582,303	4,573	1,565	588,441	1,476,987
	2nd. Suga	162,300	570	176	163,046	409,245	120,73;	1,427	439	172,517	307,718	579,299	6,845	2,107	588,252	1,476,513	498,726	5,704	1,755	506,185	1,270,524	361,056	14,547	4,477	1,380,080	3,464,003
MINNIR HRIDGE	1st. Stage	32,966	474	173	33,613	84,369	76,819	2,423	554	78,796	877.778	9	0	5	o	5	53,599	2,877	715	57,191	62,249	163,384	4.774	1,442	169,600	425,996
	2nd. Singe	28,944	÷	÷	28,946	72,619	73,440	•	=	D69*CJ.	184,334	•	2	=	a	0	49,140	•	ə	49,140	18,34	151,524	•	٥	151,524	380,325
	<u>-</u>	÷													:											ىنىـــــــــــــــــــــــــــــــــــ
	1st. Stage	0	¢	0	٥	•	80,485	701.9	કાર	4C8'04	22h,086	65,16	7,418	5	69,718	174,992	93,481	10,568	1.13	103,162	258,937	233,606	27,393	2,720	263,719	526,190
	2nd. Stage	5	J	0	9	5	53,400	5,637	SCH	59,845	150,231	24,553	3,647	223	38,723	97,195	395	1,62,0	974	72,165	181,134	152,347	16,081	2,305	170,733	OF2,824
. & Remaral of debrit)															÷	<u>-</u>		:								
TOTAL	lst. Stage	595,883	35,405	8,835	702,805	112,805 1,764,041	1,074,372	210,589	33,810	1,318,771	3,310,115	684,003	130,904	28,860	843,767	2,117,855	1,285,611	212,282	46.481 1	1,544,374 3	3,876,379	3,702,551	589,180	117,986	4,409,717 11,068,390	066,390,
	2nd. Stage	594,920	80,063	981,51	688,169	688,169 1,727,304	860,968	125 536	21,595			1,138,519	90,203		1,249,027		1,336,002	143,6UK	24,071 1,505,681			3,930,409	439 410		4,448,976 11,166,930	0.66,930
						1					J					1										

Table 9-9 Project Cost Break Down of Alternative - 5

USS 1.0 = NR.45.88 = Yen 115.08

Table 9-9 Cost Break Down of Alternalive -5

	-					1					-	-				-		-		-	-					
	l		š	Section 1		_		Sea	Section II-1		-		Sea	Section 19-2		-		×	Section 11-3		+			Total		1
Description		Fuccign 1	lucul D	Duty &	Total	Equiv.	Porcing.	Local E	Dury &	Total	Equiv. J	Voreign	Lucrat	Duty & T	Total 8	Papelly, F	Foreign	Local	Duty & Ti	Your Ex	Equiv. F	l'oreign l	Local	Dury & To	Total E	Equiv.
	5	cuuroney cu	currency	Ĭ,		, F5,	свителеу са	currency	TAX.		Yen	кэ баналаг	currency 1	Tax		Yen	enarciscy cu	cumency	Tax.		Yen	спапетку си	currency '	Xet.		Υς.
	6.0	OONES) (1)	(4,000)SRs) (1,000)Ks) (1,000)Rs) (1,000)SRs) (1,000)Yes)	XMNRs) (1)	OUUNRA) (1.		(1,000NRs) (1,	(1,990NRs) (1,000NRs) (1,000NRs)	DOONERS) (1)		(1,000Yen) (1,	(1,000)NRa) (1,0	(1,000NRs) (1,000NRs)	0'1) (5)N00	(1,000NRs) (1,0	(1,000Yen) (1.)	(1,000NRs) (1,0	(1,000NRs) (1,0	(1,000NRs) (1,000NRs)		(1,000Yca) (1,000NRs)	- 1	Ø1) (78K200°1)	(1,000NR ₄) (1,00	(1,000NRs) (1,0	(1,000Yes)
CHENTRAL BALS	Ist. Stage 2nd. Stage	2	e	a	ə		05,1,51	12,150	9	24,300	60,993	2,700	2,740	0	5,400	13,554	12,150	12,150	Đ	24,300	661,993	000,75	000,72	5 0	54,000	035,540 u
EARTH WORKS 184.7	Pst. Stage 2nd. Stage	085'12.1	22,760	2,317	765,502	\$15,518	679,756	82/284	8,551	776,091 1,	1,947,988	358,847	45,416	4,643	,1 3*4,80°	1,026,454	398,662	50,191	5,127	453,980 1,1	1,139,490	1,614,835	205.091	20,03% 1,3	1,841,614 4,	4,622,451
PAVEAWNT WORKS 151.5	Ist. Stage 7	242,651	24,112	5,023	271,786	682,133	274,795	27,466	5,54%	608,706	772,481	522,459	22,285	4,502	249,746	0 20, K62	357,348	35,317	7,134	395,799	993,455 1.	093,753	081,801	್ ಬಾರ್ಷ	0 0	075,101
DRAINAGIE WORKS EN SAG.	lat, Stage 2nd, Stage	51,641	22,488	3,699	77,828	W.C.201	139,370	33,696	7,754	180,820	153,858	98,786	24,260	5,764	128,816	323.313	144,428	37,256	529'6	658.161	480,311	434,235	117,700	26,842	578,817 1,452,831	452,833
SLOPE PROTECTION WORKS 181.5	ist. Stage 2nd. Stage	42,712	20,332	3,228	50,172	166,092	171,215	130,976	26,720	470,873 1,181,891	168,181,	249,226	74,465	23,555	347,246	771,587	320,003	119,223	32,005	471,231 1.1	062'281'1	925,112	344,896	35,514 12	0 0	3,402,360
KOAD PERNITURIE 134.1	1st. Stage 2mJ. Stage	4,761	2,072	303	7,136	17,941	6,478	2,952	£0.8	8,83.4	24,693	5,670	2,540	358	3,568	21,506	180'8	3,662	220	12,263	087,00	24,990	0 0	985,1	37,805	74,893
RIVER CROSSING STRUCTURES 14.	1st, Stage 2nd, Stage	35,878	5,897	2,690	44,395	10,40	7,652	437	661	3,288	8,253	3,979	\$55	: 566 2	4,933	23,232	12,328	1,892	651	12,073	37,828	54,767	8,881	4,039	67,687 0	169, 894
MAJOR BRUXDE 256.	1st, Stage 2nd, Stage	526,136	8123	61613	534,267	1,341,010	120,731	1,427	439	192,22:	RIZ LINE	579,293	6,346	2,107	588,352 L,	1,470,513	251,152	0.000	2,113	701,865 - 1,761,681		315,912,1	1,041	6,572 15	1,946,981 4,	4,886,922
MINNER BRIDGIF 151. 1	1st. Stage 2nd. Stage	38,602	526	133	39,205	98'656	81,835	1,636	\$009	84,076	211,001	0	.	o	٥ .		67,344	3,054	377	1,214	7.87.1	187,781	\$228	\$55.1	595,461	488,433
MISCIELLANDOUS IM. (Manning of extens youd 2nd. (Removed of querie)	Dat. Stage Ziwi, Stage		Ö	٠.	5	0	80,486	9,407	9	90,839	228,006	61,639	7,418	3	89,718	174,992	91,431	895,01	, E11,1	103,162	258,937	233,606	27,393	2,720	93,719	266, 353
YOYAL IS.	1st. Shage 1, 2mt. Suga	1,119,891	164,245	19,350 1	05,121,150	, ,	1,711,424) 107,931 d	51,176 2	2,070,531 5,	5,197,003 1	1,583,145	0 0	41,889 1,8	0 0	4,547,164 2	2,100,977	0 0	59,314 2,4	59,314 2,440,244 6,125,012 0 0 0		6,515,437	878,714	0 0	0 0	990,359

9.7 Maintenance Cost

Referring to the maintenance work items and the corresponding quantities estimated in Section 8.4 as well as the maintenance cost data obtained from DOR, the maintenance cost per km per annum was estimated in round numbers applying the unit prices analyzed in the above.

Maintenance Items	Alternative 1&2 After 1st stage	Alternative3&4 After 1st stage	Alternative 5 & After 2nd stage
(1) Routine Maintenance	<u> </u>		
Cleaning on paved road	<u></u>	7,000	9,600
Patching		25,000	25,000
Re-shaping of gravel surface	80,000	_	-
Removal of debris	67,750	67,750	13,500
Cleaning of causeway	35,800	35,800	
Subtotal of routine maintenace			
in NRs/km	183,550	135,550	48,100
(2) Reriodic Maintenace	225,000	156,250	175,000
Total Maintenace Cost in NRs/km	408,550	291,800	223,100

CHAPTER 10

PROJECT EVALUATION

CHAPTER 10

PROJECT EVALUATION

10.1 General

In this chapter, alternatives of development plan of the Project Road proposed in Chapter 6 are evaluated by each alternatives. Optimum road development plan is selected based on these evaluation. Alternatives of road development plans are evaluated through amount of benefit, Internal Rate of Return, (IRR) and total cost required for the implementation of the plan. In financial evaluation, revenue from toll road is studied under the probable toll rates to be charged as well as toll collecting system. Total evaluation is carried out considering these results as well as technical constraint of implementation and socio-economic impact expected of.

10.2 Economic Evaluation

10.2.1 Basic Stance for Economic Evaluation

In order to evaluate alternatives of road development plan by stage of construction, two types of economic evaluation method, say Total Evaluation and Partial Evaluation are introduced as explained hereunder:

Total

Evaluation: Evaluation of road development plan which includes evaluation of second stage road construction.

Partial

Evaluation: Evaluation of first-stage of road construction in partial.

The opening year of the Project Road is set at 1999 for the alternative 1-4 of road development plan and 25 years of project life after the opening is assumed for these cases. Opening year of alternative 5 is set at 2002, and same period of project life is assumed.

Discount rate or opportunity cost of capital in Nepal, which is basic information for the evaluation of the alternatives, is fixed at 12% through the consultation with Nepal government.

10.2.2 Cost Disbursement Schedule

Cost disbursement schedule which includes annual maintenance expenditure for each the road development plan is prepared as shown in Table 10-1 after the subtraction of transfer factor (tax and customs) which is included in the project cost estimated in Chapter 9. Second stage construction is assumed to begins in 2006 and end in 2009 in alternative 1-4, all of which are cases of one-lane road construction at the first stage.

Table 10-1 Cost Disbursement Schedule (Economic Cost)

Alternative 1 Case 1. Total Development Plan (include 2nd Stage Dev. Plan)

Stage	Construction	Works to be	Project 1991 1994 1995 1996 1997 1998 1999 2000	1092	1994	1995	9661	1997	1998	1999		2001	2002 2003		2004 200	2005 20XK	7002	2008	2009	2010	10 2011	11 2012	2013	3 2014	4 2015	5 2016	5 2017	2013	2019	2020	2021	2022 2023	3023	15.	2nd	Total
Constr.	Section	dono	[]							-	2				6 7	× ×	-	Ë	=	12	13	7	13	5	-1	<u>==</u>	6	\$	21	22	ន	24	25	Stage	Stage	
1st Stage						,	;			V : Opened t		ımffic	\dashv	\dashv	-		_	_	\dashv	.". >	V; widening completed	S comp	leted		_				_]				-			
!	Soc. 1	Single-lane road	2 Y		XXXXX XXXXX	XXXXX						-															_		[
	Sec. 2	Single-lane road	5 4		XX	KXXXX	RA REMEN MARNE ANNA MARKE NAK	XXXX X	XXXX	×		-		-	-	-	_	_	\dashv	_	-			_			_					_	-			
2nd Slage																	_			_	.,	_											- <u> </u>			
, v	ec, 1 and Sec. 2	Sec. 1 and Sec. 2 Widening to 2 lane 4 Y	× ×													×××	***** ***** *****	XX	XXX			_														
Engineering	Engineering Services Cost			142	9£	36	36	36	36	34					204		. X	æ	-12	97.		_												356	513	869
Construction Cost	n Cost	'			577	577 577	576 576 576	576	57.6	576			-			1.2	245 1,245	15 1.2	1.244 1.244	=		-	_		_								-	3,458	4.978	8,436
Operation a	Operation and Maintenance Cost	Cost			Ŀ					115	۶ç	92	25	26	- Ş	56	36	36	5	·c	-	-	-	7	7	7 221	1		7 7	7	7	7	-	27.1	389	660
		Total		142	142 613 613 612 612	613	612	612	612	72.5	56	92	92	26	26 2	30 1.3	230 1.349 1.349 1.336 1.330	49 1.3.	36 1.3.	30		-	-	-		7 221		-			7	7	7	4,085	5,880	9,965
			Unit: million NRs.	lion N	ا ي																															

Case 2 Partial Development Plan (exclude 2nd Stage Dev. Plan)

Alternative 2 Case 1 Total Development Plan (include 2nd Stage Dev. Plan)

		-			l				-				-	ŀ					-				-			-		-	-							
Stage Construction	on Works to be	Project 1993 1994 1995	1993	1994	1393	1996	1996 1997 1998 1999 2000	8661	6661		2001	2002	2003	2004	2005	2006 2007	2007	2008 2009		2010	2011	2012	2013	2014 2	2015 2	2016 2017		2018 20	2019 20	2020 20	2021 20	2022 2023	<u> </u>			Total
Constr. Section	done	Life	_			7			-	~	r	-	*	٦	,	~	-	<u>c</u>		2	=	Ξ	. 51	٢	<u></u>	<u>~</u>	- 61	20 2	21 2	22 2	23 2	24 25	Stage		Stage	
tst Stage			ü						>	V : Opened 1	to traffic	J		_						V: widening completed	ning c	unplete	-						_		_					
Sec. 1	Single-lane read	2 7		XXXX XXXX	KXXXX					<u> </u>	_			·[\dashv																	
. Sec. 2	Single-lane road	5 7		**	XXXXX	KXXXX.	AR KRAKK MAKAK MAKAK ARANA AKK	TXXX.	XX	\neg	1	7	-											-					_							
2nd Stage					_			\exists																-		-		-								
Sec. 1 and Sex	Sec. 1 and Sec. 2 Widening to 2 lank	4 4													.*	XXXX	XXXX	***** **** ****	XXXX							_		_								
Engineering Services Cost	051		2	ñ	*	*	F	*	F	-		-	-	7	Š	3	12	72	72				İ	-		\dashv								379	483	298
Construction Cost				61.6	614 614 614	614	E.	613	613	_						1.187	1.186	1,186	1.186		Ì				\dashv			-						3,681	4,745	3.126
Operation and Maintenance Cost	ance Cost		\dashv		7	_			=	ä	32	522	52	5,	22	92	×	- 2	=		-	~	-	7	-	12	7	F	-	-	1			27.1	389	Ş
	Total		151	(52	652	652	151 652 652 652 651 651 766	159	766	56	526	26	3.6	36		1,2%6	1,284	220 1,286 1,284 1,273 1,268	1,268	7	7	7.5	7	7	7	22.1	7	- 7-	7	7	7		- <u></u> -	4,331	5.6.7	876.6
		Light million MDs		٠																																

Case 2 Partial Development Plan (exclude 2nd Stage Dev. Plan)

Stage	Construction	Works to be	Project 1993 1994 1995	1993	ž 2	- 58	Š.	199	195	1996 1997 1998 1999 2000	χ 9	2001	11 20072	2003		2007 2005		2006 2007	1	2008 20	2009 2010	900	2011 2	2012	2013 2	201.5	2015 2	2016 2	101	2617 2018 2019	2 610	2020	2021	2022	2023	<u>¥</u>		Š	2nd Total
Consir.	Section	done	eli3							-	-7		-	√ .	ئ	,	-	<u>د</u>		c		12	1.1	Ξ	2	ž	-	×.	- 61	203	21	22	23	24	23	Stage	- 1		Stage
Englneerii	Englneering Services			*****			_	}		_		_					\dashv		\dashv	-	\dashv	\dashv	+	-	\dashv	+		-			+	+	\dashv		-		1		
Construct	Construction of 1st Stage					_	-		-	_	V : Opened t	of to I	to traffic	_	-	\dashv	\dashv				-					\dashv													
	Soc. 1	Single-lane road	2 Y		XXXX	****	Υ.																																
	Sec. 2	Single-lano road	2 <		×	AN KAKAK ANARA RAKAK ANAKA MAKA	XXXX	LX XXX	47.77	X X X		_				\dashv	\dashv		-		-		-		-	\dashv					\dashv				_				
Engineeri	Engineering Services Cost			151	38		38	3.8	38	38	8.		_			\dashv		\dashv	\dashv		\dashv										-					379			С
Construction Cost	lon Cost				614	Š	614 614	2	613 613	13 613	-2				[7										3.683			ć
Operation	Operation and Maintenance Cost) Cost					_	_			-21	18	7%	- %	8	56	52	×	- 1	<u>~</u>	22	52				×	я	52	55	178	52	55	8	ន	-X.	423		i	1,076
		Total			8	5	8	22	2	151 652 652 652 651 651 766		52	52	- ×2	78	2.6	26	ક્ર	3,6	178	2.6	26	9,	-52	178	26	26	26	26	178	3,0	26	36	25	178	4.4%			1,076

Unit: million NRs.

Alternative 3 Case 1 Total Development Plan (include 2nd Stage Dev. Plan)

							1																										- [
Stage Cont	Construction	Works to be	Project 1993 1994 1995 1996 1997 1998	1993	1994	1995	1996	1997		1999 2000		2(X)1	2002 2003	03 2004	2002		2007 2007	2008	20X39	2010	2011	2012	2013	2014	2015 2016	2 210	2017 20	2018 20	2019 202	2020 2021	2202 12	2 2023	E.	Syd A	Total	
Constr. Sr	Section	goue	Cile						1	_	7	F.	· -	اء	-	~		듸		2	=	~	22	٥		<u>«</u>	6	20	77 17	73	3 24	73	Singe	Stage	_	
isi Slage								_	-	V : Opened	ened to	to traffic		-		_	-			۷: «بر	V: widening completed	complet	Ĕ													
s	Sec. 1	Single-lane road	2.Y		AKKAN KAKAN	XXXXX			\neg	\dashv		}												;					_							
ι 3	Sec. 2	Single-lane road	5 7		K.K	XXXXX	XXXXX	RA KXXXX XXXXX AXXXX XXXXX XXX	XXXX	*		\dashv	-	_								ĺ		_	-			\dashv		<u> </u>						
2nd Stage								_	7	+	-	\dashv	_	_			_	_								-	-			_	-	-				_
Sec. 1	and Sec. 2	Sec. 1 and Sec. 2 Widoning to 2 lane	۸ ۲						1	-	_	\dashv	\dashv			XXXX	***** ***** *****	X X X X X	XXXXX										1			:			1	
Engineering Services Cost	rices Cost			167	7	Ş	4	5	72	Ŧ	_	_	_		<u>=</u>		70 70	8	8				1	-									418	K 463	38 .	
Construction Cost	žš.				677	773	67.7	677 676	929	676	_	-		_		1,12	125 1,124	1.124	1.124							[_				4.059	7 4.497	7 8.556	
Operation and Maintenance Cost	aintenance	Cost					_		-		33	52	92	2	20	20 2	202	33	2	· 1	-	-	-	1	~	221	-	- F					7 235	377	7 610	
		Total		167	719	719	719	167 719 719 718 832	718		- 52	22	20	202	20 20	12.	204 1,215 1,214 1,209 1,203	1,20	1,203	7	7	7		7	1	221	7			-	7	-	7 4,712	5.337	7,0,01	
			Unit: million NRs.	iion N	RS.																															

Case 2 Partial Development Plan (exclude 2nd Stage Dev. Plan)

				Ĺ	Ĺ	Ĺ	L	L	Ĺ		Ī	Ì		۱		L	l		ļ	ŀ				ļ		İ	Ì	İ		ŀ						
Stage	Construction	Works to be	Project 1993 1994 1995 1996 1997 1998 1999 2000	<u> </u>	99	1005	9651	1997	866	1930		2001	2002	2003	2004 Z	2 2	2001 2005 200K 2007	707 200K	2000		2010 2011	2012	2 2013	2014	2015	2015 2016 2017	2017	2018	2019	2020	2021	2022	2023	, a	- Pag	Total
Constr.	Section	done	C.JB								7	٠.	÷	~	٤	7.	. 8	9 11	10	12		7		91	11	<u>×</u>	61	ន	12	22	22	72				
Engineerir	Engineering Services			XXXXX																									-	-			╂	·	-	
Construct	Construction of 1st Stage): >	V : Opened I	ogjası ol	U		-	-			-												╁╴		-	-	\vdash	
	Soc. 1	Single-lane road	2 7		KXXXX	ARKX XXXX					П							_	-	-		ļ		_					1	\vdash		+	\vdash	-	+	
	Soc. 2	Single-lane road	5 ≺		xx	XX XXXXX XXXXX XXXXX XXXXX XXX	****	XXXX	XXXXX	XXX																			-	-	-	<u> </u>	-	-	ļ	
Engineerir	Engineering Services Cost			167		42 42 42 42	77	12	42	7					H		H			\vdash									 	\vdash	┢	-	-	Ę	-	1 8
Construction Cost	on Cost				21.5	677	57.7	677 676 676	676	9/9		\sqcap																	-		-	\vdash	`	4,059	6	4.059
Operation	Operation and Maintenance Cost	Cost								13	σz	20	30	20	20	-92	195	2	20 2	30	20 20	20 20	02	195	20	20	20	20	20	20	20	195	20	235	283	1,120
		Total		167	719	817 817 917 917 918	719	718	718	832	20	20	20	20	50	20	19.5	50	20 2	32	- R		20 20	195	92	202	20	20	20	20	22	195	20,	4.712	***	507
			Unit: million NRs.	lion NF	ŝ																					ŀ			1				ŀ			

Alternative 4

Case 1 Total Development Plan (include 2nd Stage Dev. Plan)

Stage	Construction	Works to be	Project 1993 1994 1995 1996 1997 1998 1999 2000 2001	5/61	1994	- ×(%	966	1 266	866	02 666	00	2002	02 2003	002 500-1	74 2005		200% 2007	7 2008	2009	2016	2009 2010 2011	1 2012	2 2013	2011	1 2015	2016	2017.	2018		1202 0202 6102	1202	2022 2	2023	<u>z</u>	2md	Total
Constr.	Section	dana	· ==								ر 2		,	٤	7	×	6	CI	11	12	=	ž	2	2	7.	ž	61	20	.7	22	23	24	25 S	Stage	Stage	
1st Stage					<u></u>			L	<u></u>	V ; Opened to traffic	med to t	affic								<u>\$</u>	V: widening completed	remark	pata								,					
	Sac.	Single-lane road	≻	Ť	*****	XXX,	-	-		-	\vdash													-												
	Sec. 2	Single-lane road	5.4	П	KK	XXXX XX	TA STAKK ANTEK ANKER ANK	X X X X	1444	 			\square																							
2nd Stage	_													\dashv	4			_				_		_	_	_						_				ļ
	bec, 1 and Sec.	Sec. 1 and Sec. 2 Widening to 2 lane 4 Y	<u>*</u>							_						X X	***** **** *****	XXXX	A X X X													!				.
Engineerin	Engineering Services Cost			176	44		£	*	1,	Ą.					179		67	(1)	ઝ	ક		_												2	445	23.6
Construction Cost	on Cost				714 714	717	714 714	1 2	157	713		<u> </u>				1.08	080 1 080	080'1 01	070,1 01	6.														4,282	4,319	8,601
Operation	Operation and Maintenance Cost	1000	-					\vdash		· S	2	23	20	202	20 2	20 2)7 02	20	15			7		7		7 221	۲	7	7	1-	7	7	7	235	377	610
		Total		192	CTR T27 827 827 827 827 877	<u> </u>	75.8	75%	15.		Ę	ļ	22	50	20 19	1,16	199 1,167 1,167 1,161 1,155	1.16	1.15		1		1		7	122 /	,	7	1	7.	4	7	1	4.95X	5,141	10,097
			Unit: million NBs	N NO																																

Case 2 Partial Development Plan (exclude 2nd Stage Dev. Plan)

Stage Co	Construction	Works to be	Project 1993 1994 1995 1996 1997 1998 1999 2xxx) 2xx1	1993	1994	\$66	1996	1997	1 866	499 21	50	2002	2 2003	3 2004	2005	2006	2007	2008	2009	20102	2011 2	2013	2013 20	2014 2015	15 2016	6 2017	2018	2019	2020	2021	2022	2023	lst.	puz	Total
Constr. Section	Section	qoue	Lile				 i		.: .		 	-	v.	ى	^	œ	6	2	=	2		-	57	16	×	0	2	5	;						
Engineering Services	rvices			XXRXX			<u></u>		-	<u> </u>	ļ									ļ	-	<u> </u>		1	ļ		_		;		+-	╁			
Construction of 1st Stage	1 1st Stage									o'C : A	V : Opened to te	raffic	_					T		<u> </u>	<u> </u>	-	<u> </u> 	-	-	-	-	Γ		1	1	+	+	+	
	Sec. 1	Sec. 1 Single-lane road	2 7		****	(XXXX)			-		<u> </u>	_						-		1	-	-	<u> </u>	-	\vdash	-				1	-	+	-	+	1
	Sec. 2	Sec. 2 Single-lane road	> ₹		XX X	XXXXX	(XXXX X)	AN ANNA MANNA MANNA MANNA NAN	CXXX XX	ĸ										\vdash	-	\vdash	+	-	-	-	.			T	+	-	-	+	
Engineering Services Cost	rvices Cost			176	44	Ý	44	दत दत		45	_		_							-	\vdash		ļ	-	-					†	-	-	1.5	-	1 3
Construction Cost	150				714	714	714	714 714 714 715	713	713		Н							1			 		ļ	_	<u> </u>				 	-		4.282	C	4 782
Operation and Maintenance Cost	Maintenance	Cost			+			_	_		22	20	20 20	62	50	19.5	30	zu	20	20	62	52	20	2 561	202	20 20	22	ş	۶	S.	195	53	Si Zi	\$88	120
		Total		176	758	758	758	176 758 758 758 758 757 X73	757	x73	20	20 2	20 20	% -	22	503	20.	707	30	20	20	2,0	202	261	20	02	20	ç	,	5	361	<u> </u>	70.0	YA.	040.5
			Unit: million NRs.	Non NF	3.																		1		J			J	ľ	1		Ţ	1	100	-

Table 10-1 Cost Disbursement Schedule (Economic Cost)

Alternative 5 Case 1 Total Development Plan (include 2nd Stage Dev. Plan)

Stage Constructio	Stage Construction Works to be Project 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	Project	1993	1994	5661	1996	1997	8661	1999	2000	2 1002	002 2		2004 2005	35 200	200	2006 2007 2008		2009 2010	2011	2012	2013	2014 2015 2016 2017	2015	016 20	20 210	2018 20	2019 20	2020 2021	202	2021 2022	2023	2024	ŭ	2nd	Total
Constr Section	done								-	~		4		6 7	*	6	10	=	12	13	14	1.5	<u>.</u> و	1.1		2 61	20 2	2 2	22 23	24	25	26	22	Suge	Stage	
Full Construction						<u> </u>			\ \sigma_2	pened	V : Opened to traffic	-	-	-		_								-					-							
Sec. 1	Double-lane road 2 Y	2 \	<u> </u>	*****	1XXXX			\vdash		-	<u> </u>								:																	
Sec. 2	Sec. 2 Double-lane road 5 Y	>-		T S	KX XXXXX XXXXX XXXXX XXXXX XXXXX	XXXX	XXXX	XXXX	XXXX	XXXX	×	\vdash	\vdash									-														
:	·			T	T			\vdash	\vdash		\vdash	-	\vdash	<u> </u>	_	_							_								_					
Engineering Services Cost	as Cost		302		76 76	76	25 76 75		5			-	-	_	_															_				756	0	75
Construction Cost				616	616	816 818 616	816	816	918	918	816	-							·															7,346	O	734
Operation and Maintenance Cost	Intenance Cost								7	-1	7	7	7	7	7 22	221	7	7 ,	7	7	7	7	22.1	~	7	7				7 221	- 1	1 7		49	782	83
	Total		302	266	302 995 994 994	994	994	993 1,000		925	925	7	-	7	7 221		. 1	7 7	4	7	7	7	221	7	7	7	4	7	7	7 221	4 4	6	7	8.151	782	893
		Unit: million NRs.	N No	122																																

10.2.3 Benefit Estimation

(1) General

Vehicle operating cost and time cost are defined as the two of the components of road user's cost in this Study. Benefit by the road development is obtained as the balance of two of the road user's costs estimated through the following traffic simulations:

Case A: Without Project Case

Traffic simulation on the future road network which does not include the Project Road.

. .

Case B: With Project Case

Traffic simulation on the future road network including the Project Road by alternative of road development concept.

Unit vehicle operating cost and time cost, which are essential inputs for the above calibration, is obtained from related study including "The Study on Kathmandu Valley Urban Road Development" done by JICA (1993) as explained in (3) and (4) of this Section.

(2) Road Driving Condition

Road driving condition is one of the major factors which decide the sizes of vehicle operation and time costs on the Project Road. Especially, vehicle speed and period of interception due to probable natural disaster and malfunction of road are two of the major components which decide the road driving condition. With this consideration, regarding the road driving condition, following assumptions are introduced:

1) Vehicle Speed

As a matter of fact number of lanes, pavement condition, surface condition, and road alignment (straight or curve) are major factors which affect on vehicle speed. Vehicle speed by item has been obtained as shown in Table 10-2.

2) Period of Interception

Period of interception by cause is assumed as follow:

Malfunction of Causeway

2 days

Interception due to Land Slide

3 days

Frequency of interception is assumed to be 5 times a year for each case.