REFERENCES

REFERENCES

ALLARD, M., AUBERT, J. -M. et LACOSTE, Ph. (1970) Géologie de Madagascar. l'Ecole, Paris, 89P.

AUROUZE, J. (1953) Etude géologique des feuilles Fotadrevo-Bekily, au 1/100.000. Travaux du Bureau Géologique, numéro 42. Service Géologique, Tananarive, 44P.

BAZOT G., RAZAFIMANANTSOA et RAMANITRIRAISANA C. (1978) Carte géologique de feuille Sainte Luce. La coordination a ete effectuee par G. BAZOT. Service Géologique de Madagasikara, Tananarive.

BEHIER, J. (1960) Contribution a la minéralogie de Madagascar. Ann. Géol. Madag., XXIX, 78P.

BESAIRIE, H. (1964) Madagascar, feuille du Sud, carte géologique, au 1/1.000.000. Service Géologique de Madagascar, Tananarive.

BESAIRIE, H. (1966) Gites minéraux de Madagascar. Ann. Géol. Madag., XXXIV. premier vol., 437P.

BESAIRIE, H. (1970) Carte géologique, feuille Fianarantsoa numéro 7, au 1/500.000. Service Géologique de Madagasikara, Tananarive.

BESAIRIE, H. (1970) Carte géologique, feuille Ampanihy numéro 8, au 1/500.000. Service Géologique de Madagasikara, Tananarive.

BESAIRIE, H. et COLLIGNON, M. (1972) Géologie de Madagascar. I. Les Terrains Sédimentaires, Ann. Géol. Madag., XXXV. 463P.

BESSON, M. (1953) Carte géologique de feuille Ampandrandava, au 1/100.000. Travaux du Bureau Géologique, Service Géologique, Tananarive.

R – 1

- BOULANGER, J. (1953) Etude géologique des leuilles Ejeda-Gogogogo, au 1/100.000, campagne 1952. Travaux du Bureau Géologique, numéro 45, Service Géologique. Tananarive, 70P.
- BRENON, P. (1953) Etude géologique des feuilles Isakoa (J. 58), Betroka (K. 58) et d'une partie de la feuille lanakaly (l. 58), au 1/100.000, campagne 1952. Travaux du Bureau Géologique, numéro 48, Service Géologique, Tananarive, 105P.

DELBOS, L. et NOIZET, G. (1955) Carte géologique de leuille Tsivory, au 1/100.000. Travaux du Bureau Géologique, Service Géologique, Tananarive.

DIXEY, F. (1960) The geology and geomorphology of Madagascar, and a comparison with eastern Africa. Quar. Jour. Geol. Soc., Vol. 116, P. 255-268.

FURON, R. (1963) Madagascal, Geology of Africa, English edition translated by A. Hallam and L.A. Stevens, Oliver and Boyd Ltd., Edinburgh and London, P. 354-370.

MMAJ (1970) Metal deposits in Madagascar (in Japanese). Inside data no. 3, 15p.

MMAJ (1974) Report on the overseas geological structure survey in the central area of Madagascal (summarization in Japanese) .

MNAJ (1975) Madagascar. Report on the investigation of overseas mining circumstances [Madagascar + Swaziland] (in Japanese), inside data, P. 2-13.

MMAJ (1981) Mining circumstances of the Democratic Republic of Madagascar (in Japanese). Report on the investigation of overseas mining circumstances [Zimbabwe, Mmadagascar, New Zealand, New Caledonia, Venezuela, Panama], inside data P. 26-29.

- MMAJ (1984) Mining circumstances of Madagascar (in Japanese). Report on the investigation of overseas mining circumstances [Finland, Sweden, Thailand, Indonesia, Botswana, Madagascar], inside data, P. 102-122.
- MOUFLARD, R. (1953) Etude géologique des feuilles Bevary, Isoanala, Ianakafy Sud, au 1/100.000, campagne 1952. Travaux du Bureau Géologique Service Géologique, Tananarive, 64P.
- NOIZET, G. (1953) Etude géologique des feuilles Ankazotaha-Ampanihy-Tranoroa, au 1/100.000. Travaux du Bureau Géologique, numéro 46. Service Géologique, Tananarive, 65P.
- NOIZET, G. et LAUTEL, R. (1953) Carte géologique des feuilles Tranoroa-Bekitro. au 1/100.000. Trayaux du Bureau Géologique, Service Géologique, Tananarive.
- NOIZET, G. (1954) Carte géologique des feuilles Imanombo-Ranomainly. au 1/100.000. Trayaux du Bureau Géologique, Service Géologique, Tansnarive.
- NOIZET, G. (1955) Carte géologique des feuilles Tranomaro-Marohotro, au 1/100.000. Travaux du Bureau Géologique. Service Géologique. Tananarive.
- NOIZET, G. de la, ROCHE, H., ORLOFF, O. et DELBOS L. (1955) Carte géologique des feuilles MAHALY-ESIRA, au 1/100.000. Travaux du Bureau Géologique. Service Géologique. Tananarive.
- Overseas Technical Cooperation Agency (1964) Report on the investigation of the mineral resources development plan in Madagascar (in Japanese). 153P.
- RAZAFIMANANTSOA, RAKOTOMANGA A, et RANDRIANARISOA J. D. (1978) Carte géologique de feuille Ranomafana du Sud. La coordination a ete effectuee par G. BAZOT. Service Géologique de Madagasikara, Tananarive.

Society of New Metal (1970) Madagascal. Report on the investigation for the promotion of buying new metal resources in Africa and Nepal (in Japanese).

SUWA, K. (1968) Precambrian of African Continent-Geology and mineral resources (in Japanese). 51P.

VERSTRAETE, BAZOT G., RAZAFIMANANTSOA, RAMANITRIRAISANA et RAKOTOARIVONY (1978) Carte géologique de feuille Fort-Dauphin. La coordination a ete effectuee par G. BAZOT. Service Géologique de Madagasikara, Tananarive.

APPENDICES

0.	SAMPLE No.	ROCK NAME	LOCAL-	TE	ST &	ANA	LÝSI	S
.	11 - A		ITY	Т	Р	X	RA	0/
1	301	Dolerite	TW	0			0	<u> </u>
2	302	Rhyolite	TW					
3	303	Rhyolite	TW					
4	304	Basalt	TW					
5	305	Basaltic bracciated rock	TW		<u> </u>			
6	306	Rhyolite	TW	0			0	
7	307	Plagioclase-phyric basalt	TW	ŏ				<u> </u>
8	308	Hornblende gneiss	TW				· · ·	1
9	309	Gneissose granite	TW			<u> </u>	<u> </u>	┢
10	310	Gneissose granite	TW TW					┢
$\frac{10}{11}$	310	Amphibolite	SM	0			0	╞
11	312	Pegmatite	SM	<u> </u>		.:	<u> </u>	┢──
13	313	Gossan	SM			0		c
	313	Amphibolite	SM			<u> </u>		1
$\frac{14}{15}$	314	Quartzofeldspathic gneiss	SM					┞
				0		<u> </u>	0	
16	316	Anorthosite	SM	0	Į		$\left 0 \right $	1-
17	317	Serpentinite	SM	ļ		0	<u> </u>	
18	318	Aphyric basalt	TW					-
19	319	Microgranite	TW	0				ļ
20	320	Quartzofeldspathic gneiss	TW		<u> </u>	ļ		
21	321	Rhyolite	ΤW				ļ	
22	322	Quartzofeldspathic gneiss	TW					
23	323	Basalt	TW		<u> </u>			
24	324	Basalt	TW				0	
25	325	Basaltic bracciated rock	TW_	0		0		
26	326	Dolerite	TW				<u> </u>	
27	327	Rhyolite	TW	0			0	
28	328	Rhyolite	TW	0			0	
29	329	Basalt	TW	0				
30	330	Basalt	T₩	0			0	
31	331	Rhyolite	TW					Γ
32	332	Basalt	TW					Γ
33	333	Calc-silicate gneiss	TW	O		· ·	O	-
34	334	Anorthosite	TW	0			0	Γ
35	335	Orthogneiss	TW					\vdash
36	336	Rhyolite	TW				0	\square
37	337	Charnockite	TW	0			ŏ	
38	338	Granulitic gneiss	TW	1		<u> </u>	<u> </u>	†
39	339	Clay mineral(kaolinite)	TW		h	0	<u> </u>	┢
40	351	Uranothorianite ore	TW	:	0	ŏ		┢╴
41	352	Uranothorianite ore	TW			ŏ		╞─
42	353	Nica		<u> </u>	<u> </u>	\vdash		┢╌
43	353	Basalt	TW	0			Ō	⊢
43	355	Coal	SM	\vdash		 	\vdash	<u>+</u>
44 45	355	Orthogneiss	SM SM	0				
				12	ŀ		0	
46	357	Orthogneiss	SM	.			0	+
47	358	Gossan	SM	ļ		<u>.</u>		(
48 49	359	Gossan Aphyric basalt	SM	 		0		
	360	1 4. 6	TW				1	1

AP - 1

No	SAMPLE No.	ROCK NAME	LOCAL-	TT	ST &	ANA	TYST	S
1104			ITY	T	P	X	RA	0A
51	362	Brecciated and silicified rock in rhyolite	TW	0			0	
52	370	Microgranite	TW	0			0	
53	371	Pyroxene gneiss	TW					
54	372	Orthogneiss	TW	0	[0	
55	374	Aphyric basalt	TW	0			0	
56	375	Quartz	TW			- 4		
57	511	Copper ore	SM			0		0
58	512	Copper ore	SM					0
59	514	Copper ore	SM	·	0			0
60	515	Copper ore	SM	O	0	0		0
61	516	Copper ore	SM					0
62	518	Copper ore	SM			0		0
63	519	Copper ore	SM				1	0

ABBREVIATIONS; TW: TORANOMARO WESTERN AREA, SM: SOAMANONGA AREA, T: THIN SECTION, P:POLISHED SECTION, X:X-RAY DIFFRACTION, RA: WHOLE ROCK ANALYSIS,

OA: ORE ANALYSIS

								:				
ъ Ч С	%	31.60	1.94	19.80	2.88	2*90	3.20	5.60	1.38	1.06	2.04	
Zn	%	0.01	<0.01	<0.01	0.01	0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Pb	*	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Сu	3 4	0.01	0.01	0.01	15.60	0.14	21.60	31.70	0.49	14.80	9.70	
Ag	g/t	0.3	<0.3	0.6	125.3	<0.3	110.4	183.5	1.6	198.1	8.4	
Au	g/t	<0.016	<0.016	0.031	3.375	<0.016	0.296	2.566	0.031	3.266	3.561	CM. Commonda Area
LOCAL-	ITY	SM	SM	SM	SM	SM	SM	SM	SM	SM	WS	Ι.
ROCK NAME		Gossan	Gossan	Gossan	Copper ore	ARREVITATIONS						
SAMPLE	No.	313	358	359	511	512	514	515	516	518	519	Y
No.			~1	en	4	22	9	2	∞	с я	10	

·	amp es
	Ore S
	÷
	ts
	Resul
	Assay
	2

AD.

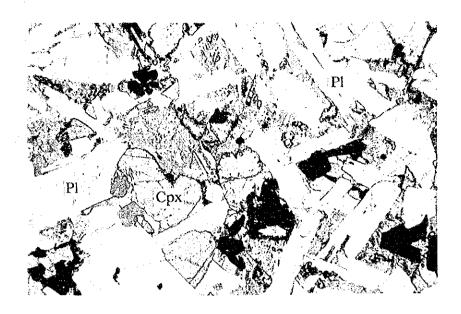
AP-3

ITY Si02 Ti02 Al203 Fe0 Mn0 Mg0 Cad Ma20 K20 P205 L01 TW 76:95 0.27 13.31 5.37 7.13 0.20 4.26 8.02 2.67 1.35 0.34 2.27 TW 76:95 0.27 13.15 1.10 0.13 0.01 0.19 0.65 2.72 5.12 0.14 1.60 1 SM 55.36 0.73 15.14 2.14 2.81 0.10 4.98 6.41 3.99 3.55 0.55 2.20 1 1 1 1<7 1 1 1<1 1<7 1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1 1<1<		No. SAMPLE ROCK NAME	LOCAL-													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0		ITΥ	Si02	Ti02	A1203	Fe203	Fe0	Mn0	MgO	Ca0	Na20	K20	P205	L0I	TOTAL
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			H.	49.72	2.47	13.31	5.37	7.13	0.20	4.26	8.02	2.67	1.35	0.34	2.27	97.11
SM 55.36 0.73 15.14 2.14 2.81 0.10 4.98 6.41 3.99 3.55 0.55 2.20 SM 73.10 0.04 15.37 0.57 0.26 0.04 0.11 1.75 4.37 4.46 0.07 0.31 1 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.37 5.95 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.37 5.95 TW 68.69 0.27 10.47 1.30 1.20 0.06 0.38 5.57 2.74 5.02 0.39 3.06 TW 48.51 2.99 8.17 5.31 0.21 2.32 1.09 3.75 1.29 3.06 1.75 1.74 1.33 1.20 0.21 0.17 0.32 1.74 0.35 0.09 1.75			ML	76.95	0.27	12.15	1.10	0.13	0.01	0.19	0.65	2.72	5.12	0.14	1.60	101.03
SM 73.10 0.04 15.37 0.57 0.26 0.04 0.13 27.41 0.62 0.07 0.31 1 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.07 0.32 1 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.07 0.32 1 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.74 5.09 0.23 1 TW 68.69 0.27 10.47 1.30 1.20 0.06 0.38 5.57 2.74 5.05 0.09 4.75 1 TW 48.57 0.27 16.12 4.45 4.74 0.17 2.32 18 1.74 0.36 3.06 TW 74.22 0.09 12.8 0.46 0.17 2.32		311 Hbl-Bi gneiss	SM	55.36	0.73	15.14	2.14	2.81	0.10	4.98	6.41	3.99	3.55	0.55	2.20	97.96
SM 64.49 0.13 27.41 0.62 0.59 0.02 0.68 10.53 5.11 0.64 0.07 0.32 1 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.37 5.95 TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.37 5.95 TW 88.69 0.27 10.47 1.30 1.20 0.06 0.38 5.57 2.74 5.02 0.99 4.75 1 TW 48.51 2.99 12.99 8.17 5.31 0.21 1.74 0.36 3.06 TW 48.57 0.27 16.12 4.45 4.74 0.17 2.32 18 1.74 0.36 3.06 TW 44.53 3.55 12.73 3.35 2.743 0.27 0.41 2.94 0.47 1.39			SM	73.10	0.04	15.37	0.57	0.26	0.04	0.11	1.75	4.37	4.46	0.07	0.31	100.45
TW 51.67 2.72 12.19 5.07 6.11 0.14 2.75 5.51 3.00 2.76 0.37 5.95 TW 73.33 0.21 11.42 1.82 0.71 0.04 0.12 1.99 2.71 5.73 0.09 2.23 1 TW 68.69 0.27 10.47 1.30 1.20 0.06 0.38 5.57 2.74 5.02 0.09 2.23 1 TW 48.51 2.99 12.99 8.17 5.31 0.21 4.04 7.93 2.81 1.74 0.36 3.06 TW 46.57 0.27 16.12 4.45 4.74 0.17 2.32 18.82 2.60 0.06 1.39 TW 56.60 0.06 24.60 0.74 0.35 0.02 0.31 9.86 5.38 1.65 1.22 1.20 TW 74.22 0.09 13.83 0.62 0.80 0.06 0.31 0.66 2.28 1.66 1.22 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.73 3.83 0.19 0.22 TW 44.33 3.55 12.73 3.35 2.08 0.13 0.24 0.22 0.47 12 TW 44.33 3.55 12.73 3.35 2.74 5.26 0.147 12.23 1.47 SM 68.40 0.33 10.27 0.27 0.27 0.27	,	+	WS	54.49	0.13	27.41	0.62	0.59	0.02	0.68	10.53	5.11	0.64	0.07	0.32	100.61
TW 73.33 0.21 11.42 1.82 0.71 0.04 0.12 1.99 2.71 5.73 0.09 2.23 1 TW 68.69 0.27 10.47 1.30 1.20 0.06 0.38 5.57 2.74 5.02 0.09 4.75 1 TW 48.51 2.99 12.9 8.17 5.31 0.21 4.04 7.93 2.81 1.74 0.36 3.06 TW 46.57 0.27 16.12 4.45 4.74 0.17 2.32 18.24 2.16 0.36 1.36 1.22 1.20 1 1.39 TW 46.57 0.01 2.45 0.74 0.35 0.02 0.36 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.23 3.55 1.25 1.22 1.22 1.24 1.24 1.22 1.22 1.24 1.22 <t< td=""><td>1.1</td><td><u> </u></td><td>ML</td><td>51.67</td><td>2.72</td><td>12.19</td><td>5.07</td><td>6.11</td><td>0.14</td><td>2.75</td><td>5.51</td><td>3,00</td><td>2.76</td><td>0.37</td><td>5.95</td><td>98.24</td></t<>	1.1	<u> </u>	ML	51.67	2.72	12.19	5.07	6.11	0.14	2.75	5.51	3,00	2.76	0.37	5.95	98.24
TW68.69 0.27 10.47 1.30 1.20 0.066 0.38 5.57 2.74 5.02 0.09 4.75 1 TW 48.51 2.99 12.99 8.17 5.31 0.21 4.04 7.93 2.81 1.74 0.36 3.06 TW 46.57 0.27 16.12 4.45 4.74 0.17 2.32 18.24 2.16 0.59 0.06 1.39 TW 55.60 0.06 24.60 0.74 0.35 0.02 0.31 0.666 2.28 6.90 0.22 1.20 1 TW 74.22 0.09 13.83 0.62 0.80 0.06 0.31 0.41 2.23 3.78 3.65 1.22 1.20 1 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.22 0.47 TW 69.76 0.61 12.73 3.56 5.20 0.14 0.21 2.94 SM 74.23 3.55 12.73 3.23 0.15 0.22 0.22 0.24 TW 69.76 0.38 16.00 1.22 0.24 1.25 4.73 3.29 0.16 0.72 SM 72.70 0.23 14.19 1.23 0.24 0.2	157	+	MI	73.33	0.21	11.42	1.82	0.71	0.04	0.12	1.99	2.71	5.73	0.09	2.23	100.40
TW 48.51 2.99 12.99 8.17 5.31 0.21 4.04 7.93 2.81 1.74 0.36 3.06 TW 46.57 0.27 16.12 4.45 4.74 0.17 2.32 18.24 2.16 0.36 0.06 1.39 TW 56.60 0.06 24.60 0.74 0.35 0.02 0.31 9.86 5.38 1.65 1.22 1.20 1 TW 56.60 0.06 24.60 0.74 0.35 0.27 0.22 0.47 1 2.23 3.78 3.83 0.19 0.88 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 TW 69.76 0.61 1.22 0.05 1.23 3.54 5.26 0.14 0.29 0.29 SM 72.70 0.23 14.19 1.35 0.66 0.01 0.15 0	123		TW	68.69	0.27	10.47	1.30	1.20	0.06	0.38	5.57	2.74	5.02	0.09	4.75	100.54
TW 46.57 0.27 16.12 4.45 4.74 0.17 2.32 18.24 2.16 0.59 0.06 1.39 TW 55.60 0.06 24.60 0.74 0.35 0.02 0.31 9.86 5.38 1.65 1.22 1.20 1 TW 74.22 0.09 13.83 0.62 0.80 0.06 0.31 0.66 2.28 6.90 0.22 0.47 1 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 SM 74.33 3.55 12.54 8.29 7.43 0.27 5.20 10.32 2.56 2.30 0.22 0.52 1.294 SM 68.40 0.38 16.00 1.67 1.22 0.05 1.23 3.54 5.26 2.30 0.22 0.52 1.57 SM 72.70 0.23 14.19 1.35 0.65 0.02 0.49 1.25 4.73 3.39 0.16 0.79 TW 72.70 0.28 12.82 2.43 0.64 0.09 0.46 1.25 4.73 3.39 0.16 0.79 TW 72.80 0.56 10.82 0.91 0.15 0.91 0.22 0.91 0.71 2.12	ι×	+	ML	48.51	2.99	12.99	8.17	5.31	0.21	4.04	7.93	2.81	1.74	0.36	3.06	98.12
TW55.60 0.06 24.60 0.74 0.35 0.02 0.31 9.86 5.38 1.65 1.22 1.20 1 TW 74.22 0.09 13.83 0.62 0.80 0.06 0.31 0.66 2.28 6.90 0.22 0.47 1 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 SM 72.70 0.33 16.00 1.67 1.22 0.05 1.23 3.54 5.26 2.30 0.22 0.52 1.24 SM 72.70 0.23 14.19 1.35 0.65 0.02 0.49 1.25 4.73 3.39 0.16 0.79 FW 72.70 0.28 12.52 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 FW 72.80 0.58 12.52 2.43 0.64 0.09 0.61 0.39 0.16 0.79 FW 72.80 0.58 12.64 0.20 0.16 0.23 0.16 0.23 0.61 0.20 0.67 FW 72.80	124		<u> </u>	46.57	0.27	16.12	4.45	4.74	0.17	2.32	18.24	2.16	0 59	0.06	1.39	97.08
TW 74.22 0.09 13.83 0.62 0.80 0.06 0.31 0.66 2.28 6.90 0.22 0.47 1 TW 69.76 0.61 12.73 3.35 2.08 0.13 0.41 2.23 3.78 3.83 0.19 0.88 TW 44.33 3.55 12.74 8.29 7.43 0.27 5.20 10.32 2.50 0.14 0.41 2.94 SM 68.40 0.38 16.00 1.67 1.22 0.05 1.23 3.54 5.26 2.30 0.122 0.52 1 SM 72.70 0.23 14.19 1.35 0.65 0.02 0.46 1.25 4.73 3.39 0.16 0.79 FW 72.80 0.58 1.353 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 1 TW 72.80 0.58 1.25 5.45 0.25 0.54 0.5	1.2		ΤW	55.60	0.06	24.60	0.74	0.35	0.02	0.31	9.86	5.38	1.65	1.22	1.20	100.99
TW69.760.6112.733.352.080.130.412.233.783.830.190.88TW44.333.5512.548.297.430.275.2010.322.500.140.412.94SM68.400.3816.001.671.220.051.233.545.262.300.220.520.521SM72.700.2314.191.350.650.020.491.254.733.390.160.79TW88.401.570.893.930.130.010.150.910.390.070.912.12TW72.800.5812.282.430.640.090.461.463.214.960.200.67TW72.800.5812.282.430.610.381.582.450.200.67TW74.300.1013.661.040.230.100.381.582.540.273.10TW51.001.5613.9910.713.020.223.496.132.942.440.273.10Teude, Bi:Biotite, Qtzfld:Quartzofeldspathic, Calc-si1:Calc-si1icate, Christharnockitic, Grt:Garnet, bg:besi0.260.273.100.270.273.10	ı¥		Τ₩	74.22	0.09	13.83	0.62	0.80	0.06	0.31	0.66	2.28	6.90	0.22	0.47	100.46
TW 44.33 3.55 12.54 8.29 7.43 0.27 5.20 10.32 2.50 0.14 0.41 2.94 SM 68.40 0.38 16.00 1.67 1.22 0.05 1.23 3.54 5.26 2.30 0.22 0.52 1 SM 72.70 0.23 14.19 1.35 0.65 0.02 0.49 1.25 4.73 3.39 0.16 0.79 FW 72.70 0.28 1.35 0.65 0.02 0.46 1.46 3.21 4.96 0.70 0.61 2.12 FW 72.80 0.58 12.28 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 1 TW 74.30 0.10 13.66 1.04 0.23 0.61 0.67 1 1 6.13 2.94 0.27 0.67 1 1 1 6.13 2.94 0.27 0.54 1	1		ML	69.76	0.61	12.73	3.35	2.08	0.13	0.41	2.23	3.78	3.83	0.19	0.88	99.98
SM 68.40 0.38 16.00 1.67 1.22 0.05 1.23 3.54 5.26 2.30 0.22 0.52 1 SM 72.70 0.23 14.19 1.35 0.65 0.02 0.49 1.25 4.73 3.39 0.16 0.79 FW 88.40 1.57 0.89 3.93 0.13 0.01 0.15 0.91 0.39 0.07 0.91 2.12 e TW 88.40 1.57 0.89 3.93 0.13 0.01 0.15 0.91 0.39 0.07 0.91 2.12 e TW 72.80 0.58 12.28 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.54 1 TW 74.30 0.10 13.66 1.04 0.23 0.54 1.54 0.27 0.54 1 TW 51.00 1.56 13.99 10.71 3.02 0.22 3.49	1.5	\vdash	ML	44.33	3.55	12.54	8.29	7.43	0.27	5.20	10.32	2.50	0.14	0.41	2.94	97.92
SM 72.70 0.23 14.19 1.35 0.65 0.02 0.49 1.25 4.73 3.39 0.16 0.79 TW 88.40 1.57 0.89 3.93 0.13 0.01 0.15 0.91 0.39 0.07 0.91 2.12 e TW 72.80 0.58 12.28 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 1.67 TW 74.30 0.10 13.66 1.04 0.23 0.01 0.38 1.58 2.545 0.25 0.54 1 TW 51.00 1.56 13.99 10.71 3.02 0.22 3.49 6.13 2.94 2.44 0.27 3.10	1.5		SM	68.40	0.38	16.00	1.67	1.22	0.05	1.23	3.54	5.26	2.30	0.22	0.52	100.79
TW 88.40 1.57 0.89 3.93 0.13 0.01 0.15 0.91 0.39 0.07 0.91 2.12 e TW 72.80 0.58 12.28 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 1.41 TW 72.80 0.58 12.28 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 1.41 3.21 4.96 0.20 0.67 1.51 1.51 2.52 5.45 0.25 0.54 1.51 1.51 1.51 1.52 5.45 0.27 3.10 1.51 1.51 2.14 0.27 3.10 1.51 5.16 1.51 2.54 0.27 3.10 1.51 5.16 1.51 5.16 0.27 3.10 1.51 5.16 1.51 5.16 1.51 5.16 1.51 5.16 1.51 5.16 1.51 5.16 1.51 5.16 1.51	150		SM	72.70	0.23	14.19	1.35	0.65	0.02	0.49	1.25	4.73	3.39	0.16	0.79	99.95
e TW 72.80 0.58 12.28 2.43 0.64 0.09 0.46 1.46 3.21 4.96 0.20 0.67 TW 74.30 0.10 13.66 1.04 0.23 0.01 0.38 1.58 2.52 5.45 0.25 0.54 1 TW 51.00 1.56 13.99 10.71 3.02 0.22 3.49 6.13 2.94 2.74 0.27 3.10 nblende, Bi:Biotite, @tzfld:@uartzofeldspathic, Calc-sil:Calc-silicate, Chn:Charnockitic, Grt:Garnet, bg:bes 0.27 3.10 0.27 3.10	1.22	-	ΤW	88.40	1.57	0.89	3.93	0.13	0.01	0.15	0.91	0.39	0.07	0.91	2.12	99.48
TW 74.30 0.10 13.66 1.04 0.23 0.01 0.38 1.58 2.52 5.45 0.25 0.54 1 TW 51.00 1.56 13.99 10.71 3.02 0.22 3.49 6.13 2.94 2.44 0.27 3.10 nblende, Bi:Biotite, @tzfld:@uartzofeldspathic, Calc-sil:Calc-silicate, Chn:Charnockitic, Grt:Garnet, bg:bes	1.2		1.	72.80	0.58	12.28	2.43	0.64	0.09	0.46	1.46	3.21	4.96	0.20	0.67	99.78
TW 51.00 1.56 13.99 10.71 3.02 0.22 3.49 6.13 2.94 2.44 0.27 3.10 nblende, Bi:Biotite, @tzfld:@uartzofeldspathic, Calc-sil:Calc-silicate, Chn:Charnockitic, Grt:Garnet, bg:bee	1.0	1	μŢ	74.30	0.10	13.66	1.04	0.23	0.01	0.38	1.58	2.52	5.45	0.25	0.54	100.06
te, Qtzfld:Quartzofeldspathic, Calc-sil:Calc-silicate, Chn:Charnockitic,	1.	4 Aphyric basalt		51.00	1.56	13.99	10.71	3.02	0.22	3.49	6.13	2.94	2.44	0.27	3.10	98.87
		REVIATIONS; Hol: Hori	nblende,	Bi:Bioti		fld:Quart	zofeldsp	athic, (Calc-sil:	Calc-sil	icate,	Chn:Charn	ockitic,		net, bg:	earing

Ap. 3 Analysis Results of Whole Rock Samples

AP - .4

Ap. 4 Microphotographs and Microscopic Observations of Thin Sections


No.	Sample No.	Locality	No. Sample No. Locality Rock name	Primary minerals	Secondary minerals Re	Remarks
-,				Quz FI Kis Bi Hibi Opx Cpx Oi Ort Cum Spn Ap Ep Cal Tur Mizz Zm Rit Henn Opc	Chi Sap Cam Bt Bp Zo See Cal Cri Tri	
-	301	WT	Dolerite	0 0	∇ ∇	
6	306	УГ	Rhyolite	*	*	
m	307	WI	P1-phyric basalt		* *	
4	311	SM	Hbl-Bt gneiss	* * * * * * • • • • • • • • • • • • • •		
s	315	SM	Grt-bg. quartzofeld. gneiss	0000 × × *	*	
9	316	SM	Anorthosite	* * * * 0	*	
~	319	M.	Microgranite	* * * * 0000	*	****
80	325	WT	Basaltic brecciated rock	00 4	* * * * *	
6	327	Ř.	Rhyolite	* 000	* *	
10	328	ΜŢ	Rhyolite	0 0	(K	(Kao)
11	329	MT	Basalt	*	* * * *	
12	330	WL	Basalt	*	<u>()</u> * * *	(Qiz)
13	333	M.L	Calc-silicate gneiss		(W	(Ms)
14	334	м.	Anonthosite	* ~ * ~ ~ ~ ~ ~	* *	
15	337	WL	Chamockite	000000 × × ×	* *	(Mint)
16	354	ΜŢ	Basalt	0 00	*	
17	356	SM	Quarzfeld. Hol-Bt gneiss	* * *	* * *	.Q
18	362	WL	Quartz rock	*	III	Ilem
19	370	WI	Charnockiuc microgranite	* * * 0000		
ຊ	372	WI	Grt-bearing granite	000	* * *	(Kao)
21	374	ΜŢ	Aphyric basalt		*	(Act)
ង	515	SM	Quartz vein with Cu-mineral.	* * *	* (0	(Qtz, Az, Mal)
	Mineral abbreviations	breviation	SI			

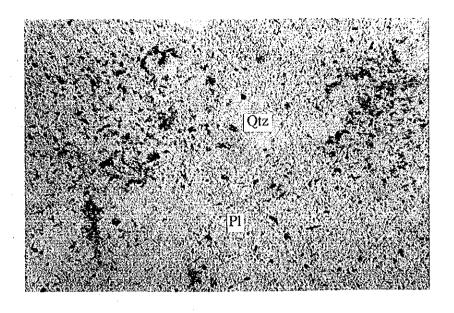
Qrz: quartz, Pl: plagioclase, Kfs: K-feldspar, Bt: biotite, Hbl: homblende, Opx: orthopyroxene, Cpx: clinopyroxene, Ol: olivine, Grt: gamet, Cum: cummingtonite, Spn: sphene, Ap: apatite Ep: epidote, Cal: calcite, Tur: tourmaline, Mnz: monazite, Zm: zircon, Rt: mtile, Hem: hematite, Opq: opaque mincral

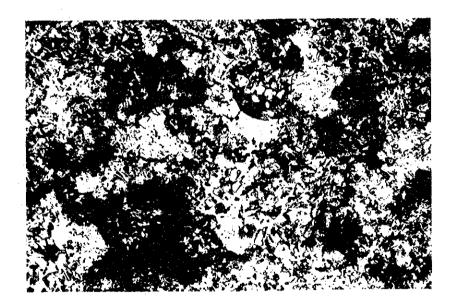
Chi: chlorite, Sap: saponite, Csm: chlorite-saponite mixed layer, Zo: zoicite, Ser:sencite, Cri: cristobalite, Tri: tridymite, Kao: kaolinite, Ms: muscovite, Mnt: montmorillonite, Act: actinolite Az: azurite, Mal: malachite

Circle: abundant, Triangle: medium, Star: minor, Parethesis: secondary

AP- 5

Plane polarized

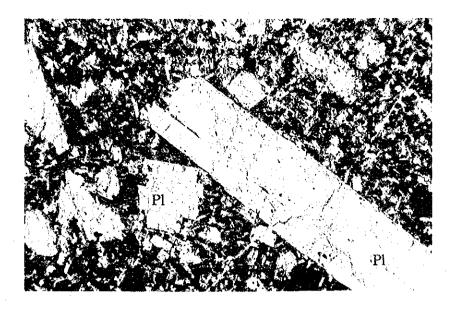



Cross polarized 0.5 mm

Sample No.: 301 Rock name: Dolerite(Clinopyroxene gabbro) Formation (Locality): Descriptions:

The rock contains coarse grains of plagioclase, clinopyroxene and opaque minerals (magnetite?) with intergranular texture.

Euhedral to subhedral plagioclase is 0.3 - 4.5 mm in garin size, which shows remarkable zonal structure with albite-carlsbad twin. Rarely it includes poikilitic clinopyroxene. Clinopyroxene is 0.2 - 1.0 mm in grain size. Note that the interstitial clinopyroxenes are subhedral to anhedral against the euhedral plagioclase. Partly glomeroporphyritic clinopyroxenes also present. Both plagioclase and clinopyroxene alter to chlorite and/or saponite.

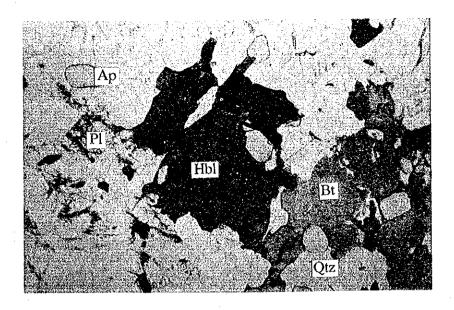


Cross polarized 0.5 mm

Sample No.: 306 Rock name: Rhyolite Formation (Locality): Description:

The specimen shows cryptocrystalline texture containing fine grains of quartz and plagioclase. Minor constituents are biotite, rutile and opaque mineral. Amygdaloidal gas cavities (0.3-1.0 mm in diameter) are filled with cristobalite and cristobalite+tridymite.

Groundmass is composed mainly of quartz and plagioclase with subordinate amounts of biotite, rutile and opaque mineral. Their grain sizes are usually less than 0.02 mm. Some valioles in the groundmass are composed of plagioclase and quartz.

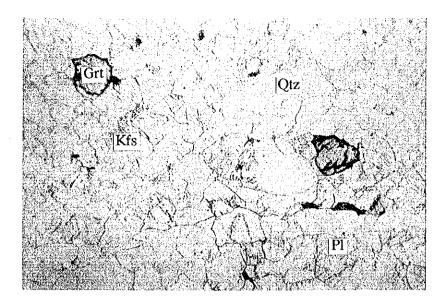


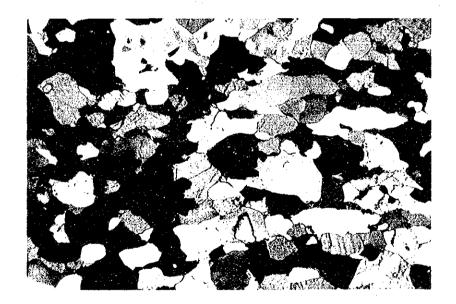
Cross polarized 0.5 mm

Sample No.: 307 Rock name: Plagioclase-phyric basalt Formation (Locality): Description:

The rock is somewhat coarser in grain size than is usual. It is composed mainly of phenocrysts of plagioclase and opaque mineral with groundmass containing plagioclase, clinopyroxene and opaque mineral.

Euhedral plagioclase phenocryst is 0.5 to 18.0 mm in grain size and shows zonal structure and albite twin. A part of plagioclase phenocryst alters to zoisite, epidote and chlorite. Phenocrysts of opaque mineral are euhedral to subhedral which grain sizes are 0.2 to 1.0 mm. Groundmass is composed of fine euhedral to subhedral grains (0.02-0.15 mm) of plagioclase, clinopyroxene and opaque mineral. They are usually altered by chlorite and epidote, except opaque phase.

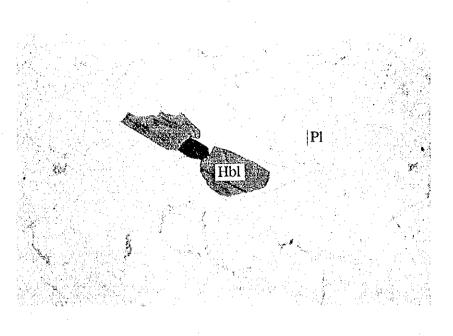


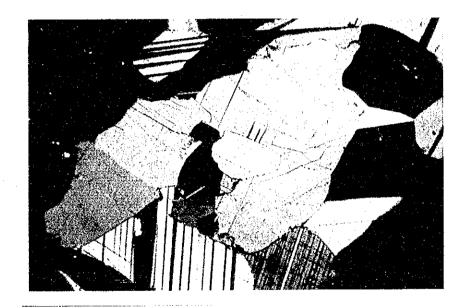

Cross polarized 0.5 mm

Sample No.: 311 Rock name: Hornblende-biotite gneiss Formation (Locality): Descriptions:

The rock shows granoblastic texture and is composed mainly of hornblende, biotite, plagioclase, quartz and K-feldspar with accessories of calcite, tourmaline, zircon, epidote, monazite and apatite.

Hornblende (subhedral to anhedral, 0.3-2.5 mm in grain size) shows pleochroism from pale brownish green to pale bluish green, which includes quartz, plagioclase, biotite and apatite poikiloblastically. Poikiloblastic biotite (subhedral to anhedral, 0.3-2.0 mm) includes quartz, hornblende, zircon, monazite and apatite. Subhedral to anhedral plagioclase (0.2-1.5 mm) includes fine grains (<0.1 mm) of biotite and quartz. It has no zonal structure while alters to sericite. K-feldspar occurs as subordinate constituent and shows hair-perthite to micro-perthite texture. Calcite proceeds along the grain boundary.

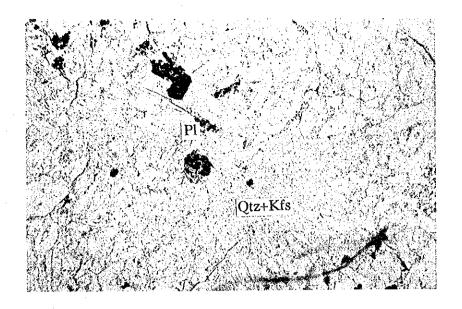


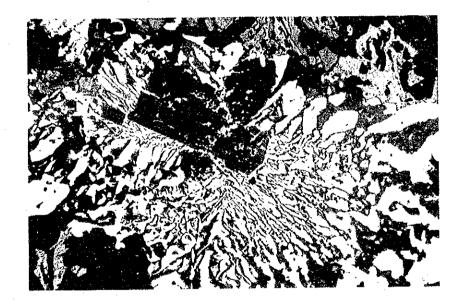

Cross polarized 0.5 mm

Sample No.: 315 Rock name: Garnet-bearing quartzofeldspathic gneiss Formation (Locality): Description:

The rock shows xenoblastic to subidioblastic texture with gneissose structure formed by quartz preferred orientation. It is composed mainly of quartz, plagioclase and Kfeldspar with subordinate garnet and biotite. Accessories are opaque mineral and zircon. Secondary muscovite and chlorite are also observed.

Grains of the main constituents show subhedral to anhedral shapes and is 0.2 to 0.7 mm (max. 2.0 mm) in grain size. Plagioclase partly alters to sericite. K-feldspar shows hair-perthite texture. Garnet is subhedral to anhedral, 0.1-0.4 mm (max. 0.8 mm). Euhedral to subhedral biotite (0.1-0.4 mm) alters to chlorite.

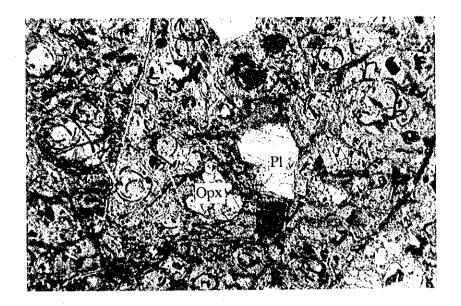



Cross polarized 0.5 mm

Sample No.: 316 Rock name: Anorthosite Formation (Locality): Description:

This sample shows hypidiomorphic granular texture and is composed mainly of plagioclase. Accessory minerals are biotite, clinopyroxene, hornblende, apatite and opaque mineral.

Subhedral to anhedral plagioclase shows albite and carlsbad twins and is 0.5 to 3.0 mm (max. 15.0 mm) in grain size. Clinopyroxene (subhedral, 0.4-0.7 mm), homblende (subhedral, 0.25-0.5 mm) and biotite (subhedral, 0.3-0.5 mm) are minor constituents. Some hornblende and biotite, which are probably secondary minerals, replace clinopyroxene and homblende, respectively.

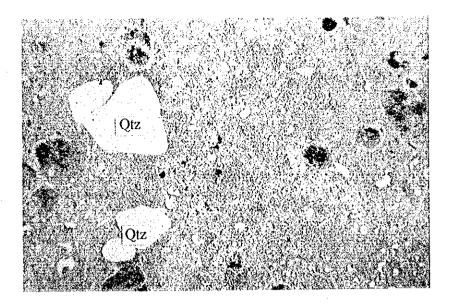


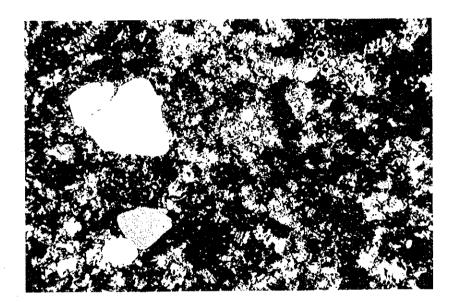
Cross polarized 0.5 mm

Sample No.: 319 Rock name: Microgranite Formation (Locality): Description:

The specimen is composed of quartz, plagioclase, K-feldspar with subordinate biotite. Accessories are apatite, zircon, tourmaline and opaque mineral. In this rock granophyric texture is predominant. Euhedral plagioclase is surrounded by radiate intergrowth composed of quartz and K-feldspar. Rarely there are graphic textures composed of quartz and K-feldspar.

Plagioclase is euhedral to subhedral (0.2-1.0 mm in grain size) and shows zonal structure with albite twin. K-feldspar (0.2-1.0 mm) is also euhedral to subhedral crystal and shows remarkable perthite texture. Biotite (0.1-0.5 mm) has rare occurrence. Secondary calcite occurs along the cleavages of plagioclase and K-feldspar or grain boundaries.

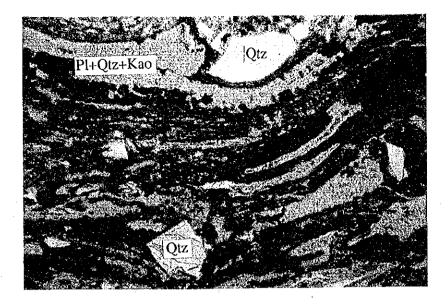



Cross polarized 0.5 mm

Sample No.: 325 Rock name: Basaltic brecciated rock Formation (Locality): Description:

The rock is composed of perlitic rhyolite and rhyolite breccias with matrix. Sizes of breccias are from 0.5 to 10.0 mm in diameter. Phenocrysts in perlitic rhyolite breccia are plagioclase (euhedral to subhedral, 0.2-0.7 mm in grain size) and orthopyroxene (subhedral, 0.07-0.3 mm). Groundmass contains plagioclase lath (euhedral, < 0.2 mm) and perlitic textured glass. Pale greenish glassy part is altered by chlorite, spherulitic saponite (< 0.03 mm in diameter) and minor epidote. Rhyolite breccia has euhedral to subhedral plagioclase phenocryst (0.2-4.0 mm) and groundmass containing plagioclase lath and altered glass. Plagioclase phenocryst alters to chlorite, epidote and zoisite. Glass in groundmass is replaced by saponite and chlorite-saponite mixed layer.

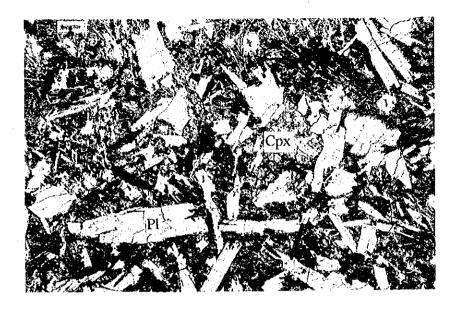
Matrix of this rock is composed of quartz and calcite. There are epidote and amygdaloidal chlorite-saponite mixture between breccia and matrix calcite.



Cross polarized 0.5 mm

Sample No.: 327 Rock name: Rhyolite Formation (Locality): Description:

Description: This sample is composed of quartz and plagioclase with cryptocrystalline groundmass containing very fine grains (< 0.1 mm in grain size) of quartz, plagioclase and K-feldspar. In the matrix part there is secondary chlorite. Euhedral to subhedral plagioclase phenocryst (0.5-5.0 mm) alters to calcite and opaque minerals. Especially fine plagioclase phenocryst (less than 0.5 mm) is completely replaced by calcite. Variolite (< 0.6 mm in diameter) contains tridymite.



Cross polarized 0.5 mm

328 Sample No.: Rock name: Rhyolite Formation (Locality): Description:

The rock shows typical eutaxitic texture. It has remarkable layering containing

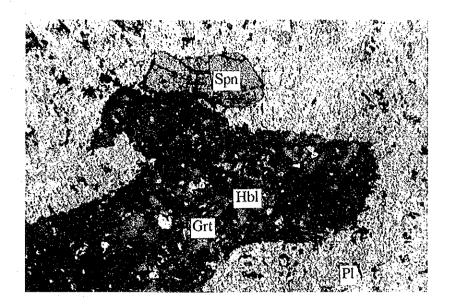
brownish glassy part and plagioclase+quartz+kaolinite part. Subhedral to anhedral quartz phenocryst (0.2-2.5 mm in grain size) can be observed. Quartz vein (< 0.02 mm in width) cut obliquely eutaxitic layering. Glassy part in the matrix alters to saponite where calcite also occurs. This rhyolite contacts directly to the basalt, which completely same to the sample TS 329.

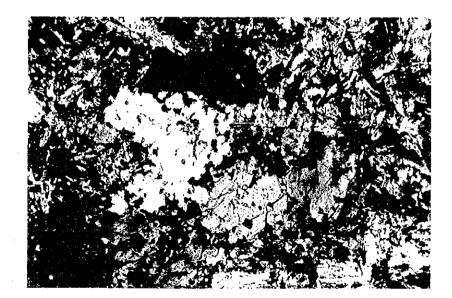
Cross polarized 0.5 mm

Sample No.: 329 Rock name: Basalt Formation (Locality): Description:

This specimen shows intergranular to intersertal texture and is composed of plagioclase and clinopyroxene phenocrysts with groundmass minerals. Plagioclase phenocryst (0.2-1.0 mm in grain size) shows euhedral to subhedral shape and zonal structure. Subhedral to anhedral clinopyroxene phenocryst (0.2-1.0 mm) alters to biotite (oxychlorite?) and/or saponite. Groundmass contains fine plagioclase lath, opaque mineral, clinopyroxene and glass where glass alters completely to saponite and chlorite-saponite mixed layer.

Amygdule is filled with quartz, tridymite, saponite, chlorite and chlorite-saponite mixed layer.

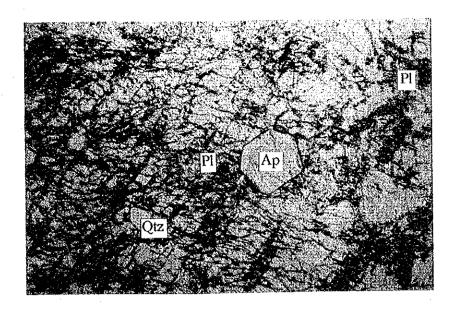



Cross polarized 0.5 mm

Sample No.: 330 Rock name: Basalt Formation (Locality): Description:

The rock shows intergranular to intersertal texture and is containing phenocryst of plagioclase (euhedral to subhedral, 0.08-1.5 mm in grain size) and clinopyroxene (subhedral, 0.05-1.5 mm) set in a matrix of plagioclase, clinopyroxene, opaque mineral (< 0.05 mm) and glass.

Large plagioclase phenocryst (> c. 1.0 mm) alters to saponite, chlorite and chloritesaponite mixed layer at the brownish core part. Some clinopyroxene phenocrysts show the herring-bone pattern. Glass in a groundmass is replaced by secondary saponite and oxidized chlorite. Quartz, saponite, calcite and chlorite association can be seen in amygdaloidal part.

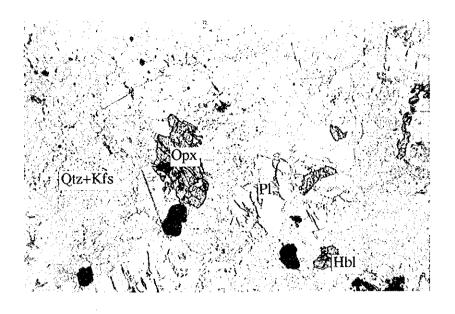



Cross polarized 0.5 mm

Sample No.: 333 Rock name: Calc-silicate gneiss Formation (Locality): Description:

The specimen is composed of clinopyroxene and sphene porphyroblasts with matrix containing plagioclase, garnet, clinopyroxene and muscovite. No mineral preferred orientation can be seen.

Subhedral to anhedral clinopyroxene porphyroblast (0.2-2.0 mm in grain size) shows pleochroism from green to yellowish green and remarkable zoning, which includes garnet, quartz and plagioclase poikiloblastically. Clinopyroxene is cut by symplectite composed of garnet and quartz along the crack. Sphene includes quartz and clinopyroxene. Garnet-plagioclase-muscovite symplectite (max. 0.5 mm in diameter) is also included in sphene. Garnet (0.05-0.3 mm) is clear identified by its characteristic yellow to orange yellow color. Very fine garnet (< 0.01 mm) aggregates occur as veins and spots.

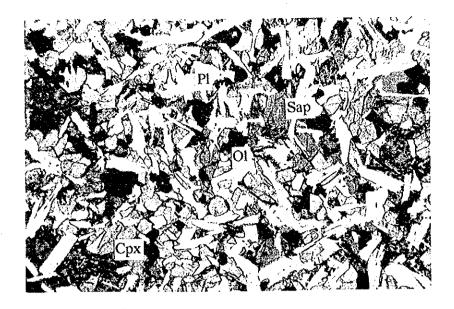


Cross polarized 0.5 mm

Sample No.: 334 Rock name: Anorthosite Formation (Locality): Description:

The rock is composed essentially of plagioclase (> 90 modal percentage) with subordinate apatite, K-feldspar, quartz and biotite. Accessory minerals are zircon and sphene.

Euhedral to subhedral plagioclase shows albite and carlsbad twins and is 0.2 to 10.0 mm in grain size. Some plagioclases show antiperthitic texture including K-feldspar poikilitically. Minor constituents are microcline (subhedral to anhedral, 0.5-2.0 mm), quartz, apatite (euhedral to subhedral, 0.1-1.3 mm) and biotite (subhedral, 1.0-2.5 mm). Plagioclase and microcline are occasionally replaced by epidote and zoisite. Biotite alters to chlorite.



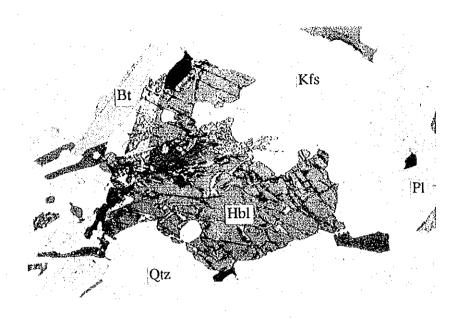
Cross polarized 0.5 mm

Sample No.: 337 Rock name: Charnockite Formation (Locality): Description:

The rock shows granophyric texture and is composed mainly of plagioclase, quartz and K-feldspar with subordinate amounts of orthopyroxene, hornblende, garnet and biotite. Accessories are apatite, zircon and opaque mineral.

Plagioclase (0.7-2.3 mm in grain size) is euhedral crystal and shows albite twin with zonal structure. The plagioclase is surrounded by granophyric texture containing K-feldspar and quartz. Plagioclase often alters to secondary chlorite-saponite mixture and montmorillonite. Subhedral to anhedral orthopyroxene (0.2-1.2 mm) shows weal pleochroism from pale green to pale pinkish green. Subhedral hornblende (0.2-1.5 mm) shows remarkable pleochroism from pale green to pale brownish green. Orthopyroxene and hornblende are often replaced by chlorite and chlorite-saponite mixed layer. Garnet (0.03-0.2 mm) occurs as inclusion in quartz.

Plane polarized

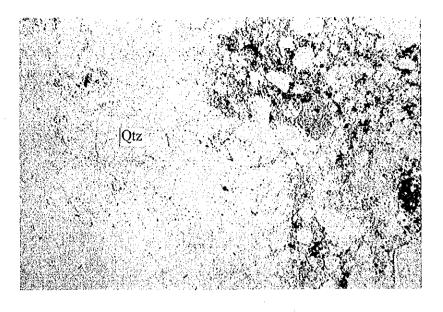


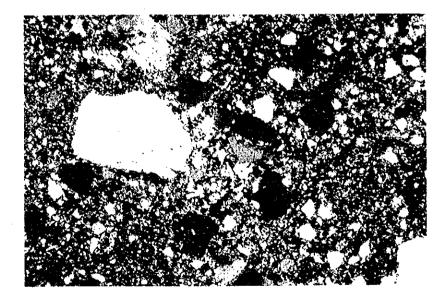
Cross polarized 0.5 mm

Sample No.: 354 Rock name: Basalt Formation (Locality): Description:

The rock shows intergranular to intersertal texture and is composed mainly of phenocrysts with subordinate amounts of matrix (groundmass). Phenocrysts are plagioclase (euhedral to subhedral, 0.1-0.8 mm in grain size), clinopyroxene (euhedral to subhedral, 0.1-0.5 mm), opaque minerals (0.05-0.3 mm) and rare olivine (subhedral to anhedral 0.05-0.1 mm). Only clinopyroxene often alters to saponite.

to anhedral, 0.05-0.1 mm). Only clinopyroxene often alters to saponite. Orange brownish matrix, which is replaced by saponite and/or chlorite-saponite mixed layer, is composed of plagioclase lath, biotite(?), opaque minerals and altered glass. Amygdal in the groundmass is filled with saponite.

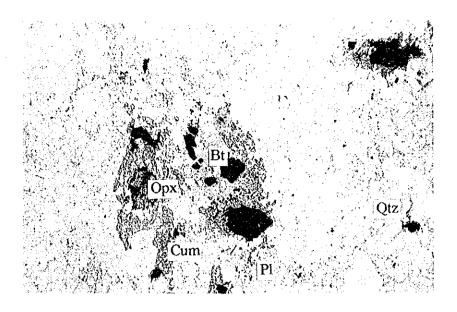



Cross polarized 0.5 mm

Sample No.: 356 Rock name: Quartzofeldspathic hornblende-biotite gneiss Formation (Locality): Description:

The rock shows granoblastic texture with weak biotite preferred orientation. The main constituents are plagioclase, quartz, K-feldspar, biotite, hornblende, epidote and zoisite. Accessories are zircon, monazite, apatite and opaque mineral. Myrmekite occupies interspace between plagioclase and K-feldspar.

Plagioclase (0.25-2.5 mm in grain size) is subhedral to anhedral shaped crystal with albite twin. It often alters to sericite in the interior. K-feldspar (0.1-0.5 mm) shows subhedral to anhedral shape and often includes euhedral biotite grains. Euhedral to subhedral biotite (0.1-1.3 mm) coexists with hornblende and epidote and is weakly altered by chlorite. Subhedral to anhedral hornblende (0.25-2.0 mm) is often replaced by biotite and epidote.



Cross polarized 0.5 mm

Sample No.: 362 Rock name: Quartz rock Formation (Locality): Description:

This specimen is arkose (quartzite) and mud stone granule-bearing poor sorted sand stone. The rock is composed essentially of irregular to corroded quartz grains (0.1-1.5 mm in grain size) with much finer grains (< 0.05 mm) of quartz, opaque mineral (haematite?) and zircon.

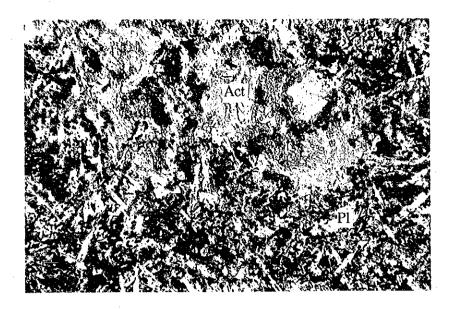
Arkose to quartzite granules are as much as 4.0 mm (1.3-4.0 mm) in diameter and are composed mainly of quartz grains with subordinate opaque minerals. Pale brownish mud stone granule is 0.3 to 4.0 mm in diameter that contains quartz and haematite.

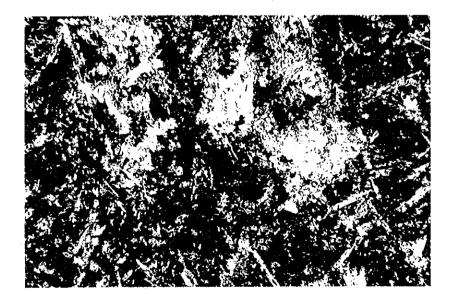
Cross polarized 0.5 mm

Sample No.: 370 Rock name: Charnockitic microgranite Formation (Locality): Description:

The rock shows typical granophyric texture and is composed mainly of plagioclase, quartz and K-feldspar with subordinate cummingtonite, biotite and orthopyroxene. Accessories are opaque mineral, zircon and monazite.

Albite-twined euhedral to subhedral plagioclase (0.5-2.0 mm in grain size) is surrounded by quartz and K-feldspar intergrowth (granophyric texture). K-feldspar shows two types of occurrences, one makes intergrowth with quartz and the other is associated with plagioclase. The latter K-feldspar shows subhedral to anhedral shape (0.5-2.5 mm) with perthite texture. Subhedral pale greenish cummingtonite includes orthopyroxene and shows intergrowth with quartz.

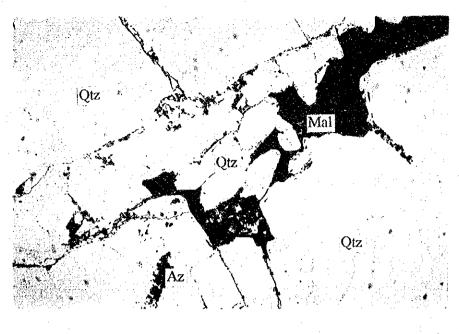


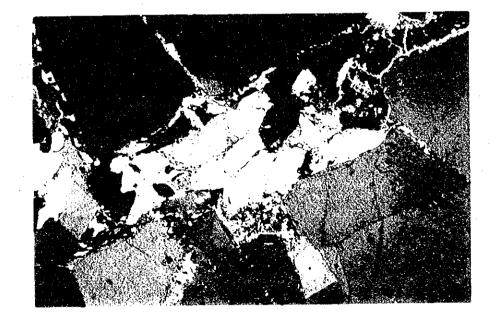

Cross polarized 0.5 mm

Sample No.: 372 Rock name: Granet-bearing granite Formation (Locality): Description:

The specimen is granular textured typical leucoclatic granite containing K-feldspar, quartz, plagioclase and subordinate garnet. Small patchs of myrmekite are also recognized.

Subhedral to anhedral K-feldspar (0.5-8.0 mm in grain size) shows perthite texture, that is cut by later kaolinite veins. Anhedral quartz (0.2-8.0 mm) is recognized in plain polarized view by the lack of alteration. Plagioclase is 0.6 to 1.5 mm in grain size with subhedral to anhedral shape. The plagioclase often alters to sericite. Garnet (anhedral granular, 0.2-1.8 mm) is subordinately present which is replaced by secondary biotite and chlorite.





Cross polarized 0.2 mm

Sample No.: 374 Rock name: Aphyric basalt Formation (Locality): Description:

The rock consists mainly of subhedral (partially euhedral) plagioclase laths (0.05 to 0.30 mm in grain size) with intergranular and intersertal textures. The interstitial regions are of much finer grain size (< 0.1 mm) and consist of opaque minerals (magnetite?), clinopyroxene and plagioclase. Cryptocrystalline materials, which probably derived from interstitial glasses, can also be seen in groundmass. Subspherical gas cavities are poorly distributed which contains actinolite, epidote, quartz and minor zircon. Clinopyroxene, actinolite and epidote are often altered to chlorite and/or chlorite-montmorillonite mixed layer.

Cross polarized 0.5 mm

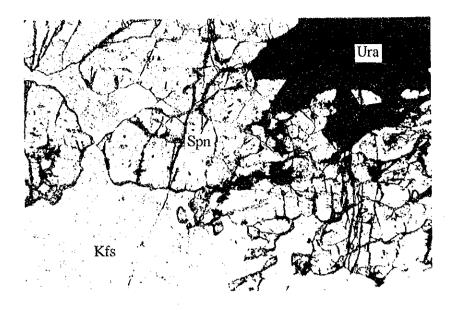
Sample No.: 515 Rock name: Quartz vein with Cu-mineral Formation (Locality): Description:

The rock shows mosaic texture and is composed mainly of quartz (subhedral to anhedral, 0.5-5.0 mm in grain size) with subordinate plagioclase and calcite. Zircon also appears as accessory mineral.

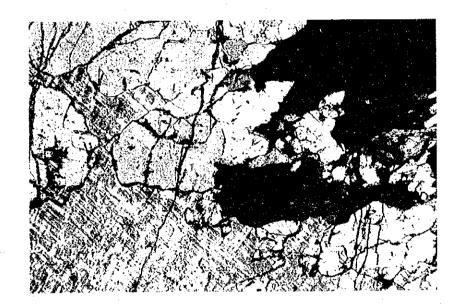
Quartz is very clear without alteration, but plagioclase weakly alters to sericite. Mosaic quartz is cut by ore mineralized veins containing much finer (0.02-0.1 mm) quartz, bluish copper mineral (azurite), greenish copper mineral (malachite) and opaque minerals. Sometimes these veins proceed along the grain boundaries among quartz.

Ap. 5 Microphotographs and Microscopic Ovservations of Polished Sections

No.	No. Sample No. Locality	Locality	Rock name	Primary minerals	Secondary minerals	/ min	erals					Remarks
				Qiz Pl Kfs Aln Bt Spn Ura Qiz Akr Cht Dig Cov Mal Pml Az Bot	Qtz Ak	ъ Ч	t Dig	ပိ	Mal	Ţ	Az B	ot
٦	351	WL	Uranothonianite ore	* * * 0								Carbonate veinlet
2	514	SM	Green copper	*	* ⊲	*	*	*	*	¥	*	* Ore in secondary vein
щ	515	SM	Green copper	*	* \	*	*	*	*	*	*	* * Ore in secondary vein


Mineral abbreviations

Qtz: quartz, Pl: plagioclase, Kfs: K-feldspar, Aln: allanite, Bt: biotite, Spn: sphene, Ura: uranothorianite


Akr: ankerite, Cht: chalcocite, Dig: digenite, Cov: covellite, Mal: malachite, Pml: pseudomalachite, Az azurite, Bot: boothite

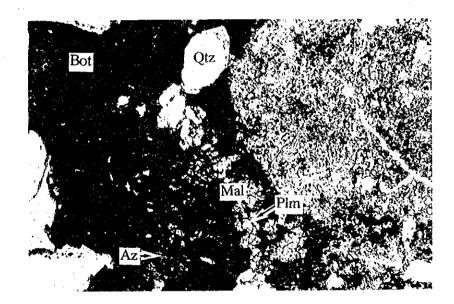
Circle: abundant. Triangle: medium. Star: minor

AP-28

plane polarized (transmitted light)



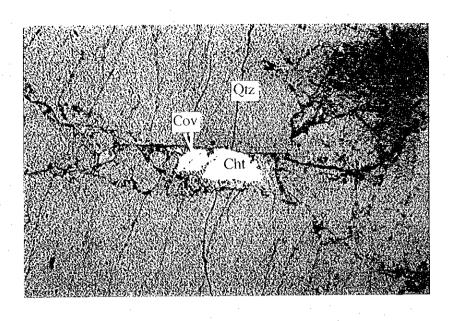
Cross polarized (transmitted light)


0.5 mm

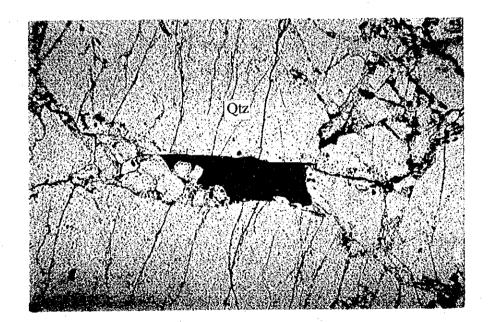
Sample No.: 351 Rock name: Uranothorianite ore (pegmatite) Formation (Locality): Description:

The specimen consists of large granular quartz (1-5 mm), microcline (1-10 mm) with perthite structure, euhedral allanite (0.5-3 mm), sphene, biotite and opaque mineral. Opaque mineral is uranothorianite, which has blackish brown color with brownish grey in reflected light. Some fine carbonate veinlets cut these minerals.

Plane polarized (reflected light)



Plain polarized (transmitted light)


0.5 mm

Sample No.: 514 Rock name: Green copper (quartz vein with copper mineralization) Formation (Locality): Description:

The specimen is composed of large granular quartz (1.0-5.0 mm) and subordinate plagioclase with mosaic texture and quartz-ankerite veins with some copper minerals. They are chalcocite, digenite, covellite (white, bluish white, and blue color in reflected light, respectively), malachite, granular pseudomalachite, azurite, and fibrous boothite (green, bluish breen, blue, and blue color in transmitted light, respectively). The latter four minerals are secondary origin from the former three minerals.

plane polarized (reflected light)

Plain polarized (transmitted light) 0.5 mm

Sample No.: 515 Rock name: Green copper (quartz vein with copper mineralization) Formation (Locality): Description:

The rock is completely same to P 514. The specimen is composed of large granular quartz (1.0-5.0 mm) and subordinate plagioclase with mosaic texture and quartz-ankerite veins with some copper minerals. They are chalcocite, digenite, covellite (white, bluish white, and blue color in reflected light, respectively), malachite, granular pseudomalachite, azurite, and fibrous boothite (green, bluish breen, blue, and blue color in transmitted light, respectively). The latter four minerals are secondary origin from the former three minerals.

Ap. 6 Summary of X-Ray Diffractive Analysis

							1	<u> </u>		~~		
brochantite												
et i truzs			•••••					[0			
malachite									0			
atidaelem								\triangleleft	0	O		
00 7110 009	_							_				
ed inte	0						٠					
hematite	•						⊲					
etitenaam					\triangleleft							
calcite			•									
natrojarosite		i					\triangleleft					
							1					
etilsirsm						0			1			
						0						
clinopyroxene		$\left \cdot \right $										
elodidqms						∇						
etidams.			_	-		4			-	\vdash		
	<u> </u>				0	<u> </u>		0				
Tsqable1-X			4		0	0		0		Q		
plagioclase		· .	\triangleleft	•	⊿		_	0		0		
	·											
talc		0						ļ				
serpentine		0										
chlorite		0	0									
sericite						0			 			
kaolinite				0								
												g
əfidlifziqə												ar
. .								-				u li
quartz	0	1	0	· · ·	െ	0	\triangleleft	╞	0			ste
etimibint		2:2									ھ	e We
	-		-						ه		rare	aro
			~							ĺ		lon
			00						l P			oral
		ŀ	ц Д		e.	è						Ĭ
Rock name			ate		5	5			<u>р</u>		∆:poor	Ê
			cci		ite	ite			E.		1.7	ea.
Soc		te	ore	<u>ral</u>	lan	lan		6	L.	a		ar
-		E.	<u> </u>	ne.	5	5		Ð	Ve	ŭ		lga
	an	len	lt:	E	lot.	lot t	an	er	12	er	g	IOU
	Gossan	Serpentinite	Basaltic brecciated rock	Clay mineral	Uranothorianite ore	Uranothorianite ore	Gossan	Copper ore	Quartz vein with copper or	Copper ore	B	ama
	9	S	B			P	5				O:common	So
ity				1		1.	ľ				Μ	Abbreviations: SM:Soamanonga area, TM:Toranomaro western area
cal	X	N	ΜI	μ	M	ΨŢ	WS.	S	S	WS		is:
Γοί		ľ							1.		<u>p</u> t	ior
No. Sample Locality No.	†-	<u> </u>	ŀ		·	.		\vdash	\vdash		©:abundant	iat
ampl No.	313	317	325	339	351	352	359	511	515	518	abu	геу
Na	ကိ	ကြ	က	ကိ	က	ကြ	3	ကြ	പ്പ	သ	O	Abb
No.		2	ŝ	4	5 2	9	c	00	6	10		-4
	<u> </u>	L	I	l	<u> </u>	<u> </u>	1	1	[1	

AP - 32