	TATION : 1 (C1780) RIVER NAM							
10. OF \$	AMPLING		1	2	3	4	5	6
enaral	number of the laboratory				· · · · · · · · · · · · · · · · · · ·			
ATE OF	SAMPLING		19 MAR 906	AUG 90	20 AUG 90	11 APR 91	4 JUL 91	9 OCT 91
	PARAMETER							
		н		9:30	9:05	9:50	8:35	8:05
	Yater temperature	°C	30.00	23.00	24.00 26.50	27.00	24.00	23.00
	Air temperature	* C	31.00	23.00	25, 50	28.00	23.00	22.00
	feather conditions		Cloudy	good	good	good No	good No	Cloudy
	Rain in the last 24 hours Sampling depth		Nob 0,10	Nob 0.10	yes 0.10	ao	0.15	ye: 0.1(
	Depth of water column	n A	0.10				0.13	0.10
	Oll Presence	14	Nob	yes	yes	No	No	yes
	Garbage Presence		yes	yes	yes	No	yes	yes
	pli (Lab)		6.90	1.70	7.50	6.70	7.10	8.20
	Conduct. (field)	uS/cm		420.00	330.00	490.00	480.00	500.00
	furbidity	UT						
0401L 3	Suspended Solids	mg/1	60.00	45.00	80.00	40.00	130.00	40.01
	Fotal alcalinity	CaCO3 mg/1						
	Dissolved sulphate	SO4 mg/1						
	Dissolved Chloride	mg/l	40.00	40.00	30.00		50,00	50.0
8101L		mg/1	2.00	3.60	5.20	2.40	3.20	3, 4(
	BOD (total)	mg/1	22.00	20.00	14.00	28.00	40.00	16.00
	COD (total)	mg/1	70.00	50.00	20.00		130.00	90.00
	Fotal Coli x1000	MPN/100ml	1600<*	1600<*	1600<+	160<	24.00	160
	Fecal Coli x1000 Dissolved Sulphide	MPN/100ml mgS/1						
	Total Alcalinity	CaCO3 mg/l						
	Alcalinity to Phenolphtalein	φ.						
	Total kjeldahl Nitrogen	mg N/1	17.00	13.00	12.00	16.00	24.00	20.00
	Ammonia Nitrogen	mg N/I	11.00	12.00	11.00	4.00	15.00	18.00
	Vitrate Nitrogen	ng N/1	0.20	1.50	0.44	0.05	0.10	0.50
5408L (Fotal Phosphorus	mg P/1	1.00	0.90	0.80	1.00	2.00	0.65
	Orthophoshate	mg P/1		0.10	0.30			
	Vitrite Nitrogen	mg N/1						
)issolved sulphide	SO4 mg/1						
	issolved Fluoride	mg F/1						
	lexane Extractable	mg/l						
	Surfactants	()	2 000	2 001		0 0.4	0 000	A A0
5534L 56001	Cyanide	mg/l mg CN/L	<.003 0.060	<.001 <.010	0.001 0.025	0.03 <.010	0.008	0.004
	Diss Kjeldahl N.	mg N/1	U. VOV		0.020	1.010	V. UIV	
	Rumidity	10 B 11 V I						
	Cadnium	mg Cd/l	<. 002	<.002	<. 002	0.006	0.002	<. 002
9005L (mg Cu/l	0.015	<. 005	<. 005	0.015	0.010	0.01
20041.	• •	mg Pd/1	0.04	<. 02	<. 02	<. 02	<: 02	<. 02
	Chromium	ag Cr/l	<.01	<. 01	<. 01	-		
	Total Nickel	mg Ni∕l	<. 01	<. 01	<. 01	<. 01	<. 01	<. 01
	fotal Zinc	ag Zn∕l	0.05	0.020	0.03	0.015	0.020	0.020
	lercury	ug Hg/l	0.10	0.15	<. 10	<. 10	<.10	2.00
	lotal iron (Fe2++Fe3+)	mg Fe∕l						
	Total Manganese	mg Mn∕l		•				
	Total Tin	mg Sn/1						
	fotal potassium Nacional II	mg K/L		/ 04		× 01		
	Chromuin VI	mg Cu/l	<. 01	<. 01	<. 01	<. 01	<. 01	01
	Dissolved Chromuim	mg Cr/l	100 C					
)issolved Manganese)issolved iron	mg Mn/1 -	0.12	0.05	0.08	0.18	0.02	0.04
	Jissolved Nickel	mg Fe/l mg Ni/l	U. 12	0.00	v. vo	V. LO	0.92	0.04
)issolved copper	mg RI/I						
103L 2		mg Zn/l						
)issolved chromium	ng Cr/l			:			
	issolved Lead	mg Pb/1						

A8-14

1

NO.OF S									
NO.OF S	AMPLING		1	2	. 3	4	5	6	.1
Genaral	number of the laboratory								
DATE OF	SAMPLING	· · · · ·	19 MAR 906	AUG 90	20 AUG 9011	APR 914	JVI. 91	21 AUG 919	0CT 9
	PARAMETER								
	Time	н́	9:30	10:10		10:15	9:30	9:20	8:5
D2061F	Water temperature	° C ° C	30.00	21.00	24.00	26.50	27.00	21.00	21.0
)2062F	Air temperature	°C	32.50	23.00	25.00	30.00	25.00	24.00	24.1
6204F	Weather conditions		good	good	good	boog	Cloudy	good	Clou
8101F	Rain in the last 24 hours		Nob	No	yes	No	No	No	У
7251F	Sampling depth	m	0.10	0.10	0.10		0.15		0.
07001F	Depth of water column	n							
6301F	OfL Presence		Nob	No	No	No	. yes	yes	У
16302F	Garbage Presence		yes	yes	yes	yes	yes	yes	ý
	pH (Lab)	·	6.90	7.20	7.10	6.90	6.80	6.80	8.
2041L	Conduct. (field)	uS/cm	580.00	240.00	520.00	640.00	540.00	590.00	560.
	Turbidity	UT							
0401L	Suspended Solids	mg/l	90.00	900.00	100.00	140.00	110.00	150.00	50.
0104L	Total alcalinity	−CaCO3 mg/1							
16302L	Dissolved sulphate	SO4 mg/l							
7204L	Dissolved Chloride	mg/l	50.00	30.00	60,00	60.00	50.00		60.
081011.		mg/1	<.1	4.60	6.20	<.1	1.20	2.20	3.
D8202L	BOD (total)	mg/l	120.00	20.00	25.00	210.00	90.00	90.00	30.
)8301L	COD (total)	mg/l	220.00		50.00	290.00	240.00	250.00	80.
6101L	Total Coli x1000	MPN/100ml							
86111L	Fecal Coli x1000	MPN/100ml	1600<#	1600<*	1600<*	160<	160<	160<	16
6404L	Dissolved Sulphide	mgS/1							
	Total Alcalinity	CaCO3 mg/l							
	Alcalinity to Phenolphtalein								
0700SL	Total kjeldahl Nitrogen	mg N∕l	40.00	11.00		27.00	29.00		25.
07556L	Ammonia Nitrogen	mg N/1	30.00	4.00	18.00	3.40	20.00	17.00	23.
	Nitrate Nitrogen	mg N∕1	0.30	0.40		0.02	0.02		0.
	Total Phosphorus		4.00	4.00		5.00	3.40	4.00	1.
	Orthophoshate	mg P/1		0.10	0.80				
	Nitrite Nitrogen	mg N/1							
	Dissolved sulphide	SO4 mg/1							
	Dissolved Fluoride	mg F/1						· · ·	
	Hexane Extractable	ng∕l							
	Surfactants							1	•
06534L		mg/l	0.03	<. 001	0.02	0.25	0.007	0.02	0.
	Cyanide	mg CN/L	0.090	<.010	0.025	<.010	0.030	0.030	<.0
	Diss.Kjeldahl N.	mg N/1							
	Rumidity								
	Cadmium	mg Cd/l	<. 002	<. 002	<. 002	<. 002	0.002	<. 002	<.0
29005L		mg Cu∕l	0.015	0.08	<.005	0.015	0.010	0.015	0.0
32004L		mg Pd/1	0.02	0.10	<. 02	0.06	<.02	<. 02	۲.
	Chromium	mg Cr/l	0.01	0.01	<.01				,
	Total Nickel	mg Ni/l	<.01	<.01	<.01	<.01	<. 01	<. 01	<.
	Total Zinc	mg Zn/1	0.07	0.32	0.03	0.04	0.04	0.07	0.0
0013L	Mercury	ug llg/1	0.10	0.35	0.15	<.10	<. 10	<. 10	۲.
	Total iron (Fe2++Fe3+)							•	
	Total Manganese	mg Mn/1							
	Total Tin								
	Total potassium	mg K/l						2.01	
	Chronuim Vi	mg Cu/l	<.01	<. 01	<.01	<.01	<.01	<.01	<. (
	Dissolved Chromuim	ng Cr/l							
	Dissolved Manganese	mg Mn/l			A 60	1 00	A 10	A 66	•
	Dissolved iron	mg Fe/l	0.65	0.90	0.20	i.90	0.18	0.30	0.3
	Dissolved Nickel	ng Ni/l							
	Dissolved copper	mg Cu/l							
80103L :		mg Zn/l							
	Dissolved chromium	mg Cr/l							
20061	Dissolved Lead	mg Pb/l							

NO. OF S	STATION : 4 (AN740) RIVER N	AME : Rio Alc	cantara				(1990~19	91)	
NO. OF S	SAMPLING		1	2	3	4	5	6	7
	number of the laboratory							· · · · · · · · · · · · · · · · · · ·	:
DATE OF	SAMPLING	1	19 MAR 90	6 AUG 90	20 AUG 90	11 APR 91	4 JUL 91	21 AUG 91	9 OCT 91
	PARAMETER								
	Time	H	10:00	10:40	10:15	10:40	9:30	9:20	8:50
	Water temperature	°C	31.00	22.00	24.00	27.00	25.00	24.00	22.50
2062F	•	° C	35.50	24.00	28.00	31.00	25.00	26.00	24.50
6204F	Weather conditions		good	good	good yes	good	Cloudy	good	Cloudy
8101F	Rain in the last 24 hours	_	Nob	No	yes	No	NO 15		yes 0 10
7251F 7001F	Sampling depth Depth of water column	D	0.10	0.10	0.10		0.15		0.10
6301F	OIL Presence	E)	Nob	No	No	No	yes	yes	yes
6302F	Garbage Presence		yes	yes	yes	yes	yes	yes	yes
03011	pll (Lab)		6,50	6,50	7.40	5.50	6,10	6.70	9.00
2041L	Conduct. (field)	uS/cm	530.00	460.00	430.00	900.00	450.00	720.00	430.00
2073L	Turbidity	UT						,	
04011	Suspended Solids	mg/l	280.00	13.00	200,00	160.00	150.00	140.00	80.00
01041.	-	CaCO3 mg/l							
63021	Dissolved sulphate	S04 mg/1	· · ·					. 1	1
7204L	Dissolved Chloride	mg/l	40.00	50.00	60.00	120.00	60,00	65.00	40.00
8101L	D O	ng/l	2.20	4.80	2.00	2.80	5.40	5.20	4.40
8202L	BOD (total)	mg/l	100.00	40.00	50.00	500.00	20.00	80.00	
8301L	COD (total)	mg/1	560,00		60.00	740.00	560.00	400.00	440.00
6101L	Total Coli x1000	MPN/100ml						•	
6111L -	Fecal Coli x1000	MPN/100ml	1600<+	1600<+	500.00	160<	160<	160<	160<
64041,	Dissolved Sulphide	agS/1							· .
4752L	Total Alcalinity	CaCO3 mg∕l							
01541.	Alcalinity to Phenolphtale								
7005L		ng N/I	30.00	16.00	10.00	25.00	21.00	20.00	14.00
7556L	Ammonia Nitrogen	ng N/i	13.00	3.00	7.00	1.00	10.00	6.00	8.00
7306L		ag N/1	0.20	<.01	0.90	0.06	0.03	9.00	8.00
5408L	Total Phosphorus	ag P/1	6.00	6.50	1.50	20.00	3.20	6.00	1.10
5252L	Orthophoshate	mg P/1		2.50	0.70				
72061,	Nitrite Nitrogen Dissolved sulphide	.mg N/1 S04 = a/1							
53021. 30041.	Dissolved Fluoride	SO4 mg/l mg F/l							
5522L	Hexane Extractable	ag r∕i ng∕i							
0701L	Surfactants	14.67							
6534L	Phenol	mg/l	0.01	<. 001	0,004	0.01	0.03	0, 01	0.008
66001.	Cyanide	ng CN/L	0.025	<. 010	0.035	0.035	0.050	0.050	< 010
7054L	-	mg N/1	0.010			0.040	0.000		
04741	Humidity	····6 · · · · ·							
80041.	Cadmium	ng Cd/l	<. 002	<.002	<.002	0,006	0.002	<. 002	<.002
90051,	Copper	mg Cu/l	0.02	0.010	0.010	0,015	0.015	0.015	0.010
20041.	•••	mg Pd/1	0.04	<. 02	<. 02	0.06	<. 02	<. 02	<. 02
40021	Chromium	ug Cr/1	<.01	<, 01	<. 01			·	
B104L	Total Nickel	ng Ni/l	<.01	<. 01	<. 01	<. 01	<. 01	<. 01	<. 01
00031.	Total Zine	ag Zn/1	0.14	0.05	0.020	0.07	0.04	0.05	0.04
00131,	Morcury	ug lig/1	0.10	0.25	0.40	<. 10	<. 10	0.15	0.10
5007L	Total iron (Fe2++Fe3+)	mg Fe/1							
50061.	Total Manganese	mg Mn∕l							
00041.	Total fin	mg Sn/l							
91021.	Total potassium	¤g K∕i							
4101L	Chronuim VI	mg Cu/l	< 01	<, 01	<.01	< <. 01	<. 01	<.01	<. 01
10511,		mg Cr/1							
51031,	-	mg Mn/1							
61011		ng Fe/l	0.55	2.50	1.80	6.00	1.20	0.90	1.30
8002L	Dissolved Nickel	mg Ni/I							1
91051.		mg Cu/l							
01031,		¤g Zn∕l							
8005L	Dissolved chromium	mg Cr/l							
20051	Dissolved Lead	mg Pb/1							

A 8-16

NO. OF SAM	TION : 6 (GX720) RIVER NAM		1	2	3	4	5	6	7
			I		J 	4	6	• • • • • • • • • • • • • • • • • • • •	
**************************************	umber of the laboratory								
DATE OF S	AMPLING		19 MAR 90 (5 AUG 90	20 AUG 90	11 APR 91	4 JUL 91	21 AUG 91	9 OCT 9
CODE P.	ARAMETER	UNITY							
	ine	н °с	10:30	11:05	10:35	11:10	9:40	9:40	9:1
U2061F W	ater temperature	°C	29,00	22.00	24.50	27.50	24.00	24.00	20.0
	ir temperature eather conditions	L	35.00 good	23.00	30.00	31.50	25.00 Cloudy	28.00	24.
	ain in the last 24 hours		good Nob	good No	yes good	good No	Cloudy No	good No	Clou y
	ampling depth	Π.	0, 10	0.10	0.10	10	0,15		, 0.
	epth of water column	ы. В	0.10	. 0.10	0.10		0.15		ν.
	IL Presence	μţ	Nob	Nob	No	No	yes	No	У
	arbage Presence		yes	yes	yes	No	yes	yes	y,
	H (Lab)		6,90	8, 20	7.20	6.60	6,90	6.90	1.1
	onduct. (field)	uS/cm	690.00	590.00	580.00	500.00	540.00	570.00	470.
	urbidity	UT				-			
	uspended Solids	mg/l	20.00	15.00	12.00	18.00	70.00	16.00	50.
10104L Te	otal alcalinity	CaCO3 mg/l							
16302L D	issolved sulphate	SO4 mg/1							
17204L D	issolved Chloride	mg/l	40.00	100.00	60.00	70.00	70.00	70.00	50.
08101L D	0	mg/l	<. 1	1.60	3.80	2.40	1.00	1.00	2.
	OD (total)	mg/l	20.00	8.00	4.00	4.00	20.00	10.00	6.
	OD (total)	mg/1	40.00	30.00	40.00	30.00	40.00	40.00	. 40.
	otal Coli x1000	MPN/100ml							
	ecal Coli x1000	MPN/100ml	50.00	80.00	5.00	5.00	30.00	0.80	160.
	issolved Sulphide	mgS/1					÷ .		
	otal Alcalinity	CaCO3 mg/1							
	lcalinity to Phenolphtalein								0
	otal kjeldahl Nitrogen	mg N/1	10.00	14.00	12.00	1.20	15,00	20.00	8.
		mg N/1	9.00	10.00	11.00	1.00	10.00	10.00	8.
		mg N/1	0.20	0.35	0.14	0.30	0.05	0.02	1. 0.
	otal Phosphorus	ag P/1	1.00	0.50 0.08	1.00 0.20	0.50	0.70	2.40	v.
		mg P/1		0.00	0.20				
	-	ng N/1 S04 mg/1							
	issolved sulphide issolved Fluoride	sua mg/l							
	exane Extractable	mg/l							
	urfactants	MK7 1							
	henol	mg/1	0.001	<. 001	<,001	0,003	<. 001	0.005	0.0
06600L C		ng CR/L	<.010	<. 010	<, 010	<. 010	<. 010	<. 010	0.0
	iss. Kieldahl N.	ng N/I	(. 010		1.010				
10474L Hi		HB 117 1	· ·						
48004L Ca		mg Cd/l	<. 002		<. 002	<.002	0.002	<. 002	<. 0
29005L Co		ng Cu/l	<. 005	<.005	0.010	<.005	0.010	<. 005	0.0
82004L Le		mg Pd/l	0.06	<. 02	<.02	<. 02	<.02	<. 02	<. t
24002L CI		mg Cr/l	<, 01	<.01	<.01				
	otal Nickel	mg Ni∕l	0.01	<. 01	<. 01	<.01	<.01	<.01	<. i
30003L To		mg Zn∕l	0.005	0.010	0.005	0.07	0.08	0.010	0.0
80013L Me	ercury	ug Hg/l	<.10	<.10	0,30	<.10	<. 10	<. 10	ζ. :
	otal iron (Fe2++Fe3+)	ng Fe/l							
		mg Mn/1							
50004L To		mg Sn/l							
		mg K/I						× 6+	
		mg Cu/l	<.01	<. 01	<. 01	<. 01	<. 01	<. 01	<.
		mg Cr/l	,						
		ng Mn/l		0.00	A 14		6 . 6 .	0.01	^
		ng Fe/l	0.10	0.08	0.12	0.06	0.02	0.04	0.
		ng Ni/l							
		ng Cu/l							
30103L 21		mg Zn/l							
	-	mg Cr/l			: 1				
CODAP DI	issolved Lead	mg Pb/l							

	TATION : 7 (CC622) RIVER N						(1990~199		
	· · · · · · · · · · · · · · · · · · ·		1	2	3	4	5	6	1
lenaral	number of the laboratory								· - · · · · · · · · · · · · · ·
DATE OF	SAMPLING		19 MAR 90	7 AUG 90	22 AUG 90	11 APR 91	4 JUI. 91	21 AUG 91	9 OCT 91
CODE	PARAMETER	UNITY							,
·	Time		10:45	11:30	10:40		9:55	10:00	10:40
02061F	Water temperature	° C ° C	31.00	23.00	22.00		21.50	21.00	21.00
	Air temperature	ι C	34.00	26.00	22.50		24.00	28.00	30.00 Cloudy
96204F	Weather conditions Rain in the last 24 hours		good Nob	good No	rain Yes	-	good No	good No	ves ves
97251F	Sampling depth	'n	0.10	0.10	0.10		0.15	ло	0.10
97001F	Depth of water column	n	0.10	0,10	0.10		0.10		
96301F	01L Presence		Nob	No	No	No	No	No	No
96302F	Garbage Presence		No	yes	No		yes	No	No
10301L	pli (Lab)		6.60	7.40	7.10		6.70	6.80	7.00
02041L	Conduct. (field)	uS/cm	\$12100	500	+2300		290	360	165
02073L	Turbidity	UT			1 - A				
104011.	Suspended Solids	mg/l	25	20	15	25	30	8	. 10
101041.	Total alcalinity	CaCO3 mg/1	l			· · ·		1997 - A.	
163021	Dissolved sulphate	SO4 mg/1							
17204L	Dissolved Chloride	ng/1	120	100	520		50	50	20
D8101L	DO DOD (A - 1 - 1)	mg/l	1.80	3.80			3.00	2.60	2.8
	BOD (total)	mg/l	8.00	4.00	14.00		4.00	10.00	8.00
	COD (total)	mg/1	80.00	20.00	30.00	30.00	20.00	20.00	30.00
361011. 361111.	Total Coli x1000 Fecal Coli x1000	MPN/100ml MPN/100ml	0.08	0.11	2.30	1.30	5.00	0,30	8.00
64041.	Dissolved Sulphide	mgS/1	U. VO	v. 11	2.30	1.50	3.00	0.00	0.01
64752L	Total Alcalinity	CaCO3 mg/1	1						
10154L	Alcalinity to Phenolphiale								
07005L	Total kjeldahl Nitrogen	mg N/1	4.00	1.40	1.80	1.00	3.00	1.20	1.00
07556L	Ammonia Nitrogen	ng N/1	2.00	0.60	0.30		0, 20	0.15	0.01
)7306L	Nitrate Nitrogen	ng N/I	0.20	0.90	2.00		0.60	1.10	0.40
154081.	Total Phosphorus	mg P/I	0.35	0.20	0.10		0.20	0.15	0.25
15252L	Orthophoshate	mg P/1		0.02	0.02				
)7206L	Nitrite Nitrogen	mg N/1							
16302L	Dissolved sulphide	SO4 mg/l							
9004L	Dissolved Fluoride	mg F/I							
)6522L	Hexane Extractable	mg/1						:	
10701L	Surfactants	aa/1		/ 0.0.1	/ 0.01	/ 0.04	/ 0.01	0.001	
)6534L)66001	Phenol Cyanide	mg/l mg CN/L	<.001 <.010	<.001 <.010	<.001 <.010		<.001 <.010	0.001	<.001 <.010
	Diss.Kjeldahl N.	ag N/1	V. 010	V. 010	V. 010	· · · · · · · · · · · · · · · · · · ·	N. 010	1.010	1.010
	Rumidity	MP 11/1							
18004L	Cadmium	mg Cd∕l	0.045	<. 002	<. 002	0.006	0.002	<. 002	< 002
29005L	Copper	ng Cu/l	0.08	1.000	<. 005		0.010	<. 005	0.005
	Lead	mg Pd/1	0.14	<.02	<. 02		<. 02	<. 02	<. 02
	Chromium	mg Cr/l	0.01	<. 01	60.01				
281041.	Total Nickel	mg Ni∕l	0.07	<. 01	<. 01		<. 01	<. 01	<. 01
300031,	Total Zinc	ag Zn/1	0.04	0.020	0.005		0.015	<. 005	0.005
00131.	Mercury	ug llg/l	<. 10	<. 10	<. 10	<. 10	<.10	<. 10	0.60
260071.	Total iron (Fe2++Fe3+)	ng Fe/l				' ,			
250061.	Total Manganese	mg Mn∕l			:				
00041.	Total Tin	ng Sn/l							
91021	Total potassium	mg K/l				× A+			
41011.	Chronuim VI Discolued Chronuim	mg Cu/l	<. 01	<. 01	<. 01	<. 01	<. 01	<. 01	<.01
	Dissolved Chromuim Dissolved Manganese	mg Cr/l					· .		
25103L 26101L	Dissolved manganese Dissolved iron	mg Mn/l mg Fe/l	0.08	0.14	0.20	2.00	0.16	0.20	0.25
	Dissolved Nickel	mg Ni/l	0.00	0.14	υ, 20	2.00	0.10	v. 20	U. 43
	Dissolved copper	mg Cu/l							
30103L ·		mg $2n/1$							
	Dissolved chromium	mg Cr/l							
	Dissolved Lead	mg Pb/l							

A 8-18

	ATION : 8 (GP600) RIVER NAME					(1990~199	
NO. OF SA	MPLING		1	2	3	4	5
[coocol	number of the laboratory						
	SAMPLING						
CODE	PARAMETER	1111 1 75 12					
	Time	н	11:40	11:00	11:15	12:55	11:15
02061F	Water temperature	° C	30.00	21.00			
02062F	Air temperature	°C	32.00		22.50		
96204F	Weather conditions		good No	good No	rain yes	· ·	
)8101F)7251F	Rain in the last 24 hours Sampling depth	0	0,10	0,10	0.10		
97001F	Depth of water column	10	0.10	0.10	0.10	0.10	0.10
96301F	OIL Presence		No	No	No	No	No
96302F	Garbage Presence		No	No	No	No	
10301L	pH (Lab)		7.20	7.40	7.50	6.50	
D2041L	Conduct. (field)	uS/cm	50.00	80.00	60.00	52.00	65.00
D2073L	Turbidity	UT		•			
0401L	Suspended Solids	mg/1	30.00	16.00	10.00	90.00	6.00
01041.	Total alcalinity	CaCO3 mg/1					
6302L	Dissolved sulphate	SO4 mg/1	10.00	A AA	04 00	t 0.5	
7204L	Dissolved Chloride	mg/l	10.00	6.00	24.00		
8101L		mg/l	5.60	6.00	5.00	5.00	
8202L	BOD (total)	mg/l	<2.0	2.40	<2.0	2.40 20.00	
8301L	COD (total) Total Coli x1000	mg/l MPN/100ml		10.00	10.00	20.00	10.00
36101L 36111L	Fecal Coli x1000	MPN/100ml	13.00	8.00	50,00		0.80
16404L	Dissolved Sulphide	mgS/1	10.00	0.00	00.00		0.00
54752L	Total Alcalinity	CaCO3 mg/1					
10154L	Alcalinity to Phenolphtalein						
070051.	Total kjeldahl Nitrogen		0.20	1.20	1.20	1.00	0.80
D7556L	Ammonia Nitrogen	mg N/1	0.04	0.09	0.10	0.08	0,06
7306L	Nitrate Nitrogen	mg N∕l	0.20	0.20		0.20	0.20
5408L	Total Phosphorus	mg P/1	0.10	0.10	0.08	0.10	0.05
5252L	Orthophoshate	ng P/1	0.06	0.01	0.02		
072061.	Nitrite Nitrogen	ng N/1					
16302L	Dissolved sulphide	SO4 mg/1					
09004L	Dissolved Fluoride	mg F/l					
)6522L	Hexane Extractable	mg/l					
	Surfactants	ma/1	<. 001	0.002	<. 001	<. 001	0.001
)6534L)6600L	Phenol Cyanide	mg/l mg CN/L		0.002 <.010	<. 010	<. 010	<. 010 <. 010
7054L	Diss.Kjeldahl N.	ng N/I		1.010			
1034L	Bunidity						
18004L	Cadmium	mg Cd/1	<. 002	0.002	<.002	<. 002	<.002
29005L	Соррег	mg Cu/l	<. 005	<. 005	<.005	<. 005	<. 005
32004L	Lead	mg Pd/1	<. 02	<. 02	<. 02	<. 02	<. 02
240021.	Chromium	mg Cr/l	<. 01	<. 01	<.01		
28104L	Total Nickel	mg Ni/l	<.01	<. 01	<.01	<.01	<. 01
30003L	Total Zinc	mg Zn/1	<. 005	< 005	<. 005	<. 005	<. 005
0013L	Mercury	ug Hg/l	<.10	<.10	<.10	<.10	<. 10
6007L	Total iron (Fe2++Fe3+)	mg Fe/l					
5006L	Total Manganese	ng Mn/l ng Sn/l					
0004L	Total Tin Total potassium	mg Sn/l mg K/l					
9102L 4101L	lotal potassium Chromuim VI	ng K/1 ng Cu/1	<.01	<. 01	<.01	<. 01	<. 01
4101L	Dissolved Chromuin	ng Cu/l	N. VI	N. VI	1.01	1.01	1.01
4031L 5103L	Dissolved Manganese	mg Mn/1					
6101L	Dissolved iron	ng Fe/l	0.50	0.08	0.50	0,90	1.80
28002L	Dissolved Nickel	mg Ni/l					
9105L	Dissolved copper	mg Cu/l		1			
30103L	Zinc	mg Zn/1					
8005L	Dissolved chromium	mg Cr/l					
2005L	Dissolved Lead	ag Pb∕l					

Λ 8~19

NO. OF SAMPLING	NAPLING			2	5	Ŷ	с л	9	1	8	6	10	=	12	13	14	15
Senaral	Genaral number of the laboratory																
ATE OF	DATE OF SAMPLING		20 MAR 90 19	9 APE 90 28	5 NAY 90 17	105 101	AUG 90 20	AGU 90 12	MAR 91 11	APR 51 4	JUL 91 11	81 16 TNF	17 16 JUL	AUG 91 10	SEP 91 9	0CT 9: 6	6 HOY 91
CODE	CODE PARAMETER	CN11Y			4												
	Tigt.	R	12:00	11:00	10:30	10:15	12:40	11:35	10:45	11:55	10:35	5:15	9:00	11:10	11:00	9:55	9:00
02061F	Mater tesperature Air tesperature	ა. • •	28.00	23.00	20.00	20.00	20.00	23.00	24.00	23.00	24.90	22.00 18.00	13.00	20,00	23.00	15.00	21.00
	Mather conditions	د	Vob. 12	23.00 . rain	25, 90	21. UU POOR	22. 00 PODd	30.00	20.00	22.00	2002	Lood a	- pool	Rood	8000	Closer	Cloudy
91015	Rain in the last 24 hours		202	765	No.	CX A	N S	yes	8	Nob	Yes	÷.	£	No.	No	765	No
97251F	Saap]ing.depth	8	0, 10	0.10	6.10	0.10	0.10	01.0	0.10	C, 10	0, 10	0.10	0.15		0.15	0.10	0.10
97001F	Depth of water column	6		3	:	:			;	•		- 2	-14	A.	5.0	ц.	, K
963027	Ult Fresence Gretter Version		9	2 -	e i	0	No.	ž	0	yes	755	22	2 3	5	2 4	2 2	2 2
120201	ustuege rjesence bli (lab)		0 CT	5 g	9 F 6 F	04 C	25	7 60	04 4 04	1 10	50 17	2.10	6.60	6.60	1.50	1.20	1, 00
02041L	Conduct. (fie)d)	uS/cm	50.00	30, 00	19.00	60.00	40.00	40 40	37,00	20.00	330.00	40.00	40.00	50.00	40.00	30.00	80.00
02073L	Turbidity	10		1		8.00					-						
104016	Suspended Solids	56/1	20.00	700, 00	22.00	14.00	10.00	20, 00	16.00	45.00	80.00	16.00	10, 00	3, 00	10.00	50,00	20.00
	Total alcalinity	CaCO3 mg/1															
	Dissolved sulphate	S04 #2/1		:							:					0 a 0	
	UISSOIVED Chioride	1/35		1, 00	4.00	1.00	2.00	2.00	s. 00		30,00	6, 6	5. 50 51 - 5	33		2.0	00.01
110100			1.20	07.1			4, 50 21	8. 50 2. 50	5. 40 5. 40		07 .0	0.00	0.00	04.6	2 V 9	2 U U	
013011.	COD (10141) COD (10141)			110.00	0.27	2.2	0.75	9.25	1.1		20.00	10.00	010	<10	10.00	15. 00	10.00
	Total Coll x1000	KPN/100ml					nr,			. 600.00 1	. 600, 00						
	Fecal Coli 11000	MPN/106#1	13.00	30.00	36.00	2.00		50 80	00 3		24.00	50.00	24.00	17.60	5.00	24.00	24.00
	Dissolved Suiphide	egS/1															
	Total Alcalinity	CaC03 ag/1															
	Alcalinity to Phenolphtalein mg/1	1 = ¢/1			:												-
10020	jotaj kjeldabi Mitrogen Aradni Virtani		8.	3.00	60	0.40	0,60	2: 1: 50	0.45	13.00	12.00	0.80	0. 20	00.1	0.40 20	0,00	20.0
130061	SAMSONIA AJLFORTE Mijtrie Mijroves	1/1 28			01.0	0 00 0 70		41 0 4 4	5 C.		11.00		02.0			08 0	0.20
54DBL	Total Phosphorus				0°.06	0.06	0.03	200	0.05		0.80		0.09		6. 0J	9.9	0.0
	Orthophoshate	BC P/1			<' 01	6.01	10.2	0.03			0.30						-
	Kitrite Nitrogen	PE N/1				0.003							0. 204				
	Dissolved supplie	S04 #8/1															
10032V	WISSOLVEG FILOTIOS																
102010	Action Balfactable Surfeeteete	1/34															
06534L	Phenol	1/22	<. 001	(,001	<. D01	6.001	8 002	001	0.003	0.002	G. D02	<. 001	0, 005	<, 001	0.002	<, 001	, 00 , 00
		1/NO 28	<. 010 <.	0.610	<. 010	<. 010	010.5	<, 010	<. 010	<. 010	<. 010	<. 010	<. 010	4, D1D	<. 010	610'Y	<.010
	ldahl N.	22 S/1															
104746	HERE GILLY					000							690 /	600 ×	444 1	2007	00 2
	Cover		0.005	0.000	500 ->		0. UUZ	200.2	200.2	100.1	4, 005 A 0055	2002	0.005	200 >	005	C.005	
	Lead	ag Pd/1	<. D2	0.05	0.02	<, 02	 < 02 	< 02	<. 02	< 02 <	<. 02	<. 02	<. 02	< 02	< 62	<. 02	< 02
	Chronius Chronius	RE CI/1	<. D1	<. D1	<. 01	<. 01	(0.)	<, 01					•				
28104L	Total Mickel	** X1/1	C. D1	(° 0)	(0) (<.01	t0.≻	10.2	10.7	<. 01	10.7	<. 01	· 01	10.5	6 V		
	iotal Zinc	26 ZD/	0.010	80 G	0.005	0.010	0.005	0.005	0.015	<, 005	0,005	0.015	500 V	0.005	< 00 >	(, 101)	
101030	Macreury Total iron (Se3+ + Se3+)	UZ SEVI	·.10	o. 10	. 10	0.10	u. 25	. 10	nf - 2	1	<. 10	01.2	· 10		2.10		7. 6
2500.61	Total Managere	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /			10.2			:									
	Total Tin	ES SA										•					
	Total potzssium	1/X 2m															
1	Chronuls VI	#£ Cu/l	10 >	<. 01	10'> -	<. 01	<.01	<, 01	10.5	<. 01	10.2	<, 01-	< 01	<. 01	۲, 10 ر	<. 01	C 01
	Dissolved Chromeim	as Cr/] 															
	Dissolved Manganese	1/19 Set			;	:			:					:	:		
710117	UISSOIVED ITON	1/a/ 35	0.25	0.30	0.25	0.12	0.10	0.20	0, 08	0, 14	0.15	0.12	0.10	0.12	0.12	0.10	n, iu
	Dissolved nonser																
	21 ac	## Zn/1			:												
	Dissolved chromium																

٢

	TATION : 10 (SB998) RIVER N					(1990~1991)			
NO.OF S	AMPLING		1	2	3	4	5		
Genaral	number of the laboratory	· · · · ·							
DATE OF	SAMPLING		20 MAR 90	7 AUG 90	20 AUG 90	10 APR 91	20 AUG 91		
	PARAMETER								
	Time	н	9:40 25.00				10:00		
)2061F	Water temperature	° C .	25.00	22.50	24.00				
)2062F	Air temperature Weather conditions Rain in the last 24 hours	°C	28.00	26.00	28.50		26.00		
6204F	Weather conditions		Nob	good No 0.10	good	good No	good		
8101F	Rain in the last 24 hours		yes	No	yes	No	No		
	Sampling depth	m	0.10	0.10	0.10	0.10			
	Depth of water column	F1	¥-			N	yes yes		
	OIL Presence	:	No No	yes yes	yes	No No	yes		
	Garbage Presence pH (Lab)		ко 7.20	365 7 50	6 AA	01) 08: 3	yes 7.00		
	Conduct. (field)	uS/cm	1. 20	7.50 100.00	90.00	6.80 72.00	150.00		
20731	Turbidity	UT	40.00			12.00	100.00		
10401L	Suspended Solids	ng/1	20.00	40.00	30.00	90.00	12.00		
10104L	Total alcalinity	CaCO3 mg/1							
63021.	Dissolved sulphate								
7204L	Dissolved Chloride	ng/l	3.00	8.00	6.00		12.00		
	DO	mg/l	6.80	3.60 18.00	1.60	6.80			
	BOD (total)	mg/l	10.00	18.00	24.00	16.00			
	COD (total)	mg/l		100.00	40.00	30.00	320.00		
	Total Coli x1000	MPN/100ml MPN/100ml		0 00	12 00	1100	9 00		
	Fecal Coli x1000	mpn/loumi mpS/l	24.00	a.vu	13.00	>160	3.00		
104046 517591	Fecal Coli x1000 Dissolved Sulphide Total Alcalinity	CaCO3 mg/1		1.1					
10154	Alcalinity to Phenolphtalein								
	Total kjeldahl Nitrogen	ng N/1	1.00	1.20	2.00	2.00	2.40		
	Ammonia Nitrogen	ng N/I	<. 01	0.40	0.07				
		mg N/1 mg N/1	0.20	0.60	0.07 0.20	0.20 0.20	0.10		
15408L	Nitrate Nitrogen Total Phosphorus Orthophysics	ng P/1	0.70	0.20 0.02	0.15	0.20	0.30		
i 5252L	Orthophoshate Nitrite Nitrogen	ng r/i	<. 01	0.02	0.03				
)7206L	Nitrite Nitrogen	ng N/I							
1630 <u>2</u> L	Dissolved sulphide Dissolved Fluoride	SO4 mg/1							
		mg F/1							
	Hexane Extractable Surfáctants	mg/l							
0101L 06534L		ng/l	<. 001	0 002	0.005	<.001	0.01		
	Cyanide	mg/l	<. 010		<. 010	<. 010	0.020		
	Diss.Kjeldahl N.	mg N/1							
	Humidity	•							
18004L	Cadmium	mg Cd/l	<. 002	<. 002	<.002	<.002	<.002		
	Copper	mg Cu∕l	0.010	0.005	<. 005	0.010	0.010		
	Lead	mg Pd/1	<. 02	<. 02	<. 02	<. 02	<. 02		
	Chronium	mg Cr/l	<. 01	<.01	<. 01				
	Total Nickel	ng Ni/l	<. 01	<. 01	<.01	<. 01	<. 01		
	Total Zinc Mercury	mg Zn/1 ug Hg/1	0.03 <.10	0.020 <.10	0.010 <.10	0.015 [.] <.10	0.06 <.10		
	Mercury Total iron (Fe2++Fe3+)	ug ng/l mg Fe/l	N. LU	N. 1V	1.10	1.10	N. 10		
	Total Manganese	ng Mn/l							
	Total Tin	mg Sn/1							
	Total potassium	ng K/1							
41011	Chronuim VI	mg_Cu/l	<. 01	<.01	<. 01	<.01	<.01		
	Dissolved Chromuim	mg Cr/l							
	Dissolved Manganese	mg Mn∕l							
	Dissolved iron	ng Fe/l	0.30	1.80	2.50	0.50	0.35		
	Dissolved Nickel	ng Ni/l							
	Dissolved copper	ng Cu/l							
0103L		ng Zn/1							
	Dissolved chromium	ng Cr/l							
20095	Dissolved Lead	ng Pb/1							

			1	2	3	4	5
Genaral	number of the laboratory						
DATE OF	SAMPLING		8 MAR 90	7 AUG 90	22 AUG 90	10 APR 91 2	0 AUG 91
CODE	PARAMETER	UNITY					·
	Time	H	11:15	10:55	11:03	13:10	11:00
	Water temperature	°C °C	32.00		23.00		23.00
	Air temperature Weather conditions	C ·	32.00	24.00	22.00	32.00	27.00
	Rain in the last 24 hours		good No	good No	rain yes	good No	good No
	Sampling depth		0.10	0, 10	0.10	0.10	0.15
	Depth of water column	14	0.10	. 0. 10	0.10	0.10	0.10
	Oll Presence		yes	yes	yes	No	yes
96302F	Garbage Presence		yes	-	yes	No	yes
	pll (Lab)		7.80	8,50	8.20	7.00	6.80
	Conduct. (field)	uS/cn	50.00	*1900	\$2300	818.00	\$1100
-	Turbidity	UT				-	
	Suspended Solids	ng/l	20.00	35.00	35.00	20.00	60.00
	Total alcalinity	CaCO3 mg/l					
	Dissolved sulphate	SO4 mg/1					
	Dissolved Chloride	ng/l	* 1900	430.00	510.00	160.00	160.00
08101L	4	mg/l	< <u>(1</u>)	1.20	<.1	0.40	1.00
08202L	BOD (total) COD (total)	mg/1	20.00	40,00	40.00	8,00	70.00 240.00
	Total Coli x1000	mg/1 MPN/100m1			160.00	50.00	640.00
	Fecal Coli x1000	MPN/100ml	>160	>160	100.00	>160	>160
	Dissolved Sulphide	mgS/1	/100	/100		2100	/100
	Total Alcalinity	CaCO3 mg/1					
	Alcalinity to Phenolphtalein						
07005L	Total kjeldahl Nitrogen	mg N/1	14.00	17.00	24.00	9.00	20.00
07556L	Ammonia Nitrogen	mg N∕1	11.00	15.00	17.00	3.40	8.00
07306L	Nitrale Nitrogen	mg N/1		0.03	18.00	0.02	<. 01
	Total Phosphorus	mg P/1	1.00	2.00	5.00	0.75	3.00
152521	•	mg P/1	0.60	1.60	1.80		
	Nitrite Nitrogen	mg N/1		-			
	Dissolved sulphide Dissolved Fluoride	SO4 mg/l mg F/l					
	llexane Extractable	mg/l					
	Surfactants	MZV I					
	Phenol	mg/1	0.005	0.01	0.004	0.003	0.01
06600L	Cyanide	mg/CN/L	<. 010	0.010	0.010	<. 010	0,020
	Diss.Kjeldahl N.	mg $N/1$					
	llumidity						1.
180041	Cadmium	mg Cd∕l	0.025	<. 002	<. 002	0.004	<. 002
29005L	Copper	mg Cu∕l	0.04	0.010	0.015	<.005	0.005
	Lead	mg Pd∕l	0.10	<. 02	<.02	<. 02	<. 02
240021	Chromium	mg Cr/l	<.01	<. 01	<.01		
28104L	Total Nickel	ng Ni/1	0.08	<. 01	<.01	<. 01	<.01
30003L	Total Zinc	ng Zn/l	0.020	0.015	0.010	<. 005	0.015
30013L 26007L	Mercury Total iron (Fe2++Fe3+)	ug lig/l mg Fe/l	<.10	0.25	0.10	<. 10	<. 10
15006L	Total Manganese	ng re/i ng Mn/i					
0004L	Total Tin	mg Sn/1					
9102L	Total potassium	mg K/I					
4101L	Chronuim VI	mg Cu/l	<.01	<. 01	< 01	<. 01	<, 01
4051L	Dissolved Chromuim	mg Cr/l					
25103L	Dissolved Manganese	mg Mn/l					
	Dissolved iron	ng Fe/l	0.20	0.20	0.35	0.10	0.45
280021	Dissolved Nickel	mg Ni/l					
29105L	Dissolved copper	mg Cu∕l					
30103L	Zinc	mg Zn/l		÷			
48005L	Dissolved chromium	mg Cr/l					
320051.	Dissolved Lead	mg Pb∕l					

A 8-22

	TION : 12 (RN560) RIVER NA						
NO. OF SAM			1	2	3	4	5
Genaral n	umber of the laboratory						
DATE OF S	AMPLING	· · · · · ·	8 MAR 90	7 AUG 90 22	AUG 90	10 APR 91	20 AUG 91
CODE P	ARAMETER	UNITY					
Т	ine	11	11:10	10:45	10:45	12:15	10:45
	ater temperature	°C	31.00	19.00	22.00		20.50
	ir temperature	* C	32.00	22.00	21.50		26.00
	eather conditions		good No	good No	rain yes	*	•
	ain in the last 24 hours ampling depth	R	0,10	0,10	0.10		
-	epth of water column	10.	0,10				
	IL Presence	14	. No	yes	yes	No	уe
	arbage Presence		yes	yes	yes	No	ye:
	H (Lab)		7.00	7.70	6.90		
2041L C	onduct. (field)	uS/cm	190.00	90.00	110.00	52.00	80.00
	urbidity	UT		10.00	10.00	10 00	0.0
	uspended Solids	mg/1	30.00	10.00	16.00	10.00	9.0
	otal alcalinity	CaCO3 mg/l					
	issolved sulphate issolved Chloride	SO4 mg/1 mg/1	50.00	8.00	8.00	5.00	15.0
	0	mg/l	6.00	7.20	5.00		
	OD (total)	mg/l	4.00	2.80	<2.0		
	OD (total)	mg/1		10.00	20.00	<10	10.0
	otal Coli x1000	MPN/100ml					
6111L F	ecal Coli x1000	MPN/100ml	8.00	17.00	13.00	17.00	90. O
	issolved Sulphide	mgS/1					
	otal Alcalinity	CaCO3 mg/1					
	Icalinity to Phenolphtaleir		0.25	0.60	1.40	1.00	0.8
	otal kjeldahl Nitrogen mmonia Nitrogen	mg N/1 mg N/1	0.25	0.30	0.40		
	itrate Nitrogen	ng N/1	0.10	0.40	1.20		
	otal Phosphorus	mg P/l	0.10	0,10	0.20		0.0
	rthophoshate	mg P/1	0.02	0.02	0,06		
	itrite Nitrogen	ag N∕l					
	issolved sulphide	SO4 mg/1					
	issolved Fluoride	mg F/1					
	exane Extractable	og/l					
	urfactants	/1	<. 001	0,002	0.005	<. 001	0.003
16534L P 16600L C	nenoi Yanide	mg/l mg CN/L	<. 010	<. 010	<. 010		<. 010
	iss.Kjeldahl N.	ng N/I	1.010	1. 010			
0474L H		MB 117 1					
8004L C		mg Cd∕l	<. 002	<. 002	<.002		
9005L C	opper	mg Cu∕l	<.005	<.005	<.005		
2004L L		mg Pd/1	<. 02	<. 02	<. 02		<. 02
	hronium	mg Cr/l	<.01	<.01	<. 01		<.01
	otal Nickel	ng Ni/1	<.01 0.015	<.01 0.020	<.01 <.005		
	otal Zinc	mg Zn/1 ug Hg/1	<. 10	<. 10	<. 10		
0013L M	otal iron (Fe2++Fe3+)	ng Fe/l	N. 10	.			
		mg Mn/1					
	otal Tin	mg Sn/l					
	otal potassium	mg K/l					
4101L C	hronuim VI	mg Cu/l	<.01	<. 01	<.01	<.01	<, 01
4051L D	issolved Chromulm	ng Cr/l					
5103L D	issolved Manganese	mg Mn/1				/ 00	A
6101L D	ISSOIVED IFOR	ng re/i		0.12	1.40	<.02	0.40
		ng Ni/l					
	••••	mg Cu/l mg Zn/l					
10103L Z	inc issolved chromium	mg 2n/1 mg Cr/1			•		
		mg Pb/1		•			
აიიალ გ							

A8-23

Results of River Water Quality Analysis by FEEMA (1990-1991) Table APP, 8-3

NU. UF 5	TATION : 15 (ES400) RIVER N	AME : RIO E				 alì
NO.OF S	AMPLING		: I	2	3	4
Genaral	number of the laboratory					
DATE OF	SAMPLING		8 MAR 90	7 AUG 90	10 APR 91	20 AUG 91
CODE	PARAMETER	UNITY				
w	Tine	H	10:00	9:30	10:05 25.00 32.00 good	8:45
02061F	Water temperature	° C	31.00	21.00	25.00	22.00
	Air temperature	°Č	30.50	22.00	32.00	28.00
	Weather conditions		good	good	good	good
	Rain in the last 24 hours		. No	No 0.10	No	
97251F		R	0.10	0.10	0.10	0.15
97001F 96301F		я.		yes		
96302F						
	pH (Lab)		7 20	7,10	6 40	6,90
32041L	Conduct. (field)	uS/cm	\$17700	\$1800	ycs 6.40 120.00	\$1700
	Turbidity	UT				
10401L	Suspended Solids	mg/l		25.00	20.00	9.00
	Total alcalinity	CaCO3 ng/	L .			
16302L	Dissolved sulphate	SO4 sg/1 mg/1 mg/1				
17204L	Dissolved Chloride	mg/l		470.00	17.00	440.00
	DO	ng/l	0.60	2.00	4.20	2.20
	BOD (lotal)	. #8/1	12.00	· 6.00	0.0V 20.00	10.00
	COD (lotal) Tolal Coli x1000	mg/l mg/l mg/l mg/l MPN/100ml		30.00	20.00	30, 90
	Fecal Coli x1000	MPN/100m1	24 AD	17 00	160 00	90.00
164041	Dissolved Sulphide	mgS/1			100.00	
54752L	Dissolved Sulphide Total Alcalinity	CaCO3 mg/1	· ·			
01541.	Alcalinity to Phenolphtalei	n mg/l				
0700SL	Total kieldebi Mitrogen	2/1	5.00	3.00	2.40	3.60
07556L	Ammonia Nitrogen	mg N∕1	5.00		0.40 0.40	2.00
	Nitrate Nitrogen	ng N/I		0.10	0.40	0.30
154081.	Total Phosphorus	ыg N/1 вд N/1 вд P/1 ад P/1 ад P/1 вд N/1 SO4 вв/1	0.50	0.10 0.30 0.04	0.10	0.30
172061	Orthöphoshate Nitrite Nitrogen	ag r/i ng V/l	0.30	0.04		
	Dissolved sulphide	S04 sg/1				
	Dissolved Fluoride	mg F/1				
	Hexane Extractable	mg/1				
	Surfactants					
06534L	Phenol	ng/l	0.003	<.001 <.010	<.001 <.010	0.001
	Cyanide	ag CN/L	<.010	<.010	<.010	<.010
	Diss.Kjeldahl N.	ag N∕l				
	Bumidity	ng Cu/l ng Cu/l				
	Cadalua	mg C0/1	· U. U65	0.002	< 002	C, UUZ
29005L 82004L	Copper	ng Cu/l ng Pd/l	0.12	0.013 7 A2	<.002 <.005 <.02	v. vis <. 02
	Chroalus	mg ru/i mg Cr/l	0.02		N. V2	N. UZ
	Total Nickel	ag Ni/l	0.25	<.01	<. 01	<. 01
300031.	Total Zinc	ag Zn/l	0.04	0.010	0.015	<. 005
80013L	Mercury	ug Hg/1	<.10	<. 10	<. 10	<. 10
260071	Total iron (Fe2++Fe3+)	mg Fe/1				
25006L	Total Manganese	ng Mn∕l				
500041,	Total Tin	ag Sn∕l				
191021	Total potassium Chronuin VI	ag K∕l ag Cu/l	2 A .	2.01	2 61	/ A1
241011. 240511.	Chronuim VI Dissolved Chronuim	ag Cu∕l ng Cr/l	<.01	<. 01	<. 01	<. 01
25103L	Dissolved Manganese	ng Ul/1 ng Mn/1				
261011.		mg Fe/t	0.12	0.04	0.65	0.04
80021.	Dissolved Nickel	ag Ni/l				
91051,	Dissolved copper	ng Cu/1				
801031.	Zinc	≋g Zn/l				
80051	Dissolved chromium	mg Cr/l				
320051.	Dissolved Lead	ng Pb∕l				
80211	op' DDE	ug/l		<. 001		<. 001
80016	pp' DDT	ug/l		<. 001		<. 001
180111. 180121	op DDD	ug/1 ug/1				
18012L 18013L	ap 000 pp 000	ug/l ug/l		<. 001		<. 001
18020L	op' DDE	ug/l		<. 001		<. 001
80211.	op' DDE			<. 001		<. 001
80301.	Hethoxi-Chlor	ug/l				
180401.	lleprachior	ug/1				
80211. 80301.	op'DDE Methoxi-Chlor	ug/l ug/l				

ug/l

ug/l ug/1 ug/l ug/l ug/l

ug/I

180451.

180401. Heptachtor epoxi 180501. Endosulfan (Thiodan) 180601. α - Chlordane 180611. γ - Chlordane 180701. Lindane 180751. α - BilC 180801. β - BHC

.....

lleptachlor epoxi

A 8-24

<. 001 <.001

<.001

.....

0. OF S	AMPLING		2 1	2	3	4	5
Genaral	number of the laboratory			-			
DATE OF	SAMPLING		8 MAR 90	7 AUG 90	22 AUG 90	10 APR 91	20 AUG 9
	PARAMETER						
	Tine	н	10:55	10:20	10:30	11:05	9:3
02061F	Water temperature	° C	29.00	19.00			
	Air temperature	°Č	32.50	22.00	21.50 rain	31.00	24.0
	Weather conditions		good	good	rain	31.00 good No	g00
98101F	Rain in the last 24 hours	_	No	NO 0 10	yes 0.10	No 0.10	
97251F	Sampling depth	9 	0.10	0.10	0.10	0.10	U, 1
17001F	Depth of water column	m .	No	No	No	No	N
36301F 36302F	OIL Presence Garbage Presence	1. Sec. 19	No	yes			
10301L	pll (Lab)		7.00	7,80	-		
	Conduct. (field)	uS/cm	90.00	130.00			
2073L	Turbidity	UT		144140			
	Suspended Solids	mg/l	50,00	14.00	14.00	60.00	6.0
	Total alcalinity	CaCO3 mg/l					
63021,	Dissolved sulphate	S04 mg/1					
172041	Dissolved Chloride	mg/l	20.00	8.00	12.00	5.00	20.0
08101L	DO	mg/l	2.00	4.20	2.80	7.00	4.2
08202L	BOD (total)	mg/l	4.00	7.20	8.00	2.00	
08301L	COD (total)	mg/l		20.00	20.00	10.00	10.0
36101L	Total Coli x1000	MPN/100ml					
6111L	Fecal Coli x1000	MPN/100ml	90.00	30.00	160.00	90.00	>16
	Dissolved Sulphide	mgS/l					:
	Total Alcalinity	CaCO3 mg/l					
	Alcalinity to Phenolphtalei:						
	Total kjeldahl Nitrogen	mg N∕I	1.60	0.60			1.0
07556L	Ammonia Nitrogen	mg N/1	0.40	0.30			
	Nitrate Nitrogen	mg n/t	<.1	0.70			
	Total Phosphorus	mg P/I	0.50	0.10 0.02		0.10	U. 1
	Orthophoshate	mg P/1 mg N/1	0.02	0.02	0.03		
	Nitrite Nitrogen Dissolved sulphide	SO4 mg/1					
	Dissolved Fluoride	ng F/1					
	llexane Extractable	ng/l					
	Surfactants	14 67 I				·	
)6534L	Phenol	mg/l	<. 001	<, 001	<. 001	<. 001	0.00
	Cyanide	mg CN/L	<. 010	<.010	<.010	<.010	<. 01
)70541.	Diss.Kjeldahl N.	mg N/1					
10474L	Hunidity						
180041,	Cadniun	mg Cd/1	<. 002	<. 002	<. 002	<.002	<. 00
290051		mg Cu/l	<.005	<. 005	<.005	<. 005	<. 00
120041	Lead	mg Pd/1	<. 02	0.04	<.02	<. 02	· <.0
240021.	Chromium	mg Cr/l	<. 01	<.01	<. 01		
28104L	Total Nickel	mg Ni/l	<.01	<, 01	<. 01	<. 01	<. 0
30003L	Total Zinc	mg Zn∕l	0.015	0.005	0.010	0.010	<. 00
80013L	Mercury	ug Hg/l	<. 10	0.25	0.10	<. 10	<. 1
26007L	Total iron (Fe2++Fe3+)	mg Fe/l					
250061,	Total Manganese	mg Mn/1					
50004L	Total Tin	mg Sn/1					
9102L	Total potassium	mg K/l	× 0.+	/ A+	/ 01	<. 01	/ 0
24101L	Chronuin VI	mg Cu∕l	<.01	<.01	<. 01	N. 01	<. 0
24051L	Dissolved Chromuin	mg Cr/1					
25103L	Dissolved Manganese	mg Mn∕l mg £o/l	0.10	0.40	0.50	0.50	0.2
261011	Dissolved iron	mg Fe/l	V. IV	0.40	0.00	0.00	0.4
28002L 29105L	Dissolved Nickel Dissolved copper	mg Ni∕l mg Cu∕l					
30103L	Zinc	mg Zn/1					
18005L	Dissolved chromium	mg Cr/l					
	Dissolved Lead	ng Pb/l					

NO. OF STAT	FION : 17 (SC420) RIVER NAM	AB : Rio Sra	icuruna			(1990~1991)	
NO. OF SAM			1	2	3	4	5
Conorol a	umber of the laboratory						
	MPLING						AUG 91
CODE P/	ARAMETER	INTTY					
 Ti		н Н	10:40		10.20	10:50	9:20
	ater temperature	° C					20.00
	ir temperature	°č	33.00	21.00 22.00	21.00	31.00	25.00
	eather conditions		good	good No 0. 10	rain	good No 0.10	good
	ain in the last 24 hours		No	No	yes	No	
	ampling depth	m	0.10	0.10	0.10	0.10	0.15
	epth of water column	n -	No	VOC	VOF	No	VOE
	ll Presence arbage Presence		no Yes	yes No	yes yes		ycs yes
0301L pl			7,20			6.50	6.90
	onduct: (field)	uS/cm				77.00	
2073L TI		UT					
10401L Si	ispended Solids	mg/l	10.00	10.00	10.00	60.00	9.00
	otal alcalinity	CaCO3 mg/l		÷			
	issolved sulphate	S04 mg/1					00 · · ·
	issolved Chloride	mig/1		14.00			20.00
)8101L DC)D (total)	mg/1	3.00 4.00	4.00 3.20	4.60	7.60 2.40	2.80 14.00
	DD (Lotal)	ng/l ng/l	4.00	3.20 10.00	20.00	2.40 80.00	14.00
	otal Coli x1000	MPN/100ml		10.00	20.00	00.00	10.00
	ecal Coli x1000	MPN/100ml		8.00	13.00	300.00	90.00
	issolved Sulphide	mgS/1					
547521. To	otal Alcalinity	CaCO3 mg/l		:		· · · ·	
10154L AI	Icalinity to Phenolphtalein						
		ag N/1	1.00	1.40	2.00	1.00	1.80
	nmonia Nitrogen	mg N/1	0.50	0.80	0.90	0.10	0.60
	-	mg N/1 mg P/1	0.05	0.40 0.10	0.20	0.50	0.60
	otal Phosphorus rthophoshate	mg P/1	0.02		<. 02		ų. UJ
	itrite Nitrogen	mg N/1	0.00				
		S04 mg/1					•
		mg F/1					
65221 He	exane Extractable	ng/l					
	ırfactants		1.1				
)6534L Pl		mg/l	0.003	<.001	0.002	<. 001	0.009
)6600L Cy		mg CN/L	<.010	<.010	<.010	<. 010	< 010
	iss.Kjeldahl N. Imidity	mg N/1				· · ·	-
	admium	mg Cd∕l	0.002	< 002	<.002	<. 002	<. 002
	opper	ng Cu/l	0.002	<. 002	<. 002	<. 002	<. 002
	ead and a second s	ng Pd/l	0.02	<. 02	<. 02	<. 02	<. 02
	ITORIUR	ag Cr/1	<.01	K. 01	<, 01		
	otal Nickel	ng Ni/l	0.02	<. 01	<. 01	<. 01	<. 01
	otal Zinc	ng 2n/l	0.015	0.010	0.005	0.010	<. 005
	ercury (D. A. L.D. A.)	ug Hg/1	<. 10	0.15	<. 10	<.10	<. 10
	otal iron (Fe2++Fe3+)	ng Fe/l					
	otal Manganese	mg Mn/1					
	otal Tin Stal potassium	mg Sn/l mg K/l					
		ag K/I ag Cu/I	<.01	<.01	<,01	<. 01	<. 01
		mg Cr/l		N. VI	1,01		N. 01
		ag Mn/1					
	ssolved iron	mg Fe/l	0.75	<. 02	0.30	0.50	0.35
		ng Ni/l		· .			
	ssolved copper	mg Cu/l					
		mg Zn/l					
	ssolved chromium	mg Cr/l					
2005L Di	ssolved Lead	mg Pb/l					

NO. OF SA	ATION : 19 (SP300) RIVER NA		1	2	3	4	5	6
	MPLING							
	number of the laboratory		13 WAR 90		10 III. 90	2 FIFL 91	 26 AllG 91	17 OCT 9
CODE	DADANCTED							
	PARAMETER							
	Time Water temperature	* C	10:20 31.50	13:55 26.00	10:10 23.00		9:30 24.00	10:1 28.5
	Air temperature	• č	31.00	29.00	23.00 23.50 Cloudy	25.00	26.00	34.0
	Weather conditions		good	0004	viouuj.	oroady	good	goo
	Rain in the last 24 hours		No	No	Nob	No	No	N
	Sampling depth Depth of water column	81 174	0.10	0.10	0.10	0.10	0.15	0.1
	OIL Presence	a.	No	yes	yes	yes	yes	УC
	Garbage Presence		yes	yes	yes	yes	yes	Хe
	pH (Lab)	~ /	7.30	7.20	6.90	7.20	6.80	7.1
	Conduct. (field) Turbidity	uS/cm UT	990.00	625.00	680.00	590.00	940.00	900.0
	Suspended Solids	ng/1	5.00	22.00	50,00	70.00	25.00	25.0
	Total alcalinity	CaCO3 mg/						-
	Dissolved sulphate	S04 mg/1						
	Dissolved Chloride	ng/l na∕l	160.00	80.00 <.01	100.00 0,80	90.00 <,01	190.00 <.01	220.0 <.0
081011 182021	00 BOD (total)	mg/1 mg/1	<.01 40.00	<. 01 24, 00	40.00	20.00	40.00	۲. ب 40. 0
	COD (total)	≊g/l	100.00		80.00	70.00	130.00	110.0
	Total Coli x1000	MPN/100ml						
	Fecal Coli x1000	MPN/100m1	500.00	160<	1600<*	160<	160<	160
	Dissolved Sulphide	mgS/l CaCO3 mg/	1					
	Total Alcalinity Alcalinity to Phenolphialein		1					
	Total kieldahl Mitrogen	no N/1	19.00	17,00	16.00	10.00	21.00	17.0
)7556L /	Asmonia Nitrogen	ng N/1 ng N/1 ng P/1 ng P/1 ng N/1	16.09	14.00	13.00	10.00	15.00	14.0
	Nitrale Nitrogen	mg N/1	0.02		0.01	0.02	0.02	<.0
	Total Phosphorus	Mg P/1	4.00 2.00	3.00 0.20	3.00 2.00	2.00	3.40	3.0
	Brthophoshate Nitrite Nitrogen	ng r/i ng N/i	2.00	V. 20	4. UV			
	Dissolved sulphide	SO4 mg/1						
	Dissolved Fluoride	¤g F/l						
	llexane Extractable	mg/l						
	Surfactants:	/1	0.02	0.03	0,009	0.006	0.02	0.0
16534L 16600L		Rg∕l Rg CN/L	0.02	0.050	<. 001	0.010	0.010	0.03
	Diss.Kjeldahl N.	ng N/1	0.000	0.000				
	fum idity	-						
18004L		mg Cd/l	0.006	<. 002	<. 002	<. 002	<.002	<. 00
2900SL (32004L)		mg Cu∕l mg Pd/l	0.015 0.04	<.005 <.02	0.010 <.02	0.015 <.02	<.005 <.02	<, 00 <, 0
	Coronium Chronium	mg Cr/l	0.02	<. 01	<. 01	1.00	1.00	
	lotal Nickel	ng Ni/l	<. 01	<. 01	<. 01	<. 01	<.01	<. 0.
	fotal Zinc	¤g Zn∕l	0.03	0.010	0.020	0.015	0.005	0.01
10013L I		ug Hg/l	<.01	<. 10	<.10	۲.10	<. 10	<. 10
	Fotal iron (Fe2++Fe3+) Fotal Manganese	¤g Fe∕l ¤g Mn∕l		<. 01				
	lotal Tin	Ag Sn/1						
9102L	lotal potassium	mg K/l						
	Chronuim VI	mg Cu∕l	<.01	<. 01	<. 01	<, 01	<. 01	<.0
	Dissolved Chronuin	mg Cr/1 mg Mn/1						
)issolved Manganese)issolved iron	ag Mn/1 ≅g Fe/1	0.10	2.00	0.40	0.04	0.04	0.20
	Dissolved Nickel	mg Ni/l						
	Dissolved copper	ag Cu∕l						
0103L 2		ng Zn∕l						
)issolved chromium	ag Cr∕l πg Pb/l						
2005L I 8000L ()issolved Lead	ag ru/i ug/l						
	op' DDT	ug/}		<. 001	<. 001	0.013	<, 001	<. 001
	op DDD	ug/l						
	ap' DDD	ug/l		/ 001		n 010	<. 001	<, 001
	pp' DDD op' DDE	ug/l ug/l		<, 001 <, 001	<.001 <.001	0.019 <.001	<. 001 <. 001	<. 001
	op dde	ug/1		<. 001	<, 001	0.003	<. 001	<. 001
	dethoxi-Chior	ug/1						
8040L I	leprachlor	ug/1	•					
8045L 8 80501 8	leptachlor epoxi	ug/l						
		ug/i						
	A1.1 .	ug/i ug/i						
8070L I	3 . 3 ¹	ug/i	÷	0.03				
	r -Blic	ug/1		0.03 0.02				
8080L /	3 -BHC	ug/1		<. 001				

A8-27

10 65 2				 0			c
	AMPLING		I 	د	J	4	5
ienaral	number of the laboratory						
DATE OF	SAMPLING	<u>.</u> ,	10 JUL 90	2 JUL 91	26 AUG 91	17 OCT 91	
CODE	PARAMETER	UNITY					
	Time	I	10:00		9:15		
	Water temperature	°C	23.00		24.50		
	Air temperature	° C	23.50		26.50		
	Weather conditions Rain in the last 24 hours		Cloudy Nob	good No	good No		
	Sampling depth	Ш	0.10	0.10	0.15		
	Depth of water column	h	0.10	0.10	0.10	0.10	
	Oll. Presence		yes	yes	yes	yes	
	Garbage Presence		yes	yes	yes	yes	
03011.	pH (Lab)		6.90	7.10	6.90	7.00	
2041L	Conduct. (field)	uS/cm	*6900	*7300	# 6200	*26 00	
	Turbidity	UT					•
	•	mg/l	40.00	25.00	45.00	20.00	
	Total alcalinity	CaCO3 mg/					
	Dissolved sulphate Dissolved Chloride	SO4 mg/l - mg/l	*1900	*2150	+1800	690	
8101L	Dissolved Chloride	mg/l	×1900 <.1	¥2130 <.1	+1600	690 <.1	
	BOD (total)	mg/l	10.00	30.00	50.00		
	COD (total)	mg/l	120.00	115.00		170.00	
	Total Coli x1000	MPN/100ml					
	Fecal Coli x1000	MPN/100ml	1600<#	160<	160<	160<	•
	Dissolved Sulphide	mgS/1					
		CaCO3 mg/	1			5. 1	
	Alcalinity to Phenolphtalein					15 40	
	Total kjeldahl Nitrogen	mg N/1	15.00	14.00	15.00	17.00	
	Ammonia Nitrogen Nitrato Nitrogen	mg N/1	11.00	13.00 0.02	10.00 0.03	15.00 <.01	
	Nitrate Nitrogen Total Phosphorus	mg N/1 mg P/1	0.02	0.02 2.00	0.03		
	Orthophoshate	mg P/1	1.60	L. UV		1.00	
	Nitrite Nitrogen	mg N/l					
	Dissolved sulphide	SO4 mg/1					
	Dissolved Fluoride	mg F/l					
	llexane Extractable	mg/l					
	Surfactants		1				. •
6534L		mg/1	0.04	0.07	0.03	0.06	
	Cyanide Diss.Kieldahl N.	ng CN/L	<.010	0.010	0.20	0.020	
	viss.kjeldani N. Humidity	ng N/1					
	Cadmium	ag Cd∕l	0.004	<. 002	<. 002	<. 002	
90051.	Copper	mg Cu/l	0.015	0.04	0.010	0.015	
	Lead	mg Pd/1	<. 02	<. 02	<. 02	<. 02	
40021.	Chromium	ng Cr/l	0.01				
81041	Total Nickel	mg N1/1	<. 01	<. 01	<. 01	<. 01	
	Total Zinc	mg Zn/1	0.03	0.020	0.020	0.06	
	Mercury	ug lig/1	0.60	<. 10	<.10	0.35	•
	Total iron (Fe2++Fe3+)	mg Fe/l					
	Total Manganese	mg Mn∕l					
	Total Tin Total potosoium	mg Sn/l					
9102L 4101L	Total potassium Chromuim VI	ng K∕l ng Cu∕l	<. 01	<.01	<. 01	<. 01	
	Dissolved Chronuin	mg Cu/l mg Cr/l	N. V1	<. VI	V. UI	N. 01	
	Dissolved Manganese	mg Mn/l					
	Dissolved iron	ng Fe/l	0.10	0.35	0.06	0.14	
	Dissolved Nickel	mg Ni/l					
	Dissolved copper	mg Cu∕l			· ·		
	Zinc	mg Zn∕l				• •	
	Dissolved chromium	mg Cr/l		· · · ·			
20051.	Dissolved Lead	mg Pb/l					
	op' DDT pp` DDT	ug/l ug/l	<. 001	<. 001	<. 001	<. 001	

Λ8-28

NO. OF S	AMPLING			2	3	4	5
	NURLING						
DATE OF	SAMPLING		8 MAR 90	10 JUL 90	2 JUL 91	26 AUG 91	17 OCT 9
000210	Time Water temperature	н °с	9:15 29.50		9:00 23.00		
	Air lemperature	°č	29.00	24.00	25.00	26.50	
	Weather conditions	ũ.	good	Cloudy	good	26.50 good	goo
98101F	Rain in the last 24 hours		No	Nob	No	No	8
97251F	Sampling depth	B	0.10	0.10	0.10	0.15	0.1
97001F	Depth of water column	켪					
	OlL Presence		yes		yes		-
96302F			yes		yes		•
	pll (Lab)		7.10		7.00 *6500		
	Conduct. (field)	uS/ca UT	\$4650	\$2800	*0000	150.00	*400
	Turbidity Suspended Solids		40.00	60.00	20.00	230.00	30.0
	Total alcalinity	CaCO3 mg/l					
15302L	Dissolved sulphate	S04 mg/1	•				
17204L	Dissolved Chloride	mg/l	¥1400	720.00	#190 0	150.00	+115
08101L	DO	¤g∕l	<.1	<.1	<.1		· K.
08202L	BOD (total)	ag∕l	30.00	10.00	20.00		
	COD (total)	ng/l		110.00			
	Total Coll x1000	MPN/100ml		160<+	160<	160<	160
	Fecal Coli x1000	MPN/100ml	· .				
	Dissolved Sulphide	mgS/1 CaCO3 mg/1					
	Total Alcalinity Alcalinity to Phenolphtalein		1				
	Total kjeldahl Nitrogen	mg N/1	11.00	15 00	10 00	18.00	19.0
	Aumonia Nitrogen	mg N/1	8.00	12.00	9.00		
	Nitrate Nitrogen	mg N/l	41.00	0.10			
	Total Phosphorus	ng P/1	1.00	2.00	1.50	3.50	0.9
15252L	Orthophoshate	mg P/1	0.03	1.00			
	Nitrite Nitrogen	mg N/1					
	Dissolved sulphide	S04 mg/1					
	Dissolved Fluoride	mg F/I					
	Hexane Extractable	ng/l					
0701L	Surfactants Phonol	ng/l	0.01	0.01	<. 001	0.02	0.0
	Cyanide	ng CN/L	< 010	<, 010	0.010		0.01
	Diss.Kjeldahl N.	ng N/1					
	Humidity	-0					
	Cadniun	mg Cd/l	0.016	<.002	<. 002	0.004	<. 00
29005L	Copper	¤g Cu∕l	0.04	0.010	0.04	<.005	0.00
2004L	Lead	mg Pd/1	0.10	<. 02	<. 02	<. 02	<.0
	Chroniun	mg Cr/l	<. 01	<. 01			
	Total Nickel	mg Ni∕l	0.06			<. 01	
	Total Zinc	ng 2n/l	0,03		0.010		
	Mercury	ug Hg/l	<, 10	0.50	<. 10	0.25	<. 1
	Total iron (Fe2++Fe3+) Total Manganese	ng Fe∕l ag Mn/l					
	Total Tin	ang Sn/1					
	Total potassium	ag K/l					
241011.	Chronuis VI	ng Cu/l	<.01	<. 01	<. 01	<. 01	<.0
24051L	Dissolved Chronulm	ag Cr/l					
25103L	Dissolved Manganese	ag Mn/1			1		
6101L	Dissolved iron	mg Fe/I	0.40	0.35	0.30	0.30	0.3
	Dissolved Nickel	ng Ni/1					
	Dissolved copper	ng Cu/l					
B0103L		ag Zn/1					
	Dissolved chromium	mg Cr/l					
	Dissolved Lead	mg Pb/1					
	op DDT pp DDT	ug/l	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	2 001	<. 001		
	op DDD	ug/l ug/l		1.001			
	sp [*] DDD	ug/1					
	pp BDD	ug/l		<.001	< 001		
	op' DDE	ug/l		<. 001	<. 001		
18021L		ug/l		<, 001	<.001		
	Methox1-Chlor	ug/l					

A 8-29

.

·							
NO.OF S	MPLING		1	2	3	4 .	5
	number of the laboratory						
	SAMPLING						
	PARAMETER						
	Time			9:10 22.50 23.00			
02061F	Water temperature Air temperature	°C	29.00	22.50	23.00	23.00	25.00
		°C	27.00	23.00	25.00	25.00	31.00
	Weather conditions		good	Cloudy Nob	good	good	good No
	Rain in the last 24 hours Sampling depth	R	. 0,10	0.10	0 10	0.15	0.10
	Depth of water column	ia D	V. IV	0.10	0.10	0.10	0.10
	OIL Presence	(e)	yes	Nob	Ves	ves	yes
	Garbage Presence		yes	Yes	yes	yes yes	Ves
	pll (Lab)			6.80	6.90	6.80	6.90
	Conduct. (field)	uS/cm	410.00	400.00	*1550	415.00	500.00
	Turbidity	UT					
	Suspended Solids	mg/l	40.00	150.00	90.00	120.00	40.00
10104L	Total alcalinity	CaCO3 mg/l					
16302L	Dissolved sulphate	SO4 mg/1					
172041.	Dissolved Chloride	mg/l		40.00	380.00	70.00	
08101L		mg/1	<.1	1.00	<.1	<.1	<. 1
082021,	BOD (total)	mg/1 mg/1	50.00	60.00		100.00	
08301L	COD (total)			170.00	180.00	140.00	150.00
36101L	Total Coli x1000 Fecal Coli x1000	MPN/100ml	1.0.0 /	1000.01	1207	1004	
30111L	Fecal Coli XIUUU	MPN/100ml mgS/1	100<	1600<*	1000	160<	100<
547521	Dissolved Sulphide Total Alcalinity	CaCO3 mg/l					
	Alcalinity to Phenolphtalein						· · ·
	Total kjeldahl Nitrogen		11.00	15.00	16.00	14.00	13.00
	Ammonia Nitrogen	mg N/1	7.50	9,00	13.00	9,00	12.00
07306L	Nitrate Nitrogen	mg N/1		2.00	0.02	9.00 0.02	<. 01
154081,	Total Phosphorus	mg P/1	0.80	2.00	2.50	2.50	1.00
15252L	Orthophoshate	mg P/1	0.07	0.70			
072061,	Nitrite Nitrogen	mg N/1					
163021.	Orthophoshate Nitrite Nitrogen Dissolved sulphide Dissolved Fluoride	SO4 mg/1					
09004L	Dissolved Fluoride	ng F/l		а.			
009226	nexane Extractable	mg/l					
	Surfactants		0.00	0 000	A A4		A A4
06534L 066001	Cyanide	mg/l mg CN/L	0.02	0.006 0.020		0.03	0.04
	Diss.Kjeldahl N.	mg N/I	0.030	0.040	0.030	V. V2U	V. UZU
	Humidity	~6 11/1					
	Cadnium	mg Cd/l	<. 002	0.002	0.002	0.002	<. 002
290051		mg Cu/1	0.01	0.07	0.05	0.25	0.14
82004L		mg Pd/1	<. 02	0.04	0.05	0.12	<. 02
240021.	Chronium	mg Cr/1	<. 01	0.01			
	Total Nickel	mg Ni/l	<. 01		<. 01	<, 01	<. 01
30003L	Total Zinc	mg Zn/1	0.015	0.06	0.10	0.40	0.03
	Mercury	ug Hg/1	<. 10	<. 10	<. 10	0.70	<. 10
	Total iron (Fe2++Fe3+)	ng Fe/l					
	Total Manganese	mg Mn/l					• •
	Total Tin	mg Sn/l					
	Total potassium	ng K/l			/ 44		
	Chromuin VI Dissolved Chromuin	mg Cu/l	<. 01	<. 01	<. 01	<. 01	<. 01
24051L	Dissolved Chromuim	mg Cr/l				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	Dissolved Manganese Dissolved iron	mg Mn/1 mg Fe/1	0.60	0.40	0.40	0,60	0.45
	Dissolved lickel	ng Ni/l	0.00	v. qu	0.40	0.00	0.40
	Dissolved copper	mg Cu/l					
301031		mg Zn/l					
	Dissolved chromium	mg Cr/l					
2005L	Dissolved Lead	mg Pb/1					

∆8-30

Table APP. 8-3	Results of	River	Water	Quality	Analysis	by	FEEMA	(1990-1991)

NO. OF SA				۵	0	8	5
	number of the laboratory						
DATE OF	SAMPLING		8 MAR 90	10 JUL 90	2 JUL 91	26 AUG 91	17 OCT 9
CODE	PARAMETER	UNITY					
	Time	H	8:40	8:55	8:30		8:4
02061F	Water temperature	°C	29.00	22.00	23,00		21.0
02062F	Air temperature	G	27.00	23.00 Claudu	25.00		. 29.0
96204F	Weather conditions Rain in the last 24 hours		good No	Cloudy No	good yes	-	goo N
98101F 97251F	Sampling depth	m	0.10	0.10	0.10		0.1
97001F	Depth of water column	m.	0.10	0.10	0.10	0.10	0.1
96301F	Oll Presence	•••	yes	Nob	yes	yes	Уe
96302F	Garbage Presence		yes	yes	yes		ye ye
10301L	pH (Lab)		7.00	•	6.80		6.6
D2041L	Conduct. (field)	uS/cm	*1850		*1800	*4800	900.0
D2073L	Turbidity	UT					
10401L	Suspended Solids	mg/1	50.00	50.00	30.00	35.00	60.0
10104L	Total alcalinity	CaCO3 mg/1					
16302L	Dissolved sulphate	SO4 mg/l					
17204L	Dissolved Chloride	mg/1	340.00	360.00	440.00	*1300	190.0
08101L	DO	ng/l	<.1	<.1	<.1		۲.
08202L -	BOD (total)	ng/i	90.00	40.00	40.00	50.00	60.0
08301L	COD (total)	mg/1		120.00	120.00		150.0
	Total Coli x1000	MPN/100ml					
36111L	Fecal Coli x1000	MPN/100ml	160<	1600<*	160<	160<	160
	Dissolved Sulphide	mgS/1					
	Total Alcalinity	CaCO3 mg/1					
	Alcalinity to Phenolphtalein				10.00	19.00	17.0
	Total kjeldahl Nitrogen	ag N/l	17.00	28.00	12.00	13.00 8.00	17.0 7.0
	Ammonia Nitrogen	mg N/1	13.00	14.00	11.00 0.03	0.03	7.0 <.0
)7305L 15408L	Nitrate Nitrogen Total Phosphorus	mg N/1 mg P/1	1.00	2.00	2.00	1.70	0.9
	-	ng P/1	0.90	1.00	2.00	1. 10	0.0
)7206L	Nitrite Nitrogen	ng N/I	0.00	1.00			
		S04 mg/1					
9004L	Dissolved Fluoride	ng F/1					
)6522L	Hexane Extractable	mg/l					
07011	Surfactants						
065341.	-	ng/l	0.02	0.01	0.03	0.01	0.0
	Cyanide	ng CN/L	0.05	<. 010	0.020	<. 010	<. 01
	Diss.Kjeldahl N.	mg N/I					
10474L	Husidity						
180041	Cadaium	ng Cd/l	0.006	<. 002	0.002		<. 00
290051	Copper	ng Cu∕l	0.04	0.005	0.015	0.010	<. 00
32004L	Lead	ng Pd/1	0.05	<. 02	<. 02	<. 02	<.0
24002L	Chromium	mg Cr/l	<. 01	<. 01			
	Total Nickel	ng Ni/l	<.01	<. 01	<.01	<. 01	<.0
00031.	Total Zinc	ng Zn∕l	0.07	0.09	0.020	0.020	0.02
	Mercury	ug Hg/l	<. 10	0.20	<. 10	<. 10	0.1
60071.	Total iron (Fe2++Fe3+)	ng Fe/1					
50061	Total Manganese	mg Mn/1					
00041	Total Tin Total poissoium	ng Sn/l					
9102L	Total potassium Chromuim VI	ng K∕l ng Cu∕l	<. 01	<. 01	<. 01	<. 01	<. 0
41011	Dissolved Chromuin	mg Cu/l mg Cr/l	1.01	N. VI	N. 01	x . 01	. . 0
40511	Dissolved Unromutm Dissolved Manganese	ng Ur/1 ng Mn/1					
15103L 16101L	Dissolved iron	ng Fe/1	0.40	0.30	0.50	0.40	0.5
8002L	Dissolved Nickel	mg Ni/l	V. 4V	0.00	v. ov	0. 10	5, 0
	Dissolved copper	mg Cu/l					
	Zinc	ag 2n/1					
	Dissolved chromium	mg Cr/1					
20051	Dissolved Lead	ng Pb/l					

A 8-31

NO. OF SI	AMPLING		1	2	.3	4	5
Genaral	number of the laboratory				· 		 ·
	SAMPLING			10 JUL 90 2	1111 Q1	26 A110 91	17 067 91
	PARAMETER	UNITY					
020618	Time Water lemperature	° C	14:00 25.00	11:20 23.00	10:00		10:50
	Air temperature	°C	23.00	23.00	22.00 24.00		30.00 34.00
	Weather conditions		good		good		good
	Rain in the last 24 hours		No	Nob	No	No	No
	Sampling depth	a ·	0.10	0.10	0.10	0.15	0.10
	Depth of water column Oll Presence	R	yes	res	yes	yes	yes
	Garbage Presence		yes	yes	yes	yes	yes
	pil (Lab)		6.80	6.90	6.90	7.10	6.90
	Conduct. (field)	uS/cm	\$2800	¢6000	\$6300	#16000	\$7100
	Turbidity Supponded Solida	UT mg/l	10.00	20.00	50.00	20.00	20.00
	Suspended Solids Total alcalinity	mg/l CaCO3 mg/l	19.00	20.00	50.00	20.00	20.00
	Dissolved sulphate	S04 mg/1					
72041.	Dissolved Chloride	mg/l	730	#1700	*1900	\$5200	\$2900
08101L		ag/l	<.1	0.60	1.40	<.1	<.1
	BOD (total) COD (total)	#g/l ธg/l	12.00	12.00	25.00 70.00	10.00	10.00 240.00
	Total Coli x1000	5871 MPN/100ml	40.00	φ υ. υψ	10.00		240.00
	Fecal Coli x1000	MPN/100ml	160<	\$1600	24.00	160<	160<
	Dissolved Sulphide	mgS/1					
	Total Alcalinity	CaCO3 mg/1					
	Alcalinity to Phenolphtalein Total kjeldahl Nitrogen	ag N/1	7.00	6.00	3.00	9,00	7.00
	Ammonia Nitrogen	ng N/1	59.00	5.00	2.00	5.00	7.00
	Nitrate Nitrogen	ag N/1		0.02	0.40	0.03	<. 01
	Total Phosphorus	¤g P/1	0.90	0.80	0.35	1.00	0.90
	Orthophoshale Nitrite Nitrogen	ng 17/1 ng 17/1	0.06	0.20			
	Dissolved sulphide	SO4 mg/1					
	Dissolved Fluoride	mg F/1					
	Hexane Extractable	mg/l				t. T	
	Surfactants			0.00			Å ^^
)6534L)6600L	Phenoi Cyanide	mg/l ag CN/L	0.04 0.010	0.06 <,010	<.001 <:010	0.04	0.02 <.010
	Diss. Kjeldahl N.	ng N/1	0.010				
04741.	Humidity						
	Cadalus	ag Cd/l	0.004	<. 002	<. 002	<. 002	<. 002
19005L . 12004L .	••	≋g Cu/l ag Pd/l	0.010 0.04	0.005 <.02	0.04 <.02	0.03	0.005
	Chrosius	ng Cr/l	<.01	<.01			X. VC
	Total Nickel	ng Ni/l	<.01	<. 01	<.01	<. 01	<.01
	Total Zinc	ng Zn/1	0.015	<.005	0.04	0.015	<. 005
	Mercury Total From (Ro24 & Fo34)	ug Hg/1	<. 10	<. 10	<.10	<. 10	<. 10
	Total iron (Fe2++Fe3+) Total Manganese	ag fe∕l ag Mn∕l	<.10				
	Total Tin	mg Sn/1					
91021	Total potassium	mg X/1					
	Chronula Vi Discoluted Chronula	mg Cu/1	<. 01	<. 01	<.01	<.01	<. 01
	Dissolved Chromuin Dissolved Manganese	ng Cr/l ng Mn/l					
	Dissolved fron	ag Fc/i	0.35	0.18	<. 02	0.60	0.06
80021	Dissolved Nickel	ng Ni/i					
	Dissolved copper	ag Cu/l					
	Zinc Dissolved chromium	ag Zn/l					
	Dissolved Lead	≋g Cr/l mg Pb/l		•			
	op DDT	ug/l					
8001I.	pp' DDT	ug/1	<. 00 l	<. 001			
	op' DDD	ug/1		•			
	np' DDD pp' DDD	ug/1 ug/1	<. DO 1	<, 001			
	op' DDE	ug/1	<. 001	<. 001			
8021L	op' DDE	ug/1	<. 001	<. 001			
	Methoxi-Chlor	ug/1					
	Heprachlor Nontachlor enori	ug/1 ug/1					
	Neptachlor epoxi Endosulfan (Thlodan)	ug/1		. •			
8060L	α - Chlordane	ug/l					
8061L	γ -Chlordane	ug/l					
18070L 18075L	Lindano	ug/1	0.01				
	α-BHC	ug/1	v. v t				

A 8-32

NO.OF S	TATION : (CC626) RIVER NAME	: Fover				(1990~19	91)
NÓ.OF S	AMPLING	· · ·	1	2	3	4	5
Gonaral	number of the laboratory						
0ATE 00	SAMPLING						
	PARAMETER						
	Tine	H	11:45				
02061F	Water temperature	° C -	31.00				
	Air temperature	°C	36.00				
	Weather conditions		Cloudy				
	Rain in the last 24 hours		Nob				
	Sampling depth	10	0.10				
	• • •		0.10				
	Depth of water column	ħ	ութ				
	OlL Presence		Nob				
	Garbage Presence		yes 7 ao				
	pH (Lab)		7.00				
	Conduct. (field)	uS/cm	140.00				
	Turbidity	UT					
	Suspended Solids	mg/l	20.00				
10104L	Total alcalinity	CaCO3 mg/1 SO4 mg/1					
16302L	Dissolved sulphate	SO4 mg/1					
17204L	Dissolved Chloride	mg/l	14.00				
08101L	DO	mg/l	8.00				
08202L	BOD (tótal)	ng/l	5.80				
08301L	COD (total)	mg/1	20.00				
36101L	Total Coli x1000	MPN/100ml					
36111L	Fecal Coli x1000	MPN/100ml					
	Dissolved Sulphide	mgS/1	<. 5				
	Total Alcalinity	CaCO3 mg/l					
	Alcalinity to Phenolphtalein	•					
		mg N/1	3.50				
076661	Total kjeldahl Nitrogen Ammonia Nitrogen	- · ·	3.00				
		mg $N/1$	1.00				
	Nitrate Nitrogen		0.30				
	Total Phosphorus	mg P/1	v. əv				
192925	Orthophoshate	mg P/1					
U1206L	-	mg N/1					
-		SO4 mg/1					
	Dissolved Fluoride	mg F/1					
	Hexane Extractable	mg/l					
	Surfactants						
06534L	Phenol	ng/l	<. 001				
06600L	Cyanide	mg CN/L					
)7054L	Diss.Kjeldahl N.	mg N/1					
	Humidity						
	Cadmium	mg Cd/l	0.014				
	Copper	mg Cu/1	0.03				
82004L		mg Pd/1	0.08				
	Chronium	mg Cr/1	<.01				
	Total Nickel	mg Ni/1	0.03				
-	Total Zinc	mg Zn/1	0.03				
	Mercury	ug Hg/l	v. vv				
000195	norcury	uK 46/1					

A8-33

NO. OF SAM		•	· 1	2	3	4	5
	umber of the laboratory						
DATE OF S			19 MAR 90				·
	ARAMETER	UNITY					
 T	 ine	н	11:45		• •• •• •• •• ••		
	ater temperature	°c	30.00				
	ir temperature	°C	36.00				
	eather conditions	•	good				
	ain in the last 24 hours		Nob				
	ampling depth	B	0.10				
	epth of water column	D	0.10				
	IL Presence	u 1	Nob				
	arbage Presence		yes				
	H (Lab)		7.00				
	onduct. (field)	uS/cm	350.00				
	urbidity	UT	330.00				
	uspended Solids	mg/l	30.00			·	
	otal alcalinity	CaCO3 mg/l					
	issolved sulphate						
		SO4 mg/1	E.0. 0.0				
	issolved Chloride	mg/1	50.00				
	0	mg/l	5.40				
	OD (total)	mg/l	14.00				
	OD (total)	mg/1	50.00				
	otal Coli x1000	MPN/100ml					
	ecal Coli x1000	MPN/100ml					
	issolved Sulphide	mgS/1	<. 5			÷	
	otal Alcalinity	CaCO3 mg/1					
	lcalinity to Phenolphtalein						
	otal kjeldahl Nitrogen	ng N/1	10.00				
	mmonia Nitrogen	ng N/1	6.50				* ÷
	itrate Nitrogen	mg N∕l	0.30				
	otal Phosphorus	mg P/l	0.60	2			
15252L O	rthophoshate	mg P/I					· · · · · · · · · · · · · · · · · · ·
072061. N	itrite Nitrogen	mg N/1					
16302L D	issolved sulphide	SO4 mg/1					
09004L D	issolved Fluoride	ng F/1					
06522L H	exane Extractable	mg/l				:	
10701L S	urfactants						
06534L P	henol	mg/l	0.002				
)6600L C	yanide	mg CN/L					
)70541. D	iss.Kjeldahl N.	mg N/1					
	umidity	-					
	admium	mg Cd∕l	0.014				
	opper	ng Cu/l	0.03				
	ead	mg Pd/1	0.08				
	hromium	mg Cr/l	0.01				
	otal Nickel	ng Ni/l	0.03				•
	otal Zinc	mg Zn/1	0.03				· · · ·
	ercury	ug Hg/l	0.00				
	otal iron (Fe2++Fe3+)	mg Fe/l					
200071. 1	otal iron (re2++re3+)	mg re/l					

APPENDIX 9

ESTIMATION RESULTS OF RUNOFF LOAD FROM EACH SUB-BASIN

3	

Table APP. 9-1 Estimation Results of Runoff Load from Each Sub-Basin (1991)

		_		_					Val Bi	Neason				1	PUY SCREDM			-		2	an falue -			
Basis No.	-	Covered.	ده. چ	fasin Area	asin ArearopulationropulationLand w	ulation hand	3	Discharge BCB	Load CObs	Loed TX Lond	PRIVI AL PR	paror 15% p	Discharge	200 Load	Dione Load	14 Load	TP LOad	a pror 35	Discharge B	B00 Land D0	100ma Lond 11	Lond 17.	Lond	
		(12)		(1	(persons)(10	3/(02)	(s/bu)	(\$/) (\$/	5	(9/1) (P.	(1)	(P/3)	(s/2s)	(1/1)	(P/1)	(9/1)	(P/1)	(f/l)	(1/21)	(92)	(F/A)	(1/1)	(c/d)	(6/3)
		9 40	-	9.40	53, 310		+		1		ł	2			1917	ł	0.181	7.38	111	5.35	1, 89	0.79	0. IS	14.52
Eastern 2	CUMAL CURTO DO RIG	d 7.6	e 1	1.40	61.745		Ŧ								121		5	613	6.3	181	1,49	28-3	G 12	11 40
Bassim 3	B -CITEDRAR	7.80	•1	7.80	31.458										1.14		0.13	1 52	0.86	3	22	35.0	29	23
-	BNORTE CENTRO	8.7	•	8°.'	109 124										1		0 IS	6.17	6 9	8	55.1	30	22	11.91
*0	TIO BORRY	88	ŝ	ន ន	1610 099										9		999	51 51	1	8	B	282	65	8
~	RIO INDOASSU	88	5	8.8	123, 636							55			4		0.44	20.61	1	8	4.81	8	83 5	X 32
	BTTMCA	6 (Q	ę-	£.40			Ļ		í		Ì	1			65.1	l	Q 11	4.73	0.13	E G	1.14	0.48	83	33
Sortheastern 5	RIO ALCATTARA	144, 50	80	164.60						1		191		_	13, 10		1 40	11.23	11.43	ទ	16.01	6.6	8	131.48
	_		5									ž			51		9 8 8	100.69	21.67	87	17.23	80 -1	83	15, 91
9			2									ž			8.01		0.21	11-16	12 13	1.67	12.51	51 53	8	593
=	CUMP. DE MOZ		=												20		6.82	2.41	19-10	۲ الا	94	암 러	8	4.16
2			2												64-1		0.0	57-52	1.65	31	211	583	8	21.36
2	I RIG IRIZI		3												0.42		80	81	0.57	50	83 J	ч х	3	2 -
			14	1			~	į	- 1		. :	<u>=</u>			69 7		69	5.4	8	4 63	23.1	5	9.9	10.90
15	S BBALLA		5				-					Ľ	ļ	L	L 37	ŀ	0. 02	115	8	4	6.53	120	100	5.5
Pester.	16 210 ESTRELA		2				~ **					2			8 I4		ង	82.33	EC 10	12.33	12.09	8	64	11F 23
Basis 17.17	ELC IGUAG		2									ž			21. 24		2.05	135.45	27.01	512	21.53	211	81	265.53
9.71	IDDAADS CITY		9-11		•		••••					ñ		_	5 82		1.12	144.44	20.61	42.40	212	11.9	56	206.33
8	1 BCLEO DO BRITO		2	1		Ø.	-					24			5		2	19.52	2.93	5.73	4.58	181	0.35	ង
61	E10 S. J. DE MERITI		5		٠	5		1				, S		I	12 02	1	11.3	202.69	28 22	83	49.68	572	4-01	01.335
	D RIG IRUIN		8			Ξ						<u>6</u>			15.8		L 71	222	2	2 2 2	27.24	1.28	\$	9 2
[2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (CULUE DO CUEL		តុ	3		51						¥			8		22.2	8711	15.9	3	8	1	8	212 01
			1			œ	_					ы 			837		0.21	5	1. 21	197	2 14	33	61 22	2
ន	CURAL ED ALYCOT		នា			ρ	Ę					6			1 22		1.68	74.46	9 9 9	21.98	11.28	81	9	16 78 1
2	I B -BOTAPOOD		2			ഉ						5			89		1.24	33	8, 68	15.84	12.48	5.24	1.04	83 81 12
	5 L DO CATARDOR		8			22						8		į_	145		Q. 48	81	3.55	8.0	523	222	G 41	4
laiand 25			8			82									G. 18		0.02	83	24	83	2	6 6	5	5
5	범		63	27	22.4	Ŧ									0.10		0.01	84	0.11	9.14	0 13	8	5	28
 83 8		8:	83 E	8	81	8. 49 Urban		5	8	99	0.2	03 4.37	5	42 13	9.98	9 19 51 19	ð	3	នេះ	3	9-41	5	8	8
G	8		Z,	Ş	10.4		-		1	1	Ì			_	a. 15 -		589	명	G 13	22	0.181	0.03	5	-
	Total	_	·	4080.50	7, 594, 031 1		28				3.64 17.06	1 339	Γ		228. 63		23.671	1283.10	230.161	330, 59	200 22	16. 8	21.51	2337.07

A9-1

Table APP. 9-1 Estimation Results of Runoff Load from Each Sub-Basin (2000)

.

					-	_		4	Patter Serve			-		5 5	Season			*		Beam Yalise			
Seein Ko.			_ة _	is ArmiPoos	ArmeProvile clonPopulaci	part bar	Discharge	100 Loss 100	NT Dates I cand	21 7807	8	toed Disch	Discharge 800		had Ti Lond		SS Lord	Pischerne	200 Losd	CUDen Load	beer st	TP LONG	1
		(T2)	<u>9</u>		(persons X 10 ⁻ 3/fet	2 2 2	(#3/#)	(F/Q)	0 (93)	(1)	(P/I)	(r/d) (m2/	(8) (1/d)	(C/C)	(P/G) (Cr(G)	(2/8)	(P)	(s/)	(7) (7)	(9/3)	(8/3)	(9/2)	(Free
	I I BCUARITAS	3.40 1		4-	042	1	1.47		2.31			8		Ŀ				Ł	<u>ا</u>	282		0.15	25
Eastern	2 CUM, CUM DO RIG	1 7.40 2		•	1.99	• •	1.16		5			2								L 59		5	2
al Sail	3 BCATEDRAE	1 8			200		8		8			3								3		5	22.51
	A Labore Correct	8,1			5		<u>1</u>		នុ			8	_							39 J		5	21
	5 RED DORM	र २ २			3		84		8			F				۰.				1 22		29	3
	5 RIO LIBOASSU	8 11		_	5		4.61		1.17.1			ខ	. :							4		330	12 13
	7 B -17400	6.40	-	_	8		1.06	ŧ	161	ł	Ŀ	*	ŀ		•			ŀ	L_	1		2	3 11
Fortheadtern	#] I IO ALCUITARA	33			<u>۽</u>		76.35 25		2 2			ม								8 5		3	181.96
Busiz	9 RIO CUCINEES		~		÷	· · ·	22		历史			3				÷				38		8	202 34
	TD BIO CONTINUES				ផ		0 D		13 55			5								다 다 다	÷.,	8	159-621
	II COMU DE LUCE		-		2		525		C 61			ន			-	•				61 13		89	15.7
	IZ RIG RONCADOR		-		E.	~~~	58 7		84			8			-	÷				2		9	1111
	13 810 12121		_		ឆ		ព្		ន			3							_	33		3	2
	14 BIO SCRUT	1	-	-	5		2.65	1	1.45	ĺ		n			í		÷		-	1 2 1		2	11 22
	15 B JAEA				249 249		121	1	5.9			2	<u>ــــــــــــــــــــــــــــــــــــ</u>		1		Ŀ		<u> </u>	5 0	1	6.85	81
Nucritaness tracts	1 18 BIO ESTERIA		-		ž		13.56		17.20			2								8 1		6.87	8
Rentin 17.1	175 RED COMPA				612		22		21			5								82		2.17	nas
ř -	ID SAEAPUI		-	-	ž		21.73		೫ \$			8			•					8 8		84	22122
	10 B 400 00 20120	8		1.8	12 1 005 P		4	8	គ្ន	3	81	8	5	53	1.1	1.22	21	4	5	3	8	1	3 7
	20.1.2		-	4		-	5	1	1.12	1	ļ		1	ł	٠Į		1		-1	8	1	8	12.74
	_				g												_			3 I 5 I		3	39.42
					ŝŝ		51 7 21 -		8			8 2								r Ri		1	
	TI CHALL ON MACES				5		8		1		-	2 6					. •		.;			5	
	TA BBUTAFOCO	8	_		12		3		121			5					÷.	1				1	100
	2 1. 20 GIVINDOR	8 #	$\left \right $	۱.,	576		18		123	Ĺ	<u> </u> _	1	Į_		1		Ŀ	Ł	1	59.5	11	0.0	37
Listand 2	26 1. DO FIDEDIO	4			ž		0.31		2			E								5		5	4
	TO L DE PAGUETA	24			8		9		0.16			R								0.13		10 0	81
•••		8			蓋		53		61-10			x								. 0.44		50	24
	29 1. DE SCERT	1. 43	-	_	161		Q. 16		a z		ľ	2.76		1	- 1				_	6.1	- 1	3.02	62 T
	letol i		<u></u> 수	4020, 50 8, 634, 6	A. 028 I		302. 73 1	1	574. 31 ·	[19.36 383	1.47			1			1 247.16	375.40	314.21		2111	2551.46

Table APP. 9-1 Estimation Results of Runoff Load from Each Sub-Basin (2010-1)

				-	_		_		đ	HOSTON AND					5				_			801 2		•
Recia No.		Covered		Besin Arna	Population	asis Area coulstion to a lation	and use	Discharve B	BCD Load DO	CODen Load 71	bed	TP LOND S	A peop X	Discharge B	800 Lond 20	CODE LOLD	Total To	Lond S	N	Discharge BOD	D LOUG DODEN	HI Veol	1001	SC DOOL
-	Anna M	Pastin Arms	₫			Density	ě					_										_		-
		(2 - 3)		ŝ	(perross)	(perioes X10 ^{-3/ka2)}		(*/ta)	(6/0)	(r/s) ((tz/d)	(P/3)		(13/12)	(6/3)	(t/q)	(6/4)	(17)	(r/0) (r/0)	5 (NB)	3) (9/3)	25 (272)	(r,q) (:	(NO) (NO)
	B -CENELTAS	2.40	-	01-16	3			L.5.	10 2	2.37	10.7	0.14	23 52	1.69	2.16	1. 78	0.73		3.61	1.2	ļ	1.		6 17
wtere 2	CUAL CUTO DO RI	- ¹		2.40	4			L. 18	28	L. 85	g 79	0.11	14.17	0.79	21	1.40	0.58		6.76	66 10				6 13
Radin 3	A CUTTORIE	2	-	1.30	4			1.10	12	T 68	12	0	21.07	9.74	1.52	2	0.52		5.13	0.92				112
	R -NRTE CENTRO	8		8	ų.			1.24	5	1.9	ដ	6 11	24.31	87	14	1.46	68	1	107	3			2	1
	ELD PONRU	4		1	Ň			5	13.12	10, 10	8	89	32.72	161	9.40	1.65	1.18	_	35.44	1.57				6 73
	PLO (THOMSEL	11.60	40	88	ŝ	-		61 2	10.67	2	8	0.45	81.63	3.42	1.60	9	52		27 22	22				0.53
	B -11/0CA	6.0	-	6 40	100 10 10	53	Urban	81	2 49	1.95	33	0.12	24.19	0.81	172	69-7	0.62		8	87				0.14
Northeastorn g	RIO ALCANTARA	3	••	144.50	Ę		-	12. 83	22	24 43	11.00	1.45	265. 55	11 43	22	12.74	1.66		2 12	14.68		•		1.75
Basis 5	RIO CATERINI	155.40	9	245.70	ă		-	33	21.53	iii R	12.83	E E	319.12	242	18.23	16.91	8.4		22, 83	20. 23				1
g	-			_	ä			81	5 ÷	11.61	919	5.0	20.00	15 12	1.15	1.	222		11 88	22 22				0.23
	-	1.50			2		_	8.9	0.65	69 10	22	89	1.31	L 57	9.46	0.42	0.15		2 22	51.7				5
1	-	107.00		_	ដ		-	87	4 8	Re	3	G 12	242	8	88 -	8	33		2	3		_		11
		5			걲			ន្ត	0.23	6.93	943	29	9.94	2	5,2	3	61 10		\$	81				0.01
		8			**		-	5.7	8	157	23	8	17.44	8	8	20	929		1.25	221				8
2	ł	88	ε.	L	2		F	81	0.67	6.00	0.35	в а	11.82	62.3	0.45	0.48	G.16	L	167	8,	L			89
Morthester 16	RIO ESTRELA	342.50			<u>5</u>			12 41	21.39	19.36	12	0.87	233.44	12 29	14.54	22	66		1	15,00				8
	S RIO LOUNCE	848			8			2,25	51, 15	5	28.14	5 28	450.31	20.22	8	27.03	10.98	Ċ	69.63	31.11				2.45
- 911	2	159.80			ž			22 13	2013	12 33	88	2.76	481.49	19.24	44, 65	1	16.52		175,90	24.45				121
81	L -CURD DO 20170	8	2		21	_	-	5.2	8	18.1	4 8	0. 41	25, 35	2.94	6.41	X	2 7		S X	1.69				3
61	_				. 57	_		37.74	84 48	54. 12	24.60	172	6.4.73	24.57	59.87	47.2	13.61	L	22.73	31, 15	L	L		5.22
ន	PIO IDAJA	8 5		_	Z		_	12.09	22	21.57	18	1 8	23,52	80.8	FF 12	15.57	25.4		71.15	10.09				81
	CUMIL DO CITIERA	39		_	భ		_	19.71	54	2.8	14.60	9 8	340.50	13.07	88	27.43	11.02		N N	16.33	<u> </u>			22
Dasia 22		6.60			3			1 55	34	52	1.13	0.16	22 26	81	4 6	8	83		9,52	167	_			8
	CUUL DO MAGUE	3		_	3		-	22	11 12	21.53	39	1.23	210.09	8 (8	27,21	16.37	23		1 3	20.24				LS1
2		8			퀅		_	5.71	88	12 22 21	6. 57	20	192.24	28.25	14.63	11.99	84		15 35	1.23				1 16
R	2	22	L	L	169.253	Ļ	-	4 65	33	5.79	2 87	8 4	\$7.00 L	18 18 19	E CT	8 7	28	1	24.15	25	ļ		1	0 46
aland 25	8	9			vî			631	8	53	513	0.01	58 F	0.20	0.21	51 0	0.07		L.16	र्ष स				20
	L. DE PAQUETA	1.70			ei		~~~	20	G. 19	0.16	0.07	0.01	2.85	50 00	0 13	911	0.05	_	0.61	9 II				00 10
8	-4	81			넑	_		89	24	3	5	0.03	\$ 10	0.20	9 9	0.40	0.16		22.7	82				8
8		1. 40	i	_	vĩ			0.16	0.23	0.23	Q. 10	0.01	283	0	8.9	G 17	6.0	8	53 0	0.14	0.24	0.20	800	0.02
	Total	-		1 4020, 50	33.326.66			316.481	01.67.0	306.76	154.721	00 02	11.1.47	62 DAG	776 64	00 744	1 0 01	Ľ	ĩ	X8 81	I.	١.		ALL AND A

A 9-3

						_			Calify Scason			1		£	1001			-			2100			
Cation Pa		Covered	Basia	Arcarea	besia AresPopulacionPopulacio	toniand and	of Discharge	BOC Load	COm Lond Th	T bed	SS Deci	Ŋ	Discharge B	800 Losed D00	ğ	TY LONG TP	Lond	Load Disk	Discharge 800	ğ	Losed 1	141 1980	88	j.
	Name	Zasia Area 3	ğ		Cleansing	ŝ	:								-									
		(2)			ADVE 01X10	2	(a)/a)	3	- 	(14)	<u>.</u>	92		(8/9)		1 (19/2)	(P/2)	(10) - (10)	(e2/20)	8	(PA) (PA)	9 <u>2</u>		
	I B. CUMPITAS	9-40	5			5 Urben	12.1	101	241	101	1	30.16	1 02	I_	181				12.7	123				12.45
Eastern	2 CUME CUTTO IN REG	0 6 7 9 7				2 Orto 5	- - -	24	1.19	0.81		32.43	20		1.63				8	5				12 52
f testa	D A CUTTORNE		14	1.80 41.9		8 Urtaus	1.12	2 16	1	12.0		21.43	r o		8.1				12	B				13
	A NOTE CONTRA	8.2		8		8 Ertenn	121	2 51	87	0.54		24.73	20		1.12				8	2				8
~~~~	S 210 BONEA	97	12	8	36 36	5 Dirtee	8.8	11.21	1	8		<b>3</b> 7	8		02 1				8	3		:		8
	PRO INDUST	1.60	8	8	1	Crbes	67.2	10.57	2	5		31.63	3.42		6. 14				8.1	12		_		16.23
	T A TROA	5 40	2			Birthea	87	2.49	1.45	623	١.	24.19	C 81		61-1				8	-		_	÷.	13 21
Eortheasters	B 210 MCUTARA	នន	144			3 Urhan	16.71	83	29.42	10.11		12 12	11 20	_	13.87				5	8				3
Tasta 1	9 RID CACENER	758.40	245 245			3 8/4	8 1	21.53	17 22	6571	÷.,	319.12	12		16.9I				83	8		_		ន
	IC RID CONFIRM	2 8 8 2 8 3				S I	41.93	G# 12	11-61	51 55		808	2 2		с.*				22	5			1	83
1		48	1			\$ 1/1	83	23	97	អ		5	0.57	_	9				53	3				5 12
1		101.00	TH			X/X	4	12	3.31	S		12 41	3.02	1	8				3.1	R				3
		5 49 11	<b>N</b>			\$ R/A	21	33	23	22		2.	22		5				8	55				53
	I RED STREET	2 2 2 2	*			1 1/1	127	8	1.57	4		17.44	1.69		29				221	帮				12.35
	S & LULL					V/X 2	126	0.67	0.53	0.39		11.82	6 13		0.48				18	3				1.74
Restinenter 15	_		8 원			2 3/A	19.95	21.98	E: 61	\$F 45		11.12	ះ អ	•	12.50				(E. 19	-				3
Beats 17.1	- 2 RID ICTINCI					1 1/1	R R	22	5 13	16.90		669.30	24.52		¥ 52				8	83				81
11.6	RIO SARAPUI						212	8.8	113	3		200 10	19. 29		36.65				8	5				(T 30
=		11.8	1			5 Urbes	3	15 T	91	11		12.12	3.08		- 535				22	8	. 1	_		0.10
1	I RIO S. L. DE BERTT	162.50	ž			in the second	28.61	<b>3</b> 2. 76	512	21.30	Ł	651.31	ZA 15		R \$				1. 38		1			8 2
•	_						12.21	21.15	81	20.4		212.29	12		14.15			÷	2	Ē				1 1 1 1
Festers 21	_	22		B12 216 917 226	26 1 28		8 8	<b>16 B</b> 2	\$ <b>A</b>	22	2.12	346.59	212	ដ	3	11.23	5	121.22	19.65	ਵੇ ਸ	31.21 1	318	4 8 8	8 2
	ส						1.53	14	2.1	11		あお	51		8.4				Ŗ	85				1721
	22 COMP 20 INVES					1	12.49	នុង	2 2	ដ		213.54	1		16.68	_	2.1		5.40	2	÷			お 望
2	K - BUTATOOD		_			S litter	1.85	20.65	15.82	6. 59 6.		195, 68	22	_	12.21				7.40	۴			- 1	8
	-1					ł	1	5.5	6 31	2.91		33	3.07		8 7	2			83	5				10.12
e   and ' 25	-1		~	Ş		4/N 6	1 d	6.3	रा रा	110		8	0.21		51 7	÷,	÷	÷.,	8	8				22
-	4			-		1 R/A	5	6 13	<b>4.</b> 16	500		8	83		0 12 0	•	÷., '		: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	2	÷	• •		22
**			•••	-	SS 9.51	in the second	8	ទី	5	4 13		8	<u>ا</u> م		9 9				21	8				<b>¢</b> 01
	ř	- 1	-	-		S   Urban	0.16	0 33	122	0. 10		2 33 [	0. 11 L		0 11	_	- 1	-	0.14	24		_	1	1.53
	Total		4050.50	01	<u> </u>	•	320.89 (	487, 96	405.23 :	17. 87	-	227.61	203. 64	_	283.41		-	i –	12 75	3	Γ		28 1 23	36.12

Estimation Results of Runoff Load from Each Sub-Basin (2010-2) Table APP. 9-1

A9-4

Table APP. 9-2 Estimation Results of Runoff Load from Each Area (1991, 2000, 2010)

	Basin No.B	Sasin Area	asin AreaPopulationPopulationLand use	Duistion	and use			Thole basin					Whole basin	5			
			.Á	Density 1	Type		ſ	Yean Value						Kean Value			
						Discharge	BOD. Load C	Discharge BOD. Load CODen. Load TN. Load	TN. Load	TP. Lond	SS. Load	Discharge	BOD. Load	Discharge 800. Load (200m. Load TN. Load	TN. Load	TP. Load	SS. Load
		(Kn2)	(persons)(10 ⁻ 3/km2)	10_3/102)		(#3/s)	(F/4)	(t/d)	(t/d)	(t/d)	(t/q)	8	8	3	3	(3)	3
astern Basin	9 - 1	89.50	497.855		Urben	10.80	21.79	17.39	7.28		135.08	<b>دی</b>	7	8	9	2	
Northeastern Basin	7 - 14	2.477.10	976, 813	0.39	D/N	79.60	44.11	51.56	21. 18		513.50		13	18	81	21	53
orthrestern Basin	15 - 18	1. 126. 70	2. 213. 412		Urban	65. 61	94. 43	78.51	32.30		666.64	ន	53	28	23	22	~
estern Basia	19 - 24	339. 20	339, 20 3, 727, 632	10.99	Urban	69.85	162.50	126.60	52.81	10.40	971.97		67	45	\$5	51	4
siand	25 - 29	48.00	178, 319	3.71	Urban	4.31	1. 75	6.27	2.62		49.88	2	2	5	2	2	
Total	-	4. 080. 50 ff. 594. 031	7. S94. 031 i			230.16	330.59	280.34	116.18	20.37 1	1 2, 337, 07	1001	1001	1001	1 001	1001	0
SN2000)							-								-	1	
	Basin No. E		asin Arcaropulationropulationand use	opulation	and use			thole basin					Thole basin	5			
			. <b>A</b>	Density 1	ŝ			Mean Value						Mean Value			
					•	Discharge	Discharge BOD. Load CODan. Load TN. Load	Chun Load		TP And I SS Land	Nev S	Discharge	BOD Even	Discharge BOD freed CDDen, Load TN, Load 1 TP, Load 1 SS, Load	TN Load	TP ( AsA	No. 1 AN

		province and an end of the second of the second	Supervision -														
				Density	Type			Mean Value					Í	Mean Value			
			-2			Discharge	BOD. Load	BOD. Load CODmn. Load TN. Load	TN. Load	TP. Load	SS. Load	Discharge	Discharge BOD. Load C	CODen. Load TN. Load   TP. Load	TN. Load	TP. Load	SS. Load
		(Km2)	(persons)	(10 ⁻ 3/km2)		(m3/s)	(t/d)	(r/d)	(14)	(p/1)	(p/t)	(2)	Ê	3	8	8	8
Eastern Easia	9 - 1 	89.50	595.718		Uctan	12 41	26 12	<u> </u>		1.681	167.96	5	2	1	1	-	9
Northeastern Basin	7 - 14	2 477.10	1. 250. 660	18.67	N/N	84 22	55.59			3, 20	582.85	25	15	61	19	ž	23
Northwestern Basin	5 - 18	1. 126. 70	2. 595. 358		Urban	71.63	110.68			8.56	170.78	£2	23	23	29.	28	53
Testern Basin	20 - 24	339.20	4.003.491	11.80	Urban	74.38	174.71	136.09	56.80	11.21	1. 065. 81	8	1	43	4	48	40
Island	25 - 23	48.00	190.801	36 1	Urban	4.51	8.30	6.69		0.52	64.06	0	~	\$	~	2	~
Total	{	4.080.50	50 8. 636. 028			247.16	375.40	314 21 1	Γ	23. 17	2.651.46	8	1001	601	001	001	100
			2											×.			
												•					
(1-010ZNS)							-										
	and the second se	ļ															

	DESTRING THE PRESERVORUM	Ë	Populationland use	vi use												
			bensity Type	ي			lean Value						Mean Value			
	<u> </u>				Discharge B00. Load	BOD. Loud .	DODRIA LOAD TN. LOAD	TN. Load	TP. Load	SS. Load	Discharge	900. Load	Discharge BOD. Load CODmn. Load TN. Load	TN. Load	TP. Load	SS. Load
(%	 (29)	(persons)X10 ⁻ 3/ka2)	(10^3/km2)		(m3/s)	(t/q)	(P/1)	(P/1)	(£/d)	(P/1)	æ	8	(3)	(3)	(2)	(%)
Eastern Basin 1 - 6	3	659.411		ung i	13.47	28.94	22 96	9.62	1.87	184.38	5	1	1	-	ł	1
7 - 14 2.	2	458, 034		, D	87.76	64. 27	66. 50	27.33	3.71	633. 90	¥	91 16	20	20	53	22
Northwestern Basin [5 - 18 ]. ]	126 70 2	2. 892. 820	2. 57 Ur	Urban	T6. 32	123. 34	100.03	41. 16	1.33	245.18	8	8	30	23	53	30
19 - 24	ន	130.244		ften	76.46	180.33	140.46	58. 63	11.59	1. 098. 67	8	4	\$	3	49	65
୍ୟ - X	48, 00	196. 151		-ban	4.60	8.54	6.37	2.87	5.0	65.68	2	67	2	2	2	2
Total   4.0	080.50 9.	9.336.681	-	-	258.60	405.42	336, 83	139.62	25.04	2.827.82	1001	100	001	100	1001	100

(SY2010-2)																	
	Pacin Ko	Bacin Arnay	Bacin No Bacin Arradonulationdonulationaland	arior a	and use		-	Thole basin					Thole basin				
			len openen op	consity T				Mean Value						tean Value			
			l			Discharge	BOD. Load	Discharge B00. Load CODan. Load TN. Load	<u> </u>	TP. Load	SS. Load	Discharge	Discharge 300. Load CODen Load	200en Load	TN. Load	TP. Lord SS. Lord	SS. Load
		(Kn2)	(persons)	10 ^{-3/km} 2)		(#3/S)	(t/d)	(t/q)	(t/d)	(t/q)	(t/d)	8	(%)	8	(%)	(3)	(%)
Eastern Basin	1 1 - 6	89.50	664, T64	7. 43	Urban	13.56	29.18	23.15	9.70	1. 89	185, 89	5	1	1	2	1	ę
Northeastern Basin	1 - 14	2477.10	1. 462, 738	0.59	D/N	87. 83	64.47	66. 65	27.39	3. 73	635. 07	33	16	61	19	51	ដ
Northwestern Basin	15 - 18	1126.70	3, 017, 841	2.68	Urban	78. 29	128.69	104.03	42.82	1.66	876. 55	8	31	30	8	33	8
Testern Basin	19 - 24	339.20	4.219.722	12 44	Urban	71.93	184, 29	143.54	59.93	11.85	1. 121. 84	8	44	<b>4</b> 2	55	46	39
Island	25 - 29	48.00	199. 717	4. 16	Urban	4, 66	8.69	6.99	2.92	0.55	66, 77	21	2	2	2	\$	2
fotal		1 4. 080. 50 5	9. 564. 782			262.27	415.331	344.37	142.76	25.68	2, 886, 12	1001	1001	1001	001	8	8

ESTIMATION RESULTS OF RUNOFF LOAD WITH COUNTOUR MEASURES

đ

# APPENDIX 10

ogram(1991-2010)	
DB/OEEF Progr	
-	

•

Basin No.		Basin Area		(1661)	(2000)	(2010)	(1661)	(2000)	(2010)	(1661)	(2000)	(2010)	(1661)	(2000)	(2010)
	N 280	(Kn2)	S		Discharge (m3/s)			BOD Load (t/d)		1	TN Load (t/d)			TP Load (t/d)	
	I BCHARITAS		1	1.17	1.23	1.27	2.35	1. 23	0.47	0.79	0.76	0.73	0.15	0.16	0,16
Eastern 2	2 CANAL CANTO DO RIO	7.40	2	0, 92	0.97	1.00	1.84	0, 97	0.37	0.52	0. 50	0.57	0.12	0.12	0.12
Basin 3	3 BCATEDRAR		8	0.35	0. 90	0.93	1. 65	0.87	0.33	0.56	0, 54	0.51	0.11	0.11	0.11
	I BNORTE CENTRO	1. 90	~	0.96	1.01	1.05	1.92	1.01	0.39	0.65	0. 63	0. 60	0, 12	0.13	. 0.13
	5 RIO BOMBA	64	5	3.75	4.48	5.00	8.00	5.32	2.86	2.65	2.99	3.13	0.51	0.61	0.68
9	S RIO IMBOASSU	30.80		3.14	3.82	4.30	6.02	7.85	9.13	2.00	2.60	3.01	0.38	0.50	0, 58
	B ITAOCA	6,40	• • •	0.13	0.39	1.00	1.1	1.84	2, 14	D. 43	0.62 }	0.72	0.09	0.12	0.14
Northeastern 8	<pre>8   RIO ALCANTARA</pre>	144,60		11.48	13.41	14.75	20.07	25.33	28.99 ]	6, 50	8.25	5.39	1.20	1.53	1.76
Basin 9	9 BIO CACEREBU	846, 70	6	27.67	29.54	30.89	14.80	19.46	22.90	7.03	8.43	9.43	0.80	1.05	1.25
10	RID GUAPINIELH	1253.10 1		32.36	\$2.76	33. 25	4.67	5.22	5.97	5.23	5.46	5.70	0.26	0.29	0.33
	1 CANAL DE MAGE	18,30 1	1	0. 67	0. 70	0.73	0.38	0.45	0.55	0.13	0.21	0.24	0.02	0.02	0.03
12	Z RIC RONCADOR	111,40 1	2	3. 65	3.78	3.94	1.66	1.96	2.35	0, 88	0.97	1. 09	0.09	0-11	0.13
. 12	S   RIO IRIRI	27,80 1	5	0.97	1.00	I. 05	0.49	0.58	0, 69	0.25	0. 28	0.31	0.03	0.03	0.04
	A RIO SURUI	63, 80 1	-1	2.03	2.15	2.21	0.63	0.74	0.88	0.43	0.46	0. 51	0.04	0.04	0.05
2	5 BMAUA	28, 90 1	5	0.96	0. 99	1.03	0.40	0.47	0.56	0.22	0. 25	0.28	0.02	0.02	0.03
Northwestern 16	6 RIO ESTRELA		9	14.10	15.05	16.19	12. 92	15.44	18.47	4.36	S. 71	6.62	0.72	0.87	1.05
Basin 17.1	S RIO IGUACU		17-1_5	27.01	29. 25	31.93	31.97	38.30	45.29	11.26	13.14	15.23	1.80	2. 17	2.58
17.6	RIO SABAPUI		5-L	20.61	22.87	25.30	43.40	42.37	43.98	13. 94	15.46	17.13	2.66	3.01	3.40
1	3 BCABO DO BRITO		8	2.93	3. 37	3. 35	5. 75	5.82	6.11	1.91	2.22	2.56	0, 36	0.43	0.51
1	9 RIO S. J. DE MERITI	164.50 1	67	28.27	30.19	31.88	64.33	62.53	62.09	20.59	21.82	22. 89	4.01	4.31	4.56
2(	0   RIO IRAJA	35.70 2	20	9. 25	9.83	10.25	22.04	15.51	11.10	7.25	7.26	7.17	1.44	1.50	1.53
Testern 21	1 CANAL DO CUNHA	63, 60 2	12	15.04	15.99	16.65	35.66	22. 67	13.86	11.62	11.46	21.18	2.30	2.37	2.41
Basin 22	Z BS. CRISTOVAO	6.60 2	22	1.21	1.28	1.33	2.67	1.69	1.02	0, 30	0.89	0.37	0.18	0. 13	0.19
	3 CANAL DO MANGUE	42.80 2	57	9.40	9, 99	10.401	21.96	16.65	13,07	7.20	7.27	7.25	1.42	1.48	1.52
2	4 8BOTAFOGO	26.06 2	14	6.66	7. 10	7.40 1	15.84	15,04	14.52	5.24	5, 50	5.66	1.04	1.11	1.15
2	5 1. DO GAVANADOR	38.20 2	52	0) (1) (1)	3.76	3.89	6.55	5.45	4. 63	2.22	2.26	2.27	0.41	0. 43	0.45
island 26	6 1. DO FUNDAO	5.40 .2	36	0.25	0.26	0.25	0.23	0.20	0.17	0.03	0.10	0.10	0.01	0.01	0.02
. 27	7 ] 1. DE PAQUETA	1.70 2	27	0. 11	0.11	0.11	D. 14	0.15	0.15	0.05	0.06	0.05	0.01	0.01	0.01
[	8 I. DO ENGENHO	I-30 2	38	0.23	0.25	0.25	0,50	0.53	0.56	0.17	0.19	0.19	0.03	0.04	0.04
2	9 1 1. DE S. CRUZ	1.40	59	0.13	0.131	0.14	0.22	0.23	0.24	0.08	0.08	0.09	0.01	0.02	0.02
	Tota!	4080.50		230.16	247.16	262.27	330.59	1 316.38	313.871	116, 18 1	126.451	135.47	20.37	22.80	24.95

******			[		Ľ.	· · ·	(2010)					(1910)		
Bauln No.		Nine	Basin Area (čež)	¥0.	Ros Scheropi	Ocras mitali(l)	Ocean merfeblitt) j Discharge (a3/a)	Occas perinti(3)	Crean activiti(1)	Rue Screenser	Oceaa astialii()	800 Load (1/6)	trees artelith	Occas collati(4)
	1	BCHARITAS	9.40	1	1.27	ð, 12	0.12	0, 12	0.12	2. 63	0.97	0.05	0.05	0.01
Easlern	1	CANAL CARTO DO BIO	1.40	1	1.00	0,10	0.10	0.10	0,10	2.01	0.05	0.96	0.06	D.06
Basin	- 3	8CATEORAS	1.10	- 1	0.93	0.03	0.09	0.01	. 0, 11	1. 85	9,05	0.05	0.05	9.11
	- 4	B NORTE CENTRO	7.90	4	- 1.95	· 0.10	0.10	0.10	· 0.95	2.16	80,0	9.05	0.06	1.04
	- 5	RIO BORRA	26.20	5	· 5.00	. 6.11	4.17	4.54	1:30	11.14	\$, 07	6.07	6,01	6.07
	. 6	RIO INBOATSU	10,10		ê, 10	4, 10	4, 30	4, 10	4, 30	9, 13	9, 13	\$,13	1.11	1.11
	1	B ITAOCA	1.40	1	3.00	1.00	1.60	1.90	1.00	2.16	2.16	2.11	2.14	2.14
Northeastern	÷.	BID ALCANTARA	144.60	1	- IL 15	14, 15	14.15	14:15	16.15	11.11	28, 95	: 24, 11	28.93	28, 99
Basin	- 1	RIO CACERERU	844.10	,	30.89	30,83	. 30.89	\$9,89	10.43	22.90	22, 10	22, 10		22. 10
	10	RIO GUAPINIRIN	1253.10	10	33.25	\$3. 25	. 33. \$5	33, 25	33.25	5.97	5. 91	5. 57	5. 97	. 5. 97
	11	CANAL DE MAGE	18.30	11	0, 13	9, 13	0, 13	0, 13	0.73	0.55	9.55	0.55	0.55	0.55
	11	RIO RONCADOR	111.40	12	3, 94	2, 11	1. 14	1. 96	3.91	2 35	2.35	2. 15	1. \$5	2.35
	111	RIO IRIRI	22.10	11	1.05	1.05	. 1. 05	1.05	1.05	0.69	. 0.69	.0. 65	0,65	Q. 59
	.10	RIQ SERVI	68,80	1C	2, 21	3.11	7, 21	2. 21	2.21	0.83	6 B B	0.46	0.88	0.88
	15	BXAUA	28.90	15	1.03	1.03	1.01	1,03	1.03	9.54	0.56	0,56	0.5\$	0.56
Northwestern	16	RIO ESTRELA	312.50	16	16.19	16.15	16, 19	16.19	16, 19	18,47	18. 67	18.47	18.47	18.47
Basin 17	. 1°s	RIQ IGUACU	\$62.80	11-1-1	31.93	31. 15	\$1. 93	. 11.11	51.53	45.29	45.29	45.29	45.29	- 45.21
17	. 4	REO SARAPUI	165.50	17-6	25. 10	24. 14	24.96	24.63	24.63	\$\$.17	. 48.59	48.59	48, 59	48, 53
	18	BCASO DO BRITO	27.00		3.85	3. 73	5, 79	3, 73	3. 13	4, 20	6, 99	6, 10	\$, 90	6.90
	ïΗ	RIO S. J. DE WERITI	164.50	.13	23, 88	26.18	31, 56	31. 25	31.25	74.14	51.87	11.14	66.64	15.51
	20	RIO IRAJA	35, 70	20	10.25	6. 02	4.02	9. 57	9.57	24.73	8.59	8.59	16.23	16. 25
Testera	21	CARAL DO COMBA	\$3, \$0	11	11.16	6.11	4.6	1.11	15, 33	40,02	1.01	1.04	3.04	22, 75
Saula	12	BS. CRISTOTAD	F. 60	22	1. 33	0, 36	0.35	0. 15	1.22	2.99	0,44	0.46	0.56	1.11
	23	CARAL DO MARGUE	42.80	23	10.40	5, 51	5.01	5.01	9. 81	21.66	10.94	10, 94	10, 34	12.45
	-ti l	BBOTAFOGO	26.00	- 24	7. 40	5, 51	5.91	5, 11	5. 11	17, 78	11, 93	18.93	13. 91	11.11
	25	1. DO GAYANADOR	18 20	25	3.49	1.49	1, 60	1. 11	3, 71	1. 41	5,70	5.70	5. 10	5. 70
island	25	1. DO FUEDAO	5.40	14	0.26	0,14	0, 16	0.14	0. 25	0.25	0.16	0.16	0.15	Ð. 21
	n	I. DE PAQUETA	1.10	21	0.11	9.11	9, 11	0.11	0,11	0.15	0.16	0.16	0.14	0.16
	28	I. DO EXCENBO	1.30	28 .	0.25	0.25	0.25	0.25	0.25	0.56	9.55	0.56	0.36	0, 55
	29	I. DE S.CRUZ	1.10	29	0.14	0.13	0,14	0, 14	0.14	9.11	0.24	0.24	0.24	0.24
~		lotal	1089.50		162.21	225.72	231.18	235.70	253, 15	1 415.33	109.58	316.36	324.02	344.23

							(2010)				(2010)			
lasia No.		Kane	lasin Ares (Est)	Mi	An Seitenge	2r92 m17211(1)	Dist withits Tit, Lond (t/d)	Steen mittall(1)	Decisi enifatik(t)	ba Scierado	henn en fal H(1)	17. Load (1/6)	Pres entieti(2)	Dress cultalifi
	1	R -CRIR(IS	9. 10	1	0. 69	Q. 08	. 0. 08	3.68	0.65	0.17	0.02	0.92	0. QZ	9.0
Eastern	2	CANL CARTO DO BIO		2	9, 70	0.67	0.07	0.97	0.07	0.14	0.01	0.01	0.01	0.0
665 6	3	R. CATEORAR	7. 10	3	0.63	0.05	0.05	9. 66	0.56	0.12	0.01	0.01	0.01	Q. I
	- 4	BNORTE CENTRO	7. 90	4	0.73	0.07	0.07	0.07	0.65	0.14	0.01	0.01	0.01	a 1
	5	RIO BOUBA	26. 20	-5	3.75	3.40	3.40	3. 60	3.49	11.0	0.10	0.79	0.67	0.6
	6	RIO 18BOASSE	30.80	6	3.01	3.01	3.01	3.01	3.01	0.58	0.58	0.58	0.58	Q. S
	7	B. ITÁCÁ	6.10	1	0.72	0.72	0.72	0.72	0.72	6.11	6.14	0.14	0.14	0.1
Northeastern	8	RIO ALCANTARA	6 E E E E E E	8	9. 39	9. 39	9.39	9.39	9. 39	1.76	1.75	1.76	1. 76	1.7
Basin	9	RIO CACERENJ	815.70	9	9, 43	9, 43	9.43	9, 43	9, 43	1.25	1.85	1.25	1.25	1.2
		ELO GUAPINIRIE	1253 10	10	S. 70	5.70	5.70	5. 70	\$ 10	0.33	0.33	0.33	0.33	0.3
		CANAL DE BAGE	18.30	11	0.21	0.24	0.21	0.24	0.21	0.03	0.03	0.03	0.03	0.0
	12	STO RONCATOR	E11.40	12	1.09	i. 09	1.09	1.29	1, 09	0_13	Q 13	0.13	0.13	0.1
	13	RIO IRIRI	27.80	13	0.31	0.31	0.31	0.31	0.31	0.04	6 G H	0.04	0.04	0.0
	. 14	RIO SULUI	\$3.80	. H	0.51	0.51	0.51	6.51	0.51	0.05	0.05	0.05	0.05	0.0
	15	B. BAUA	28.90	15	0. 28	0. 28	0. 28	0.28	0.28	0.03	8.03	0.03	0.03	0.0
Northwestern	16	RIO ESTRELA	312.50	16	6. 62	6. 62	6.62	6.62	6. 62	1.05	1. 95	1.05	1.05	1.0
	17.175	RIO IGUACE	562.80	17-1-5	15.23	15. 23	15.23	15.23	15.23	2.58	2.58	2.58	2.58	2.5
	17.6	RIO SARAPUI	165.50	17-6	17.59	17.51	12.51	17.51	17.51	3.18	3.43	3.43	3.39	3.3
		R - C180 00 58110	27.00	18	2.11	2. 53	2.63	2.63	2.63	0.52	0. 52	0.52	0.51	0.5
	19	RIO S. I. DE TERITE	161.50	15	23. 73	19. 15	23.26	23.25	23.25	4.65	3.11	4.50	4.55	4.5
	20	EIO IRAJA	35.70	20	8.16	3. 19	3.19	7.61	7.61	1.63	0.H	0.64	1.52	] 3.5
Testern	21	CAUL IO CIVER	63.60	21	13.05	3.64	3.64	3.61	12.01	2.59	0.72	0.72	0.72	2.3
Pasta	22	R - S. CRISTOWIO	6.60	22	1.01	0.23	0.28	0.28	0.93	0.20	0.05	0.05	0.05	Q.
	23	CAUL TO REVERT	42. 80	23 .	8.08	. 3.99	3.90	1.80	7.62	1.60	0.77	0.77	0.77	1.5
	24	R . POTARCO	26.00	24	5. 89	4.70	4. 70	4. 20	4.10	1.18	इ. इन	0.91	0.91	0.9
	25	I. DO GATANDOR	33.20	25	2.18	2.35	2,35	2.35	2.36	0.47	G. 45	0.45	0.41	0.1
island	26	<ol> <li>D0 F03080</li> </ol>	5.40	26	G. 10	0.65	0.06	0.05	0.10	0.02	Ø. 01	0.01	0.01	0.0
	27	I. DE PAQUETA	1.70	21	0.65	Q. Q6	0.06	0.0%	G C6	¢.01	0.01	0,01	0.01	6.0
	28	I. DO ENCENHO	1.30	23	0.19	0.19	0.19	0.19	0.19	0.04	େ ଜଣ	0.01	0.04	0.0
	29		1.40	29	0. 69	0.09	0.09	0.09	0.09	0.02	0.02	0.02	0.02	0.0
		Total	4030.50		142 16	114.29	118.08	122.49	136.37	25.65	20.15	23.91	21.57	24.42

### Ocean outfall(2010)

. .

A 10-2

Retardation pond(1991)

0.008 0.009 0.010 0.010 0.010 0.010 0.010 0.008 0.008 0.007 0.007 Cutted Load/ha 0.007 0.002 0.003 0.003 0.002 0.001 0.002 0, 003 0, 005 0, 009 003 003 600 909 0.203 (t/d/ha)(C=A/B)Cutted Load byCapacity of ( Retardation Retardation Pond(t/d) Pond(#10⁻⁴ m3) (A) (B) 8.12 9.27,22 5.51 5.51 5.51 5.51 2.7,22 2.7,22 2.7,22 2.4,92 2.4,92 2.4,92 2.4,92 2.4,92 2.4,92 2.4,92 2.55 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 2.6,74 1.1,7,39 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1.1,1,44 1070 2 Retardation Pond(t/d) (A) . . . . . . . . . . 00000000000000000 ----ő 00.03 11.1.2.1.11.1.0.0.0.55 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 00.056 Retardation ł TN Load (t/d)0. 79 0. 79 0. 56 0. 79 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 56 0. 560 (1661) 2.28 1.80 1.60 7.76 5.83 5.83 14.25 41 44.25 41 44.25 45.25 34.55 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 75.25 Retardation BOD Load (t/d) 000005864 000005864 000005864 000005864 00005866 00005866 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 0000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 000586 0 6 5 (1661) 17-1-5 g 3210 5 6 2222222 9.40 7.40 7.40 7.40 7.40 255.20 1255.10 1255.10 155.50 155.50 164.50 164.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 165.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175.50 175 Basîn Area 4080. (Xm2) 810 B. -CABO DO BRITO RIO S. J. DE MERITI B. -S. CRISTOVAO CANAL DO MANGUE GAVANADOR B. -NORTE CENTRO RIO BOMBA B. -CHARITAS CANAL CANTO DO RIO GUAPIMIRIM. CANAL DO CUNBA DO GAYANADO DO FUNDAO DE PAQUETA DO ENGENHO DE S. CRUZ RIO ALCANTARA RIO CACEREBU RIC IMBOASSU. B. -ITAOCA CANAL DE MAGE RIO RONCADOR B. -CATEDRAR RIO ESTRELA B. -BOTAFOGO RIO SARAPUI 5 IGUACU Name RIO.IRAJA IRIRI 110 SURUI RIO 810 8 16 o, 1113113 17. 1 17. 6 ************* Northwestern Northeastern Basin No. Eastern Basin Western Basin Island Basin Basin

(Retardation pond area:9.38Km2 (Water depth:2.0m)

						Nean Y		
Basin No.			l I		Discharge	BOD, Load	TN. Load	TP. Load
		Nane	Basin Area (Km2)	NO.	(m3/s)	(t/d)	(t/d)	(t/d)
	<u> </u>	BCHARITAS	9.40	- 1	1. 27	0.47	0.73	0.16
Eastern	2	CANAL CANTO DO RIO	7.40	2	1.00	0.37	0.57	0.12
Basin	3	BCATEDRAR	7.80	3	0.93	0.33	0.51	0.11
	4	BNORTE CENTRO	7.90	4	1.05	0.39	0.60	0.13
	' 5	RIO BONBA	3.40	5	5.00	2.86	3 13	0.68
:	6	RIO IMBOASSU	11.60	6	4.30	6.53	2.85	0.57
	7	B ITAOCA	6.40	7	1.00	2. 14	0.72	0.14
Northeastern	8	RIO ALCANTARA	58.50	8	14.75	22. 23	8.96	1.72
Basin	9	RIO CACEREBU	758.40	- 9	30, 89	21.28	9.30	1.24
	10	RIO GUAPINIRIN	1233. 70	10	33.25	5.91	5.69	0.32
	n	CANAL DE NAGE	4.60	$\mathbf{n}$ :	0.73	0.55	0.24	0.03
	12	RIO RONCADOR	107.00	12	3.94	2.35	1.09	0.13
	13	RIO IRIRI	8.40	13	1.05	0.69	0.31	0.04
	14	RIO SURUI	53.20	14	2. 21	0.88	0.51	0.05
	15	B NAUA	28.90	15	1.03	0.56	0.28	0. 03
Northwester		RIO ESTRELA	342.50	16	16.19	16.57	6.48	1.04
Basin	17.15	RIO IGUACU	544.20	17-1 5	31.93	38.46	14.78	2. 54
	17.6	RIO SARAPUI	159.80	17-6	25.30	35.62	16.60	3.35
	18	BCABO DO BRITO	27.00	18	3, 85	5.69	2.53	0.51
	19	RIO S. J. DE MERITI	163.50	. 19	31.88	43.68	21.73	4. 45
	20	RIO IRAJA	27.30	20	10.25	8.66	7.01	1.51
Vestern	21	CANAL DO CUNHA	60.50	21	16.66	13.86	11.18	2.41
Basin	22	BS. CRISTOVAO	6.60	22	1.33	0.95	0.86	0.19
	23	CANAL DO MANGUE	42.80	23	.10,40	13.07	7.25	1. 52
	24	B BOTAFOGO	26.00	24	7.40	11.00	5.43	1.13
	25	1. DO GAVANADOR	38.20	25	3.89	3.91	2. 22	0.44
Island	26	I. DO FUNDAO	5.40	26	0.26	0.17	0.10	0. 02
	27	1. DE PAQUETA	1.70	. 27	0.11	0.16	0.06	0.01
	28	1. DO ENGENHO	1.30	28	0.25	0.56	0.19	0.04
	29	1. DE S. CRUZ	1.40	29	0.14	0.24	0.09	0.02
		Total	1		262.27	260.17		24.63

Secondary Treatment + Optional Treatment(2010)

## PART III

# HYDRODYNAMIC CONDITIONS AND SEDIMENTATION IN THE BAY

#### CONTENTS

	page
LIST OF TAB	LE
LIST OF FIGU	JREv
CHAPTER 1	TOPOGRAPHY
	Coastal Line
1.1	
1.2	Submarine Topography 1– 1
1.3	Water Volume
CHAPTER 2	TIDES
2.1	Existing Data of Tides
	Tidal Station
	Harmonic Constants of Tides
	Annual Change of Mean Seal Level 2-11
2.2	Tidal Variation during Study Period
	Ilha Fiscal
2.2.2	Ilha de Paqueta
2.3	Characteristics of Tides
2.3.1	
	Harmonic Constants of Tides
2.3.3	
OULANDED 3	BEDAL CURRENTE
CHAPTER 3	TIDAL CURRENTS
3.1	Tidal Current Curves
5.1	
3.2	Results of Tidal Current Observation
	Tidal Current Curves 3-4
3.2.2	Frequency Distribution of Tidal Currents
3.2.3	Maximum Speed of Tidal currents
3.3	Harmonic Analysis of Tidal currents
	Harmonic Constants of Tidal Currents
	Tidal Current Ellipses       3-31         Tidal Current Map       3-57
5,5,5	The Content Map
3.4	Characteristics of Tidal Currents
3.4.1	
3.4.2	Vertical Change of Tidal Currents

i

3.4.3 Current in the Bay ...... 3-72

## **CHAPTER 4 BOTTOM SEDIMENTS**

4.1.1	Bottom Scdiments       4-         Quality of Bottom Sediments       4-         Grain Size Distribution       4-	1
	Thickness of Sediments	
4.2.1	Acoustic Prospecting 4-	5
4.2.2	Core Sampling	)
4.2.3	Thickness of Bottom Sediments 4-13	3
4.3	Annual Change of Seabed	5
4.4	Evaluation of Calculation Results	)
4.4.1	Existing Data for Sedimentation Rate 4-20	)
4.4.2	Age Determination of Sediments 4-22	2

## APPENDIX

Appendix 1:	Method of Tidal harmonic Analysis	APP 1-1
Appendix 2 :	Hourly Heights of Tides	APP 2-1
Appendix 3 :	Frequency Distribution of	
	Tidal Currents	APP 3-1
Appendix 4 :	Tidal Current Ellipses	APP 4-1
Appendix 5 :	Prediction of Tidal Currents	APP 5-1

## LIST OF TABLES

.

		Page
Table 1.3-1	Water Volume of the Guanabara Bay	1- 8
Table 2.1-1	Location of Tidal Station	
Table 2.1-3	Harmonic Constants of the Principal Four Constrituents	
Table 2.1-2	Harmonic Constants of Tides	
Table 2.3-1	Harmonic Constants of the Principal Four Constituents	2-35
Table 3.1-1	Location of Tidal Current Obdservation	
Table 3.2-1	Maximum Speed of Tidal Currents	3-28
Table 3.2-2	Maximum Speed of Tidal Currents at the Channel	
Table 3.3-2	Harmonic Constants of Tidal Currents	3-32
Table 3.3-1	Harmonic Constants of Tidal Currents	3-33
Table 10- 1	Harmonic Constants of Tidal Currents	335
Table 10- 2	Harmonic Constants of Tidal Currents	3-36
Table 10-3	Harmonic Constants of Tidal Currents	337
Table 10- 4	Harmonic Constants of Tidal Currents	338
Table 10- 5	Harmonic Constants of Tidal Currents	3–39
Table 10- 6	Harmonic Constants of Tidal Currents	
Table 10- 7	Harmonic Constants of Tidal Currents	
	Harmonic Constants of Tidal Currents(St.A(Upper))	
Table 10- 8(2)	Harmonic Constants of Tidal Currents(St.A(Lower))	3-44
	Harmonic Constants of Tidal Currents(St.B(Upper))	
Table 10- 9(2)	Harmonic Constants of Tidal Currents(St.B(Lower))	3-46
Table 10-10	Harmonic Constants of Tidal Currents(St.D)	3–47
Table 10-11	Harmonic Constants of Tidal Currents(St.C)	
Table 10-12	Harmonic Constants of Tidal Currents(St.E)	
Table 10-13	Harmonic Constants of Tidal Currents(St.F)	
Table 10-14	Harmonic Constants of Tidal Currents(St.G)	
Table 10-15	Harmonic Constants of Tidal Currents(St.H)	352
Table 10-16	Harmonic Constants of Tidal Currents(St.I)	353
Table 2.3-2	Harmonic Constants of Tidal Currents(St.H)	3–55
Table 4.1-1	Results of ²¹⁰ Pb Concentration Measures	4-24

## LIST OF APPENDED TABLES

Table	3-1(1)Hourly	Heights (	of Tides	at Ilha	Fiscal	(March)		 	• •		• •		 •	. API	2-14
Table	3-1(2)Hourly	Heights (	of Tides	at Ilha	Fiscal	(March)		 		•••	•	•••	 • •	. API	2-15
Table	3- 2(1)Hourly	Heights (	of Tides	at Ilha	Fiscal	(April)	 • •	 			•		 •	. APF	2-16
Table	3- 2(2)Hourly	Heights of	of Tides	at Ilha	Fiscal	(April)	 	 			•		 • •	. APH	2-17
Table	3- 3(1)Hourly	Heights of	of Tides	at Ilha	Fiscal	(May)	 	 			•		 	. APF	' 2-18
Table	3- 3(2)Hourly	Heights of	of Tides	at Ilha	Fiscal	(May)	 	 		• •			 •	APF	' 2-19
Table	3- 4(1)Hourly	Heights of	of Tides	at Ilha	Fiscal	(June)	 • •	 					 	, APF	' 2-20
Table	3- 4(2)Hourly	Heights of	of Tides	at Ilha	Fiscal	(June)	 	 			•			. App	221
Table	3- 5(1)Hourly	Heights of	of Tides	at Ilha	Fiscal	(July) .	 	 • •			•	••	 	. APF	' 2-22
Table	3- 5(2)Hourly	Heights of	of Tides	at Ilha	Fiscal	(July) .	 	 			•		 • •	. APH	223

Table 3-6	Hourly Heights of Tides at Ilha de Paqueta (June)	APP 2-25
Table 3-7	Hourly Heights of Tides at Ilha de Paqueta (July))	APP 2-26
Table 6.1-1	Hourly Tidal Data at Ilha de Paqueta	APP 228

iv

## LIST OF FIGURES

R

	Pa	ge
The 11 1	Change in the Constal Line	2
Fig. 1.1-1	Change in the Coastal Line	
Fig. 1.2–1	Seabed Topography of the Guanabara Bay	
Fig. 1.2–2	Mesh Data of Water Depth in 1962 1-	
Fig. 1.2–3	Mesh Data of Water Depth in 1992	
Fig. 1.2–4	Difference in Water Depths between 1962 and 1992 1-	. 7
Fig. 2.1–1	Location of Tidal Stations	2
Fig. 2.1–1	Monthly Mean Sea Level at Ilha Fiscal	
· · · · · · · · · · · · · · · · · · ·	Tidal Curves at Ilha Fiscal	
Fig. 2.2–1	Location Map of tide Gauge at Ilha de Paqueta	
Fig. 2.2–2		
Fig. 2.2–3	Reduced Percentage of Tide Gauge	
Fig. 2.2–4	Tidal Diagram at Ilha de Paqueta 2-2	
Fig. 2.2-5	Calculation of Levelling	
Fig. 2.2–6	Tidal Curve at Ilha de Paqueta (Oct. 25, 1992 – Nov. 24, 1992) 2-7	
Fig. 2.3–1	Location Tidal Station	
Fig. 2.3–2	Tidal Diagram at Ilha Fiscal	
Fig. 2.3–3	Tidal Diagram at Armacao and Paqueta	
Fig. 2.3–4	Comparison of Tidal Curves	35
Fig. 3.1-1	Location Map of Tidal Current Observation	. 3
Fig. 3.2–1	Tidal Current Curves	
Fig. 6.2–2	Tidal Current Curves	
Fig. 2.32	Tidal Current Curves (St. H)	
Fig. 3.3–1	Constant Current Map	
Fig. 3.3–2	Tidal Current Map on Mean Spring Tides	
•	Tidal Current Map on Mean Spring Tides	
Fig. 3.3-2(1) Fig. 3.3-2(2)	Tidal Current Map no Mean Spring Tides	
Fig. $3.3-2(2)$ Fig. $3.3-2(3)$	Tidal Current Map no Mean Spring Tides	
Fig. $3.3-2(3)$	Tidal Current Map no Mean Spring Tides	
Fig. $3.3-2(4)$	Tidal Current Map no Mean Spring Tides	
Fig. $3.3-2(5)$	Tidal Current Map no Mean Spring Tides	
.,	Seasonal Change of Tidal Currents (St. C)	
Fig. 3.4–1	-	
Fig. 3.4–2	Seasonal Change of Tidal Currents (St. F)	
Fig. $3.4-3$	Vertical Change of Tidal Currents (St. A)	
Fig. 3.4–4	Vertical Change of Tidal Currents (St. B)	
Fig. 3.4–5	Tidal Currents in the Bay 3-7	13
Fig. 4.1–1	Sampling Stations of Bottom Sediments 4-	2
Fig. 4.1–2	Grain Size Distribution of Sea Bottom Materials (Median Diameter) 4-	
Fig. 4.2-1	Typical Profiles of Acoustic Prospecting	
Fig. 4.4–2	Tracking Chart of Acoustic Prospecting	
Fig. 4.2–3	Iso-Thickness Map of Suspended Sediments	
Fig. 4.2–4	Iso-Thickness Map of Suspended Scennents	
Fig. 4.2–5	Location Map of Core Sampling	
Fig. 4.2-5	Relation between Core samples and Acoustic Profiles	
Fig. 4.2-7	Geological Profile of the Guanabara Bay	
Fig. 4.2-7 Fig. 4.3-1	Index Map for Profiles	
Fig. $4.3-2$	Seabed Profile Along Line A	
Fig. 4.3–3	Seabed Profile Along Line B and Line C	
- 6	state state state with a min white a state	

#### v

Fig. 4.3-4	Survey Period of the Chart Published in 1992 4-19
Fig. 4.4–1	Sedimentation Rate in the Guanabara Bay 4-21
Fig. 4.4–2	Location Map of Core Sampling for Age Determination
Fig. 4.4-3	Sedimentation Speed in the Guanabara Bay by the Method of
-	Age Determination Using ²¹⁰ Pb

## LIST OF APPENDED FIGURES

Fig.	91	Frequency Distribution of Tidal Currents AP	P 3- 2
Fig.	9-2	Frequency Distribution of Tidal Currents AP	Р 3- 3
Fig.	93	Frequency Distribution of Tidal Currents AP	P 3- 4
Fig.	94	Frequency Distribution of Tidal Currents AP	P 3- 5
Fig.	9-5	Frequency Distribution of Tidal Currents AF	P 3 6
Fig.	9-6	Frequency Distribution of Tidal Currents AP	P 3- 7
Fig.	9–7	Frequency Distribution of Tidal Currents AP	P 3- 8
Fig.	9-8	Frequency Distribution of Tidal Currents AP	P 3-10
			•
Fig.	2.3-3(1)	Frequency Distribution of Tidal currents (St. H) AP	P 3-22
Fig.	2.3-3(2)	Frequency Distribution of Tidal currents (St. J) AP	
~		Tidal Current Ellipses AP	
Fig.	10-2	Tidal Current Ellipses AP	
Fig.	10-3	Tidal Current Ellipses AP	P 4- 4
Fig.	10-4	Tidal Current Ellipses AP	P 4- 5
Fig.	10 5		
	10-5	Tidal Current Ellipses AP	P 4- 6
Fig.	10-5 10-6	Tidal Current Ellipses       AP         Tidal Current Ellipses       AP	
			P 4- 7
Fig.	10-6	Tidal Current Ellipses AP	P 4- 7 P 4- 8

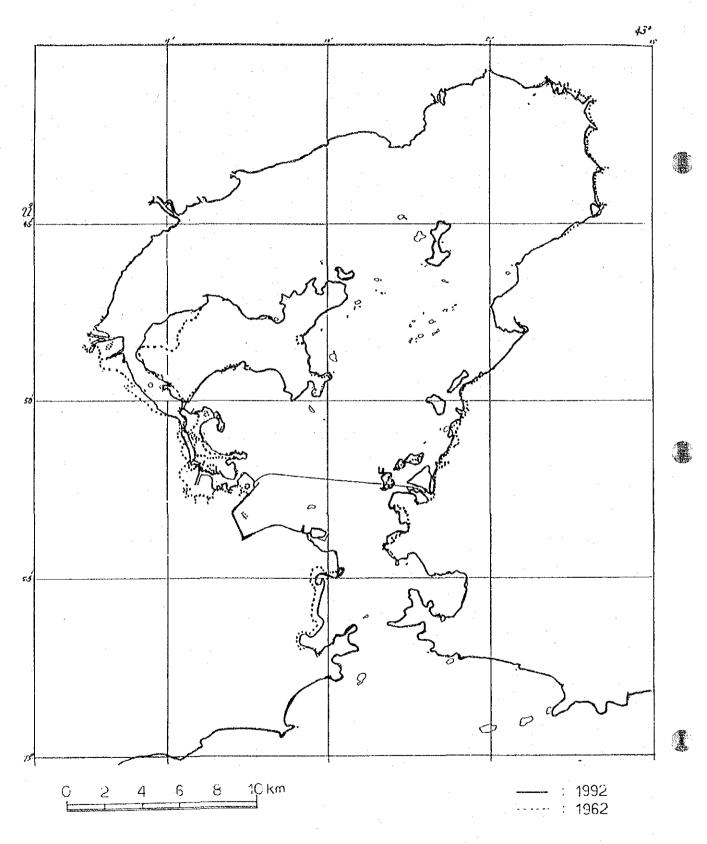
# CHAPTER 1

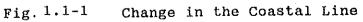
# TOPOGRAPHY

#### 1.1 Coastal Line

The area of Guanabara Bay is about 346 km², including 59 km² of islands and islets, such as Ilha do Governador, Ilha do Fundao and Ilha de Paqueta.

The coastal line of the bay is about 131 km in length and partially covered with mangroves, especially in the northeast area.


Fig. 1.1-1 shows the change in the coastal line between 1930's. A remarkable advancement in the coastal line is seen in the four areas, Ilha do Governador and Fundao area, Flamengo beach, Niteroi area and northeastern mangrove area.


#### 1.2 Submarine Topography

The bay is characterized with a shallow water depth, 5.7 meters on average, and a narrow mouth of 1.6 km in width at the entrance of the bay. therefore, the bay is a typically enclosed coastal sea.

The seabed of the bay is uneaven and ancient river channels are currently partially filled with sediment deposited in recent times.

The maximum water depth at the mouth of the bay is 51 meters. A 20 m contour line indents until the Rio-Niteroi bridge and an area deeper than 20 meters is also seen in the eastern side of Ilha do Governador as shown in Fig. 1.2-1. A contour line of 10 meters penetrates far into the inner part from the mouth of the bay at about 2.5 km in width and reaches to the Ilha de Paqueta.





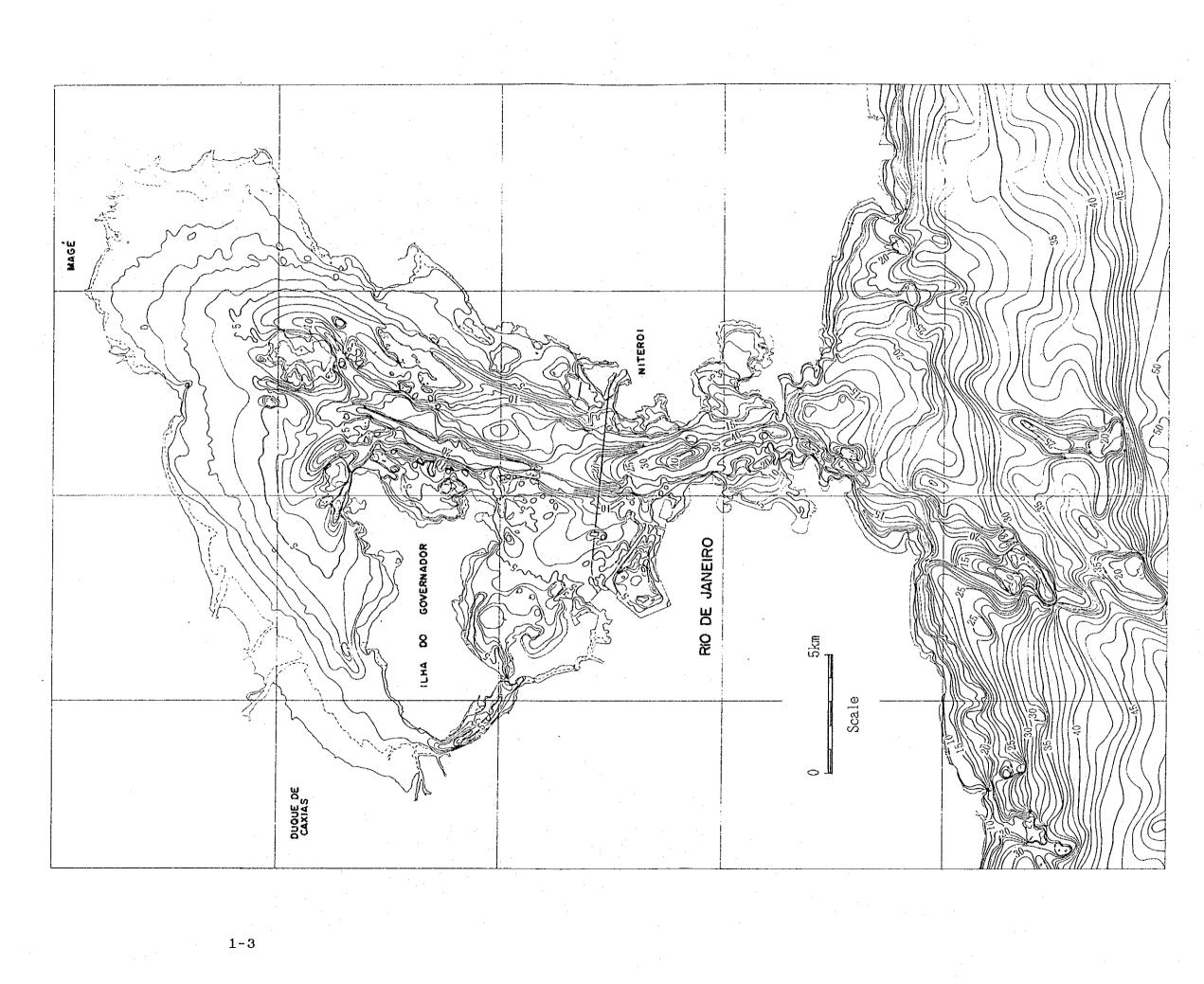



Fig. 1.2-1 Seabed Topography of the Guanabara Bay

There are two guanabara bay charts published by DHN, one in 1962 and an edition revised in 1992.

For the water depth in the bay, the mesh data of one kilometer interval using the 1962 and 1992 charts are shown in Fig. 1.2-2 and Fig. 1.2-3.

Figure 1.2-4 shows the difference of the water depth in 1962 and 1992, the values of which are obtained by subtracting those in 1992 from those in 1962.

This figure shows that the water depth in the inner part of the bay has grown shallower at around one meter within the past thirty years.

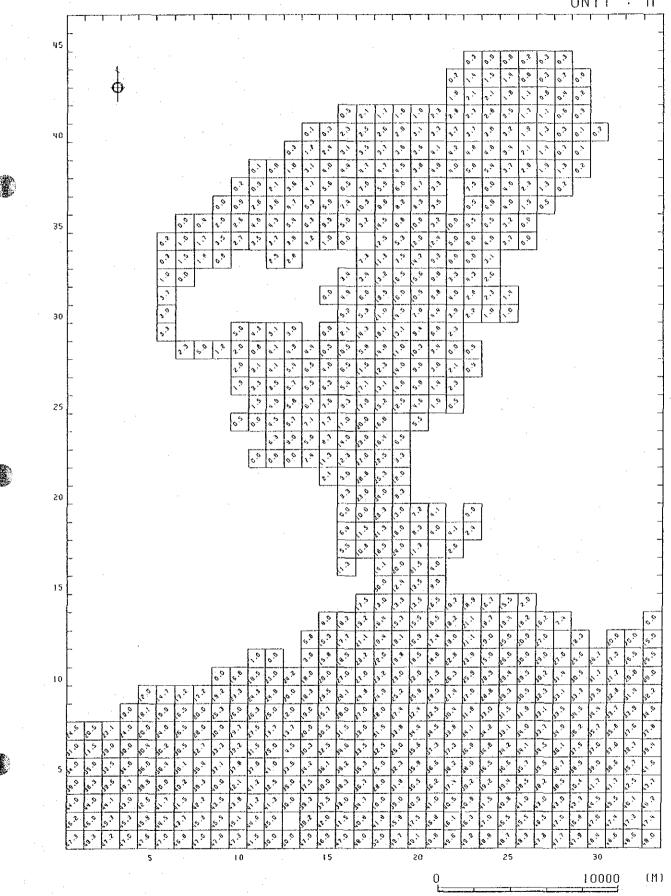




Fig. 1.2-2 Mesh Data of Water Depth in 1962



## Fig. 1.2-3 Mesh Data of Water Depth in 1992

1-6

UNIT : M

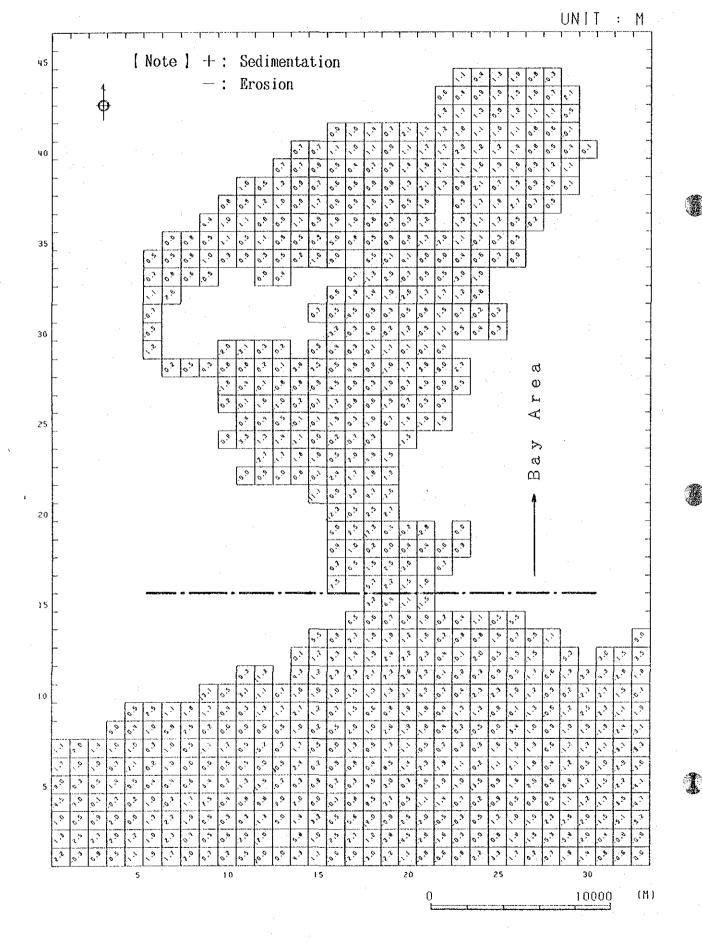



Fig. 1.2-4 Difference in Water Depths between 1962 and 1992

#### 1.3 Water Volume

The water volume in the bay, which was calculated using the mesh data from the existing chart published in 1992, is shown in Table 1.3-1. An average water volume is estimated at 2.2 billion  $m^3$ .

Using the mesh data of water depths shown in Fig. 1.2-2 and Fig. 1.2-3, we tried to calculate the rough water volume below the chart datum level in the bay. The results of the calculation are as follows;

1992 : 1.95 billion m³ (No. of meshes : 344, Mean depth : 5.68 m) 1962 : 2.18 billion m³ (No. of meshes : 366, Mean depth : 5.95 m)

In this calculation, the area of the bay was defined as shown in Fig. 1.2-4.

Table 1.3-1 Water Volume of the Guanabara Bay

Tide	Water Volume	Remarks
Mean High Water Springs	2.39 x 10 ⁹ m ³	MSL + 48.8 cm
Mean High Water Neaps	$2.25 \times 10^9 \text{ m}^3$	MSL + 13.0 cm
Mean Low Water Neaps	2.15 ж 10 ⁹ m ³	MSL - 13.0 cm
Mean Low Water Springs	2.02 к 10 ⁹ m ³	MSL - 48.8 cm
Lowest Low Water	1.95 x 10 ⁹ m ³	MSL - 69.0 cm

## CHAPTER 2

TIDES

#### 2.1 Existing Data of Tides

#### 2.1.1 Tidal Station

The tidal stations, where the tides of the Guanabara Bay were observed by the Department of Hydrography and Navigation (DHN), are shown in Table 2.1-1 together with Zo, and these stations are plotted in Figure 2.1-1.

Among these stations, the observation period in the three stations of Ilha de Paqueta, Fortaleza de Santa Cruz and Ponta Armacao was very short, lasting only from one month to two years.

At present, tidal observation has been continued only at Ilha Fiscal (Port of Rio de Janeiro) within the Guanabara Bay.

Station	I	atitude		Lo	ongitude	Z _o	Remarks
Ilha Fiscal	22.'	53 ′ 47"	s	43 [·]	09′57" W	69.0 cm	DHN, 1988
Ilha Paqueta	22 '	45 ′ 38"	s	43'	06′38" W	73.6 cm	DHN, 1973
Santa Cruz	22 '	56′12"	s	43'	07′48" W	69.0 cm	DHN, 1979
Ponta Armacao	22.	52 ′ 59"	s	43'	08′05" W	75.2 cm	DHN, 1988
Ilha Guaiba	22.	00 ′ 24"	s	44 '	02′00" W	69.1 cm	DHN, 1981

Table 2.1-1 Location of Tidal Stations

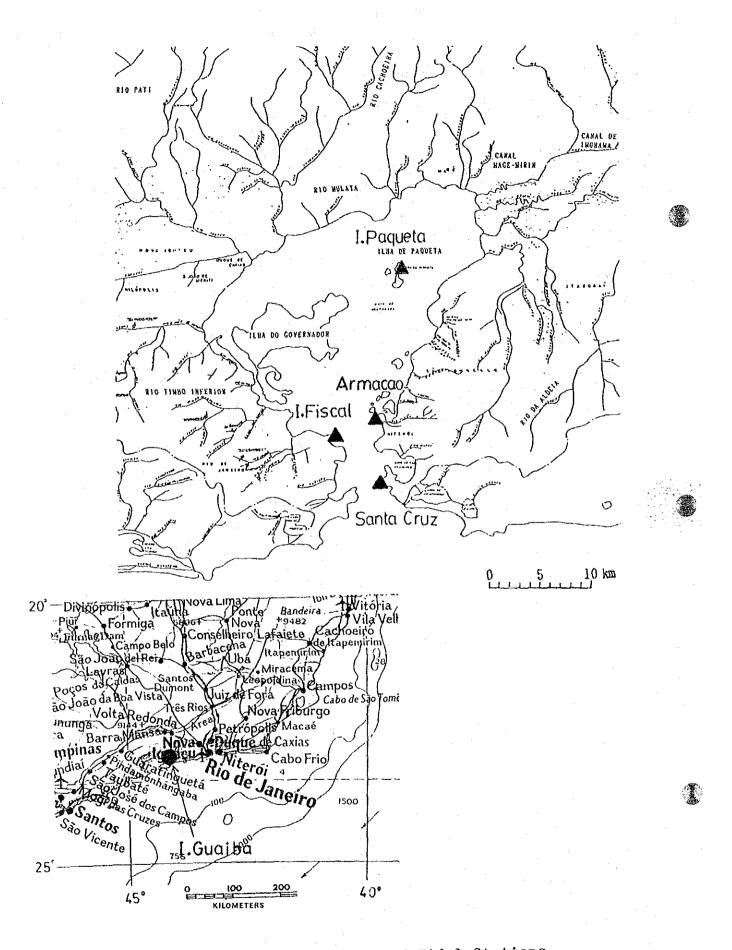



Fig. 2.1-1 Location of Tidal Stations

2-2.

#### 2.1.2 Harmonic Constants of Tides

The existing harmonic constants of tides at each station calculated by DHN are shown in Table 2.1-2.

Is shown in Table 2.1-3, the semi-diurnal tides such as  $\rm M_2$  and  $\rm S_2$  constituents predominate.

No, which is expressed as the sum of the principal four constitution of  $M_2$ ,  $S_2$ ,  $K_1$  and  $O_1$ , is 69.0 cm to 69.1 cm at Ilha Fiscal (Port of Rio de Janeiro), Fortaleza de Santa Cruz and Ilha Guaiba according to the existing data.

On the other hand,  $Z_0$  at Ilha de Paqueta is 73.6 cm, indicating 4.6 cm difference between the mouth of the bay and the inner part of the bay.

As a reference, the method of the harmonic analysis of tides is shown in Appendix 1.

				Con	stitu	ent			
Station	M ₂		S ₂			K ₁	0 ₁		Zo
	H(cm)	G( )	H(cm)	G(`)	H(cm)	G(°)	H(cm)	G(`)	
Ilha Fiscal (1986)	30.9	83.0	17.9	87.0	5.8	145.7	10.5	87.2	65.1
Ilha Fiscal (1965)	31.8	93.0	17.9	87.6	6.2	143.5	9.2	103.7	65.1
Ilha de Paquet	32.0 a	87.3	19.0	97.0	7.6	117.7	12.5	106.8	71.1
Stanta Cruz	31.6	83.0	17.4	86.0	6.5	144.0	10.5	89.0	66.0
Ilha Guaiba	34.9	88.0	19.9	87.0	6.2	152.0	11.7	89.0	72.7

Table 2.1-3 Harmonic Constants of the Principal Four Constituents

## Table 2.1-2

## Harmonic Constants of Tides

#### PRINCIPAL HARMONIC CONSTITUENTS

## [ Semi-Diurnal ]

M₂: the principal lunar semidiurnal constituent, N₂: the larger lunar elliptic semidiurnal constituent, L₂: the smaller lunar elliptic semidiurnal constituent, S₂: the principal solar semidiurnal constituent, T₂: the principal solar elliptic semidiurnal constituent, K₂: the luni-solar declinational semidiurnal constituent, with speed 13.943°

with speed 13.399°

with speed 14.492°

with speed 15.585°

with speed 15.041°

with speed 14.959°

with speed 30.082° per mean solar hour

[ Diurnal ]

 $O_1$ : a lunar declinational diurnal constituent,  $Q_1$ : a lunar diurnal constituent,  $M_1$ : a lunar diurnal constituent,  $J_1$ : a lunar diurnal constituent,  $K_1$ : the luni-solar declinational diurnal constituent,  $P_1$ : the solar declinational diurnal constituent,

[Long Period]

Mf: the lunar fortnightly constituent, with speed 1.098° per mean solar hour Mm: the lunar monthly constituent, with speed 0.544° per mean solar hour Ssa: the solar semi-annual constituent, with speed 0.082° per mean solar hour S a: the solar annual constituent, with speed 0.041° per mean solar hour

## Harmonic Constants of Tides at Ilha Fiscal ( Period : Jan. 1986 to Dec. 1986 )

## PORTO DO RIO DE JANEIRO(I.FISCAL) 01/01/86-31/12/86 22-53.8S 43-09.9W

	SPEED	Н	КАРРА	G
	(deg/hour)	(cm)	(deg)	(deg)
S0		67.0		
(1)LONG P	ERIOD TIDE			
MM	0.544	-		-
MSF	1.016			'
(2)DIURNA	LTIDE			
Q1	13.399	3.0	56.2	59.1
01	13.943	10.5	85.9	87.2
M 1	14.492	1.1	155.3	155.0
K 1	15.041	5.8	147.7	145.7
J 1	15.585		-	·
001	16.139	-	-	-
- P1	14.959	2.1	139.8	138.1
(3)SEMI-D	IURNAL TIDE			
MU2	27.968	2.3	84.0	86.4
N2	28.44	3. 9	117.5	118.6
M2	28.984	30.9	83.6	83.0
L2	29.528	2.1	85.1	82.8
S2	30	17.9	90.7	87.0
2SM2	31.016	-	-	· –
K 2	30.082	4.8	76.0	72.1
NU2	28.513	-	-	-
Т2	29.959	2.6	175.7	172.2
(4)THIRD-	DIURNAL TIDE		н. - С	
MO3	42.927	-	·	-
M3	43.476	0.5	200.7	199.8
MK 3	44.025	-	-	-
(5)QUARTE	R-DIURNAL TIDE			
MN 4	57.424	2.2	32.3	32.7
M 4	57.968	4.6	74.5	73.2
SN4	58.44	0.8	148.3	145.6
MS4	58.984	2.2	164.2	159.9
(6)SIXTH-	DIURNAL TIDE			
2MN6	86.408	· -	'	- '
M6	86.952	-	~	· –
MSN6	87.424	-	۴.	-
2MS6	87.968	-	-	-
2SM6	88.984	-	~	-

## Harmonic Constants of Tides at Ilha Fiscal ( Period : Jan. 1965 to Dec. 1965 )

## PORTO DO RIO DE JANEIRO(1. FISCAL) 01/01/65-31/12/65 22-53.88 43-09.9W

	SPEED	H	КАРРА	G	
	(deg/hour)	(cm)	(deg)	(deg)	
S0		69.0		_	
	ERIOD TIDE				
HN	0.544	1.8	97.4	95.8	
MSF	1.016	3.1	164.6	161.6	
(2)DIURNA	LTIDE				
Q1	13.399	2.6	106.7	109.7	
01	13.943	9.2	102.4	103.7	
<b>M1</b>	14.492	-	-	-	
K 1	15.041	6.2	145.5	143.5	
J1	15.585	0.7	47.6	44.0	
001	16.139	-	-	-	
P1	14.959	2.1	139.5	137.8	
(3)SEMI-DIURNAL TIDE					
NU2	27.968	1.1	153.9	156.3	
N2	28.44	2.6	172.5	173.5	
M2	28.984	31.8	93.6	93.0	
L2	29.528	1.4	48.3	46.0	
S2	30	17.9	91.3	87.6	
2SM2	31.016	0.3	244.6	237.9	
K2	30.082	5.7	22.1	18.2	
NU2	28.513	-	-	-	
T2	29.959	-	-	-	
(4)THIRD-	DIURNAL TIDE				
MO3	42.927	-	-	-	
M3	43.476	0.7	202.6	201.7	
MK 3	44.025	-	-	-	
	R-DIURNAL TID				
MN4	57.424	2.0	223.7	224.1	
M4	57.968	4.8	97.6	96.4	
SN4	58.44	0.4	206.7	204.0	
MS4	58.984	3.1	190.0	185.7	
	DIURNAL TIDE				
2MN6	86.408	-		-	
MG	86.952	-	-	_*	
MSN6	87.424	-	-	=	
2MS6	87.968	-	-	-	
2SM6	88.984	-	-		

## Harmonic Constants of Tides at Ilha de Paqueta ( Period : July 1973 to Aug. 1973 )

ILHA DE PAQUETA 17/07/73-17/08/73 22-45.6S 43-06.6W

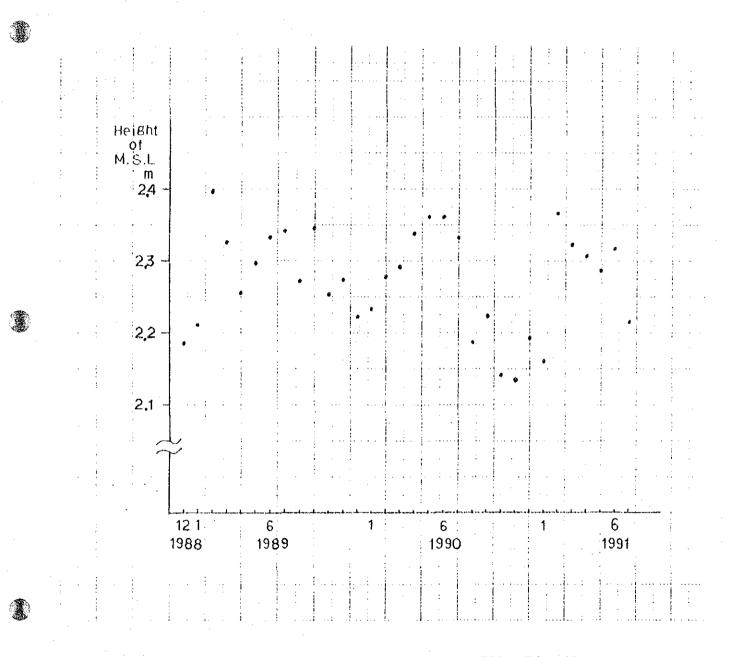
	SPEED	H	КАРРА	G		
	(deg/hour)	(cm)	(deg)	(deg)		
S0		74.0	· · ·	-		
	ERIOD TIDE					
MM	0. 544	8.1	329.5	327.9		
MSF	1.016	13.4	196.7	193.7		
(2)DIURNA						
Q1	13.399	4.7	60.7	63.6		
01	13.943	12.5	105.5	106.8		
M 1	14.492	2.1	77.0	76.6		
K1	15.041	7.6	119.7	117.7		
J1	15.585	1.9	289.9	286.3		
001	16.139	2.6	311.9	306.6		
P1	14.959	2.5	119.5	117.7		
(3)SEMI-DIURNAL TIDE						
NU2	27.968	6.3	153.0	155.3		
N2	28.44	6.1	54.4	55.3		
M2	28.984	32.0	88.0	87.3		
L2	29. 528	3.0	27.6	25.2		
<b>S</b> 2	30	19.0	100.8	97.0		
2SM2	31.016	2.0	348.6	341.8		
K 2	30.082	5.2	101.0	97.0		
NU2	28.513	1.2	54.6	55.3		
Τ2	29.959	1.1	100.7	97.0		
(4)THIRD-	DIURNAL TIDE					
MO3	42.927	1, 1	5.2	5.7		
M3	43.476	1.5	200.1	199.0		
MK 3	44.025	1.3	34.7	32.0		
(5)QUARTI	R-DIURNAL TIDE					
MN4	57.424	4.5	45.1	45.3		
M 4	57.968	6.6	84.9	83.4		
SN4	58.44	3.0	205.8	202.9		
MS4	58.984	4.1	234.8	230.3		
(6)SIXTH-	DIURNAL TIDE					
2MN6	86.408	0.4	329.5	328.9		
<b>M</b> 6	86.952	0.7	26.5	24.3		
MSN6	87.424	0.6	158.2	154.6		
2MS6	87.968	0.5	48.1	42.9		
2SM6	88.984	0.9	132.9	124.6		

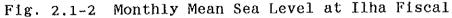
Harmonic Constants of Tides at Fortaleza de Santa Cruz ( Period : May 1979 to June 1979 )

> FORTALEZA DE SANTA CRUZ 01/05/79-01/06/79 22-56.1S 43-08.3₩

	SPEED	H	КАРРА	G
	(deg/hour)	(cm)	(deg)	(deg)
S0		69.0		
(1)LONG PU	SRIOD TIDE			
ИИ	0.544	6.9	124.6	123.0
MSF	1.016	7.8	126.0	123.0
(2)DIURNAI	TIDE			
Q1	13.399	2.5	55.1	58.0
01	13.943	10.5	87.7	89.0
M 1	14.492	0.2	38.3	38.0
K 1	15.041	6.5	146.0	144.0
J1	15.585	1.2	268.6	265.0
001	16.139	0.7	293.3	288.0
P1	14.959	2.1	141.7	140.0
(3)SEMI-DI	URNAL TIDE			
MU2	27.968	0.5	109.6	112.0
N2	28.44	4.6	122.0	123.0
M2	28.984	31.6	83.7	83.0
L2	29.528	2.6	131.3	129.0
S2	30	17.4	89.7	86.0
2SM2	31.016	0.8	280.8	274.0
K 2	30.082	4.7	90.0	86.0
NU2	28.513	0.9	116.3	117.0
Т2	29.959	1.0	89.6	86.0
(4)THIRD-I	DIURNAL TIDE			
MO3	42.927	-	-	
. M3	43.476	0.9	180.0	179.0
MK 3	44.025	0.5	144.7	142.0
(5)QUARTEI	R-DIURNAL TID	E		
MN4	57.424	1.6	16.7	17.0
M4	57.968	3.7	70.4	69.0
SN4	58.44	1.0	138.8	136.0
MS4	58.984	1.7	167.4	163.0
(6)SIXTH-I	DIURNAL TIDE			•
2MN6	86.408	0.2	113.4	113.0
M 6	86.952	0.2	138.0	136.0
MSN6	87.424	0.2	21.4	18.0
2MS6	87.968	0.4	239.1	234.0
2SM6	88.984	0.2	187.1	179.0

×


## Harmonic Constants of Tides at Ilha Guaiba ( Period : Jan. 1980 to Dec. 1981 )


ILHA GUAIBA 01/01/80-31/12/81 23-00.4S 44-02.0W

G deg)
deg)
08.0
7.0
62.0
89.0
98.0
52 <u>,</u> 0
53.0
70.0
89.0
76.0
34.0
88.0
56.0
87.0
59.0
87.0
34.0
87.0
50.0
99.0
36.0
51.0
03.0
10.0
93.0
45.0
45.0
09.0
98.0
7.0

## 2.1.3 Annual Change of Mean Sea level

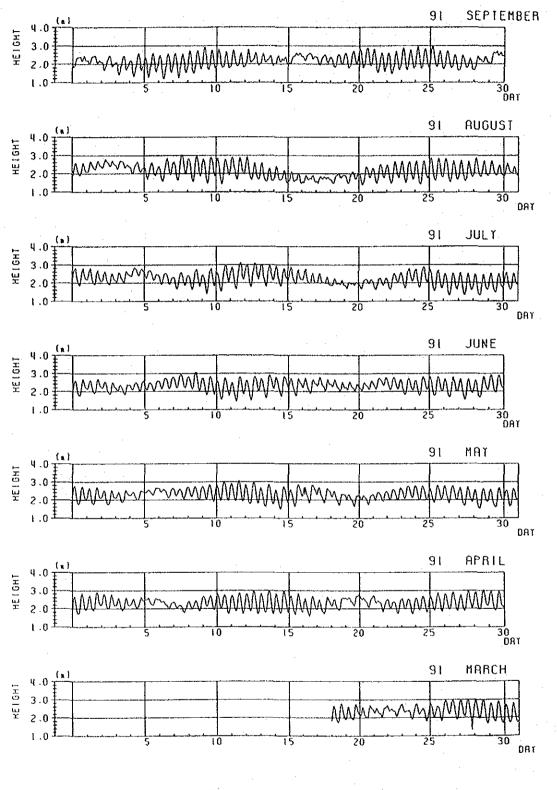
The monthly mean sea level at Ilha Fiscal is shown in Fig. 2.1-2 for the period of December 1988 to July 1991.

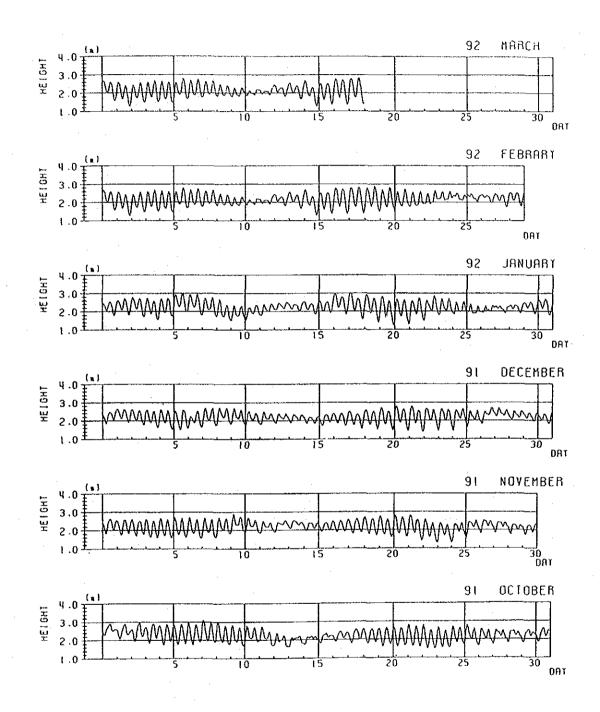




## 2.2 Tidal Variation during Study Period

#### 2.2.1 Ilha Fiscal


The tidal curves at Ilha Fiscal are shown in Fig. 2.2-1 for the period of March 1991 to July 1992.


These are predicted values which are calculated using the existing harmonic constants.

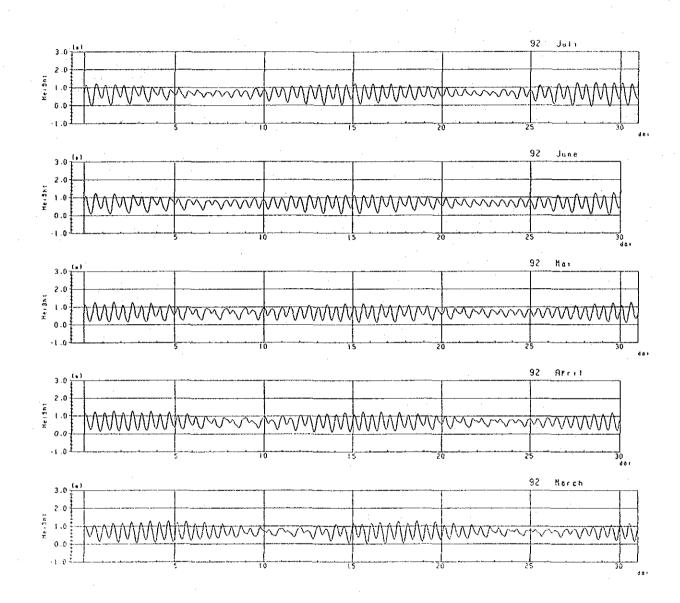

Hourly heights of the tides at Ilha Fiscal are shown in Appendix 2 for the period of March 1991 to July 1992.

Fig. 2.2-1

Tidal Curves at Ilha Fiscal



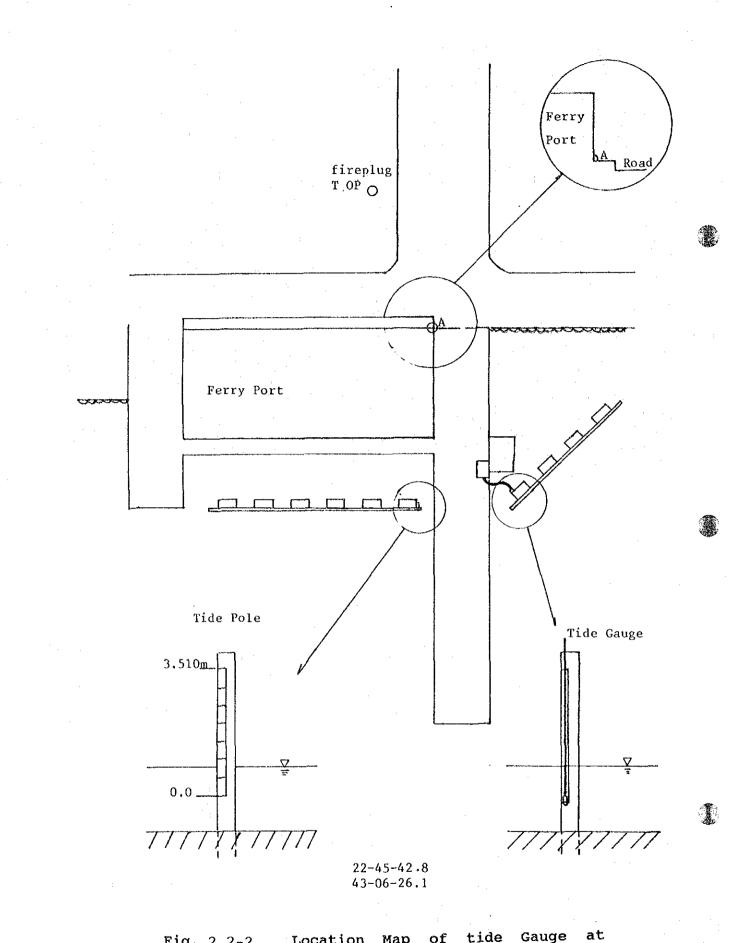
Tidal Curves at Ilha Fiscal (Warch 1991 to Warch 1992) 

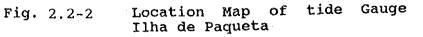


Tidal Curves at Ilha Fiscal (March to July 1992)

#### 2.2.2 Ilha de Paqueta

The continuous observation of tides was carried out at the ferry pier of the Ilha de Paqueta for the period of Oct. 20 to Nov. 25, 1992 using a tide gauge (Fig. 2.2-2).


Coordinate of the station : 22' 45' 43'' S43' 06' 26'' W


During the observation period, the checking survey using a tide pole was also performed to confirm the normal operation and decide the reduced percentage of the gauge (Fig. 2.2-3).

Above that, the relation between the tide gauge level and the existing Bench Mark (DHN-733) was obtained by a direct levelling through the fireplug in the park in front of the ferry pier. The relation is shown in Fig. 2.2-4 and the calculation of the relation is also shown in Fig. 2.2-5 for the reference.

The tidal curves at Ilha de Paqueta are shown in Fig. 2.2-6 for the period of June to July 1992 and October to November 1992.

Hourly heights of the tides at Ilha de Paqueta are shown in Appendix 2 for the period of June to July 1992 and October to November 1992.





1 ----921124 T R=(T,G=a,12)X1.01 Loot= 07.1 ں ب <u>79</u> |-. 2 0 7 Fig. 2.2-3 Reduced Percentage of Tide Gauge ີ ເມ į ÷  $\cap$ ..... က် O 2 0 154 с р С Р ບ + ò -----. -----ľ 50

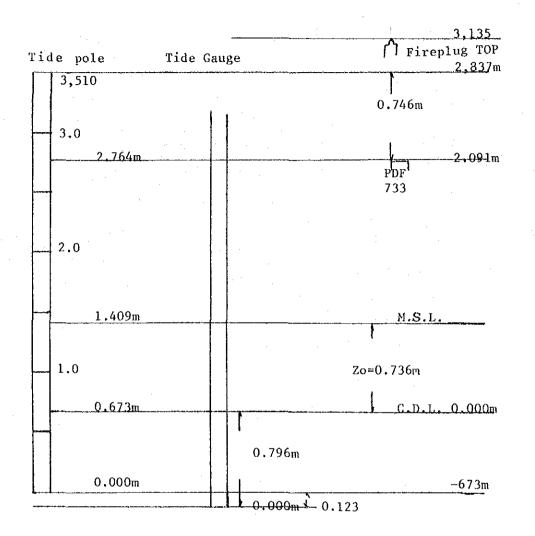
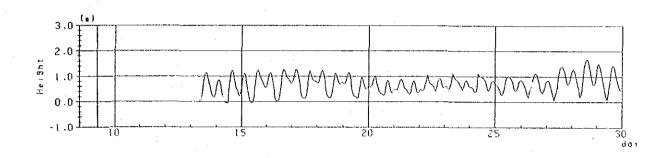
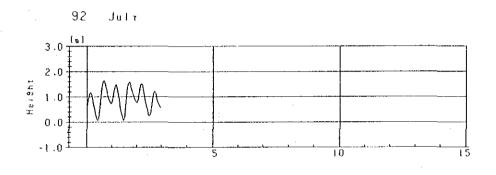



Fig. 2.2-4

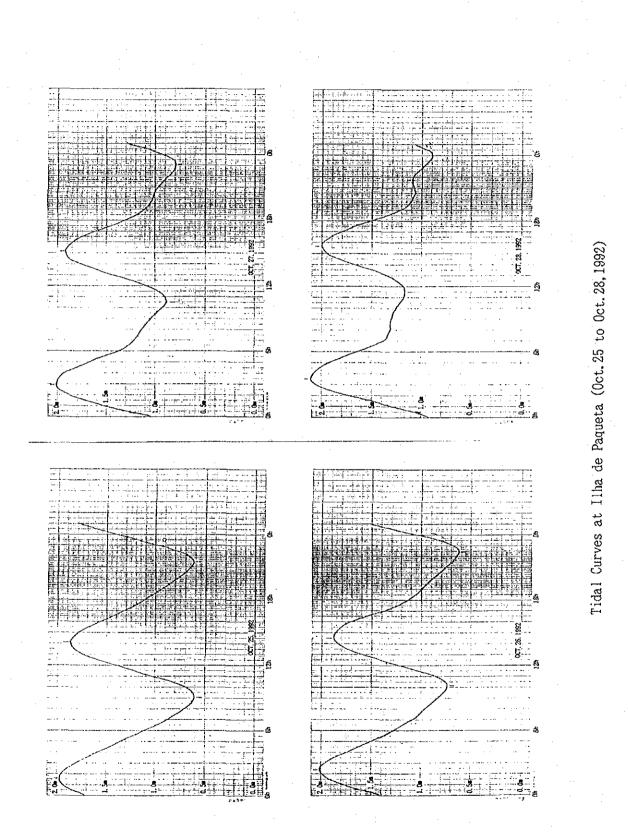
### Tidal Diagram at Ilha de Paqueta 2-20

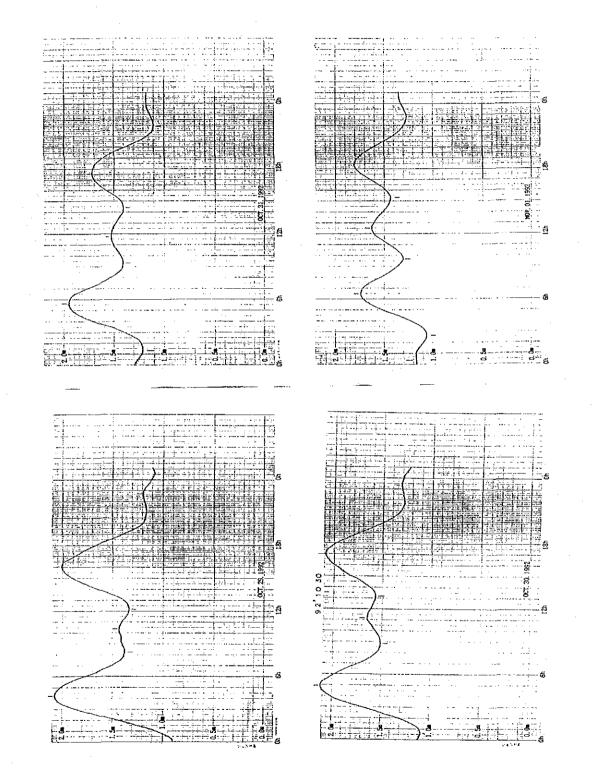
A	1.302		Tide pole TOP	1.282		
Tide Pole TOP	·	1.310	<u>A</u>		1.2	
	1.302	1.310		1.282		75 .007
		-0.008			40	.007
A	0.642		RN-1	0.909		
fireplug TOP	1.092	0.351 +0.291		1.455	1.514	
	1.149	0.705	733	1.457	1.352	-0.502
	0.115	0.404		1.022	1.254	
	0.703	1.637		1.368	0.724	
	1.238	_1.135		1.512	0.230	:
733	1.217	1.461 -1.045		0.659	1.686	
(placa de metal)	1.458	1.269	fireplug TOP	0.357	1.082	+ 1.042
RN-1		0.902 +0.504	А		0.647	-0.290
Tide Pole						


733 тор А 3510 267.9 (T.P. Zero 0) 209.1 (C.P.L) -0.290 +1.042 -0.008 +0.291 -1.045 +0.007 -0.008 -0.290 +1.044 H=3.135 H=2.091m H=2.845


T.P. top H = 2.837mT.P. Zero H = -0.673m

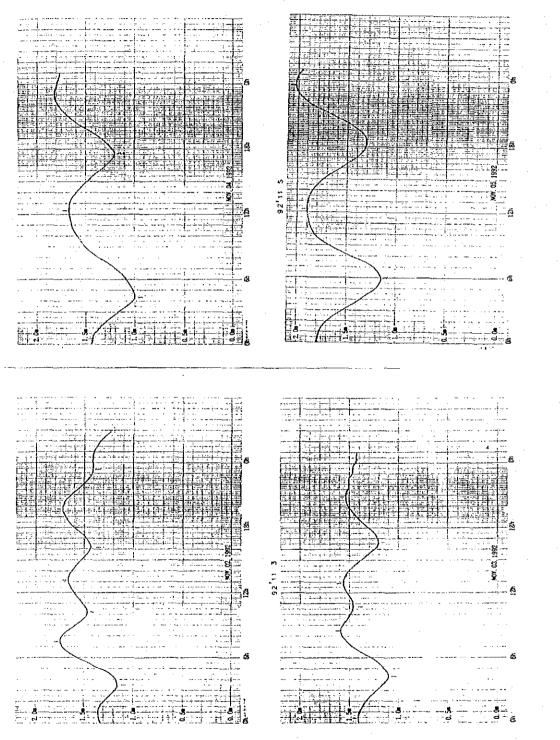
#### Calculation of Levelling Fig. 2.2-5


Fig. 2.2-6

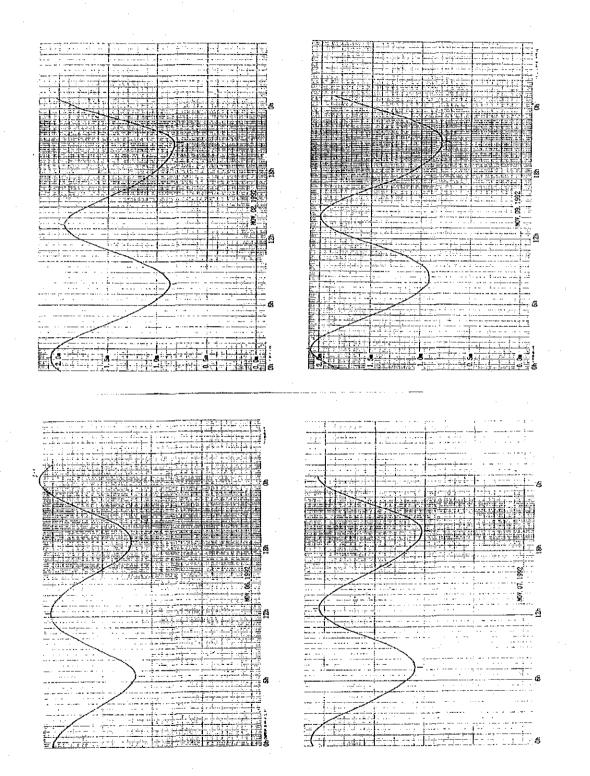

Tidal Curve at Ilha de Paqueta (Oct. 25, 1992 - Nov. 24, 1992)



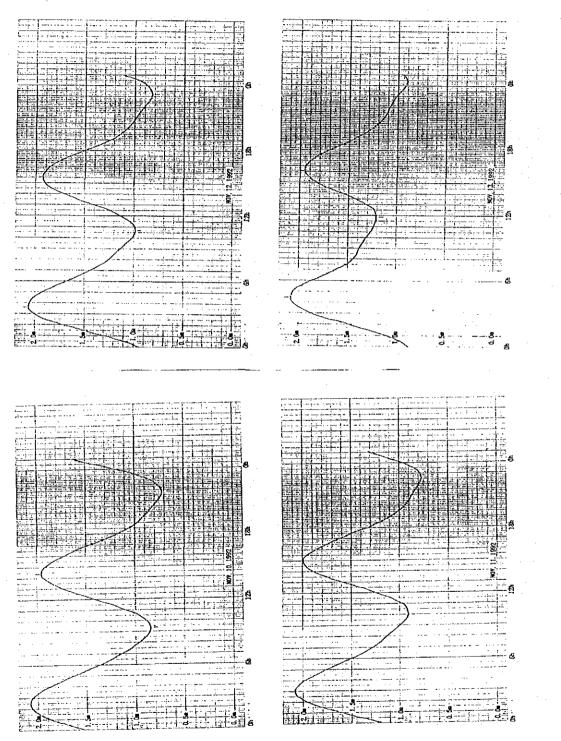



Tidal Curves at Ilha de Paqueta (June to July 1992)



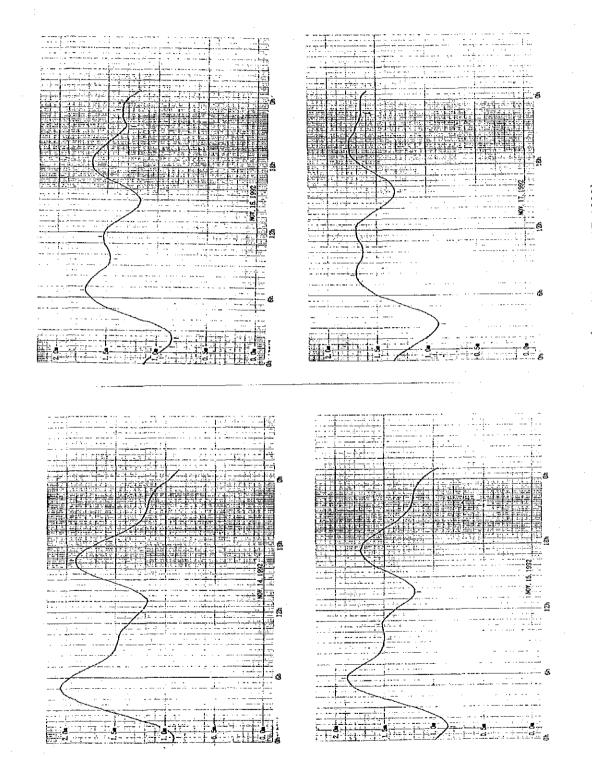






2-25

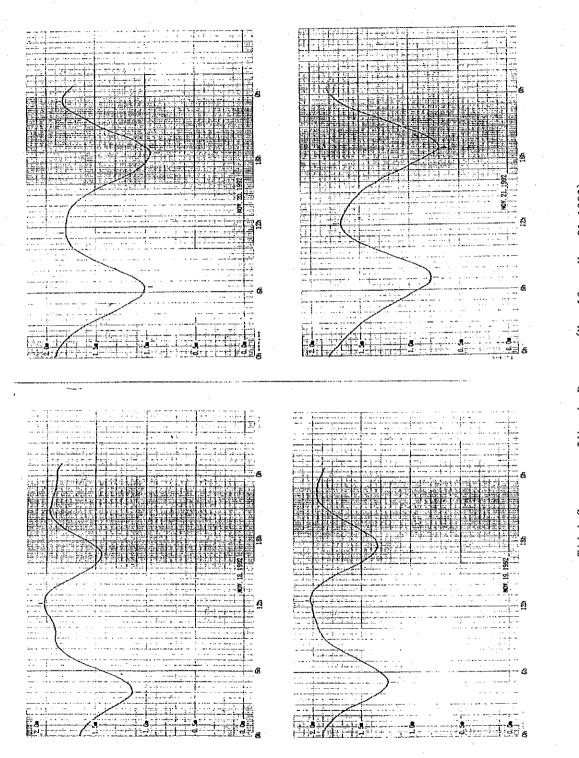


Tidal Curves at Ilha de Paqueta (Nov.02 to Nov.05,1992)



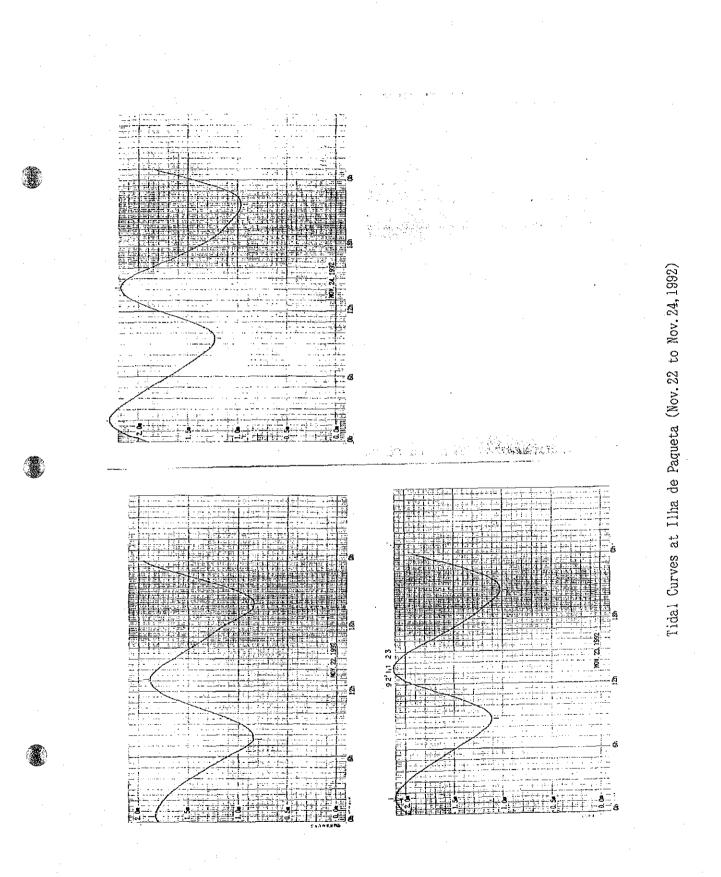






Tidal Curves at Ilha de Paqueta (Nov.10 to Nov.13,1992)

Č.




Tidal Curves at Ilha de Paqueta (Nov.14 to Nov.17,1992)

2-29



Tidal Curves at Ilha de Paqueta (Nov.18 to Nov.21,1992)

۲.



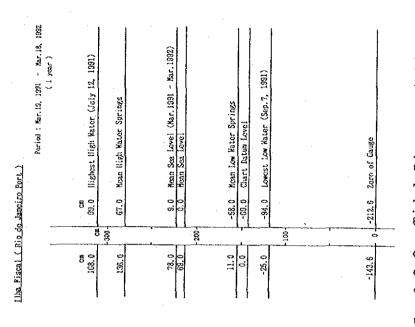
### 2.3 Characteristics of Tides

### 2.3.1 Tidal Diagram

The tidal diagram at Ilha Fiscal, which is the standard of the Rio de Janeiro port, is shown in Fig. 2.3-2 using the one year data of March 19, 1991 to March 18, 1992. The maximum and average tidal spring range was 1.46 m and 1.26 m respectively. the highest high water was recorded to be 99.0 cm above Mean Sea Level and the lowest low water was 94.0 cm below Mean Sea Level.

Fig. 2.3-3 is the tidal diagram at Ponta da Armacao near the mouth of the bay and at Ilha de Paqueta in the inner part of the bay conducted for one month on the same period, from October 25, 1992 to November 24, 1992. The diagram shows that there was a difference of 16 cm at highest high water.

#### 2.3.2 Harmonic Constants of Tides


In the Guanabara Bay, semi-diurnal tides such as  $M_2$  and  $S_2$  constituents are predominant. This means that the period of tides in the bay is semi-diurnal (about 12.5 hours). Harmonic constants at the four stations in the bay are shown in Table 2.3-1.

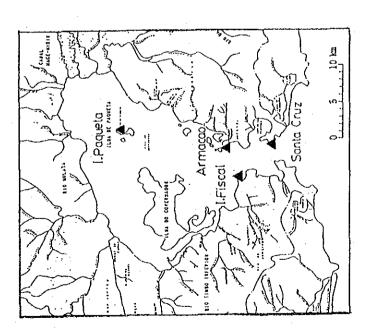
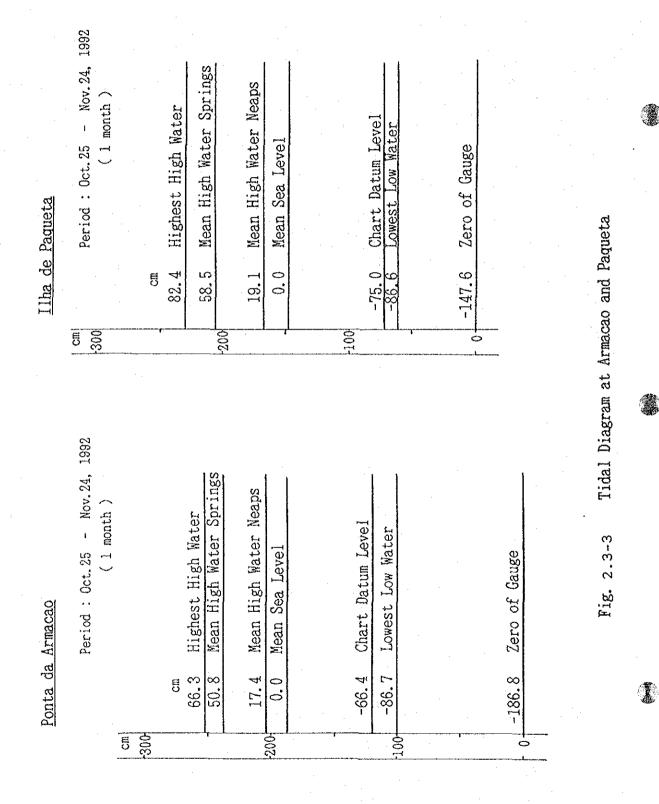
### 2.3.3 Comparison of Tides in the Bay

Fig. 2.3-4 shows the tidal curves at Ponta da Armacao near the mouth of the bay and at Ilha de Paqueta in the northern part of the bay on November 10, 1992.

By comparing the two curves in spring tide, the range of the tide at Paqueta is 12 - 13 cm larger than armacao.

On the other hand, the time of high water and low water tends to be faster at Paqueta and at Armacao, respectively and the high and low water intervals seem to be almost the same.



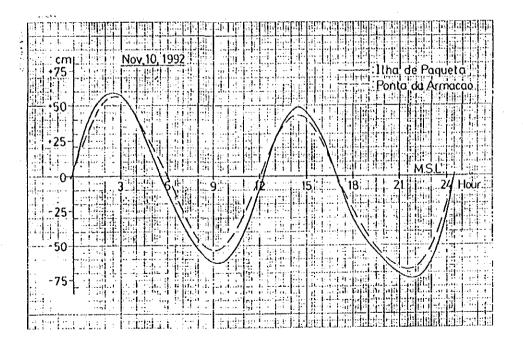


Fig. 2.3-2 Tidal Diagram at Ilha Fiscal

Fig. 2.3-1 Location Tidal Station



Station	Coordinates	Const:	ituent	(Height	H=H +H m s	Remarks	
	   1	M (H )	S ₂ (H ₃ )	K ₁ (H')	0 ₁ (H ₀ )	+H'+H 0	
Fiscal	22 ⁰ 53'47''S	30.9	17.9	5.8	10.5	65.1 cm	DHN,1986
	43 ⁰ 09'57''W						(1 year)
Santa Cruz	22 ⁰ 56'12''S	31.6	17.4	6.5	10.5	66.0 cm	DHN,1979
	43 ⁰ 07'48''W	•					(1 month)
Armacao	22 ⁰ 52'59''S	34.1	16.7	5.4	10.2	66.4 cm	JICA, 1992
	43 ⁰ 08'05''W	l		Ì			(1 month)
Paqueta	22°45'43''S	38.8	19.7	6.0	10.6	75.0	JICA, 1992
	43 ⁰ 06'26''W		Ì	1			(1 month)

Table 2.3-1 Harmonic Constants of the Principal Four Constituents



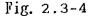



Fig. 2.3-4 Comparison of Tidal Curves

## CHAPTER 3

# TIDAL CURRENTS

#### 3.1 Tidal Current Observation

Tidal current observation was performed continuously in June 15 to June 18, 1992 (Phase 1), in October 24 to November 13, 1992 (Phase 2) and in March 23 to March 26, 1993 (Phase 3) using self-recording type current meters (RCM-7).

The location and other information are shown in Table 3.1-1 and Fig. 3.1-1.

At St. A and St. B located at the mouth of the bay, and St. D at the central part of the bay, tidal currents were observed for a period of fifteen days and nights during the 2nd Phase of the Study. Twenty-five hour observation was performed at other stations.

In the channel at the west side of Ilha do Governador which is an important place in view of water exchanges of the inner part of the bay, the supplemental tidal current observation was performed at two (02) points of St. H and St. J for the period of three (03) days and nights in spring tides during the 3rd Phase.

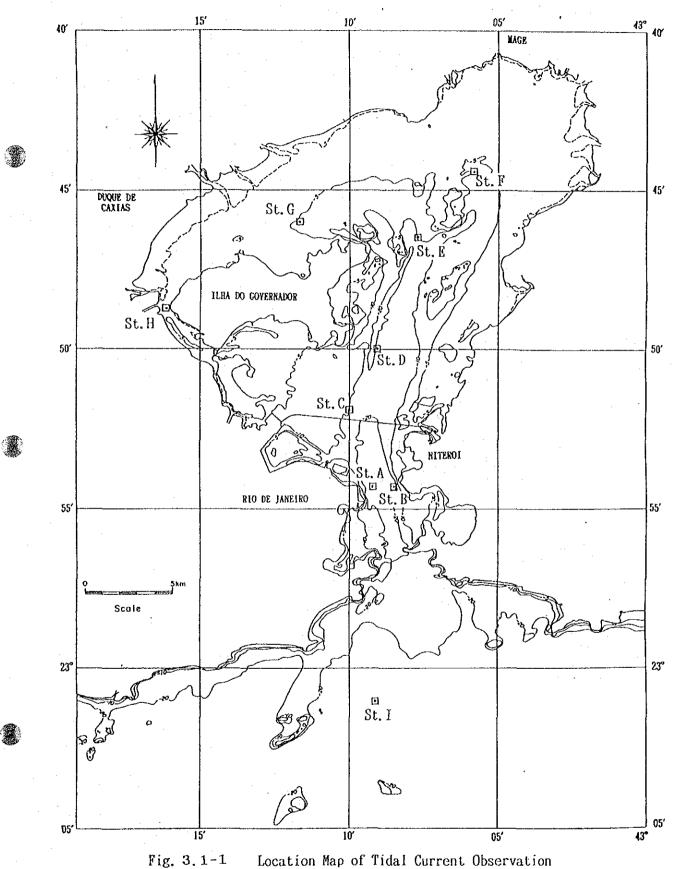

The observation was carried out in two layers at St. A and St. B, at the mouth of the bay, that is three meters below sea surface and five meters above sea bottom, and in one layer, three meters below sea surface, at other stations.

Table	3.1-1	Location	of	Tidal	Current	Obdservation
-------	-------	----------	----	-------	---------	--------------

Station	No. of	Coordinate	Water	Observation Period			
st.	layers	coordinate	depth	Phase 1 (1992)	Phase 2 (1992)	Phase 3 (1993)	
A	2	22'54.3'S 43'09.2'W	31 m	June 15 -June 16	Oct.28 -Nov.13	-	
В	2	22'54.3'S 43'08.5'W	22 m	-ditto-	-ditto-	-	
С	. 1	22'51.9'S 43'10.0'W	11 m	June 16 -June 17	Oct.24 -Oct.25	_	
D	1	22'50.0'S 43'09.2'W	23 m	-ditto-	Oct.28 -Nov.13	n <del>-</del>	
Е	. • <b>1</b> •	22'46.5'W 43'07.7'W	12 m	<b>–</b>	Oct.24 -Oct.25	-	
F	1	22'44.4'S 43'05.8'W	07 m	June 17 -June 18	-ditto-	-	
G	1	22'46.0'S 43'11.7'W	06 m	-	-ditto-	Mar.23 -Mar.26 -	
Н	1	22'48.7'S 43'16.1'W	06 m	· _	-ditto-	Mar.23	
I	1	23'01.0'S 43'09.1'W	30 m	-	-ditto-	-Mar.26	
J	1	22'50.0'S 43'15.0'W	8 m	-	_		

[Note]

01 layer : 3.0 m below sea level 02 layers upper layer: 3.0 m below sea level lower layer: 5.0 m above sea level



Location hap of fidal cuffent observat.

### 3.2 Results of Tidal Current Observation

### 3.2.1 Tidal current curves

The results of the tidal current observation are shown in Fig. 3.2-1, indicating continuous curves of velocities and directions for each station together with temperature.

The tidal current data every ten minutes for each station are shown in Data Book.

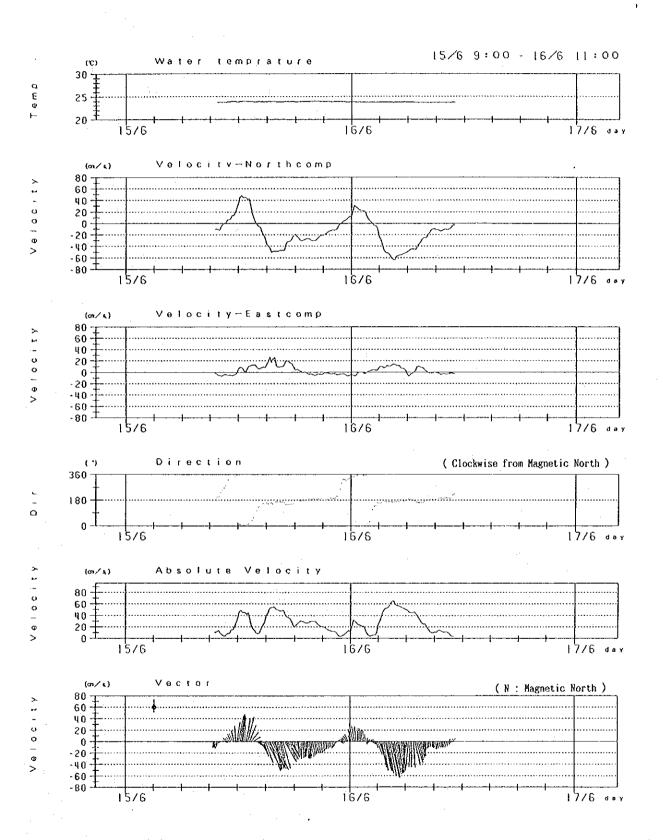
3.2.2 Frequency Distribution of Tidal Currents The frequency of direction and speed of tidal currents in each station is shown in Appendix 1.

# Fig. 3.2-1

# Tidal Current Curves

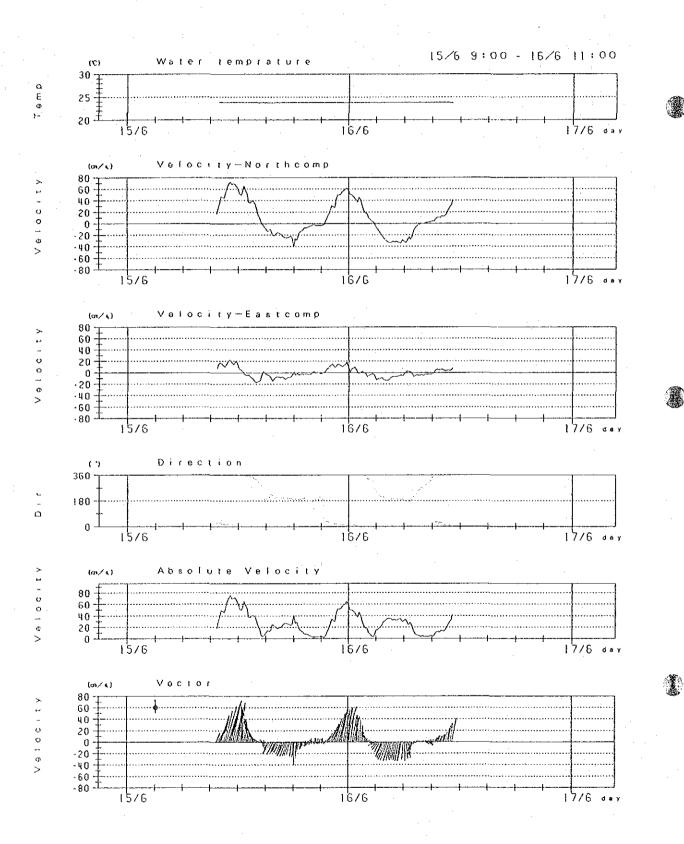
.

. · · ·

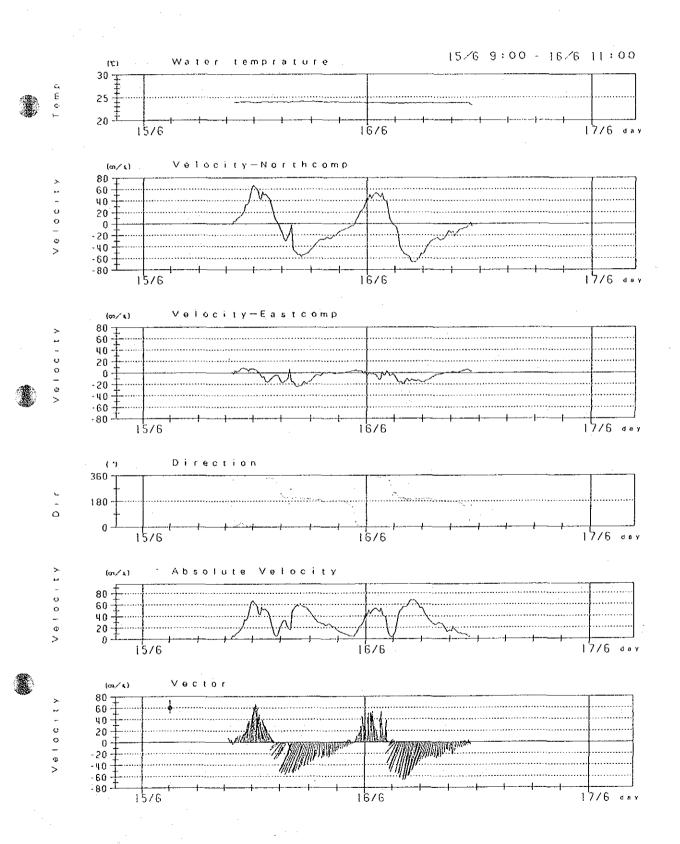

.

3-6

<u>Phase 1</u>


·

St. A (upper)




Tidal Current Curves

St. A (lower)



St.B (upper)

