19-1RJ

Code	Name of Favela	POP.	DOM.	19 POP.	91 Don.	Area(ha)
119	BAIRRO PROLETARIO DO DICK	2,587	573	2,975	573	23, 15
	PARQUE FURQUIM MENDES	884	196	1,015	225	1,77
	PARQUE JARDIM BEIRA MAR		2, 352	-	3, 511	22, 93
	PARQUE PROLETARIO DE GERAL		1,608		1,949	22.11
	RUA RODOLFO CHAMBELLAND	775	189	775	189	6.68
	AV. AUTOMOVEL CLUBE 8,340	339	73	720	157	1.11
	BARREIRA DO JUCA	1,151	290	1, 151	290	4.60
	FAZ. QUEM QUER	1,605	336	4,049	847	10.64
	MOISES SANTANA	251	54	288	54	1,02
	MORRO UNIAO	5,784	1,283	5,784	1,283	13.24
	VILA OPERARIA DIAMANTES	560	122	730	159	1.07
	VIIA SAO JORGE	7,989	1,755	10,824	2,379	
	AVENIDA DO TENENTE	258	62	258	62	0.32
	BURITI-CONGONHAS	2, 128	400	2, 224	418	9, 22
	CAFUA (MONTE CARMELO?)	358	84	411	84	0.82
	GROTA		350	1,640	484	
	MORRO DA IGUAIBA	993	211		360	7.64
	MORRO DO SOSSEGO		686	2, 926		4.34
	PARQUE VILA NOVA	863	201	992	201	1.14
	RUA PERBIRA LEITAO	127	30	127	30	0.43
230	SERRINHA	1,680	400	1,952	400	11.40
	VILA DAS TORRES	465	110	537	127	1.06
36	VILA SANTA	383	86	939	211	6.92
43	COMENDADOR PINTO	131	30	150	30	0.94
44	COMUNIDADE SANTA ROSA	98	20	232	48	0.98
257	RUA LUIZ BELIRAO 1127	656	150	1,735	397	3.25
59	RUA SAO MARCIANO	262	60 345	520	119	0.61
31	VILA CAMPINHO	1,698	345	3,867	786	10.52
26	AVENIDA	393	90	451	90	1.57
27	BAIRRO DA PEDREIRA	6,452	1,385	9,683	2,078	22, 38
28	BRIRA RIO(RUA ARNALDO MURINELI)	874	200	1,298	297	1.85
	(RUA MATURA)	324	87	368	99	0.54
330	MORRO DA LAGARTIXA	4,628	1,017	9,878	2, 171	13,64
331	FAZ QUEM QUER	699	160	773	177	3, 28
	FE RM DBUS	219	50	688	157	1.76
	FURAO	131	30	131	30	0.50
	GLEBA I DA ANTIGA FAZ. BOTAFOGO	14,721	3,662	16,929	3,662	43.82
	PARQUE BERNARDO	524	120	2,176	498	2,90
	MARGEM DA LINHA	622	141	1, 438	326	2.16
	MORRO DO MATA QUATRO	1,003	253	1,003	253	3, 44
	OLIVRIRA BURNO	262	60	380	87	0.78
	PARQUE ACART	5,886	1,334	8,436	1,913	11.56
340	PARQUE ANCHIETA	350	80	402	80	1.25
	PARQUE BELA VISTA	1,206	300	2,102	523	3, 20
	PARQUE COLOMBIA	792	158	792	158	1.38
	PARQUE UNIDOS	1,202	268	1,877	418	8.45
	RUA ITATIBA	175	40	1,009	231	0.76
	RUA PARNAIBA	175	40	175	40	0.24
	PARQUE PLIDIA TAYOLA	262	60	3,841	879	4.44
	VILA BEIRA RIO	262	60	393	90	1.95
349				3,772	734	8.23
	VILA RSPERANCA	3.280	. 734	0. I I L	104	0.40
350	VILA RSPERANCA VILA RICA DE IRAJA	3, 280 5, 872	734 1,314			
350 352	VILA RSPERANCA VILA RICA DE IRAJA FINAL FELIS	3, 280 5, 872	1,314	11, 184 400	2, 502 80	21. 02 3. 00

19-1RJ

Cata Nama of Passala	le Nema of Povola		1991			
Code Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)	
404 FINAL FELIZ II			100	20	2.14	
405 RUA EMBAU, 427	,	-	255	51	0.75	
406 RAIO DK SOL	·	~	375	75	1.55	
407 FAZENDA VELHA	-	_	320	64	0.60	
409 RUA OLIVEIRA BUENO, 832		_	155	38	0.28	
411 RUA MADAGASCAR	. –	_	215	43	0.46	
412 RUA DA ESCADINHA	· -		175	33	0.64	
413 RUA DO BARRO	· <u>-</u>	-	.90	18	0.13	
* 427 CHACARA FLORA			760	200	2.23	
508 JARDIM BARBARA	. <u>-</u>	***	115	3 i	0.57	
514 RUA CONEGO BOUCHER PINTO	÷	-	425	85	0.90	
526 RUA NOVA UNIAO	_	شو		1	1.18	
531 VILA BERETE	- .	_	500	100	3, 51	
Total 67 Favelas	104,880	23,699	157, 201	34, 540	379.69	

19 - 2RJ

Code Name of Favela	19	1980		1991	
code name of raveta	POP.	DOM.	POP.		Area(ha
213 NABUCO DE ARAUJO 228	87	20	283	6 5	0.21
214 OLIVEIRA JUNQUEIRA	131	30	345	79	0.46
220 RUA EMBIRI	175	40	192	44	0.84
222 RUA FREI SAMPAIO	338	74	498	109	0.53
234 VILA N.S. DA GLORIA	632	144	632	144	0.96
264 BATAM	1,311	300	1,507	300	7.33
265 BIRIGUI	175	40	175	40	0.52
269 COSMR R DAMIAO	481	110	1,040	238	4.74
271 FREDERICO FAULHABER	262	60	367	84	2.92
273 NILO	306	70	306	70	1.01
274 RUA JABAQUARA	109	25	125	25 .	0.14
275 RUA SANTO EXPEDITO	137	30	137	30	0.33
277 VIIA BRASIL	1,650	361	1,650	361	3.68
281 VILA SANTO ANTONIO	656	150	640	128	1.47
282 VII.A SAO BENTO	500	116	858	199	1.65
283 VIIA SAO MIGUEL	2,311	540	2,375	555	4.22
351 VILA RUGENIA	4, 143	917	4, 143	917	15.34
384 VIIA JUREMA	150	35	481	110	2, 25
391 PARQUE REAL	. –		2,000	400	3.80
417 TOCA DO SIRI (VILA, 133?)	_	_	75	15	0.13
419 MORRO SAO SEBASTIAO	-	_	400	100	1.63
421 MURUNDU			560	113	2, 54
423 FAVBLA DO LAGUINHO	_	_	240	30	0.54
502 VILA CAPBLINHA	_	-	300	71	0.85
503 BEIRA RIO	_		250	50	0.75
510 RUA DO ENCANAMENTO	-		600	120	2, 12
511 PARQUE FAFAEL DE OLIVEIRA	· · · · · · · · · · · · · · · · · · ·		300	50	1.23
513 RAPAEL DE OLIVEIRA		-	300	60	0, 27
515 VIIA JARDIM NOVO REALENGO	ث ث	**	390	68	si
521 VILA NOVA		_		•	0.56
523 BAIRRO CARUMBE	_	_	1,220	205	2.44
524 COMUNID. RUA MARANATA			250	50	0.34
525 RUA DO CANAL	_	-	250	50	1.31
528 CAMINHO DA RETA	_	_	2,500	500	9.10
529 AZENDA SAPOPEMBA			1,500		4.31
540 ALAMEDA DA CRECHR	-	-	580	69	si
Total 36 Favelas	13, 554	3,062	27, 469	5, 749	80.52

20RJ

DOM. 2, 552 50 40 3, 212 106 1, 150 1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	15, 724 3, 200 11, 175 5, 493 1, 636 8, 469 122 6, 370 10, 123 11, 101 3, 651 254	3, 381 56 40 3, 590 670 2, 414 1, 064 317 2, 723 32 1, 423 2, 657 3, 227 859 56	9.65 4.11 51.61 15.45 7.62 24.11 0.12 5.06 5.85 16.95 3.92
50 40 3, 212 106 1, 150 1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	251 175 15, 724 3, 200 11, 175 5, 493 1, 636 8, 469 122 6, 370 10, 123 11, 101 3, 651 254	56 40 3, 590 670 2, 414 1, 064 317 2, 723 32 1, 423 2, 657 3, 227 859 56	0. 23 0. 17 9. 65 4. 11 51. 61 15. 45 7. 62 24. 11 0. 12 5. 06 5. 85 16. 95 3. 92
40 3, 212 106 1, 150 1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	175 15, 724 3, 200 11, 175 5, 493 1, 636 8, 469 122 6, 370 10, 123 11, 101 3, 651 254	40 3, 590 670 2, 414 1, 064 317 2, 723 32 1, 423 2, 657 3, 227 859 56	0.17 9.65 4.11 51.61 15.45 7.62 24.11 0.12 5.06 5.85 16.95 3.92
3, 212 106 1, 150 1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	15, 724 3, 200 11, 175 5, 493 1, 636 8, 469 122 6, 370 10, 123 11, 101 3, 651 254	3,590 670 2,414 1,064 317 2,723 32 1,423 2,657 3,227 859 56	9.65 4.11 51.61 15.45 7.62 24.11 0.12 5.06 5.85 16.95 3.92
106 1, 150 1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	3, 200 11, 175 5, 493 1, 636 8, 469 122 6, 370 10, 123 11, 101 3, 651 254	670 2, 414 1, 064 317 2, 723 32 1, 423 2, 657 3, 227 859 56	4. 11 51. 61 15. 45 7. 62 24. 11 0. 12 5. 06 5. 85 16. 95 3. 92
1, 150 1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	11, 175 5, 493 1, 636 8, 469 122 6, 370 10, 123 11, 101 3, 651 254	2, 414 1, 064 317 2, 723 32 1, 423 2, 657 3, 227 859 56	51.61 15.45 7.62 24.11 0.12 5.06 5.85 16.95 3.92
1, 064 317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	8, 469 122 6, 370 10, 123 11, 101 3, 651 254	2, 723 32 1, 423 2, 657 3, 227 859 56	15. 45 7. 62 24. 11 0. 12 5. 06 5. 85 16. 95 3. 92
317 2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	8, 469 122 6, 370 10, 123 11, 101 3, 651 254	2, 723 32 1, 423 2, 657 3, 227 859 56	7.62 24.11 0.12 5.06 5.85 16.95 3.92
2, 723 32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	8, 469 122 6, 370 10, 123 11, 101 3, 651 254	2, 723 32 1, 423 2, 657 3, 227 859 56	24. 11 0. 12 5. 06 5. 85 16. 95 3. 92
32 1, 423 1, 729 4, 048 606 26 1, 095 1, 998	8, 469 122 6, 370 10, 123 11, 101 3, 651 254	2, 723 32 1, 423 2, 657 3, 227 859 56	0. 12 5. 06 5. 85 16. 95 3. 92
1,423 1,729 4,048 606 26 1,095 1,998	6, 370 10, 123 11, 101 3, 651 254	1,423 2,657 3,227 859 56	5.06 5.85 16.95 3.92
1,729 4,048 606 26 1,095 1,998	10, 123 11, 101 3, 651 254	2,657 3,227 859 56	5. 85 16. 95 3. 92
1,729 4,048 606 26 1,095 1,998	3, 651 254	859 56	16.95 3.92
26 1,095 1,998	3, 651 254	859 56	3.92
26 1,095 1,998	3, 651 254	859 56	
1,095 1,998			0.00
1,998	5,691		0.38
1,998		1,095	14.89
	8,538		29. 26
121			0.75
101			0.80
			13.87
552	•		4.39
374	1.911	419	1.56
	626	164	
	1.383	293	
132			1.83
60	267	£1	0.33
518	2, 591	549	
110	1, 295	255	5.09
	1.415	290	
			0.40
			0.60
			0.60
			0.75
2.939	17 108	3 711	13.39
30			0.30
			28.94
			1.48
700			1.48
			0.35
-			1.15
~			1.46
	Z, 500	5VU 	2.00
1,775	164, 116	37,797	303.00
_	121 101 1, 270 552 374 65 277 242 132 60 518 110 121 237 20 20 40 70 2, 939 30 1, 950 255 100	1, 998 8, 538 121 589 101 165 1, 270 5, 550 552 374 1, 911 65 626 277 1, 383 242 3, 146 132 2, 256 60 267 518 2, 591 110 1, 295 121 1, 415 237 2, 858 20 213 20 87 40 485 70 336 2, 939 17, 108 30 131 1, 950 9, 568 255 1, 187 100 437 - 95 - 502 - 494 - 2, 500	1,998 8,538 1,998 121 589 148 101 165 101 1,270 5,550 1,270 552 374 1,911 419 65 626 164 277 1,383 293 242 3,146 623 132 2,256 132 60 267 61 518 2,591 549 110 1,295 255 121 1,415 290 237 2,858 710 20 213 49 20 87 20 40 485 111 70 336 77 2,939 17,108 3,711 30 131 30 1,187 255 100 437 100 - 502 132 - 494 130 - 2,500 500

	10	1980		1991		
Code Name of Favela	POP.	DOM.	19 POP.	DOM.	Arca(ha)	
004 PARQUE BOA EAPERANCA	2, 169	552	3,752	902	6.38	
* 047 BARREIRA DO VASCO	3,889	927	3,889		4. 21	
049 FERREIRA DE ARAUJO	109	25			0.28	
* 050 MANGUEIRA	2,808	668	1,360 3,229 5,673	668	5.15	
052 MORRO DOS TRLEGRAFOS	4, 925	1,150	0.00	1. 100	11.27	
053 PARQUE ALEGRIA	2,316	507	2,957	649	2.05	
055 PARQUE DOS MINEIROS		159		159		
056 PARQUE EREDIA DE SA	2,413	633	2,435			
057 PARQUE H.C. FRANCO	699	160	•			
058 PARQUE VITORIA	1,727 4,242	408	1,986	173 408 1,465	1.55	
085 CHP-2	4,242	964	6, 446	1,465	6.94	
087 ITARARE	1,852	400	2, 625	567	5,02	
089 JOAQUIN DE QUEIROZ	4,630	1,000	5,954	1,286	26.84	
092 MORRO DO ADBUS	1,383		2,824		6.77	
* 093 MORRO DO ALEMAO	5, 325	1,150	11, 175	2,415	25, 81	
098 PARQUE CARLOS CHAGAS	2, 170	485	2, 463	551	3.32	
099 PARQUE FELIX FERREIRA	741	182	749	184	1.20	
100 PARQUE JOAO GOULART	741 3,036	690	749 3, 274	744	3.68	
101 PARQUE OSWALDO CRUZ	2, 590	615	2, 722	645	6.98	
102 PARQUE PROJETARIO MONSENHOR BR	ITO 1,059	255	1,228	296	0.88	
112 VILA TURISMO		1,225	5, 390	1, 255	7.10	
136 BELEM BELEM	222	51	344	79	0.66	
137 CEU AZUL	1,307	326	1,307	326	1.95	
138 CHACARA DE DEL CASTILHO	1,931	430	2,258	503	2.51	
139 CONJUNTO RESIDEN. FERNAO CARDII	4 2,664	592	2, 258 2, 736	608	4.59	
140 DOIS DE MAIO	1,808	410	2,875	652	2, 69	
141 JACAREZINHO		7,647	36,632	8,913	35.37	
142 MARLENE	611 138	154	611	154	0.62	
143 MORRO DA CAIXA D'AGUA	138	30	561	122	0.37	
144 MORRO DO ENGENHO DA RAINHA	1,049	240	1,639 302	375	6.62	
145 MORRO DO TRAJANO	221	46	302	63	0.32	
146 MORRO DO URUBU	3, 296	715	3, 296	515	18.06	
147 MORRO DAS PALMEIRAS	524	120	7 39	169	2.01	
148 NOVA BRASILIA		4,300	24, 692	5, 333	33, 83	
149 PARQUE PRORET. AGUA DE OURO	2,606	558	4, 371	936	7.01	
151 PARQUE UNIAO DE DEL CASTILHO	1,458	316	2,406	522	0.19	
152 PICA PAU AMARBLO	697	154	1,042	230	0.84	
153 PRACA MARIMBA 60-FUNDOS	87	20	87	20	0.19	
154 RELICARIO	350	80	350	80	2, 23	
155 RUA ITABIRITO	219	50	251	50	0.84	
150 PARQUE PROLET. ENGENHO DA RAIN	IA 788	180	1,555	3 55	3.16	
156 RUA MATINORE 163-FUNDOS	44	10	488	111	0.10	
157 RUA PERBIRA PINTO	262	60	262	60	1.28	
158 SEU PEDRO	175	40	175	40	0.24	
159 TAUTA	131	30	288	66	0.24	
160 TEIXEIRA BASTOS	109	25	113	26	0.21	
161 VILA CARAMURU	646	140	871	189	1.76	
162 VILA UNIAO	1,047	256	1,104	270	2.44	
163 BAIRRO OURO PRETO	568	130	800	183	10.35	
164 BARRO PRETO	1,605	374	1,605	374	3.34	
165 BARRO VERMBLHO	635	148	669	156	1.82	
166 BRCO DO VITORINO	66	15	356	81	0.14	
168 CACHOEIRINHA	1,944	430	2,970	657	9.32	
169 CARDOSO DE MESQUITA 28	131	30	131	30	0.56	

2 1 R J

Code	Name of Favela	19 POP,	180		91	
		PUP,	DOM.	POP.	DOM.	Area(ha
	URUPAITI	7	-	· -	•••	1.05
	ONA FRANCISCA	1,433	295	1,433	295	6. 27
	OAQUIM MEIBR	219	50	223	51	0.43
	ORRO DA CACHOBIRA GRANDE	2,933	650	3, 370	650	6.54
	ORRO DA MATRIZ	966	210		332	2.58
	ORRO DE SAO JOAO	1,840	400	3, 137	682	16.31
	ORRO DO AMOR	699	160	1,311	300	3, 32
178 M	ORRO DO CRU	918	174	918	174	3, 29
180 M	ORRO N.S. DA GUIA	656	150	754	150	2.14
181 M	ORRO DO QUIETO	1,623	353	1,932	420	4.23
182 P	RETOS FORROS	350	80	590	135	2.76
183 R	UA CAMARISTA MEIER 914	87	20	87	20	0.22
	SANTA TEREZINHA	1,040	230	1,196	230	5.64
	SANTOS TITARA	87		87	20	0.26
	ERRA DO PADILHA	457	96	457	96	1.67
	RAVESSA BERNARDO	109	25	148	34	0.29
	TIA CABUCU	648	151	656	153	2.32
	ARDIM PIEDADE	818	200	1,521	372	5. 88
	DAQUIN MARTINS 378 FUNDOS	66	15	202	46	0.08
	IORRO DO FUBA	862	200	991		5.78
	IORRO INACIO DIAS	656	150	1,036	237	2.95
	PAORE MANOEL DA NOBREGA	610		1,012	214	1.46
	PARQUE ARARUNA	170	44	359	93	0.74
	PARQUE SILVA VALE	1,300	301	1,504	301	2, 23
	RUA BALKARES 172 RUA AMALIA 286		30	192	44	0.27
	RUA ENGENHEIRO CLOVIS DAUDT 304		30	175	40	0.27
	RUA IGUACU 360 CASA 23	219	50 50	219	50	1.26
	RUA LEMOS DE BRITO	524	120	602	120	8.03
	RUA SACU 227	634	120	634	120	
	SANATORIO					
		1,044	242	1,044		5.67
	/IIA DOS MINEIROS	109	25	109	25	0.34
	711.A PRIMAVRRA	656	150	653		11.42
	/IIA MARIA	-		800	160	1.28
	/II.A SAO PEDRO	-	-	760	200	1.55
	RUA SAO JOAO	_		380	100	2.33
	OURAO FILIO			570	150	1.76
	IORRO DO JUCA	-	-	1,000	200	2.08
	PARQUE ALVORADA	-	-			28, 52
	JIXEIRA	-	-	250	50	0.67
490 V	/IIA JANDIRA	-		400	80	0.40
	CARLOS DRUMOND DE ANDRADE			-300	60	0.35
497 V	TILA MALVINAS	-		1,250	250	1.14
498 V	VILA VITORIA		_	190	38	0.24
499 F	PARQUE PRORET. FAUSTO DE SOUZA	-	-	400	80	0.67
	.M. FAUSTO DE SOUZA	٠ _	-	800	103	0.44
	SERGIO SILVA	-	-	500	90	0.71
	/ILA TRIAGRM		_	250	50	1.14
	IORRO DO BACALIAU			200	50	0.47
	AZRNDA DA BICA	_	· —	175	35	0.60
	VILA MATINHA	-		-		4.58
						*• 00
Total	104 Favelas	154, 806	35, 440	205, 864	45, 964	444.97

2 2 R J

0 1 N 6 P 1-	19	1980		1991	
Code Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)
001 LADBIRA DOS FUNCIONARIOS	699	147	890	187	1.20
005 PARQUE N.S. DA PENHA	1,473	299	1,652	335	1.60
006 PARQUE SAO SEBASTIAO	2,019	466	3,984	920	2.27
008 QUINTA DO CAJU	2, 276	630	2,726	755	5.17
* 047 BARREIRA DO VASCO	3, 889	927	3,889	927	4.21
051 MARKCHAL JARDIM	1,544	366	1,544	366	2.05
060 TUIUTI	3,376	859	3,882	859	7.98
488 PARQUE CONQUISTA	. ·	-	1,000	184	0.68
Total 8 Favelas	15, 276	3,694	19, 567	4, 533	25. 16

23RJ

~~		1	1980		1991	
Code	Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)
002	MORBIRA PINTO		40	250	59	0.57
	MORRO DA PROVIDENCIA	2,360	560	2,360	560	
	PEDRA LISA	1,057	256	1,057	256	1.21
009	BISPO	1,075	256 432 315	2, 435	561	5.50
010	MATINHA	1,436	315	1,829	401	1.87
011	MORRO AZEVEDO LIMA	3,373	743	3,878	743	
012	MORRO DE SAO CARLOS	8, 439	2.023	9.704	2,023	13.41
014	MORRO DO ESCONDIDINHO	2,975	709	3, 421	709	2.66
015	MORRO SANTOS RODORIGUES	1,941	429	2,753	609	4, 92
016	PARQUE REBOUCAS	185	.43	559	130	0.20
017	PAULA RAMOS	302	68	369	83	0.64
	RATO	167	40	329	79	0.60
	SANTA ALEXANDRINA	86	20	559	130	0.44
020	SUMARR	1,436	315	9 916	281	7 20
021	VILA ANCHIBTA	439	100	1,302	298	1.14
	VILA SANTA ALEXANDRINA	432	104	610	147	1.62
	MANGURIRA	2, 808	669	3, 229	669	5.15
	PARQUE CANDELARIA	2, 878	100 104 669 661	2, 884	298 147 669 663	3.82
	BORBL	8, 551	1,861	12, 218	2,662	35.02
	COREIA	131	30	131	30	1.29
	DOUTOR CATRAMBI	219	50	251	50	
	FRANCA JUNIOR	44	10 127 410 250	50	10	0.10
	INDIANA	542	127	764	10 179 538 340	0.52
	MORRO DA CASA BRANCA	1, 773	410	2. 324	538	6.64
	MORRO DO CHACRINHA	1,140	250	1,550	538 340	2.02
	MORRO DA FORMIGA	6, 032	1,379	6, 936	1,379	19.10
	MORRO DA LIBERDADE	4,172		4, 569	1,036	17.11
	MORRO DO BANANAL		40			1.42
	SALGUEIRO	4 023	922	4.023	922	18.14
	ARRELIA	3, 174	684	4, 691	1.011	12.12
	BORDA DO MATO	103	684 24 40	118	922 1,011 24 239	0.92
	BURACO QUENTE	175	40	1.044	239	
	JAMBLAO	2,507	583	2,883	583	11.68
	MORRO DO CRUZ		170		262	
	MORRO DOS MACACOS		1,100		1,100	
	NOVA DIVINBIA	731	170	1, 264	294	2.71
	PARQUE JOAO PAULO II	1,118	260	1,913	445	9.85
	PARQUE VILA ISABEL		1,436		1,436	
	BARONESA	87	20	170	39	0.52
	MORRO DA COROA	3, 409	766	4, 081	917	5.83
	MORRO DOS PRAZBRES	2, 995	653	3, 254	709	6.62
	OCIDENTAL FALLET	1,301	341	1,301		3,64
	TRAVESSA VISTA ALEGRE	180	41		341	
	UNIDOS DE STA. TEREZA	1,574		180	41 enn	0.26
	AMCEMA	1,014	319	2,958	600	6.18
		-	_	760	200	2.64
	VIIA LUIS MARCELINO	_	_	200	50	0.81
	SANTO AGOSTINHO RADO	-		2,500	500	8.84 2.18
Tota	l 48 Favelas	88, 359	20, 128	113,093	24, 583	285, 04

24RJ

C-J- N	1980		1991			
Code Name of Favelas	POP.	DOM.	POP.	DOM.	Area(ha)	
* 003 MORRO DA PROVIDENCIA	2,360	560	2,360	560	3.19	
023 CERRO CORA	1,051	228	1,051	228	1.56	
024 GUARARAPES	590	123	893	185	4.04	
026 MALOCA	44	10	44	10	0.84	
027 MANGUEIRA	306	70	704	161	0.73	
028 MORRO AZUL	844	170	903	182	2, 42	
029 MORRO SANTA MARTA	5, 356	1,249	5, 356	1,249	5. 55	
030 TAVARES BASTOS	868	223	1,482	381	2.02	
031 VILA GANDIDO	590	123	874	182	1.65	
032 VILA DA INACULADA CONCEICAO	175	40	175	40	0.35	
033 VILA PERBIRA SILVA	789	167	1,133	240	4.70	
034 VILA SANTO AMARO	1,355	304	2,556	573	3.76	
037 LADKIRA DOS TABAJARAS	1,193	323	1, 193	323	3.27	
040 VILA BENJAMIN CONSTANT	437	100	8, 194	1,816	1.47	
354 FRANCISCO DE CASTRO	22	5	22	5	0.10	
355 JULIO OTONI	131	30	310	71	0.84	
438 ANDRE CAVALCANTE	-		95	25	0.31	
439 LADRIRA SANTA ISABEL	_		95	25	0.20	
440 FAZENDA CATETE	-	· 🛶	152	40	0.37	
Total 19 Favelas	16, 111	3,725	27, 592	6, 296	37.37	

25RJ

Codo	Name of Foresta	1980		1991			
 code	Name of Favela	POP.	DOM.		DOM.	Area(ha)	
307	BAIRRO DE SAPUCATA			2, 484	600	1.48	
308	BAIRRO NOSSA SENHORA DAS GRACAS	7,002	1,516	8,052	2,023	11.67	
309	BRLA VISTA DA PICHUNCHA	1,919	432	1,919	432	4.64	
	COLONIA DE PES. ALAMIRANTE GOMES PEREIRA	1,617	370	1,875	429	7.71	
	CONJUNTO RESIDENCIAL DOS SERVIDORES MUNICIPIAIS	986	200	1,346	273	5.91	
312	GUARABU	5.170	1.164	5, 170	1.164	8.08	
313	MORRO DAS ARARAS	188	85	547	122	1.02	
314	MORRO DO DENDE			10,414			
315	MORRO DO QUEROSENE	333	73	898	197	0,88	
316	PARQUE PRORRTARIO DOS BANCARIOS	2, 159	492	2, 159	492	6.34	
	PARQUE ROYAL	262	60	1,643	376		
319	PRAIA DA ROSA	751	169	2,655	590	1.97	
320	JARDIM DUAS PRAIAS (450/48)	148	30	148	30	4.52	
	RUA GUARIUBA	44	10	202	46	0.18	
	RUA RODANO, LOTB 22-QUADRA 31	87	20	87	20	0.10	
323	SERRA MORENA	434	93	504	100	1.64	
324	TREMEMBE	743	170	743	170	1.84	
449	MAGNO MARTINS		_	114	30	0.32	
451	VILA JOANIZA		_	2,500	2,500	22.90	
452	RUA BUDAPESTE, 66	-	-	114	30	0.23	
453	MAESTRO ARTURO TOSCANINE	_	_	250	50	0.61	
527	LUIZA REGADAS		-	480	120	1.35	
Tota	l 22 Favelas	30, 578	6,750	51,304	12,074	104, 06	

17-6RJ

Cada Nama of Pavala	1980		1991		
Code Name of Favela 201 RUA DO CONGO 147	POP.	DOM.	POP.		Area(ha
201 RUA DO CONGO 147	.	-	300	60 ⁻	2,74
263 BAIRRO NOVA ALIANCA	2,219	516	3, 246	755	12.88
266 BOQUETRAO	175	40	175	40	1.72
267 CAMINHO DO LUCIO	1,173	276	3,999	941	10.56
276 TIBAGI	874				
278 VILA CATIRI	2,726			591	
280 VILL PROGRESSO	481	110	553	110	1.99
379 FALANGE	500	100	15,877	3,536	4.20
380 MORRO DO SOSSEGO	-		553	110	3, 20
382 SAIBREIRA	***	-	750	150	3,50
383 TANCREDO NEVES	-	-	110	22	1.05
392 TRAV SANTA CATARINA	.~		600	120	2, 51
420 TIQUIA		_	300	60	0.92
422 A.M. DO DOCINHO			150	20	0.49
424 BECO DA USINA	~		220	58	0.06
450 ESTRADA DA SAUDADE		~-	400	80	0.86
SOS VILA PIQUIROBI			480	120	0.91
507 BAIRRO SANTO ANDRE	-	_	-		10.37
519 VILA MORETI	-	_	1,200	400	7. 21
542 ESTRADA SARGENTO MIGUEL FILHO 16	5 4		400	80	0.58
543 RUA SANTOS AMOS	_		150	30	0.24
Total 21 Favelas	8,148	1,835	33, 343	7,547	77.93

	1980		1991			
Code Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)	
113 BAIRRO PROLETARIO DO DICK	2,587	573	2,975	573 ·	23.15	
124 PARQUE FURQUIM MENDES	884	196	1,015	225	1.77	
125 PARQUE JARDIN BEIRA MAR	10,310	2,352	15, 378	3,511	22.93	
127 PARQUE PROLETARIO DE GERAL	7,835	1,608	9, 492	1,949	22.11	
132 RUA RODOLFO CHAMBELLAND	775	189	775	189	6.68	
190 AV. AUTOMOVRI CLUBE 8,340	339	73	720	157	1.11	
191 BARREIRA DO JUCA	1, 151	290	1,151	290	4.60	
192 FAZ. QUEM QUER	1,605	336	4,049	847	10.64	
194 MOISBS SANTANA	251	54	288	54	1.02	
197 MORRO UNIAO	5, 784	1,283	5, 784	1, 283	13. 24	
199 VIIA OPERARIA DIAMANTES	560	122	730	159	1,07	
200 VILA SAO JORGE	7,989	1, 755	10,824	2,379	17.62	
202 AVENIDA DO TENENTE	258	62	258	62	0.32	
203BURITI-CONGONHAS	2, 128	400	2, 224	418	9. 22	
204 CAFUA (MONTE CARMELO?)	358	84	411	84	0.82	
206 GROTA	1,470	350	1,640	484	11.52	
209 MORRO DA IGUAIBA	993	211	1,696	360	7.64	
211 MORRO DO SOSSEGO	2, 926	686	2,926	686	4.34	
218 PARQUE VILA NOVA	2, 320 863	201	2, 320 992	201	1.14	
	127		127	30	0.43	
226 RUA PERBIRA LEITAO		30				
230 SERRINHA	1,680	400	1,952	400	11.40	
232 VILA DAS TORRES	465	110	537	127	1.06	
236 VIIA SANTA	383	86	939	211	6.92	
243 COMBNDADOR PINTO	131	30	150	30	0.94	
244 COMUNIDADE SANTA ROSA	98	20	232	48	0.98	
257 RUA LUIZ BELIRAO 1127	656	150	1,735	397	3.25	
259 RUA SAO MARCIANO	262	60	520	119	0.61	
231 VILA CAMPINHO	1,698	345	3,867	786	10.52	
326 AVENIDA	393	90	451	90	1.57	
327 BAIRRO DA PEDREIRA	6, 452	1,385	9,683	2,078	22.38	
328 BEIRA RIO(RUA ARNALDO MURINBLI)	874	200	1, 298	297	1.85	
329 (RUA MATURA)	324	87	368	99	0.54	
330 MORRO DA LAGARTIXA	4,628	1,017	9,878	2, 171	13.64	
331 FAZ QUEM QUER	699	160	773	177	3.28	
332 FR EM DEUS	219	50	688	157	1.76	
333 FURAO	131	30	131	30	0.50	
334 GLEBA I DA ANTIGA FAZ. BOTAFOGO	14,721	3,662	16 , 929	3,662	43.82	
335 PARQUE BERNARDO	524	120	2, 176	498	2.90	
336 MARGEM DA LINHA	622	141	1,438	326	2.16	
337 MORRO DO MATA QUATRO	1,003	253	1,003	253	3.44	
338 OLIVEIRA BUENO	262	60	380	87	0.78	
339 PARQUE ACARI	5, 886	1,334	8, 436	1,913	11.56	
340 PARQUE ANCHIETA	350	80	402	80	1.25	
341 PARQUE BELA VISTA	1, 206	300	2, 102	523	3. 20	
342 PARQUE COLOMBIA	792	158	792	158	1.38	
344 PARQUE UNIDOS	1,202	268	1,877	418	8.45	
346 RUA ITATIBA	175	40	1,009	231	0.76	
347 RUA PARNAIBA	175	40	1,005	40	0.24	
348 PARQUE PLIDIA TAYOLA	262	60	3,841	879	4.44	
	262	60	393	90	1.95	
349 VIIA BEIRA RIO						
350 VILA ESPERANCA	3, 280	734	3,772	734	8.23	
352 VILA RICA DK IRAJA	5, 872	1,314	11, 184	2,502	21.02	
394 FINAL FELIS	_	_	400	80	3.00	
403 NOVA JERUSALEM	-	_	750	150	3.60	

19-1RJ

G. J. Name of Parel I	1	1980		1991		
Code Name of Favela	POP.	DOM.	POP.	DON.	Area(ha)	
404 FINAL FELIZ II	_	· -	100	20	2.14	
405 RUA EMBAU, 427			255	51	0.75	
406 RAIO DE SOL	~		375	75	1.55	
407 FAZENDA VELHA	~		320	64	0.60	
409 RUA OLIVEIRA BURNO, 832		٠ ـــ	155	38	0, 28	
411 RUA MADAGASCAR	~		215	43	0.46	
412 RUA DA ESCADINHA		.—	175	33	0.64	
413 RUA DO BARRO	-		90	18	0.13	
* 427 CHACARA FLORA		-	760	200	2.23	
508 JARDIN BARBARA	~		115	31	0.57	
514 RUA CONEGO BOUCHER PINTO	~		425	85	0.90	
526 RUA NOVA UNIAO	~	***			1.18	
531 VILA BERETE	~	- .	500	100	3.51	
Total 67 Favelas	104,880	23, 699	157, 201	34, 540	379.69	

19-2RJ

Code Name of Pavela	19	80	19		
Code Name of Pavela	POP.	DOM.	POP.	DOM.	Area(ha
213 NABUCO DE ARAUJO 228	87	20	283	65	0.21
214 OLIVEIRA JUNQUEIRA	131	30	345	79	0.46
220 RUA EMBIRI	175	40	192	44	0.84
222 RUA FREI SAMPAIO	338	74	498	109	0.53
234 VILA N.S. DA GLORIA	632	144	632	144	0.96
264 BATAM	1,311	300	1,507	300	7.33
265 BIRIGUI	175	40	175	40	0.52
269 COSME E DAMIAO	481	110	1,040	238	4.74
271 FREDERICO FAULHABER	262	60	367	84	2, 92
273 NILO	306	70	306	70	1.01
274 RUA JABAQUARA	109	25	125	25	0.14
275 RUA SANTO EXPEDITO	137	30	137	30	0.33
277 VILA BRASIL	1,650	361	1,650	361	3,68
281 VILA SANTO ANTONIO	656	150	640	128	1.47
282 VILA SAO BENTO	500	116	858	199	1.65
283 VILA SAO MIGUEL	2,311	540	2,375	555	4.22
351 VILA RUGENIA	4, 143	917	4, 143	917	15.34
384 VILA JUREMA	150	35	481	110	2. 25
391 PARQUE REAL			2,000	400	3.80
417 TOCA DO SIRI (VILA, 133?)		_	75	15	0.13
419 MORRO SAO SEBASTIAO	-	_	400	100	1.63
421 MURUNDU	_	-	560	113	2.54
423 FAVELA DO LAGUINHO	_		240	30	0.54
502 VILA CAPBLINHA			300	71	0.85
503 BRIRA RIO	-	-	250	50	0.75
510 RUA DO ENCANAMENTO	_	_	600	120	2.12
511 PARQUE FAFABL DE OLIVBIRA		_	300	50	1.23
513 RAFAEL DE OLIVEIRA			300	60	0.27
515 VILA JARDIM NOVO REALENGO	_	-	390	68	si
521 VIIA NOVA	-				0.56
523 BAIRRO CARUMBE	_	_	1,220	205	2.44
524 COMUNID. RUA MARANATA		_	250	50	0.34
525 RUA DO CANAL			250	50	1.31
528 CAMINHO DA RETA	_	_	2,500	500	9.10
529 AZENDA SAPOPEMBA		-	1,500	300	4.31
540 ALAMEDA DA CRECHE	_	-	580	69	si
Total 36 Favelas	13,554	3,062	27, 469	5.749	80.52

20RJ

Code	Name oe Favela		980		991	
	want of ravera	POP.	DOM.	POP.	DOM.	Area(ha
084	BAIXA DO SAPATEIRO	12,332	2,552	16, 330	3,381	9.96
	IGREJA N.S. DA CONCEICAO	219	50	251	56	0.23
088	JOANA NASCIMENTO	175	40	175	40	0.17
090	MARK	14,064	3, 212	15, 724	3,590	9.65
091	MORRO DA BAHLANA	500	106	3, 200	670	4.11
* 093	MORRO DO ALKMAO	5,324	1,150	11, 175	2,414	51.61
094	MORRO DO CARIRI	4,777	1,064	11, 175 5, 493 1, 636	1,064	15.45
095	MORRO DO PIANCO	1,423	317	1,636	317	7.62
096	NOVA HOLANDA	13, 115	2,723	8, 469	2,723	24.11
097	PARAIBUNA	135	. 32	122	32	0.12
103	PARQUE ROQUETE PINTO	6,370	1, 423	6,370		5.06
	PARQUE RUBENS VAZ	6,598	1, 729 4, 048	10, 123	2,657	5.85
	PARQUE UNIAO	13,945	4,048	11, 101	3,227	16.95
	RAMOS	2,578	606	3,651	859	3.92
	TENENTE PIMENTEL	118	26	254	56	0.38
	TIMBAU		1,095	5,691		14.89
	VILA CRUZEIRO	-	1,998		1,998	29. 26
	VILA RESIDENCIAL DARCY VARGA	481	121	589	148	0.75
	VILLA SANTO ANTONIO	465	101	165		
	BRAS DE PINA	5, 550	1.270		1,270	0.80
	CENTRO SOCIAL MARCILIO DIAS	2, 420	552	ა, აას	1,210	13.87 4.39
	CORDOVIL	1,704	374	1,911	410	
	DOURADOS		65	626		1.56
	MANGURIRINHA		277			0.41
	MORRO DA CAIXA D'AGUA	1, 221	242		293	
	MORRO DA FE			3, 146	623	6.69
	MORRO DA GUAIBA	678	132	2, 256	132	1.83
	MORRO DO CARACOL	262	60 518	267	61	0.33
		2, 446		2,591	549	6.44
	MORRO DO SERENO	600	110	1, 295	255	5.09
	PARQUE PROLETARIO DE CORDOVII.	570	121	1,415	290	1.04
	PARQUE PROPETARIO DO GROTAO	944	237	2,858	710	5, 86
	RUA FREI GASPAR 279	87	20	213	49	0.40
	RUA LAUDRLINO FREIRE	87	20	87	20	0.60
	RUA PONTO CHIQUE	175	40	485	111	0.60
	SERRA PELADA	306	70	336	77	0.75
	VILA PROLETARIA DA PENHA	13, 564	2, 939	17, 108		13.39
	LARGO DO BICAO	131	30	131	30	0.30
	MORRO DO JURAMENTO	9, 187	1,950	9, 568	2,040	28.94
	MORRO DO SAPE	1, 187	255	1,187	255	1.48
	RUA MIGUEL DIBO	437	100	437	100	1.48
445	RUTH FERREIRA	_	_	95	25	0.35
447	PARQUE BOM MENINO	***	• _	502	132	1.15
448	JARDIM METRO DE IRAJA	_	-	494	130	1.46
487	PARQUE RIO D'OURO	-	-	2,500	500	2, 00
Total	44 Favelas	139, 216	31,775	164, 116	37,797	303.00

	11 A 15 1	19	80	19	91	
Code	Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)
004	PARQUE BOA RAPERANCA	2, 169	552	3, 752	902	6,38
* 047	BARREIRA DO VASCO	3,889	927	3,889	927	4.21
049	FERREIRA DE ARAUJO	109	25	1,360	312	0.28
* 050	MANGUEIRA	2,808	668	3, 229	668	5.15
. 052	MORRO DOS TELEGRAFOS	4, 925	1,150	5, 673	1,150	11, 27
	PARQUE ALEGRIA	2,316	507	2,957		2.05
055	PARQUE DOS MINEIROS	685	159	787	159	0.82
	PARQUE EREDIA DE SA	685 2,413	633	2, 435		2.68
	PARQUE H. C. FRANCO	660	TOA	756	173	1.09
	PARQUE VITORIA	1,727		1,986		1.55
	CHP-2	4, 242	964	6, 446		6.94
	ITARARE	1,852	400	2, 625	567	5.02
	JOAQUIN DE QUEIROZ		1,000	5, 954		26.84
	MORRO DO ADBUS	1,383	308	2, 824	629	6.77
	MORRO DO ALEMAO	5, 325	1,150	11, 175	2,415	25.81
	PARQUE CARLOS CHAGAS	2, 170		2, 463		3.32
	PARQUE FELIX FERREIRA	741	182	749	184	1.20
	PARQUE JOAO GOULART	3,036	690	3, 274		3,68
	PARQUE OSWALDO CRUZ	2, 590	615	2, 722	645	6.98
	PARQUE PROJETARIO MONSENHOR BRI		255	1, 228	296	0.88
	VILA TURISMO		1, 225	5,390	1,255	7.10
	BELEM BELEM	222	51	344	79	0.66
	CRU AZUL	1,307		1,307		1.95
	CHACARA DE DEL CASTILLIO	1,931	430	2, 258		2.51
	CONJUNTO RESIDEN. FERNAO CARDIN	•	592	2, 736		4.59
	DOIS DE MAIO	1,808	410	2,875	652	2.69
	JACAREZINHO	31,405	7,647	36,632	8,913	35.37
	MARLENE	611	154	611 561	154	0.62
	MORRO DA CAIXA D'AGUA	138	30	1,639	122	0.37
	MORRO DO ENGENIO DA RAINHA	1,049 221				6.62
	MORRO DO TRAJANO		46			0.32
	MORRO DO URUBU	3, 296	715 120	3, 296	515	18.06
	MORRO DAS PALMBIRAS	524		739	169	2.01
	NOVA BRASILIA	19,909		24,692	5,333	33,83
	PARQUE PRORET. AGUA DE OURO PARQUE UNIAO DE DEL CASTILIO	2,606	558 216	4,371	936	7.01
	PICA PAU AMARELO	1, 458 697	316	2, 406	522 230	0.19
			154	1,042		0.84
	PRACA MARIMBA 60-FUNDOS RELICARIO	87 250	20 80	87 350	20 80	0.19
		350		251		2.23
	RUA ITABIRITO	219 IA 788	50 190		50	0.84
	PARQUE PROLET, ENGENHO DA RAINI	1/1 /00 44	180	1,555	355	3.16
	RUA MATINORE 163-FUNDOS RUA PEREIRA PINTO	262	10 60	488 262	111 60	0.10 1.28
	· · · · · · · · · · · · · · · · · · ·	202 175	40	202 175	40	
	SKU PEDRO Tauta	131	30	288	66	0.24
	•					0.24
	TEIXEIRA BASTOS	109 646	25 140	113 871	26	$0.21 \\ 1.76$
	VILA CARAMURU	1,047	256	1	189 270	
	VILA UNIAO BAIRRO OURO PRETO	568	256 130	1,104 800	183	2.44 10.35
	BARRO PRETO	1,605	374	1,605	374	3.34
	BARRO VERMELHO	635	148	669	156	1.82
	BECO DO VITORINO	66.	146	356	81	0.14
	CACHOBIRINHA	1,944	430	2, 970	657	9.32
	CARDOSO DE MESQUITA 28	1, 944	430 30	2,970 131	30	9.32 0.56
109	CURDOOD DE BEDROTTR CO	TOT	υV	101	อบ	v. 00

21RJ

Toda Nama of Ravala	19	980	19		
Code Name of Favela	POP,	DOM.	POP.	DOM.	Area(ha)
170 CURUPAITI		-	-	'	1.05
171 DONA FRANCISCA	1, 433	295	1, 433	295	6. 27
172 JOAQUIM MEIER	219	50	223	51	0.43
174 MORRO DA CACHOBIRA GRANDE	2,933	650	3,370	650	6.54
175 MORRO DA MATRIZ	966	210	1,527	332	2.58
176 MORRO DE SAO JOAO	1,840	400	3, 137	682	16.31
177 MORRO DO AMOR	699	160	1,311	300	3, 32
178 MORRO DO CEU	918	174	918	174	3. 29
180 MORRO N.S. DA GUIA	656	150	754	150	2.14
181 MORRO DO QUIETO	1,623		1,932	420	4.23
182 PRETOS FORROS	350	80	590		2.76
183 RUA CAMARISTA MBIBR 914	87	20	87	20	0.22
185 SANTA TEREZINHA	1,040	230	1,196	230	
186 SANTOS TITARA	87	20	87	20	0.26
187 SERRA DO PADILHA	457	96	457	96	1.67
188 TRAVESSA BERNARDO	109	25		34	0. 29
189 VILA CABUCU	648	. 151	656	153	
207 JARDIM PIBDADB	818	200	1,521	372	5.88
208 JOAQUIN MARTINS 378 FUNDOS	66	15	202	46	0.08
210 MORRO DO FUBA	862	200	991	200	5.78
212 MORRO INACIO DIAS	656	150	1,036		
215 PAORE MANOEL DA NOBREGA	610	129	1,012		1.46
216 PARQUE ARARUNA	170	44		93	0.74
217 PARQUE SILVA VALE	1,300		1,504	301	2, 23
219 RUA BALBARBS 172 RUA AMALIA 286	131	301	1, 304	44	0.27
221 RUA BAGENHRIRO CLOVIS DAUDT 304	131	30 30	175	40	0.27
223 RUA IGUACU 360 CASA 23	219	50 50	219	50	1.26
225 RUA LEMOS DE BRITO	524	120	602	120	8.03
227 RUA SACU 227	634	120	634	120	4.56
228 SANATORIO	1,044	242	1,044	242	5.67
233 VILA DOS MINBIROS	109	25	109	25	0.34
235 VILA PRIMAVERA	656	150	653	150	11.42
399 VILA MARIA	-	_	800	160	1.28
436 VILA SAO PEDRO	-	_	760	200	1.55
441 RUA SAO JOAO	-	-	380	100	2, 33
444 MOURAO FILHO			570	150	1.76
481 MORRO DO JUCA	-	· -	1,000	200	2.08
485 PARQUR ALVORADA	-	-			28.52
489 LIXBIRA	-	- '	250	50	0.67
490 VII.A JANDIRA			400	80	0.40
491 CARLOS DRUMOND DR ANDRADE	-	-	300	60	0.35
497 VILA MALVINAS	-	<u>.</u> .	1,250	250	1.14
498 VILA VITORIA			190	38	0.24
499 PARQUE PRORET. FAUSTO DE SOUZA	· -	-	400	80	0.67
500 A.M. FAUSTO DE SOUZA			800	103	0.44
530 SERGIO SILVA	_	-	500	90	0.71
532 VILA TRIAGEN		- .	250	50	1.14
535 MORRO DO BACALHAU			200	50	0.47
538 FAZENDA DA BICA	_		175	35	0.60
545 VII.A MATINHA	, · -	***	-	~	4.58
Fotal 104 Favelas	 154, 806	35, 440	205, 864	45, 964	444.97

2 2 R_.J

0.1	N . C 15 1 .	19	80	19		
Code	Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)
001	LADEIRA DOS FUNCIONARIOS	699	147	890	187	1.20
005	PARQUE N.S. DA PENHA	1,473	299	1,652	335	1.60
006	PARQUE SAO SEBASTIAO	2,019	466	3,984	920	2, 27
008	QUINTA DO CAJU	2,276	630	2, 726	755	5.17
* 047	BARREIRA DO VASCO	3,889	927	3,889	927	4.21
051	MARECHAL JARDIM	1,544	366	1,544	366	2.05
060	TUIUTI	3, 376	859	3,882	859	7.98
488	PARQUE CONQUISTA		·	1,000	184	0.68
Tota	l 8 Favelas	15, 276	3,694	19, 567	4,533	25. 16

23RJ

Code Name of Favela 1980 1991 1902 1908 1909		
002 MORRIRA PINTO * 003 MORRO DA PROVIDENCIA * 003 MORRO DA PROVIDENCIA * 007 PEDRA LISA * 007 PEDRA LISA * 007 PEDRA LISA * 007 PEDRA LISA * 008 BISPO * 1, 075 432 * 2, 435 * 010 MATTINIA * 1, 436 * 315 1, 829 * 011 MORRO AZRVEDO LIHA * 011 MORRO AZRVEDO LIHA * 012 MORRO DR SAO CARLOS * 012 MORRO DR SAO CARLOS * 014 MORRO DR SAO CARLOS * 015 MORRO SANTOS RODORIGUES * 016 PARQUE RIBOUCAS * 016 PARQUE RIBOUCAS * 017 PAULA RAMOS * 018 RATO * 019 SANTA ALEXANDRINA * 020 SUMARR * 1, 436 * 021 VILA ANCHIETA * 021 VILA ANCHIETA * 022 VILA SANTA ALEXANDRINA * 022 VILA SANTA ALEXANDRINA * 030 * 050 MARCUKIRA * 022 VILA SANTA ALEXANDRINA * 050 MARCUKIRA * 050 MARCUKIRA * 062 BORRL * 062 BORRL * 064 DOUTOR CATRAMBI * 065 ORBIA * 067 INDIANA * 066 PRANCA JUNTOR * 067 INDIANA * 050 MORRO DA CASA BRANCA * 071 MORRO DA FORMIGA * 072 MORRO DA FORMIGA * 073 MORRO DA FORMIGA * 074 SALGUERRO * 075 MORRO DA FORMIGA * 076 MORRO DA FORMIGA * 078 MORRO DA FORMIGA * 079 MORRO DA CONDA * 079 MORRO DO CRUZ * 079 MORRO DO MATO * 079 MORRO DO CRUZ * 070 MORRO DO CRUZ * 071 MORRO DO SACACOS * 072 NORRO DO MATO * 073 JA21 * 074 SALGUERRO * 079 MORRO DO CRUZ * 070 MORRO DO CRUZ * 071 MORRO DO SACACOS * 072 MORRO DA FORMIGA * 073 JA11 * 074 SALGUERRO * 079 MORRO DO CRUZ * 078 ARRELIA * 079 MORRO DO CRUZ * 079 MORRO DO CRUZ * 070 MORRO DO CRUZ * 071 MORRO DA FORMIGA * 071 MORRO DO SACACOS * 072 MORRO DA FORMIGA * 073 JA11 * 074 SALGUERRO * 075 MORRO DO SACACOS * 076 MORRO DO CRUZ * 077 MORRO DO SACACOS * 078 ARRELIA * 079 MORRO DO CRUZ * 070 MORRO DO CRUZ * 071 MORRO DO CRUZ * 071 MORRO DO CRUZ * 072 MORRO DO SACACOS * 073 JA11 * 074 SALGUERRO * 075 MORRO DO SACACOS * 076 MORRO DO SACACOS * 078 JA11 * 079 MORRO DO SACACOS * 079 MORRO DO SACACOS * 079 MORRO DO SACACOS	DOM.	Area(ha)
* 003 MORRO DA PROVIDENCIA 007 PEDRA LISA 007 PEDRA LISA 1, 057 256 1, 057 008 BISPO 1, 075 432 2, 435 010 MATINHA 1, 436 315 1, 829 011 MORRO AZEVEDO LIHA 3, 373 743 3, 878 012 MORRO DE SAO CARLOS 4, 439 2, 023 9, 704 2 014 MORRO DE SCONDIDINHO 2, 975 709 3, 421 015 MORRO SANTOS RODORIGUES 1, 941 429 2, 753 016 PARQUE REBOUCAS 185 43 559 017 PAULA RAMOS 302 68 369 018 RATO 117 PAULA RAMOS 302 68 369 018 RATO 019 SANTA ALEXANDRINA 86 20 559 020 SUMARB 1, 436 315 2, 216 021 VILA ANCHIRTA 439 100 1, 302 022 VILA SANTA ALEXANDRINA ** 050 MANGUEIRA 052 BORRI 054 PARQUE CANDELARIA 056 BORRI 056 PRANCA JUNIOR 067 INDIANA 542 127 764 069 MORRO DA CASA BRANCA 1, 773 410 2, 324 070 MORRO DA CIACRINHA 1, 140 250 1, 550 071 MORRO DA FORMIGA 072 MORRO DA CIACRINHA 1, 140 250 1, 550 073 MORRO DO CIACRINHA 1, 173 40 1, 30 074 SALGUEIRO 075 ARRELIA 076 BORDA DO MATO 077 MORRO DO CRUZ 075 ARRELIA 076 BORDA DO MATO 1077 BURACO QUENTE 1775 40 078 JARRELIA 079 MORRO DO CRUZ 075 ARRELIA 076 MORRO DO CRUZ 075 ARRELIA 076 BORDA DO MATO 103 24 118 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 078 JARRELIA 079 MORRO DO CRUZ 743 170 1, 145 080 MORRO DO CRUZ 743 170 1, 145 080 MORRO DO SACACOS 5, 236 1, 100 5, 236 1 100 358 MORRO DO ROZE 358 OCIDENTE 175 40 359 FARQUE VILA ISBREL 6, 662 1, 436 6, 662 1 350 BRONNES ALGERES 2, 995 653 3, 254 359 OCIDENTAL FALLET 1, 301 341 1, 301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1, 574 319 2, 958 437 MORRO DO SESTA. TEREZA 1, 574 319 2, 958 437 MORRO DO SESTA. TEREZA 1, 574 319 2, 958 437 MCEMA 492 SANTO AGOSTINHO 493 SANTO AGOSTINHO 494 SANTO AGOSTINHO 495 SANTO AGOSTINHO 496 DILLIA LIJIS MARCELINO 490 SANTO AGOSTINHO 490 SANTO AGOSTINHO 490 SANTO AGOSTINHO 490 SANTO AGOSTINHO 490 SANTO AGOS	1	0.57
007 PEDRA LISA 019 BISPO 1, 075 1, 07	cen	9 10
OLS MORRO DA CASA BRANCA 1,773 410 2,324 070 MORRO DA CIACRINHA 1,140 250 1,550 071 MORRO DA BANANAL 1,773 40 1,73 074 SALGUBIRO 0,840 1,73 0,74 SALGUBIRO 0,940 1,73 0,75 SARRELIA 0,75 SARRONGO DA COROA 3,409 766 4,081 3,551 1,601 1,302 3,302 3,303	256	1 21
O15 MORICO ANAIOS RODORITOES 1,941 429 2,753	561	5 50
O15 DORROU REBOUCAS 1,941 429 2,753	401	1 97
OF PARQUE REBOUCAS	7/3	10.09
OF PARQUE REBOUCAS	130	10.00
1015 MORRO SANTOS RODURTOUES 1,341 429 2,753 1016 PARQUE RIBBOUCAS 185 43 559 1017 PAULA RAMOS 302 68 369 1018 RATO 167 40 329 1019 SANTA ALEXANDRINA 86 20 559 1020 SUMARE 1,436 315 2,216 2011 VILA ANCHIETA 439 100 1,302 2022 VILA SANTA ALEXANDRINA 432 104 610 1050 MANGUEIRA 2,808 669 3,229 054 PARQUE CANDELARIA 2,878 661 2,884 062 BOREL 8,551 1,861 12,218 2 063 COREIA 131 30 131 064 DOUTOR CATRAMBI 219 50 251 066 FRANCA JUNIOR 44 10 50 067 INDIANA 542 127 764 069 MORRO DA CASA BRANCA 1,773 410 2,324 070 MORRO DA CASA BRANCA 1,173 410 2,324 071 MORRO DA CASA BRANCA 1,173 410 2,324 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 076 BORDA DO MATO 103 24 118 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JANELAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DO SMACACOS 5,236 1,100 5,236 1 081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONSA 87 20 170 356 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DR STA, TEREZA 1,574 319 2,958 437 AMCEMA	700	2 66
021 VILA ANCHIBTA	600	2.00 4.92
1,436 315 2,216	120	4. 9Z 0. 20
1,436 315 2,216	100	0.20
202 SUMARKS 1, 436 315 2, 216	00 70	0.64
1,436 315 2,216	190	0.60
054 PARQUE CANDELARIA 2,878 661 2,884 062 BORKL 8,551 1,861 12,218 2 063 CORBIA 131 30 131 30 131 064 DOUTOR CATRAMBI 219 50 251 066 PRANCA JUNIOR 44 10 50 050 051 050 067 100 067 100 251 066 764 069 MORRO DA CASA BRANCA 1,773 410 2,324 070 070 MORRO DO CHACKINIHA 1,140 250 1,550 071 MORRO DA CRIAGRIMIA 1,140 250 1,550 071 072 MORRO DA FORRIGA 6,032 1,379 6,936 1 173 40 173 072 173 073 173 073 17	100	0.44
D54 PARQUE CANDELARIA 2,878 661 2,884	486	7.89
D54 PARQUE CANDELARIA 2,878 661 2,884	298	1.14
054 PARQUE CANDELARIA 2,878 661 2,884 062 BORKL 8,551 1,861 12,218 2 063 CORBIA 131 30 131 30 131 064 DOUTOR CATRAMBI 219 50 251 066 PRANCA JUNIOR 44 10 50 050 051 050 067 100 067 100 251 066 764 069 MORRO DA CASA BRANCA 1,773 410 2,324 070 070 MORRO DO CHACKINIHA 1,140 250 1,550 071 MORRO DA CRIAGRIMIA 1,140 250 1,550 071 072 MORRO DA FORRIGA 6,032 1,379 6,936 1 173 40 173 072 173 073 173 073 17	147	1.62
070 MORRO DO CHACRINHA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	669	5, 15
070 MORRO DO CHACRINHA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	663	3.82
070 MORRO DO CHACRINIA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRBLIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONBSA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	, 662	35.02
070 MORRO DO CHACRINHA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	30	1.29
070 MORRO DO CHACRINIA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRBLIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONBSA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	50	0.49
070 MORRO DO CHACRINIA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRBLIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONBSA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	10	0.10
070 MORRO DO CHACRINIA 1,140 250 1,550 071 MORRO DA FORMIGA 6,032 1,379 6,936 1 072 MORRO DA LIBERDADE 4,172 915 4,569 1 073 MORRO DO BANANAL 173 40 173 074 SALGUBIRO 4,023 922 4,023 075 ARRBLIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONBSA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 <	179	0.52
074 SALGUEIRO 4,023 922 4,023 075 ARRBLIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALKGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - - 492 SANTO AGOSTINHO -	538	6.64
074 SALGUSTRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - - 454 VILA IUIS MARCBUNO -	340	2.02
074 SALGUEIRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMELAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - - 454 VILA IUIS MARCBUNO -	, 379	19.10
074 SALGUSTRO 4,023 922 4,023 075 ARRBLIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEM	, 036	17.11
074 SALGUEIRO 4,023 922 4,023 075 ARRELIA 3,174 684 4,691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMELAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - - 454 VILA IUIS MARCBUNO -	40	1.42
075 ARRBLIA 3, 174 684 4, 691 1 076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2, 507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5, 236 1,100 5,236 1 081 NOVA DIVINEIA 731 170 1,264 082 PARQUB JOAO PAULO II 1,118 260 1,913 083 PARQUB VILA ISABBL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 0CIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - - 454 VILA IJUIS MARCBLINO - - - - 492 SANTO AGOSTINHO	922	18.14
076 BORDA DO MATO 103 24 118 077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINBIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA IJUIS MARCELINO - - - - 492 SANTO AGOSTINHO - - - - -		
077 BURACO QUENTE 175 40 1,044 078 JAMBLAO 2,507 583 2,883 079 MORRO DO CRUZ 743 170 1,145 080 MORRO DOS MACACOS 5,236 1,100 5,236 1 081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONBSA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA LUIS MARCBLINO - - 200 492 SANTO AGOSTINHO - - - -	24	0, 92
081 NOVA DIVINBIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONBSA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALKGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - 760 454 VILA IJUIS MARCBLINO - - 200 492 SANTO AGOSTINHO - - -	239	0.62
081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA LUIS MARCELINO - - 200 492 SANTO AGOSTINHO - - - -	583	11.68
081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - 760 454 VILA IJUIS MARCBLINO - - 200 492 SANTO AGOSTINHO - - -	262	2 48
081 NOVA DIVINEIA 731 170 1,264 082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA LUIS MARCELINO - - 200 492 SANTO AGOSTINHO - - - -	100	14 87
082 PARQUE JOAO PAULO II 1,118 260 1,913 083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA LUIS MARCELINO - - 200 492 SANTO AGOSTINHO - - - -	294	2.71
083 PARQUE VILA ISABEL 6,662 1,436 6,662 1 353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA IJUIS MARCBLINO - - 200 492 SANTO AGOSTINIO - - - -	445	9.85
353 BARONESA 87 20 170 356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - - 760 454 VILA LUIS MARCELINO - - 200 492 SANTO AGOSTINIO - - - -	436	24.68
356 MORRO DA COROA 3,409 766 4,081 357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA -	39	0.52
357 MORRO DOS PRAZERES 2,995 653 3,254 358 OCIDENTAL FALLET 1,301 341 1,301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - - 760 454 VILA LUIS MARCELINO - - 200 492 SANTO AGOSTINIO - - -	917	5.83
358 OCIDENTAL FALLET 1, 301 341 1, 301 359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1, 574 319 2, 958 437 ANCEMA 760 454 VILA LUIS MARCELINO 200 492 SANTO AGOSTINIO	709	6.62
359 TRAVESSA VISTA ALEGRE 180 41 180 360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA 760 454 VILA LUIS MARCELINO 200 492 SANTO AGOSTINIO		
360 UNIDOS DE STA. TEREZA 1,574 319 2,958 437 ANCEMA - 760 454 VILA LUIS MARCELINO - 200 492 SANTO AGOSTINHO	341	3.64
437 AMCEMA - 760 454 VILA LUIS MARCELINO - 200 492 SANTO AGOSTINIO	41 eon	0.26
454 VILA LUIS MARCELINO 200 492 SANTO AGOSTINHO	600	6.18
492 SANTO AGOSTINHO	200	2.64
	50	0.81
2.300	500	8.84 2.18
***************************************	, 583	285.04

24RJ

G 1 N C P1	19	80	19		
Code Name of Favelas	POP.	DOM.	POP.	DOM.	Area(ha)
* 003 MORRO DA PROVIDENCIA		560	2,360	560	3.19
023 CERRO CORA	1,051	228	1,051	228	1,56
024 GUARARAPES	590	123	893	185	4.04
026 MALOCA	44	10	44	10	0.84
027 MANGUETRA	306	70	704	161	0.73
028 MORRO AZUL	844	170	903	182	2.42
029 MORRO SANTA MARTA	5, 356	1,249	5, 356	1,249	5.55
030 TAVARES BASTOS	868	223		381	2.02
031 VILA GANDIDO	590	123	874	182	1.65
032 VILA DA IMACULADA CONCEICAO	175	40	175	40	0.35
033 VILA PERETRA SILVA	789	167	1,133	240	4.70
034 VILA SANTO AMARO	1,355	304	2,556	573	3.76
037 LADEIRA DOS TABAJARAS	1, 193	323	1,193	323	3.27
040 VILA BENJAMIN CONSTANT	437	100	8, 194	1,816	1.47
354 FRANCISCO DE CASTRO	22	5	22	. 5	0.10
355 JULIO OTONI	131	30	310	71	0.84
438 ANDRE CAVALCANTE	-	-	95	25	0.31
439 LADBIRA SANTA ISABBL		<u>~</u>	95	25	0.20
440 FAZENDA CATETE	-	_	152	40	0.37
Total 19 Favelas	16, 111	3, 725	27, 592	6, 296	37.37

2 5 R J

		080	<u></u>		
Code Name of Favela	POP.	DOM.	POP.	DOM.	Area(ha)
307 BAIRRO DE SAPUCAIA	435	105	2,484	600	1.48
308 BAIRRO NOSSA SENHORA DAS GRACAS	7,002	1,516	8,052	2,023	11.67
		432		432	
310 COLONIA DE PES. ALAMIRANTE GOMES PEREIRA				429	
311 CONJUNTO RESIDENCIAL DOS SERVIDORES MUNICIPIAIS	986	200	1, 346	273	5.91
312 GUARABU	5,170	1, 164	5, 170	1,164	8.08
313 MORRO DAS ARARAS			547		
314 MORRO DO DENDE	8, 107	1,761	10,414	2,264	15.45
315 MORRO DO QUEROSENE	333	73	898	197	
316 PARQUE PRORBTARIO DOS BANCARIOS	2, 159	492	2, 159	492	6.34
317 PARQUE ROYAL	262	60	1,643	376	5.22
319 PRATA DA ROSA	751	169	2,655	590	1.97
320 JARDIM DUAS PRAIAS (450/48)	148	30	148	30	4.52
321 RUA GUARTUBA	44	10	202	46	0.18
322 RUA RODANO, LOTE 22-QUADRA 31	87	20	87	20	0.10
323 SERRA MORENA		93		100	
324 TREMEMBE	743	170	743	170	
449 MAGNO MARTINS	-	-	114	30	0.32
451 VILA JOANIZA			2, 500	2, 500	22.90
452 RUA BUDAPESTE, 66	-	-	114	30	0.23
453 MAESTRO ARTURO TOSCANINE				50	
527 LUIZA REGADAS	-		480	120	1.35
Total 22 Favelas	30, 578	6,750	51,304	12,074	104.06

APPENDIX 5-1

GUIDELINE FOR ORGANIC AMOUNT CONTROL IN INDUSTRIAL LIQUID EFFLUENTS

Coama

N

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL DATA 07.08.91

REVISÃO - 5
FOLHA 1/9

7

DZ-205.R-5

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EFLUENTES LÍQUIDOS DE ORIGEM INDUS-TRIAL

NOTAS:

Revisão aprovada na CECA pela Deliberação nº 2491 de 05.10.91, publicada no D.O.E.R.J. de 24.10.91. Processo E-07/201715/86.

APROVADO / APROVADO / APROVADO / /

FRONDL FEEMA CONDIR - FEEMA PRESIDENTE DA CECA

Cama

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

COCIGO DZ-205

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL EM FOLHA 2/9

RUBRICA ~

1. OBJETIVO

Estabelecer, como parte integrante do Sistema de Licenciamento de Atividades Poluidoras - SLAP, exigências de controle de poluição das águas que resultem na redução de:

- Hatéria orgânica biodegradável de origem industrial
- Matéria orgânica não biodegradável de origem industrial; e
- Compostos orgânicos de origem industrial que interferem nos mecanismos ecológicos dos corpos d'água e na operação de sistemas biológicos de tratamento implantados pelas indústrias, pela CEDAE e pelos Serviços Autônomos de Esgoto dos Hunicípios.

2. DOCUMENTOS DE REFERENCIA

- 2.1 Documentos aprovados pela Comissão Estadual de Controle Ambiental - CECA e publicados no Diário Oficial do Estado do Rio de Janeiro:
 - NT-202.R-10 CRITÉRIOS E PADRÕES PARA LANÇAMENTO DE EFLUENTES LÍQUIDOS;
 - DZ-205.R-4 DIRETRIZ DE CONTROLE DE CARGA ORGÂNI-CA EH EFLUENTES LIQUIDOS DE ORIGEM IN-DUSTRIAL;
 - NT-213.R-4 CRITÉRIOS E PADRÖES PARA CONTROLE DE TOXICIDADE EM EFLUENTES LÍQUIDOS IN-DUSTRIAIS:
 - MF-402.R-1 HÉTODO DE COLETA DE AMOSTRAS EM E-FLUENTES LÍQUIDOS INDUSTRIAIS;
 - DZ-942.R-7 DIRETRIZ DE IHPLANTAÇÃO DO PROGRAHA DE AUTOCONTROLE PROCON.
- 2.2 OUTROS DIPLOMAB LEGAIS
 - . Resolução CONAMA nº 20/86 de 18 de Junho de 1986.
- 3. DEFINIÇÕES

Para efeito desta Diretriz, são adotadas as seguintes definições:

J				
	APR3/ADD 07/0/8/91 //	APROVADO /	APROVADO / /	
, 1	M(XY///4////XA)		1
	V - 3/20/000			
	ARONOL - FEEMA	CONDIR - FEEWA	PRESIDENTE DA CEC	4

bama

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

CODIGO DZ-205

REVISTO - 5 -

FOLHA 3/9

EM

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL

3.1. MATÉRIA ORGANICA BIODEGRADAVEL

d a parcela de matéria orgânica de um efluente suscetível à decomposição por ação microbiana, nas condições ambientais de representada pela Demanda Bioquímica de Oxigênio (DBO), e expressa em termos de concentração (mgO2/1) ou carga (kg de DBO/dia). Sua redução será exigida em termos do percentual de remoção de DBO

3.2 HATERIA ORGANICA NÃO BIODEGRADAVEL

é a parcela de matéria orgânica pouco suscetivel à decomposição por ação microbiana, nas condições ambientais ou em condições pré-estabelecidas. A existência e magnitude da matéria orgânica não biodegradável, em relação à parcela biodegradável, são avaliadas através do cálculo da relação entre a Demanda Química de Oxigênio(DOD) e a Demanda Bioquimica de Oxigênio(DBO) em concentração ou carga relativa ao mesmo período de tempo. Um efluente terá mais características de não biodegradabilidade quanto maior for sua relação DQO/DBO. A DQO é expressa em termos de concentração (#902/1) ou carga (kg de BQO/dia). A redução de matéria orgânica não biodegradável será exigida em termos de redução da DQO e/ou de redução da relação DQO/DBO.

3.3. EFLUENTES ORGANICOS DE ORIGEM INDUSTRIAL

Despejos provenientes do estabelecimento industrial, comprendendo efluentes de processo industrial, esgotos sanitários, águas pluviais contaminadas e outras águas contaminadas com matéria orgânica.

4 ABRANGÊNCIA

A presente Diretriz é pertinente às atividades industriais.

5. FILOBOFIA DE CONTROLE

5.1 REDUÇÃO DE MATMRIA ORGÂNICA BIODEGRADAVEL

Todas as atividades poluidoras industriais que gerem efluentes contendo matéria orgânica biodegradavel deverão reduzi-la através das tecnologias de tratamento internacionalmente consagradas e disponíveis. Este é o enfoque de controle por níveis mínimos de remoção de carga orgânica.

reama

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

DATA 07.08.91

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EPLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL

FOLHA 4/9

As tecnologias podem ser divididas em dois grupos, saber:

- Nível básico (eficiência de remoção de DBO mínima de 70X): valo de oxidação, reator anaeróbico de fluxo ascendente, fossa séptica seguida de filtro anaeróbico de leito fluidizado, filtro biológico, etc.
- Processos biológicos convencionais (eficiência de remoção de DBO mínima de 90%) : lodo ativado convencional, aeração prolongada, reatores anaeróbicos, etc.

O nível minimo de eficiência a ser exigido (70% ou 90%) dependerá da carga orgânica total lançada pela atividade poluidora.

O estabelecimento de exigências de remoção de carga orgânica em função das tecnologias aqui citadas não implica necessariamente na implantação das mesmas, mas na exigência de que essas remoções sejam atingidas

Exigências adicionais serão feitas sempre que for necessária a compatibilização dos lançamentos com os critérios e padrões de qualidade de água estabelecidos para o corpo receptor, segundo seus usos benéficos (regulamentação estadual) ou segundo classes que agrupam determinados usos preponderantes (regulamentação federal).

No caso de lançamento em rede coletora dotada de tratamento, a licença da atividade poluidora ficard condicionada à comprovação pelo drgão responsável pela
operação, da capacidade de escoamento e tratamento da
carga orgânica biodegradável. Bendo tal capacidade
insuficiente, caberá unicamente à atividade poluidora
a redução de sua carga orgânica aos níveis previstos
para lançamento em rede coletora não dotada de tratamento. De qualquer forma, a remoção de sólidos grosseiros deverá ser feita por estas atividades, como medida indispensável de proteção da rede coletora.

Fica a critério da FEEHA o estabelecimento de exigênciam específicas de remoção de DBO para as atividades
poluidoras industriais localizadas em áreas dotadas de
rede coletora sem tratamento, cuja contribuição de matéria orgânica seja exclusivamente de esgotos manitários, e cujo número de funcionários seja inferior a
50(cinquenta).

			٠ <u></u>				FRE 310		<u> </u>	
\sim	AMBBA - JONGHA			ONCIR	- FEEMA	1	PRESID	CNIE		
υ	1 Capalaco					- 1				
T	TILLANGIN	<).				1				
1			AFROTRUO	,		APK	DANDO	/	/	
- 1.	PROYADO 07/08/91	'	APROVADO	1		1.00	OVADO		,	
D12										

bama

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

CODIGO DZ-205

DATAU/.08.9] REVISÃO - 5 -

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL

FOLHA 5/9 RUBRICA S

3.2. REDUÇÃO DE MATÉRIA ORGÂNICA NÃO BIODEGRADAVEL E DE COMPOSTOS QUE INTERFEREN NA BIOTA AQUATICA E NOS SISTEMAS BIOLÓGICOS DE TRATAMENTO

Todas as atividades poluidoras industriais deverão implantar tecnologias menos poluentes e/ou sistemas de pré-tratamento de controle da matéria orgânica não biodegradável e da carga de poluentes que interferem no metabolismo da flora e fauna aquática e na operação dos sistemas biológicos de tratamento.

No caso de lançamento em rede coletora dotada de tratamento biológico, cujo órgão operador seja a CEDAE ou Servico Autônomo de um município ou um órgão responsável pelo tratamento conjunto de efluentes de origem industrial, será exigido da atividade industrial, para cada lançamento, a implantação de pré-tratamento ou tecnologia menos poluente, de modo a compatibilizar o lançamento com o sistema de tratamento biológico e com os usos benéficos do corpo receptor.

Os poluentes orgânicos que passam por tratamento biológico sem serem removidos, sendo portanto não biodegradáveis, e aqueles que interferem nos sistemas biológicos de tratamento e nos sistemas biológicos naturais, podem causar diversos danos e, por isso, não poderão ser introduzidos nestes sistemas sem a adoção de pré-tratamento ou de tecnología menos poluente. Dentre eles destacam-se:

- poluentes que causam inibição à atividade dos microorganismos de sistemas biológicos de tratamento;
- poluentes que geram risco de incêndio e explosão nos sistemas de tratamento;
- poluentes que causam danos de corrosão nas estruturas de estações de tratamento;
- poluentes lançados, em volume ou carga tal, que ocasionem interferência nos sistemas de tratamento biológico, como por exemplo os que demandam alto consumo de oxigênio.

6. EXIGENCIAS DE CONTROLE

6.1. MATERIA ORBANICA BIODEGRADAVEL

As atividades poluidoras indústriais com carga de DBO igual ou superior a 100kg/dia, deverão atingir remoção de DBO de no mínimo 90%.

APROVADOO 7 08 91	APROVADO /	APROVADO / /	
Sugarues			
PRONOL - FEENT	COND I FEENA	PRESIDENTE DA CECA	مسد

200ma

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL CODIGO DZ-205
DATA 07.08.91
REVISÃO - 5 FOLHA 6/9

Fara o restante das atividades, será exigida remoção de sólidos grosseiros, sedimentáveis, materiais flutuantes e DBO, correspondendo ao nível básico de tecnologia de controle de carga orgânica biodegradável, ou seja, um minimo de 70% de remoção de DBO, ausência de sólidos grosseiros e materiais flutuantes, e sólidos sedimentáveis inferiores a 0.5ml/l

As indústrias novas que implantarem o nível básico de tecnologia deverão reservar área para eventual implantação de tratamento com remoção de DBO de 90%.

No caso de indústrias com carga bruta igual ou superior a 100kgDBO/dia, e localizadas nas bacias contribuintes ou à margem dos lagos, lagoas, lagunas e reservatórios, deve ser reservada área para implantação de tratamento para remoção de nutrientes.

6.2 CARGA ORGANICA NÃO BIODEGRADAVEL

Os efluentes de qualquer fonte poluidora somente poderão ser lancados, direta ou indiretamente; nos corpos d'água desde que obedeçam aos seguintes limites de Demanda Química de Oxigênio(DQO):

- Industrias Químicas (*) e Petroquímicas: (250mg/1
- Fabricação de Produtos Farmacêuticos e Veterinários (exclusive unidades de fabricação de antibióticos por processo fermentativo): (150mg/l
- Fabricação de Antibióticos por Processo Fermentativo: < 300mg/l</p>
- Fabricação de Bebidas (cervejas, refrigerantes, vinhos, aguardentes, exclusive destilarias de alcool) : (150mg/l
- Fabricação de Tintas, Vernizes, Esmaltes, Lacas, Impermeabilizantes, Secantes e Resinas/Hassas Plásticas : < 300mg/l
- Cortume e processamento de couros e peles: (400mg/l
- Operações Unitárias de Tratamento de Superfícies (efetuadas em indústrias do gênero metalúrgico, siderúrgico, mecânico, material de transporte, material elétrico, eletrônico e de comunicações, editorial e gráfico, material plástico, borracha, aparelhos, instrumentos e materiais fonográficos, fotográficos e óticos) : (200mg/1)

APROVADO / APROVADO /	
Valuation 1	
PRONOL - FEEMA PRESIDENTE DA CECA	

bema

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

CODIGO DZ-205 DATA 07.08.91 REVISÃO - 5 -

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL

FOLHA 7/9
RUBRICA -

- Indústrias Alimentícias (exclusive pescado): (400mg/l
- Indústrias de Pescado : (500mg/1
- Fabricação de Cigarros, Charutos e Preparação de Fumo: (450mg/]
- Indústria Têxtil : (200mg/l
- Indústrias Siderúrgicas e Metalúrgicas ;
 Coquería, Carboquímica e Alto Forno: (200mg/l Aciaria e Laminação: (150mg/l Demais Unidades(exceto setor de tratamento de superfícies): (100mg/l
- Papel e Celulose: (200mg/1
 - * No ramo Guímico incluen-se : produção de elementos químicos e produtos químicos orgânicos e inorgânicos; fabricação de corantes e pigmentos; produção de óleos, essências vegetais e outros produtos da destilação da madeira; fabricação de concentrados aromáticos; fabricação de matérias plásticas, plastificantes, fios e fibras artificiais e sintéticas e de borracha e látex sintético (inclusive polimerização de matérias plásticas para extrusão de fios); fabricação de pólvoras, explosivos, detonantes, fósforos de segurança e artigos pirotécnicos; fabricação de preparados para limpeza e polimentos, desinfetantes, inseticidas, herbicidas, germicidas, fungicidas e acaricidas; fabricação de adubos, fertilizantes e corretivos do solo; fabricação de perfumaria e cosméticos, sabões, detergentes e velas; fabricação de produtos químicos diversos.

As atividades poluidoras industriais cujos efluentes são encaminhados a un sistema biológico de tratamento (da própria indústria ou da CEDAE, Serviço Autônomo de Município ou ainda de Complexo Industrial), e cuja relação a DQO/DBO seja igual ou superior a 4:1, deverão implantar tecnologia menos poluente ou sistema de pré-tratamento de controle da carga orgânica não biodegradável.

- 1					
Į	4093VADO 07/08 91	APROVACO /	APROVADO /	/	
	HIII/AMINO				
ļ	Survivia 1				
_	PROMOL - FEEMA	CONDIR FEEWA	PRESIDENTE	DA CECA	

Dama

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL CODIGO D2-205
DATA 0 7 . 0 8 . 9 1
REVISÃO - 5 FOLHA 8/9
RUBRICA S

Para as atividades com tratamento na própria indústria a relação DGO/DBO deverá ser determinada no efluente que entra na Estação de Tratamento, considerando o efluente de origem industrial como um todo, ou em locais representativos de efluentes individuais — por unidade de produção ou correntes isoladas de efluente — ficando a critério da FEEMA identificar o(s) ponto(s) de amostragem.

Para as atividades que lançam em redes coletoras com sistema de tratamento, a determinação da relação DQD/DBO deverá ser feita no efluente que sai da fábrica. Neste mesmo ponto de amostragem deverão ser atendidos os critérios e padrões da NT-202-R 10 e da NT-213-R 4.

As indústrias químicas cujos efluentes são encaminhados a sistemas biológicos de tratamento, além de se enquadrarem no limite de lançamento de DQO e na relação DBO/DQO, deverão limitar a DQO na saída de cada fábrica ou unidade de produção a um valor menor ou igual a 4000mg/l. Se necessário, a FEEMA poderá limitar a DQO na saída de uma única linha de produção

Em nenhuma hipótese será permitida a diluição dos efluentes líquidos com o objetivo de atender aos limites de lançamento. Na hipótese de fonte geradora de diferentes despejos ou lançamentos individualizados, as concentrações máximas vigentes nesta Diretriz aplicar-se-ão a cada um deles ou ao conjunto, após a mistura, a critério da FEEMA.

Todas as atividades poluidoras industriais que utilizem refeitório em suas dependências deverão instalar sistema de remoção de sólidos e gordura antes de sua destinação.

7. PRAZO DE ADEQUAÇÃO

As atividades industriais já implantadas terão prazo de 18 meses, a partir da data de publicação desta Diretriz, para se enquadrarem às novas exigências previstas nesta revisão da DZ-205.

- [·	PASYADO 07/8/8/91	APROVACO	/	APROVADO	1	1		
1	fll/aride)							-
~	PRONOL - FEENA		CONDIR - FEEWA	PRESID	ENTE		CECA	

bama

COMISSÃO PERMANENTE DE NORMALIZAÇÃO TÉCNICA - PRONOL

CODIGO DZ-205

DAYAO 7.08.91

REVISÃO - 5
FOLHA 9/9

RUBRICA X

DIRETRIZ DE CONTROLE DE CARGA ORGÂNICA EM EFLUENTES LÍQUIDOS DE ORIGEM INDUSTRIAL

As atividades industriais que já estão cumprindo exigências estabelecidas na DZ-205.R-4 e que foram mantidas nesta revisão, deverão cumprir os prazos já estabelecidos.

As atividades industriais já implantadas que tenham DQO superior aos limites estabelecidos nesta Diretriz, ou relação DQO/DBO igual ou superior a 4:1, terão prazo de ó(seis) meses, a partir da data de publicação desta Diretriz, para apresentarem à FEEHA o projeto de pré-tratamento ou de implantação de tecnologia menos poluente.

Sufario6	7	APROVADO /	APROVADO / /	
PRONOL FEENA		CONDIA FEEMA	PRESIDENTE DA CECA	_

APPENDIX 5-2

TAXATION FOR CONTROL OF WATER AND AIR POLLUTION

PROJETO DE LEI Nº 683/91

Cria a Taxa de Controle da Poluição Hídrica e Atmosférica -TCPHA.

Autor: COMISSÃO DE DEFESA DO MEIO AMBIENTE

DESPACHO: A imprimir e às Comissões de Constituição e Justica; de Orçamento, Finanças e de Tributação; e de Economia, Indústria, Comércio e Turismo.

Em, 12.12.91 - DEPUTADO JOSÉ NADER - Presidente

A Assembléia Legislativa do Estado do Rio de Janeiro

DECRETA:

- Art. 19 Fica Instituída a Taxa de Controle da Poluição Hídrica e Atmosférica TCPHA destinada a atender aos custos necessários à fiscalização das atividades poluidoras, no que se refere ao monitoramento de seus efluentes líquidos e resíduos gasosos, e ao monitoramento dos corpos d'água e do ar, de modo a recuperar e manter a qualidade ambiental.
- Art. 29 O fato gerador da Taxa de Controle da Poluição Hídrica e Atmosférica - TCPHA é o exercício da fiscalização e do monitoramento ambiental pela FEEMA.
- Art. 39 São contribuintes da TCPHA as pessoas físicas ou jurídicas, públicas ou privadas que lancem ou emitam poluentes.
- Parágrafo único Fica vedado o repasse do ônus decorrente da incidência da TCPHA para as tarifas públicas.
- Art. 49 O pagamento da TCPHA não exime ao atendimento ao disposto na legislação de proteção ambiental em vigor e, em particular, às normas, critérios e padrões de lançamento de efluentes líquidos e emissões de residuos gasosos para a atmosfera.
- Art. 59 Para os fins previstos nesta Lei entende-se por:
 - I EFLUENTES LíQUIDOS águas residuárias provenientes de atividades poluidoras ou potencialmente poluidoras de origem doméstica, comercial, agrícola, industrial e outras, lançadas direta ou indiretamente em corpos receptores.
 - II CORPO RECEPTOR parte do meio ambiente no qual são ou podem ser lançados, direta ou indiretamente, efluentes líquidos, tratados ou não, tal como: rios, lagos, oceanos, aquíferos subterrâneos.

- III RESÍDUOS GASOSOS toda matéria ou substância que altere a qualidade do ar, tal como: fumaça, fuligem, poeira, carvão, ácidos, fumos, vapores, gases, odores, partículas e aerossóis.
- IV CARGA POLUIDORA carga de poluente lançada nos corpos receptores ou na atmosfera, expressa em unidades de massa ou volume por unidade de tempo.
- V TOXICIDADE capacidade de um efluente líquido provocar um efeito observável em um organismo aquático vivo, expresso em unidade de toxicidade UT.
- VI UNIDADE DE POLUIÇÃO UP unidade adimensional utilizada para fins de taxação, cujo somatório representa o grau de poluição de uma atividade, considerando-se os diferentes poluentes gerados, e seus respectivos potenciais de dano ao meio ambiente.

Art. 69 - A TCPHA será calculada, considerando:

- I para efluentes líquidos, a carga poluidora anual de materiais sedimentáveis, Demanda Bioquímica de Oxigênio - DBO, Demanda Química de Oxigênio -DQO, mercúrio e seus compostos, cádmio e seus compostos, chumbo e seus compostos, cromo e seus compostos e toxicidade.
- II para os resíduos gasosos, a carga poluidora anual de óxidos de enxofre, óxidos de nitrogênio e material particulado.
- \$ 12 A TCPHA será expressa em unidades de poluição de acordo com o anexo 1.
- \$ 20 0 valor máximo da unidade de poluição UP é fixado em 1,57 UFERJ, a ser atingido no prazo de 5 anos, sendo o valor fixado para o 10 (primeiro) ano de recolhimento da taxa em 20% do valor máximo e em 30%, 50%, 80% e 100% do valor máximo, respectivamente, para os anos subsequentes.
- \$ 39 A TCPHA mínima corresponderá à 50 UP, estando isentas as atividades cujo total de UP seja inferior a este valor.
- Art. 79 A base de cálculo e o valor da UP deverão ser revistos sempre que o desenvolvimento tecnológico e/ou as condições ambientais assim indicarem, mantendo-se o prazo mínimo de 5 anos, para esta revisões.

- Art. 89 Haverá redução do valor da TCPHA nos seguintes casos:
 - I Durante a implantação de sistemas de controle de poluição e de tecnologias de processos menos poluidoras luidoras que promovam a redução de, no mínimo, 20% (vinte por cento) do grau de poluição, expressa em unidades de poluição UP por poluente, em percentual igual ao percentual de redução previsto no projeto.
 - II Quando se tratar de disposição de efluentes líquidos em terras agrícolas com o objetivo de adubação ou irrigação, de acordo com licença da Comissão Estadual de Controle Ambiental CECA, em 80% (oitenta por cento).
 - \$ 19 A redução do valor da TCPHA, no que se refere ao item I deste artigo, não poderá ultrapassar o período de 3 (três) anos.
 - \$ 29 Quando a implantação do sistema de controle ou de tecnologias de processo menos poluidora não se completar dentro do prazo estipulado no 19 (primeiro) cronograma aprovado pela FEEMA ou não sejam atendidas as especificações do projeto, o valor da redução da TCPHA será cobrado integralmente, sem prejuízo das sanções previstas nos Decretos, 8974 de 15.05.86 e 15121 de 19.07.90 e demais dispositivos legais vigentes.
- Art. 99 A TCPHA será recolhida anualmente a partir do mês de janeiro em até 10 (dez) parcelas mensais e sucessivas.
 - \$ 19 0 não recolhimento da TCPHA ao orgão arrecadador no prazo legal acarretará as seguintes penalidades:
 - I pelo atraso no recolhimento, acréscimo de 10% por até 30 dias, 15% de 30 a 60 dias, 20% de 60 a 70 dias, 25% de 90 a 120 dias, 30% de 120 a 180 dias, 35% por período superior a 180 dias e 50% quando ultrapassar o exercício financeiro a que corresponder.
 - II pela falta de pagamento apurado ex-ofício, acréscimo de 100%.
 - \$ 2º Os débitos da TCPHA serão acrescidos de juros de mora no valor de 1% (um por cento)_ ao mês ou parcela do mês quando não pagas na data do vencimento, independente da atualização monetária.

- Art. 10 A TCPHA constituirá receita própria da FEEMA, que deverá aplicar o produto da arrecadação no atendimento aos encargos decorrentes das atividades referidas no artigo 1º desta Lei.
- Art. 11 Os recursos provenientes da arrecadação da TCPHA serão movimentados em conta própria da Fundação Estadual de Engenharia do Meio Ambiente FEEMA aberta no Banco do Estado do Rio de Janeiro S/A BANERJ vinculada sua utilização ao disposto no artigo 1º desta Lei.
- Art. 12 O poder Executivo regulamentará a presente Lei no prazo de 60 (sessenta) dias.
- Art. 13 Esta Lei entrará em vigor na data de sua publicação, revogadas as disposições em contrário, especialmente os incisos II e III do art. 1º da Lei 1803 de 25 de março de 1991.

Sala das Sessões, 29 de novembro de 1991.

Deputados: ALOÍSIO OLIVEIRA, Presidente; FERNANDO LEITE, Vice-Presidente; LUIZ HENRIQUE, Membro; ALICE
TAMBORINDEGUY, Membro; CARLOS MINC, Membro.

ANEXO 1

a) BASE DE CALCULO PARA TAXAÇÃO DE EFLUENTES LÍQUIDOS

A.1 - TABELA

Poluentes e grupos de poluentes	Unidade de carga do poluente	Nº de unidades de poluição (UP) por unidade de carga
3 3 3 3	100 Kg/ano	5
Sólidos sedimentáveis	í m [⊕] ∕ano	0,5
Mercurio e seus compos- ltos	100g/ano	5
Cadmio e seus compostos	100g/ano	2
Chumbo e seus compostos	10 0 g/ano)
Cromo e seus compostos	100g/ano	1 1
Toxicidade (UT)	1000m ^s /ano	0,3 (UT)

a.2) O valor da Taxa será equivalente à diferença entre o nº UP da água bruta captada e o número de UP do efluente líquido lançado no corpo receptor, cabendo ao interessado a comprovação do grau de poluição da água captada.

b) BASE DE CÁLCULO PARA TAXAÇÃO DE RESÍDUOS GASOSOS

b.1 - TABELA

 Poluentes e grupos de poluentes	 Unidade de carga do poluente 	Nº de unidades de poluição (UP) por unidade de carga
 Material particulado (i)	 i0 t/ano 	7.5
 Material particulado (2)	 i t/ano 	7.5
 óxidos de enxofre 	l i t/ano	15
 óxidos de nitrogênio 	 10 t/ano 	5

⁽¹⁾ material particulado gerado exclusivamente no processo de combustão.

⁽²⁾ material particulado gerado no processo industrial, incluído ou não aquele gerado no processo de combustão.

TAXA DE CONTROLE DA POLUIÇÃO HÍDRICA E ATMOSFÉRICA

JUSTIFICATIVA

A Taxa de Controle da Poluição Hídrica e Atmosférica está baseada nos preceitos estabelecidos nos artigos 258, \$ 19, XVIII e 259 da Constituição Estadual.

O princípio do poluidor-pagador, já consagrados nos países onde foi adotado, vem se tornando uma tendência internacional. É justo que o ônus financeiro do controle ambiental seja do poluidor e que este pague na razão direta do quanto polui, não dividindo este ônus com a sociedade.

São várias as consequências positivas da adoção de um sistema de taxação que contemple o princípio do poluidor-pagador.

Em relação ao agente poluidor, o Sistema de Taxação induz ao investimento em sistemas de controle de poluição, na adoção de processos de produção menos poluentes, em pesquisas para o desenvolvimento de tecnologias de controle mais avançadas, bem como ao aprimoramento da operação e manutenção dos sistemas existentes.

Por outro lado, permite ao órgão fiscalizador desenvolver um controle ambiental mais eficaz na medida em que, com os recursos provenientes da taxa, poderá se capacitar com maior eficiência.

A associação de um valor econômico ao dano ambiental representa um salto qualitativo significante no controle da poluição, na medida em que o grau de poluição de uma atividade passa a ter que ser considerado na análise de sua viabilidade econômico-financeira.

Em termos de controle ambiental, a criação da taxa dará ao Estado do Rio de Janeiro uma projeção de vanguarda no cenário nacional e representará um ganho político significativo junto à população do nosso Estado.

APPENDIX 6

LIST OF QUESTIONNAIRE

QUESTIONARIO REFERENTE À RECUPERAÇÃO DA BAÍA DE GUANABARA

Estamos realizando uma pesquisa sobre a Baía de Guanabara, para obtenção de informações a serem consideradas no projeto que vem sendo desenvolvido entre a JICA/FEEMA, denominado de "Estudo de Recuperação do Ecossistema da Baía de Guanabara".

Nessa oportunidade, gostariamos de ouvir a opinião das pessoas que moram e/ou utilizam a Baía de Guanabara como forma de subsistência e de lazer. Estes dados serão aproveitados em um projeto, cujo objetivo final é a melhoria futura da Baía de Guanara.

Contamos com sua colaboração, que é imprescindível e muito valiosa para conclusão do projeto. Nas questões a seguir, assinale uma ou mais opções, conforme o caso.

Orgãos realizadores do questionário:

- FEEMA (Fundação Estadual de Engenharia do Meio Ambiente)
 Rua Fonseca Teles, 121/169 andar
 Tel.: 585-3366-ramal 320 ou 589-3920
 a/c Elizabeth Lima
- JICA (Study team office)
 Rua Fonseca Teles, 121/79 andar
 Tel.: 585-3366 (ramais 250, 262 e 263)
 a/c Sr. Kikuta

*Prazo de entrega: 15 de setembro de 1992.

A) DADOS PESSOAIS

- 1. Idade:
 - (1) de 10 a 19
 - (2) de 20 a 29
 - (3) de 30 a 39
 - (4) de 40 a 49
 - (5) + de 50
- 2. Sexo:
 - (1) Masculino
 - (2) Feminino
- 3. Escolaridade:
 - (1) Primária
 - (2) Secundário
 - (3) Superior
- 4. Residência (preencher por extenso):

Município:

Bairro:

Rua:

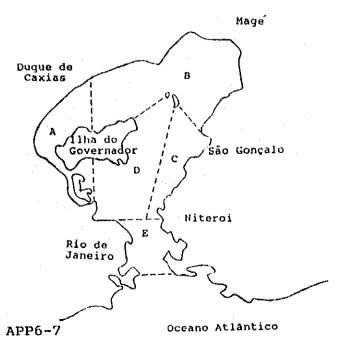
B) DADOS SOCIO ECONÔMICO

- 1. Renda familiar:
 - (1) de 2 salários minimos
 - (2) entre 2 e 5 salários mínimos
 - (3) entre 5 e 10 salários mínimos
 - (4) + de 10 minimos

	2. Profissão:
	(1) Pescador
	(2) Agricultor
	(3) Operario
	(4) Empregada Doméstica
	(5) Lavadeira
	(6) Biscateiro
	(7) Funcionário de firma particular
	(8) funcionário público
	(9) Outro
	3. Encontra-se atualmente empregado?
•	
•	(1) Sim
. 5	
	(1) Sim (2) Não
	(1) Sim
	(1) Sim (2) Não
4	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.:
4	(1) Sim(2) Não4. Em caso afirmativo, qual o local de trabalho?
) <u>(</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA
) <u>(</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência:
) <u>(</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência: (1) casa de alvenaria
) <u>(</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência: (1) casa de alvenaria (2) apartamento
) <u>(</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência: (1) casa de alvenaria (2) apartamento (3) casa de madeira
) ((1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência: (1) casa de alvenaria (2) apartamento
) <u>S</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência: (1) casa de alvenaria (2) apartamento (3) casa de madeira
) <u>S</u>	(1) Sim (2) Não 4. Em caso afirmativo, qual o local de trabalho? R.: CONDIÇÕES DE MORADIA 1. Tipo de residência: (1) casa de alvenaria (2) apartamento (3) casa de madeira (4) outros

(1) 1 cômodo
 (2) 2 cômodos
 (3) 3 cômodos

(4) + de 3 cômodos


4. Tem quintal?	
(1) Sim	
(2) Não	
5. Número de moradores	
R:	
•	
6. Abastecimento de água:	
(1) rede da CEDAE	
(2) carros pipa	
(3) poço	
(4) bica coletiva	
7. Tem banheiro?	
(1) Sim	
(2) Não	
8. Esgoto sanitário:	
(1) rede de esgoto	
(2) fossa séptica	
(3) valão	
(4) direto no rio	
·	
9. Coleta de lixo	
(1) não hã	
(2) 1 vez por semana	
(3) 2 vezes por semana	
(4) 3 vezes por semana	
10. Casa não haja coleta de	lixo onde lança seu lixo doméstico
(1) em terreno baldio p	róximo a sua residência
(2) em valão próximo	
(3) em rio	
	margens da Baía de Guanabara
(5) outro local	
•••	

D) PERGUNTAS RELACIONADAS À QUALIDADE DA ÁGUA DA BAÍA DE GUANABARA

- Q.1) O que acha da qualidade da água da Baía de Guanabara?
 - (1) muito limpa
 - (2) limpa
 - (3) suja
 - (4) muito suja
 - (5) não sabe
- Q.2) Se achou que a água da Baía é suja, o que desejaria que fosse realizado?
 - (1) deseja que seja limpa o mais rápido possível
 - (2) deseja que seja limpa, se possível
 - (3) deseja que fique como está
 - (4) não tem jeito
 - (5) não sabe
- Q.3) Se você marcou o nº 2 na segunda questão, até que ponto gostaria que a água da baía ficasse limpa?
 - (1) para tomar banho
 - (2) para que os peixes e conchas e outras espécies marinhas possam sobreviver
 - (3) para desenvolvimento de prática de lazer (pesca, competições esportivas)
 - (4) para que a água fique sem cheiro e sem lixo boiando
 - (5) não sabe
- Q.4) Para você, quais as causas da sujeira da água da Baía?
 - (1) lançamento da rede de esgoto nas águas da baía
 - (2) lançamento de esgoto das fábricas nas águas da baía
 - (3) lançamento do lixo nos rios e nas praias
 - (4) existência de lodo acumulado no fundo da baía
 - (5) lançamento de lixo sólido e óleo dos navios na água da baía
 - (6) outros
 - (7) não sabe

Rl:	Causa	mais	forte:	and included the College PTA Property comments are not to be a com-		, 1001-101-1-10 0
	Segund	la cai	ısa	and the second of the second o		Arthorno
	Tercei	ra ca	ausa	•		

- Q.5) O que você acha de se controlar o lançamento de esgotos domésticos (residências, escritórios, restaurantes, lojas comerciais)
 - (1) deve-se controlar rigorosamente
 - (2) deve-se controlar, porém não atrapalhando a ativida de econômica
 - (3) deve-se deixar como está
 - (4) outros
 - (5) não sabe
- Q.6) O que você acha de se controlar o lançamento de esgotos industriais nas águas da baía?
 - (1) deve-se controlar rigorosamente
 - (2) deve-se controlar dentro das possibilidades financeiras das empresas
 - (3) deve-se deixar como está
 - (4) outros
 - (5) não sabe
- Q.7) De acordo com o desenho ao lado, na sua opinião, qual a região mais poluída?
 - (1) Região A
 - (2) Região B
 - (3) Região C
 - (4) Região D
 - (5) Região E
 - (6) Não sabe

E) PERO	GUNTAS SOBRE OS RIOS QUE DESEMBOCAM NA BATA DE GUANABARA
Q.8)	O que você acha do aspecto da qualidade da água dos rios?
	(1) muito limpa
	(2) limpa
	(3) suja
	(4) muito suja
	(5) não sabe
Q.9)	Com relação à questão 8, a respeito de quais rios?
	(1) a maioria dos rios
	(2) o rio próximo de onde moro (nome do rio:
	(3) o rio que vejo quando vou para o trabalho (nome do
	rio:
	(4) outros (nomes dos rios:)
	(5) não sabe
Q.10)	Em que época você observa que as águas dos rios se tornam sujas?
· .	(1) de dezembro a fevereiro (verão - época de chuvas)
	(2) de março a maio (época de seca)
	(3) de junho a agosto (inverno - época de seca)
	(4) de setembro a novembro (época de chuvas)
	(5) outros
	(6) não sabe
Q.11)	A que horas você observa que as águas dos rios estão mais
	sujas?
	(1) de manhã (de 06:00 às 09:00)
*	(2) durante o dia (de 11:00 às 15:00)
	(3) no fim da tarde (de 16:00 às 17:00)
	(4) à noite
	(5) outras
•	(6) não sabe

Q.12)	Para você, quais são as causas da poluição das águas dos rios?
	(1) lançamento da rede de esgoto nas águas dos rios
	(2) lançamento do esgoto industrial nas águas dos rios
	(3) lixo nos rios
	(4) aterro e ocupação das margens
	(5) lodo acumulado no fundo dos rios
	(6) outros
	(7) não sabe
	R: Causa maior:
	Segunda causa
	Terceira causa
Q.13)	Para você, quais os rios mais sujos?
	(1) o canal do Mangue
	(2) Canal do Cunha
	(3) Rio Irajã
	(4) Rio São João de Meriti
	(5) Rio Sarapui
	(6) Canal de Magé
	(7) Rio Guapimirim
	(8) Rio Alcântara
:	(9) Canal Canto do Rio
	(10) Outro(s): nome(s) do(s) rio(s)
	(11) Não sabe

F)

PERGU	NȚAS	GERAIS SOBRE A BAÍA DE GUANABARA
Q.14)	Que ria?	relações tem a Baía de Guanabara com a sua vida di <u>á</u>
	(1)	pesca na baía como renda familiar
-	(2)	pesca de vez em quando na baía
	(3)	não pesca na baia
	(4)	passeia de barco ou de lancha pela baía (Rio-Nite-
		rõi, Ilha do Governador, Paquetã)
•	(5)	caminha sempre pelas praias
	(6)	você e sua família tomam banho de mar nas praias
	(7)	utiliza a baía como local de lançamento de lixo e
		esgoto
	(8)	apenas olha a baia de longe
-	(9)	não tem relação especial com a baía
	(10)	outras
Q.15)	Você	tem alguma lembrança forte com relação à Baía de
	Guan	abara de antigamente?
•	(1)	nadou, brincou na agua (quantos anos antes, aproximadamente:)
	(2)	realizou pesca de siri e camarão (quantos anos:)
	(3)	
		; há quas to tempo?)
	(4)	sempre pescou (quantos anos:)
	(5)	outras (quais:)
	(6)	nenhuma lembrança especial
	•	
Q.16)	Сопо	você acha que deve ser a Baia de Guanabara no futu
	ro?	
	(1)	gostaria de aproveitar melhor as praias da baía de
	(0)	Guanabara
	(2)	ter condições para retomada das atividades pesquei
		ras, principalmente de camarão e siri)
	(3)	ter condições para práticas de atividades esporti-
		vas
	(4)	acha que não há mais jeito de recuperar a baía
		deve-se permitir a construção de indústrias
	(6)	aterrada para a construção de residencias e parques

deve continuar como está

(7)

- (8) deve ter a sua recuperação intensificada
- (9) outros
- (10) não sabe
- Q.17) Qual a sua opinião sobre os manguezais?
 - (1) é importante para criação de peixes, camarões, caran gueijos e outros
 - (2) sua vegetação é importante para o abrigo de diversos pássaros
 - (3) é uma vegetação sem qualquer importância e sem utilidade
 - (4) forma lama de mau cheiro e aspecto horrivel
 - (5) deve-se acabar com os mangues para construção de cassas e indústrias
 - (6) não sabe
 - (7) outros
- Q.18) Você tem alguma sugestão sobre o projeto de despoluição da Baía de Guanabara?

- * Agradecemos sua colaboração. Suas opiniões são de grande importância na realização e elaboração de nosso projeto. Esperamos realizá-lo da melhor maneira possível, a fim de obtermos bons resultados tanto para a Baía de Guanabara quanto para a população do Rio de Janeiro.
- **Após o término desta pesquisa de opiniões e sugestões, serão pu plicados ou enviados os seus resultados para os respectivos en trevistados.

/mg*

PART II

RUNOFF LOADS FROM THE BASIN

CONTENTS

			Page
	LIST OF TA	ABLES	iii
	LIST OF A	PENDED TABLES	iii
		IGURES	v
5		PPENDED FIGURES	Vi
	ABBREVIATI	IONS	vii
	CHAPTER	1 OUTLINE OF THE RIVER SURVEY	
	1.1	Observation Items	1- 1
	1.2	Observed Rivers and Observed frequency	1- 2
	1.3	Observation Method	1- 9
	1.4	Survey Results	1-12
	CHAPTER	2 OBSERVED WATER QUALITY, DISCHARGE AND RUNOFF LOAD	
	OHLI LEK		
	2.1	Water Quality	2- 1
	2.2	Runoff Discharge and Runoff Load	2-29
	2.3	Hourly Change and Seasonal Change in Water Quality and	
ð.		Runoff Load on Clear Days	2-29
	2.4	Fluctuations in Tidal River Runoff Discharge	
		and Water Quality	2-37
	2.5	Hourly Change in Water Quality and Runoff Load on	0.07
	0.0	Rainy Days	2-37
	2.6	Pollution Load Flowing into Jurujuba Bay	2~38
	CHAPTER	3 ESTIMATE OF RUNOFF LOAD FROM THE BASIN	
٠	3.1	Need and Function for Estimation Model of Runoff Load	3- 1
	3.2	Structure of the Estimation Model of Runoff Load	3- 2
	3.3	Procedure for Calculation of Runoff Discharge and Runoff Load	3-8
	3.4	Setting of Parameters	3-12
	3.5	Calculation Results and its Validation	3-17
	CHAPTER	4 DETAILS OF RUNOFF LOAD FROM THE BASIN	
8	4.1	Runof Load Flowing into the Bay through Rivers and	
•	7.1	Stormwater Drains	4- 1
	4.2	Runoff Loads Flowing in the Bay Directly from the Pollution	- 4
	7,4	Sources on the Coastal Area	4 1

•		
CHAPTER	5 THE FUTURE RUNOFF LOAD FROM THE BASIN	
5.1 5.2	Calculation Method Estimation Results and Evaluation	5- 1 5- 1
CHAPTER	6 RUNOFF LOAD ESTIMATION RESULTS THROUGH INFLOW LOAD REDUCTION MEASURES	
6.1	Runoff Load Estimation Results through Reduction Measures	6- 1
6.2	Points to be Considered for the Calculation	6- 3
6.3	Terms of Calculation	6- 4
6.4	Estimation Results and Evaluation	6- 7
•		
CHAPTER	7 THE WATER QUALITY OBSERVATION METHOD PROPOSED FOR TIDAL RIVERS	
7.1	Observation to Determine the Pollution Level in Rivers	7- 1
7.2	Measurements to Determine Runoff Load in Clear Days	7- 2
7.3	Measurements to Determine the Runoff Load on Rainy Days	7- 2
7.4	Measurements to Determine the Annual Runoff Load	7- 3
APPENDIX		
1 2	Results of Regular Survey on the Major 25 Rivers on Clear Days Results of Hourly change Survey on three Model Rivers	A1-1
_	on Clear Days	A2-1
3	Results of Continuous Survey on two Model Rivers on Rainy Days	A3-1
4	Results of Detailed Survey on Major Highly Polluted Rivers	
5	on Clear Days Results of Rain Water Quality Analysis	A4-1 A5-1
6	Results of Survey of the Drainage Canals Discharging Water into	NO-1
0 ,	Jurujuba Bay	A6-1
7	Precipitation Data at Duque de Caxias (1989-1993)	A7-1
8	Results of River Water Analysis by FEEMA (1980-1991)	A8-1
9	Estimation Results of Runoff Load from Each Sub-Basin	A9-1
10	Estimation Results of Runoff Load with Countour Measures	A10-1

Page

LIST OF TABLES

*00%

			Page
Table	2- 1	Water Quality (Average Value during the Survey (Period)	
14010		of 25 Rivers (1992 - 1993)	2- 3
Table	2- 2	River Water Quality Standards (CONAMA No.20)	2-10
Table	2- 3	Water Area Classification of the River	2-13
Table	2- 4	Achievement Level of the three Water Quality Standards	2-15
Table	2- 5	Unsatisfaction Rates of Water Quality to	
		Environmental Standards	2-16
Table	2- 6	Runoff Load (Average Value) from the 20 rivers (1992-1993)	2-30
Table	2- 7	Comparison of Runoff Load between the two	
		Non-Tidal Model Rivers (Clear Days/Rainy Days)	2-36
Table	3- 1	Rainy Days during the Survey Period by	
		Rainfall Scales (1992)	3-15
Table	3- 2	Details of Basin Areas of the 25 Major Rivers Surveyed	3-16
Table	3- 3	Area, Population and Population Density by Sub-Basin	3-16
Table	3- 4	Estimated Runoff Load from the 20 Rivers	3-20
Table	3- 5	Estimated Total Runoff Load from the 20 Rivers	3-22
Table	3-6	Runoff Load Ratio on Clear Days and Rainy Days in Japan	3-23
Table	3- 7	Estimated Runoff Loads from the Entire Basin (1991)	3-25
Table	4- 1	Details of BOD Load from Each Area	4- 3
Table	4-2	Details of BOD Load from the Basin	4- 4
Table	5- 1	Future Population in the Basin (1991-2010)	5- 2
Table	5- 2	Future Population Density in the Basin (1991-2010)	5- 2
Table	5- 3	Estimation Runoff Load for BOD and TN from Each Sub-Basin	5- 5
Table	6- 1	Runoff Load with the IDB/OECF Program	6- 9
Table	6- 2	Runoff Load with the Ocean Outfall Draft	6- 9
Table	6~ 3	Runoff Load with Retardation Pond Program	6- 9
Table	6- 4	Runoff Load from the Basin with Countour measures and	
		without Countour measures	6-11
Table	7- 1	The Proposed Water Quality Measurement Plan for Each River	7- 4
		LIST OF APPENDED TABLES	
		THE OF THE PROPERTY.	
Table	APP. 1-	1 Mean Water Quality of Regular Survey	
		(May 1992 to Apr. 1993)	11- 1
Table	APP. 1-	2Mean Runoff Load of Regular Survey	
		(May 1992 to Apr. 1993)	A1- 8
Table	APP. 1-	3 Monthly Runoff Load of Regular Survey	
		(May 1992 to Aug. 1993)	A1-14
Table	APP. 1-	4Results of River Water Quality Analysis of	
		Regular Survey	A1-22

	Pag	e
Table APP. 2-1 Runoff Load of Hourly change	Survey on	
Four Model Rivers on Clear D	ays A2-	î
Table APP. 2-2 Results of River Water Quali		
Hourly Chnage Survey	A2-	1
Table APP. 3-1 Runoff Load of Continuous Su	rvey on the two Model Rivers	
	А3-	1
Table APP. 3-2 Results of River Water Quali		
	A3- (3
Table APP. 3-3 Rating Curves of the two Mod		
Table APP. 4-1 Water Quality and Runoff Loa		
	on Clear Days A4-1	L
Table APP. 4-2 Results of River Water Quali		
Survey	A4- 8	3
Table APP. 5-1 Results of Rain Water Quality	the state of the s	Ĺ
Table APP. 6-1 Inflowing Load into Jurujuba	Bay A6- 1	Ĺ
Table APP. 6-2 Results of Water Quality Ana	lysis of Inflowing Load	
Survey into Jurujuba Bay	А6- 2	2
Table APP. 7-1 Monthly Precipitation at Duq	ue de Caxias (1988-1993) A7- 1	L
Table APP. 7-2 Daily Precipitation at Duque	de Caxias (1988-1993) A7- 5	,
Table APP. 8-1 Annual Change of River Water	Quality A8- 1	Ĺ
Table APP. 8-2 Mean Water Quality (1990-199	1) by FEEMA's Data A8- 7	7
Table APP. 8-3 Results of River Water Quali	ty Analysis by FEEMA	
(1990-1991)	A8-14	į
Table APP. 9-1 Estimation Results of Runoff	Load from Each Sub-Basin	
(1991, 2000, 2010)	A9- 1	L
Table APP. 9-2 Estimation Results of Runoff	Load from Each Area A9- 5	;
Table APP.10-1 Estimation Results of Runoff	Load with Countour Measures A10-1	Ĺ

LIST OF FIGURES

				rage
	Fig.	1- 1	Observation Stations for the River Survey	1- 4
	Fig.	1- 2	Basin Area covered by Observation Stations	1- 5
	Fig.	1- 3	Land use Conditions of Model River Basins	1- 6
	Fig.	1- 4	Observation Stations for the Seven Major Rivers	1- 7
	Fig.	1- 5	Observation Stations for the Drainage Canals	
			inflowing into Jurujuba Bay	1- 8
	Fig.	1- 6	Precipitation at Duque de Caxias (PETROBRAS)	
188			during Survey Period (January, 1992-June, 1993)	1-11
	Fig.	2- 1	Water Quality (Average Value) during Survey	
			Period of 25 Rivers (1992 - 1993)	2- 2
	Fig.	2- 2	Classification of the 25 Rivers in terms of	
	0-		BOD and TN	2- 4
	Fig.	2- 3	Characteristics of the Water Quality in the	
			Major Rivers	2- 5
	Fig.	2-4	Water Area Classification of the Rivers	2-11
	Fig.	2- 5	Achievement Levels of the three Water Quality	
	0+		Standards	2-14
	Fig.	2- 6	Monthly Change of River Water Quality	2-17
	Fig.	2- 7	Monthly Change of River Water Quality at the	
	. 0		Observation Stations	2-22
	Fig.	2-8	Annual Change of River Water Quality	2-25
1	Fig.	2- 9	Monthly Change of total Runoff Load from the	
			20 Rivers	2-30
	Fig.	2-10	Contribution Ratio fo Runoff Load by	
			Largest Rivers	2-32
	Fig.	2-11	Hourly Change of Runoff Load on Clear Days	
			between the two Non-tidal Rivers	2-33
	Fig.	2-12	Hourly Change of Runoff Load on Clear Days	
			in the Rio Acari	2-34
	Fig.	2-13	Hourly change of Runoff Load on Clear Days	
÷			in the Rio Macacu	2-35
	Fig.	2-14	Hourly Change of Runoff Load on Clear Days	
			in the Rio S.J. de Meriti	2-39
	Fig.	2-15	Hourly Change of Runoff Load on Clear Days	
			in the Rio Guapimirin	2-40
	Fig.	2-16	Water Quality Change with Time in the two Model	
			Rivers on Rainy Days	2-41
	Fig.	2-17	Runoff Load Change with Time in the two Model	
			Rivers in Freshet Time	2-42
	Fig.	2-18	Runoff Load Differences with Rain Intensity	2-44
	Fig.	2-19	Specific Runoff Load Differences with Rainfall	
4			Intensity between the two Model Rivers	2-44
	Fig.	3- 1	Pollution Runoff Mechanism	3- 2
	Fig.	3- 2	Schematic Hydrograph and Constitution of Discharge	3- 6
	Fig.	3- 3	Runoff Load Differences between Clear Days	
			and Rainy Days	-3-6

			Page
Fig.	3- 4	Runoff Load Constitution of Natural Type	
		and Urban Type Rivers	3-6
Fig.	3- 5	Relationship between Runoff Ratio and Population	
		Density/Basin Area	3- 7
Fig.	3-6	Procedure for Calculation of Annual Runoff Load	3-10
Fig.	3- 7	Concept of Separation Methods	3-9
Fig.	3-8	Estimated Monthly Runoff Load from the 20 Rivers	3-19
Fig.	3- 9	Difference in Estimated Runoff Load between	
	•	Rainy Season and Dry Season	3-21
Fig.	3-10	Comparison of Estimated Runof Load with Measured One	3-24
Fig.	3-11	Contribution Ratio of Estimated Runoff Load	
		by Each Basin	3-26
Fig.	3-12	Estimated Runoff Load from Each Sub-Basin	3-27
Fig.	4-1	Runoff Load from Each Area	4- 2
Fig.	4- 2	Estimated Runoff Load (BOD) from Each Area	4- 4
Fig.	5- 1	The Future Population in the Basin (1991 - 2010)	5- 3
Fig.	5- 2	Future Runoff Loads from the Basin (1991 - 2010)	5- 4
Fig.	5- 3	Future Runoff Loads from Each Sub-Basin	5- 6
Fig.	6- 1	Project Area of Ocean Outfall Drafts	6- 2
Fig.	6-2	Runoff ratio of the area with and without sewers	63
Fig.	6- 3	Material Balance on the Sewer System in	
		Yabata River Basin	6- 5
Fig.	6- 4	Runoff Load of Area with Sewage Treatment and	**
		Area without Sewage Treatment	6- 8
Fig.	6~ 5	BOD Load from the Basin with Countour	
		Measurements and without Countour Measurements	6-10
Fig.	7- 1	The Proposed Runoff Load Estimation Model	7- 5
		LIGHT OF ADDENDED DEGUDES	
		LIST OF APPENDED FIGURES	ı
Fig.	APP. 5-1	Sampling Station of Rainwater	A5- 1
Fig.	APP. 7-1	Monthly Change of Precipitation at Duque de Caxias	
		(1991 and 1992)	A7- 2
Fig.	APP. 7-2	Daily Precipitation at Duque de Caxias (1992-1993)	A7- 3

ABBREVIATION

(1) Water Quality

As : Arsenic

BOD : Biochemical Oxygen Demand

Cd : Cadmium CN : Cyanide

COD (Cr) : Chemical Oxygen Demand by Potassium Dichromate

Method

COD (Mn) : Chemical Oxygen Demand by Potassium Permanga-

nate Method

Total Coli.: Total Coliform Bacteria
Cr (6+) : Sexivalent Chromium
EC : Eletric Conductivity

Hg : Mercury

H₂S : Hydrogen Sulfide
KjN : Kjeldahl Nitrogen
MPN : Most Probable Number
NH₄-N : Ammonium Nitrogen

NO₂-N : Nitrite Nitrogen NO₃-N : Nitrate Nitrogen

Pb : Lead

PCB : Polychlorinated Biphenyls

pH : Potential of Hydrogen PO₄-P : Phosphate Posphorus

SS : Suspended Solid
THg : Total Mercury

TN : Total Organic Nitrogen
TOC : Total Organic Carbon
TP : Total Phosphorus

Turbid : Turbidity

(2) Runoff Load

m3/S : Cubic Meter per Second

t/d : Ton per Day

mm/d : Millimeter per Day
mg/l : Milligramme per Iiter

CHAPTER 1

OUTLINE OF THE RIVER SURVEY

RUNOFF LOADS FROM THE BASIN

Improvement of water quality in Guanabara Bay for the purpose of recuperating the ecosystem requires improving the water quality of the rivers flowing into Guanabara Bay as well as reducing their runoff loads.

We have conducted a series of river surveys (observations of runoff discharge and water quality) for the purposes of understanding the current pollution levels of the rivers in the basin, estimating the runoff loads flowing into the Bay from the rivers in each sub-basin, and estimating future runoff loads.

Chapter 1

Outline of the River Survey

1.1 Observation Items

Discharge and water quality of rivers change with time and the seasons depending on the point sources and precipitation conditions. They are also largely affected by periodical fluctuations in tidal currents. Runoff discharge and runoff load is influenced to a large extent by urbanization of the basin and the utilization of the land. Thus to estimate the average discharge and water quality of a river based on survey data over certain time intervals requires a systematic qualitative and quantitative approach to measure the elements and the effects of change.

The following six kinds of observations were carried out in this survey:

- (1) Regular survey on the major twenty-five (25) rivers on clear days (once a month)
- (2) Hourly change (24 hours) survey on three model rivers
- (3) Continuous survey on two model rivers on rainy days
- (4) Detailed survey on major highly polluted rivers on clear days

- (5) Analysis of rain water quality
- (6) Survey of drainage canals discharging water into Jurujuba Bay on clear days

Of these, (1) mainly aims at obtaining the difference in base runoff discharge and base runoff load between the dry and rainy seasons; (2) focuses on the effect of human activities and changes in the sea level have on discharge and the water quality; and (3) on the effect on the rainfall on discharge and water quality. Based on the observation results, the river load estimate model mentioned below was established; (4) to identify tributary rivers and drainage canals with large runoff loads for highly polluted rivers; (5) grasp of rainfall load; and (6) to accurately measure the inflow load into the highly polluted Jurujuba Bay.

1.2 Observed Rivers and Observed frequency

In accordance with the survey objectives, target rivers and observation periods were determined as follows:

(1) Regular surveys on the 25 rivers on clear days

Discharge and water quality observations were carried out on 25 rivers, major 20 rivers in the basin and 5 major tributary rivers, nine times from May 1992 to April 1993 at the fixed points. Observation stations on the 25 rivers are shown in Fig.1-1. The area of basin covered by each observation station are shown in Fig.1-2.

(2) Hourly change (24 hours) survey on model rivers

Rio Macacu, Rio Acari and Rio s.J.de Meriti were selected as the three model rivers, see Fig. 1-1.

Rio Macacu is a natural type river. Its basin is mainly made up of grasslands and forests. The Rio Acari and Rio Sao Joao de Meriti are urban type rivers with basins consisting of urban areas.

The discharge and the water quality at the observation stations on the Rio Macacu and Rio Acari were unaffected by tidal fluctuations, while the Rio Sao Joao de Meriti observation stations were within the tidal zone. Therefore, by comparing the results

obtained from these rivers, the effects of various human activities and tidal fluctuations on the water quality and runoff load can be determined. Land use conditions in the basins of the three rivers are shown in Fig. 1-3.

Further, discharge and water quality observations were carried out for 24 hours, at 2-hour intervals, twice in the Rio Macacu and Rio Acari, in the dry and rainy seasons (September 1992, April 1993), and once in the Rio S.J. de Meriti, in the dry season (December 1992).

Additional discharge and water quality observations over 24 hours were carried out once in the Rio Guapimirim in the dry season (October 1993) for reference, as the Rio Guapimirim observation stations were within tidal zone.

(3) Continuous survey carried out in two model rivers during the rainy season

The Rio Macacu and Rio Acari, whose observation stations were not influenced by tidal fluctuations, were selected as model rivers, and continuous surveys on the discharge and the water quality were carried out in their respective basins for two weeks, from November 16 to 30, 1992.

(4) Detailed observation of highly polluted rivers

Detailed surveys on the discharge and the water quality of highly polluted rivers on clear days were carried out three times at the 29 stations on the seven major rivers shown in Fig.1-4, from November 1992 to April 1993.

(5) Rain water quality analysis

Water quality analysis was carried out on rain water samples taken three times in December 1992 at the 3 stations (Petrobras, UFRJ, UFF).

(6) Survey of the drainage canals discharging water into Jurujuba Bay on clear days

Discharge and water quality observations were done twice on the drainage canal, Station 14, which discharges water into Jurujuba Bay in May and June 1993 as shown in Fig.1-5.

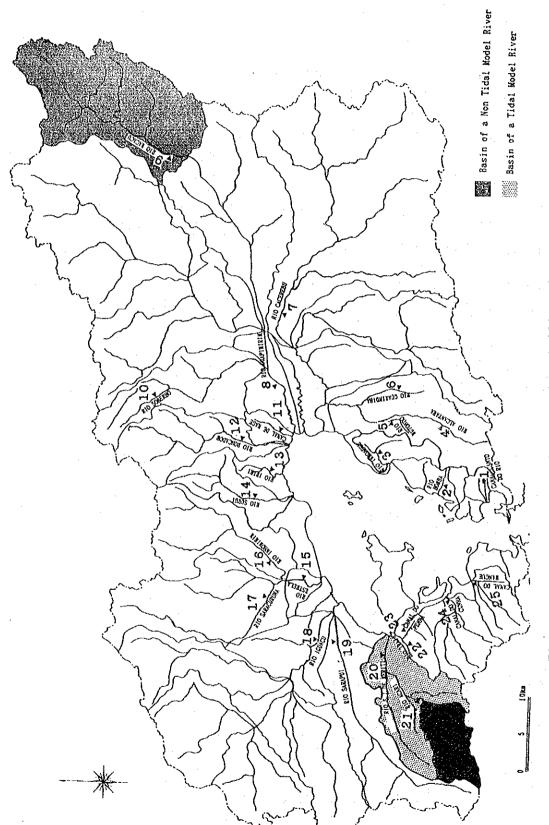


Fig. 1-1 Observation Stations for the River Survey

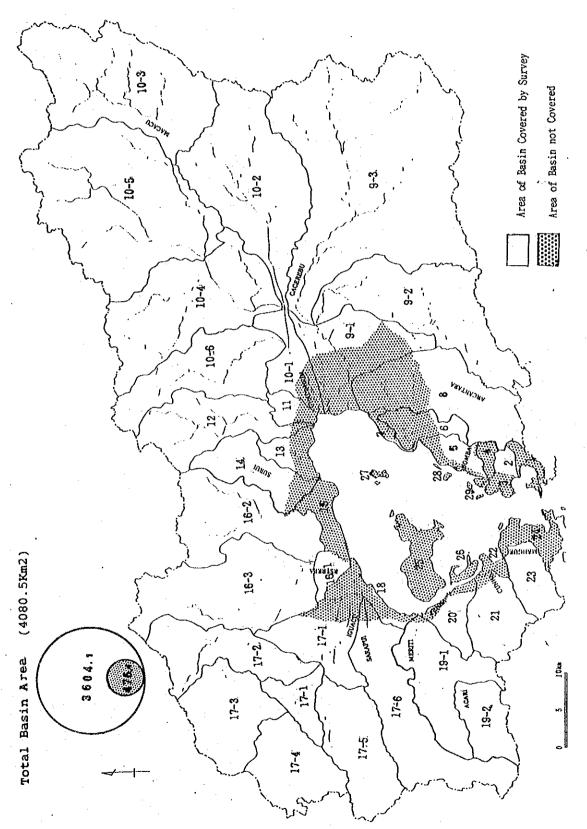
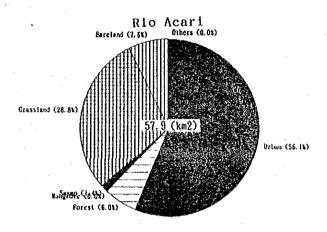
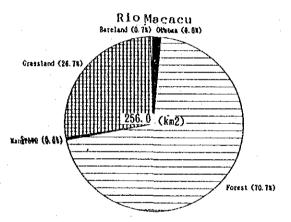




Fig. 1-2 Basin Area covered by Observation Stations

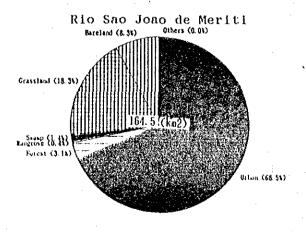


Fig. 1-3 Land use Conditions of Model River Basins

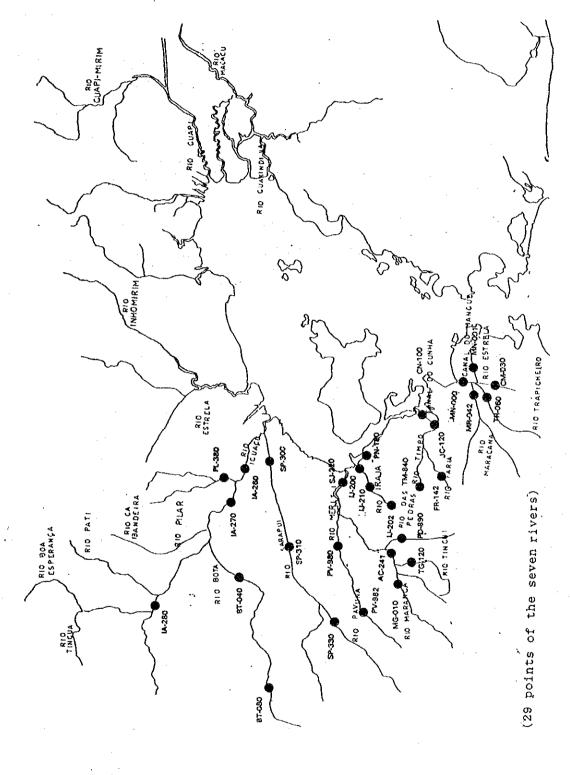


Fig. 1-4 Observation Stations for the Seven Major Rivers

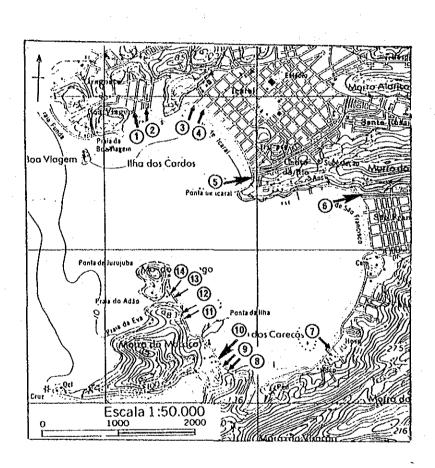


Fig. 1-5 Observation Stations for the Drainage Canals inflowing into Jurujuba Bay

1.3 Observation Method

(1) Discharge measurement

The discharge amount was obtained from each river's cross sectional area and flow velocity. The river cross sectional area was measured from the results of the width and water level measurements conducted at each observation station. Velocity was measuremed using an electromagnetic current meter.

The river cross section at each observation station are shown in Data Book

In the case where the observation stations were located in a tidal zone, discharge measurements were taken in the period from three hours after high tide to one hour before low tide.

(2) Sampling of river water

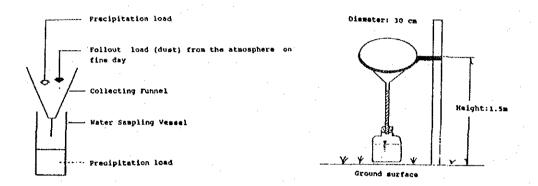
Ideally riverwater samples should be taken from 1/5 of the river's depth below the water surface. Sampling was carried out using buckets.

(3) Analysis of water quality

Water temperature, transparency, water color, pH, DO, EC and Salinity were measured on site. Water quality was analyzed at FEEMA's laboratory for the following 31 items: BOD, D-BOD, COD(Mn), COD(Cr), TOC, DOC, SS, TN, K-N, D-TN, NH4-N, NO2-N, NO3-N, O-N, TP, D-TP, PO₄-P, OP, Fecal Coli., Total Coli., Normal Hexane-Ex-tracts, Phenol, CN, As, Cu, Zn, T-Hg, Cr. Cr6+, Cd and Pb. The methods used were those mentioned in Chapter 4.2 of the Supporting Report, Volume I.

(4) Analysis of Rain water Quality

The direct load to the water surface of the bay due to rainfall was measured.


Rainfall water quality analysis was carried out ten (10) times during the study period.

Sampling Method

The direct load consists of the following items:

- a) Fallout load (dust) from the atmosphere
- b) Precipitation load
- c) Load from groundwater

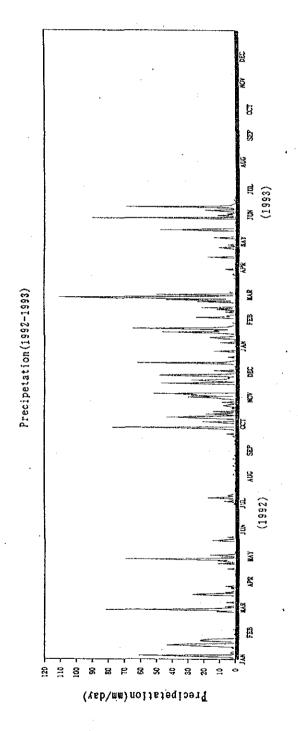
We measured two different loads (a and b) by means of precipitation quality analysis which is called "Deposit Method".

Precipitation load by the Deposit Method (Lp).

Lp = Ldf + Lwf

Ldf: Fallout load (dust) from the atmosphere on clear days.

Lwf: Precipitation load on rainy days.


The 3 observation stations are:

UFF (NITEROI)
UFRJ (FUNDAO)
PETROBRAS (DUQUE DE CAXIAS).

The survey period was from December 8 to September 14 1993. The precipitation samples were collected every once a week, ten (10) times during the study period, to analyze water quality.

The items to be analyzed to understand precipitation quality are as shown below, and analysis was conducted in the FEEMA's laboratory.

pH, BOD, COD(Cr), COD(Mn), TOC, TN, KjN, TP, SS and Precipitation (mm/day)

Precipitation at Duque de Caxias (PETROBRAS) during Survey Period (January, 1992-June, 1993) 1-6

pH, BOD, COD(Cr), COD(Mn), TOC, TN, KjN, TP, SS and Precipitation (mm/day)

(5) Collection of precipitation data during the survey

Precipitation data obtained during the survey period at Duque de Caxias(PETROBRAS) is shown in Fig.1-6. Precipitation throughout the survey period varied widely from the normal years, as shown in the Main Report, Fig.2.3-1.

1.4 Survey Results

(1) Results of regular survey on the 25 rivers on clear days

Results of regular surveys are shown in **Appendix I**. Discharge measurement was not carried out at water quality survey in August and September 1992.

(2) Results of hourly change (24 hours) survey on model rivers on clear days

Results of hourly regular survey on clear days are shown in Appendix II

(3) Results of continuous survey in two model rivers during the rainy season

Results of continuous survey during the rainy season are shown in Appendix III

(4) Results of detailed observations of highly polluted rivers on clear days

Results of detailed observations of highly polluted rivers are shown in ${\bf Appendix}\ {\bf IV}$

(5) Results of rain water quality analysis

Results of rain water quality analysis are shown in Appendix V

(6) Results of the drainage canals discharging water into Jurujuba Bay on clear days Results of the drainage canals discharging water into Jurujuba Bay on clear days are shown in **Appendix VI**

(7) Precipitation during the survey

Precipitation during the survey period at Duque de Caxias (Petrobras) is shown in **Appendix VII**The existing data of Annual precipitation at another observation stations is shown in **Data Book**

CHAPTER 2

OBSERVED WATER QUALITY, DISCHARGE AND RUNOFF LOAD

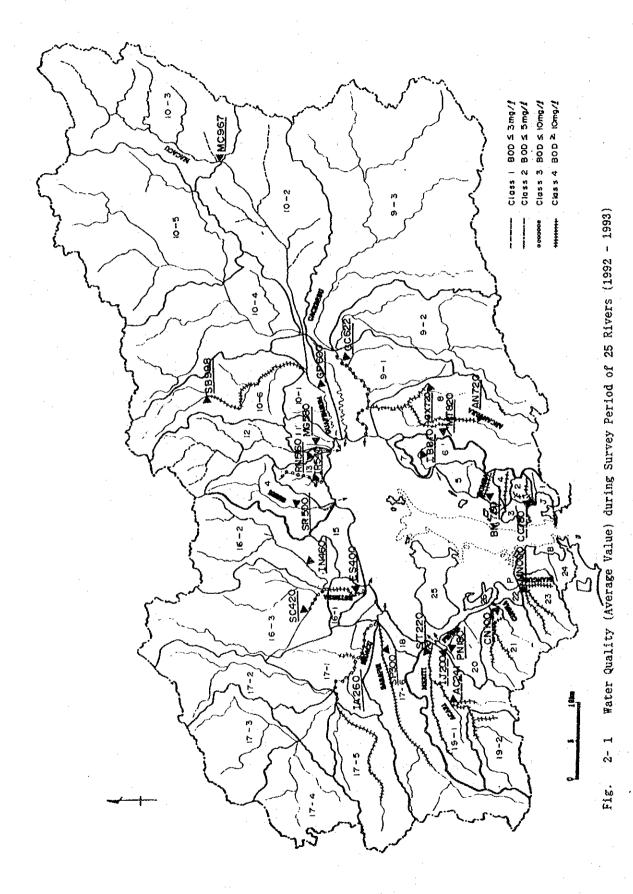
Chapter 2

Observed Water Quality, Discharge and Runoff Load

2.1 Water Quality

(1) Mean Water quality

The average of the 9 measurements conducted from May 1992 to April 1993 is shown in **Table 2-1** and **Fig.2-1**. Most of the major rivers in the western basin including the Rio Sao Joao de Meriti show a value of 20mg/1 of BOD or more, this is regarded as a high pollution level. For DO, most of these rivers show a value of 5mg/1 or less, proving that this environment is not a favorable habitat for fish.


Classification of the 25 major rivers into five groups by water quality (BOD and TN), those used as artifical pollution indices is shown in Fig.2-2. Those in: Group A have a BOD value of 5mg/1 or less and a TN value of 2mg/1 or less; Group B have a BOD value of 5 to 10mg/1 and a TN value of 2 to 5 mg/1; Group C, 10 to 20mg/1 and 5 to 10mg/1; Group D, 20 to 55mg/1 and 10 to 15mg/1; Group E, 55mg/1 or more and 15mg/1 or more.

Rivers such as the Rio Macacu and Rio Guapimirim, having basin areas primarily consisting of woods and grasslands, are classified into Group A, while rivers such as the Rio Alcantara, Rio Bomba and Rio Mutondo, having basin areas (Sao Goncalo) with sharply increasing population, due to urbanization belong to Group E. Therefore, river water quality is very much influenced by the land use conditions of their respective basins.

(2) Features of water quality in each river

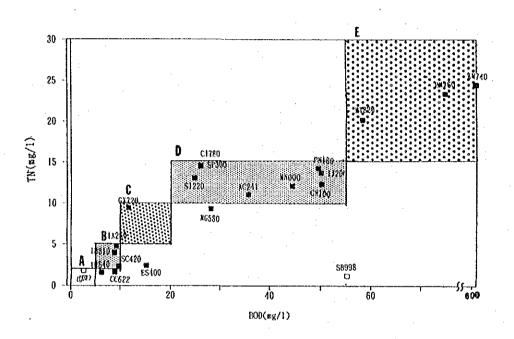
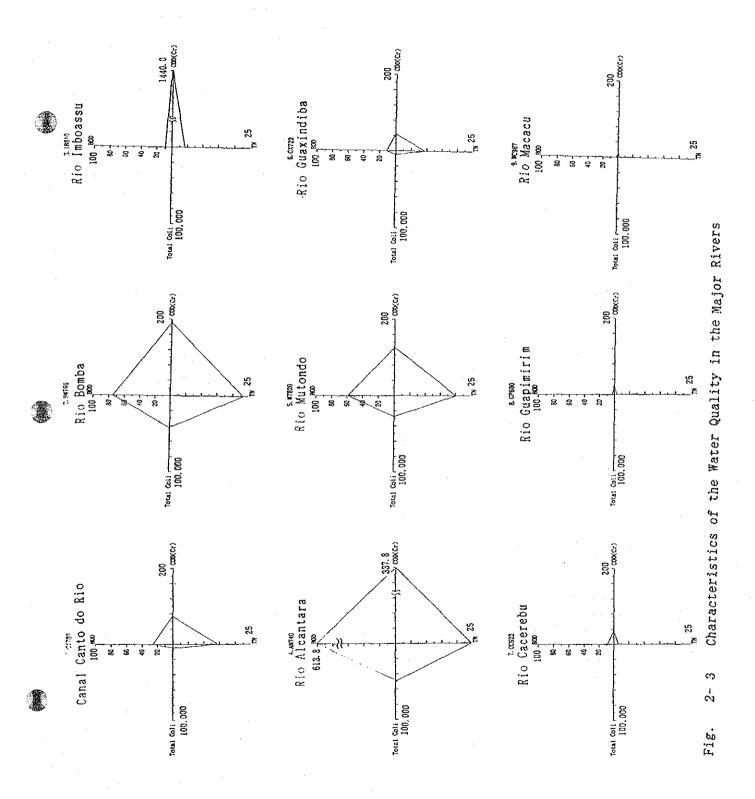
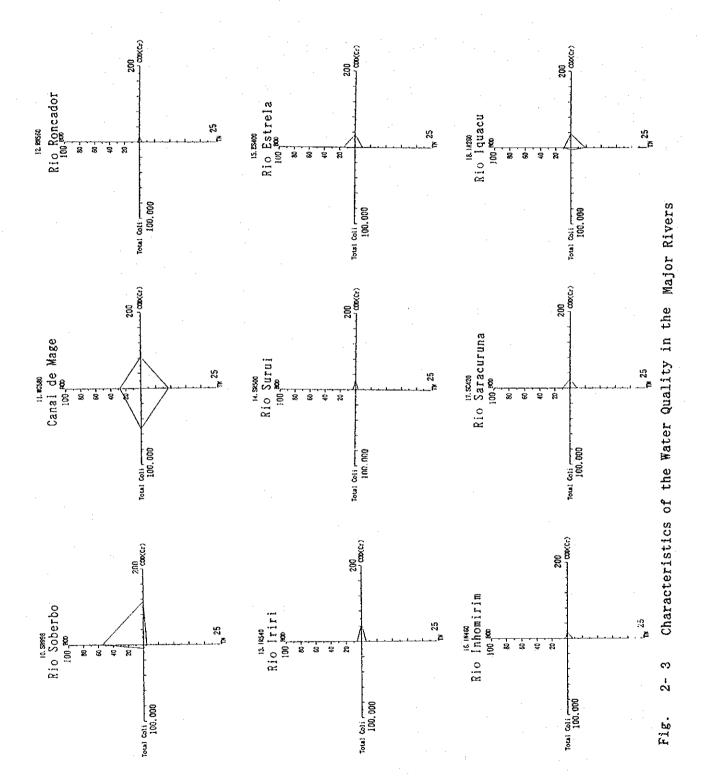
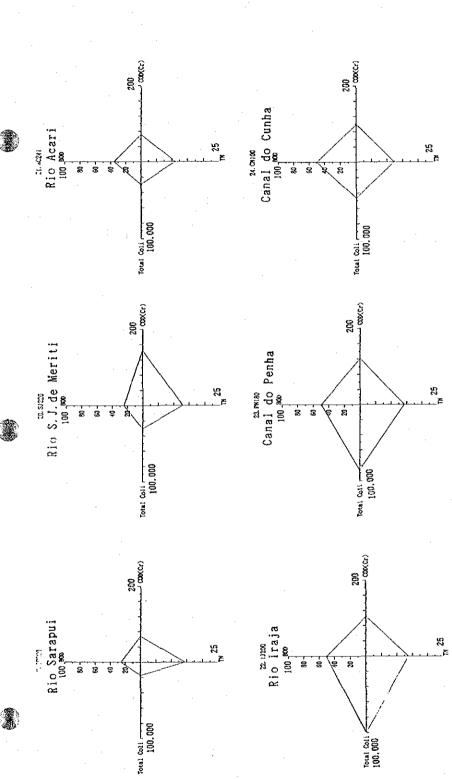
To further understand the features of water quality in each river, a radar chart was prepared for the 25 main rivers, using BOD, COD(Cr). TN and Total-Coliform as indices (Fig.2-3). The rectangles in the figure indicate the level of river water quality. A larger rectangle indicates a higher pollution level.

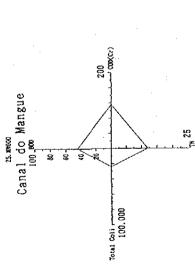
The classification of rivers by water quality shown in the radar chart leads to the following 3 categories:

2-2

Water Quality (Average Value during the Survey (Period) of 25 Rivers (1992 - 1993) Table 2-1

		,		<u>.</u>																									
		Total Coli	x 1000 (KPN/100ml)	5, 050	42, 333	527	49, 667	27. 667	5, 225	20	86	322	4,665	53, 317	16	132	55	776	338	386	3,007	17, 450	30,600	29, 800	100, 833	86, 333	47,000	24.060	
Data: 9)		8	(mg/1)	2.8		2.5	64	1.2	1.3	1.8	63 63	<u>ர</u> ம	4.3		6.1	1.3	4.4	1.0	 	ස ස	1.1	0.7		20		Q. 4	0.6	0.7	
(Mumber of Data :		EL.	(mg/1)	1.2	т 7	0.6	16.4		1.6	0.3		0	0.2		9.1	0.3	0.2	0.4	0	0.1	. co	2.2	1.7	2.0	2.1	23	I. 8	1.9	
	Value)	N.	(Bg/1)	14.6	23.4	4.0	24.8	20.2	7 6	1.6	6.9	0.7	1.2	9.3	6.8	1.5	0.9	2.4		2.3		14.5	13.0	11.11	13.7	14.3	12.3	12.1	-
	ty(Average	CDO(Cr.)	(mg/1)	743	191.0	1440.0	337.8	125.9	44.0	35.2	20.4	10.0	114. 4	83. 2	14.5	45.5	23. 2	33.6	15.2	24. 1	37. 1	68.7	144.8	71.9	104.9	121.6	98. 7	115.7	:
	fater Quality(Average Value)	(UII)G(C)	(mg/1)	=	25.0	11.5	170.9	20.0	10.5	9.5	6.1	25	21.5	16.1	4.4	12.1	ι. œ	% I .9	رب دب	 	∞ 1	12.1	17.0	11.4	15.3	15.7	11.7	13.3	<u>-</u>
		COR	(mg/1)	26.0	74.8	es es	613.8	58.3	11.6	8.9	28	 	55.2	28.0	23	- 22 53	5.	15.1	-9 -2	9.7	9.2	25.9	24.7	35. 7	50.0	49.4	50.1	44.4	
	Land use	Type		Urb/S. T	Urban	Urban	Urban	Urban	Urban	Y/N	N/A	N/A	N/A	N/A	N/A	K/A	K/A	Y/X	N/A	N/A	K/A	Urban	Urban	Urban	Urban		Urban	Urb/S. T	
	Population	Density	(-8X/9)	5.64	6.33	4.50	3.25	3.25	3.25	0.40	90.0	0.07	0.14	0.46	0.33	0.38	0. 19	0.88	0.61	1.04	1.35	6, 12	9.07	7.57	14.01		12. 82	11.70	;
	Population	Density Type		41.745	183, 099	138, 636	470, 420			336, 193	69.853	18.577	17, 911	8. 458	36, 370	10.684	12.910	302, 495	84, 106	194, 173	758, 010	1. 012. 275	1. 492, 458	438, 076	500.276	-	815, 389	500	3. 690. 147
	Basin Area	,	C a	7.40	26 20	30.80	144. 60			846. 70	1253.10	256.00	132.40	18.30	111.40	27.80	68.80	342.50	139.00	186.00	562.80	165, 50	164.50	57.90	35. 70	,	63.60	42.80	3912, 50 E.
		Ŏ,		2	w	9	∞	∞	×	တ	2	10-3	9-01	11	12	13	14	16	16-2	. B.	17-17	17-6	19	19-2	28	20	21	23	-
ļ	Area of	Basin Covered	(%m/s)	7.40	3.40	11.60	58, 50	, s	11.80	758.40	1233. 70	256.00	45.20	4.60	107.00	8.40	53. 20	342.50	139.00	186.00	544.20	159, 80	163.50	57.90	27.30	•	60.50	42.80	3604.10
		Name		CANAL CANTO DO R10	RIO BOMBA	RIO INBOASSU	RIO ALCANTARA	RIO MUTONIDO	RIO GUAXINDIBA	RIO CACEREBU	RIO CUAPINIRIN	RIO MACACU	RIO SOBERBO	CANAL DE MAGE	RIO RONCADOR	RIO IRIRI	RIO SURUI	RIO ESTRELA	RIO INHOMIRIM	RIO SARACURUNA	RTO IGUACU	RIO SARAPUI	RIO S. J. DE MERITI	RIO ACARI	RIO JRAJA	CANAL DO PENTA	CANAL DO CUNHA	CANAL DO MANGUE	TOTAL
		۶		1 C1780	2 BN760	3 18810	4 AN740	5 MT820	6 GX720	7 CC622	8 GP600	*9 MC967	\$10 SB998	11 XGS80	12 RN560	13 IR540	14 SR500	15 ES400	*16 IN460	*17 \$5420	18 1A260	19 SP300	20 \$1220	*21 AC241	22 11200	23 PK180	24 CN100	25 KN000	


Fig. 2-2 Classification of the 25 Rivers in terms of BOD and TN

2-6

2-3 Characteristics of the Water Quality in the Major Rivers

Fig.

(1) Small rectangles signify uncontaminated natural rivers or rivers polluted by agriculture, (2) large rectangles signify rivers highly polluted with domestic wastewater, and (3) irregular shaped rectangles signify rivers polluted with industrial wastewater.

Rivers belonging to category (1) are the Rio Guapimirim, Rio Macacu and Rio Inhomirin; the Rio Bomba, Rio Mutondo, Rio Iraja, Canal do Cunha and Rio Acari belong to category (2); the Rio Alcantara, Rio Soberdo and Rio S.J.de Meriti belong to category (3).

(3) Achievement of water quality environmental standards

CONAMA No.20 classifies rivers into several dozen groups by their characteristics, and stipulates the water quality standards in terms of pH, BOD, TDS, DO, No. of coliform and turbidity (**Table 2-2**).

The 91 rivers that flow into Guanabara Bay were classified in terms of BOD (Fig.2-4 and Table 2-3); and the achievement levels of these rivers in terms of the water quality standards for BOD, DO and No. of coliform are shown in Fig.2-5 and Table 2-4.

According to the results of the 9 surveys carried out from May 1992 to April 1993, the achievement ratio of the rivers is extremely low: 24% for BOD, 16% for DO and 40% for No. of coliform. Only the Rio Guapimirim/Macacu and Rio Roncador in the northeasten basin met the water quality standards.

BOD exceeding 20mg/l was observed in highly polluted rivers in the western basin (Rio de Janeiro) and the eastern basin (Niteroi and Sao Goncalo). These areas are particularly highly urbanized.

CONAMA No.20 does not specify the water quality standards for hazardous substances such as Cd, CN, Pb, Cr⁺⁶, T-Hg and PCBs.

For a comparison of the achievement ratio for these substances, Japanese water quality environmental standards were used, and the satisfaction rates are shown in **Table 2-5**. Some rivers such as the Rio S. J. de Meriti and Rio Alcantara have very low satisfaction rates.

(4) Seasonal change in water quality

Seasonal change in the 25 river's water quality (monthly change) for the water quality items is shown in Fig.2-6 to 2-7. According to this figure, the water quality was more likely to be worse in the dry season than in the rainy season. However, there was no distinct change between water quality in the dry season and rainy season.

(5) Annual change of water quality

Annual change of water quality was examined based on the results of water analysis carried out, though irregularly, by FEEMA in the period of 1980 to 1991 and the results obtained in this survey (1992 to 1993).

The existing data by FEEMA is shown in Appendix VIII

Fig. 2-8 is a representation of the annual change of BOD in the 25 rivers; of these, the Rio Bomba, Rio S.J.de Meriti and Canal de Mangue show recovering tendencies, while the Rio Alcantara, Rio Guaxindiba, Rio Cacerebu, Rio Soberbo, Canal de Mage, Rio Estrela, Rio Saracuruna and Rio Iraja show worsening tendencies.

Notable changes in the water quality of other rivers were not observed. NH_4-N , TP and DO tendencies were observed to be similar to BODs (Fig.2-8(2) to 2-8(4)).

Table 2-2 River Water Quality Standards (CONAMA No.20)

Fresh Tater

Class	ltem			Stan	dard Val	lues	
01838	Purpose of Water Use	ρIJ	800	TSD	DO	No. of Coliform Groups	Turbi- dity
Special	-Public water supply without previous or with simple desinfection -Natural balance protection of aquatic life			-	-	Zero for Total Coliforms	-
Class 1	-Public water supply after simplified treatment -Aquatic life protection -Primary contact recreation -Irrigation of green vegetables eaten in raw form and fruits consumed with peel -Natural or/and intensive growing of species for human feeding	9.0	or	500 mg/l or less	6mg/l or more	[Recreation] not good when 80% of samples 1000MPN/100ml or less F. C. or 5000MPN/100ml or less T. C [Irrigation] zero coliform [Other Uses] 80% of samples 200MPN/100ml or less F. C. or 100MPN/100ml or less T. C.	40 NTU
Class 2	-Pubic water supply after conventional treatment -Aquatic life protectin -Primary contact recreation -Irrigation of gteen vegetables and fruit trees -Natural or/and intensive growing of species for human feeding	6. 0 	or	500 mg/l or less	5mg/l or sore	[Recreation] equal to Class] [Other Uses] 80% of smaples 1000MPM/100ml or less F.C. or 5000MPM/100ml or less T.C.	100 NTU
Class 3	-Public water supply after convention- al treatment -Irrigation of several culture -Animal growing	6. 0 9. 0	or	500 mg/i or less	4mg/l or more	80% of samples 4000MFM/100al or less F. C. or 2000MFM/100al or less T. C.	100 NTU
Class 4	-Navigation -Aesthetic -Other uses	6.0 9.0	-	-	2sg/l or sore	-	-

[Note] F.C.: Fecal Coliforms T.C.: Total Coliforms

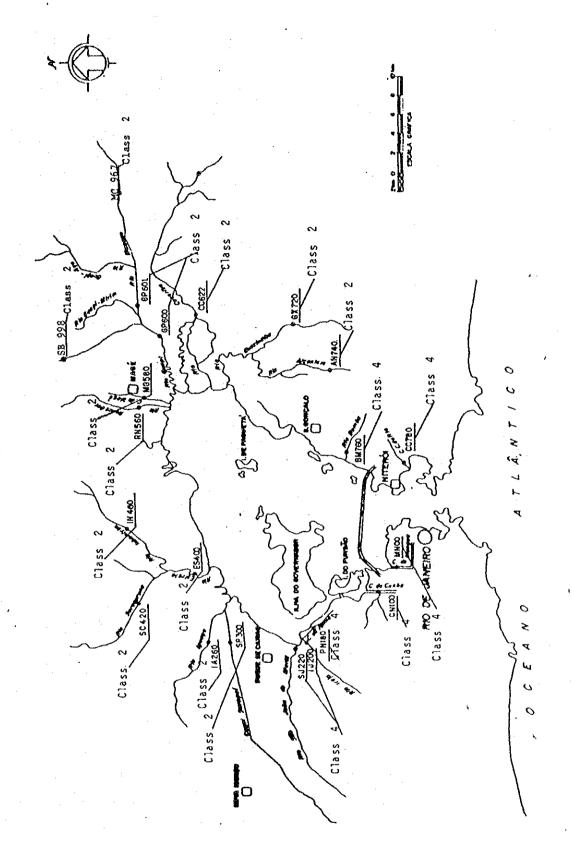


Fig. 2-4(1) Water Area Classification of the Rivers

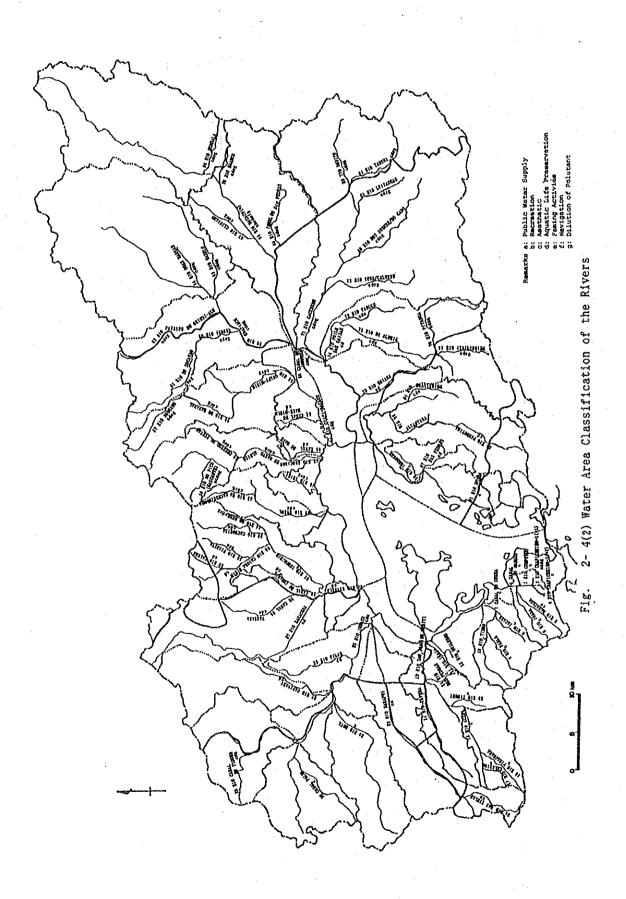
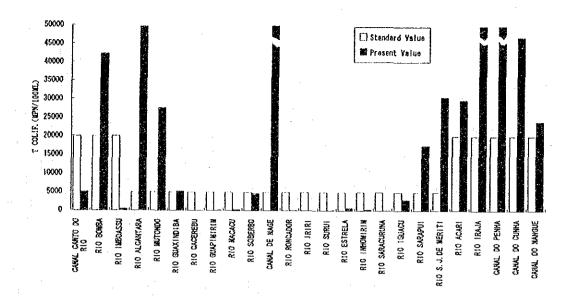
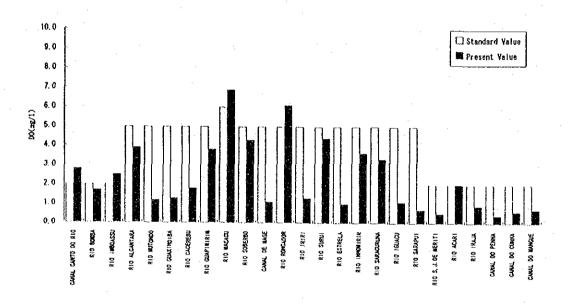




Table 2-3 Water Area Classification of the River

			PUBLIC VATER SI	PPLY		RECREATION		AQUATIC LIFE PRESERVATION	FANING ACTIVIES	·	Ī
Yo.		dasia Ka	Fith or althout uith alon ased Fith convention Bith special to	filtration and al treatment	dasiafectio	Privary Contact Secondary Contact		Pateral Aquatic Life Species for Ewasn Feeding	Irrigation of green vegetables Irigation of other cultures Anius Crowing Industrial Supply	MAYIGATION	POLUTART
1 (1	O CORESTOO NAT DO RANGES										,
1 3 81	Q TRAPICHEIRO-1(41)	l		•			i	1			· ·
4 R)	O TEAFICHETRO-2(42) O MARKCANA		1				! :				1 ;
8 81	O POAKA	ł		•		}) ;		1	1	i
2 CA	NAL DO CEPEA O JACARE		İ	•					j	1	:
1 1 81	O FARLS						,	· ·	1		i
11 21	C TINSO O IRAJA						1		· ·		1 1
12 81	D GBIFARED	l	, i				i .		1	1	1
116 21	O SAO JOAO DE WENTIL	1				1	1				
15 16	O TRES CABOCLOS						ı.				
1 17 11	O CALARINO	l							1	,	;
13 11	O PIRAGUARA O CAEDERTIRO						1			1	1 1
20 E1	O TESCHI	ł					1				;
	O DES PEDRAS O CALOGI	•					1				
23 E1	O SURAPRI	ł					,	1			i
51 E	O DAS TIMEAS O IGUACU	1	1				1		i <u>r</u>		1 :
26 81	O PILAR O CAPIVARI	ĺ	f			Í	(;	i	f "	1	(i
21 21	O CAPITARI O CARAL DO TIRGUA	l					1 1	1 1	•		<u> </u>
29 12	O BOIA	}.				1					<u> </u>
IN CA	NIL PALOL O ESTREIA	 _	! !			<u> </u>	<u> </u>	1	1	1	1 1
32 31	O IZSONIKIM						i	i	į]	,
24 11	O CALORA O CATORA MIRIN						3	1	Ì		1 1
35 EI	O PLABETA O CACROEIRA		•						1 •	1	
37 EI	O SARACENA					i			1		1 1
33 C#	inye da tagenda inye da tagenda								*		! !
4 × E1	O BOSCADOR							i	1		;
41 CA	FAL SANTO ANTONIO FAL MATO GROSSO						1	1		1	1
43.11	e zezor					1	į	ī	i	1] ;
(5 8)	O DO OVRO	١.,		1		1 .	*	1	1 1		
45 Ei	O IRIRI O RESEADOR DE SANTO ALEIRO			•	-		<u>.</u>	i	î		_
17 64	E41 DO E21400880			1				1	1 1		,
41 CO	RREGO DO SERTAO O DO PICO (RASCANTE)			_]	t	i i	1	[
\$1.64	TAL DE MAGE			•		i l	I	ì	ļ ·	i l	
37 64	NAE DE NIGE-NIELM					i l	ť	1			
5 8 E1	G GEAPT-MACACO						i	i			•
55 R1	O DO BANANAL						I.	2	:		
37 13	@ 20215BO						i		i		
57 82	RAL DO INCHANA O GRAPIACE					1	1	;			
£0 11	O EO ZOCAANO O ECOREM										
57 11	DON-104180 DO OSIABAS O						1	;			
63 Et	O BERS BARRES					J i	:	!	;		
65 310	O MACACU(03)			2		1 1	;	;		3	
67 231	O CASSIANO O CASSIANO						;	;			
66 31	CHILLOS 20 MINISTAN O						i		·	.	
10 21	O BENGALA O BENUCO						;	1	t t		
71 114	O CACEBEBO	,					•	1	k	•	
73 11	O BONANA O MONNOTO							:		.	1
71 21	O POILO BAS CALXAS O POILO BAS CALXAS							:		•	1
76 EL	O PITATGE						Ť	i			•
37 21	O STAILISDIBA O TARGEN						1	;			
14 21	O IGUA/CALUNDO						i	i	i		
30 E1	O DOS DEQUES/DO CADO O EPITARGAS						T I	1	; t		
12 51	A TANGEL						ī		ı.		
FI PI	o Beatigoira	<u> </u>	I				I	1		'	
12 E1	O ALCADIANA						1	:		ļ	
\$7 EI	O COLUMBARDE	l					1		,	.	ì
\$4 E1	O PETROTIBA 9 DE CLUMBAO						1	*	. 1		r T
\$0 B16	O INSOASSU						T 1			İ	;
111 11	O BOYEA										

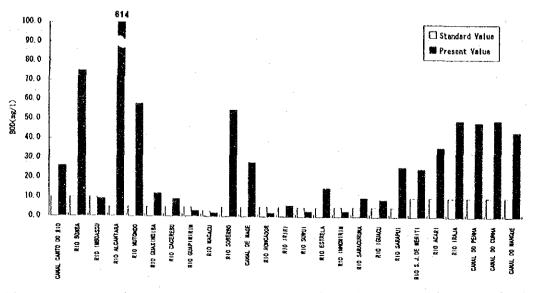


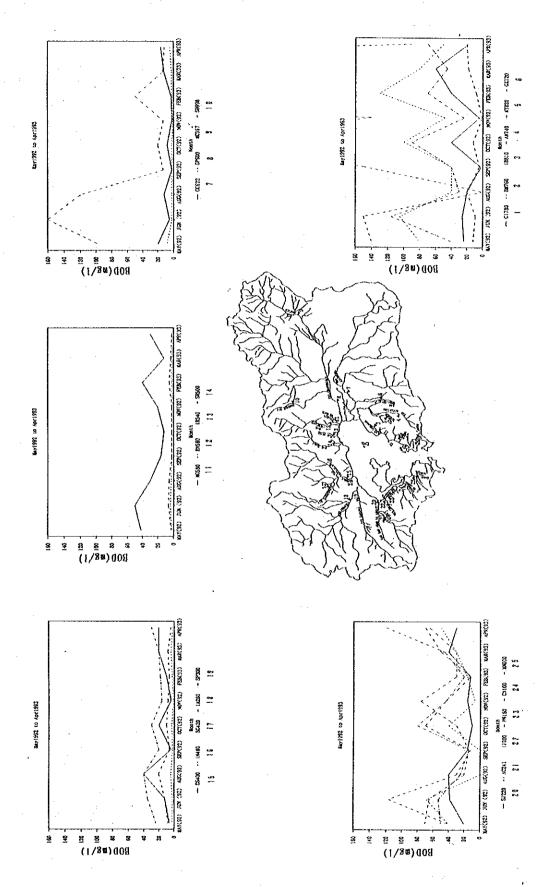
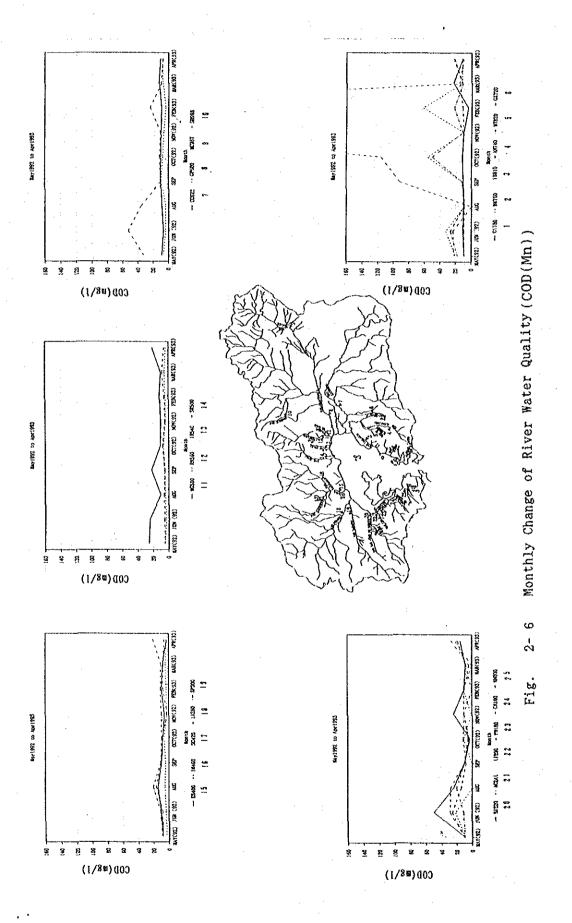
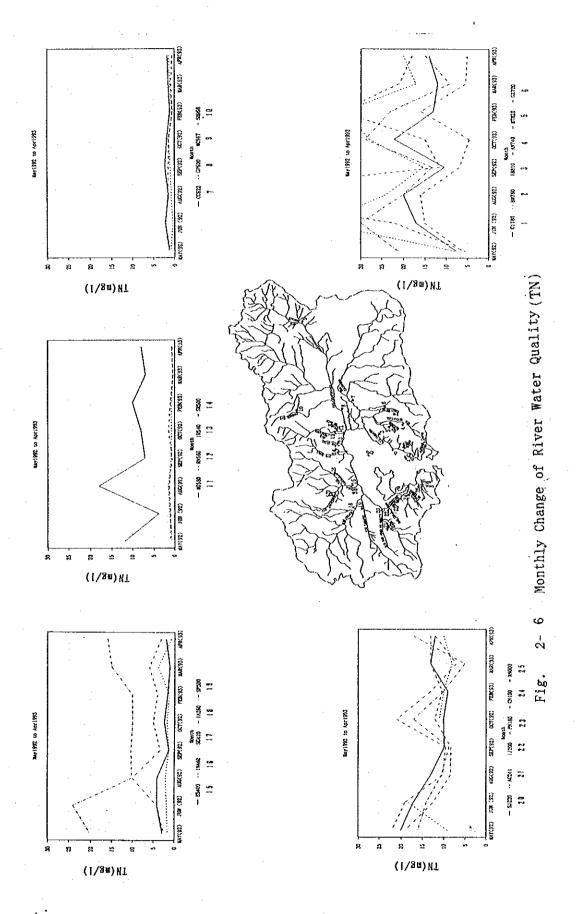
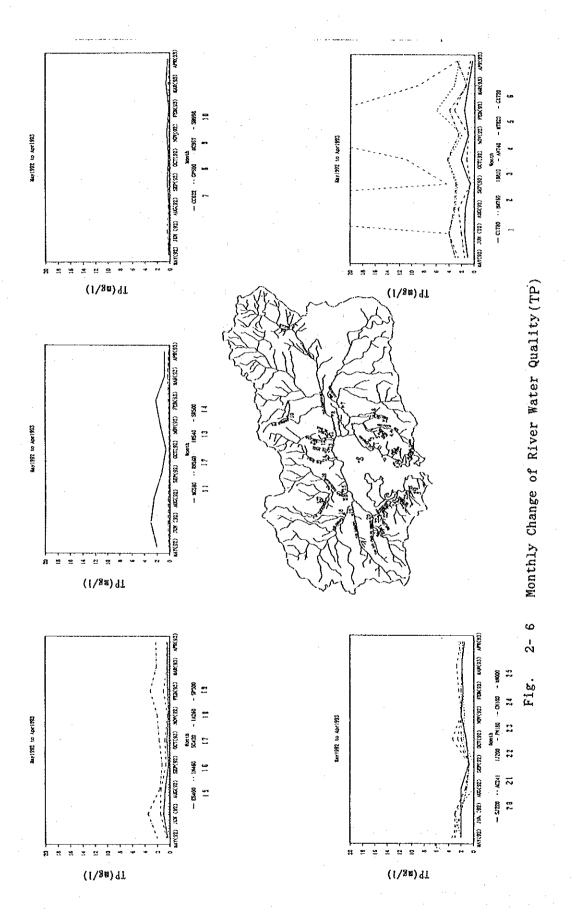
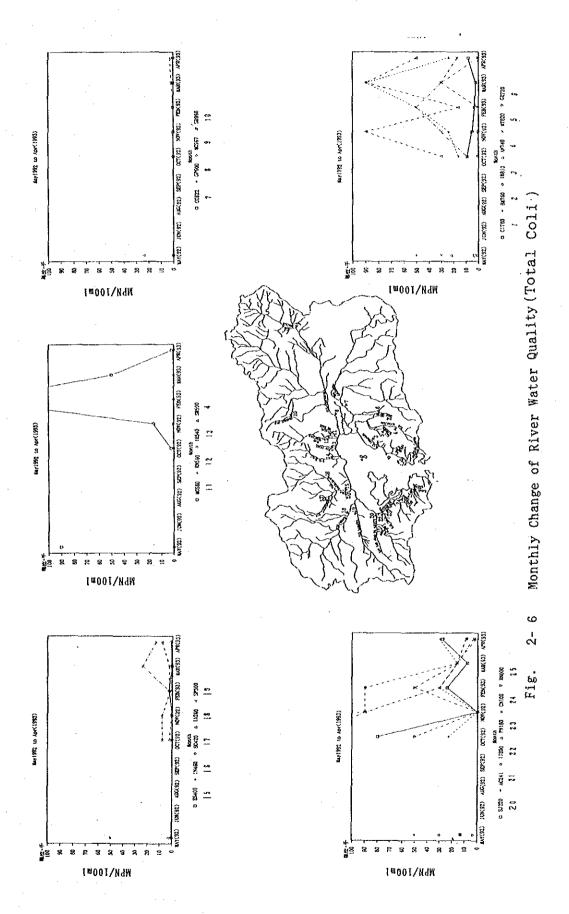
Fig. 2-5 Achievement Levels of the three Water Quality Standards

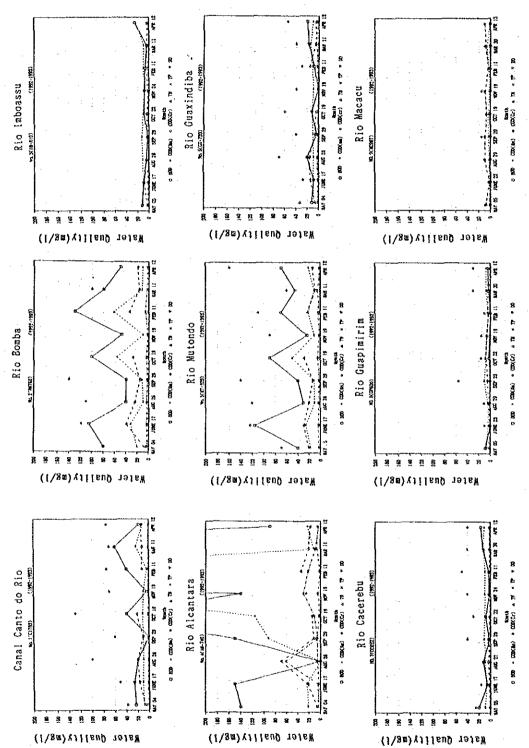
Table 2-4 Achievement Level of the three Water Quality Standards

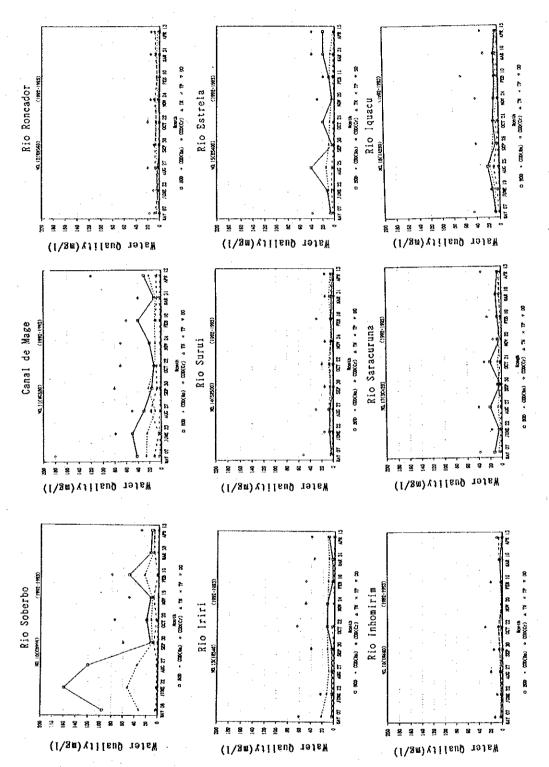
			,							~~						-																			
(82-83)	T-Colif.	(WPN/100m14ch	\$050 ×		C 125				20 02	0 8 8			53317 X			를 ()		338 O	O 881	3007 ×	17450 ×	30600 X	× 00862	100833 ×	86333 ×	47000 X	24060 X					vities		Naste Water	
Water Quality at Present(92-93	20	45t (1/4m)	00) X	C 5 7) X	× 2	×	× ∞;	× %	0.3	, 3, X		0.10	1.3 ×	×	7.0 ×	X So.	X es	×	0.3 X	X & 0	2.0 ×	X 6.0	x x.0	× 9 0	0.7 ×				ļ	FA-Farming Activities	NA-Navigation	DWW-Dilution of Waste Water	
Water Qua	gog	(mg/l) Ach	l o	75 ×	. °	614 X		12 ×	×	0	0	×	× (0	× (0	15 ×		× 01	×	26 ×	25 X	x ee		× 55	× 95	× 44 ×				Abbrevitions used in this Table:	. Surply			Preservatio
ater	ue	(T-Colif.)	<20000	<20000	<20000	<5000	<5000	<5000	<\$000	<5000	<5000	<5000	<5000	<2000	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<20000	<20000	<20000	<20000	<20000				brevitions use	PWS=Public Water Surply	RE-Recreation	AE=Aesthetic	ALP-Aquatic Life Preservatio
EMA) of 8	Standard Value	(00) (ag/1)	2.0	2.04	2.0	5.	5.0	5.04	5.0	5.0	6. 0×	2,0	. č		. 5. 9.	°.	s. 9	2.0	5.0	2,04	5.03	2.0<	2.0<	2.04	2.03	2.0<	2.0<				₹.	₹	뜐	AB	₩.
ation (FE	Star	(BOD) (mg/1)	017	015	01>	(S. 0	<	<5.0	<5.0	<5.0	<3.0	<5.0	<5.0 .0	< §, 0	6 8.0	< 2.0 < 2.0	<5.0	<5.0	<5.0	<5.0	9.0	0I.>	C10	¢10	ÇÎO	¢10	<10								
Classification (FEEMA) of Water Quality		Class	7			7	~	7	2	7		- 2	2	7	~	7	64	- 2	2	~	2	7	4	707	₹	~7	-	_			water quality standards:	Sag/1 or 1ess	Smg/l or less	.Omg/lorless	lümg/i more
D MAN	<u> </u>		C	C	0	0	0	0	0			(O(_)		-	0	0	0	O	0	ō	0	0	0	Ō	ā	-			311ty .				
of Water FA NA								0		0	0) Ot			_		0										2	rater (u	Class !:	Class 2=	Class 3=	Class 4=
Benefical Use RE AE ALP			С	С	0	0	0	0	0	0	0(0(0	00)()() (0	0	0	0	Ö	0	0	Ö	0	0		0	0		(2007.0 + 0.2007.1	ים כזונטים/ קו	ı				
PWS RE											0																		196	ity Standard					
	NO.		2	un		- 10		00	6	01	10-3	9-01	11	27		7		16-2	16-3	17-175	17-6	5.7	19-2	20	50	21	23								
Covered	Basin Area	(Ka2)	7.40	3.40	11.60	58.50	5.50	11.80	758.40	1233.70	256.00	45.20	4. 60	167.00	8.40	53.20	342.50	139.00	185.00	544.20	159.80	163, 50	57.90	27.30	1	60.50	42.80	1 3604, 10	IT FEEMA	The of Wate	9	Achieved	neved		
	Name		CANAL CANTO DO RIO	;	RIO IMBOASSU	RIO ALCANTARA	RIO MUTONDO	SIO GUAXINDIBA	RIO CACEREBU	RIO GUAPIMIRIM	SIO MACACU	RIO SOBERBO	CANAL DE MAGE	RIO RONCADOR	RIO IRIRI	RIO SURUI	RIO ESTRELA	RIO INEOMIRIM	RIO SARACURUNA	RIO IGUACU	RIO SARAPUI	RIO S. J. DE MERITI	RIO ACARI	RIO IRAJA	CARAL DO PENHA	ន	CANAL DO MANGUE	TOTAL	Value: Medium Value for FEEWA	Act talle iol libe tast 1997 det		△:Almost Achieved	X:Not Achieved		
	Š		1 01780	2 RM750	3 2830	4 AN740	5 187820	6 GX720	7 CC622	8 GP500		*10 SB998				SR500		#16 IN460	\$17 SC420	18 1A250	19 SP300	20 \$3220	*21 AC241	22 13200	23 PK180		25 WK000		[Note]						
	Arca			Fastern	Backs	1170	•	••••			Northeastern	Basin					-	Northwestern		DAST			Testern	Basin								•			

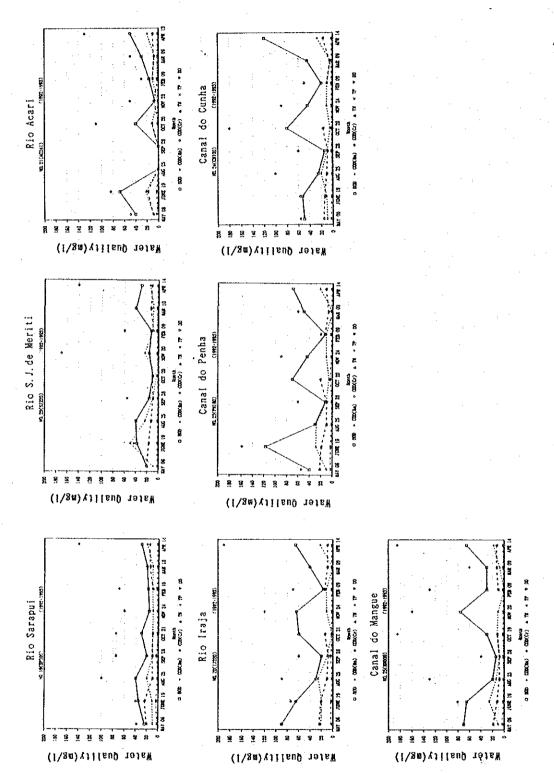
Unsatisfaction Rates of Water Quality to Environmental Standards Table 2-5

	T7F							<u></u>							-													
5.	of Samples	13	13	13	13	13	13	13	133	13	13	E3	12	13	 	13	13	13	13	13	13,		13	£.	<u> </u>	13	322	
Mercury		-	0	0	6٧	0	0	0	0	0	0	_	0	0	0		· 0	0	0	0	1	0	0	_	0	0	4	క్ష
38i	0.005mg/1< No.of					-																						
	Samples	w	r)	ഗ	s	'n	'n	'n	IQ.	L,	w	'n	4	ιń	S	Ŋ	rt.)	r)	S	ഹ	Ŋ	co	ıv	rt.	ın	S	122	
ĬA sır	No. of San	****																										
Chrozius v	-	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ල
5	0.05mg/1<	·													***************************************			٠										
	Samples	13	53		뜨	ü	13	53	13	2	5	5	7.5	13	13	13	2	13	53	<u>د</u>	13	Ξ	5	53	53	13	322	
ъ	No. of Sam							:						-														
Lead		0	0		0	0	0		0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	_	0	0	S	. 6%
	0. lmg/l<																	٠										
	Samples	13	13	13	13	23	23	13	3	53	53	53	15	13		5	13	53	33	<u></u>	53	=======================================	53	<u> </u>	55	13	322	
m i	No. of Sa																											
Cadmium	1	0	0	۲3	0	0	0	2	0	0	0	0	٥	0	0	2		_	0	0	c ₃	0	0	2	0	1	.3	4. S
	0.01mg/1<	 -																										
ON Pa		2	w	ယ	00	œ	∞	හ	10	10-3	10-6	=	12	13	14	16	16-2	16-3	17-175	17-6	9	19-2	50	22	21	23	-	
Š Š		40	40	29	20	22	8	40	2	8	8	8	8	40	ន	SS	80	8	ន	8	20	80	83		જ	80	01	
Area of Basin Covered NO	(Km2)	7.	ന്	=	58	ഹ	ij	758.	1233.	256.	45	4.	107.	ထ	53	342.	139.	186.	544.	159	163.50	57.	27.		60. 5(42.	3604.	
		CANAL CANTO DO RIO			4		8 4		=			(L)					5 *	γ.γ			KERITI			₹¥	.Y	3UE		
Name Name		ANTO	Ψ.	OASSU	RIO ALCANTAR	MUTONDO	GUAX IND 1B.	EREBU	RIO GUAPINIRIN	ACU ACU	ERBO	CANAL DE MAGE	CLDOR	Ki	5	RELA	RIO INHOMIRIM	ACURU	A 당	APU:	品	~	ĴΑ	CANAL DO PENHA	CANAL DO CUNHA	CANAL DO MANGUE		
22		NAL C	RIO BOMBA	RIO INBOASSU	O ALC	RIO MUTI		RIO CACEREBU	O GUA	RIO MACACU	RIO SOBERBO	NAL D	RIO RONCADOR	RIO IRIRI	RIO SURUI	RIO ESTRELA	SI O	O SAR	RIO IGUACU	O SAR.	RIO S. J. DE 1	RIO ACARI	RIO IRAJA	NAL D	NAL D	M. DA	TV.	
	·	-[0 R	0 R1	0 R			<u> </u>			TOTAL	
.2		C1780	2 BM760	3 IB810		5 MT82	6 GX720	2007 1	8 GP600	HC967		1 1655	12 RN56	13 JR540	SR500	5.5340	3 IN460	7 SC420	18 1A260	SP30	20 SJ220	AC24	22 11200	23 PN 180	55	NN000		
					٠,		_		٠.,	ç,	*10	=	77	=======================================	4		9 I*	*17	*	==	ಜ	#21	25	23	24	23		

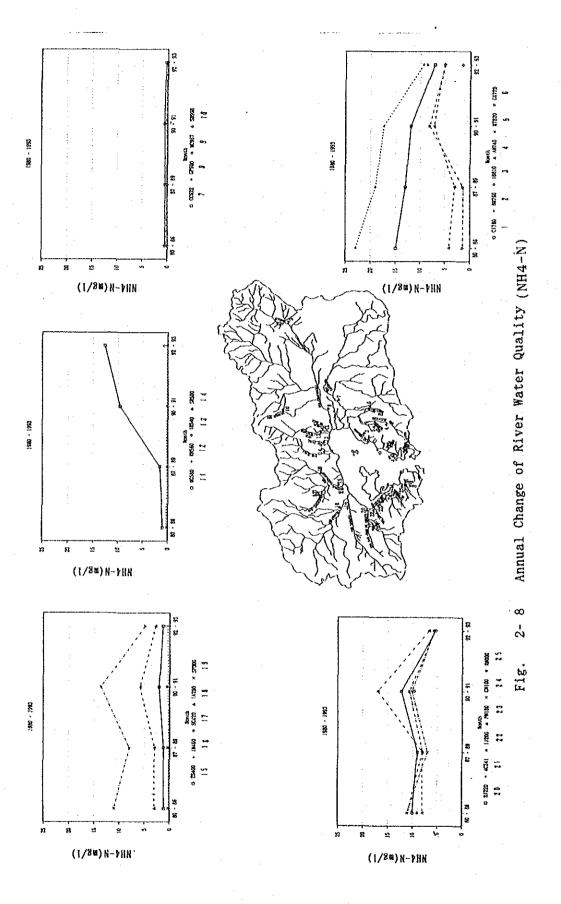






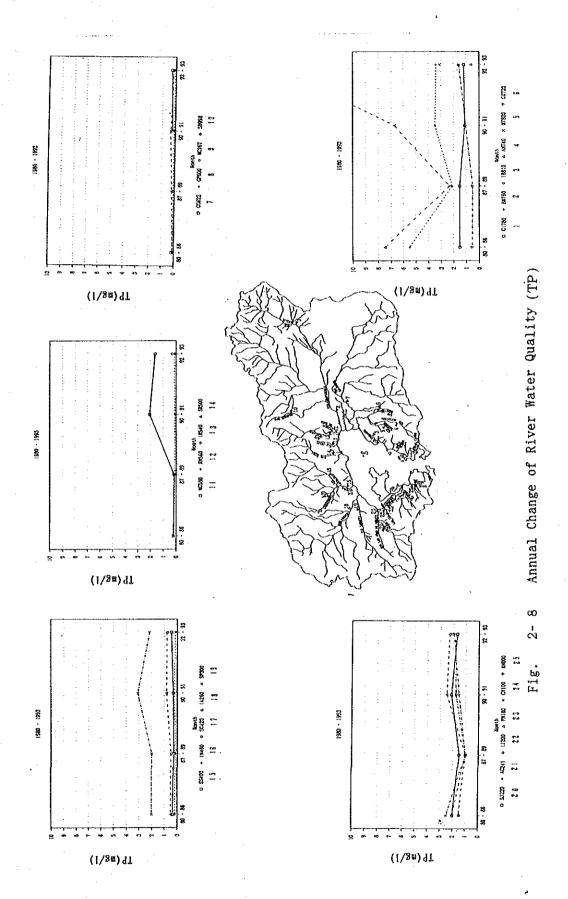

Fig. 2-6 Monthly Change of River Water Quality (BOD)

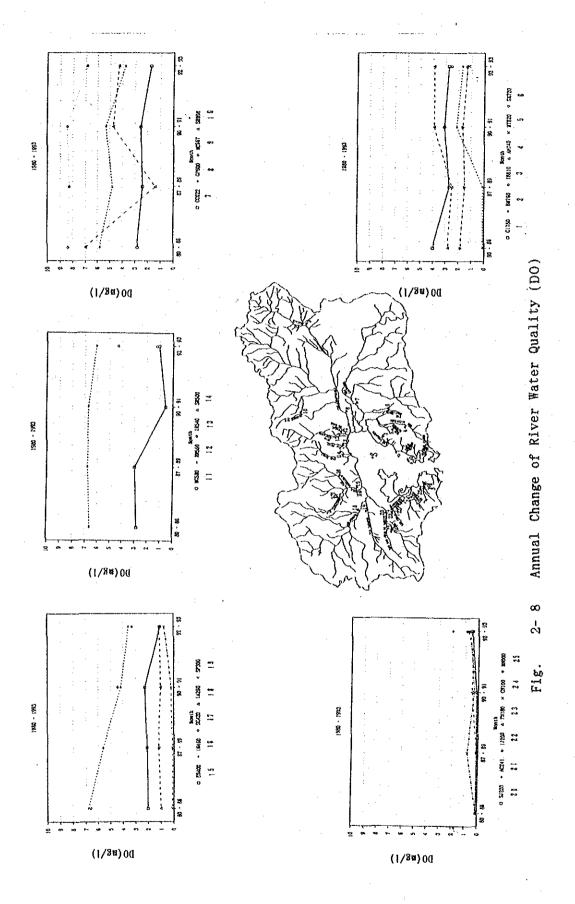




Monthly Change of River Water Quality at the Observation Stations 2 F. 8.




Monthly Change of River Water Quality at the Observation Stations 2 Fig.



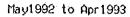
Monthly Change of River Water Quality at the Observation Stations 2 Fig.

2.2 Runoff Discharge and Runoff Load

The means of the results obtained from the seven surveys (1992 to 1993) were used to calculate the total runoff discharge and total runoff load of the 20 rivers (basin area covered: 3604.1km²) flowing directly into Guanabara Bay (Fig.2-9, Table 2-6).

The mean total runoff discharge of the 20 rivers is $257.5m^3/s$ and the mean total runoff load is 318.3t/day of BOD, 194.7t/day of COD(Mn), 1220.8t/day of COD(Cr), 113.6t/day of TN and 18.7t/day of TP.

The runoff discharge and runoff load values of each river vary widely from month to month. Moreover, variations in precipitation in the tidal rivers are accompanied by tidal fluctuations, hence the calculated runoff discharge and runoff load are not purely of these rivers alone but are influenced by other factors.

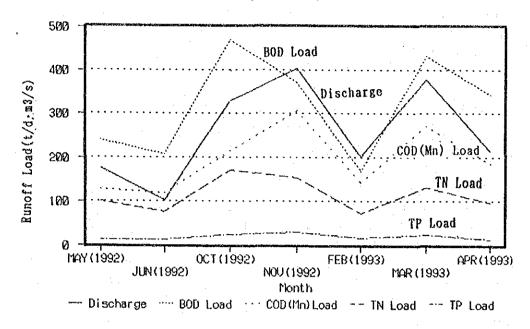

The runoff load ratios for each river, if the total runoff load of the 20 rivers is 100%, are shown in Fig.9.2-10. The runoff load of the 9 largest rivers amounts to 90 - 95 % of the total runoff load.

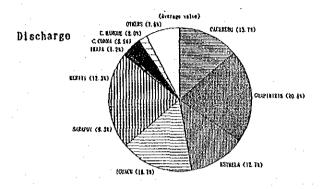
2.3 Hourly Change and Seasonal Change in Water Quality and Runoff Load on Clear Days

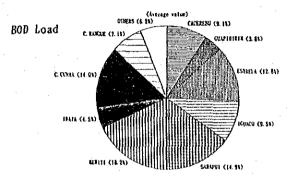
Figs.2-11 to 2-13 show the comparison between the hourly change in runoff load of the natural type river model, Rio Macacu, and those of the urban type river model, Rio Acari.

Rio Acari, urban type river, is influenced by human activities and thus changes abruptly depending on the time of day in runoff load. Changes by season, however, were small. On the other hand, The Rio Macacu, a natural type river, changed only marginly due to time, in runoff load, but seasonal changes were large.

As shown in **Table 2-7**, the specific runoff load of urban type rivers is several times larger than that of natural type rivers. Consequently, it is possible to assume that the base runoff discharge of natural type rivers is basically influenced by precipitation, while that of urban type rivers is largely influenced by the volume of wastewater.




Fig. 2-9 Monthly Change of total Runoff Load from the 20 Rivers


Table 2-6(1) Runoff Load (Average Value) from the 20 rivers (1992-1993)

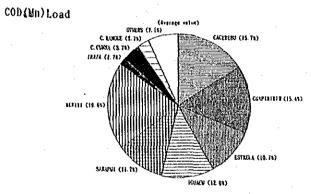

		199	2			1993		Mean
Index	MAY	JŪN	OCT	NOV	FEB	MAR	APR	Value
Discharge								
(m3/s)	175.05	100.94	328.47	403.62	201.99	378.48	213.76	257.47
BOD Load								
(t/d)	239. 24	206.02	468.36	371.15	167.97	432.30	342.94	318.28
COD(Cr)Load								
(t/d)	417. 22	229. 23	1862.74	2025.68	732.19	1867.75	1410.76	1220.80
COD(Mn)Load								
(t/d)	126.58	118.46	213.28	306.09	141.81	271.83	184.93	194.71
TN Load						·		
(t/d)	100.28	76.35	168.86	152.45	71.07	130.87	95.30	113,60
TP Load								
(t/d)	12.53	12.27	24. 25	28. 95	16.68	24. 22	12.06	18. 71

Table 2-6(2)Runoff Load (Average Value) from the 20 rivers (1992-1993)

Data: 9)		£	(t/d)	0. 1	တ တ	200		 o	0.0	I.1	6 0	 	0.0	0.1	0 1	0	0.1	1.2	0.0	0 0	67 63	4.6	4.6	1.2	0.6	0.2	1.6	6 0	18. 71	
(Number of Data	_	E	(4/9)				0.1	ဝ					ဝဲ						ဝ		12.		333						113.60	
	Kunoii Load(Average Value,	(Cr.)	(t/d)	5.4	2.1	138.4	1.2	2.0	0.4	112.9	99. 7	8.2	10.0	2.9	11.1	2.1	თ დ	59.6	4.0	5	114.0	132. 3	350.2	44.4	26.5	15.3	80.9	55. 1	1220.80	
	rr Load(Ave	(MI)(MI)	(t/d)	0.1	0.3	 	0.9	0.4	0.1	30.6	30.0	20	2.0	0.5	63	0.5	77	20.9	6.0	6.0	23.3	21.9	38.3	7.3	3.4		7.2	5.3	194. 71	
	Kuno	ଚ୍ଛି	(t/g)	2.5	0.8	2.6	3	1 0	0.1	29.0	12.2	1.2	4.4	1.0	1.4	0.3	1.2	40.6	0.6	2.4	30.1	47.3	57.9	22. 7	14.4	5.2	44.6	22. 5	318. 28	
,		Discharge	(s/gm)		0.1	69 69	0.1	0.2		35.2	53, 5	φ ,	1.5	0.5	တ်	0	4.4	32.8	2.7	 	43. 1	24.0	31.7	7.0	0 %	i	တ	5.1	257.47	
•	Land use	Туре		Urb/S. T	Urban	Urban	Urban	Urban	Urban	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Urban	Urban	Urban	Urban		Urban	Urb/S. T		
	opulation	Density (p/km²)				4.50		22	53	\$	8	6	7	46	83	38	5	8	61	Z	엻	≏	0		14.01	-	12.82	11. 70		
	asin Arearopulation opulation and use	-		41, 745	183, 099	138, 636	470, 420			336, 193	69, 853	18, 577	17.911	8, 458	36, 370	10, 684	12, 910	302, 495	84, 106	194, 173	758, 010	1. 012. 275	1, 492, 458	438,076	500, 276		815, 389		, 690, 147	
	Sasın Area	(Km ²)		7.40	26. 20	30.80	144.60		-	846. 70	1253. 10	256.00	132, 40	18.30	111.40	27.80	68.80	342, 50	139:00	186.00	562.80	165.50	164.50	57. 90	35. 70	1	63, 60		3912.50 K	
		Š.		2	Ŋ	9	∞	∞	œ	6	2	10-3	10-6		12	2	71	16	16-2	16-3	17-175	17-6	19	19-2	23	20	23	.23		
:	Covered	Basin Area (Km²)		7.40	3.40	11. 60	58.50	5.50	11.80	758.40	1233.70	256.00	45.20	4.60	107. 00	8.40	53.20	342, 50	139, 00	186.00	544, 20	159.80	163, 50	57, 90	27.30	ı	60.50	42.80	3604, 10	
		Name		CANAL CANTO DO RIO	RIO BOMBA	RIO IMBOASSU	RIO ALCANTARA	RIO MUTONDO	RIO GUAXINDIBA	RIO CACEREBU	RIO GUAPINIRIN	RIO MACACU	RIO SOBERBO	CANAL DE MAGE	RIO RONCADOR	RIO IRIRI	RIO SURUI	RIO ESTRELA	RIO INHONIRIM	RIO SARACURUNA	RIO IGUACU	RIO SARAPUI	RIO S. J. DE MERITI	RIO ACARI	RIO IRAJA	CANAL DO PENHA	CANAL DO CUNHA	CANAL DO MANGUE	TOTAL	*:excluded from total amount
		Š		I CI780	2 BX760	3 IBS10	4. AN740	5 KT820	6 GX720	7 cc622	8 GP600	±9 MC967	*10 SB998	11 MG580	12 RN560	13 IR540	14 SR500			*17 SC420		19 SP300	20 \$1220	#21 AC241	22 13200	PN:180	24 CN100	25 MNC00	<u></u>	*:exclude

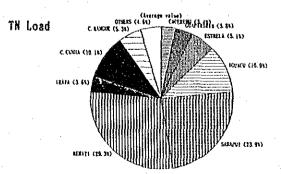


Fig. 2-10 Contribution Ratio fo Runoff Load by Largest Rivers

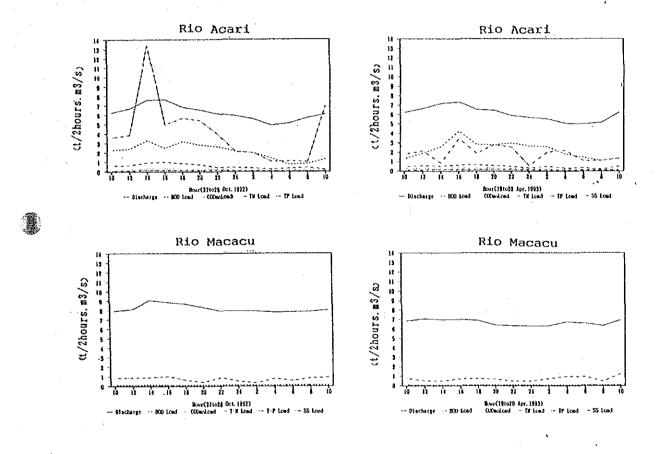


Fig. 2-11 Hourly Change of Runoff Load on Clear Days between the two Non-tidal Rivers

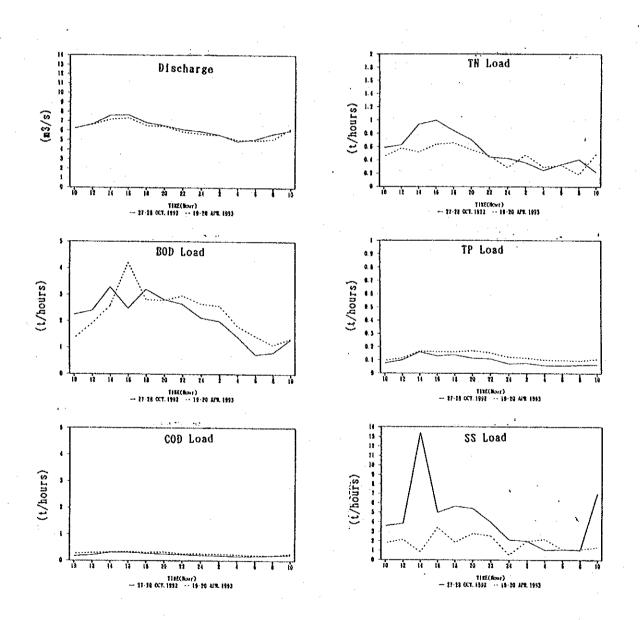


Fig. 2-12 Hourly Change of Runoff Load on Clear Days in the Rio Acari

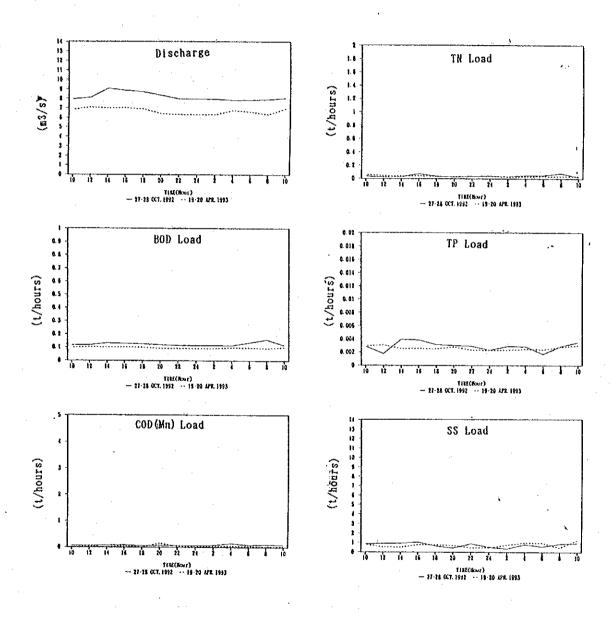


Fig. 2-13 Hourly change of Runoff Load on Clear Days in the Rio Macacu

Comparison of Runoff Load between the two Non-Tidal Model Rivers (Clear Days/Rainy Days) 2-7 Table

(191020 APR. 1993)

(27to22 Oct. 1992)

Care have best	MASTE ATTER	MESTS ATTENTIONED TEN			per jipun	ď		ī		v2	sociiic fa	reoff Lond		
···	3	7.00 (m/dar)	Clon Discharge	3 8	Discharge BOD Load CODesiond 7	7-1- Lond (1/6ay)	1- Lond (1/day)	(kap/1)	Discharge (00 Load ((1/4/km2)	(2/d/m2)	CONNECTOR 1-k Lond 1-f Lond St. Lond Disciparing DSG Lond COUNITIONS 1-f Lond 1-f Lond S. Lond (Conference Countries (c) (c) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(1/4/lm2)	S 1004 (1/6/142)
Sto Acts (4	1	0.00	6.23	ı	١	6.74	Ì	S2 33	9	¥ 4	0.046 0.046	0.116	83	0.55
Rio Macaulity	25.52	8	25 128		22.5	2	3	3	9	2.036	8	0.00	900 d	5 57
	_							_						
	benination(4/8)	(10m(4/3)							4	4	1	<u>:</u>	ğ	đ
		-	_					•						

(16to30 May, 1992)

		4	١	Tatal Depart					Suroif Load					S	security Ku	boof Load		
		poservation in		Sold And Mean Prec. Basin Arcebischarge	Mean Prec.	Basin Area	Discharge	B00, 008	Designation	ı	P LONG	SS Sold	Discharge	800 Lond 80	Cobardord Th load		P Lond	SS Load
			_	CIDITALION	(9/11)	(See 2)												
		Opening	Closing	1			(m3/s)	(1/dav)	(1/day) ((t/dav)	(1/ds/)	(m3/s/km2)	(T/4/km2) (1/d/m2)	(1/4/km2)	(244/942)	(t/d/ha2
	C1687 427	10h270CT	-10h2800	0.0	00 70	256.0	25.138	1.485 0.855 0.475	0. 855		0.034	\$ 665	0.032	8. 665 0. 032 0. 006 0. 003	6.003	0.002 0.000	0.000	P. 034
Rio Front	Paine day	Pair Ary 16h16NOV	-18h20MOV				16.011	1, 191	1.971	1,185	0.123	51, 902	0.083	0.005	4	X (8) 0	0 000	1
<u> </u>	ì	12h21NO7	-12h25h0V				24 043	1.961	2. 836	2 135	. 32	110.553	8	88	0.035	900	8	0 432
		06h26NOV	-06h30NOW				30. 47.	4.048	19. 058	3. 974	0.215	259, 509	0.119	0.036	0.074	0.016	8	1.014
	Clest Gay		-10h280CT			57.9	6.227	25. 597	2.653	6.738	1. 157	49.850	D 103	0.444	0.046	0, 116	020	0.861
2	Paine day	Parise day 15h 18NOV -	-12h20NOV	36.0	12.00		10, 252	32.840	9, 112	6.140	1.041	63.079	77. 0	13.0	0.157	Ant o	0.078	080
į	ì	06h26h07	-06h29N0V				27, 834	57. 296	£. 677	9. 567	0, 759	552, 206	0.481	0.990	0.77	9 6	0.013	11.264
Kio Inches	10 Macacut Minimum					256.0	7.815	1.356	0.624	0.300	0.024	5.148	0.031	0.005	0.002	0.00	0.00	0.020

2.4 Fluctuations in Tidal River Runoff Discharge and Water Quality

Figs. 2-14 shows the change in 24 hours on clear days observed in the rainy season for an urban type tidal river (Rio Sao Joao de Meriti), mentioned earlier. Fig. 2-15 shows the change in 24 hours on clear days observed in the dry season for a natural type tidal river (Rio Guapimirim). These diagrams show a considerable change, influenced by human activities and the sea level.

Therefore, water quality observations for 24 hours (surveys at high and low tides) should be carried out to understand changes in water quality brought about by tidal fluctuations, in order to determine the mean runoff discharge and runoff load of rivers in tidal zones.

2.5 Hourly Change in Water Quality and Runoff Load on Rainy Days

Hourly change in water quality and runoff load of the two model rivers on rainy days during the rainy season are shown in Figs.2-16 and 2-17. Rainfall data was collected at the station of Duque de Caxias (PETROBRAS). The water quality in the Rio Acari, an urban type river, deteriorates at the beginning of rainfall and thus has a greater load than the Rio Macacu, a natural type river.

Fig.2-18 illustrates the relationship between specific runoff load and precipitation. Specific runoff load of an urban type river is several times to several hundred times that of a natural type river. Fig.2-19 and Table 2-7 show the difference between the specific runoff load on the rainy days and that on the clear days. The former is dozens of times larger than the latter, indicating that the load on rainy days occupies a large part of the total runoff load.

The total runoff load on rainy days is the sum of the load resulting from precipitation and the load deposited in the basin on clear days and washed away by rain on rainy days.

Therefore, runoff load is largely influenced by the period of clear days prior to the observation and the magnitude of the rainfall.

The survey encountered some problems that should be taken into account: (1) The number of clear days preceding the survey period was insufficient; (2) Although observations should be conducted under various rainfall intensities, all observations carried out in this survey were under moderate rainfall conditions; (3) Initial water quality of the runoff was not fully analyzed. (4) Relationship between hourly rainfall intensity and runoff load was not clearly understood.

These problems are expected to be solved in future surveys.

2.6 Pollution load flowing into Jurujuba Bay

Jurujuba Bay, with a water area of 7.25 km², extends to Icarai and Charistas forming picturesque beaches frequented by a great number of people in spite of the high levels of pollution. Therefore, the loads discharged from the drainage canals were studied in detail and the following results were obtained: daily, 6.89 tons of BOD, and 2.31 tons of TN flow into the bay on clear days during the dry season.

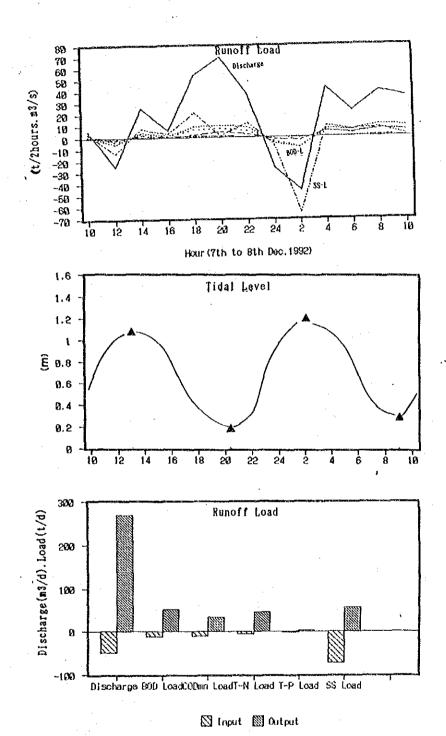


Fig. 2-14 Hourly Change of Runoff Load on Clear Days in the Rio S.J. de Meriti

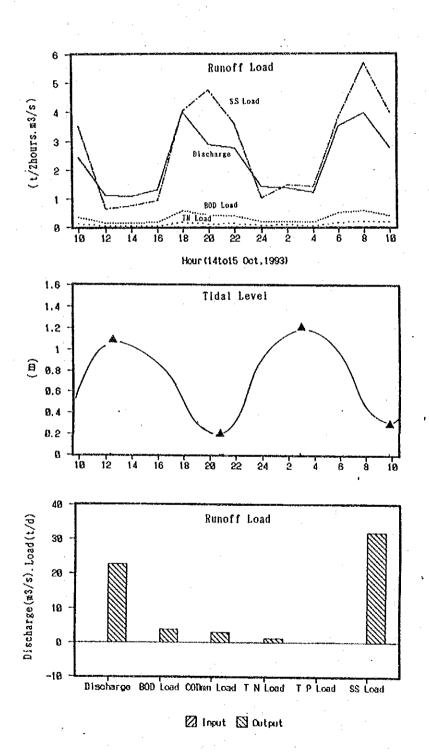


Fig. 2-15 Hourly Change of Runoff Load on Clear Days in the Rio Guapimirin