3.7.4 DESIGN CRITERIA AND SPECIFICATIONS OF WATER SUPPLY FACILITIES

(1) Special Request from Egyptian Government

The following matters were requested by the Egyptian Government, especially for the water supply system design of the project:

(a) Stable Supply

The water supply system shall responsible to serve a safety water stably, to ensure a stable production of the industrial estate.

The design incorporates a water stock for eight hours supply in the raw water reservoir and the treated water reservoir. This water stock can avoid the emergency stoppage of water treatment.

As for the emergency power source, generator sets are installed at the intake pump station and the water treatment plant. Capacity of these generator sets are 50% provision of full scaled operation.

(b) Fire Hydrant System

Fire attack system is one of the important utilities for the industrial estate as well as the stable water supply, to save properties in the service area. In this design, the fire hydrants are installed alone the distribution main pipeline which is more than Nominal Diameter (ND) 200mm. A coverage of one hydrant tap is 50 m radius.

(c) Recycling System of Sludge Draw-off Water

Landscaping design of the project area includes planting schedule of trees, shrub. For economical view, the draw-off water generated in the water treatment plant will be recycled for this planting purpose.

(2) General Layout of Water Supply Facilities

Site Selection of Water Treatment Plant

Preliminary layout of the water supply facilities were given in the Master Plan 1986. JICA study team made the field investigation to improve the preliminary layout. Final layout of the water supply facilities are shown in FIG.1.1-WS. Major alterations in the improved

layout are listed below;

• For irrigation and planting purpose, draw-off water supply system is strongly

requested by MODANC to add newly in the project.

• Location of the water treatment plant is relocated from the intake point to the

project area (Ataqa I.E., Adabiya I.F.Z.).

Location of the intake point is as same as the master plan, which is 3 km upstream

from the existing SCA water treatment plant.

Pipeline route (19.5 km) between Intake to Water Treatment Plant is selected in

the desert area through outside of the urban area of Suez City.

(3) Intake Facilities

Layout plan of the intake facilities and process and instrumentation diagram are shown in

FIG. 4.1-WS and 4.2-WS.

(a) Design Criteria

Main function of the Intake Facilities is to intake raw water from Suez Sweetwater Canal

and pump it up to the Water Treatment Plant to be constructed in the Ataqa Industrial

Estate with about 19.5 km distance to convey.

The Intake Facilities is to be located at about 3 km up-stream from the existing SCA water

treatment plant. The facilities consist of Intake mouth, Guide channel, Screens, Pumping

station, Electric power sub-station and utilities.

The major criteria of the intake facilities shall comply with followings:

1) Intake mouth and Guide Channel

Flow Quantity

Max. 100,000 cu.m per day

3,7-18

Flow in Guide Channel

Max. 0.6 m per sec.

Water level at Intake mouth

EL3.5m (H,W.L)

EL 3.0m (L.W.L.)

Gates of Intake mouth

Stop Log and Sluice gate

Screens

Coarse bar screen and Motor drive fine

screen

2) Intake Pump station

Water level at Suction

EL 3.3m

Total Pump Capacity

69.44 cu.m per min.

Total Pumping head

120 m

Pumping Rate

18.00 m³/sec

Distance to Convey

19,450 m

Number of Pumps installed

4 duty pumps and 2 stand-by

Pump speed

1,000 rpm

Water-hammer prevention

Internal fly-wheel, Air vessel

3) Constants

Flow factor (C) for pipe

Ductile cast iron pipe 110

Head-loss factor (f) for fittings. Bell mouth 0.2000

Bend 45 deg.

0.1028

Sluice valve

0.5000

Butterfly valve

0.2000

Check valve

0.5000

4) Power Supply

Power Sub-station to be installed in the inside of the yard receives the power of 22 KV from commercial line and transform it to 6 KV and 380/220 V, then distribute to the Intake facilities.

Emergency generator to be installed at the above Power Sub-station provides 50% of required power of fully operation mode.

(b) Major Specifications of Intake

1) Screen

Type : Bar screen (int.25mm) with Motor-drive rotary rake.

Dimensions : W 1,700 x D 2,700 mm

Inclination : 70 degrees

Max. head loss : 300 mm

Quantities : 2 duty units for 2 guide channels

Accessories : Local control panel, Level switch, Trash container

2) Sluice Gate

Type : Steel Sluice Gate

Dimensions : 1.7m span x 1.5m height

Quantities : 2 units for 2 guide channels

3) Intake Pump

Type : Double suction centrifugal multi stage type

Discharge per unit : 18.00 m3/min.

Pump speed : 1,000 rpm

Total pumping head : 120 m (see TABLE 4.1-WS)

Constant of Pump : Efficiency 0.75, Excess ratio for Power 1.10

3.7-20

Pump Characteristic Curve

: see FIG.4.3-WS

Motor rating power

: 500 kW

Quantities

: 6 units (4 duty pumps and 2 stand-by)

Materials

: Gray cast iron casing with stainless steel impeller and shaft

4) Motor

Type

: Slip-ling type induction moter

Voltage

: 6,000 V

Output

: 500 kW

Speed

: 6 poles (1,000 rpm)

Insulation

: equivalent as Class F (ЛІS)

5) Air Vessel

Materials

: Rolled steel

Capacity

: 40 m3

Design pressure

: 16 kg/cm

Accessories

: Air compressor x 2 sets, Water level switch, Air release valve

6) Switchgear

6 kV incoming panel

1 panel

Auto transformer starter panel

: 6 panels

Motor control panels

: 6 panels

Low voltage control panel

: 1 panel

7) Instrumentation

Water level indicator, water flow indicator/recorder, obstacle alarms, pump start/stop, emergency stop sequence, generator control sequence, complete graphic

operation indicator system, the telemetering system of water level at raw water reservoir for pump operation

8) Miscellaneous

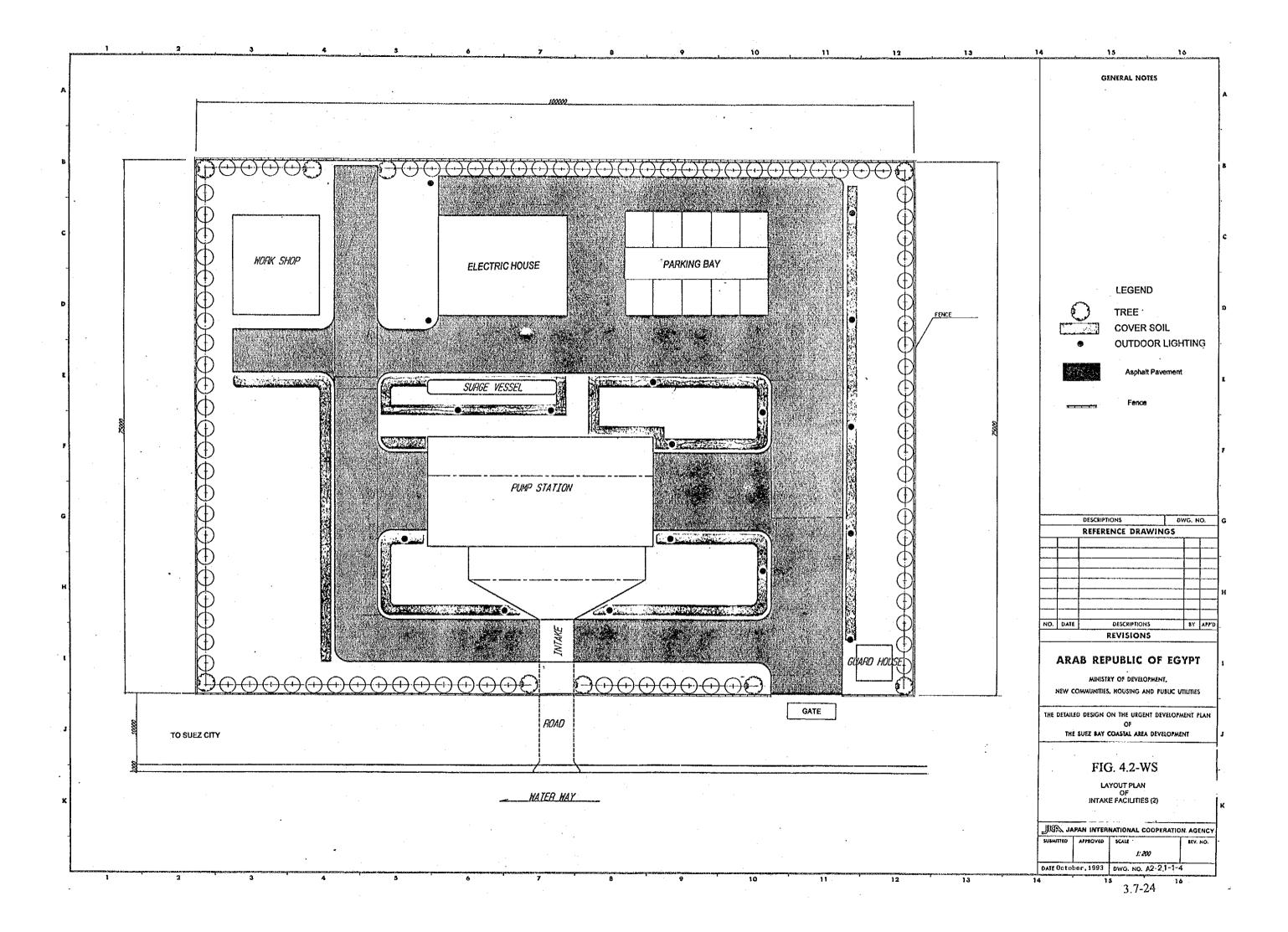
Valves : 18 sets of butterfly valves with manual apparatus

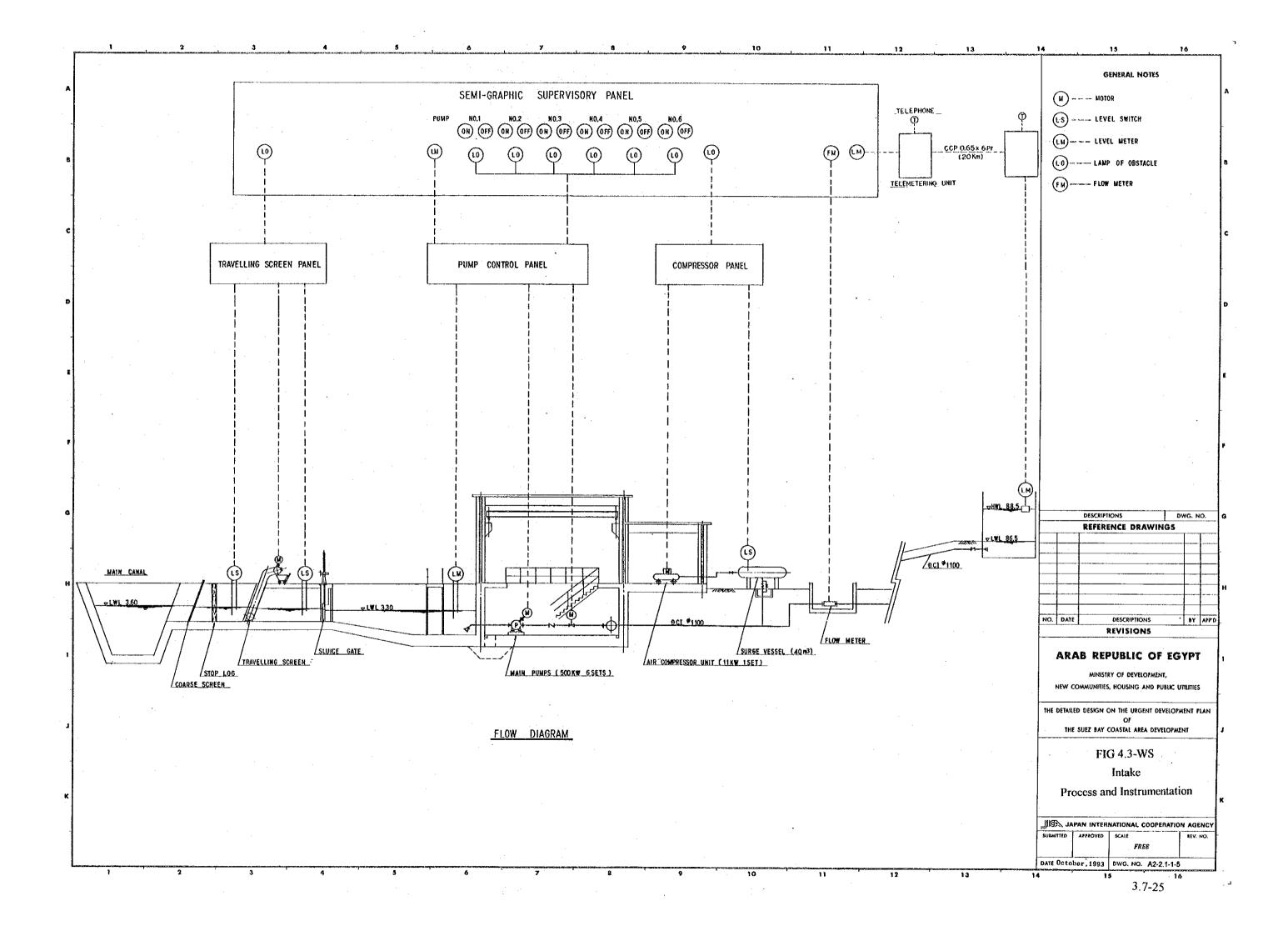
Flow control valve : 1 set of butterfly valves with manual apparatus

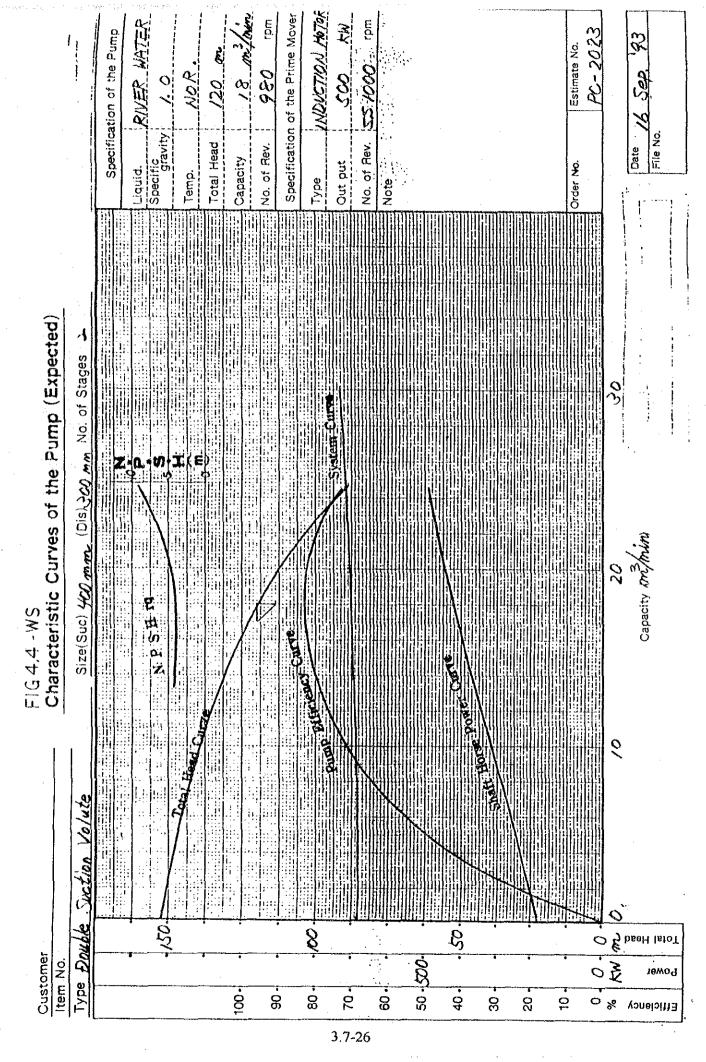
Flow meter : 1 unit of venturi tube type

Pipes (for pump room) : Rolled steel, 16 kg/cm2

Flexible pipe joint : 1 set of rubber type flex. joint


Drain pump : 2 sets of submersible pump (1.5 kW)


Maintenance tools : 1 complete set to be used for pump maintenance.


TABLE 4.1-WS LOSS CALCULATION TABLE

Service:

	Item No.	Description of losses	Flow (m3/sec)	Dia.	Velocity (m/sec)	f	Loss (m)
	1 - 0 	Screen loss	0.00000	0	0.000	0.0000	0.300
	1	Bellmouth	0.30000	400	2.387	0.2000	0.059
	2	45 deg Bend	0.30000	400	2.387	0.0994	0.029
	3		0.30000	400	2.387	0.0229	0.133
	4	Sluice valve	0.30000	400	2.387	0.0500	0.015
	5 1	Taper pipe(Divergent)	0.30000	D1= 300	V1= 4.244	0.1717	0.030
	6	Butterfly valve	0.30000	D2= 400 400	V2= 2.387 2.387	0.2000	0.058
	7	Non-return valve	0.30000	400	2.387	0.5000	0.145
	8	Confluence flow at T	0.30000	D1= 400 D2=1100	V1= 2.387 V2= 0.316	46.0531	0.234
,	9	Straight pipe(William Hazen) Length= 4.00(m) C=110	0.30000	1100	0.316	0.0262	0.000
	 10 	Confluence flow at T	0.60000	D1= 400 D2=1100	V1= 2.387 V2= 0.631	0.6869	0.014
	11	Straight pipe(William Hazen) Length= 4.00(m) C=110	0.60000	1100	0.631	0.0236	0.002
	12	Confluence flow at T	0.90000		 V1= 2.387 V2= 0.947	0.5228	0.024
	 13	 Straight pipe(William Hazen) Length= 4.00(m) C=110	0.90000	1100	0.947	0.0222	0.004
	14	 Confluence flow at T	1.20000	D1= 400 D2=1100	 V1= 2.387 V2= 1.263	0.4202	0.034
	 15 		1.20000	1100	1.263	0.0213	0.024
	 16 	Ventury flow meter	0.00000	0	0.000	0.0000	0.200
•	17	 Straight pipe(William Hazen) Length:19450.00(m) C=110	1.20000	1100	1.263	0.0213	30.642
	18	Ventury flow meter	0.00000	0	0.000	0.0000	0.200
	19 19	Other loss	0.00000	0	0.000	0.0000	0.800
	20	Velocity head	1.20000	1100	1.263	1.0000	0.081
			Sum of Hyd	draulic lo	sses in met	er	33.028
			Static head	.		1	85.300
			Total Head				(118.328
			TOOM NEGO				120.0

(4) Aqueduct

Layout plan of the aqueduct pipeline and the profile are shown in FIG. 4.5-WS and 4.6-WS.

(a) Design Criteria

The main function of aqueduct pipeline is to convey raw water from the intake to WTP. The distance to convey is 19,785 m.

Design flow rate is 100,000 m3/d (1.157 m3/sec) as maximum.

Design flow velocity is less than 2.0 m/sec.

The aqueduct pipeline has no booster pump station, because of complication of operation and maintenance and power supply for booster pump.

The aqueduct design conforms to the Egyptian Code of Water Works 1990 and Ministrial decree 268-1988.

The telemetering wire is laid along the aqueduct pipeline, for telemetering and communication between the WTP and the intake P/S.

Following design criteria is adopted to the aqueduct design:

1) Hydraulic Formula adopted

Hazen-William's formula is principally used for calculation of gravity flow.

2) Constants

Flow factor (C) for pipe : Ductile cast iron pipe 110

Head-loss factor (f) for fittings : Bend 45 deg. 0.1028

Sluice valve 0.5000

Butterfly valve 0.2000

3) Minimum cover for embedding: 1.0 m

4) Flange rating : 16 kgf/cm²

5) Elevation at discharge (WTP) : H.W.L. 88.5 m

L.W.L. 86.5 m

6) Surplus for Pumping head : 5.0 m (Egyptian Code)

7) Constant for Installation

Unit weight of cover soil : 1.8 t/m3

Load of vehicle : $20 \text{ ton for } 4m(L) \times 1.75m(W)$

Point load (Front wheel) 2.0t/wheel

Point load (Rear wheel) 8.0t/wheel

Linear Load : 5.0 t/m

Plane Load : 350 kg/m2 (Span > 80m)

Impact factor (i) : $20/(50 + \text{Span} \cdot \text{m})$

(b) Major Specifications

1) Material of Pipe : Ductile cast iron pipe, Minimum tensile

strength 420 N/mm2, Minimum elongation

less than 7%

2) Diameter of Pipe : ND 1,100

3) Total Length : 19,785 m

4) Joint type of pipe : Push-on joint - Minimum deflection allowed

for jointing 2 deg.

Mechanical joint - Minimum tensile strength

400 N/mm2, Minimum elongation less than

5%, Socket depth 130mm

Coating and Lining : Outer coating - Epoxy t = 0.1mm

Inner lining - Mortar, $t = 10mm \pm 3mm$

6) Valves (Class) : Working Pressure - 10 kgf/cm2, 16 kgf/cm2

(Maintenance valve) : Butterfly valve, to be install at either 1 km

interval or crossings of road and railway.

(Air valve) : Double mouth rapid exhaust type, ND 200

mm, to be installed at peaks when ratio of gradient between inflow and outflow is more

than 2:3.

(Blow-off valve) : Sluice valve, to be installed at either bottoms

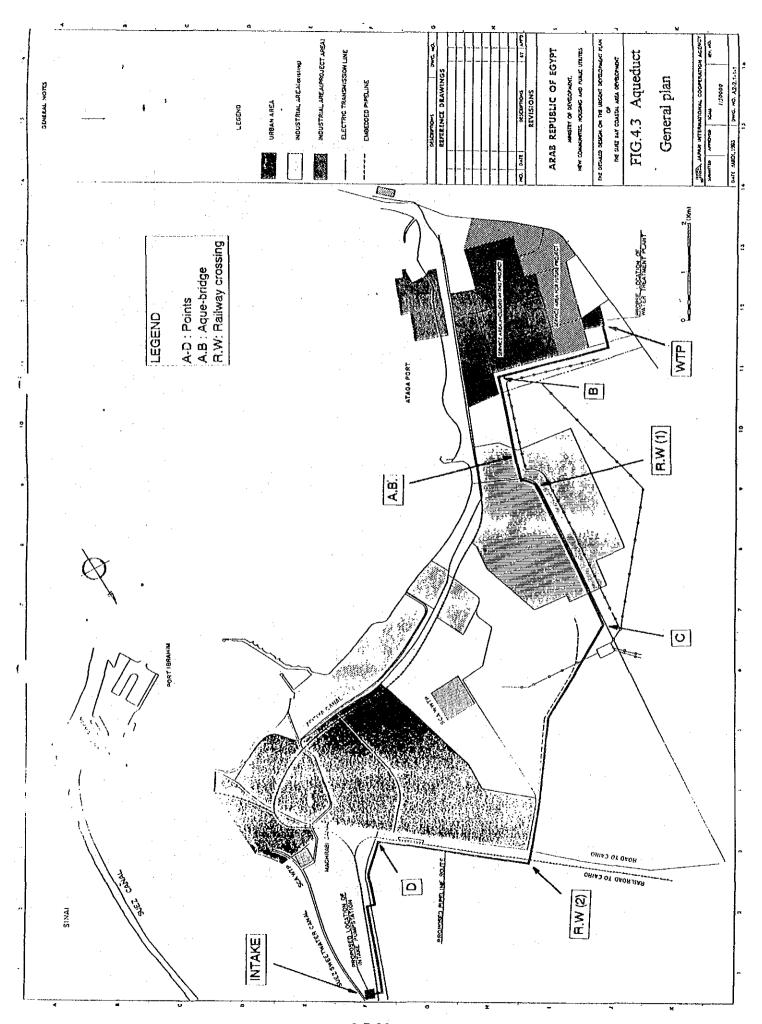
with interval of 2 to 3 km as Minimum or

crossings of road and railway.

7) Polyethylene Encasement: 19,875 m (equalize to DCIP length)

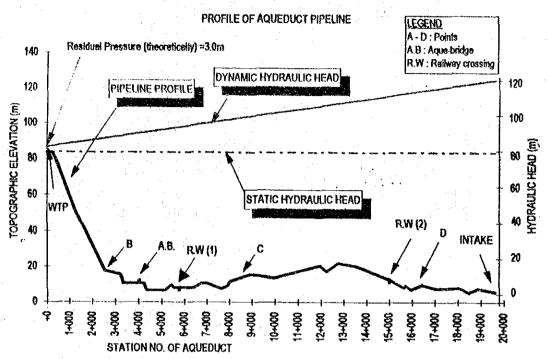
8) Ancillary works

(Railway crossing) : 2 sites, Double pipe system for protection,

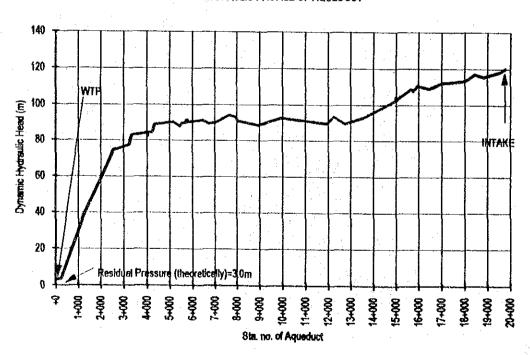

Pipe-jacking method

(Aque-bridge) 1 site, Steel pipe with Air valve

(Road crossing) : 10 sites, Double pipe system for protection,


Pipe-jacking method or Open trench method

(Telemetering wiring) : Signal conveyance cable, 20 km length



:

FIG.4.4 PROFILE OF AQUEDUCT PIPELINE

HYDRAULIC PROFILE OF AQUEDUCT

Water Treatment Facilities

(a) Design Criteria

Layout plan of the water treatment facilities and the process and instrumentation diagram are shown in FIG. 4.5-WS and 4.6-WS.

1) General

Design treated water quality for this project is based on the Egyptian standard for potable water. The design treated water quality is presented in TABLE 4.2-WS.

The Water Treatment Facilities consists of Raw water reservoir, Coagulation and Sedimentation basin, Filter, Treated water reservoir, Filter washing water basin, Draw-off water reservoir, Sludge drying beds, Administration Bldg., Chemical Bldg., Electric Substation and their utilities.

The production capacity of the treated water in the plant is 100,000 cu.m per day. It is about 120% of production estimated in the previous master plan¹.

The Water Treatment Facilities shall be operated 24 hours a day. The power source of the plant is fed from commercial power supply lines with 22 KV. The Power is transformed with 380/220V at the Power Sub-station to be constructed in the plant. For emergency, the plant has an emergency generator sets in the Power Sub-station, to keep 50 % production of water against normal operation.

The number of treatment process series are four (25,000 cu.m per day x 4 series). The treatment process from the Raw water reservoir to the Draw-off water reservoir is using gravity flow.

2) Treatment Process

The treatment process, Raw water quality and Design treated water quality are presented briefly below:

after "Table 1.2.5 and Table 1.2.8, Study on the Development Plan of Suez Bay Coastal Area in the Arab Republic of Egypt, July 1986, vol.III Short Term Plan"

- The raw water is conveyed from the Intake pump station through Aqueduct with about 19 km distance and inflow to the Raw water reservoir. The storage capacity of Raw water reservoir is 4 hour as retention time. This is to buffer the deficit in the emergency. The storage capacity of the Raw water reservoir is approx. 16,800 cu.m.
- The raw water inflows from the raw water reservoir to the coagulation and sedimentation basin. The raw water is disinfected in the receiving basin as prechlorination, then Alum as coagulation agent is dosed in the mixing basin. The dosing rate of chlorination and Alum is determined in accordance with indication of the flow meter to be installed at influent of the receiving basin. After these dosing and mixing, the raw water passes coagulation basin with vertical and horizontal baffle flow and settles major coagulated turbid in the sedimentation flow in longitudinal flow. The retention time of each basins are as follows:

a.	Receiving basin	:	4.3 min.
b.	Mixing basin	:	2.8 min.
C.	Coagulation basin	• •	31 min.
d.	Sedimentation basin		120 min.

- After sedimentation, the water is filted in the Filter which is Rapid Sand Filter. Filting rate is 120 m per day. 1 treatment line has 6 filters (5 duty filters and 1 washing and stand-by filter). Hence, total 24 filters are equipped. The filter operation including operation and washing are controlled by programmed Local Control Panels at site and observed in the central control room of the Administration Bldg. The filter washing interval is 36 hours as Maximum. The filters washing uses air blow and backwash water. The backwash water is discharged from the Filter washing water basin.
- The Filter washing water basin has storage capacity 700 cu.m for 3 backwashing. The washing water is recharges from the Treated water reservoir by pumping.
- The treated water is stored in the Treated water reservoir, then distribute to the service area by gravity. The storage capacity of the Treated water reservoir is 4 hours as retention times, means 17,000 cu.m. Therefore, total 8 hours allowance (Raw water reservoir and Treated water reservoir) is scheduled in the plant, to maintain an emergency situation.

- The water for domestic and process use for the plant is distributed from the Treated water reservoir by pumping.
- The sludge draw-off is gathered into the Draw-off water reservoir which has capacity of 3,240 cu.m (about 12 hours storage). The super-natant of the draw-off water (expected SS 50 mg/l) is collected and distribute to the service area for irrigation and planting use. The sub-natant is discharged to the Sludge Drying Beds by pumping and dewatered by evaporation. The dewatered sludge is scraped by man-power and disposed to the desert. The 1 treatment series (25,000 cu.m per day) is allotted 6 drying bed (5 duties and 1 cleaning and stand-by).
- The chemical dosing equipment which are chlorinator and Alum dosing equipment, is installed in the Chemical Bldg.
- Previous alternative study to choose the type of treatment facilities are annexed as ATTACHMENT 3-WS.

(b) Major Specifications of Water Treatment Facilities

1) General

Number of Treatment series

25,000 m3/day x 4 series

Water mass balance

(see FIG.4.7-WS)

Sludge generation

(see FIG.4.7-WS)

Hydraulic Profile in treatment process

(see FIG.4.8-WS)

Raw water reservoir

Retention time

4 hours

Storage

 $4,167 \text{ m} 3 \times 4 \text{ series} = 16,667 \text{ m} 3$

Water level in the reservoir

H.W.L. 88.5m, L.W.L. 86.5m

Valves :

(inlet)

ND 600 butterfly valve with manual

apparatus

(outlet)

ND 700 butterfly valve with manual

apparatus

Flow meter

ND 700 short Venturi tube type

Pipes

ND 400, 600, 700, mild steel

Coagulation and Sedimentation Basin

Composition

Receiving basin, Mixing basin, Coagulation

basin, Sedimentation Basin

Retention time

as mentioned before

Influent level

85.0 m

Total head loss

1.33 m

Dosing schedule

Pre-Chlorination in Receiving basin Alum

dosing in Mixing basin (refer to Chemical

Bldg.)

Type of Coagulation basin

Tapered flocculation system

Flow rate

at Coagulation

0.3 to 0.6 m/sec

indicator

at Sedimentation

0.094 m/sec

Flow meter

Overflow notch with Flow

(stainless steel)

G value for Flash mixer

250

Flash mixer

4 sets of Vertical shaft turbine type, Rapid

mixer 5.5kW

G-T value for Coagulation basin

 $\geq 100,000$

Inlet gate valve

8 sets of ND 500 Out-screw valve with

manual apparatus

Baffle plate

4 basins x 60 pcs x 1m(W) x 4.5m(H), Resin

board

3.7-35

Sludge scraper : 8 units of Linked-belt type, Submerged

collector, Traveling speed 0.2m/min., 1.5

kW

Collection trough : Orifice type overflow trough, Fiber

reinforced plastic, 350 (W) x 350 (D) x

4,000 mm (L)

Collection pipes : ND 250, mild steel

Isolating valves : ND 250, Sluice valve for Sludge draw-off

with manual apparatus

4) Filter

Number of Filter beds : 6 bed in one series x 4 series, 5 duty filting

beds and 1 washing and stand-by bed in one

series.

Filting rate : 120 m3/m2•day

Dimension of Filting bed : 6 x 7 m

Influent level of Filter : 83.15m

Total head loss : 3.75 m

Filter washing : Air blow + Backwashing

Filter Washing Interval : 1 time/36 hrs (see FIG.4.9-WS)

Water required for Backwashing : 336 m3/time/bed

Filted water collection system : Perforated block type, Plastic.

Filter media : 0.6 mm silica sand, Uniformity 1.5, t=800

mm with 2 to 20 mm gravel, T=200 mm

Overflow drain trough for Backwashing: 168 units, Fiber reinforced plastic

Blower : 8 sets, Roots blower, 42m3/min., 0.35

kgf/cm2, 45 kW, Pressure release valve,

Silencer for Suction and Discharge

Valves (Influent) 24 sets x ND 350 butterfly valve with motor

drive apparatus

(Effluent) 48 sets x ND 350 butterfly valve with motor

drive apparatus

(Air blow) 24 sets x ND 200 sluice valve with motor

drive apparatus

(Drain) 24 sets x ND 200 sluice valve with motor

drive apparatus

(Washing drain) 24 sets x ND 800 sluice valve with motor

drive apparatus

Flow meter (Filted water) 24 sets x ND 350 venturi type

(Backwash) : 1 set x ND 700 venturi type

Pipes (Influent) ND 350, mild steel

(Effluent) ND 350, mild steel

(Air blow) : ND 200, mild steel

(Backwash) : ND 700, Mild steel

(Drain) : ND 200, mild steel

(Washing drain) : ND 900, mild steel

5) Treated water reservoir

Retention time : 4 hours

Storage : 4,167 m3 x 4 series = 16,667 m3

Water level in the reservoir : H.W.L. 79.0m, L.W.L. 75.0m

Valves (inlet) : ND 700 butterfly valve with manual

apparatus

(outlet) : ND 700 butterfly valve with manual

apparatus

Flow meter : ND 700 short Venturi tube type

Water supply pump : 12 units, Horizontal shaft centrifugal pump,

2.8m3/min., 25 m total head, 18.5 kW

6) Sludge draw-off reservoir

Number of basins 2 basins/series x 4 series = 8 basins

Storage capacity : 405 m3/basin ≑washing drain water of filter

per time (336 m3) + (Drain water of Sedimentation basin and Raw water

reservoir)

Suspended Solid of Influent 892 mg/l

Suspended Solid of Super natant : 50 mg/l

Suspended Solid of Sub natant : 20,000 mg/l

Sludge disposal Pump : 8 sets x Horizontal shaft centrifugal slurry

pump, 0.6 m3/min. x 12 mH, 3.7 kW

Pipes (Effluent, Super-natant): ND 200, mild steel

(Effluent, Sub-natant) : ND 150, mild steel

(Influent) : ND 900, mild steel

7) Sludge drying beds

Number of Drying beds : 6 beds/series x 4 series

(5 duties and 1 clearing)

Suspended Solid of Influent : 20,000 mg/l (2%)

Suspended Solid aiming

400,000 mg/l (40%)

Trans-evaporation rate

8 mm/day

Quantity of Sludge generated

2.6 m3/d

(at 100,000m3/d production)

Dimension of bed

20m (W) x 40m (L) x 0.6m (D) per bed

Pipes

ND 150, mild steel

8) Filter washing water reservoir

Storage capacity

 $336m3/time/bed \times 3 beds = 1008 m3$

Discharge rate

0.8 m3/m2/min. for Backwashing

9) Dosing Equipment in Chemical Bldg.

Dosing schedule (1)

Chlorination

Dosing rate	Max.(mg/l)	Ave.(mg/l)	Basin
Pre-Chlorination	10	4	Receiving basin of Coagulation and Sedimentation basin
Post-Chlorination	3	2	Treated water reservoir
Dosing capacity	Max.(kg/h)	Ave.(kg/hr)	
Pre-Chlorination	41.6	16.8	and the second s
Post-Chlorination	12.4	8.4	

• Required water for Chlorination 2901/min. (6 kgf/cm2)

Dosing schedule (2) Coagulation agent (Alum)

Max. Ave Basin

Dosing rate 60mg/l 40mg/l Mixing basin of Coagulation and Sedimentation Basin

Dosing capacity 35.2m3/d 23.6m3/d

Alumina content 13 %

Concentration of dosing solution 18 %

Capacity of the dissolved reservoir 2 days

Chlorination

Chlorinator: 10 sets, (5 for Pre-chl., 5 for Post-chl.),

Vacuum type solution feed gas Chlorinator,

(Pre-Chlorination) 15 kg/hr

.

(post-Chlorination) 5 kg/hr

Container weight scale : 4 units, Load cell type with digital indicator,

full scale 4,000 kgw

Container lifting tool : 1 set, Motor drive monorail crane, 2.5ton

Injector booster pump : 8n sets x Centrifugal pump, 350 1/min. x 60

mH, 7.5 kW

Chlorine gas neutralization units

(Neutralization speed) : 500kg/hr as Chlorine gas

1 set x 16 m3 Caustic-Soda tank, Rubber

lining tank

2 units x Tower type neutralization tank

2 sets x Caustic-Soda pump, 450 l/min, x 15

mH

2 sets x Centrifugal blower, 45 m3/min. x

175 mmAg, 3.7 kW

10 sets of Leakage detectors

2 sets x Centrifugal chemical drain pump,

100l/min.. x 10 mH, 0.75 kW

Alum dosing

Alum solution tank :

8 tanks x Rectangle FRP tank, 18 m3

Alum metering pump

6 sets x Diaphragm type metering pump, 370

1/hr x 10 kgf/cm2, 0.4 kW with Air chamber,

Release valve, Pressure gage.

8 sets x Alum mixer, Vertical shaft mixer, 3.7

kW

1 set x Manual chain block, 1 ton x 3mH

10) Electrical

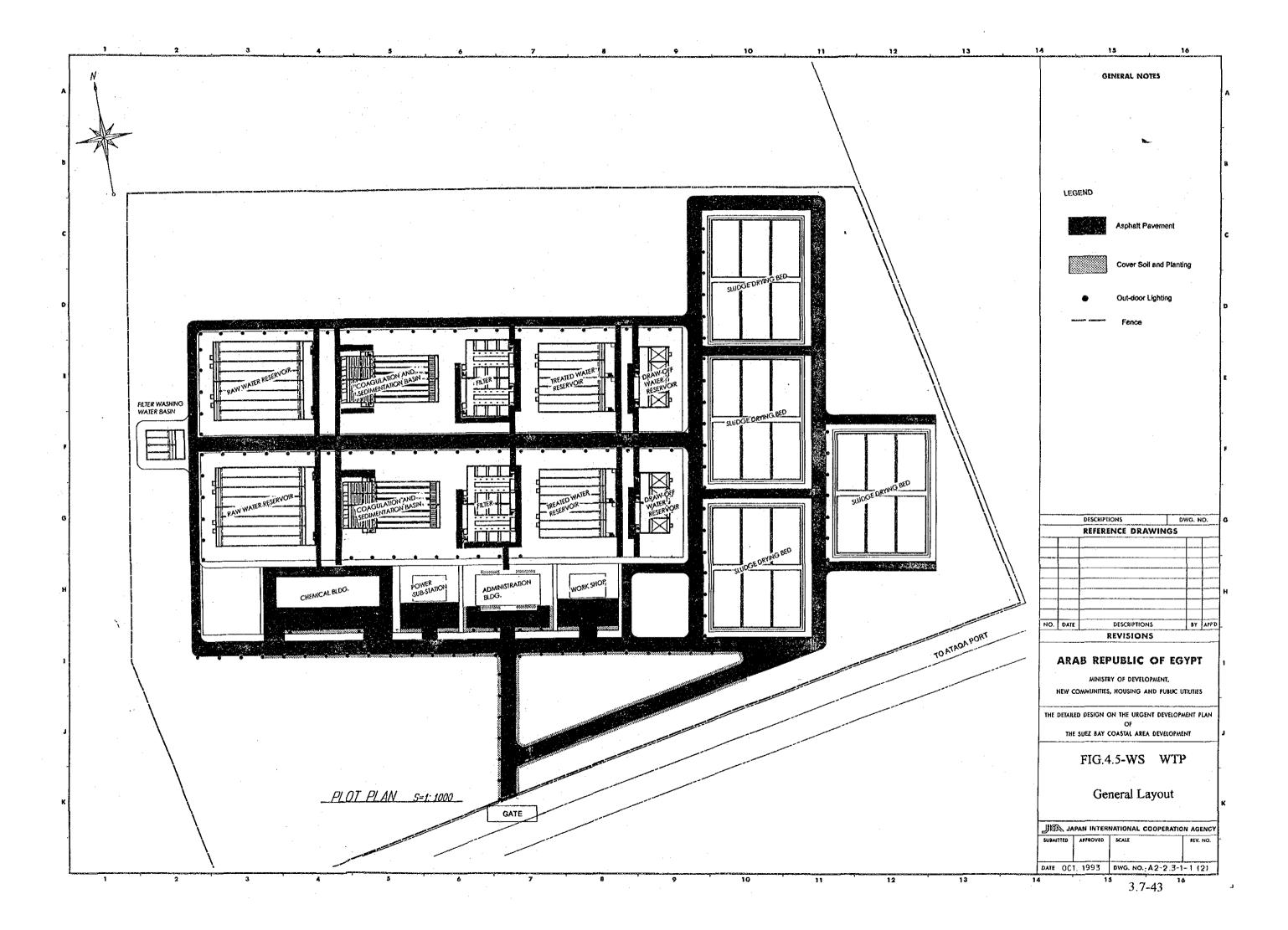
The single line diagrams of the Intake and WTP are shown in FIG.4.10-WS

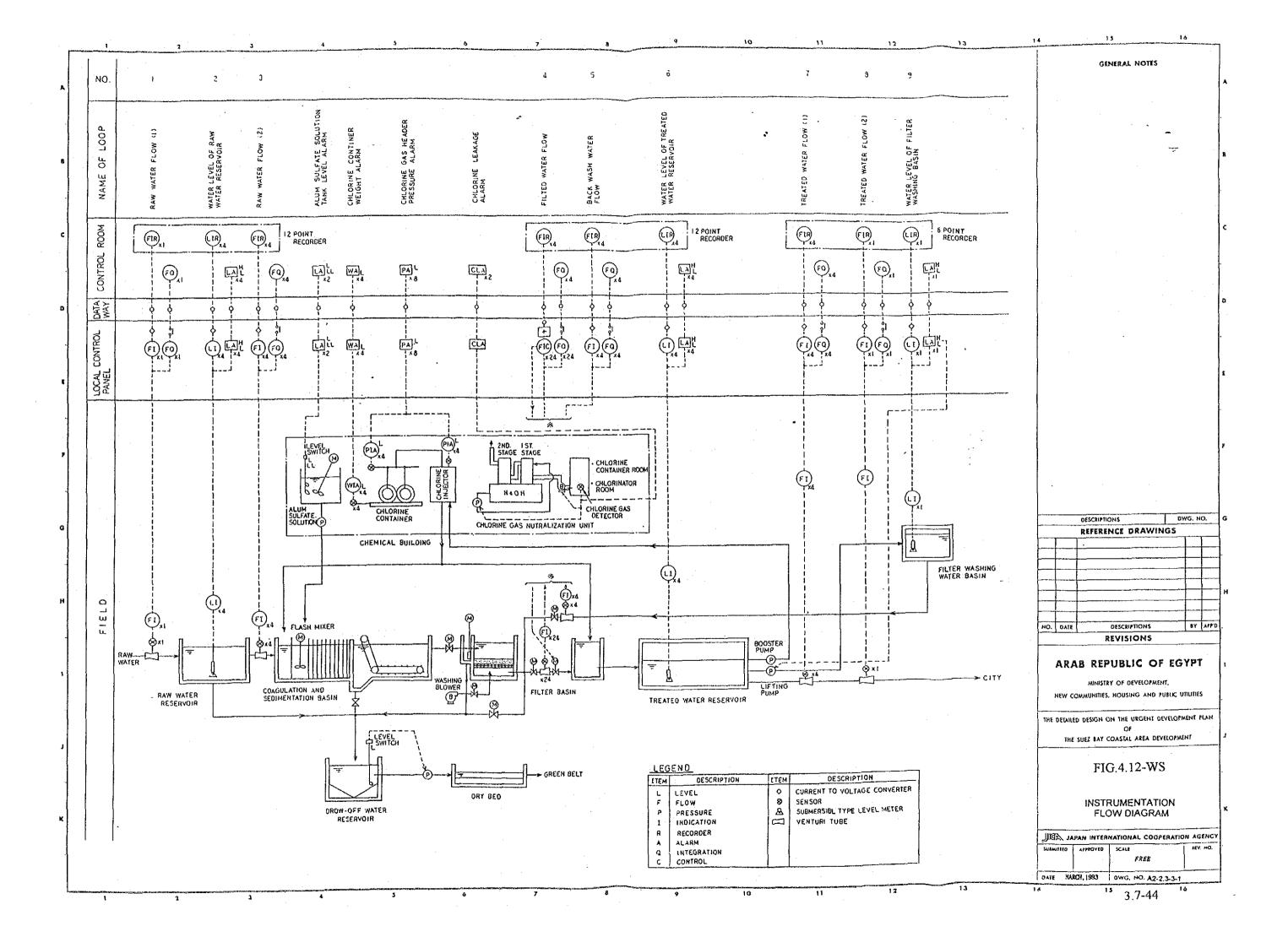
11) Power Supply

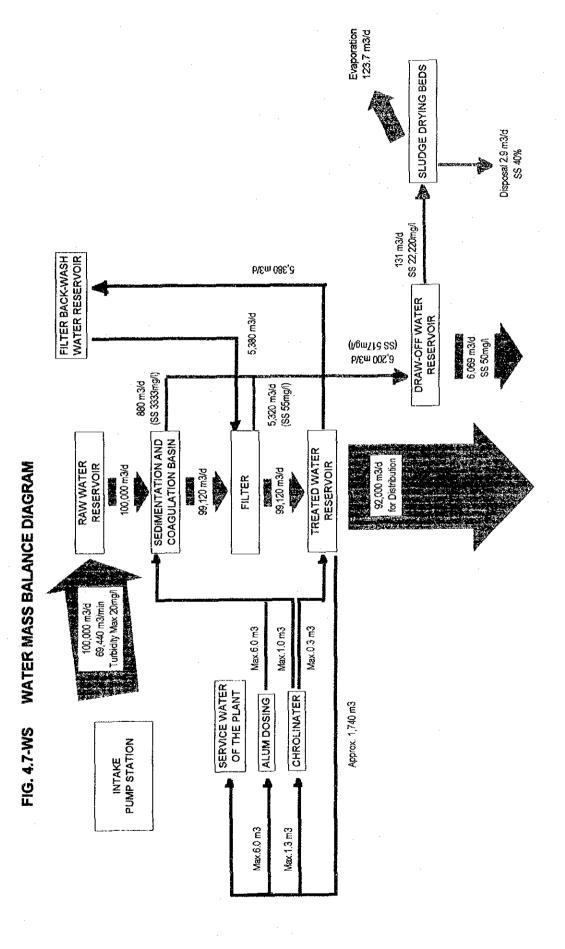
The power supply diagram is shown in FIG.4.11-WS.

12) Instrumentation

The instrumentation diagram is shown in FIG.4.12-WS. The operation method is described in 5. Operation and Maintenance.


TABLE 4.2-WS Treated Water Quality


(Unit: mg/l except for pH and where noted.)


Item	Limitation
Color (Platinum-Cobalt units)	50
Turbidity (NTU)	5
Taste	shall be acceptable
Odor	shall be acceptable
Lead	0.10
Arsenic	0.05
Cyanide	0.05
Cadmium	0.01
Selenium	0.01
Mercury	0.001
Barium	shall not be included
Chromium	shall not be included
Fluoride	0.80
Nitrite	45
Total Dissolved Solids	1500 2) 500 3)
Iron	1.00
Manganese	0.50
Copper	1.50
Zinc	15
Calcium	200
Magnesium	150
Total Hardness as CaCO3	500
Chloride	600
Sulfate	400
Phenol	0.002
pH	6.5 - 9.2
Mineral Oil	shall not be included
Hydrogen Sulfide	shall not be included
Anionic Detergents/Forming Agents	shall not be included
Gross alpha activity (pCi/l)	3
Gross beta activity (pCi/l)	30

Egyptian Standard for Drinking Water.

³ Recommendation of NOPWASD

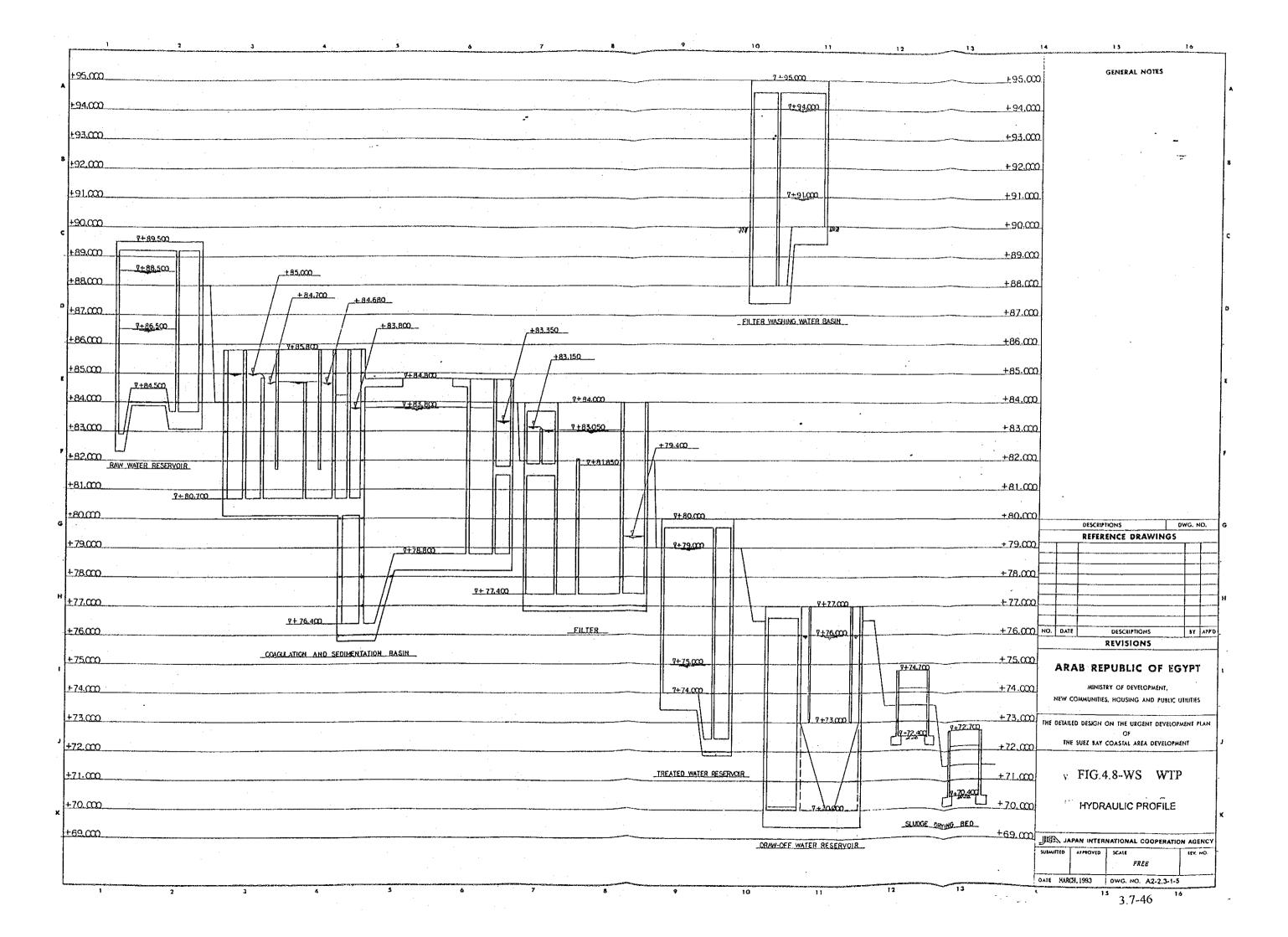
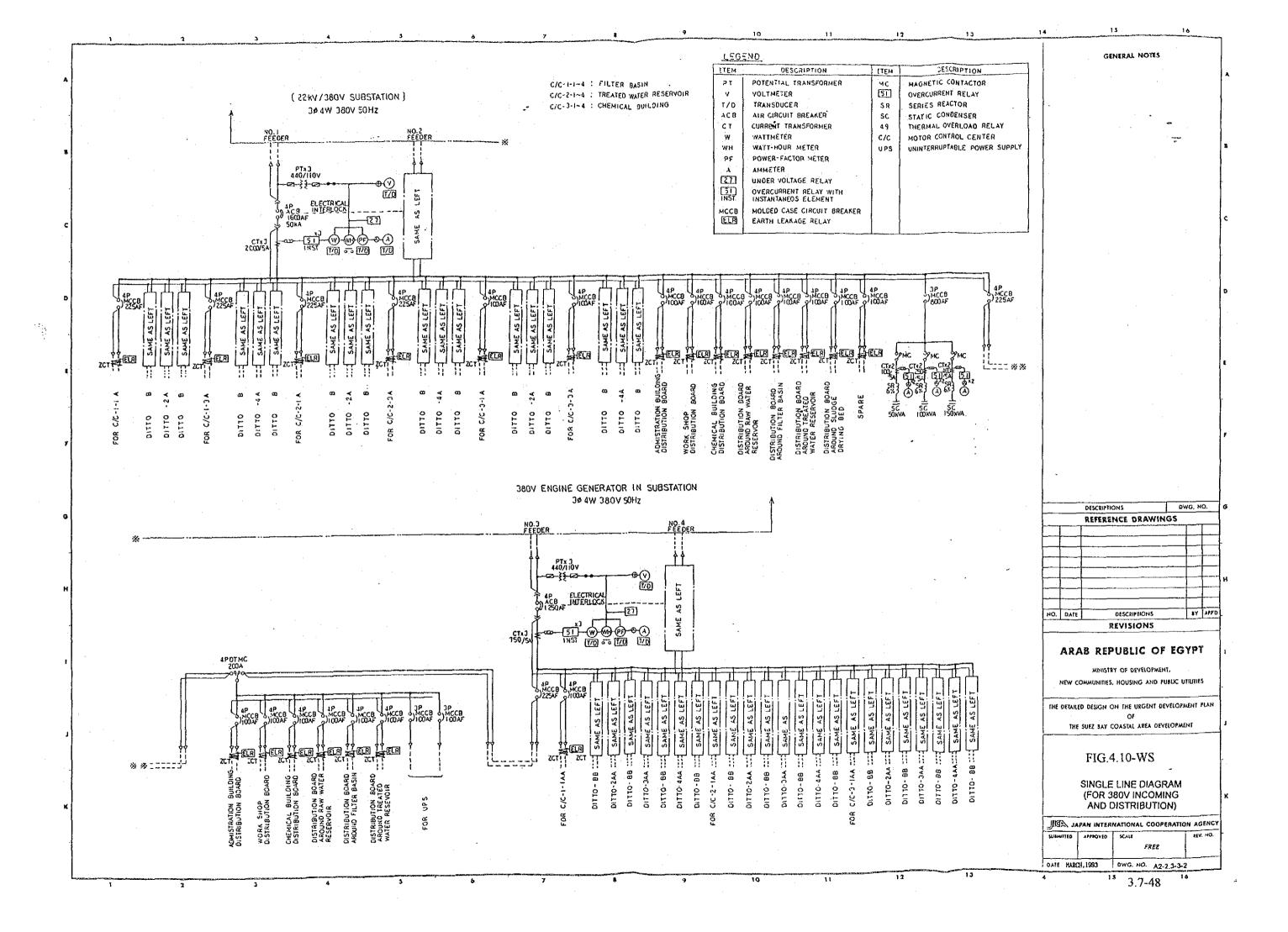
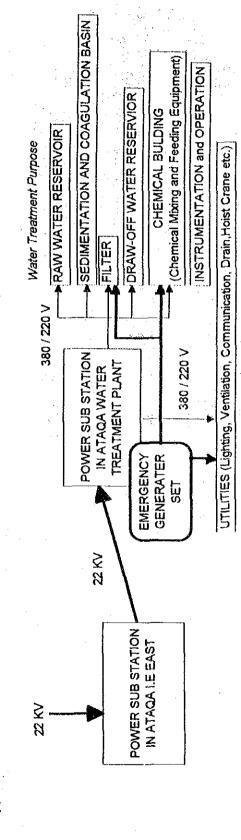
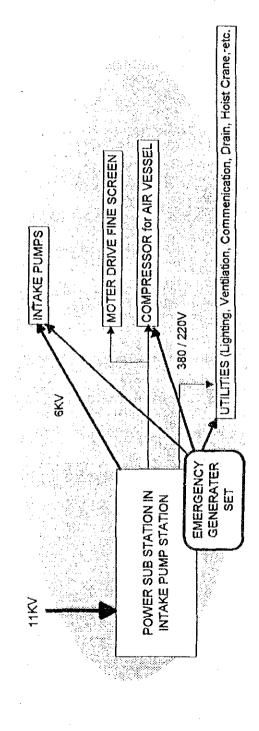
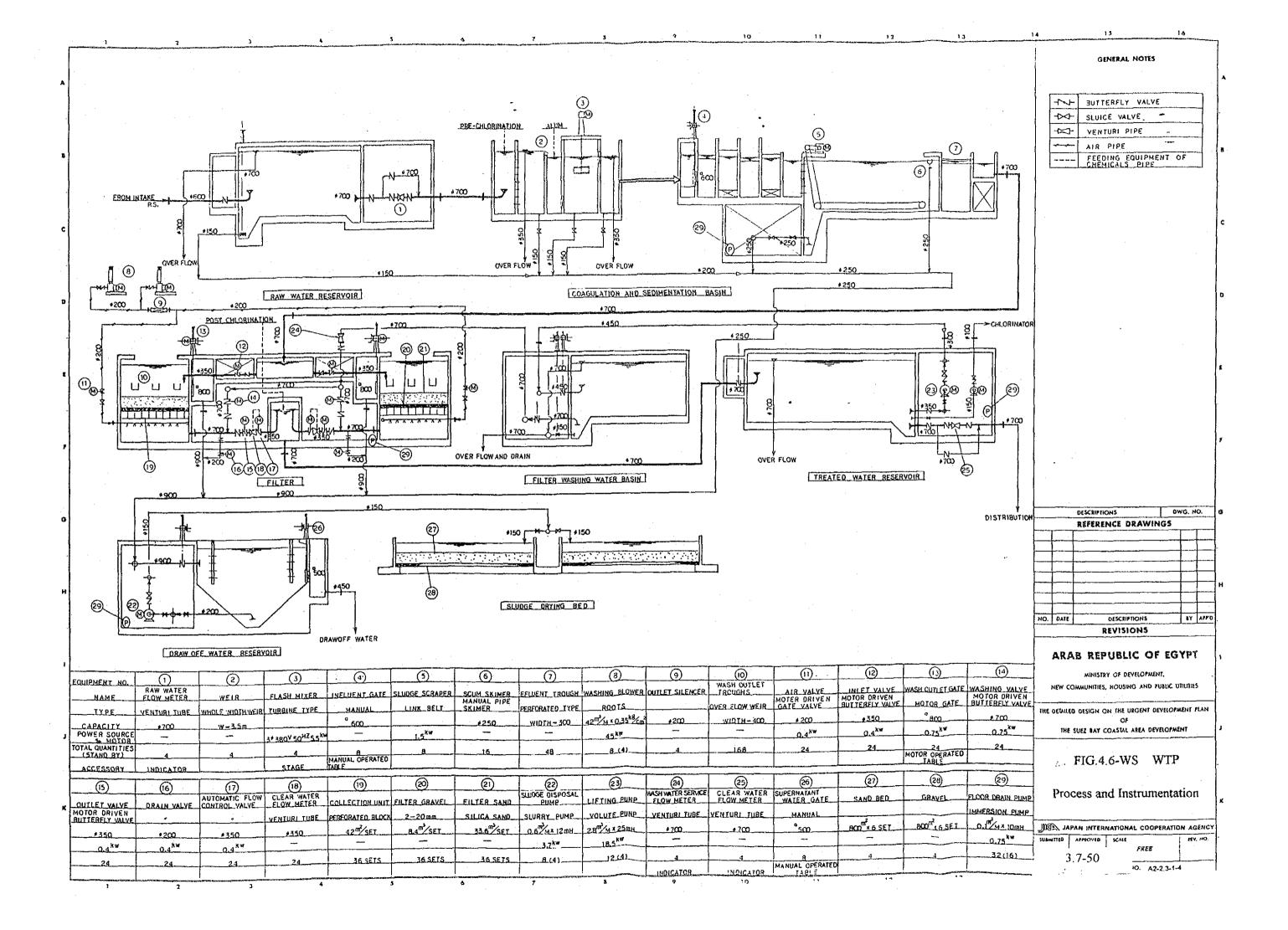


FIG.4.9-WS FILTER WASHING PROGRAM (3 DAYS PER 1 CYCLE)

	4	lió	T_		1	1		1	[44	Γ	Γ.		<u> </u>	I.A			<u> </u>		7		44	بخرا	_		T
	24	15	6	ς,	UK.	27			 	24	i	LK.			بنفضه	6			24		Z	121	4171	ဂ		œ
	23	7	∞	Ň	œ	18	8			23	Ċ	α	92	8	14	œ			23		92	8	14	ø	7	æ
	8	5	2	ننها	≥	25	φ			22	q	⋛	32	<u>τ</u>	13	7			23		25	19	13	7	1	≥
	2	127	œ	α	8	24	(8)			7	OY.	R	24	85	12	ထ	. !		7		24	18	213	ဖ	œ.	ଞ
	29	‡	ίĊ	œ	58	23	47			50	œ	53	23	17	1.	ι'n			22		23	11	11	ιņ	or.	62
	<u>~</u>	5	4	œ	28	23	16			တ္	œ	82	22	19	10	4	i		တ္		22	:16	10	4	œ	28
	13	თ	ri	œ	22	21	15			∞	œ	72	24	15	Ö	(L)			<u></u>		21	12	6	3	oʻ.	12
hing th	14	ထံ	2	œ	56	82	14			7,	ď	58	8	14	œ	2			1		8	14	άĎ	2	œ	83
Washing Stand-by	φ	2	4.	. M	25	19	13	- 1		6	≫	32	13	13	7	-			ထ္		<u>5</u>	13	1	1	⋠	53
	1 10	ισ	œ	ଞ	24	₩	12			π	g	42	φ	12	တ	U.			ភ		80	12	ထ	œ	æ	24
	4	ίĊ	œ	53	23	17	11			4	53	23	17	+	ഗ	œ		 	4		11	11	ų,	œ.	29	23
	6.	4	œ	28	72	16	10			<u></u>	28	27	16	2	4	œ			<u>რ</u>	1	16	10	4	œ	28	N
	17	m	œ	77	21	ਨ	თ		_	7	27	7.7	4	თ	က	ď			7		15	o	3	œ	27	77
	7	7	œ	83	ଷ	14	82			=	92	R	14	æ	2	œ			÷		14	ထ	2	α	26	8
-	5	-	₹	35	5	ξ	7			5	25	<u>0</u>	Ω			3			5		13	1.	+	≥	25	<u></u>
	თ	α	೫	24	138	12	ဖ			თ	24	3	12	ထ	O.	೫			ഗ		12	9	œ	8	24	æ
•	ω	œ	53	23	17	+-	5			ω	23	1,4	1,	r.	œ	23			ω	1	4.	Ŋ	œ	53	23	7
i		œ	28	22	16	10	4			^	22	16	9	4	œ	28			<u>~</u>		9	4	œ	28	22	16
!	ω	œ	27	21	15	ტ	'n			σ	21	15	σ̈	3	œ	7.7			တ	1	တ	e)	œ	27	21	15
i	ນາ	œ.	58	ผ	14	ထ	2			ഗ	20	14	8	7	œ	æ			ເນ		œ	2	ď	92	æ	17
	4	3	25	13	13	1	į			4	6	13	7	شيخة	Λ	25			4		7		Χ	25		~
	ო	ଞ	24	18	12	ယ	ď			ന	,	12	ယ	œ	ജ	24			ന		Ó	α	99	24	18	12
<u>.</u>	7	63	23	11	ŧ	ເກ	œ			17	17	11	5	œ	53	23			C 1		5	œ	29	23	14	=
) 	-	83	23	ထ	9	¥	œ	Day		T-	16	9	4	ΩĽ	28	22	эу		₹		4	œ	28	2	16	9
(1) Eight Day	FILTER POND NO.	-	2	ო	4	S	9	(2) Second	FILTER	POND NO.	-	7	ဗ	4	သ	9	(3) Third Day	FILTER	ONOG	Š	V -	2	ဇ	4	5	ဖ


FIG.4.11-WS POWER SUPPLY DIAGRAM

(1) WATER TREATMENT PLANT

(2) RAW WATER INTAKE FACILITIES

(6) Treated-water and Draw-off water Distribution NetworkCoverage area of distribution systems are shown in FIG. 4.13-WS to 4.16-WS.

(a) Design Criteria

Residual Hydraulic Head

(Treated-water Distribution Network):

Minimum 15m

(Fire Hydrant)

Minimum 20m

Design Coverage of Hydrant

Radius 50m as Maximum,

(Hydrants are installed in pipes of

over ND200.)

Material

(Over ND 250)

Ductile cast iron pipe

(Less than ND 300)

PVC

Coefficient: C

(Ductile cast iron pipe)

110

(PVC pipe)

120

Terminals

to be installed stop valve (sluice valve with

cap.)

(b) Major Specifications

1) Material of Pipe

(Ductile cast iron pipe)

Over ND 350, Minimum tensile strength 420

N/mm2, Minimum elongation less than 7%

REPO2.DOC 11/12/93

(PVC pipe)

Less than ND 300, JIS K-6741 and JIS K-

6742 or equivalent, 10 kgf/cm2

2) Diameter of Pipe

ND 100 to 1,200

3) Hydraulic Condition

(Treated water distribution) see FIG.4.17-WS to 4.20-WS

(Draw-off water distribution) see FIG.4.21-WS to 4.24-WS

Flow calculation sheet is annexed as ATTACHMENT 4-WS.

4) Joint type of pipe (DCIP)

(Push-on joint)

Minimum deflection allowed for jointing 2

deg.

(Mechanical joint)

Minimum tensile strength 400 N/mm2,

Minimum elongation less than 5%, Socket

depth 130mm

Joint type of pipe (PVC)

Solvent cement joint or Rubber-ring joint

5) Coating and Lining (DCIP):

Outer coating - Epoxy t = 0.1mm

Inner lining - Mortar, $t = 10mm \pm 3mm$

(PVC)

non

6) Valves Class

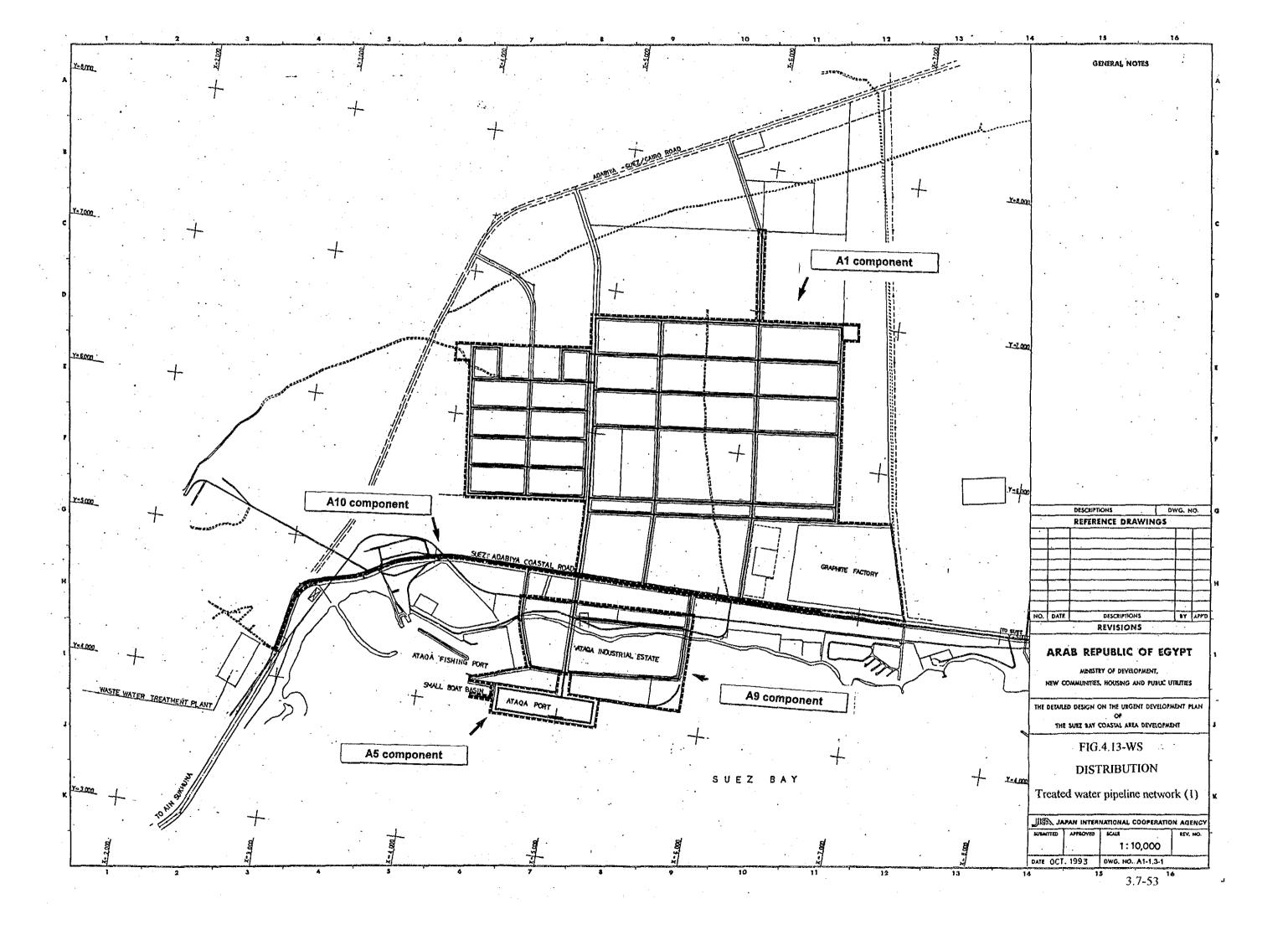
Working Pressure - 10 kgf/cm2

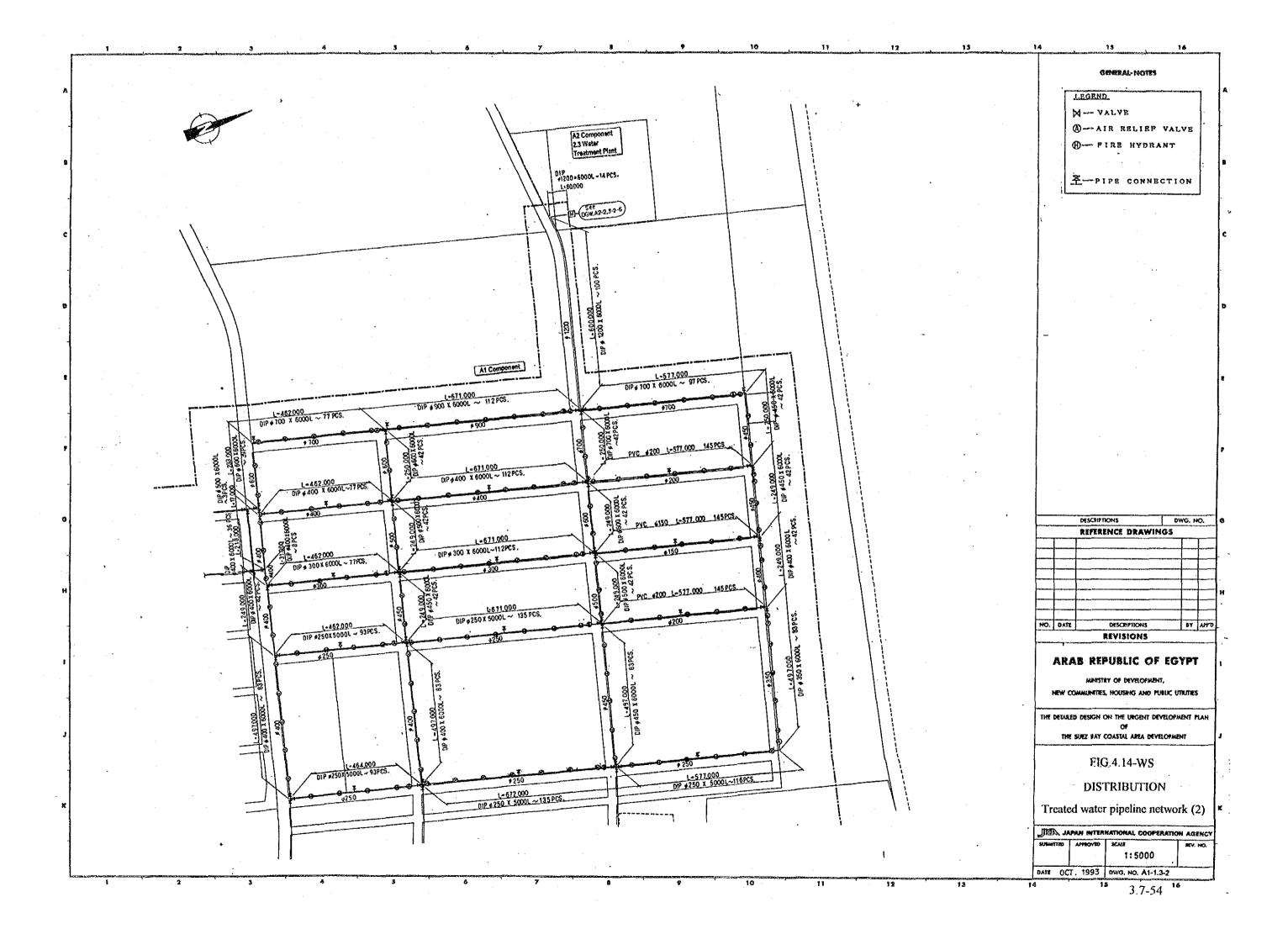
7) Polyethylene Encasement

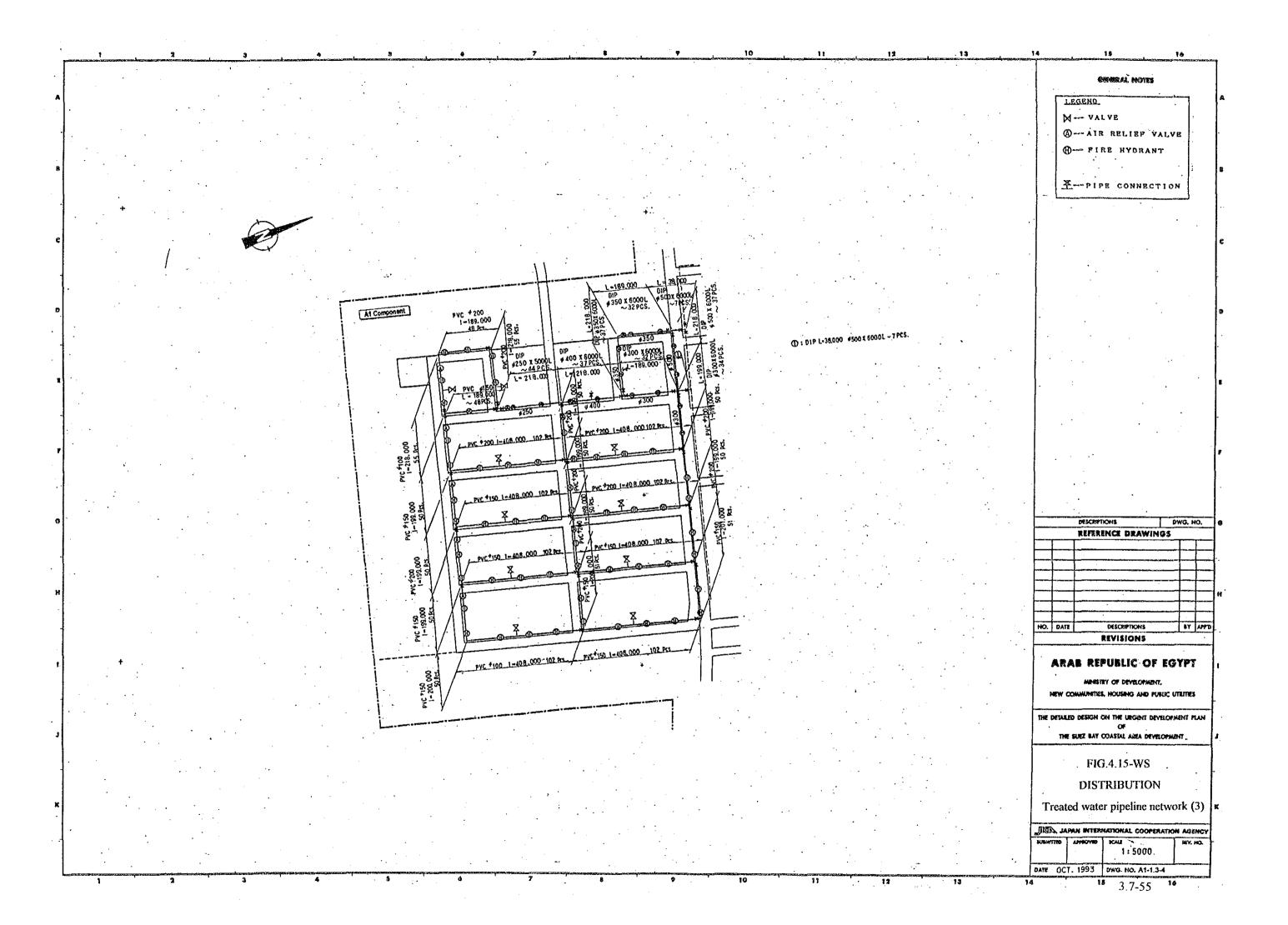
equalize to DCIP length

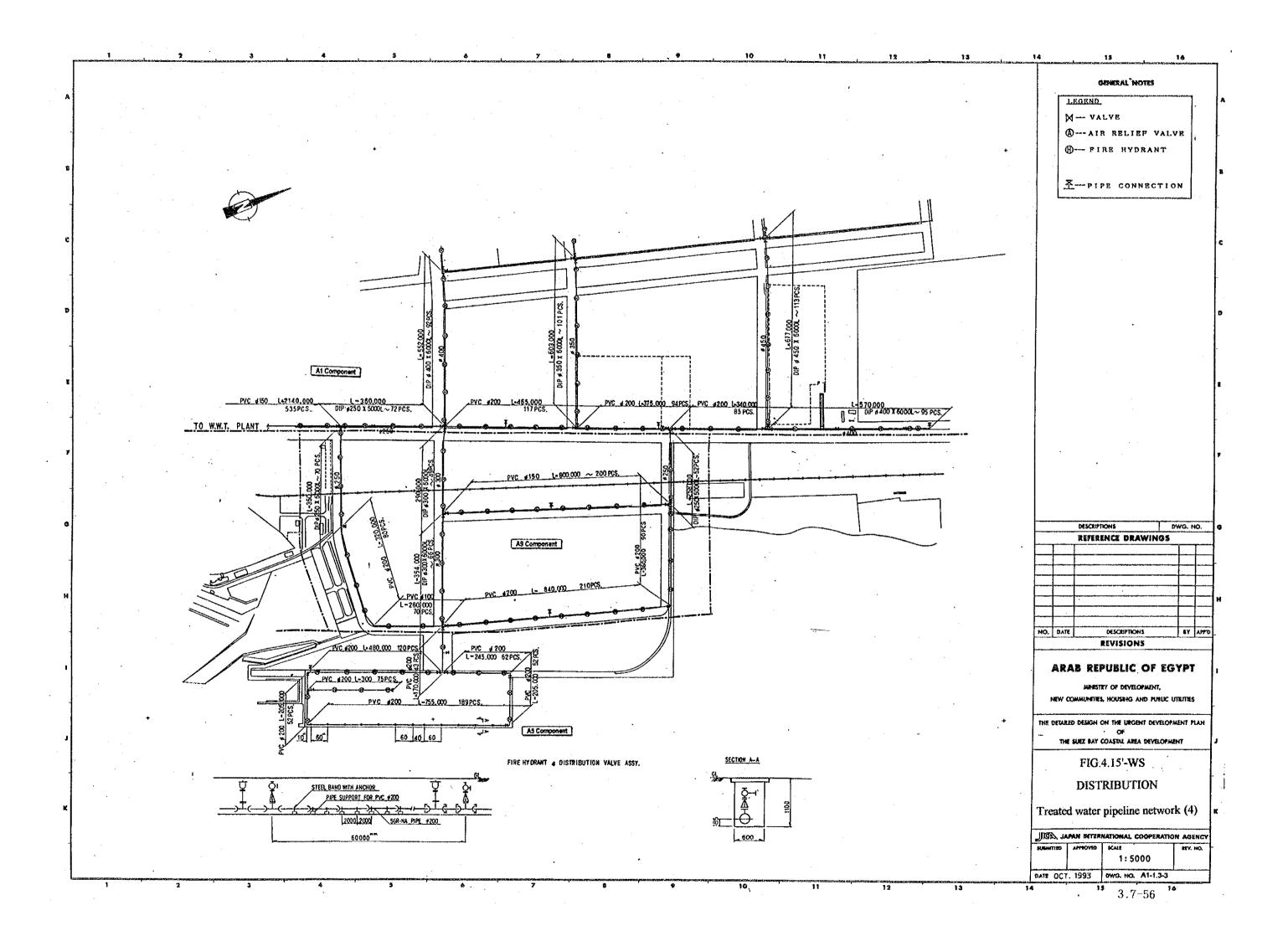
8) Ancillary works

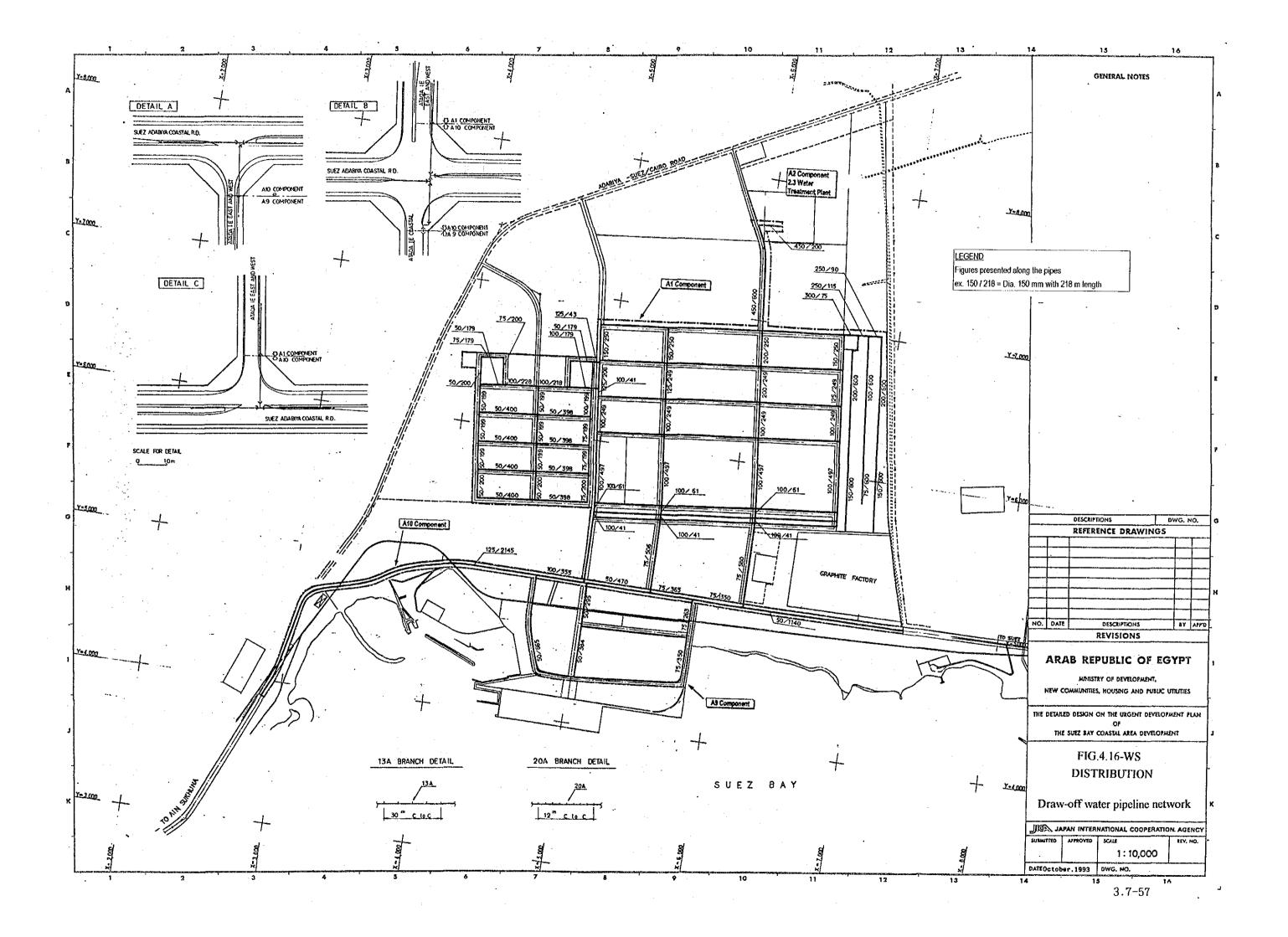
(Railway crossing)

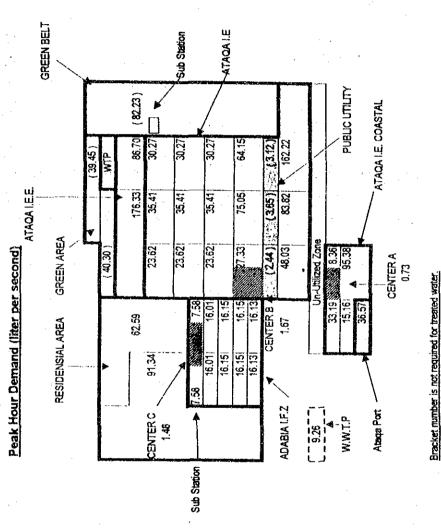

I sites, Double pipe system for protection,

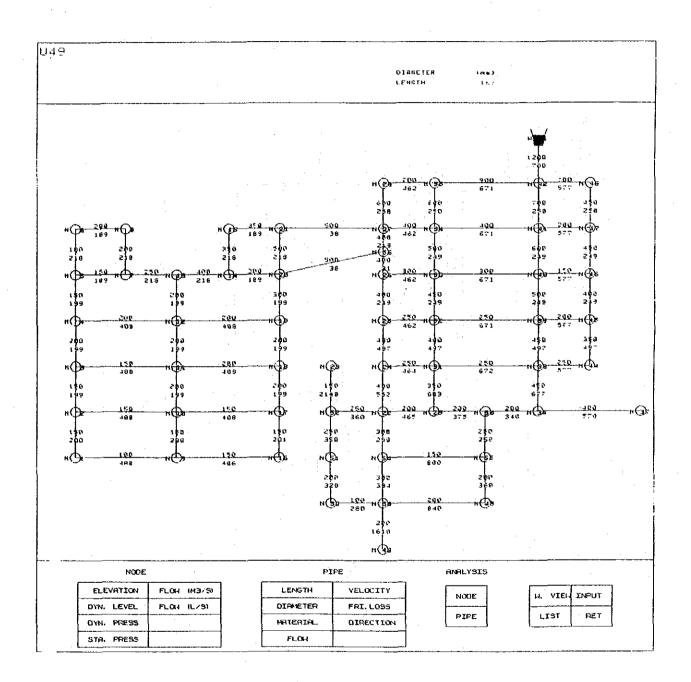

Pipe-jacking method

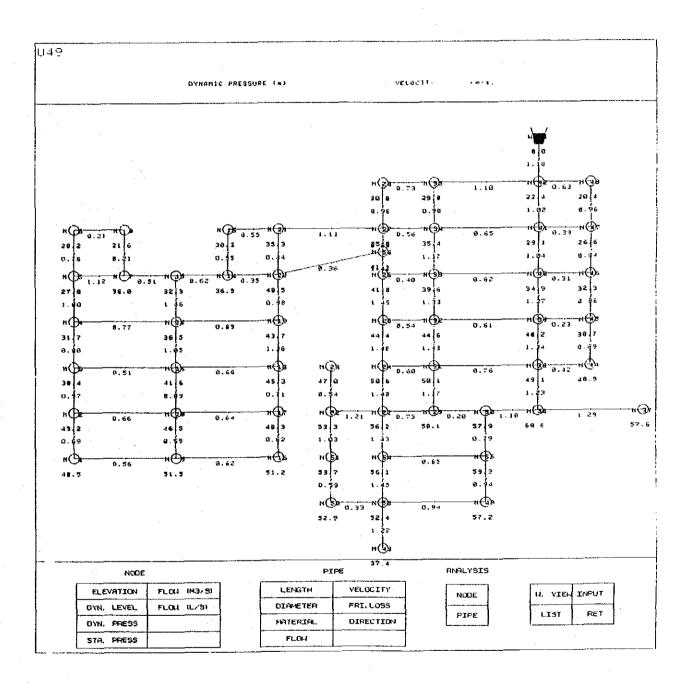

(Road crossing)

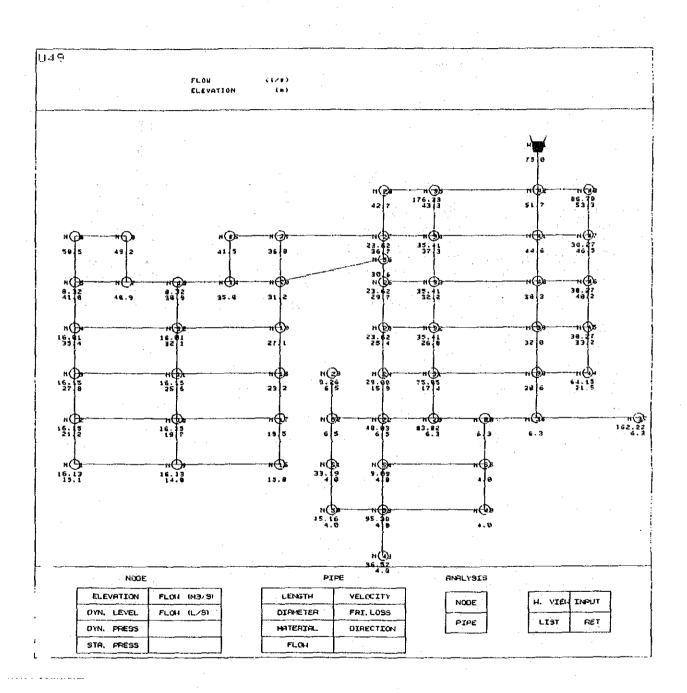

3 sites, Double pipe system for protection,

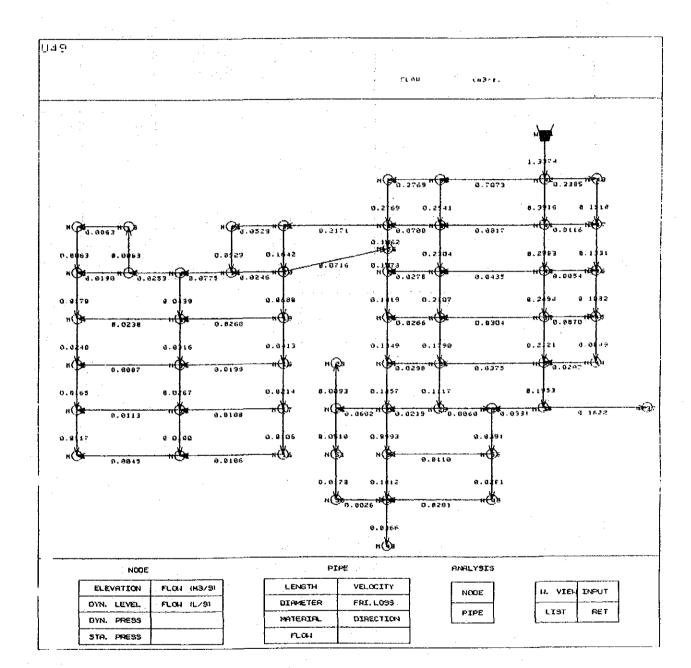

Pipe-jacking method or Open trench method



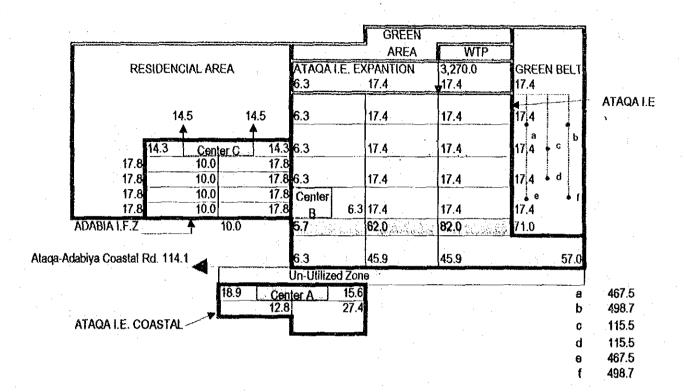


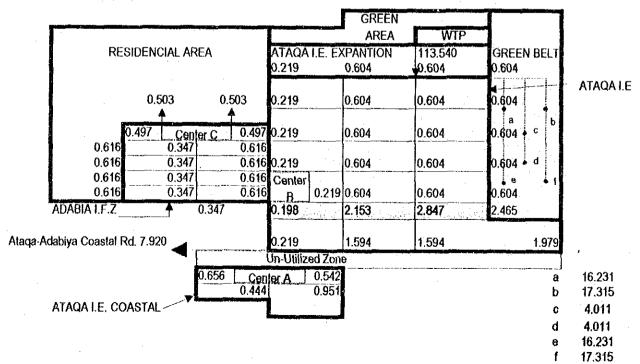


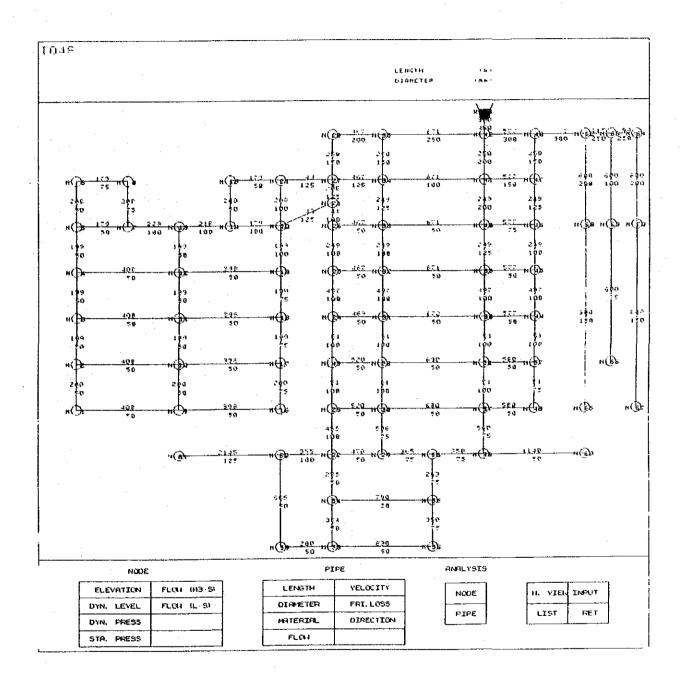


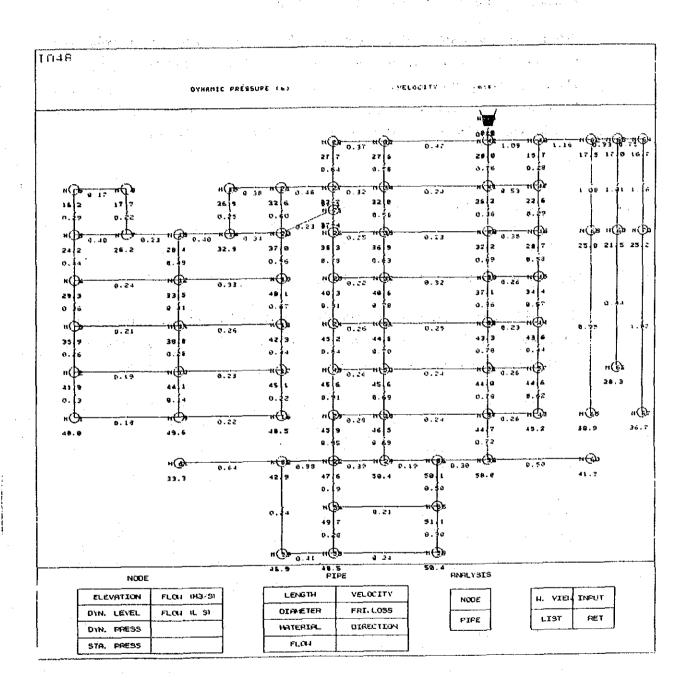


3.7-58






DESIGN WATER CONSUMPTION FOR PLANTING (cu.m per day)


DESIGN DEBIT RATE FOR PLANTING (litter per second)

note: Supply hour = 8 hrs per day

3,7.5 OPERATION AND MAINTENANCE

(1) Engineering Staffing for Operation and Maintenance

Referring to engineering and management staffing of the 6 October water treatment plant, the staffing projection for this water supply system is drafted. (see FIG.5.1) This draft staffing projection recommends 1 administrative director, 15 engineers and 150 works to be engaged to operation and maintenance, but not include financial planning/management section in charge of tariff collection, logistic and so on.

(2) Basic Operation Methods of the System

(a) Relation between Intake Operation and Raw water reservoir

The intake pump operation is depending on the water level of raw water reservoir. The intake pump shall be operated, to keep water level of the raw water reservoir in upper third of the available water level range.

The water level of raw water reservoir is always observed by water level indicator and recorder in the central control room of WTP. The water level signal is also transmitted to the intake pump station by wired telemetering system. The communication between intake pump station and central control room is made by telephone system. The communication between raw water reservoir and central control room is made by interphone system. The communication and telemetering between the central control room of WTP and the intake P/S is made by the special cable laid along the aqueduct.

(b) Operation of Intake Pump

Semi-graphic supervisory panel of the intake pump operation are installed in the control room of the pump house. This panels indicate pump operation, power supply condition, flow rate, screen operation, water level at pump sump, water hammer prevention system and water level of the raw water reservoir. (see FIG. 4.2-WS)

The water level signal is transmitted to the moter control panel of the intake P/S, for automatic switching (On/Off) of the intake pumps in accordance with the water level of the raw water reservoir. The operational water level of the raw water reservoir is upper third of the available water range.

Pump operation is also controlled manually by switchgears installed in the control room of the pump house and/or local panels at each pumps.

(c) Operation of Water Treatment Plant

The operation apparatus/switchgears are installed at each equipment. The operation of major equipment and facilities of the water treatment plant are observed by The central control room. The operation of water treatment process in five typical situations are presented in FIG.5.2-WS, 5.3-WS and TABLE 5.1-WS to 5.5-WS.

Chemical Doing Control

Chemical dosing rate such as Chlorination and Alum dosing are controlled automatically by information of the flow indicator at ahead of coagulation and sedimentation basin.

Flush mixer of Coagulation and Sedimentation Basin

Activation of the flush mixer is controlled by information of the flow indicator at ahead of coagulation and sedimentation basin.

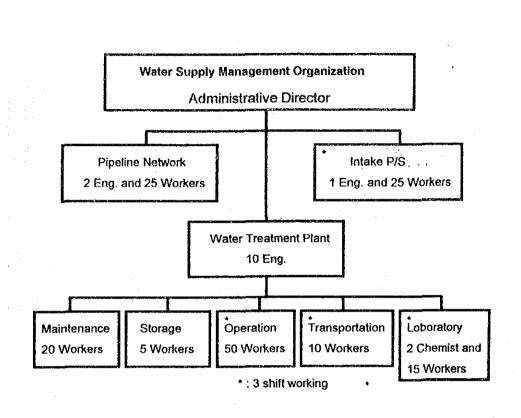
Filter Washing

Filter washing program is shown in FIG.4.9-WS. Filter washing is controlled by local control panels at each filter beds. The local control panels are respectively programmed with a series of filter washing action which are mainly valve operation. The filter operation status is sent to the central control room and indicated on the graphic panel.

The status of valves at filter washing is shown in TABLE 5.4-WS.

Treated Water Reservoir

Effluent valve of the treated water reservoir for distribution is principally always opened.


For filling of the filter washing water basin, the booster pump of the treated water reservoir is controlled by information of water level indicator in the filter washing water basin.

Sludge Draw-off Water Reservoir

Slurry pumps to convey sub-natant to the sludge drying beds are operated by manually.

Emergency Stoppage of Electric Power Supply

Emergency stop of power supply is detected in the power substation, and automatically switch to the generator system.

Facilities	Number of Engineers	Number of Workers	Remarks
Adiministrative			The office is located
Director	1	0	in the treatment
		·	plant.
Pipeline Network	2	25	3 shift working
Water Treatment			
Plant	10	100	3 shift working
Intake Pump Station	2	25	3 shift working
Total	15	150	

FIG.5.1-WS OPERATIONAL FRAMEWORK OF WATER SUPPLY SYSTEM (DRAFT)

FIG. 5.2-WS OPERATION APPRATUS DIAGRAM (WATER TREATMENT PLANT)

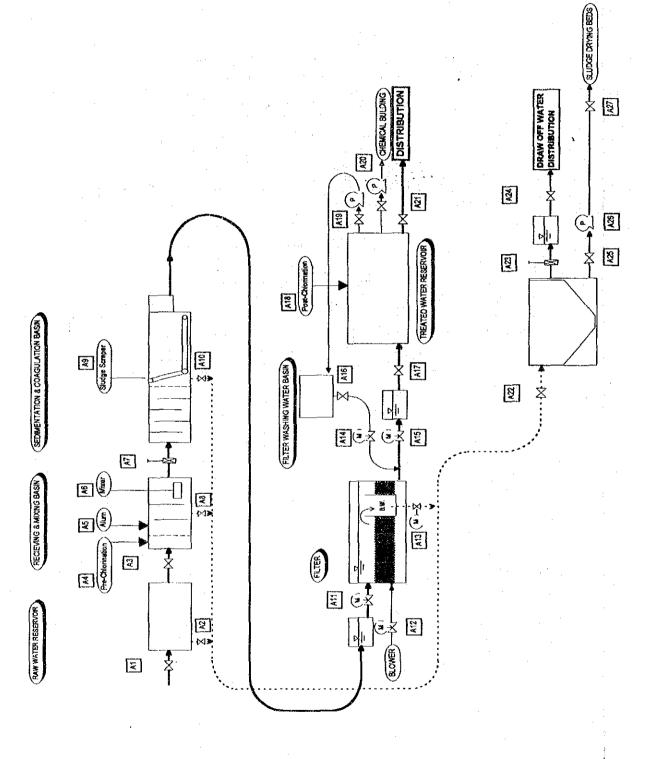


FIG. 5.3-WS INSTRUMENTATION DIAGRAM (WATER TREATMENT PLANT)

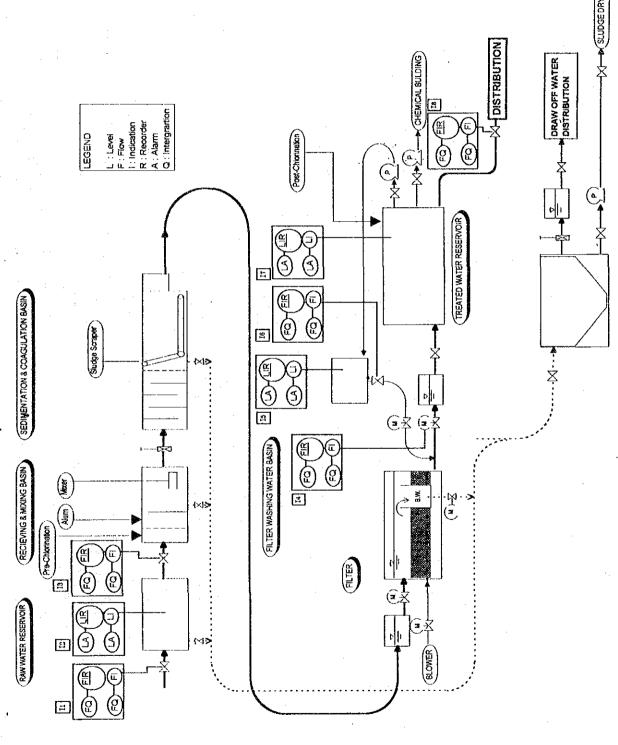


TABLE 5.1-WS OPERATION TABLE (NORMAL OPERATION)

	APPARATUS		£	STATUS	INSTRU	INSTRUMENTATION RELATED	N RELA	
Facility	Name	Driving Mode	Operation mode	Ordinal 11 Operation	21	I3 14 IS	91	77 188
Intake Pun	Intake Pump Operation			Active	•			•
Raw Water Reservoir	Influent Valve	H.O.	Manual at Site	Open	•			
	Sludge Disposal Valve	Н.О.	Manual at Site	Close				
Recieving and	Influent Valve	H.O.	Manual at Site	Open				
A+ Mixing Basin	Pre-Chlorination		Auto in Chem. bldg.	Active	-			
•	Alum Dosing		Auto in Chem. bldg.	Active				
	Mixer	M.D.	Auto. at Site	Active				
	Sluice Gate	но	Manual at Site	Open		•		
	Sludge Draw-off Valve	HO.	Manual at Site	Close		•	_	
Sedimentation and	Sludge Scraper	HO.	Manual at Site	Active	·.	6		
A10 Coagulation Basin	Sludge Draw-off Valve	H.O.	Manual at Site	Close				
Filter	Influent Valve	M.D	Manual at Site	Open		•		
	Blower Valve	ΜĎ	Auto at Site	Close				
	Back Wash Draw-off Valve	M.D	Auto at Site	Close				
	Back-wash Water Valve	M.D	Auto at Site	Close				
	Treated Water Efluent Valve	MD	Auto at Site	Open		•		
A16 Filter Washing W. Basin	Efluent Valve	Н.О.	Manual at Site	Open(adjusted)			•	
A17 Treated Water Reservoir	Influent Valve	H.O. •	Manual at Site	Open				
	Post-Chlorination		Auto in Chem. bldg.	Active				
	Lift Pump to Filter W.W. Basin		Manual at Site	Intermittent		•.		
	Lift Pump to Chemical Bldg.		Auto at Site	Active		•		
	Efluent Valve for Distribution	H.O.	Munaual at Site	Open				
A22 Draw-off Water Reservoir	Influent Valve	H.O.	Munaual at Site	Open			 	
	Sluice Gate	н.о.	Munaual at Site	Open				
	Draw-off water Effuent Valve	H.O.	Munaual at Site	Open		-		
	Sludge Disposal Valve	H.O.	Munaual at Site	Intermittent				
	Slurry Pump	H.O.	Munaual at Site	Intermittent			-	
A 27 Shidae Danna Bode	Influent Valve	Н.О.	Munaual at Site	Open			_	

TABLE 5.2-WS OPERATION TABLE (ELECTRIC STOPPAGE)

OPE_T XLS

	83	•					:														_								
	11	•														_			<u> </u>										
Į.	29																	•											
FNE	73																												
INSTRUMENTATION	4												•				•												
NST	B				•	•	•	•	•	•	•											•							
	23	•	•					:																					
	П		•																						:				
STATUS	Elестіс Stopage	Active (50%)	Open	Close	Ореп	Active	Active	Active	Open	Close	Active	Close	Open	Close	Close	Close	Ореп	Open(adjusted)	Open	Active	Inactive	Active	Open	Open	Open	Open	Intermittent	Inactive	Open
	Operation mode		Manual at Site	Manual at Site	Manual at Site	Auto in Chem. bldg.	Auto in Chem. bldg.	Auto, at Site	Manual at Site	Manual at Site	Manual at Site	Manual at Site	Manual at Site	Auto at Site	Auto at Site	Auto at Site	Auto at Site	Manual at Site	Manual at Site	Auto in Chem. bldg.	Manual at Site	Auto at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site
	Driving Mode		н.о.	H.O.	н.о.			M.D.	H.O.	H.O.	H.O.	н.о.	M.D	M.D	M.D	M.D	M.D	н.О.	н.о.				н.о.	H.O.	H.O.	H.O.	н.о.	H.O.	H.O.
APPARATUS	Name	Intake Pump Operation	Influent Valve	Sludge Disposal Valve	Influent Valve	Pre-Chlorination	Alum Dosing	Mixer	Sluice Gate	Sludge Draw-off Valve	Sludge Scraper	Sludge Draw-off Valve	Influent Valve	Blower Valve	Back Wash Draw-off Valve	Back-wash Water Valve	Treated Water Efluent Valve	Efluent Valve	Influent Valve	Post-Chlorination	Lift Pump to Filter W.W. Basin	Lift Pump to Chemical Bldg.	Efluent Valve for Distribution	Influent Valve	Sluice Gate	Draw-off water Efluent Valve	Sludge Disposal Valve	Slurry Pump	Influent Valve
	Facility	Intake Pum	Raw Water Reservoir	.	A.3 Recieving and	A4 Mixing Basin					A9 Sedimentation and	A10 Coagulation Basin	All Filter					A16 Filter Washing W. Basin	A17 Treated Water Reservoir					A22 Draw-off Water Reservoir					A27 Sludge Drying Beds
	Ž		Ai	A2	A3	A4	A5	9e	A7	A8	6 V	A10	A11	AI2	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27

TABLE 5.3-WS OPERATION TABLE (FULLY STOP)

OPE_T XLS

	APPARATUS			STATUS		PSST	INSTRUMENTATION	TATI	3	
Facility	Name	Driving Mode	Operation mode	Fully Stop	11 12	<u> </u>	4	15	. 9I	17. 18
Intake Pun	ntake Pump Operation	·		Inactive						
Raw Water Reservoir	Influent Valve	H.O.	Manual at Site	Close						 .
	Sludge Disposal Valve	н.о.	Manual at Site	Close						
A3 Recieving and	Influent Valve	H.O.	Manual at Site	Close					-	
A4 Mixing Basin	Pre-Chlorination		Auto in Chem. bldg.	Inactive						
	Alum Dosing		Auto in Chem. bldg.	Inactive						
	Mixer	M.D.	Auto. at Site	Inactive						
	Sluice Gate	H.O.	Manual at Site	Close				-	_	
	Sludge Draw-off Valve	H.O.	Manual at Site	Close				_		-
A9 Sedimentation and	Sludge Scraper	H.O.	Manual at Site	Inactive						
A10 Coagulation Basin	Sludge Draw-off Valve	H.O.	Manual at Site	Close					_	_
	Influent Valve	M.D	Manual at Site	Close						
	Blower Valve	M.D	Auto at Site	Close						
	Back Wash Draw-off Valve	МD	Auto at Site	Close						-
	Back-wash Water Valve	M.D	Auto at Site	Close				ļ		
	Treated Water Efluent Valve	М.D	Auto at Site	Close	-			_		-
A16 Filter Washing W. Basin	Efluent Valve	H.O.	Manual at Site	Close					-	_
A17 Treated Water Reservoir	Influent Valve	H.O. •	Manual at Site	Close						
	Post-Chlorination		Auto in Chem. bldg.	Inactive					-	
	Lift Pump to Filter W.W. Basin		Manual at Site	Inactive						
	Lift Pump to Chemical Bldg.		Auto at Site	Inactive						
	Effuent Valve for Distribution	н.о.	Munaual at Site	Close						
Draw-off Water Reservoir	Influent Valve	H.O.	Munaual at Site	Close						
	Sluice Gate	H.O.	Munaual at Site	Close			1 ·	-		
	Draw-off water Efluent Valve	H.O.	Munaual at Site	Close				_	-	_
	Sludge Disposal Valve	H.O.	Munaual at Site	Close			-			
	Slurry Pump	H.O.	Munaual at Site	Inactive						
A27 Sludge Drving Beds	Influent Valve	ОН	Munaual at Site	Close			-	_	_	_

OPE_T.XLS

TABLE 5.4-WS OPERATION TABLE (FILTER WASHING)

	18	•																											
	12	٠																								M			
NOL	91						:											•								400			
BNTA	,5J	1, 1												·							€			. 14		1 1			
INSTRUMENTATION	凸												•	•	•	•	•										34 34 34		1 (2) +2 (4) 4+ 4-(4)
INST	<u> </u>				٠	•	•	8	•		•							_				٠						1 1	:31 :31 :43
	12	•	ě										:									: .							
	п		•		111																								::" :::"
STATUS	Filter Wasing	Acitive	Open	Close	Open	Active	Active	Active	Open	Close	Active	Close	Close	Open	Open	Open	Close	Open(adjusted)	Open	Active	Intermittent	Active	Open	Open	Open	Орев	Intermittent	Intermittent	Open
	Operation mode		Manual at Site	Manual at Site	Manual at Site	Auto in Chem. bldg.	Auto in Chem. bldg.	Auto, at Site	Manual at Site	Manual at Site	Manual at Site	Manual at Site	Manual at Site	Auto at Site	Auto at Site	Auto at Site	Auto at Site	Manual at Site	Manual at Site	Auto in Chem. bldg.	Manual at Site	Auto at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site
	Driving Mode		н.о.	Н.О.	н.о.			M.D.	H.O.	H.O.	н.о.	н.о.	M.D	M.D	M.D	M.D	M.D	H.O.	H.O. •				H.O.	Н.О.	H.O.	H.O.	н.о.	н.о.	Н.О.
APPARATUS	Name	Intake Pump Operation	Influent Valve	Sludge Disposal Valve	Influent Valve	Pre-Chlorination	Alum Dosing	Mixer	Sluice Gate	Sludge Draw-off Valve	Sludge Scraper	Sludge Draw-off Valve	Influent Valve	Blower Valve	Back Wash Draw-off Valve	Back-wash Water Valve	Treated Water Efluent Valve	Efluent Valve	Influent Valve	Post-Chlorination	Lift Pump to Filter W.W. Basin	Lift Pump to Chemical Bldg.	Efluent Valve for Distribution	Influent Valve	Sluice Gate	Draw-off water Efluent Valve	Sludge Disposal Valve	Slurry Pump	Influent Valve
	No. Facility	Intake Pum	Al Raw Water Reservoir	A2	A3 Recieving and	A4 Mixing Basin	AS	A6	A7	A8	A9 Sedimentation and	A10 Coagulation Basin	All Filter	A12	A13	A14	A15	A16 Filter Washing W. Basin	A17 Treated Water Reservoir	A18	A19	A20	A21	A22 Draw-off Water Reservoir	A23	A24	A25	A26	A27 Sludge Drying Beds

Not Directly Related

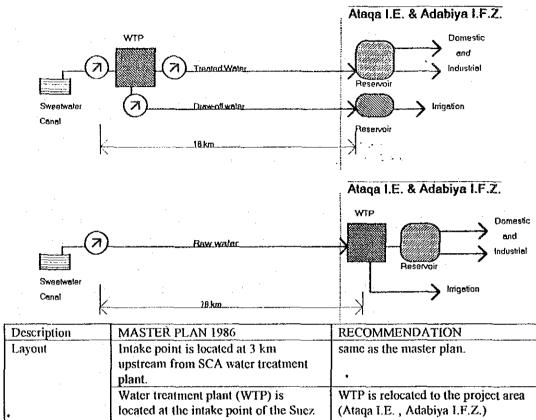
OPE_T XLS

TABLE 5.5-WS OPERATION TABLE (SLUDGE DRAW-OFF)

TATION	15 16 17 18																	•		1	•								
INSTRUMENTATION	13 [4]				•	•	•	0	**	•	•		•				•												_
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11 12	•	•																				7 (1) 2 (2) 3 (3) 4 (4) 2 (4) 3 (4)						
STATUS	Sludge Draw- off	Active	Open	Open	Open	Active	Active	Active	Open	Open	Active	Open	Open	Close	Close	Close	Open	Open(adjusted)	Open	Active	Active	Active	Open	Open	Open	Open	Intermittent	Intermittent	
	Operation mode		Manual at Site	Manual at Site	Manual at Site	Auto in Chem. bldg.	Auto in Chem. bldg.	Auto. at Site	Manual at Site	Manual at Site	Manual at Site	Manual at Site	Manual at Site	Auto at Site	Auto at Site	Auto at Site	Auto at Site	Manual at Site	Manual at Site	Auto in Chem. bldg.	Manual at Site	Auto at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munaual at Site	Munauai at Site	
	Driving Mode		Н.О.	H.O.	H.O.			M.D.	H.O.	H.O.	н.о.	H.O.	M.D	M.D	M.D	M.D	M.D	H.O.	. О.Н				H.O.	H.O.	н.о.	H.O.	н.о.	Н.О.	
APPARATUS	Name	Intake Pump Operation	Influent Valve	Sludge Disposal Valve	Influent Valve	Pre-Chlorination	Alum Dosing	Mixer	Sluice Gate	Sludge Draw-off Valve	Sludge Scraper	Sludge Draw-off Valve	Influent Valve	Blower Valve	Back Wash Draw-off Valve	Back-wash Water Valve	Treated Water Efluent Valve	Efluent Valve	Influent Valve	Post-Chlorination	Lift Pump to Filter W.W. Basin	Lift Pump to Chemical Bldg.	Efluent Valve for Distribution	Influent Valve	Sluice Gate	Draw-off water Effuent Valve	Sludge Disposal Valve	Slurry Pump	
	Facility	Intake Pum	Raw Water Reservoir		A3 Recieving and	A4 Mixing Basin					Sedimentation and	A10 Coagulation Basin	Filter					Filter Washing W. Basin	A17 Treated Water Reservoir					Draw-off Water Reservoir			:		
	S.		Al	A2	ફ	44	AS	A6	A7	A8	4 9	A10	All Filter	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	

3.7.6 REFERENCED STANDARD OF DESIGN

The following standards are applied to the detailed design of water supply system:


- Egyptian Code of Water Works 1990
- Ministerial Decree no. 286/1989 for Water Works
- Egyptian Reinforced Concrete Standard 1989
- JIS: Japan Industrial Standard
- JWWA: Japan Water Works Association
- JASS: Japan Architectural Standard Specification
- ACI: American Concrete Institute

items	unit	SCA data	Investigation data
Color	degree	nil	2
Turbidity	NTU	Max.18 Ave.12-15	15
Total Hardness as CaCO3	mg/l	224	
Total Dissolved Solid	mg/l	733	-
Total Alkalinity	mg/l	174	172
Ammonium-N	mg/l	nil	0.1
Nitrate	mg/l	nil	0.05
pH		8	8.27
Cyanide	mg/l	nil	-
Mercury	mg/l	nil	-
Arsenic	mg/l	nil	-
Iron	mg/l	nil	nil
Manganese	mg/l	nil	nil
Potassium	mg/l	59	-
Magnesium	mg/l	21	
Chloride	mg/l	172	172
Phenol	mg/l	nil	-

ATTACHMENT 2-WS

ALTERNATIVE STUDY OF LAYOUT FOR WATER SUPPLY FACILITIES.

TABLE (1) Comparison table of the system layout

Description	MASTER PLAN 1900	RECOMMENDATION
Layout	Intake point is located at 3 km upstream from SCA water treatment plant.	same as the master plan.
•	Water treatment plant (WTP) is located at the intake point of the Suez. Sweetwater Canal.	WTP is relocated to the project area (Ataqa I.E., Adabiya I.F.Z.)
	Treated water is transmitted 18 km to the project area, then distribute to the project area.	Treated water is distributed from the WTP located in the project area.
:	Draw-off water is conveyed 18 km by the pipeline laid along treated water pipeline.	Draw-off water is distributed from the WTP located in the project area.
Soil Condition	Intake & WTP: Swampy	Intake : Swampy, WTP : Hard
Land Owner	Intake & WIP : Private owner.	Intake : Private, WTP : MODANC
Estimated Pipeline Size from Intake to WTP	Treated Water: ND1000mm, DCIP Draw-off Water: ND400mm, DCIP	Raw Water: ND1100mm, DCIP
Operation and Maintenance	Complicated because of lots of pump stations.	Easier than the master plan.
Costs (for reference only)	Assuming Construction Cost = 100 O&M Cost = 100 (as index no unit)	Comparing with the master plan Construction Cost = 80 O&M Cost = 90 (as index, no unit)

ATTACHMENT 2-WS

ALTERNATIVE STUDY OF LAYOUT FOR WATER SUPPLY FACILITIES.

TABLE (2)

Comparison table of the pipeline route

(Between Intake and Water treatment plant)

Area	Master Plan 1986		Recommendation	
	Route	Obstacles	Route	Obstacles
from Intake Point to Suez Railroad Station.	Along Suez - Cairo Road.	Railroad (Suez - Ismailia)	Same as the master plan.	Railroad (Suez - Ismailia)
in Urban Area of Suez City	Running across the urban area.	Railroad (Sucz - Cairo), Sucz-Cairo Road Water supply pipes, Sewer pipes, Electric cables.	Round about the urban area.	Railroad (Suez + Cairo) Suez-Cairo Road
from Sucz Urban Area to Ataqa I.E . Adabiya I.F.Z.	Along the coastal road.	Water supply pipes, Oil pipes, Electric cables	In the desert area (west of Suez City) along Electric transmission line and Ring road	non
Total Length	About 13 km		About 19.5 km	

ATTACHMENT 3

ALTERNATIVE STUDY ON TREATMENT SYSTEM

ATTACHMENT 3-WS Comparison table of Sludge Disposal Method

	Drying Beds	Direct Disposal
System Dingram	Surja-Rario Cutja-Rario Cutja	Sury Purp n WIF
Construction and Equipment	 Gravity flow can be available between the studge basin to the drying beds. 8 sets of 3.7 kW slurry pumps (4 for operation and 4 for stand-by) are required to convey the sludge water to the drying beds. 0.7 km of ND 150 steel pipes are required. About 2.4 ha is required for the drying beds in the WTP. Electric power for the pumps is supplied from the substation in WTP. No need to install the emergency generator sets. 	 Pump lifting is required. According to 2.5 km of conveyance, total 10 pump stations (one transmission and nine boosters) are required. About 20 sets of 6 kW slurry pumps (10 for operation and 10 for stand-by) are required. (2 lines x 2.5 km) of ND50 steel pipe is required. About 100 m2 for pump pits (in WIP) and about 500 m2 for disposal well (in the desert) are required. Remote booster station is required additional power substation other than substation of WIP. Each slurry pump station needs each emergency generator sets, except in WIP. Hence total 9 generators are required.
Operation and Maintenance	 No instrumentation is needed. Gathering of dried sludge is carried out by manpower. One truck (cap. 2 ton) is required for the sludge conveyance from WTP to the desert. 	Based on inflow quantity of the pump pits, slurry pump shall be operated. No need to maintain the solid sludge disposal daily. However, periodical maintenance of pipeline and disposal point are required.
Judgment	Construction cost: Cheap O&M: Simple and Economy Conclusion: Good	Construction cost: Expensive O&M: Complicate and Expensive Conclusion: Inferior

a. Comparison of flocculation basin

Type item	a. Hydraulic Туре	b. Mechanical Type
	7.00 TO	
	The above figures	show typical types.
1. Facilities	Basin Baffle walls	Basin Flocculators and motors Motor room/space Compartment walls
2. Head loss	About 40 cm	Negligible
Reliability for flocculation	Good	Good
4. Adjustability for water mixing	Unadjustable	Adjustable
5. Maintenance and repair	Not necessary	Necessary
6. Desludging	Difficult	Easy
7. Endurance period	Long	Short
8. Economical aspects		
8-1 Construction cost	100	210
8-2 Operation cost	Not necessary	Necessary

b. Comparison of sedimentation basin

Type Item	a Horizontal Flow Type	b. Horizontal Flow Type with inclined plates/tubes	c. Clarifire Type
	The a	above figures show typical ty	pes.
1. Facilities	Basin Sludge scraper	inclined plates/tubes Sludge scraper	Basin Mechanical equipment Chemical feeding equipment
2. Detention time	3 - 4 hrs	. 0.5 - 1 hrs	1.5 - 2 hrs
Adaptability to fluctuation of water quality and quantity	Very good	Good	Good
4. Desludging	Easy	Rather difficult	Rather easy
5. Operation	Easy	Easy	Rather difficult
Maintenance and repair	Easier	Easy	Rather difficult
7. Endurance period	Long	Long	Short
8. Economical aspects			
8-1 Construction cost	120	145	100
8-2 Operation cost	100	900	600
9. Land area	400	100	160

reservoir is used to wash the filter sand basins. When a filter is required to be This type of filter has separated filter * Every filter basin is separated each πţ Gravity flow filtration type) Two or more filter basins including spare basin is necessary. the filtered water in a clean water Settled Water rapid filter Approximately 5.0 m at the basin 5 42 TVE Back Hash Thickness of sand layer : 100 Effective size : 0.9 mm Рип Inlet Va] ve 7 Mater via the back washing pump. Air washing 至 4 Blower Air Wash ÷ Valve Trough Prair Va]ve Drain other. Note: This type of filter separates each 8 to 10 water introduced from other filter to the filtered water conduit is applied to wash filter basins as a group. When a filter is required to be cleaned, the filtered To separate individual filter basins, 8 to 10 filter basins are necessary for Surface washing rapid filter (Horizontally uniform filtration and one unit. (Spare basin may or may not * Every filter basin is connected each 퉏 other with filtered water conduit. Thickness of sand layer: 70 cm Thickness of gravel: 20 cm Effective size: commonly 0.6 - 0.7 clean water valves are necessary. Surface Wash Pump self back washing type) Approximately 7.5 m at the basin Clear Hater filter basins as a group. Ξ the target filter. Drain va ve Va]ve Inlet settled Orain Aater necessary.) Notes: water reservoir is used to wash the filter basins. When a filter is required to be This type of filter has separated filter cleaned, the filtered water in a clean * Every filter basin is separated each Ē <u>8</u> Thickness of gravel: 20 cm Effective size: commonly 0.6 - 0.7 Surface washing rapid filter Gravity flow filtration type) Two or more filter basins including Water Sack valve Back Wash Approximately 5.0 m at the basin Thickness of sand layer: 70 cm Thickness of gravel: 20 cm sand via the back washing pump. Inlet Valve P T Clear spare basin is necessary. Controller Ę Surface Wash Valve Orain Va]ve Orain other. Note: Type 5) Filter layers the number of filter basins Grouping of (Schematic Height of facility 1) Structure drawing) 2) Outline Item 4 9

Rapid Filters

Comparison Table of

ပ

Comparison Table of Rapid Filters

C. Comparison	on Table of Rapid Filters		
Type	pe Surface washing rapid filter (Gravity flow filtration type)	Surface washing rapid filter (Horizontally uniform filtration and self back washing type)	Air washing rapid filter (Gravity flow filtration type)
6) Filtration rate	te 120 m/day - 150 m/day	120 m/day - 150 m/day	120 m/day
7) Underdrain system	Perforated block	Low head loss type perforated block	Nozzles for washing water and air scour
8) Washing methods	Back washing: 0.6 - 0.9 m²/m²·min carried with back washing pump Surface washing: (at a fixed velocity of 0.15 - 0.2 m²/m²·min) carried with surface washing pump	Back washing: 0.6 - 0.9 m'/m' · min Continuous feed of filtered water of other basin within the same unit. Surface washing: (at a fixed velocity of 0.15 - 0.2 m'/m' · min) carried with surface washing pump	0.6 - 0.9 m³/m²·min Carried with a back washing pump.
9) Maintenance	* The unit includes many valves, a surface washing pump, and a back washing pump. The electric sequence and instruments network are also complex. * Difficult in maintenance and inspection. * Adjustment is more complicated than in the case of ③. * Flow controllers are provided to all basins, which makes the mechanism complex.	* Number of valves is decreased, and no back washing blower nor back washing pump is necessary. Only a surface washing pump is necessary. Electric sequence network is simple. * Structure is simple because the amount of washing water is equal to the amount of discharge.	* The filter have number of valves, an air washing blower, and a back washing pump. Electric sequence network and instruments are complex. * Difficult in maintenance and inspection.
10) Space for installation	Large (Needs a back washing tank)	Small (No need of back washing tank)	Large (Needs a back washing tank and blower room)
11) Maintenance cost	100%	708	100%
12) Construction cost	100%	70 - 808	100%
13) Evaluation	# High construction cost * Difficulty in maintenance * Complex daily operation procedure * Large installation space required	A Recommended * Low construction cost * Easy maintenance * Simple daily operation procedure * Small installation space required	B * High construction cost * Difficulty in maintenance * Large installation space required

Pipe	Advantage	Disadvantage	Available Size	Cost
Ductile iron pipe	High strength and excellent impact resistant.	Thrust block is required where thrust force is generated.	(Ø1,100)	(Ø1,100)
	Corrosion resistant. Flexible joints.	However, thrust block will not be required or will be reduced in		
	4. Jointing works can be	volume il restrained joints are		
	easily done without a skilled worker.	used.	O	100
	For normal soil condition			`:
•	no special bedding is required and can be			
	backfilled by excavated			
Steel pipe	soil. 1. High strength and excellent	Poor corrosion resistance		
oteer pipe	impact resistance.	requiring heavy duty corrosion		
	Thrust block is not required because pipes are joined	protective coaling or system.		ļ
	by welding.	Welding of joints requires a long time and skilled worker and is	0 %	110
i		interrupted by rain and ground		1
		water. 3. Sand bed and fine sand backfilling		
		with compaction are required to		
Polyvinyl	Lightweight, therefore,	prevent excessive deformation. 1. The strength tends to decrease	ļ	ļ
chloride	jointing work is very easy.	with increasing temperature.		
pipe	Excellent corrosion resistance.	Can be damaged by organic solvent, heat and ultraviolet.		
	70010(41100)	Sand bed and fine sand backfilling	×	-
		with compaction are required to		
		prevent excessive deformation. 4. Thrust block is required.		<u> </u>
Asbestos cement	Corrosion resistant except	Poor impact resistance needs		
pipe	under some condition. 2. Flexible joints.	careful handling to avoid damage. 2. Will corroded in acid water and		
, ,		acid soil.		
		Thrust block is required. Asbestos may affect human	×	-
		health.		
		5. Sand bed and fine sand backfilling		
		with compaction are required to get a large supporting angle.		
Prestresse	Corrosion resistant.	Poor impact resistance needs		
d concrete	2. Flexible joints.	careful handling to avoid damage. 2. Rigid and requires sand bed and		
		fine sand backfilling with	· .	
		compaction to get a large supporting angle.	0	50
	·	3. Heavy. O-shaped rubber rings are		
•		generally used at the joints, so leakage would easily occur.		
Glass Fiber	Excellent corrosion	Poor impact resistance needs		-
reinforced pipe	tesistance.	careful handling to avoid damage		
hiha	Lightweight, therefore jointing work is very easy.	Sand bed and fine sand backfilling with compaction are required to	×	
	, J	prevent excessive deformation.	N 14	l
Note : c	: available	3. Thrust block is required.	<u> </u>	<u> </u>

x : not available