No. 12

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

THE GENERAL DIRECTION OF CONSTRUCTION AND HYDRAULIC OPERATION (DGCOH)
GENERAL SECRETARIAT OF WORKS
THE FEDERAL DISTRICT OF MEXICO

THE FEASIBILITY STUDY ON WASTEWATER TREATMENT IN THE FEDERAL DISTRICT OF MEXICO

DATA BOOK

DECEMBER 1994

PACIFIC CONSULTANTS INTERNATIONAL, TOKYO

"SSS "UR 94-129

31.8 31.8

îss

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

THE GENERAL DIRECTION OF CONSTRUCTION AND HYDRAULIC OPERATION (DGCOH) GENERAL SECRETARIAT OF WORKS
THE FEDERAL DISTRICT OF MEXICO

THE FEASIBILITY STUDY ON WASTEWATER TREATMENT IN THE FEDERAL DISTRICT OF MEXICO

DATA BOOK

LIBRARY 1119589[8]

27644

DECEMBER 1994

PACIFIC CONSULTANTS INTERNATIONAL, TOKYO

国際協力事業団 2.7644

Table of Contents

Data/Calculations

- 1. Design Calculation for Wastewater Treatment Plant
- 2. Hydraulic Calculation for Urgent Project
- 3. Hydraulic Calculation for Final Project
- 4. Bill of Quantities
- 5. Bill of Quantities (Priced)
- 6. Watsewater and Sludge Treatment System Proposed by CNA
- 7. Results of the Geological Survey
- 8. Water Quality Data of Termoelectrica Valle de Mexico Treatment Plant and Gran Canal

Drawings

- 1. General Layout
- 2. Layout of Wastewater Treatment Plant
- 3. Hydraulic Profile of Wastewater Treatment Plant
- 4. Receiving Tank Plan & Section
- 5. Distribution Tank Plan & Section
- 6. Aeration Tank & Sedimentaion Tank Plan
- 7. Aeration Tank & Sedimentation Tank Section
- 8. Disinfection Tank
- 9. Discharge Channel
- 10. Sludge Digestion Tank Plan & Section
- 11. Process diagram of Wastewater Treatment Plant

- 12. Single Line Diagram
- 13. Control Building
- 14. Blower House
- 15. Centrifugal Thickener House
- 16. Sludge Dewatering House

DATA / CALCULATIONS

DECEMBER 1994

JAPAN INTERNATIONAL COOPERATION AGENCY

DESIGN CALCULATION

FOR

WASTEWATER TREATMENT PLANT

DECEMBER 1994

JAPAN INTERNATIONAL COOPERATION AGENCY

Design Calculation for Wastewater Treatment Plant

Design Condition

Design Condition	ì	Unit	Final Project	Urgent Project
Design Flow Rate	Qđ	m3/d	3,456,000	3,024,000
(Daily Average)	Qm	m3/min.	2,400	2,100
	Qs	m3/sec.	40.0	35.0
Number of Unit	Nu	unit	8	2
Design Flow Rate per 1 Unit	Qd'	m3/d	432,000	1,512,000
(Daily Average)	Qm'	m3/min.	300	1,050
	Qs'	m3/sec.	5.0	17.5
Influent Water Quality (BOD)	Chod	mg/l	245	220
(SS)	Css	mg/l	260	235

1) Primary Sedimentation Tank

270

		Design Item		Unit	Final Project	Urgent Project
Design Calculation	Surface Loading		Ls	m3/m2•d	35	
దిశ్ల ——	Required Surface	Area	A=Qm'/Ls	m2	12,343	
		Effective Width	В	m	5	5
	Size of Structure	Effective Length	L	m	39	39
_		Effective Depth	Н	m	3	3
Verification	No. of Basin per 1	Unit	-	basin	16	16
Fica	No. of Channel pe	r I Basin	-	channel	4	4
en.	No. of Channel pe	r 1 Unit	n	channel	64	64
-	Surface Loading ≤	Ls	Ls'=Qd'/B/L/n	m3/m2•d	34.62	121.15
	Surface Area $\geq A$		$A'=B \times L \times n$	m2	12,480	12,480
	Average Velocity		Vps'=Qm'/B/H/n	m/min.	0.31	1.09
	Settling Time		T=L/Vps'	hr.	2.1	0.6

2) Aeration Tank

Design Item		Unit	Final Project	Urgent Project
Influent Water Quality (BOD)	Cboda	mg/l	196	220
(SS)	Cssa	mg/l	156	235
_ F:M	Rfm	•	0.30	1.5 - 5.0
BOD Volumetric Load	Lv'	BODkg/m3•d	0.32 - 0.64	1.2 - 2.4
BOD Volumetric Load Return Sludge Solid Concentration	Cr	mg/l	8,000	6,500
Datum Cludge Datio	Rs	-	35%	10%
MLSS Concentration Cmlss=(Cssa+Cr	Cmlss x Rs/100)/(1+Rs/100)	mg/l	2,190	805
	nlvss = 0.75 x Cmlss		1,643	604
Required Tank Volume Va=(Qd' x Cb	Va oda)/(Rfm x Cmlvss)	m3	171,836	

		Effective Width	B=H x (1 - 2)	nt	10.3	10.3
	Size of Structure	Effective Length	L	m	89	89
		Effective Depth	Н	m ·	-6	6
ig.	No. of Basin	•	n	basin	32	32
25	Cross Section per 1	Basin	As=B x H - 2	m2	59.8	59.8
enifica	Volume per 1 Unit		Va'=As x L x n	m2	170,310	170,310
>	F: M	Rfm'=(Qd' x	Cboda)/Va//Cmlvs	s -	0.30	3.23
	BOD Volumetric L	oad Lv=(Qd'	x Cboda)/ Va'/1,00	0 BODkg/m3•d	0.50	1.95
	Acration Time		Ta=Va'/Qd' x 24	hr.	9.5	2.7
	Sludge Age	Sa=(Cr	nlss x Va')/Qd'/Css	a day	5.53	0.39

3) Secondary Sedimentation Tank

		Design Item		Unit	Final Project	Urgent Project
Design Calculation	Surface Loading		Ls	m3/m2*d	25	
S S	Required Surface	Area	A=Qm'/Ls	m2	17,280	 ,
	:	Effective Width	В	m	5	. 5
	Size of Structure	Effective Length	$L=B'x(3\sim4)$	m	54	54
		Effective Depth	Н	m	3.5	3.5
E.	No. of Basin per 1	Unit	•	basin	16	16
Verification	No. of Channel pe	r 1 Basin	-	channel	4	4
<u>.</u>	No. of Channel pe	r 1 Unit	n	channel	64	64
>	Surface Loading ≤	Ls	Ls'≔Qd'/B/L/n	m3/m2•d	25.00	87.50
	Surface Area ≥ A		A'=BxLxn	m2	17,280	17,280
	Average Velocity		Vps'=Qm'/B/H/n	m/min.	0.27	0.94
	Solid Loading	LDss=(Qd'	x Cmlss x 1,000)/A	kg/m2•d	54.8	70.4
	Settling Time		T=1JVps'	hr.	3.3	1.0

4) Gravity Thickener

	Design Ite	m	Unit	Final Project	Urgent Project
g Primary Sludge		Dpv	m3/d	2,010	 ·
datio		Dps	t/d	60.22	•••
Frimary Sludge 함께 기계 Solid Loading		LDgs	kg/m2•d	110	
Required Surface	Arca	Ag=Dps/LDgs	m2	547.5	***
Size of Structure	Diameter	Dg	m	19	
	Depth	Hg	m	4	***
্ব No. of Tank		ng	tank	2	
No. of Tank Effective Surface of Effective Volume	Area	Agʻ	m2	567.1	
Effective Volume		Vg=Ag' x Hg	m3	2,268.4	
Solid Loading		LDgs'=Dps x 1,000 / A	kg' kg/m2•d	106.2	
Retention Time		Tg'=Vg/Dpv	day	1.13	

5) Centrifugal Thickener

	Design Ite	m	Unit	Final Project	Urgent Project	
	Activated Sludge	Dsv	m3/d	9,670	35,240	
п. О		Dss	t∕d	77.38	229.09	
Design Calculation	Capacity of 1 Set	Vc	m3/hr.	170	170	
ag	Operation Hour per Day	He	hr.	24	24	
	Operation Efficiency	Ect	••	80%	80%	
entscation	No. of Set	n	set	3	11	
Verif	Capacity of 1 Unit	Ve'	m3/d	9,792	35,904	

6) Anacrobic Digester

	Design Item		Unit	Final Project	Urgent Project	
	Primary Sludge from	Dgv	m3/d	800		
	Gravity Thickener	Dgs	t/d	48.18		
200	Activated Sludge from	Dev	m3/d	1,160	3,440	
Design	Centrifugal Thickener	Des	v d	69.64	206.18	
U	Total Słudge	Dtv	m3/d	1,960	3,440	
		Dts	t/d	117.82	206.18	
	Retention Time	Tr	day	20	20	
	Size of Structure Diameter	Da	m	26	26	
_	Depth	Ha	m	12.5	12.5	
Verification	Capacity of 1 Set	Va	m3	6,636.6	6,636.6	
nji.	No. of Set	n	set	6	10	
>	Capacity of 1 Unit	Va'	m3	39,819.6	66,366.0	
	Retention Time	Tr'	day	20.3	19.3	

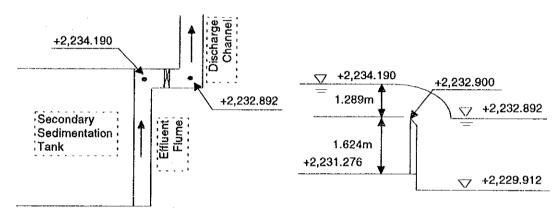
7) Belt Filter Press

	Design Item		Unit	Final Project	Urgent Project	
ion	Digested Sludge from	Ddv	m3/d	1,110	1,950	
Calculation	Anaerobic Digester	Dds	t/d	66.77	116.83	
ঐ	Sludge Loading per Belt Width	Lbs	kg/hr•m	250	250	
Design (Operation Time per Day	To	hr.	12	12	
_ <u></u>	Operation Efficiency	Eb		80%	80%	
다	Belt Width	Wb	m	3	3	
/erification	Capacity of 1 Set	Cb	kg/set/d	7,200	7,200	
ر ت <u>ان</u>	No. of Set	n	set	10	16	
•	Capacity of 1 Unit	Vbʻ	t∕d	72.00	115.20	

HYDRAULIC CALCULATION

FOR

URGENT PROJECT


DECEMBER 1994

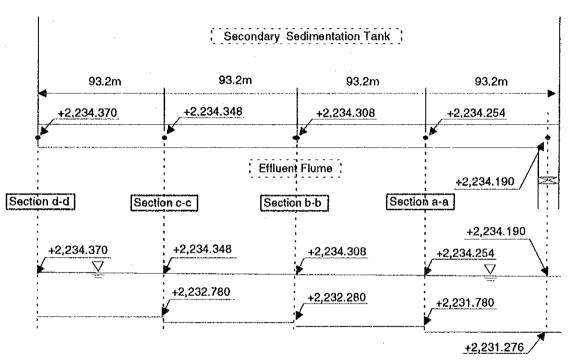
JAPAN INTERNATIONAL COOPERATION AGENCY

Hydraulic Calculation for Urgent Project

1) Connection Channel from Effluent Flume to Discharge Channel

Calculation Condition		
Flow Rate per 1 Unit	Q'	17.5 m3/s
Width of Weir	В	6.5 m
Water Depth of Discharge Channel	H	2.980 m
Height of Weir	Hw	1.624 m
Invert Elevation of Upstream of		
Discharge Channel	+	2,229.912 m
Water Surface Elevation of Upstream of		
Discharge Channel	+	2,232.892 m
Calculation		
Head over Weir Crest	he	1.289 m
hc=(Q/1.84/B)^(2/3)		
Water Surface Elevation of Downstream of		
Effluent Flume	+	2,232.825 m
	272	2,234.190 m

2) Effluent Flume of Secondary Sedimentation Tank


< Section a-a >

Calculation Condition			
Flow Rate per 1 Unit		Qa	17.5 m3/s
Width of Flume		В	3.0 m
Length of Flume		L	93.2 m
Invert Elevation of Downstream	n of Flume	+	2,231.276 m
Water Surface Elevation of Do	wnstream of		
Flume		+	2,234.190 m
Water Depth of Flume		Н	2.914 m
Calculation			
Cross-sectional Area in Flume	A=BxH	Α	8.742 m2
Wetted Perimeter	P=B+2xH	P	8.828 m
Hydraulic Radius	R=A/P	R	0.990 m
Velocity in Flume	v=Qa/A	V	2.002 m/s
Friction Head	1	hfa-a	0.064 m

	v)^2)/(R^(4/3))			
Difference of Invert Level 1			0 401	
Downstream and Section a	·a ·	*	0.504 m	
Invert Elevation of Section	a-a of Flume	. +	2,231.780 m	
Water Surface Elevation of	Section a-a			
of Flume		+	2,234.254 m	
< Section b-b>				
Calculation Condition		i.		
	Qb=Qa x 3/4	Qb	13.125 m3/s	
Flow Rate Width of Flume	Q0-Qa x 3/4	B	3.0 m	
==		L	93.2 m	
Length of Flume		H	2.474 m	
Water Depth of Flume		11	2.474 III	
Calculation	•			
Cross-sectional Area in Flu	me A=BxH	Α.	7.422 m2	
Wetted Perimeter	P=B+2xH	P	7.948 m	
Hydraulic Radius	R=A/P	R	0.934 m	•
Velocity in Flume	v=Qa/A	v	1.768 m/s	
Friction Head	•	հքն-ե	0.054 m	
hfb-b=Lx((n x	v)^2)/(R^(4/3))			
Difference of Invert Level	between Section		. 1	
a-a and Section b-b		+	0.500 m	
Invert Elevation of Section	b-b of Flume	+	2,232.280 m	
Water Surface Elevation of				
of Flume	o de como de c	+	2,234.308 m	
Of Fiding			_,	
< Section c-c >				
Calculation Condition			•	
Flow Rate	Qc=Qa x 2/4	Qc	8.750 m3/s	
Width of Flume		В	3.0 m	
Length of Flume		L	93.2 m	
Water Depth of Flume		Н	2.028 m	
Calculation Cross-sectional Area in Flu	una A-BuU	Α	6.084 m2	
	ime A=BxH P=B+2xH	P	7.056 m	
Wetted Perimeter	R=A/P		0.862 m	
Hydraulic Radius	v=Qa/A		1.438 m/s	
Velocity in Flume	v=Qa/n	v hfc-c	0,040 m	
Friction Head	\A9\/m\A/4/9\\	HIC-C	O.OHO III	
	v)^2)/(R^(4/3))			
Difference of Invert Level	between section		0.500 m	
b-b and Section c-c	£ 172	+		
Invert Elevation of Section		+	2,232.780 m	
Water Surface Elevation o	f Section c-c			
of Flume		+	2,234.348 m	
< Section d-d >				
Calculation Condition				
Flow Rate	Qd=Qa x a/4	Qd	4.375 m3/s	į
Width of Flume	A STATE OF THE STATE OF	В	3.0 m	
Length of Flume		L	93,2 m	
Water Depth of Flume		H	1.568 m	
a mor ropards ramo				

Calculation

Cross-sectional Area in Flume	A≕BxH	Α	4.704	m2
Wetted Perimeter	P=B+2xH	p	6.136	****
Hydraulic Radius	R=A/P	R	0.767	m
Velocity in Flume	v≕Qa/A	v	0.930	m/s
Friction Head	•	hfd-d	0.019	m
hfd-d=Lx((n x v)^2	2)/(R^(4/3))			
Invert Elevation of Section d-d	of Flume	+	2,232.780	m
Water Surface Elevation of Sect	tion d-d			
of Flume		+	2,234.367	m
		==	2,234.370	m

3) Effluent Collection Trough

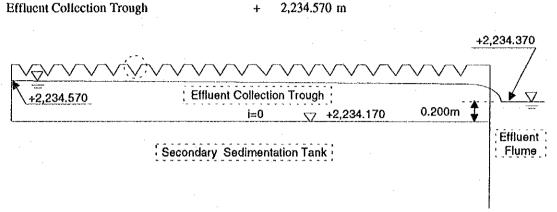
< Effluent Collection Trough >

Effluent Collection Trough >		
Calculation Condition		
Flow Rate per 1 Unit	Q'	17.5 m3/s
Number of Channel per 1 Unit	n1	64
Number of Trough per 1 Channel	n2	2
Flow Rate per 1 Trough	Q	0.137 m3/s
$Q=Q'/(n1 \times n2)$		
Width of Trough	В	0.4 m
Invert Gradient	i	0.00
Water Surface Elevation of Section d-d		
of Flume	+	2,234.370 m
Calculation		
Overflow Depth of Downstream of		
Effluent Collection Trough	he	0,200 m
Head over Weir Crest	hc	0.229 m

$hc=(1 \times Q^2/9.8/B^2)^(1/3)$

Water Depth of Upstream of Effluent

Collection Trough ho


 $ho=(2 \times hc^3)/(he + he^2)^(1/2)$

Invert Elevation of Effluent Collection

Trough

Water Surface Elevation of Upstream of

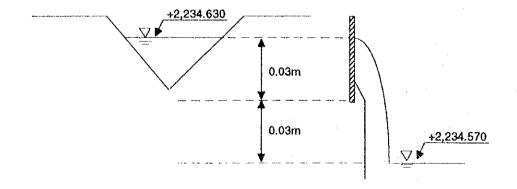
Effluent Collection Trough

0.4 m

2,234.170 m

< V-notch Weir >

Calculation Condition


Flow Rate per 1 Unit		Q,	17.5 m3/s
Number of Channel per 1 Unit		nl	64 channel(s)
Flow Rate per 1 Channel		Q1	0.273 m3/s
-	O1=O'/n1		

Weir Over Flow Loading

Wi 190 m3/m+d

Calculation

Width of V-notch Weir	Bw	0.125 m
Required Length of Trough per 1 Channel	Lt	125 m
Number of V-notch Weir per 1 Channel	Nn	1,000
Flow Rate through 1 V-notch Weir	Qw	0.000273 m3/s
Head over V-notch Weir Crest	h	0.03 m
h=(Q/1.42)^(2/5)		
Allowance of Height of V-notch Weir	ha	0.03 m
Water Surface Elevation of Secondary		
Sedimentation Tank	+	2,234.630 m

4) Connection Channel between Acration Tank and Secondary Sedimentation Tank

Calculation Condition

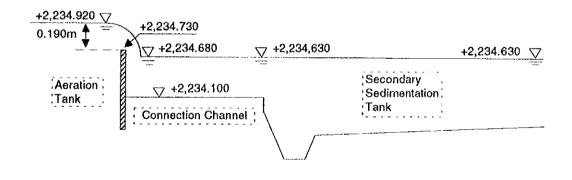
Allowance of Head Loss between

Connection Channel and Aeration Tank ha 0.050 m

Invert Elevation of Connection Channel + 2,234.100 m

Water Surface Elevation of Upstream of
Connection Channel + 2,234.680 m

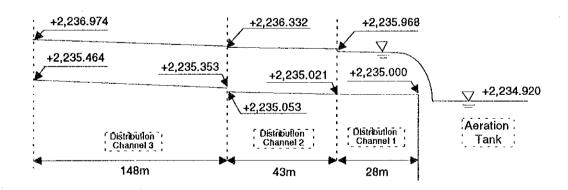
5) Weir of Acration Tank

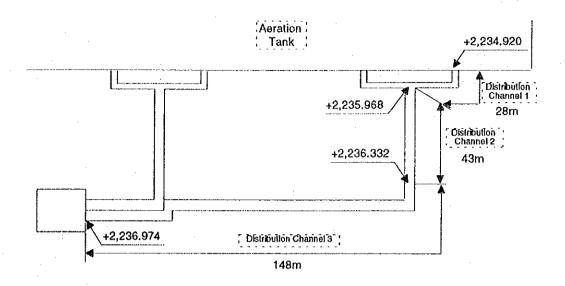

Calculation Condition

Flow Rate per 1 Unit		Q'	17.5 m3/s
Return Sludge Ratio		Rs	10 %
Flow Rate	$Q1=Q' \times (1 + Rs/100)$	Q1	19.25 m3/s
Number of Ch	annel per 1 Basin	n1	2 channel(s)
Number of Bas	sin per 1 Unit	n2	16 basin(s)
Number of Ch.	annel per 1 Unit	n3	32 channel(s)
Design Flow R	late per 1 Channel	Q	0.602 m3/s
	0.00.4		

Q=Q'/n3

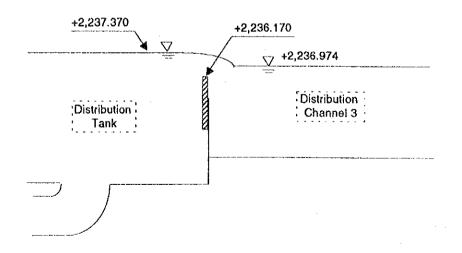
Calculation


archanon		
Width of Weir	В	4.0 m
Type of Weir		Rectangular
Head over the Weir Crest	h¢	0.188 m
hc=(Q/1.84/B)^(2/3)	=	0.190 m
Allowance of Weir Height		0.050 m
Elevation of Weir of Aeration Tank	+	2,234.730 m
Water Surface Elevation of Downstream of		
Weir of Aeration Tank	+	2,234.920 m



6) Distribution Channel

< Distribution Channel 1 >				
Calculation Condition				
Flow Rate per 1 Unit		Q'	17.5	m3/s
Number of Distribution		n1	8	
Flow Rate per 1 Distrib	ution Channel 1 Q1=Q'/n1	Q1	2.188	m3/s
Width of Distribution C	hannel 1	B1	2.0	m
Length of Distribution (Channel 1	LI	28	m
Channel Slope		i1	0.75	‰
Allowance between Wa	ter Surface			
Elevation of Aeration Ta	ank and Invert			
Elevation of Distribution	n Channel 1	+	0.080	m
Invert Elevation of Distr	ribution Channel 1	+	2,235.000	m
Calculation				
Water Depth in Distribu	tion Channel 1	HI	0.866	m
Cross-sectional Area of	Distribution			
Channel 1		A1	1.732	m2
Wetted Perimeter	P1=B1+2xH1	P 1	3.732	m
Hydraulic Radius	R1=A1/P1	R1	0.464	m
Velocity in Channel 1		vl	1.263	m/s
v1=1/n*(F	R1^(2/3)*(i1^(1/2))			
(Flow Rate in Channel	l	Q1'	2.188	m3/s)
Head loss in Bend		hi1	0.081	m
hil:	=1.0 x (v1^2)/2/9.8			
Invert Elevation of Upst	ream of			
Distribution Channel 1		+	2,235.021	m
Water Surface Elevation	of Unstream of			
Distribution Channel 1	or oponetical or	+	2,235.968	m
		•	,	•••
< Distribution Channel 2 >				
Calculation Condition				
Flow Rate per 1 Unit		Q'	17.5	m3/s
Number of Distribution	Channel 2	n2	4	
Flow Rate per 1 Distribu	ition Channel 2	Q2	4.375	m3/s
-	Q2=Q'/n2			
Width of Distribution C	hannel 2	B2	2.5	m
Length of Distribution C	Channel 2	L2	43	m .
Channel Slope		i2	0.75	% 0
Calculation				
Water Depth in Inlet Ch	annel 2	H2	1,164	m
Cross-sectional Area of				
Channel 2		A2	2.909	m2
Wetted Perimeter	P2=B2+2xH2	P2	4.827	
Hydraulic Radius	R2=A2/P2	R2	0.603	
Velocity in Channel 2		v2	1.504	
▼	2^(2/3)*(i2^(1/2))			
(Flow Rate in Channel		Q2'	4.375	m3/s)
Head loss in Bend		hi2	0.115	
	=1.0 x (v1^2)/2/9.8			


	Invert Elevation of Ups	tream of			
	Distribution Channel 2	ucian or	+	2,235,053	m
	Water Surface Elevation of Upstream of		•	2,233.055	***
	Distribution Channel 2	и от ормисан от	+	2,236.332	m
	Distribution Channel 2		т	2,230,332	111
< Dis	stribution Channel 3 >				
C	alculation Condition				
	Flow Rate per 1 Unit		Q'	17.5	m3/s
	Number of Distribution	Channel 3	n3	4	
	Flow Rate per 1 Distrib	ution Channel 3	Q3	4.375	m3/s
		Q3=Q'/n3			
	Width of Distribution C	Channel 3	B3	2.5	m
	Length of Distribution	Channel 3	L3	148	m
	Channel Slope		i 3	0.75	‰
	Allowance of Invert Ele	evation between			
	Distribution Channel 2	and Channel 3		0.300	m
	Invert Elevation of Dov	vnstream of			
	Distribution Channel 3		+	2,235.353	m
C	alculation				
	Water Depth in Inlet Cl	nannel 2	Н3	1,164	m
	Cross-sectional Area of				
	Channel 3		A3	2.909	m2
	Wetted Perimeter	P3=B3+2xH3	P3	4.827	m
	Hydraulic Radius	R3=A3/P3	R3	0.603	m
	Velocity in Channel 3		v3	1.504	m/s
	v3=1/n*(l	R^3(2/3)*(i3^(1/2))			
	(Flow Rate in Channel	3	Q3	4.375	m3/s)
	Head loss in Bend		hi3	0.346	m
	hi3=(v3-	^2)/2/9.8 x 3 places			
	Invert Elevation of Ups	tream of			
	Distribution Channel 3		+	2,235.464	m
	Water Surface Elevation	n of Upstream of			
	Distribution Channel 3	-	+	2,236.974	m

7) Distribution Tank

Calculation Condition		
Flow Rate	. Q'	17.5 m3/s
Number of Weir of Distribution Tank	n1	4
Flow Rate per 1 Weir	Q	4.375 m3/s
Q=Q'/n1	-	
Width of Weir	Bi	2.5 m
Calculation		
Head over Crest of Upstream of Weir	h1	1.196 m
Head over Crest of Downstream of Weir	հ2	0.804
Flow Rate over Submersible Weir	Q'	4.375 m
Elevation of Weir of Distribution Tank	+	2,236.170 m
Water Surface Elevation of Distribution		
Tank	+	2,237.370 m

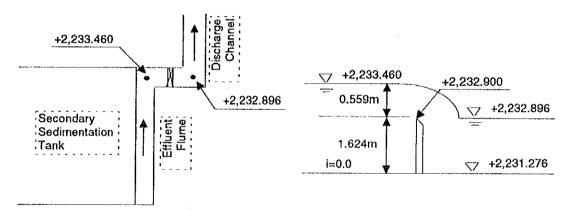
8) Receiving Tank

< Connection Pipe between Distribution Tank and	Rece	eiving Tank >
Calculation Condition		
Flow Rate per 1 Unit	Q'	17.5 m3/s
Diameter of Connection Pipe from		
Receiving Tank to Distribution Tank	D	2.8 m
Pipe Length	L	750 m
Calculation		
Cross-sectional Area of Pipe	Α	6.16 m
Velocity v=Q'/A	v	2.841 m/s
Hydraulic Radius R=D/4	R	0.7 m
Surface Roughness Coefficient	Ch	130
Friction Head in Pipe	hl	1.301 m
hl=10.666 x Ch^(-1.85) x D^(-4.87) x Q^1.8	35 x L	
Enterance Loss he=0.5 x v^2/2/9.8	he	0.206 m
Exit Loss $ho=1.0 \times v^2/2/9.8$	ho	0.412 m
Total Head Loss in Connection Pipe		
between Distribution Tank and		
Receiving Tank	ht	1.919 m
ū	==	1.920
Water Surface Elevation of Downstream of		
Receiving Tank	+	2,239.290 m
<u> </u>		•
< Receiving Tank >		
Calculation Condition		
Flow Rate	Q'	35.0 m3/s
Number of Weir	nl	2 weir(s)
Design Flow Rate per 1 Channel	Q	17.5 m3/s
Q=Q'/n1		
Calculation		
Width of Weir	В	3.0 m
Type of Weir	D	
Head over the Weir Crest	1sa	Rectangular 2.158 m
	hc	
hc=(Q/1.84/B)^(2/3)	=	2.160 m 0.050 m
Allowance of Weir Height Elevation of Weir Crest		
Water Surface Elevation of Upwnstream of	+	2,239.400 m
Weir		2 241 560
Well	+	2,241.560 m
+2,241.560		
T2,241.000		+2,239.400
\(\)	·	/
	\sim	0 000 000
	á	<u></u>
	8	_]
Receiving	8	
Tank	8	L
		Connection Pipe
		, <u></u>

HYDRAULIC CALCULATION

FOR

FINAL PROJECT


DECEMBER 1994

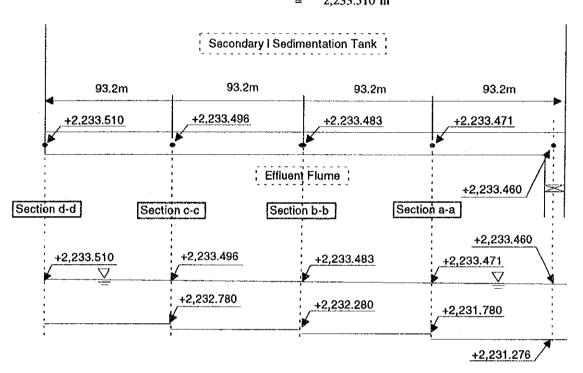
JAPAN INTERNATIONAL COOPERATION AGENCY

Hydraulic Calculation for Final Project

1) Connection Channel from Effluent Flume to Discharge Channel

Calculation Condition		
Flow Rate per 1 Unit	Q'	5.0 m3/s
Width of Weir	В	6.5 m
Water Depth of Discharge Channel	Н	1,620 m
Height of Weir	Hw	1.624 m
Invert Elevation of Upstream of		
Discharge Channel	4	2,231,276 m
Water Surface Elevation of Upstream of		
Discharge Channel	+	2,232.896 m
Calculation		
Head over Weir Crest	he	0.559 m
$hc=(Q/1.84/B)^{2/3}$		
Water Surface Elevation of Downstream of		
Effluent Flume	+	2,233.459 m
	=	2,233.460 m

2) Effluent Flume of Final Sedimentation Tank


< Section a-a >			
Calculation Condition			
Flow Rate per 1 Unit		Qa	5.0 m3/s
Width of Flume		В	3.0 m
Length of Flume		L	93.2 m
Invert Elevation of Downstrear	n of Flume	+	2,231.276 m
Water Surface Elevation of Do	wnstream of		
Flume		+	2,233,460 m
Water Depth of Flume		Н	2.184 m
Calculation			
Cross-sectional Area in Flume	A=BxH	Α	6.552 m2
Wetted Perimeter	P=B+2xH	P	7.368 m
Hydraulic Radius	R=A/P	R	0.889 m
Velocity in Flume	v=Qa/A	٧	0.763 m/s
Friction Head	j	ıfa-a	0.011 m

)^2)/(R^(4/3))			
Difference of Invert Level be			0.504	, in
Downstream and Section a-a		+		
Invert Elevation of Section a		+	2,231,780	m
Water Surface Elevation of S	Section a-a		A AAA 471	
of Flume		+	2,233.471	m
< Section b-b >				
Calculation Condition			•	
Flow Rate Q	b=Qa x 3/4	Qb	3.750	m3/s
Width of Flume		В	3.0	
Length of Flume	1	L	93.2	
Water Depth of Flume		Н	1.691	m
Calculation				
Cross-sectional Area in Flun	ne A=BxH	A	5.073	m2
Wetted Perimeter	P=B+2xH	P	6.382	m
Hydraulic Radius	R=A/P	R	0.795	m.
Velocity in Flume	v≕Qa/A	V	0.739	m/s
Friction Head		hfb-b	0.012	m
hfb-b=Lx((n x v				
Difference of Invert Level be	tween Section			
a-a and Section b-b		+	0.500	
Invert Elevation of Section b		+	2,232.280	m
Water Surface Elevation of S	Section b-b			
of Flume		+	2,233.483	m
< Section c-c >				
Calculation Condition				
Flow Rate Q	c=Qa x 2/4	Qc	2.500	m3/s
Width of Flume		В	3.0	m
Length of Flume		L	93.2	m
Water Depth of Flume		H	1,203	m
Calculation				
Cross-sectional Area in Flun	ne A=BxH	Α	3.609	
Wetted Perimeter	P=B+2xH	P	5.406	
Hydraulic Radius	R=A/P	77.7	0.668	
Velocity in Flume	v=Qa/A		0.693	
Friction Head		hfc-c	0.013	m
hfc-c=Lx((n x v				
Difference of Invert Level be	etween Section		0.500	
b-b and Section c-c Invert Elevation of Section c	a of Fluma	+	0.500 2,232,780	
		+	2,232,100	133
Water Surface Elevation of S	section c-c		2 222 406	
of Flume		+	2,233,496	m
< Section d-d >				
Calculation Condition				
	d=Qa x a/4	Qd	1.250	
Width of Flume		В	3.0	
Length of Flume		L	93.2	
Water Depth of Flume		Н	0.716	m

Calculation			
Cross-sectional Area in Flume	A=BxH	Α	2.148 m2
Wetted Perimeter	P≔B+2xH	P	4.432 m
Hydrautic Radius	R=A/P	R	0.485 m
Velocity in Flume	v≕Qa/A	v	0.582 m/s
Friction Head		hfd-d	0.014 m
hfd-d=Lx((n x v)^2	2)/(R^(4/3))		
Invert Elevation of Section d-d	of Flume	+	2,232.780 m

Water Surface Elevation of Section d-d
of Flume + 2,23

+ 2,233.510 m = 2,233.510 m

3) Effluent Collection Trough of Secondary Sedimentation Tank

< Effluent Collection Trough > Calculation Condition Flow Rate per 1 Unit O, 5.0 m3/s Number of Channel per 1 Unit n164 Number of Trough per 1 Channel n22 Flow Rate per 1 Trough Q 0.039 m3/s $Q=Q'/(n1 \times n2)$ Width of Trough В 0.4 m Length of Trough 54.0 m L **Invert Gradient** 0.00 i Water Surface Elevation of Section d-d of Flume 2,233.510 m Calculation Critical Depth hc 0.099 m

 $hc=(1 \times Q^2/9.8/B^2)^(1/3)$

Water Depth of Upstream of Effluent

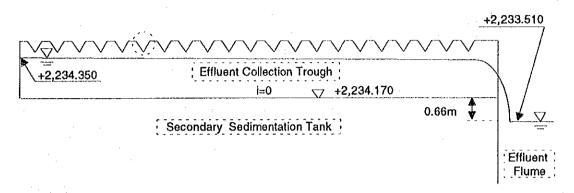
Collection Trough

ho

0.180 m

ho=(3 x hc^2)^(1/2)

Invert Elevation of Effluent Collection


Trough

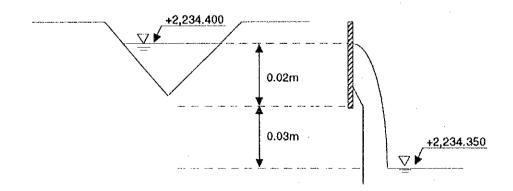
+ 2,234.170 m

Water Surface Elevation of Upstream of

Effluent Collection Trough

+ 2,234.350 m

< V-notch Weir >


Calculation Condition

Flow Rate per 1 Unit	Q'	5.0 m3/s
Number of Channel per 1 Unit	n1	64 channel(s)
Flow Rate per 1 Channel	Qi	0.078 m3/s

Q1=Q'/n1

Calculation

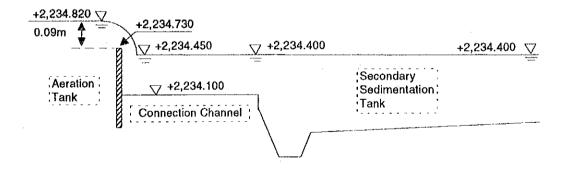
alculation			
Width of V-notch Weir	Bw	0.125	m
Required Length of Trough per 1 Channel	Lt	125	m
Weir Over Flow Loading	Wi	54	m3/m
Number of V-notch Weir per 1 Channel	Nn	1,000	
Flow Rate through 1 V-notch Weir	Qw	0.000078	m3/s
Head over V-notch Weir Crest	h	0.02	m
h=(Q/1.42)^(2/5)			
Allowance of Height of V-notch Weir	ha	0.03	m
Water Surface Elevation of Final			
Sedimentation Tank	+	2,234,400	m

4) Connection Channel between Aeration Tank and Secondary Sedimentation Tank

Calculation Condition

Allowance of Head Loss between		
Connection Channel and Aeration Tank	ha	0.050 m
Invert Elevation of Connection Channel	+	2,234.100 m
Water Surface Elevation of Upstream of		
Connection Channel	+	2,234.450 m

5) Weir of Aeration Tank

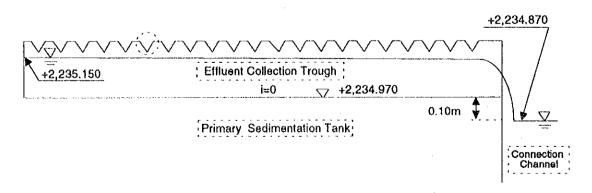

Calculation Condition

Flow Rate per	1 Unit	Q'	5.0 m3/s
Return Sludge	Ratio	Rs	10 %
Flow Rate	$Q1=Q' \times (1 + Rs/100)$	Q1	5.50 m3/s
Number of Ch	annel per 1 Basin	n1	2 channel(s)
Number of Ba	sin per I Unit	n2	16 basin(s)
Number of Ch	annel per 1 Unit	n3	32 channel(s)
Design Flow F	late per 1 Channel	Q	0.172 m3/s
-	0.00.0		

Q=Q7n3

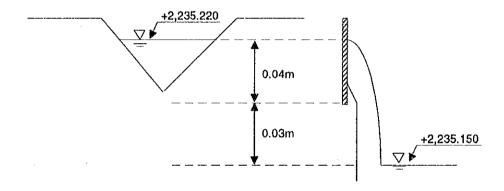
Calculation

Width of Weir	В	4.0 m
Type of Weir		Rectangular
Head over the Weir Crest	hc	0.082 m
$hc=(Q/1.84/B)^{2/3}$	=	0.090 m
Allowance of Weir Height		0.280 m
Elevation of Weir of Aeration Tank		2,234.730 m
Water Surface Elevation of Upstream of		
Weir of Aeration Tank	4	2,234,820 m


6) Connection Channel between Aeration Tank and Primary Sedimentation Tank

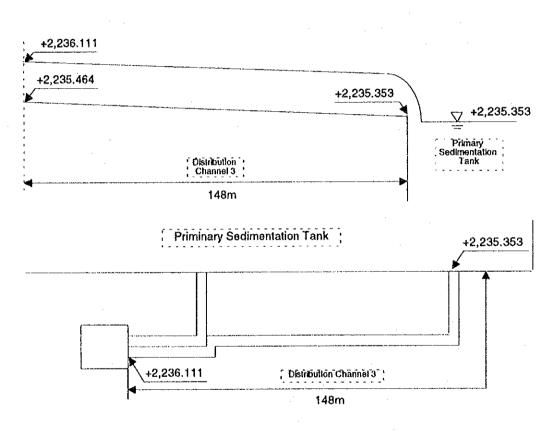
Calculation Condition

Allowance of Head Loss between Acration		
Tank and Primary sedimentation Tank	ha	0.050 m
Invert Elevation of Connection Channel	+	in
Water Surface Elevation of Upstream of		* 1 + 1 +
Connection Channel	+	2,234.870 m


7) Effluent Collection Trough of Primary Sedimentation Tank

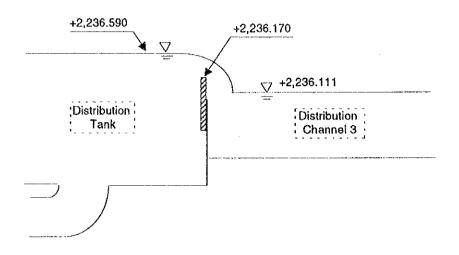
< Effluent Collection Trough >		
Calculation Condition		
Flow Rate per 1 Unit	\mathbf{Q}^{r}	5.0 m3/s
Number of Channel per I Unit	n1	64
Number of Trough per 1 Channel	n2	2
Flow Rate per 1 Trough	Q	0.039 m3/s
$Q=Q'/(n1 \times n2)$		
Width of Trough	\mathbf{B}_{\cdot}	0.4 m
Invert Gradient	i	0.00
Water Surface Elevation of Upstream of		
Aeration Tank	+	0.172 m
Calculation		
Critical Depth	hc	0.099 m
hc=(1 x Q^2/9.8/B^2)^(1/3)		
Water Depth of Upstream of Effluent		
Collection Trough	ho	0.18 m
$ho=(3 \times hc^2)^{(1/2)}$		
Alllowance between Invert Elevation of		
Effluent Collection Trough and		
Connection Channel	4.	0.100 m
Invert Elevation of Effluent Collection		
Trough	+	2,234.970 m
Water Surface Elevation of Upstream of		
Effluent Collection Trough	+	2,235.150 m
_		

< V-notch Weir >


Calculation Condition			
Flow Rate per 1 Unit	Q'	5.0 m3/d	
Number of Channel per 1 Unit	n1	64 channel(s	i)
Flow Rate per 1 Channel	Q1	0.078 m3/s	
Q1=Q'/n1			
Calculation			
Width of V-notch Weir	Bw	0,125 m	
Required Length of Trough per 1 Channel	Lı	13.5 m	
Number of V-notch Weir per 1 Channel	Nn	108	
Flow Rate through 1 V-notch Weir	Qw	0.000361 m3/s	
Head over V-notch Weir Crest	h	0.04 m	
$h=(Q/1.42)^{(2/5)}$			
Allowance of Height of V-notch Weir	ha	0.03 m	
Water Surface Elevation of Primary			
Sedimentation Tank	+	2,235,220 m	

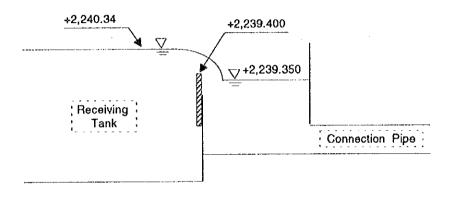
8) Distribution Channel

< Distribution Channel 3 >		
Calculation Condition		
Flow Rate per 1 Unit	Q'	5.0 m3/s
Number of Distribution Channel 3	n3	4
Flow Rate per 1 Distribution Channel 3	Q3	1.250 m3/s
Q3=Q'/n′	3	
Width of Distribution Channel 3	В3	2.5 m
Length of Distribution Channel 3	L3	148 m
Channel Slope	i3	0.75 %
Allowance of Head Loss between		
Primary Sedimentation Tank and		
Distribution Channel	ha	0.050 m
Allowance between of Water Surface		
Elevation of Primary Sedimentation		
Tank and Invert Elevation of		
Downstream of Distribution Channel 3	+	0.100 m
Invert Elevation of Downstream of		•
Distribution Channel 3	+	2,235.353 m


Calculation			
Water Depth in Inlet Ch	Water Depth in Inlet Channel 2		0.481 m
Cross-sectional Area of	Distribution.		
Channel 3		A3	1.202 m2
Wetted Perimeter	P3=B3+2xH3	P3	3.461 m
Hydraulic Radius	R3=A3/P3	R3	0.347 m
Velocity in Channel 3	•	v3	1.040 m/s
v3=1/n*(F	(1/2))*(i3^(1/2))		
(Flow Rate in Channel :	3	Q3	1.250 m3/s)
Head loss in Bend		hi3	0.166 m
hi3=1.0 x (v3^	2)/2/9.8 x 3 places		
Invert Elevation of Upst	ream of		
Distribution Channel 3	e +	+	2,235.464 m
Water Surface Elevation	of Upstream of		
Distribution Channel 3		+	2,236.111 m

8) Distribution Tank

Calculation Condition		
Flow Rate	Q'	5.0 m3/s
Number of Weir of Distribution Tank	nl	4
Flow Rate per 1 Weir	Q	1.250 m3/s
Q=Q'/n1		
Width of Weir	B1	2.5 m
Calculation		
Head over Weir Crest	h	0.417 m


h=(Q/1.86/B)^(2/3)	=	0.420
Allowance of Weir Height	ha	0.050 m
Elevation of Weir of Distribution Tank	+	2,236.170 m
Water Surface Elevation of Distribution		
Tank	+	2,236.590 m

8) Receiving Tank

< Connection Pipe between	en Distribution Tank and	l Receiv	ing Tank >
Calculation Condition			
Flow Rate per 1 Un	it	Q'	5.0 m3/s
Diameter of Connec	ction Pipe from		
Receiving Tank to I	Distribution TAnk	Đ	2.0 m
Pipe Length		L	2,140 m
Calculation			
Cross-sectional Are	a of Pipe	Α	3.14 m
Velocity	v=Q'/A	v	1.592 m/s
Hydraulic Radius	R=D/4	R	0.5 m
Surface Roughness	Coefficient	Ch	110
Friction Head in Pig	e	hl	2.564 m
hl=10.666 x Ch^(-1	.85) x D^(-4.87) x Q^1.	85 x L	
Enterance Loss	he=0.5 x v^2/2/9.8	he	0.065 m
Exit Loss	ho=1.0 x v^2/2/9.8	ho	0.129 m
Total Head Loss of	Connection Pipe		
between Distributio	n Tank and		
Receiving Tank		ht	2.758 m
		==	2.760
Water Surface Elev	ation of Distribution		
Tank		+	2,239.350 m
< Receiving Tank >			
Calculation Condition			
Flow Rate		Q'	40.0 m3/s
Number of Weir		n I	8 weir(s)
Design Flow Rate p	er 1 Channel	Q	5.0 m3/s
· ·	Q=Q'/n1		

Calculation		
Width of Weir	В	3.0 m
Type of Weir		Rectangular
Head over the Weir Crest	hc	0.936 m
$hc = (Q/1.84/B)^{2/3}$	==	0.940 m
Allowance of Weir Height		0.050 m
Elevation of Weir Crest	+	2,239.400 m
Water Surface Elevation of Upwnstream of		
Weir	+	2,240.340 m

BILL OF QUANTITIES

DECEMBER 1994

JAPAN INTERNATIONAL COOPERATION AGENCY

Item	Equ	ation		Quantity	Remarks
1. Westewater Treatmen	nt	فالذاف فالذمار والفائد الرحاة السالة السياد فالتنافظ فاسترقاق المرجد بزير في ويتلى		, , , , , , , , , , , , , , , , , , ,	
1-1 Receiving Tank					
1) Cast-in-place Concr	cte Pile				
	\emptyset 800, $\ell = 24.6 \mathrm{m}$			26 piles	
	\emptyset 800, $\ell = 29.4 \mathrm{m}$			35 piles	
2) Earth Work			1		
(1) Excavation					
	4.8 x 4.8 x 11.0 x 2	Ξ	507		
	6.4 x 33.6 x 4.8		1,032		•
	23.6 x 33.6 x 1.3	1000 1000	1,031		
			2,570	Î	
	$1/2 \times (1.0+7.1) \times 6.1 = 19.44$	1 m2			
	$19.44 \times (6.4+6.4+33.6) = 90$			902 m3	
	1/2 x (1.0+5.8) x 4.8 x 33.6			548 m3	
	1/2 x (1.013.0) h 1.0 h 33.0	- 5 10.552		2 (0	
	$1/2 \times (1.0+5.8) \times 4.8 = 13.92$	2 m2			
	13.92 x (11.0 x 4 + 4.8 x 2)			746 m3	
	19.44 x 4.8 x 2 = 186.624			187 m3	
	$1/2 \times (0.5+1.8) \times 1.3 = 1.495$	i m2			
	1.495 x (33.6 - 2 x 4.8 + 17.5	$2 \times 2 = 34.164$		87 m3	
			Total	5,040 m3	
(2) Back Filling					
	5.040 - 2,570 = 2,470			2,470 m3	
(2) (2) (1) (2) (1)				5.040 m2	
(3) Surplus Soil				5,040 m3	
3) Concrete Work (^O c	 - 250 ka/cm2\				
wall	$\begin{vmatrix} 5.0 \times 0.6 \times 12.0 \times 7 = 252 \end{vmatrix}$			252 m3	
bottom	$23.6 \times 33.6 \times 1.0 = 792.96$			793 m3	
wali	$(7.4 \times 33.6 - 5.0 \times 32.2) \times 4.$	8 = 420.672		421 m3	
wali	(33.6x 23.6 - 32 x 21.5) x 7.			756 m3	
		•	Total	2,222 m3	
·					
4) Form of Concrete W	/ork (σ ck = 250 kg/cm2)				
inside	2 x (3.4 + 5.0) x 12.0 x 6	=	1,209.600		
inside	2 x (15.4 +16.2 + 16.5 x 2) x	7.2 =	930.240		
inside	2 x (3.8 + 5.0) x 12.0 x 2	=	422.400		
outside	2 x (13.0 + 33.6 + 7.2 x 23.6) =	1,213.440		
outside	2 x 6.4 x 4.8	=	61.440		
		Total	3,837.120		

Item	Equation		Quantity	Remarks
	3,837.12 x 1.1 = 4,220.832	٠. :	4,221 m2	
5) Reinforced Bar	0.000 0.11 0.000			
:	$2,222 \times 0.1 \text{ t/m}3 = 222$		222 t	
6) Lean Concrete (σ ck	= 100 kg/cm2)			
	33.8 x 23.8 x 0.1 = 80.444		80 m3	
7) Form of Lean Concre				
	$2 \times (7.4 + 33.8) \times 0.1 = 8.240$		8 m2	
	$(2 \times 15.0 + 33.8) \times 0.1 = 6.380$	Total	6 m2	4
		Total	14 m2	
8) Cobble Stone				
	33.8 x 23.8 x 0.2 = 160.888		161 m3	
			-	
9) Concrete Work (5 ck				
	$4.8 \times 4.8 \times 11.0 \times 2 = 506.880$		507 m3	
	$-\pi/4 \times 3.6^2 \times 12.5 \times 2 = -254.469$		-254 m3	
		Total	253 m3	
10) Form of Concrete W	l ork (σck = 160 kg/cm2)			
	$2 \times (11.0 + 4.8) \times 4.8 \times 2 = 303.360$		303 m2	
	$-\pi/4 \times 3.6^2 \times 2 = -81.430$		-81 m2	
		Total	222 m2	
11) Pipe				
	inlet Ø 3,600		25 m	
	Connecting pipe Ø 2,000			
	ℓ = 1.5 with Blind Flange		6 pieces	
12) Accessory Work				
			1 ls	
1-2 Connecting Pipe				
	Total laying length		1,040 m	
1) Earth Work				
(1) Excavation	1/2 × (4 2 ± 9 4) × 5 2 × 1 040 24 274 4		26 774 2	
	$1/2 \times (4.2 + 9.4) \times 5.2 \times 1,040 = 36,774.4$	[36,774 m3	İ

Item	Equation	Quantity	Remarks
(2) Surplus Soil			
	·	36,774 m3	
(3) Back Filling	2		
	$3.4 \times 1.1 + \pi/4 \times 2.8 \stackrel{?}{=} 9.897 \text{ m}2$		
	36,774 - 9.897 x 1,040 =26,481	26,481 m3	
2) Cabble Ctons			
2) Cobble Stone	3.4 x 0.2 x 1,040 = 707.2	707 m3	
3) Lean Concrete (σ cl	·	707 113	
3) Double Controlle (O Ci	3.4 x 0.1 x 1,040 = 353.6	354 m3	
•		35	
4) Form of Lean Concre	ete (O ck = 100 kg/cm2)		
	$0.2 \times 1,040 = 208$	208 m3	
5) Concrete Work (O cl	c = 210 kg/cm2)		
	$3.4 \times 0.8 \times 1,040 = 2,828.8$	2,829 m3	·
6) Form of Concrete We	ork (σ ck = 210 kg/cm2)		
	$0.8 \times 2 \times 1040 = 1664$	1,664 m2	
8) nu			
7) Pile	Ø 600, ℓ = 25.5 m	200 11	
	1,040 / 5.0 = 208	208 piles	
8) Steel Pipe			
o) stort the	Ø 2,800	1,040 m	
	D 2,000	1,040 III	
1-3 Distribution Tank	(per 1 unit)		
1) Cast-in-place Concre			
	Ø 600, $\ell = 23.8 \text{ m}$	3 piles	
·	Ø 600, $\ell = 27.5 \text{ m}$	17 piles	
2) Earth Work			
(1) Excavation			
	$5.0 \times 9.0 \times 3.7 = 166.500$	167 m3	
	13.2 x 13.2 x 3.1 = 540.144	540 m3	
	$1/2 \times (0.5 + 3.6) \times 3.1 \times 12.2 \times 4 = 310$	310 m3	
	Tol	al 1,017 m3	
(2) Committee C-21			
(2) Surplus Soil		10172	İ
		1,017 m3	

Item	Equation	Quantity	Remarks
(3) Back Filling			
	$4.0 \times 8.5 \times 3.7 = 126$		
	$12.2 \times 12.2 \times 3.1 = 461$		
	1017 - (126 + 461) = 430	430 m3	
3) Concrete Work (O	 ck = 250 kg/cm2)		
bottom	$12.2^{2} \times 0.8 = 119$		
wall	$(12.2^2 - 11.2^2) \times 5.0 = 117$		
	$(119 + 117) \times 1.1 = 259.6$	260 m3	
4) Form of Concrete V	 Vork (σck = 250 kg/cm2)		
outside	$12.2 \times 5.8 \times 4 = 283.040$		
inside	$11.2 \times 4.8 \times 4 = 215.040$		
motov .	$(283.040 + 215.040) \times 1.1 = 547.888$	548 m2	
5) Reinforced Bar			
J) Reminica Da	260 x 0.1 t/m3 = 26	26 t	
Y	200 x 0.1 y 1113 - 20		
6) Concrete Work (O	ck = 160 kg/cm2)		
	$4.0 \times 3.7 \times 8.5 = 125.800$		
	$-\pi/4 \times 2.8^2 \times 7.9 = -48.644$		
		77 m3	
7) Form of Concrete V	Vork (ock = 160 kg/cm2)		
7) Fullit of Conciete 4	$2 \times (4.0 + 8.5) \times 3.7 = 92.500$		
	$-\pi/4 \times 2.8^2 = -6.158$		
	- 1/4 X 2.0 0.130	86 m2	
		00 1112	
8) Lean Concrete (O			
	$12.4^{2} \times 0.1 = 15.376$	15 m3	
9) Form of Lean Conc	$crete (\sigma ck = 100 \text{ kg/cm2})$		
	4 x 12.4 x 0.1 = 4.960	5 m2	
10) Cobble Stone			
	12.4 x 12.4 x 0.2 = 30.752	31 m3	
11) Accessory Work			
,,		1 ls	

Item	Equal	tion		Quantity	Remarks
1-4 Influent Channel (p	er 1 unit)				
	width = 2.5m				
	93.2 x 3 - 11.2	**	268.400		
	93.2 - 11.2	==	82.000		
	50 x 4	<u>=</u> :	200.000	•	
			550.400		
•	width = 2.0m				
	56 x 4	5	224	g.	
1) Concrete Work (σ ck	= 250 kg/cm2)				
w = 2.5m	$0.4 \times 5.9 \times 43 \times 2 = 202.960$			203 m3	
w = 2.5m	$0.3 \times 1.95 \times 3 \times 43 \times 2 = 150.9$	930		151 m3	
w = 2.5m	$0.4 \times 3.1 \times 464.4 = 575.856$			576 m3	
w = 2.5m	$0.3 \times 1.95 \times 2 \times 464.4 = 543.3$	48		543 m3	
w = 2.0m	$0.4 \times 2.6 \times 224 = 232.960$			233 m3	
w = 2.0m	$0.3 \times 1.5 \times 2 \times 224 = 201.600$			202 m3	
			Total	1,908 m3	
2) Form of Concrete Wor	1				
w=2.5m inside	1.95 x 86 x 4 = 670.800			671 m2	
w=2.5m inside	$1.95 \times 464.4 \times 2 = 1.811.160$			1,811 m2	
w=2.5m outside	$2.35 \times (93.2 \times 3 - 11.2) \times 2 = 1$,261.480		1,261 m2	
w=2.5m outside	$2.35 \times 50 \times 2 \times 4 = 840.000$			940 m2	
w=2.0m inside	$1.5 \times 2 \times 224 = 672.000$			672 m2	
w=2.0m inside	$1.9 \times 2 \times 224 = 851.000$			851 m2	
			Total	6,207 m2	
3) Reinforced Bar					
3) Rossioicou Bai	$1,908 \times 0.1 \text{ t/m}3 = 190.800$			191 t	
	1,500 x 0.1 4m5 - 150.000			1,71 t	
4) Lean Concrete (σ ck =	= 100 kg/cm2)				
	t = 5 cm				
w = 2.5m	$5.9 \times 43 \times 2 \times 0.05 = 25.370$			25 m3	
w = 2.5m	$3.1 \times 464.4 \times 0.05 = 71.982$			72 m3	
w = 2.0m	$2.6 \times 224.0 \times 0.1 = 58.240$			58 m3	
			Total	155 m3	
	(= 1, 100)				
5) Form of Lean Concrete	1				
	$43 \times 2 \times 0.05 \times 2 = 8.600$			9 m2	
	464.4 x 2 x 0.05 x 2 = 92.880			93 m2	
	$224.0 \times 2 \times 0.05 = 22.400$			22 m2	
			Total	124 m2	

Item	Equation			Quantity	Remarks
6) Cobble Stone	t = 10 cm				
	$156 \times 2 = 312$			312 m3	
7) Cast-in-place Concre			,		
	\emptyset 600, $\ell = 30 \text{ m}$			88 piles	
	32 + 56 = 88			oo hiics	
5. Wastewater Treatmen	t Facility (per 1 unit)				
1) Aeration Tank					
•	(Ock = 250 kg/cm2)				
wall	(36.4 - 28.92) x 372.8 x 0.6 x 2	=	3,346		
bottom	(89.6 + 6.6) x 372.8 x 1.0	=	35,863		
	(35.8 - 28.92) x 89.6 x 0.5 x 37	=	11,404		
	6.6 x 0.3 x 372.8 x 2	=	1,476		
	10.3 x 6.1 x 0.3 x 3 x 32	=	1,810		
			52,089		
	52,089 x 1.1 = 57,298			57,298 m3	
(2) Reinforced Bar					
(2) Keimotea da	57,298x 0.1 t/m3 = 5,730			5,730 ι	
(3) Form of Concret	 ne Work (Ock = 250 kg/cm2)				
inside	6.6 x 372.8 x 2	=	4,921		
wall inside	5.6 x 372.8 x 3	==	6,263		
wall	(35.8-28.92) x 89.6 x 37 x 2	=	45,617		
	89.6 x 6.6 x 4	=	2,365		
wall	6.1 x 10.3 x 3 x 2 x 32	=	12,063		
wall outside	8.2 x 372.8	==	3,057		
			74,287		
	74,287 x 1.2 = 89,144			89,144 m2	
(A) I can Comment	(o ck = 100 kg/cm2)				
(4) Lean Concrete	$372.8 \times (89.6 + 6.6) \times 0.1 = 3,586$			3,586 m3	
	372.8 x (69.0 ± 0.0) x 0.1 = 3,300		ii	3,500 113	
(5) Form of Long C	oncrete (σ ck = 100 kg/cm2)				
(5) rom of Lean C	$0.1 \times (96.2 \times 2 + 372.8) = 56.520$			57 m2	
	$0.1 \times (90.2 \times 2 + 912.8) = 30.320$			JI IRE	
(6) Cobble Stone					
	$3,586 \times 2 = 7,172$			7,172 m3	

Item	Equation			Quantity	Remarks
(7) Cost-in-place C	oncrete Pile	***************************************			
	$\ell = 23.5 \mathrm{m}$				
	$33 \times 103 = 3,399$			3,399 piles	
(8) Accessory World	k				
				1 ls	
2) Secondary Sediment					
• •	$(\sigma ck = 250 \text{ kg/cm2})$				
bottom	$(3.4 + 54.6 + 7.6) \times 372.8 \times 0.8$	<u>=</u>	19,565		
	8.5 x 372.8 x 0.6 x 2	=	3,803		
	7.6 x 372.8 x 0.4 x 2	· =	2,267		
	4.0 x 372.8 x 0.4 x 2	=	1,193		
effluent channe	<u>'</u>	=	380		
	0.4 x 4.2 x 54.6 x 69	=	6,329		
	54.6 x 6.8 x 0.4 x 4	=	594		
			34,131		
				}	
	34,131 x 1.1 = 37,544		i	37,544 m3	
(A) D ' C + D				ļ	
(2) Reinforced Bar					
	$37,544 \times 0.1 = 3,754$			3,754 t	
(3) Form of Concret	le Work (σck = 250 kg/cm2)				
wall	8.5 x 372.8 x 4	=	12,675	:	
slab	7.6 x 372.8 x 2	=	5,667		
slab	$(7.0 + 3.4) \times 372.8$	==	3,877		
wall	4.0 x 372.8 x 4	=			
wali	4.2 x 54.6 x 2 x 69	=	5,965 31,646		
slab	6.0 x 54.6 x 4	-	1,310		
	דא אודע א טוס		61,140		
			01,140		
	61,140 x 1.2 = 73,368			73,368 m2	
				, 5,500 ma	
(4) Lean Concrete (5 ck = 100 kg/cm2)				
·	$(7.6 + 54.6 + 3.4) \times 372.8 \times 0.1 = 2$,445.568		2,446 m3	
(5) Form of Lean Co	oncrete (σ ck = 100 kg/cm2)				
	$2 \times (372.8 + 65.6) \times 0.1 = 87.680$			88 m2	
			ı		
(6) Cobble Stone				1	

Item	Equation	Quantity	Remarks
(7) Cost-in-Place Co	oncrete Pile		
	Ø 600, $\ell = 23.3 \text{m}$ 372.8 / 5.4 = 69		
	$69 \times 3 = 207$	207 piles	
•	Ø 600, l= 25.5 m		
	$69 \times 26 = 1,794$	1,794 piles	
(8) Accessory Work			
(0) 11010100, 11010		1 ls	
6. Discharge Channel			
1) Cast-in -place Concre	ete Pile		
	1 pile / 2.9 m x 476 = 164		
	1 pile $/1.6 \text{ m x } 70\text{m} = 44$		
	1 pile / 1.6m x 300m = 188		
	3 piles / 2 m x $70 = 105$		
	To	otal 501 piles	
2) Earth Work	·		
(1) Excavation	$1/2 \times (4.8 + 10) \times 5.7 \times 476 = 20,078$		
	$1/2 \times (6.4 + 12.8) \times 6.3 \times 70 = 4,234$		
	$1/2 \times (8.4 + 14.8) \times 6.4 \times 300 = 22,272$		
	$1/2 \times (10.2 + 17.7) \times 8.0 \times 70 = 7,812$		
	To	otal 54,396 m3	
(2) Back Filling	20,078 - 3.8 x 5.7 x 476 = 9,768		
	4,234 - 5.4 x 6.3 x 70 = 1,853		
	$22,272 - 7.4 \times 8.0 \times 300 = 4,512$		
	$7,812 - 9.2 \times 3.9 \times 70 = 5,300$	01.4202	
	16	otal 21,432 m3	·
(3) Surplus Soil		54,396 m3	
3) Concrete Work (σ ck	 		
, , , , , , , , , , , , , , , , , , , ,	$3.8 \times 0.4 \times 476 = 724$		
	$5.2 \times 0.4 \times 476 \times 2 = 1,980$		
	$5.4 \times 0.4 \times 70 = 151$		
	$5.8 \times 0.4 \times 70 \times 2 = 324$. 446	
	$7.4 \times 0.4 \times 300 = 888$		
	$5.9 \times 0.4 \times 300 \times 2 = 1,416$	· ·	
	9.2 x 0.4 x 2 x 70 = 515		
	$3.0 \times 0.4 \times 3 \times 70 = 252$		•
		otal 6,250 m3	

Item	Equati	ion	Quantity	Remarks
4) Form of Concrete V	Vork (Ock = 250 kg/cm2)			
	$5.6 \times 476 \times 2 = 5{,}331$			
	$5.2 \times 476 \times 2 = 4,950$			
	$6.3 \times 70 \times 2 = 882$			
	$5.8 \times 70 \times 2 = 812$			
	$6.4 \times 70 \times 2 = 896$			
	$5.9 \times 70 \times 2 = 826$			
	$3.8 \times 70 \times 2 = 532$			
	$3.0 \times 70 \times 4 = 840$			
	$4.0 \times 70 \times 2 = 560$			
		Tota	1 15,629 m2	
5) Reinforced Bar				
	0.1 x 2704 = 270			
•	$0.1 \times 476 = 48$			
	$0.1 \times 2,304 = 230$			
	$0.1 \times 767.2 = 77$			
		Total	625 t	
6) Supporting Work	$4.0 \times 3.0 \times 7.0 \times 2 = 1,680$		1,680 m3	
7) Lean Concrete (σ c	! k = 100 kg/cm2)			
	$3.8 \times 0.1 \times 476 = 181$			
	$5.4 \times 0.1 \times 70 = 38$			
	$7.4 \times 0.1 \times 300 = 222$			
	$9.2 \times 0.1 \times 70 = 64.4$			
		Total	505 m3	
8) Form of Lean Concre	 ete (σ ck = 100 kg/cm2)			
•	$0.1 \times 476 = 48$			
	$0.1 \times 70 = 7$			
	$0.1 \times 300 = 30$			
	$0.1 \times 70 = 7$			
		Total	92 m2	
7. Digestion Tank (per 1	tank)	· · · · · · · · · · · · · · · · · · ·		
1) Concrete Work (O cl				
	$\pi/4 \times 29^2 \times 1.0$	= 661		
	1/2 x 1.5 x 5.0 x π x 27	= 318		
	$\pi/4 \times (27^2 - 26^2) \times 11.0$	= 458		
	$\pi/4 \times 26^2 \times 0.4$	= 212		
		1,649		
	$1,649 \times 1.3 = 2,144$	-	2,144 m3	

Item	Equation	Quantity	Remarks	
2) Cost in whose Conserve	a Dila			
2) Cast-in-place Concret	\varnothing 800, ℓ = 23 m		90 piles	
3) Form of Concrete Wo	rk (O ck=250 kg/cm2)			
	$\pi \times 29 \times 1.5$ $\pi \times (26.0 + 27.0) \times 11.0$ $\pi/4 \times 26^{2}$	= 136.659 = 1,831.549 = 530.929 2,499.137		
	2,499.137 x 1.05 = 2,624.094		2,624 m2	
4) Reinforced Bar	2,144 x 0.12 t/m3 = 257		257 t	,
5) Supporting Work	$\pi/4 \times 29.0^{-2} \times 13.0 = 8,586.758$		8,587 m3	
6) Lean Concrete (♂ ck=	$\frac{100 \text{ kg/cm2}}{\pi/4 \times 29.0^2 \times 0.1 = 66.143}$		66 m3	
7) Form of Lean Concret	e (σ ck=100 kg/cm2) $\pi \times 29.0 \times 0.1 = 9.123$		9 m2	
8) Cobble Stone	$\pi/4 \times 29.0^2 \times 0.2 = 132.286$		132 m3	
9) Pipe Gellary	7.0 x 12.0 = 84.0		84 m2	
10) Accessory Work			l s	
8. Other Work 8-1 Preparatory Work				***************************************
1) Remove of Existing Co	oncrete Structure $280 \times 150 \times 0.2 = 8,400$		8,400 m3	
2) Cutting of Stacked Lin	1/2 x 240 x 150 x 10.0 = 180,000 1/2 x 100 x 100 x 10.0 = 50,000	Total	180,000 m3 50,000 m3 230,000 m3	

Item	Equation	Quantity	Remarks
8-2 Main Earth Work		ayay <u>yangaya magangan gangan adada</u> amakang gamakaba baba baba baba da	
1) Excavation			
(1) Wastewater Treat	ment Facility		
	$(89.6 + 6.6 + 4.5) \times (372.8 + 9.0) = 38,447.26 \text{ m}$		
AT unit 1	$38447.26 \times (34.9 - 27.82) = 272,206.601$	272,207 m3	
AT unit 2	$38447.26 \times (34.5 - 27.82) = 256,827.697$	256,828 m3	
SST PIT	$14.0 \times (372.8 - 6.8 \times 4 + 9.0) = 4,964.4 \text{ m}$		
unit 1	4,964.4 x (34.9 - 25.9) = 44,679.600	44,680 m3]
unit 2	4,964.4 x (34.5 - 25.9) = 42,694.840	42,694 m3	
SST pipe gallery	$(7.6 + 54.6) \times 6.8 \times 4 = 1,691.84 \text{ m}$		
unit 1	$1,691.84 \times (34.9 - 27.82) = 11,978.227$	11,978 m3	
unit 2	$1,691.84 \times (34.5 - 27.82) = 11,301.491$	11,301 m3	
SST	(65.6 - 14.0+3.5) x (372.8-6.8 x 4+7.0) =19,428.260 m2		
unit 1	19,428.26 x (34.9 - 29.7) =10,10276.952	101,027 m3	
unit 2	19,428.26 x (34.5 - 29.7) = 93,255.648	93,256 m3	
	Sub Total	833,971 m3	
(2) Sludge Treatment	Facility		
	$(120 \times 150 - 40 \times 80) \times 7.0 \times 2 = 207,200$	207,200 m3	
pipe gallery	$1/2 \times (7.0+13.0) \times 6.0 \times 220 \times 2 = 26,400$	26,400 m3	
	Sub Total	233,600 m3	
	Total	1,067,571 m3	
2) Back Filling			
Wastewater	$1/2 \times (1.0 + 8.2) \times 7.2 = 33.12 \text{ m}$		
Treatment Facility	33.12 x 2 x (372.8 + 161.9) x 2 = 70,837.056	70,837 m3	
AD	$\pi/4 \times 27^{2} \times 7.0 \times 10 \times 2 = 80,157.737$		
AD	$12.0 \times 13.0 \times 7.0 \times 5 \times 2 = 10,920.000$		
pipe gallery	$10 \times (28.0 \times 3 + 10.0 \times 2) \times 7.0 \times 2 = 14,560.000$		
pipe gallery	$7.0 \times 4.0 \times 180 \times 2 = 10,080.000$		
pipe gallery	$6.0 \times 5.0 \times 220 \times 2 = 13,200.000$		
	128,917.737		
	223,600 - 128,917.737 = 94,682.263	94,682 m3	
	Total	165,519 m3	

BILL OF QUANTITIES (PRICED)

DECEMBER 1994

JAPAN INTERNATIONAL COOPERATION AGENCY

Item	Quantity	Unit Cost	Cost (Mill, N\$)	Remarks
. Wastewater Treatment				
1-1 Receiving Tank				
1) Cast-in-place Concrete Pile				
Ø 800, ℓ= 24.6 m	26 piles	9,388.00	0.244	
Ø 800, ℓ = 29.4 m	35 piles	11,059.60	0.387	
2) Earth Work				
(1) Excavation	5,040 m3	12.04	0.061	
(2) Back Filling	2,470 m3	55.11	0.136	
(3) Surplus Soil	5,040 m3	10.49	0.053	
3) Concrete work (σ ck = 250 kg/cm2)	2,222 m3	440.11	0.978	
4) Form of Concrete work (ock = 250 kg/cm2)	4,221 m2	26.87	0.113	
5) Reinforced Bar	222 t	1,970.00	0.437	
6) Lean Concrete (σ ck = 100 kg/cm2)	80 m3	15.63	0.001	
7) Form of Lean Concrete (ock = 100 kg/cm2)	14 m2	24.11	0.001	
8) Cobble Stone	161 m3	52.56	0.008	
9) Concrete Work (σ ck = 160 kg/cm2)	253 m3	305.92	0.077	
10) Form of Concrete Work (σ ck = 160 kg/cm2)	222 m2	26.89	0.006	
11) Pipe Inlet Ø 3,600	1 ls		0.153	
Connecting Pipe Ø 2,000,	1 <i>l</i> s	_	0.036	
ℓ = 1.5 with Blind Flange				
12) Accessory Work	1 ℓs		0.269	
Sub-Total of 1-1 Receiving Tan	k		2.960	
1-2 Connecting Pipe	•			
1) Earth Work				
(1) Excavation	36,774 m3	15.33	0.564	
(2) Surplus Soil	36,774 m3	10.49	0.386	
(3) Back Filling	26,481 m3	55,11	1.459	
2) Cobble Stone	707 m3	52.56	0.037	
3) Lean Concrete	354 m3	15.63	0.006	
4) Form of Lean Concrete	208 m3	24.11	0.005	
5) Concrete Work (σ ck = 210 kg/cm2)	2,829 m3	321.80	0.910	
6) Form of Concrete Work (σ ck = 210 kg/cm2)	1,664 m3	26.87	0.045	
7) Cast-in-Place Concrete Pile				
Ø 600, ℓ= 25.5 m				
1,040 / 5.0 = 208	208 piles	6,969.20	1.450	
8) Steel Pipe Ø 2,800	1,040 m	5,800,00	6.032	
Sub-Total of 1-2 Connecting Pip			10.894	

Item	Quantity	Unit Cost	Cost (Mill. N\$)	Remarks
1-3 Distribution Tank (per 1 unit)	:			
1) Cast-in place Concrete Pile				
Ø 600, ℓ = 23.8 m	3 piles	10,090.60	0.030	
\emptyset 600, ℓ = 27.5 m	17 piles	8,112.10	0.138	
2) Earth Work				
(1) Excavation	1,017 m3	12.40	0.013	
(2) Surplus Soil	1,017 m3	10.49	0.011	
(3) Backfilling	430 m3	55.11	0.024	
3) Concrete Work (σ ck = 250 kg/cm2)	260 m3	440.11	0.114	
4) Form of Concrete Work (σ ck = 250 kg/cm2)	548 m2	26.87	0.015	
5) Reinforced Bar	26 t	1,970.00	0.051	
6) Concrete Work (G ck = 160 kg/cm2)	77 m3	305.92	0.024	
7) Form of Concrete Work (σ ck = 160 kg/cm2)	86 m2	26.87	0.002	
8) Lean Concrete (σ ck = 100 kg/cm2)	15 m3	15.63	0.001	
9) Form of Lean Concrete (σ ck = 100 kg/cm2)	5 m2	24.11	0.001	•
10) Cobble Stone	31 m3	52.56	0.002	
11) Accessory Work	1 s		0.043	
Sub-Total of 1-3 Distribution Tan	k		0.469	
1-4 Influent Channel (per 1 unit)				
1) Concrete Work (σ ck = 250 kg/cm2)	1,908 m3	440.11	0.840	
2) Form of Concrete Work (σ ck = 250 kg/cm2)	6,207 m2	26.87	0.167	
3) Rainforced Bar	191 t	1,970.00	[
4) Lean Concrete $(\sigma \text{ ck} = 100 \text{ kg/cm}^2) \text{ t} = 5 \text{ cm}$	155 m3	15.63	i t	
5) Form of Lean Concrete (σ ck = 100 kg/cm2)	124 m2	24.11	0.003	
6) Cobble Stone $t = 10 \text{ cm}$	421			
156 x 2 = 312	312 m3	52.56	0.016	
7) Cast-in-place Concrete Pile	JIM III			
· · · · · · · · · · · · · · · · · · ·	88 piles	7,542.10	0.664	
Ø 600, ℓ = 30 m 32 + 56 = 88	oo piics	7,542.10	0.001	
Sub-Total of 1-4 Influent Channel	1	L	2,068	
5. Wastewater Treatment Facility (per 1 unit)				
1) Aeration Tank				
(1) Concrete Work (σ ck = 250 kg/cm ²)	57,298 m3	440.11	25.217	
(2) Reinforced Bar	5,730 t	1,970.00	ł 1	
(2) Remnorced Dail (3) Form of Concrete Work (σ ck = 250 kg/cm ²)	89,144 m2	26.87		
(4) Lean Concrete (σ ck = 100 kg/cm ²)	3,586 m3	15.63	I ì	
(5) Form of Lean Concrete (σ ck = 100 kg/cm2)	5,560 m3	24.11	1	
(6) Cobble Stone	7,172 m3	52.56	1 !	
(7) Cast-in-place Concrete Pile	1,172 HIJ	32.30	""	
(7) Cast-in-place Concrete Pile \emptyset 600, ℓ = 23.5 m	3,399 piles	6,367.40	21.643	
· -	2,377 Paics	0,507.40	21,073	
33 x 103 = 3,399 (8) Accessory Work	ı ls	<u>.</u>	6.098	
(8) Accessory work Sub-Total of 1) Aeration Tar		1	67.075	

Item	Quantity	Unit Cost	Cost (Mill. N\$)	Remarks
2) Secondary Sedimentation Tank				•
(1) Concrete Work (σ ck = 250 kg/cm2)	37,544 m3	440.11	16.523	
(2) Reinforced Bar	3,754 t	1,970.00	7.395	
(3) Form of Concrete (σ ck = 250 kg/cm2)	73,368 m2	26.87	1.971	
(4) Lean Concrete (σ ck = 100 kg/cm2)	2,446 m3	15.63	0.038	
(5) Form of Lean Concrete (σ ck = 100 kg/cm2)	88 m2	24.11	0.002	
(6) Cobble Stone	4,892 m3	52.56	0.257	
(7) Cast-in-place Concrete Pile				
Ø 600, ℓ= 23.3 m	207 piles	6,361.80	1.317	
$372.8 / 5.4 = 69, 69 \times 3 = 207$	_	·		
Ø 600, ℓ= 25.5 m	1,794 piles	6,922.70	12.419	
69 x 26 = 1,794	-			
(8) Accessory Work	1 <i>l</i> s		3.992	
Sub-Total of 2) Secondary Sediment	ation Tank	·	43.914	
Sub-Total of 5. Wastewater Treatmen			110.989	
6. Discharge Channel				
1) Cast-in-place Concrete Pile	501 piles	8,181.70	4.099	
2) Earth Work	•	,		
(1) Excavation	54,396 m3	6.39	0.348	
(2) Backfilling	21,432 m3	55.11	1.181	
(3) Surplus Soil	54,396 m3	10.49	0.571	
3) Concrete Work (σ ck=250 kg/cm2)	6,250 m3	440.11	2.751	
4) Form of Concrete Work (σ ck=250 kg/cm2)	15,629 m2	26.87	0.420	
5) Rainforced Bar	625 t	1,970.00	1.231	
6) Supporting Work	1,680 m3	269.17	0.452	
7) Lean Concrete (σ ck = 100 kg/cm2)	505 m3	15.63	0.008	
8) Form of Lean Concrete (σ ck = 100 kg/cm2)	92 m2	24.11	0.002	
Sub-Total of 6. Discharge Chann	el		11.063	
7. Digestion Tank (per 1 tank)				
1) Concrete Work (G ck=250 kg/cm2)	2,144 m3	440.11	0.944	
2) Cast-in-place Concrete Pile		, , , , ,	9.5	
Ø 800,	90 piles	8,495.90	0.765	,
3) Form of Concrete (σ ck=250 kg/cm2)	2,624 m2	26.87	0.071	
4) Rainforced Bar	257 t	1,970.00	0.506	
5) Supporting Work	8,587 m3	269.17	2.311	
6) Lean Concrete (σ ck=100 kg/cm2)	66 m3	15.63	0.001	
7) Form of Lean Concrete (o ck=100 kg/cm2)	9 m2	24.11	0.001	
8) Cobble Stone	132 m3	52.56	0.007	
9) Pipe Gellary	84 m2	2,000.00	0.168	
10) Accessory Work	1 s		0.955	
Sub-Total of 7. Digestion Tank			5.729	

Item	Quantity	Unit Cost	Cost (Mill. N\$)	Remarks	
8. Other Work					
8-1 Preparatory Work			2 200		
1) Remove of Existing Concrete Structure	8,400 m3	46.22	0.388		
2) Cutting of Stacked Lime	230,000 m3	12.90	2,967		
	Sub-Total of 8-1 Preparatory Work				
8-2 Main Earth Work		:	:		
1) Excavation	1,067,571 m3	3.59	3.833		
2) Back Filling	165,519 m3	55.11	9.122		
Sub-Total of 8-2 Main Ear	12.955				

Table Break-down of Construction Cost for Electrical Work

(Unit : Million N\$)

						(Unit: Mil	Hon rep	
	Urgent Pi	oject (1st S	tage)	2nd~4th Stage				
Description	Quantity	Unit Cost	Const. Cost	Quantity	Unit Cost	Const. Cost	Total	
1) Wastewater Treatment								
(1) Extra-high Tension	l ls.	-	5.2	- ,	-		5.2	
(2) Power Board	1 ls.	-	9.6	1 ls.	-	26.4	36.0	
(3) Blower House	2 unit	5.15	10.3	6 unit	5.15	30.9	41.2	
(4) Secondary Sed. Tank	2 unit	5.15	10.3	6 unit	5.15	30.9	41.2	
(5) Disinfection & Treated Wastewater Supply	2 unit	2.38	4.8	6 unit	2.38	14.3	19.1	
Sub-Total		-	40.2			102.5	142.7	
2) Sludge								
(1) Centrifugal Thickener House	2 unit	9.51	19.0	2 unit	9.51	19.0	38.0	
(2) Gravity Thickener	- unit	-	-	4 unit	2.03	8.1	8.1	
(3) Anaerobic Digester	2 unit	4.19	8.4	2 unit	4.19	8.4	16.8	
(4) Mechanical Dewatering	2 unit	8.90	17.8	2 unit	8.90	17.8	35.6	
(5) Generator House	2 unit	7.10	14.2	2 unit	7.10	14.2	28.4	
(6) Others	2 unit	3.57	7.1	2 unit	3.57	7.1	14.2	
Sub-Total			66.5			74.6	141.1	

WASTEWATER AND SLUDGE TREATMENT SYSTEM PROPOSED BY CNA

DECEMBER 1994

JAPAN INTERNATIONAL COOPERATION AGENCY

Wastewater and Sludge Treatment System Propoed by CNA

Wastewater and Sludge Treatment System

Treatment efficiency in terms of BOD₅ removal efficiency and SS removal efficiency of the wastewater treatment system, consisting of primary sedimentation with coagulation and filtration, has been analyzed. The flow diagram of the treatment system is shown in Fig. S.1.

Usually filtration is employed as one of the tertiary treatment unit after secondary treatment process. And no data has been reported related to the treatment system employing primary sedimentation with coagulation followed by sand filter or multimedia filter.

Generally, Soluble BOD₅ can not be removed by physical and chemical treatment processes. Only Non Filtrate BOD₅ (due to suspended solids) can be removed by physical and chemical treatment processes such as sedimentation and filtration.

The typical municipal wastewater has 68 % of Non Filtrate BOD₅ and 32% of Soluble BOD₅.

Expected BOD₅ and SS removal efficiency in each step of above mentioned treatment process is described below.

Parameter	Expected efficiency Primary Sedimentation	Total expected removal efficiency (%)		
	with Coagulation	Multi Media Filter	(19)	
BOD ₅	50	15*	57.5	
SS	80	16	83.2	

^{*} Only non filtrate BOD₅ removal is taken into account, as Soluble BOD₅ removal should be avoided for efficient functioning of filter unit.

If this process is adopted for Texcoco wastewater treatment plant, expected treated wastewater quality will be as follows.

Year	Influent Wastewater Quality (mg/l)		Effluent Wastewater Quality (mg/l)		
	BOD ₅	SS	BOD ₅	SS	
1997	220	235	77	9.4	
2015	245	260	86	10.4	

Hence this wastewater system cannot meet the design effluent quality requirements for the Final Project and is not recommended for the Final Project (Year 2015).

However for the reference, this treatment system is designed to meet the design conditions for the year of 1997. Detailed dimensions, of each facility, are shown in Table S.1.

Direct construction cost of this system for treating 35 m³/sec of wastewater is estimated to be N\$ 2,087.5 million and an annual O/M cost is estimated to be N\$ 294.5 million. The break-down of the construction cost and O/M cost is shown in Tables S.2 and Table S.3 respectively.

Table S.1 Basis of Facility Design

Item	Design Criteria	Estimation of Facility Dimension	Configuration
1.Wastewater			
Treatment			
1)Receiving Tank	retention	35m3/s*60*1.5min=3150m3	
	tùne (T)	3150m3*1 ls	48m*16m*5.1m
	T=1.5min	1	10.0 10.0 2.1.0
2)Distribution		5m3/s*60*1.5min≃450m3	
Tank	T≂1.5min	450m3*7unit	16m*8m*3.5m
3)Preaeration	1-1-1444	5m3/s*60*15min=4500m3	Topt, out, 2.3tg
Tank	T=15min	4500m3*7unit	10m*29m*4m*4 basin
4)Mixing Tank	1-104030	5m3/s*60*3min=900m3	10111 - 2 9111 - 4111 - 4 038111
4)MILLING FROM	T≠15min	900m3*7unit	10. 46.420 *41 *
5)Flocculation	1 STOURIE	5m3/s*60*30min=9000m3	12m*6m*3.2m*4 basin
*	T=30min	9000m3*7unit	10 100 11 111
Chamber		300,003,0001	10m*80m*3m*4 basin
6) Primary	Overflow		
Sedimentation	Rate	432000m3/35=12343m2	
Tank	35m3/m2 d	12343m2*7unit	10m*39m*3m*32basin
7)Chlorine	Dosing Rate		
Dosage to Prima-	5mg/l	-	_
ry Effluent			
8)Maltimedium	Filtration		
Filter	Rate	432000m3/120=3600m2	İ
	120m3/m2 d	3600m2*7unit	12m*12m*3.5m*25basin
9)Filtered Water		content : equivalent to backwash	
Reservoir		water of 2 basins	
		144m2*1m3/m2 min*6min*2basins	15m*30m*2m*2basin
		=1728m3 1728m3*7unit	This soul zin zouso.
10)Effluent	Dosing Rate		
Disinfection	2mg/l	-	-
11)Effhent	28/1	(Dia.)	
Conduit		4.0m*2pipes*1.5km	
12)Blower		5m3/s*60*1.3=390m3	100m3/min*110kw*4set
,2,12,13		390m3Anin*7unit	TOOMSAIRIN TIVE 4500
2 Studge			
Treatment			
1)G/f for PRI	Solid Loading	required surface area;(A)	(Dia.)
Sludge	30kg/m2	A=122940/30=4098m2	24m*9lanks
		4098m2*7unit	
2)Mixing Tank for	Mixing Duara-	2460m3/(24*2)=51m3	3m*3m*3.5m*3 basin
Lime Stabilization	tion ; 30min	51m*7unit	
3)Pressure Filter	Solid Loading	required Filter area;(A)	
Press	5kg/m2	A=113310kg/(5*9.6hr)=2361m2	200m2*12set
] -	2361m2*7vait	
4)Backwash		· · · · · · · · · · · · · · · · · · ·	
Water Storage	T=24 hr	3600m2*1m3/m2 min*6min*1time/d	51m*51m*4m*2basin
··		≈21600m3 21600m3*7unit	
5)G/T for	Solid Loading	required surface area;(A)	(Dia.)
Backwash water	30kg/m2	A=26410kg/30=880m2	24m*2tanks
		880m2*7unit	Z-HII ZIGURS
6)Belt Filter	Solid Loading	required Belt Width;(W)	
Press	per Belt Wid-	W=21130kg/(150*9.6hr)=14.7m	+
	th; 150kg/m2 hr	14.7m*7unit	(W)3m/set*5set
7)Sanitary		disposal volume	
Landfill	1	(340+100)m3/d*365=160,600m3/unit	Total of 7 unit
		160600m3*7unit	1,124,200m3/year
	\$		1-, ,,,,

Table S.2 Construction Cost of Wastewater Treatment Plant (35m3/s)

(Unit: Million N\$)

	Civil / Architect			t	Mechanical / Electrical				
Item	Qua	ntity	Unit Cost	Construction Cost	Qua	ntity	Unit Cost	Construction Cost	Construction Cost
1. Wastewater Treatment									
1) Receiving Tank(48m*16m*5.1m)	1	is.	***	3.0	1	ls.		. 0.9	3.9
2) Distribution Tank (V=450m3)	7	Unit	0.500	3.5	7	Unit	0.0	0.0	3.5
3) Preaeration Tank (V=4500m3)	7	Unit	3.825	26.8	7	Unit	0.8	5.6	32.4
4) Mixing Tank (12m*6m*3.2m*4basin)	7	Unit	1.106	7.7	7	Unit	0.8	5.6	13.3
5) Flocculation Chamber (10m*80m*3m*4basin)	7	Unit	8.160	57.1					57.1
6) P/S(10m*80m*3m*4basin)	7	Unit	32.100	224.7	7	Unit	20.8	145.8	370.5
7) Blower (100m3*4set)					7 .	Unit	. 4.4	30.8	30.8
8) Maltimedium Filter(12m*12m*25basin)	7	Unit	26.775	187.4	7	Unit	13.4	93.8	281.2
9) Filtered Water Reservoir (V=1800m3)	7	Unit	1.530	10.7	7	Unit	1.9	13.3	24.0
10) Effluent Disinfection					7	Unit	1.0	7.0	7.0
11) Discharge Channel	1	is.		22.2	1	is.		0.0	22.2
Sub-total				543.1				302.8	845.9
12) Electrical Work					1	īs.		60.6	60.6
Total of 1. Wastewater Treatment				543.1				363.4	906.5
2. Sludge Treatment									
1) Gravity Thickener	7	Unit	28.600	200.2	7	Unit	16.5	115.5	315.7
(s24 m x 11 tanks x 7 units)	·	,	20.000		•				*
2) Belt Filter Press					7	Unit	7.85	55.0	55.0
(width 3.0 m x 5 sets x 7units)						1		1	
3) Pressure Pitter Press	***				7	Unit	61.0	427.0	427.0
(200m2*12set*7unit)	-		5.6.540	115.8	7	11	1.7	110	127.7
4) Backwash Sludge Basin	7	Unit	16.548	115.8	′	Unit	1.7	11.9	141.1
(51m*51m*4m*2basin*7unit)	***			l	7	Unit	0.8	5.6	5.6
5) Mixing for Lime Stabilization (3m*3ni*3.5m*3basin*7unit)					•		0.0		5.0
Sub-total				316.0				615.0	931.0
5) Electrical Work					1	ls.		123.0	123.0
*	***			316.0	•	100		738.0	1,054.0
Total of 2. Sludge Treatment				316.0				/30.0	1,034.0
3. Building						1			
1) Administrative Building (2800m2)	į	Unit	5.600	5.6					5.6
2) Control Building (1800m2)	6	Unit	3.600	21.6					21.6
3) Blower Building (300m2)	7	Unit	0.600	4.2					4.2
4) Sludge Processing Building (3800m2)	7	Unit	7.600	53.2					53.2
Total of 3. Building				84.6					84.6
4. Other Work	1	is.		42.4					42.4
(Access Road and Site Preparation)									
Total Construction Cost of Wastewa	ter Trea	tment Pia	ınt	986.1			The state of the second of the second	1,101.4	2,087.5

Table S.3 Breakdown of Operation & Maintenance Cost (35m3/s)

1. Personnel Expenditure

Item	No. of Employee	Unit Cost (N\$/year)	Personnel Expenditure (Million N\$)
Funployee	590	17,000	10.0

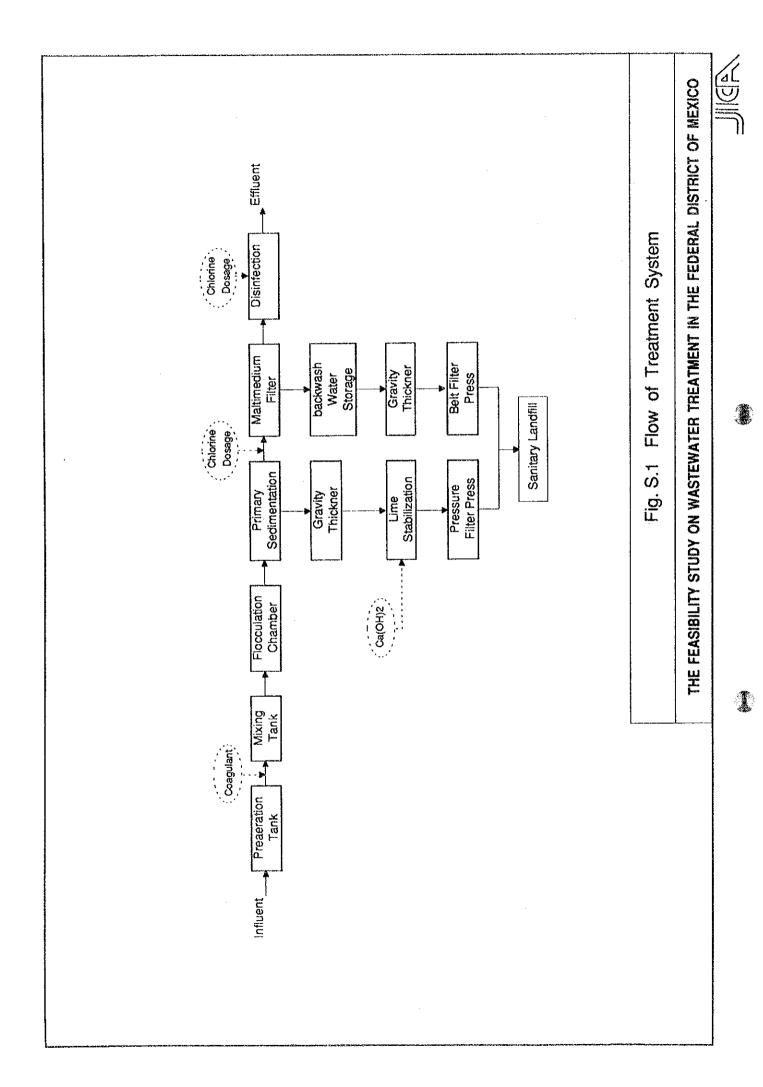
2. Electrical Cost

Item	Estimation	Electrical Cost (Million N\$/year)
Basic Charge	19,000kw * 24N\$/mon. kw * 12mon./year = 5.5Million N\$	
Consumption	407000kwh/d * 365days * 0.14N\$/kwh = 20.8Million N\$	26.3

3. Chemical Cost

Chemical	Quantity (ton/year)	Unit Cost (N\$/ton)	Chemical Cost (Million N\$)
Anionic Polymer	823	30,000	24.7
Ca(OH)2	37,711	190	7.2
Fecl3	55,188	1,540	85.0
Gas (Cl2)	7,726	1,700	13.1
	Total		130

4. Sludge Disposal Cost


Landfill Type	Cake Volume (m3/ycar)	Unit Cost (N\$/m3)	Disposal Cost (Million N\$)	Remarks
Disposal	1,124,200	65		include land aquisition cost (equivalent to
				15N\$/cake volume)

5.Repairing Cost

assume to 5% of Mechanical/Electrical work 1,101.4*0.05 =

55.1

6. Total of Operation & Maintenance cost

