nesses are to be promoted seeking to legalize the informal sector. Industry is to be promoted by creating an industrial development pole in Guaxindiba.

A water transportation terminal is to be constructed at Porto da Madama, seeking to improve mass transportation which is currently dependent on buses using the already congested Rio-Niteroi bridge, and the ferry service between Rio and Niteroi. A technical study for the boat service between Sao Goncalo (Porto da Madama) and Rio de Janeiro was completed by the Transportation Secretariat of the State in 1991. Also, railroads are to be reactivated to complement the boat service between Rio and Porto da Madama, so as to spread the benefits of improved mass transportation to residents of Sao Goncalo living far from the coast.

(4) Nova Iguacu

The Municipal Development Master Plan was formulated in 1991 with a 5-year planning horizon. The Master Plan is to have jurisdiction over the Districts of Queimados and Belford Roxo, which are soon to become independent Municipalities, until such a time as the newly established Municipalities formulate their own Development Master Plans.

The Master Plan provides basic guidelines for public and private agents on matters relating to land use, rationalization of public investments, and environmental preservation and protection, with the purpose of promoting the well-being of the people and the economic growth.

On environmental matters, the Master Plan seeks recuperation of degraded areas, adoption of alternative technology for the disposal of solid wastes and sewage. Likewise, industries to be promoted are those compatible with environmental protection. In the practical implementation of projects, coordination with other surrounding Municipalities is to be pursued, so as to achieve more efficient and integrated solutions.

Zoning includes Urban Areas, Rural Areas, and Areas of Restricted Occupation. One of the Restricted Areas is the Special Environmental Interest Zone, which is defined as those areas showing characteristics worthy of preservation or recuperation from the viewpoints of fauna and flora, topography or scenery, protection of water source or water quality, and cultural or historical values. Examples of Special Environmental Interest Zones are the Atlantic Forest, the Madureira Range, the Fazenda Sao Bernardino, and some railroad stations such as Adrianopolis, Japeri, Tingua and Rio d'Ouro. Tourism and leisure activities are to be promoted in some of the said areas such as Fazenda Sao Bernardino, Rio d'Ouro and Tingua. An example of Permanent Preservation Areas is the Tingua Biological Reserve where no activity affecting the flora and fauna is permitted.

Industrial activities, especially those of medium and large scale, should be located in the Exclusively Industrial Use Zone (ZEI) which is the Industrial District of Campo Alegre in Queimados. Small scale industries are to be permitted in Diversified Use Zones, while mini to small industries are to be permitted also in Residential Zones.

Environmental and sanitary conditions are to be improved, as preconditions for better living standards of the people, by gradually expanding sewer service coverage, by promoting community participation in the solution of sanitation problems, and by defining priority areas. Sanitation improvement is to be pursued through coordinated actions in the following areas: drainage, sewer service, solid wastes disposal, water supply, and control of disease vector.

(5) Nilopolis

The Municipal Development Master Plan, formulated in February 1992 with a 5-year planning horizon, has the objectives of improving the quality of life, socioeconomic development coordinated with the Baixada Fluminense-the Metropolitan Rio-the Rio de Janeiro State, so as to increase employment and to improve income distribution. Regional integration is to become especially relevant on environmental matters concerning drainage, water supply, sewer system and solid wastes disposal.

The objectives are to be pursued through a balanced land use, implementation of sectoral projects, and dynamization of economic activities. For these purposes, the Municipal Development Master Plan is to provide the basic framework and directives.

Land use is to be based on the following three macrozoning categories.

1. Urban macro-zone

2. Restricted use macro-zone (non-building area)

3. Special macro-zone (Gericino military camp)

Banned from urban areas are polluting industries and storage of explosives.

The infrastructure policy gives high priority to water supply, sewer works and solid wastes disposal. The Mayor is authorized to sign agreements with financial institutions, so as to implement relevant sectoral projects.

Macro-drainage of Sarapui and Pavuna Rivers, although the responsibility of the State government, is to be given support by the Nilopolis Municipal government, in coordination with other municipalities of the Baixada Fluminense.

(6) São João de Meriti

The Development Master Plan formulated in 1991 seeks a socially just and ecologically balanced land use in pursuance of people's welfare. The Master Plan is to regulate urban development and to guide actions of public and private agents.

Since the Municipality is fully urbanized, intensity of land use is to be balanced with available infrastructure and transportation, in addition to environmental considerations. New housing developments are to be located near employment sites, or viceversa. Mass transit is to be improved, and supply of basic sanitation is to be expanded with the purpose of improving standards of living.

(7) Duque de Caxias

The Municipality of Duque de Caxias has hired a consulting firm for the preparation of the Municipal Development Master Plan. The consulting firm submitted the first half of the job, "Basic Report on the Characteristics of the Municipality", in July 1992. This report contains basic information and data on natural and socioeconomic characteristics, land use, urban infrastructure, transportation systems, service infrastructure and financial resources of the Municipality.

The second half of the job, the Municipal Development Master Plan, is expected to be completed soon.

(8) Itaborai

As of October 1992, the Municipality of Itaborai had a draft of a Municipal Law to promulgate the Municipal Development Master Plan, but without convincing proof of actual passage of the law.

The draft of the law seeks to improve quality of life of the people by gradually expanding basic service infrastructure, preservation of natural resources especially soil and water, and reduction of pollution to acceptable levels.

(9) Mage

There is no Municipal Development Master Plan in Mage. However, legal provisions on their development activities are presumed to be up-to-date, since they were promulgated in 1991. These include the Zoning Law, the Land Parceling Law, and the Law on Municipal Works.

The Zoning Law provides for Preservation and Protection Areas, which are defined as forests and natural vegetation --including mangrove forests-- where land use is to strictly abide with the Federal Forestry Law.

The Land Parceling Law provides for protection of water courses. Land parceling is to be conducted only with prior approval granted by the Colonization and Agrarian Reform Institute (INCRA), by the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA) and by the State Forestry Institute (IEF).

(10) Rio Bonito

The Municipality of Rio Bonito has not yet prepared the Development Master Plan. Their development guidelines are contained in their Zoning Law and Land Parceling Law, both presumably promulgated in 1979. On their own recognition, these laws are grossly outdated and inadequate for present conditions. For example, housing developments are reportedly expanding at present into areas originally classified as Areas of Permanent Preservation. These were defined as forests and vegetation existing along water courses or around water bodies, on mountain tops and on slopes exceeding 45 degrees.

(11) Cachoeiras de Macacu

This Municipality has neither a Municipal Development Plan nor zoning and related laws serving as guidelines for their development activities. However, they are actively negotiating with the Inter-American Development Bank (BID) to expand their sewer service coverage. In addition, they are in the final stages of establishing an Industrial District, in which eight industries were committed to operate as of October 1992.

2.2.1.3 The Environment in the Development Plans

The State and Municipal Development Master Plans, or zoning and related laws in the absense of such Plans, were reviewed above. They all contain provisions on environmental protection, but without sufficiently concrete details on development activities. Therefore, these Development Master Plans are not specific enough to serve as basis for estimating future socioeconomic conditions in the Guanabara Bay basin.

Ironically, Cachoeiras de Macacu, which is a Municipality without a development plan and without zoning and related laws, has taken the initiative to establish an Industrial District, and to directly negotiate with BID for financing the expansion of sewer services. The sewer infrastructure usually requires large investments, whereby Municipalities usually rely on other government institutions for the provision of these services.

Municipalities can be said to have the basic legal provisions for environmental protection. Likewise, municipal governments purport to protect the environment, and to pursue the type of economic development which is compatible with the rational utilization of natural resources, in order to avoid irreversible damages to the environment. In this regard, even in the promotion of manufacturing industries, the emphasis is on "environmentally friendly" or "non-polluting" industries.

The parts that need to be strengthened are the application or enforcement of the existing laws, and the lack of specific details on types, scales and time frames of industries and other activities to be promoted as basis for socioeconomic development. Therefore, these two weaknesses need to be dealt with by the relevant State and Federal Institutions.

Concerning the enforcement of environmental legislation, the hope can be placed on the Rio de Janeiro State Development Plan, which deals with the establishment of an "environmental crime prevention force". The implementation of this idea, if coupled with necessary financial, technical and institutional support, can turn out to be a great contribution in instilling life into the numerous environmental laws, which currently are not effectively enforced.

In reference to the promotion of "non-polluting" industries, the role of FEEMA will be critical, as one of its functions is to monitor and control industrial effluents according to established water quality standards. If the monitoring and control are effectively implemented, then manufacturing industries will indeed be "non-polluting" and "environmentally friendly".

2.2.2 Existing Environmental Improvement Projects

2.2.2.1 Rio-Reconstruction Project

The Rio-Reconstruction Project was formulated with the World Bank financing to deal with the aftermath of the disastrous flood of February 1988. The purpose of the Project was prevention of such destructive floods, and included environmental improvement measures. The Project area includes Rio de Janeiro, Baixada Fluminense (Nilopolis, Sao Joao de Meriti, Nova Iguacu, Duque de Caxias) and Petropolis, but the bulk of investments is concentrated in the Baixada Fluminense, which is the area hardest hit by the floods. The Project is administered by GEROE (Executive Group for Recuperation and Emergency Works) to carry out construction works, acquisition of equipments, provision of new services and preparation of plans for the prevention of floods. The project components that remain to be implemented are shown in Table 2.2-1.

The basis of the Project is environmental education and provision of services for solid wastes disposal and sewer systems, as well as implementation of programs on reforestation and resettlement of families. Drainage and dredging works target rivers and channels which flow into the Guanabara Bay, such as Sarapui, Pavuna, Cunha, Iguacu, Saracuruna and Inhomirim. The Project has been continuously adjusted, and environmental improvement components to be implemented between 1992 and 1994 are summarized below.

Component	Foreign Cost(1)	Local Cost(1)	Beneficiaries (2)
Sewer System	10.74	16.10	1,000,000
Solid Wastes	2.36	4.38	2,000,000
Reforestation	3.98	4.38	1,200ha
Drainage	54.42	54.42	3,000,000

2.2.2.2 Basic Sanitation Program

The detailed formulation of this huge environmental program was expected to be finalized in November 1992. It is composed of more than 20 projects on sewer systems, solid wastes disposal, drinking water supply and human resettlements in Municipalities adjacent to the Guanabara Bay. The foreign cost components of the projects are to be financed jointly by the Inter-American Development Bank (IDB) and the Overseas Economic Cooperation Fund (OECF) of Japan. For the administration of this Program, the Governor of Rio de Janeiro established the Executive Group for Pollution Control of the Guanabara Bay (GEDEG) through Decree No. 17136 of December 12^{tn} , 1991. GEDEG has been recently changed to CODEG (Coordinating Commission for the Execution of the Pollution Control Program of the Guanabara Bay).

The original projects of the Program are listed below, and Table 2.2-2 presents the most recent version of the Program by component groups.

- 1. Sewer System of the Alegria Basin and Improvement of Penha Sewage Treatment Station
- 2. Sewer and Sewage Treatment System in the River Basins of Pavuna/Acari/Sao Joao de Meriti
- 3. Sewer and Sewage Treatment System of Sarapui River Basin

- 4. Sewer and Sewage Treatment System No. 2 of São Goncalo
- 5. Expansion of Icarai Sewage Treatment Station and Undersea Marine Sewage Pipe
- 6. Sewer and Sewage Treatment System for North-Central Zone of Niteroi
- 7. Water Supply System Sectorization for the Baixada Fluminense
- 8. Water Supply System Sectorization for Sao Goncalo
- 9. Operation Improvement and Micro-metering
- 10. Macro-drainage and Resettlement in the Acarai River Basin
- 11. Macro-drainage and Resettlement in the River Basins of Faria and Timbo
- 12. Treatment of Hospital Wastes
- 13. Improvement of Gramacho Metropolitan Landfill
- 14. Improvement of Collection and Final Disposal of Solid Wastes in Niteroi
- 15. Improvement of Solid Wastes Collection and Transfer Stations of Nilopolis
- 16. Improvement of Solid Wastes Collection and Transfer Stations of São João de Meriti
- 17. Improvement of Collection and Final Disposal of Solid Wastes in Mage
- 18. Improvement of Collection and Final Disposal of Solid Wastes in Duque de Caxias
- 19. Improvement of Collection and Final Disposal of Solid Wastes in Sao Goncalo
- 20. Organizational and Institutional Support for Solid Wastes Management in the Rio de Janeiro State

21. Complementary Environmental Projects

22. Digital Cadaster of the Municipalities in the Guanabara Bay Basin

23. Development of Cadastral Information Center of IPLANRIO

The total cost of the Program was originally estimated at US\$ 667 Million , but it has been revised up to US\$ 793 Million (US\$ 350 Million financed by the IDB, US\$ 294.2 Million by the OECF of Japan and US\$ 148.8 Million of local funds by CEDAE and the Rio de Janeiro State).

	Project	Start Yr.End	Yr.		ost on USS)	Capacity or	Number of	Executing Agency
	N ¹			Foreign		Size	Beneficiar	
	Road System	1992	1993	19.04	6.35 ERJ	8000 cars/d	50000/d	FUNDERJ
	Drainage	1992	1994	54.42	54.42 CEF	125000 ha	3000000	SERLA
	Sewer Works	1992	1993	10.74		70km_collector 17000 connect.	1000000	CEDAE
	Solid Wastes Disposal	1993	1994	2.36	4.38 ERJ	90% coverage	2000000	SOSP
	Reforestation	1992	1993	3.98	4.38 ERJ	1200 ha		FIEF
:	Urbanization	1992	1993		11.24 CEF	3400 plots	20000	CEHAB/ COFLUHAB
	Pipeline Rehabilitation	1992	1993		3.88 CEF	5.5 km	250000	CEDAE/ CAEMPE
	Civil Defense	1992	1993	6.08		23 equipments		CIVIL DEFENSE
	Technical Assistance	1992	1994	13.78		37 contracts		GEROE/ Others
	Land Protection	1992	1993		36.04 CEF	84 works	100000	PMN/PMP
	School Rehabilitation	1991	1992		0.68 CEF	16 schools	8000	PMN

Table 2.2.1 Remaining Components of Rio-Reconstruction Project (World Bank)

TOTAL

110.40 137.47

Table	2.2.	2	Basic	Sani	tation	Program	(IDB)

Project		Investment (Mill.US\$)
Component I: Sanitation	:	535.22
Sectorization Baixada Flum.	CEDAE	38.20
Sectorization Sao Goncalo	CEDAE	
Operation Improvement	CEDAE	
Alegria System	CEDAE	
Pavuna System		
	CEDAE	
Sarapui System	CEDAE	
Sao Goncalo System 2	CEDAE	58.17
South Niteroi-Icarai System	CEDAE	18.08
llha do Governador System	CEDAE	13.05
llha de Paqueta System	CEDAE	2.90
Penha Sludge System	CEDAE	
Sludge Disposal	, CEDAE	
Favelas	CEDAE	13.40
Component II: Macro-drainage		12,40
Acari River Basin	SERLA	12.40
Component III: Solid Wastes	· .	18.30
Niteroi	SOSP	3.79
Nilopolis	SOSP	1, 22
Sao Joao de Meriti	SOSP	2.09
Mage	SOSP	2.91
Duque de Caxias	SOSP	1.38
Sao Goncalo	SOSP	5.26
Institutional Strengthening	SOSP	1.65
Component IV: Complementary		
Environmental Projects		17.85
Pollution Control	FEEMA	4.11
Environmental Monitoring	FEEMA	
Environmental Education	FEEMA/IEF/	4.22
:	SERLA	
Institutional Strengthening	FEEMA/IEF/	7.49
	SERLA/	
	SEMAM/	
	CODEG	
Component V: Digital Mapping		12.30
Mapping and cadaster	CIDE	12.30

2.3 Futures Socioeconomic Framework of the Guanabara Bay Basin

2.3.1 Target Years of the Master Plan

There is no scientific method to set the target year of a water pollution control master plan. The method can only be subjective, although the degree will vary from project to project. For setting the target year, due consideration should be paid to ongoing plans and projects. State and Municipal development master plans are usually prepared with a 5-year planning horizon, which is too short for a large scale water pollution control plan. Worse yet, the reviewed State and Municipal development plans did not contain quantified details nor sector-specific goals. On the other hand, the World Bank financed Rio-Reconstruction Project is nearing completion, Consequently, the only relevant project to be taken into account to set the target year for the Master Plan for the Recuperation of the Guanabara Bay Ecosystem (hereinafter the "Master Plan") is the already mentioned "Basic Sanitation Program of the Guanabara Bay Basin" (hereinafter the "Program").

According to the loan request document submitted to BID in December 1992, the Program has five major components: Sanitation (Water Supply and Sewerage), Macro-drainage and Human Resettlement, Solid Wastes, Complementary Environmental Programs, and Digital Mapping and Tax Collection. The proposed implementation schedule spans from 1992 to 2005, originally estimated at a total cost of US\$ 667 Million, later revised up to US\$ 793 Million, to be jointly financed by BID, OECF of Japan, and Brazil.

The extremely large scale of the Program, and the equally large scale improvements in water quality which are expected from its implementation, make it necessary to set the target year for the Master Plan beyond the implementation period of the Program. Further, water quality improvement will not occur instantaneously after completing implementation of the Program in 2005. In addition, administrative measures, and the institutional reforms that may be needed, are estimated to require a lot of time to be implemented.

Under the foregoing considerations, the following target years are proposed for the Master Plan.

<u>Short-term</u>

Target year 2000: Completion of sewerage works to be implemented by the Program, that is, completion of Phase I

Medium-term

Target year 2010: Full completion of the Program; although a water quality improve ment project requires a longer time frame, the estimation of future conditions becomes even more difficult and unreliable

Long-term

The target year is not explicitly set. The goal is the recovery of the Guanabara Bay water quality to the level that prevailed during the first half of the 1960s.

2.3.2 Future Socioeconomic Scenarios

Formulation of a pollution control master plan implies the need to envisage the socioeconomic situation that is likely to prevail some time in the future (target year). This will be the result of changes in population, presence or lack of a diversity of measures that the government usually implements, leading ultimately to a particular way of life and living standards. The future socioeconomic situation defines changes in discharge of pollutants, and influences the choice of pollution control measures to be applied. The reverse is also true, that is, pollution control measures have definite effects on the future socioeconomic conditions.

2.3.2.1 Bases for Future Scenarios

The present master plan has two target years: 2000 and 2010. Socioeconomic scenarios for the two target years are to be defined in terms of (1) population, (2) coverage of basic services: water supply, sewerage and solid wastes disposal, and (3) economic activities, including changes that are bound to occur in the land area under cultivation, and the sector-specific growth rates.

(1) Population

Population projection usually falls under the jurisdiction of official institutions, because they have access to all the necessary background data and information which are frequently unavailable to outsiders. However, the two relevant official Brazilian institutions in charge of census and statistics, IBGE at the national level and CIDE at the Rio de Janeiro State level, have no population projections.

Under this situation, the alternatives are either to use the population projection of the IDB financed Basic Sanitation Program, or use past population growth trends to subjectively estimate Municipality-specific growth rates. Using the population projection of the Basic Sanitation Program has the advantage of providing consistency to the population data for plans relating to the Guanabara Bay basin, but the drawbacks are the partial coverage of the basin and the lack of breakdown by Municipality.

(2) Coverage of Basic Services

Concerning the coverage of basic services (water supply, sewerage and solid wastes disposal), the source for future socioeconomic scenarios should normally be the regional development plans. However, the reviewed State and Municipal development plans contain broad policy objectives without sector-specific quantitative goals. In addition, the planning horizon of these development plans is usually five years, shorter than the target years for the pollution control master plan.

Consequently, the IDB financed Basic Sanitation Program for the Guanabara Bay basin contains the only concrete data that can be taken into consideration in the estimation of future coverage of solid wastes disposal services in some Municipalities.

(3) Economic Activities

Estimation of types and scales of future economic activities is the most difficult proposition, especially in view of the abnormal situation of the Brazilian economy during the past decade. The hope of relying on development plans, both at the State and Municipal levels, turned out to be impractical, because such plans generally lack sector-specific quantitative goals. Encouraging, however, is the emphasis placed on promoting "environmentally friendly" or "non-polluting" industries. This opens the possibility for estimating future pollutant discharge as reductions from present levels, instead of basing on types and scales of future industrial activities.

An alternative is to estimate future economic activities on the basis of existing data, namely, various censuses (1960, 1970, 1980 and 1985) of agriculture, industry and services. The future is to be estimated by economic sector, from base figures of selected sector-specific indicators and subjectively assumed rates of growth. The growth rates of these selected indicators should keep a balance between those showing the expanding "Brazilian miracle" economy of the 1970s and those reflecting the foreign-debt ladden sluggish economy of the 1980s.

Selected Indicators

Primary Sector : Area of land under cultivation by, Municipality in 1985

Secondary Sector : Number of employees by industry type, in Metropolitan Rio de Janeiro in 1985

Tertiary Sector : Number of employees in the food and lodging services, by Municipality in 1985

Another conceptually possible procedure in estimating future economic activities is to start from the population projections. Then, the economically active population can be estimated and proportionatelly distributed among economic sectors.

2.3.2.2 Assumptions for Future Scenarios

(1) Case 1 - Expected Scenario

Population growth: slowing and stabilizing

Basic Services : expanding as per IDB Program

Economy

: "clean" industries and services

POPULATION GROWTH

Population growth is assumed to slow down and stabilize around the year 2005. This is the theory of the World Bank, whereby the Brazilian population growth rate will equal the replacement rate, or zero population growth (ZPG), in the year 2005. As the overall population growth rate in Brazil between 1980 and 1991 was 1.87% per year, the natural population growth rate is assumed to be a moderate 2%.

For purposes of population projection, the Municipalities of the Guanabara Bay basin were divided into four groups on the basis of past population growth trends. Then, future population growth rates were subjectively estimated by Municipality and by time span. The assumed population growth rates will be smaller the farther into the future the relevant time span is. This reflects increasing difficulties to predict the more distant future, and can be defended on grounds of the future expansion of opportunities for women's education, which is widely recognized as the most significant factor for an effective family planning.

The assumed growth rates by Municipality and by time span in the four groups are shown in **Table 3.2-1**. The four groups are the following.

"Grown" (Rio de Janeiro, Niteroi, Nilopolis, Sao João de Meriti)

"Grown" Municipalities consist of those fully urbanized, with very high population densities. Very low population growth rates were observed in the recent past and are presumed to occur in the near future in these Municipalities. Further, the very slow population growth (0.5%-0.75%) is assumed up to 2005, when population is assumed to stabilize.

The assumed population growth rates are as follows.

1992-2000: 0.5%-0.75% 2001-2005: 0.5% 2006-2010: 0.0%

"Growing" (Sao Goncalo, Itaborai, Rio Bonito)

"Growing" Municipalities consist of those presently growing or are likely to grow in the near future. This is based on the observation of on-going housing developments in Sao Goncalo and the expansive economy of Itaborai. These effects are likely to spill over onto Rio Bonito, which presently serves as the commercial center bridging Metropolitan Rio de Janeiro and the surrounding rural areas. The growth expected in "growing" municipalities is induced by the saturation of "grown" municipalities.

The assumed population growth rates are as follows.

1992-2000:2.0%-4.0%2001-2005:2.5%2006-2010:0.5%-1.0%

"Next-to-grow" (Mage, Cachoeiras de Macacu)

"Next-to-grow" Municipalities consist of those likely to grow slightly later than the "growing" municipalities, even though chances are that they will grow at about the same time. Mage is slowly changing from an area of weekend houses and private recreation facilities to an area with houses where people normally live and from which they commute to work. Cachoeiras de Macacu, although too far for daily commuting to Metropolitan Rio de Janeiro, is likely to have a population inflow induced by the establishment of an industrial park with the cooperation of CODIN, plus the efforts to begin installation of sewer works by the Municipal government.

The assumed population growth rates are as follows.

1992-2000: 2.0% 2001-2005: 3.0% 2006-2010: 1.0%

"Possible Growth" (Duque de Caxias, Nova Iguacu)

"Possible Growth" Municipalities consist of those relatively large communities (over half a million), practically fully urbanized, but with insufficient service infrastructure. These Municipalities are assumed to have a moderate natural growth rate. Both the World Bank and the IDB have targeted this area to improve living conditions through provision of flood control infrastructure, and services of water suppy, sewer and solid wastes disposal. Given the convenient location of these Municipalities within the Metropolitan Rio de Janeiro, if living conditions improve as a result of the World Bank and IDB projects, population inflow is likely to occur from the saturated "grown" municipalities into these "possible growth" municipalities. However, this population inflow is considered to be short lasting, quickly reaching the zero population growth stage.

The assumed population growth rates are as follows.

1992-2000: 2.0% 2001-2005: 2.5% 2006-2010: 0.0%

BASIC SERVICES

Service coverage rates of water supply, sewerage and solid wastes disposal are assumed by taking into consideration the IDB financed Basic Sanitation Program. In general, the following coverage is to be assumed.

* Municipalities with IDB Projects

2000: 90%-100% 2010: 100%

* Rio de Janeiro and Niteroi

2000: 100% 2010: 100%

* Other Municipalities

2000: 70% 2010: 90%

Detailed growth rates by Municipality and by time span are shown in Tables 3.2-2, 3.2-3 and 3.2-4.

ECONOMY -

An attempt was made to reflect the Regional Development Plans, which appear to promote the service sector. Accordingly, the tertiary sector is to grow at the fastest rate. The growth of the manufacturing sector is to be relatively slow, as incentives are mainly focused on those industries without adverse environmental effects. Since manufacturing grows rather slowly, farming, in addition to the service sector, is to grow at a faster rate.

Primary Sector

The future of the primary sector is to be estimated as a function of the land area under cultivation by Municipality in 1985, which is the year with the latest available census data.

Growth rates of land area under farming were subjectively estimated by Municipality for both periods encompassing 1986-2000 and 2001-2010, as shown in **Table 3.2-5**.

Secondary Sector

The future of the secondary sector is to be assumed as a function of the number of employees by industry type in Metropolitan Rio de Janeiro in 1985, which is the year with the latest available census data. Because manufacturing activities are concentrated in Metropolitan Rio de Janeiro, it was deemed appropriate to represent the Guanabara Bay basin with these data rather than the Municipality-specific data. In addition, the selected industry types accounted for more than 80% of employment in the secondary sector in 1985.

Following a similar procedure as in the primary sector, growth rates of the number of employees by industry type were subjectively estimated for Metropolitan Rio de Janeiro for both periods encompassing 1986-2000 and 2001-2010, as shown in **Table 3.2-6**.

Tertiary Sector

The future of the tertiary sector is to be assumed as a function of the number of employees in the lodging and food service by Municipality in 1985, which is the year with the latest available census data. Following a similar procedure as in the primary and secondary sectors, growth rates of the number of employees in the lodging and food service were subjectively estimated by Municipality for the two periods encompassing 1986-2000 and 2001-2010, as shown in Table 3.2-7.

(2) Case 2 - Pessimistic Scenario

Population growth: increasing even after 2005

	Services	:	lower	ec	verage	than	the	IDB
					Progr	am		
:	Economy	:	"dirt	7 ^{11°}	industr	ies	keep	growing

POPULATION GROWTH

The World Bank assumption of zero population growth since the year 2005 is assumed to materialize only in the Municipalities of Nilopolis and Sao Joao de Meriti, which at present have the highest population densities. Population growth is assumed to continue into the future, albeit at a slower rate. However, for the 1992-2000 period, population growth rates are assumed to be the same as in Case 1, as shown in Table 3.2-1 and summarized below.

"Grown" Municipalities

1992-2000: 0.5%-0.75% 2001-2005: 0.5% 2006-2010: 0.0%-0.5%

"Growing" Municipalities

1992-2000: 2.0%-4.0% 2001-2005: 2.5% 2006-2010: 0.5%-1.0%

"Next-to-Grow" Municipalities

1992-2000:	2.0%
2001-2005:	3.0%
2006-2010:	1.0%

"Possible Growth" Municipalities

1992-2000:	2.0%
2001-2005:	2.5%
2006-2010:	1.0%

BASIC SERVICES

Service coverage of water supply, sewerage and solid wastes disposal is assumed to be lower than the target of the IDB financed Basic Sanitation Program. The assumed coverage rates are shown in **Tables 3.2-2 to 3.2-4** and are summarized as follows.

* Municipalities with IDB Projects

2000: 70% - 90% 2010: 80% - 100%

* Rio de Janeiro and Niteroi (same as Case 1)

2000: 100% 2010: 100%

* Other Municipalities

2000: 50% - 70% 2010: 70% - 90%

ECONOMY

The difference in assumptions from Case 1 concerning economic activities refers mostly to the secondary sector. Here, the manufacturing sector, including "polluting" industries, are assumed to keep growing at a faster rate than the primary and the tertiary sectors. Accordingly, the growth rates are to be relatively slower in farming and the service sectors. The assumed growth rates are shown in **Tables 3.2-5 to 3.2-7**.

2.3.3 Socioeconomic Framework in the Target Years

The socioeconomic scenarios described in Section 3.2 served as bases for estimating the socioeconomic framework for the Guanabara Bay basin in the two target years 2000 and 2010. Details are shown in Tables 3.3-1 to 3.3-7, and summarized in Table 3.3-8.

2.3.3.1 Population

The 1991 population census data for the Municipalities comprising the Guanabara Bay basin were projected to the target years with the assumed growth rates, and resulted in the summary below. Scenario 1 represents a slowing population growth, stabilizing around the year 2005 according to the World Bank theory, while Scenario 2 assumes that the population in most Municipalities keeps growing after 2005.

1991 Census

9,471,951

Scenario 1 2000 2010 Growth rates 1992-2000 2001-2010

11,376,950 1.29%/yr. 0.68%/yr.

10,629,649

Scenario 2 2000 2010 Growth rates 1992-2000 2001-2010

10,629,649 11,670,796 1.29%/yr.

0.94%/yr.

2.3.3.2 Coverage of Basic Services

The coverage of basic services in the Guanabara Bay basin, at present and the projections for the two scenarios, is presented below. The figure in parentheses refers to the percentage of the serviced population relative to total population. Scenario 1 represents achievements of coverage goals consistent with the BID Basic Sanitation Program, while Scenario 2 assumes lower coverage.

(1)	Solid Wastes Disposal		
·	Present	7,115,316	(75.1%)
	Scenario 1		
	2000	9,831,045	(Q9:59)
	2010	11,163,463	
-	2010	11,100,400	(00.10)
	Scenario 2		
	2000	8,962,932	(84.3%)
	2010	10,649,977	
		- • · - • · · ·	
(2)	Water Supply		
	Present	7,390,507	(78.0%)
	Scenario 1		
	2000	10,176,766	(95.7%)
	2010	11,336,825	
	Scenario 2	(d. 1)	
	2000	9,558,759	(89.9%)
-	2010	11,132,674	
	: .		
(3)	Sewerage		
	Present	5,272,870	(55.7%)
	Scenario 1	· · ·	
	2000	10,069,896	(94.7%)
	2010	11,309,529	

Scenario 2 2000 2010

8,531,207 (80.3%) 10,874,346 (93.2%)

2.3.3.3 Economy

The economic framework in the Guanabara Bay basin is described in reference to the sectoral growth rates. Scenario 1 represents a relatively slow growth rate in the manufacturing sector, due to the emphasis in the service sector and "clean" industries. Consequently, the relatively strong primary sector growth reflects absorption of some labor displaced from the manufacturing sector. Accordingly, there is an increase in the cultivated land area.

On the contrary, Scenario 2 represents a less than expected growth rate in the service sector, which coupled with the continued growth of "dirty" industry types, provide employment opportunities in the secondary sector. Accordingly, the primary sector grows relatively less and the cultivated land area is smaller.

(1) Primary Sector

Cultivated land area (ha)

Present (1985) 118,488 Scenario 1 2000 134,916 2010 140,811 Scenario 2 2000 122,117 2010 124,630

Primary sector growth rates (%/yr.)

Present	
1980-1985	0.56
Scenario 1	
1986-2000	0.87
2001-2010	0.43

Scenario 2	
1986 - 2000	0.20
2001-2010	0.20

(2) Secondary Sector

Present (1985) 346,625 Scenario 1 2000 407,766 2010 463,193 Scenario 2 2000 485,064 2010 581,617

Secondary sector growth rates (%/yr.)

Present	
1980-1985	-2.29
Scenario 1	
1986 - 2000	1.09
2001-2010	1.28
Scenario 2	
1986-2000	2.27
2001-2010	1.83

(3) Tertiary Sector

Employment in lodging and food service

Present	
1985	100,849
·	
Scenario 1	
2000	157,456
2010	208,776
Scenario 2	
2000	136,624
2010	152,251

Employment in 12 selected industries

Tertiary sector growth rates (%/yr.)

Present	
1980-1985	2.03
Scenario 1	
1986-2000	3.01
2001-2010	2.86
Scenario 2	
1986-2000	2.04
2001-2010	1.09

								
		Calculat	ted	Estimated				
Municipalities	60-70	70-80	80-91	1992- 2000	1-5	Sc.1 6-10	Sc.2 6-10	
Grown					·····			
Milanolia	3.02	1.70	0.37	0 E		0.0	0.0	
Nilòpolis Niteroi	2.92	1.84	0.43	0.5 0.75	$0.5 \\ 0.5$	0.0	0.0	
Rio de Janeiro	2.92 2.62	1.64	0.43	0.75	$0.5 \\ 0.5$	0.0	0.5	
Sao Joao de Mer		1,00	0.40	0.75	0.0	0.0	0.5	
bao Juao de Mer	4.73	2.79	0.58	0.5	0.5	0.0	0.0	
· · ·						••••		
Growing								
Sao Goncalo	5.81	3.63	1.79	3.0	2.5	0.5	0.5	
Itaboral	4.78	5,62	3.16	4.0	2.5	1.0	1.0	
Rio Bonito	2.32	1.27	1.09	2.0	2.5	1.0	1.0	
Next-to-Grow	· ·				•	· · ·	* .	
Mage	6.83	3.93	1.27	2.0	3.0	1.0	1.0	
Cachoeiras de M		0.00	1. • 4. •	2.0	0.0	1.0	1.0	
ouchocirus uc m	2.39	0.67	1.04	2.0	3.0	1.0	1.0	
Possible Grwoth								
Duque de Caxias	5.99	2.89	1.31	2.0	2.5	0.0	1.0	
Nova Igucacu	7.38	4.17	1.48	2.0	2.5	0.0	1.0	

Table 3.2-1 Population Growth Rate

Source: Calculated from Census data

					Unit:
nua	aont	S	cenario 1	Sce	enario 2
Municipalities Pre	sent	2000	2010	2000	2010
Cachoeiras de Macacu	-	70	90	50	70
Duque de Caxias	56	90	100	80	90
Itaboral	21	70	90	50	70
Mage	28	100	100	50	70
Nilopolis	71	90	100	80	90
Niteroi	80	100	100	100	100
Nova Iguacu	39	70	90	50	70
Rio Bonito		70	90	50	70
Rio de Janeiro	95	100	100	100	100
Sao Goncalo	52	- 90	100	70	90
Sao Joao de Meriti	59	90	100	70	90

Table 3.2-2 Coverage of Solid Waste Disposal Services

Table 3.2-3 Coverage of Water Supply Services

Municipalities Pres	ant	S	cenario l	Sce	enario 2
Municipalities Pres		2000	2010	2000	2010
Cachoeiras de Macacu	~	70	90	50	70
Duque de Caxias	59	90	100	80	90
Itaborai	71	90	100	80	90
Mage	30	70	90	50	70
Nilopolis	86	100	100	100	100
Niteroi	87	100	100	100	100
Nova Iguacu	52	90	100	70	90
Rio Bonito	~	70	90	50	70
Rio de Janeiro	91	100	100	100	100
Sao Goncalo	66	90	100	80	90
Sao Joao de Meriti	73	100	100	90	100

Unit: %

·					Unit: 9
	Present	S	cenario 1	Sce	enario 2
Municipalities	Fresent	2000	2010	2000	2010
Cachoeiras de Macacu	1	70	90	50	70
Duque de Caxias	-	90	100	70	80
Itaborai	10	70	90	50	70
Magé		70	90	50	70
Nilopolis	70	90	100	80	90
Niteroi	67	100	100	80	90
Nova Iguacu	33	90	100	70	90
Rio Bonito		70	90	50	70
Rio de Janeiro	82	100	100	90	100
Sao Goncalo	9	90	100	70	90
Sao Joao de Meriti	- , *	90	100	70	90

Table 3.2-4 Coverage of Sewerage Services

Table 3.2-5 Growth Rates of Cultivated Land Area

Unit: %/yr

		Se	enario 1	Scenario 2		
Municipalities	1980 - 1985	1986 - 2000	2001 - 2010	1986 - 2000	2001 - 2010	
Cachoeiras de Mac	acu - 2.2	3.0	1.5	2.0	1.0	
Duque de Caxias	0.4	-1.0	-2.5	-2.0	-2.5	
Itaborai	-3.7	-3.0	-2.0	-3.0	-2.5	
Mage	10.5	2.0	-1.0	2.0	-1.0	
Nilopolis		0.0	0.0	0.0	0.0	
Niteroi	-18.4	-5.0	-5,0	-7.0	-5.0	
Nova Iguacu	2.8	2.0	-2.5	-2.0	-2.5	
Rio Bonito	4.5	3.0	1,5	3.0	1.5	
Rio de Janeiro	10.8	-8.0	-5.0	-10.0	-8.0	
Sao Goncalo	-13.1	-7.0	-4.0	-8.0	-5.0	
Sao Joao de Merit	- 1	0.0	0.0	0.0	0.0	

Table	3.2-6	Growth	Rates of Employment in Manufacturing
		in Metr	ropolitan R.J.

					Unit: %/yı
		Se	enario 1	Sce	nario 2
Municipalities	1980 - 1985	1986 - 2000	2001 - 2010	1986 - 2000	2001 - 2010
Metallurgical	-6.5	-3.0	-2,0	2.0	2.0
Mechanical	-4.2	-2.0	-2.0	2.0	2.0
Electrical	0.4	4.0	5.0	3.0	3.0
Transportation	-4.8	3.0	2.0	2.0	1.0
Furniture	-3.9	3,0	$\frac{1}{2.0}$	2.0	1.0
Chemicals	3.9	2.0	1.0	4.0	3.0
Pharmaceuticals	-1.9	2.0	-2.0	2.0	2.0
Plastics	-0.5	2.0	2.0	3.0	2.0
Fextiles	-7.6	-3.0	-2.0	1.0	1.0
Clothing	1.2	3.0	2.0	1.0	1.0
Foodstuff	-3.6	-3.0	-2.0	2.0	1.0
Printing	0.1	2.0	1.0	3.0	2.0

Growth Rates of Employment in Lodging & Food Service Table 3.2-7

Unit: %/yr

		Sc	enario 1	Scei	Scenario 2	
Municipalities	1980 - 1985	1986 - 2000	2001 - 2010	1986 - 2000	2001 - 2010	
Cashaatuaa da Maa		5.0	4.0	3.0	2.0	
Cachoeiras de Mac Duque de Caxias	-0.7	3.0	1.0	2.0	1.0	
Itaborai	21.2	6.0	4.0	4.0	3.0	
Magé	-3.8	5.0	4.0	3.0	2.0	
Nilopolis	6.0	1.0	1.0	1.0	1.0	
Niteroi	3.7	3.0	3.0	2.0	1.0	
Nova Iguacu	-0.9	3.0	1.0	2.0	1.0	
Rio Bonito		5.0	4.0	3.0	2.0	
Rio de Janeiro	1.9	3.0	3.0	2.0	1.0	
Sao Goncalo	6.5	3.0	3.0	3.0	2.0	
Sao Joao de Merit	1 3.9	1.0	1.0	1.0	1.0	

Table	3.3-1	Population	:	1991	Census	and	Projections
-------	-------	------------	---	------	--------	-----	-------------

	Present		Scenario 1	L 5	Scenario 2		
Municipalities	(1991)	2000	2010	2000	2010		
	:			<u> </u>			
Cachoeiras de M			· · · · ·		1. A.		
	40,195	48,037	58,529	48,037	58,529		
Duque de Caxias	664,643	794,310	898,689	794,310	944,532		
Itaborai	161,274	259,544	272,956	229,544	272,956		
Aage	191,359	228,692		228,692	· 278,641		
Vilopolis	157,819	165,065	169,233	165,065	169,233		
literol	416,123	445,069	456,308	445,069	467,831		
	1,286,337	1,537,292	1,739,305	1,537,292	1,828,027		
Rio Bonito	45,093	53,891	64,084	53,891	64,084		
Rio de Janeiro	10,000	00,001	01,001	00,001	01,007		
	5,336,179	5,707,368	5,851,487	5,707,368	5,999,245		
Sao Goncalo	747,891	975,829	1,131,940	975,829	1,131,940		
Sao Joao de	,	0101020	111011010	010,020	1,101,010		
Meriti	425,038	444,552	455,778	444,552	455,778		
Guanabara Bay			100110	777,004	400,110		
	0 471 051	10 620 640	11,376,950	10 000 040	11 070 700		

Table 3.3-2 Population Covered by Solid Wastes Disposal Services

	Present		Scenario	1	Scenario 2
Municipalities		2000	2010	2000	2010
Cachoeiras de Ma	icacu -	33,626	52,676	24,019	40,970
Duque de Caxias	372,200	714,879	898,689	635,448	850,079
Itaborai	33,868	160,681	245,660	114,772	191,069
Magé	53,581	228,692	278,641	114,346	
Nilopolis	112,051	148,559	169,233	132,052	152,310
Niteroi	332,898	445,069	456,308	445,069	467,831
Nova Iguacu	501,672	1,076,104	1,565,375	768,646	1,279,619
Rio Bonito	_	37,724	57,676	26,946	44,859
Rio de Janeiro	5,069,370	5,707,368	5,851,487	5,707,368	5,999,245
Sao Goncalo	388,903	878,246	1,131,940	683,080	1,018,746
Sao Joao de Meri	ti				
	250,773	400,097	455,778	311,186	410,200
Gunabara Bay Bas	sin				
· ·	7,115,316	9,831,045	11,163,463	8,962,932	10,649,977
(% of service po	pulation) (75.1%)	(92.5%)	(98.1%)	(84.3%)	(91.3%)

Table 3.3-3 Population Covered by Water Supply Services

	Present	Scenario 1		1	Scenario 2		
Municipalities		2000	2010	2000	2010		
Cachoeiras de Ma	acacu -	33,626	52,676	24,019	40,970		
Duque de Caxias	392,139	714,879	898,689	635,448	850,079		
Itaborai	114,505	206,590	272,956	183,635	245,660		
Mage	57,408	160,084	250,777	114,346	195,049		
Nilopolis	135,724	165,065	169,233	165,065	169,233		
Niteroi	362,027	445,069	456,308	445,069	467,831		
Nova Iguacu	668,895	1,383,563	1,739,305	1,076,104	1,645,224		
Rio Bonito		37,724	57,676	26,945	44,859		
Rio de Janeiro	4,855,923	5,707,368	5,851,487	5,707,368	5,999,245		
Sao Goncalo	493,608	878,246	1,131,940	780,663	1,018,746		
Sao Joao de Mer:	iti						
	310,278	444,552	455,778	400,097	455,778		
Guanabara Bay Ba	asin						
· .	7,390,507	10,176,766	11,336,825	9,558,759	11,132,674		
% of service po	opulation) (78.0%)	(95.7%)	(99.6%)	(89.9%	<pre>(95.4%)</pre>		

Table 3.3-4 Population Covered by Sewerage Services

			Scenaric	> 1	Scenario 2
Municipalities	Present	2000	2010	2000	2010
			······································		· · · · · · · · · · · · · · · · · · ·
Cachoeiras de Mad	cacu -	33,626	52,676	24,019	40,970
Duque de Caxias	-	714,879	898,689	556,017	755,626
Itaborai	16,127	160,681	245,660	114,772	191,069
lagé	·	160,084		114,346	195,049
illopolis	110,473	148,559	169,233	132,052	152,310
literoi	278,802	445,069	456,308	356,055	421,048
lova Iguacu	424,491	1,383,563	1,739,305	1,076,104	1,645,224
lio Bonito	· · · · ·	37,724	57,676	26,945	44,859
lio de Janeiro 🧳	4,375,667	5,707,368	5,851,487	5,136,631	5,999,245
Sao Goncalo		878,246		683,080	1,018,746
Sao Joao de Meri	ti –	400,097	455,778	311,186	410,200
Juanabara Bay Ba	sin				
		10,069,896	11,309,529	8,531,207	10,874,346
s of service pop	oulation)				
· · · · · · · · · · · · · · · · · · ·	(55.7%) (94.7%	6) (99.4%)	(80.3%	(93.2%)

1

Table 3.3-5 Cultivated Land Area

Unit:ha

Municipalities			Scenario 1	S	Scenario 2	
	1985	2000	2010	2000	2010	
Coobootuna da Ma				⁸		
Cachoeiras de Mad		CO 100	04 M 00		· · · · · · · · · · · · · · · · · · ·	
	34,126	53,167	61,702	45,929	50,734	
Duque de Caxias	5,706	4,907	3,809	4,214	3,271	18
Itaborai	22,654	14,346	11,722	14,346	11,137	
Mage	9,084	12,226	11,057	12,226	11,057	
Nilopolis	. 0	0	0	0	0	
Niteroi	187	87	52	63	38	
Nova Iguacu	5,869	7,899	6,132	4,335	3,365	
Rio Bonito	23,947	37,309	43,299	37,309	43,299	
Rio de Janeiro	14,270	4.085	2,446	2,938	1,276	
Sao Goncalo	2,644	890	592	757	453	
Sao Joao de Merit	•	0	0	0	0	· .
Guanabara Bay Ba		Ŭ	Ū	Ŭ	v	
	118,488	134,916	140,811	122,117	124,630	
				a sear y a de l	1,000	

Table 3.3-6 Employment in Manufacturing in Metroploitan R.J.

		Scenario 1		Scenario 2		
Municipalities	1985	2000	2010	2000	2010	
Metallurgical	32,159	20,365	16,640	43,282	52,761	
Mechanical	36,679	27,090	22,135	49,365	60,176	
Electrical	24,975	44,979	73,266	38,910	52,292	
Transportation	30,442	47,428	57,814	40,971	45,257	
Furniture	12,003	18,700	22,795	16,154	17,844	
Chemicals	36,519	49,150	54,292	65,769	88,388	
Pharmaceuticals	12,092	16,274	13,297	16,274	19,838	
Plastics	14,001	18,844	22,971	21,813	26,590	100
Textiles	19,517	12,359	10,098	22,659	25,030	46
Clothing	52,088	81,151	98,923	60,473	66,800	
Foodstuff	43,589	27,603	22,554	58,665	64,803	
Printing	32,561	43,823	48,408	50,729	61,838	
				: :		
Metropolitan R.J.	346,625	407,766	463,193	485,064	581,617	

		Se	cenario 1	Scenario 2		
Municipalities	1985	2000	2010	2000	2010	
Cachoeiras de Mac	acu 300	624	924	467	569	
Duque de Caxias	3,230	5,032	5,558	4,347	4,802	
Itaborai	1,149	2,754	4,077	2,069	2,781	
Mage	567	1,179	1,745	883	1,076	
Nilopolis	800	929	1,026	929	1,026	
Niteroi	4,357	6,788	9,123	5,864	6,478	
Nova Iguacu	3,900	6,076	6,712	5,249	5,798	
Rio Bonito	500	1,039	1,538	779	950	
Rio de Janeiro	80,141	124,857	167,797	107,859	119,143	
Sao Goncalo	3,332	5,191	6,976	5,191	6,328	
Sao Joao de Merit	i 2,573	2,987	3,300	2,987	3,300	
Guanabara Bay Bas	in100,849	157,456	208,776	136,624	152,251	

Table 3.3-7 Employment in the Loading and Food Service

Table 3.3-8

-8 Future Socioeconomic Framework of the Guanabara Bay Basin

· · · · ·	:		- -			and a second	
Item	llatt	Duccent	Scenario 1		Scenario 2		
	Unit	Present	2000	2010	2000	2010	-
Population	Person	9,471,951	10,629,649	11,376,950	10,629,649	11,670,796	Å
Growth Rates 1992-2001 2001-2010	%/yr	· · · · · · · · · · · · · · · · · · ·	1.29	0.68	1.29	0.94	
Basic Services						·	
Pop. w/solid Wastes Disp. Coverage	Person (%)	7,115,316 (75.1)	9,831,045 (92.5)	11,163,463 (98.1)	8,962,932 (84.3)	10,649,977 (91.3)	
Pop. w/water supply Coverage	Person (%)	7,390,509 (78.0)	10,176,766 (95.7)	11,336,825 (99.6)	9,558,759 (89.9)	11,132,674 (95.4)	
Pop. w/Sewerage Coverage	Person (%)	5,272,870 (55.7)	10,069,896 (94.7)	11,309,529 (99.4)	8,531,207 (80.3)	10,874,346 (93.2)	
Economy							đ
Sector Growth Rates	%/ yr						
Pri∎ary 1986-2000 2001-2010		-	0.87	_ 0.43	0.20	0.20	·
Secondary 1986-2001 2001-2010		-	1.09	1.28	2.27	- 1.83	
Tert lary 1986-2001 2001-2010		-	3.01	2.86	2.04	- 1.09	

2.4 Benefits from Water Quality Improvement of the Guanabara Bay

Evaluation of benefits from a purely environmetal improvement project poses serious difficulties in the practical application of recently developed theoretical concepts. These difficulties range from the lack of reliable and sufficiently long time-series data, to the unproven methods of data collection due to the general lack of consciousness about environmental problems among the people, who will ultimately determine the success of an environmental improvement project.

2.4.1 Assessment of Benefits

In the assessment of benefits from water quality improvements, attention should be paid to both the benefits accrued and the costs avoided. This means that benefits should include those effects easily recognized as straightforward benefits and those effects that lead to cost avoidance. The assessment of these broadly interpreted benefits entails critical problems due to the uncertainty of information and the difficulties involved not only in the identification of benefits but also in the quantification of identified benefits.

When a pollution abatement project is undertaken to reach desired environmental quality targets, the gathering of relevant information on the relationship between pollution and environmental quality requires very careful research and technical analysis. Even if benefits are identified as effects, for example, on expanded recreation opportunities, or on health and productivity improvements, the ensuing quantification is still extremely difficult.

2.4.1.1 Criteria for Benefit Assessment

Conceptually, the following criteria can help as guides in the identification and quantification of benefits.

(1) Complement to another good

When water quality is improved, it might generate consumption of other goods, such as the increased demand for beach areas for swimming or fishing.

(2) Infrastructure protection

Polluted waters may cause damage to industrial, transportation or household infrastructure, which requires adoption of preventive measures (additional expenditures) to protect against these adverse effects of pollution. If these expenditures in the form of increased frequency of painting, or corrosion protection, can be reduced or eliminated altogether, then the difference in expenditures can be quantified as benefits.

(3) Production input

If the pollution abatement project lowers production costs, benefits accrue either to consumers as reduced output price or to producers as increased profits.

(4) Land value appreciation

The improvement of environmental characteristics increases the value of the land as a result of intensification in agricultural, commercial or residential uses.

(5) Willingness to pay

Improvements in water quality may cause people to react positively, inducing them to show willingness to pay for the improved environmental quality. However, it is difficult to make individuals conceptualize the expected improvements in water quality, thereby leading to overestimation or underestimation of expected personal benefits, which results in an inaccurate willingness to pay.

2.4.1.2 Alternative Criteria

A broader classification of both the quantifiable and nonquantifiable categories of benefits can be as follows.

(1) Current user benefits

a. Direct use (quantifiable)

1. In water

* Recreation

Contact : swimming Non-contact: fishing, boating

* Commercial: navigation, fishing

2. Withdrawal: industrial/commercial cooling

b. Indirect use (difficult to quantify)

1. Recreation: near water hiking, birdwatching

2. Relaxation: pleasant scenery

3. Aesthetic : enhancement of nearby site amenities

(2) Intrinsic benefits (non-quantifiable)

a. Potential use

Option value: amount that an individual may be willing to pay for the right to use a water body (over and above the expected user values) even though such a right may never be exercised

b. No use

Existence value: individual's willingness to pay simply for the knowledge that a resource exists even if never used.

* Bequest: to present or future generation

* Vicarious consumption: enjoyment from the knowledge that others are using the resource

2.4.1.3 Bases for Benefits in the Guanabara Bay Basin

A questionnaire survey was conducted on the environmental awareness of the residents in the Guanabara Bay basin. The survey showed that 93.6% of respondents regarded the bay water as dirty or very dirty, and its major causes were seen as domestic waste water by 46.7%, factory waste water by 25.6%, garbage thrown into tributary rivers or directly into the bay by 12.3%, and garbage/oil from ships by 8.7%. The resident awareness on the weight of waste water as a cause of pollution was indicated by those respondents favoring control or rigorous control of domestic waste water (92.8%) and of factory waste water (94.8%).

Facing the described situation, 89.6% of respondents thought that the Guanabara Bay water should be cleaned soon or cleaned if possible. The strong interest in improving the water quality stemmed from the present use of the bay, in which 21.3% of respondents claimed to be using the bay beaches for recreation, 21.2% using the ferry boat service, 16.9% enjoying regular strolls along beaches, 16.8% fishing as full-time profession in the bay, 9.6% fishing occasionally, and 7.9% enjoying the scenery.

The respondents planned utilization of the bay, if the bay water were to be cleaned, contrasted sharply with the present use in the weight given to fishing and recreation. In this regard, 31.3% of respondents thought they would use the bay for fishing, 30.8% for swimming and enjoying beaches, and 14.9% for practicing marine sports.

The questionnaire survey clarified the close relationship between the Guanabara Bay and the basin residents, as well as their strong interest in the improvement of the bay water quality. These provide the basic background for estimating the benefits from improving the Guanabara Bay ecosystem. From the criteria mentioned in Sections 4.1.1 and 4.1.2, the benefits from the improved Guanabara Bay ecosystem were chosen to be those that were already identified and quantified by FEEMA, as listed below.

(1) Recreation benefits: water contact

These benefits involve swimming and water sports, and depend on the number of persons swimming or practicing water sports, which in turn depend mostly on the available beach area. These benefits are underscored by the numerous bay beaches that are contaminated and hence unsuitable for recreation. Therefore, the nearby residents are forced to travel longer distances seeking cleaner beaches for recreation, which give rise to overcrowding of ocean beaches. The fact that 45.7% of respondents wanted the Guanabara Bay in the future to be clean enough for swimming/enjoying beaches and for the practice of marine sports is a good indication on the importance of these benefits.

(2) Recreation benefits: boating and fishing

These benefits involve boats of a specified tonnage class, and consist of avoidable costs in the absence of pollution in the Guanabara Bay. These avoidable costs refer to additional operation and maintenance costs due to pollution and due to longer sailing distance in search of cleaner water areas for recreation boating and fishing. These benefits are likely to accrue to the 9.6% of respondents who at present fish occasionally, as well as to recreation boaters.

(3) Commercial shipping benefits

These benefits involve avoidable dredging costs in the case of large ocean going vessels requiring wharfage within the Guanabara Bay, and avoidable operation and maintenance costs in the case of small passenger boats operating within the bay. The likely beneficiaries are the 21.2% of respondents who at present use the boat service and may enjoy lower fares which can be passed on by the boat operators as a result of reduced operation and maintenance costs.

(4) Commercial fishing benefits

These benefits involve changes in fishery production, and refer to declining shrimp catch in the Guanabara Bay in recent decades, due presumably to worsening pollution level in the bay. Conversely, if the quality of the bay water were to improve, shrimp catch would again increase. These benefits are underscored by 45.1% of respondents who thought the Guanabara Bay should be cleaned to the level of assuring increasing production of fish, shrimp and shellfish, as well as by the 31.3% of respondents who wanted to use the bay for fishing in the future.

(5) Land value appreciation

These benefits involve the land located along the shoreline of the Guanabara Bay, and refer to its value being inversely correlated with the pollution level of the bay water, that is, higher land value with clean water and lower land value with polluted water.

(6) Health improvement

This potentially large benefit will not be taken into consideration in this project, because the technique of measuring changes in human productivity poses major ethical problems. Human life or the psychological costs of illness and death should not be subject to monetary valuation, even if technically possible, except under the following restricted conditions.

The loss-of-earnings approach can be applied to value environmental effects when (a) a direct cause-and-effect relationship can be established and the etiology of the disease is clearly identifiable; (b) the precise economic value of earnings and medical care is known; and (c) the illness is relatively short, not lifethreatening and without long-term effects. This means that chronic and long lasting illness, which is likely to be the health effects of environmental pollution, are hard to handle. The basic problem refers to the lack of a clear definition in the exact cut-off point between short-lasting and long-lasting illnesses.

The above three conditions do not prevail in the case of the Guanabara Bay basin. The large number of pollution sources in the basin make the relationship between cause and effect difficult to establish. Moreover, the etiology is not well established, that is, the effects of the polluted bay water cannot be translated into health consequences. These effects are likely to be debilitating but not completely disabling. For instance, in the case of parasitic infections, the valuation problem is complicated because the victim appears to be healthy but functions at less than full potential.

2.4.2 Benefit Types in the Guanabara Bay Basin

In the case of Guanabara Bay, potential benefits from mproving its water quality have been studied for nearly 20 years by Mr. Victor Coelho of FEEMA, even before establishment of FEEMA, while he was still with the Institute for Sanitary Engineering of the Science and Technology Secretariat. Mr. Coelho incorporated the basic concepts of recent theoretical evaluation methods into practical calculation procedures which are easily understood. Therefore, it was agreed to update relevant aspects of Mr. Coelho's work to make it applicable to the present situation of the Guanabara Bay basin. Accordingly, it is appropriate to describe Mr. Coelho's original work, which is the following.

Mr. Coelho estimated potential benefits stemming from the possible water utilization types, which were classified as follows:

- (1) Recreation: water contact
- (2) Recreation: boating and fishing
- (3) Commercial shipping
 - (4) Commercial fishing
 - (5) Land value appreciation

Mr. Coelho's calculations based on 1974 data for the above water utilization types yielded the following estimated benefits.

(1) Recreation benefits: water contact

These benefits involved swimming and water sports, and were assumed to depend on the number of persons swimming or practicing water sports. The number of swimmers was calculated on the basis of the saturation population of the beaches of the Guanabara Bay as a function of the area of these beaches. The saturation population was calculated assuming 2 sq.m. of beach per swimmer in crowded beaches, and 10 sq.m. of beach per swimmer in uncrowded beaches. Then, the saturation population of the Guanabara Bay beaches was estimated at 197,340 persons.

Next, the utilization rate of beaches was estimated as a function of climate or season, day of the week, and school vacation time. The assumed beach utilization rate was expressed as percentage of the saturation population, as indicated below.

¥

Hot months (November to April)

Sunday:		100%
Saturday:		70%
Work days:	school vacation months	30%
· .	other months	15%

Cold months (May to October)

Sunday:		70%
Saturday:		50%
Work days:	school vacation	months 20%
	other months	10%

The resulting number of the saturation population of swimmers in the Guanabara Bay beaches was estimated at 11,922,600 persons per year.

To give monetary value to benefits from recreation swimmers, an extreme scenario was assumed whereby the Guanabara Bay beaches would be so polluted as to preclude any swimming activity. Then, the residents who wished to go swimming would have to go to ocean beaches outside the Guanabara Bay. In this case, the time spent to go to more distant beaches, and the added transportation costs could be quantified. The following was assumed.

Hourly wage (Cr\$):	4.00
Hourly recreation value (Cr\$)	6.00
Travel time (hours):	2.00
Transportation cost (Cr\$)	2.00

For a family of 5 in which two were wage earners, the following quantification could be made.

Two hours of recreation for 2 persons (Cr\$)	24.00
Transportation costs for 5 persons (Cr\$)	10.00
Total for 5 persons (Cr\$)	34.00
Benefit per person (Cr\$)	6.80

Thus, total benefits, or avoidable costs if the Guanabara Bay beaches were safe to swim for nearly 12 million swimmers per year, would amount to Cr\$81,600,000 per year.

(2) Recreation benefits: boating and fishing

To quantify this recreation benefit, the number of boats in the Guanabara Bay was classified by tonnage, with the following results. Less than 10 ton From 10 to 20 ton More than 20 ton 7,270 boats 300 boats 630 boats

Boats of less than 10 ton were assumed to be suitable for recreation fishing and boating. Then, based on a questionnaire survey, the additional operation and maintenance costs due to pollution were estimated to be Cr\$ 200 per boat per year.

Also assumed was that, due to increased pollution, some of these recreation boaters would prefer to go outside the Guanabara Bay. They were assumed to consist of 2,000 motor boats and 1,000 sail boats, incurring additional costs of Cr\$ 50 and Cr\$ 10, respectively, per boat per trip. These boaters going out of the Guanabara Bay were assumed to do so on alternate weeks, that is, 26 times a year. Then, the potential benefits, or avoidable costs if pollution was prevented, would be as follows.

(3) Commercial shipping benefits

The benefits, or avoidable costs, from commercial shipping were considered under the two categories of ocean going vessels and those restricting transportation services to inside the Guanabara Bay. For ocean going vessels that needed wharfage in ports within the Guanabara Bay, the benefits would consist of avoidable dredging costs. These were estimated on the basis of 10 cu.m/sec. of sewage inflow containing 4 ml/l of settling solids, resulting in 1,261,440 cu.m. per year of settled silt and mud. Dredging at the assumed unit price of Cr\$ 7.00/cu.m., would cost an estimated Cr\$ 8,830,000 per year.

Dredging costs would have been a lot higher if proper account was taken of the siltation resulting from the inflow of river discharge.

Benefits from passenger transportation in the Guanabara Bay was estimated under the assumptions of transportation by large ferry boats and by small high speed boats. Large ferry boats were assumed to be free of pollution damages. On the other hand, small passenger boats were assumed to require additional costs due to frequent damages to the propeller caused by floating debris. These additional costs were assumed to be 20 propeller changes per boat per year, and the need for a monthly hull painting to prevent excessive corrosion. These additional operation and maintenance costs were estimated at Cr\$ 73,000 per month, amounting to Cr\$ 876,000 per year for the fleet.

(4) Commercial fishing benefits

Shrimp catch in the Guanabara Bay in 1955 was 330 ton, but went down to 24 ton in 1972. The reduced shrimp catch, presumably due to increased pollution (siltation, landfill, oil spill), at the assumed unit price of Cr\$ 13.00/kg amounted to Cr\$ 3,978,000 per year.

The benefits from commercial fishing would have been much larger if other fish species were included.

(5) Land Value Appreciation

The value of land is undoubtedly higher if located on water bodies with clean water rather than with polluted water. Therefore, when a polluted water body is cleaned up, the value of land along its shoreline is expected to increase.

To quantify the above benefits, the Guanabara Bay was assumed to have a 130km perimeter or shoreline, which together with the estimated 70km coastline of the islands within the bay, would result in a 200km total shoreline. Of these, 120km of shoreline were assumed to be suitable for urbanization. Further assuming as urbanization land a 100m tract from the shoreline, the urbanization area would be 12 million sq.m., which at the average unit price of Cr\$ 50/sq.m., gave a total value of Cr\$ 600,000,000. A percentage of this value would accrue as benefits from improving the water quality or the ecosystem of the Guanabara Bay.

2.4.3 Valuation of the Selected Benefits

Section 4.1 presented a general classification of the possible benefits that may be expected from the improvement of the water quality of the Guanabara Bay. Benefit estimation is to be based on the procedure used by FEEMA, by updating the relevant information and expressing the value in terms of the American dollar. Of the many types of benefits estimated by FEEMA, the following update refers to the benefits from water contact recreation. Also estimated was one type of benefit that the FEEMA estimation did not quantify thoroughly, and this concerns the appreciation of the value of the land surrounding the water body.

(1) Water contact recreation benefits

These benefits refer to the value of recreation in the Guanabara Bay beaches. Benefit estimation is based on the saturation population of beaches, the hourly value of recreation, and the value of transportation.

a. Saturation population

The saturation population is a function of the beach area. Table 4.3-1 lists the beaches in the Guanabara Bay, along with the estimated width and length. Consequently, the total beach area in the Guanabara Bay is estimated at 1,111,500 sq.m.

The beach area per person was estimated at 5 sq.m. for Flamengo, Botafogo, Icarai and San Francisco, while 10 sq.m. per person was estimated for the remaining beaches. The resulting saturation population of the Guanabara Bay beaches was estimated at 152,950 (Table 4.3-1).

b. Number of potential beach users per year

The number of potential beach users was estimated using the following assumptions.

Hot months (November to April)

Sunday: 100% of the saturation population (26 days) Saturday:70% of the saturation population (26 days)

1.2

Weekdays:

Summer vacation (3 months): 30% of sat. pop. (65 days) Other months (3months): 15% of sat. pop. (65 days)

Cool months (May to October)

Sunday: 70% of the saturation population (26 days) Saturday:50% of the saturation population (26 days)

Weekdays:

Winter vacation (2 weeks): 20% of sat. pop. (10 days) Other months: 10% of sat. pop. (120 days)

Table 4.3-2 shows that the number of potential beach users in the Guanabara Bay is 18,147, 518 persons.

c. Value of recreation

The value of recreation is estimated by assuming the following.

- Salary: US\$100 (minimum wage)
- Monthly working hours: 176
- Hourly wage: US\$0.57/hr.
- Value of recreation: 1.5 hourly wage = US\$0.85
- Family size: 5, of which 2 are wage earners
- Transportation cost: US\$2.00 per person round trip
- Time spent on the beach: 2 hours

Then, the value of recreation is the following.

2	hours :	x 2	persons	x US\$0.85	=	US\$	3.40
5	person	s x	US\$2.00	(transp.)	=	US\$	10.00
÷					<u> </u>		
		T	otal 5 p	ersons		US\$	13.40

The value per person per visit would be US\$13.40 divided by 5, that is, US\$2.68. This value should be multiplied by the number of potential beach users per year.

US\$2.68 x 18,147,518 persons = US\$48,635,348/year

If it is arbitrarily assumed that one/fourth of potential beach users are induced to practice water contact recreation by the cleaner water of the Guanabara Bay, then the benefits from this specific recreation type would amount to US\$ 12,158,837 per year. This is obviously an underestimation, since the basis for calculation is the minimum wage.

This is a flow of benefits to accrue over a future time period, presumed to be 30 years, during which the improvement in the Guanabara Bay water quality and the public perception of it are assumed to remain unchanged. If it is further assumed that this flow of benefits accrues between the 11th year and the 30th year, then the present value of contact recreation benefits discounted at 10% amounts to US\$ 39,910,045.

(2) Land value appreciation

The appreciation of the value of the land surrounding a water body is understood to be a summary measure, which includes all the beneficial effects from the water quality improvement. The land value appreciation depends on the unit value of land and the distance from the shore. The benefit estimation is based on the following.

a. Unit value of land (US\$/sq.m.)

Values provided by realtors

Flamengo	US\$1,260/sq.m.
Botafogo	US\$1,160/sq.m.
Ramos	US\$ 725/sq.m.
Urca	US\$1,525/sq.m.
I. do Governador	US\$ 485/sq.m.
Maua	US\$ 5/sq.m.
· · · · · · · · · · · · · · · · · · ·	

Assumed values

Icarai	US\$	500/sq.m.
San Francisco	US\$	500/sq.m.
Remaining beaches	US\$	50/sq.m.
Non-beach	US\$	1/sq.m.

b. Distance from the beach

A study by the Environmental Protection Agency in the United States found that the improvement in water quality affected the value of the land surrounding the water body. The appreciation of the land ranged from 8% to 24%, and the value appreciation disappeared beyond 4,000 ft. from the shore.

Accordingly, the estimation of value appreciation is based on the following assumptions.

Distance from the beach

% Value appreciation

Up to 100m		24%
100m - 500m		15%
500m - 1000m		8%

c. Total value

Table 4.3-3 shows that the total value of land appreciation amounts to US\$ 1,733,858,000. This is a one-time accrual of stock benefits, which are assumed to encompass all the benefits that can be derived from the improvement in the water quality of the Guanabara Bay.

If it is further assumed that the land value appreciation occurs in the 15th year, then the present value of these benefits discounted at 10% amounts to US\$415,071,820.

:	Table 4.3.1 Beach	Area and Width	Saturation Length	Popula [†] Area		uanabara B on Populat	
	Deach	(m)	(m)	(m2)		(1/10m2)	
	Flamengo	100	1450	145000	29000		29000
:	Botafogo	140	600	84000	16800		16800
	Ramos	50	600	30000		3000	3000
	Vermelha	. 10	200	2000		200	200
	Barreto	50	400	20000		2000	2000
	Adao e Eva	50	100	5000		500	500
	Urca	40	100	4000		400	400
	Flexas	100	1000	100000		10000	10000
	lcarai	140	1200	168000	33600		33600
	S. Francisco	30	700	21000	4200		4200
	Charitas	30	700	21000		2100	2100
	Jurujuba	40	350	14000		1400	1400
	Pedrinhas	50	750	37500		3750	3750
	Anil	10	1000	10000		1000	1000
	Maua	20	2000	40000		4000	4000
	maua	50	5000	20000		4000	4000
	Subtotal		11150	701500	83600	28350	111950
	I. Governador						
	Tubiacanga	20	1200	24000		2400	2400
	Gaegos	30	1500	45000		4500	4500
	Dende	50	1300	65000		6500	6500
	Rosa	20	1100	22000		2200	2200
	Pelonias	50	600	30000		3000	3000
	Grande	10	800	8000		800	800
	Saco da Rosa	50	600	30000		3000	3000
	Bananal	5	700	3500		350	350
	Guanabara	20	1500	30000		3000	3000
	Cocota	10	800	8000		800	800
	Bandeiro	20	500	10000		1000	1000
:	Pitangueiras		700	7000		700	700
	Zumbi	5	400	2000		200	200
	Engenhoca	10	700	7000		700	700
	Ribeira	10	600	6000		600	600
	Jequia	20	1200	24000		2400	2400
	Brava	10	500	5000		500	500
	Bica	30	1900	57000		5700	5700
	Eng. Velho	5	700	3500		350	350
	S. Bento	- 5	800	4000		400	400
	Galeao	5	1300	6500		650	650
	Subtotal		19400	397500		39750	39750
	I. Paqueta						
	J.Boticario	5	1300	6500		650	650
	Moreninha	5	500	2500		250	250
	Gaivotas	5	350	1750		175	175
	Lameiras	. 5	350	1750		175	175
	Subtotal		2500	12500		1250	1250
	TOTAL		33050 1	111500	83600	69350	152950

٢

Table 4.3.2 Beach	Ares of Width	Guanabar Lengih	а Вау Ве Агеа			f Potential al Beach Us			at						
Deach	(a)	(a)	(a2)			ber to Apri			Cool Von	he lar	io Octobe:				
	(A)	. 181	1467	Sunday		Vac. ND		Subtates	Sunday		Yac. ¥Đ		Subtotal	Total	
Flamengo	100	1450	145000	754000	527800	565500	282750	2130050	527800	377000	58000	348000	1310800	3440850	
	140	600	84000	436800	305760	327600	163800	1233960	305760	218400	33600	201600	759360	1993320	
Bolaiogo	50		30000				29250	220350		39000	6000	36000	135500	355950	
Ranos		600 200	2000	78000	54600	\$8500	1950	14690	3640	2600	400		9040	23730	
Yernelha	10				3640	3900						2400			
Barreto	50	100	20000	52000	36400	39000	19500	146900	36400	26000	4000	24000	90400	237300	
Adao e Eva	50	100	\$000	13000	9100	9750	4875	36725		6500	1000	0003	22600	59325	
Urez	40	100	4000	10400	7280	7800	3 3 9 0	29380	7280	5200	800	10083	18080	47460	
Fieras	100	1000	100000	260000	182000	195000	\$7500	734500	182000	130000	20000	120000	452000	1186500	
lcarai	140	1200	168000	873600	611520	655200	327600	2467920	\$11520	136800	67200	493200	1518720	3986640	
S. Francisco	30	700	21000		16440	81900	40950	308490	76440	54600	8400	50400	189840	498330	
Charltas	30	700	21000	54600	36220	40950	20415	154245	38220	27300	4200	25200	94920	249165	
Jurujuba	40	350	14000		25480	21300	13650	101830	25480	18200	2800	16800	63280	166110	
Pedrinbas	50	750	37500		68250	73125	36553	275138	68250	43750	7500	45000	159500	444935	
Anil	10	1000	10000		18200	19500	9750	13450	18200	13000	2000	12000	15200	118650	
Maua	20	2000	40000	104000	12800	78000	39900	293800	12800	52000	8008	4 8000	120800	474600	
Subtotal		11150	701500	2910700	2037(90	2183025	1091513	8272728	2037490	1455350	223900	1343400	5060140	13282858	
l. Governador	· · .				÷.,		1 - A								ĺ
Tubiacanga	20	1200	24000	62400	43680	46800	23400	176280	13680	31200	4800	28800	108480	284760	
Gaegos	30	1500	15000		81900	87750	43675	330525	81900	\$8500	\$000	54000	203400	533925	
Dende	50	1300	65000		118300	126750	63375	117425		84500	13000	18000	293800	771225	
Rosa	20	1100	22000		40040	42300	21450	161590	10010	28600	4400	26400	99460	261030	
Pelonías	50	600	30000		54600	58500	29250	220350		39000	6000	36000	135600	355950	
Grande	10	800	8000		14560	15600	7800	58760	14560	10400	1600	9600	36160	94920	
Saco da Rosa	50	600	30000		54600	58500	29250	220350		39000	6000	36000	135500	355950	
Bananal	5	300	3500		6370	6825	3413	25708	5370	4550	700	(200	15820	41528	
Guanabara	20	1500	30000		51600	58500	29250	220350	54600	39000	\$000	36000	135500	355950	
Cocola	10	800	8000		14560	15800	7800	58760	14560	10400	1600	9600	36160	94920	
Bandeiro	20	500	10000	26000	18200	19500	9750	73450	18200	13000	2000	12000	15200	118650	
Pitangueiras	10	700	7000	18200	12740	13550	6825	\$1415	12740	9100	1400	8400	31640	83055	
Zunbi	\$	400	2000	\$200	3640	3900	1950	11690	3610	2600	400	2400	9040	23730	
Engenhoca	10	100	7000	18200	12740	13650	\$825	51415	12740	9100	1400	0013	31540	81055	
Ribeira	10	600	6000	15600	10920	11700	5850	11070	10920	7800	1200	7200	27120	71190	
Jeguia	20	1200	24000	62400	13680	46800	23400	176280	43580	31200	4800	28800	108480	284760	
8rava	10	500	5000	13000	9100	9750	4875	35725	9100	550D	1000	6000	22600	59325	
Bica	30	1900	\$7000	148200	103740	111150	\$\$\$75	618665	103740	74100	11400	68400	257640	676305	
Eng. Yelho	5	100	3500	9100	6370	6525	3413	25708	\$370	4550	200	4200	15820	41528	
S. Bento	5	800	4000	10400	1280	7800	3 1 0 0	29580	1280	5200	800	4800	18080	47460	
Galeao	ŝ	1300	6500	15900	114.10	12575	6338	17743	11830	8450	1300	7800	29380	77123	
Subtotal		19400	397500	1033500	723450	775125	387553	2919638	723450	516750	79500	{11000	1796700	4716338	
1. Paqueta			****	1											
J. Boticario	ş	1300	6500	15900	11330	12675	6335	47743	11830	8450	1300	7600	29380	77123	
Horeninha	5	500	2500	6500	4550	4575	2438	18363	4550	3250	500	3000	11300	29563	
Gaivotas	5	350	1750	4550	3185	3413	1796	128,54	\$185	2275	350	2100	7910	20764	
Lareiras	5	350	1750	1550	3185	3413	1706	12854	3185	2275	350	2100	7910	20764	
Subtotal		2500	12500	32500	22750	24375	12188	91813	22750	16250	2500	15000	56500	148313	
TOTAL		33050	1111500	3976700	2783650	2982525	1451263	11234178	2783690	1988350	305900	1835400	6913340	18147518	

	Table 4.3.3							the Guana		
			a up to)	km from To 500	the Shore To 1000	Total	Land Valu To 100	e Approcia To 500	110n To 1000	Total
	Beach	Length (m)	(m2)	(m2)	(m2)	(1000m2)	(USS)	(USS)	(USS)	(1000USS)
· .	Flamengo	1450	145000	580000	725000	1450		109620000	73080000	
	Botafogo	600	00000	240000	300000	600	16704000	41760000 26100000	27840000	
	Ramos Vermelha	600 200	60000 20000	240000 80000	300000 100000	600 200	10440000 240000	26100000	400000	1240
	Barreto	400	40000	160000		400		1200000	800000	
	Adao e Eva	100	10000	40000		100	120000	300000	200000	620
	Urca	100		40000				9150000	6100000	
	Flexas	1000	100000	400000				3000000 36000000	2000000 24000000	
	lcarai S.Francisco	1200 700		480000 280000				21000000	14000000	
	Charitas	700		280000				2100000	1400000	
	Jurujuba	350		140000			420000	1050000	700000	
	Pedrinhas	750		300000				2250000	1500000	
	Anil	1000		400000				3000000	2000000 400000	
	Maua	2000	200000	800000				600000		
-	Subtotal	11150	1115000	4460000	5575000	11150	103092000	257730000	171820000	532642
	I. Governador									
	Tubiacanga	1200		480000		1200		34920000	23280000	
	Gaegos	1500		600000				43650000	29100000	
	Dende Rosa	1300 1100		520000 440000				37830000 32010000	25220000 21340000	-
	Pelonias	600		240000				17460000	11640000	
	Grande	800		320000				23280000	15520000	48112
	Saco da Rosa			240000				17460000	11640000	
	Bananal	700		280000		700		20370000 43650000	13580000 29100000	
_	Guanabára Cocota	1500 800		600000 320000		1500	9312000	23280000	15520000	48112
	Bandeiro	500		200000		500		14550000	9700000	30070
	Pitangueiras	700	70000	280000	350000			20370000	13580000	42098
	Zumbi	400		160000	200000	400		11640000	7760000	24056
	Engenhoca	700 600		280000 240000		700 600	8148000 6984000	20370000 17460000	13580000 11640000	42098
	Ribeira Jequia	1200		480000	600000	1200	13968000	34920000	23280000	72168
	Braya	500		200000	250000	500	5820000	14550000	9700000	30070
	Bica	1900	190000	760000	950000	1900	22116000	\$5290000	36860000	114266
	Eng. Velho	700	70000	280000	350000	700		20370000	13580000	42098
	S. Bento Galeao	800 1300	80000 130000	320000 520000	400000 650000	800 1300	9312000 15132000	23280000 37830000	15520000 25220000	48112 78182
·	Subtotal	19400	1940000	7760000	9700000	19400	225816000	564540000	376360000	1166716
	I.Paqueta J.Boticario	1300	130000	520000	650000	1300	1560000	5700000	2600000	9860
	J. Boticario Moreninha	1300	130000	200000	250000	1300	600000	2100000	1000000	3700
	Gaivotas	350	35000	140000	175000	350	420000	2400000	700000	3520
	Lameiras	350	35000	140000	175000	350	420000	3900000	700000	5020
	Subtotal	2500	250000	1000000	1250000	2500	300000	14100000	5000000	22100
	Total Beach	33050	3305000	13220000	16525000	3,3050	331908000	836370000	553180000	1721458
	Non-beach	100000	10000000	40000000	50000000	100000	2400000	6000000	4000000	12400
	TOTAL	133050	13305000	53220000	66525000	133050	334308000	842370000	557180000	1733858

CHAPTER 3

POLLUTION SOURCES

CHAPTER 3

POLLUTION SOURCES

3.1 INDUSTRIAL POLLUTION SOURCES

3.1.1 Point Pollution Sources

The point pollution sources in the Guanabara Bay Basin consist of domestic sanitary sewage, industrial waste and urban solid waste. These pollution sources are managed by the following different governmental institutions:

- (1) Sanitary sewage (domestic wastewater): Companhia Estadual de Aguas e Esgoto - CEDAE
- (2) Industrial waste: Fundacao Estadual de Engenharia do Meio Ambiente - FEEMA
- (3) Urban solid waste:
 Companhia de Limpeza Urbana COMLURB.
 Rio de Janeiro State Government Municipalities.

3.1.1.1 Sanitary Sewage (Domestic Wastewater)

The sanitary sewage point pollution sources are divided into raw sanitary sewage point pollution sources and treated sanitary sewage point pollution sources.

(1) Raw Sanitary Sewage

Most of the sanitary sewerage basins located in the Greater Rio de Janeiro area are not covered by complete sanitary sewage systems, including wastewater collection and treatment.

In the central and north area of Rio de Janeiro City the sanitary sewage system was built over a hundred years ago. The treatment plants have stopped working, but the wastewater collection system is still working and discharging raw sanitary sewage directly into Guanabara Bay. Further, the existing urban drainage system, small channels and rivers, also contribute to Guanabara Bay, raw sanitary sewage is discharged from many points such as hospitals, sporting clubs, industry and commerce, the port, the airport and bus stations.

These discharge points are called: raw sanitary sewage point pollution sources. The sanitary sewage basins of Arsenal, Cais di Porto, Mangue, Sao Cristovao, Alegria are under CEDAE's responsibility and will be part of the future Alegria Wastewater Treatment Plant. The Paqueta Sewerage Basin, a small island located in Guanabara Bay and the North Niteroi Sewerage Basin contain wastewater collection systems and are also considered as point pollution sources.

Table 3.1-1 shows the discharge points of raw sanitary sewage, and corresponding sanitary sewerage basins.

(2) Treated Sanitary Sewage

As was mentioned before, few sanitary sewerage basins are covered by complete sanitary sewerage treatment systems. They represent a small percentage of the total sanitary sewage production that contributes to Guanabara Bay.

Table 3.1-2 shows the point pollution sources treated sanitary sewage, referring to each wastewater treatment plant. INFRAERO's Wastewater Treatment Plant, one of these points, is responsible for the sanitary sewage from the Rio de Janeiro International Airport, located on Ilha do Governador.

All the others are CEDAE's responsibility. As a result, this table shows the remaining pollution load after treatment.

3.1.1.2 Industrial Wastewater

The industries located around Guanabara Bay are also considered point pollution sources.

FEEMA recently listed 455 factories which contributed about 90% of all organic substances discharged into Guanabara Bay. Table 3.1-3 shows the name, location and estimated pollution loads of the 117 heaviest contributors of pollution loads into the Guanabara Bay Basin selected from the FEEMA/DECOM list arranged in 1993. Unfortunately, the COD and oil in the effluent load has not been calculated.

The example of a Questionnaire filled out by all factories is shown in Table 3.1-4.

1

Point Pollution Sources - Raw Sanitary Sewage (RSS) Table 3.1 - 1

,

.

Z	-	Ģ							·					-		
POLLUTION	LOAD	(kg BOD/d)			7.410	1.843	1	1	07717	0++0	49.152		9.265		176	
FLOW	(m³/d)			001 00	004.00	7.680	l	- I 	000 986	000.01.2	204-800		46.329		651	
POPULATION	(Inhabitants)					30.000	N.I	N.I		000.000.1	800.000		193.037		3.254	
SEWER	SYSTEM	LENGTH	(km)	0	00	10	I.N	N.I	75	(17	300		N.I		11	
SEWERAGE	BASIN	AREA	(ha)	247	040	62	I.N	N.I	1,500	4727	3980		1877		92	
FLOW	(1/s)			32,0	N.I	130,0	I.V.	5,5	0.005	2,070	170,0		N.I		N.I	
PUMPING	STATION			ES - 41	ES - 34	ES - 44	ES - 42	ES - 43	57 S#		ES - 46	Toque	Toque	José	Bonifácio	
SEWERAGE	BASIN			Cais do Porto	Arsenal	Mangue	Gamboa	Mal. Hermes	C	0. CI 1210400	Alegria	Niteroi Centro	Norte	Paquetá		
DISCHARGE	POINT	LOCATION				Dorto Dorto			Callal Maligue		Cajú	Toque Toque		José Bonifácio		
DISCHARGE	POINT			RSS - 01	R.SS - 02	20 220		10 20 0	+0		. RSS - 05	RSS - 06		RSS - 07		

Remark: for N.I read "no information".

Table 3.1 - 2 Point Pollution sources - Treated Sanitary Sewage (TSS)

POINT	WASTEWATER	RECEIVING	BOD	FLOW	POLLUTION
	TREATMENT		EFFLUENT		LOAD
SOURCE	PLANT	BODY	(mg/l)	(m³/day)	(kg BOD/day)
TSS-01	ETE-Penha	Guanabara Bay	20	122.746	2.493,5
TSS-02	ETIG	Guanabara Bay	26	22.977	698,5
TSS-03	ETEG	Guanabara Bay	78	3.959	305,4
TSS-04	ETAR-AIRJ	Guanabara Bay	84	2.401	201,7
TSS-05	ETAR-TECA	Guanabara Bay	50	1.002	50,1
TSS-06	ETE-Icaraí	Guanabara Bay	27	60.480	1.633,0
TSS-07	ETE-Realengo	Acarí River	9	2.968	27,1
TSS-08	ETE-Acarí	Acarí River	7	11.340	.80,1
TOTAL				227.873	5.489,4

Reference:

- 1 TSS-01, TSS-02, TSS-03, TSS-06, TSS-07 and TSS-08 flow and pollution load average values, based on Annual Report, 1991. Operation and Treatment Division. Wastewater Superintendence. Operation and Maintenance Directory - CEDAE
- 2 TSS-04 and TSS-05 flow and BOD effluent are average values based on Monthly Reports. Faulhaber Operation and Maintenance Engineering S/A. INFRAERO.

Reference:

1-Points RSS-01, RSS-02, RSS-03, RSS-04, RSS-05

1.1-Domestic sewage per capita flow = 256 l/hab.d and average BOD = 240 mg/l:

Alegria Wastewater Treatment Plant Design. Report No.4. Calculation and Description Memorial Multiservice Consultant Engineering S/A 1991.

1.2-Pumping station flow, sewerage basin area, sewer system length and population. North Area of Rio de Janeiro Sewerage System Final Report, 1991. Wastewater Superintendence. Operation and Maintenance Directory - CEDAE

2-Point RSS-06

- 2.1-Domestic sewage per capita flow = 240 l/hab.d, sewerage basin area and population: Niteroi Centro Norte Sewage Final Disposal Design. STE Consultant Engineering S/A. August, 1988.
- 2.2-Average BOD = 200 mg/1: Ponta de Areia Wastewater Treatment Plant Design. STE Consultant Engineering S/A. January, 1991.

3-Point RSS-07

3.1-Population:

National Demographic Research, 1991 Brazilian Institute of Geographic and Statistics -IBGE.

3.2-Domestic Sewage per capita flow equals to 200 l/hab.d: Technical Normalization NB-41 (Septic Tank). Brazilian Association of Technical Normalization -ABNT

3.3-Pollution load per capita equals to 54g. BOD/hab.d based on CEDAE's usual application for wastewater characterization.

Sources
Pollution
Industrial
Major
3.1 - 3
Table

	1	1																																						- J
	Receiving Rodv	Toriani D	rguacu v.	Tinas R.	Adiaput A	2	Caboclo R.	Cueimado R.		Tomada C.		Guanabara B.	Meriti R.		£ 1		Acarl K.		: :	:	Acari R.	Guanabara B.	C circle			2		Penha C.		F	Ŧ	Timbo R.	z 1		E	z	Timbo R.	F	£ 1	
	(/day) 011.	140	7																						•															
	Load (kg/day) COD D		DOOT																	1771																				
	Eff1. BOD	ana 666	770	1500	010 010	195	600	200		792	308	160	1800	210	375	195	1120	318	300	260	145	720	020	530	530	420	310	515	067	140	230	2300	1122	688	020	007 007 007	330	190	180 180	; i
	Industry Category	vategury	-	≪C⊮	-{ r	4 4	• •-	4 -	1	4	4	14	1	4	14			1 00	4.	4° 00)	4		× -	4 4	1-1	ෆ	00	80 I	x v	4" •	* 7	• 64	0	4	r-1 e	-i a	5	7	ه ۲۰	, .
(continued)	Factory No		870	013	6T0	121	036	119		029	086	137	010	115	190	120	020	081	089 000	100	144	030	042	038	040	056	085	043	260	541	111 111	006	610	033	141 042		073	123	124 125	
(cont	Sub- Basin	11000	0 1 1	17-6						18			19-1								19-2	20										21								
	Receiving Body	Guanabara B.	Guanabara B.	2° 1	r		t	•	F	Ŧ		Ŧ	Alcantara R.		Ŧ		Cacereou K.	Soberbo R.		KUNCSUOF K.	Piabeta R. Saracuruna R			TSUTELA N.	Iguacu R.	5		: ;	. 1	: I	F	Ŧ	Ŧ	: 1		Ŧ	E	t	Tomada C.	
	/day) OIL	32	42	80 1	101	4 f	5	468	201				÷												396					000	020									
	Effl. Load (kg/day) BOD COD OIL	3493	10287	3050	6000	1967	3000	1350					1090					3292			3168				3247					2100	1470									
Ī		2131	6700	2400	0101	800	660	510	480	380	220	450	405	376	240		480	2304		040	921 4400	170	320	0.07T	1320	820	720	380	2/2	040	316	300	300	300	012	007	190	160	1200 330	
	Industry Category	۲ ۲	г		-	ج ا-	(r ~	۱	۰	-4	7	2	ы	00	4	•	-1	ເ	c	0	00.4	.4.	40	o	4	н		4.		- i ₹	* 1-	• ম্ব	4	4	4	. 4	4	4	খ খ	
	ory		_							. '					•		ה	ഹ		4	-1 N	100	70	_					•	N .			ŝ		~ ~	র ব	1	80	လ ဂြ	
	Sub- Factory Basin No.	001	001	004	000	200	450	240	247	062	113	020	057	066	107		9-3 049	10-6 005	č	110	16-2 021 16-3 002		56	1	17-1 01	026	033	[90 [90	9 E	25	58	087	80	50	ñ c	22	122	13	56	

....

011 1 1750 059 4 380 059 4 380 050 4 380 051 1 1 052 4 380 052 1 1 052 3 4 052 3 4 052 3 4 053 4 360 053 3 4 053 3 4 053 3 4 053 3 4 053 3 4 053 3 4 053 3 4 053 3 4 053 3 4 054 4 1700 101 4 260 103 4 380 079 14 320 133 14 170 133 14 170 133 14 170 133 14 170 133 14 170 133 14 170 134 14 170 135 14 170 <t< th=""><th>Jacare R. </th></t<>	Jacare R.
055 080 080 080 080 080 080 080	Cumha C Cumha C RSS-05(RSS-05 RSS-05 SS-05
080 1322 080 050 050 050 0532 0553 0553 0553 0554 0555 0555 0556 0556 0556 0555 0556 0556 0557 055 055 055 055 055 055 055 055 05	Cunha C Taria R RSS-05(RSS-05(RSS-05(
105 132 132 132 132 100 100 100 100 100 100 100 100 100 10	Cunha C Cunha C RSSS-05(RSSS-05(RSSS-05)
132 0337 056 056 055 055 055 055 055 055 055 055	Cunha C Cunha C RSS-05(RSS-05(RSS-05)
037 050 050 050 0553 0553 0553 0554 0554 05	Cunha C Faria R Fss-o5(RSS-05(RSS-05)
000 000 000 000 000 000 000 000 000 00	Faria RSS-05(RSS-05(RSS-05(RSS-05(
068 0532 0552 0552 0552 0553 0554 0556 0556 0556 0556 0556 0556 0556	RSS-05(RSS-05(RSS-05(RSS-05(RSS-05(RSS-05(
003 053 053 055 055 055 055 055 055 055	Taria R RSS-05 RSS-05 RSS-05 RSS-05
052 053 053 055 055 055 055 055 055 055 055	Faria R RSS-05(RSS-05(RSS-05) RSS-05(
053 101 126 101 101 101 103 103 103 104 104 104 104 104 104 104 104 104 104	RSS-05(RSS-05(RSS-05 RSS-05
108 1012 1012 101 103 103 103 103 103 104 104 104 104 104 104 104 104 104 104	RSS-05 RSS-05 RSS-05 RSS-05
012 126 100 126 005 064 075 066 075 075 075 075 075 075 075 075 075 075	RSS-05(RSS-05 RSS-05 RSS-05
126 101 101 064 0659 079 0650 1116 079 079 079 111 123 124 124 124 124 124 124 124 124 124 124	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
101 103 064 0777 0659 0546 079 055 111 133 114 124 14 14 14 14 14 14 14 14 14 14 14 14 14	RSS-05 RSS-05 RSS-05
103 064 077 077 054 054 055 11 133 11 133 14 14 14 14 14 14 14 14 14 14 14 14 14	* SS- 05:
064 077 077 077 058 054 055 116 123 116 123 114 123 124 124 124 124 124 124 124 124 124 124	RSS-05
069 077 079 054 054 055 115 123 154 124 124 124 124 124 124 124 124 124 12	1 1 1
077 079 054 055 055 116 116 133 114 133 14 14 14 14 14 14 14 14 14 14 14 14 14	
079 0546 0556 116 133 133 114 133 114 133 096 095 114 14 14 14 14 14 14 14 14 14 14 14 14	
046 154 116 133 133 134 136 14 14 14 14 14 14 14 14 14 14 14 14 14	:
046 054 116 133 133 135 14 14 14 14 14 14 14 14 14 14 14 14 14	
9 4 4 6 4 4 6 8 4 4 6 4 4 7 4 4 6	Maracana
***	t
41-444 41-444	Ł
5 4 4 4 5 7 4 4 4 5	t
4441 4441	r
445	Ŧ
41	RSS-03
1	
	£
24 003 2 4000 4800	25
1 700	RSS-02
14	Guanabara
00 00 00 00 00 00 00 00 00 00 00 00 00	
0.4	- 1

4 : VNUMICALS 1 : FIALWARCHILLAL 8 : Textile 14 : Others (Plastics, Mechanicals, Landry, Printing etc.) The columns of COD and Oil will be filled up by FEEMA/DCON

Table 3.1-4 Questionaire Tabl	e for factories
SISTEMA DE LICENCIAMENTO DE ATIV	VIDADES POLUIDORAS-SLAP Nº PROCESSO
CADASTRO DE INDÚSTRIAS D	E TRANSFORMAÇÃO
PARA USO EXCLUSIVO	
OI CÓDIGO EMPRESA OS RATA DIA MES ANO OS CÓ	DIGO ATIVIDADE COORDENADAS UTM (Km)
	07 NORTE 09 ESTE
REFERÊNCIA CARTOGRAFICA ZONEAMEN ESC 117 13 FL 13 QUADR 117 NUMERO 19 CUDIGS DESCRIÇÃO	TO 21 BACIA HIDROGRAFICA
ESC.[1] [13] FL. [15] QUADR [17] NUMERO [19] CODIGO DESCRIÇÃO	
28 INSC. ESTADUAL 25 C. G. C./CPF	FUNCIONAMENTO
	1 DATAWK
PRINCIPAL ATIVIDADE EXERCIDA	29 NORAS FUNC. P/DIA FUNC. P/SEM
	REG CONSELHO REGIONAL
	ALL CHEASEINS
	33. CRO = 32 Ha
IDENTIFICAÇÃO DA ATIVA	DADE
39	
	┺ <u>╴┺┯┹┉┺┉┺┟┉┺┟┉┺┟╴┶╶┖╶┖╶</u> ┺ ┈┠┉┠┉┠┈╟┈╓╽┈ ┨╴┨╴┨╴┠╴┠╶╵┤╞╵┨╶┨╶┠╶┠╶┠╶┠╶┨
Image: State of the s	
╞━━╌╌╌╴╸╉─└─└─┘╴┘╴╎╴╎╴╏╴╹╷╶╎╴╢	
ENDEREÇO DA ATIVIDAD	
	47] COD 49 CEP
	INICI [55]RA [UIST/HA]
ENDEREÇO DO ESCRITÓRI	
LOCALIDADE	BAIRRO
83. 88) (), TEL. MUNICIPIO	651COD. MUNIC.
67 STATUS 69 CARACTERISTICA ATIVIDADE EM ATIVIDADE 018 ÚNICA NO 067 71 DORMAL 018 ÚNICA NO 067 71	ÁREA (m ²) Nº DE FUNCIONÁRIOS
EN IMPLANTAÇÃO 026 231400	
E PROJETO E NAPLENTAÇÃO 034 PRINCIPAL 075 CONSTRUÍDA OSSATIVADA 042	PRODUÇÃO
PARALISADA 059 DEPENDENTE 083 73 TOTAL	
REPRESENTANTE JUNTO À F	EEMA
81 NOME	
83 CARGO	67] RAMAL
DECLARO SEREM VERDADEIRAS AS INFORMAÇÕES PRESTADAS	PARA USO EXCLUSIVO DA FEEMA
DECEMB SENSE FERDADEINAS NO INFORMAÇÕES FRESTADAS	RECEPÇÃO
LOCAL E DATA	
NOME	
CARGO NA EMPRESA	
ASSINATURA	
IDENTIDADE	

10938/26

۲

1104 - B

	SISTEMA	DE LICENCIAMENTO DE	ATIVIDADE	S POLUDORAS-SLAP	Nº PROCESSO)
Feema -	CAD	ASTRO DE INDÚSTR			RUBRICA FI	•
101		PRODU	ITOS FAB	RICADOS		
Construction of the second		DA FEEMA		PRODUTOS	CAPACIDADE DE PRODUÇÃO	UNILADE
CODIGO DO PRODUTO U	NID MEDIDA	QUANTIDADE			ANUAL	MERIDA
	-L-L					
				·	· · · · · · · · · · · · · · · · · · ·	·
						·
					·	
107	FONTES	S DE ENERGIA	7	ſ		1
TIPO	107 CÓD	QUANTIDADE	UNIDADE			İ
OLEO COMBUSTIVEL APF/BP	PF 018	<u></u>	m ³ /ANO	RESIDUOS	INDUSTRIA	IS
OLEO COMBUSTIVEL BTE	026		m ³ /ANO			
OLEO COMBUSTÍVEL E	034		m ³ /ANO	LIQUIDO	<u>3) (445) KEST(</u>	00(15)
ÓLEO COMBUSTÍVEL EPM	042		m ³ /ANO	UIS QUANTIDADE / ANO	ត	SUNIGALE
OLEO COMBUSTIVEL OC4	059		m ³ /ANO			
OLEO COMBUSTÍVEL DIESE	067		m ³ /ANO	SÓLIDO		
QUEROSENE	075		m ³ /ANO.	17 QUANTIDALE / ANO	្រ	JUNIDACE
CARVÃO ANTRACITO	083		1 / ANO			
CARVÃO BETUMINOSO	091		1 /ANO	SEM1 - SOLIDO	······································	
LIGNITO	109		+ / ANO	ET CHANTIDADE / AND	6	
COQUE "	116		1 / ANO			
CARVÃO VEGETAL	124		1 / ANQ	125 DESTING FINA	L DO(S) HEDICUOI	5)
GÁS DE PROCESSO (gerado na industria l	133		mil m ³ /ANO	ATERRO SANITARIO M	UNICIPAL	018
GAS NATURAL (de Campos)	140		milm ³ /ANO	ATERRO PROPRIO		026
GLP (de bujõo)	15.8		m ³ /ANO	REAPROVEITAMENTO P	TERCEIROS	034
GAS DE NAFTA (de rus)	166		m ³ /ANO	QUEIMA AO AR LIVRE		042
8AGAÇ0	174		1/ANO	INCINERADOR		059
LENHA	181		1/ANO	ESTOCAGEM		067
ENERGIA ELÉTRICA	190		KWH / MES	REAPROVEITAMENTO	PROPRIO	075
	992			<u>[]</u>		992
		CONSUMO		A]
UET INCORPORADA AO PRODUT	<u>•</u>	PRODUÇÃO (m3/DIA)	ISI DEMAIS A	GUAS DA PRODUÇÃO	TOTAL (m ³	/ DIA)
		FONTES DE	ABASTECIME	<u>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</u>	<u>1lll</u>	
REDE PUBLICA CEDA	E	2 REDE PÚBLICA MUNICIPAL	0209 [E]	FREÁTICO	HANANCIAL DE	SUPERFICIE
Nº MATRICULA NA CIA DE ABU		Nº MATRÍCULA NA CIA DE ÁQUAS				
	· [·]		1 H Poto	PROFUNDO	OUTROS	J

3-10

Ami				S POLUIDORAS-SLAP		FL.
	CADASTRO	DE INDUST	RIAS DE TRA	ANSFORMAÇÃO		
201		MATERIA	5 PRIMAS U	A REAL PROPERTY AND ADDRESS OF THE OWNER		
PARA USO	EXCLUSIVO DA FE	EMA	MATÉRIA	PRIMA	CONSUMO ANUAL	UNIDADE DE MEDIDA
		···	· · · · ·			
			·····			
. <u></u>	<u> </u>	_l_l				
	<u> </u>					
		LLLL		······		
			_	·····		
ORIGEM F	PONTOS DE DE					
	<u> S G O T O </u>	SANI		PARA USO EXC	LUSIVI LA F	
CORPO RECEPTOR				COD. S. ESGOTAM ¹⁴ COD	BACIA HIOROGH	AFICA
ORIGEM			<u> </u>			
		<u></u> ii		PARA USU EXC	LUSIVO DA P	FEEMA
CORPO RECEPTOR		·		COD. S. ESGOTAM ¹⁰ COD.	BACIA HIDROGI	RÁFICA
ORIGEM					<u> l</u>	
United in				PARA USO EXC	LUSIVO DA I	FEEMA
CORPO RECEPTOR				cóa s esgutan ¹⁰ cou	BACIA HIGROGI	RÁFICA
ORIGEM						
					LUSIVO DA	
CORPO RECEPTOR				COD. S. ESGUTAN ^{IO} COD.	BACIA HIDROG	RAFICA
ORIGEM				<u>Ⅰ</u> ⅠⅠ 1 L 1 1 1 1 1 1	<u></u>	<u></u>
ĊORPO	Ⅰ ⅠⅠ	<u></u>			LUSIVO DA I	
RECEPTOR				CÓD. S. ESGOTAN ^{IO} CÓD.	BACIA HIDROG	
13	PONT	OS DE EMIS	AO PARA A	MOSFERA		
10(2)		FONTE DE	EMISSÃO			TIPO DE EMISSÃO
QUIP.(3)			ر مى مەركە يەر يەر مەركە يەر مەركە يەر مەركە يەر يەر يەر يەر يەر يەر يەر يەر يەر يە			TICU GASES
			·			
				┕╍╍┠┉╴╂┉╍┠┈╍┠╍╍╻┨╼╴╴		
		······································				THE I
10938/26	والمعاهدة استقصاصه والم	╺╍┟╍╼┟╍╼┥╼		have been dealed and have been dealed and have been dealed at the second	<u></u>	4 - 8

, ,	~~~	SISTEMA DE LICENCIAMENTO I) De atividades pol lidi	ORAS-SLAP	Nº PROCESSO	a na anna anna anna anna anna anna ann
- -	-berna	CADASTRO DE INDÚST			RUBRICA FL.	
301		EST	OCAGEM			
	NATERIAL ESTOCADO	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	I	EXCLUSIVO E	A FEEMA	
· .	QUANTIDADE MÉO ANO	UNID. MEDIDA	301 CODIGO DO PRODUTO	CÓD. UNID. MÉDIDA	QUANTIDADE	CFORM
	FORMA					
	WATERIAL ESTOCADO		PARA USO	EXCLUSIVO D	A FEEMA	
	QUANTIDADE MED. ANO	UNID. MEDIDA	CÓDIGO DO PRODUTO	COD, UNID. MEDIDA	QUANTIDADE	GFORM
	FORMA	· · · · · · · · · · · · · · · · · · ·				
	MATERIAL ESTOCADO		PARA USO	EXCLUSIVO DA	FEEMA	1
	QUANTIDADE MED ANO	UNID. MEDIDA	CÓDIGO DO PRODUTO	COD, UNID. MEDIDA	QUANTIDADE	C.FOR
	FORMA	······································				+
	NATERIAL ESTOCADO		PARA USO	EXCLUSIVO DA	FEEMA	
	QUANTIDADE MED ANO	UNID. MEDIDA	CÓDIGO DO PRODUTO	CÓD, UNID. MEDIDA	QUANTIDADE	C FOR
	FORMA					
	WATERIAL ESTOCADO		PARA USO	EXCLUSIVO DA	FEEMA	
	QUANTIDADE MED ANO	UNID. MEDIDA	CÓDIGO DO PRODUTO	COD. UNID. MEDIDA	QUANTIDADE	C. FORI
	FORMA					
	NATERIAL ESTOCADO		PARA USO	EXCLUSIVO DA	FEEMA	
	QUANTIDADE MED ANO	UNID. MEDIDA	CODIGO DO PRODUTO	COD. UNID. MÉDIDA	QUANTIDADE	C FOR
	FORMA					
-	MATERIAL ESTOCADO	· · · · · · · · · · · · · · · · · · ·	PARA USC	EXCLUSIVO DA	FLEMA	
	QUANTIDADE NEO. ANO	UNID. MEDIDA	*conto do erconto	COO UNIO. MEDIDA	QUANTEDADE.	aron
.	FORЫA .				1 1 1	
00	a Mala Manda aka shi ka mana na mara mara ang sa	DESCRIÇÃO DO(S)	PROCESSO(S) E OPEI	RACOES IND	USTRIAIS	

÷.

2 - PENHA SEWERAGE BASIN 2.1 - Population = 750.000 inhabitants.	Reference: North Area of Rio de Janeiro Sewerage System. Final Report, 1991.	wastewater Superintengence. Operation and Maintenance Directory - Cedae. 2.2 - Domestic sewage per capita flow = 163 l/hab.d.	2.3 - Average BOD = 217 mg/l	Reference: Annual Report, 1991. Operation and Treatment Division. Wastewater Superintendence. Operation and Maintenance Directory - Cedae.	Remark: 2.2 - Av Tr		Reference: Nacional Demographic Research, 1991. Brazilian Institute for Geographics and Estatistics - IBGE. 3.2 - Domestic sewage per capita flow = 359 l/hsb.d.	3.3 - BOD = 243 mg/l.
guanabara bay sewerage basing	ALEGRIA SEWERACE BASIN - Population: 1.521.183 inhabitants	1.2 - Domestic sewage per capita flow: 256 l/hab.d. 1.3 - BOD = 240 mg/l	Reference:	Alegria Wastewater Treatment Flant Design. Report No.4. Calculation and Description Memorial. Multiservice Consultants Engineering S/A. 1991.	Remark: 1.1 - Arrangement from Great Area Water Supply Master Plan. Cedae, 1985.	1.2 - Evaluation on water consumption per capita in several Cedae's Water Districts. July, 1990.	<pre>1.3 - BOD affluent to the Treatment Flant, according to Cedae's research and determination.</pre>	

3--13

Reference: Annual Report, 1991. Operation and Treatment Division. Wastewater Superintendence. Operation and Maintenance Diretory -Cedae. Remark: Average flow Iiha do Governador Wastewater Treatment Plant equals to 22.977 m³/d.

- PAVDNA MERITI ACARI SEWERAGE BASIN

4.1 - Population = 1.611.378 inhabitants.

4.2 - Domestic sevage per capita flow = 210 1/hab.d.

4.3 - BOD = 224 mg/l.

Reference: Pavuna Meriti Acari Sewerage System Conception Study. STE Consultants Engineering S/A. February, 1992

5 - SARAPUI SEWERAGE BASIN

5.1 - Population: 998.644

Reference: Rio de Janeiro Great Area Sewerage Master STE Consultants Engineering S/A 1991.

5.2 - Domestic sevage per capita flow = 154 l/hab.d.

Reference: Sarapui Sewerage System Design.

Reference: Sarapui Sewerage System Design. Aquacon Consultants Engineering S/A. 1992.

5.3 - BOD = 168 mg/l

Reference: Sarapui Sewage Treatment Plant Design. IESA Consultants Engineering S/A. 1992.

6 - IGUACU BOTAS SEWERAGE BASIN

7 - CAMPOS ELISEOS SEWERAGE BASIN

8 - SURUI SEWERAGE BASIN

9 - CACHOEIRAS DE MACACU SEWERAGE BASIN

There is no design in study developed for these sewerage basins up-to-date, so it will be impossible to have some information or data.

10 - SÃO GONCALO SEWERAGE BASIN

10.1 - Population 846.833 inhabitants

Reference: São Goncalo Sewerage System Conception study.

Encibra Consultants Engineering S/A. 1989.

10.2 - Domestic sewage per capita flow = 200 1/hab.d.

10.3 - BOD affluent = 270 mg/l.

Reference: São Goncalo Wastewater Treatment Plant Design.

March, 1992.	Reference: Icarai Wastewater Treatment Plant
	design.
	Cedae
11 - NITEROI CENTRO NORTE SEWERAGE SYSTEM	
	Remark:
11.1 - Population = 193.037 inhabitants.	12.1 - Based on National Demographic Research,
-	1960.
11.2 - Domestic sewage per capita flow = 240 $1/hab.d.$	
Reference: Niteroi Centro Norte Sewage Final	13 - PAQUETA SEWERAGE BASIN
Disposal Design.	
STE Consultant Engineering.	13.1 - Population = 3.254 inhabitants
August, 1988.	
	Reference: National Demographic Research, 1991
11.3 - BOD = 200 mg/l	Brazilian Institute for Geographic and
	Estatistics - IBGE
Reference: Ponta de Areia Wastewater Treatment Plant	
Design.	13.2 - Domestic sevage per capita flow = 200 l/hab.d.
STE Consultant Engineering.	
January, 1991.	13.3 - Pollution load per capita = 54 g BOD/d
Remark:	Reference: Domestic sevage per capita flow based on
11.1 - and 11.2 - Arrangement from the Great Area Water	Technical Normatization, ABNT
Supply Master Plan Cedae, 1985.	NB-41 - Septic Tank
Population and average wastewater flow	Pollution load per capita base on
estimated for 1990.	application as usual by Cedae, for
	wastewater characterization.
12 - NITEROI SUL SEWERAGE BASIN	
12.1 - Donnilation = 245 000 inhahitants.	

12.2 - Domestic sewage per capita flow = 200 1/hab.d.

12.3 - BOD = 270 mg/l

Reference: Icarai Wastewater Treatment Plant

3-15

3.1.2 Production of Raw Sanitary Sewage and Urban Solid Waste

3.1.2.1 Production of Raw Sanitary Sewage

Table 3.1-5 shows the total production of raw sanitary sewage for each sewerage basin of Guanabara Bay, considering the total flow and the pollution load. The calculation was made applying the domestic sewage per capita flow and the average BOD of each sewerage basin, according to the reference listed previously.

	T *	*·····	······································
SEWERAGE BASIN	POPULATION	TOTAL FLOW	POLLUTION LOAD
	(inhabitants)	(m³/d)	(kg BOD/d)
Alegria	1.521.183	389.422	93.461
Penha	750.000	122.746	26.635
Ilha do Governador	197.005	70.724	17.186
Pavuna, Meriti, Acarí	1.611.378	338.389	75.799
Sarapuí	998.644	153.791	25.836
lguaçú-Botas	N.I	N.I	N.I
Campos Elíseos	N.I	N.I	N.I
Suruí	N.I	N.I	N.I
Cachoeiras Macacú	N.I	N.I	N.I
São Gonçalo	846.833	169.366	45.729
Niteroi Cento Norte	193.037	46.328	9.265
Niteroi Sul	245.000	49.000	13.230
Paquetá	3.254	651	176

Table 3.1-5 Total Production of Raw sanitary Sewage in Guanabara Bay Sewerage basins

3.1.2.2 Production of Urban Solid Waste

Table 3.1-6 shows the urban solid waste production for each city in the Great or Rio de Janeiro area.

The population is based on the National Demographic Research, 1991.

Brazilian Institute for Geographic and Statistics - IBGE.

The per capita production is based on Guanabara Bay Ecosystem Recuperation.

	and the second		· · · · ·	
	POPULATION	PER CAPITA	URBAN SOLID	
CITY		PRODUCTION	WASTE PRODUCTION	
	(Inhabitants)	(kg/hab.d)	(kg/d)	
D. de Caxias	635.338	0,646	410.428	
Itaboraí	161.398	0,670	108.136	
Magé	191.249	0,689	131.770	
Nilópolis	157.936	0,656	103.606	
Niteroi	435.658	0,823	358.546	
Nova Iguaçú	1.293.611	0,689	891.198	
Rio de Janeiro	5.473.343	0,890	4.871.275	
S.J. Meriti	424.689	0,670	284.541	
São Gonçalo	778.820	0,574	447.043	
TOTAL	9.552.042	X	7.660.643	

Table 3.1-6 Urban Solid Waste Production

The Urban Solid Waste Production is not the influence values for the Guanabara Bay (landfill) as it show in table 1.3.1.

3.2 SEWER SYSTEMS AND SEWAGE TREATMENT PLANT

3.2.1 Sewer Systems

CEDAE is responsible for the implementation, control and operation of the Greater Rio de Janeiro Sewer Systems.

The existing sewer systems of the Greater Rio de Janeiro area (wastewater collection systems) are shown in **Table 3.1-2** as point pollution sources.

In Greater Rio de Janeiro, - the central and northern areas of Rio de Janeiro City, Paqueta Island, Centro Norte and Icarai areas of Niteroi City are covered by sewer systems.

The Central and northern areas of Rio de Janeiro City contain several sewerage basins by system, according to Table 3.2-1.

Paqueta Island has 11km of sewer pipelines, the final disposal point of the sewage is Guanabara Bay.

Niteroi Central Norte located in Niteroi City has km of sewer pipeline.

Icarai also located in Niteroi City has km of sewer pipeline and the final disposal of the sewage is Guanabara Bay

SEWERAGE	TOTAL	SEWER	SEWER	SERVED	SEWERAGE
SUBBASIN	AREA	SYSTEM	SYSTEM	POPULATION	FINAL
	(ha)	AREA	LENGTH	(Inhabitants)	DISPOSAL
		(ha)	(km)		:
Irajá	1.450	1.355	165	200.000	Penha S.T.P
Penha	1.987	1.876	223	750.000	Penha S.T.P
Timbó Faria	1.739	1.285	144	300.000	Penha S.T.P
Alegria	3.980	2.858	300	800.000	Guanabara Bay
S. Cristovão	4.010	1.904	220	1.000.000	Guanabara Bay
Catumbí	519	516	55	N.I	Guanabara Bay
Mangue	62	62	10	30.000	Guanabara Bay
Centro	346	346	68	1 50,000	Guanabara Bay
Fundão	446	160	22	N.I	Penha S.T.P
I. Governador	N.1	N.I	178	250.000	I.Governador STP

Table 3.2-1 Sewerage Sub-basins Sewer System Characteristics

3.2.2 Sewage Treatment Plants

(1) Details of Existing Sewage Treatment Plants(Fig. 3.2-1)

The existing sewage treatment plants were characterized as treated point pollution sources in this chapter. The characteristics and details of each treatment plant are shown in the following figures.

(2) Operation and Maintenance Cost of Sewage Treatment Plants

As samples the operation and maintenance costs of Penha and Ilha do Governador Sewage Treatment Plants are shown in Table 3.2-2 for the year of 1991.

Operation and Maintenance Cost of Penha and
Ilha do Governador Sewage Treatment Plants.

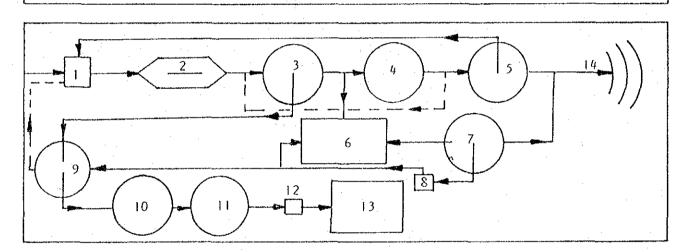
	STP - PENHA			STP - ILHA DO GOVERNADOR		
1991	FLOW	TOTAL COST	COST/FLOW	FLOW	TOTAL COST	COST/FLOW
	m³/mês	U\$/mês	U\$/m³	m³/mês	U\$/mês	U\$/m³
JAN	3.749.760	62.591,08	0,02	707.574	19.718,16	0,03
FEB	3.757.795	43.705,79	0,01	714.145	23.067,91	0,03
MAR	3.376:339	44.194,99	0,01	651.228	25.344,46	0,04
APR	3.760.473	41.329,57	0;01	725.826	23.533,31	0,03
MAY	3.618.950	42.874,65	0,01	700.468	22.844,39	0,03
אטנ	3.760.473	47.355,77	0,01	716.671	26.709,33	0,04
JUL	3.636.576	43.203,68	0,01	683.516	26.959,91	0,04
AUG	3.735.201	41.526,70	0,01	626.880	26.966,80	0,04
SEP	3.760.473	38.258,80	0,01	591.457	24.012,87	0,04
ост	3.639.168	28.868,10	0,01	686.038	20.730,67	0,03
NOV	3.760.473	23.435,28	0,01	743.478	19.451,32	0,03
DEC	3.633.984	27.301,65	0,01	724.649	21.438,55	0,03

REMARKS: From September to November the dollar rose enough to cause a lower cost for the plants ,

See FINANCIAL MARKET in the next page.

$$3 - 19$$

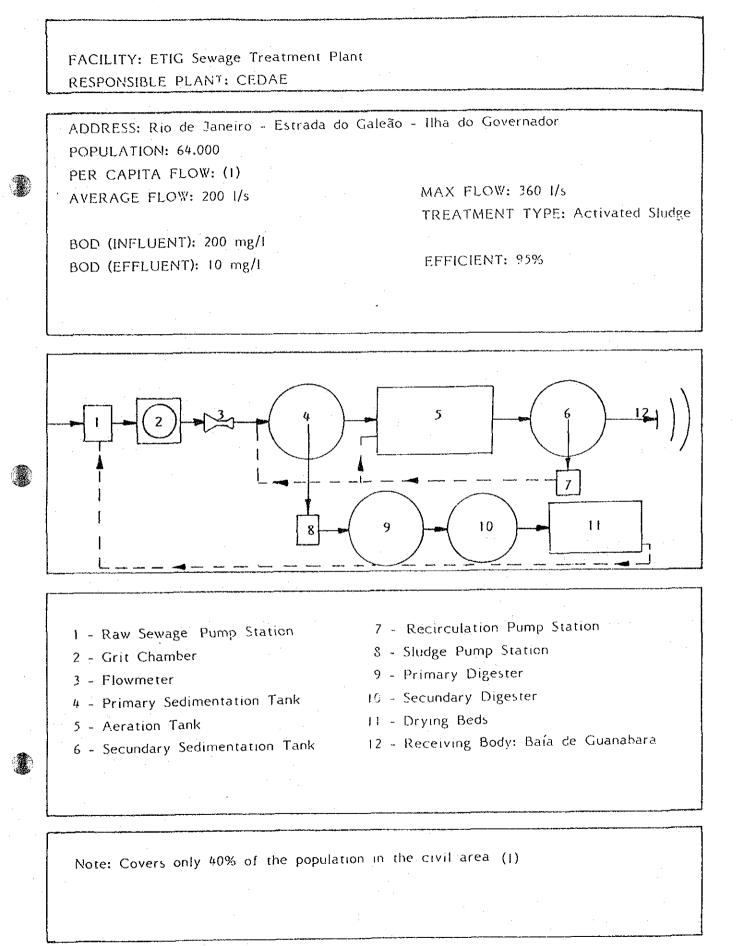
Fig. 3. 2-1(1) Details of Sewage Treatment Plants (PENHA)


FACILITY: PENHA Sowage Treatment Plant RESPONSIBLE PLANT: CEDAE

ADDRESS: Rio de Janeiro - Av. Brasil - Penha POPULATION: 750.000 PER CAPITA FLOW: 230 I/hab/day AVERAGE FLOW: 1.400 I/s M.

MAX FLOW: 1.600 I/s TREATMENT TYPE: Biological

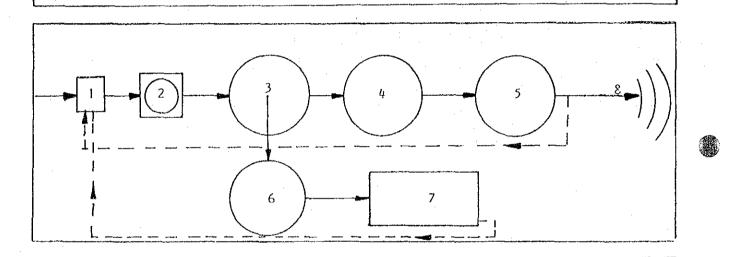
BOD (INFLUENT) : 190 BOD (EFFLUENT) : 17 mg/1


EFFICIENT: 91%

- I Raw Sewage Pump Station
- 2 Grit Chamber
- 3 Primary Sedimentation Tank
- 4 Tricling Filter
- 5 Secundary Sedimentation Tank
- 6 Aeration Tank
- 7 Secundary Sedimentation Tank
- 8 Recirculation Pump Station
- 9 Thickner
- 10 Primary Digester Tank
- 11 Sludge Pump Station
- 12 Secundary Digester Tank
- 13 Pressure Filter
- 14 Receiving Body: Baía de Cuanahara

Note: Treatment type: Biological Tricklings Filter 37,8% (influent flow) Activated sludge 77,5 % (effluent flow)

Fig. 3.2-1(2) Details of Sewage Treatment Plants (ETIG)


Fig. 3.2-1(3) Details of Sewage Treatment Plants (ETEG)

FACILITY: ETEG Sewage Treatment Plant RESPONSIBLE PLANT: Air Ministry

ADDRESS: Rio de Janeiro, Praia São Bento - Ilha do Governador POPULATION: (1) PER CAPTA FLOW: (1) AVERAGE FLOW: 40 1/s MAX FLOW: 70 1/s TREATMENT TYPE: Trickling Filter

BOD: (INFLUENT): 290 mg/l BOD: (EFFLUENT): 29 mg/l

EFFICIENT: 90 %

- 1 Raw Sewage Pump Station
- 2 Grit Chamber
- 3 Primary Sedimentation Tank
- 4 Tricling Filter

- 5 Secundary Sedimentation Tank
- 6 Primary Digester Tank
- 7 Dryng Beds
- 8 Receiving Body: Baía de Guanabara

Note: (1) Temporary ocupation (air force base) (1) It'is operated by CEDAE

Fig.3.2-1(4) Details of Sewage Treatment Plants (ETAR)

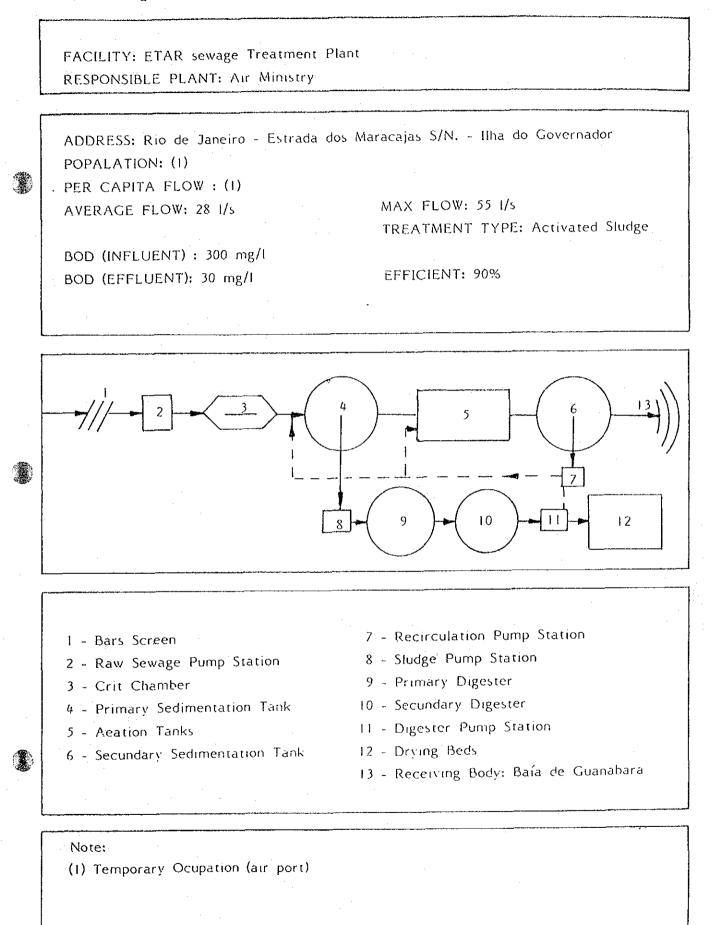
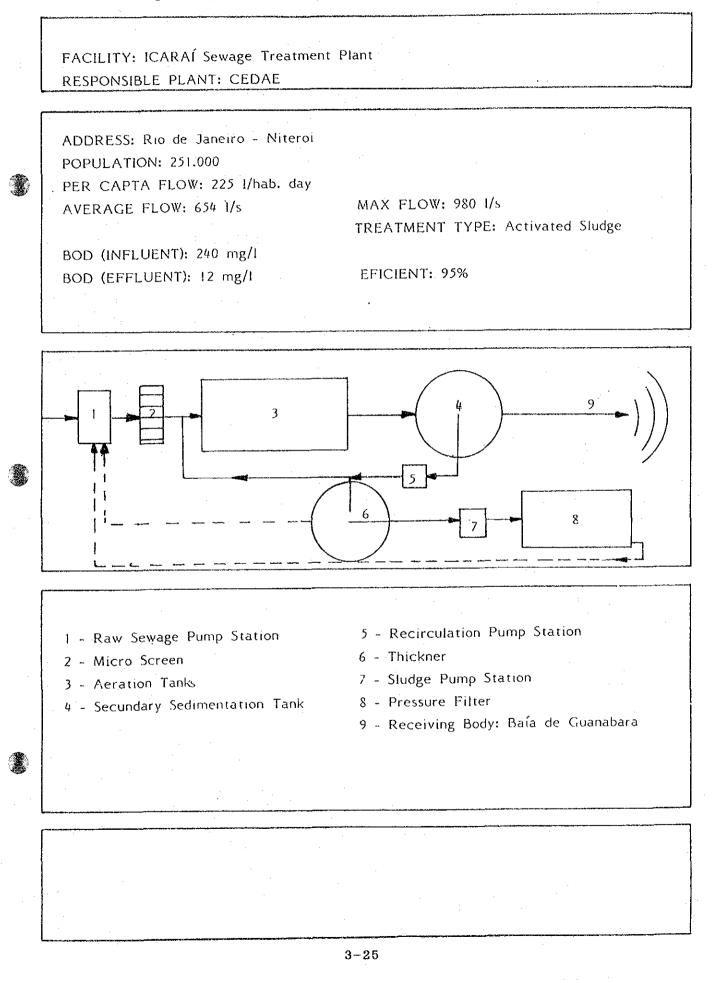



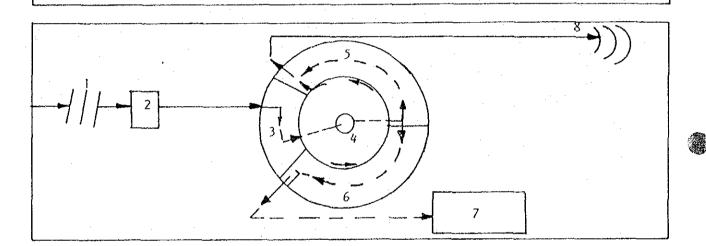
Fig. 3. 2-1(5) Details of Sewage Treatment Plants (ETAR-TECA)

FACILITY: ETAR-TECA Sewage Treatment Plant. RESPONSIBLE PLANT: Air Ministry ADDRESS: Rio de Janeiro, Galeão - Ilha do Governador POPULATION: (1) PER CAPTA FLOW (1) MAX FLOW: 12 1/s AVERAGE FLOW: 6,6 1/5 TREATMENT TYPE: Oxidation Ditch BOD (INFLUENT): 270 mg/l EFICIENT: 90% BOD (EFFLUENT): 27 mg/l 1 - Bars Screen 2 - Raw Sewage Pump Station 3 - Grit Chamber 4 - Oxidation Ditch 5 - Recirculation Pump Station 6 - Recerving Body: Baía de Guanabara Note: Temporary Acupation (air port) (1)

Fig.3.2-1(6) Details of Sewage Treatment Plants (ICARAI)

Fig.3.2-1(7)Details of Sewage Treatment Plants (ACARI)

FACILITY: ACARI Sewage Treatment Plunt RESPONSIBLE PLANT: CEDAE

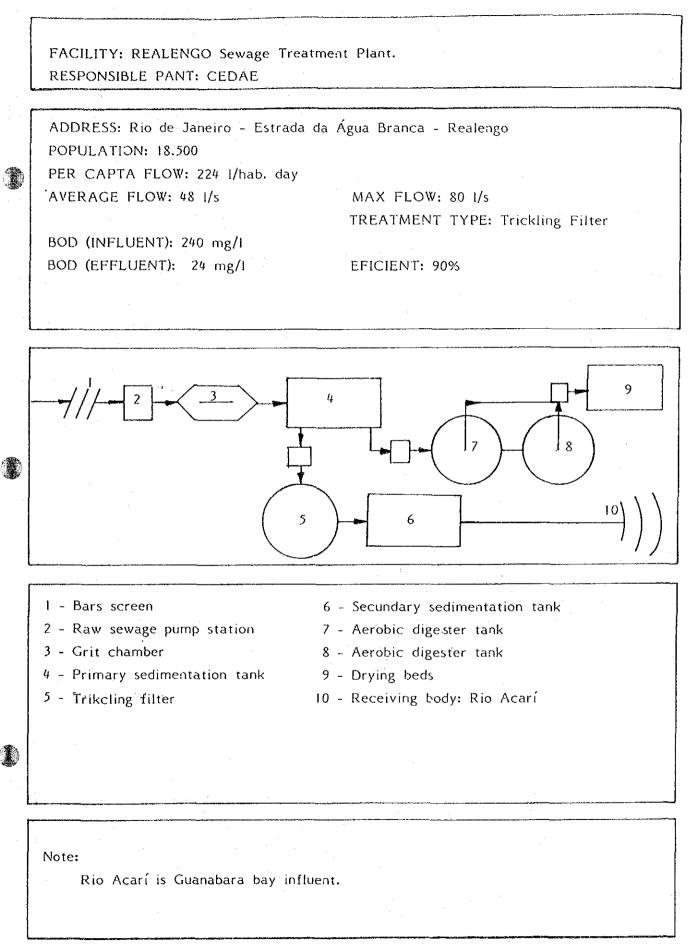

ADDRES: Rio de Janeiro - Deodoro - Vila Militar POPULATION: 69.120 PER CAPTA FLOW: 225 I/hab. day AVERAGE FLOW: 180 I/s MAX FLC

MAX FLOW: 325 1/s

Treatment type: Activated sludge BOD (INFLUENT): 240 mg/l

BOD (EFFLUENT): 12 mg/l

EFICIENT: 97%


- 1 Bars screen
- 2 Raw sewage pump station
- 3 Aeration tank
- 4 Sedimentation tank

- 5 Rearation tank
- 6 Aerobic Degester
- 7 Drying beds
- 8 Receiving Body: Rio Acarí

Note:

Rio Acarí is Guanabara bay influent.

Fig.3.2-1(8) Details of Sewage Treatment Plants (REALENGO)

3.2.3 Water Quality of Sewage Discharge

Table 3.2-3 shows the average wastewater characteristics of Penha, Ilha do Governador and Acari Sewage Treatment Plants.

LABORATORY	STP	STP	STP
ANALYSIS	PENHA	I.GOVERNADOR	ACARI
рН	6,5	6,8	6,7
Settleable Solids (mg/l)	3,0	5,3	5,4
Total solids (mg/l)	485,0	572,0	535,0
Fixed total solids (mg/1)	175,0	263,0	158,0
Suspended solids (mg/l)	146,0	184,0	278,0
Fixed suspended solids (mg/1)	39,0	36,0	45,0
BOD (mg/l)	114,0	150,0	235,0
Grease (mg/1)	-	12,0	· ·
Fecal coliform (NMP/100 ml)	50 x 10 ⁶	30×10^6	30×10^{6}

Table 3.2-3 Characteristics of Effluent Sewage

Reference: Niterói Centro Norte Sewerage System Conception Study. STE Consultants Engineering S/A. July, 1988.

3.2.4 Water Use volume

.

The total water consumption in November 1992, according to each CEDAE's Water District, located at Guanabara Bay Basin, is given in Table 3.2-4.

:					
CEDAE's WATER	RESIDENTIAL	COMMERCIAL	INDUSTRIAL	PUBLIC	TOTAL
DISTRICT	(m³/Month)	(m³/Month)	(m³/Month)	(m³/Month)	(m³/Month)
Niterói	2.515.460	341.623	87.787	177.714	3.122.586
São Gonçalo	3.070.183	247.685	102.107	41.107	3.461.078
Cach.Macacú	43.195	2.800	21	3.300	49.318
Paquetá	44.381	1.751	-	4.639	50.772
Piabetá	192.700	12.082	65	1.900	206.747
Alcantara	847.961	102.408	35.322	4.871	990.563
Cascadura	4.402.498	446.815	152.654	122.016	5.123.984
Deodoro	4.112.399	195.189	106.605	228.641	4.642.834
Centro	4.122.021	1.674.271	285.243	846.228	6.927.764
Tijuca	3.348.490	449.288	416,166	271.310	4.485.256
Meier	3.752.567	367.423	254.114	143.121	4.517.226
Ramos	3.275.491	524.279	399.279	230.375	4.430.015
I.Governador	1.073.181	195.007	29.518	113.901	1.411.608
D.Caxias	1.901.233	206.022	24.523	43.244	2.175.023
J.Primavera	750.953	26.474	43.200	87.278	907.907
Queimados	568.738	29.084	19.748	25.143	642.715
Nova Iguaçú	2.296.505	250.663	70.263	40.644	2.658.076
Belford Roxo	2.300.814	153.746	247.584	11.526	2.713.671
S.J.Meriti	2.178.558	242.494	15.997	55.925	2.492.975
Nilópolis	808.968	56.858	2.146	30.039	898.013

CHAPTER 4

INDUSTRIAL WASTEWATER CONTROL AND ITS CHARACTERIZATION

CHAPTER 4

INDUSTRIAL WASTEWATER CONTROL AND ITS CHARACTERIZATION - Monitoring Results of Industrial Wastewater

4.1 Current Situation of Industrial Wastewater

The Guanabara Bay basin constitutes one of the most important industrial parks in the country it accounts for, approximately, 6,000 potentially polluting factories involved in various activities, including chemical, petrochemical, food, textile, beverage, metal finishing, etc.

The oil refinery at Duque de Caxias, part of the PETROBRAS petrochemical complex, contributes greatly in terms of industrial pollution. Its liquid effluents contain, significant amounts of oil and other organic matter, heavy metals, phenols and toxic organic substances that are possibly carcinogenic or mutagenic.

Many seafood producing factories located in the municipalities of Niteroi and Sao Goncalo generate large volumes of effluents with high concentrations of oil and organic matter, releasing also, unpleasant smells which incommodes the inhabitants of the region. Almost all factories in this industry do not have treatment facilities.

In the metal finishing sector, the total pollution discharged from the many small scale factories contributes significantly.

In 1988, it was estimated that about 9.5 t/d of oil was discharged into the bay, 3.5 t/d from the Duque de Caxias refinery, 1.0 t/d from the marine terminal, 2.8 t/d from other industries and 2.2 t/d from the 40 shipyards and 2,000 gasoline stands.

An oil control plan started in 1988 to reduce by, approximately 50% to oil discharged into Guanabara Bay. It was planned to install small scale oil separators in each gasoline stand to control of discharge of oil but this plan was unsuccessful doe to the economic recession.

Currently 23 plants have disposal treatment facilities in operation and 13 others are in the process of constructing. The names of these plants are listed in Table 4.1-1 and Table 4.1-2.

Table 4.1-1 Industries with Treatment Facilities

No.	Name of Industry
01	Sidney Ross (Sanofi Winthop Farmaceutica)
02	Ciba Greigy
03	Refrigerante Niteroi S/A
	Rio de Janeiro Refrescos S/A (Bangu)
05	Pan-Americana S/A Industria Quimica
06	Bayer do Brasil
07	Petroflex/Nitriflex Industria e Comercio S/A
08	Industria de Conservas Santa Iria
09	Fabrica Unidas Tecidos, Rendas e Bordados
10	Shell Brasil S.A.
11	SPAM
	Cia. Fluminense de Tecidos S/A
13	Fabrimar
14	IAB
	S/A Marvin
	Industria Alimenticia Beira Alta
17	Cibran - Cia. Brasileira de Antibioticos
	Sadia Concordia S/A Industrias e Comercios
19	Vulcan Material Plastico
	Solutec
21	Cooperative Central de Produtores de Leite
	Sao Goncalo
22	
23	Texaco do Brasil S/A Produtos de Petroleo

Table 4.1-2 Industries with Treatment Facilities (in course of constsruction)

No.	Name of Industry
	Cibraple S/A
02	Kibon Industrias Alimenticias S/A
03	Reduc - Petroleo Brasileiro S/A
04	Quaker Alimentos e Conservas Conqueiros S/A
05	Refinaria de Petroleo Manguinhos
	IFF - Essencias e Fragancias
07	Conservas Ribeiro S/A
08	Rio de Janeiro Refrescos S/A (Bonsucesso)
09	Getec - Guanabara Quimica Industrial S/A
10 İ	Refinaria Piedade S/A
	Rioquimica S/A
	Tasa Lubrificantes Ltda.
	Bloch Editores S/A

4.2 FEEMA Monitoring Program

FEEMA selected recently 455 factories which contribute 90% of all organic matter discharged into Guanabara Bay.

Total BOD, heavy metals and oil loads generated by all factories are estimated at 120 t/d, 0.55 t/d and 4.8 t/d, respectively.

To effectively control these pollution sources, FEEMA recently drew up an industrial waste control program for the Guanabara Bay basin following a request from the I.D.B.

According to this program, FEEMA will obligate 455 factories to treat their wastewater during the 4 years of the program. These factories are listed in Table 4.2-1.

The expected reduction of BOD, heavy metals and oil loads for each year is shown in Table 4.2-2.

Table 4.2-3 shows the names and location and estimated pollution loads of the 150 heaviest contributors of pollution loads in the Guanabara Bay basin selected by FEEMA, taking into consideration their activities.

Fig. 4.2-1 shows the general geographical distribution in the Guanabara basin of these factories. As it can be seen, most of the factories are located on the west and north west sides of the Guanabara basin, especially, in the Rio Timbo-Faria tributary basin. Further, food and chemical industries predominate, in terms of number as well as BOD loads, corresponding, to 55 to 59% of the total pollution loads from all factories. Table 4.2-4 ranks the industries in terms of contribution of BOD.

Fig. 4.2-2 presents, schematically, the discharge of industrial BOD loads into the tributary basins. The Niteroi and Sao Goncalo regions, where there is a conglomeration of seafood producers, constitute the greatest BOD load contributors in the Guanabara basin, followed by the Rio Timbo-Faria and Rio Iguacu tributaries.

Fig. 4.2-3 compares industry and domestic BOD loads flowing into each tributary basin to demonstrate the point source pollution distribution. Domestic loads were estimated, based on the population of each tributary basin (1991), multiplied by 50g BOD/cap./day.

The Sao Joao de Meriti and Sarapui basins generate relatively large BOD loads composed, only 10 and 5% of industrial source. This situation is totally different to the Niteroi and Sao Goncalo tributaries, where industrial sources are almost 1.8 times greater.

In the Rio Timbo-Faria basin, also, industrial BOD is discharged in appreciable amounts.

The explanation mentioned above concerns only organic loads. According to FEEMA data, approximately 75 factories in the metal finishing are mainly responsible for 362 kg of heavy metals.

Finally, FEEMA plans to improve oil control efficiency, including, almost 2000 gasoline stands that constitute one of the most important pollution sources.

Table 4.2-1 Chronogram of the Industrial Control

Year	Number of Industries with Control	Accumulated Number
01	50	50
02 03	100 1 150	150 300
04	155	455

Table 4.2-2Reduction of Pollutatant Loads
expected or Each Year (kg/d)

Year	BOD	Heavy Metal	0ils
01	62,998		950
02	26,812	89	552
03 1	4,513	150 İ	185
04	3,009	51	428
Total	97,332	362	2,185

Table 4.2-4 Rank of the industries in term of conribution of BOD Loads

TYPE OF INDUSTRY	NUMBER OF INDUSTRY	BOD LOADS (ton/day)
FOOD	38	41.5
CHEMICAL	44	16.4
TEXTILE	20	8.4
BEVERAGE	3	7.1
PAPER	3	4.4
PHARMACY	8	3.2
LAUNDRY	4	2.8
GRAPHIC	4	0.9
OTHERS	26	5
Total	150	89.8

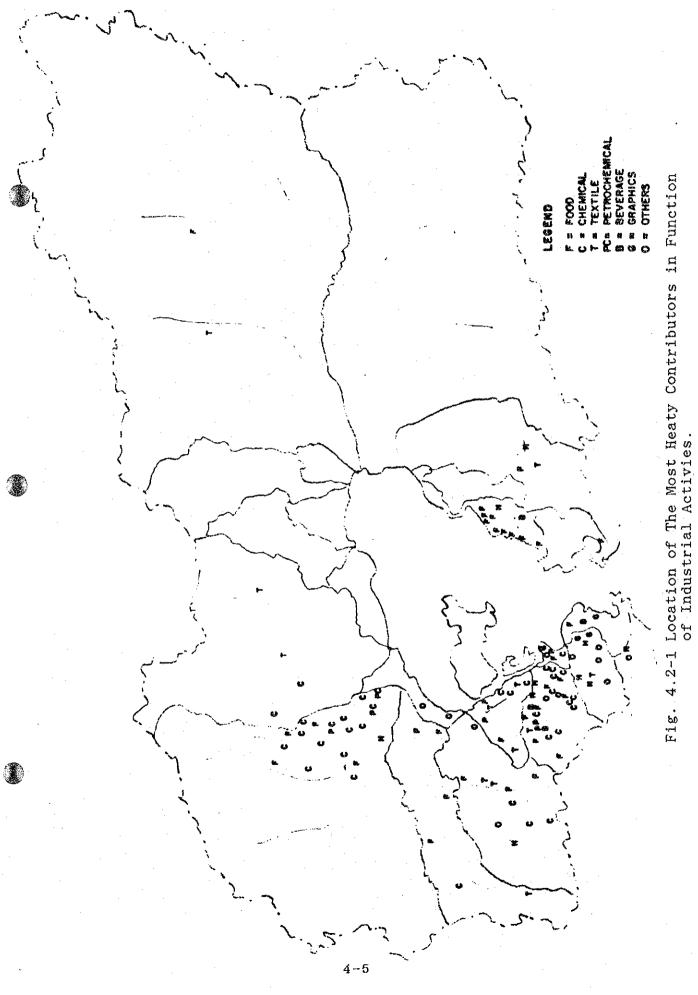


Table 4.2-3 Name of Industries with Location and BOD loads

Recieving Body		BAIA DE CUANABARA	RIO SARACURUNA	REDE CANAL CUNHA	BAIA DE GUANABARA	RIO SOBERBO	RIO TIMBO	BAIA DE GUANABARA	BAIA DE GUANABARA	BAIA DE GUANABARA	5			RIO DAS TINTAS		RIO IGUACU	RIC SARAPUI	RIO ESTRELA	RIO IGUAÇU RIO DA BOTA.		REDE RIO ACARI	RIO PIABETA	EMISS. IPANEMA	RIO JOANA	BAIA DE CUANABARA	RIC DOS CACHORROS	RIO IGUAÇU	BAIA DE GUANABARA	REDE EMIS. IPANEMA	RIO IGUAÇU	REDE RIO IRAJA			REUG KIO F. LIGBO Bata de chanabera			CANAL DO CUNHA	REDE RIO IRAJA	-	REDE RIO IRAJA	RIO TIMBO	RIO IRAJA	REDE ETE PENHA	BAIA DE GUANABARA	RIO ACARI		07.0 11.00 COMPANYA 010 11.500			
3 О D (К9/д)		6700	4400	4000	2400	2304	2300	2131	2095	1940	1800	1760	12.8	1500	1320	1320	1290	1200	1200	1122	1120	921	912	860	860	829	820	800	794	792	720	720	002	9999 9960 9	643		583	530	530	530	520	520	515	510	005	000		004	450	•
ТУРе	-	FOOD	CHEMICALS	BEVERAGE	FOOD	PAPER	BEVERAGE	FOOD	FOOD	FOOD	FOOD	FOOD	FOOD	TEXTILE	F001	PETROCHEMICALS	FOOD	TEXTILE	CHEMICALS	PAPER	FOOD	TEXTILE	LAUNDRY	LAUNDRY	FOOD	BEVERAGE	FOOD	FOOD	PHARMACEUTICALS	PETROCHEMICALS	FOOD	F00D	FOOD	CHEMICALS FOOD	FOOD	FOOD	FOOD	LAUNDRY	LAUNDRY	FOOD	FOOD	TEXTILE	TEXTILE	FOOD				FOOD	BEVERAGE	1
Coordinates East			676.'U	684.86	695.44		677.58				670.51	678.99	680.50			678.25	674.70	680.63	677.91			687.96	681.26			646.84	675.33			679.60	•		685.55	696. M		673.52		674.85				676.04		695.44	90.079		5	776 69	698.32	
U T M COO North			7497.15	7465.34	7472.82		7470.17				7477.56	7467.48	7466.47			7487.05	7483.21	7498.03	7487.74			7501.17	01.9245			7470.80	7492.72	•		7486.60	• .		7456.30	7474 64		7479.87		7475.78			:	7475.70		7474.30	7470.02		08.4/4/	2484 05	7473.34	
n ² x x x 3		DOI QUAKER ALIMENTOS	RIOQUIMA	003 CIA CERVEJARIA BRAMMA - CENTRO	004 CONSERVAS PIRACEMA	005 CIBRAPEL	006 RIO DE JANEIRO REFRESCOS S/A	007 ATLANTIC IND CONSERVAS	COB METAL FORTY	009 FRIDUSA - FRIGORIFICOS IND DE ALIMENTOS			_			ŝ	OIS FRIGORIFICO SANTA LUCIA LIDA	~	018 ENQ - EMPRESA NACIONAL DE Q IMICA	019 FABRICA DE PAPEL TANNURI	020 ABATEDOOURO MADUREIRA	021 MULTIFABRIL S/A	022 TOALHEIRO BRASIL LTDA	023 LAVANDERIA DOS HOTEIS SEMILARES	024 CONVERBRAS S/A INDUSTRIAL	025 REFRICERANTE CONVENCAO	-	027 CONSERVAS RIBEIRO			VIVAMAR		N 0	UJG FLURASININ FRAGRANCIA E AROMA LIUA Dia powsedure dhri			037 REFINARIA PIEDADE		039 TOALHEIRO MAIAMI		SANTA MONICI	DE MILLUS					UNI SUL RILPHAIL UL ALIACRIUS S/A INU E LUN Dad Dine - Vita c/a			

4-6

3

۲

Table 4.2-3 Name of Industries with Location and BOD loads

	U T M Coc	Coordinates		BOD	Recievina
۵۵ ۲ ۲	North	East	TYPe	(Kg/d)	Body
051 BLOCH EDITORES S/A			GRAPHIC ARTS	448	
052 GRETISA S/A FABRICA DE PAPEL	7469.06	676-84		430	RIO FARIA
053 COCA - COLA AV SUBURBANA	7467.91	676.34	BEVERAGE	420	
IRMAK IND TEXTIL ESPECIALIZADA S/A	7462.93	679.92	TEXTILE	420	RIO MARACANÃ
SAX QUIMICA FINA E HIDROCARBONTEOS			CHEMICALS	420	
	7475.91	674.99	PAPER	420	
	7472.45	703.42	FOOD	405	RIO ALCANTARA
	7470.94	677.74	TEXTILE	382	RIO TIMBO
			CHEMICALS	380	RIO JACARÉ
			CHEMICALS	380	CANAL DO CUNHA
QUIMITEC PRODUTOS QUIMICOS LTDA	7491.35	676.40	CHEMICALS	380	RIO IGUACU
			FOOD	381	BAIA DE GUANABARA
OFICINA DO CROM					
	7469.06	683.47	MECHANICAL	380	BAIA DE GUANABARA
	7490.35	676.12	FOOD	378	RIO IGUAÇU
	7471.42	703.10	TEXTILE	376	RIO ALCANTARA
	•		3 Z Z	375	RIO PAVUNA
			PERFUMERY	360	REDE C.DO CUNHA
-	7467.29	682.75	CHEMICALS '	360	BAIA DE-GUANABARA
PRODUTOS QUIMICOS LTDA			CHEMICALS	348	· .
	7505.68	701.26	TEXTILE	346	RIO RONCADOR
	7492.12	675.48	FOOD	340	RIO IGUACU
FIAÇÃO ESPERANCA S/A	7470.40	677.66	TEXTILE	330	REDE TIMBO-FARIAS
			CHEMICALS	330	RIO IGUACU
075 BADUC	7488.20	675.80	PETROCHEMICALS	330	CANAL DA TOMADA
	7482.60	659,93	FOOD	322	RIO IGUACU
÷ 1	7469.18	682.36	FOOD	320	BAIA DE GUANABARA
	7493.10	679.78	CHEMICALS	320	RIO ESTRELA
			GRAPHIC ARTS	320	REDE B. GUANABARA
		-	CHEMICALS	320	RIO JACARE
	7476.30	671.57	TEXTILE	318	RIO ACARI
_			PHARMACEUTICALS	316	REDE B.GUANABARA
083 INDUSTRIA DE CARNES SILVANIA DE MILOPOLIS	7477.96	662.79	FOOD	312	RIO SARAPUI
			FUME .	310	
FABRICA DE ESTOPAS GREGORIANO			TEXTILE	310	RIO IRAJA
			CHEMICALS	308	BAIA DE CUANABARA
	7492.26	675.22	CHEMICALS	300	RIO IGUAÇU
			CHEMICALS	300	
			CHEMICALS	300	RIO ACARI
			CHEMICALS	300	RIO IGUAÇU
		,	CHEMICALS	300	
NOVA CC	7471.57	679.54	TEXTILE	290	B.GU
	7455.83	680.68	CHEMICALS	288	
	14/6-10	681.85	OTHERS	284	REDE ETE.I.GOVERN
	7354.35	638.55		1780	
	7465,06	685.42		280	
CUDDING EMPRESA JORNALISTICA	1465.44	685.20	CRAPHIC ARTS	270	
UVB CURTUME ERASILIA ARTE CUURUS LTUA Dod Ptre - Petry			CHEMICALS	270	
	00 9676		しまたっ」ときため	647	
STATES OF SEVER CANNOON DE LOS JENIELS	00 · 0 · # ·	10-110	TEATLLE	260	RIO ACARI

	Recieving Rodv	6000	REDE B. GUANABARA	RIO IGUAÇU	REDE B. GUANABARA	RIO JACARE			RIO FARIA	RIO IRAJA		REDE	•	BAIA DE GUANABARA			RIO MARACANA			KIO QUEIMADO						RIO TIMBO					RIO SAKACURUNA	TAKAAT CTA					BAIA DE GUANABARA	RIO IGUAÇU					CANAL PENHA						
	8 0 D	17976	260	260	262	240	240	240	240	232	232	230	230	220	220	210	210	210	210	2002	- - 	רא <u>ן</u> ראי	061	190	190	180	180	172	170	0/1	2/1	021	170	160	160	160	160	160	160	155	150	148	140	091	140	140	135	135	
	e F > -	r 2	CHEMICALS	CHEMICALS	CHEMICALS CHEMICALS	CHEMICALS	CHEMICALS	PHARMACEUTICALS	CHEMICALS	CHEMICALS	TEXTILE	CHEMICALS	TEXTILE	PHARMACEUTICALS	CHEMICALS	INK	PLASTIC	PHARMACEUTICALS	PHARMACEUTICALS	rood	PRAKRACEUTICALS	CHEMICALS	CHERICALS	PHARMACEUTICALS	PHARMACEUTICALS	TEXTILE	CHEMICALS	CHEMICALS	CHEMICALS	CHE/PHAR	THEFT ALS	PTIME	and a	PHARMACEUTICALS		PERFUMERY	OTHERS	CHEMICALS	CHEMICALS	PERFUMERY	CHEMICALS.	FOOD	CHEMICALS	TEXTILE	CHEMICALS	PAPER	FOOD	CHEMICALS	
	Coordinates Fact	1007	•	676.09	661.59 678 88			704.33		642.06		679.57			676.14	675.75	682.22	685.36		:		•		679.65	679.25	677.66	681.66			640.40	20.614	00 029	679.11	679.15		682.41	675.88	674.76					678.49			·		647.94	
	UTM CO			7490.14	741.48			7470.40		7483.85		7470.64			7491.54	7478.50	7466.26	7465.12						7470.50	7470.11	7470.52	7467.18			7408.10	21.2241	7469.54	7461.74	7464.83		7463.76	7480.34	7491,92		•			7472.71	*				7471.29	
· ·	2 2 2 2 2 2 2 2		UNIÃO FABRIL EXPORTADORA - UFE		103 NHEER EAVKEENUIRENIOS 104 inn nf saraffe Neitean inna		106 MARVELLOS IND COM MAT LIMPEZA E PROD QUIM	107 FARMOQUIMICA S/A	108 CASTROL DO BRASIL LTDA	109 DIVINA DAMA IND E COM LIDA	110 ESTOPAS GUARANI IND E COM LTDA	LTDA	112 REFILUBI - RE-REFINADORA DE OLEOS LUBRIFIC LTDA	113 LABORATORIOS B BRAUN S/A	114 INCOMEX S/A ENG IND E COM	IIS COLORKIT IND E COM DE TINTAS	116 BOTONIFICIO F GOMES	117 MAKROS IND FARMACEUTICA	ILS FARMAC PRODS FARMACEUTICOS	IL9 CAR GILL AGRICOLA	120 ALFREDO BUCHMEIN	121 POLVIL QUIMICA INDUSTRIAL LIDA	IZZ COLORTIN S/A INDS QUIMICAS	123 INSULA IND E COM DE COSMETICOS	124 BARRENE IND FARMACEUTICA	125 MARIALVA TEXTIL S/A	126 CYANAMID QUIMICA DO BRASIL LIDA	127 ORWEL QUIMICA S/A	128 GRUPO QUIMICA INDUSTRIAL LTDA		130 NITRITEC INDUSTRIA QUIMICA 131 mertie confermânce	132 FINULIA CONFREYORS 133 FIL DE FICEBODAS CONTES FONT - DU SURURRANA	CIA DE CIGRAROS SOUZA CRUZ -	134 SANOFI PHARMA DO BRASIL LTDA	135 DEFARIA LABORATORIO COM DIST LTDA	136 LAB LEITE DE COLONIÀ STUDÀRT S'À IND COM	137 ANCORA COM E IND DE ESTOPAS LIDDA	138 PROQUISA COM E IND DE PRODS QUIMICOS LTDA	139 PRODUTOS INDUSTRIAIS OXIDEX LTDA	140 IND QUIMICAS ROSA LTDA	141 EKA QUIMICA LTDA	142 SENGAL DA BAHIA COND IND E COM LTDA	143 PROQUIMICA LTDA 144 INN DE CERROCERTES BUCES IMON	145 SAYONARA INDUSTRIAL	146 FABRICA DE TINTAS	147 CARIOCA DE ARTEFATOS DE PAPEL S/A	148 INDUSTRIA E COMERCIO S/A	149 QODOR QUIMICA IND LTDA 140 caint germain fristais de securanca lidda	

Table 4.2-3 Name of Industries with Location and BOD loads

.