

113 61.8 M

MALAYSIA

AIR QUALITY MANAGEMENT STUDY FOR KELANG VALLEY REGION

FINAL REPORT Vol.2 Main Report

AUGUST 1993

JAPAN INTERNATIONAL COOPERATION AGENCY

国際	協力事業団	5.
	/651	

, .

PREFACE

In response to a request from the Government of Malaysia, the Government of Japan decided to conduct a Master Plan Study on Air Quality Management Study for Kelang Valley Region in Malaysia and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to Malaysia a study team headed by Mr. Makoto Miyakawa, SUURI-KEIKAKU CO., LTD. and composed of members from SUURI-KEIKAKU CO., LTD. and Pacific Consultants International seven times between December 1991 and June 1993.

The team held discussions with the officials concerned of the Government of Malaysia, and conducted field surveys at the study area. After the team returned to Japan, further studies were made and the present report was prepared.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of Malaysia for their close cooperation extended to the team.

August 1993

o- Vana Kense

Kensuke Yanagiya President Japan International Cooperation Agency .

.

.

.

.

EXECUTIVE SUMMARY

1. Introduction

1.1 Background and Objective of the Study

Kelang Valley Region (2,830 km², about 2.95 million people) consisting of Kuala Lumpur (the capital of Malaysia) and its vicinity has been experiencing worsening air pollution in recent years as a result of the rapid growth of the traffic volume, urbanization and industrial activities.

The objective of the Study was to prepare a guideline for air quality management for Kelang Valley Region with special emphasis on improving air quality monitoring capability, identification of major pollution sources, prediction of future air pollution and proposition of feasible control measures. At the same time, the Study was expected to contribute to tangible technology transfer to Malaysian counterparts.

1.2 Outline of the Study

The Study area is the Kelang Valley Region, approximately 60 km from east to west and 40 km from south to north, consisting of the Federal Territory (Kuala Lumpur) and Klang, Petaling, Gombak and Hulu Langat of Selangor State.

The Study was conducted from December 1991 to August 1993. The Study consisted of the basic and analytical study with the following components as shown in Fig. 1.1.

1.3 Overview of the Study Area

(1) Natural Environment

The Study area is a basin located in the southwestern part of the Malaysian Peninsula, surrounded by mountains exceeding 1,500 m height on the cast and the Straits of Melaka on the west.

Malaysia experiences a tropical rain forest climate, which is influenced by monsoons from the South China Sea and the Indian Ocean. The

- 1 -

Northeast monsoon season from December through February and the Southwest monsoon from June through August are generally the dry seasons for the western part of Peninsular Malaysia. Two transitional seasons from March through May and September through November are rainy seasons with high humidity. The monthly mean values of temperature range from about 26°C to about 28°C.

The wind is very weak throughout the year; the Study showed the annual average of wind speed is about 1 m/s in the Region and that low inversion layers appeared frequently. Hence, air pollutants tend to accumulate in the Region.

(2) Social Conditions

According to the latest census carried out in August 1991 and a preliminary count report released in March 1992, the total population in Malaysia is 17.57 million. Among them, 2.95 million people (about 17% of the total population) live in the Kelang Valley Region.

The Malaysian economy has been expanding rapidly. The average growth rate was 6.7% during the period 1971-1990, and is expected to be 7.0% between 1991-2000. In Kuala Lumpur, the growth of big industries is expected to decline. Future growth will be in the small scale industries, repair and service activities and medium-sized industries with higher employment densities. In Selangor State, industries such as electrical & electronics and machinery & transport equipment are expected to develop rapidly.

Kuala Lumpur is the most urbanized area (80% of the total area), followed by Petaling (33%). Agricultural fields occupies the largest area in Klang (47%) whereas forest occupies the largest area in Gombak (55%) and Hulu Langat (40%).

(3) Traffic and Transportation

Motor vehicles are the major means of land transportation in the Region. The total number of registered vehicles in the Federal Territory of Kuala Lumpur and Selangor State is about 1.57 million at the end of 1991 and the percentage of petrol and diesel vehicles were 91% and 9% respectively. As to the percentage of types of vehicles,

- 2 -

motorcycle accounts for 44%, followed by motor car at 43% and they account for 87% of the total vehicles. However, introduction of mass transportation system such as Light Rapid Train System and improvement of existing railways are expected to start in the near future.

For air transport, Subang International Airport is the only commercial airport in the Region which is being operated at full capacity. The new "Sepang International Airport" will be completed by 1997.

Port Klang handles cargo traffic. However, since the port is becoming congested, the west port will be constructed at first in Pulau Lumut during the 6th Malaysian Plan Period.

(4) Energy

The main facilities in Kelang Valley Region are boilers, They use mainly heavy fuel oil, while most other facilities burn light fuel oil.

In this Region, natural gas will be supplied to households and factories in the near future.

Several thermal power plants are now under construction or planned by the year 2000.

(Basic Study) Collection of existing materials and data Adjustment of measuring equipment (meteorology, air quality, pollution source) Meteorological observation (surface level and upper level) Air quality measurement Pollution source measurement and survey (Analytical Study) Meteorological analysis Analysis of Air Quality **Pollution Source Analysis** Surface level meteorology (wind direction, speed, etc.) SO2, NO2, NOX, SPM Factories and establishments, Upper level meteorology CO, NMHC, Og etc. motor vehicles, planes, ships (wind direction/speed, temperature) Study of Control Measures Analysis of Air Pollution Structure against Pollution Sources Development of air dispersion simulation model . Calculation of source contribution to ambient air quality . (Factories and motor vehicles) Prediction of future air quality • **Examination of Control Measures** Setting of air quality target value Evaluation of control measures Preparation of Guideline Source control measures Air quality and pollution source monitoring Manpower training Institutional and organizational framework

2. Present State of Ambient Air Quality

2.1 Features of Air Quality

Ambient air quality was monitored at five fixed stations from March 1992 to February 1993. Table 2.1 shows average concentrations throughout the period at these stations.

The SO₂ value ranged from 7.7 to 13.3 ppb in average. The NO₂ value ranged from 8.6 to 21.7 ppb while the CO value from 0.7 to 2.8 ppm in average. As regards SPM, the average value ranged from 24.1 to $67.6 \,\mu g/m^3$.

Table 2.2 shows the state of compliance with the air quality guidelines. It is noticed that the TSP and PM10 values were estimated indirectly from the SPM values.

Values of, SO₂, NO₂ and TSP were all below the guidelines. As for CO, 8 hours value exceeded the guideline at City Hall and Petaling Jaya.

For PM10, both of yearly and daily values exceeded the guidelines at Shah Alam. For O_3 , all stations did not satisfy the guidelines.

Station	SO2 ppb	NO₂ ppb	NOx ppb	CO ppm	SPM µg/m³	O₃ ppb	NMHC 10 ppbC
City Hall	10.4	21.7	103.3	2.7	50.7	9.5	-
UPM	8.0	8.6	18.1	-	24.1	10.0	-
Petaling Jaya	13.3	19.3	49.4	2.8	58.8	9.7	79.1
Shah Alam	7.7	15.2	31.4	0.7	67.6	10.9	22.5
Klang	8.5	11.4	26.6		60.8	12.4	_

Table 2.1 Average Concentration at Fixed Stations (1992)

Pollutant		S02	NO ₂	c	0	ז י	SP	PN	10	0	3
	Daily	Hourly	llourly	8 Hours	Hourly	Yearly	Daily	Yearly	Daily	8 Hours	llourly
Guidelines	40	130	170	9	30	90	260	50	150	60	100
· ·	(p	pb)	(ppb)	(p	pa)	(µg	/g)	(µg	/¤3)	(p	pb)
City Hall	0	0	0	x	o	0	0	o	0	х	Х
UPN	0	0	0	-	-	0	0	0	0	0	x
Petaling Jaya	0	0	0	x	0.	0	0	0	0	x	x
Shah Alam	0	0	0	0	0	0	0	x	· x	x	х
Klang	0	0	0	-	-	0	0	0	о.	x	x

Table 2.2 Compliance State with Air Quality Guidelines (1992)

U. Satisfy

x: exceed

-: no measurement

2.2 Diurnal Change of Pollutant Concentration

Fig. 2.1 shows diurnal change of pollutant concentration at fixed stations in 1992 as an example.

There are mainly three typical patterns on the diurnal changes.

The first one is a 'two peak pattern' with a sharp peak in the morning and a moderate peak in the evening through the night. Most of the diurnal changes of CO and Nitrogen Oxides showed this pattern. Some diurnal changes of SPM and Hydrocarbons also showed this pattern. This two peak pattern is considered to indicate influence of motor vehicles.

The second one is a 'single minimum pattern' with the minimum in the daytime. Some diurnal changes of SPM showed this pattern. It is noticed that SPM concentration rose up in the evening through the night and the concentration did not decrease till the morning.

The third is a 'single peak pattern' with the peak in the afternoon. O₃ diurnal changes at all stations showed this pattern. This pattern is mainly caused by sunshine.

- 6 -

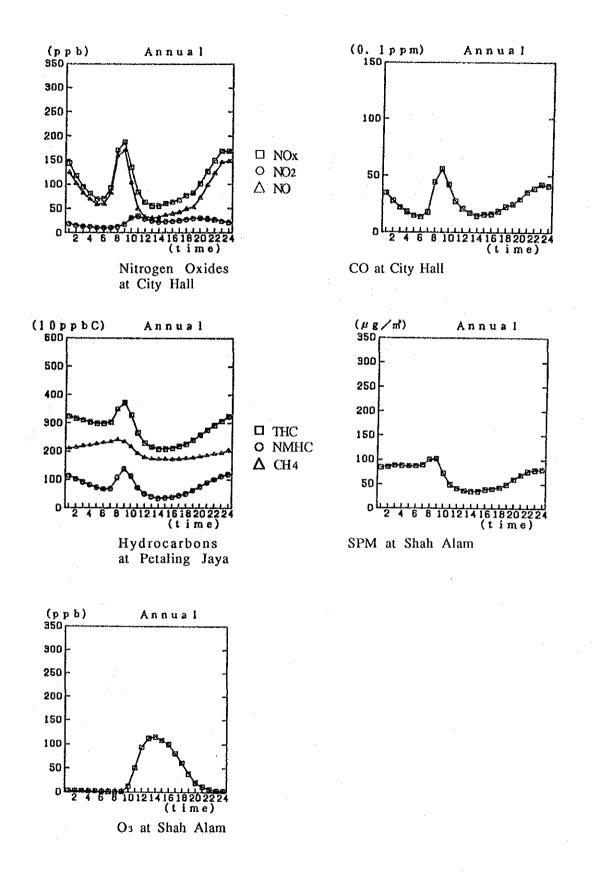


Fig. 2.1 Diurnal Change of Pollutant Concentration (1992)

3. Structure of Air Pollution

The present air pollution load by source in 1992 in the Kelang Valley Region was estimated as shown in Table 3.1. The SOx emission from factories is 31,000 tons/year (86%) among the total of 36,000 tons/year. The NOx emission from motor vehicles was 36,000 tons/year (67%) among the total of 54,000 tons/year. The PM emission from factories was 9,000 tons/year (71%) among the total of 13,000 tons/year. CO and HC emissions were solely calculated for motor vehicles as 290,000 tons/year and 73,000 tons/year respectively.

Table 3.1 Current Air pollution Load from Various Sources (1992)

			. (Unit: ton	/year)
	S0x	NOx	PN	CO	HC
Factories					
Power stations	19, 522	12, 792	1, 969	-	
General factories	11,047	2, 979	7,034		
Sub-total	30, 569	15, 771	9,003		
	(85.7)	(29.0)	(71.4)		
Motor vehicles	3, 117	36, 212	3, 243	290, 407	73, 445
	(8.7)	(66.5)	(25.7)	(100)	(100)
Airplanes	416	1, 320	115	-	_
	(1.2)	(2.4)	(0.9)	1.	
Ships	1, 552	989	200	Ļ	-
	(4.4)	(1.8)	(1.6)		
Households	0	162	44	-	- · -
	(0.0)	(0.3)	(0.4)		
Total	35,654	54, 454	12,605	290, 407	73, 445
	(100)	(100)	(100)	(100)	(100)
····		L			

Figures in parenthesis are percentage values(%). Air pollutant emission from open burning activities and earthworks are not included in this Table.

PM emission from petrol and diesel vehicles is given in Table 3.2. Diesel vehicles account for 59% of the total PM emission from motor vehicles. Table 3.2 Current PM Emission from Petrol and Diesel Vehicles (1992)

Engine Type		Emission (year)
Petrol	1,327	(40.9)
Diesel	1,914	(59.1)
Total	3,241	(100.0)

- 8 -

3.2 Contribution to Concentration by Source

Using an air dispersion simulation model, annual average concentration of SO₂, NO₂ and CO at each monitoring station and mesh point was calculated. Contribution to SPM concentration by source was calculated by Chemical Mass Balance (CMB) method because no reliable simulation model for SPM has not been developed yet.

Contribution to concentration of SO_2 and NOx by source at each fixed station and the maximum concentration point is shown in Figs 3.1 and 3.2 respectively. Average contribution to SPM concentration by source is shown in Fig. 3.3.

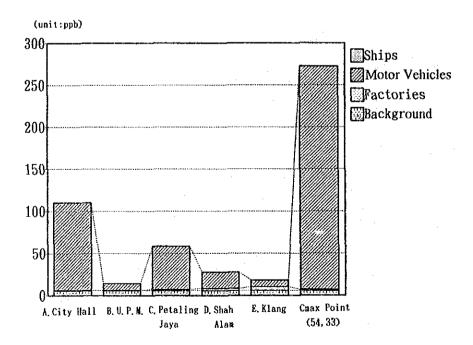
(1) SO₂

The contribution ratio to the estimated value was 7 - 88% for factories and 7 - 71% for motor vehicles.

The contribution ratio of factories is higher than that of other sources at all points excluding City Hall.

(2) NOx

The contribution ratio of motor vehicles to the estimated value was very high at 44 - 98%.


(3) SPM

The major contributors to SPM are combustion of diesel oil (mainly diesel vehicles) accounting for 36% of the total, and wood combustion including open burning (15%).

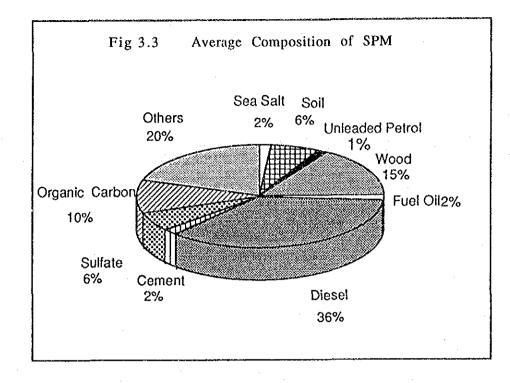

(unit:ppb) 100_T Ships Motor Vehicles 80 Factories Background 60 40 20 0 A. City Hall B. U. P. N. C. Petaling D. Shah E, Klang Cmax Point Jaya Alam (54, 30)

Fig 3.1 Contribution of Sources to SO₂ Concentration (1992)

Fig 3.2 Contribution of Sources to NOx Concentration (1992)

- 10 -

3.3 Regional Distribution of Air Pollutant Concentration

Regional concentration distribution simulated by air dispersion simulation for SO₂, NO₂ and CO is summarized as follows.

(1) SO₂

Concentration is high in Petaling Jaya area and in areas east of Klang. The Maximum concentration is 59.7 ppb, exceeding the air quality target value (20 ppb). The high concentration areas are located in the industrial zones in Petaling Jaya, Shah Alam, and Klang.

(2) NO₂

Concentration is high in Kuala Lumpur and Petaling Jaya areas where vehicle traffic is very dense. The maximum concentration is 41.1 ppb, exceeding the target value (37 ppb).

(3) CO

Concentration is high in Kuala Lumpur and Petaling Jaya areas where traffic volume is very high. The maximum concentration is 4.9 ppm, exceeding the target value (4 ppm).

4. Future Situation of Air Pollution

4.1 Future Air Pollution Load (2005) (without measures)

The air pollution load in the future (2005) (without measures) is summarized in Table 4.1.

The annual total emission is 52,000 tons for SOx, 115,000 tons for NOx, 18,000 tons for PM, 660,000 tons for CO, and 170,000 tons for HC.

The growth rate of air pollutants between 1992 and 2005 is 1.45 times for SOx, 2.12 times for NOx, 1.47 times for PM, 2.27 times for CO and HC.

Table 4.1 Future Air Pollution Load from Various Sources (2005) (without control measures)

			(U	nit: ton/	year)
	S0x	NOx	PM	CO	HC
Factories					
Power stations	30,040	26, 038	2, 423		
General factories	11, 283	4, 415	8, 163		
Sub-total	41, 323	30, 453	10, 586	-	-
	(80.1)	(26.4)	(57.2)		
Motor vehicles	7,079	82, 199	7, 359	659, 223	166, 720
	(13.7)	(71.3)	(39.8)	(100)	(100)
Airplanes	360	574	123	-	_ ·
	(0.7)	(0.5)	(0.7)		
Ships	2,836	1, 840	. 365	~	_
·	(5.5)	(1.6)	(2.0)		
Households	0	226	62		. —
	(0.0)	(0.2)	(0.3)		
Total	51, 598	115, 292	18, 495	659, 223	166, 720
	(100)	(100)	(100)	(100)	(100)

Figures in parenthesis are percentage values(%). Air pollutant emission from open burning activities and earthworks are not included, but that from PS-C Power Station outside KVR is included in this Table.

4.2 Air Quality Target Value

Pollutants to be covered by the guidelines are mainly SO₂, CO, and NO₂ originated from factories and motor vehicles. Air quality target values were set to evaluate predicted air quality concentration in the future and effectiveness of control measures.

The target value for SO₂ and CO was established based on the Malaysian guidelines while that of NO₂ was established based on the corresponding WHO's guideline.

The target values set in the Study are given in Table 4.2.

Table 4.2 Air Quality Target Value

Pollutant	Target Concentration
SO ₂	20 ppb
NO ₂	37 ppm
СО	4 ppm

4.3 Predicted Air Quality after Implementation of Control Measures

Predicted concentration for SO_2 , NO_x , NO_2 and CO at fixed stations and the maximum concentration point in 2005 when proposed control measures are implemented is shown in Table 4.3.

Items Stations	SO₂ (ppb)	NOx (ppb)	NO2 (ppb)	CO (ppm)
A. City Hall	9.2	85.2	22.2	2.20
B. UPM	4.5	20.7	10.5	1.19
C. Petaling Jaya	8.5	51.9	17.1	1.51
D. Shah Alam	8.7	44.7	15.8	1.33
E. Klang	6.1	27.1	12.1	1.21
Cmax Point	19.0	137.2	28.6	2.84
Mesh Index	(76,15)	(58,40)	(58,40)	(59,38)
Target Value	20	•	37	4

Table 4.3 Predicted Annual Average Concentration (2005) (with control measures)

The concentration of SO_2 , NO_2 and CO at fixed stations and the maximum concentration point will shift from the present state as shown in Figs. 4.1 through 4.3; the future state is described separately by the case whether proposed measures are implemented or not.

(1) SO₂

When no control measures are taken, SO₂ concentration will rise in the future according to the increase of emission quantity. However, by taking proper control measures, the concentration at fixed stations will remain at the present level, and the target value will be achieved at all points in Kelang Valley Region.

(2) NO₂

 NO_2 concentration will increase as well when no measures are taken. But, when proper measures are taken, the concentration at fixed stations will remain at the present level or below, and the target level will be satisfied at all points.

(3) CO

CO concentration will also increase in the future when no measures are taken. However, when proper control measures are taken, the concentration at fixed stations will remain at the present level or below, and the target level will be satisfied at all points.

Fig 4.1 Change of SO₂ Concentration from 1992 to 2005

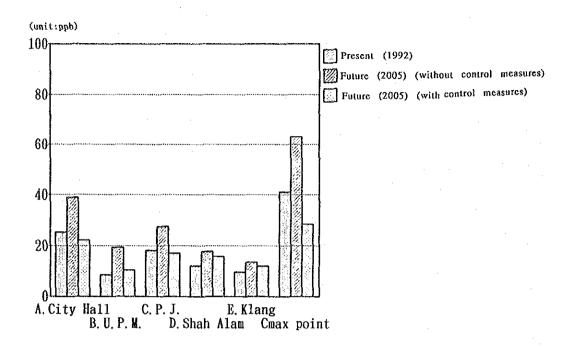
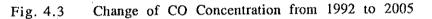



Fig. 4.2 Change of NO₂ Concentration from 1992 to 2005

4.3 Evaluation of Control Measures

The major pollution source of NO₂ and CO are motor vehicles in Kelang Valley Region. Control measures against motor vehicles are classified into two categories as follows.

(1) Exhaust gas regulation

(2) Measures for traffic and transportation

For vehicle exhaust gas regulation, the Government of Malaysia is to implement Regulation 91/441/EEC for light duty petrol vehicles.

For traffic and transportation, it has been implementing the "Transportation Master Plan for 2005" proposed in Klang Valley Transportation Study by JICA, 1989.

In order to evaluate the effect of these two measures on NO₂ and CO concentrations, the following two cases were assumed and studied.

Case 1

Only the Transportation Master Plan is completed by 2005.

Case 2

Only Regulation 91/441/EEC is implemented in 1995.

The results are summarized in Table 4.4.

In Case 1, CO concentration at the maximum concentration point will exceed the target value. In Case 2, the NO₂ concentration at the maximum concentration point will exceed the target value. The CO concentration at City Hall and at the maximum concentration point will also exceed the target value.

These case studies show that if the target values for NO₂ and CO are to be satisfied throughout Kelang Valley Region, both measures, namely the vehicle exhaust gas regulation and the measures for traffic and transportation must be implemented simultaneously.

Control Measure Case	Cas	se 1	Ca	se 2
Items	NO2	ω	NO2	co
Stations	(ppb)	(ppm)	(ppb)	(ppm)
A. City Hall	24.3	3.5	35.7	4.2
B. UPM	11.7	1.7	11.1	1.3
C. Petaling Jaya	19.3	2.2	24.1	2.1
D. Shah Alam	17.8	1.9	15.7	1.5
E. Klang	13.3	1.7	12.3	1.3
Cmax Point	32.1	4.6	53.2	6.3
Mesh Index	(57,34)	(59,38)	(54,33)	(59,37)

Table 4.4 Computed Concentration with Control Measures by Case

5. Presentation of Guideline for Air Quality Management

5.1 Basic Conditions

The Department of Environment has made efforts to prevent air pollution in Kelang Valley Region since the Environmental Quality Act was published in 1974. According to the result of the air quality monitoring at 5 fixed stations, however, concentration of carbon monoxide (CO) and suspended particulate matter (PM10) exceeded the air quality guideline at Shah Alam. Particularly, concentration of ozone (O₃) exceeded the guideline at all stations.

Malaysia is one of the most significantly developing countries in the world. Its average annual GDP growth rate is amazingly 6.7% from 1971 to 1990 and is expected to be 7.0% between 1991 - 2000. This economic growth is particularly apparent in urban area. The atmospheric deterioration of the KVR is foreseeable from its industrialization, population concentration, traffic growth and so on.

In order to protect the health of the citizens and to preserve the comfortable living environment, air quality management for the Region is indispensable.

5.2 Proposed Measures

(1) General Consideration

Measures for air quality management should cover not only direct control of pollution sources (factories, motor vehicles, etc.), but also their background conditions, such as improvement of traffic and transportation, and road network, rationalization of land use, fuel improvement. They also should cover improvement of institutional and organizational framework and manpower training and improvement of air quality and pollution source monitoring.

Following measures were recommended to prevent the atmospheric deterioration with almost no adverse effects on economic growth. These measures are considered to be practical measures for implementation by the concerned agencies of the Malaysian Government. The proposed measures, their rough costs and their implementation schedule are summarized in Tables 5.1 through 5.3.

(2) Stationary Sources

• Power Station

Power Stations in KVR emitted 55% of total SOx, 24% of total NOx and 16% of total PM in 1992. Fuel conversion (fuel oil or coal to natural gas) was recommended as the practical measure. It will contribute to reduction of pollutant amount in comparison with the case of "2005 without measures": SOx 42%, NOx 13% and PM 66%.

• General Factories

Genera factories emitted 31% of total SOx, 5% of total NOx and 55% of total PM in 1992. Six kinds of measures as follows were recommended. The effect of the measures will be 53% of SOx, 0.1% of NOx and 33% of PM reductions respectively. Proper combustion management will lead to energy saving and pollutant emission reduction. Energy saving by the proposed combustion management, etc. will lead to 10% reduction in fuel consumption.

- Fuel conversion (fuel oil to light fuel oil/natural gas)
- Combustion management
- Use of natural gas (new facilities)

- 18 -

- Energy saving
- Enhancement of dust removal
- Extension of stacks
- Solid Waste Management System

The Study could not deal adequately with open burning of solid wastes and others directly because of scant information about this practice. But its effect on air pollution in KVR can not be ignored. Though open burning is principally illegal, it is prevalent with solid wastes. Establishment of solid waste management system could reduce open burning to a considerable extent.

(3) Mobil Sources

Motor vehicles are the major pollution source among mobile sources in KVR.

The major source is motor cars for CO and NOx, diesel vehicles for PM and SOx, and motorcycles for CO and HC. Accordingly, following measures were recommended, based on the type of vehicle.

- Exhaust Emission Control
 - Installation of catalytic converters to petrol vehicles Oxidation catalytic converter can reduce 51% of CO 17% of NOx and 59% of HC from petrol vehicles.
 - Introduction of four stroke motorcycles The four stroke motorcycle cmit only 14% of PM, 18% of HC, 42% of CO and 58% of SOx in comparison with the two stroke motorcycle.
 - Smokeless lub oil for two stroke motorcycles The use of smokeless lube oil into the two stroke motorcycle can reduce black smoke.
 - Quality control of fuel Use of unleaded petrol is necessary for oxidation catalytic converter. Reduction of sulphur content in diesel oil from 0.3% to 0.2% is necessary for reduction of SOx and PM.

- Restriction of light duty diesel vehicles
 - Restriction of diesel vehicles is very important to reduce PM and SOx emission. To begin with, the restriction of light duty diesel vehicles, initially targeting taxies and commercial vehicles was recommended.

• Execution of Transportation Master Plan by 2005(*)

The Transportation Master Plan was prepared to improve the traffic situation in KVR, where the transportation system is exceedingly dependent on motor vehicles, and hence to mitigate the traffic congestion in the Region. The simulated result showed that it will play quite a significant role in mitigating air pollution. Therefore, the realization of this master plan in time, as scheduled is quite essential for improving the air quality in the Region.

* Source: JICA (1989), Klang Valley Transportation Study

If the exhaust gas regulation for petrol vehicles and the Master Plan are implemented, vehicular pollutant emission of SOx, NOx, PM, HC and CO in the case of "2005 with control measure" will be reduced by 19%, 32%, 35%, 38% and 51% respectively in comparison with the case of "2005 without measures".

(4) Institution and Organization

In order to implement the countermeasures smoothly and to confirm their effectiveness, following supporting actions are essential.

1) Strengthening of DOE's capacity in institution and organization

DOE is one of the most important organizations concerned to air pollution control in KVR. However, shortage of staff is a serious problem at present which may worsen in future. In order to strengthen DOE, recruiting the qualified manpower and staff is a matter requiring urgent consideration.

2) Installment of ambient air quality and source monitoring systems

During the Study, five fixed stations and two monitoring cars were set up in KVR. However they are not adequate to monitor ambient air quality effectively. Eleven fixed stations, 20 mobile stations in all were recommended to be installed by 2005. Vehicle exhaust gas monitoring system with chassis dynamometers and flue gas measurement system for stationary source monitoring were also recommended.

3) Establishment of a combustion management system.

It was proposed to establish a regulation system which aims at controlling the combustion in factories with dual objectives of ambient air pollution control and energy conservation. It is also necessary to establish a system which subsidizes the activities relating to air pollution control.

4) Car Inspection System

It was proposed to establish a car inspection system which aims to keep in-use vehicles in good condition, which will lead to reduce air pollutant emission from them.

5) Foundation of Comprehensive Air Pollution Control Center

Considering the shortage in qualified engineers to participate in the activities for controlling air pollution at present in the country, it is necessary to train such engineers as soon as possible prior to the implementation of the measures which the Study proposed in the guidelines. In order to increase the number of such engineer, it was proposed to establish "the Comprehensive Air Pollution Control Center" in the earliest stage of the implementation. The center will consist of four centers as follows.

- Ambient Air Quality Central Monitoring Center
- Combustion Training Center
- Ambient Air Quality Monitoring Training Center
- Pollution Source Monitoring Center

The shortage of senior engineers for training such engineers is also a serious problem in the country. Such specialists and experts required for training the national engineers shall be supplemented with foreign expertise as required.

		2005
Stationary Sources		<u></u>
(1)Power Station	Operation	
1) "A" Power Station		
No.1(M.F.O.300Mw)		I
	Fuel conversion M.F.O to N.G. (for SOX & SPM reduction)	
No.2(N.G. 300Mw)		$\frac{1}{1}$
		Ī
No.3(Coal 300Mw)		
		230-6
	Improvement of Electric Precipitation's Elliciency	
No.4(CORL JUUNW)		Ī
No S(Coal S(MWW)		╞
No.6(Coal, SOOMW)		
		-
No 7/N G SMMW	← > Fruel conversion coal to N.G. (for SOX & SFM reduction)	
2) "B" Power Station		1
(N.G. 840MW)	200MW Unnecessary measures	un seix
3) "C" Power Station		T
(N.G.)	Unnecessary measures	-
(2)ractory		ar weiter
2)General Factorics		
	Fuel conversion (HFO to N.G)	
	(Facilities with more130kg/h of M.F.O combustion in Petaling Jaya & Shah Alam)	-
	(Facilitiese with more 2000kith M FO combinition in other areas)	
		1
	r	1
		17
	3 factories	1
	1998 1999 2000 2001 2002 2003 2004	2005

	Cost Estimate	M\$0.2 million	M\$3.1 million	•	ł	MS5.7 million								
Sources)	2005		Â			A								
	2004										-			
Valley Region (Stationary	2003									÷				·
on (S	2002 2		viler	:								·		
Regi	2001 2		stion bo				•							
Valley	2000 20		d combu	ment										
			Replacement of wood combustion boiler	Combustion management										
Air Pollution in Kelang	6661 8		acement	pustion				1						
ution	7 1 1998	stack height	Repl	U C C	¥									
Poll	1997													
st Air	1996	Raíse of			Enerev saving									
against	1995	-	-		Energ									
	1994	-												
f Mea	1993				T									
lan o	1992				-				.i.					
tion P														
Implementation Plan of Measures						er								
Imple						ng Cent								
						(3)Combustion Training Center								
1 (2)						bustion								
Table 5.1 (2)						(3)Com								
Ĥ														

	1 1992 1 1993 1 1994 1 1995 1 1996 1 1997 1 1998 1 1999 1 2000 1 2001 2003 1 2004 1 2005	Cost Estimate
1. Motor Vehicles		
(1) Emission Control		1
1)Combustion Improvement		
of Motorcycle		-
a) Shift from 2-cycle M/C		10% cost up
to 4-cycle M/C	Almost Completion	
b) Use of Smokeless Lube Oil		M\$20/liter
	Preparation Supply and regulation	(40% cost up)
2) Application of EC Regulation		Oxidation catalytic converter
a) Motor Car	ECEIS-04 Fr Source Statistic converter	MS1.400/unit cost up
	91/441/EEC	
2) D		
J) Acsurtion of Dirse Moul	i I I	•
		والمتعالمة المتعالمة
		•
(2) Fuel Control		
1) Unleaded fuel	using ratio 80-90%	·
2) Low Sulphur Dicsel Fuel	Sulphur content 0.2%	
	Sulphur content 0.32%	
(3) Traffe control		
1) Mass Rapid Transit Railway		
System (MRT)		. t
2) Improvement of Bus System		
•		
3) Road Net Work Plan	Transportation Master Plan in 2005	
2. Organization & Institution for		
Motor Vehicles		
(1) Car Inspection System		M\$9,0 million
(1) Intradiction of Clevithme Suctem		

- 24 -

in Kelang Valley Region Implementation Plan of Air Pollution Monitoring Table 5.3

MS4.28mil. MS35.19mil. M\$2.44mil. MS1.56mil. MS1.52mil. MS1.48mil. M\$2.44mil. MS4.32mil. MS 0.24 mil. MS 4mil.(Petrol) MS 8 mil.(Dicsel) M\$1.62mil. MS1.59mil. MS2.11mil. MS2.69mil. M\$2.69mil. MS2.11mil. MS2.69mil. M\$1.65mil. Cost Estimate MS 35.2 mil. M\$ 0.76 mil. Î 2005 Ŷ Ć 2004 2003 þ 2002 Ŷ Monitoring) 200 88 Pollution Source <u>6</u> Ç 1998 Ģ Ç 661 Air stration of Chantse Dynamometer 1<u>9</u>86 and Replacement Quality 1995 9 1111 6 (Ambient Air 1994 9 8 1 4 1993 ç 8 Existing Dew Traihing Center

 Air Quality Monitoring
 Training Center

 Pollution Source Monitoring
 Traiging Center

 1. Ambkat Air Quality Monitoring (1) Pixed Station 1) Residential Area a) UPM Air Pollation Source Monttoring ((1) Factory High Concentration Area a) New station Existing Monitoring Car [No.1] 3. Central Monitoring Center New Monitoring Car No.3 New station New station New station New station New station Road Side a) City Hall (2) Mobile Station Klang (2) Motor Vehicle S.A 4 No.4 No.2 Ð ြ 6 ଛ ÷ $\hat{}$ 1 Total ଳ ล ନ

6. Future Requirements

• Publishment of enforceable air quality standards

Malaysian Air Quality Guidelines (1989) actually don't have any legal enforcement. Hence, it is necessary to establish Ambient Air Quality Standards to control air pollution fundamentally.

• Study of air pollution effects on public health and ecosystem

According to the result of ambient air quality monitoring in KVR, there may be some people whose health is affected due to air pollution in KL, Shah Alam or Petaling Jaya. It is important to study such air pollution effects on health in particular and ecosystem in general.

• Reconstruction of the simulation model

The simulation result in the Study was based on only one year data. Hence, it is necessary to check the validity of the simulation model after accumulation of air quality and source data for two to three years period.

• Development of simulation model for SPM and HC

Though simulation model for air pollution can apply only to SO2, NO2 and CO so far, development of new simulation models for SPM and HC is expected in future in order to make their quantitative assessment.

• Accurate survey of air quality in high pollution areas and on road sides

The objective of the Study was to clarify the overall situation of the air pollution in and around the city of KL, but not at any particular local point or an area in the city. It is difficult to clarify the local air pollution by the method and the model applied for the simulation. The results of this simulation does not indicate the local situation of any small spot or strip even when the pollution situation thereof exceeds the target value. For instance, pollutant concentration along main roads with heavy traffic may exceed the air quality guidelines. Therefore, the measures proposed herein for 2005 may not guarantee improvement of such local pollution situation. A more detailed study in each area is necessary to identify the pollution situation of such areas. For this objective, the data obtained by the proposed monitoring system can be effectively utilized.

Study of haze causes

Though the Study did not aim to clarify the cause of haze in the Region, ambient SPM samples were collected and analyzed. However, no haze was observed during the survey period. Nevertheless, it is recommended to carry out study on haze, centering on its chemistry.

Contents

Page

Volume 2 MAIN REPORT

CHAPTER 1	INTRODUCTION	1 - 1
1.1	Background and Objective of the Study	1-1
1.1.1	Background of the Study	1-1
1.1.2	Objective of the Study	1-2
1.2	Outline of the Study	1-2
1.3	Organization for the Study	1-12
1.3.1	Malaysian Organization	1-12
1.3.2	Japanese Organization	1-14
1.3.3	Counterpart Assignments	1-16
1.3.4	Organizational Structure	1-16
CHAPTER 2	OVERVIEW OF THE STUDY AREA	2-1
2.1	Natural Environment	2-1
2.2	Social Environment	2-2
2.2.1	Society and Administration	2-2
2.2.2	Development Plans and Population	2-3
2.2.3	Economy and Industry	2-6
2.2.4	Land Use, Urban Area and Solid Waste	2-16
2.2.5	Transport	2-23
2.2.6	Energy	2-48
2.3	Institutional Framework for Air Pollution Control	2-53
2.3.1	Laws and Regulations	2-53
2.3.2	Administrative Organization	2-55
2.3.3	Ambient Air Quality Guidelines	2-56
2.3.4	Emission Standards	2-59
2.3.5	Air Pollution Monitoring	2-60
CHAPTER 3	METEOROLOGY	3-1
3.1	Surface Level Meteorology	3 - 1
3.1.1	Outline of the Observation	3 - 1
3.1.2	Analysis of the Observed Data	3-3
3.2	Upper Level Meteorology	3-20
3.2.1	Outline of the Observation	3-20

3.2.2	Analysis of the Observed Data	3-20
3.3	Analysis of Other Related Data	
3.4	Summary	
CHAPTER 4	AMBIENT AIR QUALITY	4-1
4.1	Monitoring of the Ambient Air Quality	4-1
4.1.1	Outline of the Air Quality Monitoring	4-1
4.1.2	Analysis of the Monitoring Data	4-3
4.2	Simplified Measurement	4-49
4.2.1	Simplified Measurement over a Wide Area	4-49
4.2.2	Simplified Measurement around Roads	4-54
4.3	Analysis of Other Related Data	4-61
4.4	Summary	4-75
CHAPTER 5	PRESENT STATE OF AIR POLLUTION SOURCES	5 - 1
5.1	Factories and Establishments	5-2
5.1.1	Air Pollution Facilities and Fuel Consumption	5-2
5.1.2	Flue Gas Measurement	5-8
5.1.3	Fuel Analysis	5-10
5.1.4	Emission Factor	5-11
5.1.5	Air Pollution Load	5-13
5.2	Motor Vehicles	5-16
5.2.1	Result of Traffic Volume Survey	5-16
5.2.2	Traffic Volume in Kelang Valley Region	5-30
5.2.3	Travel Speed	5-32
5.2.4	Measurement of Exhaust Gas at Idling State	5-38
5.2.5	Chassis Dynamometer Test Results	5-39
5.2.6	Emission Factor	5-42
5.2.7	Air Pollution Load	5-46
5.3	Airplanes	5-51
5.3.1	Number of Flights	5-51
5.3.2	Emission Factor	5-51
5.3.3	Air Pollution Load	5-53
5.4	Ships	5-54
5.4.1	Summary of Estimation Procedure	5-54
5.4.2	Number of Ships Calling at Port Klang	5-57
5.4.3	Parameters for Calculating Air Pollutant Emission	5-59
5.4.4	Air Pollution Load	5-61

5.5	Households	5-62
5.5.1	Fuel Consumption	5-62
5.5.2	Emission Factor	
5.5.3	Air Pollution Load	5-62
5.6	Summary for Air Pollution Load	5-63
CHAPTER 6	ANALYSIS OF AIR POLLUTION STRUCTURE BY AIR DISPERSION SIMULATION MODEL	6-1
6.1	Outline of the Air Dispersion Simulation Model	6-1
6.1.1	Air Dispersion Simulation Model	6-1
6.1.2	Scope of the Dispersion Model	6-1
6.1.3	Classification of Seasons and Time Zones	6-5
6.1.4	Pollution Source Model	6-5
6.1.5	Meteorological Model	6-6
6.1.6	Effective Stack Height Calculation Equation	
6.1.7	Air Dispersion Equation	6-10
6.1.8	Sctting the Diffusion Parameter	6-12
6.1.9	Equation to Convert NOx to NO2	6-14
6.1.10	Calculation of Annual Average Concentration	6-15
6.2	Calculation Result by the Dispersion Model	6-16
6.3	Analysis of Air Pollution Structure	6-20
6.4	Air Dispersion Simulation System	
6.4.1	Hardware System	6-29
6.4.2	Outline of the Air Dispersion Simulation System	6-29
6.4.3	Input and Output Design	6-29
6.4.4	Function of the System	6-33
6.4.5	Simulation Case Study	6-34
CHAPTER 7	CHEMICAL ANALYSIS OF SPM COMPONENT	7-1
7.1	Particulate Matter Component of Emission Source	7-1
7.2	SPM Components of Ambient Air	7-7
7.2.1	Outline of SPM Sampling	7-7
7.2.2	SPM Components of Ambient Air	7-9
7.3	SPM Component Analysis by CMB Method	7-16
7.3.1	Outline of CMB Method	7-16
7.3.2	Analytical Results by CMB Method	7-17
	· · ·	

CHAPTER 8	PREDICTION OF AIR POLLUTANT CONCENTRATION IN THE FUTURE AND NECESSITY OF REDUCTION OF AIR POLLUTION LOADS	8 - 1
8.1	Target Year	8-1
8.2	Prediction Conditions and Air Pollution Load	8 - 1
8.2.1	Factories and Establishments	8 - 1
8.2.2	Motor Vehicles	8-4
8.2.3	Airplancs	8-5
8.2.4	Ships	8-6
8.2.5	Households	8-8
8.2.6	Total Air Pollution Load	8-8
8.3	Prediction of Future Concentration Distribution	8-10
8.3.1	Prediction of Concentration at Monitoring Stations and	
	the Maximum Concentration Point	8-10
8.3.2	Prediction of Plane Concentration Distribution	8-13
8.4	Air Quality Target Value	8-18
8.4.1	Method for Estimating Air Quality Target Value	8~18
8.4.2	Setting of Air Quality Target Value	
8.5	Necessity of Emission Reduction	8-28
CHAPTER 9	CONTROL OVER AIR POLLUTION SOURCES	9-1
9.1	Factories and Establishments	9-1
9.1.1	Necessity for Control	9-1
9.1.2	Present State of Pollution Control	9-2
9.1.3	Basic Techniques for Stationary Source	
	Emission Control	9-3
9.1.4	Proposed Individual Control Measures	9-17
9.1.5	Training of Engineers	9-26
9.1.6	Energy Saving	9-29
9.1.7	Technical Supporting System	9-36
9.1.8	Financial Support System	9-37
9.1.9	Rough Cost Estimation	9-37
9.2	Motor Vehicles	9-40
9.2.1	Present State	9-40
9.2.2	Necessity for Control of Exhaust Emission	9-43
9.2.3	Exhaust Emission Control	9-45
9.2.4	Traffic Volume Control	9-57
9.2.5	Type Approval System	9-62

		0 (7
9.2.6	Inspection and Maintenance System	
9.2.7	Education for Drivers and the Public	
9.2.8	Proposed Control Measures and Their Evaluation	9-73
9.3	Effect of Control Measures on Air Pollutant Concentration	9-95
9.3.1	Reduction of Air Pollutant Emission from Factories	9-95
9.3.2	Reduction of Air Pollutant Emission from Motor Vehicles	9-98
9.3.3	Total Air Pollution Load	9-106
9.3.4	Concentration at Monitoring Stations and Maximum Concentration Point	9-108
9.3.5	Concentration Distribution	9-111
9.3.6	Case Study for Effect of Control Measures for Motor Vehicles	9-117
9.3.7	Evaluation of Control Measures	9-123
9.4	Open Burning	
9.4.1	Solid Waste	9-124
9.4.2	Air Pollution from Open Burning	9-125
9.4.3	Management of Open Burning	9-125
9.4.4	Municipal Incinerator	9-126
CHAPTER 10	AIR QUALITY AND POLLUTION SOURCE MONITORING	10-1
10.1	Outline of Air Quality and Pollution Source Monitoring	10-1
10.1.1	Present State of Air Pollution Monitoring	10-1
10.1.2	Objective of the Monitoring System	10-3
10.1.3	Central Monitoring System	
10.2	Air Quality Monitoring System	
10.2.1	Adequate Arrangement of Monitoring Stations	10-7
10.2.2	Requirement for Establishment of Monitoring Stations	10-14
10.3	Pollution Source Monitoring System	10-15
10.3.1	Basic Items for Pollution Source Monitoring	10-15
10.3.2	Stationary Source Monitoring	10-16
10.3.3	\mathbf{c}	10-19
10.4	Staff, Costs, and Processes for Monitoring System	10-23
10.4.1	Staff for Monitoring System	
10.4.2	Costs for Monitoring System	
10.4.3	Future Processes for Monitoring System	10-25
	- V -	

CHAPTER 11	GUIDELINES FOR THE AIR QUALITY MANAGEMENT FOR KELANG VALLEY REGION	11-1
11.1	Introduction	11-1
11.2	Overview of Kelang Valley Region	
11.2.1	Natural condition	
11.2.2	Socio-economic Condition	
11.3	Objectives of the Guidelines	11-5
11.4	Application Area of the Guidelines	11-5
11.5	Target Level of Ambient Air Quality	11-5
11.6	Target Year of the Guidelines	11-7
11.7	Air Pollution Condition	11-7
11.7.1	Present Air Pollution Condition (1992)	11-7
11.7.2	Future Air Pollution Condition (2005) (without control measures)	
11.8	Control Measures against Pollution Sources	11-26
11.8.1	Stationary Sources	
11.8.2	Mobile Sources	11-27
11.8.3	Future Air Pollution Condition (2005) (with control measures)	11-29
11.8.4	Evaluation of Control Measures	
11.9	Monitoring of Air Quality and Pollution Sources	11-35
11.9.1	Ambient Air Quality Monitoring	11-35
11.9.2	Pollution Source Monitoring	11-35
11.10	Manpower Development	
11.10.1	•	
11.10.2	Ambient Air Quality Monitoring Engineer	11-37
	Pollution Source Monitoring Engineer	
11.11	Institutional and Organizational Framework for Implementation of the Guidelines	
11.11.1	,	
	Mobile Sources	
11.11.3	Manpower	11-39
11.11.4	Establishment of a Comprehensive Air Pollution Control Center	11-39
11.12	Cost Estimate and Schedule for Air Pollution Control	11-44
11.12.1	Cost Estimate	11-44
11.12.2	Schedule	11-45
CHAPTER 12	CONCLUSIONS AND RECOMMENDATIONS	12-1

List of Figures

CHAPTER 1 INTRODUCTION

Fig. 1.2.1	Study Area	
Fig. 1.2.2	Outline of the Study	1-4
Fig. 1.2.3	Study Schedule	
Fig. 1.2 4	Study Work Flow	1-10
Fig. 1.3.1	Organizational Diagram for the Study	1-16

CHAPTER 2 OVERVIEW OF THE STUDY AREA

Fig.	2.1	Location of Kelang Valley Region	2-1
Fig.	2.2.1	Conceptual Model of Administrative Structure in a District	2-3
Fig.	2.2.2	State Government and Local Authorities	2-3
Fig.	2.2.3	Urban Area Map of Kelang Valley Region	2-18
Fig.	2.2.4	City Hierarchy in Kelang Valley Region	2-19
Fig.	2.2.5	Urban Development Strategy Map in Kelang Valley Region	2-20
Fig.	2.2.6	Plan for Waste Collection in Kelang Valley Region	2-21
Fig.	2.2.7	Plan for Sanitary Landfills in Kelang Valley Region	2-22
Fig.	2.2.8(1)	Road Network in Kuala Lumpur	2-24
Fig.	2.2.8(1)	Road Network in Kelang Valley Region	2-25
Fig.	2.2.9	Planned Road Network in 2000	2-26
Fig.	2.2.10	Trip Generation and Attraction in Selangor	2-30
Fig.	2.2.11(1)	Traffic Conditions in Sclangor in 1985	2-31
Fig.	2.2.11(2)	Traffic Conditions in Selangor in 2005	2-32
Fig.	2.2.12	Bus Routes in Kelang Valley Region	2-33
Fig.	2.2.13	Express "Inter-Regional" Bus Routes	2-36
Fig.	2.2.14(1)	Traffic Volume on Major Roads in Kelang Valley Region	2-37
Fig.	2.2.14(2)	Traffic Volume on Major Roads in Kelang Valley Region	2-38
Fig.	2.2.15	Subang Airport Map	2-45
Fig.	2.2.16	Planned Location of Sepang International Airport	2-46
Fig.	2.2.17(1)	Klang Port Development Plan	2-47
Fig.	2.2.17(2)	Future Port Development in the 21st Century	2-47
Fig.	2.3.1	Department of Environment: Organizational Structure 1991	2-58

~ i -

METEOROLOGY **CHAPTER 3** Locations of Meteorological Stations-----3 - 2Fig. 3.1.1 Wind Speed Histogram at UPM (Mar. 1992 ~ Feb. 1993)-----3-5 Fig. 3.1.2 Stability Index Histogram at Petaling Jaya Fig. 3.1.3 (Mar. 1992 ~ Feb. 1993)-----3-6 Diurnal Variation of Wind Speed at UPM Fig. 3.1.4 (Mar. 1992 ~ Feb. 1993)-----3-7 Diurnal Variation of Net Radiation at Petaling Jaya Fig. 3.1.5 (Mar. 1992 ~ Feb. 1993)------3 - 8Diurnal Variation of Temperature at UPM Fig. 3.1.6 (Mar. 1992 ~ Feb. 1993)-----3-9 Diurnal Variation of Relative Humidity at UPM Fig. 3.1.7 (Mar. 1992 ~ Feb. 1993)-----3-10 Diurnal Variation of Rainfall Amount at UPM Fig. 3.1.8 (Mar. 1992 ~ Feb. 1993)------3 - 11Wind Rose at Shah Alam (Mar. 1992 ~ Feb. 1993)------3-12 Fig. 3.1.9 Monthly Change of Wind Speed (Mar. 1992 ~ Feb. 1993)------Fig. 3.1.10 3-15 Monthly Change of Solar Radiation Fig. 3.1.11 (Mar. 1992 ~ Feb. 1993)-----3 - 16Monthly Change of Temperature (Mar. 1992 ~ Feb. 1993) -----Fig. 3.1.12 3 - 17Monthly Change of Relative Humidity Fig. 3.1.13 (Mar. 1992 ~ Feb. 1993)-----3 - 18Fig. 3.1.14 Monthly Change of Rainfall Amount (Mar. 1992 ~ Feb. 1993)-----3-19 Vertical Profiles of Wind Speed and Temperature at UPM Fig. 3.2.1(1) ~ 26th/Feb./1992)-----(20th 3-21 Fig. 3.2.1(2) Vertical Profiles of Wind Speed and Temperature at UPM (15th ~ 21st/Apr./1992)-----3 - 22Vertical Profiles of Wind Speed and Temperature at UPM Fig. 3.2.1(3) (29th/Jly. ~ 4th/Aug./1992)-----3-23 Vertical Profiles of Wind Speed and Temperature at UPM Fig. 3.2.1(4) (21st ~ 27th/Oct./1992)-----3 - 24Fig. 3.2.2 Relations among Target Height and Three Inversion Categories-----3 - 26Fig. 3.3.1 Summary of Wind Roses in 1974 through 1988 -----3-33 Fig. 3.3.2 Monthly Changes of Rainfall Amount in 1981 through 1992-----3-34 Fig. 3.3.3 Monthly Changes of Temperature in 1981 through 1992-----3-35 Fig. 3.3.4 Diurnal Changes of Temperature in 1981 through 1992------3-36 Fig. 3.3.5 Diurnal Changes of Rainfall Amount in 1981 through 1992---3-37 Fig. 3.3.6 Diurnal Changes of Relative Humidity in 1981 through 1992-----3 - 38

CHAPTER 4	AMBIENT AIR QUALITY	
Fig. 4.1.1	Locations of Monitoring Stations	4-2
Fig. 4.1.2	Diurnal Change of Nitrogen Oxides at City Hall (Mar. 1992 ~ Feb. 1993)	4-10
Fig. 4.1.3	Diurnal Change of CO at City Hall (Mar. 1992 ~ Feb. 1993)	4-11
Fig. 4.1.4	Diurnal Change of Hydrocarbons at Petaling Jaya (Mar. 1992 ~ Feb. 1993)	4-12
Fig. 4.1.5	Diurnal Change of SPM at Shah Alam (Mar. 1992 ~ Feb. 1993)	4-13
Fig. 4.1.6	Diurnal Change of O3 at Shah Alam (Mar. 1992 ~ Feb. 1993)	4-14
Fig. 4.1.7	Diurnal Change of SO2 at Petaling Jaya (Mar. 1992 ~ Feb. 1993)	4-15
Fig. 4.1.8	Monthly Change of SPM at Fixed Stations (Mar. 1992 ~ Feb. 1993)	4-17
Fig. 4.1.9	Monthly Change of SO ₂ at Fixed Stations (Mar. 1992 ~ Feb. 1993)	4-18
Fig. 4.1.10	Monthly Change of CO at Fixed Stations (Mar. 1992 ~ Feb. 1993)	4-19
Fig. 4.1.11	Monthly Change of Nitrogen Oxides at Fixed Stations (Mar. 1992 ~ Feb. 1993)	4-20
Fig. 4.1.12	Monthly Change of O3 at Fixed Stations (Mar. 1992 ~ Feb. 1993)	4-21
Fig. 4.1.13	Monthly Change of Hydrocarbons at Fixed Stations (Mar. 1992 ~ Feb. 1993)	4-22
Fig. 4.1.14	O3 Concentration by Wind Direction (Mar. 1992 ~ Feb. 1993)	4-24
Fig. 4.1.15	CO Concentration by Wind Speed (Mar. 1992 ~ Feb. 1993)	4-25
Fig. 4.1.16	O3 Concentration by Wind Speed (Mar. 1992 ~ Feb. 1993)	4-26
Fig. 4.1.17	SPM Concentration by Stability Index at Shah Alam (Mar. 1992 ~ Feb. 1993)	4-27
Fig. 4.1.18	O ₃ Concentration by Stability Index at Shah Alam (Mar. 1992 ~ Feb. 1993)	4-27
Fig. 4.1.19	SPM Concentration by Rainfall Amount at Petaling Jaya (Mar. 1992 ~ Feb. 1993)	4-27
Fig. 4.1.20	Scatter Diagram of SPM with NO2 (Mar. 1992 ~ Feb. 1993)	4-30
Fig. 4.1.21	Diurnal Change of SPM during High SPM Days and Low SPM Days (Mar. 1992 ~ Feb. 1993)	4-31
Fig. 4.1.22(1)	Wind Rose during High SPM Days (Mar. 1992 ~ Feb. 1993)	4-32
Fig. 4.1.22(2)	Wind Rose during Low SPM Days (Mar. 1992 ~ Fcb. 1993)	4-33
Fig. 4.1.23	Diurnal Change of Net Radiation during High SPM Days and Low SPM Days at Petaling Jaya (Mar. 1992 ~ Feb. 1993)	4-34
Fig. 4.1.24	Diurnal Change of NO2 during High SPM Days and Low SPM Days (Mar. 1992 ~ Feb. 1993)	4-35

Fig. 4.1.25	Scatter Diagram of O3 with Solar Radiation (Mar. 1992 ~ Feb. 1993)	4-38
Fig. 4.1.26	Scatter Diagram of O3 with Relative Humidity (Mar. 1992 ~ Feb. 1993)	4-38
Fig. 4.1.27	Scatter Diagram of O3 with Temperature (Mar. 1992 ~ Feb. 1993)	4-39
Fig. 4.1.28	Diurnal Change of O3 during High O3 Days and Low O3 Days (Mar. 1992 ~ Feb. 1993)	4-42
Fig. 4.1.29(1)	Wind Rose during High O3 Days (Mar. 1992 ~ Feb. 1993)	4-43
Fig. 4.1.29(2)	Wind Rose during Low O3 Days (Mar. 1992 ~ Feb. 1993)	4-44
Fig. 4.1.30	Diurnal Change of Net Radiation during High O3 Days and Low O3 Days at Petaling Jaya (Mar. 1992 ~ Feb. 1993)	4-45
Fig. 4.1.31	Diurnal Change of Relative Humidity during High O3 Days and Low O3 Days (Mar. 1992 ~ Feb. 1993)	4-46
Fig. 4.1.32	Diurnal Change of NO2 during High O3 Days and Low O3 Days (Mar. 1992 ~ Feb. 1993)	4-47
Fig. 4.1.33	Diurnal Change of NMHC during High O3 Days and Low O3 Days (Mar. 1992 ~ Feb. 1993)	4-48
Fig. 4.2.1	Locations of Simplified Measurement Points in Wide Area	4-51
Fig. 4.2.2	Contour Map of NO2 by Simplified Measurement in Wide Area (Feb. ~ Mar. 1992)	4-52
Fig. 4.2.3	Contour Map of NOx by Simplified Measurement in Wide Area (Oct. ~ Nov. 1992)	4-52
Fig. 4.2.4	Contour Map of SO3 by Simplified Measurement in Wide Area (Mar. ~ Apr. 1992)	4-53
Fig. 4.2.5	Locations of Simplified Measurement Points around Roads	4-55
Fig. 4.2.6	CO Profile by Detector Tube of the First Period (5th ~ 7th/Mar./1992)	4-57
Fig. 4.2.7.	CO Profile by Detector Tube of the Second Period (24th ~ 27th/Apr./1992)	4-58
Fig. 4.2.8	CO Profile by Detector Tube of the Third Period (11th ~ 13th/Aug./1992)	4-59
Fig. 4.2.9	CO Profile by Detector Tube of the Fourth Period (2nd ~ 4th/Nov/1992)	4-60
Fig. 4.3.1(1)	Diumal Variation in NOx, SOx, SPM and CO in Kuala Lumpur	4-64
Fig. 4.3.1(2)	Diurnal Variation in NO, NO2 and O3 in Kuala Lumpur	4-64
Fig. 4.3.2	Average Monthly Concentration of NOx, CO and SPM and Monthly Average of Daily Maximum Value of O3 in Kuala Lumpur(1985)	4-65
Fig. 4.3.3(1)	Monthly Change of TSP at Petaling Jaya in 1977 through 1984	4-67
Fig. 4.3.3(2)	Monthly Change of TSP at Petaling Jaya in 1985 through 1992	4-67
Fig. 4.3.3(3)	Monthly Change of PM10 at Petaling Jaya in 1990 through 1992	

Fig. 4.3.5(1)Wind Rose of HFig. 4.3.5(2)Wind Rose of LaFig. 4.3.6Diurnal Change Low SPM DaFig. 4.3.7Diurnal Change Low SPM DaFig. 4.3.8Diurnal Change Low SPM DaFig. 4.3.9Diurnal Change Low SPM DaFig. 4.3.10Diurnal Change Low SPM DaFig. 4.3.10Diurnal Change Low SPM Da	igh SPM Days at UPM of SPM during High SPM Days and ys at UPM of SO ₂ during High SPM Days and ys at UPM	4-69 4-72 4-72 4-73 4-73 4-73 4-73
Fig. 4.3.5(2)Wind Rose of LoFig. 4.3.6Diurnal Change Low SPM DaFig. 4.3.7Diurnal Change Low SPM DaFig. 4.3.8Diurnal Change Low SPM DaFig. 4.3.9Diurnal Change Low SPM DaFig. 4.3.10Diurnal Change Low SPM Da	ow SPM Days at UPM of SPM during High SPM Days and ys at UPM of SO ₂ during High SPM Days and ys at UPM of NO ₂ during High SPM Days and ys at UPM	4-72 4-73 4-73 4-73
 Fig. 4.3.6 Diurnal Change Low SPM Da Fig. 4.3.7 Diurnal Change Low SPM Da Fig. 4.3.8 Diurnal Change Low SPM Da Fig. 4.3.9 Diurnal Change Low SPM Da Fig. 4.3.10 Diurnal Change Low SPM Da 	of SPM during High SPM Days and ys at UPM of SO ₂ during High SPM Days and ys at UPM of NO ₂ during High SPM Days and ys at UPM of NO ₂ during High SPM Days and ys at UPM	4-73 4-73 4-73
Low SPM Da Fig. 4.3.7 Diurnal Change Low SPM Da Fig. 4.3.8 Diurnal Change Low SPM Da Fig. 4.3.9 Diurnal Change Low SPM Da Fig. 4.3.10 Diurnal Change Low SPM Da	of SO ₂ during High SPM Days and of NO ₂ during High SPM Days and of NO ₂ during High SPM Days and ys at UPM of NO ₂ during High SPM Days and ys at UPM	4-73 4-73
Low SPM Da Fig. 4.3.8 Diurnal Change Low SPM Da Fig. 4.3.9 Diurnal Change Low SPM Da Fig. 4.3.10 Diurnal Change Low SPM Da	ys at UPM of NO2 during High SPM Days and ys at UPM of NO2 during High SPM Days and ys at UPM	4-73
Fig. 4.3.8Diurnal Change Low SPM DaFig. 4.3.9Diurnal Change Low SPM DaFig. 4.3.10Diurnal Change Low SPM Da	of NO2 during High SPM Days and ys at UPM of NO2 during High SPM Days and ys at UPM	
Low SPM Da Fig. 4.3.10 Diurnal Change Low SPM Da	ys at UPM	1_72
Low SPM Da		- i 3
	of Wind Speed during High SPM Days and ys at UPM	4-74
Fig. 4.3.11 Diurnal Change Days and Low S	of Relative Humidity during High SPM PM Days at UPM	4-74
	of Temperature during High SPM Days and ys at UPM	4-74
Fig. 4.3.13 Diurnal Change and Low SPM D	of Rainfall Amount during High SPM Days ays at UPM	4-74
CHAPTER 5 PRESENT STATE	OF AIR POLLUTION SOURCES	
Fig. 5.2.1 Location Map of in Kelang Vall	of Traffic Volume Survey Point ey Region	5-19
) Traffic Volume in Kuala Lumpur City 92)	5-20
Fig. 5.2.2(2) Daily (16 hours (Weekday) (19) Traffic Volume Outside Kuala Lumpur City 92)	5-21
Fig. 5.2.3(1) Hourly Traffic	Volume Fluctuation (No.10)	5-24
Fig. 5.2.3(2) Hourly Traffic	Volume Fluctuation (No.31)	5-25
Fig. 5.2.3(3) Hourly Traffic	Volume Fluctuation (No.38)	5-26
Fig. 5.2.4 Vehicle Type H	atio of Representative Survey Points (1992)	5-29
Fig. 5.2.5 Current Major	Road Network (1992)	5-31
Fig. 5.2.6(1) Routes of Trave	I Speed Survey in Kuala Lumpur City	5-36
Fig. 5.2.6(2) Routes of Trave	I Speed Survey in Kelang Valley Region	5-37
Fig. 5.3.1 Airplane Navig	ation Mode	5-52
Fig. 5.4.1 Procedure for I	Estimation of Emission Quantity from Ships	5-54
Fig. 5.4.2 Navigation Are	a	5-58

- V -

CHAPTER 6	ANALYSIS OF AIR POLLUTION STRUCTURE BY AIR DISPERSION SIMULATION MODEL	
Fig. 6.1.1	General Process of Air Quality Simulation	6-3
Fig. 6.1.2	Area for Computation of Air Pollutant Concentration for Kelang Valley Region	6-4
Fig. 6.1.3	Meteorological Blocks and Representative Points in Kelang Valley Region	6-8
Fig. 6.1.4	Pasquill-Gifford Chart	6-12
Fig. 6.1.5	Scatter Diagram of Actual Value of NOx and NO2	6-14
Fig. 6.2.1	Scatter Diagram of Actual and Estimated Values of SO2	6-18
Fig. 6.2.2	Scatter Diagram of Actual and Estimated Values of NOx	6-18
Fig. 6.2.3	Scatter Diagram of Actual and Estimated Values of NO2	6-19
Fig. 6.2.4	Scatter Diagram of Actual and Estimated Values of CO	6-19
Fig. 6.3.1	Contribution of Sources to SO ₂ Concentration (1992)	6-22
Fig. 6.3.2	Contribution of Sources to NOx Concentration (1992)	6-22
Fig. 6.3.3	Contribution of Sources to CO Concentration (1992)	6-23
Fig. 6.3.4	Annual Average Concentration of Isopleths for SO ₂ (1992) (All Sources)	6-25
Fig. 6.3.5	Annual Average Concentration of Isopleths for NOx (1992) (All Sources)	6-26
Fig. 6.3.6	Annual Average Concentration of Isopleths for NO2 (1992) (All Sources)	6-27
Fig. 6.3.7	Annual Average Concentration of Isopleths for CO (1992) (All Sources)	6-28
Fig. 6.4.1	Flowchart of the Air Dispersion Simulation System	6-30
Fig. 6.4.2	An Example of Concentration Contour Map by Pollutants	6-32
CHAPTER 7	CHEMICAL ANALYSIS OF SPM COMPONENT	
Fig. 7.1.1	Sampling Locations of Soil	7-2
CHAPTER 8	PREDICTION OF AIR POLLUTANT CONCENTRATION IN THE FUTURE AND NECESSITY OF REDUCTION OF AIR POLLUTION LOADS	
Fig. 8.3.1	Contribution of Sources to SO ₂ Concentration (2005) (without control measures)	8-12
Fig. 8.3.2	Contribution of Sources to NOx Concentration (2005) (without control measures)	8-12
Fig. 8.3.3	Contribution of Sources to CO Concentration (2005) (without control measures)	8-12
Fig. 8.3.4	Annual Average Concentration Isopleth for SO2 (All Sources) (2005) (without control measures)	8-14
Fig. 8.3.5	Annual Average Concentration Isopleth for NOx (All Sources) (2005) (without control measures)	8-15

Fig. 8.3.6	Annual Average Concentration Isopleth for NO2 (All Sources) (2005) (without control measures)	8-16
Fig. 8.3.7	Annual Average Concentration Isopleth for CO (All Sources) (2005) (without control measures)	8-17
Fig. 8.4.1	Schematic Diagram of Three Methods to Estimate Air Quality Target Value	8-21
Fig. 8.4.2(1)	Air Quality Target Value by Larsen Model (SO ₂ daily value for each station, Mar. 1992 ~ Feb. 1993)	8-22
Fig. 8.4.2(2)	Air Quality Target Value by Larsen Model and Linear Regression (SO ₂ daily value for Kelang Valley Region, Mar. 1992 ~ Feb. 1993)	8-23
Fig. 8.4.3	Air Quality Target Value by Linear Regression (SO ₂ daily value for Kelang Valley Region, Mar. 1992 ~ Feb. 1993)	8-24
Fig. 8.4.4	Relationship between O3 Maximum Value and NMHC Daily Mean	8-25
CHAPTER 9	CONTROL OVER AIR POLLUTION SOURCES	
		0.4
Fig. 9.1.1	Conversion of Nitrogen in Fuel vs. Air Ratio	9-4
Fig. 9.1.2	Air Ratio vs. Fluc Gas Thermal Loss	9-6
Fig. 9.1.3(1)	Low NOx Burners Concept of NOx Reduction	9-8
Fig. 9.1.3(2)		9-8
Fig. 9.1.4	Performance of Low NOx Burners	9-9
Fig. 9.1.5	Liquid/Gas Low NOx Burner	9-9
Fig. 9.1.6	Two Fuel Supply Stage De-NOx Combustion	9-11
Fig. 9.1.7	Dust Emission vs. O2 in Flue Gas	9-12
Fig. 9.1.8	Apparent Electric Resistivity vs. Removal %	9-16
Fig. 9.1.9	Wood Chip Spreader Stoker Boiler	
Fig. 9.1.10	Removal Efficiency of Various Precipitators	
Fig. 9.1.11	Test Facility and Equipment	9-28
Fig. 9.1.12	Heat Loss vs. Air/Fuel Ratio	9-30
Fig. 9.1.13	NOx Concentration vs. Air/Fuel Ratio	9-30
Fig. 9.1.14	Effects of Air/Fuel Ratio	9-31
Fig. 9.1.15	Direct Recovery to Feed Water Tank	9-33
Fig. 9.1.16	Direct Recovery to Boiler	9-33
Fig. 9.1.17	Indirect Recovery through Heat Exchanger	9-33
Fig. 9.1.18	Relationship of Air Heater and Fuel Saving	9-34
Fig. 9.1.19	Heat Recovery by Air Heater	9-34
Fig. 9.1.20	Co-generation vs. Traditional System	9-35
Fig. 9.2.1	Outline of Control Measures	9-44
Fig. 9.2.2	Relationship between Air-fuel Ratio and Exhaust Emission	9-47

Fig.	9.2.3	Effect of Smoke Reduction by Inspection and Maintenance (Japan)	9-53
Fig.	9.2.4	Exhaust Emission Factor of Motor car vs. Average Speed (in Malaysia)	9-59
Fig.	9.2.5	Type Approval System	9-63
Fig.	9.2.6	Flow Chart of Type Approval System in Japan	9-64
Fig.	9.2.7	Distribution of Exhaust Emission Rate	9-67
Fig.	9.2.8	The Lines of Inspection System	9-69
Fig.	9.2.9	Effects of Inspection and Maintenance in Japan	9-71
Fig.	9.2.10	Influence of Reaction Energy on Visible Smoke Concentration	9-79
Fig.	9.2.11	Reduction Technologies for Exhaust Emission from Motor Cars	9-81
Fig.	9.2.12	Oxygen Content of Petrol and Reduction of Pollutants	9-84
Fig.	9.2.13	Proposed MRT Plan in 2005	9-89
Fig.	9.2.14	Plan of Restriction Area	9-90
Fig.	9.3.1	Future Major Road Network (2005)	9-99
Fig.	9.3.2	Change of SO ₂ Concentration from 1992 to 2005	9-110
Fig.	9.3.3	Change of NO ₂ Concentration from 1992 to 2005	9-110
Fig.	9.3.4	Change of CO Concentration from 1992 to 2005	9-111
Fig.	9.3.5	Annual Average Concentration Isopleth for SO2 (All sources) (2005) (with control measures)	9-113
Fig.	9.3.6	Annual Average Concentration Isopleth for NOx (All sources) (2005) (with control measures)	9-114
Fig.	9.3.7	Annual Average Concentration Isopleth for NO ₂ (All sources) (2005) (with control measures)	9-115
Fig.	9.3.8	Annual Average Concentration Isopleth for CO (All sources) (2005) (with control measures)	9-116
Fig.	9.3.9	Annual Average Concentration Isopleth for NO2 (All sources) (Case 1)	9-119
Fig.	9.3.10	Annual Average Concentration Isopleth for CO (All sources) (Case 1)	9-120
Fig.	9.3.11	Annual Average Concentration Isopleth for NO2 (All sources) (Case 2)	9-121
Fig.	9.3.12	Annual Average Concentration Isopleth for CO (All sources) (Case 2)	9-122
сна	PTER 10	AIR QUALITY AND POLLUTION SOURCE MONITORING	. ·
rig.	10.1	Flowchart of the Central Monitoring System for Air Pollution	10-5
Fig.	10.2	Existing Landuse in 1985	10-9
	10.3	Future Landuse in 2005	10-10

	Fig. 10.4	Location Plan of Monitoring Stations	10-13
	Fig. 10.5	Flow Diagram for Monitoring Pollution from Stationary Sources	10-17
·	Fig. 10.6	Research Outline for Investigation and Planning of Traffic Policies	10-20
	Fig. 10.7	Location Map of Traffic Volume Survey Points in KVR	10-21
	CHAPTER 11	GUIDELINES FOR THE AIR QUALITY MANAGEMENT FOR KELANG VALLEY REGION	
	Fig. 11.1	Location Map of Application Area for the Guidelines	11-2
	Fig. 11.2	Geomorphologic Map of Kelang Valley	11-3
	Fig. 11.3	Daily Average of Wind Speed During May to December in 1992	11-4
	Fig. 11.4 (1)	Annual Mean Value of SO ₂ (1992)	11-8
	Fig. 11.4 (2)	Annual Mean Value of NO ₂ (1992)	11-8
	Fig. 11.4 (3)	Annual Mean Value of CO (1992)	11-9
	Fig. 11.4 (4)	Annual Mean Value of PM10 (1992)	11-9
	Fig. 11.5	Location Map of Ambient Air Quality Monitoring Stations	11-10
	Fig. 11.6	Average Composition of SPM	11-11
	Fig. 11.7	Pollution Loads by District in KVR (1992)	11-13
	Fig. 11.8	Present Air Pollution Load by Source (1992)	11-15
	Fig. 11.9	Present Air Pollution Load by Vehicle Type (1992)	11-16
	Fig. 11.10(1)	Simulated SO ₂ Concentration in 1992	11-17
	Fig. 11.10(2)	Simulated NO ₂ Concentration in 1992	11-17
	Fig. 11.10(3)	Simulated CO Concentration in 1992	11-18
	Fig. 11.11	Pollutants Increasing Ratio Between Present(1992) and Future (2005) without Measures	11-20
	Fig. 11.12	Future Air Pollution Load by Source (2005) Without Control Measures	11-21
	Fig. 11.13	Future Air Pollution Load by Vehicle Type (2005) (without control measures)	11-22
	Fig. 11.14	Pollution Load by District in KVR in 2005 (without control measures)	11-23
	Fig. 11.15 (1)	Simulated SO ₂ Concentration in 2005 (without measure)	11-24
	Fig. 11.15 (2)	Simulated NO ₂ Concentration in 2005 (without measure)	11-24
	Fig. 11.15 (3)	Simulated CO Concentration in 2005 (without measure)	11-25
	Fig. 11.16	Ratio of Pollutant by Vehicle Type (1992)	11-28
	Fig. 11.17	Future Air Pollution Load by Source (2005) with Control Measures	11-30
	Fig. 11.18	Future Air Pollution Load by Vehicle Type (2005) (with control measures)	11-31

rig.	11.19(1)	Simulated SO ₂ Concentration in 2005 (with control measures)	11-33
Fig.	11.19(2)	Simulated NO ₂ Concentration in 2005 (with control measures)	11-33
Fig.	11.19(3)	Simulated CO Concentration in 2005 (with control measures)	11-34
Fig. 1	11.20	Locaton Map of Monitoring Stations	11-36
Fig. 1	11.21	Organization of the Comprehensive Air Pollution Control Center	11-43

- x -

List of Tables

Page

CHAPTER 1	INTRODUCTION	
Table 1.2.1	Major Equipment Used in the Study	1-11
Table 1.3.1	Members of the Steering Committee	1-12
Table 1.3.2	Members of the Technical Committee	1-13
Table 1.3.3	Leaders of the Counterpart Team	1-14
Table 1.3.4	Members of the Study Team	1-15
Table 1.3.5	Members of the Advisory Committee	1-15
Table 1.3.6	Counterpart Assignments	1-17
CHAPTER 2	OVERVIEW OF THE STUDY AREA	
Table 2.2.1	Population 1980 Census and Estimates	2-5
Table 2.2.2	Population 1991 Census and Estimates	2-6
Table 2.2.3	Gross Domestic Product by Sector (Malaysia)	2-7
Table 2.2.4	Estimate of Gross Regional Domestic Product by Sector (Federal Territory and State of Selangor)	2-8
Table 2.2.5	Regional Share of Gross Domestic Product (Federal Territory and State of Selangor)	2-9
Table 2.2.6	Industrial Land in Federal Territory	2-10
Table 2.2.7	Share in Revenue and Employment in 1981 by Major Six Industrial Sectors (Selangor State)	2-11
Table 2.2.8	Basic Data on Manufacturing Industries by Industry Group, 1987 (Sclangor State)	2-12
Table 2.2.9	Basic Data on Manufacturing Industries by Location, 1987 (Selangor State)	2-13
Table 2.2.10	Projection of Output and Employment of Manufacturing Industries, Selangor (Shift-Share Case)	2-14
Table 2.2.11	Output and Employment Projection Results for Selangor, 1985-2005	2-15
Table 2.2.12(1)	Landuse in 1986 (1)	2-16
Table 2.2.12(2)	Landuse in 1986 (2) Urban Area	2-16
Table 2.2.13	Future Land Requirement in Urban Area between 1985 and 2000	2-17
Table 2.2.14(1)	Solid Waste 1980-2005	2-17
	Average Annual Growth Rate of Solid Waste	2-17
Table 2.2.15	Road Length: Federal Territory of Kuala Lumpur and State of Selangor	2-23
Table 2.2.16	Number of Vehicles	2-27

Fable 2	2.17	Average Annual Vehicle Growth Rate (Selangor State)	2-28
Table 2		Industrial Trips Generated in Selangor in 1985	2-28
Table 2		Total Daily Bus Service in Kelang Valley Region	2-34
Table 2		Future Traffic Demand in Kelang Valley Region	2-35
		Aircraft Movement in Peninsular Malaysia	2-41
		Aircraft Movement at Subang Airport	2-42
		Growth Rate of Aircraft Movement at Subang Airport	2-42
		Scheduled Commercial Flights at Subang Airport in 1992	2-43
Table 2		Air Traffic Forecast	2-43
Table 2	.2,23	Sea Transport at Port Klang	2-44
Table 2	.2.24	Supply and Demand for Commercial Energy by Source (Malaysia)	2-48
Table 2	.2.25	Demand for Commercial Energy by Sector (Malaysia)	2-48
Table 2	.2.26	Trend of Market Demand for Petroleum Products: Malaysia (Lower Case)	2-49
Table 2	.2.27	Supply/Demand Projections for Gas in Peninsular Malaysia	2-49
Table 2	.2.28	Projection of Electricity Generation	2-50
Table 2	2.2.29(1)	Annual Growth Rate of Oil Market Demand: Malaysia	2-51
Table 2	2.2.29(2)	Oil Market Demand Trends : Kelang Valley	2-51
Table 2		Proposed Installation of Generators in Kelang Valley Region	2-52
Table 2.	.2.31	Gas Demand and LPG Supply	2-52
Table 2.	.3.1	List of Laws Connected with Environment in Malaysia	2-54
Table 2.	.3.2	Outline of Environmental Quality (Clean Air) Regulations, 1987	2-55
Table 2	.3.3	Recommended Malaysian Guidelines	2-59
Table 2	.3.4	Emission Standards for Stationary Sources	2-60
CHAPTE	ER 3	METEOROLOGY	
Table 3	.1.1	Outline of the Mctcorological Stations	3-1
Fable 3.	.1.2	Pasquill's Stability Index Table	3-3
Table 3.	.1.3	Similarities of Wind Vectors (Mar. 1992 ~ Feb. 1993)	3-13
Fable 3	.1.4	Similarities of Wind Directions (Mar. 1992 ~ Feb. 1993)	3-13
Table 3.	.2.1	Outline of the Upper Level Observation	3-20
Fable 3.	.2.2	Frequency of Occurrences of Surface Layer Inversions in Seasons at UPM (1992)	3-25
Table 3.	.2.3	Frequency of Occurrences of Surface Layer Inversions in Time Zones at UPM (1992)	3-25
Table 3.	.2.4	Frequency of Occurrences of Upper Layer Inversions in Seasons at UPM (1992, Target height: 50 meters)	3-27

Table 3.2.5	Frequency of Occurrences of Upper Layer Inversions in Time Zones at UPM (1992, Target height: 50 meters)	3-27
Table 3.2.6	Frequency of Occurrences of Upper Layer Inversions in Seasons at UPM (1992, Target height: 200 meters)	3-27
Table 3.2.7	Frequency of Occurrences of Upper Layer Inversions in Time Zoncs at UPM (1992, Target height: 200 meters)	3-28
Table 3.2.8	Frequency of Occurrences of Upper Layer Inversions in Seasons at UPM (1992, Target height: 400 meters)	3-28
Table 3.2.9	Frequency of Occurrences of Upper Layer Inversions in Time Zones at UPM (1992, Target height: 400 meters)	3-28
Table 3.2.10	Similarities of Wind Vectors among Different Heights at	3-29
Table 3.2.11	Similarities of Wind Directions among Different Heights at	3-29
Table 3.2.12	P-values by Stability Index at UPM (1992)	3-30
CHAPTER 4	AMBIENT AIR QUALITY	
Table 4.1.1	Outline of Monitoring Stations	4-1
Table 4.1.2		4-1
Table 4.1.3(1)	Average Concentrations of SPM, SO2, NO2 and NOx	4-5
Table 4.1.3(2)	Average Concentrations of CO, O3 and NMHC (Mar. 1992 ~ Feb. 1993)	4-6
Table 4.1.4(1)		4-7
Table 4.1.4(2)	Compliance with Guidelines on CO, NO ₂ , and O ₃ (Mar. 1992 ~ Feb. 1993)	4-8
Table 4.1.5	High SPM Concentration Days	4-29
Table 4.1.6	High O3 Concentration Days	4-40
Table 4.2.1	Outline of Simplified Measurement in Wide Area	4-49
Table 4.2.2	Measurement Result of CO by Detector Tube	4-56
Table 4.3.1	Compliance with Guidelines at UPM	4-70
CHAPTER 5	PRESENT STATE OF AIR POLLUTION SOURCES	
Table 5.1.1	Targeted Pollution Sources and Pollutants	5-1
Table 5.1.2		5-3
Table 5.1.3		5-4
Table 5.1.4		5-5
Table 5.1.5(1)	Coverage Rate of Fuel Consumption by General Factories	5-6
		5-6
Table 5.1.6	Number of Facilities Surveyed and Annual Fuel	
	Table 3.2.6 Table 3.2.7 Table 3.2.8 Table 3.2.9 Table 3.2.10 Table 3.2.11 Table 3.2.12 CHAPTER 4 Table 4.1.1 Table 4.1.2 Table 4.1.3(1) Table 4.1.4(1) Table 4.1.4(1) Table 4.1.4(1) Table 4.1.4(2) Table 4.1.5 Table 4.1.6 Table 4.1.5 Table 4.1.5 Table 4.1.6 Table 4.1.5 Table 5.1.1 Table 5.1.2 Table 5.1.2 Table 5.1.3 Table 5.1.4 Table 5.1.5(1)	in Time Zones at UPM (1992, Target height: 50 meters) Table 3.2.6 Frequency of Occurrences of Upper Layer Inversions in Seasons at UPM (1992, Target height: 200 meters) Table 3.2.7 Frequency of Occurrences of Upper Layer Inversions in Time Zones at UPM (1992, Target height: 200 meters) Table 3.2.8 Frequency of Occurrences of Upper Layer Inversions in Time Zones at UPM (1992, Target height: 400 meters) Table 3.2.9 Frequency of Occurrences of Upper Layer Inversions in Time Zones at UPM (1992, Target height: 400 meters) Table 3.2.10 Similarities of Wind Vectors among Different Heights at UPM (1992)

Table	5.1.7(1)	Annual Fuel Consumption by Facility Type (general factories) in 1992	5-7
Table	5.1.7(2)	Annual Fuel Consumption by Facility Type (2 power stations) in 1992	5-7
Table	5.1.8	Result of Factory Flue Gas Measurement	5-9
Table	5.1.9	Summarized Concentration of Dust, SO2, NOx, and O2	5-10
Table	5.1.10	Result of Fuel Analysis	5-11
Table	5.1.11	Emission Factor by Facility Type and Fuel Type	5-12
Table	5.1.12	Air Pollutant Emission by Industry Type (1992)	5-14
Table	5.1.13(1)	Air Pollutant Emission by Facility Type (1992) (general factories)	5-15
Table	5.1.13(2)	Air Pollutant Emission by Facility Type (1992) (2 power stations)	5-15
Table	5.1.14	Pollutant Emission by District (Factories) (1992)	5-15
Table	5.2.1	Station of Traffic Volume Survey	5-18
Table	5.2.2	Classification of Motor Vehicles	5-16
Table	5.2.3	Summary of Traffic Volume (1992)	5-22
Table	5.2.4	Daily Traffic Volume According to Classified Vehicle Types (1992)	5-28
Table	5.2.5	Ratio of Vehicle Type to Daily Traffic Volume on the Average (1992)	5-27
Table	5.2.6	Routes for Travel Seed Survey	5-33
Table	5.2.7	Average Travel Speed (1992)	5-33
Table	5.2.8(1)	Average Travel Speed by Road (Weekdays) (1992)	5-34
Table	5.2.8(2)	Average Travel Speed by Road (Holidays) (1992)	5-34
Table	5.2.9	Regional Vehicle Average Speed	5-35
Table	5.2.10	Results of Exhaust Gas Measurement	5-38
Table	5.2.11	Results of Exhaust Gas Measurement by Chassis Dynamometer Test	5-40
Table	5.2.12	Emission Rates of Motor Car by Model Year (ECE Mode)	5-41
Table	5.2.13	Average Emission Rates of Motor Car by Model Year (ECE Mode)	5-41
Table	5.2.14	Change of Emission Rates by Air-conditioning	5-42
Table	5.2.15	Characteristics of Fuels for Motor Vehicles	5-43
Table	5.2.16	Classification of Motor Vehicles by Engine Type	5-44
Table	5.2.17	Ratio of Medium and Large Trucks to the Total Number of Trucks	5-44
Table	5.2.18	Ratio of Van and Taxi according to Their Engine Type	5-44
Table	5.2.19	Average Emission Rate for Motor Vehicles (1992) (HC, CO, NOx , SOx and PM)	5-45
Table	5.2.20	Annual Distance Travelled by Various Types of Vehicles on Different Types of Roads (1992)	5-46
		- iv -	

Table 5.2.21	Regional Annual Distance Travelled (1992)	5-47
Table 5.2.22	Fuel consumption by various types of vehicles (1992)	5-47
Table 5.2.23	Current Pollution Load by Various Types of Vehicles (1992)	5-48
Table 5.2.24	PM Emission from Petrol and Diesel Vehicles (1992)	5-49
Table 5.2.25	Regional Air Pollution Load from Motor Vehicles (1992)	5-49
Table 5.2.26	Air Pollution Load from Motor Vehicles Estimated by DOE's Method (1992)	5-50
Table 5.2.27	Comparison of Estimated Load from Motor Vehicles by DOE and Study Team (1992)	5-50
Table 5.3.1	Number of Annual Flights Classified by Plane Type (1992)	5-51
Table 5.3.2	NOx Emission Factor and Fuel Consumption Classified by Plane Type	5-52
Table 5.3.3	Emission Factors for Particulate Matter	5-53
Table 5.3.4	Annual Pollution Load from Airplanes (1992)	5-53
Table 5.4.1	Berth Classified	5-55
Table 5.4.2	Classification of Ships by Usage and Type	5-55
Table 5.4.3	Classification of Ships by GRT	5-56
Table 5.4.4	Number of Ships Classified by Type and GRT (1990)	5-57
Table 5.4.5	Cargo Tonnages at Port Klang	5-59
Table 5.4.6	Rated Outputs of Diesel Engines	5-59
Table 5.4.7	Rated Fuel Consumptions of Boilers	5-60
Table 5.4.8	Emission Factors	5-60
Table 5.4.9	Diesel Power Engines Operation Loads	5-60
Table 5.4.10	Air Pollution Load from Ships	5-61
Table 5.6.1	Current Air Pollution Load from Various Sources (1992)	5-63
Table 5.6.2	Regional Annual Air Pollution Load from Factories, Motor Vehicles, Airplanes and Ships (1992)	5-64
CHAPTER 6	ANALYSIS OF AIR POLLUTION STRUCTURE BY AIR DISPERSION SIMULATION MODEL	
Table 6.1.1	Classification of Seasons and Time Zones	6-5
Table 6.1.2	Type of Pollution Sources	6-6
Table 6.1.3	Vertical Division of Dispersion Field and Corresponding Pollution Sources	6-7
Table 6.1.4	Number of P by Atmospheric Stability	6-7
Table 6.1.5	Wind Speed Classification	6-9
Table 6.1.6	Effective Stack Height Model	6-10
Table 6.1.7	Application of Dispersion Equation	6-11
Table 6.1.8	Diffusion Parameters Set by Atmospheric Stability Class	6-13

Table 6.1.9	Actual Value of NOx and NO2	6-14
Table 6.2.1	Computed Annual Average Concentration by Pollution Source	6-17
Table 6.2.2	Reproducibility of Simulation Model	6-17
Table 6.3.1	Computed Annual Average Concentration (Mar., '92 ~ Feb., '93)	6-21
CHAPTER 7	CHEMICAL ANALYSIS OF SPM COMPONENT	
Table 7.1.1	Particulate Matter Sampling of Factory	7-1
Table 7.1.2	Particulate Matter Sampling of Motor Vehicles	7-1
Table 7.1.3	Sampling Locations of Soil	7-1
Table 7.1.4	Chemical Component Fractions of PM Samples from Factories	7-3
Table 7.1.5	Chemical Component Fractions of PM Samples from Motor Vehicles	7-4
Table 7.1.6(1)	Chemical Component Fractions of Soil Samples (Deposit)	7-5
Table 7.1.6(2)	Chemical Component Fractions of Soil Samples (Subsurface)	7-6
Table 7.2.1	First SPM Samples at MMS and UPM	7-7
Table 7.2.2	Second SPM Samples at MMS and UPM	7-7
Table 7.2.3	Third SPM Samples at MMS and UPM	7-8
Table 7.2.4	Fourth SPM Samples at MMS and UPM	7-8
Table 7.2.5	First SPM Samples at City Hall and Shah Alam	7-8
Table 7.2.6	Second SPM Samples at City Hall and First SPM Samples at Toman Sri Andals	7-9
Table 7.2.7(1)	Component of Ambient SPM	7-11
Table 7.2.7(2)	Component of Ambient SPM	7-12
Table 7.2.7(3)	Component of Ambient SPM	7-13
Table 7.2.8(1)	Carbon Concentration of Ambient SPM	7-14
Table 7.2.8(2)	Carbon Concentration of Ambient SPM	7-14
Table 7.2.8(3)	Carbon Concentration of Ambient SPM	7-14
Table 7.2.9(1)	Concentrations of Ion Species in Ambient SPM	7-15
Table 7.2.9(2)	Concentrations of Ion Species in Ambient SPM	7-15
Table 7.2.9(3)	Concentrations of Ion Species in Ambient SPM	7-15
Table 7.3.1(1)	Source Contributions to Ambient SPM	7-19
Table 7.3.1(2)	Source Contributions to Ambient SPM	7-19
Table 7.3.1(3)	Source Contributions to Ambient SPM	7-20
Table 7.3.1(4)	Source Contributions to Ambient SPM	7-20

CHAPTER 8 PREDICTION OF AIR POLLUTANT CONCENTRATION IN THE FUTURE AND NECESSITY OF REDUCTION OF AIR POLLUTION LOADS

Table 8.2.1	Future Consumption of Petroleum and Gas Fuels by General Factorics in KVR in 2005	8-2
Table 8.2.2	Future Fuel Demand by Factories in KVR (2005)	8-3
Table 8.2.3	Future Pollutant Emission from Factories in KVR (2005)	8-4
Table 8.2.4	Future Air Pollution Loads from Motor Vehicles (2005)	8-5
Table 8.2.5	Annual Number of Flights at Subang Airport by Plane Type in 2005	8-5
Table 8.2.6	Annual Air Pollution Load from Airplanes in Various Navigation Modes in 2005	8-6
Table 8.2.7	Berth Classification	8-7
Table 8.2.8	Sea Transport at Port Klang	8-7
Table 8.2.9	Future Air Pollutant Emission from Ships (2005)	8-8
Table 8.2.10	Future Air Pollution Load from Various Sources (2005) (without control measures)	8-9
Table 8.2.11	Regional Annual Pollution Load from Factories, Motor Vehicles, Airplanes and Ships (2005) (without control measures)	8-9
Table 8.2.12	Comparison of Total Annual Air pollution Loads from All Sources between 1992 and 2005 (without control measures)	8-10
Table 8.3.1	Computed Future Annual Average Concentrations (2005) (without control measures)	8-11
Table 8.4.1	Air Quality Target Value	8-27
Table 8.4.2	Annual Mean Value for NMHC	8-27
CHAPTER 9	CONTROL OVER AIR POLLUTION SOURCES	
Table 9.1.1	The Power Development	9-2
Table 9.1.2	Future Energy Demand in KVR	9-2
Table 9.1.3	Typical Air Ratio & CO2	9-5
Table 9.1.4	Effects of Two Stage Combustion - NOx Reduction at Coal Boiler -	9-10
Table 9.1.5	Various Particulate Removal Equipment	9-15
Table 9.1.6	Emissions from Power Stations (without control measures)	9-17
Table 9.1.7	Pollutant Emissions by Area (general factories, 1992)	9-20
Table 9.1.8	Change of Pollutant Emission from Factories	9-25
Table 9.1.9	Process and System Modernization	9-31
Table 9.1.10	Examples of Waste Heat Recovery	9-32
Table 9.2.1	Peninsular Malaysia : Number of Motor Vehicles, 1991	9-41
Table 9.2.2	Change of Petrol Quality with Time	9-42

Table 9.2.3	Amount of Fuel Consumption for Motor Vehicles in 1990	9-42
Table 9.2.4	Exhaust Emission Generation Mechanism	9-43
Table 9.2.5	Countermeasures against CO, and HC for Petrol Motor Vehicles	9-45
Table 9.2.6	Countermeasures against NOx from Petrol Vehicles	9-46
Table 9.2.7	Exhaust Emission Control Devices Adopted by Some Countries	9-48
Table 9.2.8	History of Regulation and Counteraction in Japan (Petrol)	9-49
Table 9.2.9	Methods of Reducing Exhaust Emission from Diesel Vehicles	9-50
Table 9.2.10	Effect on Fuel Economy and Vehicle Price (Petrol)	9-50
Table 9.2.11	Effect on Fuel Economy and Vehicle Price (Diesel)	9-51
Table 9.2.12	Regulation of Exhaust Emission for In-use Vehicles in Japan	9-52
Table 9.2.13	Benefits of Inspection and Maintenance (Exhaust emission reduction-example of motor car)	9-53
Table 9.2.14	Measures for In-use Vehicles and Problems	9-54
Table 9.2.15	Comparison of Emission Level for Alternative Energies	9-56
Table 9.2.16	Comparison of Economy of Alternative Fuels	9-56
Table 9.2.17	Traffic Control	9-57
Table 9.2.18	Parking Lot Control	9-58
Table 9.2.19	Types of Traffic Light Control	9-58
Table 9.2.20	Discouragement of Private Ownership of Vehicles	9-59
Table 9.2.21	Management of Vehicle Demand on Roads	9-60
Table 9.2.22	Adjustments in Urban Planning	9-61
Table 9.2.23	Certification System in Various Countries	9-62
Table 9.2.24	Lead Times for Enforcement for Petrol Vehicles	9-65
Table 9.2.25	Lead Times for Enforcement for Diesel Vehicles	9-65
Table 9.2.26	Lead Times for Enforcement for Motorcycles	9-66
Table 9.2.27	Type of Inspection in Japan	9-68
Table 9.2.28	Inspection Intervals in Japan	9-70
Table 9.2.29	Change in Exhaust Emission due to Tampering	9-71
Table 9.2.30	Proposed Countermeasures for Motor Vehicles	9-73
Table 9.2.30	Proposed Countermeasures for Motor Vehicles (continued)	9-74
Table 9.2.31	Exhaust Emission Reduction Systems for Petrol Vehicles	9-75
Table 9.2.32	Exhaust Emission Reduction Systems for Diesel Vehicles	9-76
Table 9.2.33	Emission Factor for Motorcycles	9-78
Table 9.2.34	Effects on Regulation Plans for Motor Car (Petrol)	9-80
Table 9.2.35	Effect on Fuel Economy and Vehicle Price	9-81

•

Table 9.2.36	Exhaust Emission Comparison for Old/New Type Cars	9-82
Table 9.2.37	Exhaust Emission Regulation Making Process and Vehicle Certification	9-85
Table 9.2.38	Anticipated Number of Repair Service Shops and Inspection Offices	9-86
Table 9.2.39	Cost of Chassis Dynamometer	9-87
Table 9.2.40	Emission Factor Changes via Introduction of CNG Taxi	9-88
Table 9.2.41	Reduction of Motor Car Trips in Central Planning Area, 1995	9-91
Table 9.2.42	Effect of Flextime Introduction	9-92
Table 9.3.1	Control Measures against Stationary Sources	9-95
Table 9.3.2	Reduced Amount of Pollutant Emissions from Factorics (2005)	9-97
Table 9.3.3	Classification of Regional Average Speed during Weekdays (2005)	9-100
Table 9.3.4	Regulation No. 15.04	9-101
Table 9.3.5	Regulation No. 49	9-101
Table 9.3.6	Regulation 91/441/EEC	9-101
Table 9.3.7	Regulation for Different Vehicles Considered in Setting Future Emission Factors	9-102
Table 9.3.8	Average Emission Factors for Motor Vehicles (2005) (with control measures)	9-103
Table 9.3.9	Annual Distance Travelled by Various Types of Vehicles on Different Types of Roads in 2005 (with control measures)	9-104
Table 9.3.10	Regional Annual Distance Travelled in 1992 and 2005 (with control measures)	9-104
Table 9.3.11	Future Air Pollution Load from Various Types of Vehicles (2005) (with control measures)	9-105
Table 9.3.12	Effect of Control Measures on Air Pollution Load in 2005	9-106
Table 9.3.13	Comparison of Annual Air Pollution Loads from Vehicles with Control Measures in 2005 with Those in 1992	9-106
Table 9.3.14	Future Air Pollution Load from Various Sources (2005) (with control measures)	9-107
Table 9.3.15	Regional Annual Air Pollution Load from Factories, Motor Vehicles, Airplanes and Ships (2005) (with control measures)	9-107
Table 9.3.16	Reduction of Total Air Pollution Load by Taking Control Mcasures (2005)	9-108
Table 9.3.17	Change of Annual Total Air Pollution Load from 1992 to 2005	9-108
Table 9.3.18	Computed Annual Average Concentration with Control Measures (2005)	9-109
Table 9.3.19	Computed Concentration with Control Measures by Case	9-118

AIR QUALITY AND POLLUTION SOURCE MONITORING **CHAPTER 10** 10 - 1Items Monitored at Each Fixed Station-----Table 10.1 Condition of Monitoring Stations-----Table 10.2 10-2Proposed Items of Each Monitoring Station-----Table 10.3 10-12 Air pollutant Emission by Industry Type (1992)------10 - 18Table 10.4 Table 10.5 Organization and Staff for Monitoring System -----10 - 23Required Instruments and Space for Environment Table 10.6 Centre 10 - 24Monitoring Table 10.7 Rough Cost Estimates for Monitoring of Air Quality and Stationary Sources-----10-24Table 10.8 Costs of Instruments for Air Quality Monitoring ------10 - 25Cost of Instruments and Maintenance -----10 - 25Table 10.9 GUIDELINES FOR THE AIR QUALITY MANAGEMENT FOR KELANG CHAPTER 11 VALLEY REGION Climate in Kelang Valley Region-----Table 11.1 11-1 Table 11.2 Malaysian Air Quality Guidelines and Air Quality Target Values-----11-6 Table 11.3 Annual Mean Value of Pollutants at Monitoring Stations (1992) -----11.7 Pollution Loads by District in Kelang Valley Region Table 11.4 (1992) -----11-12 Table 11.5 Comparison of Present Air Pollution Loads in KVR with Those in Tokyo-----11 - 14Table 11.6 Present Air Pollution Load by Source (1992)------11-15 Present Air Pollution Load by Vehicle Type (1992)------Table 11.7 11-16 Table 11.8 Future Air Pollution Load by source (2005) 11-21 (without control measures) ------. Table 11.9 Future Air Pollution Load by Vehicle Type (2005) (without control measures) -----11 - 22Table 11.10 Pollution Loads by District in Kelang Valley Region (2005) (without measures)-----11-23 Table 11.11 Future Air Pollution Load by Source (2005) (with control measures)------11 - 30Table 11.12 Future Air Pollution Load by Vehicle Type (2005) (with control measures)------11-31 Table 11.13 Reduction of Total Air Pollution Load by Taking Control (2005)-----Measures 11-32 Table 11.14 Change of Annual Total Air Pollution Load from 1992 to 2005 -----11-32 Table 11.15(1) Implementation Plan of Measures against Air Pollution in Kelang Valley Region (Stationary Sources) -----11-46

- x -

Table	11.15(2)	Implementation Plan of Measures against Air Pollution in Kelang Valley Region (Stationary Sources) 11-4
Table	11.16	Implementation Plan of Measures against Air Pollution in Kelang Valley Region (Mobile Sources) 11-4
Tablc	11.17	Implementation Plan of Air Pollution Monitoring in Kelang Valley Region (Ambient Air Quality and Air Pollution Source Monitoring) 11-4

1 r y	primary
2 r y	secondary
8HAV	8 Hour Average Value
AAGR	Actual Average Annual Growth
ADB	Asian Development Bank
A/F	Air Fuel Ratio
Af	Tropical Rainforest Climate
AI	Secondary Air Injection System
AMV	Annual Mean Value
AQM	Air Quality Management
AS	Secondary Air Suction System
Auxil (Aux)	Auxiliary
Cf	Referred to (Numbered, Corresponded Article of Item)
CH	City Hall
CH4	Methane
CLD	Chemiluminescence
CMB	Chemical Mass (or Element) Balance
CNG	Compressed Natural Gas
СО	Carbon Monoxide
CONC	Concentration or Concentrated
COP	Conformity of Product
CVS	Constant Volume Sample
C-zone	smallest segment of an area, especially in traffic
DAHV	Daily Average of Hourly Value
deg.C	difference of two centigrade temperatures
De-	removal of
DF/R	Draft Final Report
DOC	Department of Chemistry, MSTE
DOE	Department of Environment, MSTE
DP	Dash Pot System
DPF	Diesel Particulate Filter
DR	Differential Growth Rate

EC	European Community
ECE(EEC)	European Economic Community
E.F.	Emission Factor
EFI	Electronic Fuel Injection System
EGR	Exhaust Gas Recycle
EIA	Environment Impact Assessment
EM	Engine Modification
EP	Electrostatic Precipitator
EPA	Environmental Protection Agency of the U.S.A.
EPU	Economic Planning Unit, Prime Minister's Departmen
EQA	Environmental Quality Act
ESP	Electrostatic Precipitator
EIBE	Ethyl Tertiary Butyl Ether
EVAP	Fuel Evaporation Control System
FGD	Flue Gas Desulfurization
F. H.	Federal Highway
FID	Flame Ionization Detection Gas Chromatography
Fig.	Figure
FO	Fuel Oil
FT	Federal Territory
F/R	Final Report
GDP	Growth Domestic Product
GRDP	Gross Regional Domestic Product
GRT	Gross Tonnage
GVW	Gross Vehicle Weight
HC	Hydrocarbons
HCs	Analyzer measuring NMHC, THC and CH4 separately
HFO	Heavy Fuel Oil
C/R	Inception Report
DO	Industrial Diesel Oil
FO	Industrial Fuel Oil
MP	Industrial Master Plan
T/R	Interim Report

J ·	Japan
ЈАСТІМ	Japan Chamber of Trade and Industry, Malaysia
JEA	Japan Environment Agency
ЛСА	Japan International Cooperation Agency
ЛS	Japanese Industrial Standards
JKR	Jabatan Kerja Raya (District Public Works Department)
Jln	Jalan (Street)
- -	
KL	Kuala Lumpur
HL. S	KL-Serembar (Expressway)
HL.K	KL-Karal (Highway)
KPA	Klang Port Authority
КТМ	Keretapi Tanah Malayu (Malayan Railway)
KVEIP	Kelang Valley Environmental Improvement Project
KVPP	Kelang Valley Perspective Plan
KVPS	Kelang Valley Planning Secretariat
KVR	Kelang Valley Region
KVTS	Klang Valley Transportation Study (#6007)
	, m
L	Long Term
LFO	Light Fuel Oil
LNB	Low NOx Burner
LPG	Liquefied Petroleum Gas
LRT	Light Rail Transit or Light Rapid Train
М\$	Malaysian Rinngit (Malaysian Dollar) 50 Yen (1992 prio)
MAQG	Malaysian Air Quality Guidelines
MFO	Middle Fuel Oil
MIC	Manufacturing Industry Code
MIER	Malaysian Institute of Economic Research
MMS	Malaysian Meteorological Service
MP	Malaysia Plan (such as $5MP =$ the fifth MP)
MRT	Mass Rapid Transit
MSTE	Ministry of Science, Technology and Environment
MTBE	Methyl Tertiary Butyl Ether
M/C	Motor Cycle
	·

N	Nitrogen or Gas at normal condition such as m ³ N, Nm ³
NDIR	Non-Dispersive Infrared Absorption
NG	Natural Gas
NMHC	Non-Methane Hydrocarbons
NO	Nitrogen Monoxide
NOx	Nitrogen Oxides
NOxs	Analyzer measuring NO2, NOx and NO separately
NO2	Nitrogen Dioxide
N.R.	Net Radiation
OC	Oxidation Catalyst
OD	Origin/Destination of Traffic
OPP	Outline Perspective Plan
O2	Oxygen
O3	Ozone
Р	Pasquill's Atmospheric Stability Number
P.a.	Preannum
PbO2	Lead dioxide method for SO2 simplified measurement
PCR	Preliminary Count Report
PCV	Positive Crankcase Ventilation System
PETRONAS	Petroliam Nasional Berhad
PFBC	Pressurized Fluidized Bed Combustion
P-G	Pasquill Gifford
PG-	code for fuel; see Appendix
PIB	Poly Iso Butylene
РJ	Petaling Jaya
РМ	Particle Matter
PMG	Premium Motor Gasoline
PM10	Inhalable Particulate
PORIM	Palm Oil Research Institute of Malaysia
ррb	parts per billion
ppbC	parts per billion Carbon
pphmC	parts per hundredth million Carbon
p p m	parts per million
PR/R	Progress Report
PS-	code for Power Station A, B or C

RMG	Regular Motor Gasoline
RTD	Road Transport Department
RW	Reference Weight
S	Short Term
SA	Shah Alam
SC	Ignition Timing Control System
SCFT	Standard Cubic Feet
SGR	Self Gas Recirculation
SIRIM	Standards and Industrial Research Institute of Malaysia
SOF	Soluble Organic Fraction
SOr	Sulphur Oxides
30x	Sulphur Oxides
TNB	Tenaga Nasional Berhad
TP	Throttle Postioner System
TSP	Total Suspended Particulate Matter
TV	Traffic Volume
TWC	Three Way Catalyst
UM	Universiti Malaya
UPM	Universiti Pertanian Malaysia
UV	Ultraviolet Fluorescence
W.D.	Wind Direction
WHO	World Health Organization
W.S.	Wind Speed

CHAPTER 1 INTRODUCTION

.

CHAPTER 1 INTRODUCTION

1.1 Background and Objective of the Study

1.1.1 Background of the Study

Kelang Valley Region $(2,830 \text{ km}^2$, about 2.95 million people) consisting of Kuala Lumpur (the capital of Malaysia) and its vicinity has been experiencing worsening air pollution in recent years as a result of the rapid growth of traffic volume, urbanization and industrial activities.

The Department of Environment of Ministry of Science, Technology and Environment (DOE) started ambient air quality monitoring in the late 1970s, centering on suspended particulate (TSP), carbon monoxide (CO), sulphur dioxides (SO₂) and ozone (O₃). And in 1984 automatic monitoring systems for SPM, CO, SO₂, O₃ and NO_x (nitrogen oxide) were installed at three sites by the University Pertanian Malaysia (UPM). But DOE has not established a basic system necessary for air pollution control yet.

Malaysia is expected to further develop its national economy, which will necessitate more efficient and effective anti-pollution steps. In this context, an air pollution control plan is required to prevent air pollution problems.

Under a technical assistance grant from the Asian Development Bank (ADB) to the Government of Malaysia, the Kelang Valley Environmental Improvement Project (KVEIP) was carried out over a period from August 1986 to April 1987. This survey included the formulation of a preliminary Air Quality Management (AQM) plan as one of its project components, and recommended the preparation of a detailed AQM plan and its implementation.

Upon this recommendation, the Government of Malaysia asked the Government of Japan in January 1989 for technical cooperation to conduct a study on the present state of air pollution, air pollution control, improvement of air quality monitoring system and formulation of an air pollution control plan in the Kelang Valley Region, and training of engineers in DOE through the study. In response to this request, the Government of Japan decided to conduct an Air Quality Management Study for Kelang Valley Region (hereinafter referred to as "the Study"). Accordingly, Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a preliminary survey team to Malaysia in March 1990 and both JICA and the representative of Economic Planning Unit on behalf of the Government of Malaysia agreed to the Scope of the Work for the Study, on which basis the Study was conducted. The Study was undertaken from December 1991 to August 1993. This report describes the results of the Study.

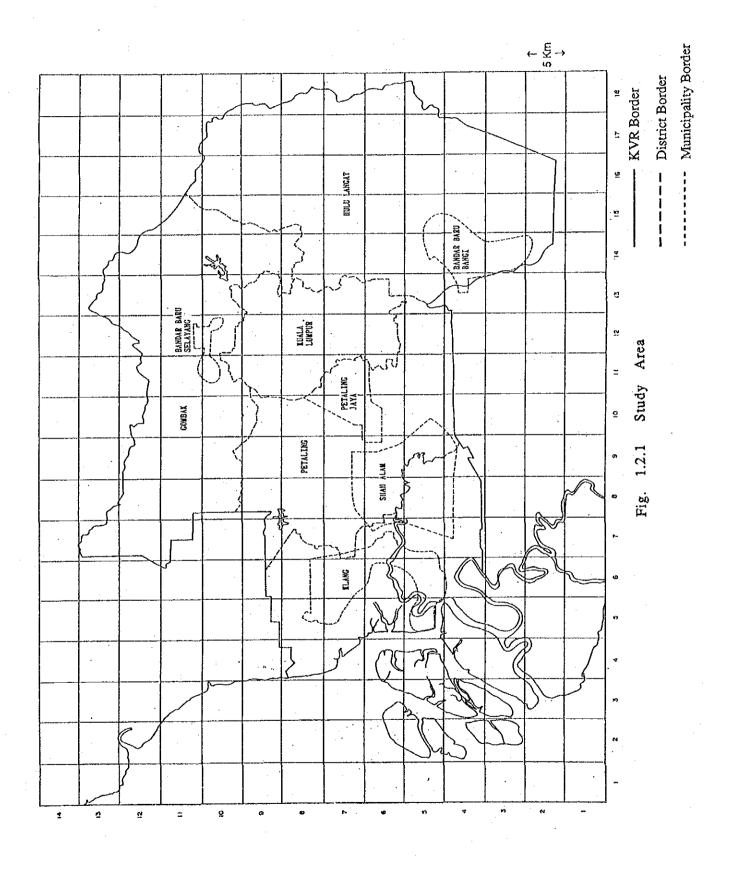
1.1.2 Objective of the Study

The Study aimed to prepare an implementable guideline for air quality management for Kelang Valley Region with special emphasis on improving air quality monitoring capability, identification of major pollution sources, prediction of future air pollution and recommendation of feasible control measures. At the same time, the Study was expected to contribute to tangible technology transfer to Malaysian counterparts and the formulation of manpower training programs.

1.2 Outline of the Study

(1) Study Area

The Study area is Kelang Valley Region which is shown in Fig. 1.2.1. It is approximately 60 km from east to west and 40 km from south to north, consisting of the Federal Territory (Kuala Lumpur) and Klang, Petaling, Gombak and Hulu Langat of Selangor State.


(2) Scope of the Study

The Study work was executed in Kelang Valley Region and Japan. As shown in Fig. 1.2.2, the Study included a basic study and an analytical study.

1) Basic Study

- a) Collection of Existing Data
 - o Meteorology and climate
 - o Ambient air quality
 - o Stationary sources: factories and establishments, and households
 - o Mobile sources: motor vehicles, airplanes and ships

1-2

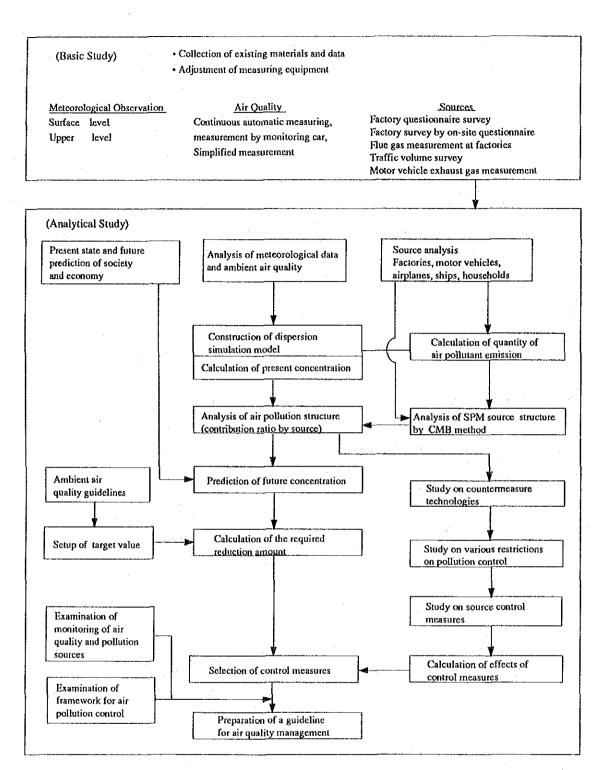


Fig. 1.2.2 Outline of the Study

- o Socio-economic conditions
- o Pollution control measures
- o Air pollution control: laws, regulations, standards and guidelines
- b) Installation and Adjustment of Measuring Equipment
 - o Ambient air quality monitoring
 - continuous measurement
 - simplified measurement
 - o Meteorological observation
 - surface level meteorology
 - upper level meteorology
 - o Factory flue gas measurement
 - o Vehicle exhaust gas measurement at idling state
- c) Field Investigation
 - o Surface level meteorology
 - wind direction and wind speed
 - solar radiation and net radiation
 - o Upper level meteorology
 - vertical profile of wind direction, wind speed and temperature
 - o Ambient air quality
 - continuous measurement at fixed and mobile stations (SO2, NO, NO2, NOx, SPM, CO, NMHC, CH4, THC and O3)
 - simplified measurement in wide area (SO2, NO2 and NOx)
 - simplified measurement across roads (CO)
 - ambient SPM sampling
 - o Factories and establishments
 - questionnaire survey (facility type, fuel consumption and stack)
 - on-site questionnaire survey (facility, operation and air pollution control)
 - flue gas measurement (Dust, SO2, NOx, O2 and flue gas volume)
 - analysis of fuel components
 - o Motor vehicles
 - traffic volume survey
 - travel speed survey
 - cxhaust gas measurement by chassis dynamometer test (HC, CO, NOx and fuel economy)
 - exhaust gas measurement at idling state (HC, CO and NOx)
 - analysis of fuel components

d) Implementation of air dispersion simulation system in MMS computer

2) Analytical Study

- o Analysis of socio-economic conditions
 - society, population, economy, industry, land use, transport and energy
- o Analysis of air pollution control
 - laws, regulations, standards, guidelines and administrative organizations
- o Analysis of meteorological data
 - surface level meteorology
 - upper level meteorology
- o Analysis of ambient air quality
 - continuous monitoring data at fixed and mobile stations
 - measurement data by simplified method
- o Analysis of pollution sources and estimation of pollution load
 - stationary sources (factories and establishments, and households)
 - mobile sources (motor vehicles, airplanes and ships)
- o Development of air dispersion simulation model and analysis of air pollution structure (SO2, NOx, NO2 and CO)
 - construction of air dispersion simulation model
 - calculation of regional pollutant concentration
 - contribution to concentration by sources
- o SPM component analysis by CMB method
 - PM component of emission sources
 - SPM components of ambient air
 - contribution to SPM by sources
- Prediction of air quality in the future and estimation of required reduction amount of air pollution load
 - prediction of air pollution load from sources
 - prediction of ambient air quality
 - setting of air quality target value
 - reduction amount of air pollution load

o Study of air pollution control

- control measures for sources (factories and motor vehicles)
- technical and social restrictions
- cost estimates
- effect of control measures on pollution load and air quality

o Monitoring of air quality and pollution sources

- air quality monitoring system

- monitoring of emission from factories and motor vehicles

o Formulation of guideline

- air quality target

- target year

- air quality monitoring

- pollution control measures

- rough cost

- schedule

- execution organization

o Preparation of air dispersion simulation system

(2) Study Schedule

The Study was conducted from December 1991 to August 1993. The Study schedule and study work flowchart arc shown in Figs. 1.2.3 and 1.2.4 respectively.

(3) Technology Transfer

The Study team was able to transfer technology to the Malaysian counterparts regarding fundamental knowledge of measurement principles, measurement methods and equipment maintenance on meteorological observation, air quality monitoring, exhaust and flue gas measurements and chemical analysis. Technology transfer was also made During the Study, three counterparts were trained on the analytical study. in Japan in areas of air quality monitoring, air dispersion simulation and air quality management. Besides, the air dispersion simulation system for Kelang Valley Region was installed in the MMS computer. The substance of technology transfer is described below.

1) Field Work

o Meteorological observation

- surface level meteorology

- upper level meteorology

o Measurement of ambient air quality

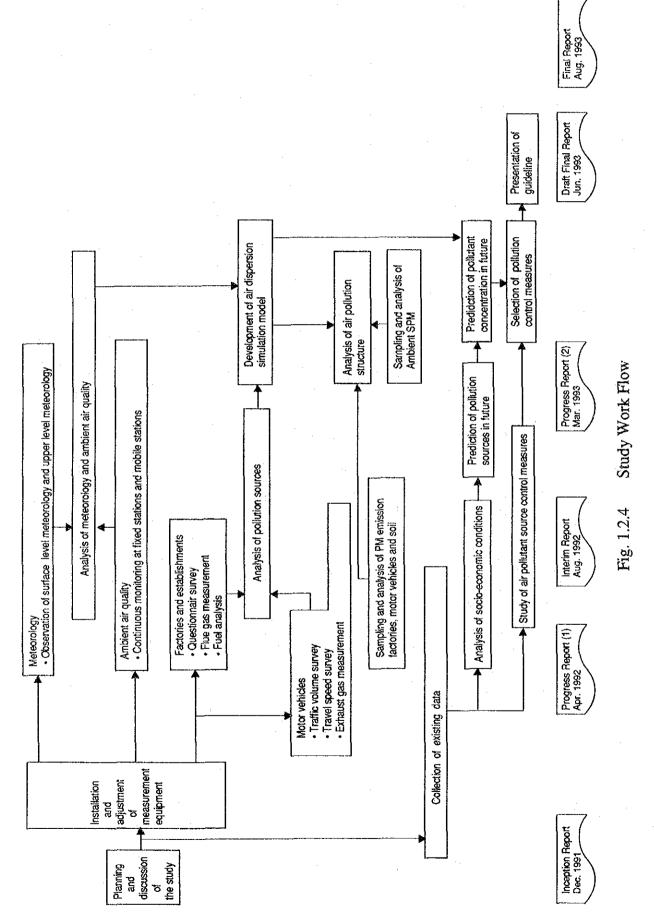
- continuous monitoring at fixed and mobile stations

- measurement and chemical analysis by simplified method

o Factory flue gas measurement

o Vehicle exhaust gas measurement at idling state

2) Analytical Work


- o Analysis of measured data
 - meteorological data
 - ambient air quality
 - SPM analysis by CMB method
 - emission factor
- o Estimation of air pollution load
- o Air dispersion simulation model
- o Air pollution control measures
- o Air quality management plan

(4) Equipment Used for the Study

Table 1.2.1 shows the major equipment used in the field investigations. The equipment used for the field investigations will be handed-over to the Malaysian relevant counterpart agencies after the Study is completed to continue monitoring of air quality and pollution sources.

	7	<u> </u>	. I I									•				ots						Implementation [2008]
	9		F	₽ DF/R												Control Effect	G	Estimates				Inplead
	വ														on Agount	6 21 21		븅) 		٦	
	4														Required Reduction Amount			Rou				
	ო			P/R(2)										N	Require				5			
	3	1.20 W.M.			-			••••								<u>+</u>	İİ	2.2.350	tion [Programsing
	. 93/1	E \$\$			%											Construction			Formulation	0		Progr
	12		Π																_		Frane	
	11															5			1.Lation		Future Frame	Design
	10		<u> </u>			Fourth		i our du								tion	8	1100	reliminary Examination	1000		
	9.		Π											19 		Construction		Examination	Prellain	0		
	80								<u> </u>									u l				
	7			≜ IT/R		Third					(2)	(3)						Preliminary Examination			1100	<u> </u>
1				LI LI					. <u> </u>							Basic France		ininary l	ting Date	œ.	Puture Prediction	
	8												surred Dat	e				1	Exis	e,		
	- 2													þ	۲ ^۴	v Study						
	4			P/8(1)		Second		secon			······					elinar		Preliminary Study			04	
	8					rst		154			;		William Data			یر 		relima			<u>1</u> 29	
	5				Pre.	Pre First		rre. r	rre. Pre.		1. Pre.	Pre. (1)						Pre				
	2 92/1				Pre-Research		8	8								8		- 10	<u> </u>			
	. 91/12		Π	¶ ¶			4															
	YY∕MM	lork	Analytical Fork	Submission of Reports	-Meteorology & Air Quality Air Quality (Fixed Station & Monitoring Car)	-Air Quality (Simplified Memment)	-Upper Laval Mateorology	-Factories (Questionnaire Survey)	(On-site Questionnaire Survey)	(Flue Gas Koasuresent)	-Notor Yahioles (Traffic Yoluse & Travel Speed)	(Exhaust Gas Beasuracent)	-Collection of Existing Data	-Mateorology & Air Duality		Analysis	<pre>-Air Dispersion Model</pre>	•Follution Control	Acasures	-	nony	 Air dispersion Sigulation System
	۲Y,	Field Work	Analyti	uission	-Meteorolo (Fixed St	-Air Quali (Siaplifi	-Upper La	-Factorie: (Question	(On-site	(Flue Gas	-Notor Yat (Traffic	(Exhaust	-Collectio	.Nateorolo	and solutions		Air Dispe	Follution		-Cuideline	Socia-Economy	Air disp¢ Si∎

Fig. 1.2.3 Study Schedule

Table 1.2.1 Major Equipment Used in the Study

Upper level meteorological observation	
- Upper level sonde observation system	1 Set
- Digital theodolite system	1 Set
Surface level meteorological observation	
- Solar and Net radiation system	1 Set
- Wind direction and Wind speed	1 Set
Ambient air quality monitoring at fixed monitoring station	2 Sets
- Container	
- Monitors for SO ₂ , NO _x , SPM, CO, HC and O ₃	
- Wind direction and Wind speed	
Ambient air quality monitoring at mobile monitoring station	2 Sets
- Monitoring vehicle	
- Monitors for SO ₂ , NO _x , SPM, CO, HC and O ₃	
- Wind direction and Wind speed	
Factory flue gas measurement	
- Sampler and Analyzer for Dust, SO2, NOx, O2 and gas velocity	1 Set
Motor vehicle flue gas measurement	
- Flue gas measurement system for HC, CO and NOx	1 Set
Traffic volume survey	
- Tally counter	100 Sets
Chemical analysis	
- Analysis equipment	1 Set
Data processing system	
- Personal computer system	2 Sets

1.3 Organization for the Study

The Study was carried out jointly by JICA and the Government of Malaysia in cooperation with related agencies.

1.3.1 Malaysian Organization

The Economic Planning Unit of the Prime Minister's Department (EPU) was the main coordinator for the Study, and the main counterpart agency was the Department of Environment, Ministry of Science, Technology and Environment (DOE). Counterpart Team was formed to execute the Study smoothly. Steering Committee and Technical Committee were formed to provide advice and consultations. Members of the Steering Committee, Technical Committee and leaders of the Counterpart Team are shown in Tables 1.3.1, 1.3.2 and 1.3.3 respectively.

Table 1.3.1 Members of the Steering Committee

No.	Name	Department
1.	Abdul Rahman Jamal	EPU
	Director	
	Regional Economics Section (Chairman)	
2.	Hasnol Zam Zam Ahmad	EPU
	(Secretary)	
3.	YM. Tengku Azman bin	Ministry of Housing & Local
	Tengku Mat	Government
4.	R. Letchumanan	Ministry of Energy,
		Telecommunication and Post
5.	Ismail Mohamad	Ministry of Transport
6.	Leong Chow Peng	MMS
7.	Arisfadilah bin Sariat	EPU
8.	Noor Aini Ahmad	MOSTE
9.	Harvinder Kaur	EPU (Industry)
10.	Abdul Rahman Hj. Ahmad	Health Department, City Hall
11.	YM. Tengku Bakry Shah	DOE
	b. Tengku Johan	
12.	Nor A'zman Rosli	DOE
13.	Mohd. Suhaimi Ahmad	EPU (Energy)
14.	Mohamad Yazi Md. Din	EPU (Energy)
15.	Mohd Fazi Matori	Ministry of Works

Table 1.3.2 Members of the Technical Committee

No.	Name	Agency
	Ir. Tan Meng Leng	DOE
	Deputy Director (Chairman)	2
2.	YM Tengku Bakry Shah Tengku Johan (Secretary)	DOE
3.	Mrs. Wan Ramlah Bt. Hj. Wan Ibrahim	DOE
4.	Mr. Ismail Isnin	DOE
5.	Ms. Azuri Azizah Saedon	DOE
6.	Mr. Marzuki B. Mokhtar	DOE
7.	Mr. S. Madhi B. S. Junaidi	DOE
8.	Mr. Masami Mizuguchi	DOE (JICA)
9.	Mr. Terutaka Ishikawa	DOE (JICA)
10.	Mr. Nor A'zman Rosli	DOE
11.	Mr. Hassan Mat	DOE (S'GOR)
12.	Mr. Ahmad Samsudin Che Abas	DOE
13.	Mrs. Wan Noraini Bt. Wan Hamzah	DOE
14.	Ms. Rosnani Bt. Ahmad Kasrin	DOE
15.	Mr. Abdul Rahman B. Hj. Ahmad	CITY HALL
16.	Mr. Dzulfakar B. Maisran	CITY HALL
17.	Mr. Wong Kok Fah	DOC
18.	Mrs. Leong Chow Peng	MMS
19.	Dr. M. Subramaniam	MMS
20.	Mr. Tan Choon Kim	SAMC
21.	Mr. Harjeet Singh	SSS
22.	Mrs. Latifah Bt. Hj. Mohd. Yatim	UPLK
23.	Ass. Prof. Dr. Azizan B. Abu Samah	UM
24.	Mr. Azman Zainal Abidin	UPM
25.	Ms. Lee Tzee Wan	PETRONAS
26.	Mr. Cheah Wai Kong	TNB

.

1	YM. Tengku Bakry Shah Tengku Johan DOE	Supervision
2	Mrs. Wan Noraini Wan Hamzah DOE	Socio-economic Analysis and Development Plan
3	Mrs. Hajah Rosnani Ibrahim DOE	Guideline
4	Mr. Nor A'zman Rosli DOE	Stationary Source Control
5	Mr. Mohd Izzuddin Abd Ghani DOE	Mobile Source Control
6	Mr. Nor A'zman Rosli DOE	Equipment Management
7	Dr. Azizan Abu Samah UM	Modelling and Simulation
8	Mrs. Rahani Hussin DOE	Pollution Source Investigation
9	Mr. Azman Zainal Abidin UPM	Air Quality Monitoring
10	Mrs. Leong Chow Peng MMS	Meteorological Observation
11	Mr. Lum Koon Woon DOC	Chemical Analysis

Table 1.3.3 Leaders of the Counterpart Team

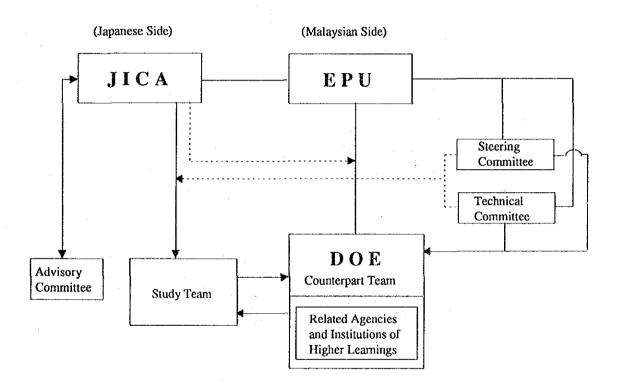
1.3.2 Japanese Organization

JICA, the official agency of the technical cooperation, chose Suuri keikaku Co., Ltd. and Pacific Consultants International as the consultants in charge of the Study. JICA formed Advisory Committee to ensure smooth execution of the Study. Members of the Study Team and Advisory Committee are shown in Tables 1.3.4 and 1.3.5 respectively.

1	Mr. Makoto Miyakawa Suuri-Keikaku Co., Ltd.	Overall Supervision/Organization and Institution
2	Mr. Ikuo Inoue Japan Machinery & Metals Inspection Institute	Meteorological Observation
3	Mr. Masanori Fuzikawa Japan Machinery & Metals Inspection Institute	Air Quality Monitoring
4	Mr. Mitsuru Fukuhara Japan Machinery & Metals Inspection Institute	Stationary Source Investigation
5	Mr. Yoichi Enokido Pacific Consultants International	Mobile Source Investigation
6	Mr. Ikushi Okada Japan Machinery & Metals Inspection Institute	Monitoring System
7	Mr. Akeo Fukayama Suuri-Keikaku Co., Ltd.	Meteorology and Air Quality Analysis
8	Mr. Seisuke Suzuki Suuri-Keikaku Co., Ltd.	Pollution Source Analysis
9	Mr. Haruo Kikuchi Suuri-Keikaku Co., Ltd.	Modeling and Simulation Analysis
10	Mr. Yukihiro Nakano Suuri-Keikaku Co., Ltd.	Air Dispersion Simulation System
11	Mr. Hidenori Kaku Suuri-Keikaku Co., Ltd.	Mobile Source control
12	Mr. Shinzo Hirasawa Suuri-Keikaku Co., Ltd.	Stationary Source control
13	Mr. Norifumi Yamamoto Pacific Consultants International	Air Pollution Control Planning
14	Mr. Fumiaki Onoda Pacific Consultants International	Socio-economic Analysis/Development Plan
15	Mr. Tetsuaki Yokochi Japan Machinery & Metals Inspection Institute	Equipment Management/Chemical Analysis

Table 1.3.4 Members of the Study Team

Table 1.3.5 Members of the Advisory Committee


1	Dr. Hidetsuru Matsushita Professor, Graduate School of Nutritional and Environmental Science, University of Shizuoka Prefecture	Chairman/Overall Supervision
2	Mr. Susumu Ota Deputy director of Planning and Coordination Division, Planning and Coordination Bureau, Environment Agency	Air Pollution control
3	Mr. Naoya Tsukamoto Global Environment Specialist, Control and Coordination Division, Global Environmental Department, Environment Agency	Atmospheric Environment Analysis
4	Mr. Fumio Ueno Assistant Director, Office of Industrial Development, Industrial Base Division, Department of Commerce, Industry, Labor and Tourism, Hokkaido Government	Pollution Source Measurement

1.3.3 Counterpart Assignments

Counterpart assignments are shown in Table 1.3.6.

1.3.4 Organizational Structure

The organizational structure for the Study is shown in Fig. 1.3.1.

Fig. 1.3.1 Organizational Diagram for the Study

No.	Work Field	Meabers of the Counterpart Team	Agency	Members of the Study Team
1	Supervision of	Leader : Mr. Tengku Bakry Shah Tengku Johan	DOE	Nr. Makoto Niyakawa
	the Entire Study		1	·
2	Socio-Economic Analysis/	Leader : Mrs. Wan Noraini Wan Hamzah	DOE	Nr, Fumiaki Onoda
	Development Plan	Nember : Mrs, Hariyah Amy Yahya		
3	Guideline	Leader : Mrs. Hajah Rosnani Ibrahim	DOE	Mr. Norifumi Yanamoto
		Nember : Mrs. Wan Ramláh		
		Mrs. Mariana Mohd Nor		
4	Stationary Source	Leader : Mr. Nor A'zman Rosli	DOE	Mr. Shinzo Hirasawa
	Control	Nember : Mr. Ahmad Samsudin Che Abas		(Staionary Source Control)
			Į	Mr. Ikushi Okada
	:	l		(Nonitoring System)
5	Mobile Source	Leader : Mr. Nohd Izzuddin Abd Ghani	DOE	Nr. Hidenorí Kaku
	Control	Nember : Mr. Narzuki Nokhtar		
		Hr. Kazali Yaakob	·	· · · · · · · · · · · · · · · · · · ·
6	Equipment Management	Leader : Mr. Nor A'zman Rosli	DOE	Nr. Tetsuaki Yokochi
		Nember : Mr. Ahmad Samsudin Che Abas		(Equipment Nanagement)
		Mrs. Wan Noraini Wan Hamzah		Mr. Nasanori Fuzikawa
		Xrs. Hariyah Amy Yahya		(Monitoring System)
7	Nodelling and	Leader : Dr. Azizan Abu Samah	UN	Nr. Haruo Kikuchi
	Simulation	Co-Leader: Nr. Azman Zainal Abidin	UPN	(Modelling and Simulation)
		Co-Leader: Nr. Tengku Bakry Shah Tengku Johan	DOE	Mr. Akeo Fukayama
		Newber : Mrs. Leong Chow Peng	₩£S	(Meteorology and Air Quality)
		: Mr. Subramaniam Noten	₩¥S	Mr. Yukihiro Nakano (Air Dispersi
		Nr. Chang Tin Yee	NNS	Simulation System)
8	Pollution Sources	Leader : Mrs. Rahani Hussin	DOE	Mr. Seisuko Suzuki
	(On-site questionnaire)	Nember : Mr. Nor A'zman Rosli		Mr. Shinzo Hirasawa
		Mr. Ahmad Samsudin Che Abas		
	(Flue gas measurement)	Member : Mr. Nor A'zman Rosli		Mr. Witsuru Fukuhara
		Mr. Ishak Rauf		
		Mr. Muhd. Ruzita Abdul Hamid	(·	
		Mr. Tham Chee Man		
		Nr. Othman Mustam	1	
		Mr. Yazid Suaidi		
	(Mobile sources)	Nember : Nr. Nohd İzuddin Abd Ghani	DOE	Mr. Yoichi Enokido
		Mr. Marzuki Mokhtar		
		Nr. Razali Yaakob		
		Mr. Nor A zman Rosli		
		Mr. Ahmad Samsudin Che Abas		
9	Air Quality Monitoring	Leader : Mr. Azman Zainal Abidin	UP¥	Nr. Masanori Fujikawa
		Member : Mr. Nor A'zman Roslí	DOE	
		Mr. Ahmad Samsudin Che Abas		
10	Meteorological Observation	Leader : Mrs. Loong Chow Peng	₩¥S	Mr. Ikuo Inoue
		Co-Leader: Mr. Azman Zainal Abidin	UPN	
	:	Member : Nr. Lim Sze Fook	MMS.	
1	Chemical Analysis	Leader : Mr. Lum Kon Woon	DOC	Nr. Tetsuaki Yokochi
		Nember : Mr. Pua Hiang		

Table 1.3.6 Counterpart Assignments

.

.

CHAPTER 2 OVERVIEW OF THE STUDY AREA

CHAPTER 2 OVERVIEW OF THE STUDY AREA

The natural and social environment of the Study area summarized from existing data is as follows.

2.1 Natural Environment

(1) Topography

The Study area, Kelang Valley Region, a basin located in the southwest part of the Malaysia Peninsula (Fig. 2.1) is surrounded by mountains exceeding 1,500 m on the east, and the Straits of Melaka on the west.

The Klang River is the main river, which is joined by many branch rivers and flows into the Straits of Melaka through the Straits of Klang.

Fig. 2.1 Location of Kelang Valley Region

(2) Climate

Malaysia adheres to a tropical rainforest climate (Af), which is influenced by monsoons from the South China Sea and the Indian Ocean. The Northeast monsoon season from December through February and the Southwest monsoom season from June through August are the dry seasons. Two transitional seasons from March through May and September through November are rainy seasons with high humidity.

2.2 Social Environment

2.2.1 Society and Administration

(1) Society

Malaysia is a constitutional monarchy consisting of 13 states, under which local authorities are established.

(2) Administration and Government Structures

Kampung is the smallest administrative division. Fig. 2.2.1 is a conceptual model of administrative structure in a district. Municipalities are established along trunk roads. Rubber or oil-palm estates are private land. As for the administrative structure, each state is divided into districts, which in turn are divided into smaller divisions called mukim and kampung (Fig. 2.2.2).

At the district level and below, local authorities, such as district councils and municipal councils, exist along with district offices. There are exceptions. Two cities, Kuala Lumpur and Ipoh have a mayor and a city council. Estates lie outside the sphere of various administrative services because they are private properties.

Administratively, the Kelang Valley Region consists of the Federal Territory of Kuala Lumpur, four districts, i.e., Gombak, Hulu Langat, Petaling and Klang, and four municipalities, i.e., Shah Alam, Petaling Jaya, Klang and newly born Ampang Jaya of the state of Selangor at present. And new municipalities such as Bangi and Selayang will be established in the near future. Kuala Lumpur is a federal territory. Each of Ampang Jaya, Klang, Petaling Jaya, and Shah Alam has a municipal council; each of Gombak, Hulu Langat, and Petaling has a district council.

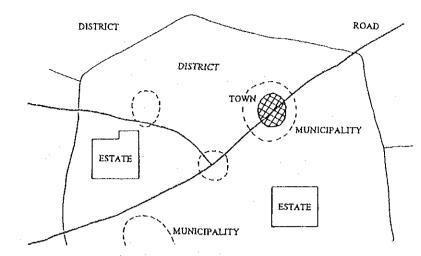


Fig.2.2.1 Conceptual Model of Administrative Structure in a District

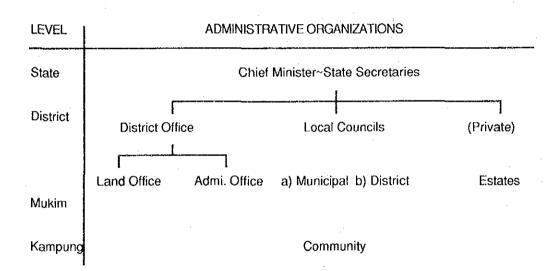


Fig.2.2.2 State Government and Local Authorities

2.2.2 Development Plans and Population

(1) Development Plans

Each of the constituent administrative bodies in KVR has its own structural development plan (some of them have been published). To ensure smooth execution and coordination of these development plans in the Kelang Valley Region, the federal government set up the Kelang Valley Planning Secretariat (KVPS) in the prime minister's office. KVPS consolidated these plans into a Kelang Valley Perspective Plan in 1984, which was revised in 1988 (KVPP'88). Our forecast mainly relies on this revised plan.

Among the official prognosis for future course of the national economy, the most far reaching is in the Second Outline Perspective Plan (OPP2) which provides basic forecasts for the beginning of the next century. We are bound to make use of actual trends to the present and planned ones set by the OPP2 to 2000 as the basis of our forecast.

(2) Population

The latest census was carried out in August 1991 and a preliminary count report (PCR) was released in March 1992. According to this report, the total population in Malaysia is 17.57 million. Of the total, 2.95 million people (about 17% of the total population) live in the Kelang Valley Region.

Table 2.2.1 shows the area, population and population density in the Kelang Valley Region according to the 1980 census and KVPP'88's estimates.

The 1991 population census has revealed the following two facts.

- 1) The actual average annual growth rate (AAGR) of the region's population during the period between 1980 and 1991 is about one point lower than the prediction because of lower migratory inflow from other states than predicted.
- 2) The population sprawl from the Federal Territory of Kuala Lumpur is more conspicuous and is directed more toward the north and east than estimated in the predictions. This phenomenon culminated in the birth of the Ampang Jaya municipality, adjacent to Kuala Lumpur at its northeast boundary in March 1992.

(3) Prospects for Development

We have compared the PCR and KVPP'88 figures and calculated tentative figures for the year 2005 (see Table 2.2.2). The AAGR figure for the population for the period of 1991 and 2000 for all of Malaysia was derived from the OPP2. We did not delve into the population and household estimates made in the KVPP'88, as the figures will soon change whenever a new series of population statistics based on the latest census are published.

Furthermore, planning has begun on the construction of a new international airport in Sepang district, which is not mentioned in the KVPP'88. This will surely influence not only the air and related transport infrastructures but also the general pattern of land use in the region, and further the boundary of the region itself.

Topographically, Kelang Valley Region includes the upper reach of the Selangor basin in its northeastern part and the upper and middle reaches of the Langat basin in its eastern part. In the future, Kuala Langat district, the lower reach of the Langat, and Sepang district will be administratively integrated into the greater Kuala Lumpur metropolitan region.

	*1		Census 1980		Рори	lation			ate(*2) t:%(*2)	
	Area	Dens. AHh	n.		1990	2000	80-85	-90	-95	-00
	km2	1000 / km	2		1000	1000				
KUALA LUMPUR	243	1036.9	4267	4.75	1550	2200	4.1	4.1	3.6	3.6
GOMBAK	650	175.9	271	5.03	245	344	3.6	3.0	3.4	3.4
Selayang	1	3.5	3500		5	7	3.6	3.0	3.4	3.4
Ampang Jaya #	5	n.a.								
Other UA	14	70.2	5014							
Non-UA	630	102.1	162							
HULU LANGAT	826	188.4	288	5.32	289	406	4.5	4.1	3.4	3.4
Ampang Jaya #	4	13.0	3250							
Bangi	na.	33.3			73	103	8.2	7.6	3.4	3.4
Other UA #2	41	65.6								
Non-UA	. 781	76.4	98							
PETALING	484	382.3	790	4.61	659	926	4.4	6.5	3.5	3.4
Shah Alam	135	20.2	150		155	218	14.5	26.3	3.43	3.4
Petaling Jaya	. 43	220.1	5119		306	430	3.6	3.0	3.4	3.4
Other UA	22	58.4	2655							
Non-UA	284	83.7	295							
KLANG	627	296.1	472	5.60	412	597	3.6	3.0	3.4	3.4
Klang	61	203.4	3334		283	398	3.6	3.0	3.4	3.4
Other UA	. 0								:	
Non-UA	566									
Other UA	77				47	66	3.6	3.0	3.4	3.4
Non-UA	2261				735	1032	3.6	3.0	3.4	3.4
KELANG VALLEY	2830	2079.6	735	4.90	3155	4454	4.0(J)	4.3(K)	3.4(L)	3.4(M)
MALAYSIA	329758	13136	40							

Table 2.2.1 Population 1980 Census and Estimates

Legend : UA=Urban Area, Dens=Density, AHhn=Average Household Number

Data on Ampang Jaya : New Strait Times, Mar.19,20

#2 Other UA includes Bangi's

*1 Yearbook 90 : Bureau of Statistics

*2 KVPP' 88