ATTACHMENT 4

WATER HAMMER CALCULATION OF AQUEDUCT PIPELINE

****************CALCULATION FORMULA OF HYDRAULIC LOSSES *************************

1. Friction loss of straight pipe : II1

III is given by the following formula as per WILLIAM MAZEN's formula.

H1 = f x $-\frac{L}{D}$ x $\frac{V**2}{2g}$ Where III = Friction loss (m) L = Pipe length (m) D = Pipe diameter (m) V = Flow velocity (m/sec) g = Gravity acceleration (m/sec**2) f = $\frac{134}{C**1.85}$ x $\frac{1}{D**(1/6)}$ x V**0.15 C = Coefficient indicating pipe inner roughness

2. Taper pipe loss in case of convergent flow : H2

H2 is given by the following formula:

H2 = f x $\frac{V2xV2 - V1xV1}{2g}$ Where H2 = Taper pipe loss (m) V1 = Inlet flow velocity (m/sec) V2 = Outlet flow velocity (m/sec) θ = Convergent angle (deg)

0. 025

3. Taper pipe loss in case of divergent flow : H3

$$113 - f x = \frac{(V1 - V2) **2}{2g}$$

Where

ll3 - Taper pipe loss (m)

V1 - Inlet flow velocity (m/sec)

V2 - Outlet flow velocity (m/sec)

 θ - Divergent angle (deg)

f is given by the following table:

]	θ	(deg)		8		12	1	16	Ī
1	f			0.15	1	0.215	1	0. 307	1

4. Bend pipe loss : H4

H4 is given by the following formula as per WEISBACH's formula:

114 - f	$x \frac{V \times V}{2g}$	
Where		114 - Bend pipe loss (m)
		V - Flow velocity (m/sec)
		D - Bend pipe diameter (mm)
		θ - Bend angle (deg)
		R - Radius of bend pipe cen

.

5. Butterfly valve loss : H5

H5 is given by the following formula:

$$H5 - f \propto \frac{V \times V}{2g}$$

Where
$$H5 - f$$

II5 - Butterfly valve loss (m)
V - Flow velocity (m/sec)
f - 0.18 (Dia. is not less than 1200mm)
f - 0.20 (Dia. is less than 1200mm)

center (mm)

f = (0.131 + 1.847 x ($\frac{\theta}{2R}$) **3.5) x ($\frac{\theta}{90}$) **0.5

6. Stuice valve loss : 116

H6 is given by the following formula: H6 - f x $\frac{\sqrt{x} \sqrt{y}}{2g}$

Where

H6 - Sluice valve loss (m) V - Flow velocity (m/sec) f - 0.05 (In case of full open)

7. Non-return valve loss : H7

H7 is given by the following formula:

H7 - f x $\frac{V \times V}{2g}$ Where H7 = Hon-return value loss (m)V = Flow velocity (m/sec) f = 0.5

8. Inlet loss for hellmouth : 118

HS is given by the following formula:

IIS - f x
$$\frac{V \times V}{2g}$$

Where IIS - Inlet loss for bellmouth (m)
V - Flow velocity (m/sec)
f - 0.2 (Made from casting)
f - 0.4 (Made from steel)

9. Loss of branch and confluence flow : 119

119 is given by the following formula as per CARDEL's formula:

In case of confluence flow

$$\begin{split} II\beta - II\alpha &= f\beta \times \frac{\forall \gamma \times \forall \gamma}{2 \times g} \\ II\gamma - II\alpha &= f\gamma \times \frac{\forall \gamma \times \forall \gamma}{2 \times g} \\ II\gamma - II\beta &= (f\gamma - f\beta) \times \frac{\forall \gamma \times \forall \gamma}{2 \times g} \\ II\gamma - II\beta &= (f\gamma - f\beta) \times \frac{\forall \gamma \times \forall \gamma}{2 \times g} \\ f\beta &= -0.95(1 + q\beta) **2!q\beta \times q\beta \times (1 + 0.42(\frac{\cos\theta}{\phi} - 1) - 0.8(1 - \frac{1}{\phi \times \phi}) + (1 - \phi)(\frac{\cos\theta}{\phi} - 0.38)) \\ f\gamma &= q\beta **2 \times (2.59 + (1.62 - \rho **0.5)(\frac{\cos\theta}{\phi} - 1) - 0.62\phi) + q\beta (1.94 - \phi) - 0.03 \\ \end{split}$$
Where $II\alpha - Pressure head at the upstream of main pipe (m) \\ II\beta - Pressure head at the upstream of branch pipe (m) \\ II\beta - Pressure head at the downstream of main pipe (m) \\ II\gamma - Loss coefficient at \gamma \\ V\gamma - Flow velocity at \gamma (m/sec) \\ \theta - Angle between main and branch pipe \\ \rho - Ratio of radius at branch and main diameter \\ q\beta - Q\beta / Q\gamma (shall be negative value) \\ Q\gamma - Main outlet flow at \beta \\ Q\theta - Preach inlet flow at \beta \\ II\gamma - Pressure head head \\ II\gamma - Pressure head head \\ II\gamma - Pressure head \\ II\gamma - Pressure head$

 $Q\alpha = Q\gamma = Q\beta$

Service :

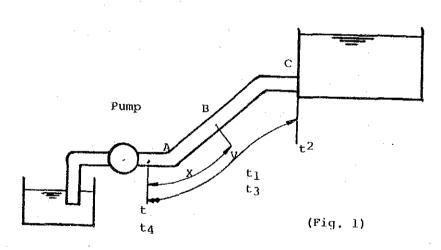
Ite No.	n Description of losses	Flow (m3/sec)	Dia. (mm)	Velocity (m/sec)	f	Loss (m)
0	Screen loss	0.00000	0	0.000	0.0000	0,300
1	Bellmouth	0.30000	400	2.387	0.2000	0.058
2	45 deg Bend	0.30000	400	2.387	0.0994	0.029
3	Straight pipe(William Hazen) Length= 8.00(m) C=110	0.30000	400	2.387	0.0229	0.133
4	Sluice valve	0.30000	400	2.387	0.0500	0.015
5	 Taper pipe(Divergent)	0.30000	 D1= 300 D2= 400	V1= 4.244 V2= 2.387	0.1717	0.030
6	Butterfly valve	0.30000	400	2.387	0.2000	0.058
7	Non-return valve	0.30000	400	2.387	0.5000	0.145
8	Confluence flow at T	0.30000	D1= 400 D2=1100	V1= 2.387 V2= 0.316	46.0531	0.234
9	 Straight pipe(William Hazen) Length= 4.00(m) C=110	0.30000	1100	0.316	0.0262	0.000
10	Confluence flow at T	0.60000	 D1= 400 D2=1100	V1= 2.387 V2= 0.631	0.6869	0.014
	Straight pipe(William Hazen) Length= 4.00(m) C=110	0.60000	1100	0.631	0.0236	0.002
12	Confluence flow at T	0.90000	 D1≕ 400 D2≕1100	 V1= 2.387 V2= 0.947	0.5228	0.024
13	 Straight pipe(William Hazen) Length= 4.00(m) C=110	0.90000	1100	0.947	0.0222	0.004
14	Confluence flow at T	 1.20000	 D1= 400 D2= <u>1</u> 100	V1= 2.387 V2= 1.263	0.4202	0.034
15	 Straight pipe(William Hazen) Length= 15.00(m) C=110	1.20000	1100	1.263	0.0213	0.024
16	Ventury flow meter	 0.00000	 0.	0.000	0.0000	0.200
17	Straight pipe(William Hazen) Length=19450.00(m) C=110	1.20000	1100	1.263	0.0213	30.642
18		0.00000	0	0.000	0.0000	0.200
19	Other loss	0.00000	0	0.000	0.0000	0.800
20	Velocity head	1.20000	1100	1.263	1.0000	0.081
t		Sum of Hyd	draulic lo	sses in met	er	33.028
	· · · · · · · · · · · · · · · · · · ·	Static head	3			85.300
		Total Head				(118.328
	· · · · · · · · · · · · · · · · · · ·	Total Head				120.0

Calculation of Water Hammer by Electronic Computor

We are conducting the calculation of the water hammering phenomenon by use of the electronic computor. This calculation is based on the formulae prepared from the graphic calculation method developed by R.W. Angus, L. Bergeron, Therefore, the explanation of the graphic calculation method makes also clear the electronic computor calculation system for the water hammer.

The most fundamental concept of the graphic calculation method is to assume the water and Pipe as the elastic materials. When the pressure rises, water is compressed and the pipe expands. On the contrary, if the pressure is lowered, the water expands and the pipe is contracted. This phenomenon is relayed from one end of the pipe conduit to the another end of the pipe conduit. This is the propagation of the pressure wave.

According to Newton's motion law and continuation formula, the following formula is obtained.


 $\frac{dv}{dt} = g \frac{dH}{dx} \qquad \frac{dv}{dx} = \frac{g}{a^2} \cdot \frac{dH}{dt}$

When this differential equation is solved, the general equation of the propagation of pressure wave is obtained as to the respective points of the pipe conduit.

HAt - HBt = -a/g (VAt - VAt1)HBt1 - HCt2 = -a/g (VBt1 - VCt2)HCt2 - HBt3 = +a/g (VOt2 - VBt3)HBt3 - HBt4 = +a/g (VBt3 - VAt4)

These formulae form the basis of the graphic calculation system.

The meaning of the respective signs are shown in the drawing at the below. As the pressure wave is propagated, the distance from the pump and the time are changed.

These formulae represent such straight lines as have the gradient of \pm a/g. The graph at the Fig. 2 shows this relation.

3.7 - 95

(3/8)

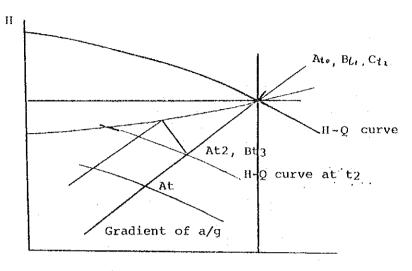


Fig. 2

The change of pressure at A point results in the decline along a/g gradient line. This is assumed that the pressure wave under the constant condition at C point reaches A point at the time t_2 .

On the other hand, A point at t_2 time shows the condition after the input is shut off. The revolution number, therefore, is reduced and H-Q curve is lowered considerably. The crossing point between this straight line and H-Q curve is obtained as At₂ point.

The propagation of the pressure wave : A - B - CThe propagation of the reflective wave: C - B - AThe above propagation is pursued by a/g straight line and the pressure changes at A, B and C points are to be obtained successively.

Since this work is so much complicated and is time-consuming, the numerical formulae are prepared and the calculation is

3.7 - 96

made by the electonic computor.

On opening position of Delivery Valve

When the pump outlet conditions are to be obtained, it must be taken into consideration that the delivery valve is throttled down and the resistance loss occurs. The resistance value at the respective opening positions is calculation as follows:

$$H = -\frac{y^2}{2g}$$

The resistance coefficient $\frac{1}{2}$ is

 $\mathcal{G} = \mathbf{F}_1 \quad (0)$ $\boldsymbol{\theta} = \mathbf{F}_2 \quad (t)$

 $F = F_2(t)$

 δ : valve opening position

This is a function of the time. After all, the resistance loss is expressed as:

$$H_{L} = F(t) \frac{V^2}{2g}$$

This is also a function of the time.

In this case, V value is changes as the time passed by and is to be obtained during the process of the successive calculation.

In the whole calculation, the resistance loss is subtracted from H-Q curve toward H direciton and the resultant curve of the pump and valve is prepared. On Surge Tank

when the calculation on the surge tank is to be made, such a concept has to be introduced as covers the branched pipe, Where the pipe conduit merging pipe. The conditions which are established at the branching point of the pipe conduit are as follows.

$$Ha = Hc = Hd$$

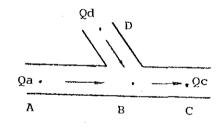


Fig. 3

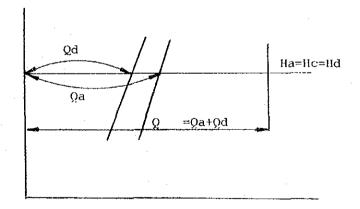
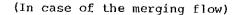



Fig. 4

When these conditions are shown in the graph, together with the general formula, the graph at the above is obtained. The calculation frequency of the pipe conduits A, C and D is arranged to be combined at B point, and such a value of this merging point is to be obtained as satisfies the above relations.

The lowered liquid face of the surge tank is expressed by the following formula,

Qt + Q(t - At), $\Delta t/s = \Delta H$

- At : Calculation time
- Qt : Delivery amount
- AH : Reduced amount
- S : Surge tank sectional area

Together with $A \amalg$, the pressure by the surge tank water level is changed, and Qt and Q(t $-\Delta$ t) are changed incessantly. Therefore, they are combined in the process of the successive calculation.

On Dimensionless Form

In order to facilitate the above calculations and to provide the universality in application, the dimensions are made dimensionless in the calculation so that no unit may be involved.

The basic numerical values are:

Basis water volume : Qr

Basis head : Hr

The design value is used in general. Following general equations are then obtained.

$$hAt - h_{g}t_{1} = -25 (VAt - VBt_{1})$$

$$h_{b}t - h_{c}t_{2} = -25 (V_{B}t - V_{c}t_{2})$$

$$h_{c}t_{2} - h_{B}t_{3} = 25 (V_{c}t_{2} - VBt_{3})$$

$$hBt_{3} - hAt_{4} = 25 (V_{A}t_{4} - V_{A}t_{3})$$

$$= \frac{aV_R}{2gHR} \qquad V_R = \frac{Qr}{A}$$

Formula of Revolution Number Change The revolution number of the pump is decreased as the inertia (including that of motor) is consumed through the feed work of the vater.

The lowered revolution number ΔN is expressed then as follows.

$$\frac{Mt + M(t - \Delta t)}{2} \cdot \frac{1}{MR}$$
 (Dimensionless form of the torque)

 $K = \frac{91200 \text{ HgQ}_R}{\text{IN}_R^2} \quad (\text{Coefficient of the inertia force})$

$$I = GD^2/4g$$
 (Inertia moment

These values are calculated and indicated in the calculation sheet. The values of 4 N and m are changed as the time passes by and the successive calculation is carried out.

The above is the brief calculation mechanism in the economic computor and the main calculaiton formulae. The resistance of the pipe conduit and the pump characteristic curve and also set in the formulation and are included in the calculation. The Symbol of Output Sheets by Computor (PRO. NO. C911)

× 7.

1. Page 1.

1

.

•	Page 1.	
	LEVEL	; Water level in suction well
	DT	; Minute time
	KANRO DAT	N ;Pipe line data
	KYORI	; Distance of pipeline ~
	KANSYU	; Kind of pipe
	D	; Diameter of main pipe
	Т	; Thickness of pipe
	E .	; Elastic modulus
	MOTO-KANRO	; Previous pipeline
	PUMP NO	; Pipe number
	S-NO	;Surge tank number
	V-NO	; Valve number
	END	; The end of pipeline
	SUIRYO	; Totalcapacity in main pipe
	PIPE-LOSS	; Loss head of main pipeline
	VALVE-LOSS	; Loss head of valve
	2L/A	;Interval of time for pressure wave round trip
	ROW	; Pipe coefficient
	POINT	; No. of intermediate point for calculation
	BUNKATU	; Division for calculation

----PUMP DATA-----

DAISU	; Quantity of pump
TOKUSEI	: Type of pump
VALVE	: Type of discharge check valve
V-NO	: Number of cushion check valve
PLOT	: Plotting indicate mark
YOOTEI	: Total pump head
SUIRYO	: Capacity of a set pump
KW -	:Output of motor
Р	: Pole of motor

GD2	: Inertia of pump and motor
GD2(WHEEL)	: Inertia of fly-wheel
RPM	: Pump speed
ĸ	;Damping coefficient

÷

------SURGE TANK------

NO	: Surge tank number -
SYURUI	: Surge tank type
V-NO	: Valve number
PLOT	: Plotting mark
SUITO	Initial level of tank
MENSEKI	: Sectional area of surge tank
LOSS	: Loss head of surge tank pipe
KYORI	: Distance from surge tank
KANSYU	: Kind of surge tank pipe
AIR-Q	: Initial air volume
LOSS	:Loss head from surge tank

----ATURYOKU SENZU DATA-----

; Water hummer pressure curve

----JUDAN DATA----

NO	: Pipe number	
KYORI	: Distance from pur	np
TAKASA	: Level	

2. Page 2. KEISAN INTERVAL : Interval for calculation SURGE TANK SUII HENKA : Variation of surge tank level NO Surge tank number MAX. (MIN.) YOOTEI :Maximum (minimum) head in pipe at each place LEVEL :Maximum (Minimum) level in pipe at each place SUII HENKA :Variation of level MENSEKI :Sectional area of surge tank SUIRYO :Flow volume of surge tank KANRO ATURYOKU Pressure of pipeline NO :Pipeline number (symbol) KYORI :Distance from pump TIME :Time after power failure SUIRYO :Capacity in pipe at each place YOOTEI :Head in pipe at each place LEVEL :Level in pipe at each place

~~	L/A PO RUN SEC ROW T KATU 646 .8984 3 784	START CONDITION LI SUIRYO M M3/M N M 0 18.000 1.000 1.000	
PAGE	VALVAL LOSS M S8.7	S YOOTEI X .6146 120.000	TAKASA M 12.00 16.00 79.00
No. 1	PIFE SUIRYO LOSS M3/M M	RPM %	XYORI TAI XYORI TAI 4000.0 12 10000.0 16 15000.0 16 19000.0 79
A L Y S I S	PCMP-NO NO NO D T 1 0 0 0 0 1 0	GD2 (WHE XG-M2 KG 100.000	KYORI TAKASA M M M 2000.0 7.30 9000.0 15.00 13800.0 9.00 18000.0 49.00
A X X A N	3.300 M .04944 SEC .04944 SEC .04944 SEC .04944 SEC	SUIRYO M3/M KW P 18.000 500.0 5	TAKASA 6.0M 23.700 24.000
W Å T E R H SUEZ/EGYPT	DT DT DT DT DT DT DT DT DT DT DT DT DT D	V- PLOT YOOTEI NO A B M 0 0 0 120.000 ATA	КҮОҢ КҮОҢ 1000.0 6400.0 12000.0
	a nov 110 v 110 v		TA KYORI TAKASA M 3.50 600.0 20.00 1000.0 13.50 6000.0 13.50 9450.0 85.00
NO COUNTERMEASURE	KANRO DATA KYORI NO M19450.0	PUMP DATA DAI TOKU VAL V- NO SU SEI VE NO I 4 I 1 0 ATURYOKU SENZU DATA	A CONCURRENT OF CONCURRENT OF CONCURRENT ON CONCURRENT ON CONCURRENT ON CONCURRENT OF

. . . .

÷

: ÷

• . •

.

0

.

,

No. 1

ŝ ы v: ≻ ч.

∢

 \mathbf{z} ≺

0:

ίu ⋝. ⊅. ъt.

т.

പ്പ យ ⊢ . ∀ 34

¢1

LEVEL S

ł

YOOTEI I \sim

- M I SUIRYO M3/M

TIME SEC

YOOTEI

ı

×

- N A SUIRYO M3/M

1

1

TIME

KYORI M

20

- 25-7

ı ı - 204 .362

5.117 5.1175

34.018 33.919 29.073 24.228

150.082 148.181 148.152 147.802

146.782 144.881 144.832 144.832

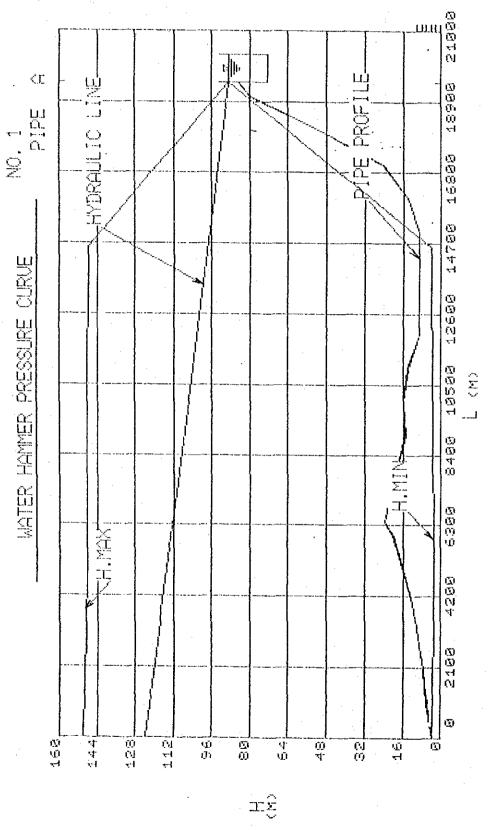
-1.059 -1.077

77.580 72.734 67.888 63.043

4862.5 9725.0 14587.5

77 9999

> < 4 4


ব ব

-.176 -.213

1. KEISAN INTERVAL

ŧΩ

3. KANRO ATURYOKU

WITH AIR VESSEI

v. v; Ч, 2 4 **0**... (L1) ≥, ≻. <C x പ്പ W A T E

PAGE

C1 202

SUEZ/EGYPT

3.300 M 04944 SEC LEVEL DT

1 1 1

--- KANRO DATA

- - - START CONDITION - - -YOOTEI SUIRYO M M3/M N 120.000 18.000 1.000 1.000 PO IN BUN ROW T KATU . 8984 15 784 ross LOSS 2L/A M SEC .000 38.7646 RPM % K K M 980 83 1.6146 120.000 AIR-Q M3 ROW BUN KATU SUIRYO LOSS M3/M M 72.000 34.700 2L/A SEC .0000 KG-M2 .000 (WHEEL) ៤ ១០ ម០ (L1) XOTO-KANRO PUMP-NO NO NO D I 0 0 1 0 1 GD2 KG-M2 100.000 ۲¥٥ Ažo ሲ ወ SUIRYO M3/M KW 18.000 500.0 LOSS KYORI KAN M M SYU 7.347 .0 0 ×°.
 KYORI KAN
 D
 T
 E

 NO
 M
 SYU
 MM
 MM

 A 19450.0 FCD3 1100
 14.0
 1.600
 PUMP DATA ---DAI TOKU VAL V- PLOT YOOTEI NO SU SEI VE NO A B I 4 1 1 0 0 0 120.000 SUITO MENSEKI M M2 3.300 000 SURGE TANK DATA -SYU V- PL S NO RUI NO OT 1 3 0 0 3 1 4 7 1

1.000

10.0

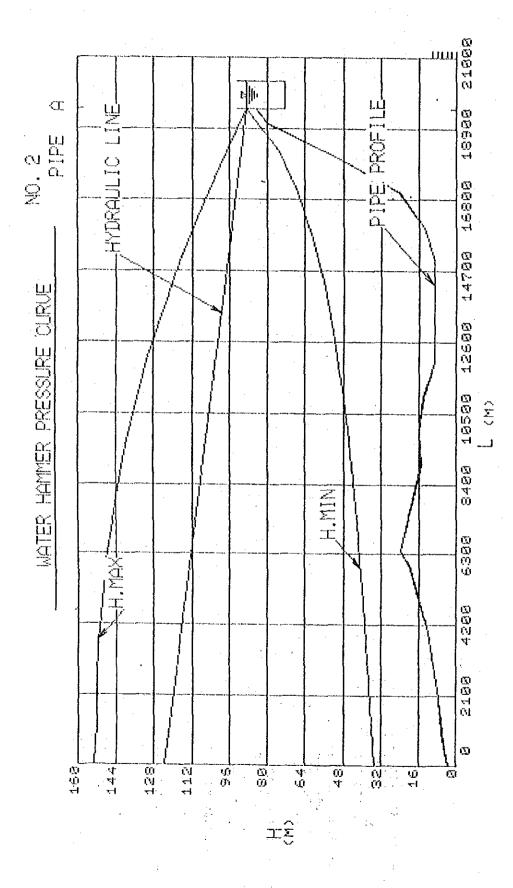
000.

.000

7.347

ATURYOKU SENZU DATA ---

1


3.7-108

12.00 16.00 79.00 TAKASA 4000.0 10000.0 15000.0 KYORI 7.30 15.00 19.00 TAKASA 2000.0 9000.0 3800.0 KYORI 6.00 23.70 9.00 24.00 TAKASA 1000.0 6400.0 12000.0 KYORI 3.50 20.00 14.00 85.00 TAKASA M 6000.0 11000.0 16000.0 19450.0 JUDAN DATA ---KYORI ⊲. o ∢ Z 1

°.

VALVE

PIPE Loss

NO. 2

2

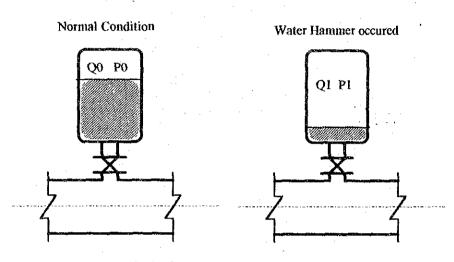
PAGE

ANALYSIS HAMMER WATER

1. KEISAN INTERVAL

ৰ'

				ו _ ו ן	LEVEL	X	4.84	6.09	7.09	8.18	9.38	0.71	2.18	3.83	5.69	7.83	0.31	3.24	6.77	1.14	66.778	4 39
		SUIRYO ¥3	000	1 1 2	YOOTEI	×	1.54	2.79	96.,	4.88	6,08	7.41	8.88	0.53	2.39	4.53	7.01	9.94	3.47	7.84	63.478	1.09
			•	г У	UIRY.	N3/N		ы 10 10	4.2	0.0	6.6	6.8	7.9	г. б	0.5	2.1	4.0	6.4	9.2	3.0	48.076	10 10
		NE/	33 .0000	ו . ו	TIM	SEC	4.59	7.55	6.34	5.13	3.91	2.70	1.49	0.28	9.07	7.86	6.65	5.43	4.22	3.01	21.805	0.59
	IIns	HENI	118.60	·	LEVEL	х.	. 47	2	. 35	.41	, 94	10.	ъ 10 10	.64	.12	.99	. 23	. 82	. 75	.04	4.722	.87
	N I	LEVEL	34.844	; ; ;		۶.	.176 15	.807 15	.054 15	.114 15	.645 14	.718 14	.296 14	.343 14	.821 .13	.695 13	.936 13	. 526 12	.457 II	.741 11	22 10	.574 9
	ж т т	YOOTEI	31.544	4 7	χο		.016 15	1.902 14	.038 14	.910 14	.063 14	.173 14	.256 14	.296 13	.353 13	.234 13	.201 12	.170 12	.140 11	.112 10	086 10	.060 9
	1 1 X	LEVEL M	53.476	1 . J		SEC	.911	7.307 -	8.719 -	9.188 -	8.966 -	8.842 -	8.768 -	8.743 -	8.719 -	- 262.	8.818	8.843 -	.867 -	.892 -	- 8.917 -	.942 -
۲	КА М А	YOOTEI	50.176 1	1	RI	X:	0.1	6	с. С	. 6.			8.	. 4 -	0,	6		. 1		-~1		4
	K SUII HENKA		-4	ATURYOKU	КУОК			ю	243	6 364	6 486	6 607	6 729	6 850	6 972	6 10	16 1215	16 1337	16 1	16 1580	16 17018	6 18
	SURGE TANK	O.V	-	KANRO ATUF		<u>8</u>			A 2/						A 8/		-1	A 11/	Ч	1	A 14/	-1
•			÷	с. С								3.	7-		10							


3.7-110

÷, ÷

و در او

CALICURATION OF SERGE VESSEL FOR INTAKE PUMPING SYSTEM

1. Initial Volume of Air in the Vessel (Q0) = 10 m3

P0 : Intial Pressure

Q0 : Intial Volume of Air

P1 : Balanced Pressure at Water Hammer

Q1 : Balanced Air Volume at Water Hammer

2. Required Air Storage at Water Hammer

(P0 + 1) Q0 = (P1 + 1) Q1

where P0 = Maximum Hydraulic Head = 15.0176 kg/cm2

P1 = Minimum Hydraulic Head = 3.1544 kg/cm2

Q0 = 10 m3

then $(15.0176 + 1) \times 10 = (3.1544 + 1) \times Q1$

therefore

Q1 = 38.94 m3

Hence, the volume of air vessel is 40 m3.

ATTACHMENT 5

HYDRAULIC CALCULATION OF WATER TREATMENT PLANT

Calculation of Hydraulics of Water Treatment Plant

- Quantity of Water to be Treated by the Facility .1. Quantity of water treated by the facility is :
 - $Q_0 = 25,000 \text{ m}^3/\text{day}$
 - $= 1041.66 \text{ m}^3/\text{hr}$
 - $= 17.36 \text{ m}^3/\text{min}$
 - $0.289 \text{ m}^3/\text{sec}$ =

2. Water level at individual processes in the water treatment plant

1) Raw water reservoir w₁

Piping from the raw water reservoir to the receiving tank is steel pipe of 700mm diameter and 20.0m length, which corresponds to the flow speed :

$$VR_1 = \frac{Q_0}{\frac{\pi}{4} \times 0.7^2} = 0.752 \text{ m/sec}$$

a) Pressure loss at straight pipe section n_1

From the William & Hazen's equation,

 $n_1 = 10.666 \cdot c^{-1.85} \cdot p^{-4.87} \cdot q^{1.85} \cdot L$

 $= 10.666 \times 100^{-1.85} \times 0.70^{-4.87} \times 0.289^{1.85} \times 20$ = 0.0243 m

where

C = flow speed coefficient

D = pipe inside diameter (m)

1

3.7 - 113

 $Q = flow rate (m^3/sec)$

L = pipe length (m)

$$h_{2} = (f_{1} \times 1 + f_{2} \times 5 + f_{3} \times 1 + f_{4} \times 1 + f_{5} \times 1) \times \frac{\sqrt{R^{2}}}{2g}$$

= (1.0 + 0.3 × 5 + 1.0 × 5 + 1.0 + 0.1 × 3) × $\frac{0.752^{2}}{2 \times 9.8}$

= 0.254 m

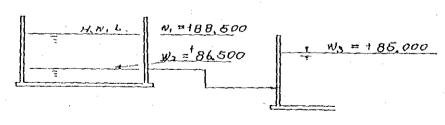
c)

where f_1 = pressure loss factor at exit opening: 1.0

 f_2 = pressure loss factor at bending section: 0.3

 f_3 = pressure loss factor at tee section: 1.0

 f_4 = pressure loss factor at inlet opening: 1.0


 $f_5 = pressure loss factor at butterfly value: 0.1'$ $Pressure loss at flow meter and value: <math>h_2$ '

 $h_2' = 1.0$ m as the pressure loss at Venturi flowmeter and control valve

From the above assumptions:

 $n_1 + n_2 + h_2' = 0.0243 \text{ m} + 0.254 \text{ m} + 1.00 \text{ m}$

= 1.2783 m = 1.50 m

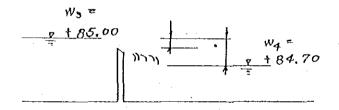
Raw water reservoir.

Receiving well

$$w_1$$
 (HWL) = 85.00 + 3.50 = 88.50 m
 w_2 = 85.00 + 1.50 = 86.50 m

2) Water level in receiving well
$$w_3$$

 $w_3 = 85.00 \text{ m}$


a)
$$w_4 = w_3 - h_3 = 85.00 - 0.30 = 84.70 \text{ m}$$

Take $Q = 1.84 \text{ B} \cdot h_3 t^{3/2}$

 $Q = flow rate: 0.289 m^3/s$

$$B = weir width: 3.50 m$$

Then, $h_{31} = 0.1263 \text{ m}$

Put $h_3 = 0.30$ m to assure overflow

Receiving well Mixing well

b) Calculation of G value

$$G = \sqrt{\frac{p \cdot h}{\mu \cdot v}}$$

where $p = shaft horsepower kg \cdot m^2/s^3$

- h = efficiency of reduction gear 0.8
- $v = capacity of mixing basin 52.08 m^3$

 μ = water viscosity 1.0 x 10⁻³ kg/m·s (at 20^oC)

$$250 = \sqrt{\frac{p \times 0.8}{52.08 \times 10^{-3}}}$$

Then, $p = 4068.75 \text{ kg} \cdot \text{m}^2/\text{s}^2$

= 4.07 kw

Elective motor of 5.5 kw is employed.

- 4) Water level at upstream of the flocculation basin w_5
- a) Condition of calculation

Number of basins $NF_1 = 2$ (stand-by basin = 0) Number of rows NR = 10

basin h_4 Dimensions of gate: 0.5 m width, 0.5 m height Flow speed at gate: $VR_2 = 0.289 \text{ m}^3/\text{S} \div (0.5 \times 0.5) - 2 = 0.578 \text{ m/s}$

Pressure loss across gate:

$$h_4 = f_6 \times \frac{VR_2^2}{2g} = 0.60 \times \frac{0.578^2}{2 \times 9.8}$$

= 0.0102 m = 0.02 m

Then, the water level at upstream of the flocculation basin becomes to:

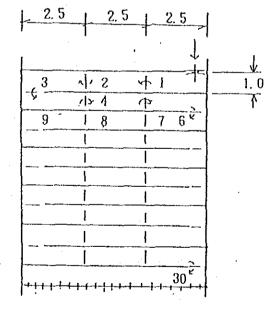
 $w_{5} = 84.70 - 0.02 = 84.68 \text{ m}$

4

3.7 - 116

5) Water level at downstream of the flocculation basin w_6 Head loss caused by baffled-flow of flocculation basin, h_5 , is calculated as below.

a) Condition


Number of baffled-flow rows : 10

Total head loss : 1.0 m

Mixing : tapered flocculation

Baffled-flow cross section : 1.0 m width, 3.5 m length Flow speed at the first baffled-flow : 0.6 m/sec Flow speed at the last baffled-flow : 0.3 m/sec GT value : \geq 100000 Baffle plate thickness TU : 0.03 m Bottom level : +80.70

Initial depth HUO : 3.98 m

Flocculation basin

Plan view

b) Main equations

Baffled-flow loss

* At the lower bent section

 $hU(n) = fd \times vU(n)^2/2g + HU(n)/C^2 \cdot R \times vUA^2$

where fd : loss coefficient at the lower bent section 2.5

(average 3.5)

vU(n) : average flow speed at the lower bent section

(m/sec)

```
g : gravitational acceleration 9.8 \text{ m/sec}^2
```

C : Chezy's coefficient

 $C^2 = 1/n^2 \times R^{1/3}$

n : Manning's roughness factor : 0.014

R : Hydraulic radius (m)

* At the upper bent portion

 $hU(n) = vU(n)^2/2g + HU(n)/C^2 \cdot R \times vUA^2$

* Total head loss

$$hU = \sum_{N-1}^{N} hU(n)$$

6

c) Result of calculation

No.	Average flow speed at baffled- flow section	Height of opening	Upper bending loss	Lower bending loss	Depth
	m/sec	ារ	កព	, mm	'n
					3.98
1	0.50	0.241	0.018		3.97
2	0.59	0.245		0.062	3.90
3	0.58	0.249	0.017	• • • • • • •	3.89
2 3 4 5 6 7	0.57	0.254		0.058	3.83
5	0.56	0.258	0.016		3_81
6	0.55	0.263		0.054	3.76
1	0.54	0.268	0.015		3.74
8	0.53	0.273		0.050	3.69
ġ	0.52	0.278	0.014	0.000	3.68
10	0.51	0.284		0.046	3.63
11	0.50	0.289	0.013	VEVIO	3.62
12	0.49	0.295	0.010	0.043	3.58
13	0.48	0.301	0.012	0.040	3.50
-14	0.47	0.308	0.020	0:039	3.53
15	0.46	0.315	0.011	0.005	3.51
16	0.45	0.322	0.011	0.036	3.48
17	0.44	0.329	0.010	0.030	3.47
18	0.43	0.336	0.010	0.033	3.44
-19	0.42	0.344	0.009	0.000	3.43 3.43
20	0.41	0.353	0.005	0.030	3.40
21	0.40	0.362	0.008	0.030	3.39
· 22	0.39	0.371	0.000	0.027	
23	0.38	0.381	0.007	0.027	3.36
24	0.37	0.391	0.001	0 024	3.35
25	0.36	0.402	0.007	0.024	3.33
26	0.35	0.413	0.007	0 000	3.32
27	0.34		0.000	0.022	3.30
28		0.426	0.006	0.010	3.30
20 29	0.33	0.438	0.005	0.019	3.28
	0.32	0.452	0.005		3.27
30	0.31	0.467		0.017	3.23
	Subtota	al of head loss	0.168	0.563	····
			••••		

0.168

Total head loss $h_5 = 0.731 \text{ m}$

.

d) GT value

 $GT = (p \cdot g \cdot h F 4 \cdot T/\mu)^{0.5}$ 1000 kg/m^3 where p = water density μ = water viscosity factor 1 x 10⁻³ kg/m·S T = retention time in flocculation basin 1836 sec = $(1000 \times 9.8 \times 0.731 \times 1836/1 \times 10^{-3})^{0.5}$ $= 114,634 \ge 100000$ $w_6 = w_5 - h_5$ = 84.68 - 0.731 = 83.95with some margin, $w_6 = 83.80$ 6) Water level in sedimentation basin w7 a) Baffle wall loss at upstream of sedimentation basin \dot{n}_6 Diameter of baffle hole is 100 mm, number of baffle wall . rows is 20, and number of stages is 10.

Flow speed across the baffle wall:

 $VR_3 = \frac{0.289 \text{ m}^3/\text{s}}{\pi/4 \text{ x } 0.1^2 \text{ x } 20 \text{ x } 10 \text{ x } 2 \text{ basins}} = 0.094 \text{ m/s}$

$$h_6 = 1/C_0^2 \times \frac{VR_3}{2g}$$

where $c_0 = loss$ factor of baffle hole : 0.6

$$h_6 = \frac{1}{0.6^2} \times \frac{0.094^2}{2 \times 9.8} = 0.0013 \text{ m} = 0 \text{ m}$$

8

b) Baffle wall loss at downstream of sedimentation basin n_7 Diameter of baffle hole is 100 mm, number of baffle wall rows is 20, and number of stages is 10. $n_7 = 0.0013$ m = 0 m

Then, the Water level in the sedimentation basin becomes: $w_7 = w_6 - 0 = 83.80 - 0 = 83.80$ m

7) Water level in the sedimentation treated water conduit w_8 Multi-hole trough is employed as the water efluent troughs, which has the dimensions of 350 mm width, 350 mm depth, and 4,000 mm length. The number of troughs is 6 for every basin.

 $w_{8} = w_{7} - HT1 + HT2 - HT3$

where HT1 = trough depth 0.35 m

HT2 = distance between the top of trough and the center of collection hole 0.05 m

HT3 = margin 0.15 m

Then, the water level in the sedimentation treated water conduit becomes:

 $w_{\rm B} = 83.80 - 0.35 + 0.05 - 0.15 = 83.35 \,\mathrm{m}$

8) Water level in the intake conduit to the filter basin w_g Piping from the sedimentation treated water conduit to the intake conduit of the filter basin is steel pipe

of 700 mm diameter x 20.0 m length. Flow speed in the filter basin :

$$VR_4 = \frac{Q_0}{\pi/4 \times 0.7^2} = 0.752 \text{ m/s}$$

a) Pressure loss at straight pipe section n_8 From the William & Hazen's equation, $n_8 = 10.666 \times 100^{-1.85} \times 0.70^{-4.87} \times 0.289^{1.85} \times 20$ = 0.0244 m

b) Pressure loss at bending section n_g

$$n_{9} = (f_{1} \times 1 + f_{2} \times 5 + f_{4} \times 1) \times \frac{VR_{4}}{2g}$$
$$= (1 + 0.3 \times 5 + 1) \times \frac{0.752^{2}}{2 \times 9.8} = 0.101 \text{ m}$$

Then, $n_8 + n_9 = 0.0244 + 0.101 = 0.1254 \text{ m} = 0.200 \text{ m}$

$$w_{g} = w_{g} - 0.200 \text{ m} = 83.350 - 0.200 = 83.15 \text{ m}$$

9) Water level in the filter basin w_{10} Number of basins NR₂ = 6 basins (stand-by basin = 1) Design filtration to be treated per basin : 5000 m³/day

$$= 208.33 \text{ m}^3/\text{hr}$$
$$= 3.472 \text{ m}^3/\text{min}$$
$$= 0.0579 \text{ m}^3/\text{sec}$$

a) Pressure loss at straight pipe section n_{10} With the piping of 350 mm diameter and 5000 mm length,

10

the flow speed in the pipe :

 $VR_5 = 0.0579 - (\pi/4 \times 0.35^2) = 0.602 \text{ m/sec}$ From the William & Hazen's equation, $\pi_{10} = 10.888 \times 100^{-1.85} \times 0.35^{-4.87} \times 0.0579^{1.85} \times 5$ = 0.009 m

b) Pressure loss at bending section n_{11}

$$n_{11} = (f_1 \times 1 + f_2 \times 3 + f_4 \times 1 + f_5 \times 1) \times \frac{VR_5^2}{2g}$$

= (1 + 0.9 + 1 + 0.1) $\times \frac{0.602^2}{2 \times 9.8} = 0.0555 \text{ m}$
Then, $n_{10} + n_{11} = 0.009 + 0.0555 = 0.0645 \text{ m} = 0.10 \text{ m}$
 $w_{10} = w_9 - 0.10 \text{ m} = 83.15 - 0.10 \Rightarrow 83.05$

10) Height of top of the treated water channel w_{11} Head loss of sedimentation basin is taken as n_{12} =

 $w_{11} = w_{10} - 3.50 = 83.050 - 3.65 = 79.4 \text{ m}$

11) Head loss during backwashing HG Filtration area $AF = 42.00 \text{ m}^2$ Backwashing rate $qB = 0.800 \text{ m}^3/\text{min} \cdot \text{m}^2$ Quantity of backwashing water $QB = AF \times qB = 42.00 \times 0.800$ $= 33.6 \text{ m}^3/\text{min}$

$$= 0.56 \text{ m}^3/\text{sec}$$

a) Head loss of silica sand hG1: From the theory of fluidization,

hG 1 = $LO/pF(1-\varepsilon O)(pS-pF)$

- where L0 = thickness of silica sand bed before fluidization: 0.800 m
 - €0 = void fraction of silica sand bed before
 fluidization : 0.470 at 0.6 mm or less of
 effective diameter and at 1.5 or less of
 uniformity factor

pS = true specific weight of silica sand

 $pS = 2630 \text{ kg/m}^3$

pF = relative weight of backwashing water

 $pF = 1000 \text{ kg/m}^3$ = (0.800/1000) x (1-0.470) x (2630-1000) = 0.691 m

 b) Head loss of gravel bed hG2: From the theory of stagnant layer,

hG2 = 200 x LG x
$$\frac{VG \cdot \mu}{pF \cdot g \cdot \phi G^2 \cdot DG^2} \cdot \frac{(1 - \varepsilon G)^2}{\varepsilon G^3}$$

where LG = thickness of gravel bed 0.050 m/gravel dia. VG = backwashing rate 0.8 m/min \cdot m² = 0.013 m/sec \cdot m²

12

 μ = viscosity factor of backwash water

 10^{-3} kg/m sec as stagnant water ϕG = shape factor of gravel: 0.800 for round gravel DG = gravel dia.

$$2 - 4 \text{ mm} \quad DG \ 1 = 2.5 \times 10^{-3}$$

$$4 - 6 \text{ mm} \quad DG \ 2 = 4.5 \times 10^{-3}$$

$$6 - 13 \text{ mm} \quad DG \ 3 = 8.5 \times 10^{-3}$$

$$13 - 20 \text{ mm} \quad DG \ 4 = 15.0 \times 10^{-3}$$

 $\varepsilon G = void of gravel bed: 0.380 for round gravel$

$$= 200 \times 0.05 \times \frac{0.013 \times 10^{-3}}{1000 \times 9.8 \times 0.80^{2} \times DG^{2}} \times \frac{(1-0.380)^{3}}{0.380^{3}} = \frac{8.99 \times 10^{-8}}{DG^{2}}$$

Thus,

hG21 = 0.0144 m hG22 = 0.0044 m hG23 = 0.0012 mhG24 = 0.0004 m

and

hG2 = hG21 + hG22 + hG23 + hG24= 0.0204 m

c) Head loss of collection block hB: From the experimental data,

13

hB = 0.400 m for $0.8 \text{ m}^3/\text{min}^2$ of backwashing rate.

d) Head loss of piping system h

Piping from the head tank to the filter basin is 700 mm of diameter and 400 m of length.

Flow speed inside the pipe $VR_6 = 0.56m^3/\sec - (\pi/4x0.75^2)$

= 1.267 m/sec

h9

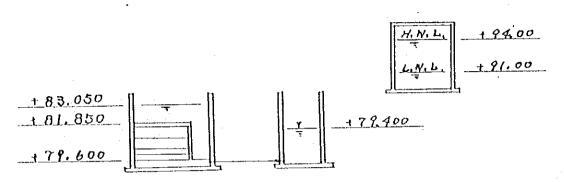
i) Pressure loss at straight piping section h_{13} From William Hazen's equation:

 $h_{13} = 10.666 \times 100^{-1.85} \times 0.70^{-4.87} \times 0.56^{1.85} \times 400$ = 1.659 m

ii) Pressure loss at bent section and valve section h_{14}

$$h_{14} = (f_1 \times 1 + f_2 \times 15 + f_3 \times 8 + f_4 \times 1 + f_5 \times 4) \times \frac{V R_6^2}{.2g}$$

 $= (1+0.3\times15+8+1+0.1\times4) \times \frac{1.267^2}{2 \times 9.8}$ = 1.220 m


 h_{15} (flow meter) = 1.0 m Then, $h_{12} + h_{14} + h_{15} = 1.659 + 1.220 + 1.0 = 3.880$ m Consequently, HG = hG1 + hG2+ + hB + hj

= 0.691 + 0.0204 + 0.400 + 3.880= 4.992 m

 $L.W.L. = 81.850 + 4.992 \times 1.5$ (margin hight)

= 89.338 = 91.00

H.W.L. = 91.00 m + 3.0 m (depth of water) = 94.00 m

Filter basin Treated water channel Filter washing water basin Required tank capacity = 336 m³/cycle x 2 basins x 1.5 (margin) = 1008 m³

Net capacity = $20.0 \text{ m} \times 19.5 \text{ m} \times 3.0 \text{ m} = 1170 \text{ m}^3$

Net retention cycle = 1170 m³ \div 336 m³/day = 3.48 cycle 12) Height of top of the treated water basin w₁₂

Piping from the treated water channel to the treated water basin is 700 mm of diameter and 20 m of length. Flow speed inside the pipe

 $VR_7 = Q_0 \div (\pi/4 \times 0.7^2) = 0.752 \text{ m/s}$

a) Pressure loss at straight piping section h_{16}

From William Hazen's equation:

 $h_{16} = 10.666 \times 100^{-4.85} \times 0.70^{-1.87} \times 0.289^{1.85}$ x 20 = 0.0243 m

-15

b) Pressure loss at bent section and valve section h_{17}

$$h_{17} = (f_1 \times 1 + f_2 \times 5 + f_3 \times 1 + f_4 \times 1 + f_5 \times 1) \times \frac{VR_7^2}{2g}$$

= (1+0.3x5+1+1+0.1) x $\frac{0.752^2}{2 \times 9.8}$ = 0.1327 m
Then, n_{16} + n_{17} = 0.0243 m + 0.1327 m = 0.157 m
0.157 m + 0.20 (margin height) = 0.357 m
 $= 0.400$

 $w_{12} = w_{11} - 0.300 = 79.400 - 0.400 = 79.00$

ATTACHMENT 6

CAPACITY CALCULATION OF WATER TREATMENT PLANT

Capacity Calculation of Waterworks Facility

1. Quantity of water to be treated by the facility Q_0 $Q_0 = 25,000 \text{ m}^3/\text{d} \times 4 \text{ lines} = 100,000 \text{ m}^3/\text{d}$ One line treats 25,000 m³/d, then 25,000 m³/d = 1041.66 m³/hn = 17.36 m³/m = 0.289 m³/s

2. Capacity of individual unit in the process

1) Raw water reservoir

Number of reservoirs NR = 4 (including no spare) Design retention time DR = 4 hr or longer Design capacity of reservoir VR = 100,000 m³ x 4/24 = $16,667 \text{ m}^3$

Design capacity of single reservoir = 16,667 m³ - 4 = $4,167 \text{ m}^3$

Dimensions = 27.0 m width x 62.0 m length x 2.5 m

depth x 4 reservoirs = $16,740 \text{ m}^3$

Retention time = $16,740 \div 100,000 \times 24 = 4.02 \text{ hr} > 4.0 \text{ hr}$

2) Receiving well

Number of wells NA = 4 (including no spare)

Design retention time DA = 1.5 min or longer

Design capacity of basin VA = 100,000 m³ x $\frac{1.5}{24 \times 60}$

1

$$' = 104.2 \text{ m}^3$$

Design capacity of single well = $104.2 \div 4 = 26.04 \text{ m}^3$ Dimensions = 3.5 m width x 3.5 m length x 4.3 m depth x 4 wells = 210.7 m^3

Retention time = $210.7 \div 100,000 \times 24 \times 60 = 3.03$ min

3) Mixing well

Number of basins NM = 4 (including no spare) Design retention time DM = 1 - 5 min Design capacity of the basin VM = 100,000 m³ x

 $\frac{3}{24 \times 60} = 208.33 \text{ m}^3$

Design capacity of single well $\approx 208.33 \text{ m}^3 \div 4 \text{ basins}$

$$= 52.08 \text{ m}^3$$

Dimensions = 3.5 m width x 5.0 m length x 4.0 m depth x 4 basins = 280.0 m^3

Retention time = $280.0 \text{ m}^3 \div 100,000 \text{ x } 24 \text{ x } 60 =$

4.03 min

4) Flocculation basin

Number of basins NF = 8 basins (including spare basin) Number of rows NR = 10 rows/basin Design retention time DF = 20 - 40 min

Design capacity of basin VF = 100,000 m³ x $\frac{30}{24 \times 60}$

 $= 2083.3 \text{ m}^3$

Design capacity of single basin = 2083.3 m³ \div 8 basins = 260.4 m³ Dimension = 1.0 m width x 7.5 m length x 3.54 m depth x 10 rows x 8 basins = 2,124 m³

Retention time = $2,124 \div 100,000 \times 24 \times 60 =$

30.59 min

5) Sedimentation basin

Number of basins NS = 8 (including no spare) Design retention time DS = 120 min

Design capacity of basin VS = 100,000 m³ x $\frac{120}{24 \times 60}$ = 8333.3 m³

Design capacity of single basin = $8333.3 \text{ m}^3 \div 4$ basins = 2083.3 m^3

Dimension = 7.5 m width x 40.0 m length x 3.5 m depth

x 8 basins = $8,400 \text{ m}^3$

Retention time = $8,400 \div 100,000 \times 24 \times 60 =$

120.96 min

Number of efluent troughs : Overflow load is taken as 260 m³/hr and the effective length of trough is taken as 4.0 m. Then, the necessary number of

efluent troughs is

 $100,000 \text{ m}^3/\text{d} - (260 \text{ x} 4 \text{ x} 8 \text{ basins x} 2) = 6.01$

6/basin

Overflow load = $\frac{100,000 \text{ m}3/\text{d}}{2 \times 6 \times 8 \text{ basins } \times 4 \text{ m}}$ = 260.4 m³/m·d

6) Filter basin

Number of basins NK = 6 basins per line (including 1

spare basin)

24 basins per 4 lines (including

4 spare basins)

Design filtration rate VK = $120 - 150m^3/m^3 \cdot d$

Water guantity to be treated per basin QK =

 $100,000 \text{ m}^3/\text{d} \div (24 \text{ basins} - 4 \text{ basins}) =$

5,000 m^3/d ·basin

Required filtration area per basin AK =

5,000 m³/d·basin \div 120 m³/m³·d = 41.7 m² Dimension of single basin = 6.0 m width x 7.0 m length Filtration area = 6.0 m x 7.0 m x (24 basins - 4

 $pasins) = 840 m^2$

Filtration rate = $100,000 \text{ m}^3/\text{d} - 840 \text{ m}^2 = 119.0 \text{ m/d}$

7) Treated water reservoir

4

Number of reservoirs NN = 4 (including no spare) Design retention time DW = 4 hr or longer Design capacity VW = 100,000 m³ x 4/24 = 16,667 m³ Capacity of single reservoir = 16,667 m³ \div 4 =

$$,167 \text{ m}^3$$

Dimension = 23.0 m width x 46.0 m length x 4.0 m depth Net capacity = 23.0 m x 46.0 m x 4.0 m x 4 basins =

Net retention time = $16,928 \text{ m}^3 \div 100,000 \text{ m}^3/\text{d} \times 24 =$

4.06 hr

8) Filter washing water basin

Number of basin NT = 1 Washing rate VT = $0.80 \text{ m}^3/\text{m}^2 \cdot \text{min}$ Washing water quantity QT = $42 \text{ m}^2 \times 0.8 \text{ m}^3/\text{m}^2 \cdot \text{min}$ x 10 min = 336 m³/batch basin; the quantity is specified to enable 2 basins simultaneous washing.

(1) Calculation of sludge generation in sedimentation basin Water to be treated in basins = $25,000 \text{ m}^3/\text{d} \times 4$

lines = $100,000 \text{ m}^3/\text{d}$

Water quality : 18 BTU = 20 mg/l

-5

Solid aluminum feeding rate

Quantity of generated solid matter per line is

calculated by: 40 mg/l (15% - Al_2O_3)

25,000 x (20 + 40 x 0.15 x $\frac{2 \times 78 \text{ (Molecular weight of Al(OH)_3)}}{102(\text{Molecular weight of Al}_2O_3)}$

 $x \ 10^{-3} = 729.4 \ \text{kg/d}$

The removal rate of turbidity in sedimentation basin is taken as 90%, and the sludge concentration is taken as 0.3%. Then, the discharged sludge from the sedimentation basin is calculated by:

> 729.4 kg/d x 0.9 x 100/0.3 x $10^{-3} = 218.8 \text{ m}^3/\text{d}$ $\div 220 \text{ m}^3/\text{d}$

(2) Calculation of sludge generated from filtration basin Number of basins = 6 (including 1 spare) Filtration area = 7.0 m width x 6.0 m length = 42

m²/basin

Washing water quantity = $42.0 \times 0.8 \times 10 = 336$

m³/basin[•]batch

Number of washing cycles = 1 cycle/36 hr (1.5 day) Quantity of washing water per 1 line =

$$(336 + 42 \times 1.5) \times \frac{1}{1.5} \times 5 \text{ basins} = 1,330 \text{ m}^3/\text{d}$$

6

3.7 - 135

Sludge concentration of washing water = 729.4 kg/d x

0.1 ÷ 1330 x

 $10^{-3} \neq 54.8 \text{ mg/l}$

(3) Capacity of sludge discharge basin

Number of sludge discharge basins = 2 basins/line x 4 lines = 8 basins Capacity of sludge discharge basin = 10 x 13.5 x 3.0 = 405 m^3 ; Quantity of one cycle of washing water; the basin shall have the sludge retention part at the

bottom.

Dimension = 10.0 m width x 13.5 m length x 3.0 m depth

2) Sludge drying bed

(1) Calculation of sludge quantity generated from 1 line Sludge discharged from sedimentation basin and from filtration basin is sedimented to separate in the sludge discharge basin. The sludge concentration is taken as 2.0%. The overflow from the sludge discharge basin contains approximately 50 mg/l of sludge.

Water quantity Concentration Sludge quantity

Feed from sludge discharge basin to sludge drying bed	7	2.0 %	653.5 kg/d
Overflow from sludge discharge basin	1517.32 m ³	50 mg/1	75.9 kg/đ
Total	1550 m ³ /d	• •	729.4 kg/d
	$(220 \text{ m}^3 + 1330 \text{ m}^3)$	-	

(2) Required area per 1 line

Assuming the water removal rate per day of 8.0 mm/day, to give 60 % of water content at 0.60 m of water depth . needs:

60% sludge height =
$$\frac{0.02 \times 0.6}{1 - 0.6}$$
 = 0.030 m
Drying days = $\frac{0.6 \text{ m} - 0.030 \text{ m}}{0.008}$ = 71.25 day
Capacity of drying bed = 32.68 m³ x 71.25 d = 2328.45 m³
Dimension of drying bed = 20 m width x 40.0 m length x 0.6
m water depth x 6 beds

Net drying bed capacity = $20 \times 40 \times 0.6 \times 5$ = $2400 \text{ m}^3 > 2328.45 \text{ m}^3$

8

ATTACHMENT 7

CHEMICAL DOSING CALCULATION OF WATER TREATMENT PLANT

A. Chlorine dosing unit	
1. Design specification	•
1) Water quantity to be trea	ted Maximum 25,000 m ³ /d
2) Chlorine dosing rate	
Pre-chlorine dosing	Maximum 10.0 mg/l
· · ·	Average 4.0 mg/l
Post-chlorine dosing	Maximum 3.0 mg/l
	Average 2.0 mg/l
3) Point of chlorine dosing	
Pre-chlorine dosing	Receiving well
Post-chlorine dosing	Treated water basin
4) Control method of chlorine	dosing
Control with manual	control valve
5) Method to stop operation	
Manual	
2. Calculation of chlorine d	ose
Chlorine dose is calcula	
q = Q x 1/24 x s x 1/10	00
where g = guantity of chlori	ne dose (kg/h)
Q = water quantity to	be treated (m ³ /day)
s = chlorine dosing ra	te (mg/l)
Calculated result is given be	low.

3.7-139

1

1) Pre-chlorine dosing

Dosing rate	Maximum	Average
Water quantity to be treated	10.0 mg/l	4.0 mg/1
25,000 m ³ /day	10.4 kg/h	4.2 kg/h
100,000 m ³ /day	41.6 kg/h	16.8 kg/h

2) Post-chlorine dosing

Dosing rate	Maximum	Average
Treating water quantity	3.0 mg/1	2.0 mg/1
25,000 m ³ /day	3.1 kg/hr	2.1 kg/hr
100,000 m ³ /day	12.4 kg/hr	8.4 kg/hr

3. Capacity of chlorine dosing unit

Based on the chlorine dosing rate calculated in preceding section, the capacity of chlorine dosing unit is defined as below.

1) Pre-chlorine dosing unit

The required chlorine dosing rate is 10.4 kg/hr at the maximum. With a slight margin, the capacity of pre-chlorine dose is defined as 15.0 kg/hr. When the control range of the chlorine dosing unit is selected as 10 : 1, the control range of chlorine dose is 1.5 - 15 kg/hr.

2

2) 'Post-chlorine dosing unit

The required chlorine dosing rate is 3.1 kg/hr at the maximum. With a slight margin, the capacity of pre-chlorine dose is defined as 5.0 kg/hr. When the control range of the chlorine dosing unit is selected as 10 : 1, the control range of chlorine dose is 0.5 - 5.0 kg/hr.

3) Type of chlorine dosing unit

Type : Vacuum wet type dosing unit

Capacity : Pre-chlorine dosing unit 15.0 kg/n Post-chlorine dosing unit 5.0 kg/n

Quantity : Pre-chlorine dosing unit : 5 (including 1 spares)

Post-chlorine dosing unit : 5 (including 1 spares)

Power source : 1^{ϕ} 220^V

Confirmation of consumption of chlorine
 Calculated maximum consumption of chlorine per day is:

Pre-chlorine dose 41.6 kg/day x 24 = 998.4 kg/day Post-chlorine dose 12.4 kg/day x 24 = 297.6 kg/day

Total

1296.0 kg/day

3.7 - 141

Maximum quantity of natural evaporation of chlorine from a single cylinder is approximately 7.0 kg/hr. Accordingly, 8 cylinders in parallel are sufficient for chlorine supply without using evaporator. Since the charged quantity of chlorine in an 1 ton cylinder is 1,000 kg, the total capacity of 8 cylinders to supply chlorine is calculated as:

1000 kg x 8

= 6.17 days1296.0 kg/day

So the duration of one charge batch is approximately 6 days.

For an ordinary chlorine dosing is estimated as:

Pre-chlorine dose	16.8	kg/day	x	24	=	403.2	kg/day
Post-chlorine dose	8.4	kg/day	х	24	=	201.6	kg/day

Total

604.8 kg/day

Eight of 1 ton cylinder supply the gas for:

1000 kg/cylinder x 8 cylinders / 604.8 kg/day = 13.23 days Thus, the exchange of cylinders is done every 13 days.

5. Chlorine gas storage

Chlorine gas for minimum 30 days of operation should be stored. The required number of chlorine gas cylinders is:

604.8 kg/day x 30 days = 18,144 kg

Calculated number of cylinders is 19 (as 1 ton cylinder). By adding some margin to possible variation of operating condition, total quantity of 1 ton cylinder is 22 including 8 under operation.

6. Pump capacity of pressured supply water for chlorine dose The water supply capacity requested to the chlorine dosing unit is:

	Quantity of water	Pressure of water
Pre-chlorine dosing unit	208 l/min•unit	4.8 kg/cm ²
Post-chlorine dosing unit	72 l/min unit	4.9 kg/cm ²
Total	280 l/min	4.9 kg/cm ²

Necessary quantity of water supply per 1 line is taken as the capacity of full operation of each one unit of prechlorine dosing unit and post-chlorine dosing unit at a time. Then, the specification of pressured water supply pump is defined as:

Type : Centrifugal volute pump

Discharge capacity : 280 l/min + 70 l/min (elevated tank) = 350 l/min

5

Discharge head : 60 m

.

Quantity : 8 (including 4 spares) Motor : 3^{ϕ} , 380^{v} , 50^{HZ} , 7.5^{kw} , 50^{HZ}

B. Chlorine gas neutralization unit

Capacity of chlorine gas neutralization unit is specified as 500 kg/hr. The specification of the unit is: Type : Packed column gas-liquid contact (2 column system) Chemical: 15% NaOH soln.

Storage tank : $16 \text{ m}^3 \times 1 \text{ tank}$

NaOH circulation pump : 450 l/min x 15 m x 2 units

3 ø, 380 V, 50 Hz, 3.7 kW

Exhaust blower for neutralization : 45 $m^3/min \times 175 mmAg \times 175 mmAg$

2 units

3 ø, 380 V, 50 Hz,

3.7 kW

Chlorine gas leak detector : Type : Diffusion

semiconductor type

Power source : 1ϕ , 100 V

Quantity : 6 sets for

chlorine cylinder room

4 sets for

chlorine dosing room

- c. Aluminum sulfate feeding unit
- 1. Design specification
- 1) Water quantity to be treated

Maximum quantity $25,000 \text{ m}^3/\text{day} \times 4 \text{ lines}$

 $= 100,000 \text{ m}^3/\text{day}$

2) Aluminum sulfate feeding rate (13.0% Al_2O_3 solid

aluminum sulfate)

Maximum 60 mg/1

Average 40 mg/l

3) Feeding point of aluminum sulfate

Mixing basin

4) Control method of feeding rate

Manual control

2. Determination of aluminum sulfate feed rate

Solid aluminum sulfate contains 13.0 % of alumina. The feed of aluminum sulfate is carried by preparing 18% solution of the solid aluminum sulfate.

 $q = Q \times S \times \frac{100}{c} \times \frac{1}{r} \times \frac{1}{1000} \times \frac{c_2}{c_1}$

where q = feeding rate of 18% solid aluminum sulfate

solution (1/day)

Q = water quantity to be treated (m³/day)

8

S = feeding ratio of 18% aluminum sulfate solution
r = density of 18% aluminum sulfate solution
c = concentration of solution (%)
c₁ = net content of Al₂O₃ : 13.0%

 $c_2 = standard content of Al_2O_3 : 15.0%$

Feeding rate	Maximum	Average
Water quantity to be treated	60 mg/l	40 mg/l
25,000 m ³ /day	8.8 m ³ /day	5.9 m ³ /day
100,000 m ³ /day	35.2 m ³ /day	23.6 m ³ /day

3. Capacity of individual equipment

1) Storage of solid aluminum sulfate

The total storage capacity is selected to 30 days. 100,000 m³/day x 60 mg/l x 30 days x 10^{-6} x $\frac{15.0}{13.0}$

= 207.7 t

Adding a margin to fluctuating water quality,

 $207.7 \pm x 1.2 = 249.2 = 250 \pm 100$

the storage quantity is selected to 250 tons.

2) Dissolving and dilution tank

Capacity of dissolving and dilution tank is selected as

2 days.

Capacity of tank^{*}: 17.6 m³/tank x 2 tanks x 2 days = 70.4 m³

Number of tanks: 17.6 m^3 /tank x 2 tanks are under operation

17.6 m³/tank x 2 tanks are for next day operation 17.6 m³/tank x 2 tanks are under

dissolving operation

 $17.6 \text{ m}^3/\text{tank} \ge 2 \text{ tanks are for spare}$ Then, the total necessary number of tanks is 8 of 17.6 m^3/tank .

 $^{\circ}$: with a slight margin, the capacity is selected to 18 m³/tank.

Dimension of tank: 3.6 m width, 3.0 m length, and 2.2 m height (effective water level is 1.7 m)

4. Aluminum sulfate feeding pump

Required discharge capacity of aluminum sulfate feeding pump is 8.8 m^3/day .

Type : Diaphragm metering pump Discharge capacity : 6.12 l/min

3.7 - 148

Motor : 0.4^{kw} , 3^{ϕ} , 380^{v} , 50^{Hz}

,

Quantity: 6 (including 2 spares)

11

ATTACHMENT 8

ELECTRIC MOTOR LIST

		е Пе	4 0	 ե	ช บ	۲ ۱	Ю	ว. ช	D D I	ជ ខ ម	գ	ר ני	t	1/4			1
No.	Name of load	Rating/ Unit(XM)	Quantity (spare)	Vol t- age (v)	Err. (7)	Pr (pl)	Is T (V) P	Total PO(k#)	l nout Pl (k#)	input P2(XVA)	l nput P3(kVar)	Demand Factor(B)	lnput PA(kT)	input PB(XVA)	Input PC(kYar)	Load For E.G	Remarks
	Flash Mixer	2, 30 5, 3	-7	380	ŋ. 33	0. SS		22.00	25.00		15. 49	0.9	22.50		i3. 34	0	
0	Studge Scraper	1.50	60	380	0. 31	0. 32		12.00	14, 81	1	10.34	9. 9	13.33		3 .31		
с С	Floor Drain Pump of Conguration and Sedimentation Basin	0.75	4(4)	380	0. 78	0.75		3.00	3. 35		3.40	0.5	1. 93		01.1		
দ	Tashiag Blover	45.00	4(4)	330	0. 91	0.39		180.00	-197. 80		101. 34	Q. S	98. 90		50.67		
ີດເ	Air Valve	0.40	50(4)	330	0.71	0.71		8. 00	10.39		9. 44	0.5	5. 20	:	4. 72		
ف	faiet Vaive	0.40	20(4)	380	0. 77	0.74	÷	3.00	I 0. 39		9. 41	0.5	5. 20		4. 72		
6	fash Outlet Gate	0. 75	20(4)	380	0. 78	0. 75		15. 00	19. 23		· 16.96	0.5	9.62		8. 48		
ω	Tashing Valve	0.75	20(4).	380	0. 78	0. 75	- <u>-</u>	15. 00	19. 23		16.96	0. 5	9. 62		3. 48 8	~	
თ	Automatic Flor Control Valve	, 40 0.40	20(4)	380	0. 77	0. 74		8. 00	10.39		9. 44	0.5	5.20		4. 72		
10	Orain Vaive	0, 40	20(4)	380	0. 71	0. 74		8. 00	10. 39		9. 44	0.5	5.20		4. 72		
=	Outlet Valve	0.40	20(4)	380	0. 77	0. 74		8.00	10, 39		9.41	0' S	5. 20		<i>i</i> .72		
13	Floor Drain Pump of Filter Basin	0.75	4(4)	380	0. 78	0. 75		3.00	3.85		3.40	0.5	L. 93		1.70		
13												:	•			-	
۲ ۲									<u> </u>								
	•					Is:SU	arting	s:Starting Current		PA=PI × B							

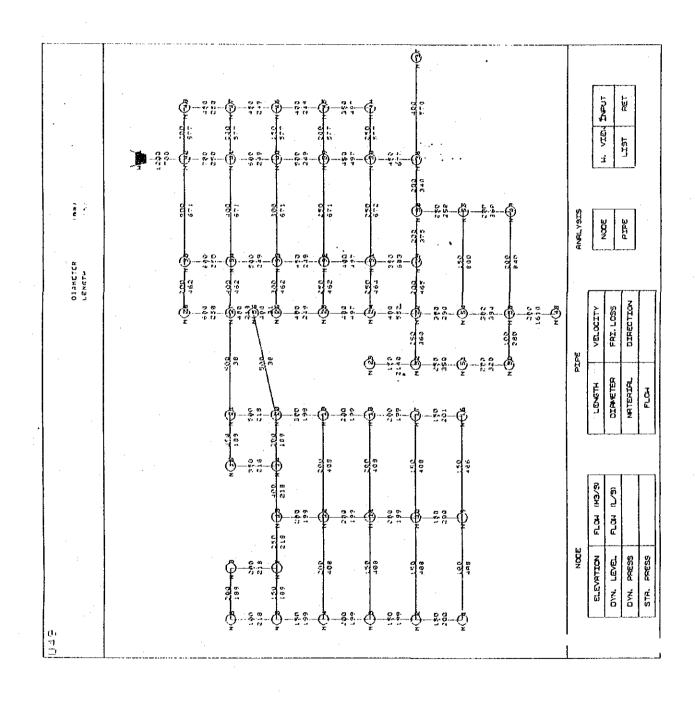
PA=PI × Ø PG=P2 × Ø PC=P3 × Ø

1 Lifting Pump 2 Mater Pressure Booster Pump 3 Floor Drain Pump of Treated Mater Reservoir 4 Studge Disposal Pump 5 Floor Drain Pump of Drar-off Mater Reservoir 6 Drar-off Mater Reservoir 7 T	Lifting Pump Mater Pressure Booster Pump Floor Drain Pump of Treated Mater Reservoir Siudge Disposal Pump Floor Drain Pump of	18.50	(spare)	Volt- age(v)	Err. (r Cg	IS Total (A) PO(kT)	Input P1(kT)	laput P2(kVA)	Input P3(kVar)	Demand Factor(3)	Input PA(KW)	Input PB(KVA)	[nput PC(kVar)	for E.C	Restarks
	Booster Pump Mp of Treated Kater Reservoir [Pump	•	3(4)	38	0.31	0.87	148.00	162.64		92. 17	6.0	1 46. 38		82.95		
	mb of Treated Water Reservoir Frump Poin of	7.50	4(1)	38	0.88	0.88	30, 00	34.09		18.40	0.9	30.68		16.56	0	
······································	l Puesc I Poisce I of	0.75	4(1) -	380	0. 78 0	0. 75	3.00	3.85		3.40	. 0. 5	1.93		1. 70		
	an of	3.70	4(4)	380	0.86 0.	ß	14 80	17.21		10.60	0.5	8.61		5.30		
	Draw-off Rater Reservoir	0.75	4(4)	38	0, 78, 0,	. 75	, 03 	3.85		3 40	0.5	1. 93		1.70		
2				 • .				-								
											:				-	
8		~														
თ							1					•				
0				<u> </u>												
		· ·													:	· .
12			<u> </u>	· · · · ·		· · · · · ·							•			-
13				 							•					
4						<u> -</u>		•								

÷

		Pacinz/		<u> </u>			[s]	Total	Input	lnput				Input	Input	- Daol	
ę	Name of load	Unit(KW)	(spare)	age(v)	<i>a</i>	Ca)	3	PO(KX)	P1 (KN)	P2(KVA)	P3(kYar)	Factor(3)	PA(kT)	PB(KVA)	PC(KVar)	for E.G	Remarks
-	Chlorinator(pre)	3. CO	4(1)	380	0. 35	0. 30		12 00	14. 12		9, 00	0.9	12 71		° 8.10		
~	Cutorinator(post)	3.00	4(I)	380	0. 35	0. 30		12.00	14.12		6. 00	0.9	12.71		8. 10		
. ຕ	Chain Noist	3,00 0,75	— —	ន្តន្ត	0. 35 0. 78	0: 30 0. 75		3, 00 0, 75	3.53 0.96		2,65 0,85	0.5 0.5	1. <i>77</i> 0. 48		1. 33 0. 43		
4	Coastic Soda Solution Recirculation Pump	3. 70	1(1)	380	0.36	0. 35		3. 70	4.30		2,55	6.0	3.87		2 39	0	
ഗ	Chlorin Exhaust fan	3.70	1(1)	380	0. 36	0. 35		3. 70	4. 30		2.66	0, 9	3. 87		2.39	0	
G	Chemical Drain Pump	0. 75	1(1)	380	0. 78	0. 75	·	0. 75	0.96		0. 35	0.5	0, 48		0.43	·	
4	Automatic Dumper	0. 20	2	380	0.63	0. 67		0.40	0.63		0.70	0.9	0. 57		0.63	0	
ß	Alum Suifate Solution Doseing Pump	0 [.] 10	4(2)	380	0 . 77	0, 74		1. 60	2. 08		1. 89	0.9	L. 87		1. 70	0	
თ	Alum Suifate Solution Agitator	3. 70	4 (4)	380	0.86	0. 85	•	14.80	17. 21		10.67	0.9	15.49		9.60		•
0							·						÷				
. 1						·	· - · · · · · · · · ·										
12						<u> </u>											
ຕ 																	
-					·								\ 				

		ତ [1]	ч 0	יא ג	ଶ 0		o 日	יי ל	0 B Q	ч Д	Г s	ţ)	(4/4	\sim		
Υo.	Mane of load	lating/ Unit(KY)	Quantity (spare)	Volt- age(v)	Err. (Pf. 1: (pf) ((Is Total (A) PO(KW)	J lnput W Pl(k#)	Sut Input (f) P2(kVA)	t Inout () P3(kVar)) Factor(B)	Input PA(KT)	[nput PB(KVA)	faput PC(KVar)	Lcad for E.G	Remarks
	Liting/Ventilation Cupacity of Administration Building D/8ox	x 32.50			0.85 0.	0. 80	32	50 33.	38. 24	23.68	0.9	34. 42		25.31	0	1
N	Ouler Lighting/Receptule Capacity of Administration Building D/Box	23.00			0.85	0. 80	23.00	00 27.06	09	20.30	0.5	12.53		10. 15		
e	Ventilation Capacity of York Shop D/Box	6. 00	1		0.85	80	<u>ن</u>	.7 . 00	7.06	5. 30	0.9	6. 35		4.77	O	
4	LightnerRecoptacto Cupacity of York Shop D/Box	11.00			0. 35 0.	90	11.00	00 12.94	94	9.71	0.5	6. 47		4. 86		
S	Lighting Ventilation Curacity of Chemical Building D/Box	33. 00			0.85 0.	8	33.00	38.32	32	- 29. 12	0.9	34. 94		26. 21	0	
G	Receptacie Capacity of Chemical Building D/Box	00 6			0.85	0.80	3, 00	0 10.59	28	7. 34	0.5	5. 25		3.97		
2	Ventilation Capacity of D/Box around Ra* Water Reservoir	15.00			0.85	0.80	15.00	0 17.65	65	13.24	0. 3	15.89		11.92	0	
ω	Lighting/Outer Lighting/receptacle Capa of D/Box around Rav Rater Reservoir	42.00			0.85 0.	ß	42 00	0 49.41	41	37.06	0.5	24. 71		18.53		
ິ	Ventilation Capacity of D/Box around Filter Basin	15.00	·	0.	82 0	8	15. 00	0 17.65		13. 24	0.9	15.89		11.92	0	
0	Lighting/Outer Lighting/recoptacte Capa of D/8ax around Flter Basin	44.00			0.85 0.	- <u>8</u>	44. CO	0 51.76	16	38.82	0.5	25. 88		19.41		
	Ventilation Capacity of D/Sox around Treated Rater Reservoir	6 00			85 0.80		00 6 	2	23	1 94	6 0	9, 53		7. 15	0	
12	Lighting/Outer Lighting/receptacle Capa of D/Box around Treated Water Reservoir	51.00			2 8		51.00	0 60 0	8	55 8	0.5	30, 00	:	22. 50		
ញ	Lighting/receptacle Capacity of D/Bux around Sludge Drying Bed	00 :11		<u> </u>	5 8	: 	11.00	12.	94	3.71	0.5	6, 47		4 . 86		
					· .		•		•		- - -		· · · ·		1	-
)						ls:Star	ls:Starting Current		PA=PI × B PB=P2 × B							


PB=P2 × Ø PC=P3 × Ø

4

ATTACHMENT 9

HYDRAULIC CALCULATION OF TREATED WATER DISTRIBUTION NETWORK

٤.

3.7-156

i Arigution

	a a a a a a a a a a a a a a a a a a a	0.00	0.00	ຍ. ວອ	0. 00	00.0	00.0	9. CO	0.00	00.0	0.00	0.00	0 - 0 0	0. 00	00.00	00.0	a. co	00.00	0.00	0.00	0.00
	LUES LAN	0.36 11	0.90 12	1.70 12	0.85 µ2	64 10 1 1	ក្ម <u> -</u>	2 0 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	0.03 1.2	0.0712	1.94	21 21	ง 5 10 10	1.06 1.0 1.0	1:07 1:07	1. 6. 1. N.	1.42 1.2	C.35 L1(2.60 12	0.24 110	0 - 28 I 10
		1.19	ր Մ Ծ	۲- ۵. ۵	0 8 0 0 8 0	1.00	ม - 1 0	1.12	G. 21	0.21	0.5£	0.66	0.59	Q.51	68 ° D		1.05	0.S1	1.46	0.62	0 2 2
	1 1	1. UU4 14	0.0117	0.0165	0.0240	0.10.0	0.0063	0.0140	0.0063	0.0063	0.0045	0.0113	0.0100		0.0267	0.0230	0.0316	0.0253	0.0459	0,0775	0.0529
- 11974	r	780.8	200.0	С Б. Б.	19.0	19.0	215.0	189.0	218.0	189.0	408.0	408.0	200.0	0 0 0	199.0	т т С С	0 0 0 1	218.0	199.0	2,18.0	218.0
- er el	- we	1200	ព ឧ ម	1 50 0	000	150	007	150	50Q 50Q	000	100	150	150	L S G	200	200	200	250	200	0 0 7	0 0 0 0
	tru:	с Ч	а С	ex ex	ах ах	α α	n ar	α Ω	er er	R R	er er	α α	ድ ແ	к К	и и	С С	a u	m H	۲ ۲	м М	ы М
	ž	U U O	с >	£ >	۹ >	۵ >	۵ >	۹ ک	۹ >	e >	۹. ح	۹ ۲	ը >	۲ ۲	> G	ณ >	ը >	- FDQ	۲ ح	DCI	DCI
		N D	++	N	म	4	۲)	ហ	æ	v		N	σ,	m	0 H	4		1-	[] 1	сл Г	रू स
1		z	Z.	Z I	z I	z	Z I	z	Z I	z	z	Z	Z.	z	z	z	z	z	z.	z	z
			N	'n	4	ى N	ശ	۲-	٢-	со СО	n On	10	เ เว ศ	י ה ה	। न	1 5 5	1 1 1	۲. ۱. ۲.	-1 (1)	। च	ा त
		3	z	ż	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z

H S T ----

															1	•					
C VALUE	20.00	29.09	20.00	20.00	20.00	20 00	20.00	18.00	18.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00 17.00	10.00	10.00	10.00	
LOSS (m)	1.51	ਦ 	G.75 1	1.23	0 6 7	4 4	<u>.</u> เก เก	ы т Т Т Т	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.01 1	0 1 1 1	н 7 0	2.90 1	1 9 9	ա Մ Լ~	 	רי ים רו		0 - 23 T	0.49 4	2
(misec)	0.62	0.64 64	Ø. 62	0 99	0.71	υ 0	ອ ອີ ເຕີ	۵ ۵	0 7 0	0.30 [°]	0 . S	. 0 1	1.21	ញ ។ •	 4 00	() บา 	চ্চ হা - T	न ल न	0. 85 0	0.98 0	
0.0H0-1-1-10 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Ø. 0195	Q. 0106	6. 010 5	0.0199	0.0214	0.0258	0 1 7 0 0	0.0245	0.0580	0.0715 0.0715	0.0529	0.1642	0.002 02	0.09 0	0.1857	ចុកនុក្ច	0.1819	ມ. 2171	0.1062	0.2769	
ר ב שיי ד שיי ד שיי ד	406.0	408.0	201.0	408.Q	0 0 0 0	700	0.001	189	0 5 5 5	38. C	189.0	17 17 17 17	, 360. C	230.0	552.0	0 ।- छ, ग	0.01N	0 0 0	218.0	250.G	
ст. П . М. М	150	150	150	202	200	200	200	00 0 0	0 0 0 0	500 100	05 6	soo	250	000	0 0 7	0 7 7	0 0 7	soc	0 0 1	éOO	
1HD	с Ц	a a	а К ,	a a	с С	α α	er er	м Г	с М	m F	(1) 1-	ิ ศ	r M	(л Н	ጠ ት-	ы Ч	и Р	ы К	m M	L G	
Η	۲ ح	10. >	۵. >	۵. >	۵ >	۹ 2	۵ >	H O O	DCI	DCI		DCI	БСI	DCI	DCI	DCI	100	DC I	н ОСН	DCI	
	ው Z	D T Z	ים דו צ	ਜ ਜ ਟ	ו- די ב	rv H Z	ທ FI Z	प स Z	m t z	ທ ເກ z	เก H Z	DZ Z	N N N N	л Ц Z	N N Z	す N Z	N N N	ч N Z	ወ እ	1- 2 7	
	ן ים ⊷+	 	 ⊱- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 00	1 00 17	ן 1 1	1 0 1	1 70 7	20	1 50 5	1 1 2	21	1 N N			1 22	ו פי עז	ו ו- וא	1 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	ו 8 1	
	z	z	Ζ	Z	z	z	z	z	z	z	Z.	Z	z	z	z	z	z	z	z	z	J

.

ø. † ⊐

ー い	20110100
_	
ա Ո	1 × · · ·

	a vérue	120.00	120.00	110.00	110.00	1000	110.00	10.00	110.00	10.20	.10.60	0.00 1	10.80	10.00	20.00	10.00	±0.00	18.00	10.00	10.00	20.00		
н С П	FRICTION LOSS LMJ	רי ני ני	0 12	л 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	н С	ы 1. 2	0 (1 (1	1. С	ო ო დ		0. N N	0.85	ם יד ס		די ש יי		ביו_ נט רט רט	ຸ ສ ເບ	1, S N 1	н т ч сл	G - 25		
	VELOCITY'	(n) (- 10	0.20	67.0	a. 69	ר- די די	F 0 - 27	ר. מ ש	4	۳.	םי עו ס	1- . . 	с с. т. С	0.90	1.10	01 01 01	ւց է- Ծ	т С ч	ם. מי	η σ	0.23		
	QUARTETY (m3. sec.	0	0.0050	0 0 1 0 1 0 1 0	0.0298	0 1117	0.0266	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0210	0.2107	G. G. GO	0.2304	טי - א בי בי בי בי	0.2541	- 680 . O	0.1622	0.0315	0.195J	0.0304	0.2121	o.oc.o		·
	HLSN01	465.0	กาณ ก	7213 7213 7213	0 7 10 7	6 9 9 9	462.0	497.0	402.0	न ग	50.0 797.0 7	0. 5 7 10	ע רט ני	250.0	0 7 0 0 0 0 0 0	570. 2	0 - 1 9	ຣິງ C	ច ា .	0 1 7	S77.0		• • • • •
•	C LD	002	200	250	250		250	400	900 0	0 10 1	400	SBO	001	فرقا	200	400	250	450	22.0	450.	200		
	I MO	a a	ίκ α	, ຕ ⊢	м Н	ო ⊢	ת וי-	ო ⊢	т Н	ся Г	n M	н С	ب ت: ع	т Ю	и К	т Ю	н М	т Т-	ክ ዞ	н 1	яя Я		
	£	0. >	> C	DCI	D D D L L D D	н С С	DCI	DC I	DC H DC	н С С	Ч С Н	н ОС Н	DCI	ГЭО	с 2	DCI	DCI	DCI	H C C	DCI	Ц С	L 	(i)
		N 22	© M Z	Z SS	ร ณ Z	ກ ເນ Z	- N 25	TE Z	N 26	ጠ Z	[~ [] Z	m Z	ທ N Z	দ গ Z	ອ ຕ z	1- M Z	1 E Z	נט דיו ב	N SN	85 2	х 4 Ю	I	0 11 15
ው ተ ጋ	. i	い マ マ	ກ N Z	ו ס ת z	ו ה ע	י דת צ	י מה צ	ו מי עו מי עו	ା ୯୦ ଅ		ן ש ג	т т М Z		1 50 70 7	1 9 M Z	1 90 2	T ທ ແ Z	I O M Z	1 31 10 2	ነ መ ଅ	ן ה ני		(Ť 0.

	ארטב/	00.	000.	00	0 0	0 0 0	00.0	00.	0 0	00.	00.	. 80	09	000	0 0	00.	. 0 0.	00	00	00	
	> 0	0 ++ - H		120 120 1	0 	0 1- 1-	120	0 +1 -1	0 =	10 17 10	0 1 1	0 -1 1	0 11 11	0 	0 	120	95 T	0 N 	0 2 1	린	
L S H	FRICTION LOSS (m)	1 0 1 0	0 0 0	10.61	- 1 - 1	0 0	ר ש. ס	- 1 - 0 - 1	न म म छि	€0 . tr	ឲ. ម	. ግ የ	ני פי ס	0.52	ת ני ס	.ά 	0.50	50 0	า เง เง	2 - 0-1 - 0-1	
	· VELOCETY • m·sec)	0. 62	-N	0 1 1	0.65	1.01	р (Ч (Э	1.10	1.02	0 ° 8 9	G. 40	с. С. С.	תי שי ס	т 0	0.96	0.94 40	0 0	ບ. ແ ມ	تى 10.0	1 0 0	
⊢-I CL	CUARTET.	0.010 0100	7672.0	0.0051	0.0517	0 2983	0.0115	M L O L O	ឆ្នាំ ភូមិ ស្តា ស្តា	0.2385	0.0201	0.0849	0.1082	0.1331	0.1518	0.0281	0.0026	8-10.0	P. 0093	0.0510	
	LEMGTH Lai	1- 1- 1-	0.0 10.0	ຍ. ເມ	פי קיים ני	ญ ม า ()	ດ ເ. ເ. ເ	671.0	250.0	517. O	577. G	4 0- 1-	כס קי לז נא	ប ភ ប ()	250.0	ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ	280.0 280.0	20.0 m m	2140.0	а́қа. а	
•	C IL.	300	10 10 10	150	4 10 10	600	200	0 0 5	00 (-	0 0 1-	250	0 0 0 0 0	0 0 7	ច ស ។	450	200	100	200	150	250	
	UNI I	<u>(</u>) Ъ-	ю 1-	Ω	n H	ч С	α α	ы Ч	ы Г	տ. Ի	т Н	m ⊢	ጠ ~	1- 1-	т Н	к К	к К	и С	K K	m H	
		DCI	DCI	0. >	DCI	DCI	0. >	DC I	DCI	DCI	DCI	DCI	DCI	I DO	DCI	<u>с</u>	ר ר	ቢ >	ն >	БСІ	
		m M	ሆ ጠ	םי 17	с) Д	5 7	1- 1-	ს ო	1 7	с Т Т	տ ո			נו די	لہ 1-	ហ ហ	n N	о N	m N	л С	
		Z ł	Z I	z ۱	Z I	Z I	Z I	Z I	Z I	Z I	Z I	Z I	Z 1	z ı	Z 1	Z I	Z I	Z 1	Z I	Z I	
<u>ال</u>		0 7	0 7	0 7	ा च	ল প	-1 -1	ע) די	4 ()	4 U	ন ন	រភ ។	4 Ֆ	1- 7	գ Ծ	ए। च	ច ស	ы С	រ ស	5	
*† _)		z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	

-

.....

- -

ľ 5

С С Т

.

iji ≂t ⊒

.

すコ	a,						н С	L L L L L L L L	L N H		
			*	071 	ОЧД. 	LENGTH Cas	QUANTITY (n.S. sec)	VELOCITY (musec)	FRICTION LOSS (m)	כ יארטב	
z	94 1	ກ ທີ່ Z	H U Q	m F	0 0 0 0	394. O	0.1012	4 10	ມ. ຄິດ ອີ	119.00	
	55 -	2 7 0	>	α α	200	360.0	. :	10.0 0	2.06	120.00	
	55 -	N 54	с >		150	800.0		ດ ເບ		128.80	. 1
z	л 56	N	0	m H	4 0 0	ы 1 1 1 2	0.1778	ע) ד +	0 . 70	110.00	
						-					
									-		
											.*
						34	-				
									5 V.		
									- 		
										-	۰.
							-				
						1					
											[
	LI U T	ហេ ប្រ	ហ					-			<u> </u>
											l

Classifier 15.1 Evention 15.1 Evention 15.1 Evention 15.1 Evention 15.1 Evention 15.1 75.0 HML 75.0 75.0 48.5 28.5 63.5 1.7.1 21.2 20.0 48.5 28.4 18.4 75.9 48.5 75.5 63.5 75.9 48.5 75.9 48.5 75.9 48.5 75.9 48.5 75.9 48.5 75.9 48.5 75.5 65.5 65.6 7 75.6 75.9 44.5 70.7 70.7 70.9 70.7 11.1 70.6 11.1 70.6 11.1 70.7 11.1 70.6 11.1 70.7 11.5 11.1 70.7 11.5	0 4 0	.]			0Z			
1 75.0 MML 75.0 MML 75.0 MML 75.0 MML 75.0 MML 75.0 <th></th> <th>ELEVATION (m)</th> <th>ESTARLISH LEVEL 'm'</th> <th></th> <th>UN- HTISFIE</th> <th>DXYRU LEVEL K</th> <th>6 10 10 10 10 10 10 10 10 10 10 10 10 10</th> <th></th>		ELEVATION (m)	ESTARLISH LEVEL 'm'		UN- HTISFIE	DXYRU LEVEL K	6 10 10 10 10 10 10 10 10 10 10 10 10 10	
1 15.1 20.0 48.5 28.5 65.6 59. 2 21.2 20.0 38.4 11.7 66.2 53. 4 35.4 20.0 38.4 11.7 66.2 53. 4 35.4 20.0 38.4 11.7 66.2 47. 5 41.8 20.0 38.4 11.7 66.2 47. 5 41.8 20.0 38.4 20.2 31.7 11.7 66.2 47. 5 41.6 20.2 30.2 31.5 61.4 33. 6 19.7 10.2 10.2 70.7 34. 7 40.9 20.0 34.5 31.5 61.4 8 49.2 20.0 31.5 31.5 61.4 8 19.7 21.5 31.5 61.4 34. 9 19.7 21.5 41.5 61.4 34. 1 25.6 20.0		ю.	אר אר	•		ю	•	
2 21.2 20.0 43.2 23.2 23.2 64.5 53.2 4 35.4 20.0 38.4 11.7 67.6 47. 5 41.8 20.0 38.4 11.7 67.6 39. 5 41.8 20.0 38.4 21.7 11.7 67.6 39. 5 41.8 20.0 37.0 70.7 54. 34. 7 40.9 20.0 21.6 11.6 70.7 24. 8 49.2 20.0 21.6 11.6 70.7 24. 9 14.0 20.0 36.6 11.6 70.7 24. 9 14.0 21.6 11.6 70.7 24. 9 14.0 26.0 21.6 34. 26.5 1 25.6 21.6 16.5 27.2 24. 1 25.2 25.1 25.1 27.5 24. 1 25.2 <t< td=""><td></td><td>ທ</td><td>20.</td><td>ю</td><td>თ</td><td>m</td><td>თ</td><td></td></t<>		ທ	20.	ю	თ	m	თ	
3 27.8 20.0 38.4 19.4 66.2 47. 4 35.4 20.0 31.7 11.7 67.0 39. 5 41.8 20.0 21.7 11.7 67.0 39. 6 30.5 20.0 27.0 27.0 70.7 24. 7 40.9 20.0 20.2 0.2 0.2 70.7 24. 7 40.9 20.0 21.6 1.0 70.9 34. 9 49.2 20.0 21.6 1.6 70.7 24. 9 14.0 20.0 31.5 96.5 91. 9 19.4 26.0 35.5 1.65.5 61. 9 19.5 21.6 21.5 65.5 61. 1 23.1 25.5 26.5 65.7 49.7 1 23.1 25.3 16.5 14.5 40.1 1 23.5 16.5 16.5 <t< td=""><td>N</td><td></td><td>Ð</td><td></td><td>m.</td><td>ব</td><td>(4</td><td>. :</td></t<>	N		Ð		m.	ব	(4	. :
4 35.4 20.0 31.7 11.7 67.0 33. 5 41.8 20.0 27.0 7.0 68.8 33. 7 40.9 20.0 30.0 20.2 0.2 70.7 24. 8 49.2 20.0 30.0 10.0 70.7 24. 9 14.0 20.0 30.0 11.6 70.7 24. 9 14.0 20.0 30.0 21.6 1.6 70.7 24. 9 14.0 20.0 31.5 65.5 61. 34. 9 19.7 21.6 1.6 70.8 25.5 61.1 1 25.6 20.0 41.6 21.6 65.2 61.1 2 33.9 16.5 16.5 66.2 55.5 61.1 2 35.1 16.5 16.5 56.2 56.2 56.2 1 25.1 16.5 16.5 56.2 56.2	ო	[-	0	ŵ	Ω Ω	۰ ف	[~	
5 41.8 20.0 27.0 7.0 68.8 33. 7 40.5 20.0 20.2 0.2 70.7 24. 8 49.2 20.0 36.0 20.2 32. 24. 9 14.0 20.0 36.0 21.6 1.6 70.7 24. 9 14.0 20.0 36.5 31.5 65.5 61. 9 14.0 20.0 46.5 31.5 65.5 61. 9 19.7 20.0 41.6 21.6 40. 26.5 1 25.6 20.0 35.3 16.5 61. 36. 1 25.6 20.0 35.5 16.5 40. 2 35.3 16.5 51.6 36. 4 35.0 50.0 36.5 16.5 40. 5 35.3 16.5 51.6 36. 40. 5 35.0 16.5 51.2 51.<	ন	י. עו	0		- -+	• [`-	σı.	
6 50:5 20:0 20:2 0.2 70.7 24. 7 40.9 20.0 30.6 10.0 70.7 34. 8 49.2 20.0 30.6 10.0 70.7 34. 9 14.0 20.0 30.6 21.6 1.6 70.6 34. 9 14.0 20.0 31.5 31.5 65.5 61. 1 25.6 20.0 45.5 31.5 65.5 61. 1 25.6 31.5 21.6 65.5 61. 2 32.1 20.0 32.5 16.5 40. 2 32.1 20.0 32.5 16.5 40. 5 31.5 16.5 51.6 35. 55. 3 35.0 35.5 16.5 55. 55. 3 35.6 16.5 51.5 55. 3 35.6 35.5 16.5 56.5 3 <td>in.</td> <td> </td> <td>Ø</td> <td>•</td> <td>· ·</td> <td>το Ο</td> <td>М</td> <td></td>	in.	 	Ø	•	· ·	το Ο	М	
7 40.9 20.0 30.0 10.0 70.9 34. 9 14.0 20.0 21.6 1.6 70.8 25. 9 14.0 20.0 21.5 31.5 65.5 61. 9 19.7 20.0 45.5 31.5 65.5 61. 1 25.6 20.0 46.5 21.6 49. 25. 1 25.6 20.0 41.6 21.6 61.2 49. 2 35.1 20.0 35.5 16.5 49. 42. 2 35.6 35.3 16.5 71.5 49. 3 35.0 50.0 36.5 16.5 55. 3 35.9 20.0 36.5 16.5 55. 4 35.3 16.5 51.2 55. 55. 3 35.3 16.5 51.5 55. 55. 4 15.5 16.5 71.5 55. 55.<	G	0	o	Ð	· ·	•	च	
8 49.2 20.0 21.6 1.6 70.8 25.5 9 14.0 20.0 51.5 31.5 65.5 61. 1 25.6 20.0 51.5 31.5 65.5 61. 1 25.6 20.0 46.5 26.5 46.2 55.5 2 25.6 20.0 41.6 21.6 66.2 55.5 2 32.1 26.5 16.5 66.2 55.5 3 35.0 41.6 21.6 67.2 49. 2 35.0 36.5 16.5 68.6 40. 3 35.0 36.5 16.5 56.7 40. 3 35.0 36.5 16.5 36.5 36.5 4 35.0 36.5 16.5 36.5 36.5 3 41.5 36.5 16.5 36.5 36.5 4 15.5 31.5 61.6 35.5 37.5 40. <	5	o	•		o.		•	
9 14.0 20.0 51.5 31.5 65.5 61.2 1 25.6 20.0 46.5 26.5 66.2 55. 2 33.9 20.0 46.5 21.6 61.2 55. 2 33.9 20.0 36.5 16.5 49. 2 35.6 20.0 35.3 12.5 67.2 55. 3 35.9 20.0 36.5 16.5 71.5 40. 3 35.8 20.0 52.3 12.5 71.5 40. 4 35.8 20.0 51.2 31.2 67.0 59. 5 41.65 31.2 10.3 71.5 40. 5 41.5 50.0 30.3 71.5 40. 5 41.5 51.2 51.2 51.2 55. 5 45.3 51.2 51.2 51.2 55.3 6 23.7 53.7 70.8 51.7	œ	σ	•		•	•	•	
B 19.7 20.0 46.5 26.5 66.2 55.5 1 25.6 20.0 41.6 21.6 66.2 55.5 2 32.1 20.0 36.5 16.5 66.2 55.5 3 35.6 16.5 16.5 66.2 55.5 3 35.8 20.0 36.5 16.5 68.6 42. 3 35.8 20.0 32.3 12.3 12.3 36. 4 35.8 20.0 36.5 16.5 71.6 36. 5 41.5 20.0 36.5 16.5 71.6 36. 5 15.8 20.0 51.2 31.2 67.0 59. 7 113.5 20.0 45.3 28.5 67.0 59. 7 113.5 20.0 45.3 28.5 67.0 59. 7 13.5 28.5 67.0 57. 57. 6 23.7 23.7 70.8 57. 57.	σ	77	. 0		-	•		
1 25.6 20.0 41.6 21.6 67.2 49. 2 32.1 20.0 36.5 16.5 68.6 42. 3 35.9 20.0 36.5 16.5 68.6 42. 4 35.8 20.8 36.5 16.5 68.6 40. 4 35.8 20.8 36.5 16.5 71.6 36. 5 41.5 20.8 36.5 16.5 71.6 36. 5 41.5 20.8 36.5 16.7 36. 36. 6 15.8 20.8 31.2 31.2 67.8 35. 7 15.5 20.0 45.3 28.3 67.8 35. 7 15.5 20.0 45.3 28.3 67.8 35. 7 15.5 31.2 31.2 55.3 57.1 57.1 9 27.1 20.0 43.7 23.7 70.8 47.7		σ,	• •	•	, n	•	ს	
2 32.1 20.0 36.5 16.5 68.6 42. 3 38.9 20.0 32.3 12.3 71.2 36. 4 35.8 20.0 36.5 16.5 71.2 36. 5 41.5 20.0 36.5 16.5 71.6 36. 5 41.5 20.0 36.5 16.5 71.6 36. 6 15.8 20.0 36.5 16.5 71.6 36. 7 19.5 20.0 31.2 66.7 40. 7 19.5 20.0 51.2 31.2 67.0 55. 7 19.5 20.0 48.3 25.3 67.0 55. 8 23.2 20.0 45.3 25.3 67.0 55. 9 27.1 20.0 43.7 23.7 70.8 51.7	. 	თ	-	•			σ,	
3 3		N	\dot{o}	•	עי	•		
4 35.0 20.0 36.5 16.5 71.5 40. 5 41.5 20.0 30.3 10.5 71.5 35. 6 15.8 20.0 30.3 31.2 67.0 35. 7 19.5 20.0 45.3 28.5 67.0 55. 7 19.5 20.0 45.3 28.5 67.0 55. 8 23.2 20.0 45.3 25.3 68.5 51.2 9 27.1 20.0 45.3 23.7 70.8 51.		ω	o.	•	∧j	•		
5 41.5 20.0 30.3 10.3 71.6 33. 6 15.8 20.0 51.2 31.2 67.0 59. 7 19.5 20.0 48.3 28.5 67.0 59. 8 23.2 20.0 45.3 25.3 67.0 59. 9 23.2 20.0 45.3 25.3 67.8 51. 9 23.2 20.0 45.3 25.3 67.8 51. 9 23.1 20.0 45.3 25.3 68.5 51. 9 27.1 20.0 43.7 23.7 70.8 47.	म म	ഗ	•	•	י. מי		•	
6 15.8 20.0 51.2 31.2 67.0 7 19.5 20.0 48.3 28.3 67.8 55. 8 23.2 20.0 45.3 28.3 67.8 55. 9 23.2 20.0 45.3 25.3 67.8 55. 9 27.1 20.0 45.3 23.7 70.8 51.7	15 1	• +-		•	Ð	-	•	
7 19.5 20.0 48.3 • 28.3 67.8 55. 8 23.2 20.0 45.3 25.3 67.8 55. 9 23.7 70.8 47.	ម្ម	ເງ	_	• +		i-	U F	
23.2 20.0 45.3 25.3 68.5 51. 27.1 20.0 43.7 23.7 70.8 47.	 	י. תו		ω	ω	, 1-	Ю	
27.1 20.0 43.7 23.7 70.8 47.	ထ	, m	Ð	វេរ	ທີ	ω	••1	•
	ت.	, (`-	, O	m	m	0	(~	
)	ŀ						

1 ัง H L NODE tu U

N.

. 0) 1/1

ស ហ ч Ю С ש. סי די

ີ. ອ ი თ

m m.

. אין . 00 00

ן -נס ים - ۱ ص 21 N [-[V] [t-- 1 - 1 - 2 t-N ₩ 01 . 10 . 00 - 1 - 1-72.1 ល់ ខាង ខាង α Ω 72 2 ר ר ט ע) יי פי 9.0 10-. Ν Ι~ . ม.1 ט ים ט ហ ີ. ເມ 30.6 ย .-เง n 54.4 い い し い ທ сų თ . Ű. щ. Э.С. Д. ት C. ት C ທ Θ •-t םי . 4 w ы 9 10 . 10 10 រីបី. ហ្គ ۍ ا ະ ເ N 1 0 ີ ຫ (-(1) σ 40.S ມ ເມ 0. ... 56.2 SG 80.8 4. T .0 .0 .0 5. 19 ហ 58.1 50.1 ט. קע. יםי י a. פס. ה פס m, ີ: ທ ភូ ក្រ い 四 σ. N ż O 0 0 O Ó Ο Ø 20.02 20.0 Ø ത O O Θ Ο O G ESTABLISH Lever Lever 20. . ס וא 000 --0 10 .. 0 N S S C 20 20. . 0 Ņ . 0 0 . 0 20 0 0 0 . 0 (V 0 m N : m ы. Т. 36.8 (-. 20 10 14 т. Эр ייז עז די ហ ហ ŋ, Ċ) 0 ក -ក 'n. ELEVATION 18 4 10 ि स ים עי עו ŵ £U ŵ Φ N m פי 0 N N N N [] [] でい tri N ი ი ი თ ម ស ត (V) (M) [4] [4] (1) 17 €~ € ወ ጠ н ต ស ស z z z Z, z z z ż z z z z z z z z z

ິ ທີ່ ເ

68. 7

ני - ו ט 49. C

ά, N 1-1-0

ы С С С С С С С

.

68. 1-1 ヤ - マ い 4 D. O

ր. Մ. Մ. נ-סי נים

1. 1. 1.

9. 1-10

20.02

tu.

Ψ.

(--M

z z (V)

(∖) [`-

N

0 N

07

G

00. 00. 00.

Ω. 0.

---መ ተ N

20.05

ם 20 20 92. O

.

си 0 Մ։ M

z

1- - I G

Ծ, 11 22

.

																	•				
10110	14. PRESSURE	9 12 12	90.4	m.	•	, m		00 7 1 10 10	00 00			-1.0	71.0	יז) ני ני	0.T-	- - - -	0.1.	7 77			
ת דוצ דוצ	w CEVEL	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1- 1-			Ø		N.			ت 1.2	Մ Մ Մ	•	ທີ່ ທີ່ ທີ	÷ •	0. 1. 1.	0 10	L 			•••
		н. С. 1 С.	א י ס	(1) -1	1.4		ω		ور. م	0	N 1- M	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(n (n	(1) (1) (1)	•	0 1 1	м. Б М	1-12			
DHMENYO.	ដ. ក៏ឧតិនិនីលិកិត (a) (a)	ው. ፕ	5 5 7	10 10 17	न ए	т о т	•	īV	ם. 10 10	70. 70. 7		ษ. ถุง ถุง		າ ເດ ເບ	ง ก ร			41.1			
	י יריי ייקר קרי ניש ייקר ייקר ייקר ייקר ייקר ייקר ייקר יי	20.0	•	ה. מ ס.	0.0 70.0	20. 5	20.0		20.0	20.0	0 70 7	20.0	20:0	20.0	20.0 20.0	20.0		20.02 20.02			
ELEVATION		ო თ რ	4 4 1	S1.7	•	ភ ភ្	0. 9	40.2	4 Մ. Մ	ក ក ស	ס ד	С Т	ч	•	_	•		9.0 0.0		 	<u>ព</u> ល
		ि ग Z	д Ч	47	च	ন ণ Z	ব			ч	А	2 Z	۲ ۲۵	6	មា ស Z	х Ф Ф	ທ ທ z	ወ ይ Z			Ē T L

.

•

•

;]	W. PRESSURE	67.2	6 6 9	22.0	0 22 0		54.5	ы 0 0	ณ 4 เง	97.0 97.0	92. 0	ი. ი.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•.				
		0 0 10	9.0 33.0	63.2	ຍ. ຍ.	68.6 6	56.1	S3.1	 ហ ស	65.S	60.8	ק ע.	ים ר- ים						
	SHTISFIED	ד ים א	1 0.0 .0	n N	÷ .	i •	i •	1 . 1 1 . 1	•	11.5	00 (-	00 ++	21 . u			•			
	N PRESSORE N PRESSORE	7 77		N ₩		1 - 1	ณ 17 17	1 0E	35.2		03 17 10	26.8	ໝ ຕ						
•	ESTABL CSH LEVEL	15.0	15.0	, 15. Ø	ທ			15.0	០ ទ ម	15.0	15.0	15.0	15.0						
-	LEVALTON CUTANELON	เม	 0	01 - 0 0	: ·	•		m	÷ ,	ອ ອ ອ ອ ອ	30.0	א ו- א	ທ ເວີຍ ເອີ					- i	ा र ज
նի Ռ		Q Qi	6 1	€r 2	63	प 9	ى م	e e	۲- س	0 U	0 0	0 L-	71 -					: : :	n T N
		Ξ	z	z	z	z	z	z	z	z	z	z	z	1					


3.7-165

9501

ATTACHMENT 10

HYDRAULIC CALCULATION OF DRAW-OFF WATER DISTRIBUTION NETWORK

·

	•																				
ม (r. 1901 1907 1901 1901 1901 1901	0 6	ан 1 Ю	1- 1 84		10 (- M		10 13 13	-1 61 101	መ ማ 0]	0 6 6	ጣ ጣ 10	-7 - -7	ф. 07	1.1 1	0 %	1979 - 17 1779	174) 170	lin M Vo		(Гр 190 7	
0.1 196 225 2468 2.1- 2467 2467 247 247 247 247 247 247 247 247 247 24	С М Г-				1 7 10	ר ים ים	(- .0		0) 19 19	יםי יים	ጫ ማ ማ	79 •79 •10	'ወ ነን 'ወ	ጣ - 'ወ	ரு. 1- 19	7) 90 "D	ч Т	יםי די ים	т ю Ф	ry . 1-	
C U L		O M M	m	6. G	6 . T T	() ()		÷	2	1 1 1 1 1			ы Ф	す。のて	0) 	6 11	ነው ማ ማ	30, 1	6 6	17 150 101	
	0.0	07 197	の ・ イ フ	ው . ይ	17 97 193	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10.01 10.01	N . N	1 · · · · · · · · · · · · · · · · · · ·	10 17 7	-1 -7 7	<i>ው . ው</i> ጥ ጥ	в) М М	7 · 90	<i>.</i> М	ф) 'ю Гј	80 09 7	*** ** *T		1.01	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 mm - - 		0.51	2	0 9	0.47	£	0.61	15.0	2	15.0				13.0	0 · 6 1	0 : 5 7	15.0		0.9	
ELEVALION (M)	0 M 1	1.21	9.7.9 N	5	7 . 0 M		89. W	\$`Q7	()	0.7	1- 0-	19 10 11	1 . 2 M	ም ማ ጠ	0.9 M	い - ブ フ	19.00 1	5.81	N. M N		1 1 1
	-	٦	N	m	т	ம	'n	1.	Ø	g)	10	11	NJ I	ጣ -1 7	7	HC) ~4	те Т	P-	0	o,	PAGF
	2	z	z	z	z	z	7	z	z	z	z	Z	z	z	z	z	z	z	z	z	ļ

Í

⊦ IJ

	1	2 10 0 12 /			
Z ONE 4-1	בר אי החרי המרי הי הי הי הי הי הי הי הי הי הי הי הי הי	ա թե ենտե Հետ Հետ Հետ Հետ Հետ Հետ Հետ Հետ Հետ Հ	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		ш Ф Ф ЭЭЭ ЭФЭ ЭФЭ ЭФЭ ЭФЭ ЭФЭ ЭФЭ ЭФЭ ЭФ
31.2	±5.0	C t M	22.0	68.2	00
Э с . ө	15.0	עי י רא רח	10 	ր Մ Մ	9 6
6.S	15.0	ນ 1- ນ	םי רא רא	54 J	ເນ ຊະ ຊະ
14.0	15.0	ጥ 10 1	6.0M	ចាំ គ្នា ហិ	ល ភូមិ ល
ם. 15	15.0	4 10 10		61.0	1.50
20. 70. 7	15.0	т. С. Л	רא ה ע	[- ស ហ្វ	עי נ- די
םי ה רא	15.0	ო ო	n N N	տ ա	7 10 7
بہ 10 10	15.0	ר- נע ח		ব দ ৩	ო თ
י- עו ד	1 S. 0	t- t- N	г. С	0	
•	1S.0	לי נו וו	1 10 10	ר- ים נא	נ- ים ים
15.1	15.0	գ ն. Մ		61.S	58. 0
17.4		ໝ • •	ເນ ີ່ ເບ		Ю
26.0	15.0°	ם. קס.	•	66.6	• -
32.2 ₽	15.0	ອ. ອ.	•	69.1	ci.
(n. -)	15.0	ເນ ເນ ເນ	ທ 	0. 0	t - ហ ក្
ц п п	15.0	27.6	12. e	טי 1-	00 51 (V
ю 	15.0	5 0. 8	35.8	57.1	
18.J	15.0	 ন ব	₹~ . £	63. Q	(- ອີນ
20.6	15.0	ហ. ភ្	28.3		52.4 1
92.0 1	15.Q	37.1	22.1	64.1	41.0

I

NODE LIST

				NUDE		
	ELEVATION (m)	ESTABLISH LEVEL (m)	N. PRESSURE IN. PRESSURE	SATISFIED SATISFIED	DYNAMIC W. LEVEL	RECENTION RECENTION RECENTION
Z 4	т 80 07	15.8	32.2	17.2	70.5	34.6
N 4	ው. 7 7	15.0	26.2	11.2	70.7	28.4
N tr Z	51.7	15.0	20.0	5.0	71.7	21.3
m v Z	19. 19.	19.0	45.2	30.2	0 1.0	
Z 4 1	21.5	ы 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0.0	28 ¢	65.1	ស . ប្
Z 40	83.2 8	ю ч	ন ন দা	ч Сі ч	ר בי בי ג	መ
Y V V V	46.2	.0 .0	1- 0 0	с. с.	68.9 9.9	97.8 8
1-4 1-4	46.S	ي. ۲۹. ۵	22.6	- Q	69.1	26,5
Z 4 00	ຊສ . ສ	15.0 15.0	15.7	0	6 8 9	19.8
Z 4 0	15.0	15. Ø	4 ທີ່ ເບ	30 ę	62.5 62.5	
ຍ ຮ z	16.2	15.0	4 0.0	30.6	81.9 0	56.8
ក ភ1	19.5	15.0	44.0	23.0	ម ភូ.ស	53 S
Z 25 Z	ע •	15.0	42.9	27.9	д д.	ស មូ មូ
n S N	4.0	15.0	48.5	33. G	52.5	5 5 9
	4.0	15.0	49.7	щ41	53.7	0 61 9
N 55	4	15.0	51.1	36.1	55.1	69.0
םי כני ע	ю 9	15.0	50.1	35.1	\$6.4	ו- ש ש
L- S Z	20.4	15.0	44.6	29.6	65.0	52.6
89 10 11	4.0	15.0	50.4	ы 95.4	54.4 4.4	ດ ຜູ
N 59	4.0	15.0	46.9	31.9	50.9	69.6
Ū.	AGE 3 44				-	

NODE LIST

1040 040

Curvention ESCREPT N. Presender N. Pre							
5.8 15.0 41.3 26.3 47.2 6.1 15.0 33.3 18.5 39.4 51.0 15.0 17.5 2.5 68.5 51.0 15.0 17.0 2.7 58.5 51.0 15.0 16.7 1.7 67.7 18.5 15.0 38.9 23.9 68.0 51.0 15.0 38.9 23.9 68.0 23.0 15.0 38.9 23.9 57.4 18.5 15.0 28.3 13.3 51.3 39.0 15.0 28.3 13.3 51.3 39.0 15.0 21.7 55.2 55.5 39.0 15.0 21.5 55.5 55.5 30.8 15.0 27.4 25.4 68.2 30.8 15.0 37.4 25.4 68.2 30.8 15.0 37.4 25.4 68.2 30.8 15.0 37.4 25.4 68.2 30.8 15.0 37.4 25.4 68.2 <		u~ 3 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1-2-1- - 1-2-1- - 1-2-1-2-1-2- - 1-2-1-2-1-2-1-2-2-1-2-2-1-2-2-1-2-2-2-2	ជ ក លខ្ល ប្រ	LEVE LEVE	~0. PO,
6.1 15.0 33.3 18.3 39.4 51.0 15.0 17.5 2.5 68.5 51.0 15.0 17.8 2.0 68.6 51.0 15.0 15.0 16.7 1.7 67.7 51.0 15.0 16.7 1.7 67.7 67.7 51.0 15.0 38.9 23.9 57.4 1.7 23.0 15.0 38.9 23.9 57.4 1.7 23.0 15.0 28.3 13.3 51.3 51.3 39.0 15.0 28.3 13.3 51.3 51.3 39.0 15.0 25.2 10.0 64.0 39.0 15.0 27.4 10.0 64.0 30.1 15.0 37.4 22.4 68.2 30.1 15.0 37.4 22.4 68.2 30.1 15.0 37.4 22.4 68.2 30.1 15.0 37.4 22.4 68.2 30.1 15.0 37.4 28.2 58.2 <td></td> <td>•</td> <td>ю.</td> <td></td> <td>υ</td> <td>•</td> <td> -</td>		•	ю.		υ	•	-
51.0 15.0 17.5 2.5 68.5 51.0 15.0 15.0 15.7 2.0 68.6 51.0 15.0 15.7 1.7 67.7 67.7 18.5 15.0 38.9 23.9 57.4 23.0 15.0 38.9 23.9 57.4 39.0 15.0 28.3 13.3 51.3 39.0 15.0 28.3 13.3 51.3 39.0 15.0 28.3 13.3 51.5 39.0 15.0 21.5 6.5 55.5 38.0 15.0 27.4 28.3 51.5 30.8 15.0 27.4 28.5 55.5 30.8 15.0 37.4 22.4 68.2 30.8 15.0 37.4 22.4 68.2 30.8 15.0 37.4 22.4 68.2		•	د. ا		ω	Г	6.9 6
51.6 15.6 17.8 2.0 68.0 51.1 15.0 15.0 16.7 1.7 67.7 18.5 15.0 38.9 23.9 23.9 57.4 18.5 15.0 38.9 23.9 23.9 57.4 23.0 15.0 38.3 13.3 51.3 51.3 39.0 15.0 25.3 13.3 51.3 55.2 39.0 15.0 25.3 10.2 55.5 55.5 30.8 15.0 27.4 22.4 68.2 55.5 30.8 15.0 27.4 22.4 68.2 55.5 30.8 15.0 27.4 22.4 68.2 55.5 30.8 15.0 27.4 22.4 68.2 55.5 30.8 15.0 27.4 22.4 68.2 55.5	1		s S		- 1	ω	22.0
S1.6 15.7 1.7 67.7 13.5 15.0 33.9 23.9 57.4 23.6 15.0 33.9 23.9 57.4 39.0 15.0 28.3 13.3 51.3 39.0 15.0 25.0 16.2 55.2 38.0 15.0 25.2 10.2 6.5 38.0 15.0 25.2 10.2 6.5 36.1 15.0 25.2 10.2 6.5 36.1 15.0 27.4 22.4 68.5 36.1 15.0 37.4 22.4 68.2	1	स	ы	•	•	ω	22.0
18.5 15.0 38.9 23.9 57.4 23.0 15.0 28.3 13.3 51.3 51.3 39.0 15.0 25.0 10.0 64.0 55.2 38.0 15.0 25.2 10.2 64.0 30.8 15.0 27.4 55.2 55.5 30.8 15.0 27.4 25.4 68.2 30.8 15.0 37.4 22.4 68.2 30.8 15.0 37.4 22.4 68.2	1	• स्न	۰0	•	•	I~	22.0
23.0 15.0 28.3 13.3 51.3 51.3 18.5 15.0 36.7 21.7 55.2 39.0 15.0 25.0 10.0 64.0 38.0 15.0 21.5 6.5 55.5 38.0 15.0 21.5 6.5 55.5 30.8 15.0 37.4 22.4 68.2 30.8 15.0 37.4 22.4 68.2		თ	۲ı	•	ო		ល . 4 . ល
18.5 15.0 36.7 21.7 55.2 39.6 15.0 25.6 10.2 64.0 38.8 15.8 21.5 6.5 55.2 30.8 15.8 27.4 22.4 68.2 30.8 15.8 37.4 22.4 68.2 30.8 15.8 37.4 22.4 68.2		m	ហ	•	m.		50. 0
33.6 15.0 25.0 10.0 64.0 38.0 15.0 21.5 6.5 55.5 37.5 15.0 27.4 22.4 68.2 30.8 15.0 37.4 22.4 68.2 30.8 15.0 37.4 22.4 68.2		ω.	ы.	ю.			רי איד וא
38.6 15.0 21.5 5.5 37.5 15.0 25.2 19.2 36.8 15.0 27.4 22.4 57.4 22.4 68.2 6.5 57.4 22.4	ω	σ	۲,	М	0	•	0.7 M
37.5 15.6 25.2 18.2 62.7 30.8 15.8 37.4 22.4 68.2 37.4 22.4 68.2		00	in i	H	•	•	3S. Ø
30.8 15.0 37.4 22.4 68.2		• 1-	ы N	in i	G	N	99.5
		С	ທ	i.	Ň	ω	4 1. N

х Ц							
t J	0 T	다. 주·소					

ſ

	·																						
	BUDAU (20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	.a. oa	20 00	0.80	20.00		
					 1_							- 1-	- 51-		-1	<u>_</u> 1		N H-		N 	₩		
	ία Luc	0 M	15	.50	t- קו	Г~ М	ω	ч ©	N N	E H	ម: ស	л Ю	1- 	ים שי	61	С Б	10 N	N N	Ы Г.	ល ល	5 N	·	.:
了 ——	FRICI LOGO LOGO	- T	Ø	Ø	O		Ø	1	D.	Ø	o	Ø	Ø	Ø	5	Ø	स्त	D	۰ ۲	G)	D		
L	С. Ц С. С.	£ €	n H	ю N	រា ក	য় ম	ጠ N	4 0	N N	ि त	00 +1	61	4	1	8 2	N 4	4	ጠ እ	ц П	40	N N		
Ŀ	VELOCITY (m.sec)	Ø	Ø	0	e O	Ø	0	0	Ø	Ø	.0	ø.	0	0	Ø	Ø	Ø	Ū	Ø	; ©	Q		\
1 1 1 1	·	۰ ص	m	ю	[n	.0	í		m			m	ъ.		10	ω	Øı	6	N	் ம		,
l	н о 14 ф Н б	E T T	000	000	000	0000	0000	0008	001	0008	1000	0004	0003	000	0000	0005	000	001	0010	S D	0		
	QUHRITIT (m3 sec	6	Ю	0	0	0.0	0.0	0	0.0	0. 0	0	0.0	0	D	0	0	6	6	0	Ø	0 0		
	<u> </u>	D	Ø	Ø	0		G				67		-									{	
	±	00.0		م	0. 55	90°.06	0 0 0	9 9	С С	С б	0 0	С Ю	0 0	ი ი	0 0	ເຊ ເບ	0 5 5 5	28.0	ເວ ກ	ω Ω	0		
	1979 1970 1970	0 0	200	ው. ተ	ਯ ਦ	4 1	0 (V)	(- स	20	[- ++	4 00	4 0	202	ত ব	661	4 0 0	თ ქ	N N	ה ה ר	5	5		
	á ĉ	D	0 0	Ø	Ø	0 0 0	ខ្មា	O	Ŋ	ហ (~	o	20 20	50	ø	Ø	Ø	Ø	0	50	0	ា ហ	:	
	C I I I . B I I I .	40	ហ	N.	ហ	U)	ហ	ហ	{-	ι~	L)	ហ	ю.	N	ហ	ы Ч	ິ	1 00	n U	100	Υ.		
					·								:										
	0	к К							α α	α α								к К		<u>к</u>			
	рити																						L
		ы С							1 >	a >								۵ >		ר ב			ιĐ
		N	1	N	m	ব	S	່ທີ	<u>س</u>	u.	 ++	N	መ		10	4			N	ო	प		ų , ,
		ব Z	z	z	z	z	z	z	z	z	z	z	z	Z	T Z	ź	ਜ ਟ	z	ਜ z	ਜ 7	 		ų
		1	1.	1	-	1	1	1	1	,	-	1	-	1	1	2 1	ے ۱	د ۱	ے۔ ۱	Z I	Z I		Ű
		ы	N	m	ব	S	v	۲۰	t~	œ	თ	10	Г С	11	++ ++	N ∺	12	т М	ຕ	4	15		D U U U U
: .		з	z	z	z	z	z.	z	z	z	z	z	z	z	z	z	z	z	z	z	z		
																						-	

e externe

								ſ	· · · ·	· · · · · ·	!		·	r		· · · · ·				·		1
	VALUE	0	00	0 0	0	00	0 0	00	00	0	00	00	0 0	00	0	8	00	00	00	00	00	
	1	8	20.	0 N	20.	20.	Ø	0 17	20.	20.	20.	20	Sø	20.	Ω ⊳	20. 20.	Ö	20.	20.	0.	Ø	
			<u></u>				1	<u> </u>			- 4-		!	- 1-			_₩	- 5-1	<u> </u>		(V) [H]	
┞━	TLON (m)	רי י-ז	8	M. M	0	00 00	ጠ በ	ω	m m	ማ ሆ	0) 7		-1 م	4 1	τ-1 00	N N	ו- ש	0 N	्रत्तन स्तन	р	ו- ה	
ហ	FRICTION LOSS (m)	Ø	Ø	Ø	1	Ø	-		Ø	Ø	Ø	Ч	গ	Ø	ທ	Ø	4	N	ю.	•••1	G	
 -		ญ	[n	N	<u>מ</u>	- ন		r-		מי	ω	0	ω	ص	2			ω	v		4	
	ELACITY	N.	Ņ	N	Ņ	্য া	۳.	w	ភ ហ	S.	m T	ω.	ው.	н •	თ •	7 00	ŵ	~	<u>ज</u>	Г. -	v	
ш Q	<u>۽</u> آو		D	O	Ø	ίΩ)	D)	0	Ø	0	CD.	Ø	Ø	Ø	Ø	63	0	Ø	Ø	Ø		
н	> ~	-7	-7	G	ربا ا	*1	t-	<u> </u>	~	۲,	٩.	-1	m	ন	s	ŀ-	4	N	(σ	ω	1
0_	717 200	00	0007	1.00	000	002	000	003	0027	004	0002	007	100	000	00-1-00	000	900	006	005	800	010 0	
	TTARUD	0	Ŭ.	0	0	0	0	0	0	0	0.	0. D	0	0.0	N	.0	0 0	0	0. 0	0.0	0.0	
	<u> </u>	[<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>							<u> </u>	
	I	ω .0		Ø	0 0	Ø	ເງ ທ	0,	0 0	C) U	ອ	ß	2 2	5. Q	о	1.0	Ø	0	0	ω . Ω	0	
	LENGTH 1 m /	0	ω σι M	0 0 N	መ መ	קי קי ווי	0 0 0	0) 0) +1	5 	0 0 1	-1 -1	208	ທ ຍິ	ы Б С	い い マ	Г, Г	4 0 1	N 4 02	ন ম	300	250	
	นี้ -	l .																				
÷	0 1 10 . (m m)	0 10	0 N	а 4	50	ហ (-	ា ស	5 1~	00	0	រ ខ្ល	00	0 0	0 10	0	00	90	0	20 10	10 €)	50 20	
	ы е С										·				+ 		1					
	: 6			и К		a a		02 02	a A	æ		α α	α α		а С	ц К	к К	к К	к К	и К	и К	
	0 7 4			-				-		-		-	_		-		-				_	
	-			<u>а</u> >		۵ ح		а >	п >	a. >		a. >	۹ ح		۵. >	Ч Ч	۵ >	2 7	<u></u> Ч	Ч Ч	2	
		<u> </u>			ļ						ļ		. <u> </u>									र्भ
		ወ	0	Ωי וּדִי		<u>ارم</u>	۲۷ ۲۹	ю Н	च	л	ы С	Ю N	25	10 17	N N	5	יד גע	52	н N	71	2	
		z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	
		1	1	1	1	1	1	1	1	1	1	1	1	ł	1	1	I	1	1	1	3	U T
0 71 0		0. 17	[- 	[~ 	:00 -1	ଆ କ	0 	0 	20	0 0	н М	N N	N N	22	m N	N 4	S S S	\0 0	.⊷ N	t~ ∩	ŝ	L LL
0)-1	l	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z.	z	z	
						-																

ليا	0	с С	С	Ø	0	0	0	0		-	G	5	5	P			-		-		1
ארעב	0.0	0 0	0 0	20.0	0.0	20.00	0.00	0.0	00.00	00.0	0 0	0 0 0		0.00	0.00	0.00	00.00	5.00 5	0.00	00.0	
0		이 	ਨ ਜ	<u>ਜ</u>	<u></u>	<u>н</u>	1 5 0 1	RI H	ربا 1	120	<u>й</u>	120	52	120	1 20	02 T 50	120	128 17	20	120	
FRICTION LOSS (m)	ים פי ס	0. 80	1.60	4°.79	1.22	Q.37	0.00	ਸ (ਸ (ਸ	97 · Te	เก ส พ	פא סיי	8 5 9 9 9	(~ 코 []	0.0 0.0	0.72 27	90. 00. 00.	1.49	5.89	1.66	0.44	
LINT3	0.39	Ø.19	Ø.28	ጥ ທ ເງ	Ø.26	0 - 0	0. 2 2	6 1 10	Ø - 25	G. 83	0. u N	ດ. ເຊ	ι- Γ. Δ.	G.S 8	Ø.30	Ø.5 <u>0</u>	0.24 .24	G. 72	0.2S	0 1 0	
QUANTIT) 183. 440'		0.000 0	0.0006	0.0033	B. 8885	0.00Sb	B. 2004	a. aa62	8.000S	ល.	0.0040	0.0013 0.0013	0.0110	0.0035	0.0014	0.0010	Ø. 0005	0.0034	0. B005	a.0062	
L.EYGTH (m)	470.0	0.00 00.00 00	520.0	506. Ø	469.0	51.0	467.0	497.0	467.0	0.949.0 149.0	467.0	2 5 7 7	467.0	250.0	350.0	1140.0	680.0	580.0	672.0	51.0	
0,10 (mm)	50	10	2 Q	ی ۲-	20	1 BG	ខ្លួ	100	20	1 00	4 10 12	1 2 S	200	150	7.S.	SÐ	50	75	0 V	100	
K IND		κ κ		a A		a		с С		С С С	к К	а К	к К	۲¢ ۱	а К			RR		RR	
×		۵ >		۲ ۲		۹ 2		۲ ۲		с 2	۲ ۲	с 2	Ч 2	۲ ۲	ک ع			۹ ح		٩٧	
	22	ני נו	N M	6 70	(1) 1	20	N N	н (П	26	גע m	เ- ณ	m m	8 N	ц Д	םי גע	0 0 0	ല ന	រេទ កា	ក ក	51	
	Z	z	z	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	
	0 0 1	1 6 0	۱ D M	ו 100	ן ק ת	1 1	ា ស ៣	ר . מש	רו מי מי	ា. ៣ ៣	1 7 1	1 4 1	ы П П	ו מנ י	ч 36	н 19. С	- M	ן ה ח	ר 80 10	38	
	z	z	z	z	z	z.	z	z	z	z	z	z	z	z	z	z.	Z.	z	z	z	

1	C VALUE	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120,00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	120.00	
PPICTION	L059 (m.	2.52	5.21	1.53	⊣ प ,	н С	1.59	0.69	0.26	1.59	60 8 4 4	0.98 0	2.78	1.56	1.22	a 15	םי 7 0	1 1.28	D N U	5	0.40	
VELOCITY		9.32	g. 86	0.26	6 .29	0.0 0	0. HS	0.24 24	8 9 9	ย เ	Q 47	0.76 .76	1.09	0.26	м М Ю	а 4 4	0 57	ອ ເຊ	6 2 0	8 2 8	1.16	
QUANTITY	1 m3 sec)	0.0006	0.0068	0.0005	0.0005	0.0086	0.0017	0.0019	Q. 0113	0.0090	0.0215	0.0228	0.0709	8.000S	0.0005	0.0035	0.0046	0.0046	8. 0036	G. 0048	0.0751	
LENGTH	÷ W)	671.0	497. Ø	577.0	671.G	0.0 749.0	577.6	671.0	0 . U 4 U V 4 U	577. G	671.0	250.0	577.Ø	580.0	577.0	51.0	497.0	249.0	0.49.0	250.0	75.0	
DIA.	(ww i	SØ	100	SØ	20	ม ผ +	ن ۲-	100	200	ы 17 17 17 17 17 17 17 17 17 17 17 17 17	250	200	300	20	8 S	100	100	100	1 7 2 3	150	386	
	- ONIX		а Ц			a A	С С	и К К	a B B B B B B B B B B B B B B B B B B B	a A	ц К К	œ	а К			R R	С С	к К	к К	л К	Я К	
	Ъ.		Р Р			с >	с 2	0 >	٩>	ч >	с Ч	д >	ط >			ЧŅ	с 2	Ч 2	νP	ЧЪ	ц у У	
		N €	ю М	4 N	m m	ጣ	U T	т т	10 17	ר ק	35	 บ	4 00	-1 M	ա տ	57	д Д	4 N	4 10	4 00	5 9 9	
		Z	Z	z	Z	Z	z	Ζ,	z	Z	Z	Z	Z	z	z	Z	z	Z	z	Z	z	
		ភ	ነ መ	ា បា	ן סי	1 0		। स	। न	 ++	1 (V	I N	I N	n M	4	4	า ม	ן נט	1 N	1 (~	l DD	
ľ		m	m	m	ব	4	4	<u>.</u> च	41	4	4	য	す	4	4	ধ	4	4	ব	4	ব	
L		Z	Z.	Z	, Z	Z	Z	Z	Z	Z	Z	Z	Ζ	z	Z	Z	Z	z	Ζ	Z	Z	J

ч, I

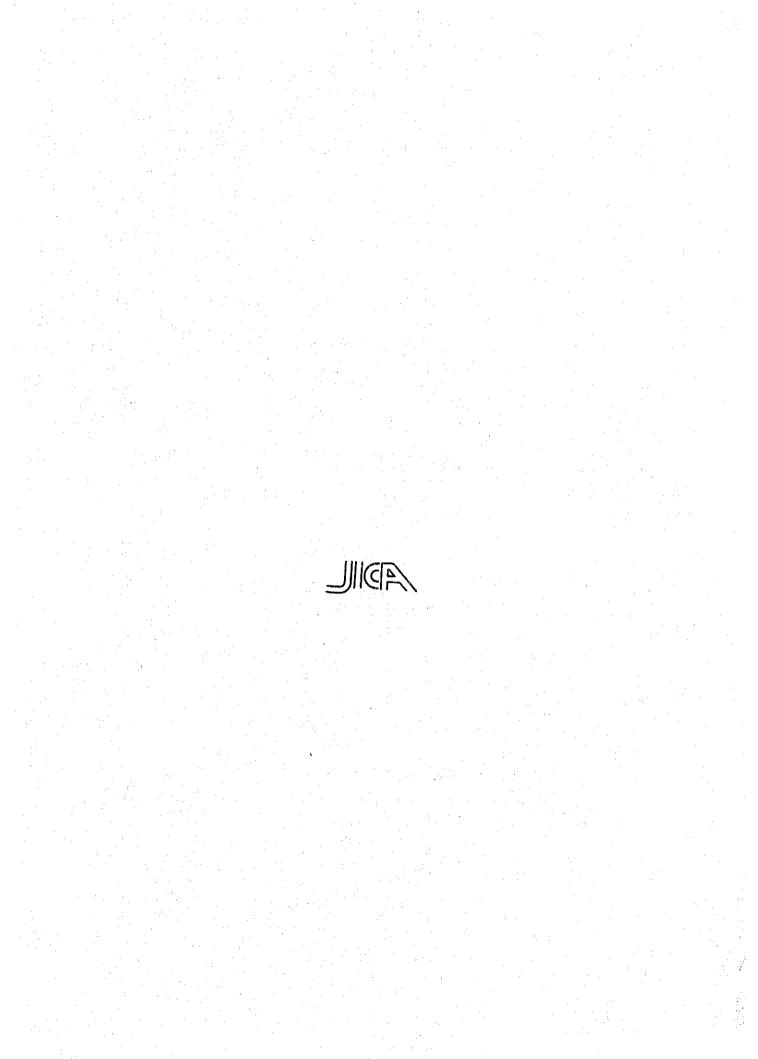
А М

Р Д С П

.

8701

· •


	:		• • • • • •	·····	· · · · · · · ·								,	<u></u>			·	·		. 1	
	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	80	0	80.	80.	0	80	0 0	0	00	5 G	0 0	0	00	99	99	89	ത	n D		
5 < ۲ ن	8 8 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	1 1 1 1	0 7 7	0 0 	120	0 N 1	1 2 2 2 2 2 3	5 5 5	120	120	120	120	ធ ស ក	19 19 19		00 101 111	មា សា	בם עח וויי	000 1711 1711		
	0 0 0	N- M	4 N	8 10	տ Ծ	۲. ال	e H	۲~ (1)	ច ប	ម ខ្ល	7 7	51	л Ю	ল্যুন মু	 100	1000 1117	16- 1631	15. 000	000 1210		
LOSS (m)	00		Ø	ц.	ច្រ		1		Ø	• ~4	Ø	÷	1		œ	ন্থা	1CD	താ	ത്ര		
		v9 N	00 - 1	ন ম	64	41	0 (V	년 (1)	M M	20	N U	109 [N]	ন্থ ম্য	न्दः स्रि	तम तम	000 020	100 10-	T B	עם) דייי		•
	0	60	Ø	0	ø.	60.	Ø	Ø	63	ß	D.	0	0	ø	യ	÷H	(CD)	4 +1	ः स्लग		••••
11 31	1-12 10-12	10 S	162	005	01 t- (3)	8008	0006	8804	4	0024	19 19	ខ	ืออ	រោ ខេ	чФ Гај	மை குப	4) (0)	888	49 10		
ીર્જે ની	ଟ ପଥି ମ ମ	•	0.006	0.00	0.00	0. 00.	ବ ପ୍	6 . 6 6	g. g@1	0.00	G. 00	0.00	0.000	g 90	1. 842)	. 092	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	050	63) "		
									<u> </u>						(Ci)	@ 	020	ntto	020		•
- E	51.0 51.0	1 •	្រ ្ម ស	80.0	45. G	80.0 80.0	87 10 10	0 0 0	50.0	0. 0. 0.	51.0	580.0	830.0	663. ()	(12) 15) 15)	9.99	99.8	55 - 6	66. B		
1 - 20 - 20 - 20		'n		ũ	Z145	ณั	ຕັ	-٦	ň	Ň	07	ũ	069	Ð	जना जना	UD UD	1021	400. 1000.	цц 190		
			_								•••										
[Ξ Ε [Ο	0 0 	50	100	ы С	1.25	5 C	0 0	9 2 0	<u>גע</u> 4	เง เง	ע יי	20	0 0	றை	13 19 19 19 19	998 890	620 670 670	47 63 77	150 123 11/31		
																					 1
	ж ж		С С		ሌ የ				а С	æ	Ω. α				GEC Gec	1927. 1927	CBL CBL	iœ∠ œ∠	OEX Gev		
	a a > >		۹ ۲		.a. >				۵ >	с >	a. >				e S	۹ ک	e A	ଣ ଚ	e N	L.	
																				ų V	
ſ		প	m -	0 0	6 1	S D	៣ ស	ט 4	ម ខេ	្លា ប	Д (1)	2. 2	កា ស	101 103	e g	ngo VgD	يۇ) ئۇر	ign Ign	100 10-	۲ ۲	
	z z I I	Z	Z.	Ž	Z I	Ž I	Z I	Z I	Z I	Z. 1	z I	z	z	z	Z. 11	Z.	Z 	Z	"Z"		5
	4 N 0 4	С С	51	с Ч	ខ	m	- 7 -	ហ	ហ្គ	26	⊲ છ		00	றை	n ve	n vj		መገ	-#		:
		z	z.	z	ள z	ທ z	ທ z	ம z	ທ z	ທ z	ഗ z	ນ ກ	ທ z	ท Z	se Z	w@D	UD /	™ ∠	er Z	, 1	

I 048

1040 0

r		· .	·			·		·	.	.	 	.	·	.	 		•	 •		
	C VALUE	20.00	20,00	20.00	20.00	20.00														
						יד ת ח						**************************************			 					
FRICTION	LCS5 (m)	6.59	8.19	7.43	0 10 10	0														
l E	(mrisec)	<u></u> зб.	α 4	Ð	е г∨	55.									 					
	j Ę	Ø	Ø	ਜ	Ø	0									 					
		162 162	0 4 0	1 7 J	5 10 10	. 0059														
OLIGNTTY	rad.sec.	0.0162	0.0040	0.0173	0.0029	Ø.9														
		9.0	0	0	0.	0									 					
H H H H H H H H H H H H H H H H H H H	5 6 7	800	600.0	8 8 0 1	4 U	न प	****													
-	J																			
019 0	(ww)	150	<u>ن</u> ۲	150	125	1 0 0														
					<u> </u>						 				 	· · · ·				
	A. I.NO	ц К	ц К	ц С	α α	С С														
	14	ک ت	ح ۲	> ר	۵ >	۵ >														۰ <u>۰</u>
-		មន	e Q	67	20	2 B					 				 					ω ω
		z	z	z	z	z														ய
		1	1	Ļ	Т	1														П П П П П П П
		ເດ ເບ	ი ა	0 -	4 1-	71														n.
		z.	z	z	z	z.														

[

e e e la companya de la companya de