43°07' 17.9° ¥		43°11'00.2" #	
r,	Signa-t. 21.427 21.439 21.685 22.165 22.418 22.937 23.387 23.441	r,	Sigma-t 21.126 21.150 21.150 22.144 22.741 22.988
5-14:32 2*51'16. y	Ha. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2-15:16 2-50'50.	£ 28.
Time: 14:25-14:32 Location: 22°51'16.7° Brownish gray 1.6 m 19.0 m	(3) 1138 1138 1137 1138 1138 1138 1138 1138	Time: 15:12-15:16 Location: 22*50'50.0' Graysh brown 1.4 m 7.0 m	128 128 128 144 44 44
•	00 00 00 00 00 00 00 00 00 00 00 00 00	Time: Locati Graysh 1.4 m	8.5 8.5 8.5 8.1 8.1 3.0 2.7
Irvey - 1	EC (mS/Cm) 71.12 51.12 51.12 50.36 50.50 50.78 50.78 50.78 50.78 50.78 50.78 50.78 50.78	Irvey - 1	(ms/cm) 51.30 51.26 50.90 50.60 50.60 50.60
Preliminary Survey - 1 April 24, 1992 Pl-23 ng:	82.00 32.88 32.88 32.88 33.88 33.88 33.88 34.88 34.88 34.88 34.88	8 8± l	32.68 32.38 33.38 33.38 34.08
eadin	76mp. (°C) 26.00 26.01 25.52 24.73 24.73 24.73 24.73 24.88 23.58	adin .	26.43 26.43 24.84 24.84 24.88 23.88
Date: Ap Station: Pil Water color: Secchi-disk reading: Water depth:	Depth (a) (a) (b) (b) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Table APP 1.7-1(24) Py Date: An Station: Py Mater color: Secchi-disk reading: Water depth:	(m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
1801e		Table	
Preliminary Survey - 1 April 24, 1992 Time: 14:05-14:15 Pi-21 Location: 22°51'57.5' S, 43°08'29.3' W Cloudy Greenish brown 12 m	Salinity EC BO CAS A Signa-t CAS A C	50.74 3.0 45 - 50.87 3.0 43 - 50.87 3.0 43 - 8.87 3.0 13 - 1. Survey - 1 Time: 14:25-14:32 Location: 22'51'16.	Salinity EC DO
Prel: April Pi-21 day:		8 4 4	!
isbic AFF 1.7-1(21) FF Date: AF Station: FF Weather on the day: Water color: Sechi-disk reading.	Mater depuii: Depth (m) 0.0 27 1.0 28 3.0 28 3.0 28 3.0 28 7.0 28	13.0 23 15.0 23 15.0 23 16.0 23 Able APP 1.7-1(22)	Acti-disk reading: Sechi-disk reading: Water depth: Depth Temp. (m) (°C) 0.0 26.89 1.0 26.70 1.5 26.18 2.0 25.76 3.0 25.20 3.5 25.21

	3 15							٠,										
	Time: 15:52-16:02 Location: 22'49'55.4' S, 43'14'				Signa-t	20.223	82.53	88	88.68	21, 101	21,388							
	15:52-16:02 : 22*49'55.	e e			丟	7.47	ι	,	ŀ	t	,							
	15:52 on: 22	Greenish brown 1.5 m			3	25	\$	ĸ	16	16	16							
	Time: Locati	Greeni 1.5 m	4.2 m	8	(18	2.9	5.3	2.3	1.1	1.1	1:1							
urvey - 1	23	٠		ន	(mS/cm)	48,95	48.95	48.93	8 23	8	49.55							
Preliminary Survey -	April 24, 1992 P1-27			Salinity	<u>.</u>	31.25	31.25	31.33	31.56	32.22	32.50							
<u>%</u>		r: k reading:	ë	ı	9	26.04	26.04	25,96	25.75	25.55	25.33							
Table APP 1.7-1(27)	Date: Station:	Water color: Secchi-disk reading	Water depth:	Depth	(E)	0.0	1.0	2.0	3.0	3.5	4.0							
				Location: 22,51'01.3'S, 43'12'39.2'					a−t		372	84	156	555	245	238	21.951	
				. 43.1					a-t		215	8	156	<i>₩</i>	245	23	951	
		٠,	क्ष	01.3	Ę				Signa-t	i		R	. 23	27	23	ន	22	
			15:30-15:35	22	Gravish green brown				Ŧ.		1.11	1	1	1	•	1	•	
			32	::o::	ë. E				(Eg/1 (%)	1	33 3	23	88	5	\$2	8	10	-
			Time:	<u>8</u>	Grayis	10.44 10.44 11.14		- 1			n n		5.8	S.5	3,2		0.7	
		Survey - 1	250						(ES/SH)	1	7.7	8.73	50.70	8	SS	8	8 8	
		Preliminary Survey	April 24, 1992	1-25				A Inita	ક	1 6	٠ در	32.37	32.52	32.80	32.20	33.41	33.00	
			-4 € †		reading			8	(3)	8 8	8 8		26.10	25.43 43	25.03	24.75	24.68	
		Table APP 1.7-1(25)	Pate	Station:	Mater color: Sechi-disk reading	Water depth:		nepte Signal	(E)		2.0	o:	2.0	2.5	3.0	3.5	4.0	
		Tab																

							Chotion.	. 6	D199		4000		20,03	20,000	24 22 23
April 24, 1992 Pl-26	1992	23	Time: 15:52-16:02 Location: 22*49'55.4*	15:52-16:02 : 22*49'55	Š	43*14'23.9" W	Weather o	Meather on the pre- Meather on the day	Meather on the previous day:		Clear	Location: 22 o Clear Slightly cloudy	To Apr	, , ,	ocenton: 22 of 01:0 o, 45 ts 11:0 Clear Slightly cloudy
eding:		805	Greenish brown 0.7 m 7.8 m	rom			Air temperature Wind force: Wind direction:	rature: %: ction:			24.8 0 m/s	89 5 5 5	ଛି		
Selinity	ty EC	j.	83 (2)	75	Signar	ı	Water color: Secchi-disk rea Water depth:	sk readin	:8:		Brownis 1.9 m	Brownish green 1.9 m	55		ű
	- [,	1		- 1	. 1									
		ທໍ	7 86	7.58	50 16.919		Depth	Temp.	Salinity	ឧ	۵	20			
		uń	0 74	1	17.513		(E)	E	පි	(m2/sm)	(mg/1)	઼	ጟ	Signa-t	
		'		1	19.800										
.90 31.46	5 40.04	o,	co cv		20.423		0.0	25.47	33.47	83.	5.8	딿	8.07	22.080	
		င်	4	1	20.821		1.0	25.16	33,06	51. 82.	in G	8		21.873	
		o	27	•	21.386		2.0	24.97	33.22	8 8	4.2	않	•	22.051	
.11 32.5		0.9	9 14	1	21.814		3.0	24.65	33.52	50 67	3.1	â	1	22.374	
						11	5.0	24 28	33.83	50.70	8	3	ı	22.724	
							7.0	23.32	34.03	8 8	2.4	\$	ι	22.975	
							10.0	23.72	8. 8.	50.93	3.0	6 5	1	23.306	
							15.0	88	34.54	51.39	3.7	₹ ,	1	23.432	
							9.0	23.51	8.8 8	51.06	3.0	ξ,	٠	23.572	
							24.0	33.48	3.61 3.61	51.04	5.3	4	ı	23.588	

Table APP 1.7-1(26)

Date:
Station:
P1-26
Water color:
Secchi-disk reading:
Water depth:

Depth Temp. (m) (°C)

Table APP 1.7-1(28) Preliminary Survey -1

Table APP 1.7-1(29) Preliminary Survey -1

3:55	3 25.3 S, 43 07 27.4	filter)), 11000 lux(no. 5)	1.75 m 2.7 m			
Time: 08:50-08:55	Location: 22.4	10000 lux (no.5	20000 lux(no. 4	1.75 ធា	Greenish brown	1.4 m	9.0 m
April 25, 1992	51-28	Light intensity onn the surface:	ty at Om:	ensity water depth:		Secchi-disk reading:	
	Station:	ntensi	ntensî	dt int	Mater color:	disk r	Water depth:

Table APP 1.7-1(30) Preliminary Survey -1

43°06'05.2' W									
.9°S, transpa		Sigma-t	20.550	20.612	20.884	20.813	20.979	21.450	21.396
10:20-10:25 : 22*49:08 : brown (not		ጚ	8.33	ı	•	ı	ı	ı	ı
fime: 10:2 Cocation: 2 Greenish bro 0.6 m		3	132	85	97	83	8	37	,
Time: Locati Greeni 0.6 m	8	(mg/1)	8.8	9.2	6.5	5.6	4.2	2.5	ı
25	23	(mS/cm) (mg/1)	50.40	82.83	82	50.17	50.17	50.26	45.05
April 25, 1992 Pl-30 ng:	Salinity	3	31.91	31.93	31.96	32.06	32.19	32.61	32.53
A pr: k readin h:	Temp.	9	26.83	26.48	26.32	25, 15	25.93	25.43	25.41
Date: Apr Station: Pi- Water color: Secchi-disk reading:	Depth	æ	0.0	0.5	1.0	 S	2.0	2.5	2.8

Table APP 1.7-1(31) Preliminary Survey -1

Station: Light intens 1 % light in Water color: Secchi-disk Mater depth:	ity g tensi readi	31 23, 31 m: #8ter	1992 dept <i>h:</i>	Line: Locatio 2000 1 1.4 m Greenis 0.6 m	Line: 10:45- Location: 22- 2000 lux (no. 1.4 m Greenish brown 0.6 m	45-10;56 22,48; 3 30,4), 1	1185
Œ	(m) (°C)	ŝ	(%) (mS/cm) (mg/1)	DO (mg/1)	8	法	Sigma-t
0.0	27.14	31.54	50.45	9.4	142	8.35	20.109
0.5	25.86	31.61	50,23	9.1	136	1	20.250
1.0	26.78	31.83	50.20	6.8	101	ί	20.231
	26.77	26.30	40.10	ı	ı	•	18.283

Table APP 1.7-1(32) Preliminary Survey -1

	43°04′30.7″ ¥			:												
•	lime: 13:50-13:55 location: 22'45'21.9' S. Slightly cloudy 27.5 °C (13:50) 3 m/s		:		Signa-t		19.284	19,755	19.729	20.278	83.83	21.103	21.171	21,430	18.503	
	13:50-13:55 1: 22*45*21. cloudy (13:50)	e S			Ŧ	.	8.17	•	1	ı	,	1	1		1	
	Time: 13:50-1 Location: 22*4 Slightly cloudy 27.5 °C (13:50) 3 m/s	Greenish brown	ឲ		દ		146	t	144	4	8	1	8	o	ı	
	Time: Locati Slight 27.5 °	Greeni 1.0 m	e 0.	8	(mg/1) (r)		9.5	1	9.8	1	8.0	t	ຜ	0.8	ı	
Survey - 1				ន	Į		50.04	49.74	49.40	48.53	49.31	49.57	49:53	49:24	43.67	
Preliminary Survey - 1	April 25, 1992 PI-35 y:	100	٠	Salinity	පි	İ	30.73	31.06	30.74	31.20	31.86	32.14	32, 19	32.33	38.65	
	the day.	readin	u	ienp	ં		27.91	27.11	26.42	25.77	25.57	25.40	8.3 8.3	24.79	25.26	
Table APP 1.7-1(35)	Date: Station: Facation: Meather on the day: Air temperature: Wind force:	Water color: Secchi-disk read	Mater depth:	Depth	Ē		0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	The second second
-	Time: 11:30-11:35 Location: 22 46'80.0' S, 43'05'58.0' W Brown 0.8 m 8.3 m) (mg/1) (%) pH Signa-t	10.3 153 8.27 20.608	145	8	4.4 64 - 21.653	45	22 7.91	1.4 20 - 22.535	0.6 9 - 22.709	0.4 6 - 22.625					
Survey -1	382	EC (mS/cn)	49.76	50.28	50.10	50.04	50.13	83 83	89. 88.	8.3 8.3	80.33					
Preliminary Survey -1	April 25, 1992 Pl-33 ing:	Salinity (%)					33.10									
	or: sk readi th:	18 (S)	26.15	25.75	25.23	25.08	24.65	24.26	24.18	24.00	23.74					· · · · · · · · · · · · · · · · · · ·
Table APP 1.7-1(33)	Date: Station: Pi-3 Mater color: Secchi-disk reading: Water depth:	Depth (n)	0.0	0.	2.0	3.0	0.	0	6.0	7.0	8	-				

	Time: 14:05-14:10 Location: 22-44-58 6 8	Light greenish dark brown			S1808-		18.224	18.234	18.233	19.507	-							
	14:05-14:10	nish dar			75.		8.25	ı										
	tion:	ot green	¥ 6		*		172	,	8	53								
	Tine:	Tage Tage	9 60	8	(T/201)		11,3	ı	10.5	8.2								
Survey - 1	385			ဋ	(I/SI) (IIS/CII)		48.12	48.18	47.90	47.78	1							
Preliminary Survey - 1	April 25, 1992 P1-36	· •	:	Salinity	3		25.45	83.2	23.42	33								
	C (D.	or: Stranding	h:	Temp.	(<u>(</u>)	-	8.06	28.03	2,88	26.21								
Table APP 1.7-1(36)	Date: Station:	Water color:	Water depth:	Depth	(F		0.0	0.5	1.0	 		:						
Tabl									٠									
æ Ъ																		
43.05.57.0																		
ķċ Ņ			Signa-t	20.870	21.162	-3,050	21.365	21,930	-2.773	22.078	22.504	22.658	22.781	22.852	22.950	22.984	23.036	22.579
11:50-11:55 1: 22 45'55 1 brown			Æ	8.30	ι	ı)	ı	1		ı	ı	1	r	1	í	í	,
Time: 11:50- Location: 22 Greenish brown	e		છ	183	137	901	83	£	æ	1	23		16	i	ı	12	1	- 12
Time: Locati Greeni	0.8 m	٤	(1/201)	12.3	တ	7.1	4.7	3.1	2,52			1	::	1	•	0.8	t	0.8
392		ز	(mS/cm) (mg/l)	51.09	50.31	\$.33 \$.33	50.15	50.13	\$ 50.23	50,18	82.83	20.5	82. 32.	55.28 28	50.31	50.32	56.31	50.12
April 25, 1992 PI-34	.;	Calinity	(5)	32,30	32.35	*32.64	32.51	32.38	*33.23	33.13	33, 52	83 88	33, 77	33.83	33,93	33.95	8 8	33.38
on: Poolon:	i-disk readin		<u>i</u> 6	26.55	25.73	25.51	25.46	24.79	24.57	24.65	24.21	24.02	23.91	23.82	23.71	23.88	23.63	23.61
Date: Station:	Secchi-disk	4	E (B	0.0	1.0	1.5	2.0	3.0	3.5	0.4	5.0	6.0	7.0	9.0	9.0	10.0	11.0	12.0

43°03'43.2" W

Preliminary Survey -1

Table APP 1.7-1(34)

Survey - 1	
Preliminary	
(PP.1.7-1(39)	
Table AF	

lime: 15:00-16:05 Location: 22*43'15.7' S, 43*06'06.9' W Sreyish green brown 0.7 m 4.1 m	pH Signa-t	8.36 20.322	- 20.323	- 20.317	- 20.725	- 20.878	- 21.013	- 21.082	- 21.861	- 22.038
tion: Ish gre	8	183	•	184	178	88	38	81	ĸ	9
Time: Locatic Greyish 0.7 m	(1/2u)	11.9	•	12.0	11.7	8.5	5.3	5.	2.2	8
28	EC DO (mS/cm) (mg/1) (%)	51.77	51.82	51.88	51.27	49.36	49.71	49.79	50.38	50.24
April 25, 1992 Pl-39 ng:	Salinity (%)	32.08	32.09	32.06	32.22	32.04	32.11	32.18	32.95	33
Al P: reading	Temp.	27.75	27.77	27.72	26.82	25.89	25.62	25.57	24.92	24.73
Date: Station: P1 Water color: Secchi-disk reading: Water depth:	Depth (m)	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	oc ex

Time: 14:30-14:35 Location: 22*43'56.6' S, 43*04'53.6' W Light.wind (2 m/s) Gravish green brown 0.8 m 4.4 m

Preliminary Survey - 1

Table APP 1.7-1(37)

Table APP 1.7-1(40) Preliminary Survey - 1

43° 05′ 55.8′ W (no. 5) (no. 5)													
.5° S, 3500 lux 3000 lux 1.7 m	Signe-t	20.452	20.461	20.456	21.088	21.216	21.256	21.418	21.474	21.795	22.347	22.620	22.688
Time: 15:20-15:32 Location: 22-44/29 7500 lux (no. 4), 5000 lux (no. 4), 2.4 m 3 m/s Greenish brown 0.6 m 5.9 m	活.	. S. S.	1	1	t	ı	ı	1	1	t	1	t	ì
Time: 15:20- Location: 22* 7500 lux (no. 5000 lux (no. 2.4 m 3 m/s Greenish brown 0.6 m 5.9 m	3	8	1	167	145	132	සු	17	6	83	11	4	
Time: Locati 7500 1 5000 1 2.4 m 3 m/s Greeni 0.5 m 5.9 m	DO (1/30)	15.5	1	10.9	9.7	ထ	9.9	5.2	A RU	o e	6.7	0.2	0.1
28 ii	EC (mS/Gm)	52.05	52.02	52.21	83 88	50.46	20,23	50.08 20.08	2 0	SO 08	50.17	20.54	50.24
Jate: April 25, 1992 Station: Pl-40 Light intensity on the surface: Light intensity at 0 m: 1 % light intensity water depth: Wind force: Water color: Secchi-disk reading: Water depth:	Salinity (%)	32.26	32.25	32.24	32.42	32.41	32.41	32.80	32.63	32.86	33.36	33.62	33.66
hisity on isity on isity et intensity	Temp.	27.77	27.72	27.71	26.11	25.70	25.57	25.51	25.40	24.91	24.33	24.07	24.01
Date: Station: P1-40 Light intensity on the stight intensity et 0 mm: 1 % light intensity wat Wind force: Water color: Secchi-disk reading: Mater depth:	Depth (m)	0.0	0.5	1.0	. 5	2.0	2.5	3.0	ອ	4.0	5	0.0	S.5
	:												

Nind force: Water color: Secchi-disk reading: Water depth:	reading:	P1-37 ng:		Location Light.w Gravish 0.9 m	Clon: L wind ish gre	Location: 22.43 bb.b Light wind (2 m/s) Grayish green brown 0.9 m	, 2 2 5 6 6	43-04 53.6
Depth (m)	Temp.	Salinity (%)	EC D (mS/cm) (mg/1)	OQ (1/8m)	8	无	Sigma-t	
0.0	27.61	31.23	50.45	10.8	166	8.30	19.724	1
4	77 17		50.37	ı	1	ı	19.807	
0	26.51	'n	18.81	10.2	154	ŀ	88.83	
ď	26.15		49.51	•	١	1	22,43%	
0	26.01		60.00	ω Ω.	124	ŀ	20.667	
200	25.75		49.62	6.8	8	,	20.853	
e e	25.58		40.63	5.1	77	t	21.738	
i m	24.62	33.12	50,12	0.7	Π	1	22.080	•
Q. P	22		50.03	4.0	ഹ	1	22.057	
۶. A	1		ı	0,0	0	ı	į.	

Preliminary Survey - 1 Table APP'1.7-1(38)

Station: Plater color: Secchi-disk reading: Water depth:	r: r: k reading h:	95-179 191-38	3	Locati Brown 0.7 a	: ::	22.43.21	22.43.21.6 S,	43°04'59.6'
nanth H	Tegn	Salinity	8	8				
; (E	9	દ	(mS/cm)	(I/Sa)	ජි	丟	Signa-t	
0 0	27.80	31.31	50.70	12.1	185	8.35	19.723	
u C	27 74	31, 33	50.62	•	•	٠	19.758	
; -	3	31.31	49.98	10.9	166	1	19.941	
) Lf	35.35	31.44	65 65	۲- 80.	117	١	20.281	
	26.17	31.56	48.51	6.3	94	t	20.428	
i c	25.96	31.72	49.51	4. 10.	88	:	20.614	
, c	25.23	32.54	50.10	5.5	8	•	21.533	
) er	24.85	32.97	50.15	0.2	4	ı	21.897	
i un	24.78	33.02	50,15	0.2	ო	1	21,956	
, 0	0 F C	33 00	65 13	-	-	•	21,933	

Survey -1
Preliminary
APP 1.7-1(41)
Table .

Date: Station: Pacather on the prevented to the day Neather on the day Air temperature: Light intensity at Light intensity at IX light intensity at Matter color:	May 1, 1992 Station: Pl-41 Peather on the previous day: Meather on the day Mit ramperature: Light intersity on the surface: Light intersity at 0 m: 1 % light intensity water depth: Matter color:	(8:35-68:50 nr. 22*48'31.1' ; ly cloudy, stron, 1 (8:35) lux (no.4), tx (no.4),	5, 43'08'37.9" W 8 wind (12-13 m/s) 8500 lux (no.5) 5500 lux (no.5) 1.2 m	
Secchi-disk reading: Water depth:	eading:	1,2 m 22.5 m		

Depth	Temp.	Salinity	ដ	×	_		
æ	3	ਲੇ	(mS/cm)	(mg/1)	3	₹.	Signa-t
0.0	25.36	30.42	47.64	8.0	115	8.17	19.808
0.5	25.21	8.8	47.17	7.9	114	1	19.989
1,0	25.17	8	22.23	ν,	83	•	19.994
2.0	22.0	33.33	48.12	Δ. 8.	83	•	20.556
3.0	25.03	31.34	48,12	4,4	3	,	20.599
4.0	24.81	32.32	49.17	3.3	\$	ı	21.401
5.0	24.72	32.38	49.20	3.1	45	ı	21.473
7,0	24.58	32.76	8.8 8	2.8	3	•	21.801
10.01	24.12	33. 83.	50.33	1.4	22	7.84	22.593
15.0	24.01	33.93	20.63	1.7	24	ı	22.851
17.3	23.95	34.08	88 88	1.7	%	٠	22.987
8.0	23.95	8.8	S. 33	1	•	1	22.945
21.0	ន	33.10	50.74	1.1	24	1	23.008

Table APP 1.7-1(42) Preliminary Survey -1

vate. Station: Air temperature: Mater color: Secchi-disk read Water depth:	.5	nay 1, 1392 P1-42 P1-42 E:	-7400	lime: 10:10-10:30 Location: 22'46'55.4 28.0 °C (10:20) 0 m/s Greenish dark brown 1.0 m	. 22.46 55.4 (10:20) dark brown	S. 4. S	43.08.02.6
Depth (m)	Temp.	Salinity (%)	5C (mS/cm)	DC (mg/1)	8	茶	Signa-t
0.0	25.53	28.75	46,23	8.3	121	8.21	19.256
0.7	83 83	30.13	46.89	6.0	8	,	19.601
5.0	25.25	30.53	47.21	4.3	83	•	19.925
9.0	25.23	30.67	47.32		83	ι	20.036
3.5	24.97	31.83	48.43	,	•	ı	20,880
o.	24.97	31.83	48.48	3.1	46	ı	20.835
5.0	24.76	32.33	49.20	8.8	Ţ	ı	21.424
7.0	24.54	32.89	49.71	2:1	31	•	21.911
10.0	8. 8.	33.32	50.04	 63	ន	•	22.308
13.0	24.23	33.31	50.13	1.3	82	1	22.347
15.0	24.28	88	50.15	1.3	81	`1	22.365
0 41	24.93	33 43	Ş.	;	,	ï	22 440

	43°08°05 lux (no.5 lux (no.5 lux (no.5 2.1 m	Sigme-t	17.531	18.046	18.778	18.304	19.335	20.109	20.740	21.681	21.881	21.891
	11.3° S, 14000 11000 11000 11000	78	8	'n	ı	1	ı	ľ	•	ı	1	•
	10:55-11:05 n: 22'44'51.3' ux (no.4), 14 ux (no.4), 11 own (not trans	<u> </u>	88	53	92	æ	8	•	45	ĸ	음	တ
	Time 10:55-11:05 Location: 22:44'51.3' S, 4, 25:000 lux (no.4), 14:000 lu 20:000 lux (no.4), 11:000 lu 2.0 m Dark brown (not transparent 0.4 m	06 (1/941)	0.7	7.2	5.3	4.1	4.4	ŧ	5. 5.	7.7	0.7	9.0
arvey -1		EC (mS/cm)	4.7	44.0	45.37	45.43	46.32	47.40	48.45	45.3	49.76	49.76
Preliminary Survey -1	tion: Pl-43 ht intensity on the surface: ht intensity at 0 m: light intensity water depth, er color: color: color: cat depth:	Salinity	21.92	æ. ∷	8.8	83.83	82.78	30.76	31.56	32.64		32.88
	Esity on sity at intensity :: creading	Temp.	83 83	25.47	23. 45.	83 83	% %	25.21	33	24.88	22.53	24.58
Table APP 1.7-1(43)	Date: Station: Station: Light intensity on the Light intensity at 0 m: 1 % light intensity wat Mater color: Scotli-disk reading: Water depth:	Depth	0.0	0.5	1.0	1.5	2.0	2.5	3.0	O. ❖	5.0	5.5
F.												

Table APP 1.7-1(44) Preliminary Survey -1

	×																	
2	10x (no.5)	lux (no.5)	E					Signa-t	16.721	16.970	(7.953	19.050	(9.517	19.961	19.994	20.147	20.685	17.562
ء م	23000	8500						宏	8.23		!	,	8.05 	1		,	1	
13:25-13:45	(no.4),	(10.4)						3	88	313	102	6	쫎	ĸ	83	8		11
Time: 33	15000 lux (no.4), 2300	20000 lux (no.4)	2.5 m	Dark brown	1.2 m	4.2 m	8	(mg/l)	21.9	21.0	7.0	4.7	3.4	2.4	2.2	2.1	ı	1.2
Ę.	3.4			g	÷	*	R	(mS/cm) (mg/1)	46.95	45.79	44.53	45.92	46.72	8.7	47.45	47.70	8.50	43.00
Hay 1, 1992	Light intensity on the surface:	: 0	% light intensity water depth:		1		Salinity	(%)	27.91	27.87	28.18	28.46	30.05 50.05	30.61	8 8	30.85	31.50	27.38
ari o	sity on	isity at	intensity		reading		Temp.	6	28 19	88.8	25.95	25.49	25.41	35.33	25.32	25.31	25.21	25.21
Date:	Light inter	Light intensity at 0 m:	1 % light	Water color:	Secchi-disk reading:	Water depth:	Depth	(m)	0.0	0.5	0.1	Ω,	2.0	2.5	3.0	3,55	හ. හ	4.0

Table APP 1.7-1(45) Preliminary Survey -1

Table APP 1.7-1(47) Preliminary Survey -1

æ }~							-					
43° 13° 06. 7°	Signa-t	14.873	15.670	17.712	18.772	19.285	19.546	19.766	20,130	20.928	21.219	21.445
38 3.0° 3.0° 3.0° 3.0° 3.0° 3.0° 3.0° 3.0°	瓷	8.57	1			1		,	,	t	ı	ı
14:20-14:30 i: 22'46'33.; indy (13:45) i dark brown	ક	215	217	201	160	88	73	83	8	S	æ	۲.
Location: 22'46'33.6' Clear, windy 5 m/s 26.2 °C (13:45) Greenish dark brown 0.6 m 5.2 in	DQ (mg/1)	14.9	15.0	14.1	11.1	6.2	 	4,3	3.5	1.3	9.0	0.4
	EC (mS/cm) (mg/1)	40.80	41.13	43.25	45.40	46.45	46.78	47.78	47.53	48.64	8.78	49.03
tation: May 1, 1992 tation: P1-45 ight intensity on the surface; light intensity at 0 m: A light intensity water depth: ater color: ecchi-disk reading:	Salinity (%)	24.70	25.57 57	27.62	8 8	25 73	30.11	30.37	30.80	31.81	32.05	32.31
sity on nsity at intensity r: c reading	Temp. (°C)	27.52	27.28	25.38	25.47	25.53	25.46	8 8	25.24	25.11	24.74	24.68
Date: Station: Station: Light intensity on the Light intensity at 0 m: 1 % light intensity wat Water color: Secchi-disk reading: Water depth:	Depth (m)	0.0	0	0:1	 	2.0	2.5	3.0	3.5	4.0	ż.	5.0

Table APP 1.7-1(46) Preliminary Survey -1

Station: Meather on t Water color: Secchi-disk Water depth:	he da readii	P1-46 Y: N:	- ച ପ ଘ ଠ ମ	lume: 14:49-14:55 Location: 22"46'46.5' Cloudy and windy Brown 0.6 m	22"46"	66.55 S	43*14′25.2
Depth (m)	Temp.	Salinity (%)	33 (#5/Sw)	EC DO (mS/cm)	3	養	Signa-t
0.0	26.59	25.98	41.63	13.3	192	8.47	16.115
0.5	26.43	25,55	42.77	12.5	79		15,843
0.	25.47	28.23	44.51	7.0	101	1	5
1.4	25.24	88. 83	46.20	1	,	,F	19.448
1.7	85.03	31.19	47.89	2.8	9	,	20.488
2.0	24.91	31.94	48.90	2.0	ম্ভ	ı	21.086
3.0	24.80	32.27	49.15	0.4	u)		21.367

4.0° % (no.5) no.5)									`						
S, 43'11'04'0'9' 14000 lux (no.5) 5500 lux (no.5) 2.5 m	Signa-t	19 219	5	19.202	8	19.270	19,506	19,839	20, 272	20,827	21,831	22,083	22.089	22.117	25.142
v a	要	8.31	1	,1	ı	i	1	1	8.26	ι	1	•	J	,	,
15:20-15:35 : 22:46 02.4 x (no.4), x (no.4), x brown	35 88	178	6	126	124	119	117	,	63	;	88	છ	J	,	83
Time: 15:20-15:35 Location: 22-46 02.07 25:500 lux (no.4), 10000 lux (no.4), 2.8 m 2 m/s 5 Greenish brown 0.9 m	(mg/1)	12.2	13.3	8	8.5	8.2	 co	ı	4.6	1	2.2	1.4	1	•	1.4
<u>.</u>	(mS/Ga)	46.93	46,95	46,95	48.93	47.06	47.11	47.43	47.78	89 139	S.	49.82	48.85	88. 88.	49.85
May 1, 1992 P1-47 on the surface: at 0 m: sity water depth: ling:	Salinity (%)	83.88	8.8	73.67	29.86	88. 88.	30.17	30.52	30.94	31.41	32.78	33.08	33.08	33.10	33.08
ion: P1-47 L intensity on the L intensity at 0 m: Lindt intensity at force: direction: r color: hi-disk reading: r depth:	() () ()	25.99	25.39	26.00	25.87	25.80	25.74	23: 23:	25.12	:: ::	24.53	24.33	% &	24.38	24.27
Date: Station: Fight intensity on tight intensity at 0 i % light intensity at 0 i % light intensity wind force: Wind direction: Water color: Secchi-disk reading: Water depth:	Depth (m)	0.0	0.5	1.0	ις H	2.0	Ω (Z.5	n (70 70	4	4	5.0	2.5	5,8

Signa-t	Topic VI	ומסוב אדי ויי ⁻ כּייטי		rreliminary Mrvey		2 :			
	Date: O Station: P Neather on t Weather on t Air temperat Secchi-disk Mater depth:	Date: October 16, 1992 Station: P2-3 Weather on the previous day: Weather on the day: Air temperature: Secchi-disk reading: Mater depth:	October 16, 1892 PZ-3 the previous day: the day: ture: treading:		Ine: 14:05 Location: 22°59'00.0° Clear Clear 31.7°c(13:45) 1.0 m	14:05 22*59'00 3:45)		s, 43°68°00.0°	æ b
22.83	Depth (m)	(c.)	Salinity (%)	33 (mS/Sm)	(I/g/1)	3	₹	Signa-t	·
23.57	0.0	23.43	30.51	45.54	8.62	124	8.8	20.45	
24.84	0.5	23.38	8 8 8	45.51	8.91	121	6.33	20.50	
8.8	2 17	33.53	કે છે કે છે	4. 4. 8. 8.	8 81 8 05	126	8. 说,	8 8 8 8	
25.38 25.44	2.0	20.80	31.71	44.83	7.95	38	8.32	3 23	
25.89	0.6	8 8 8	31.07	44.95	7.28	8	8	21.83	:
26.41	4. r.	2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	32.71 27.72	83 F	88	8	8.38	8 8 8	
26.46	7.0	19.25	8 8	55.17	3 6	1 1 8 27 8		3 5 3 8	
25.45	10.0	18.00	8	44.76	4.16	, %	1	26.55	
20.47 26.47	13.0	18.66	34.84	44.45	5.12	હ	t	25.55	
75:02	15.0	16.45	8	44.35	5.08	99	ı	25.89	
	18.0	16.40	8.8	44.25	3.95	25	ı	25.70	
,	0.03	16.10	8 5 5 5	44.15	4.92	%	!	25.86	
	2.22	15.88	8 8	44.09	; ;	1 1	1 1	25.72	
43°06'37.5" W								20.00	
	Table AP	Table APP 1.7-2(4)		reliminar	Preliminary Survey - 2	83			
	Date:	October 15, 1992	15, 1992		Time: 11	3:35-			
Signa-t	Station: F2-9 Air temperature: Secchi-disk read	Station: 72-9 Air temperature: Secchi-disk reading: Water death.	***		Location: 22'59'09.* (31.7 °C(13:45)	22°59′08 :45)	s,	43°07′51.0′	æ 'ò
					E 0.0				
22.30 23.80 24.16	Depth (m)	Temp.	Salinity (%)	EC (mS/cm)	DO (1/2m)	3	秃	Sigma-t	
24.18	0.0	23.85	30.30	45.45	10.38	<u>3</u>	8.37	20 02 02 03	
24.25	0.5	23.90	30, 15	45.40	10.20	147	8. 2.	8.9	
25.08	1.0	23.18	8 8 8 8	45.00	88.8	141	8,43	20.25	
25.49	2.0	21.35	3 8	\$ \$ 8 \$	2 s	132	, 6	21.00	
25.22	3,0	21.3	31.45	44.75	8.6	112	200	3.5	
25.23	4.0	21.14	31.45	44.79	7.78	8	8.0	21.79	
26.51	ν. Ω (8.8 8.8	32.42	45.15	7.58	104	ı	22.76	
26.52	0.1	10.63	ह इ.	64.83	6.54	8	ı	24.85	

Time: Location: 22°58'56.9' S Clear Clear

Date: October 17, 1992 Station: P2-2 Weather on the previous day: Weather on the day:

Preliminary Survey - 2

Table APP 1.7-2(2)

돐

8

(mg/1)

35 (m5/2m)

Salinity (%)

E (C)

Depth (m)

25.53 25.53

19.80 19.11 18.01 18.64 17.44 16.88 15.41 15.00 14.23 14.17

42434

Brown 1.3 m 20.7 m

Water color: Secchi-disk reading: Water depth:

vir temperature:

Field Record of the Preliminary Survey-2

Table APP 1.7-2(1)

22*58'38.0"

Time: Location: 2

Clear Clear

Date: October 17, 1992 Station: P2-1 Weather on the previous day: Weather on the day: Air temperature: Mater color: Secchi-disk reading: Water depth:

(mg/1)

(E)/SII)

Salinity (X)

. G

Depth

	32		•							•	•								3¢																
	ა. 88		1.												_	11			15.¢				١	ŧ			. 61	10.2	- ~			~ ~		h #	_ 11
	43°08′58.9°	Signa-t	21.04	8	26.62	2 2 2 2 2 2 2	24 (7	24 44	24.55	24.67	25.12	3 % 3 %	26.02	888	26.03				43°08′15.0′				Signa-t		8.5	22.6	22.7	8.5	2.4.4	25.77	85 S	83.89 92.99	25.99	25.97	
	3 8,	**	8.33	ର ଞ	e :	3 6	8	8.25	ı	ť	r	1 1	ı	1	1 1			<u>r</u>	0.8				盃		8.24	8 8 3 53	8.15	8.16	3 8		1	1 1	1	ŧ I	
2	: 25-15: 2*54*18	(%)	102	8	2 2	5 5	1	75	75	23	\$ 2	z E	3 1	1	1		. ~	7. 5G-13	22 53 2	:45)		•	1	3	23	5 5	101	<u>i</u>	m 00	2	2	8 6	; '	1 1	
Preliminary Survey - 2	Time: 15:25-15:40 Location: 22'54'18.3' Brown 1.2 m 36.8 m	DO (mg/1)	7.24	7.43	8.5	- r	5	5.80	5.82	5.22	4. 8.	4. 4 8. 4	} •	i .	1		Preliminary Survey - 2	Time: 11	Location: 22 53 24.0	Clear 31.7 °C(13:45)	Вгомп 1.1 ш	2.3 B	8	(1/8m)	88.5	- 7 5 4 4 7	7.32	7.31	57.5	5.43	15 15 15 15 15 15 15 15 15 15 15 15 15 1	5.27 18.27	3 1	, ,	
Himinary	TARTR	EC (mS/cm) (mg/1)	45.11	45.11	45.10	40.16	8	44.80	44.75	88.8	8.5	44.35 10.35	43.97	43.94	43.92		eliminary	+			ω ⊷	m	35,	(a) (a)	£5.30	45.20	45.20	45.25	44 84	44.26	44.15	44.14 77.08	44.07	44.05	
£	16, 1992	Salinity (%)	30.30	88	S :3	5 5 5 6	£	33.93	34.03	8.53 3.53 3.53	25.52	¥ % 8 =	38.27	85.33 23.33	88		E	16 1009	7007 104				Salinity	3	88	8 5	32.45	32.57	3 8 8 8	35.05	38.14	35.18 2.18	8	8 8 8 8	
1.7-2(7)	October 16, 1992 P2-7 rr :k reading	Temp. (°C)	22.38	8 8 9	23 E	72 27 27 27	18.74	18.16	18.00	17.85	17.22	17.07	15.74	15 70	15.69		1.7-2(8)	Cofobor	72-8 72-8	meauner on ten day: Air temperature:	Water color Secchi-disk reading	5	Temp.	i	8.8	20.39 20.39	20.49	20.33	17.55	16.33	16.11	15.05	15.98	15.83 8.93	
Table APP 1.7-2(7)	Date: October Station: P2-7 Water color Secchi-disk reading	Depth (m)	0.0	0 2		, c	0	5.0	7.0	0.0	0.5	9 6	8 8 9 9	8.0	36.0		Table APP 1.7-2(8)	Date	8	weather on ten d Air temperature:	Water color Secchi-disk	Mater dep	Depth	î.	0.0	1.0	1.5	2.0	າທ	7.0	0.0	3.0	25.0	9 9 9 9	
	43°07′51.3′ ¥	Signa-t	.8	21.74	23.89	24.65	25.06	25.44	57.63	25.86	26.03	26.19	26.26	-			43°10'04.4'W			Signa-t	31.10	21.22	22.51	22.51	23.86	23.77	3 7 1	11.47							
÷	ρί N	丟	9	2 6	88		7.95	7.0	7		ı	,					.30 7.27 S,			푽	5	8.27	÷ 1	8.11	3 1	ļ	. (٠							
2	:55- :2.56:59 45)	8	, id	35	8	ı	ස	8 8	5.0	80	83	88	ı		6	ų.	0:50-11 22*56′2 (15)	?		2	3	32	21-1 1-1	104	3 8	88	4 G	70							
Survey - 2	Time: 11:55- Location: 22°56'59.5° 31.7°C(13:45) 2.0 m) (I/2H)	,	3 th	5.57		6.51	6.11	6 6 6 7 8	0 6 0 6	3 3 3 3	5.35	1		Common .		Time: 10:50-11:30 Location: 22*56'27.2' S	1.9 a	10.2 ш	00 (1)	51	, 8 , 8 , 8		20.0				- 41							
Preliminary	HWMEH	(mS/Sm)	,	45. 53 33. 53	4.90	44.85	44.50	4.3 S.5	3,5	4 4 5	43.92	43.67	43.67		Back imitana	C TOTTING O	E- 122 4.	, .		32 3-/	in land	46.35 46	4	Ω,	មិ សិ	7	\$ \$	44					:		: .
చ	2661 .5	Salinity (%)		3 8	33.5	84.18	8.43	8, 18 12, 13	8. % 2. %	3 2	35.25	35.35	35.43		Ó	c	16. 1992	••		Salinity	S S	3.85 7.													
1.7-2(5)	October 15, 1992 P2-5 rature: sk reading	Temp.	ĺ	22.52	18.52	18.06	17.25	8.8 8.8	27.01	19.15	15.70	15.35	15.23		(a) 1 3 9/6)	1.1-2(0)	October 16, 1992 P2-6	An temperature. Secchi−disk reading	#	Temp.	3 8	3 3 3	88	នន	3 5	92	<u>8</u> £	1./							
Table APP 1.7-2(5)	Date: October 1: Station: P2-5 Air temperature: Secchi-disk reading Water depth	Depth) (0	1,5	2.0	0 0) (, c	0	10.0	13.0		Table ADD	laule Arr	Date: Octobe Station: P2-6	Section di	Water depth	Depth		0.0	0.1 1.5	2.0	3 4 0 0	5.0	0.0	ם מ							

Table APP 1.7-2(11) Preligate: October 19, 1992 Station: P2-11 Meather on the previous day: Meather on the day: Air temperature:	Mind force: Mater color: Garbage: Oil: Sechi-disk reading: Mater depth:	Depth Temp. Salinity (m) (°C) (%) (m) 0.0 25.73 28.73 4 0.5 25.75 28.73 4 1.0 23.22 30.75 4 1.5 22.00 31.05 4 2.0 21.00 33.27 4	13.20 18.62 17.47 17.30	Table APP 1.7-2(12) Prel Date: October 19, 19 Stalion: P2-12 Water color: Secchi-disk reading: Water depth:	Depth Temp. Salinity (m) (°C) (%) (m	0.0 26.43 28.97 4 1.0 28.45 28.95 4 1.5 26.45 28.95 4	
10:35-10:55 22*53'08.1** S, 43*08'48.1* ¥ 30)	pH Signa-t 8.56 19.56 8.54 19.36 8.40 21.98 8.47 22 92	8.08 8.08 8.08 25.33 25.33 25.33 25.33 25.33 25.33 25.33 27.	. 2 11:10-11:35 22*51:56.7* 8. 43*09*17.9** W		pH Signa-t	8.86 19.38 8.66 19.38 8.66 19.48 8.86 19.88 8.8 21.07 8.32 21.46 4.35 23.31	25.82 25.04 28.08 26.15
Time: 10: Location: 22'53 Clear Clear Clear 29.1 **C(09:30) 0-1 m/s Greenish brown 0.5 m 20.0m	8.80 5.80 5.46 6.45	46.37 8.52 90 44.37 8.15 82 44.33 5.11 75 44.08 5.21 88 43.73 5.89 74 43.61 5.78 74 35.30 6.30 76	Preliminary Survey - 2 Time: 11: Location: 22*51	ä	EC DO (mS/cm) (mg/1) (%)	14.33 13.39 13.39 10.88	43.61 5.51 71 43.43 5.32 88 43.42 5.21 67 43.36 5.28 67 43.36 -
October on: P2-9 er on the pre- er on the pre- er on the day emperature: force: . color: i.disk readin	7emp. Salinity (*C) (*) 25.63 30.02 25.80 30.00 21.38 32.63 20.35 32.63	2.0 20.13 32.73 3.0 18.24 33.87 5.0 17.00 34.40 17.0 16.51 34.72 13.0 15.81 34.98 15.0 15.81 34.98 15.0 15.82 35.03	APP 1.7-2(10) October 19, 1992 on: P2-10	E E 2 3 2 2 2 2	Depth Temp. Salinity (m) (°C) (%)	0.0 25.00 30.00 1.0 25.80 30.00 1.0 25.50 30.05 0.5 24.70 30.25 2.0 22.80 31.10 2.0 22.41 31.50 5.0 19.80 34.65	.
Date: Stati Weath Mind Water Mater			Table Date: Stati	Weat Mind Mind Mare Garb Carb Carb Carb Carb Carb Carb Carb C]		

Time: 13:35-13:50 Location: 22'49'45.0' S, 47'11'56.0' ₩ Greenish brown 0.4 m

Preliminary Survey - 2

October 19, 1992 P2-12

Signe-t

፳

8

(mS/cm) (mg/1)

ឩ

45.08 46.09 45.08 45.08 45.08 45.00 45.00

Time: 11:10-11:35 Location: 22"51'48.8" S, 43"11'32.5" W

Preliminary Survey - 2

Preliminary Survey - 2

Table APP 1.7-2(9)

Clear Slightly clowdy 29.4 °C(10:15) 4-5 a/s Brown No No 0.5 a

Signa-t

悉

8

(1/21)

(ms/sm)

22.12 22.22 23.22 24.10 24.10 24.10

		3.0° #																æ.							
: .		15 S, 43°08°58.0°		Signa-t	18.81	13.23	25.24	20.46	21.11	25.01 12.02	25.30	16,59	15.11					S. 43 07 28.8					Ci dina.+	a digas	
		10:00-10:15 "50'52.9" S		秃	8.25	8.33 83.33	3 23	8.13	8. To		1						15:20-15:35	31.6 S					7		
	2	10:00-10: 22"50'52.9" :00)		8	188	151	28.	833	7 E	e 88	36	55	£-			2	15:2	22,50,31.6	:22			•		. 3	, ,
	Survey .	Time: 1 Location: 22 28.5 °C(09:00) 2 m/s Brown	16.5 m) (#) (1/2m)	12.65	98 02 03	9.8	9.68	3.5	4. 4 8. 88	8.8	5.38	5.82			y Survey	Time:	ocation:	28.0 °C(13:55) 5-6 n/s	Brown	1.1	8 E	٤	(#) (1/8m)	
:	Preliminary Survey - 2		. 	(mS/cm)	46.45	45.71	45.90	45.92	3.5	44.11	43.88	8	30.0g			Preliminery Survey - 2	-		i cir i	* 63	; - i		55	(mS/cm)	26 44
		October 20, 1992 P2-15		Salinity (%)	29.40	8 8 8	8.8	8 8 8 8	27.10	ફ ટ જ જ	35.03	S:	21.00		•		October 20, 1992	91-			••		Salinity	පි	97 Kg
	Table APP 1.7-2(15)	ture: readi	អ	Temp. S	26.15	23. 23. 23.	23.71	83.88 88.88	36.75	16.53	15.67	16.18	16.00			lable APP 1.7-2(15)	8		acure:		Secchi-disk reading:	ë	1	9	95 70
	rable APP	Date: Station: Station: Air temperature: Wind force: Water color: Secchi-disk rea	Water depth:	Depth (m)	0.0	9.5	.5	2.0 0.6	e c	0.7	10.0	3. c	15.0			labie APP	Date:	Station:	Mind force:	Mater color:	Secchi-dis	Mater depth:	Depth	Ê	000
		3e												ge:											
	13-10-13-95	22*48'30.4* S, 43*12*48.1*	pH Signa-t	17.99	- 17.39 - 17.98	- 17.98	18.04	- 19.02					12:45-13:00	Location: 22'50'04.1' S, 43'13'21.9' 27.1' C(12:45)					pH Signa-t		8.38 17.74		- 18.11 8.01	•	8.15 19.52
vey - 2	13.	۵	00 (mg/1) (%)	1.1	12.4 185 12.2 182						vey - 2		12	ion: 22'5 (2()2:45)	Ş				(mg/1) (%)	28 122	22 122	23 122	24 121 82 121	(6.00) (87)	& &
erry Sur	Ē	Location: 7-8 m/s Greenish 0.4 m	11	1							arry Sur		Tine.	2 5	5-6 m/s	Brown	 		1						
Preliminary Survey -	1992)3 (#5/\$#)	46.01	45.97	45.90	5.55	45.40			Preliminary Survey -		1332						(E)/SII)	44.86	44.85	44.85	44.87	, ,	45.30
	ctober 19.	P2-13	Salinity (%)	8.83	8 8 8 8	28 52	8 8	38.30					October 19, 1992	51.7		,			Salmity St. St.	28.10	28.10	& : & :	8 8 8 8	·	29.75
1,7-2(1	0	: r: k readin h:	18 (3)	26.91	26.90 26.90	26.83	26.47	25.20			1.7-2(1		، ب			: :: ::	i:	- 1		26.46	26.46	26.37	25.55 25.55 26.55	,	24.64
Table APP 1.7-2(13)	Date:	Station: P2- Wind force: Water color: Secchi-disk reading: Water depth:	Depth (m)	0.0	1.0	 	2.5				Table APP 1.7-2(14)		Date:	Air temperature	Wind force:	Mater color:	Mater depth:		vepta (a)					8.2	2.0

weczn-disk reading: Kater depth:	56 다 다		-i (-	7.6 m			
Depth (m)	Temp.	Salinity (%)	EC (mS/cm)	(mg/i)	88	丟	Sigma-t
0.0	26.78	27.58	44.36	9.14	135	١.	17 26
0.5	26.84	27.53	44.37	5	137	١	3 5
1.0	26.86	27.51	44.37	8	89	t	2 2
г. Ц	26.75	27.58	44.37	9.44	140	1	12.26
2.0	89. 89.	8.8	44.50	5.	127	ı	200
3.0	24.00	30.40	45.48	8	35	1	25
4.0	21.85	31.50	45.42	5	٤	. 1	21.63
5.0	20.10	32.92	45.33 83.33	8	2	1	23.12
6.0	19.75	33.80	45.20	4.74	ß	1	23 32
7.0	8.8	33.50	45.08	4.56	8	,	8

Survey - 2
Preliminary
1.7-2(19)
Table APP

23.41 19.00 17.90 16.61 16.23 16.23 16.23 16.23 16.23 16.23

(m2/cm)

Salinity (%)

of Co

Repth (a)

48.65 47.42 47.30 46.13

Preliminary Survey - 2

Table APP 1.7-2(17)

October 20, 1992 P2-17

Date: Octob Station: P2-17 Air temperature: Mater color: Secchi-disk reading: Mater depth:

(ED/SEI)

Salinity (%)

(C)

Repth (n)

Water color: Secchi-disk reading: Water depth:

Preliminary Survey - 2

Table APP 1.7-2(18)

October 20, 1992 P2-18

Date:
Station:
Air temperature:
Wind force:

Preliminary Survey - 2
1.7-2(21)
Table APP

Date: October 20, 1992	Time: 13:55-14:05
Station: P2-21	8
Weather on the previous day:	Slightly cloudy
Weather on the day:	Clear
Air temperature:	28.0 °C(13:55)
Wind force:	1-2 m/s
Water color:	Вгомп
Garbage:	- ON
011:	No
Secchi-disk reading:	O.S m
Water depth:	13.5 ш

epth	Temp.	Salinity	윮	8		₹.	Sigma-t
Ê	9	<u></u>	(mS/cm)	(1/2g)	3		
0.0	27.25	28.42	45.03	12.65	83 88	,	
. 2.0	22 49	88 88	46.11	13.02	195	ı,	
1.0	27.43	28.25	45.85	13 25	199	. 1	17.55
5.5	3	8.8	45.05	12.90	192	•	
5.0	25.70	28.35	45.33	8	112	ı	
3.0	23.95	8,8	45.00	6.38	35	•	
5.0	19.70	32.95	45.19	3	ይ	ı	
7.0	19.00	33.10	45, 10	3.79	5	•	
0.01	17.48	8.4	44.70	۸ ج	53	1	
13.0	17.45	34.42	44.70	4.51	8	ı	

Table APP 1.7-2(22) Preliminary Survey - 2

Time: 13:20-13:35	Location: 22 46 50.9' S. 43 05 30.8'	28.0 °C(13:20)	Clear	Brown	0.5 m	7.0 m
. 20, 1992						
October 20	P2-22		day:		ding:	٠
Date:	Station:	Air temperature	Weather on the	Water color:	Secchi-disk reading:	Water depth:

epth	lemp.	Salinity	ន	2		푽.	Signa-t
(E)	3	લ	(m2/sm)	(mg/l)	33		
0.0	30.43	23.70	41.45	12.62	192	ŀ	13.20
0.5	30.25	23.82	41.40	12.14	184	,	13.35
1.0	27.00	25.78	42.00	12.31	181	•	15.85
1.5	25.86	27.52	43.47	6.83	gg	ı	17.49
2.0	25.32	27.95	(3.67	5.87	88	ŀ	17.97
2.5	25.15	28.15	43.95	5.16	75	,	18.17
3.0	24.00	83.45	44.76	3.11	5	٠	19.49
0.7	89.	32.32	45.22	2.97	41	ı	22.57
5.0	19.28	33.30	45.10	3.32	45	•	23.67
6.0	18.80	33.73	45.00	3.38	45	ı	24.17

Table APP 1.7-2(23) Preliminary Survey - 2

Mater color: Brown Sechi-disk reading: 0.6 m of 7 m Sechi-disk reading: 0.7 m of 7 m Atter depth: 6.7 m of 7 m Bepth Temp. Salinity EC (m) ("Z") ("X") (mZ/Cm) (mZ/I) (X) DO pH of Signa-t of MZ of II.86	Date: Station: Wind force:		October 20, P2-23	2661	Time: Location: 2-3 m/s	12:45-13: 22*44'34.1"	12:45-13:00 •44'34.1°S	3, 43°05'45.1°	12.1
Temp. Salinity EC DO PH Si Si Col. (**) (mS/cm) (mg/l) (**) PH Si Si Col. (**) (mS/cm) (mg/l) (**) PH Si Si Col. (**) (mS/cm) (mg/l) (**) PH Si Col. (**) PH S	Mater col Secchi-di Water dep	or: sk readi th:	:: : \$ui		3гомп 3.6 m 6.7 m				
28.45 28.30 45.00 12.90 233 26.05 27.40 43.58 7.60 99 25.74 27.40 43.58 7.60 99 25.74 27.85 43.89 6.11 101 25.00 28.75 44.37 5.11 96 22.50 39.88 45.25 3.60 82 25.73 32.30 45.28 22.55 43.50 45.28 22.55 43.50 24.5 41 18.60 33.54 45.25 2.43 40 2.45	Depth (m)	Temp.	Salinity (%)	EC (mS/cm)	⁻ .	(3)		Signa-t	
28.00 25.65 43.75 11.65 217 25.65 43.75 11.65 217 25.74 43.88 7.60 99 25.74 77.81 101 101 25.00 28.75 44.37 5.11 96 22.50 30.88 45.26 3.80 82 20.73 32.30 45.20 2.45 41 18.60 33.94 45.22 2.45 41 18.60 33.94 45.22 2.45 40 24.80 40.20 2.45 40.20 2.45 40 24.80 40.20 2.45 40.20 2.	0.0	28.45		8.8	12.90	233	1	15.45	
26.06 77.40 43.58 7.60 99 - 25.74 77.65 43.89 6.11 101 - 25.74 77.57 43.83 5.41 102 - 25.00 28.75 44.37 5.11 96 - 22.56 30.88 45.26 3.60 82 - 20.73 32.30 45.28 2.25 43 19.10 33.50 45.28 2.45 41 - 18.60 33.94 45.26 2.43 40	0.5	8,8		43.75	11.65	217	,	16.18	
25,74	0.	26.05		43.58	9	8	1	7.3	
25.47 27.57 43.83 5.41 102 - 25.00 28.75 44.37 5.11 96 - 22.50 30.88 45.26 3.80 82 - 20.73 32.30 45.28 2.25 43 41 - 18.60 33.94 45.26 2.43 40 - 22.43 40 -	 (5)	25.74		43.89	6.11	101		17.77	
25.00 28.75 44.37 5.11 56 22.50 30.28 45.25 3.80 82 20.73 32.30 45.28 2.25 43 19.10 33.50 45.20 2.45 41 18.60 33.34 45.26 2.43 40	2.0	25.43		43.83	5.41	102		17.94	
22.50 30.88 45.26 3.60 82 - 20.73 32.30 45.28 2.25 43 - 19.10 33.50 45.20 2.45 41 - 18.60 33.94 45.26 2.43 40 -	2.5	25.8		44.37	5.11	98	1	18.67	
20.73 32.30 45.28 2.25 43 - 19.10 33.50 45.20 2.45 41 - 18.60 33.94 45.26 2.43 40 -	3.0	22.50		45.26	3.8	82		88.68	
19.10 33.50 45.20 2.45 41 - 18.60 33.94 45.26 2.43 40 -	4.0	20.73		45.28	2.25	43	1	22.54	
33.94 45.25 2.43 40 -	5.0	19.10		45.20	2.45	41	,	23.37	
	6.0	18.60		45.26	2.43	₽,	ı	23	

Preliminary Survey - 2 Table APP 1.7-2(24)

%. *4.											
8. 8. 43°07′89.4″	Signa-t	16.25	16.45	17.11	17.51	18.38	18.92	21.36	22.33	23.55	24.64
12: 10-12: 25 22° 45' 12.8° S. 10)	ጜ	١.	t	ı	ı	ı	1	1	ι	1	1
12 ion: 22*4 C(12:10)	8	83	191	8	69	83	106	83	ස	23	22
Time: Location: 26.2 °C(1) Brown 0.6 m	(mg/1)	83	8	8.8	6.50	8.8	6.15	5.11	3.70	2.72	2.77
	EC (mS/Cm)	43.90	43.50	42.83	43.33	44.13	44.70	45.54	45.37	45.12	45.00
October 20, 1952 P2-24 R3:	Salinity (%)	26.64	26.70	27.02	14.12	8.8	8 8	31.31	32.14	33.13	34.15
ature: xr: sk readi th:	Temp.	27.75	27.25	25.88	25.66	25.03	24.78	22.33	21.00	19.43	18.00
Date: 000 Station: P2 Air temperature: Water color: Secchi-disk reading Water depth:	Depth	0.0	0.5	1.0	3.5	2.0	3.0	4.0	5.0	0.0	7.0

Table APP 1.7-2(27) Preliminary Survey - 2 Date: October 21, 1992 Time: 12:45-13:00 Station: P2-27 Location: 22'46'05.1' S, 43'13'18.3' W Air temperature: Rainy Wind force: A5 m/s Water color: Dark gray Secchi-disk reading: 1.0 m	<pre>Mater depth: 4.5 m Depth Temp. Salinity EC DO pf Signa-t (m) ("C) (%) (mS/cm) (mg/l) (%)</pre>	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	23.05 30.63 45.36 4.34 74 -	PP 1.7-2(28) Preliminary Survey - 2 Cotober 21, 1992 Time: 11:40-14:5 P2-28 Location: 22'47'20.1' Perature: 23.8 °((11:40) rec: 4-5 m/s rection: Dark gray lisk reading: 0.6 m pth: 21 m	Lepth Temp. Salinity SC DO pH Signa-t (m) (*C) (%) (mS/cm) (mg/1)(%) 1	0.0 25.35 24.52 39.47 1.25 24 7.96 15.70 0.5 25.33 24.80 39.52 1.15 23 7.97 15.62 0.8 25.21 25.10 39.84 1.22 23 - 15.88 1.0 25.20 25.57 40.74 1.16 23 - 16.23 1.3 24.30 28.47 1.55 1.75 33 - 16.23 1.5 23.99 30.40 44.89 1.89 33 - 20.20 1.8 22.96 30.43 44.57 2.43 44 - 20.51
Date: October 21, 1992 Time: 16:05-16:20 Station: P2-25 Location: 27.42'50.6' S, 43'05'18.5' M Air temperature: 20.0'(16:05) Weather on the previous day: Rainy Mind force: B-10 m/s Mater color: B-10 m/s Mater color: Dark brown Secchi-disk reading: 0.8 m Water depth: 3.8 m	1 Temp. Salinity EC DO pH Sig (*C) (%) (mS/cm) (mg/l)(%) 26.07 27.41 43.56 5.32 82 8.41	0.5 26.08 77.42 43.58 5.22 82 8.75 17.35 1.0 26.09 27.42 43.56 5.10 84 - 17.35 1.5 26.10 27.42 43.58 5.02 83 - 17.34 2.0 26.10 27.42 43.48 5.05 85 - 17.34 2.5 26.08 27.43 43.59 5.06 85 - 17.35 3.0 26.08 27.44 43.59 5.06 85 - 17.35 3.5 25.57 25.02 38.39 4.34 83 - 15.72	PP 1 7-2(26) Preliminary Survey - 2	cober 21, 1992 Time: 26 Location: 20 C(C(E) Rainy 4-5 m/s MSW Dark brown 0.8 m	Depth Temp. Salinity EC DO pH Signe-t (m) (*C) (%) (mS/cm) (mg/l) (%)	0.0 25.01 28.13 43.88 6.23 88 8.40 18.20 0.5 25.02 29.13 43.88 6.20 98 8.42 18.20 1.0 25.02 29.14 43.68 6.20 98 8.42 18.20 1.5 25.03 29.14 43.68 6.12 98 - 18.21 2.0 25.03 29.15 43.70 6.10 101 - 18.20 2.5 25.03 29.16 43.70 6.10 101 - 18.20 2.5 25.03 29.20 45.75 6.13 103 - 18.26 4.0 24.99 29.21 43.75 6.11 103 - 18.26 25.3 30.72 45.85 4.24 87 - 20.63 6.0 21.21 20.74 45.75 - 22.74

Preliminary Survey - 2

Table APP 1.7-2(25)

The APP 1.72(20) Field Secord of the Preliminary Second-2 The Condens Second-2 Station From Second-3 Station Fr																										
The process of the problem of the problem of the process of the problem of the problem of the process of the problem of the process of the problem of the process of the process of the problem of the process of the												.5						1						ls		
Coloner 21, 1992 Times 11:15-11:25 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Ti	Survey-2		Signa-t	18.02	18.12	19.13	19.24	3 55	19.50 19.61	19.81		Survey-	ç	လုံ			Signa-t	17.77	17.92	17.88	17.89	18.28	19.03	11.61		
Coloner 21, 1992 Times 11:15-11:25 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Ti	iminary	19.52.1°		8.11	1 1		i i !		ţ ţ	•		liminar	.00-10-	50,06.0			铥	8.01 8.03	1		I .		ı			
Coloner 21, 1992 Times 11:15-11:25 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Ti	P.	10. 22.*.	8	នន	83 53	83	38	7 22	81 81	14		<u>ال</u> خ	•	63	Ę		€	ઝહ	8 4	3 %	स्र ह	3 %	33 %	3		
Coloner 21, 1992 Times 11:15-11:25 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Ti	त भी कि	cation: lear loudy will 5 m/s ark brown o		2.41	2.3 2.13	2.5	38.5	1.45	1.32	1.16		ord of th		Location	Dark bro 0.6 m	 0.0	(mg/1)	2.95	2.30	2.73	2.73	8 P.	2.30	70.7		
Coloner 21, 1992 Times 11:15-11:25 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Coloner 21, 1992 Times Ti	eld Recor	<u> </u>	(mS/cm)	43.22	43.41	44.67	44.79	44.95	44.98	45.11		ield Reco					32 (m)/2m)	42.70	43.03	42.95	43.33	5.5	44.81	44.65		
Part 1.7-2(28) Field Record of the Preliminary Survey-2 Table AFP 1.7-2(28) Field Record of the Preliminary Survey-2 Cockbor 21, 1892 Tiber: 11:15-11:25 Satisfies: Part		21, 1992 vious day:	1	27.86	28.39 28.39	8.8	3 83 8 3 87 8 3 87 8	2 8 3 8	83 83 83 83	29.87		•	Colored 91	P2-32	:8:		Salinity (%)	27.53	27.73	27.88	27.82	28.10	8.8	:T:83	-	
Coctober 21, 1992 Titled Record of the Preliminary Survey-2 Titled Record of the day:	1.7-2(31)	October P2-31 in the prevent the day. e: or: or: sk readingth:		24.95	24.94	24.51	24.42	24.21	24.16	23.95		P 1.7-2(30			lor: Isk readii	.: ::	Temp.	24.94	24 95	24.35	24.95	24.35	22.53	64.30		
Cotober 21, 1992 Field Record of the Preliminary Survey-2	Table APP	Date: Station: Weather of Weather of Wind forc Water col Garbage: Oil: Sechi-di Mater dep	Depth (m)	0.0	0.5	20.0	0.0	4 K	6.0	8.0		Table AP		Station:	Rater 88	Mater de	Depth (m)	0.0	0.4	2.0	2,52	ຸດ ເຄ	0.4	4.5		
Checker 21, 1992 Field Record of the Preliminary Survey-2																										
APP 1.7-2(29) Field Record of the Preliminary Sur Deceder 21, 1992 Time: 11:15-11:25 are on the previous day: 11:15-11:25 are on the previous day: 11:15-11:25 are on the day: 23.6 °C(11:40) Cloudy and Slightly rainy Cloudy and Slightly rainy Core: 23.8 °C(11:40) Cloudy and Slightly rainy Core: 23.8 °C(11:40) Cloudy and Slightly rainy Core: 23.8 °C(11:40) Cloudy and Slightly rainy Core: 24.7 °C																	•									
Detect 1, 1992 Detect 2, 1992 Detect 2, 1992 Detect 2, 1993 Detect 3, 1993 Dete	Survey-2	S, 43°16′ ny	igna-t	16.39 16.55	16.99 17.76	18.36	8.38 8.78	13.93		Survey-2			iny					Sigma-t	16 27	16.58	16.74	17.71	18.86	8 .8 8 .8	19.52	
Detect 1, 1992 Detect 2, 1992 Detect 2, 1992 Detect 2, 1993 Detect 3, 1993 Dete	iminary	15–11:25 18' 17.7' htly rai	1	7.96			t I			liminary	:55-11:00	; ;	ghtly ra					1	6	8 8				1 1		
Detect 1, 1992 Detect 2, 1992 Detect 2, 1992 Detect 2, 1993 Detect 3, 1993 Dete	Prel	22.4 12.40 1.40)	8	23.	ထတ	ω.	000	د		e Pe		1	d sli	7	E	•		8	5	2 23	ខន	3 23	E :	3 2	2 22 =	:
Detect 1, 1992 Detect 2, 1992 Detect 2, 1992 Detect 2, 1993 Detect 3, 1993 Dete	d of the	ime: ocation: lightly of loudy and 3.8 °C(11) ** m/s ** ark brown 5 m	1 1	1.86	0.58 8.89	9.6	388	3.0		ज़्यु ०६ स	ime: ocation:	lear	Novdy an	-5 m/s	ows bark brow	ខ្ទ	.0.0 E E	1 1	2 AB	2.03	83	 8.8	88.8	3 8	2 8	
Detect 1, 1992 Detect 2, 1992 Detect 2, 1992 Detect 2, 1993 Detect 3, 1993 Dete	ield Reco	00 ± 0 0 0 0 0 € − 1) (m)/Sm)	41.11	42.52	43.87	3 # 3 3 # 8	3.3		ield Reco	F-1						<i>O</i> 47) (mS/cm)	41 00	41.3	41.44	42.80	2. 5 8. 5	4 5.25	44.94	
Table APP 1.7-2(29) Date: Station: 22-28 Weather on the day: Air femperature: Wind direction: Water color: Sechi-disk reading Water color: Sechi-disk reading Water depth: 1.0 25.20 1.0 25.45 1.0 25.45 1.0 25.45 1.0 25.45 1.0 25.40 1.1 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.75 2.0 24.77 2.0 24.30 Depth Temp. Reading Wind direction: Wind direction: Wind direction: Wind direction: Wind direction: Water depth: Depth Temp. (m) (°(°) 0.0 25.41 0.0 25.43 1.0 25.43 1.0 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30 2.5 24.30		21, 1992 ious day:	alinity (%)	25.93 26.10	26.88	88	888	29.17			21, 1992	vious day:	.,				10 0	Salinity (%)	25.91	26.14	26.33 2.33	2.5	88 8 13 4	3 8 8 8	8 8	
Table APP Date: Station: Weather of Meather	1.7-2(29)	October PZ-28 The previous of the day:	1	25.59 25.48	83.83 83.85	24.97	24.75	06.P2		1.7-2(30	October 72-30	n the prev	n the day	e:	čtion: or:	.:	sk readin th:	ļ		25.48	25.42	25.03	24.71	8.7.2 8.7.3 8.7.3	24.20	
	Table APP	Date: Station: Weather or Meather of Air temper Mind force Water cold Secchi-di: Mater depl	Depth (m)	0.0	0.8	1.5	22.0	6.2		Table APF	Date: Station:	Weather c	Weather c	Wind forc	Wind dire	carbage: 0il:	Secchi-di Water dep	Depth (a)	0.0	0.5	0,1	2.0	2.5) 4) O		

24.30 30.24 45.01 4.15 52 - 19.98 3.0 24.41 28.50 45.00 4.65 58 25.54 30.67 45.84 3.45 43 - 20.53 4.0 24.17 30.11 35.59 5.25 66
4.5 24.33 30.40 46.17
3

APPENDIX 2

WATER QUALITY IN THE BAY

Table APP 2.1-1(1)

Location, Sampling Depth and Analytical Parameters of the Second Simultaneous Survey

location, Sampling Depth and Analytical Parameters of the Third Simultaneous Survey

Table APP 2.1-1(2)

Near Tides - High Tide (morning)								(Aug. 1977)			
Water Depth(m)	(#)(po) (po)(po)	7-1-10 10-10	SS, N94-N, NO2-N NO3-N, TP, PO4-P	Phenois,	n. Hex. Extract	Hetals	Ch1-a	1tem	Water Depth(m)	COD(Hz) DCOD(Hz)	M T
			,		-	1					5
0,0	•	,	5, 25,	ı				•		,	
19.0	'n	,	ທັ	٠,	I,			- -	3	, S	유
32.0	'n		'n	м 0	•			2	17.0	ທ່	
12.0	6		3.7		1		0,0	m	5.	ω ω	<u>.</u>
38.0	5.10		5.	1	1		0.5	4	11.0	ω, .γ.	연 *
20	2	0. 5. 10.	1 c		1		0,0		37.9	5	•
8,0	ام س		ر س		,			6	5	, 10 10 10 10 10 10 10 10 10 10 10 10 10	
0	61		ς,		ì				7:1	က	o
9.0	œ		m		í			∞ 	9.5	ญ่	
24.0	w		'n	1	ı			o>	3.6		
30.00	æ		ю	8	ı			으	2.5		•
17.0	ເກັ			,	,			==	 2.		o
1.8	m				1			12	14.5		
ς. Θ			c,		1			13	25.21		
8.0			'n	ı	ı			7	4.0		
3.					1			 	ر. ن	က	ö
5					1			19	ა ა		
0.7					ı			11	ب د		o o
	- 11	u		- 11				18	0.4		o. B
	##ter	(E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(44)(44) (44) (44)(44) (44)	0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 10. 5. 10. 8 0. 8 0. 5. 10. 8 0. 5.	0. 5. 10. 8 0. 5 10. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0.	0.5. B 0.5 B 0.5. B 0.5. B 0.5	0.5. 10. 8 0. 8 0. 5. 10. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0.	0.5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0.	0.5. 10. 8 0. 5. 10. 8 0. 5. 10. 8 0. 5. 8 0. 8 0. 5. 10. 8 0. 5. 8 0. 5. 10.	0, 5, 10, 8	0.5. B 0.5 B

*Phenoles were not analysed.

Near Tides - Low Tide (afternoon)

Metais n. Hex. Extract SS, NEG-H, NO2-H NO3-N, TP, PO4-P **ૻ૽૽ૼ૽ૼ૽ૼ૽ૼ૽૽ૼ૽૽ૼ૽૽ૼ૽૽ૼ૽૽ૼ૽૽** S. tea

	The state of the s
Ch1-a	# ທທຸທຄຸກທຸກຄຸດສຸກສຸທຸກສຸກຄຸ້ສຸສຸກສຸ ຜູ້ຜູ້ຜູ້ຕໍ່ດີດີດີດີດີດີດີດີດີດີດີ ຜູ້ຜູ້ຜູ້ຕໍ່ດີດີດີດີດີດີດີດີດີດີດີ
Metals	
n. Hex. Extract	0000000000000000
NO2-N Phenols, n. Hex. FO4-P CN Extract	
862-¥ 704-₽	m <u>m</u> m m
SS, NH4-H, NO3-H, TP, Coli-forms	လွှေထာင် ရှင်ရှင်ရှင်ရှင်ရှင်ရှင်ရှင်ရှင် လွှေလေး မေး လွှေလွှေတွေ့ လွှေလွှေလွှေလွှေလွှေလွှေလွှေလွှေလွှေလွှေ
BOD T-KN D-KN	ရ အအ အ အ ုက် ထက်လဲဆ ရ အထက်ဆရာရ မှာ ပ်ထွား ပင်ပင်ပင်
COD(Hn) DCOD(Hn)	က်ကဲ့လဲ့လဲ့လဲ့လဲ့လဲ့လဲ့လဲလဲ့ထလ်ထလက်ထလက္ထေထာက္ လို့သတင်္ O O ထုထဲ ထ ထ ထ ထ ထ ထ ထ ထ ထ ထ ထ ထ ထ ထ
Water Depth(m)	######################################
Item St.	

*BOD was not analyzed.

วานซ	Spring lides - High lide (artermoon,	יוס/ בחונ וופני						
I tem St.	Water Depth(m)	COD(Hn)	7-7 10-7	SS, NH4-H, MOZ-N NG3-H, TP, PO4-P Coli-forms	Phenols,	n. Hex. Extrect	Metals	Ch1-a
,	,	1		1	'			
٠ ا	18.0	ı,		u	,			
r)	45.0	O 55 B	m	0 °0	ι.	ı	. 1	
4.	11.5	က်	,		1	,	1	
ഗ	88.55	5,10	'	ຳທໍ	,	1	ì	
တ	8.8		9,0	(C)	ι	١.	ı	
ŗ~.	8.0	က်		ี เก	ľ	1	ı	
ø	8.9	4	9.0	તં	ı	ı	ŀ	
ത	5.5		0	DQ.	,	1	ı	
0	22.8		1		ı			
<u>-</u> -	3.3		9		,	1	•	
73	15.0		ı		,	1	,	
m	2:0		8 0		,	•	,	
7	 52		0,0		ı	,	ı	
ur)	8.0		. 1		,	1	,	
9	5.0			ĸα	ı	•	,	m
t	.5.		o,		1	•	ŀ	
φ,	4.0				1	ı	1	
on.		,		,	1	ı	ı	1

. '	Table	APP 2.	3-1(1)			s of S g Tide				of the	First	Simul	taneous	Survey May 18		Low Ti	de	(St.1)
i	Depth (m)			DCOD(Mn) (mg/l)									7-0P)(mg/l)					F-Coli /100ml)
	0.0		0.5	0.4	-	-	0.20	_			1<0.01			0.00			30	
	5.0 25.0		0.5 1.0	0.2 1.0	-	_	0.25				1<0.01 1 0.02			0:01 0.02	0.01		2	
	51.0	-	0.5	0.5	-	-	0.33				6 0 02			0.01	0.02		. 2	
1				n-Hexan (mg/l)		Phenol		Pb (ug/1	Cu)(ug/l	Cr)(ug/l	Hg)(ug/l)		pp' DDT)(ug/l)					
	0.0 5.0	0.46	0.50	<4 -	~	<u>-</u> -	<1.0	5			<0.10		<0.001			· · · · · · · · · · · · · · · · · · ·		
2	25.0 51.0	- -	-	-	-	-	<1.0	13	<2.0	- <10	<0.10	18	<0.001	<0.001	_ · <0.001	<0.01		
-	rable.	ion a	2 1/2)		Doguli	:	on Wal	lon In	Musis	9 /1	Tide.	\						
	rante	APP 2.			nesu i		ea na		alysis	2 (10	Tide)	, 		May 18,	,1992	Low Ti	de	(St.2)
	epth (m)			DCOD(Hn) (mg/l)									T-OP)(mg/l)	D-OP (mg/l)	PO4-P (mg/l)			f-Coli /100ml)
	0.0	-	<u> </u>	-	-		0.34	-			0.03		0.09	0.02	<0.01	20	700	500
	5.0 17.3	-	-	-	_	-	0.28				0.03		0.01	0.01	0.02 0.01	5 16	300 2400	300 2400
=																	<u> </u>	
)epth (m) 			n-Hexan (mg/l)		Phenol (mg/l)		Pb)(ug/l 	Cu)(ug/l) 	Cr (ug/l	Hg)(ug/1)		pp DDT (ug/l)				٠,	
	0.0	35.04	<0.10	<4	~	-	<1.0	5	<2.0	<10	<0.10	26	<0.001	<0.001	<0.001	<0.01		•
	5.0 17.3	11.76	<0.10			_	<1.0	9.5	<2.0	<10	<0.10	. 18	<0.001	<0.001	<0.001	<0.01		
_	Table	APP 2.	3-1(3)								. 3 (L		e)	May 18	, 1992	Low Ti	de	(St.3)
1	Table Depth (m)	BOD	COD(Mn)DCOD(Mn (mg/1)) TH	T-0N	T-IN	D-ON	N03-N	NO2-N	NH4-N	TP	T-OP	D-OP	, 1992 PO4-P) (mg/l	SS	T-Coli	F-Coli
-	Depth	BOD	COD(Mn)DCOD(Kn (ng/1)) TH	T-0N (mg/l	T-IN	D-ON (mg/l	NO3-N (mg/l	NO2-N)(mg/1	NH4-N	TP)(mg/l	T-OP)(mg/l)	D-OP (mg/l	PO4-P) (mg/l <0.01	SS)(mg/1) 30	T-Coli (MPN 500	F-Coli
1	0.0 5.0	BOD (mg/l) 2.8	COD(Mn (mg/l) 1.8)DCOD(Mn (mg/l) 1.6 0.8) TN (mg/l 1.58	T-ON)(mg/l 1.23	T-IN)(mg/1 0.35 0.37	D-ON)(mg/l 0.21	NO3-N)(mg/l 0.30 0.30	NO2-N)(mg/l 0.010 0.006	NH4-N)(mg/1 0.04 0.07	TP)(mg/l 0.08 0.06	T-OP)(mg/1) 0.08 0.04	0-OP (mg/1 0.05 0.03	PO4-P) (mg/l <0.01 0.02	SS)(mg/l) 30 30	T-Coli (MPN 500 300	F-Coli /100ml) 170 300
1	Depth (m) 0.0	BOD (mg/l) 2.8	COD(Mn (mg/l))DCOD(Mn (mg/l) 1.6 0.8) TN (mg/l 1.58 0.56	T-ON)(mg/l 1.23 - 0.26	T-IN)(mg/1 0.35 0.37 0.30	D-ON)(mg/l 0.21	NO3-N)(mg/l 0.30 0.30	NO2-N)(mg/l 0.010 0.006	NH4-N)(mg/1 0.04	TP)(mg/l 0.08 0.06 0.04	T-OP)(mg/1) 0.08 0.04 0.02	D-OP (mg/1 0.05 0.03 0.02	P04-P) (mg/l <0.01 0.02 0.02	SS)(mg/1) 30 30 22	T-Coli (MPN, 500 300 800	F-Coli /100ml)
	Depth (m) 0.0 5.0 51.0 Depth	BOD (mg/1) 2.8 <2.0	COD(Mn (mg/1) 1.8 1.0 1.1)DCOD(Mn (mg/l) 1.6 0.8) TH (mg/l 1.58 0.56	T-ON)(mg/l 1.23 0.26	T-1N)(mg/1 0.35 0.37 0.30	D-ON)(mg/l 0.21 0.05	NO3-N)(mg/l 0.30 0.30 0.20	NO2-N)(mg/l 0.010 0.006 0.004	NH4-N)(mg/1 0.04 0.07 0.10	TP)(mg/l 0.08 0.06 0.04	T-OP)(mg/1) 0.08 0.04 0.02	D-OP (mg/1 0.05 0.03 0.02	PO4-P) (mg/l <0.01 0.02 0.02 pp' DDD	SS)(mg/1) 30 30 22 PCB's	T-Coli (MPN 500 300 800	F-Coli /100ml) 170 300
	0.0 5.0 51.0 Depth (m)	BOD (mg/1) 2.8 <2.0 Ch1-a (ug/1) 14.97	COD(Mn (mg/l) 1.8 1.0 1.1 Pheo (ug/l) <0.10)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1)) TN (mg/l 1.58 0.56 CN (mg/l	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1	T-IN)(mg/1 0.35 0.37 0.30 l Cd	D-ON)(mg/l 0.21 - 0.05 Pb)(ug/l	NO3-N)(mg/l 0.30 0.30 0.20 Cu)(ug/l	NO2-N)(mg/l 0.010 0.006 0.004 Cr)(ug/l	NH4-N)(mg/1 0.04 0.07 0.10	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l	T-OP)(mg/1) 0.08 0.04 0.02	D-OP (mg/1 0.05 0.03 0.02 pp' DDE (ug/1)	PO4-P) (mg/l <0.01 0.02 0.02 pp' DDD (ug/l)	SS)(mg/1) 30 30 22 PCB's (ug/1)	T-Coli (MPM, 500 300 800	F-Coli /100ml) 170 300
1 - 1	0.0 5.0 51.0 Depth	BOD (mg/1) 2.8 <2.0 Ch1-a (ug/1) 14.97	COD(Mn (mg/l) 1.8 1.0 1.1 Pheo (ug/l))DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1)) TN (mg/l 1.58 0.56 CN (mg/l	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002	T-IN)(mg/1 0.35 0.37 0.30 l Cd)(ug/1	D-ON)(mg/l 0.21 0.05 Pb)(ug/l	NO3-N)(mg/l 0.30 0.30 0.20 Cu)(ug/l	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1)	D-OP (mg/1 0.05 0.03 0.02 pp' DDE (ug/1)	P04-P) (mg/1 <0.01 0.02 0.02 pp' DDD (ug/1) <0.001	SS)(mg/1) 30 30 22 PCB's (ug/1)	T-Coli (MPN 500 300 800	F-Coli /100ml) 170 300
	0.0 5.0 51.0 Depth (m) 0.0 51.0	BOD (mg/1) 2.8 <2.0 Chl-a (ug/1) 14.97 15.55	COD(Mn (mg/l) 1.8 1.0 1.1 Pheo (ug/l) <0.10 <0.10)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1)) TN (mg/l 1.58 0.56 CN (mg/l <0.01	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002	T-1N)(mg/1 0.35 0.37 0.30 1 Cd)(ug/1 <1.0	D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0	NO3-N)(mg/1 0.30 0.30 0.20 Cu)(ug/1 <2.0	NO2-N)(mg/l 0.010 0.006 0.004 Cr)(ug/l <10	NH4-N)(mg/l 0.04 0.07 0.10 Hg)(ug/l	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34 26	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001	D-OP (mg/1 0.05 0.03 0.02 pp DDE (ug/1) <0.001	P04-P) (mg/1 <0.01 0.02 0.02 pp' DDD (ug/1) <0.001 - <0.001	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01	T-Coli (MPN 500 300 800	F-Coli /100ml) 170 300 500
	0.0 5.0 51.0 Depth (m) 0.0 5.0	BOD (mg/1) 2.8 <2.0 Chl-a (ug/1) 14.97 15.55	COD(Mn (mg/1) 1.8 1.0 1.1 Pheo (ug/1) <0.10 <0.10 3-1(4))DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1)) TN (mg/l 1.58 0.56 CN (mg/l <0.01 - <0.01 Resul	T-ON)(mg/1 1.23 0.26 Pheло)(mg/1 0.002 0.002 ts of :	T-IN)(mg/1 0.35 0.37 0.30 1 Cd)(ug/1 <1.0	D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0	NO3-N)(mg/l 0.30 0.30 0.20 Cu)(ug/l <2.0 <2.0	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 - <10 at St	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34 -26	T-OP)(mg/l) 0.08 0.04 0.02 pp' DDT)(ug/l) <0.001 <0.001	D-OP (mg/1 0.05 0.03 0.02 pp' DDE (ug/1) <0.001	PO4-P) (mg/1	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01	T-Coli (MPN 500 300 800	F-Coli /100ml) 170 300 500
	0.0 5.0 551.0 Depth (m) 0.0 55.0	BOD (mg/1) 2.8 <2.0 Chl-a (ug/1) 14.97 15.55 APP 2.	COD(Mn (mg/1) 1.8 1.0 1.1 Pheo (ug/1) <0.10 <0.10 3-1(4) COD(Mn)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1)) TN (mg/l 1.58 0.56 CN (mg/l <0.01 <0.01 TN	T-ON)(mg/l 1.23 0.26 Pheno)(mg/l 0.002 0.002 ts of :	T-IN)(mg/1 0.35 0.37 0.30 l Cd)(ug/1 <1.0 <1.0	D-ON)(mg/1 0.21 0.05 Pb)(ug/1 <5.0 13.0	NO3-N)(mg/l 0.30 0.30 0.20 Cu)(ug/l <2.0 <2.0 alysis	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 - <10 at St	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34	T-OP)(mg/1) 0.08 0.04 0.02 pp'DDT)(ug/1) <0.001 <0.001 e)	D-OP (mg/1 0.05 0.03 0.02 pp DDE (ug/1) <0.001 <0.001 Hay 18	PO4-P) (mg/1	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01	T-Coli (MPN, 500 300 800 de T-Coli	F-Coli /100ml) 170 300 500 (St.4) F-Coli
	0.0 5.0 55.0 Depth (m) 0.0 55.0 Table	BOD (mg/1) 2.8 <2.0 Chl-a (ug/1) 14.97 15.55 APP 2.	COD(Mn (mg/l) 1.8 1.0 1.1 Pheo (ug/l) <0.10 <0.10 3-1(4) COD(Mn (mg/l) 2.2)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1) ODCOD(Mn (mg/1) 2.2</td <td>) TN (mg/l 1.58 0.56 CN (mg/l <0.01 <0.01 TN</td> <td>T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002 0.002 ts of :</td> <td>T-IN)(mg/1 0.35 0.37 0.30 l Cd)(ug/1 <1.0 <1.0 Sea Wa T-IN)(mg/1</td> <td>D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0 13.0 ter An D-ON)(mg/l</td> <td>NO3-N)(mg/1 0.30 0.30 0.20 Cu)(ug/1 <2.0 <2.0 42.0 NO3-N)(mg/1 0.25</td> <td>NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 - <10 at St NO2-N)(mg/1 0.010</td> <td>NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 <0.10 . 4 (Lo</td> <td>TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34 - 26 T-P)(mg/l 0.10</td> <td>T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 <0.001 e) T-OP)(mg/1)</td> <td>D-OP (mg/1) 0.05 0.03 0.02 pp' DDE (ug/1) <0.001 <0.001 Hay 18 D-OP (mg/1)</td> <td>PO4-P) (mg/1</td> <td>SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 - <0.01 SS (mg/1)</td> <td>T-Coli (MPN 500 300 800 T-Coli (MPN</td> <td>F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml)</td>) TN (mg/l 1.58 0.56 CN (mg/l <0.01 <0.01 TN	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002 0.002 ts of :	T-IN)(mg/1 0.35 0.37 0.30 l Cd)(ug/1 <1.0 <1.0 Sea Wa T-IN)(mg/1	D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0 13.0 ter An D-ON)(mg/l	NO3-N)(mg/1 0.30 0.30 0.20 Cu)(ug/1 <2.0 <2.0 42.0 NO3-N)(mg/1 0.25	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 - <10 at St NO2-N)(mg/1 0.010	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 <0.10 . 4 (Lo	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34 - 26 T-P)(mg/l 0.10	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 <0.001 e) T-OP)(mg/1)	D-OP (mg/1) 0.05 0.03 0.02 pp' DDE (ug/1) <0.001 <0.001 Hay 18 D-OP (mg/1)	PO4-P) (mg/1	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 - <0.01 SS (mg/1)	T-Coli (MPN 500 300 800 T-Coli (MPN	F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml)
	0.0 55.0 Depth (m) 0.0 55.0 Fable 0.0 3.0	BOD (mg/1) 2.8 <2.0 Chl-a (ug/1) 14.97 15.55 APP 2.	COD(Mn (mg/1) 1.8 1.0 1.1 Pheo (ug/1) <0.10 <0.10 3-1(4) COD(Mn (mg/1))DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1) <4) TN (mg/l 1.58 0.56 CN (mg/l <0.01 <0.01 TN	T-ON)(mg/l 1.23 0.26 Pheno)(mg/l 0.002 0.002 ts of :	T-IN)(mg/I 0.35 0.37 0.30 l Cd)(ug/I <1.0 <1.0 T-IN)(mg/I	D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0 13.0 ter An D-ON)(mg/l	NO3-N)(mg/1 0.30 0.30 0.20 Cu)(ug/1 <2.0 <2.0 42.0 NO3-N)(mg/1 0.25 0.20	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 - <10 at St NO2-N)(mg/1 0.010 0.010	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 <0.10 . 4 (Lo	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34 - 26 T-P)(mg/l 0.10 0.06	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 <0.001 e) T-OP)(mg/1) 0.09 0.05	D-OP (mg/1 0.05 0.03 0.02 pp' DDE (ug/1) <0.001 <0.001 Hay 18 D-OP (mg/1) 0.03 0.03	PO4-P) (mg/1	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 - <0.01 SS (mg/1) 20 20	T-Coli (MPN 500 300 800 T-Coli (MPN	F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml)
	0.0 55.0 Depth (m) 0.0 55.0 Fable 0.0 5.0 51.0 0.0 51.0 Table 0.0 7.0 12.5	BOD (mg/1) 2.8 <2.0 Chl-a (ug/1) 14.97 15.55 APP 2. BOD (mg/1)	COD(Mn (mg/l) 1.8 1.0 1.1 Pheo (ug/l) <0.10 <0.10 3-1(4) COD(Mn (mg/l) 2.2 1.6)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1) (4)DCOD(Mn (mg/1) 2.2 1.6) TN (mg/l 1.58 0.56 CN (mg/l <0.01 - (0.01) TN (mg/l (0.01 - (0.01) TN (mg/l (0.01) TN (mg/l - (T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002 0.002 ts of :	T-IN)(mg/1 0.35 0.37 0.30 l Cd)(ug/1 <1.0 <1.0 Sea Wa T-IN)(mg/1 0.30 0.26	D-ON)(mg/1 0.21 0.05 Pb)(ug/1 <5.0 13.0 ter An D-ON)(mg/1	NO3-N)(mg/1 0.30 0.30 0.20 Cu)(ug/1 <2.0 <2.0 42.0 alysis NO3-N)(mg/1 0.25 0.20 0.20	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 - <10 at St NO2-N)(mg/1 0.010 0.009	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 <0.10 . 4 (Lo NH4-N)(mg/1 0.04 0.05	TP)(mg/l 0.08 0.06 0.04 Zn)(ug/l 34 - 26 T-P)(mg/l 0.10 0.06 0.05	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 <0.001 T-OP)(mg/1) 0.09 0.05 0.03	D-OP (mg/1) 0.05 0.03 0.02 pp DDE (ug/1) <0.001 <0.001 Hay 18 D-OP (mg/1) 0.03 0.03 0.03	PO4-P) (mg/1 <0.01 0.02 0.02 pp' DDD (ug/1) <0.001 - (0.001 - ,1992 PO4-P (mg/1) 0.01 0.02	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 - <0.01 SS (mg/1) 20 20 10	T-Coli (MPN, 500 300 800 T-Coli (MPN, 900 2400	F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml)
	0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BOD (mg/1) 2.8 <2.0 Ch1-a (ug/1) 14.97 15.55 APP 2. BOD (mg/1)	COD(Mn (mg/1) 1.8 1.0 1.1 Pheo (ug/1) <0.10 <0.10 3-1(4) COD(Mn (mg/1) 2.2 1.6 1.4 1.3 Pheo)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1) 44)DCOD(Mn (mg/1) 2.2 1.6 1.4) TN (mg/l 1.58 0.56 CN (mg/l <0.01 CO.01 CM (mg/l CM	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002 0.002 ts of :	T-IN (mg/l Cd) (ug/l C1.0 Sea Wa T-IN) (mg/l C28 0.28 0.36 l Cd	D-ON)(mg/1 0.21 0.05 Pb)(ug/1 <5.0 13.0 ter An D-ON)(mg/1	NO3-N)(mg/1 0.30 0.30 0.20 Cu)(ug/1 <2.0 <2.0 allysis NO3-N)(mg/1 0.25 0.20 0.25 Cu	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 410 At St NO2-N)(mg/1 0.010 0.009 0.008	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 . 4 (Lc NH4-N)(mg/1 0.04 0.05 0.07 0.10	TP)(mg/i 0.08 0.06 0.04 Zn)(ug/i 34 -26 T-P)(mg/i 0.10 0.06 0.05 0.06	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 <0.001 e) T-OP)(mg/1) 0.05 0.03 0.03	D-OP (mg/1 0.05 0.03 0.02 pp' DDE (ug/1) <0.001 <0.001 Hay 18 D-OP (mg/1) 0.03 0.03 0.05 0.06	PO4-P) (mg/1	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 -(0.01) SS (mg/1) 20 20 10 14 PCB's	T-Coli (MPN, 500 300 800 T-Coli (MPN, 900 2400 1700 300	F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml) 300 2400 1100
	0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BOD (mg/1) 2.8 <2.0 Ch1-a (ug/1) 14.97 15.55 APP 2. BOD (mg/1) Ch1-a (ug/1)	COD(Mn (mg/1) 1.8 1.0 1.1 Pheo (ug/1) <0.10 <0.10 3-1(4) COD(Mn (mg/1) 2.2 1.6 1.4 1.3 Pheo)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1) (4)DCOD(Mn (mg/1) 2.2 1.6 1.4 1.2 n-Hexan (mg/1)) TN (mg/l 1.58 0.56 CN (mg/l <0.01 CO.01 CM (mg/l CM	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002 0.002 ts of :	T-IN (mg/l Cd) (ug/l C1.0 Sea Wa T-IN) (mg/l C28 0.28 0.36 l Cd	D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0 13.0 ter An D-ON)(mg/l	NO3-N)(mg/l 0.30 0.30 0.20 Cu)(ug/l <2.0 <2.0 allysis NO3-N)(mg/l 0.25 0.20 0.25 Cu)(ug/l	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 410 at St NO2-N)(mg/1 0.010 0.009 0.008	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 . 4 (Lc NH4-N)(mg/1 0.04 0.05 0.07 0.10	TP)(mg/i 0.08 0.06 0.04 Zn)(ug/l 34 26 T-P)(mg/l 0.10 0.06 0.05 0.06	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 <0.001 e) T-OP)(mg/1) 0.05 0.03 0.03	D-OP (mg/1) 0.05 0.03 0.02 pp' DDE (ug/1) <0.001 <0.001 May 18 D-OP (mg/1) 0.03 0.05 0.06 pp' DDE (ug/1)	PO4-P) (mg/1 <0.01 0.02 0.02 pp' DDD (ug/1) <0.0011992 PO4-P (mg/1) 0.01 0.02 0.03 pp' DDD (ug/1)	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 - <0.01 SS (mg/1) 20 20 10 14 PCB's (ug/1)	T-Coli (MPN 300 800 T-Coli (MPN 900 2400 1700 300	F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml) 300 2400 1100
	Depth (m) 0.0 5.0 5.0 Depth (m) 0.0 5.0 Fable Depth (m) 0.0 1.0 Depth (m) 0.0 0.0 Depth (m) 0.0 Depth (m)	BOD (mg/1) 2.8 <2.0 Ch1-a (ug/1) 14.97 15.55 APP 2. BOD (mg/1) Ch1-a (ug/1)	COD(Mn (mg/1) 1.8 1.0 1.1 Pheo (ug/1) <0.10 <0.10 3-1(4) COD(Mn (mg/1) 2.2 1.6 1.4 1.3 Pheo (ug/1) <0.10)DCOD(Mn (mg/1) 1.6 0.8 0.6 n-Hexan (mg/1) <4)DCOD(Mn (mg/1) 2.2 1.6 1.4 1.2 n-Hexan (mg/1) <4) TN (mg/l 1.58 0.56 CN (mg/l <0.01 CO.01 CM (mg/l CM	T-ON)(mg/1 1.23 0.26 Pheno)(mg/1 0.002 0.002 ts of :	T-IN)(mg/l 0.35 0.37 0.30 l Cd)(ug/l <1.0 <1.0 T-IN)(mg/l 0.30 0.26 0.28 0.36 l Cd)(ug/l	D-ON)(mg/l 0.21 0.05 Pb)(ug/l <5.0 13.0 ter An D-ON)(mg/l	NO3-N)(mg/l 0.30 0.30 0.20 Cu)(ug/l <2.0 <2.0 allysis NO3-N)(mg/l 0.25 0.20 0.25 Cu)(ug/l	NO2-N)(mg/1 0.010 0.006 0.004 Cr)(ug/1 <10 410 at St NO2-N)(mg/1 0.010 0.009 0.008	NH4-N)(mg/1 0.04 0.07 0.10 Hg)(ug/1 <0.10 . 4 (Lc NH4-N)(mg/1 0.04 0.05 0.07 0.10	TP)(mg/i 0.08 0.06 0.04 Zn)(ug/l 34 26 T-P)(mg/l 0.10 0.06 0.05 0.06	T-OP)(mg/1) 0.08 0.04 0.02 pp' DDT)(ug/1) <0.001 (0.001 e) T-OP)(mg/1) 0.05 0.03 0.03 pp' DDT)(ug/1)	D-OP (mg/1) 0.05 0.03 0.02 pp' DDE (ug/1) <0.001 <0.001 May 18 D-OP (mg/1) 0.03 0.05 0.06 pp' DDE (ug/1)	PO4-P) (mg/1 <0.01 0.02 0.02 pp' DDD (ug/1) <0.0011992 PO4-P (mg/1) 0.01 0.02 0.03 pp' DDD (ug/1)	SS)(mg/1) 30 30 22 PCB's (ug/1) <0.01 - <0.01 SS (mg/1) 20 20 10 14 PCB's (ug/1)	T-Coli (MPN 300 800 T-Coli (MPN 900 2400 1700 300	F-Coli /100ml) 170 300 500 (St.4) F-Coli /100ml) 300 2400 1100

Table	APP 2.	3-1(5)		Resul	ts of S	ea Wat	er And	alysis	at St	. 5 (Lo	m Tide	e) 	May 18	1992	Low Tid	le	(St.5)
Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Xn) (mg/l)	TN (mg/l	T-0\)(mg/l)	T-IT (mg/l)	D-ON (mg/l	NO3-N (mg/l	NO2-N)(mg/l	NH4-N)(mg/1)	T-P (mg/1)	T-OP)(mg/1)	D-OP (mg/l)	PO4-P (mg/l)			F-Coli
0.0	-	-	_	_		0.33				0.07		0.06		0.01	10	900	500
5.0 10.0	-	-	. .	-	.	0.38	-		0.007 0.007		0.06	0.05 0.04	0.04	0.01 0.01	20 10	900 1600	300 900
49.0	-	<u> </u>	-		-	0.30		0.25	0.004	0.05	0.08	0.04	0.04	0.02	5	300	300
Depth (m)		Pheo (ug/l)	n-Hexan (mg/l)	CN (mg/l	Phenol)(mg/1)	Cd (ug/l)	Pb)(ug/l	Cu)(ug/l	Cr)(ug/l	llg)(ug/1)	Zn)(ug/l	pp' DDT)(ug/l)	pp'DDE (ug/l)	pp' DDD (ug/l)	PCB's		
0.0		12.07	< 4			<1.0	<5.0	<2.0	<10	<0.10	46	<0.001	<0.001	<0.001	<0.01 -		
5.0 10.0	-	52.72	_	_	-	-	_	-	: -	-		_		-	-		
49.0				-		<1.0	<5.0	<2.0	<10	<0.10	<10	<0.001	<0.001	<0.001	<0.01	=	
Table	APP 2.	3-1(6)		Resul	ts of S	ea Wal	ter An	alysis	at St	. 6 (Lo	ow Tid	e)	May 18	, 1992	Low Tie	le	(St.6)
Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Mn). (mg/1)) TX (mg/l	T-0H)(mg/l)	T-IN (mg/l)	D-ON (mg/1	NO3-N (mg/1	NO2-N (mg/l	NH4-N)(mg/1)	TP)(mg/l	T-OP)(mg/l)		PO4-P (mg/l)			F-Coli 100ml)
0.0	4.2	2.1			0.63									0.04		4	4
5.0 10.0	-	1.7 1.5	1.6 1.4		_	0.36				0.10		0.05 0.03		0.02		80 70	23 70
19.0	1.2	1.0	1.0	1.14	0.73	0.41	0.40	0.30	0.005	0.10	0.04	0.02	0.00	0.02	5	300	300
Depth (m)	Chl-a (ug/l)	Pheo (ug/l)	n-Hexan (mg/l)	CN (mg/l	Phenol)(mg/l)	Cd (ug/l	Pb)(ug/l		Cr)(ug/l	Hg)(ug/l)					PCB's (ug/l)	•	
0.0		<0.10 <0.10	<4 -	<0.01	<0.001	<1.0	5	<2.0	<10	<0.10	<10	<0.001	<0.001	<0.001	<0.01		
5.0 10.0 19.0	J.JJ	~ -	· · · <u>-</u>	 (0.01	0.002	- <1.0	9.5	2	- <10	<0.10	14	· _ <0.001	- <0.001	- <0.001	<0.01		
====	·			10.01	0.002	11.0										=	
Table	APP 2.	3-1(7)		Resul	ts of S	lea Wa	ter An	alysis	at St	., 7 (Lo	biT wo	e)	V 10	1000	I a.e. Wie	3	(c) 7)
	non	00D/U-	\DCOD(\\-	············	т ОН	т tu	D 011	MOD II	1100 N	MITA N	TD		Hay 18		Low Tie		(St.7)
Depth (m)			DCOD(Kn (mg/l) 									T-OP)(mg/1) 		PO4-P (mg/l)			F-Coli 100ml)
0.0		-	-	-	•	0.76				0.50						16000 30000	
3.0 5.0	-	-		-		0.56 0.66				0.35						24000	
			n-Hexan (mg/l)		Phenol)(mg/l)		Pb (ug/l	Cu)(ug/l	Cr)(ug/l						PCB's (ug/l)		
0.0	71.64	<0.10	<4			<1.0	<5.0	<2.0	<10	<0.10	<10	<0.001	<0.001	<0.001	<0.01	-	
3.0 5.0	22.80	<0.10 	-	-	-	<1.0	16.0	<2.0	<10	<0.10	20.0	<0.001	<0.001	- <0.001	<0.01		
	 												 	<u> </u>		=	
Table	APP 2.	3-1(8)		Resul	ts of S	ea Wa	ter An	alysis	at St	. 8 (Lo	m Tid	e)	May 18	, 1992	Low T	ide	(St.8)
Depth (m))DCOD(Kn (mg/l)												SS 1 (mg/l)		
0.0	5.0	3.1			1.17									0.20			24000
2.0 5.0	2.4	2.5 2.3			1.20	1.23				0.90			0.05 0.05	0.15 0.10		24000 11000	24000 11000
Depth (m)			n-Hexan (mg/l)				Pb)(ug/l	Cu)(ug/l	Cr)(ug/l	Hg)(ug/l)					PC8's (ug/l)		
0.0		<0.10	<4	<0.01	<0.001	<1.0	16.0	<2.0	<10	<0.10	<10	<0.001	<0.001	<0.001	<0.01	-	
2.0 5.0	33.73 -	<0.10 -	_	<0.01	0.002	<1.0	13.0	<2.0	<10	<0.10	10.0	<0.001	<0.001	<0.001	- <0.01		

							٠.										
m.L1.				Dogul		laa Wad	d.	-1	-1 64	ò /1.	7 13.						
Table	APP 1	2.3-1(9)		Kesul	us or a	ea na	cer an	alysis	at st	. 9 (L	ON TIES	e) 	May 18	, 1992	Low Ti	de	(St.
			n)DCOD(Mn) (mg/l)									T-OP)(mg/l)		PO4-P (mg/l)		T-Coli (MPN,	
0.0 4.0	4.0 1.2	3.7 2.3								0.80 0.50			0.05 0.02	0.10 0.08	18 25	16000 5000	904 304
Depth (m)			n-Hexan (mg/l)						Cr)(ug/l	Hg)(ug/1)			pp' DDE (ug/l)				
0.0 4.0		<0.10 <0.10			<0.01 <0.01					<0.10 <0.10		<0.001	<0.001	<0.001	- <0.01	=	
Table	APP 2	2.3-1(10)	Resul	ts of S	Sea Wa	ter An	alysis	at St	. 10 (Low Tie	de)	May 18	,1992	Low Ti	de	(St.
Depth (m)			n)DCOD(Mn) (mg/1)									T-OP)(mg/l)	D-OP (mg/l)	PO4-P (mg/l)		T-Coli (MPN,	
0.0 5.0 23.0	- - -	- - -	- -		- - - -	0.24 0.41 0.41	36 1 1	0.20	0.009	0.04 0.20 0.15	0.06	0.03	0.02	0.03	16	14 30 240	
Depth (m)		a Pheo) (ug/1)	n-Hexan (mg/l)		Pheno)(mg/l		Pb)(v g/ 1	Cu)(ug/1	Cr)(vg/1	Hg)(ug/l			pp' DDE (ug/l)				
0.0		7 16.92		~	-	<1.0	15.0	<2.0	<10	<0.10	16				_	~	
5.0 23.0	10.6	9 1.78	3 ~	7	-	<1.0	31.0	6.5	<10	<0.10	38		-	- .	-		
Table	APP 2	2.3-1(11)	Resul	ts of	Sea Wa	ter An	alysis	at St	11 (Low Tie	de)	May 18	. 1992	Lo₩ Ti	≃ de	(St.
Depth (m)			n)DCOD(Hn) (mg/l)										D-OP	P04-P	SS	T-Coli	F-C
0.0 2.3	6.2 1.8									0.04			0.04 0.01			5000 800	300 50
Depth (m)	Chl- (ug/l	a Pheo) (ug/l)	n-Hexan (mg/l)	CN (mg/l	Pheno (mg/l	l Cd)(ug/l		Cu)(vg/l		llg)(ug/l			pp' DDE (ug/l)				
0.0 2.3		8 <0.10 0 <0.10								<0.10 <0.10		- -	-	-	- -	≅	
Table	APP 2	.3-1(12)	Resul	ts of S	Sea Wal	ter An	alysis	at St	. 12 (1	Low Tie	de)	May 18	, 1992	Low Ti	<u>đe</u>	(St.
Depth (m)	BOÐ (mg∕l	COD(Hr (mg/l)	n)DCOD(Mn) (mg/l)) TW (mg/l	T-0N (mg/l)	T-1N (mg/1)	1\zm)(K-60K [\gm](NO2-N (mg/l	NR4-N)(mg/1	TP)(mg/l	T-OP)(mg/l)	0-0P (mg/l)	PO4-P (mg/l)	SS (mg/l)	T-Coli (MPN,	F-C
0.0 5.0	-	2.7	7 2.4) 2.0	-	- - -	0.27 0.38	 - -						0.04 0.02			140 500	90 60

												May 18	, 1992	Low Tie	de	(St.1
-	2.7	2.4	_	-	0.27		0.25	0.001	0.02	0.10	0.10	0.04	<0.01	22	140	90
-	2.0	2.0		-	0.38	**	0.30	0.004	0.08	0.06	0.05	0.02	10.0	10	500	60
	1.2	1.2		-	0.51	_	0.30	0.009	0.20	0.05	0.01	0.02	0.04	14	23	4
									~							
38.49	<0.10	<4	_	_	<1.0	<5.0	<2.0	<10	<0.10	<10	_	~	_		-	
22.45	< 0.10	-	~-		-	-	_	-	~	_		**	-			
_	-	-	_		<1.0	<5.0	<2.0	<10	<0.10	<10	_		•••	-		
	(mg/l)	(mg/1) (mg/1) - 2.7 - 2.0 - 1.2 Ch1-a Pheo	(mg/l) (mg/l) (mg/l) - 2.7 2.4 - 2.0 2.0 - 1.2 1.2 Chl-a Pheo n-Hexan (ug/l) (ug/l) (mg/l) 38.49 <0.10 <4	(mg/l) (m	(mg/1) (mg/1) (mg/1) (mg/1)(mg/1) - 2.7 2.4 2.0 2.0 1.2 1.2 Chl-a Pheo n-Hexan CN Phenol (ug/1) (ug/1) (mg/1) (mg/1)(mg/1) 38.49 <0.10 <4	(mg/1) (mg/1) (mg/1) (mg/1)(mg/1)(mg/1) - 2.7 2.4 - 0.27 - 2.0 2.0 - 0.38 - 1.2 1.2 - 0.51 Chl-a Pheo n-Hexan CN Phenol Cd (ug/1) (ug/1) (mg/1) (mg/1)(mg/1)(ug/1) 38.49 <0.10 <4 - <1.0 22.45 <0.10	(mg/1) (mg/1) (mg/1) (mg/1)(mg/1)(mg/1)(mg/1) - 2.7 2.4 - 0.27 - - 2.0 2.0 - 0.38 - - 1.2 1.2 - 0.51 - Chl-a Pheo n-Hexan CN Phenol Cd Pb (ug/1) (ug/1) (mg/1) (mg/1)(ug/1)(ug/1) 38.49 <0.10 <4 - <1.0 <5.0 22.45 <0.10	(mg/1) (mg/1) (mg/1) (mg/1)(ug/1)(ug	(mg/1) (mg/1) (mg/1) (mg/1)(ug/1)(ug	(mg/1) (mg/1) (mg/1) (mg/1)(mg	(mg/1) (mg/1) (mg/1) (mg/1)(ug/1)(ug	(mg/1) (mg/1) (mg/1) (mg/1)(mg	BOD COD(Hn)DCOD(Hn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP (mg/l) (mg/l) (mg/l) (mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l) (mg/l) (m	BOD COD(Hn)DCOD(Hn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P (mg/l) (mg/	BOD COD(Hn)DCOD(Hn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS (mg/l) (mg/l) (mg/l) (mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l) (mg/l) (mg	BOD COD(Hn)DCOD(Hn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli (mg/l) (mg/l) (mg/l) (mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l) (mg/l) (

0.0

1.5

1.5

Table APP 2.3-1(14) Results of Sea Water Analysis at St. 14 (Low Tide) May 18,1992 Low Tide BOD COD(Mn)DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli F-Coli Deoth (mg/1) (2.23 1.76 0.47 0.10 0.15 0.020 0.30 0.30 0.0 2.6 2.6 0.51 - 0.20 0.010 0.30 0.15 0.14 0.050.013000 1300 15 3.0 5.0 3.4 1.6 1.6 1.06 0.50 0.56 0.50 0.25 0.008 0.30 0.10 0.08 0.04 0.02 20 500 140 CN Phenol Cd Pb Cu Zn pp' DDT pp' DDE pp' DDE pp' DDD PCB' s Depth Chl-a Pheo n-Hexan CrHg (ug/1) (ug/1) (mg/1) (mg/1) (mg/1) (ug/1) 0.01 <0.001 <1.0 16 <2.0 <10 <0.10 <10 0.0 88.21 < 0.10 62.82 < 0.10 <0.01 <0.001 3.0 30.74 < 0.10 <0.01 <0.001 <1.0 185 3.5 <10 < 0.10 < 10 5.0

Table APP 2.3-1(15) Results of Sea Water Analysis at St. 15 (Low Tide) May 18,1992 Low Tide BOD COD(Mn)DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli F-Coli Depth (mg/1) .30 0.001 0.01 0.07 0.03.0 1.5 0.310.050.01 0.0215 ß n 0.30 0.002 0.04 0.07 3.0 2.4 1.3 0.340.05 0.02 0.02 15 2 0 0.30 0.006 0.15 0.05 0.46 6.5 1.5 1.1 0.03 0.02 0.024 Depth Chl-a Pheo n-Hexan CN Phenol Cd Pb Cu Cr : Hg Zn pp' DDT pp' DDE pp' DDD PCB's (m) (ug/1) .0 32.08 < 0.10 <0.001 < 1.0 13 <2.0 <10 < 0.10 <10 22.72 < 0.10 <0.001 3.0 <0.001 <1.0 <5.0 <2.0 <10 <0.10 <10 6.5

Table APP 2.3-1(16) Results of Sea Water Analysis at St. 18 (Low Tide) May 18,1992 Low Tide BOD COD(Mn)DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli F-Coli (mg/1) .0 5.0 3.0 2.8 1.18 0.80 0.38 0.27 0.35 0.001 0.03 0.10 0.10 0.02 < 0.01 50 3.0 1.7 1.6 1.24 0.83 0.41 0.34 0.35 0.003 0.06 0.05 0 0 Depth Chl-a Pheo n-Hexan CN Phenol Cd Zn pp' DDT pp' DDE pp' DDD PCB' s РЪ Cu Cr Hg (ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)<0.01 0.002 <1.0 0.044.91 < 0.30 13 <2.0 <10 <0.10 13.36 < 0.10 <0.01 0.002 <1.0 42 <2.0 <10 <0.10

Table	APP 2	2.3-1(17)	Resul	ts of a	Sea Wa	ter An	alysis	at St	. 17 (Low Ti	de)	May 18	,1992	Low Ti	de	(St. 17)
			1)DCOD(Hn) (mg/1)														
	3.4 1.8		1 1.1													17 8	8 2
			n-Hexan (mg/l)														
0.0 4.5		3 <0.10 1 <0.10			<0.001 <0.001				<10 <10					-	- -	_	
Table	APP 2	.3-1(18)	Resul	ts of S	Sea Wat	ter An	alysis	at St	. 18 (1	low Tic	de)	May 18	, 1992	Low Tie	de	(St.18)
			n)DCOD(Kn) (mg/l)														
0.0 3.5	8.0 2.6		i 0.9											0.04 0.01		50 30	50 30
			n-Hexan (mg/l)														
0.0 3.5	224.5 72.7	3 <0.10	(4		<0.001	<1.0	₹5.0	2	<10	<0.10	46		_		-	-	

Table	APP 2.	3-2(1)				a Water High T		s of th	e Firs	t Simul! Hay 18,		Survey High Ti	ide	(St.2)
Depth	ROD	COD(No.)	DCOD(Mn		T-ON	T-IN		NO3-N	NO2-N	NH4-N	TP	T-OP	D-OP	P04-F
(m)			(mg/l)											
0.0		0.4	0.0	_		0.04	-		0.002	<0.01	0.02		0.00	0.02
5.0	***	0.2	0.2	-	-	0.03	·		<0.001	<0.01	0.02		0.00	
20.0		0.4	0.4			0.05	-	0.05	<0.001	<0.01	0.02	0.01	0.01	0.01
Depth	SS	T-Coli		Chl-a								· · · · · · · · · · · · · · · · · · ·		
(m)	(mg/1)	(MPN)	(MPN)	(ug/l)	(ug/l)	_						-		
0.0	22	4	0	5	<0.10									
5.0	10	0	0	12	< 0.10									
20.0	16	50	7		_									
		0.0		.										
						=								
				The second second		=							٠.	
Table	APP 2.			Results		= a Water	Analysi	is at SI	ı.i 3				٠.	
	APP 2.	3-2(2)			s of Sea					May 18,		High T		(St.3)
Depth	APP 2.	3-2(2))DCOD(Hn) TH	s of Sea	T-IN	D-OH	N03-N	NO2-N	NH4-N	TP	T-OP	D-OP	P04-F
	APP 2.	3-2(2)) TH	s of Sea	T-IN	D-OH	N03-N	NO2-N	NH4-N	TP	T-OP	D-OP	P04-F
Depth (m)	APP 2. BOD (mg/1)	3-2(2) COD(Hn) (mg/1) 0.6	DCOD(Mn (mg/1) 0.4) TN (mg/l) 0.37	T-ON (mg/1)	T-IN (mg/l) 0.09	D-OH	NO3-N (mg/1) 0.07	NO2-N (mg/l) 0.003	NH4-N (mg/1) 0.02	TP (mg/1) 0.05	T-OP (mg/1) 0.05	D-OP (mg/l) 0.02	PO4-F (mg/1) <0.01
Depth (m) 0.0 5.0	APP 2. BOD (mg/1)	3-2(2) COD(Hn) (mg/1) 0.6 0.4	DCOD(Mn (mg/1) 0.4 0.4) TN (mg/l) 0.37	T-ON (mg/1)	T-IN (mg/l) 0.09 0.10	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.07 0.07	NO2-N (mg/1) 0.003 0.004	NH4-N (mg/1) 0.02 0.03	TP (mg/1) 0.05 0.04	T-OP (mg/1) 0.05 0.04	D-OP (mg/l) 0.02 0.02	P04-F (mg/1) <0.01 <0.01
Depth (m)	APP 2. BOD (mg/1)	3-2(2) COD(Hn) (mg/1) 0.6	DCOD(Mn (mg/1) 0.4 0.4) TN (mg/l) 0.37	T-ON (mg/1)	T-IN (mg/l) 0.09	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.07	NO2-N (mg/1) 0.003 0.004	NH4-N (mg/1) 0.02 0.03	TP (mg/1) 0.05	T-OP (mg/1) 0.05 0.04	D-OP (mg/l) 0.02	P04-F (mg/1) <0.01 <0.01
Depth (m) 0.0 5.0 50.0	APP 2. BOD (mg/1)	3-2(2) COD(Hn) (mg/1) 0.6 0.4	DCOD(Mn (mg/1) 0.4 0.4) TN (mg/1) 0.37 0.45	T-ON (mg/l) 0.28	T-IN (mg/l) 0.09 0.10	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.07 0.07	NO2-N (mg/1) 0.003 0.004	NH4-N (mg/1) 0.02 0.03	TP (mg/1) 0.05 0.04	T-OP (mg/1) 0.05 0.04	D-OP (mg/l) 0.02 0.02	P04-F (mg/1) <0.01 <0.01
Depth (m) 0.0 5.0 50.0	APP 2. BOD (mg/1)	3-2(2) COD(Hn) (mg/l) 0.6 0.4 0.4 T-Coli	0DC0D(Mn (mg/1) 0.4 0.4 0.2) TN (mg/l) 0.37 0.45	T-ON (mg/l) 0.28	T-IN (mg/l) 0.09 0.10	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.07 0.07	NO2-N (mg/1) 0.003 0.004	NH4-N (mg/1) 0.02 0.03	TP (mg/1) 0.05 0.04	T-OP (mg/1) 0.05 0.04	D-OP (mg/l) 0.02 0.02	P04-F (mg/1) <0.01 <0.01
Depth (m) 0.0 5.0 50.0	APP 2. BOD (mg/1) SS (mg/1)	3-2(2) COD(Hn) (mg/l) 0.6 0.4 0.4 T-Coli	DCOD(Mn (mg/l) 0.4 0.2 F-Coli) TN (mg/l) 0.37 0.45	T-ON (mg/l) 0.28 0.38	T-IN (mg/l) 0.09 0.10	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.07 0.07	NO2-N (mg/1) 0.003 0.004	NH4-N (mg/1) 0.02 0.03	TP (mg/1) 0.05 0.04	T-OP (mg/1) 0.05 0.04	D-OP (mg/l) 0.02 0.02	P04-F (mg/1) <0.01 <0.01
Depth (m) 0.0 5.0 50.0 Depth (m)	BOD (mg/1)	3-2(2) COD(Hn) (mg/1) 0.6 0.4 0.4 T-Coli (MPN)	DDCOD(Hn (mg/1) 0.4 0.4 0.2 F-Coli (MPM)) TN (mg/1) 0.37 0.45 Chl-a (ug/1)	T-ON (mg/l) 0.28 0.38 Pheo (ug/l)	T-IN (mg/l) 0.09 0.10	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.07 0.07	NO2-N (mg/1) 0.003 0.004	NH4-N (mg/1) 0.02 0.03	TP (mg/1) 0.05 0.04	T-OP (mg/1) 0.05 0.04	D-OP (mg/l) 0.02 0.02	P04-E (mg/1) <0.01 <0.01

	APP 2.	3-2(3)		Results	of Sea	a Water	Analys	is at S	t 4					
			DCOD(Kn		T-ON	T-IN	D-ON	NO3-N		May 18 NH4-N		High Ti	ide D-OP	(St.4) PO4-P
Depth (m)			(Eg/l)								TP (mg/l)			
0.0	· -	1.4	1.4	_	-	0.14	_	0.08		0.05	0.08	0.08	0.02	<0.01
3.0 7.0		1.4 1.0	1.2 1.0		_	0.12 0.13	-	0.06	0.009	0.05 0.06	0.06 30.0	0.06 0.05	0.02	<0.01 0.01
7.5		1.2	1.2	· <u>-</u>		0.14	· · <u>-</u>		0.008	0.07	0.06	0.04	0.01	0.02
Depth	SS	T-Coli	F-Coli	Chl-a	Pheo									
(m)	(mg/l)	(MPN)	(MPN)	(ug/l)	(ug/l)	_				•				
0.0	16	2400	1300	5	<0.10									
3.0 7.0	14 20	900 1600	900 -	2	<0.10 -									
7.5	12	2400	2400	<u>-</u>		.								
						-								
Table	APP 2.	3-2(4)		Results	of Sea	a Water	Analys	is at S	t. 5					(0) (1)
Depth	BOD	COD(Hn)	DCOD(Hn) TN	T-0X	T-IN	D-ON			May 18 NH4-N	TP	High Ti T-OP	D-OP	(St.5) PO4-P
(m)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
0.0	_	1.0	0.4		_	0.16	-	0.06		0.09	0.06	0.04	0.01	0.02
5.0 10.0		0.6	0.6 0.6		-	0.10 0.08	_	0.02		0.07 0.05	0.05 0.04	0.03	0.01 0.01	0.02 0.02
34.0	-	0.6	0.4	. -		0.04	-	0.01		0.03	0.02	0.02	0.02	<0.01
Depth	SS	T-Coli	F-Coli	Chl-a										
•	(mg/l)	(MPM)	(אפא)	(ug/l)	(ug/l)	_	•					÷	•	
0.0	14	3000	3000	1	<0.10									
5.0 10.0	14 15	1600 2400	900 1300	1 -	<0.10									
34.0		500	500	-	-									
						•								
Table	APP 2.	3-2(5)		Results	of Sea	a Water	Analys	is at S	t. 6	May 18	1992	High Ti	de	(St.6)
Depth	BOD	COD(Mn)	DCOD(Mn) TN	T-ON	T-IN	D-ON	NO3-N	NO2-N	NH4-N	TP	T-OP	D-GP	P04-P
Depth (m)	BOD	COD(Mn) (mg/l)	(mg/l)) TN (mg/l)	T-0N (mg/l)	T-IN (mg/l)	D-ON (mg/1)	NO3-N (mg/l)	NO2-X (mg/1)	NH4-N (mg/l)	TP (mg/l)	T-OP (mg/l)	D-GP (mg/l)	PO4-P (mg/l)
Depth (m)	BOD	COD(Mn) (mg/l)	(mg/1) 0.4) TN	T-ON (mg/l) 0.96	T-IN (mg/l) 0.28	D-ON (mg/1)	NO3-N (mg/l) 0.20	NO2-N (mg/1)	NH4-N (mg/l) 0.07	TP (mg/l) 0.05	T-OP (mg/l) 0.04	D-GP (mg/l) 0.02	P04-P
Depth (m) 0.0 5.0 10.0	BOD (mg/l)	COD(Mn) (mg/l) 1.2 1.0 1.0	(mg/l) 0.4 0.8 1.0) TN (mg/l)	T-ON (mg/l) 0.96	T-IN (mg/1) 0.28 0.33 0.27	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0	BOD (mg/l)	COD(Mn) (mg/l) 1.2 1.0	(mg/l) 0.4 0.8) TN (mg/l)	T-ON (mg/l) 0.96	T-IN (mg/1) 0.28 0.33 0.27	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006	NH4-N (mg/l) 0.07 0.07	TP (mg/1) 0.05 0.05	T-OP (mg/1) 0.04 0.03	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02
Depth (m) 0.0 5.0 10.0 21.0	BOD (mg/1) - - - - - SS	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0	0.4 0.8 1.0 0.0) TN (mg/l) 1.24 0.62	T-ON (mg/1) 0.96 - 0.36	T-IN (mg/1) 0.28 0.33 0.27	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0	BOD (mg/l) - - - - SS	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0	0.4 0.8 1.0 0.0) TN (mg/l) 1.24 - 0.62 Chl-a (ug/l)	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1)	T-IN (mg/1) 0.28 0.33 0.27	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m)	BOD (mg/1) - - - SS (mg/1)	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0 T-Coli (MPN)	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN)) TN (mg/1) 1.24 - 0.62 Chl-a (ug/1)	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1)	T-IN (mg/l) 0.28 0.33 0.27 0.26	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m)	BOD (mg/1)	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0	0.4 0.8 1.0 0.0 F-Coli (HPN)) TN (mg/l) 1.24 - 0.62 Chl-a (ug/l)	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1)	T-IN (mg/l) 0.28 0.33 0.27 0.26	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0	BOD (mg/1)	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0 T-Coli (MPN)	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN)) TN (mg/1) 1.24 - 0.62 Chl-a (ug/1)	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10 <0.10	T-IN (mg/l) 0.28 0.33 0.27 0.26	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0	BOD (mg/l) SS (mg/l) 6 10	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0 T-Coli (MPN) 1700 1700 130	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130) TN (mg/1) 1.24	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10 <0.10	T-IN (mg/l) 0.28 0.33 0.27 0.26	D-ON (mg/1) 0.28	NO3-N (mg/1) 0.20 0.25 0.20	NO2-N (mg/1) 0.005 0.006 0.005	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 21.0 10.0 21.0	BOD (mg/1) 	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0 T-Coli (MPN) 1700 1700 130 300	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80) TN (mg/1) 1.24	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10	T-IN (mg/1) 0.28 0.33 0.27 0.26	D-ON (mg/1) 0.28 - 0.14	NO3-N (mg/1) 0.20 0.25 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004	NH4-N (mg/l) 0.07 0.07 0.06	TP (mg/1) 0.05 0.05 0.04	T-OP (mg/1) 0.04 0.03 0.02	D-GP (mg/1) 0.02 0.02 0.01	PO4-P (mg/l) 0.01 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0	BOD (mg/1) 	COD(Mn) (mg/l) 1.2 1.0 1.0 1.0 T-Coli (MPN) 1700 130 300	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80) TN (mg/l) 1.24	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10 - of Sea	T-IN (mg/1) 0.28 0.33 0.27 0.26	D-ON (mg/l) 0.28 - 0.14	NO3-N (mg/1) 0.20 0.25 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004	NH4-N (mg/1) 0.07 0.07 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0 Table	BOD (mg/1) 	COD(Hn) (mg/l) 1.2 1.0 1.0 1.0 1.0 T-Coli (MPN) 1700 1700 130 300	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80) TN (mg/l) 1.24	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10 <0.10 - of Sea T-ON	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water	D-ON (mg/1) 0.28 - 0.14 Analysi	NO3-N (mg/1) 0.20 0.25 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004	NH4-N (mg/l) 0.07 0.07 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0 Table Depth (m)	BOD (mg/1) 	COD(Hn) (mg/1) 1.2 1.0 1.0 1.0 1.0 1700 1700 130 300 COD(Hn)(mg/1)	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80 DCOD(Hn) (mg/1)) TN (mg/l) 1.24	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10 <0.10 - of Sea T-ON	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water T-IN (mg/1)	D-ON (mg/1) 0.28 - 0.14 Analysi	NO3-N (mg/1) 0.20 0.25 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004	NH4-N (mg/l) 0.07 0.07 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0 Table Depth (m) 0.0 3.0	BOD (mg/1) 	COD(Mn) (mg/1) 1.2 1.0 1.0 1.0 1.0 1.0 1700 1700 130 300 3-2(6) COD(Mn) (mg/1) 1.6 1.6	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80 DCOD(Mn) (mg/1) 1.4 1.6) TN (mg/l) 1.24	T-ON (mg/1) 0.96 - 0.36 Pheo (ug/1) <0.10 <0.10 - of Sea T-ON (mg/1)	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water T-IN (mg/1) 0.46 0.28	D-ON (mg/l) 0.28 - 0.14 Analysi D-ON (mg/l)	NO3-N (mg/1) 0.20 0.25 0.20 0.20 0.20 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004 . 7 NO2-N (mg/1) 0.010	NH4-N (mg/1) 0.07 0.07 0.06 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0 Table Depth (m) 0.0	BOD (mg/1) 	COD(Hn) (mg/1) 1.2 1.0 1.0 1.0 1.0 1700 1700 1700 1700 170	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80 DCOD(Mn) (mg/1) 1.4 1.6 1.2) TN (mg/l) 1.24 - 0.62 Chl-a (ug/l) 28 20 - TN (mg/l)	T-ON (mg/l) 0.96 - 0.36 Pheo (ug/l) <0.10 <0.10 - of Sea T-ON (mg/l)	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water T-IN (mg/1) 0.46	D-ON (mg/1) 0.28 - 0.14 Analysi	NO3-N (mg/1) 0.20 0.25 0.20 0.20 0.20 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004	NH4-N (mg/1) 0.07 0.07 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02 0.02 0.02
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0 Table Depth (m) 0.0 5.5	BOD (mg/1) 	COD(Hn) (mg/1) 1.2 1.0 1.0 1.0 1.0 1700 1700 1700 1700 170	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80 DCOD(Mn) (mg/1) 1.4 1.6 1.2 F-Coli) TN (mg/l) 1.24 - 0.62 Chl-a (ug/l) 28 20 - TN (mg/l)	T-ON (mg/l) 0.96 - 0.36 Pheo (ug/l) <0.10 <0.10 - of Sea T-ON (mg/l) Pheo	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water T-IN (mg/1) 0.46 0.28	D-ON (mg/l) 0.28 - 0.14 Analysi D-ON (mg/l)	NO3-N (mg/1) 0.20 0.25 0.20 0.20 0.20 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004 . 7 NO2-N (mg/1) 0.010	NH4-N (mg/1) 0.07 0.07 0.06 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 5.0 10.0 21.0 Table Depth (m) 0.0 3.0 5.5	BOD (mg/1) SS (mg/1) 6 10 12 20 APP 2. BOD (mg/1) SS	COD(Hn) (mg/l) 1.2 1.0 1.0 1.0 1.0 1.0 17-Coli (MPN) 1700 130 300 3-2(6) COD(Hn) (mg/l) 1.6 1.6 1.2 T-Coli (MPN)	(mg/l) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80 0000(Mn) (mg/l) 1.4 1.6 1.2 F-Coli (HPN)) TN (mg/l) 1.24	T-ON (mg/l) 0.96 - 0.36 Pheo (ug/l) <0.10 <0.10 - of Sea T-ON (mg/l) Pheo	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water T-IN (mg/1) 0.46 0.28	D-ON (mg/l) 0.28 - 0.14 Analysi D-ON (mg/l)	NO3-N (mg/1) 0.20 0.25 0.20 0.20 0.20 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004 . 7 NO2-N (mg/1) 0.010	NH4-N (mg/1) 0.07 0.07 0.06 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03
Depth (m) 0.0 5.0 10.0 21.0 Depth (m) 0.0 21.0 Table Depth (m) 0.0 3.0 5.5 Depth (m)	BOD (mg/1) SS (mg/1) 6 10 12 20 APP 2. BOD (mg/1) SS (mg/1)	COD(Mn) (mg/1) 1.2 1.0 1.0 1.0 1.0 1700 1700 1700 1300 300 3-2(6) COD(Mn) (mg/1) 1.6 1.6 1.2 T-Coli	(mg/1) 0.4 0.8 1.0 0.0 F-Coli (HPN) 700 1100 130 80 DCOD(Mn) (mg/1) 1.4 1.6 1.2 F-Coli) TN (mg/1) 1.24	T-ON (mg/1) 0.96 0.36 Pheo (ug/1) 0.10 0.10 T-ON (mg/1) Pheo (ug/1)	T-IN (mg/1) 0.28 0.33 0.27 0.26 Water T-IN (mg/1) 0.46 0.28	D-ON (mg/l) 0.28 - 0.14 Analysi D-ON (mg/l)	NO3-N (mg/1) 0.20 0.25 0.20 0.20 0.20 0.20 0.20	NO2-N (mg/1) 0.005 0.006 0.005 0.004 . 7 NO2-N (mg/1) 0.010	NH4-N (mg/1) 0.07 0.07 0.06 0.06 0.06	TP (mg/1) 0.05 0.05 0.04 0.04	T-OP (mg/1) 0.04 0.03 0.02 0.02 0.02 0.02	D-GP (mg/1) 0.02 0.02 0.01 0.01 0.01	PO4-P (mg/1) 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03

Table Depth (m)	BOD	.3-2(7) COD(Mn) (mg/1)	DCOD(Mn (mg/l)) TH	of Sea T-ON (mg/l)	T-1N	D-ON	NO3-N	NO2-N	Hay 18, NH4-N (mg/l)	TP	High Ti T-OP (mg/l)	D-OP	(St.8) PO4-P (mg/l)
0.0 2.0 8.5		2.8 2.4 1.6	2.4 2.0 1.6	-		0.84 0.88 0.67	0.60 - 0.25	0.25	0.040 0.030 0.020	0.80 0.60 0.35	0.20 0.20 0.10	0.10 0.10 0.05	0.00 0.00 0.02	0.10 0.10 0.05
Depth (m)		T-Coli (MPN)	F-Coli (MPN)										٠.	
0.0 2.0 8.5	14	17000 13000 2400	17000 13000 2400	44 45 -	<0.10 <0.10									
Table	APP (2.3-2(8)		Results	of Sea		Analysi			May 18,	1992	High Ti	de	(St.9)
Depth (m)		COD(Mn) (mg/l)				T-IN (mg/l)	D-ON (mg/l)		NO2-N (mg/l)	NH4-N (mg/l)	TP (mg/l)	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)
0.0 4.0		2.8 1.2	1.2 1.0		1.42 0.44	0.58 0.47	0.30 0.35		0.030 0.020	0.30 0.25	0.20 0.10	0.19 0.06	0.02	0.01 0.04
Depth (m)	SS (mg/l)	T-Coli (MPN)	F-Coli (MPN)	Chl-a (ug/l)						,				
0.0 4.0		800 110	800 110	59 14	<0.10 <0.10						•	•		
Table	APP 2	.3-2(9)		Result	of Sea	Water	Analysi	s at SI	. 10	May 18,	1992	High Ti	de	(St.10)
Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Hn (mg/l)) TH (mg/l)	T-0X (mg/l)	T-IN (mg/l)	D-ON (mg/l)	NO3-N (mg/l)	NO2-N (mg/1)	NH4-N	TP	T-OP	D-OP	PO4-P (mg/l)
0.0 5.0 25.0	-	1.6 1.6 1.2	1.0 0.8 0.2	- -	- - -	0.34 0.41 0.46	- - -	0.30 0.30 0.30	0.004 0.007 0.007	0.04 0.10 0.15	0.07 0.08 0.08	0.07 0.08 0.06	0.02 0.03 0.01	<0.01 <0.01 0.02
Depth (m)	SS (mg/l)		F-Coli (MPN)	Chl-a (ug/1)	Pheo (ug/l)								:	
0.0 5.0 25.0	20	170 80 240	80 80 130	27 15 -	<0.01 <0.01									
Table	APP 2	.3-2(10)		Results	of Sea	Water	Analysi	s at St		May 10		Uiah Ti	da	/C+ 11)
Depth	800	.3-2(10) COD(Mn) (mg/1)	DCOD(Hn)) TH	T-ON	T-IN	D-ON	NO3-N	NO2-N	May 18, NH4-N (mg/l)	TP	High Ti T-OP (mg/l)	n-np	(St.11) PO4-P (mg/l)
Depth	800	COD(Mn)	DCOD(Hn)) TH	T-ON	T-IN	D-ON	NO3-N (mg/l)	NO2-N	NH4-N (mg/1)	TP	T-OP	n-np	POA-P
Depth (m) 0.0 4.0 Depth	800 (mg/1) 	COD(Mn) (mg/l) 1.8 1.8	DCOD(Mn) (mg/l) 0.9 0.9 F-Coli) TH (mg/l) 0.80 1.15	T-ON (mg/1) 0.54 0.54 Pheo	T-IN (mg/l) 0.26	D-ON (mg/l) 0.54	NO3-N (mg/l)	NO2-N (mg/l) 0.040	NH4-N (mg/l) 0.06	TP (mg/l) 0.10	T-OP (mg/l) 0.08	D-OP (mg/l) 0.04	PO4-P (mg/l) 0.02
Depth (m) 0.0 4.0 Depth	800 (mg/1) SS	COD(Mn) (mg/l) 1.8 1.8	DCOD(Mn) (mg/l) 0.9 0.9 F-Coli) TH (mg/l) 0.80 1.15 Chl-a	T-ON (mg/1) 0.54 0.54 Pheo	T-IN (mg/l) 0.26	D-ON (mg/l) 0.54	NO3-N (mg/l)	NO2-N (mg/l) 0.040	NH4-N (mg/l) 0.06	TP (mg/l) 0.10	T-OP (mg/l) 0.08	D-OP (mg/l) 0.04	PO4-P (mg/l) 0.02
Depth (m) 0.0 4.0 Depth (m) 0.0 4.0	800 (mg/1) 	COD(Hn) (mg/l) 1.8 1.8 T-Coli (MPN)	0.9 0.9 0.9 F-Coli (MPN)	0.80 1.15 Chl-a (ug/1)	T-ON (mg/1) 0.54 0.54 Pheo (ug/1) <0.10 0.4	T-IN (mg/1) 0.26 0.27	D-ON (mg/1) 0.54 0.43	NO3-N (mg/1) 0.20 0.20	NO2-N (mg/1) 0.040 0.030	NH4-N (mg/1) 0.06 0.07	TP (mg/1) 0.10 0.10	T-OP (mg/1) 0.08 0.08	D-OP (mg/1) 0.04 0.02	PO4-P (mg/1) 0.02 0.02
Depth (m) 0.0 4.0 Depth (m) 0.0 4.0 Table	800 (mg/1)	COD(Mn) (mg/1) 1.8 1.8 T-Coli (MPN) 500 240	DCOD(Hn) (mg/1) 0.9 0.9 F-Coli (HPN) 240 240	0.80 1.15 Chl-a (ug/1) 34.21 23.52 Results	T-ON (mg/1) 0.54 0.54 Pheo (ug/1) <0.10 0.4 of Sea	T-IN (mg/1) 0.26 0.27 Water	D-ON (mg/1) 0.54 0.43 Analysi	NO3-N (mg/1) 0.20 0.20	NO2-N (mg/1) 0.040 0.030	NH4-N (mg/1) 0.06 0.07	TP (mg/1) 0.10 0.10	T-OP (mg/1) 0.08 0.08	D-OP (mg/1) 0.04 0.02	PO4-P (mg/1) 0.02 0.02 0.02
Depth (m) 0.0 4.0 Depth (m) 0.0 4.0 Table	800 (mg/1)	COD(Mn) (mg/1) 1.8 1.8 T-Coli (MPN) 500 240	DCOD(Hn) (mg/1) 0.9 0.9 F-Coli (HPN) 240 240	0.80 1.15 Chl-a (ug/1) 34.21 23.52 Results	T-ON (mg/1) 0.54 0.54 Pheo (ug/1) <0.10 0.4 of Sea	T-IN (mg/1) 0.26 0.27 Water	D-ON (mg/1) 0.54 0.43 Analysi	NO3-N (mg/1) 0.20 0.20 . 12 NO3-N (mg/1) 0.20 0.25	NO2-N (mg/1) 0.040 0.030	NH4-N (mg/1) 0.06 0.07	TP (mg/1) 0.10 0.10	T-OP (mg/1) 0.08 0.08	D-OP (mg/1) 0.04 0.02	PO4-P (mg/1) 0.02 0.02 (St. 12) PO4-P (mg/1)
Depth (m) 0.0 4.0 Depth (m) 0.0 4.0 Table Depth (m) 0.0 5.0 16.0 Depth	80D (mg/1) SS (mg/1) 19 14 APP 2. 80D (mg/1)	COD(Hn) (mg/1) 1.8 1.8 T-Coli (MPN) 500 240 3-2(11) COD(Hn) (mg/1) 2.0 1.4 1.2 T-Coli	DCOD(Mn (mg/1) 0.9 0.9 F-Coli (MPN) 240 240 DCOD(Mn) (mg/1) 2.0 1.2 1.0 F-Coli	0.80 1.15 Ch1-a (ug/1) 34.21 23.52 Results	T-ON (mg/1) 0.54 0.54 Pheo (ug/1) 0.10 0.4 of Sea T-ON (mg/1)	T-IN (mg/1) 0.26 0.27 Water T-IN (mg/1) 0.22 0.41	D-ON (mg/1) 0.54 0.43 Analysi D-ON (mg/1)	NO3-N (mg/1) 0.20 0.20 . 12 NO3-N (mg/1) 0.20 0.25	NO2-N (mg/1) 0.040 0.030 NO2-N (mg/1) 0.002 0.009	MH4-N (mg/1) 0.06 0.07 May 18, NH4-N (mg/1) 0.02 0.15	TP (mg/1) 0.10 0.10 1992 TP (mg/1) 0.10 0.06	T-OP (mg/1) 0.08 0.08 0.08 High Ti T-OP (mg/1) 0.10	D-OP (mg/1) 0.04 0.02 ie D-OP (mg/1) 0.04 0.03	PO4-P (mg/1) 0.02 0.02 (St. 12) PO4-P (mg/1) <0.01 0.02

Depth		.3-2(12)	DCOD(Hn)			Water	Analysi D-ON					High Ti T-OP	ide D-OP	(St.13) P04-P	
(m)	(mg/l)	(mg/l)	(mg/l)	(mg/l)											
0.0		4.0 3.6	3.2 3.0	2.97 1.51			0.70 0.40						0.05 0.10	0.20 0.15	
Depth (m)	SS (mg/l)	T-Coli (MPN)	F-Coli (MPN)	Chl-a (ug/l)	Pheo (ug/l)							;			
0.0		160000 90000	160000 90000			.						•			
Tabl∈	APP 2	.3-2(13)		Results	of Sea	Water	Analysi	s at Si	. 14	May 18	. 1992	High Ti	ide	(St.14)	
Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Mn (mg/l)) TN (mg/l)			D-ON (mg/1)			NH4~N	TP	T-OP	D-OP	P04-P	
0.0 3.0 4.0) <u> </u>	3.6 1.8 1.4	2.4 1.6 1.4	1.23 0.69	1.18 - 0.45	0.05 0.12 0.24	-	0.03	0.001 0.004 0.006	0.09	0.09	0.09	0.03 0.03 0.03	<0.01	
Depth (m)		T-Coli (MPN)	F-Coli (MPN)	Chl-a (ug/l)											
0.0 3.0 4.0	20	110 11 30	110 11 13	73.51 16.04	<0.10 6.42	.									
Table	APP 2	.3-2(14)		Results	of Sea	Water	Analysi	s at St	. 15					•	
Depth (m)			DCOD(Mn) (mg/l)		T-ON (mg/l)	T-IN (mg/l)	D-0N (mg/1)			May 18, NH4-N (mg/l)	TP	High Ti T-OP (mg/l)	D-OP	(St.15) PO4-P (mg/l)	·
0.0 3.0 6.5		2.2 1.6 0.9	1.3 0.9 0.7		-	0.22 0.29 0.36	-	0.20	0.001 0.004 0.008	0.02 0.09 0.20	0.10 0.07 0.10	0.06	0.03 0.02 0.02	<0.01 0.01 0.03	,
			F-Coli (MPN)								·		-		
0.0 3.0	12	50 130 240	50 34 240	20.49	0.09	•									
6.5							_								
6.5					٠		-								
Table Depth	ı BOD	.3-2(15) COD(Mn)	DCOD(Hn) TN	T-ON	T-1N	Analysi D-ON	NO3-N	NO2-N	May 18 NH4-N	TP	High T	D-OP	(St.16) PO4-P	-
Depth (m)	BOD (mg/l)	COD(Mn) (ing/1)	DCOD(Hn (mg/l) 3.0) TN (mg/l) 0.91	T-ON (mg/1) 0.89	T-1N (mg/1) 0.02	D-ON (mg/l) 0.13	NO3-N (mg/l) <0.01	NO2-N (mg/l) 0.001	NH4-N (mg/l) 0.02	TP (mg/l) 0.10	T-OP (mg/l) 0.10	D-OP (mg/l) 0.03	PO4-P (mg/1) <0.01	
Depth (m) 0.0 3.3	BOD (mg/l)) - 3 -	COD(Mn) (ing/1) 3.4 2.0 T-Coli	3.0 1.6) TN (mg/l) 0.91 0.83	T-ON (mg/l) 0.89 0.58 Pheo	T-1N (mg/1) 0.02	D-ON (mg/l)	NO3-N (mg/l) <0.01	NO2-N (mg/l) 0.001	NH4-N (mg/l) 0.02	TP (mg/l) 0.10	T-OP (mg/l) 0.10	D-OP (mg/l) 0.03	PO4-P (mg/l)	
Depth (m) 0.0 3.: Depth (m) 0.0	BOD (mg/l) - 3 - SS (mg/l)	COD(Mn) (ing/1) 3.4 2.0 T-Coli	3.0 1.6 F-Coli (MPN)) TN (mg/l) 0.91 0.83	T-ON (mg/1) 0.89 0.58 Pheo (ug/1) 20.60	T-1N (mg/1) 0.02	D-ON (mg/l) 0.13	NO3-N (mg/l) <0.01	NO2-N (mg/l) 0.001	NH4-N (mg/l) 0.02	TP (mg/l) 0.10	T-OP (mg/l) 0.10	D-OP (mg/l) 0.03	PO4-P (mg/1) <0.01	
Depth (m) O.(3.: Depth (m) O.(3.: BOD (mg/1) -3 -	COD(Mn) (lng/l) 3.4 2.0 T-Coli (MPN)	3.0 1.6 F-Coli (MPN)) TN (mg/l) 0.91 0.83 Chl-a (ug/l) 37.86 29.94	T-ON (mg/1) 0.89 0.58 Pheo (ug/1) 20.60 <0.10	T-IN (mg/1) 0.02 0.25	D-ON (mg/l) 0.13 0.60	NO3-N (mg/1) <0.01 0.20	NO2-N (mg/l) 0.001 0.003	NH4-N (mg/l) 0.02	TP (mg/l) 0.10	T-OP (mg/l) 0.10	D-OP (mg/l) 0.03	PO4-P (mg/1) <0.01		
Depth (m) O.C. 3.: Depth (m) O.C. 3.: Table	BOD (mg/1) -	COD(Hn) (mg/1) 3.4 2.0 T-Coli (MPN) 8 8 3-2(16)	3.0 1.6 F-Coli (MPN) 2	0.91 0.83 Chl-a (ug/1) 37.86 29.94 Results	T-ON (mg/l) 0.89 0.58 Pheo (ug/l) 20.60 <0.10 T-ON	T-IN (mg/l) 0.02 0.25	D-ON (mg/l) 0.13 0.60 Analysi	NO3-N (mg/1) <0.01 0.20 s at St	NO2-N (mg/1) 0.001 0.003	NH4-N (mg/l) 0.02 0.05	TP (mg/1) 0.10 0.07	T-OP (mg/l) 0.10 0.07	D-OP (mg/1) 0.03 0.03	PO4-P (mg/1) <0.01 <0.01 (St.17) PO4-P	
Depth (m) O.C. 3.: Depth (m) O.C. 3.: Table	BOD (mg/1) -	COD(Hn) (mg/1) 3.4 2.0 T-Coli (MPN) 8 8 3-2(16)	3.0 1.6 F-Coli (MPN)	0.91 0.83 Chl-a (ug/1) 37.86 29.94 Results	T-ON (mg/1) 0.89 0.58 Pheo (ug/1) 20.60 <0.10 T-ON (mg/1) 0.91	T-IN (mg/l) 0.02 0.25 Water T-IN (mg/l) 0.03	D-ON (mg/l) 0.13 0.60 Analysi D-ON (mg/l)	NO3-N (mg/1) <0.01 0.20 s at St NO3-N (mg/1)	NO2-N (mg/1) 0.001 0.003 . 17 NO2-N (mg/1)	MH4-N (mg/1) 0.02 0.05 May 18, NH4-N (mg/1) 0.02	TP (mg/1) 0.10 0.07 1992 TP (mg/1) 0.10	T-OP (mg/l) 0.10 0.07 High Ti T-OP (mg/l)	D-OP (mg/1) 0.03 0.03 0.03	PO4-P (mg/1) <0.01 <0.01 (St.17) PO4-P (mg/1)	

Table	APP	2.3-2(17	1)	Result	s of Sea	Water	Analys:	is at S	t. 18		i :	1 51		
	100									Hay 18	1992	High T	ide	(St.18)
Depth	BOD	COD(M	n)DCOD(Hn) Th	T-ON	T-IN	D-ON	NO3-N	NO2-N	NH4-H	TP	T-OP	D-OP	P04-P
(m)	(mg/l) (mg/l) (mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/1)	(mg/1)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
0.0	_	3.0	2.4	0.83	0.79	0.04	0.23	0.02	0.002	0.02	0.10	0.10	0.06	<0.01
3.5	-	1.0	3 1.8	0.78	0.70	0.08	0.35	0.03	0.002	0.05	0.09	0.09	0.03	<0.01
Depth	SS	T-Col.	i F-Coli	Chl-a	Pheo									
(m)	(mg/l) (MPN	(MPH)	(ug/1)	(ug/l)									
0.0	25	4	0	39	<0.10	-								
3.5	30	9	9	63	<0.10									

Table	APP 2.	3-3(1)						is of i				ıs Surv	
					lide - 1				June 8		High Ti		(St.1)
		DCOD(Hn)		T-ON	T-IN		NO3-N	NO2-N	M-4HN		T-0P	D-OP	P04-P
(m)	(mg/1)	(mg/l)	(mg/1)	(MS\1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)
0.0	1.0	1.0		_	0.09	-	0.08	0.002	0.01	0.04	0.03	0.03	0.01
5.0	0.6	0.4	-		0.07	-	0.07	0.002	< 0.01	0.03	0.02	0.02	0.01
25.0	0.4	0.4	-	-	0.02	-	0.02	0.006	< 0.01	0.04	0.03	0.02	0.01
49.0	0.6	0.4	-		0.11	+-	0.10	0.005	<0.01	0.05	0.03	0.01	0.02
Depth	SS	Chl-a	Pheo	CN	Phenol	Cd	Pb	Cu	Cr	Hg	Zn		
(m)	(mg/l)	(ug/1)						(ug/l)		·			
												-	
0.0	8	1.49	0.80	-	-	<1.0	5	<2.0	<10	<0.10	18		
5.0	2	1.76	3.21	-			-	-		-	- :		
25.0	2	. ~	-	-			-	 		40.10			
49.0	8			-		<1.0	13	<2.0	<10	<0.10	18		
Table	APP 2.3	3-3(2)	ļ	Results	s of Sea	a Water	Analys	sis at S			17' -1 m'		(a) a)
	#05(II)	D. GOD (11)		m 614		F 601	1100 11		June 8		High Ti		(St.2)
		DCOD(Hn)			T-IN			NO2-N		TP	T-0P	D-OP	P04-P
(m)	(mg/1)	(mg/l)	(mg/1)	(mg/1) 	(mg/1)	(mg/l)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	(mg/1)
0.0	0.6	0.6	-	_	0.20	_	0.15	0.009	0.04	0.04	0.03	0.02	0.01
5.0	0.8	0.4	-	-	0.20		0.10	0.009	0.09	0.05	0.03	0.02	0.02
19.0	0.4	0.4	-	_	0.30	-	0.25	0.01	0.04	0.06	0.04	0.01	0.02
Depth	SS	Chl-a	Pheo	CN	Phenol	Cd	Pb	Cu	Cr	Hg	Zn		
(m)	(mg/l)	(ug/l)						(úg/l)					
0.0	12	2.67	1.78			<1.0	⟨5.0	₹2.0	<10	<0.10	<10	-	
5.0	10	1.78	4.77	_	-	۱۱.0	10.0	16.0	- 10	10.10	-		
19.0	20	1.70	4.11			41.0	₹5.0	<2.0	<10	<0.10	<10		
10.0						11.0				-0.10		=	
•			•		•								
Table	APP 2.	3-3(3)		Result	s of Se	a Water	r Analys	sis at i	st. 3				
								*	June 8	1992	High T	lde	(St.3)
Depth	COD(Hn	DCOD(Mn)) TN	T-ON	T-IN	D-ON	N03-N	NO2-N	NH4-N	TP	T-OP	D-05	P04-P
(m)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/1)	(mg/1)	(mg/l)	(mg/1)	(mg/l)	(mg/1)	
0.0	0.6	0,6	0.69	0.51	0.18	0.41	0.08	0.010	0.09	0.09	0.03	0.00	0.06
5.0	0.8	0.4	0.81		0.36	0.41	0.20	0.010	0.15	0.06	0.03	0.00	0.00
32.0	0.4	0.4	0.67		0.11	0.46	0.20		0.04	0.05	0.03	0.03	0.03
D 1 1	CO.	chl -	DI		Di	<i>C</i> .3	r ₀ 1		C-	U-	7		
Depth	SS	Chl-a	Pheo		Phenol		Pb	Cu	Cr	Hg	Zn		
(m)	(mg/l)	(ug/l)	(n k \1)	(ug/1)(mg/1)	(Ug/1)	(ug/1)	(ug/l)	(ug/1)	(ng/1)	(n8\1)	_	
0.0	2	2.47	<0.01	<0.01	<0.010	<1.0	₹5.0	4.5	<10	<0.10	<10		
	4	3.56	3.67	-	_	_	_	_		_			
5.0 32.0	4	-	7.01		<0.010		5.0	<2.0	<10	<0.10	<10		

Table	APP 2.3	3-3(4)		Result	s of Se	a Wate	r Analys	sis at a		. 1992	High T	ide	(St.4)
		DCOD(Hn							NH4-N	T-P	T-OP	D-OP	P04-P
(m)	(mg/1)	(mg/l)	(mg/1)	(mg/1)	(mg/1)	(mg/l)	(mg/l)	(mg/1)	(mg/1)	(mg/l)	(mg/1)	(mg/l)	(mg/l)
0.0	1.0	8.0	<u></u>		0.26	-		0.010	0.10	0.10	0.06	0.04	0.04
3.0	8.0	0.4	-		0.20	-	0.09	0.010	0.10	0.09	0.05	0.04	0.04
7.0 11.0	$0.6 \\ 0.4$	$0.4 \\ 0.4$	_	_	$0.18 \\ 0.31$		0.08	0.010 0.010	0.09 0.10	0.06 0.06	0.03	0.02	$0.03 \\ 0.04$
D Al		OL1 .	Disa	- CN	Dh 1	LO.	DV.	<u> </u>	C		7		
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l)		Phenol (mg/l)		Pb (ug/1)	Cu (ug/l)	Cr (ug/1)	· Hg (ug/1)	Zn (ug/l)	-	
0.0 3.0	12 3	21.38 11.58	14.64 8.06	-	<u>-</u>	<1.0 -	<5.0	<2.0	<10	<0.10 -	. <10		
7.0	5	-	_	_	-	- -	~ <5.0	3.0	~ <10	 ∕0.10	·		
11.0	4					<1.0	(0.0	3.0	\1U	<0.10	<10	=	
	APP 2.3		٠				r Analys		June 8,		High Ti		(St.5)
	COD(Mn) (mg/l)	DCOD(Mn)	KT (mg/l)	T~ON (mg/1)	T-IN (me/l):	D-ON (me/1)	M-80M (mg/1)	NO2-N (mg/1)		T-P (mg/l)	T-OP (mg/1)	D-OP (mg/l)	PO4-P (mg/l)
	(16871)	(1087.17	("6)1)	(1063.1)	/#Ø\ 1\	(116) 1)				(11/2) 1)		(1160 17	
0.0	1.2	1.2		-	0.41	 -		0.010	0.20	0.07	0.03	0.02	0.04
5.0	0.8	0.8			$0.31 \\ 0.23$	-	0.10 0.07	0.010	0.20 0.15	0.06 0.07	0.03	0.02	$0.03 \\ 0.03$
10.0 35.0	0.8 0.8	0.8 0.6	-	_	0.23	_	0.10		0.10	0.05	0.03	0.02	0.02
					<u> </u>		***						
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l)		Phenol (mg/l)		Pb (ug/l)	Cu (ug/l)	Cr (ug/l)	Hg (ug/1)	Zn (ug/1)		
0.0	8	4.90	2.90	-	-	0.1>	<5.0	4.5	<10	<0.10	20		
5.0 10.0	2 6	3,29	5.35	_	-	_	-	-			-		
35.0	20		_	_		<1.0	<5.0	<2.0	<10	<0.10	<10		٠
		DCOD(Mn (mg/1)) TN	T-ON	T-IN	D-ON		N02-N	June 8, NH4-N	T-P	High Ti T-OP	D-OP	(St.6) PO4-P (mg/1)
/!!!	(11/8/17)	(11871)											
0.0	1.8	1.0	0.68	0.45		0.45		0.020	0.15	0.07	0.03	0.01	0.04
5.0 10.0	0.8 0.6	0.4	0.65 0.56	0.50		0.50		0.010	0.10	0.06	0.04	0.02	0.02 0.02
21.0	1.2	0.6	0.56		0.13	0.44		0.009	0.07	0.09	0.07	0.02	0.02
Depth (m)	SS	Chl-a (ug/l)	Pheo (ug/l)		Phenol		Pb (ug/l)	Cu (ug/l)	Cr (ug/l)	Hg (ug/1)	Zn (ug/l)		
0.0		23.52	21.38		<0.001		<5.0	<2.0	<10	<0.10	20		
5.0	22	4.31	4.14	-		-2.0			-	-	-		
10.0	6	- '	-	40.00	40.000	-	-						
21.0	30			(0.01	<0.001	<1.0	22.0	<2.0	<10	<0.10	24	:	
Depi (m	th COD()	2 2 8 1	Mn) TN	T -0	N T-I	N D-0 1)(mg/ 6 - 8 -	1) (mg/ 0.0 0.0	N NO2-	June -N NH4N (mg/) -N 0.4	-N T-1 1) (mg/1 10 0.3 20 0.1	l) (mg/ 30 0.2 10 0.0	0-01 0 (mg/) 0 0.1 05 0.0	P PO4-P l) (mg/l) 10 0.10 02 0.05
Depi (m. 0 3 7	th COD()) (mg/) .0 20 2.	(n) DCOD(i i) (mg/ 2 2 8 1 8 1	Mn) TN 1) (mg/) .042 -	T-0 (mg/	N T-I 1) (mg/ 0.4 0.2 0.3	N D-O 1)(mg/ 6 - 8 - 1 -	N NO3- 1) (mg/ 0.0 0.0	-N NO2- 1) (mg/l 04 0.02 06 0.02 05 0.01	June -N NH4- 1) (mg/) 20 0.4 20 0.2 10 0.2	-N T-1 1) (mg/1 40 0.3 20 0.1 25 0.1	T-01 1) (mg/ 30 0.3 10 0.0 2n	P D-OI 1) (mg/) 20 0.1 05 0.0 04 0.0	P PO4-P 1) (mg/1) 10 0.10 02 0.05
Depi (m 0 3 7 Depi (m	th COD() (mg/) .0 20 20 0. th SS (mg/)	(n) DCOD(i i) (mg/ 2 2 8 1 8 1	Mn) TN 1) (mg/) .042 - a Phe 1) (ug/	T-0) (mg/	N T-I 1) (mg/ 0.4 0.2 0.3	N D-O 1)(mg/ 6 - 8 - 1 -	N NO3- 1) (mg/ 0.0 0.0 0.0 Pb	N NO2- 1) (mg/l 04 0.02 06 0.02 05 0.01 Cu	June N NH4- N NH	-N T- 1) (mg/) 40 0.0 20 0.1 25 0.1 Hg 1) (ug/)	P T-01 1) (mg/) 30 0.2 10 0.0 10 0.0 Zn	D-OI (mg/) 00 0.1 05 0.0 04 0.0	P P04-P 1) (mg/1) 10 0.10 02 0.05
Dept (m) Dept (m) On 3	th COD(h) (mg/l).0 2.0 2.0 0.0 th SS) (mg/l).0 1.0 1.0 1	(n) DCOD((i) (mg/ 2 2 8 1 8 1 Chl- 1) (ug/	Mn) TN 1) (mg/1 .042 a Phe 1) (ug/1 17.1	T-0 1) (mg/	N T-I 1) (mg/ 0.4 0.2 0.3	N D-O 1)(mg/ 6 - 8 - 1 - ol Cd 1)(ug/	N NO3 1) (mg/ 0.0 0.0 Pb 1) (ug/ 0 <5.0	-N NO2-1) (mg/l) (mg/l) (mg/l) (0.020 0.02	June -N NH4 -N NH4 -N (mg/l) -N (mg/l) -N NH4 -N (mg/l)	-N T-I 1) (mg/) 40 0.3 20 0.1 25 0.1 Hg 1) (ug/)	7 T-OID (mg/) 1) (mg/) 10 0.0 10 0.0 2n 1) (ug/)	P D-00 1) (mg/) 20 0.1 25 0.0 04 0.0	l) (mg/l) 10 0.10 02 0.05
Dept (m) Dept (m) Dept (m)	th COD(h) (mg/l)	(n) DCOD(i i) (mg/ 2 2 8 1 8 1 Ch1- i) (ug/	Mn) TN 1) (mg/l .042 - 2 - 2 - 1) (ug/	T-0 1) (mg/	N T-I 1) (mg/ 0.4 0.2 0.3	N D-O(1)(mg/ 6 - 8 - 1 - ol Cd 1)(ug/	N NO3 1) (mg/ 0.0 0.0 Pb 1) (ug/ 0 <5.0	-N NO2-1) (mg/l) (mg/l) (mg/l) (0.020	June -N NH4 -N NH4 -N (mg/l) -N (mg/l) -N NH4 -N (mg/l)	-N T-I 1) (mg/) 40 0.3 20 0.1 25 0.1 Hg 1) (ug/)	7 T-OID (mg/) 1) (mg/) 10 0.0 10 0.0 2n 1) (ug/)	P D-00 1) (mg/) 20 0.1 25 0.0 04 0.0	P P04-P 1) (mg/1) 10 0.10 02 0.05

Table	APP 2.	3-3(8)		Result	s of Se	a Wate	r Analys	sis at :	St. 8	1002	High Ti	da	(St.8)
Depth (m)	COD(Hn)	DCOD(Hn (mg/1)) TH (mg/l)	T-08 (mg/1)	T-1N (mg/1)	D-ON (mg/1)	NO3-N (mg/1)	NO2-N (ng/1)	NH4-N	T-P	T-OP	D-0P	P04-P
0.0	2.2	1.6	1.68	1.20	0.48	1,20	0.05	0.030	0.40	0.25	0.10	0.05 0.10	0.15 0.15
7.0		2.4 2.4	1.69			0.60	0.09	0.030				0.11	0.09
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l	CN) (mg/l	Phenol (pg/l)		Pb (ug/1)	Cu (ug/1)	Cr (ug/1)	llg (ug/l)	Zn (ug/1)	_	
0.0			17.38 13.72		<0.001	<1.0	<5.0	<2.0	<10 -	<0.10	<10 		•
7.0			 	<0.01	<0.001	<1.0	170.0	5.0	<10	<0.10	26	=	t is i
Table	APP 2.	3-3(9)		Results	of Sea	a Water	r Analys	is at S	St. 9 June 8.	1992	High Ti	de	(St.9)
Depth (m)	COD(Hn) (mg/l))DCOD()In) (ng/1)	TH (mg/1)	T-0H (mg/l)	T-18 (mg/1)	D-0H (mg/1)	HO3-H (mg/1)	HO2-N	NH4-N	T-P	T-0P	B-OP	POA-P (mg/1)
0.0		2.2 1.4	2.32 0.91		0.88 0.41	0.65 0.30		0.060 0.020		0.35 0.10	0.15 0.03	0.10 0.03	0.20 0.07
Depth (m)	\$\$ (mg/1)	Chl-a (ug/1)	Pheo	CH) (mg/1	Phenol	Cd (ug/1)	Pb (ug/1)	Cu (ug/l)	Cr (ug/1)	Hg (ug/1)	Zn (ug/l)		
0.0	20	46.33	32.25	<0.01	<0.001	<1.0	20.0	<2.0	<10	<0.10	80	•	
6.0	20	12.47	6.73	<0.01		<1.0	5.0	<2.0	<10	<0.10	<10	•	
	APP 2.3			Results				1.1	June 8,	1992	High Ti	de	(St.10)
Depth (m)	COD(Mn) (mg/1)	DCOD(Kn) (mg/l)	TN (mg/l)	T-0N (mg/l)	T-IN (mg/i)(D-ON mg/l)	NO3-N (mg/1)	NO2-N (mg/1)	NH4-N (mg/1)	T-P (mg/l)		D-0P (mg/1)	PO4-P (mg/l)
0.0 5.0	1.8	1.2	-	·	0.31 0.11	-	0.10 0.09	0.010 0.020	0.20 0.10	0.15 0.10	0.15 0.05	0.10 0.01	<0.01 0.05
23.0	0.6	1.2		-	0.18	-		0.009	0.09	0.10	0.07	0.02	0.03
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/1)	CN)(mg/l)	Phenol (mg/1)		Pb (ug/1)	Cu (ug/1)	Cr (ug/1)		Zn (ug/l)		
0.0	15 24	21.38 21.63	3.56 6.06	-	-	<1.0	⟨ö.0	<2.0	<10	<0.10	<10		
23.0	20		<u>-</u> ======			<1.0	<5.0	₹2.0	<10	<0.10	<10		
Table	APP 2.	3-3(11)		Results	of Sea					1992	High Ti	đe	(St.11)
Depth (m)	COD(Hn) (mg/1)	DCOD(Mn) (mg/1)	TN (mg/1)	T-ON (mg/1)	T-IN (mg/1)	D-OH (mg/1)	NO3-N (mg/1)	NO2-N (mg/1)	NH4-N (rg/1)	T-P (mg/1)	T-02 (mg/1)	D-0P (mg/1)	PO4-P (mg/1)
0.0 2.5	2.8 2.2	2.0 1.6	0.81 0.81		0.25 0.31	0.46 0.40		0.005 0.008	0.04 0.10	0.20 0.15		0.05 0.04	0.03
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/1)	CH)(mg/1)	Phenol (ng/l)		₽b (ug/1)	Cu (ug/l)	Cr (ug/l)	Hg (ug/l)	Zn (ug/l)		
0.0		28.07 11.58	18.71 30.85	<0.01 <0.01	· -	<1.0 <1.0	5.0 12.0	<2.0 24.0	<10 <10	<0.10 <0.10	<10 26		
2.0	30	11.00	30.00	\0.01	,		12.0	24.0	10	(0.10	20		
_		3-3(12)					r Analys		June 8	1992	High Ti	de	(St.12)
		DCOD(Hn (mg/l)									T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)
0.0 5.0		1.6 1.2	-	-	0.30 0.24	-		0.010 0.020	0.09 0.20	0.10 0.07	0.08 0.05	0.05	0.02
16.0	0.8	0.6	- 	-	0.21	-	0.03	0.010	0.20	0.06	0.03	0.01	0.03
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l	CN)(mg/l)	Phenol (mg/l)		Pb (ug/l)	Cu (ug/l)	Cr (ug/1)	Hg (ug/l)	2n (ug/l)	e.	
0.0 5.0	18	9.80 6.24	5.79 6.86	-	-	<1.0	(5.0	2.0	<10 -	1.60	<10		
18.0	30	-	-	-	-	<1.0	12.0	<2.0	<10	0.10	<10	:	

Table	APP c	3-3(13)		Results	of Se	a Water	· Analys	sis at :	St. 13				
						:			June 8	1992		ide	(St. 13)
		DCOD(Nn) (mg/l)									T-OP (mg/l)	D-OP (mg/1)	PO4-P (mg/l)
0.0 1.5		1.8 2.6	2.25 2.52		1.55	0.70 0.80	0.03 0.30	0.020 0.020	1.50 1.40	0.40 0.30	0.20 0.15	0.00 0.15	0.20 0.15
Depth (m)	SS (mg/l)	Chl-a (ug/l)		CN)(mg/l)	Phenol (mg/l)		Pb (ug/l)	Cu (ug/l)	Cr (ug/l)	Hg (ug/l)	Zn (ug/1)	:	
0.0		-		<0.010 <0.010			22.0 22.0		<10 <10	<0.10 <0.10	12 36	-	
		2 2/14)		Docult	of Co	a Water	a Analu	sis at	C+ 1.6		· · · · · · · · · · · · · · · · · · ·		
		3-3(14)			40.0				June 8	, 1992	High T	ide	(St.14)
)DCOD(Mn) (mg/1)		T-0N (mg/l)		D-ON (mg/l)			NH4-N (mg/1)	T-P (mg/l)	T-OP (mg/l)	D-OP (mg/1)	PO4-P (mg/l)
0.0	6.4	3.0	1.84	1.10	0.74	1.10	0.01	0.030	0.70	0.30	0.15	0.10	0.15
2.5 5.0	4.0 2.6	1.6 2.0	0.85 1.85	0.40	0.45 0.35	0.40 1.30		0.020	0.40 0.30	0.09 0.07	0.03		0.06 0.05
5.0	2.0	Ç.U	1.00	1.00	0.55	1.00	0.04	0.010	0.30	0.07	0.04	0.01	0.03
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l	CN)(mg/l)	Phenol (mg/l)	Cd (ug/1)	Pb)(ug/1)	Cu (ug/l)	Cr (ug/l)	Hg (ug/l)	Zn (ug/l)	_	
0.0 2.5		70.84 10.69	39.56 1.47	<0.01	<0.001 -	<1.0	12.0	<2.0	<10 -	<0.10	<10	- . ,	
5.0	25	13.37	4.01	(0.01	<0.001	0.1>	22.0	⟨2.0	<10	<0.10	12	_	
Table	APP 2	.3-3(15)		Result	s of Se	a Water	Analy	sis at 1				_	
Depth	CODOM)DCOD(Yn)) TN	T-ON	T-IN	D-ON	NO3-N	NO2-N	June 8 NH4-N	, 1992 T-P	High T T-OP	1de D-OP	(St.15) PO4-P
		(mg/l)											
0.0	1.8	1.8			0.10		0.02	0.005	0.07	0.09	0.07	0.03	0.01
3.0	2.0	1.4		-	0.19	-	0.03	0.007	0.15	0.07	0.05	0.02	0.02
7.0	1.2	1.2			0.26	_	0.05	0.009	0.20	0.04	0.03	0.02	0.03
Depth (m)	\$\$ (mg/l)	Chl-a (ug/l)	Pheo (ug/l	CN)(mg/l)	Phenol (mg/l)	Cd (ug/l)	Pb (ug/l)	Cu (ug/l)	Cr (ug/l)	Hg (ug/l)	Zn (ug/l)		
0.0	30	11.58	10.25	_	_	<1.0	<5.0	<2.0	<10	<0.10	<10	-	
3.0 7.0	30 30	8.02	7.57 4.01	-	-	<1.0	<5.0	<2.0	<10	<0.10	<10		•
	:-							-				=	
Table	APP 2.	3-3(16)		Results	of Sea	a Water	Analys	is at S		1002	Hìgh Tì	ido	(St.16)
Depth	COD(Hn)	DCOD(Hn)	TH	T-ON				HO2-N		T-P	T-OP	D-OP	P04-P
(m)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
0.0	1.8	1.8	0.63	0.50	0.13	0.40	0.02	0.006	0.10	0.08	0.08	0.01	0.02
3.5	1.6	1.6	0.54	0.34	0.25	0.30	0.04	0.008	0.20	0.06	0.04	0.02	0.02
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/1)	CN)(mg/1)	Phenol (mg/l)	Cd (ug/l)	Pb (ug/1)	Cu (ug/l)	Cr (ug/l)	Hg (ug/l)	Zn (ug/l)		
0.0 3.5	30 30	12.83 8.91	7.30 7.31		<0.001 <0.001		49.0 <5.0	<2.0 <2.0	<10 <10	<0.10 <0.10	<10 <10		
Table	APP 2	3-3(17)		Result	s of Se	a Water	· Analys	sis at S		1002	High T	: ide	(St.17)
Depth (m)	COD(Mn (mg/l)	DCOD(Kn) (mg/1)) TN (mg/l)	T-ON (mg/l)	T-IN (mg/l)	D-ON (mg/l)	NO3-N (mg/l)		NH4-N		T-OP	D-0P	P04-P
0,0 5.0	2.6 3.8	1.6 1.8	0.52 0.61	0.48 0.40	0.04 0.21	0.48 0.40	0.01 <0.01	0.010 0.008	0.02 0.20	0.05 0.05	0.04 0.02	0.02 0.01	0.01 0.03
Depth (m)	SS (mg/1)	Chl-a (ug/l)	Pheo (ug/l		Phenol (mg/l)	Cd (ug/1)	Pb)(ug/1)	Cu (ug/1)	Cr (ug/1)	Hg (ug/1)	Zn (ug/l)		
0.0	20	18.04 13.37		<0.01		<1.0	38.0	<2.0 <2.0	<10 <10	<0.10 <0.10	<10 32		
											****	=	

Table	APP 2.	3-3(18)		Results	of Se	a Kater	Analys	sis at	St. 18				
	1 1		* 4						June 8	1992	High Ti	ide	(St.18)
Depth	COD(Hn)	DCOD(Mn)	TN	T-ON	T-IN	D-ON	NO3-N	NO2-N	NH4-N	T-P	T-OP	D0P	P04~P
(m)	(mg/l)	(mg/l)	(mg/l)	(mg/1)	(mg/l)	(mg/1)	(mg/1)	(mg/1)	(mg/l)	(mg/1)	(mg/1)	(mg/l)	(mg/l)
0.0	5.8	2.2	1.05	0.80	0.25	0.80	0.03	0.020	0.20	0.15	0.08	0.03	0.07
4.0	3.8	1.6	0.85	0.55	0.30	0.55	0.04	0.010	0.25	0.08	0.04	0.04	0.04
Depth (m)		Chl-a (ug/l)							Cr (ug/l)	Hg (ug/l)	Zn (ug/l)		
0.0 4.0	20 24	42.77 8.02	-,	<0.01 <0.01						<0.10 <0.10	<10 <10	-	

										•			
Table	APP 2.	3-4(1)		Results (Neap T	s of Se	a Wate Low Tic	r Analy: le)		the Seco June 8			ıs Surve	
Depth	COD(Mn)	DCOD(Hn)		T-ON		D-ON	N03-N		NH4-N		T-OP		(St.2) PO4-P
(m)	(mg/l)	(mg/l)	(mg/l)	(mg/1)	(mg/1)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
0.0	0.6	0.6	_		0.16	<u>-</u>	0.10	0.010	0.05	0.07	0.05	0.03	0.02
5.0	0.6	0.6	-	· -	0.12	-	0.10		0.01	0.05	0.04	0.03	0.01
18.0	0.4	0.4			0.09		0.08	0.010	<0.01	0.04	0.04	0.03	<0.01
Depth	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/1))						٠.			
				-									
0.0 5.0		5.35 3.12	12.74 10.38										
18.0			70.50										
F				=								,	
	·												
Table	APP 2.	3-4(2)		Results	of Se	a Water	r Analy:	sis at a					
Denth	COD(No.)	DCOD(Mn)	TN	T-0N	T-IN	D-0%	X03-X	NO2-N	June 8 NH4-N	, 1992 TP	Low Tic	de D-OP	(St.3) PO4-P
(m)		(mg/l)											
0.0	1.6	1.0	0.92	0.70	0.22	0.70	0.10	0.020	0.10	0.10	0.07	0.06	0.03
5.0		1.0	0.71	0.50	0.21	0.40	0.10	0.010	0.10	0.09	0.03	0.01	0.06
32.5	1.0	0.8	0.62	0.45	0.17	0.45	0.10	0.020	0.05	0.04	0.02	0.01	0.02
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l))									
0.0	20	31.19	16.53	-									
5.0		4.01	4.10										
32.5	16		-	_					:				
				•									
Table	APP 2.	3-4(3)		Result	e of Ca	a Wata	n inalu	sis at	er 4				
			-	NCOULC:	2 01 126	a nate	r. Wigita	515 at		, 1992	Low Tie	de.	(St.4)
	COD(Mn)	DCOD(Hn)	TN	T-ON	T-IN	D-ON	N03-N	NO2-N	NH4-N	T-P	T-OP	n-np	DO4≂D
(m)	(mg/1)	.(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
0.0	5.8	3.2	4.11	3.79	0.32	0.85	0.10	0.007	0.15	0.50	0.35	0.15	0.15
3.0	1.4	1.4	-	-	0.13	-	0.07		0.05	0.07	0.04	0.13	0.15
7.0		1.0	-	-	0.13	-	0.03	0.010	0.09	0.10	0.07	0.07	0.03
9.0	1.2	0.8	-	-	0.12		0.03	0.010	0.08	0.10	0.07	0.02	0.03
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l)	,									
0.0	20	139.00	66:08										
3.0	24	6.01	2.41										
7.0	22	-	-										
9.0	22		-										
						. ~~							
						a co	- 1 1 4						

								. :						
	Table	APP 2.3	-4(4)		Results	of Se	a Water	Analys	sis at S	t. 5 June 8,	1992	Low Tic	le	(St.5)
		COD(Hn) (mg/l)	DCOD(Hn) (mg/l)	TN (mg/l)	T-0N (mg/l)	T-IN (mg/l)	D-ON (mg/l)	NO3-N (mg/l)	NO2-N (mg/l)	NH4-N (mg/1)	T-P (mg/l)	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)
	0.0 5.0 10.0	4.0 0.8 0.6	1.4 1.4 1.0 0.8		- -	0.07 0.25 0.07 0.09	-		0.020 0.020 0.010 0.010	0.04 0.20 0.08 0.04	0.25 0.09 0.10 0.04	0.18 0.05 0.06 0.02	0.13 0.03 0.03 0.01	0.07 0.04 0.04 0.02
	34.0 Depth (m)	0.4 SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l)			, natur							
	0.0 5.0 10.0 34.0	18 15 10 6	61.10	39.87 10.79							•			
	Table	APP 2.	3-4(5)		Results	s of Se	a Wate	r Analy	sis at a				,	(a) c
	Depth		DCOD(Mn) TN (mg/l)	T-ON (mg/l)	T-IN (mg/l)	D-ON (mg/1)	NO3-N (mg/l)	NO2-N (mg/l)	June 8 NH4-N (mg/l)	T-P	Low Ti-OP (mg/l)	D-05	(St.6) PO4-8 (mg/1)
	0.0 5.0 10.0 21.0	0.8	2.4 1.0 0.8 0.8	1.17 0.77 0.51 0.76	0.97 0.45 0.22 0.50	0.32	0.57 0.25 0.22 0.10	0.15 0.15 0.20 0.15	0.020 0.010	0.03 0.15 0.08 0.10	0.20 0.07 0.07 0.10	0.17 0.05 0.04 0.07	0.07 0.04 0.02 0.01	0.03 0.03 0.03
	Depth (m)		Chl-a (ug/l)	Pheo (ug/l))								-	
·	0.0 5.0 10.0 21.0	18 22	30.29 14.26										٠,	
	Table	APP 2.	3-4(6)		Result	s of S∈	a Wate	r Analy	sis at l					
	Depth (m)	COD(Mn) (mg/l)	DCOD(Kn (mg/l)) TN (mg/l)	T-0N (mg/l)	T-1N (mg/1)	D-ON (mg/l)	NO3-N (mg/1)	NO2-N (mg/l)	NH4-N	T-P	Low Ti- T-OP (mg/l)	D-OP	(St.7 PO4- (mg/l
	0.0 3.0 6.0	1.0	1.8 1.0 0.8	· -	 	0.32 0.42 0.37	-	0.10	0.020 0.020 0.020	0.15 0.30 0.20	0.25 0.10 0.10	0.17 0.04 0.04	0.12 0.01 0.04	0.00 0.00 0.00
	Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l)							-			
	0.0 3.0 6.0	24 26 24	53.46	28.87 - -										
	Table	APP 2.3	3-4(7)		Results	of Se	a Watei	: Analys	sis at S		1000	r m:		(a) 0)
			DCOD(Mn) (mg/l)			T-IN (mg/l)			NO2-N		T-P	T-OP	D-OP	(St.8) PO4-P (mg/l)
	0.0 2.0 6.0	4.4 2.4 1.8	3.8 2.2 1.6	4.11 2.12 1.78	1.92	1.26 1.22 0.58	2.65 0.70 0.60	0.10	0.010 0.020 0.030	1.15 1.10 0.40	0.60 0.30 0.20	0.30 0.10 0.10	0.10 0.10 0.05	0.30 0.20 0.10
	Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/1)										
	0.0 2.0			38.22 34.85										

Table APP 2.3-4(8) Results of Sea Water Analysis at St. 9 June 8, 1992 Low Tide (St.9)	٠
Depth COD(Hn)DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N T-P T-OP D-OP PO4-P (m) (mg/l)	
0.0 1.8 1.8 1.19 0.50 0.69 0.50 0.15 0.040 0.50 0.35 0.15 0.10 0.20 5.0 1.2 2.8 0.73 0.35 0.35 0.10 0.030 0.25 0.10 0.03 0.03 0.07	
Depth SS Chl-a Pheo (m) (mg/l) (ug/l)	
0.0 16 19.80 10.96 5.0 20 11.58 4.01	
Table APP 2.3-4(9) Results of Sea Water Analysis at St. 10 June 8, 1992 Low Tide (St.10)	
Depth COD(Mn)DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N T-P T-OP D-OP PO4-P (m) (mg/l)	
0.0 4.2 2.8 - - 0.14 - 0.07 0.040 0.07 0.25 0.16 0.11 0.09 5.0 1.6 1.6 - - 0.20 - 0.09 0.010 0.10 0.10 0.08 0.03 0.02 23.0 1.0 0.6 - - 0.19 - 0.10 0.09 0.08 0.10 0.08 0.05 0.02	
Depth SS Chl-a Pheo (m) (mg/l) (ug/l) (ug/l)	
0.0 30 61.48 37.69 5.0 25 3.56 4.54 23.0 20 -	
Table APP 2.3-4(10) Results of Sea Water Analysis at St. 11 June 8, 1992 Low Tide (St.11) Depth COD(Hn)DCOD(Hn) TN T-ON T-IN D-ON NO3-N NO2-N NN4-N T-P T-OP D-OP PO4-P (m) (mg/l)	
0.0 2.8 2.2 1.01 0.91 0.13 0.71 0.20 0.006 0.09 0.16 0.08 0.04 0.02 2.5 3.2 2.4 1.21 1.13 0.10 0.48 0.20 0.003 0.07 0.10 0.08 0.04 0.02	
Depth SS Chl-a Pheo (m) (mg/l) (ug/l)	
0.0 30 13.37 11.90 2.5 30 17.38 19.11	
Table APP 2.3-4(11) Results of Sea Water Analysis at St. 12 June 8, 1992 Low Tide (St.12)	
Depth COD(Mn)DCOD(Mn) TN T-CN T-1N D-ON NO3-N NO2-N NH4-N T-P T-OP D-OP PO4-P (m) (mg/l)	
0.0 1.0 1.6 - - 0.23 - 0.07 0.010 0.15 0.07 0.05 0.02 0.02 5.0 1.4 1.0 - - 0.23 - 0.02 0.010 0.20 0.05 0.04 0.02 0.01 15.0 0.6 - - 0.25 - 0.04 0.010 0.20 0.08 0.02 0.00 0.04	
Depth SS Chl-a Pheo (m) (mg/l) (ug/l)	
0.0 24 12.03 7.75 5.0 20 8.02 10.07 15.0 10 -	
Table APP 2.3-4(12) Results of Sea Water Analysis at St. 13	
June 8, 1992 Low Tide (St.13) Depth COD(Mn)DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N T-P T-OP D-OP PO4-P (m) (mg/l)	
0.0 8.0 3.6 2.48 1.60 0.88 1.20 0.05 0.030 0.80 0.35 0.15 0.10 0.20 1.0 8.0 3.2 2.07 0.90 1.17 0.90 0.04 0.030 1.10 0.40 0.20 0.10 0.20	
Depth SS Ch1-a Pheo (m) (mg/l) (ug/l)	
0.0 30 53.46 41.03 1.0 24 45.44 35.95 APP 2-16	

(m)	COD(Hn) (mg/l)	DCOD(Hn) (mg/1)	TN (mg/l)	T-ON (mg/1)	T-IN (mg/1)	D-ON (mg/1)	NO3-N (mg/l)	NO2-N (mg/l)	NH4-N (mg/1)	T-P (mg/1)	T-OP (mg/1)	0-0P (mg/l)	PO4-P (ng/1)
0.0	6.2 3.2	3.0 1.6	1.05 0.86 0.65	0.90 0.50	0.15 0.36 0.35	0.90 0.30 0.30	0.03 0.04 0.04	0.020 0.020 0.010	0.10 0.30 0.30	0.20 0.10 0.08	0.11 0.05 0.03	0.11 0.03 0.03	0.09 0.05 0.05
5.0 Depth (m)	3.6 SS (mg/l)	1.4 Chl-a (ug/l)	Pheo (ug/l)	· · · · · · · · · · · · · · · · · · ·	0.00	V.60				2 222	=====		
0.0 2.5	10 26	97.57 10.69	54.00 6.15										
5.0	20	9,36	4.68										
)epth	COD(Hn)	DCOD(Hn) TN	T-ON	T-IN	D-ON	NO3-N	NO2-N	June 8 NH4-N	1992 T-P	T-OP	D-OP	(St.15
0.0	2.2	2.0	(mg/l) -	 	0.09	_	0.04	0.003	0.05	0.07	0.05	0.03	0.02
3.0 7.0	1.4	1.4			0.21 0.32	-	0.05 0.06	0.010	0.15 0.25	0.05 0.08	0.03		0.02
Depth (m)	SS (mg/l)	Chl-a (ug/l)	Pheo (ug/l)										
0.0 3.0 7.0	20 25 20	10.69 7.48	9.27 4.49 -										
Table	APP 2.	.3-4(15)		Result	s of S	ea Wate	er Analy	sis at		.: 1000	f m	. د	/CL 1
)DCOD(Mn (mg/l)) TN (mg/l)	T-CH (mg/l)		D-ON)(mg/l)			NH4-N		T-OP	D-OP	
0.0 3.5					0.13 0.24			0.004					
Depth (m)	SS (mg/l)	Chl-a (ug/l)		Phenol)(mg/l)									
0.0		(nR\1)	(ug/I										
3.5		14.97	15.72	<0.001 <0.001	- =								
3.5	30	14.97	15.72	<0.001 <0.001	=	ea Wate	er Analy	sis at		. 1992	Low Ti	ide	(St.1
3.5 Table	30 APP 2 COD(Hn	14.97 6.24 .3-4(16)	15.72 6.24	<0.001 <0.001 Result	= s of S T-1N	D-ON	NO3-N	NO2-N	June 8 NH4-N	T-P	T-OP	D-OP	P04-
3.5 Table	30 APP 2 COD(Mn (mg/1)	14.97 6.24 .3-4(16))DCOD(Mr (mg/1)	15.72 6.24) TN (mg/1)	(0.001 (0.001 Result T-ON (mg/1)	= s of S T-1N	D-ON)(mg/l) 	NO3-N (mg/l) (0.01	NO2-N (mg/l)	June 8 NH4-N (mg/1) 0.04	T-P (mg/l) 0.09	T-OP (mg/l)	D-0P (mg/l) 0.00	0.0
Table Depth (m) 0.0 4.0	30 APP 2 COD(Mn (mg/1) 4.2 3.9	14.97 6.24 .3-4(16))DCOD(Hn (mg/1) 1.6 2.0 Chl-a (ug/1)	15.72 6.24) TN (mg/1) 0.61 0.63 Pheo (ug/1	(0.001 (0.001 Result T-ON (mg/1) 0.56 0.40	s of S T-IM (mg/1	D-ON)(mg/l) 	NO3-N (mg/l) (0.01	NO2-N (mg/l)	June 8 NH4-N (mg/1) 0.04	T-P (mg/l) 0.09	T-OP (mg/l)	D-0P (mg/l) 0.00	PO4- (mg/l 0.0
Table Depth (m) 0.0 4.0	30 APP 2 COD(Hn (mg/1) 4.2 3.9 SS (mg/1) 18	14.97 6.24 .3-4(16))DCOD(Mn (mg/1) 1.6 2.0	15.72 6.24) TN (mg/1) 0.61 0.63 Pheo (ug/1	(0.001 (0.001 Result T-ON (mg/1) 0.56 0.40	s of S T-IM (mg/1	D-ON)(mg/l) 	NO3-N (mg/l) (0.01	NO2-N (mg/l)	June 8 NH4-N (mg/1) 0.04	T-P (mg/l) 0.09	T-OP (mg/l)	D-0P (mg/l) 0.00	PO4- (mg/l 0.0
3.5 Table Depth (m) 0.0 4.0 Depth (m) 0.0 4.0	30 APP 2 COD(Mn (mg/1) 4.2 3.9 SS (mg/1) 18 12 APP 2	14.97 6.24 .3-4(16))DCOD(Mn (mg/1) 1.6 2.0 Ch1-a (ug/1) 81.53 14.70	15.72 6.24 1) TN (mg/1) 0.61 0.63 Pheo (ug/1 53.19 4.01	<pre><0.001 <0.001 Result T-ON (mg/1) 0.56 0.40) Result</pre>	s of S T-IN (mg/1 0.05 0.23	D-ON)(mg/1) 0.41 0.30	NO3-H (mg/1) <0.01 0.02	NO2-N (mg/1) 0.006 0.008	June 8 NH4-N (mg/1) 0.04 0.20	T-P (mg/1) 0.09 0.10	T-OP (mg/1) 0.03 0.04	D-OP (mg/l) 3 0.00 0.00	PO4- (mg/l 0.00 0.00
3.5 Table Depth (m) 0.0 4.0 Depth (m) 7able	30 APP 2 COD(Mn (mg/1) 4.2 3.9 SS (mg/1) 18 12 APP 2 COD(Mn (mg/1)	14.97 6.24 .3-4(16))DCOD(Mn (mg/1) 1.6 2.0 Ch1-a (ug/1) 81.53 14.70 .3-4(17)	15.72 6.24 1 6.24 1 6.24 1 (mg/1) 1 0.61 1 0.63 Pheo (ug/1) 3 53.19 4.01	(0.001 (0.001 Result T-ON (mg/1) 0.56 0.40) Result T-ON (mg/1)	s of S T-IN (mg/1 0.05 0.23 s of S T-IN (mg/1	D-ON)(mg/1) 0.41 0.30 ea Wate D-ON)(mg/1)	NO3-H (mg/1) (0.01 0.02 er Analy NO3-H (mg/1)	NO2-N (mg/1) 0.008 0.008 sis at	June 8 NH4-N (mg/1) 0.04 0.20 St. 18 June 8 NH4-N (mg/1)	T-P (mg/1) 0.09 0.10 . 1992 T-P (mg/1)	T-OP (mg/1) 0.03 0.04 0.04 Low Ti T-OP (mg/1)	D-OP (mg/1) 3 0.00 0.00 (de D-OP) (mg/1)	P04- (mg/l 0.0 0.0 0.0
3.5 Table Depth (m) 0.0 4.0 Depth (m) 0.0 4.0 Table Depth (m) 0.0 3.2	30 APP 2 COD(Hn (mg/1) 4.2 3.9 SS (mg/1) 18 12 APP 2 COD(Mn (mg/1) 9.4 4.0	14.97 6.24 .3-4(16))DCOD(Hr (mg/1) 1.6 2.0 Chl-a (ug/1) 81.53 14.70 .3-4(17))DCOD(Hr (mg/1)	15.72 6.24 (mg/1) 0.61 0.63 Pheo (ug/1 53.19 4.01 1.02 0.83	(0.001 (0.001 Result T-ON (mg/1) 0.56 0.40) Result T-ON (mg/1)	s of S T-IN (mg/1 0.05 0.23	D-ON)(mg/1) 0.41 0.30 ea Wate D-ON)(mg/1)	NO3-H) (mg/1) <0.01) 0.02 er Analy NO3-H) (mg/1) 0.02	NO2-N (mg/1) 0.006 0.008	June 8 NH4-N (mg/1) 0.04 0.20 St. 18 June 8 NH4-N (mg/1) 0.04 0.04	T-P (mg/1) 0.09 0.10 1.1992 1.1992 1.1992 0.20	T-OP (mg/1) 0.03 0.04 LOW TI T-OP (mg/1) 0.11	D-OP (mg/1) 3 0.00 0.00 (de D-OP (mg/1)	P04- (mg/l 0.0 0.0 (St.1 P04- (mg/l
3.5 Table Depth (m) 0.0 4.0 Depth (m) 0.0 4.0 Table Depth (m) 0.0 3.2	30 APP 2 COD(Mn (mg/1) 4.2 3.9 SS (mg/1) 18 12 APP 2 COD(Mn (mg/1) 9.4	14.97 6.24 .3-4(16))DCOD(Hm (mg/1) 1.6 2.0 Chl-a (ug/1) 81.53 14.70 .3-4(17))DCOD(Hm (mg/1)	15.72 6.24 0) TN (mg/1) 0.61 0.63 Pheo (ug/1) 4.01 1.02 0.83 Pheo (ug/1)	(0.001 (0.001 T-ON (mg/1) 0.56 0.40) Result T-ON (mg/1) 0.96 0.50	s of S T-IN (mg/1 0.05 0.23 T-IN (mg/1	D-ON)(mg/1) 0.41 0.30 ea Wate D-ON)(mg/1)	NO3-H) (mg/1) <0.01) 0.02 er Analy NO3-H) (mg/1) 0.02	NO2-N (mg/1) 0.008 0.008 sis at NO2-N (mg/1)	June 8 NH4-N (mg/1) 0.04 0.20 St. 18 June 8 NH4-N (mg/1) 0.04 0.04	T-P (mg/1) 0.09 0.10 1.1992 1.1992 1.1992 0.20	T-OP (mg/1) 0.03 0.04 LOW TI T-OP (mg/1) 0.11	D-OP (mg/1) 3 0.00 0.00 (de D-OP (mg/1)	P04- (mg/l 0.0 0.0 (St.1 P04- (mg/l

<1.0

Ph

<5.0

<1.0 <5.0 <2.0

Oi

<2.0

(ug/1) (ug/1) (mg/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1)

Cr

<10

Нa

<0.10

<10 < 0.10 460

Chl-a Pheo n-Hexan Cd

23.67 26.04

10.69 10.51

Ni

<5.0

<5.0

Zn

(ug/l)

<10

18

SS

(mg/l)

10

16

20

50

T-Coli

3000

5000

3000

5000

F-Coli

800

3000

1100

1300

(HPN/100ml)

Depth

(m)

0.0

3.0

7.0

11.0

	.· .			<u>.</u>							NOV.	10, 1992	row	11de
Depth (m)		COD(Hn) (mg/l)	DCOD(Mn)			T-IN (mg/1)			NO2-N)(mg/1)			T-OP)(mg/1)	D-OP (mg/1)	PO4-P (mg/1)
0.0		3.4	1.2			0.23			0.020		0.09		0.03	0.01
5.0		1.4	0.4			0.20	_ `	0.04				0.04	0.04	0.03
10.0	_	1.4	0.0			0.18	_	0.02				0.05	0.03	0.03
37.8	+-	1.2	0.2	••	-	0.13	- .	0.02					0.02	0.03
Depth (m)	SS (mg/l)	T-Coli (MPN/	F-Coli 100ml)			n-Hexan (mg/l)		Pb)(ug/l	Cu)(ug/l)	Cr (ug/l	Hg)(ug/l	Fe)(ug/l)	Ni (ug/l)	Zn
0.0 5.0	16 10	500 5000	300 1700	20.62 4.90		4	<1.0	<5.0	<2.0	<10	<0.10	100	<5.0	10
10.0	16	3000	3000	4.30	3.20	-	_	_			_		_	_
37.8	10	500	230	_	_	_		<5.0	<2.0	<10	<0.10	36	<5.0	<10
Table .	APP 2.	3-5(6)		Result	s of Se	a Water	Analy	sis a	t St. 6		Nov.	10, 199	2 Low	Tide
Depth (m)		COD(Mn) (mg/l)	DCOD(Mn) (mg/l)		T-ON (mg/1)				NO2-N)(mg/l)			T-OP)(mg/l)	D-OP (mg/1)	PO4-P (mg/1)
	6	6.6	2.2						0.020					
0.0 5.0	0	3.0	2.2	1.26	1.14	0.12	-		0.020		0.15	0.14	0.02	0.01
10.0	_	2.2	0.2		_	0.13	_	0.03				0.04	0.03	0.02
18.5	<2	1.2	1.2	0.53	0.35			0.02					0.03	0.04
Depth (m)	SS (mg/l)	T-Coli (MPN/				n-Hexan (mg/l)		Pb)(ug/1)	Cu)(ug/1)	Cr (ug/l	Hg)(ug/l	Fe)(ug/l)	Ni (ug/l)	Zn (ug/l)
0.0	20	500		167.06		6	<1.0	<5.0	4.5	<10	<0.10	100	<5.0	20
5.0	20	1100	300	9.35	27.13	••	-	-	-	-	-	-	-	
10.0 18.5	20 16	2300 3000	800 2300			_		<5.0	3.0	<10	<0.10	44	<5.0	10
···	APP 2.3					a Water						10, 1992		
Depth (m)			DCOD(Mn) (mg/l)		T-ON (mg/l)				NO2-N)(mg/l)			T-OP)(mg/1)	D-OP (mg/1)	PO4-P (mg/l)
0.0	-	6.2	2.4	-	-	0.65	-		0.020			0.35	0.05	0.10
$\frac{3.0}{6.0}$		3.8 2.6	1.2 0.6	***		0.40 0.27			0.020 0.010			0.09 0.05	$0.02 \\ 0.01$	$0.06 \\ 0.05$
Depth (m)	SS (mg/l)	T-Coli (MPN/	F-Coli 100ml)			n-Hexan (mg/l)			Cu)(ug/l)	Cr (ug/l	llg)(ug/l)	Fe)(ug/l)	Ni (ug/l)	Zn (ug/l)
0.0	26	23000	8000	71.28		<4	<1.0	< 5.0		<10	<0,.10	80	(5.0	10
3.0 6.0	20 10	50000 1300	24000 800	18.71	0.93	-	<1.0	<5.0	3.0	<10	<0.10	55	₹5.0	<10
Table	APP 2.3	3-5(8)		Results	of Se	a Water	Analy	sis at	. St. 8		Nov. 1	0, 1992	Low	Tide
Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Mn) (mg/l)	TN (mg/1)	T-ON (mg/1)	T-IN (mg/l)			NO2-N (mg/1)				D-OP (mg/l)	PO4-P (mg/l)
0.0	10.0	5.8	3.0	2.68	1.60	1.08	1.00	0.04	0.040	1.00	0.45	0.25	0.00	0.20
2.0 8.0	2.4	3.4 2.0	2.0	1.30	0.75	0.99	-	0.05	0.040 0.040	0.90	0.30	0.15 0.10	0.05 0.05	0.15
Depth	SS (mg/l)	T-Coli	F-Coli	Chl-a	Pheo 1	n-Hexan	Cd	Рb	Cu	Cr	lig	Fe (ug/l)	Ni	Zn
0.0	16	50000		81.97		<4		<5.0			<0.10	100	<5.0	12
2.0	10	50000	8000	32.08	39.03	**	-	-	-	-		-	-	
8.0	9	8000	300	-	-	-	<1.0	<5.0	4.0	. <10	<0.10	75	<5.0	12

											•			
Table A	APP 2.3	3-5 (9)		Results	of Sea	a Water	Analys	sis at	. St. 9	: •.	Nov. 1	0, 1992	Lon J	lide
Depth (m)	BOD (mg/1)	COD(Kn) (mg/1)	DCOD(Hn) (mg/l)		T-ON (mg/l)(NO2-N (mg/l)		TP (mg/l)	T-OP (mg/l)	D-OP (mg/l) (PO4-P (mg/l)
0.0 2.5	12.0 4.8	4.0 3.2	0.2 1.4	2.89 1.89	2.15 1.30				0.040 0.050			0.30 0.15	0.10	0.10 0.10
Depth (m)	SS (mg/l)		F-Coli 100ml)					Pb (ug/l)	Cu (ug/l)	Cr (ug/1)	Hg (ug/1)	Fe (ug/l)	Ni (ug/l) (Zn ug/l)
0.0 2.5	22 16	130000 30000		115.83 22.91		<4 -	<1.0 <1.0				<0.10 <0.10	65 65	<5.0 <5.0	10 20
	·	3-5(10)				a Water	Analy	sis a	t St. 10	0	Nov.	10, 199	12 Low	Tide
			DCOD(Mn) (mg/l)		T-ON (mg/1)	T-1H (mg/l)			1 NO2-N 1)(mg/1			T-OP (mg/l)	D-OP (mg/l)	PO4- (mg/)
0.0 5.0 22.0	. . 	5.6 1.8 0.4	2.2 1.4 0.0	- ' 	- - -	0.08 0.25 0.20	, ~	0.0	2 0.010 4 0.010 4 0.00	0.2	0.00	0.06	0.02	0.0 0.0 0.0
Depth (m)	SS (mg/l)	T-Coli (MPN/	F-Coli 100ml)			n-Hexa (mg/l			Cu 1)(ug/1	Cr (ug/		Fe l)(ug/l)	Ni (ug/l)	Zn (ug/
0.0 5.0 22.0	20 12 24	1700 1300 1300	800 500 500		50.98 42.23		-	-	0 <2.0		. <0.10 - <0.10	_	<5.0 <5.0	26 - 18
Table i	APP 2.	3-5(11)		Result:	s of Se	a Water	Analy	sis a	t St. 1	1	Nov.	10, 199	12 Low	Tide
Depth (m)			DCOD(Kn) (mg/l)			T-IN (mg/l)		NO3-1 (mg/	1 NO2-N 1)(mg/1	NH4-1 (mg/	Y TP 1)(mg/	T-OP (mg/1)	D-OP (mg/l)	P04 (ng/
0.0 1.8	5.2 3.2	7.2 2.8	5.2 1.6	1.31	1.05 0.80				0.000 6 0.020					0.0 0.0
Depth (m)	SS (mg/l)	T-Coli (MPN/	F-Coli 100ml)	Chl-a (ug/l)	Pheo (ug/l)	n-Hexa (mg/l	n Cd)(ug/1	Pb)(ug/		Cr (ug/		Fe)(ug/l)	Ni (ug/l)	Zn (ug/
0.0 1.6	16 16	8000 8000	1100 5000		109.24 10.15			₹5.0 ₹5.0			<0.10 <0.10		<5.0 <5.0	10 10
Table /	APP 2.3	3-5(12)	,	Result	s of Sea	a Water	Analy	sis ai	t St. 13	2	Nov.	10, 199	2 Lon	Tide
Depth (m)		COD(Mn) (mg/l)	DCOD(Mn) (mg/l)		T-ON (mg/l)	T-IN (mg/l)			1 NO2-N 1)(mg/1			T-OP (mg/l)	D-OP (mg/l)	PO4- (mg/1
0.0 5.0 13.5	-	5.6 1.6 1.4	4.6 1.6 1.4	-	-	0.02 0.24 0.23	-	0.0	0.000 3 0.000 2 0.000	0.20		0.05	0.03	0.0 0.0 0.0
Depth (m)	SS (mg/l)	T-Coli (HPN/				n-Hexa (ng/l		Pb)(ug/	Cu l)(ug/l)	Cr (ug/	lig l)(ug/l		Ni (ug/l)	Zn (ug/)

<1.0 <5.0 <2.0 <10 <0.10 75

18

<10

<5.0

0.0

5.0

16

10 13.5 16 300

800

3000

50 56.13 44.91

500 13.90 23.52 300 - -

300

Results	٥f	Sea	Water	Analysis	at St.	13

Table APP 2.3-5(13)	Table	APP	2.3-5	(13)
---------------------	-------	-----	-------	------

Nov. 10, 1992 Low Tide

Depth (m)	80D (mg/l)		DCOD(Mn) (mg/l)	TX (mg/l)	T-0N (mg/1)	T-IN (mg/l)			NO2-N)(mg/l)		TP)(mg/l)	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)
0.0 1.5	5.2 4.0	3.6 3.0	3.6 2.6	2.65 2.26	1.10 1.10		0.90 0.50		0.020 0.020	1.50 1.10	0.45 0.30	0.15 0.10	0.00 0.05	0.30 0.20
Depth (m)	SS (mg/l)	T-Coli (MPN/				n-Hexar (mg/1)		Pb (ug/l	Cu)(vg/l)	Cr (ug/l	Hg)(ug/1)	Fe)(ug/l)	Ni (ug/l)	Zn (ug/l)
0.0	16 16	50000 240000	17000 80000	25.39	25.13	_	<1.0 <1.0		<2.0 4.0		<0.10 <0.10	150 130	<5.0 <5.0	<10 10
							·							
Table /	APP 2.3	-5(14)	'	Results	of Sea	a Water	Analys	is at	St. 14		Nov.	10, 1992	. Fox	Tide
Depth (m)		COD(Mn) (mg/l)	DCOD(Mn) (mg/l)			T-IN (mg/l)			NO2-N)(mg/l)			T-OP)(mg/l)	p-OP (mg/l)	PO4-P (mg/l)
0.0 3.0	4.8 5.2	4.4 4.0	3.4 3.2	1.67 1.26	1.40 1.00		0.40 0.60		0.020 0.020				0.02 0.08	0.02 0.02
Depth (m)	SS (mg/l)	T-Coli (MPN/	F-Coli 100ml)			n-Hexar (mg/l)		Pb (ug/l	Cu)(ug/l)	Cr (ug/l	Hg)(ug/1)	Fe)(ug/l)	Ni (ug/l)	Zn (ug/l)
0.0 3.0	10 26	1700 8000		139.00 37.42		16		<5.0 <5.0			<0.10 <0.10	70 40	<5.0 <5.0	10 <10
Table Depth			DCOD(Mn)) TN	T-ON	T-IN	D-ON	N03-N	NO2-N		TP	10, 1992 T-OP)(mg/l)	D-OP	Tide P04-P (mg/l)
0.0 3.0 6.5	- - -	8.6 2.2 1.6	7.6 1.8 0.0	-	-	0.09 0.25 0.29	-		0.010 0.010 0.006	0.07 0.20	0.15 0.07	0.14 0.08 0.04	0.01 0.01 0.01	0.01 0.01 0.03
Depth (m)	SS (mg/l)	T-Coli (MPN/				n-Hexa (mg/l)		Pb (ug/1)	Cu)(ug/l)	Cr (ug/1)	Hg)(ug/l)	Fe)(ug/l)	Ni (ng/1)	Zn (ug/1)
0.0	22	8000											10011	1-0/-/
8.5	6	800		34.75 10.69	12.63 13.63	<4.0 -	<1.0	-	<2.0 -	~	<0.10	550 -	<5.0 -	10
6.5 Table	6 6 APP 2.3	800 300		10.69	13.63		<1.0	<5.0	4.0	~	<0.10 <0.10	 -	<5.0 - <5.0	10
	6 APP 2.3 BOD	800 300 3-5(16)	140 110 DCOD(Mn)	10.69 Results	13.63 - s of Sea	a Water	<1.0 Analys	<5.0 3is at	4.0 St. 18	<10	<0.10 <0.10 Nov.	550 - 85	<5.0 <5.0 2 Low	10 - 10 Tide
Table .	6 APP 2.3 BOD	800 300 3-5(16) COD(Mn)	140 110 DCOD(Mn)	10.69 Results	13.63 - s of Sea		<1.0 Analy: D-ON (mg/1)	<5.0 3is at NO3-N)(mg/1	4.0 St. 18 NO2-N)(mg/1)	<10 NH4-N (mg/i	<0.10 <0.10 Nov. TP)(mg/1	550 85 10, 199: T-OP)(mg/1)	<5.0 <5.0 2 Low	10 - 10 Tide
Depth (m) 0.0 2.5 Depth	6 APP 2.3 BOD (mg/1) 2.8 3.6	800 300 3-5(16) COD(Mn) (mg/1) 7.6 1.4	DCOD(Mn) (mg/1)	10.69 Results TR (mg/l) 0.71 1.01 Chl-a	13.63 s of Sea T-ON (mg/l) 0.58 0.70	T-IN (mg/l) 0.13 0.31	0.48 0.40	<5.0 3is at NO3-N (mg/1 0.10 0.10	4.0 St. 18 NO2-N)(mg/1) 0.010 0.010	\(\frac{10}{10}\) \(\text{NH4-N}\) \(\text{(mg/i)}\) \(0.02\) \(0.20\) \(\text{Cr}\)	<0.10 <0.10 Nov. TP)(mg/1 0.10 0.08	550 85 10, 1993 T-OP)(mg/1) 0.09	<5.0 <5.0 2 Low D-OP (mg/1) 0.01 0.03	10 - 10 Tide P04-P (mg/1) 0.01 0.01

Results of	Sea Water	Analysis	at	St.	17	
------------	-----------	----------	----	-----	----	--

Table /	APP 2.3	-5(17)	4.5	Results	of Sea	Mater	Analy	sis at	St. 17		Nov.	10, 1992	2 Low	Tide
Depth (m)	BOD (mg/l)	COD(Kn) (mg/l)	DCOD(Mn) (mg/l)) TN (mg/l)	T-ON (mg/l)	T-IN (mg/l)	D-ON (mg/1	NO3-N (mg/1)	NO2-N)(mg/l)	NH4-N (mg/l	TP)(mg/l	T-OP)(mg/l)	D-OP (mg/l)	
0.0 3.5	8.8 4.4	2.0 5.2	1.4 3.0	1.41 0.94					0.004 0.006			0.19 0.09		
Depth (m)	SS (mg/1)	T-Coli (MPN/	F-Coli 100ml)	Chl-a (ug/l)	Pheo (ug/l)	n-Hexar (mg/l)	n Cd)(ug/l	Pb)(ug/l)	Cu)(ug/l)	Cr (ug/l	Hg)(ug/l	Fe)(ug/l)		Zn (ug/l)
0.0 3.5	14 10	500 500	220 130	48.11 36.08				<5.0 <5.0			<0.10 <0.10		<5.0 <5.0	36 24
Table /	APP 2.3	-5(18)		Results	of Sea	a Water	Analy	sis at	St. 18		Nov.	10, 199	Z Low	Tide

		-	•											
Depth (m)	BOD (mg/l)	COD(Kn) (mg/l)	DCOD(Mn (mg/l)) TN (mg/l)	T-0N (mg/l)	T-IN (mg/l)	D-ON (mg/l	NO3-N (mg/l	NO2-N)(mg/l)	NH4-N (mg/1	TP)(mg/l	T-OP)(mg/l)	D-OP (mg/l)	PO4-P (mg/l)
0.0 2.0	16.0 4.4	11.0 3.8	4.8 2.8	4.02 1.05								0.65 0.14		
Depth (m)			F-Coli 100ml)			n-Hexar (mg/l)							Ni (ug/l)	
0.0 2.0	30 30	1300 1300		58.81 97.68					<2.0 <2.0		<0.10 <0.10		<5.0 <5.0	130 14

Results of Sea Water Analysis at St. 19 Table APP 2.3-5(19) Nov. 10, 1992 Low Tide Depth BOD COD(Hn) DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P $(mg/1) \ (mg/1) \$ (m) (mg/l) (mg/l) 0.04 0.030 1.30 0.45 0.25 0.10 0.20 1.37 0.0 7.2 4.6 4.0 1.23 0.05 0.040 1.20 0.30 0.10 0.05 0.20 3.0 4.4 0.10 0.06 0.050 0.80 0.20 0.10 0.05 2.4 0.91 6,5 3.4 T-Coli F-Coli Chl-a Pheo n-Hexan Cd Pb Cu Cr Hg Гe SS Depth (ug/1) (ug/1) (mg/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1) (ug/1)(m) (mg/1)(HPN/100ml) <10 (0.10 30000 133.65 104.91 12 <1.0 ⟨5.0 <2.0 36 0.0 24 50000 30000 21.38 57.20 10 50000 3.0 10 <5.0 <1.0 <5.0 <2.0 <10 <0.10 6.512 24000 13000

Iaute		-6(1)		Kesul (Sprin	ts of a	ea war - Hig	er and h Tide	:) :)	or the	Third	Simile	aneous	Nov. 10	1992	High	ı Tide	(St. 2)
Depth (m)	BOD (mg/l)		DCOD(Hn) (mg/l)	TN (mg/l	T-0H (mg/1)		D-0N (1\zm)	NO3-N)(mg/l)	NO2-N (mg/l)	NH4-N (mg/1)	TP (mg/l)	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)			F-Coli 100ml)
0.0 5.0 18.0		1.4 1.0 0.8	0.0 0.0 0.8	<u>-</u> -		0.14 0.08 0.07	-	0.03	0.007 0.003 0.003	0.05	0.04	0.04 0.03 0.01	0.04 0.03 0.01	0.02 0.01 0.02	10 10 10	500 130 110	170 30 40
	Chl-a (ug/l)		n-Hexan (mg/l)	CN (mg/l	Phenol)(mg/l)	l (cd)(ug/l)	Pb)(ug/l)	Cu)(ug/1)	Cr (ug/l)	Hg (ug/1)	Fe)(ug/l)	Nì)(ug/l)	Zn (ug/l)				
0.0 5.0 18.0	2.92 1.53		- - -	-	-	-	_	-	-	-	- - -	-	-	ı			
Table :	APP 2.3	-6(2)		Resul	ts of a	Sea Wal	ter Ana	alysis	at St.	3			Nov. 10	, 1992	, Kig	h Tide	(St. 3)
Depth	BOD (mg/l)		DCOD(Mn) (mg/l)	TN (mg/l	T-ON (mg/1)	T-IN (mg/l)	D-0N (mg/1	NO3-N)(mg/l)	NO2-N)(mg/1)	NH4-N (mg/1)	TP)(mg/l)	T-0P)(mg/l)	D-OP (mg/l)	PO4-P (mg/l)			F-Col: 100ml)
0.0 5.0 45.0	- - -	2.4 1.4 1.0	0.2 0.0 0.0	0.53	0.42	0.14 0.12 0.11	0.32	0.03	0.009 0.005 0.004	0.08	0.05	0.06 0.03 0.02	0.04 0.01 0.02	0.01 0.02 0.02	16 5 5	1100 500 500	800 300 300
	Chl-a (ug/l)		n-Hexan (mg/l)	CN (mg/l	Pheno!)(mg/l)	l Cd)(ug/l	Pb (ug/1)	Cu)(ug/1)	Cr)(ug/l)	Hg (ug/1)	Fe)(ug/l)	Ki)(ug/1)	Zn (ug/l)				
0.0	9.36 2.67	10.29 5.75	-		-	- 	- - -	-		- -	-	-	-				
45.0			· · · · · · · · · · · · · · · · · · ·														
	APP 2.3	COD(Mn)	BCOB(No.)	ተለ	 T_0N	T 1 N	D-0N	NO3-N	at St. NO2-N)(mg/1)	NH4-N	TP)(mg/l)	T-OP (mg/l)	D-OP (mg/l)	P04-P	SS '	r-Coli	F-Coli
Table Depth	APP 2.3	COD(Mn)	DCOD(Hn) (mg/l) 1.0 1.0	ተለ	 T_0N	T 1 N	D-0N)(mg/1	NO3-N)(mg/1) 0.06 0.06 0.05	NO2-N	NH4-N (mg/1) 0.10 0.20 0.15	0.08 0.07 0.07	T-OP 0(mg/l) 0.06 0.04 0.04 0.03	D-OP	P04-P	SS '	r-Coli	F-Coli
Depth (m) 0.0 3.0 7.0 11.5	BOD (mg/1)	COD(Hn) (mg/1) 3.0 2.0 1.6 1.2	DCOD(Hn) (mg/l) 1.0 1.0 0.6 0.6	TN (mg/1	T-ON)(mg/l' - - - - Pheno.	T-IN)(mg/1 0.17 0.27 0.21 0.27	D-ON)(mg/1 - - - - - Pb	NO3-N)(mg/1) 0.06 0.06 0.05 0.06	NO2-N)(mg/1) 0.010 0.010 0.008	NH4-N (mg/1) 0.10 0.20 0.15 0.20	0.08 0.07 0.07 0.07	0.06 0.04 0.04 0.03	p-op (mg/l) 0.02 0.02 0.03 0.01	PO4-P (mg/l) 0.02 0.03 0.03	SS (mg/1) 10 16 32	T-Coli (MPN/ 3000 2300 8000	700 800 1100
Depth (m) 0.0 3.0 7.0 11.5 Depth (m) 0.0 3.0 7.0	BOD (mg/1)	COD(Hn) (mg/1) 3.0 2.0 1.6 1.2	DCOD(Hn) (mg/l) 1.0 1.0 0.6 0.6	TN (mg/1	T-ON)(mg/l' - - - - Pheno.	T-IN)(mg/1 0.17 0.27 0.21 0.27	D-ON)(mg/1 - - - - - Pb	NO3-N)(mg/1) 0.06 0.06 0.05 0.06	NO2-N)(mg/l) 0.010 0.010 0.008 0.009	NH4-N (mg/1) 0.10 0.20 0.15 0.20	0.08 0.07 0.07 0.07	0.06 0.04 0.04 0.03	p-op (mg/l) 0.02 0.02 0.03 0.01	PO4-P (mg/l) 0.02 0.03 0.03	SS (mg/1) 10 16 32	T-Coli (MPN/ 3000 2300 8000	F-Coli 100ml) 700 800 1100
Depth (m) 0.0 3.0 7.0 11.5 Depth (m) 0.0 3.0 11.5	BOD (mg/1)	COD(Mn) (mg/1) 3.0 2.0 1.6 1.2 Pheo (ug/1) 13.07 12.68	DCOD(Hn) (mg/1) 1.0 1.0 0.6 0.6 n-Hexan (mg/1)	TN (mg/1	T-ON)(mg/1'	T-IN)(mg/1 0.17 0.27 0.21 0.27 1 Cd)(ug/1	D-ON)(mg/1' - - - - Pb)(ug/1	NO3-N)(mg/1) 0.06 0.06 0.05 0.06 Cu)(ug/1)	NO2-N)(mg/l) 0.010 0.010 0.008 0.009	NH4-N (mg/1) 0.10 0.20 0.15 0.20 Hg (ug/1)	0.08 0.07 0.07 0.07	0.06 0.04 0.04 0.03	D-OP (mg/1) 0.02 0.02 0.03 0.01 Zn (ug/1)	P04-P (mg/1) 0.02 0.03 0.03 0.04	SS (mg/l) 10 16 32 16	T-Coli (MPN/ 3000 2300 8000 500	F-Coli 100ml) 700 800 1100 300
Depth (m) 0.0 3.0 7.0 11.5 Depth (m) 0.0 3.0 7.0 11.5	BOD (mg/1)	COD(Mn) (mg/1) 3.0 2.0 1.6 1.2 Pheo (ug/1) 13.07 12.68	DCOD(Hn) (mg/1) 1.0 1.0 0.6 0.6 n-Hexan (mg/1)	TN (mg/1	T-ON)(mg/1	T-IN)(mg/1 0.17 0.27 0.21 0.27 l Cd)(ug/1	D-ON)(mg/1	NO3-N)(mg/l) 0.06 0.05 0.06 Cu)(ug/l)	NO2-N)(mg/1) 0.010 0.010 0.008 0.009 Cr)(ug/1)	NH4-N (mg/1) 0.10 0.20 0.15 0.20 Hg (ug/1)	0.08 0.07 0.07 0.07 Fe 0(ug/1)	0.06 0.04 0.04 0.03 Ni 0(ug/1)	D-OP (mg/1) 0.02 0.02 0.03 0.01 Zn (ug/1)	P04-P (mg/1) 0.02 0.03 0.03 0.04	SS (mg/l) 10 16 32 16	r-Coli (MPN/ 3000 2300 8000 500	F-Coli 100ml) 700 800 1100 300
Depth (m) 0.0 3.0 7.0 11.5 Depth (m) 0.0 3.0 7.0 11.5 Depth (m) 0.0 5.0 10.0	BOD (mg/1)	COD(Mn) (mg/1) 3.0 2.0 1.6 1.2 Pheo (ug/1) 13.07 12.68	DCOD(Hn) (mg/1) 1.0 1.0 0.6 0.6 n-Hexan (mg/1) DCOD(Mn) (mg/1) 0.2 0.6 1.2	TN (mg/1	T-ON)(mg/1	T-IN)(mg/1 0.17 0.27 0.21 0.27 l Cd)(ug/1 	D-ON)(mg/1	NO3-N)(mg/1) 0.06 0.05 0.06 Cu)(ug/1) 	NO2-N)(mg/1) 0.010 0.008 0.009 Cr)(ug/1) 	NH4-N (mg/1) 0.10 0.20 0.15 0.20 Hg (ug/1) 	0.08 0.07 0.07 0.07 0.07 Fe 0(ug/1) 	0.06 0.04 0.04 0.03 Ni 0(ug/1)	p-OP (mg/1) 0.02 0.02 0.03 0.01 Zn (ug/1)	P04-P (mg/1) 0.02 0.03 0.03 0.04	SS (mg/l) 10 16 32 16	r-Coli (MPN/ 3000 2300 8000 500	F-Coli 100ml) 700 800 1100 300
Depth (m) 0.0 3.0 7.0 11.5 Depth (m) 0.0 3.0 7.0 11.5 Table Depth (m) 0.0 5.0	BOD (mg/1)	COD(Mn) (mg/1) 3.0 2.0 1.6 1.2 Pheo (ug/1) 13.07 12.68	DCOD(Hn) (mg/1) 1.0 1.0 0.6 0.6 n-Hexan (mg/1)	CN (mg/1	T-ON)(mg/1	T-IN)(mg/l 0.17 0.27 0.21 0.27 l Cd)(ug/l 	D-ON)(mg/l' - - Pb)(ug/l - - - - D-ON)(mg/l'	NO3-N)(mg/l) 0.06 0.05 0.06 Cu)(ug/l) 	NO2-N)(mg/1) 0.010 0.003 0.009 Cr)(ug/1) 	NH4-N (mg/1) 0.10 0.20 0.15 0.20 Hg (ug/1) 5 NH4-N (mg/1) 0.08 0.09 0.04	0(mg/1) 0.08 0.07 0.07 0.07 Fe 0(ug/1) TP 0(mg/1) 0.09 0.06 0.06 0.04 Fe	0.08 0.03 Ni 0(ug/1) T-OP 0.03 0.03 0.03 0.03	D-OP (mg/1) 0.02 0.03 0.01 Zn (ug/1) 	P04-P (mg/1) 0.02 0.03 0.03 0.04 . 1992 P04-P (mg/1) 0.01 0.03 0.03	SS (mg/l) 10 16 32 16 Hig SS (mg/l) 16 14 10	T-Coli (MPN/ 3000 2300 8000 500 T-Coli (MPN/ 8000 3000 2300	F-Coli (100ml) 700 800 1100 300 (St. 5) F-Coli (100ml) 5000 800 800

		1.1											Nov. 10			gh Tide	• • • • •
Depth (m)	BOD (mg/1)		DCOD(Hn) (mg/l)) TN (mg/l)	T-ON (mg/l	T-IN (mg/l)	1/gm)(NO3-N (mg/l)	NO2-N)(mg/l)	NH4-N (mg/l)	TP (mg/1)	T-OP (mg/1)	D-0P (mg/1)	PO4-P (mg/l)		T-Coli (MPN/	F-Coli /100ml)
0.0 5.0 10.0 17.5		3.0 2.6 1.8 2.6	1.6 0.8 1.2 1.4	- -		0.13	- · -	0.04	0.010 0.010 0.009 0.009	0.08	0.08	0.07 0.06 0.01 0.07	0.01 0.01 0.00 0.03	0.01 0.02 0.05 0.03	20 16 20 26	500 800 700 500	230 500 230 170
Depth (m)	Chl-a (ug/l)	Pheo (ug/l)	n-Hexan (mg/l)	CN (mg/l)	Phenol	Cd (ug/l)	Pb (ug/1)	Cu)(ug/l)	Cr)(ug/l)	Hg (ug/1)	Fe (ug/l)	Ni (ug/l)	Zn (ug/l)				
0.0 5.0 10.0 17.5	10.02 5.35	13.36 13.36	-	- - -	- - -	-	-		-	 - - -	-	- - - -					·
able	APP 2.3	-6(6)		Result	s of S	sea Wat	er And	lysis	at St.	7			Nov. 10	, 1992,	Hig	gh Tide	(St. 7
Depth (m)	BOD (mg/l)		DCOD(Mn) (mg/l)	TN (mg/l)	T-0X (mg/1)	T-IX (mg/l)	D-ON (mg/1)	NO3-N (mg/1)	NO2-N)(mg/1)	NH4-N (mg/l)	TP (mg/l)	T-0P (ng/1)	D-OP (mg/l)	PO4-P (mg/l)		T-Coli) (MPN/	
0.0 3.0 7.5	<u>-</u> .	5.8 3.4 2.2	3.2 3.0 1.4		. -	0.06 0.25 0.34	-	0.03	0.010 0.020 0.010	0.20	0.10	0.18 0.05 0.03	0.03 0.00 0.00	0.02 0.05 0.07	26 16 20	90000 30000 50000	11000 13000 14000
Depth (m)	Chl-a (ug/l)		n-Hexan (mg/l)	CN (mg/1)	Phenol (mg/l)	Cd (ug/1)	Pb (ug/l)	Cu (ug/l)	Cr)(ug/l)	Hg (ug/l)	Fe (ug/l)	Ni (ug/l)	Zn (ug/l)				
0.0 3.0 7.5		52.42 22.32		-	- - -	-	_	-	-		-	- - -			•		
fable	APP 2.3	3-6(7)		Result	ts of	Sea Wat	er And	alysis	at St.	8			Nov. 10	, 1992,	, Hig	th Tide	(St. 8
Depth (m)	BOD (mg/1)		DCOD(Mn) (mg/l)								TP (mg/l)	T-OP (mg/l)	D-OP (mg/1)	PO4-P (mg/l)		T-Coli) (MPN/	
0.0 2.0 7.5	_	4.4	0.4	2 00	1.50	0.59	0.90	በ በፍ	~ ~ ~ ~			0.20	0.05				24000
		4.8 2.2	2.4 2.4 1.2			0.54		0.05	0.040 0.040 0.040		0.30	0.15 0.11	0.05 0.00 0.01	0.10 0.15 0.09	22 24 20	30000 50000 24000	22000 5000
Depth		2.2 Pheo	2.4	1.47 CN	1.00 Pheno	0.54 0.47	0.60 Pb	0.05 0.03 Cu	0.040 0.040 Cr	0.45 0.40 Hg	0.30 0.20 Fe	0.15 0.11 Ni	0.00 0.01 Zn	0.15	24	50000	22000
Depth	(ug/1) 73.22	2.2 Pheo	2.4 1.2 n-Hexan	1.47 CN	1.00 Pheno	0.54 0.47	0.60 Pb	0.05 0.03 Cu	0.040 0.040 Cr	0.45 0.40 Hg	0.30 0.20 Fe	0.15 0.11 Ni	0.00 0.01 Zn	0.15	24	50000	22000
Depth (m) 0.0 2.0 7.5	73.22 48.11	2.2 Pheo (ug/1) 36.61 60.41	2.4 1.2 n-Hexan (mg/1)	1.47 CN (mg/1)	1.00 Pheno (mg/1)	0.54 0.47 Cd (ug/1)	0.60 Pb (ug/1	0.05 0.03 Cu)(ug/1	0.040 0.040 Cr	0.45 0.40 Hg (ug/1)	0.30 0.20 Fe	0.15 0.11 Ni (ug/1)	0.00 0.01 Zn	0.15	24 20	50000	22000 5000
Depth (m) 0.0 2.0 7.5 able	(ug/1) 73.22 48.11	2.2 Pheo (ug/1) 36.61 60.41	2.4 1.2 n-Hexan (mg/1)	i.47 CN (mg/l) Result	1.00 Pheno:)(mg/1)	0.54 0.47 1 Cd 0(ug/1) 	0.60 Pb (ug/1	0.05 0.03 Cu)(ug/1	0.040 0.040 Cr)(ug/1) - - at St.	0.45 0.40 Hg (ug/1)	0.30 0.20 Fe (ug/1)	0.15 0.11 Ri (ug/1)	0.00 0.01 Zn (ug/1)	0.15 0.09	24 20 Hig	50000 24000 th Tide	22000 5000 (St. 9)
Depth (m) 0.0 2.0 7.5 able	73.22 48.11 APP 2.3	2.2 Pheo (ug/1) 36.61 60.41	2.4 1.2 n-Hexan (mg/1)	1.47 CN (mg/1) Result (mg/1)	1.00 Pheno (mg/1) s of S T-ON (mg/1)	0.54 0.47 1 Cd 0(ug/1) 	0.60 Pb (ug/1) er Ans D-CN (ug/1) 0.70	0.05 0.03 Cu (ug/1)	0.040 0.040 Cr)(ug/1) - - at St.	0.45 0.40 Hg (ug/1) - - - 9 NH4-N (mg/1) 0.30	0.30 0.20 Fe (ug/1) 	0.15 0.11 Ri (ug/1)	0.00 0.01 Zn (ug/1)	0.15 0.09 , 1992,	24 20 Hig	50000 24000 th Tide	22000 5000 (St. 9)
Depth (m) 0.0 2.0 7.5 able (m) 0.0 4.5 Depth	73.22 48.11 APP 2.3 BOD (mg/l)	2.2 Pheo (ug/1) 36.61 60.41	2.4 1.2 n-Hexan (mg/1) 	1.47 CN (mg/1) Result (mg/1) 1.90 CN	1.00 Pheno (mg/1) s of S T-ON (mg/1) 1.50 Phenol	0.54 0.47 Cd (ug/1) Gea Wat T-IN (mg/1) 0.40 0.31	0.60 Pb (ug/l)	0.05 0.03 Cu (ug/1) 	0.040 0.040 Cr)(ug/1) - - at St. NO2-N)(mg/1) 0.060	0.45 0.40 Hg (ug/1) 	0.30 0.20 Fe (ug/1) 	0.15 0.11 Ni (ug/1) 	0.00 0.01 Zn (ug/1) 	0.15 0.09 , 1992, PO4-P (mg/1) 0.06	24 20 Hig SS (mg/1)	50000 24000 24000 th Tide T-Coli (MPN/	22000 5000 (St. 9) F-Coli (100ml)
Depth (m) 0.0 2.0 7.5 able (m) 0.0 4.5 Depth	(ug/1) 73.22 48.11 APP 2.3 BOD (mg/1) Chl-a (ug/1) 42.77	2.2 Pheo (ug/1) 36.61 60.41 -6(8) COD(Hn) (mg/1) 4.4 2.0 Pheo	2.4 1.2 n-Hexan (mg/1) 	1.47 CN (mg/1) Result (mg/1) 1.90 CN	1.00 Pheno (mg/1) s of S T-ON (mg/1) 1.50 Phenol	0.54 0.47 Cd (ug/1) Gea Wat T-IN (mg/1) 0.40 0.31	0.60 Pb (ug/l)	0.05 0.03 Cu (ug/1) 	0.040 0.040 Cr)(ug/1) at St. NO2-N)(mg/1) 0.060 0.030	0.45 0.40 Hg (ug/1) 	0.30 0.20 Fe (ug/1) 	0.15 0.11 Ni (ug/1) 	0.00 0.01 Zn (ug/1) 	0.15 0.09 , 1992, PO4-P (mg/1) 0.06	24 20 Hig SS (mg/1)	50000 24000 24000 th Tide T-Coli (MPN/	22000 5000 (St. 9) F-Coli (100ml)

Depth BBO CON(Ne) DCON(Ne) DCON(Ne) SR P-off P-IN P-off NOP-M NOZ-M NUCL-M NU					:													
0.0 - 3.2 0.4 - 0.28 - 0.04 0.20 0.20 0.10 0.07 0.01 0.03 10 1300 800 21.5 - 0.6 0.4 - 0.28 - 0.04 0.020 0.20 0.10 0.07 0.01 0.03 10 1300 800 21.5 - 0.6 0.4 0.6 0.4 0.00 0.04 0.00 0.04 25 800 300 300 300 300 300 300 300 300 300	Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Hn) (mg/l)) TN (mg/l)	T-0% (mg/l)	T-1X (mg/1)	D-08 (mg/1)	NO3-N (mg/1)	NO2-N (mg/l)	NH4-N (mg/1	TP)(mg/l)	T-OP (mg/1)	D-OP (mg/l)	PO4-P (mg/l)	SS (mg/l)	T-Coli (MPN/	100ml)
Depth Chi-a Pines High Tide (St. 11 Nov. 10, 1992, High Tide (St. 12 Nov. 10, 1992, High Tide (St. 13 Nov. 10	5.0	-	1.6	1.0	- - -		0.26	7	0.04	0.020	0.20	0.10	0.07	0.01	0.03	10	1300	800
5.0 6.68 15.80				n-Hexan (mg/l)	CN (mg/1)	Phenol	Cd (ug/l)	Pb (ug/l)	Cu)(ug/l)	Cr)(ug/l)	Hg (ug/l				• ,			
Depth BOD COD(***) DCOD(***) DCOD(***) DCOD(***) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-COL1 F-COL1 F-	5.0	6.68	15.80	- - -	- - -	-	- - -	- -	<u>-</u> ·	<u>.</u> 	-	- - -	- - -	 	<u>.</u>			
Depth BOD COB(th) DODD(th) TR T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli F-Coli (mg/l) (Table	APP 2.3	3-6(10)		Result	s of S	Sea Wat	ter Ana	alysis	at St.				Nov. 10), 1992	, Hi	gh Tide	(St.11)
0.0 - 8.8				DCOD(Hin (mg/l)) TN (mg/l)	T-ON (mg/l)	T-IN (mg/1)	D-ON (mg/l	NO3-N (mg/l	NO2-N)(mg/l)	NH4-N	TP	T-OP (mg/1)	D-OP (mg/1)	PO4-P (mg/l)	SS (mg/l)	T-Coli) (MPN,	F-Coli /100ml)
Depth Ch1-a Prec n-rexan (n) (ug/1) (ug/1) (ug/1)(ug/1					1.85 1.05	1.76 0.80	0.09 0.25	0.96 0.80	0.03 0.04	0.020 0.010	0.04 0.20	0.25 0.10						3000 1300
2.3 13.36 24.06 Table APP 2.3-6(11) Results of Sea Water Analysis at St. 12 Nov. 10, 1992. High Tide (St.12) Bepth B00 COD(Hn) PCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli F-Coli (mg/l)				n-Hexan (mg/l)	CN (mg/1)	Phenol	Cd (ug/1)	Pb)(ug/1	Cu)(ug/l	Cr)(ug/l)	Hg (ug/l				•		÷	
Nov. 10, 1992, High Tide (St.12)				-	-	- -		-	 	~	- -	_	-	_ _	=			
Depth BOD COD(Mn) Depth Con Co	Table 1	APP 2.3	-6(11)		Result	s of S	ea Wat	er Ana	ılysis	at St.	12			Nov. 10	, 1992,	Hig	h Tide	(St.12)
0.0 - 3.4 1.8				DCOD(Mn) (mg/l)) TN (mg/l)	T-ON (mg/l)	T-IN (mg/l)	D-ON (mg/1)	NO3-N (mg/l)	NO2-N (mg/1)	NH4-N (mg/1)	TP)(mg/l)	T-OP (mg/l)	D-OP (mg/1)				
(m) (ug/l) (ug/l) (mg/l) (mg/l) (mg/l)(ug/l)(ug/l)(ug/l)(ug/l) (ug/l) (u	5.0		2.0	2.0	per .		0.24		0.03	0.009	0.20	0.07	0.04	0.01	0.03	10	300	130
Table APP 2.3-6(12) Results of Sea Water Analysis at St. 13 Nov. 10, 1992, High Tide (St.13) Depth BOD COD(Mn) DCOD(Mn) TN T-ON T-IN D-ON NO3-N NO2-N NH4-N TP T-OP D-OP PO4-P SS T-Coli F-Coli (m) (mg/l)				n-Hexan (mg/l)	CN (mg/1)	Phenol (mg/l)	Cd (ug/l)	Pb (ug/l)	Cu (ug/l)	Cr (ug/l)	Hg (ug/l							٠
Nov. 10, 1992, High Tide (St.13)	5.0			- - -		-	- - -	- -	- - -	- -	-	••	-	-	:			
(m) (mg/l) (mg/l	Table .	APP 2.3	-6(12)		Result	s of S	ea Wat	er Ana	alysis	at St.	13			Nov. 10	1992	Hie	h Tide	(St.13)
0.0 - 10.4 5.4 4.12 5.30 0.62 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.0				DCOD(Kn) (mg/1)) TN (mg/l)	T-0N (mg/l)	T-IN (mg/l)	D-ON (mg/1)	NO3-N)(mg/l)	NO2-N (mg/l)	NH4-N (mg/1	TP)(mg/l)	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)			
(m) (ug/1) (ug/1) (mg/1) (mg/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)(ug/1)		<u>-</u>			4.12 2.49	3.30 1.30	0.82 1.19	0.90 0.70	0.07 0.06	0.050 0.030	0.70 1.10	0.50 0.40						
				n-Hexan (mg/l)	CN (mg/l)	Phenol	(ug/1)	Pb (ug/1)	Cu (ug/1)	Cr (ug/1)	Hg (ug/l	Fe)(ug/l)	Ni (ug/l)					
				-	-	-	_			-	<u>-</u> -	- -	- -	-	:			

									· · · · · · · · · · · · · · · · · · ·								
Depth (m)	BOD (mg/l)	COD(Hn) (mg/l)	DCOD(Mn (mg/l)) TN (mg/l	T-0N (mg/l)	T-IX (mg/l	D-0X (ng/l	NO3-N)(mg/l	NO2-H)(mg/l)	NH4-N (mg/1)	TP)(mg/l)	T-OP (mg/1)	D-OP (mg/l)	PO4-P (mg/l)			F-Coli 100ml)
0.0 2.5 4.0	-	8.6 2.8 1.6	5.0 2.8 1.6			0.24		0.03	0.020 0.010 0.009	0.20	0.10	0.33 0.07 0.05	0.04 0.07 0.01	0.02 0.03 0.05	24 10 6	500 1300 1300	300 800 500
Depth (m)	Chl-a (ug/l)	Pheo (ug/1)	n-Hexan (mg/l)	CN (mg/l	Phenol)(mg/l)	Cd (ug/l	Pb)(u g/ l	Cu)(ug/1	Cr)(ug/1)		Fe)(ug/l)	Ni (ug/l)	Zn (ug/l)				
0.0 2.5 4.0	110.93 17.37	68.70 12.56	<u>-</u>	~	-	- - -	-	- - -	- - -	-		- - -	- -				
Table	APP 2.:	3-6(14)		Resul	ts of S	šea Wa	ter An	alysis	at St.	15			Nov. 10	, 1992,	, High	ı Tide	(St.15)
Depth (m)		COD(Mn) (mg/l)	DCOD(Mn (mg/l)) TN (mg/l	T-0X)(mg/1)	T-IN (mg/l	D-0N (ng/1	NO3-N)(mg/l	NO2-N)(mg/1)	NH4-N (mg/1	TP)(mg/l)	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)			F-Coli /100ml)
0.0 3.0 7.0	-	8.0 1.6 0.6	4.0 0.2 0.0	-	-	0.01 0.23 0.24	-	0.02	0.004 0.010 0.009	0.20	0.07	0.14 0.06 0.04	0.01	0.01 0.01 0.05	14 6 10	500 230 300	70 80 230
Depth (m)	Chl-a (ug/l)	Pheo (ug/l)	n-Hexan (mg/l)	CN (mg/l	Pheno)(mg/l	l Cd)(ug/l	Pb)(ug/l	Cu)(ug/l	Cr)(ug/l)	Hg (ug/l	Fe)(ug/l)	Ni)(ug/l)	Zn (ug/l)	-			
0.0 3.0 7.0		22.99 10.90	-	-		-	-	-	<u>-</u> -	<u>-</u>	-	-	- - -	:	-	ar r	
Table	APP 2.	3-6(15)		Resul	ts of S	šea Wa	ter An	alysis	at St.	16	:		Nov. 10	, 1992,	High	ı Tide	(St.16)
Depth (m)		COD(Mn) (mg/l)	DCOD(Hin (mg/l)									T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)			F-Coli 100ml)
0.0 4.0	_	6.8 6.8	5.8 1.8						0.003 0.010				0.03 0.02	0.01 0.01	12 6	500 800	80 500
	Chl-a (ug/l)		n-Hexan (mg/l)		Phenol (mg/l)		Pb)(ug/l	Cu)(ug/1	Cr)(ug/l)	Hg (ug/1)	Fe)(ug/1)	Ni (ug/l)	Zn (ug/1)				
0.0	62.37 9.35	8.73 <0.01	-	-	-	-	_	-	-	-	-	-	-				
Table /	APP 2.3	3-6(16)		Result	is of S	ea Wat	ter Ana	alysis	at St.	17			Nov. 10	, 1992,	High	Tide	(St.17)
Depth (m)	BOD (mg/l)		DCOD(Mn) (mg/l)						NO2-N (mg/1)		TP (mg/l)	T-OP (mg/l)	D-OP (mg/l)				F-Coli 100ml)
0.0 4.0	-	6.2 1.8	3.6 1.4						0.003 0.005			0.19 0.06	0.02 0.01	0.01 0.02	18 9	800 220	110 110
	Chl-a (ug/l)		n-Hexan (mg/l)		Phenol (mg/1)		Pb (ug/1)	Cu (ug/l)	Cr (ug/l)	Hg (ug/1)	Fe (ug/l)	Ni (ug/l)	Zn (ug/l)				· · · · · · · · · · · · · · · · · · ·
0.0 4.0		13.50 11.23	-			*	-	_	-	-	-	-	-				
	-					~~~											

Table	APP	2.3-	-6(17))

											· · · · · · · · · · · · · · · · · · ·		NOV. 1	J, 1992	, Hig	gh Tide	(St. 18)
Depth (m)	BOD (mg/l)	COD(Mn) (mg/l)	DCOD(Mn) (mg/l)) IN (mg/l	T-0N)(mg/1)	T-IN (mg/l	D-ON (mg/1	N-80N 1\8m)(NO2-N)(mg/l)	NH4-N (mg/1	1P)(mg/l	T-OP (mg/l)	D-OP (mg/l)	PO4-P (mg/l)	SS (mg/l)	T-Coli (MPN,	F-Coli 100ml)
0.0 3.0	-	5.8 2.2	3.6 2.2						0.001 0.008				0.03 0.06	0.01 0.04	26 16	170 1700	50 110
	Chl-a (ug/l)		n-Hexan (mg/l)		Phenol (mg/l)		Pb (ug/1)	Cu (ug/1)	Cr)(ug/l)	Hg (ug/l)	Fe (ug/l)	Ni (ug/1)	Zn (ug/l)				
0.0 3.0		69.36 12.16	-		-	-		•	-	· -			<u>-</u>	• ,	·		

Table APP 2.3-8 TN

TN and TON in the Surface Layer

		May(L)		ŀ	fay(H)				June(L)			June(H)	
st.	TN	TON	(%)	TN	TON	(%)	St.	TN	TON	(%)	TN	TON	(%)
3	1.58	1.23	78	0.37	0.28	76	3	0.92	0.70	76	0.69	0.51	74
6	0.83	0.63	76	1.24	0.96	77	4	4.11	3.79	92	_	-	_
8	2.64	1.17	44	-	_		6	1.17	0.97	83	0.68	0.45	66
9	1.85	0.71	38	2.00	1.42	71	8	4.11	3.91	95	1.68	1.20	71
11	1.31	0.97	74	0.80	0.54	68	9	1.19	0.50	42	2.32	1.45	63
13	3.01	1.05	35	2.97	1.63	55	11	1.10	0.91	83	0.81	0.56	69
14	2.23	1.76	79	1.23	1.18	96	13	2.48	1.60	65	2.25	0.70	31
16	1.18	0.80	68	0.91	0.89	98	14	1.05	0.90	86	1.84	1.10	60
17	1.31	1.08	82	0.94	0.91	97	16	0.83	0.74	89	0.63	0.50	79
18	2.28	1.98	87	0.83	0.79	95	17	0.61	0.56	92	0.52	0.48	92
mean			: 66		•	81	18	1.02	0.96	94	1.05	0.80	76
				······································			mean			90			68

		Nov(L)		. ,	Nov(H)	
St.	TN	TON	(%)	TN	TON	(%)
3	1.49	1.30	87	-	-	
6	1.26	1.14	90	0.64	0.52	81
8	2.68	1.60	60	2.09	1.50	72
9	2.89	2.15	74	1.90	1.50	79
11	1.31	1.05	80	1.85	1.76	95
13	2.65	1.10	42	4.12	3.30	80
14	1.67	1.40	84	2.84	2.71	95
16	0.71	0.58	82	0.86	0.85	99
17	1.41	1.30	92	0.81	0.78	96
18	4.02	3.50	87	1.41	1.38	98
mean			69			88

800 Concentration obtained from Correlation with COD(Mn) of the Second Simultaneous Survey (Low Tide) 809=(CDC)(Mn)-0.9869)/0.2992	June 8 (Survey-2) Low Tide	St. 10 Depth(m) COD(Ym) NON(mg/1) Dil 4.2 0.1 4.2 23.0 1.0 - 0.0	St. 11 Depth(a) COD(th) EGD(mg/1) Capsured)(calculated) 0.1 2.8 4.5 2.3 3.2 5.5	5t, 12 Depth(m) COS(Nn) BOS(mg/1) BOS(cg/1) 0.1 1.0 0.0 5.0 1.4 - 1.0 15.0 0.6 - 1.0	St. 13 Bepth(a) COO(Ns) BOO(ns(1) Concentral (nscarred) (calculated) 0.1 8.0 1.0 8.0 1.1 8.0 17.6	St. 14 Bopth(a) CD0(Nt) BOD(ag/1) BOD(ag/1) 0.1 6.2 2.5 3.2 - 5.5 5.0 3.6 - 6.5	St. 15 Depin(m) COD(/fm) ECO(mg/1) ECO(mg/1) (m. 2.2 consured)(caliculator) 0.1 2.2 3.0 S.0 1.4 1.0 7.0 1.0 0.0	51. 18 Depth(m) COO(Hrt) BOO(mg/1) BOO(mg/1) (measured)(calculated) 0.1 2.2 measured)(calculated) 3.0 3.5 1.4 1.0	St. 17 Depth(m) CDD(4m) BDD(as/1) BDD(as/1) 0.1 4.2 8.1 4.0 3.9 - 7.3	51. 18 Depth(s) COD(th) 900(mg/1) 800(mg/1) (pg.surred)(calculated) 0.1 9.4 3.2 4.0 7.5
Table APP 2.3-7(3) BOD Concentration obtained from of the Second Sizultaneous Survey BOD=(COD/th)-0.9968)/0.3982	June 8 (Survey-2) Low Tide	St. 1 Popth(m) CDN(fm) BON(mg/!) BON(mg/!) 0.1 6.1 5.0 25.0 45.0	St. 2 Oppth(n) C00(ftn) 800(eag/1) 8000(eag/1) (0.1 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	St. 3 Depth(e) CDD(hm.) BOD(mg/l) BOD(mg/l) 0.1 1.6	St. 4 Depth(m) CON(m) BOX(mg/1) BOX(mg/1) (meximod)(colimitated) 0.1 5.8 1.0 1.0 7.0 1.4 - 0.0 7.0 1.0 - 0.5	St. 5 Depth(a) COD(Mn) BOD(cay/1) BOD(cay/1) 0.1 4.0 (measured)(calculated) 5.0 6.9 - 0.5 10.0 0.8 - 1.0 34.0 0.8 - 1.5	St. 6 Depth(m) COD(tm) BOD(ag/1) BOD(ag/1) 0.1 3.4 BOD(ag/1) 5.0 1.0 - 0.0 10.0 0.80.5 21.0 1.20.5	St. 7 Depth(n) COD(frn) POD(mg/1) BOD(mg/1) (messured)(calculated) 0.1 2.2 3.0 1.0 5.0 1.0 0.0	St. 8 Depth(m) COS(fm, BOO(mg/1) BOO(mg/1) 0.1 4.4 - 8.6 2.0 2.4 - 3.5 6.0 1.8 - 2.0	St. 9 Depth(m) COD(Ms) BOD(mg/1) BOD(mg/1) 0.1 1.8 5.0 1.2 0.5
800 Concentration obtained from Correlation with COD(fm), of the First Simultaneous Survey (High Tide) 8000-(CCD(fm)-0.5888)/0.3892	May 18 (Survey-1) High Tide	Sk. 10	St. 11 Depth(a) COO(th) BOO(mg/l) BOO(mg/l) (meschured)(calculated) 0.1 1.8 2.0	St. 12 Depth(a) CDD(fth) 900(mg/1) BDD(mg/1) (intercholocalculated) 0.1 2.5 5.0 1.4 18.0 1.2 0.5	St. 13 Depth(m) COO(fm) BOO(mg/l) BOO(mg/l) 0.1 4.0 (m?Asured)(calculated) 0.1 4.0 7.5 1.0 3.6 8.5	Si. 14 Depth(m) CDD(fr) BDD(mg/l) BCD(mg/l) (mexcured)(calculated) 0.1 3.6 6.5 3.0 1.8 - 2.0 4.0 1.4 - 1.0	St. 15 Depth(a) COO(fm) SOO(mg/1) SOO(mg/1) 0,1 2.2 - 3.0 3.0 1.8 - 1.5 6.5 0.90.2	St. 18 Depth(m) COD(tm) BOD(mg/1) Depth(m) COD(tm) BOD(mg/1) 0.1 3.4 (measured)(calculated) 0.3 2.0 6.0	St. 17 Depth(m) COD(fm) SCD(mg/1) BOO(mg/1) 0.1 (measured)(catculated) 0.1 1.8 2.0 4.5 1.4 1.0	St. 18 Depth(m) COG(fts) SOU(mg/1) O.1 3.0 0.1 3.0 3.5 1.8 - 2.0
Table AP 2.37(2) 800 Concentration obtained from of the First Stanlaneous Survey 800+(CDK)+0.5965)/0.3922	May 18 (Survey-1) High Tide	St. 1 Depth(a) COO(fm.) BOO(ag/1) ROO(ag/1) 0.1 5.0 55.0 55.0 51.0	St. 2 Depth(s) 000(th) E00(seg/1) 800(seg/1) 0.1 0.4 5.0 0.2 -1.5 70.0 0.4 -1.5	St. 3 Depth(a) COD(FH) BOD(ag/1) BOD(ag/1) 0.1 0.81.0 5.0 0.41.5 5.0 0.41.5	91. 4 Problem CD0(th) BO0(az/1) BO0(az/1) 0.1 1.4 7.0 1.4 7.5 1.2 0.5	St. 5 Depth(a) COD(Ma) BOD(ag/1) BOD(ag/1) 0.1 1.0 Restored)(calculated) 5.0 0.6 - 1.0 10.0 0.6 - 1.0 34.0 0.6 - 1.0	St. 6 Depth(a) COD(fm) BOD(ag/1) BOD(ag/1) 0.1 1.2 moneured)(calculated) 0.1 1.0 0.5 5.0 1.0 0.0 21.0 1.0 0.0	St. 7 Perth(a) CD0(hh) BC0(cqc/1): BC0(cqc/1) (accessured)(calculated) 6.1 1.6 3.0 1.8 1.5 5.5 1.2 - 0.5	St. 8 Pepth(a) COO(Ph) 800(reg/1) 800(reg/1) 0.1 2.8 4.5 2.0 2.4 4.5 3.5 8.5 1.6 - 1.5	St. 9 Dectifical COD(No.) 800(eq/1) (exasured)(calculated) 6.1 2.6 4.0 1.2 6.5
BOD Concentration obtained from Correlation with COO(ts) of the First Similtaneous Survey (Low Tide) sometimes and assets on many	May 18 (Survey-1) Low Tide		St. 11 Depth(a) COD(fm) SOD(reg/1) BOD(reg/1) 0.1 2.7 (resaured)(calculated) 2.3 2.3 1.8 3.3	St. 12 Depth(m) COD(thn) BOD(cm2/1) BOD(cm2/1) (nonpured)(calculated) (1, 2.7 5.0 2.5 15.4 1.2 0.5	St. 13 Pepth(a) COO(th) EGO(ag/1) BOO(eg/1) (necounts/cationisted) 0.1 4.1 7.8 1.5 3.7 7.0 6.8	St. 14 Depth(a) COO(In) 900(mg/1) B00(mg/1) 0.1 4.2 7.0 3.0 2.6 5.0 1.5 3.4 1.5	St. 16 Depth(a) COD(Hn) BOD(mg/1) BOD(mg/1) 0.1 3.0 (merabured)(calculated) 3.0 2.4 3.5 6.5 1.5 - 1.3	St. 16 Depth(m) COB(Hn) EGD(mg/1) BGD(mg/1) (mondured)(calculated) 5.0 5.0 5.0 3.3 1.7 3.0 1.8	St. 17 Depth(s) COC(4n) ROD(sag/1) BOD(sag/1) 0.1 2.4 (seconds)(calculated) 4.5 1.8 1.8 2.0	St. 18 Depth(a) CDD(fm.) BOD(mg/1) Depth(a) CDD(fm.) (seasured)(calculated) 0.1 4.5 8.0 3.5 2.1 2.6 2.8
Table APP 2.3-7(1) 800 Concentration obtained from a of the First Stationeous Survey of the Prins Stationeous Survey recognities, or desired monor	New 12 (Surune-1) Low Tide	28.1 1 200(eg/1) 300(eg/1)	St. 2 Depth(s) COD(fm) BCD(sz/1) BCD(sz/1) 0.1 5.0 17.3	St. 3 Depth(a) COO(fm) BOO(ss/1) BOO(ss/1) Depth(a) 1.8 2.8 2.0 S.0 1.0 2.0 S.0 1.1 <2.0 S.0 0.0	St. 4 De-pth(n) COO(ten) BOO(eq/1) BOO(eq/1) 0.1 2.2 3.0 1.6 7.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	000(th) 800(eg/1) 800(e (seasoned)(celeal) 500(ft) 500(mg/1) 500(mg (sensured)(calcula 2.1 4.2 1.7 - 1.5 - 1.0 1.2 (St. 7 Depth(a) COB(fth) ROD(eg/1) BOD(eg/1) 0.1 3.0 3.0 5.0	8	COD(Nt) BOD(mg/1) BOD(mg (measured)(calculo 3.7 4.0 2.3 1.2

BOD Concentration obtained from Correlation with COD(fm) of the Third Simultaneous Survey (High Tide) BOD=(COD(fm)-2,4047)/0.3569	Nov. 10 Survey-3 High Tide	St. 10 Depth(m) CDD(fth) BCD(eg/1) BCD(eg/1) 0.1 3.2 2 2 5 5.0 1.8 -2.2 2.1.5 0.6	St. 11 Deputi(a) COO(Hn) BOD(ea/1) 800(ea/1) (eachstred) (calculard) 0.1 8.8 2.3 3.0	51, 12 Depth(a) COB(thn) BOD(my/1) BOD(my/1) (consumed) (calculated) 0.1 3.4 5.0 2.0 -1.1 14.0 1.6	St. 13 Depth(a) COO(4n) 300(ag/1) 800(ag/1) Depth(a) (accented) (calculater) 0.1 10.4 1.5 5.0 - 7.3	St. 14 Depth(m) COD(fm) BOD(mg/1) BOD(mg/1) 0.1 B.8 17.4 2.5 2.8 1.1 4.0 1.8 2.2	St. 15 Depth(e) 000(ft) 800(ag/1) 800(ag/1) 0.1 8.0 mossured) (calculated) 3.0 1.8 - 2.2 7.0 0.8 - 5.1	St. 16 Depth(m) CDD(th) ROD(ng/1) 300(ng/1) (criticalisteri) 0.1 6.8 4.0 6.8 12.3	St. 17 Depth(m) CDB(rm) ECD(mg/1) ECD(cg/1) (measured) (calculated) (0.1 6.2 - 10.5 4.0 1.81.7	St. 18 Depth(m) COG(rm) ECG(reg/1) ECG(reg/1) O.1 5.8 3.0 2.2 -0.6
Tobje APP 2.3-7(6) BOD Concentration colutined from (of the Third Simultaneous Survey BOD=(COD(An)-2,4047)/0.3669	Nov. 10 Survey-3 High Tide	\$1. 1 \$-prik(m) COB(Ns) BOD(mg/1) BOD(mg/1) 0.1 (amounted)(calculated) 5.0	St., 2 porthic COR(Mn) ROD(mg/1) BOD(mg/1) 0.1 1.4 -2.8 5.0 1.0 -3.9 19.9 0.8 -4.5	\$1, 3 Pryth(m) C00(Hn) B00(mg/1) B00(mg/1) 0,1 2,4 coursed)(calculated) 5,0 1.4 - 2.8 45.0 1.0 - 3.3	St. 4 Derth(m) CD0(Ph) BD0(reg/1) BDb(reg/1) 0.1 3.0 (messared)(cstoulated) 2.0 2.01.1 7.0 1.62.2 11.5 1.23.4	St. 5 Depth(m) Cm(th.) BOD(cag/1) BOD(cag/1) 0.1 2.4 5.0 2.0 -1.1 10.0 1.8 -1.7 33.5 1.0 -3.9	St. 6 Depth(m) COO(va) 200(va/1) 800(va/1) 0.1 3.0 (messured)(calculated) 5.0 2.6 13.0 13.0 1.8 - 1.7 17.5 2.6 - 0.6	St. 7 Derth(n) COR(fm) BON(mg/1) BOR(mg/1) 0.1 5.8 General/Calculated) 3.0 3.4 2.20.8	St. 8 Depth(m) COB(rtn) BOD(reg/1) BOD(reg/1) (no.1 4.4 2.0 4.8 6.7 7.5 2.2 -0.6	St. 3 Depth(m) COD(thn) EOD(moC/1) 800(cms/1)- 0.1 4.4 (accsured)(calculators) 0.1 4.4 5.8 0.1 1.1
800 Concentration cotained from Correlation with COD(Mn) of the Third Similtaneous Survey (Low Tide) 800=(COD(Mn)-2, 4047)/0.3568	How. 10 Survey-3 Low Tide	St., 10 Depth(m) COD(Var) Br0(mg/1) BOD(mg/1) 0.1 8.6 5.0 1.8 -1.7 22.0 0.4 -5.6	St. 11 Depth(m) DOB(fm) BOB(mg/1) BOB(mg/1) (maximred) (calculated) 0.1 7.2 5.2 13.4 1.6 1.6 3.2 -2.2	St. 12 Septan(m) COO(thn) ROO(mg/1) ROO(mg/1) 0.1 S.6	St., 13 Depth(w) COO(ten) BOO(teg/1) BOO(teg/1) (0.1 3.6 (teocurus) (calculators) (1.5 3.0 4.0 1.7 St. 14	Depth(m) COG(ftn) BOS(mg/1) BOD(mg/1) 0.1 4.4 4.8 5.6 3.0 4.0 5.2 4.5 St. 15 Scpth(m) BOD(mg/1) BOD(mg/1)	(monsured) 306(mg/l) (measured)		5.2 4.4 5.2 6.4 i) COD(ten) BOD(mg/1) BOD (massured) (calca) 11.0 18.0 i 3.8 4.4	St. 19 Depth(s) C00(fm) B00(ag/1) B00(ag/1) 0.1 7.2 (reasured) (calculated) 0.1 7.2 4.4 5.6 8.5 3.4 - 2.8
Thble APP 2.3-7,5) 800 Concentration obtained from of the Third Stantlaneous Survey 800-(COO(th)-2,4047)/0.3669	Rov. 10 Survey-3 Low Tide	St. 1 Depth(n) CD8(thn) BOD(cag/1) BCD(cag/1) 0.1 0.8 (moneured)(calculated) 5.0 0.85.1 25.0 0.84.5 25.0 0.66.1	St. 2 D-rebid, 100(hm) 800(ag/1) B00(ag/1) 0.1 1.0	5t. 3 Dryth(m) CGR(Hn) 800(mg/1), 800(mg/1) 0.1 3.8 4.0 3.9 5.0 1.8 -1.7 47.0 1.4 <2.0 -2.8	51. 4 P-pth(m) CDD(he) BDN(mg/1) BCD(mg/1) 0.1 4.2 (measured)(cntollated) 3.0 2.0 -1.1 7.0 1.8 -1.7 11.0 3.2 -2.2	St. 5 Depth(m) COD(th) BOD(mg/l) ROD(mg/l) 0.1 3.4 - 2.8 5.6 1.4 - 2.8 10.0 1.4 - 2.8 37.8 1.2 - 2.9	St. 6 Depth(n) COD(Hz) SOD(ng/1) SOD(ng/1) 0.1 6.6 (nearured)(coloulated) 5.0 3.0 1.7 10.0 2.2 - 0.6 18.5 1.2 - 0.6	St. 7 Depth(a) CON(4ts) BOD(ag/1) BCD(ag/1) 0.1 6.2 3.0 3.8 5.0 2.8 6.0 2.8 0.5	St. 8 D-rit(n) CDD(rtn) POB(reg/1) BOD(reg/1) (n-routed)(calculated) 0.1 5.8 10.0 2.8 2.0 3.4 2.8 8.0 2.0 2.4 -1.1	St. 9 Perih(m) TOO(Hn) BOO(mg/l) On 12.0 Carbonied) 0.1 4.0 12.0 2.5 3.2 4.8 2.2
800 Concentration obtained from Correlation with COD(fm) of the Second Simultaneous Survey (High Tide) 800-(COD(fm)-0.5886)/0.2892	June B (Survey-2) High Tide	St. 10 Depth(m) COU(ful) ROM(mg/1) ROD(mg/1) 0.1 1.8 (montained) 5.0 1.0 5.0 5.0 23.0 0.61.0	St. 11 Deptition COD(frn) BOD(ng/1) BOD(ng/1) 0.1 2.8 measured)(calculated) 0.1 2.8 2.2 3.0	St. 12 Depth(a) COD(Yn) SOD(mg/1) SOD(mg/1) (newsured)(calculated) 0.1 1.6 5.0 1.2 0.5 18.0 0.6 -1.0	St. 13 - Depth(m) C00(th) B00(mg/l) S00(mg/l) 0.1 7.2 (mn3*ured)(calculated) 1.5 6.8 - 14.6	St. 14 Depti(n) COU(hn) BOD(ng/1) BOD(ng/1) 0.1 6.4 13.6 2.5 4.0 - 7.5 5.0 2.6 - 4.0	St. 15 Depth(m) COD(th) 800(ag/1) BOD(ag/1) 0.1 1.8 (maximod)(calculated) 3.0 2.0 7.0 1.2 - 2.5	St. 16 Depth(a) COD(Mn) BOO(ng/1) BOO(ng/1) Do.1 1.8 3.5 1.6 1.5	St. 17 Deruk(a) COD(vn.) ROD(mg/1) 0.1 2.6 5.0 3.6 7.0	St. 18 Septical COD(tex) 8:00(ez/1) Copical (existence) (copical steel) 0.1 6.8 4.0 3.8 7.0
Table APP 2.3 7(4) 800 Concentration of the Second Simil BOD:(COD(hs)-o	June 8 (Survey-2) High Tide	St. 1 D-phh(a) (100(th)) BOD(tag/1) BOD(tag/1) 0.1 1.0 5.0 0.6 - 1.0 25.0 0.4 - 1.5 49.0 0.6 - 1.5	St. 2 Poptil(n) C00(fm) B00(ng/1) B00(ng/1) 0.1 0.6 (measured)(calculated) 5.0 0.81.0 19.0 0.41.5	51. 3 Protitin) COO(fm.) ROD(eg/1) BOO(eg/1) 0.1 0.6 (mcnsured)(calculated) 5.0 0.8 0.5 32.0 0.4 1.5	81. 4 P-yth(a) COR(Na), BOD(ag/1), BOD(ag/1), Control)(calculated) 0.1 1.0 0.80.5 7.0 0.6 - 1.0 11.0 0.4 - 1.5	51, 5 Pr 1h(a) CTE(4t,) 800(ag/1) 800(ag/1) 0.1 1.2 (arisured)(calculated) 5.0 0.80.5 10.0 0.8 - 0.5	9.1. 6 (mcscured) BOD(mg/1) BOD(mg/1) (mcscured) (calculated) (1 1.5 5.0 0.8 - 0.5 10.0 0.6 - 1.0 5.1 0.1 0.5 1.2 - 0.5	St. 7 Prich(m) Cruc(hh) BCD(mg/l) RDD(mg/l) 0.1 2.2 (measured)(calculated) 3.0 2.8 4.5 7.0 0.8 -0.5	51.8 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	St. 9 (mp/s) ROD(cg/l) Prth(n) (mpsgred)(calculated) 0.1 2.8 4.5 5.0 1.4 - 1.0

Table APP 2.4-1(1) Water Quality obtained from Small Bays and Coastal Areas

Date: April 1, 1993 Station: 33 (Botafogo)

Location:

Time: 09:20-10:00

22°56' 46.0' S Air temperature:

43°10'44.8' W 25.61 °C(09:05) Clear, and rain at night

Weather on the previous day: Weather on the day:

Wind force: Secchi-disk reading: Water depth: Water color:

Clear 3-4 m/s 1.6 m 2.5 m Dark brown

Garbage: Oil:

Yes Yes

Depth (m)	Temp.	płł	(mg/l)	00 (%)	Salinity (%)	Signa-t
0.0	26.63		4.7	57	29.12	17.88
0.5	26.65	-	4.7	57	29.28	17.99
1.0	26.65	-	4.6	56	30.93	19.22
1.5	26.66	· _	4.6	56	30.95	19.23
1.8	26.45		4.0	49	31.19	19.50
2.0	26.49	· <u>-</u>	3.0	37	31.18	19.47
2.3	26.51	_	2.5	29	31.77	19.91

April 1, 1993

Depth (m)				NO3-N	NH4-N			F-Coli 100ml)		
	4.6 1.6							 8000 5000	6.68 2.67	

Table APP 2.4-1(2) Water Quality obtained from Small Bays and Coastal Areas

April 1, 1993 Time: 10:15-10:30 Date: Station:

Location:

34 (Botafogo)

22°56'22.3' \$ 43°09'35.1' W 25.85 °C(10:20)

Air temperature: Weather on the previous day:

Clear, and rain at night Clear

Weather on the day: Wind force:

3-4 m/s 0.5 m 7.1 m

Secchi-disk reading: Water depth: Water color:

Garbage:

Oil:

Dark brown Кo Yes

(°C) 27.76 27.00		(mg/1) 9.3	(%) 116	(%)	
27.00	-	9.3	110	00.45	
			110	30.47	18.43
	-	8.0	101	30.56	18.80
26.79	-	6.9	83	30.73	19.02
26.68	-	5.6	68	30.98	19.25
26.62	-	5.3	64	31.31	19.52
26.42	-	4.6	57	31.06	19.41
26.52	-	4.5	56	32.61	20,53
26,46	-	4.6	56	32.66	20.59
26.17	-	4.2	49	33.02	20.98
26.14	-	3.6	46	33.05	21.01
	26.68 26.62 26.42 26.52 26.46 26.17	26.68 - 26.62 - 26.42 - 26.52 - 26.46 - 26.17 -	26.68 - 5.6 26.62 - 5.3 26.42 - 4.6 26.52 - 4.5 26.46 - 4.6 26.17 - 4.2	26.68 - 5.6 68 26.62 - 5.3 64 26.42 - 4.6 57 26.52 - 4.5 56 26.46 - 4.6 56 26.17 - 4.2 49	26.68 - 5.6 68 30.98 26.62 - 5.3 64 31.31 26.42 - 4.6 57 31.06 26.52 - 4.5 56 32.61 26.46 - 4.6 56 32.66 26.17 - 4.2 49 33.02

April 1, 1993

T-0P P04-P Depth BQD_COD(Mn) TOC TN T-0N T-1N NO3-N NO2-N NH4-N TP SS T-Coli F-Coli Chl-a Pheo (mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l) (mg/l) (MPN/100ml) (ug/l)(ug/l) (m) 0.0 1.06 0.98 0.07 0.05 0.004 0.02 0.10 29.40 17.37 4.0 4.0 2h0.07 0.0310 23000 13000 $0.33 \ 0.26 \ 0.08 \ 0.03 \ 0.005 \ 0.04 \ 0.06$ 6.0 <2.0 1.6 23 0.04 0.0310 8000 5000 16.04 3.61

Table APP 2.4-1(3) Water Quality obtained from Small Bays and Coastal Areas

011:

April 1, 1993 Time: 11:00-11:20 Date: Station: 35 (Jurujuba) 22°54′59.8′ S Location: 43°07'31.3' W 25.85 °C(10:20) Air temperature: Clear, and rain at night Weather on the previous day: Weather on the day: Clear 2-3 m/s Wind force: Secchi-disk reading: 1.0 m Water depth: 7.8 m Water color: Dark brown No Garbage:

Depth (m)	Temp. (°C)	pH	[(mg/l)	(X)	Salinity (%)	Sigma-t
0.0	27.52		7.7	95	29.54	17.83
0.5	27.43	_	7.7	94	29.56	17.88
1.0	26.77		7.8	98	29.74	18.28
1.5	26.65	-	7.0	93	30.12	18.62
2.0	26,59	-	4.9	57	30.73	19.10
3.0	26,41	_	4.5	57	32.17	20.25
4.0	26.21	_	4.5	55	33.05	20.98
5.0	26.27	-	4.7	56	33.06	20.97
6.0	26.31	-	4.7	56	33.26	21.10
7.0	26.28	-	4.6	56	33.34	21.17
7.5	26.28	-	4.6	55	33.34	21.17

Yes

April 1, 1993

T-ON T-IN NO3-N NO2-N NH4-N TP T-OP BOD COD(Mn) TOC TN P04-P SS T-Coli F-Coli Chl-a Depth (mg/1)(mg/1) (mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1) (mg/1)(mg/1) (mg/1)(m) (HPN/100ml) (ug/l) (ug/l) 0.0 2.0 0.63 0.59 0.04 0.03 0.002 0.01 0.10 0.090.01 30000 23000 21.38 16.04 4.2 14 0.19 0.12 0.07 0.04 0.003 0.03 0.06 6.0 4.0 1.0 8 0.030.03 16 8000 5000 5.35 5.88

Table APP 2.4-1(4) Water Quality obtained from Small Bays and Coastal Areas

April 1, 1993 Time: 11:30-11:50 Station: 36 (Jurujuba)

22°55'04.6' S Location:

43°06'38.8' W 25.85 °C(10:20) Air temperature:

Weather on the previous day: Clear, and rain at night Clear

Weather on the day: Wind force: 2-3 m/s Secchi-disk reading: 0.6 m 6.6 m Water depth: Water color: Dark brown

No Garbage: Yes

Oil:

Depth (m)	Temp. (°C)	pH	(mg/l)	DO (%)	Salinity (%)	Sigma-t
0.0	28.35	**	11.0	142	28,91	17.02
0.5	28.27		11.2	140	28.96	17.09
1.0	27.12		6.7	83	30.24	18.52
1.5	26.69	~	5.0	60	31.10	19.33
2.0	26.61		5.1	62	31.38	19.57
2.5	26,48	_	5.0	60	31.66	19.84
3.0	26.51	_	4.5	59	31.66	19.82
4.0	25.49	_	4.3	53	32.05	20.52
5.0	25.93		0.8	5	32.89	20.98

April 1, 1993

SS T-Coli F-Coli Chl-a P04-P TH T-ON T-IN NO3-N NO2-N NH4-N TP T-OP 800 COD(Mn) TOC Depth (mg/1)(mg/1) (mg/1)(mg/1)(mg/1)(mg/1)(mg/1) (mg/1)(mg/1) (mg/1) ug/1) (ug/1) (m) 50000 30000 41,43 28.73 0.04 15 0.002 0.04 0.20 0.16 1.22 1.16 0.06 0.02 0.0 10.4 7.6 23000 21.00 17.76 0.17 0.10 0.07 0.02 0.002 0.05 0.07 0.05 10 23000 0.02 6.0 4.0 0.4 7

Table APP 2.4-1(5) Water Quality obtained from Small Bays and Coastal Areas

Date:

April 1, 1993 37 (Jurujuba)

Time: 12:00-12:15

Station: Location:

22°55'07.1' \$ 43°05'54.5' W

25.95 °C(12:00)

Air temperature: Weather on the previous day:

Clear, and rain at night

Weather on the day: Wind force:

Clear 2-3 m/s 0.25 m

Secchi-disk reading: Water depth: Water color:

3.9 m Dark brown

Garba 0il:

No

No

ge:		

Depth	Temp.	₽Ĥ		DO	Salinity	Sigma-t
(m)	(°C)		(mg/l)	(%)	(%)	
0.0	20.09	_	16.7	211	29.20	20.35
0.5	27.86	·	16.9	216	29,29	17.51
1.0	27.00	-	16.0	202	30.47	18.74
1.5	26.79		10.4	175	30.51	18.85
2.0	26.71	_	5.5	66	30.70	19.02
3.0	26.89	-	3.7	46	31.16	19.30
3.5	26.76	-	2.6	21	31.58	19.66

April 1, 1993

BOD COD(Mn (mg/l)(mg/l)							
2.4 11.0 12.0 0.4							

Table APP 2.4-1(6) Water Quality obtained from Small Bays and Coastal Areas

Date:

April 1, 1993

Time: 12:20-12:35

Station: Location: 38 (Jurujuba)

22°55' 48.1' S 43°06' 18.5' W 25.95 °C(12:00)

Air temperature:

Weather on the previous day:

Clear, and rain at night

Weather on the day:

Clear 3-4 m/s

Wind force:

0.6 m

Secchi-disk reading: Water depth:

3.5 m

Water color:

Dark brown

Garbage: 0il:

Yes Yes

Depth	Temp.	рH	DO	Salinity	Sigma-t
(m)	(°C) .		(mg/l) (%)	· (%)	
0.0	27.96	-	12.5 156	28.14	16.61
0.5	27.95	-	11.7 143	28.14	16.61
1.0	27.88	-	11.8 152	28.16	16.66
1.5	27.34	-	12.6 155	28.82	17.37
2.0	27.34	_	8.1 145	30.67	18.75
2.5	27.13	·	3.0 41	31.72	19,62
3.0	27.36		5.2 61	31.27	19.19

April 1, 1993

Depth	80D	COD(Mn)	TOC	TN	T-ON	T-IN	1\03-H	NO2-N	HH4-H	TP	T-0P	PO4-P	SS	T-Coli	F-Coli	Chl-a	Pheo
(m)	(mg/1)	(mg/1)	(mg/1)(mg/l)	(mg/1)	(ng/l)	(mg/l)(mg/l)	(mg/1	(mg/l	(mg/1)	(mg/l)	(mg/1)	(MPN/	100ml)	(ug/l)	(ug/l)
							-	0.002 0.020						3000 8000		30.29 17.82	

Table APP 2.4-1(7) Water Quality obtained from Small Bays and Coastai Areas

Date: April 1, 1993 Time: 13:30-13:45

Station: 39 (Centro de I. Engenho)

Location: 22°51′27.5′ S

43°06' 40.9' W 26.86 °C(13:35)

Air temperature: 26.86 °C(13:35)
Weather on the previous day: Clear, and rain at night

Weather on the day: Wind force:

Secchi-disk reaing:

Clear 3-4 m/s 0.4 m 4.6 m Dark brown

Water depth: Water color: Garbage: Oil:

No No

Depth (m)	Temp. (°C)	pΗ	(mg/l)	00 (%)	Salinity (%)	Signa-t
0.0	28.95	4-	11.3	146	21.65	11.39
0.5	28.92		11.5	146	21.69	11.43
1.0	28.76	-	11.6	147	21.89	11.64
1.5	27.55	_	9.4	126	25.35	14.70
2.0	27.04		8.8	105	25.85	15.27
2.5	26.69		7.5	94	26.44	15.85
3.0	26.39	_	6.0	73	27.44	16.72
3.5	26.29	-	5.1	62	27.72	16.96
4.0	25.88	-	2.4	34	30.47	19.18

April 1, 1993

BOD COD(Mn) TOC TN T-ON T-IN NO3-N NO2-N NH4-N TP T-OP PO4-P SS T-Coli F-Coli Chl-a Pheo (m) (mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(mg/1) (mg/1) (mg/1) (MPN/100m1) (ug/1) (ug/1) 0.0 9.6 6.6 1.20 1.20 0.00 < 0.01 0.002 < 0.01 0.15 0.13 0.02 20 30000 23000 32.08 17.82 0.8 0.60 0.54 0.00 < 0.01 0.003 < 0.01 0.10 2.0 4.0 30000 23000 0.06 0.04 12 26.73 12.25

Table APP 2.4-1(8) Water Quality obtained from Small Bays and Coastal Areas

Date: April 1, 1993 Time: 14:40-14:55

Station: 40 (Rio Porto)

Location: 22°53'22.9' S 43°11'54.3' W Air temperature: 26.45 °C(14:45)

Weather on the previous day: Clear, and rain at night

Weather on the day: Clear Wind force: 3-4 m

Wind force: 3-4 m/s
Secchi-disk reaing: 0.4 m
Water depth: 3.5 m
Water color: Dark br

Garbage: Oil: Dark brown Yes Yes

Depth	Temp.	płł		00	Salinity	Sigma-t
(m)	(°C)		(mg/l)	(%)	(%)	
0.0	29.65	-	10.7	136	26.84	14.94
0.5	29.59		10.9	158	26.92	15.03
1.0	28.77	· -	14.3	186	28.43	16.49
1.5	28.39		4.7	56	28.14	16.43
2.0	29.61	-	2.9	43	26,88	14.99
2.5	27.34	-	4.6	51	29.15	17.61
3.0	26.73	-	1.3	17	30.33	18.74

April I, 1993

BOD COD(Mn) TOC T-OP Depth T-ON T-IN NO3-N NO2-N NH4-N TP P04-P SS T-Coli F-Coli Chl-a (mg/1)(mg/(m) 0.0 3.2 12.4 3.24 3.11 0.13 0.03 0.068 0.09 0.70 0.60 0.10 300000 130000 108.30 90.61 1.23 1.10 0.13 0.02 0.008 0.10 0.20 3.0 4.0 1.4 15 0.13 0.07 15 130000 130000

APPENDIX 3

SEDIMENT QUALITY

Table APP 3.1-1 Chemical Analysis of Surface Sediment

(\$\frac{x}{1}\$) Sampling Date: June 4 - 6, 1992 (\$\frac{x}{1}\$) Sampling Date: Cottober 26, 30 135	(tag/g) 0.3 3.5 0.6 0.6 1.6 0.8 1.0 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Stat	Station No.	თ 	*5	ດ	ထ	-	ω	တ	11	12	£13	14	15	16	17	81	8	21	22	83	24	53		18	36
(17) (17) (17) (17) (17) (17) (17) (17)	7.62 7.39 7.55 7.81 775 7.27 7.13 7.50	Item	Unit		Samplin	g Date	: June	4 - 8,									1		×	mling		Octobe	26,30	1992	<u> </u>	Date: Apr.6	1993
(%) 23.4 83.4 26.5 45.1 71.9 30.3 40.5 45.7 76.9 37.8 83.3 82.8 83.8 11.2 83.2 74.5 28.8 76.9 79.2 82.0 82.5 75.0 82.5 74.1 1440. 040.010	(wg/g) 0.3 3.6 0.6 0.6 1.8 0.6 1.0 2.2 5.3 5.2 15.3 2.0 18.6 34.9 18.7 18.8 18.2 83.2 14.5 28.3 74.5 28.7 18.5 17.2 18.9 18.7 18.8 18.0 18.2 18.2 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	瓷		7.74	7.36	ļ	54.7		ì	i	7.62	 83.	i	7.81	į.		7.13	7.50	,				ł.			i i	
EXECT (S) 14.1 144.0 21.1 31.7 34.9 28.2 45.6 119.7 151.2 147.7 136.9 161.6 175.7 165.3 45.3 45.2 45.3 45.2 45.3 <td> The color of the</td> <td>ن عد</td> <td>ટ</td> <td>23.4</td> <td>83,4</td> <td></td> <td>45.1</td> <td></td> <td></td> <td></td> <td>. 45.7</td> <td>76.9</td> <td></td> <td>83.3</td> <td></td> <td></td> <td>81.2</td> <td>83.2</td> <td></td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td>٠</td> <td>0</td> <td></td>	The color of the	ن عد	ટ	23.4	83,4		45.1				. 45.7	76.9		83.3			81.2	83.2		00					٠	0	
(%) (0.010 (0.0	(%) (3.010 (0.010 0.010 0.010 (0.0	COD(Cr.)	(mg02/g)	14.1	144.0		31.7				45.6	119.7		147.7			75.7	35		£					'n	7.7 164.0	0 151
(#g/s) 0.3 3.5 0.6 0.6 1.6 0.6 0.6 1.0 2.2 3.0 1.5 5.0 13.6 34.9 19.7 21.3 10.6 1.9 0.8 1.4 2.5 2.4 1.5 (#g/s) 0.3 3.5 0.6 0.6 0.6 1.6 0.6 0.6 1.0 2.2 3.0 1.5 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 (#g/s) 0.3 3.5 0.6 0.6 0.6 1.6 0.6 0.6 1.0 2.3 0.33 0.43 0.35 0.75 0.80 0.45 0.80 0.65 0.80 0.65 0.80 1.7 1.12 0.83 1.15 0.80 (#g/s) 0.20 0.75 0.40 0.20 0.25 0.42 0.23 0.33 0.43 0.35 0.75 0.80 0.65 0.80 0.65 0.80 0.65 0.80 0.65 0.80 0.65 0.80 0.65 0.80 0.65 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(#g/8] 0.3 3.5 0.6 0.6 1.8 0.6 0.6 1.0 2.2 3.0 15 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 1.8 (rag/8) 0.3 3.5 0.6 0.6 0.8 1.8 0.8 0.2 0.33 0.43 0.95 0.75 0.80 0.45 0.80 0.45 0.80 0.85 0.96 1.17 1.12 0.83 1.15 0.88 0.88 0.89 0.49 0.99 0.99 0.99 0.99 0.99 0.99 0.9	3	(mg/g)	<0.010	<0.010	_	1				ı	1		<0.010			0.010	0.010		1				•	1	1	
(mg/k) 0.3 3.5 0.6 0.6 1.6 0.6 1.6 0.6 1.0 2.2 3.0 1.5 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 (mg/k) 0.20 0.75 0.40 0.20 0.25 0.42 0.23 0.33 0.35 0.75 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.45 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(wg/g) 0.3 3.5 0.6 0.6 0.6 1.6 0.6 0.6 1.0 2.2 3.0 1.5 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 1.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 1.0 2.2 3.0 1.5 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 1.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	V.S.	3	2.4	16.2		3.5				2	15.3		9			21.3	10.8	ı	,	1	ï	ι	1	1	ı	1
(mg/g) 0.3 3.5 0.6 0.6 0.6 1.6 0.6 0.6 1.0 2.2 3.0 1.5 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 0.8	(mg/g) 0.3 3.5 0.6 0.6 1.8 0.6 0.6 1.0 2.2 3.0 1.5 5.0 3.0 1.2 2.0 1.9 0.8 1.4 2.5 2.4 1.5 1.8 1.8 (mg/g) 0.20 0.75 0.40 0.20 0.25 0.42 0.23 0.33 0.43 0.99 0.75 0.80 0.45 0.45 0.80 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	at 550°C		,																					••••		
(mg/z) 0.20 0.75 0.40 0.20 0.25 0.42 0.23 0.43 0.43 0.95 0.75 0.80 0.45 0.80 0.65 0.96 1.17 1.12 0.83 1.15 0.88 (mg/z) - 0.094 0.004 0.002 0.004 - 0.002 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.0	(mg/g) 0.20 0.75 0.40 0.20 0.25 0.42 0.23 0.33 0.43 0.95 0.76 0.80 0.45 0.80 0.85 0.96 1.17 1.12 0.83 1.15 0.86 0.89 0.48 0.80 0.48 0.80 0.48 0.80 0.80 0.80	KN	(8/20)	0.3	ა ა.		9.0			9.0	1.0																
(%) 99	(wg/g) - 0.004 0.002 0.004 - 0.002 0.004 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.004 0	e.	(mg/2)	0.3	0.75		0.20		_	0.23	0.3								• • •							10 1.20	80.1.
(ug/g) - 0.004 0.002 0.002 0.004 - 0.002 0.004 0.003 0.003 0.004 0.003 0.007 0.001 (0.	(mg/g) - 0.004 0.004 0.002 0.004 - 0.002 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.001 0.0	ည (၁	3		හ		95			8	97																
(ug/g) - 2.5 1.6 0.5 1.7 - 0.8 0.6 1.8 1.6 2.2 2.3	(ug/g) - 2.5 1.6 0.5 1.7 - 0.8 0.6 1.9 1.6 1.8 2.0 2.2 2.3	B (T)	(mg/g)		0.004		0.002	_		0.005	0.005						•			_		_	_				
(ug/g) - 0.07 0.06 0.02 0.01 - 0.03 0.03 0.03 0.07 0.06 0.07 0.07 0.02 0.02 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	(ug/g) - 0.07 0.06 0.02 0.10 - 0.03 0.03 0.03 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.02 0.14 0.06 0.09 0.02 0.14 0.06 0.09 0.02 0.14 0.06 0.09 0.02 0.10 0.09 0.02 0.14 0.06 0.09 0.02 0.14 0.06 0.09 0.02 0.14 0.06 0.09 0.00	(F)	(8/8n)		2.5		0.5		ŧ	0.8	9.0																
(ug/g) - 60 51 10 60 - 10 11 44 27 30 32 22 26 31 -	(ug/g) - 60 51 10 60 - 10 11 44 27 30 32 22 26 31	Pb(T)	(3/3/8)		0.07		0.02		ı	0.03	0.03															.07 0.03	3 0.07
(ug/g) - 0.040 0.020 0.004 0.040 - 0.008 0.008 - 0.080 0.050 0.020 0.020 0.000 0.070 0.008 0.095 0.045 0.045 (ug/g) - 18.00 16.00 3.20 6.50 - 3.40 4.20 11.00 47.00 15.00 10.00 0.65 6.50 14.00	(ug/g) - 0.040 0.020 0.004 0.040 - 0.008 0.008 - 0.080 0.050 0.020 0.020 0.000 0.025 0.045 0.045 0.045 0.080 (ug/g) - 18.00 16.00 3.20 6.50 - 3.40 4.20 11.00 47.00 15.00 10.00 0.65 6.50 14.00	Pb(A)	(B/Bn)	,,	8		임		1	9	П							೫	1		1						
(ug/g) - 18.00 16.00 3.20 6.50 - 3.40 4.20 11.00 47.00 15.00 10.00 0.65 6.50 14.00	(ug/g) - 18.00 16.00	E)Z	(B/Sh)		0.040		0.004		ı	0.08	0.08						-	7.100	0.070,0		.080	025	045 0.0				
(ug/g) - 0.04 0.08 <0.0 0.06 - 0.02 <0.01 0.04 0.34 0.18 0.04 0.06 0.06 0.02 0.02 0.02 0.05 0.05 0.06 0.02 0.02 0.04 0.05 0.06 0.02 0.02 0.04 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.00 0.05 0.00 0.05 0.00 0.00	(ug/g) - 0.04 0.08 <0.0 0.06 - 0.02 <0.01 0.04 0.34 0.18 0.04 0.06 0.05 0.02 0.02 0.04 0.05 0.06 0.10 0.06 0.12 0.09 0.05 0.02 0.04 0.05 0.06 0.10 0.00 0.02 0.00 0.05 0.05 0.10 0.00 0.05 0.00 0.00	Q(A)	(8/8n)	1	18.00		3.20			3.40	4.20							8.4	ı		1	ı	ı		• • • •		
(ug/g) - 10.0 58.0 5.5 21.0 - 8.0 6.0 12.0 118.0 108.0 13.0 10.0 16.0 66.0	(ug/g) - 10.0 58.0 5.5 21.0 - 8.0 6.0 12.0 119.0 108.0 13.0 10.0 16.0 66.0	Cr(T)	(8/8m)	, 	0.04		0.0		ı	0.05	0.0				-			0.12									3 0.24
(ug/g) - 0.40 0.25 0.15 0.45 - 0.20 0.15 0.40 0.30 0.15 0.20 0.35 0.30 0.15 0.20 0.30 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.16 0.20 0.16 0.00	(ug/g) - 0.40 0.25 0.15 0.45 - 0.20 0.15 0.49 0.39 0.35 0.30 0.15 0.20 0.30 0.05 1.80 0.30 0.15 0.20 1.20 (ug/g) - 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.0004 0.004 0.000	Cr(3)	(B/Bn)		10.0		5.5			8.0	9.0							0.99									
(ug/g) - <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.004 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	(ug/g) - <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004	Hg(T)	(8/8n)	1	0.40		0.15		ı	0.20	0.15							8							8	1	1
(ug/g) - 0.20 0.20 0.14 0.18 - 0.03 0.50 0.16 0.28 0.20 0.18 0.18 0.14 0.12 0.24 0.05 0.44 0.12 0.14 0.08 (ug/g) - 156 229 29 169 - 30 39 117 148 136 100 64 75 124	(ug/g) - 0.20 0.20 0.14 0.18 - 0.03 0.50 0.16 0.28 0.20 0.18 0.18 0.14 0.12 0.24 0.05 0.44 0.12 0.14 0.08 0.24 0 0 (ug/g) - 158 229 29 168 - 30 39 117 148 136 100 64 75 124	Hg(4)	(8/8n)	ŧ	<0.004		00.00		<0.004	<0.004	<0.09							0.004							 1	•	ı
(ug/g) - 158 229 29 168 - 30 39 117 148 136 100 64 75 124	(ug/g) - 158 229 29 168 - 30 39 117 148 136 100 64 75 124	Zh(T)	(B/Sm)		0.20		0.14		1	0.03	0.50							0.12	_	.05	0.44 0	0.12 0			.24	34 0.04	0 70
(ug/g) (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1	(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Zn(A)	(8/3n)		158		প্ত			ଞ୍ଚ	B							124		1	1				1		t
(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	pp' dot	(8/8n)	0			ô				60.1							0	ì	ı	1	i		t.	 I	1	1
(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	op' DDE	(8/8n)	6.1			ô				<0.1								1	ı	ı	ı,	1		 I	t	ı
(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(ug/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	PD, 10E	(B/3n)	 6			÷				6.1							6	•	1	1	ı	1	ı	 I	F	ŧ
(\log/g) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(ug/g): <0.1 <0.1 <0.1 <0. <0.1 <0.1 <0.1 <0.1	තුරු පුර	(3/3n)	8			ô				¢0.1							0,		1	1	ı	•		 1	1	ı
		RB's	(8/8n)	00			ô				%							6	ı	1	ı	,	1	1	1	1	ı

1. Sediment analysys of the fine fraction. more than 200 mesh(about 0.074 mm) for metal analysis
2. Total metal analysis = nitric and perchloric acid digestion
3. Absorbed metal analysis = cold 0.1 HCl solution, extraction
4. St. 20. 21. 22, 35, 36, 37 = sampled for Release Test
5. St. 23, 24, 25, 26 = surface data of Core samples
6. Results on dry weigt basis
7. W. C. : Water Content
6. S&C : Silt and Clay

Table APP 3.2-1(1) Chemical Analysis of Core Sample

Sampling date : Oct. 26 1992

St. 23														·
Depth	¥. C.	COD	(Cr)	KN	TP	T-Zn	T-Cu	1-Cr	T∙Pb	T-Cd	î-lig	Fe	Ni	Яg
(ca)	(96)	(C%)	(O2mg/g)	(ng/g)	(ag/g)	(ng/g)	(ag/g)	(ag/g)	(ag/g)	(mg/g)	(ug/g)	(Eg/g)	(#R/R)	(mg/g)
0-5.0	79. 2	2. 2	58. 7	2. 5	0.83	0. 12	0.025	0.04	0.05	0.000	0.30	. 33	0. 020	0.75
	81.3	1. 8	48. 0	1.7	0.76	0. 12	0, 020	0.04	0.06	0.000	0.30	37	0.020	0.85
5.0-10-0					0.89	0.12	0.030	0.05	0.06	0.001	0.50	41	0.025	1.00
10. 0-15. 0	82.0	1. 9	50.7	1.6						0.001	0.30	39	0.020	0. 95
15.0-20.0	81.0	4. 1	109. 3	1.5	0. 67	0. 10	0. 020	0.04	0.06					
20. 0-25. 0	79.8	3. 9	104. 0	Į. 4	0.58	0.08	0. 020	0.04	0.06	0.000	0.40	36	0.020	0.80
25. 0 - 30. 0	79.3	2.2	58. 7	1.4	0.64	0.12	0. 020	0.04	0.06	0.000	0.50	43	0.020	0. 95
30. 0-40. 0	76. 8	4.7	125. 3	1, 1	0.78	0.10	0.015	0. 04	0.08	0.000	0.40	39	0.020	0.75
10.0-50.0	76.6	3.6	36.0	1.2	0.68	0.10	0.015	0.04	0.05	0.000	0.30	45	0.020	0.60
		0.0									-	51	0.025	0.40
84. Q-94. U		1. 3		V. 1			a commence to the wife.					************	ALREST TO A TAN	see seconder too at
Xean	<u> 76 2</u>	2. 9	76. 1	1.5	0.71	0.11	0.019	U. U4	V. Vb	0.000	8. 34	40	0.061	U. 10
84. 0-94. 0 Xean	50. 0 76. 2	l. 3 2. 9	34. 7 76. 1	0.7 1.5	0.62 0.71	0.09 0.11	0.010 0.019	0. 06 0. 04	0. 03 0. 06	0. 000 0. 000	0. 05 0. 34	51 40	0. 025 0. 021	0. 40 0. 78

Table APP 3.2-1(2) Chemical Analysis of Core Sample

Sampling date : Oct. 26 1992

St. 24									4					
Depth	T. C.	COD	(Cr)	KN	TP	T-Zn	T-Cu	T-Cr	T-Pb	T-Cd	T-Hg	Fe	Ni -	Ng
(ca)	(%)	(C%)	(02ng/g)	(ng/g)	(mg/g)	(ng/g)	(mg/g)	(g/ga)	(eg/g)	(ng/g)		(ng/g)	(mg/g)	(ng/g)
0.5.0	82.0	5.4	144.0	2.4	1. 15	0. 14	0.045	0.05	0.05	0.000	0.15	50	0.020	1.00
5. 0-10. 0	79. 7	6.6	176.0	2.3	1.24	0.10	0.040	0.05	0.05	0.001		37	0.015	1.00
10. 0-15. 0	75.0	7. 1	139. 3	2. 2	1.44	0.08	0.045	0.05	0.06	0,000	0.20	46	9. 020	0.85
15. 0-20. 0	76. 5	5. 0		2. 2	1.04	0.09	0.020	0.04	0.18	0.000	0.20	44	0.020	0.80
20. 0-25. 0	79.3	5. 2		1.9	1.05	0.10	0.015	0.04	9. 04	0.000	0. 20	42	0.015	0.80
25. 0-30. 0	77.6	7, 1	189. 3	1.8	0.86	0.12	0.015	0.04	0.04	0.000	0.25	40	0.015	0.95
30. 0 40. 0	70.6	2. 6		1.5	0. 53	0.08	0.015	0.04	0.04	0.000	0. 20	44	0.015	0.75
40. 0-50. 0	67. 2			0.9	0. 92	0.09	0.010	0.05	0.04	0.000	0. 15	46	0.020	0.40
110-120	80. 0	2. 2		0.5	0. 63	0.06	0.008	0.04	0.03	0.000	0.05	49	0.020	0.26
Yean	74. 2	5. 3		1,7	0. 98	0.10	0. 024	0.04	0.06	0.000	0.18	- 14	0.018	0.76
Voto														

Table APP 3.2-1(3) Chemical Analysis of Core Sample

Sampling date : Oct. 26 1992

St. 25 Depth	¥. C.	COD	(Cr)	KN	TP	T-Zn	T-Cu	T•Cr	T-Pb	T-Cd	T-lig	Fe	Ni	Ng
(cn)	(%)		(02mg/g)	(mg/g)	(sg/g)	(ng/g)	(mg/g)	(ng/g)	(ag/g)	(ng/g)	(ug/g)	(mg/g)	(Eg/g)	(ng/g)
0-5.0	82.5	3.7	98.7	1.5	0.86	0.08	0, 045	0.06	0.04	0.000	0. 20	39	0.015	0.75
5. 0-10.0	73. S	1. 9	50.7	0. 9	0. 58	0.06	0.015	0.05	0.05	0.000	0.20	43	0.020	0.65
10. 0-15. 0	72. 8	3. 2	85. 3	0.8	0.45	0.06	0.015	0.05	0.04	0.000	0.15	50	0.020	0.55
15. 0-20. 0	73.9	1. 9	50.7	0.8	0.89	0.10	0.015	0.05	0.03	0.000	0.10	53	0.015	0.55
20. 0 - 25. 0	65. 1	3.0	80. Q	0.7	0.54	0.09	0.006	0.04	0.03	0.000	0.05	49	0.015	0.42
25. 0 - 30. 0	68. 0	4. 2	112.0	0.5	1.64	0.08	0.008	0.05	0.04	0.000	Q. 00	48	0.020	0.40
30. 0-40. 0	66.0	2. 2	58.7	0.5	0.57	0.07	0.008	0.04	0.03	0.000	0.05	54	0.015	0. 34
40.0-50.0	64.5	1.9	50. 7	0.5	0.64	0.06	0.003	0.04	0.03	0. 000	0.00	43	0.020	0. 32
110-120	53. 4	0.9	21.0	0. 3	0.43	0.00	0.008	0. O i	0.02	0.000	0.00	41	0.015	0. 24
Nean	68. 9	2. 5	67. 9	0.7	0.74	0.07	0.014	0.05	0.03	0.000	0.03	47	0.017	0.47

Table APP 3.2-1(4) Chemical Analysis of Core Sample

Sampling date: Oct. 26 1992

St. 26														
Depth	¥. C.	COD	(Cr)	KN	· TP	T-Zn	T-Cu	T-Cr	T-Pb	T-Cd	T-lig	Fe	Si	Ng
(cn)	(%)	(C%)	(02mg/g)	(rg/g)	(ng/g)	(mg/g)	(ng/g)	(pg/g)	(bg/g)	(#g/g)	(ug/g)	(eg/g)	(#g/g)	(g/g)
0-5.0	57. 2	4. 1	109. 3	1.8	0.68	0.21	0.060	0.10	0.10	0.001	1. 20	- 34	0.020	0. 28
5. 0 - 10. 0	73. 3	3.9	101.0	1.7	0.81	0.50	0.080	0. 18	0.12	0. 000	1.40	32	0. ù30	0. 38
10.0-15.0	78.7	3. 0	80.0	1.4	1.13	0.40	0.090	0.20	0.12	0.002	1.40	42	Q. Q25	0.34
15. 0-20. 0	73. 9	4.7	125. 3	1.7	1.33	0.65	0. 120	0.16	0.18	0.001	2.00	33	0.040	0. 22
20. 0-25. 0	75.7	4.7	125.3	1.6	0.86	0.44	0.080	0. 20	0.12	0.002	2.00	35	0. 025	0.31
25.0-30.0	69.2	2. 6	89. 3	1.7	0.96	0. 55	0.120	0. 28	0.16	0.003	2.00	36	0.030	0.50
30.0-10.0	65.8	1.7	125.3	1.5	1. 23	0.48	0.090	0.16	0.14	0.001	3.00	50	0, 030	0.24
40.0-50.0	72. 5	3. 7	98. 7	0.9	0.76	0.16	0.030	0.16	0.06	0.000	1.00	34	0, 020	0.36
84, 0-94, 0	61. 1	1.5	40.0	0. 5	0. 61	0.10	0.080	0.05	0.02	0.000	0. 05	44	0.015	0. 28
Mean	69.7	3. 7	97. 5	1.4	0. 93	0. 39	0.083	0.17	0.11	0.001	1.58	38	0.026	0.33
Sote:			·											

Note: |. T.C.: Water Content |2. Results on dry meigt basis

^{1.} Y.C.: Vater Content
2. Results on dry weigt basis

^{1.} T.C.: Fater Content
2. Results on dry reigt basis

^{1.} V.C.: Tater Content
2. Results on dry weigt basis

APPENDIX 4

MEASUREMENTS AND EXPERIMENTS FOR UNDERSTANDING OF THE MATERIAL CYCLE IN THE BAY

Table APP 4.1-1(1) Field Condition and Result of Primary Productivity Measurement-1

Station:

location:

St. 28 22°46'01.2' S, 43°11'52.2' W November 23, 1992

Date:

Time:

15:15-17:15

Weather on the day:

Slightly cloudy 28.0 °C (14:20) 4600 lux (15:37)

Air temperature: Light intensity in the air:

300 lux

Light intensity at the surface: Light intensity at Secchi-disk depth (0.6 m): Depth of the 1 % light intensity:

87 lux 1.8 m

Depth				. :	*.		Fin					Hean net	Hean	Chl-a conc.
(-)		Sta	ert			ight	1 1	Da	ırk			production (mg O2/1/h)	respiration (O2 mg/l/h)	at the star
(m)	Temp.	•	DO (mg/l)	Sal.	Temp.		DO (mg/l)	Temp.		DO (mg/1)	incubation	(mg O2/mg Chl-a/h (mg C/m3/h)	(og 02/mg Chl-a/h) (mg C/m3/h) (mg C/mg Chl-a/h)	
0	27.3	8.63	8.2	21.1	26.5	8.23 8.70 8.72	-	26.5	8.49 8.59 8.64	7.6	2.2	231.2	0.197 5.826 56.8	33.86
							•					6.932 (gC/m2/h/0.6m)0.0	1.704 0.032	
0.6	27.2	8.43	7.9	20.6	26.4	8.66 8.62 8.67	8.6	26.4	8.61	7.5	2.3	0.290 7.899 83.4 2.275 (gC/m2/h/1.2m)0.0	0.174 4.820 50.1 1.366 7 0.055	36.08
1.8	27.0	8.39	7.3	20.8	26.4			26.4	8,47 8.51			0.125 4.066 36.1 1.17	0.150 4.879 43.2 1.405	30.74

Table APP 4.1-1(2) Field Condition and Result of Primary Productivity Measurement-1

Station:

Location:

St. 27 22°43′20.6′ S, 43°05′49.0′ W November 23, 1992

Date:

Time:

12:15-14:15

Weather on the day: Air temperature:

Light intensity in the air:

Slightly cloudy 28.0 °C 35000 lux (12:20)

3600 lux

360 lux

Light intensity at the surface: Light intensity at Secchi-disk depth (0.7 m): Depth of the 1 % light intensity:

1.8 m

Depth	•	· St	art		Li	ight	Fin	 rk			Mean net production	Hean respiration	Chl-a at the
(m)	Temp. (°C)	pH	00 (mg/l)	Sal. (%)	Temp. (°C)		DO (mg/l)	 		period of incubation	(mg 02/1/h)	(02 mg/l/h))(mg 02/mg Chl-a/h) (mg C/m3/h)	each
0		8.39	8.8	15.86			12.2 12.2 -		7.5 7.4 7.4	2.2	1.574 46.486 453.3 13.388 (gc/m2/h/0.7m)0.22	0.636 18.783 183.2 5.410 0.091	33.86
0.7		8.39	8.0	17.54			9.8 9.4		7.3 7.3 7.2	2.4	0.661 35.291 190.368 10.164 (gc/m2/h/1.1m)0.11	0.267 14.255 76.896 4.105 0.098	18.73
1.8		8.44	7.9	17.4			8.3 7.8		6.7 6.8	3.2	0.047 1.851 13.538 0.533	0.363 14.297 104.544 4.118	25.39

*There was an interval between sampled water was poured and the real incubation in the sea.

Table APP 4.1-1(3) Field Condition and Result of Primary Productivity Heasurement-1

Station:

Location:

St. 29 22°49'27.5' S, 43°12'29.9' W November 25, 1992

Date: Time:

11:07-13:07

Cloudy and heavy rain atnight 25.0 °C(10:05) 27000 lux (11:25)

Meather on the day:
Air temperature:
Light intensity in the air:
Light intensity at the surface:
Light intensity at Secchi-disk depth (1.0 m):

5600 lux

Depth of the 1 % light intensity:

300 lux

Water depth:

2.2 m 3.0 m

Depth (m)		Ste	ırt	·	† i	ight	Fin	na I Dar	k			Mean net production (mg 02/1/h)	Hean respiration (O2 mg/1/h)	Chi-a conc. at the star of each
(m)	Temp.		DO ·	Sal.	Temp.	рН	DO	Temp.	ρĦ			(mg 02/mg Chl-a/h)	(02 mg/1/n))(mg 02/mg Ch1-a/h) (mg C/m3/h)	
	(°C)		(rg/l)	(X)	(.c)		(mg/1)	(°C)		(mg/1)	i .	(ng C/ng Chl-a/h)	(mg C/mg Chl-a/h)	
						8.19	7.5	7	.67	2.7		1.967	0.385	35.64
0	26.8	7.91	3.4	18.6	26.7	8.16	7.3	26.7 7	.88	2.6	2.0	55.191	10.802	
						8.20	7.2	7	.80	2.6		566.5	110.9	
												15.895	3.112	
												(gC/m2/h/1m)0.309	0.097	
						7.88	2.4	7	.41	1.0		0.177	0.286	26.73
1.0	26.1	7.82	1.7	20.1	26.1	7.44	2.0	26.1 7	.78	1.0	2.4	6.622	10.700	
						7.75	2.0	7	. 47	1.0		51.0	82.4	
												1.907	3.082	
												(gC/m2/h/1.2m)0.03	0.077	
						7.65	0.6	7	.36	0.3		0.013	0.161	9.35
2.2	26.0	7.65	0.7	21.3	26.1	7.73	1.0	26.1 7	.72	0.3	2.7	1.390	17.219	
						7.47	0.6	7	.74	0.2		3.7	46.4	
		•										0.400	4.959	

Table APP 4.1-1(4) Field Condition and Result of Primary Productivity Measurement-1

Station:

Location:

22*49'58.4' S, 43*09'09.2' W November 25, 1992

Date:

Time:

11:30-13:30

Weather on the day: Air temperature:

Cloudy and heavy rain at night 25.0 °C(10:05) 27000 lux (11:25)

Light intensity in the air:

Light intensity at the surface:
Light intensity at Secchi-disk depth (0.9 m):
Depth of the 1 % light intensity:
Water depth:

2550 lux 120 lux

2.8 m 24.5 m

Depth (m)		St	art .		L	ight	Fin	nal Dark			production	Hean respiration	Chl-a conc. at the start
(m)	Temp.	ЬН	DO (mg/t)	Sal.	Temp.	рĦ	DO (mg/l)	Temp. pl	.DO, 1	incubation	(mg 02/mg Chl-a/h)	(mg C/m3/h)	of each measurement (ug/1)
			(1.45)		,		(110) 17		(***)	,	(ng ching chir dili)	(*C C/EG CHI "O/H/	=
						-	14.2		8.7	!	1.225	0.275	49,89
0	26.3	8.33	9.3	25.8	28.2	8.54	14.2	27.6 8.2	8 8.2	4.0	24.554	5.512	
						-	14.2	-	8.2	:	352.8	79.2	
											7.069	1.587	
											(gC/m2/h/0.9m)0.26	0.089	
						_	9.7		6.0	· · · · · · · · · · · · · · · · · · ·	0.789	0.255	37.42
0.9	25.9	8.34	7.3	26.4	27.4	8.34		26.8 8.1				6.815	01.42
							9.7		6.8		227.1	73.5	
											6,072	1.963	
											(gC/m2/h/1.4m)0.15	9	
							7.7		7.2		*0.843	* +0.323	14.26
2.8	25.0	8.21	5.8	27.5	25.0	8.29	7.6	25.6 8.9				+22.621	14.60
						-	7.6		6.		-	0.0	

*Corrected value 0 at 2.3 m depth *Corrected value was the same as at the upper layer

Table APP 4.1-1(5) Field Condition and Result of Primary Productivity Heasurement-1

Station: Location: Date:

St. 31 22°55'18.2' S, 43°09'07.4' W

November 26, 1992

Time:

10:30-12:30

Weather on the day:

Air temperature:

Light intensity in the air:

Cloudy 24.0 *C(09:40) 20000 lux (11:25)

2700 lux 400 lux

Light intensity at the surface: Light intensity at Secchi-disk depth (1.2 m): Depth of the 1 % light intensity:

3.5 m

Water depth:

15.5 m

Depth							Fin					ean	Chl-a conc.
75		Sta	ırt,		· L	ight		Dark		*Corrected regrided of		espiration 02 mg/l/h)	at the star
(m)	Temp.	•	DO	Sal.	Temp.	Hq	DO	Temp. pH		incubation ((mg O2/mg Chl-a/h)((mg C/m3/h) (ng O2/ng Chl-a/h) ng C/m3/h)	
	(°C)		(mg/l)	(%)	(°C)		(mg/1)	(°C)	(mg/l)	(mg C/mg Chl-a/h) (ng C/mg Chi-a/h)	
	<u> </u>	7		:			9.1		7.3		1.925	1) +0.178	40.99
0	24.8	8.20	6.4	30.0	25.0	8.37		24.9 8.2	2 6.9	*2.0(3.0)	46.963	14.344	
•						-		-	6.6		554.4	0.0	
											14.389		
											(gC/m2/h/1.2m)0.448		
							7.4		5.8		0.667	0.173	16.04
1.2	24.8	8 18	6.1	30.0	24.9	8.20		24.9 8.1			41.584	10.786	
*	61.0	0.10	V.1			-	7.5	_	5.1		192.1	49.8	
											11,976	3.106	
										((gC/m2/h/2.3m)0.23	0.079	
			-				6.2		5.8		0.046	0.065	10.69
3.5	24.5	g 10	5.9	30.5	24.4	8.11		24.4 8.1			4.303	6.080	
3.0	24.5	0.10	4.3	٠٠.٥	64.4		-		5.7		13.2	18.6	
					-						1.239	1.751	

*The bottles were put in the dark ice box.

1) The corrected value (DO/mg Chl-a) is the same at the lower layer

() for respiration estimations

Table APP 4.1-1(6) Field Condition and Result of Primary Productivity Measurement-1

Station: Location:

22°56'34.4' S, 43°10'05.0' W

Date:

November 26, 1992

Time:

11:10-13:10

Weather on the day:

Air temperature:

Cloudy 25.0 *C(09:40) 20000 lux (11:25)

Light intensity in the air:

6400 lux

Light intensity at the surface: Light intensity at Secchi-disk depth (1.7 m): Depth of the 1 % light intensity: Water depth:

550 lux

4.0 m 12.5 m

Depth		Sta	art			ight	Fin		ırk		*Corrected		Hean respiration (02 mg/1/h)	Chl-a conc. at the start of each
(m)	Temp.	pΗ	DO (mg/l)	Sal.			DO (mg/l)	Temp	.pH		incubation	(mg O2/mg Chl-a/h) (mg C/m3/h) (mg C/mg Chl-a/h)	(mg O2/mg Chl-a/h) (mg C/m3/h)	
0	25.1	8.26	7.0	26.3	25.1	8.38 8.42 8.37	8.5		8.18 8.20		2.3	0.681 28.304 196.1 8.152 (gC/m2/h/1.2m)0.20	0.222 9.227 64.0 2.657 0.095	24.06
1.7	24.6	8.19	6.4	26.8	24.6	8.24 8.20 8.25	6.4	24.6	8.15 8.22 8.20	6.0	2.4	0.148 9.227 42.6 2.657 (gC/m2/h/1.7m)0.02	0.165 10.287 47.7 2.963 0.081	16.04
4.0	24.3	8.06	5.9	26.6	24.3	7.94 8.08 8.09	5.8	24.4	8.18 7.90 8.07	5.7	2.7	-0.049 -4.430 -14.0 -1.276	0.086 7.776 24.8 2.239	11.06

^{*} Euphotic depth this station is 3.4 m, which was caluculated after correction beteen the negative production at 4 m depth and that at 1.7 m depth.

Table APP 4.1-2 Productivity and Respiration Rate (mg C/mg Chi-a/h) at each Depth; MeaSurement-1

Table APP 4.1-3(1) Field Condition and Result of Primary Productivity: Measurement-2

<u>ب</u> خ		Product. Respira.	ક	Product.	Product. Respira.	€	Product.	Product. Respira.	છ
۶ ئ		0.1 m			0.7 B			1.8 #	
•	13.4	5.4	\$	10.2	4.1	8	0.5	4.1	11
\$ £		0.1 m			0.8 m			1.8 m	
3	6.9	1.7	23	2.3	1.4	8	1.2	1.4	121
۱ ۱		0.1 m			1.0 🖪			2.2 ₪	
.; S	15.3	3.1	ୟ	1.9	3.1	191	0.4	5.0 1	1240
		0.1 m			0.9			2.8 ₪	
5	7.1	1.6	ឌ	5.1	2.0	ន	0.0	2.0	١.
5		0.1 m			1.2 m			3.5 a	
3	14.4	3.1	21	12.0	3.1	93	1.2	1.8	14
3		0.1 m	4.		1.7 m			4.0 B	
i ·	8.2	2.7	R	2.7	3.0	E	0.0	2.2	,

St. 50-1 April 15 Time 06:00-12 Light intensity(lux) Depth PO4-P(mg/1) PO4-P(mg/1/h) DO(mg/1) DO(mg/1/h) 0.03 0.02 0.003 St. 50-1 April 15, 1993
Time 08:00-12:00(6 h)
Light intensity(lux) 300
Depth 1.2 m 6 6 8 8 Diff.(final-start) Light Dark 1.10 0.18 PO4-P(mg/1) PO4-P(mg/1/h) DO(mg/1) DO(mg/1/h) St. 50-1 April 15, 1993
Time 06:00-12:00(6 h)
Light intensity(lux) 3000
Depth 0.1 m 9 9 1 1 1 0.00 Diff.(final-start) Light Dark 0.05 8.8 PO4-P(mg/1) PO4-P(mg/1/h) DO(mg/1) DO(mg/1/h)

0.77 -2.00

Diff.(final-start) Light Dark 0.07 0.01

Time 12:00- Light intensity(lux) Depth Diff.(April 15, 1883 12:00-13:00(1 h) 9000 0.1 m Diff.(final-start) Light Dark	993 (1 h) 9000 0.1 m -start) Dark	St. 50-3 April Time 12:00- Light intensity(lux) Depth Diff.(April 15, 1993 12:00-13:00(1 h) 500 by(lux) 0.6 m Diff.(final-start) Light bark	993 (1 h) 900 0.5 m -start) Dark	St. 50-3 April Time 12:00- Light intensity(lux) Depth Diff.(15, 1 -13:00 -13:00 (final	993 (1 h) 90 0.8 m -start) Derk
DO(mg/1) DO(mg/1/h)	5.57 5.57	2.8 8.3	DO(mg/1) DO(mg/1/h)	3.83 3.83	2.97	DO(mg/l) DO(mg/l/h)	-0.13 -0.13	88
PO4-P(mg/1) PO4-P(mg/1/h)	8.8 9.9	88 99	PO4-P(mg/1)	0.02	8.8	PO4-P(mg/1)	0.01	0.0

	April 29, 1993. 06:00-09:00(3 h) ty(lux) 2 3.7 m Diff.(final-start) Ligh Dark	6.18 8.38	0.0 0.0		April 29, 1893 (8:00-11:00(2 h) ty(lux) 24 24 4.0 m Diff.(Final-start) Light Dark	6.30 6.150	0.00		1993 00(2 h) 300 4.2 m al-start) bark	0.087	0.00
2-3	April 29, 1993 06:00-09:00(3 1 sity(lux) 3 Diff.(final-sta	0.088	0.02	t-2	April 29, 1993 09:00-11:00(2 h) sity(lux) 2 10:00(10) 2 4.0 i Light Dark	-0.17	0.00	£-3	April 29, 1993 11:00-13:00(2 h) sity(lux) 300 4.2 m Diff.(Final-start) Light Dark	97.5 97.5	0.00
train construct and mount of krimery productivity peasurement-2	St. 52-1 April 29, 1993 Time 06:00-09:00(3 h) Light intensity(lux) 3.7 Depth Diff.(final-star	DO(mg/l) DO(mg/l/h)	PO4-P(mg/1) PO4-P(mg/1/h)	ity Measuremen	St. 52-2 April 2 Time 03:00-1 Light intensity(lux) Depth Diff.(F	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1)	ity Measuremen	St. 52-3 April 2 Time 11:00-1 Light intensity(lux) Depth Diff.(R	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1)
i mangara	1993 20(3.h.) 20 0.7 m al-start) Dark	-0.47	6.03	Productiv	1993 20(2 h) 240 0.6 m al-start) Dark	0.93	-0.08 -0.045	Productiv	1993 00(2 b) 3000 0.7 m al-start)	0.30	-0.01
C TOMOT 12 TO	April 29, 1993 06:00-09:00(3.h) 20 ity(lux) 20 0.7 m Diff.(final-start) Ligh Dark	0.30	6.03	of Primary	April 28, 1993 08:00-11:00(2 h) 1ty(lux) 240 0.6 m Diff.(Final-start)	0,80	-0.08	of Primary	3.5	0.600	-0.02 -0.010
	St. 52-1 April 22 Time 08:00-08 Light intensity(lux) Depth Diff.(fi	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	jable APP 4.1-3(7) Field Condition and Result of Primary Productivity Measurement,2	St. 52-2 April 28, 1993 Time 08:00-11:00(2 h) Light intensity(lux) 240 Depth Diff.(Final-start)	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1)	Table APP 4.1-3(8) Field Condition and Result of Primary Productivity Heasurement-2	St. 52-3 April 2 Time 11:00-1 Light intensity(lux) Depth Diff.(F	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1)
3 45 ED 3 54	1993 200 0.1 m 11-start) Dark	-0.50	0.00	eld Condit	1993 20(2 h) 2400 0.1 m 11-start) Dark	1.90	-0.02 -0.010	eld Condit	1993 10(2 h) 3000 0.1 m 11-start) Dark	-1.47	0.00
```	April 29, 1993 06:00-08:00(3 h) 1y(lux) 200 0.1 m Diff.(final-start) Light Bark	0.300	9.03 9.03	-3(7) 716	April 29, 1993 09:00-11:00(2 h) ty(lux) 2400 0:1 m Diff.(Final-start) Light Dark	5.90 2.950	-0.03 -0.015	1-3(8) Fi	April 29, 1993 11:00-13:00(2 h) ty(lux) 30000 0.1 m Diff.(Final-start) Light Dark	2.00	-0.01
(A) A	St. 52-1 April 23 Time 06:00-03 Light intensity(lux) Depth Diff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Jable APP 4.1	St. 52-2 April 2 Time 08:00-1 Light intensity(lux) Depth Diff.(Ex	DO(mg/1) DO(mg/1/h)	POS-P(mg/1) POS-P(mg/1/h)	Table APP 4.	St. 52-3 April 29, 1893 Time 11:00-13:00(2 h) Light intensity(lux) 30000 Depth Diff.(Final-start) Light Dark	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
	993 (3 h) 3 3.7 m start) Dark	0.20	-0.02		993 ((2 h) 180 4.0 m -start) Dark	-2.30	9.05 9.05		1993 0(2 h) 800 4.5 m 1-start) Dark	0.03	0.00
	April 20, 1993 06:00-08:00(3 h) 3 1ty(lux) 3.7 m Diff.(final-start) Light Dark	1.27	0.007	03	April 20, 1993 08:00-11:00(2 h) 1ty(lux) 4.0 m Diff.(final-start) Light Dark	-1.57 -0.78	0.00	çı.	April 20, 1993 11:00-13:00(2 h) ity(lux) 800 4.5 m Diff.(final-start) Light Dark	0.13	0.00
	St. 51-1 April 20 Time 08:00-06 Light intensity(lux) Depth Diff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Table APP 4.1-3(4) Field Condition and Result of Primary Productivity Measurement-2	St. 51-2 April 20 Time 08:00-1: Light intensity(lux) Depth Diff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Table APP 4.1-3(5) Field Condition and Result of Primary-Productivity Méasurement-2	St. 51-3 April 22 Time 11:00-1: Light intensity(lux) Depth Diff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
Titanani.	993 30 30 0.6 m 1-start) Dark	2.27 0.76	-0.03	Productívi	1993 0(2 h) 1800 1.0 m 1-start) Dark	0.03	0.00	Productiv	1993 00(2 h) 9000 0.6 m 1-start) Dark	9.90 9.30 9.30	-0.01 -0.005
f Town 1.2 T	April 20, 1993 06:00-06:00(3 h) 1ty(lux) 30 0.6 m Diff.(final-start) Light Dark	3.50 1.17	-0.03	f. Primary	April 20, 1983 GS:00-11:00(2 h) LY(lux) 1800 1.0 m Diff.(final-start) Light Dark	1.20	0.00	of Primary	April 20, 1993 11:00-13:00(2 h) ity(lux) 8000 0.6 m Diff.(final-start) Light Dark	1.50 0.750	0.01
table her 4.170(0) rield conditing pan mesult of climary (consectate) meson of	St. 51-1 April 22 Time 05:00-06 Light intensity(lux) Depth Diff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	on and Result o	St. 51-2 April 20, 1993 Time G8:00-11;00(2 h) Light intensity(lux) 1800 Depth Diff.(final-start	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1/h) PO4-P(mg/1/h)	ion and Result	St. 51-3 April 22 Time 11:00-1; Light intensity(lux) Depth Diff.(f	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
mromo ota	1993 0(3 h) 300 0.1 m 1-start)	6.33 0.111	0.003	ild Conditi	1993 1600 1600 0.1 m 1-start) Dark	0.33	0.01	eld Condit	1993 3002 h) 80000 0.1 m al-start)	-0.53	-0.01
31.000	April 20, 1893 05:00-08:00(3 h) ty(tux) 300 0.1 m Diff.(final-start) Light Dark	0.37	0.00	-3(4) Fie	April 20, 1993 09:00-11:00(2 h) (ty(lux) 18000 0.1 m Diff.(final-start)	3.03 1.517	0.01	1-3(5) Fi	April 20, 1993 11:00-13:00(2 h) Sity(lux) 60000 0.1 m Diff.(final-start) Light Dark	6.13 3.067	-0.02
idole Arr 4.1	St. 51-1 April 20 Time 05:00-06 Light intensity(lux) Depth Diff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Table APP 4.1	St. 51-2 April 20 Time 09:00-1: Light intensity(lux) Depth piff.(f.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Table APP 4.	St. 51-3 April 20 Time Light intensity(lux) Depth Diff. (fi	50(mg/l) 10(mg/l/h)	PO4-P(mg/1) PO4-P(mg/1/h)

								• •	
93 0(3 h) 33 4.4 m start) Dark	8.00.0 6.00 10.00 10.00		993 00(2 h) 60 3.5 m -start) Dark	0.123	0.00	•	993 00(2 h) 100 4.5 m -start)	는 년 왕 왕	0.01
May 12, 1993 07:00-10:00(3 h) 13(lux) 4.4 m 0iff.(final-start) Light Dark	0.057 0.057 0.01 0.01		Hay 12, 1993 09:00-11:00(2 h) cy(lux) 60 3.5 m Diff.(final-start) Light Dark	-0.13	0.00		May 12, 1993 11:00-13:00(2 h) ty(lux) 100 4.5 m biff.(final-start) Light Dark	6.18 8.18	-0.05 -0.025
St. 54-1 May 11 Time 07:00 Light intensity(lux) Depth Diff.(?	DO(mg/1) DO(mg/1/h) PO4-P(mg/1)	y Measurement-2	St. 54-2 May II Time 09:00 Light intensity(lux) Depth Diff.(f	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1/h) PO4-P(mg/1/h)	ty Measurement-2	St. 54-3 May 1 Time 11:00 Light intensity(lux) Depth Diff.(f	DO(mg/1/h) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
93 0(3 h) 330 1.2 m start) Dark	0.33 0.05 0.05	odúctívít	993 500 500 0.8 m -start) Dark	0.30	0.00	roductiví	993 (00(2 h) 1000 1.2 m 1-start) Derk	-1.93	-0.05
Hay 12, 1993 07:00-10:00(3 h) by(lux) 330 1.2 m Diff.(final-start) Light Dark	6.02 0.03 0.03 0.03	Primary P	Hay 12, 1993 09:00-11:00(2 h) ty(lux) 600 0.8 m Diff.(final-start) Light Dark	2.07	-0.05 -0.025	Primary F	Hay 12, 1993 11:00-13:00(2 h) ty(lux) 1000 1.2 m Diff.(final-start) Light Dark	2.63	-0.05 -0.025
St. 54-1 Hay 17 Time 07:00- Light intensity(lux) Depth Diff.(f	DO(mg/1) DO(mg/1/h) PO4-P(mg/1)	Table APP 4.1-3(13) Field Condition and Result of Primary Productivity Measurement-2	St. 54-2 May 12, 1993 Time G:00-11:00(2 h) Light intensity(lux) 630 Depth Diff.(final-start) Light Dark	DO(mg/1) DO(mg/1/h)	PO4-P(ng/1) PO4-P(ng/1/h)	Table APP 4.1-3(14) Field Condition and Result of Primary Productivity Measurement-2	St. 54-3 Hav II Time Light intensity(lux) Depth Diff.(f	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
893 00(3 h) 3300 0.1 m -start) Dark	8.0 9.03 8.03 8.03	d Condition	993 (20(2 h) 6200 0.1 m 1-stert) Dark	0.90	0.00	ld Condit	1993 :00(2 h) 1000 0.1 m 1-start) Dark	-1.80	-0.05 -0.025
Hay 12, 1993 07:00-10:00(3 h) ty(lux) 3300 0.1 m Diff.(final-start) Light Dark	0.357	0.000 3(13) Fiel	Hay 12, 1993 09:00-11:00(2 h) ty(lux) 60:00 0.1 m Diff.(final-start) Light Dark	4.23	0.00	3(14) Fie	13	8.07 4.035	-0.05
St. 54-1 Hay II Time 07:00 Light intensity(lux) Depth Diff.(f	DO(mg/1) DO(mg/1/h) PO4-P(mg/1)	Table APP 4.1-	St. 54-2 Hay 1: Time 09:00 Light intersity(lux) Depth Diff.(f	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Table APP 4.1-	St. 54-3 Hay 17 Time 11:00- Light intensity(lux) Depth Diff:(f	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
993 (3 h) 50 1.8 m -start) Dark	6.02 0.02 0.03	33:0	993 (2 h) 90 1.5 m 1-start) Dark	0.30	0.01		1993 5(2 h) 300 1.2 m 1-start) Bark	-0.17 -0.083	0.00
April 30, 1993 06:00-06:00(3 h) ssity(lux) 50 1.8 m Diff.(Finel-start) Light Dark	6.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	II.	April 30, 1993 C8:00-11:00(2 h) 90 91 Diff.(Final-start) Light Dark	1.33	0.01	ο.	April 30, 1993 11:00-13:00(2 h) 11:10(1ux) 300 11.2 m Diff.(Final-start) Light Bark	1.13	-0.01
St. 53-1 A Time O Light intensit Depth D	DO(mg/1) DO(mg/1/h) PO4-P(mg/1)	Table APP 4.1-3(10) Field Condition and Result of Primary Productivity Measurement-2	St. 53-2 A Time C Light intensit Depth D	00(mg/1) 00(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	gable APP 4.1-3(11) field Condition and Result of Primary Productivity Measurement-2	3-3 intensi	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
1993 503 h) 500 0.6 m 1-start) Dark	1.533 6.01 8.01 8.01	Productiv	1993 0(2 h) 900 0.6 m 1-start) Dark	2.73	0.00	Productiv	1993 10(2 h) 3000 0.3 m 11-start) Dark	6.150 0.150	8 8 9 9
April 30, 1993 06:00-08:00(3 h) 1ty(lux) 500 0.6 m Diff.(Final-start) Light Dark	4.878 6.878 6.01	Primary	April 30, 1993 G9:OG-11:OO(2 h) ty(lux) 0.6 m Diff.(Final-start) Light Dark	6.70 3.350	-0.02 -0.010	f Primary	April 30, 1993 11:00-13:00(2 h) 12v(lux) 3000 0.3 m Diff.(Final-start) Light Dark	2.40	20.09 0.09
St. 53-1 April 3 Time 05:00-00 Light intensity(lux) Depth Diff.(F	DO(mg/1) DO(mg/1/n) PO4-P(mg/1)	on and Result o	St. 53-2 April 30 Light intensity(lux) Depth biff.(F	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	ion and Result o	St. 53-3 April 3 Time Light intensity(lux) Depth Diff.(F	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)
993 (3 h) 5000 0.1 m -start) Dark	-4.33 -1.444 -0.08	d Conditi	1993 00(2 h) 9000 0.1 m al-start)	3.23	0.02	ld Conditi	1993 3000 0.1 m 1-start) Dark	-0.55 -0.275	0.01
April 30, 1993 06:00-09:00(3 h) ty(lux) 5000 0.1 m Diff.(Final-start)	0.433	3(10) Fiel		9.33	0.01	-3(11) Fie	April 20, 1893 11:00-13:00(2 h) 12(lux) 30000 0.1 m Diff.(Final-start) Light Dark	4.60	0.01
St. 53-1 April 30 Time 06:00-00 Light intensity(lux) Depth Diff.(F.	DO(mg/1) DO(mg/1/h) PO4-P(mg/1)	Table APP 4.1-	St. 53-2 April 33 Time 08:00-13 Light intensity(lux) Septh Diff.(R.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)	Table APP 4.1-	St. 53-3 April 3 Time 11:00-1. Light intensity(lux) Depth Diff.(F.	DO(mg/1) DO(mg/1/h)	PO4-P(mg/1) PO4-P(mg/1/h)

Table APP 4.1-4 Pr

Productivity and Respiration Rate (mg C/mg Chi-a/h) at each Depth: Measurement-2

St. 55-1	Hay 21, §	23	St. 55-1	May 21, 93	5	St. 55-1	May 21, 9	8
Time	07:00-10	:00(3 h)	Tie	07:00-10:	00(3 h)	Time	07:00-10:00(3 h)	:00(3 h)
Light intensity(lux)	(lux) 300	8	Light intensity(lux)	(]m()	ន	Light intensity(lux)	ty(Jux)	m
Depth		0.1 B	Depth		8	Depth		6.8 B
	Diff.(final-start)	-start)		Diff.(final—start)	-start)		Diff.(final-stert)	l-stert)
	רוצור	I!		11811	7 TO		11811	Ven A
DO(mg/1)	1.47	0.10	10.(昭/1)	0.13	0.23	DO.(mg/1)	90.0	0.15
DO(mg/1/h)	0.480	0.033	DO. (mg/1/h)	0.043	0.077	DO.(mg/1/h)	0.020	0.030
PO4-P(BE/1)	-0.04 -0.03	-0.03	POA-P(mg/1)	-0.01	0.04	PO4-P(mg/1) 0.01 0.00	0.01	9.9
F24-P(mg/1/h)		-0.010	PO4-P(mg/1/h)	-0.003	0.013	PO4-P(mg/1/h)	0.003	0.00

Table APP 4.1-3	(16) Field	Condition	Table APP 4.1-3(16) Field Condition and Result of Primary Productivity Measurement-2	imary Prod	uctivity	Measurement-2		
St. 55-2 Hay Time 09:0 Light intensity(lux) Depth: Diff.({	Hay 21, 93 09:00-11:00(2 h) y(lux) 7000 0.1 m Diff.(final-start) Light Dark	93 :00(2 h) 7000 0.1 m -start) Dark	St. 55-2 Hay Time (09:0 Light intensity(lux) Depth biff.(	May 21, 93 09:00-11:00(2 h) 700 (lux) 2.0 m Diff.(finel-start) Light Dark	33 :00(2 h) 700 2.0 m 1-start) Dark	St. 55-2 May 21 Time 05:00- Light intensity(iux) Depth Diff.(fi	May 21, 93 05:00-11:00(2 h) 2y(lux) 70 m 7.0 m biff.(final-start) Light Dark	93 :00(2 h) 70 7.0 m 1start) Dark
DO(mg/1) DO(mg/1/h)	0.50	0.13	DO(mg/1) DO(mg/1/h)	0.40	0.20	DO(mg/1) DO(mg/1/h)	-3.17 - -1.585 -1	-3.20 -1.600
PO4-P(mg/1) PO4-P(mg/1/h)	-0.01 -0.005 -C	0.00	PO4-P(mg/1) PO4-P(mg/1/h)	-0.02	0.04	PO4-P(mg/1) PO4-P(mg/1/h)	96.09 6.030	0.09 0.030

lable Ark 4.1-5(17) fleid Condition and Result of Filmary Fittuuttivity measurements	777							
St. 55-3 Hay 2: Time 11:00- Light intensity(lux) Depth Diff.(fix	Hay 21. 93 11:00-13:00(2 h ty(lux) 10500 0.1 m Diff.(final-stært) Light Dark	Hay 21, 93 11:00-13:00(2 h) ux) 10:00 0.1 m f.(final-start) Light Dark	St. 55-3 May 2 Time 11:00 Light intensity(lux) Depth Diff.(f	May 21, 93 11:00-13:00(2 h) 7(lux) 10:00 1.8 m Diff.(final-start) Light Dark	lay 21, 93 1:00-13:00(2 h) 1000 1:8 m f:(final-start) Light Dark	St. 35-3 May 21. Time 11:00-1. Light intensity(lux) Depth Diff.(fin	Hay 21, 93 11:00-13:00(2 h) ty(lux) 7.0 m Diff.(final-start) Light Dark	93 :00(2 h) 100 7.0 m 1-start, Dark
30(mg/1) 50(mg/1/h)	1.60 0.800	0.07	DO(mg/l) DO(mg/l/h)	0.77	0.77 0.10	DO(mg/1) DO(mg/1/h)	0.80 -0.03	0.03 -0.015
PO4-P(mg/1) PO4-P(mg/1/h)	-0.01 -0.005	0.00	PO4-P(mg/1) PO4-P(mg/1/h)	-0.02 -0.010	-0.02	PO4-P(mg/1) PO4-P(mg/1/h)	0.00 0.00	9.69

	Product, Resp.	kesp.	$\mathfrak{S}$	Produc Resp.	(X) .ds	Produc Resp.		3
St. 50		0.1 ш	1		1.2 ш		3.5 m	į
	53.8	5.9	=	3.4	1.0 23	2.5	6.3	252
er:		0.1 m			9,6 ш		0.9 m	
,	46.9			27.2	1	0.0	0.0	,
St. 51		0.1 m			0.6 д		3.7 #	
	2.0	1.9	95	31.5	1	8.7	1.4	89
e		0.1 a			1.0 a		4.0 m	ļ
,	8.7	1,0	=	3.9	ı	-17.5	25.8	١.
er:		0.1 a			0.6 m		4.5 m	
	12.2	7.7	8	5.5	2.2 40	7.	,	
St. 52		0,1 m			0.7 д		3,7 m	ļ
-	12.9	2.4	6.	1.4	2.3 164	-2.7	3.1	۱.
•		0,1 в	j		0.6 m		4.0 m	İ
) 3	18.2	,		3.0	3.5 116	-3.6	6,5	1
<b>4</b> 7		O.1 B			0.7 m		4.2 m	
.	12.0	8.8	5	5.4	1			١.
St. 53		0.1 m			0.5 m		1.8 m	
-	1.5	5.1	340	-2.7	4.8	-1.2	4.4	
64		0.1 m			0.6 m		1.5 m	
i 1	16.8		,	9.6	1	4.1	,	
6		0.1 m			0.3 m		1.2 =	
,	5.3	9.0	==	6.0	0.8 13	1.7	0.3	129
St. 54		0.1 m			1.2 ш		4.4 B	
	5.23	2.6	=	9.05	4.2 -	7	1.3	
e.		0.1 B	į		0.8 #		3.5 ш	ļ
; ;	19.3	4.0	21	3.9	1.7 44	1.4	2.9	
er)	Ì	0.1 m			1.2 =		4.5 m	
	17.7	3.5	R	5.7	4.2 74	-5.1	5.1	
St, 55		0.1 в			1.9 m		5.8 m	1
· ·	33.0		1	8.1	,	10.1	1	
r		0.1 m			2.0 m		7.0 8	<u>!</u>
	20.2			17.3	1	1	171.0	,
	İ	0.1 #			1.3 a		л.0 ш	
•	12.3		٠	7.9		54.1	0.0	0
			-					

Table APP 4.2-1(1) Release Rate from Sediment (aerobic condition)

Date: Norbember 2 - 5 1992

St.20 St:

Surface Area of sediment: 0.0384(m) Water Volume: 7.37(1)

Flow rate: Retention Time: 6.35(1/day) 1.16(day)

Water Temp.:23.2°C 23.2°C

	MACOL A	CHIP LEGGE		20.2									
Date	Time		Influent	(mg/l)		E	ffluen	(mg/1)			Release	Rate(g/n	(day)
	(Day)	TN	NH4N	TP	PO4P	TN	NH4N	TP	PO4P	TN	NH4N	TP	PO4P
Nov.3	3	0.297	0.013	0.02	0.01	1.05	0.4	0.35	0.3				
Nov.4	4	0.297	0.013	0.02	0.01	0.80	0.3	0.30	0.25	0.043	0.034	0.039	0.033
Nov.5	5	0.297	0.013	0.02	0.01	0.80	0.4	0.18	0.16	0.075	0.071	0.017	0.018
MEAN		0.297	0.013	0.02	0.01	0.88	0.4	0.28	0.24	0.059	0.053	0.028	0.025

#### Table APP 4.2-1(2) Release Rate from Sediment (aerobic condition)

Date: Norbember.2 - 5 1992

St: St.21

Surface Area of sediment: 0.0384(m)

Water Volume:7.5

7.56(1)

Flow rate:

5.23(1/day)

Retention Time: Water Temp.:23.1°C 1.44(day) 23.1°C

Date	Time		Influent	(mg/1)			ffluen	(mg/l)		}	Release	Rate(g/m	(day)
	(Day)	TN	NH4N	TP	PO4P	TN	NH4N	TP	PO4P	TN	NH4N	TP	PO4P
Nov.3	3	0.297	0.013	0.02	0.01	0.60	0.09	0.40	0.4				
Nov.4	4	0.297	0.013	0.02	0.01	0.40	80.0	0.30	0.3	-0.033	0.007	0.022	0.024
Nov.5	5	0.297	0.013	0.02	0.01	0.20	0.2	0.20	0.2	-0.048	0.035	0.015	0.017
HEAN		0.297	0.013	0.02	0.01	0.40	0.1	0.30	0.30	-0.041	0.021	0.019	0.021

### Table APP 4.2-1(3) Release Rate from Sediment

(aerobic condition)

Date: Norbember 2 - 5 1992

St: St.22

Surface Area of sediment: 0.0384(m')

Water Volume:

9.40(1)

Flow rate:

2.72(1/day)

Retention Time:

3.46(day) 23.2°C

	Water T	emp.:		23.2°C								:	
Date	Time		Influent	(mg/1)		[	ffluen	(mg/1)			Release	Rate(g/n	(day)
	(Day)	TN	NH4N	TP	PO4P	TR	NH4N	TP	PO4P	TN	NH4N	TP	PO4P
Nov.3	3	0.297	0.013	0.02	0.01	5.00	2	0.40	0.4				
Nov.4	4	0.297	0.013	0.02	0.01	4.00	2	0.55	0.55	-0.014	0.138	0.067	0.070
Nov.5	5	0.297	0.013	0.02	0,01	3.80	3.8	0.60	0.58	0.167	0.524	0.045	0.043
MEAN		0.297	0.013	0.02	0.01	4.27	2.6	0.52	0.51	0.076	0.331	0.056	0.056

# Table APP 4.2-1(4) Release Rate from Sediment (anaerbic condition)

Date: Norbember 6 - 12 1992

St: St.20

Surface Area of sediment: 0.0384(m)
Water Volume: 7.37(1)
Flow ra 4.81(1/day)

Retention Time: 1.53(day)
Water Terature 22.8°C

	mater :	teratu <u>re</u> _		22.0 C									
Date	Time		Influent	(mg/1)	******	}	ffluen	(mg/1)			Release	Rate(g/n	n/day)
	(Day)	TN	NH4N	TP	PO4P	TN	NH4N	TP	PO4P	TN	NH4X	TP	PO4P
Nov.7	1	0.475	0.02	0.03	0.015	0.50	0.1	0.14	0.12				
Nov.8	2	0.475	0.02	0.03	0.015	0.51	0.15	0.24	0.22	-0.027	0.020	0.034	0.035
Nov.9	3	0.475	0.02	0.03	0.015	0.60	0.15	0.25	0.22	-0.006	0.015	0.027	0.025
Nov.10	1 4	0.475	0.02	0.03	0.015	0.60	0.25	0.10	0.1	-0.016	0.042	-0.015	-0.008
Nov.11	5	0.475	0.02	0.03	0.015	0.30	0.06	0.10	0.09	-0.101	-0.026	0.007	0.007
Nov.12	6	0.475	0.02	0.03	0.015	0.30	0.13	0.15	0.15	-0.054	0.025	0.022	0.027
MEAN		0,475	0.02	0.03	0.015	0.47	0.14	0.16	0.15	-0.041	0.015	0.015	0.017

### Table APP 4.2-1(5) Release Rate from Sediment

(anaerbic condition)

Date: Norbember.6 - 12 1992

St: St.21

Surface Area of sediment:0.0384(ml)
Water Volume: 7.56(1)
Flow rate: 3.83(1/day)
Retention Time: 1.57(day)

22.7°C Water Temp.: Influent (mg/l) Effluen(mg/l) Release Rate(g/m/day) Date Time TN TN NH4N NHAN PO4P PO4P TN NH4N TP PO4P TP (Day) TP 0.475 0.06 Nov.7 0 02 0.03 0.015 0.350.09 0.08 0.475 0.02 0.03 0.015 0.55 0.15 0.1 -0.0150.018 0.011 8.voil 0.12 0.03 0.015 -0.050 0.000 0.006 0.007 0.475 0.02 0.50 0.1 0.12 0.1 Nov.9 3 0.475 0.02 0.03 0.015 0.40 0.15 0.08 0.07 -0.0700.019 -0.004-0.001 Nov. 10 0.475 0.02 0.03 0.015 0.450.15 0.10 0.09 -0.0400.011 0.008 0.009 5 Nov.11 Nov.12 6 0.475 0.02 0.03 0.015 0.30 0.14 0.10 0.08 -0.094 0.008 0.004 0.003 0.03 0.015 0.475 0.02 0.43 0.13 0.10 0.08 -0.054 0.011 MEAN

## Table APP 4.2-1(6) Release Rate from Sediment (anaerbic condition)

Date: Norbember.6 - 12 1992

St: St.22

Surface Area of sediment:0.0384(m')
Water Volume: 9.40(1)
Flow rate: 1.99(1/day)
Retention Time: 4.72(day)

Water Temp.:22.9°C 22.9°C TH Date Time Effluen(mg/l) Release Rate(g/m/day) Influent (mg/l) TP PO4P Ti PO4P TN NH4N TP PO4P (Day) NH4N NH4N TP 0.475 0.03 0.015 Nov.7 1.00 0.16 0.021 0.14 Nov.8 0.475 0.02 0.03 0.015 1.60 0 0.32 0.31 0.070 0.037 2.00 0.40 0.062 0.424 0.475 0.02 0.03 0.015 1.8 0.4 0.028 0.034 Nov.9 3 Nov.10 0.475 0.02 0.03 0.015 1.80 1.5 0.350.35 -0.070 0.002 -0.0010.003 0.03 0.015 2.40 0.044 0.475 0.02 1.2 0.45 0.45 0.156-0.0170.041 Nov.11 5 0.5 0.475 0.03 0.015 2.80 0.033 0.036 0.02 0.50 0.141 0.224 Nov.12 1.7 0.02 0.03 0.015 1.93 1.20 0.36 0.072 0.158 MEAN 0,475

Sediment	/ . T
from	-
Rate	
Release Rate	
Table APP 4.2-1(7) 1	
APP	
Table	

15711						
7.573.49.50 0100.433			0.0384	6.72	0.175	0.19
3	Date: April.10 - May.5 1993	St: St.35	Surface Area of Sediment(m)	Water Volume(1)	Water Depth(m)	Sediment Thickness(m)

(day) Time(day) (1/day) (1/day) Time(day) Time	Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carlo   Carl	Date	Time	Interval	Flow rate Retention	etention	-		Influent	(mg/])					Efflue	Effluen(mg/l)				Rel	ease Rate	Release Rate(g/m/day		
20:00 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0	12.50   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00		(day		(1/day) T		Temp	ള ഗ	90g	NH4N	70D(Mn)	75 -F	Fe Tem	် ငံ	P P	NH4N	COD(Fm)	ည <u>ှ</u>	Fe . P	AP NH	4N COD()	in) TOC	7	v
12.33   0.68    0.68    2.86    2.30    2.30    2.32    2.32    0.324    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3    2.3	12.30    0.58		1						ı	,	ı	1	,		1	,	,	1		ı	1	1	1	•
10.30   1.60   0.91   5.33   1.25   21.6 7.60   0.022   0.022   1.3   8   -   -   -  4.50   0.418   0.30   2.2   4   -   0.067   0.000   -   -   0.035   0.202   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2	10.30   1.60   0.91   5.33   1.25   21.6 7.80   0.020   0.02   1.3   8   - 4.50   0.419   0.30   2.2   4   - 0.057   0.007   0.000       10.30   2.52   1.32   1.25   7.10   0.018   0.010   0.5   0.5   0.5   0.5   0.0     10.30   2.52   1.32   7.34   0.92   2.02   0.02   0.02   0.02   0.02   0.02   0.00   0.02   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00				2.85	2.38		2	0.024	;	•	,	- 2	1.5 3.2	0 0.324		•	1	 I	ı	ı	1	1	•
8:30 2.52 0.92 5.47 1.22 - 7.25 0.024 - 5 - 5 5.50 0.557 0.033 0.030 0.75 0.455 11.00 0.00 0.00 0.00 0.00 0.00 0.00 0	8:30 2.52 0.92 5.47 1.22 - 7.25 0.024 3.55 0.557 0.033 0.000 0.458 0.000 4.38 0.000 4.38 0.000 4.38 0.000 4.38 0.000 0.000 4.38 0.000 4.38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				5.33	1.26		7.80	0.020	0 02	н. Б.	œ	1	1.5	0 0.415	0.33	2.2	4	0	067 0.	000		,	٠
10.30   3.60   1.06   7.78   0.86   22.0   7.20   0.023   0.025   0.00   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0	10.30   3.60   1.08   7.78   0.65   22.0 7.20   0.023   0.02   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0				5.47	1.22		7.25	0.024	1	•	1		3.5	5 0.55	1	•	ı	ı	033	8	ı	1	•
18:00   4.32   1.32   7.34   0.92   21:5   7.00   0.018   0.010   0.05   0.021   0.10   0.020   0.021   0.10   0.020   0.021   0.10   0.020   0.021   0.10   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.020   0.021   0.021   0.022   0.011   0.022   0.011   0.022   0.011   0.022   0.011   0.022   0.011   0.022   0.011   0.022   0.011   0.022   0.012   0.022   0.012   0.022   0.013   0.022   0.013   0.022   0.013   0.022   0.013   0.022   0.013   0.022   0.013   0.022   0.013   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022   0.022	18:00   4.92   1.32   7.34   0.92   21.5   7.00   0.018   0.01   0.0.5   6   - 1 19.3   0.90   0.221   0.10   0.0.0   0.0   0.003   0.011   -0.003   0.011   -0.003   0.011   -0.003   0.011   -0.003   0.012   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.013   0.01				7.78	0.85			0.023	0	0.0	တ	<u>ئ</u> ا	0.3 1.7	0.038		0.0	۲-	0	083	) 연 왕	49 0.4	'n	
17:30   5.90   0.98   7.42   0.91   22.5   7.10   0.022   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02	17:30   5.90   0.98   7.42   0.91   22.5 7.10   0.020   0.02   0.01   0.01   0.023   0.10   1.12   0.012   0.043   0.016   0.031   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.015   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0.010   0				7.34	0.92			0.018	0.0	0.5	ω	<b>~</b>	9.9	0 0.22)		0.0	8	0	080	O11: '우			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13:30 7.73   1.83 7.50 0.90				7.42	0.91			0.020	0.02	0.0	9 0	ខ	0.8	0 0.23		1.2	8	012 0	0	G		2	Ţ.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10:00 8.58 0.85 7.63 0.88 24.2 6.70 0.016 0.00 0.6 5 0.01 23.4 2.30 0.191 0.15 0.8 6 0.01 0.035 0.030 0.005 0.317 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30				7.50	0.30	٠,		0.016	0.01	4.0	5	17	- 2.2	0 0.191		1.2	6	0.0	033 0.				$\supset$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10:30 10:50 2.02 7.34 0.92 - 6.70 0.015 0.00 1.2 - 0.01 - 3.90 0.160 0.10 0.2 - 0.01 0.027 0.018 -0.186 - 15:00 11.79 1.15 6.91 0.97 24.3 6.80 0.012 0.00 0.0 - 23.3 4.30 0.127 0.10 0.2 - 0.018 0.018 0.038 - 10:00 13.53 1.15 24.3 6.80 0.000 0.4 - 22.3 4.30 0.127 0.10 0.0 - 0.020 0.015 -0.078 - 10:00 13.53 1.15 24.3 6.80 0.000 0.4 - 22.3 4.90 0.147 0.10 0.0 - 0.020 0.015 -0.078 - 11:30 14.65 1.07 3.84 1.02 3.45 6.80 0.000 0.4 - 23.3 4.90 0.147 0.10 0.0 - 0.024 0.014 - 0.105 1.03 1.03 1.00 1.88 1.73 1.23 24.5 6.80 0.018 0.01 0.5 - 23.3 4.90 0.143 0.00 1.0 0.0 - 0.017 0.010 0.027 1.00 1.88 2.77 2.59 2.58 - 0.018 0.01 0.5 - 0.070 0.189 0.10 0.6 - 0.017 0.010 0.027 0.086 1.00 1.03 1.03 1.03 1.03 1.03 1.03 1.03				7.63	0.88		6.70	0.016		9.0	50	ಸ 5	3.4 2.3	0 0.191		0.8	ဖ	-					9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15:00 11.79 1.19 6.91 0.97 24.3 6.80 0.012 0.00 0.0 - 23.0 4.39 0.127 0.10 0.2 - 0.018 0.018 0.036 10:00 13.58 1.79 5.83 1.15 24.9 6.80 0.018 0.00 0.4 - 22.9 4.40 0.147 0.10 0.0 - 0.020 0.015 -0.078 11:30 14.65 1.07 5.47 1.23 24.5 6.80 0.009 0.00 0.4 - 22.9 4.40 0.147 0.10 0.0 - 0.020 0.015 -0.078 11:30 14.65 1.07 5.47 1.23 24.5 6.80 0.008 0.00 0.6 - 23.3 4.90 0.164 0.10 0.0 - 0.021 0.014 -0.105 15:30 15.81 1.16 5.47 1.23 24.5 6.80 0.018 0.01 0.5 - 23.0 3.50 0.143 0.00 0.0 - 0.021 0.014 -0.105 15:30 15.81 1.00 20.88 2.77 2.59 2.59 - 0.018 0.01 0.5 - 0.070 0.189 0.10 0.6 - 0.017 0.010 0.025 15:30 20.81 1.23 3.89 1.73 - 6.70 0.014 0.02 0.8 - 0.040 0.247 0.20 0.14 0.02 0.04 15:30 20.81 1.20 2.83 1.67 - 0.017 0.02 0.0 - 0.040 0.247 0.20 0.14 0.02 0.00 0.19 0.014 0.02 0.00 0.19 0.10 0.10 0.10 0.10 0.10 0.10				7.34	0.92			0.015		1.2	o	5	ا ئ	0 0.160		0.2	1	0.01	027		98	- 0.00	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10:00 13.58 1.79 5.83 1.15 24.9 6.80 0.018 0.00 0.4 - 22.9 4.40 0.147 0.10 0.0 - 0.020 0.015 -0.078 11:30 14.65 1.07 5.47 1.23 24.5 6.80 0.009 0.00 0.6 - 23.3 4.90 0.164 0.10 0.0 - 0.024 0.014 -0.105 11:30 14.65 1.07 5.47 1.23 24.5 6.80 0.009 0.00 0.6 - 23.3 4.90 0.164 0.10 0.0 - 0.024 0.014 -0.105 15:30 15.81 1.00 3.89 1.73 - 7.10 0.018 0.01 0.5 - 0.70 0.189 0.10 0.6 - 0.017 0.010 0.025 10:00 20.58 1.00 2.88 2.33 - 0.0018 0.01 0.5 - 0.00 0.20 0.15 0.6 - 0.017 0.010 0.025 10:00 20.58 1.00 20.88 1.73 - 6.70 0.014 0.02 0.8 - 0.04 0.247 0.20 0.4 - 0.021 0.020 -0.086 10:00 20.81 5.00 4.03 1.67 - 0.017 0.02 0.05 - 0.08 0.19 0.19 0.19 0.19 0.10 0.02 0.04 11:00 27.63 0.08 2.12 1.56 - 7.00 0.020 0.02 0.6 - 0.08 0.19 0.19 0.19 0.10 0.02 0.01 0.015 0.10 0.02 0.01 0.015 0.10 0.02 0.01 0.015 0.10 0.01 0.015 0.10 0.01 0.01				6.91	0.97			0.012		0.0	ŧ,	<i>ن</i> ة ا	3.0 4.3	0 0.12		0.2	ı	0	018 0.				
11:30 14:65 1.07 5.47 1.23 24.5 6.60 0.000 0.6 - 23.3 4.90 0.164 0.10 0.0 0.024 0.014 -0.105 15:30 15.81 1.16 5.47 1.23 24.5 6.90 0.018 0.01 0.5 - 23.0 3.50 0.143 0.08 0.2 - 0.015 0.010 -0.041 15:30 15.81 1.00 3.89 1.73 - 7.10 0.018 0.01 0.5 0.70 0.189 0.10 0.6 - 0.017 0.010 0.025 10:00 18.58 2.77 2.59 2.58 0.018 0.01 0.5 0.070 0.189 0.10 0.6 0.017 0.010 0.044 10:00 20.58 1.00 2.88 2.33 0.014 0.02 0.8 0.281 0.20 0.4 - 0.021 0.020 -0.088 11:00 20.88 1.73 - 6.70 0.014 0.02 0.8 0.080 0.192 0.192 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	11:30 14:65 1.07 5.47 1.23 24.5 6.60 0.000 0.6 - 23.3 4.90 0.164 0.10 0.0 - 0.024 0.014 -0.105 15:30 15.81 1.16 5.47 1.23 24.5 6.90 0.018 0.01 0.5 - 23.0 3.50 0.143 0.08 0.2 - 0.015 0.010 -0.041 15:30 15.81 1.00 3.69 1.73 - 7.10 0.018 0.01 0.5 - 0.70 0.169 0.10 0.6 - 0.017 0.010 0.025 10:00 20.58 1.00 2.88 2.33 - 0.00 0.018 0.01 0.5 - 0.000 0.20 0.15 0.6 - 0.017 0.010 0.025 10:00 20.58 1.00 20.88 1.73 - 6.70 0.014 0.02 0.8 - 0.000 0.20 0.15 0.6 - 0.001 0.020 0.036 10:00 20.88 1.00 20.88 1.73 - 6.70 0.014 0.02 0.8 - 0.040 0.247 0.20 0.4 - 0.021 0.020 0.034 10:00 20.88 1.00 20.88 1.00 20.89 1.73 - 0.001 0.001 0.00 0.00 0.00 0.00 0.00				5.83	1.15			0.018	0.00	0.4	٠,	7	2.9 4.4	0 0.14		0.0	1	0	020 0.		178	1,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15:30 15.81 1.16 5.47 1.23 24.5 6.90 0.018 0.01 0.5 - 23.0 3.50 0.143 0.08 0.2 - 0.015 0.010 -0.041 15:30 16.81 1.00 3.69 1.73 - 7.10 0.018 0.01 0.5 - 0.70 0.189 0.10 0.6 - 0.017 0.010 0.025 10:00 19.58 2.77 2.59 2.59 - 0.018 0.01 0.5 - 0.050 0.260 0.15 0.6 - 0.017 0.010 0.025 10:00 20.58 1.00 20.88 2.33 - 0.018 0.01 0.5 - 0.020 0.20 0.15 0.6 - 0.0018 0.010 -0.047 10:00 20.58 1.00 20.58 1.73 - 6.70 0.014 0.02 0.8 - 0.020 0.24 0.20 0.4 - 0.021 0.020 -0.086 15:30 28.81 5.00 4.03 1.67 - 0.017 0.02 0.0 - 0.08 0.192 0.15 0.4 - 0.017 0.012 0.044 11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.0 - 0.08 0.192 0.15 0.4 - 0.017 0.012 0.044 11:00 27.63 0.15 0.14 0.15 0.15 0.14 0.15 0.014 0.022 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15				5.47	1.23			0.09	0.00	0.6	1	د <b>ن</b> ا	3.3 4.9	0 0:16		0.0	1	0					
15.30 16.81 1.00 3.69 1.73 - 7.10 0.018 0.01 0.5 0.70 0.189 0.10 0.6 - 0.017 0.010 0.025 10:00 19.58 2.77 2.59 2.59 0.018 0.01 0.5 0.050 0.250 0.15 0.6 0.018 0.010 -0.047 10:00 20.58 1.00 2.88 2.33 0.018 0.01 0.5 0.050 0.250 0.15 0.6 0.018 0.010 -0.047 10:00 20.58 1.00 20.58 1.73 - 6.70 0.014 0.02 0.8 0.40 0.247 0.20 0.4 0.021 0.020 -0.086 115:30 22.81 5.00 4.03 1.67 0.017 0.02 0.6 0.080 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.87 2.12 4.18 1.61 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14	15:30 16.81 1.00 3.69 1.73 - 7.10 0.018 0.01 0.5 0.70 0.189 0.10 0.6 0.017 0.010 0.025 10:00 19.58 2.77 2.59 2.59 0.018 0.01 0.5 0.060 0.260 0.15 0.6 0.018 0.010 -0.047 10:00 20.58 1.00 20.58 1.03 2.83 0.018 0.01 0.5 0.281 0.20 0.4 - 0.021 0.020 -0.086 15:30 21.81 1.23 3.89 1.73 - 6.70 0.014 0.02 0.8 0.40 0.247 0.20 0.4 0.017 0.02 0.04 11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.0 0.80 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.82 2.12 4.18 1.61 0.018 0.01 0.05 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022 Note:				5.47	1.23			0.018	0.0	0.5		4	3.0 3.5	0 0.14	_	0.2	1	0			¥1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10:00 19:58 2.77 2.59 2.59 0.018 0.01 0.5 0.060 0.280 0.15 0.6 0.018 0.010 0.047 10:00 20:58 1.00 20:58 1.00 2.88 2.33 0.018 0.01 0.5 0.281 0.20 0.4 - 0.021 0.020 0.086 15:30 21.81 1.23 3.89 1.73 - 6.70 0.014 0.02 0.8 0.40 0.247 0.20 0.4 - 0.031 0.017 0.017 0.018 15:30 26.81 5.00 4.03 1.67 - 0.017 0.02 0.0 0.80 0.182 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.0 0.80 0.182 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.87 2.12 4.18 1.61 2.0 0.018 0.01 0.05 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022 Note:			:	3.89	1.73		7.10	0.018	0.01	0.5	1	 1	- 0.7	0 0.18		9.0	1	ı			83		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10:00 20:58 1.00 2.88 2.33 0.018 0.01 0.5 0.281 0.20 0.4 0.021 0.020 -0.086 15:30 21.81 1.23 3.89 1.73 - 6.70 0.014 0.02 0.8 0.40 0.247 0.20 0.0 0.019 0.017 -0.179 15:30 26.81 5.00 4.03 1.67 0.017 0.02 0.0 0.80 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.02 0.0 0.80 0.198 0.15 0.2 0.017 0.012 0.044 11:00 27.63 0.87 2.12 4.18 1.61 0.018 0.01 0.05 6 0.01 22.0 2.37 0.23 0.14 0.5 9 0.01 0.019 0.014 -0.022 Note:				2.59	5.58		1	0.018	0.01	0.5	. •		- 0.6	10 0.26K		9.0	ı	Q			47		
15:30 21.81 1.23 3.89 1.73 - 6.70 0.014 0.02 0.8 0.40 0.247 0.20 0.0 0.019 0.017 -0.179 15:30 26.81 5.00 4.03 1.67 0.017 0.02 0.0 0.80 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.6 1.10 0.198 0.15 0.2 0.020 0.013 -0.115 14:00 28.75 2.12 4.18 1.61 0.018 0.01 0.5 1.20 0.157 0.10 0.2 - 0.012 0.017 -0.058  NATO:	15:30 21:81 1.23 3.89 1.73 - 6.70 0.014 0.02 0.8 0.40 0.247 0.20 0.0 0.019 0.017 -0.179 15:30 26.81 5.00 4.03 1.67 0.017 0.02 0.0 0.80 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.62 4.32 1.56 - 7.00 0.020 0.02 0.6 1.10 0.198 0.15 0.2 0.017 0.012 0.044 11:00 27.63 0.87 2.12 4.18 1.61 0.018 0.01 0.05 0.01 2.0 2.37 0.23 0.14 0.5 9 0.01 0.019 0.014 -0.022 Note:				2.88	.3 8		1	0.018	0.01	0.5	,	t		- 0.28		0.4	1	O.			98	1	
15:30 26.81 5.00 4.03 1.67 0.017 0.02 0.0 0.80 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.6 1.10 0.198 0.15 0.2 0.020 0.013 -0.115 14:00 28.75 2.12 4.18 1.61 0.018 0.01 0.5 1.20 0.157 0.10 0.2 0.012 0.017 -0.068 14:00 28.75 2.12 4.18 1.61 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022	15:30 26.81 5.00 4.03 1.67 0.017 0.02 0.0 0.80 0.192 0.15 0.4 0.017 0.012 0.044 11:00 27.63 0.82 4.32 1.56 - 7.00 $0.020 0.02$ 0.02 0.6 1.10 0.198 0.15 0.2 0.020 0.013 -0.115 14:00 28.75 2.12 4.18 1.61 - $0.012 0.018 0.01$ 0.01 0.5 - 1.20 0.157 0.10 0.2 - 0.020 0.013 -0.115 14:00 28.75 2.12 4.18 1.61 - $0.012 0.018 0.01$ 0.01 0.01 0.01 0.01 0.01 0.01 0.0				3.83	1.73		6.70	0.014	0.02	9.0	٠,		10.4	0 0.24		0.0	١	0			55		
11:00 27.63 0.62 4.32 1.56 - 7.00 0.020 0.02 0.6 1.10 0.198 0.15 0.2 0.020 0.013 -0.115 14:00 29.75 2.12 4.18 1.61 0.018 0.01 0.5 1.20 0.157 0.10 0.2 - 0.012 0.007 -0.066 5.41 23.3 6.95 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022	11:00 27.63 0.82 4.32 1.56 - 7.00 0.020 0.02 0.6 1.10 0.198 0.15 0.2 0.020 0.013 -0.115 14:00 28.75 2.12 4.18 1.61 0.020 0.018 0.01 0.5 1.20 0.157 0.10 0.2 0.020 0.013 -0.115 14:00 28.75 2.12 4.18 1.61 0.021 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022 Note:				4.03	1.67	:		0.017	0.03	0.0	,	1	- 0.8	0 0.192		0.4	١	1	_		144	,	
14:00 28:75 2:12 4:18 1:61 0.018 0.01 0.5 1.20 0.157 0.10 0.2 0.012 0.007 -0.066 5.41 23.3 6.95 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022	14:00 28.75 2.12 4.18 1.61 0.018 0.01 0.5] 1.20 0.157 0.10 0.2 0.012 0.007 -0.066 5.41 23.3 6.95 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022 Note:				4.32	1.56		7.00	0.020	0.02	9.0	ł.		- 1.1	0 0 198	3 0.15	0.2	1	0	020	013 0	15	ı	
5.41 23.3 6.95 0.018 0.01 0.5 6 0.01 22.0 2.37 0.239 0.14 0.5 9 0.01 0.019 0.014 -0.022	Note: 5.41 23.3 6.95 0.018 0.0] 0.5 6 0.0] 22.0 2.37 0.239 0.14 0.5 9 0.0] 0.019 0.014 -0.022				4.18	1.61		1	0.018	0.01	0.5	•	1	- 1.2	0 0.15		0.2		0	012 0.		98	1	- 3
Noto.	Note:	!			5.41		ន	ဖ	0.018	0.01	0.5				7 0.23		0.5	o,	0.01	_			2. O.G	8
	4	ı	,																					1

Table APP 4.2-1(8) Release Rate from Sediment
(aerobic condition)
Date: April.10 - May.5 1993
St: St.36
Surface Area of Sediment(m²) 0.0384
Water Volume(1) 6.34
Water Depth(m) 0.165
Sediment Thickness(m) 0.2

	: :																							į
	T-Fe		1	•	1	•	1	1	0.0001	0.0003	9.8018	1	1	•	,	'	•	'	ı	•	1	1	-0.00s	
n³/day)	33		١	t	•	0.423	2.627	98 9	985.0	0.104	١	•	ì	•	•	ι	١	١	•	•	•	(	9.78	
Rate(g/	OD(Mn)	-	1	•	ı	0.421	연 연	0.437	0.128	0.197	9.012	1.083	· 503.0	0.060	-0.124	0.064	명 우	J.034	83 የ	-0.002	0.047	0.113	0.111	•
Re] ease	NH4N C	•	1	0,000	000	0.043	0.052	0.051		0.059			, n				0.035				0.016	0.018	0.032	
	204P		1	0.035	0.039	0.026	0.035	0.040	0.027	0.027	0.028	0.018	0.018	0.018	0.016	0.018	0.017	0.019	0.012	0.014	0.013	0.007	0.017	
	-F.		1	1	1	•	1	012	0.01	0.01	0	ı	•	1	ı	1	ı	1	1	1	0.18	t	0	
	ĕ	,	1	₹1	•	ţ	11	8	10	w	١,	١	ŀ	١	3	,	ï	١	١	,	1	١	63	
	(H)(B)		,	2.4	F	2.2	0.6	1.8	1.2	1.4	1.0	8,	0.0	9.0	0.0	9.0	0.0	0.2	9.0	0.0	0.2	1.4	1.0	
(mg/1)	NHAN		1	0.55	1	٠. ا	0.30	S.3	0.30	0.30	0.25	0.20	0.50	0.20	0.20	0.25	0.25	o.3	<del>ර</del> හි.	ە. ھ	0.25	0.20	0.28	
Effluen	<u>8</u>		0.576	0.435	0.385	0.219	0.211	0.230	0.178	0.163	0.161	0.128	0.118	0.108	0.103	0.138	0.133	0.149	0.135	0.152	0.153	0.110	0.204	
	8	1	0.80	3	0.10	0. 10	0.10	8	1	0.10	8	2.20	2.3	2.3	1.30	1.10	0.3	0.40	0.10	0.20	0.10	0.10	0.79	
	والع ث		١	•	1	20.4	8	20	1	23.4	1	22.9	23.1	23.1	22.9	1	1	•	1	t	ı	•	22.0	
	T-Fe T		1	1	1	1	ı	0.01	0.01	0.01	0.01	,	,	ı	1	ł	ı	1	ı	1	.014	1	0.01	
	ဋ	1	ι	œ	ŧ	φ	မ	မ	in.	ĸ	1	ŧ	1	í	1	ı	ŧ	ı	ı	ŧ	ĭ	1	ဖ	
	(편)(편)	•	1	1.3	•	0.0	0.5	0.0	0.4	9.0	1.2	0	0.4	9.0	0.5	0.5		0.5	0.8	0.0	0.6	0.5	0.5	
luent(mg/l)	NH4N	1	:	0.02	ı	0.02	0.01	0.02	0.01	0.0	0.00				0.01	0.01	0.01	0.01	0.02	0.02	0.05	0.01	0.01	•
influent	ğ	•	0.024	0.020	0.024	0.023	0.018	0.020	0.016	0.016	0.015	0.012	0.018	0.009	0.018	0.018	0.018	0.018	0.014	0.017	0.020	0.018	0.018	
	음 :	1	8.3	8	7.25	7.20	2.00	7.10	6.60	6.70	6,70	9.80	6.83	8.8	6.30	7.10	1	ı	6.70	ı	9.7	1	6.95	
	Temp. °C	•		21.6		. 22.0	21.5	. 22.5	١.,	24.2	1	24.3	24.9	24.5	24.5			1		·	1	,	23.3	
etention	Time(day)	•	2.38	8.1	83	0.85	0.92	0.92	0.94	0.85	0.86	0.98	0.92	ි. 8	0.88	1.19	1.13	1.22	1.42	1.47	1.52	1.52	i	
Flow rate Retention	(1/day) I	ı	2.66	4.90	5.18	7.42	6.91	6.91	6.77	7.50	7.34	6.62	5.91	7.13	7.13	5.33	5.62	5.18	4.46	4.32	4.18	4.18	5.92	
Interval	Time(day)																			5.00		2.12		
Tine	(day)	8.0	88	: 8	2.52	 8	4.92	5.90	7.73	8.58	10.88	11.79	13.58	14.65	15.81	16.81	19.58	20.58	21.81	26.81	27.63	83 72		
g3		20:00	12:30	30 80 80	<u>ස</u>	10:33	18:00	17:38	13:33	10:00	10:30	15:00	90:03	:: 8:::3	15:33	15:30	10:00	10:00	15:30	15:33	11:38	14:00		Note:
Date		Apr 8	Apr. 9	Apr. 10	Apr 11	Apr. 12	Apr 13	Apr. 14	Apr.16	Apr. 17	Apr. 19	Apr. 20	Apr. 22	Apr. 23	Apr. 24	Apr. 25	Apr. 28	Apr. 23	Apr. 33	May. 4	Hay. 55	Hay. 7	HEAN	

Because of lack of data, the mean value were used

Table APP 4.2-1(9) Release Rate from Sediment (serobic condition)

(mercolc condition)			0.0384	6.53	0.17	0.195
	Date: April.10 - May.5 1993	St: St.37	Surface Area of Sediment(m) 0.0384	Mater Volume(1)	Mater Depth(m)	Sediment Thickness(m)

Date	e)	Time	Interval	Flow rate	Flow rate Retention			Influe	luent(mg/l)					LELI	filuen(	mg/1)			,	Rele	ease Rate	p/ iii /8)a	િક્ટ જ	
		(day)	Time(day)	(1/day)	Time(day)	Teno	ပ္ ဗ	ğ	NH4N	COD(An	8	I-Fe 1	<u>وال</u> د	8	<u>2</u>	NH4N C	) (EE)	.r	. e	4P NH		(E	ပ	I-Fe
Apr. 8	8.8	0.0		ı			,				1	1	١	1	1	,	ı	ı	1	1	1	1	1	•
Apr. 9	12:30	88.		2.81			ਲ: '	0.024	- 5		١	ï	ı	4.90	0.457	1	•	,	 i	1	ı.	ı	ŀ	1
Apr. 10	10:33	3.8		5.18		27	.6 7.8.	0.0	20.00		ω		1	3.80	0.456	0.20	2.8	47,	0.1	358 0.0	8	ı		ı
Apr. 11	8:3	2.52		5,04			- 7.25	0.0	· 55		ī	ī	1	5.80	0.354	1	ı	ı	0.1	0.0	S	1	ı	1
Apr. 12	10:30	3.60	٠	7.83			.0 7.20	0.0	23 0.02	0.0	œ	1	20.5	5.10	0.241	0.15	0.0	₹	0.0	85 0.0	). P SS	양	225	١
Apr. 13	38:00	4.82		7.20			5 7.00	0.018	18 0.01	0.5	9	_	20.4	4.10	0.030	0.10	0.5	12	0	300	14 -0.0	036 2.	419	ŀ
Apr. 14	17:30	5.90		7.27	•	22	5 7.16	0.0	20 0.02	0.0	မ	0.01	20.4	4.30	0.075	0.10	1.6	8 0.0	18 : 0.0	8	116 0.4	437	6.176	•
Apr. 16	13:30	7.73		9.14			ا ج	0.0	16 0.01	0.4	3	0.0	ı	1	0.070	89.	1.2	9.0	01 0.0	0.0	120 0.21	0	0.796 0.	.0005
Apr. 17	9:01	8.53		7.92		7	.2 6.70	0.0	0.00	0.0	S	0.01	23.2	5.50	0.067	0.10	9.0	7 0.01	01 0.0	0.0	722 -0.047		0.593 0	0.0004
Apr. 19	10:30	10.88		6.91			- 6.70	0.0	5 0.00	1.2		0.01	1	4.70	0.067	8	1.4	0.0	16 : 0.0	0.0	114 0.0	267	ď	.0013
Apr. 20	15:00	11.79		5.98			ω	0.012	0.00	0.0	•	ı	23.3	4.30	0.065	8	0.4	ŧ	. i	98	15 J.C.	217	,	ı
Apr. 22	10:00	13.58	1.33	7.20	0.91	2	.9 6.80	0.018	9.0	4.0	1	1	23.3	5.00	0.077	8	8.0	i	0.	0.0 210	115 1.661	.961	,	۲
Apr. 23	1:38	14.65		7.49			r. G	0.003	0.00	0.6	1	ï	23.1	4.30	0.070	8	9.	1	0:-	0.0	0.016 0.6	83	t	ı
Apr. 24	15:30	15.81		7.49			.5 6.90	0.0	18 0.01	0.5	, —	1	23.3	5.80 8.80	0.064	8	တ ယ	,	0.1	70.0 80	•	138	•	1
APC. 25	15:30	16.81	:	5.33			- 7.10	0.0	18 0.01	0.5	1	1	١	3.33	0.101	0.10	0.0	ï	0.0	0.0	14 0.7	ਝ	i	1
Apr. 28	9:01	19.58		5.18			1	0.0	18 0.01	0.5	'	ì	ŧ	3.90	0.141	0.10	0.2	•	0.	0.0	312 -0.0		1	t
Apr. 23	10:00	20.58		5.18				0.018	18 0.01	0.5	- I	1	1	3.70	0.138	0.10	0.0	ı	0.	0.0	112 -0.1	101	;	1
Apr. 30	15:30	21.81		4.18			- 6.70	0.014	14 0.02	9.0	1	1	1	3.40	0.156	0.15	1.0	ı	0	0.0	17 0.0	250	ı	•
Hay. 4	15:30	26.81		4.32				0.0	17 0.01	0.5	•	1	1	١	0.178	0.15	0.6		0.0	0.0	)15 O.(	610	,	ı
May, 5	11:80	27.63		4.18			7.00	0.020	10.00	0.5	ı	1	1	1	0.170	0.15	9.0	,	0	314 0.0	715 -0.0	020	ŀ	1
May. 7	14:00	83.75		4.03			,	- 0.018	8 0.01	0.5	1	ı	1	1	0.145	0.10	1.6	i	0.0	0.0	.0 /0.	122	ı	ŧ
MEAN				8.03		23	3 6.95	0.018	10.0	0.5	æ	0.01	22.2	8.	0.159	0.11	1.7	đ 0,	01 · 0.0	0.0	15 0.2	223 0.	831 0	2000
:	Moto																	[						

Because of lack of data, the mean value were used

Table APP 4.2-1(10) Release Rate from Sediment (Anaerobic condition)

(ALIGNIA CONTINUE)	5 1993		ment(m²) 0.0384	6.41	0.167	0.198
לאושטו מבות במות ביות ביות ביות ביות ביות ביות ביות בי	10 - May.5 1993	₩.	Surface Area of Sediment(m') 0.0384	(1) 6.41	m) 0.167	Sediment Thickness(m) 0.198

	1-5e	1	1	1	•	•	1	1	2000	,0007	8000	١	ı	ı	1	•	1	ŧ	1	1	1	0000
lay)	S	.1	ı	1	ŧ	,	847	-0.305	<del>ا</del> ا	٩ 126	1.058 0.000	ı	ı	ı	,	,	١	ı	,	,	1	232 0
8/m/d	E C	1	1	. 1	. 1	1	۰-i	۲ ۱	ı	- - -	-i ₁	1	ı	ı	1	,	1		1	,	ı	<u>ن</u>
Rate(g)	E)00					٠																
elease	NHAN		T.	0.00	000	0.00	9 9	0.014	0.00	0.082	0.013	0.021	-0.018	0.005	0.005	0.042	9 9	9.0g	0.015	0.017	о О	88
\$24	2 <u>4</u> 2	1	ı	0.087	99.0	0.096			0.034	0.028	0.030	0.024	0.026 -	0.021	0.016	0.016		0.017	0.017	0.015	0.012	0.021
	T-Fe	,	1	· <del>·</del> ·	ī	; ;	1	.014	020	020	.036	1	1	1	1	1	1		1	.010	ì	020
	経	1	ı	Ø	1	ì	6	14 0	I I	9	36 0	ŧ	ı	ı	1	ı	1	:	1	0	ı	17.0
	(H)(0		ı	1	ì	1	1	1	t	1	ı	١	,		1	1	1	1	1	1	i	
mg/1)	NH4N C	1		0.04	ı	1	0.01	0.07	0.40	8	0	0.02	0.04	0.02	0.25	0.10	0.04	0.20	0.10	0.15	90.0	0.13
ffluen(	S P		0.580	3.886	82.0	5.847	0.540	0.552	0.497	3.476	505	0,451	3.442	3,409	0.405	2333	3.355	0.320	0.285	9.276	0.263	0.474
ci.	8	1	_	0.15 (	_	0.10	_	0.10	ı	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.40	1	ı	1	1	0.15
	ဂ္ဂ ပ	ı	1	1	1	20.5	50.9	22.1	ì	23.2	,	22.8	23.0	23.0	23.0	ı	ı	ı	١	ı	1	22.3
	Fe Te	1	1	 H	•	1	1	012	.013		014	1	1	1		ì	į	ı	ı	,	1	013
	5	,	1	4	ı	ı	ı	80.	30	4	0	1	ı	ı	1	t	١	1	•	ı	ı	50.
	(EE)	1	1	1	•	ı	1	1	1	1	ı	•	1	i	ı	ı	1	•	ı	1	•	
(1/3	£ 8	1	•	0.00	,		0.01	0.00	0.02	0.01	0.0	000	0.01	0.00	0.02	0.02	0.02	0.02	8.0	0.01	0.01	0.01
luent(m	Z G	1					٠	•			1	0.017							0.010		0.019	0.019
E	2	1	. 80	_	10	20.	01.	10	1	8	10	.10	8	10 (	10 [	2	-	,	,	,	ı	23
	ာ ပ	ı	0	1	0	0.50	21.5 0	0.8.0	ı	23.2 0	1	2.8 0	23.0	3.0 0.	3.0 0.	0	,	,	ı	ı	,	2.2 0
10	y) Temp		 gg	. 99	41		1.94 2		. 20		 B		47 : 2	47 . 2	3.43 2	17	 8		47 :		2	22
etenti	Time(da		~-	-	-		ï	6	2.	6	2	6	8	જ	က်	က	%	<u>ب</u>	6	63	2	
Flow rate Retention	1/day) T		3.50	4.10	4.75	3.86	3.31	3.02	3.17	2.88	38	2.74	2. 83	2 83	1.87	2.02	2.74	2.45	2.59	2.45	2.8 8	2.92
Flow	$\overline{}$		٠																			
Interval	ine(day)	1	88.	0.91	0.92	 8	1.32	0.98	1.83	0.85	2.03	1.19	1.79	1.07	1.16	9:1	2.77	2.23	5.00	0.82	2,12	
Time 1	(day) 1	8	88	88	2, 52	8	4 92	5 90	7.73	8.58	10.80	11.79	13.58	14.85	15.81	16.81	19.58	21.81	26.81	27.63	28.75	
												15:00						15:30	15:30	8	4:00	1
Date		Apr. 8 2	ص	2		Apr.12 1	Apr.13 1	Apr.14 1		Apr. 17					Apr.24 1				May. 4	May. 5 1	<u>-</u>	MEAN
l		¥	¥	Ŧ	¥	Ą	4	¥	Ą	Ą	Ŧ	Ŧ	Ä	7	Ą	¥	Ÿ	끚	27	ž	Σ	뷥

Note: Because of lack of data, the mean value were used

Table APP 4.2-1(11) Release Rate from Sediment (Anaerobic condition)

			0.0384	6.34	0.165	0.2
•	Date: April.10 - May.5 1993	St: St.36	Surface Area of Sediment(m) 0.0384	Water Volume(1)	Water Depth(m)	Sediment Thickness(m)

Date	Time	1	Flow rate Retention	tention .		- <del>-</del>	nfluent(r	t(mg/1)					Effluen(mg/	2(mg/1)				g.	Release Rate(g/	te(g/n	i/day)	
	(क्क्र)	•	(1/day) Ti	Time(day) T	Temp.	8	ğ	NH4N COD	(F)	7-Fe	. Temp.	ပ္ ဥ	ğ	NH4N	(F)(F)	ဥ	T-Fe	OAP V	H4N COD	(편	33	T-Fe
Apr. 8 20:00	i		11111	١.	ı		1		1		1	1		1	ı	ı	ì	,	,	ı	ī	
Apr. 9 12:30			3.59	1.77	1	8.6	0.022	ı	•	1		- 0.20	0.385	1	1	1	1	i	,	ı	ŧ	1
10			4.03	1.57	•	0,10	0.020	0.00	i	7		- 0.20	0.84	80.0	1	01	1	0.107	000	ì	1	1
Apr. 11 8:30	2.52	0.92	4.18	.8	١	0.10	0.03	ı	,	1		- 0.15	0.717	1	1	ı	1		000.0	ŧ	٠	ŧ
Apr. 12 10:30			4.10	S	ιO	0.10	0.020	1	ı	'	8	5 0.10	0.845	1	1	t	ن. ا	0.100	98.	1	ł	ι
			3.74	1.70	21.5	0.10	نـــا	0.01	1	j	8	7 0.00	0.590	0.06	•	22	)  -	0.033	.89	ı	2.673	1
			2.88	2.20	છ	0.10		00.0	ŧ	8 0.012	. 22.1	1 0.10		0.20	1	7 0	•	0.037	.334	1	3.201	1
Apr. 16 13:30			2.52	2.52	١	ı	0.025	0.02	ı	3 D.013	[ <u>-</u> -	'	0.518	1.10	1	8	.011	0.027	0.124	1	0.091 -0.0015	. 8015
	Ċ		3.17	8.8	23.2	9.0		0.01	ı	4 p.013	8	2 0.10	0.530	0.08	t	14 D	•	0.041 년	-0.159	1	J.156 A	.0012
			1.94	3.27		0.10		8.8	1	-0.014		8 -	0.488	8	•	1	.010 .0	0.019	5.058 880.0	ı	1.061 +	.0019
			2.88	2.20		0.10		8.8	,	1	22	9 0.10	0.465	0.02	•	1	ı	0.030	900.	ı	ı	ı
			2.59	2.45	23.0	0.30		10.0	i	1	. 23.0	0 0.10	_	0.10	į	,	J. 1	0.022	0.001	ı	i	
Apr. 23 11:30			2.59	2.45	23.0	0.10		0.00	ı	1	22	9 0.10	0.384	8.0	•	i	٠.	0.019	0.017	ı	١	ŧ
			1.87	ક્ષ ક્ષ		0.10	0.019	0.02	ı	ı	33	0.10	0.362	0.45	1		ن ا	0.012 0	000	ı	ì	ı
٠.			.:.	4.01	•	0.10	0.019	0.02	1	1		- 0.10	0.370	0.40	1	ı	1	0.013	0.088	ı	ŧ.	•
			2.59	2.45	١	l	0.019	0.02	1	,		- 0.20	0.365	0.40	i	ı	١.	0.021	0.022	ı	ŀ	ł
_			2.59	2.45	1	ı	0.011	0.02	ŀ	!	٠	1	0.337	0,53		1	ن. ا	0.020	0.041	t	١	•
May. 4 15:30	26.81		2.59	2.45	ı	•	0.010	9.0	ı	1		1	0.305	0.40	•	1	ı	0.039	0.025	ı	,	i
S			2.88	2.20	•	1	0.008	0.01	1	•			0.305	0.40	ŀ	j	1	0.021	.028	ł	ı	1
May. 7 14:00			5.59 2.59	2.45	1	1	0.019	0.01	ı	1		1	0.248	-	1	1	1	.011	0.025	ı	4	1
MEAN			2.83		22.2	8	0.019	0.01		5 0.013	3 22.3	3 0.11	0.468	83	ı	13 0	0.011.0	0.023	0.010		0.156 - 0.0015	.0015

Ebecause of lack of data, the mean value were used

Table APP 4.2-1(12)Release Rate from Sediment (Anserobic condition)

ישומפו סחיר כפוקי ביוסו			0.0268	3.35	0.125	0.211
	Date: April.10 - May.5 1993	St: St.37	Surface Area of Sediment(m) 0.0268	Water Volume(1)	Water Depth(m)	Sediment Thickness(m)

r.	10	ì	: 1	1	ı	ì	1	1	0.0003	2,0002	0,0010	:	•	ı	ì	•	ı	1	ı	1	1	0.005	
6/0ay)	3	t	1	•	•	•	2.162	0.045	۲	0.193 -0.000	۲		1	1	1	1	1	•	•	1	ı	0.770 £	
riese rate 8/m/day		•	1	i	ı	1	•	١	1	1	1	1	1	1	•	1	t	1	1	•		1	
Kelease	Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan	1	1	0.00	0.00	000	8	0.013	880	0.003	9.65 9.65		0.00		0.026	30°.0	-0.003	0.00	0.004	0.013	0.001	0.005	
0,00	5			0.080	- 0.024	- 0.049	- 0.011	5 0.012	3 0.013	3 0.012	0.000	- 0.016	- :0.011	.000.	- :0.007	- 0.004	- 0.004	- 0.00	- : 0.007	2 : 0.008	- 0.004	3 . 0.009	
6	Ĭ.		•	4	1	•	17	12 0.01	ö	7 D.013	- 0.010		1	. 1		•	ŀ	B,		0.012	1	10 0.01	
1,11,100		ı	,	ı	1.	. •	t	•	ı	•	1	ţ	1	,	ı	1	ı	<b>t</b>	. t	•	1	1	
	NHAN	1	•	0.0	,	ŀ	0.0	0.0	0.10						0.20	9 8	9.0	0.10	0.04	80.0	0.04		
ZIT LUGINING	ž	1	0.448	0.389	0.366	7 0.357	0.178	0.151	- 0.149	0 0.147		_	0 0 151	_	0.130	0 0.116	0.089	- 0.097	- 0.085	- 0.097	- 0.077	9 0.182	
0	3	•	0.0	- 0.10	- 0.10	1.5 0.10	20.6 0.10	٠	,	23.2 0.00	- 0.10	3.8 0.10	3.1 0.10	3.0 0.10	3.0 0.10	- 0.10	- 0.2		•	,	,	22.3 0.09	
-	-je ]C計	 t				8	ຊ -	012 22	013	510.	014	77	22		23						1	0.013 22	.*
E 504		i	ŀ	<b>ゼ</b>		•	•	် မ	က	4	0		1	1	ı	•	1		ı	٠		50	
77/400			•		1	, ;	<u>.</u>	ام	١	-		-	-	١	01		-	۱			-		
3	NH4N			20 0.00											19 0.02		1		0.00	-	19 0.0	19 0.01	38
int jur	£									0.025				[	0.019	_	- 0.019	- 0.01	- 0.010	- 0.009	- 0.019	90.0	value were used
00	라 기		0.0	1.0	- 0.1		21.5 0.10	'n		23.2 0.0	- 0.1	00	0	23.0 0.1	23.0 0.10	- 0.1	ı	ı	1			22 2 0 08	
	line(day) lenp.	;	0.91	0.73	1.55				1.14		1.46				1.66	1.79	1.22	: 83	1.37	1.37	1.46		ta the mean
Ų	11 (Sep./1)	•	8. 88	4.61	4.32	3.89	3.31	3.02	2.85	2.88	2.30	2.59	2.52	2.8	2.02	1.87	2.74	5.58 2.58	2.45	2.45	2.30	2.92	Pacause of lack of data the
interval	Line (day)	1	o. 88	0.91	0.92	8	1.32	0.98	1.83	0.85	2.03	1.19	1.79	1.07	1.16	9:	2.77	2.33	s. 8.		2.12		P. Recause
	Se S	9.8								89 89	10.60	11.79	13.58	3.83	15.81	16.81	85. 85.	21.81	26.81	27.83	82 73		
1	į						3 18:00				20:33								15:33	8:11:8	14:00		Note:
na re	!	Apr. 8	Apr. 9	Apr. 10	Apr. 11	Apr. 12	Apr. 13	Apr. 14	Apr.16	Apr.17	Apr. 19	Apr. 20	Apr. 22	Apr. 23	Apr. 24	Apr. 25	Apr. 28	Pr.33	Hay. 4	Hay. 5	, se	HEAN	

Table APP 4.2-2(1) Quality of Sediment used for Release Test

											4.1			
			COD(Cr)		TP (mg/g)	T-Cd (mg/g)	T-Pb (ng/g)	T-Cu (ng/g)	T-Cr (mg/g)	T-Zn (mg/g)		Fe (mg/g)	Ni (mg/g)	Mg (mg/g)
St.20	Before Test	74.5	45.3	19.0	0.96	<0.001	0.09	0.070	0.09	0.24	0.80	37	0.040	0.420
	After Test	69.6	61.3	28.0	1.34	<0.001	0,12	0.300	0.16	0.30	1.00	38	0.045	0.500
St.21	Before Test	28.8	42.7	8.0	1.17	<0.001	0.02	0.008	0.02	0.05	0.05	27	0.005	0.089
	After Test	26.5	50.7	8.0	1.13	<0.001	0.02	0.008	0.02	0.05	0.10	34	0.005	0.120
St.22	Before Test	76.9	58.7	14.0	1.12	0,002	0.14	0,090	0.22	0.44	1.80	7	0.030	0.320
	After Test	70.5	120.0	12.0	1.06	0.002	0.14	0.100	0.20	0.55	2.00	. 1	0.035	0.320

Table APP 4.2-2(2) Quality of Sediment used for Release Test

100	ic mi	1.0 0	(0) d		J 42 4	O. 2.1110.				_		(Anaero	obic Co	ndition)	)
St.35	Depth	pH	Eh *	W.C.	COD(Cr)	KN	TP	T-Cd	T-Pb	T-Cu	T-Cr	T-Zn	Fe	Ni	Нg
	(cn)		(Vm)	(%)	(ng/g)	(mg/g)	(mg/g).	(mg/g)	(ng/g).	(ng/g).	_(mg/g)_	(rg/g)	_(ng/g)_	_(fg/g)_	(rg/gr).
Before															
Test				81.0	227.7	5.32	1.10	<0.001	0.10	0.10	0.12	0.34	32_	0.030	0.32
	Surface	8.12	-407	76.6	159.7	2.93	1.15	<0.001	0.06	0.07	0.22	0.40	41	0.025	0.50
After	6.0	8.07	-410	76.9	132.0	4.63	1.13	0.001	0.07	0.07	0.22	0.32	42	0.025	0.50
Test	10.0	8.07	-412	.78.4	136.0	3.68	1.20	0.001	0.07	0.08	0.26	0.26	44	0.030	0.52
	15.0	7.78	-430	79.2	164.0	3.60	1.15	0.001	0.07	0.08	0.26	0.38	40	0.025	0.50
	20.0	8.10	-435	81.3	156.0	3.50	1.06	0.001	0.07	0.08	0.26	0.26	43	0.025	0.52

Table APP 4.2-2(3) Quality of Sediment used for Release Test

										_	4.4	(Anaero	XOIC CO	naition	<u> </u>
St.38	Depth	pH	£h ≉	W.C.	COD(Cr)	KN	15	T-Cd	T-Pb	T-Cu	T-Cr	T-Zn	Fe	Ni	Mg
	(cm)		(mV)	(%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
Before															
Test			-	79.7	164.0	3.70	1.20	<0.001	0.03	0.02	0.03	0.04	36	0.015	0.4
	Surface	8.00	-403	77.6	212.0	4.30	0.85	<0.001	0.03	0.02	0.04	0.32	38	0.250	0.3
After	5.0	7.94	-419	78.1	196.0	3.70	1.04	<0.001	0.04	0.03	0.04	0.08	50	0.020	0.5
Test	10.0	7.51	-453	82.3	184.0	3.85	1.10	<0.001	0.03	0.02	0.04	0.20	41	0.020	0.3
ſ	15.0	7.56	-434	80.3	168.0	4.45	1.40	< 0.001	0.03	0.02	0.03	0.10	46	0.020	0.4
	20.0	7,53	-429	80.9	178.0	3.55	1.35	<0.001	0.03	0.02	0.03	0.08	39	0.015	0.3

Table APP 4.2-2(4) Quality of Sediment used for Release Test

nc nii	7.4	~(.,	4	·, ·,		••••					(Anaero	obic Co	ndition	)
Depth	pH	Eh *	W.C.	COD(Cr)	KN	TP	T-Cd	T-Pb	T-Cu	T-Cr	T-Zn	Fe	Ni	Hg
(cn)	•	(raY)	(X)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(rg/g)	(mg/g)	(mg/g)	(rg/g)
_	-	-	67.9	151.7	3.80	1.08	<0.001	0.07	0.08	0.24	0.30	40	0.025	0.50
Surface	8.15	-374	75.4	140.0	4.67	1.20	0.001	0.10	0.12	0.10	0.10	33	0.030	0.30
5.0	8.02	-413	74.8	172.0	4.70	1.30	0.001	0.12	0.12	0.10	0.38	36	0.030	0.38
10.0	7.99	-409	73.4	188.0	5.14	1.20	0.002	0.12	0.12	0.14	0.40	38	0.030	0.36
15.0	7.63	~417	77.8	204.0	5.58	1.60	0.002	0.12	0.14	0.10	0.42	39	0.030	0.36
20.0	7.54	-420	76.3	208.0	5.06	1.25	0.002	0.12	0.12	0.12	0.46	27	0.020	0.34
	Depth (cm)  Surface 5.0 10.0 15.0	Depth cm FH (cm)  Surface 8.15 5.0 8.02 10.0 7.99 15.0 7.63	Depth pH Eh * (mY)  Surface 8.15 -374 5.0 8.02 -413 10.0 7.99 -409 15.0 7.63 -417	Depth cff Eh * W.C. (mV) (X)  67.9  Surface 8.15 -374 75.4  5.0 8.02 -413 74.8  10.0 7.99 -409 73.4  15.0 7.63 -417 77.8	Depth pH Eh * W.C. COD(Cr) (cm) (mY) (X) (mg/g)  67.9 151.7  Surface 8.15 -374 75.4 140.0  5.0 8.02 -413 74.8 172.0  10.0 7.99 -409 73.4 188.0  15.0 7.63 -417 77.8 204.0	Depth cm Eh * W.C. COD(Cr) KN (mV) (X) (mg/g) (mg/g)  67.9 151.7 3.80  Surface 8.15 -374 75.4 140.0 4.67  5.0 8.02 -413 74.8 172.0 4.70  10.0 7.99 -409 73.4 188.0 5.14  15.0 7.63 -417 77.8 204.0 5.58	Depth (cm)         pH         Eh * M.C. COD(Cr)         KN         TP           (cm)         (mY)         (X)         (mg/g)         (mg/g)         (mg/g)           -         -         -         67.9         151.7         3.80         1.08           Surface         8.15         -374         75.4         140.0         4.67         1.20           5.0         8.02         -413         74.8         172.0         4.70         1.30           10.0         7.99         -409         73.4         188.0         5.14         1.20           15.0         7.63         -417         77.8         204.0         5.58         1.60	Depth (cm)         pH         Eh * M.C. COD(Cr)         KN         TP         T-Cd           (cm)         (mV)         (X)         (mg/g)         (mg/g)	Depth (cm)         pH         Eh * M.C. COD(Cr)         KN         TP         T-Cd         T-Pb           (cm)         (mV)         (X)         (mg/g)         (mg/g)	Depth (cm)         pH         Eh * M.C. COD(Cr)         KN         TP         T-Cd         T-Pb         T-Ou (mg/g)           -         -         -         67.9         151.7         3.80         1.08         <0.001	Depth (cm)         pH         Eh * M.C. COD(Cr)         KN         TP         T-Cd         T-Pb         T-Cu         T-Cr           (cm)         (mV)         (X)         (mg/g)         (mg/g)	Can   PH   Eh *   W.C.   COD(Cr)   KN   TP   T-Cd   T-Pb   T-Cu   T-Cr   T-2h	Canaercoic Co   Depth	Can   Condition   Condition   Condition   Can   Condition   Condition   Can
Note:

1. Hetal analysis in the total fraction
2. Total metal analysis = nitric and perchloric acid digestion
3. Results on dry weight basis
4. * Eh = Potential measured against TOA PTS-2019 C electrode at temperature = 23-24°C

Table APP 4.2-2(5) Quality of Sediment used for Release Test

												(Aerob	ic Cond	ition)	
St.35	Depth (cm)	Hq	Eh * (mV)	W.C. (%)	COD(Cr) (mg/g)	KN (mg/g)	TP (mg/g)	T-Cd (ng/g)	T-Pb (mg/g)	T-Cu (mg/g)	T-Cr (mg/g)	T-Zn (mg/g)	Fe (mg/g)	Ni (mg/g)	Mg (mg/g)
Before Test	_	4-	_	81.0	277.7	5,32	1.10	<0.001	0.10	0.10	0.12	0.34	32	0.030	0.32
After	Surface 5.0	7.55 7.80	-329 -381	73.6 73.7	143.7 139.7	3.70 4.10	1.06 0.96	<0.001 <0.001	0.07	0.08	0.26 0.20	$0.30 \\ 0.26$	42 44	0.030	0.50 0.52
Test	10.0 15.0	7.65 7.72	-407 -414	65.2 74.0	159.7 100.0	3.90 4.54	1.06 0.96	<0.001 0.001	0.09	0.10 0.08	0.22 0.22	0.34 0.25	43 46	0.030	0.48 0.52
Ļ	19.0	7.77	-422	76.2	100.0	3.42	1.20	0.001	0.07	0.08	. 0.22	0.25	43	0.025	0.52

Table APP 4.2-2(6) Quality of Sediment used for Release Test

												(Aerob)	ic cona	i tion)	
St.36	Depth	배	Eh *	W.C.	COD(Cr)	KN	TP	T-Cd	T-Pb	T-Cu	T-Cr	T-Zn	Fe	Ni	Hg
	(cn)		(mV)	(%)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	_(mg/g)_	(mg/g)	(mg/g)
Before															
Test	-	-	-	79.7	164.0	3.70	1.20	<0.001	0.03	0.02	0.03	0.04	36	0.015	0.40
	Surface	7.43	-328	78.2	164.0	5.04	1.03	<0.001	0.04	0.03	0.03	0.09	48	0.020	0.34
After	5.0	7.24	-383	79.6	172.0	4.42	0.98	<0.001	0.03	0.02	0.03	0.06	40	0.015	0.32
Test	10.0	7.21	-417	79.0	176.0	5.25	1.09	<0.001	0.03	0.02	0.03	0.08	43	0.020	0.38
	15.0	7,25	-418	82.7	176.0	4.07	1.01	<0.001	0.03	0.02	0.03	0.06	43	0.020	0.36
	20.0	7.24	-423	79.9	180.0	3.84	0.99	<0.001	0.03	0.03	0.03	0.10	46	0.020	0.40

Table APP 4.2-2(7) Quality of Sediment used for Release Test

iai	We wer	4.6	0(1)	Įuu. I								(Aerob	ic Cond	ition)	
St.37	Depth (cm)	рН	Eh * (mV)	W.C. (%)	COD(Cr)	KN (mg/g)	TP (mg/g)	T-Cd (mg/g)	T-Pb (mg/g)	T-Cu (mg/g)	T-Cr (mg/g)	T-Zn (mg/g)	Fe (mg/g)	Ni (mg/g)	Hg (mg/g)
Before Test	_	_	<del>-</del> .	67.9	151.7	3.80	1.08	<0.001	0.07	0.08	0.24	0.30	40	0.025	0.50
	Surface	7.40	-366	71.0				0.002	0.12	0.12	0.12	0.16	36	0.030	0.34
After	5.0	7.46	-377	57.9	188.0		1.40	0.001	0.12	0.12	0.12	0.46	36	0.035	0.34
Test	10.0 15.0	7.42	-386 -417	71.6 73.2	-		1.30	0.001	0.12	0.12	0.12	$0.50 \\ 0.48$	36 41	0.030	0.38
	20.0	7.33	-432	74.2			1.04	0.002	0.12	0.12	0.12	0.40	36	0.035	

Note:

1. Hetal analysis in the total fraction

2. Total metal analysis = nitric and perchloric acid digestion

3. Results on dry weight basis

4. * Eh = Potential measured against TOA PTS-2019 C electrode at temperature = 23-24°C

Table APP 4.2-3 Release Rate from Coloid-Clay and Silt-Sand Areas

	Release Rate	Conc. Sediment	W.C.	Condition of
St.	(g/m2/day)	(mg/g d W.)	(%)	Sediment
1	NH4N: TP	NH4N TP		
20	0.034 0.021	23.5 1.15	74.5	Clay,Colloid
21	0.016 0.014	8.0 1.15	28.8	Sand
22	0.245 : 0.044	13.0 1.09	76.9	Clay Colloid
35	0.011 0.020	4.2 1.01	81.0	
36	0.021 0.020	4.4 1.20	80.0	Clay Colloid
37	0.010 0.011	5.4 1.08	68.0	Silt
	NH4N:0.061(g/m PO4P:0.024(g/m	2/day)		
	Sand,Silt Area:(S	t.21+St.37)/2		
	NH4N:0.013(g/m			
	PO4P:0.013(g/m	2/day)		
2.	Release Rate(excl	ud St.22 data)		
		a:(St.35+St.20+S	t.38)/3	
	NH4N:0.016(g/n			4
	PO4P:0.020(g/m	n2/day)		
	Sand Silt Area:	(St.21+St.37)/2		

Sand, Silt Area: (St.21+St.37)/2 NH4N:0.013(g/m2/day) PO4P:0.013(g/m2/day)

Areas of colloid-clay in the Guanabara Bay:144km Areas of silt-sand in the Guanabara Bay:208km

	APP 4.3-	1(1)	Cha Set	e i ing	n Wat	ter	Char	haracter	is	tics in	Table APP 4.3-1(4) Change in Water Characteristi
Time (hr) Start	Surface Bo	4	Surface 8		Surface.	(ag/1) Botton 0.20	S S	CC (mg/1)	~ 8	(2) (2) (3) (3)	Time COD(Nth) (mg/l) RN (mg/l) TP (mg/l) TOC (mg/l) PCAP (hr) Surface Bottom Surface Bottom (mg/l) Start 6.8 0.05
0.0	8 4	3.0		1.2	8.8	0.15		16	13		0.0 2.0 2.0 1.4 2.2 0.25 0.20 9 9 -
1.0	တ	3.2	2.4	9	8	8		11	 : =:		
3.0	တ <u>ရ</u>	က . က .	40 0 -1 -	αο c	0.0 2.5			⊒:	요	1	2.2
2.6	1, 4	4 A	0 0	7 6	3 5	3 5		 ⊇ ¹			3.0 2.8 3.0 0.15 0.15 1
8	3.6		: 1	7	0	0.10		О	 ന		1.8 2.2 1.8 2.2 0.20 0.15
72.0	ļ ``	ያ ማ	18 6	Material	20	년 (일) (일)	78.50	12 2 (mg)			.0 Amount
			1								75.7
Table AP	P 4.3-	1(2	Change	e T	W	er r	Char	aracter	ist	ics in	Table ADD 4 3-1/5) Change in Water Characteristics in
St.33			Settl	ing.	Tes	ı					Settling Test
	(m) (m)			î,	£i.	(1/2m)		OC (mg/1)	i.	8	ne COD(Hn) (mg/1) KN (mg/1) IP (mg/1) TOC (
Stert		8! 8!	Surrace 2.	2.6	MITTAGE	ă¦.;		Sce Borton	5; 5;	207.	Bottom Mirrace Bottom
0.0		69.	2.4	2.8	8	0.30	ļ		9		0.0 2.2 2.4 1.0 1.6 0.20 0.20 8 9 -
0.5	2.0	٠ جا د	0.0	 O 0	88	8.5			요.		1 5
	 uD € ⊶i α	2.5	2, c 8, 60	2.2	88	η κ Ο σ					3.0 1.4 1.5 0.15 0.20
0.9		0.0	 5 6 7 7	4 64	88				 -		4.0 2.4 0.8 0.6 0.20 0.15 8
2.0	1 0		0.0	တွင်	8.8	8,8		1 6	1 9		3.0 2.8 3.2 2.6 0.15 0.10
2,0	0.0	0.0	3.0	3.0	્રે ⊃	ار ا		so.	2	1	2.0 2.4 1.0 1.2 0.15 0.10
72.0 (Sedime	Amount (2.4 (mg)	₹ 	Sedimentated P	ted Material (mg)	7 O	된 (함 (함	% X	7.0 (IRC)			72.0 Amount of Sedimentated Material per 72hr per 78.5cm2 (Sediment) 3.8 (mg) 5.7 (mg) 0.69 (mg) 26.4 (mg) -
	l										
Table APP	4.3-1	<u>ල</u> ,	hang	۲. ایر	¥at ∵	er Chi	æ	racterist	~	cs in	e in ₩
St. 40		S	et Ct	บธิบ	es.						st.43 Settling Test
	COD(Mn) (mg/	ر ع >	RN (B)	(1/28/15/15/15/15/15/15/15/15/15/15/15/15/15/	والم		0	/ag 20 20 20 20 20 20 20 20 20 20 20 20 20		75. 1.	(mg/l) TP (mg/l) TOC Bottom Surface Rottom Surface
Start	4.6	şi Şi	2		};	10	3) 31 31 -1	i	7 	. 10	5.4
0.0	0.6	0.8	9	 	S	0.20	ļ 	8	1	-	0.0 1.4 1.4 1.0 - 0.15 0.15 8 7 -
	4.0	 ထု (	 <del>≪</del> , ¢	9	8 8	8 8		r- ¢			1 0
-i «	G 0	 7 &	0.7	٠ م	3 5	٠		2 6	~ 6		61.0 62.0
0.0		0.0	1.2		8			Q			1.6 2.0 0.8 1.0 0.10
7.0	1.6	3.8	4.2	4.2 3.0	0.8	0.20			1		2.4 2.0 3.0 0.15 0.10 -
φ.	•	3.	1.8	9	2	0.1		e	7	1	1.8 1.4 1.2 1.0 0.15
(27)		Ħ	inentated r	nateria	K a	¥ (		7 (mg)			(2.0 Amount of Sectionarizated Material per 1/2.0 Amount 3.4 (mg) 3.9 (mg) 3.9 (mg) 1.5 5 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg) 2.0 (mg
	:			7		, ,					, , , , , , , , , , , , , , , , , , ,