ANNEX 1

HYDROLOGICAL STUDIES

TABLE OF CONTENTS

		<u></u>
1.	INTRODUCTION	1
2.	REVIEW OF THE FEASIBILITY STUDY	2
3.	DATA COLLECTION AND REVIEW	2
	3.1 Precipitation	
	3.2 Evaporation	3
	3.3 Streamflow	4
4.	RAINFALL	4
	4.1 Regional Rainfall Analysis	4
	4.1.1 Introduction	4
	4.1.2 Intensity of rainfall-duration-frequency-curves	5
	4.1.3 Rainfall distribution	
	4.2 Rainfall - Flood Model	7
	4.2.1 Description of the model	7
5.	HYDROLOGY	10
	5.1 Long - Term Monthly Streamflow	14
	5.2 Monthly Hydrological Model	11
	5.3 Fitting of the Monthly Hydrological Model	
	5.4 Long - Term Monthly Streamflow Generation	20
6.	SEDIMENT ANALYSIS IN RESERVOIRS	21
	6.1 General	
	6.2 Sediment Yield	22
	6.3 Reservoir Sediment Deposition	
	6.3.1 Sediment distribution within reservoirs	
	6.3.2 Delta deposits	
	6.4 Remarks on Sediment Analysis	29
RE	FERENCES	31

		LIST OF TABLES	
	Table	Description	P
· .	Table 3.1.1	Monthly Rainfall at Dos Bocas Station Monthly Rainfall at Chone Station	
	Table 3.1.2	Monthly Rainfall at Chone Station	
	Table 3.1.3	Monthly Rainfall at Portoviejo Station	
	Tabel 3.1.4	Monthly Rainfall at Rocafuerte Station (INAMHI)	
	Table 3.1.5	Monthly Dainfall at Calcate Station	
	Table 3.1.6	Monthly Rainfall at Chamotete-Jesus Maria Station	
	Table 3.1.7	Monthly Rainfall at Santa Ana Station	
	Table 3.1.8	Monthly Rainfall at Boyaca Station	
n et T	Table 3.2.1	Monthly Evaporation Class A Land Pan at Portoviejo Station	
	Table 3.3.1	Observation of Streamflow (Carrizal River at Calceta)	
	Table 3.3.2	Observation of Streamflow (Chico River at Alajuela)	т
· • .	Table 3.3.3	Observation of Streamflow (Grande River at A.J. Mosquito)	
	Table 5.4.1	Estimated Long-term Runoff in m ³ /sec for Chico River in Alajuela	
	Table 5.4.2	Estimated Long-term Runoff in m ³ /sec for Grande River in	
	1000 0, 12	A.J. Mosquito	T
	Table 5.4.3	Estimated Long-term Runoff in m ³ /sec for Carrizal River in Calceta	
	Table 5.4.4	Estimated Long-term Runoff in m ³ /sec at Proposed La	
	14010 5.1.1	Esperanza Damsite	1
	Table 5.4.5	Estimated Long-term Runoff in m ³ /sec at Poza Honda Damsite	7
	Table 5.4.6	Estimated Long-term Runoff in m ³ /sec at Santa Ana New	
		Diversion Damsite	7
	Table 5.4.7	그는 것 같은 것 같	-1.
		Estimated Long-term Runoff in m ³ /sec for Carrizal River in La Estancilla]
	Table 5.4.8	Estimated Long-term Runoff in m ³ /sec at Proposed La Cienega	
		Diverion Damsite]
	Table 5.4.9	Estimated Long-term Runoff in m ³ /sec for Portoviejo River in El	
		Ceibal	
	Table 5.4.10	Estimated Long-term Runoff in m ³ /sec for Portoviejo River	
		(Confluent with Chico River)	"
	Table 5.4.11	Estimated Long-term Runoff in m ³ /sec Chico River (Confluent with	
		Portoviejo River)	
	Table 5.4.12	Estimated Long-term Runoff in m ³ /sec at Estuary of Portoviejo	
		River	
	Table 5.4.13	River Estimated Long-term Runoff in m ³ /sec for Carrizal River	
		Estimated Long-term Runoff in m ³ /sec for Carrizal River (Confluent with Chone River)	
	Table 5.4.14	Estimated Long-term Runoff in m ³ /sec for Chone River (Confluent	
		with Carrizal River)	

	Table	Description	Page
	Table 5.4.15	Estimated Long-term Runoff in m ³ /sec at Esturary of Chone River	T-27
	Table 5.4.16	Estimated Long-term Runoff in MCM for Chico River in Alajuela	T-28
n an	Table 5.4.17	Estimated Long-term Runoff in MCM for Grande River in	
· . ·		A.J.Mosquito	T-29
	Table 5.4.18	Estimated Long-term Runoff in MCM for Carrizal River in Calceta	T-30
	Table 5.4.19	Estimated Long-term Runoff in MCM at Proposed La Esperanza Damsite	T-3 1
	Table 5.4.20	Estimated Long-term Runoff in MCM at Poza Honda Damsite	T -32
	and the second	Estimated Long-term Runoff in MCM at Santa Ana New Diversion Damsite	
	Table 5.4.22		1 35
		Estancilla	T-34
	Table 5.4.23	Estimated Long-term Runoff in MCM at Proposed La Cienega Diversion Damsite	
	Table 54.24	Estimated Long-term Runoff in MCM for Portoviejo River in El	1-55
	14016 3.4.24	Ceibal	T-36
	Table 5.4.25	Estimated Long-term Runoff in MCM for Portoviejo River (Confluent with Chico River)	
	Table 5.4.26		1-57
	1 4010 3.4.20	with Portoviejo River)	T-38
	Table 5.4.27		
	Table 5.4.28		· :
	Table 5.4.29	Estimated Long-term Runoff in MCM for Chone River (Confluent with Carrizal River)	
$p_{i}^{(1)} = p_{i}^{(1)} p_{i}^{(2)}$	Table 5.4.30	Estimated Long-term Runoff in MCM at Estuary of Chone River	
	Table 6.3.1	Sediment Deposition Study, Poza Honda Reservoir (Sediment	
	Table 6.2.0	Inflow : 30 MCM)	1-4,3
	Table 6.3.2	Sediment Deposition Study, Poza Honda Reservoir (Sediment Inflow : 30 MCM)	T-44
	Table 6.3.3	Sediment Deposition Study, Poza Honda Reservoir (Sediment	
	m -11 (0 (Inflow : 13 MCM)	
	Table 6.3.4	Sediment Deposition Study, Poza Honda Reservoir	1-40
	Table 6.3.5	Sediment Deposition Study, Poza Honda Reservoir (Sediment	T.47
	Table 6.3.6	Inflow : 7.5 MCM)	1-47
	Table 0.3.0 Table 6.3.7	Sediment Deposition Study, La Esperanza Reservoir (Sediment	1-40
	14010 0.3.7	Inflow : 64 MCM)	T-49

Table	Description	Page
Table 6.3.8	Sediment Deposition Study, La Esperanza Reservoir	T-50
Table 6.3.9	Sediment Deposition Study, La Esperanza Reservoir (Sediment	
	Inflow : 32 MCM)	T-51
Table 6.3.10	Sediment Deposition Study, La Esperanza Reservoir	T-52
Table 6.3.11	Sediment Deposition Study, La Esperanza Reservoir (Sediment	
	Inflow : 16 MCM)	T-53
Table 6.3.12	Sediment Deposition Study, La Esperanza Reservoir	T-54
Table 6.3.13	Sediment Deposition Study, La Esperanza Reservoir (Sediment	
	Inflow : 260 MCM)	
Table 6.3.14	Sediment Deposition Study, Daule-Peripa Reservoir	T-56
Table 6.3.15	Sediment Deposition Study, Daule-Peripa Reservoir (Sediment	
	Inflow : 30 MCM)	T-57
Table 6.3.16	Sediment Deposition Study, Daule-Peripa Reservoir	T-58
Table 6.3.17	Sediment Deposition Study, Daule-Peripa Reservoir (Sediment	
	Inflow : 30 MCM)	T-59
Table 6.3.18	Inflow : 30 MCM)	T-60
		a special de la compañía de la comp
	한 같은 한 것을 물었는 것 같은 것을 만들었는 것 같이 많이 많이 했다.	
	이는 것들은 것 같은 것이라. 물통 등 수 없는 것이다.	
	요즘은 것은 이상에서 이상 방법을 위해 주세요. 이상	
	사람은 사람은 전문에서 말을 받아야 물건을 통해 있다.	
÷		
· · ·	이 것이 아님, 방문에 가지 수가 제품을 위험을 보였다.	
		$\label{eq:stars} \left\{ \begin{array}{c} 1 & 1 \\ 1 & 2 \\ 1 &$

		·
	LICT OF FICUDES	·
	LIST OF FIGURES	
Figure	Description	Page
Figure 3.1.1	Double Mass Curve (Chone Station)	F-1
Figure 3.1.2	Double Mass Curve (Dos Bocas and Boyaca Station)	F-2
Figure 3.1.3	Double Mass Curve (Calceta and Rocafuerte Station)	
Figure 3.1.4	Double Mass Curve (Portoviejo Station)	F-4
Figure 3.1.5	Double Mass Curve (Santa Ana Station)	F-5
Figure 3.1.6	Double Mass Curve (Chamotete Station)	F-6
Figure 4.1.1	Zoning of Rainfall Intensity	F -7
Figure 4.1.2	Zoning of Rainfall Intensity Point-Frequency Curves	F-8
Figure 4.1.3	Distribution of Daily Rainfall	F-9
Figure 4.1.4	Intensity of Rainfall-Duration-Frequency Curves, Zone 1	
Figure 4.1.5	Intensity of Rainfall-Duration-Frequency Curves, Zone 2	ter de la companya d
Figure 4.1.6	Intensity of Rainfall-Duration-Frequency Curves, Zone 3	
Figure 4.1.7	Areal Rainfall Distribution	F-13
Figure 4.2.1	Theorethical Hydrograph	F-14
Figure 5.3.1	Fitting of Model at Calceta Station	F-15
Figure 5.3.2	Eitting of Model at Alaivala Station	E 16
Figure 5.3.3	Fitting of Model at A.J.Mosquito Station	F-1 7
Figure 6.3.1	Delineation of m for Reservoir Type Classification (Poza Honda	
	Reservoir)	F-18
Figure 6.3.2	Delineation of m for Reservoir Type Classification (La Esperanza	
0	Reservoir)	F-19
Figure 6.3.3	Delineation of m for Reservoir Type Classification (Daule-Peripa	
	Reservoir)	F-20
Figure 6.3.4	Evaluation of Relative Depth (P=P0/H), Poza Honda Reservoir	
Figure 6.3.5	Evaluation of Relative Depth (P=P0/H), La Esperanza Reservoir	
Figure 6.3.6	Evaluation of Relative Depth ($P=P_0/H$), Daule-Peripa Reservoir	
Figure 6.3.7	Area-Storage Capacity Curves, Poza Honda Reservoir	
Figure 6.3.8	Area-Storage Capacity Curves, Poza Honda Reservoir	
Figure 6.3.9	Area-Storage Capacity Curves, Poza Honda Reservoir	
Figure 6.3.10	Typical Sediment Deposition Profile	
Figure 6.3.11	Sediment Deposition Profile, La Esperanza Reservoir (Carrizal	
gu.v 0.0	River System, Sediment Inflow : 64 MCM)	F-28
Figure 6.3.12	Sediment Deposition Profile, La Esperanza Reservoir (Carrizal	
	River System, Sediment Inflow : 32 MCM)	F-29
Figure 6.3.13	Sediment Deposition Profile, La Esperanza Reservoir (Barro	
	River System, Sediment Inflow : 64 MCM)	F -30

Figure	Description Page
Figure 6.3.14	Sediment Deposition Profile, La Esperanza Reservoir (Barro
	River System, Sediment Inflow : 32 MCM)F-31
Figure 6.3.15	Sediment Deposition Profile, Poza Honda Reservoir (Sediment
	Inflow : 30 MCM)F-32
Figure 6.3.16	Sediment Deposition Profile, Poza Honda Reservoir (Sediment
	Inflow : 13 MCM)F-33
Figure 6.3.17	Sediment Deposition Profile, Daule-Peripa Reservoir(Sediment
	Inflow :260 MCM) F-34

APPENDIX 1 CALIBRATION OF MONTHLY HYDROLOGICAL MODEL

APPENDIX 2 SIMULATION OF MONTHLY DISCHARGES

INTRODUCTION

1.

For the detailed design study on the Water Transbasin Schemes for Chone-Portoviejo River Basins, the hydro-meteorological study in the Feasibility Study is reviewed and updated to confirm various parameters to be used in the design.

Considering the objectives of the project, this hydrological analysis report includes a streamflow generation in various points in the project area (Chone and Portoviejo River Basins) for a period of 29 years from 1964 to 1992.

Also, this report includes a regional rainfall analysis to compute Flood Frequency at important points related to the structures of the project. In addition, a study of reservoir sedimentation in the three reservoirs involved in the project is included to get future sediment levels at locations of the Inlet and Outlet structures of the transbasin works.

An analysis of reliability and consistency of the basic information was first executed to correct any non representative data.

In the streamflow generation study has been used a deterministic simulation model which was developed in CIDIAT in 1986. This model was fitted to define parameters involved in the Hydrologic Cycle, utilizing the observed streamflow data at streamflow gaging stations and the rainfall data related to the observed streamflows. Only reliable data were used for the calibration of the model after an analysis of reliability of the information. This means that all the existing streamflow data for all the registered period are not used for the calibration. The gaging stations used for the model fitting were the following: the Carrizal river at Calceta, the Chico river at Alajuela, and the Grande river at A.J. Mosquito.

In order to fit and to generate monthly discharges, was used the evaporation of tank type A recorded at Portoviejo Climatological Station in view of the reliability of this information because the evaporation data registered in other stations are fragmentary, limited and inconsistent.

The flood discharges can be defined by using the Regional Rainfall Intensity according to the requirement of the project, and applying a Rainfall-Flood model in order to predict the basin response.

- 1 -

2. REVIEW OF THE FEASIBILITY STUDY

The feasibility study was reviewed, updated and supplemented in this phase of the detailed design study.

The rainfall stations to be considered during this phase are the same that were considered during the feasibility design, and now the series are expanded to have a period of 29 years from 1964 to 1992. Because some rainfall stations are incomplete, the same correlation equations definded during the feasibility study are used to complete the data.

The basic information on sediment load and yield considered during the feasibility study is used in the detailed study, but some additional considerations are made to predict reservoir sedimentation levels.

3. DATA COLLECTION AND REVIEW

Hydrological data are the only source of information upon which quantitative hydrological investigations are generally based. For this reason their measurement data are to be supplemented to be the continuous data.

However, sometimes it is necessary to apply methods to adjust the observed records which are not representative. In case of rainfall, this happens due to change in location, poor maintenance of the rain gage, etc.

The basic hydrometeorological information was collected from records of Manabi Rehabilitation Center (CRM).

3.1. Precipitation

In this study has been used the following 8 precipitation stations that cover all the study area.

STATION	REGISTERED PERIOD
Dos Bocas	1964 - 1992
Chone	1964 - 1992
Portoviejo	1964 - 1992

Rocafuerte	1964 - 1992
Calceta	1964 - 1985
Chamotete	1970 - 1992
Santa Ana	1964 - 1985
Boyacá	1965 - 1992

The common period chosen during this phase of the study was 1964 - 1992 (29 years), for that reason, it was necessary to have an homogeneity of the series. In order to do that, were used some correlations between precipitation stations obtained during the feasibility study. Also, the double mass curve was used not only for correcting any inconsistency of the records, but also to compute some information from the annual value. In this last case, the monthly values were evaluated by considering a percentage defined with multiannual means.

The precipitation data of the Chamotete station were defined between 1964 and 1969 by using the correlation equation with Dos Bocas station evaluated during the feasibility study. Also, by using the correlation equation with Dos Bocas station, the data of Santa Ana station were completed from 1986 to 1992.

On the other hand, the data of Calceta station (from 1986) and Boyaca (year 1964) were completed by using the double mass curve as explained before.

In order to analyze the consistency of the precipitation data, it was necessary to apply for each station the Double Mass Curve Method by considering the accumulated annual precipitation of 4 stations. The curves are presented in Figures 3.1.1 to 3.1.6. As can be observed in Tables 3.1.1 to 3.1.8 and from the mentioned Figures, it was necessary to correct some years in order to avoid non-representatives factors.

Finally, in order to complete a non-registered month at any station, was used the Normal Proportion Method which uses the series of the stations located on the neighborhood.

3.2. Evaporation

The Manabi Province has some stations with record of evaporation, but most of them use the Piche Atmometer. In reality, there are a few stations that have Evaporation Pan Class A. The information is generally limited and fragmentary. The exception is the Portoviejo

station that has a good information.

In this context, the Portoviejo station was used as representative of the basins. The series can be seen in Table 3.2.1.

3.3. Streamflow

The streamflow observation in Manabi Province was started in 1963 at various important stations for the Water Resources Planning and Development. In spite of that, the recorded information is incomplete, fragmentary and unreliable.

More or less reliable streamflow recording stations with a continuous record are selected to fit the monthly hydrological model in such a way that covers the project area as much as possible.

The selected stations are as follows:

1. Carrizal river at Calceta

2. Chico river at Alajuela

3. Grande river at A.J. Mosquito

In Tables 3.3.1 to 3.3.3 are presented the streamflow series used during the model fitting.

4. RAINFALL

4.1. Regional Rainfall Analysis

4.1.1 Introduction

Most of the hydrologic processes are very complex that they must be interpreted and explained in a probabilistic sense. Hydrologic process is a result of natural events and involves many uncertainties and responds with random or stochastic component that can be investigated in records of hydrologic observations. On the other hand, the historical data can be observed only once and then will not occur again. The measurement of basic information is a continuous activity since hydrologic data are the only source of information, resulting in ever-increasing large amount of sample data. In our study, the registered data began about 30 year ago, and it is fragmentary and limited, basically, in respect to the streamflow record.

One of the important tasks we have in our study is to assess, based on past record on hydrologic events, future probabilities of occurrence, not only through a Point-Frequency Analysis, but also through Regional Analysis, considering a homogeneous region in terms of hydrologic characteristics.

In this study, have been applied the statistical and probabilistic concepts in order to predict future events in relation to the works involved in the project.

4.1.2 Intensity of rainfall-duration-frequency curves

In order to design structures for Water Resources Development, the time variation of the rainfall is normally required. This information is obtained through automatic rainfall gage stations which permit to know the intensity of rainfall. However, none of the selected 8 stations is equipped with an automatic rainfall gage. Only daily rainfall data are available by a manual measurement of rainfall depth.

It was, therefore, necessary to estimate Intensity of Rainfall for different durations and frequency by using some relations that had been verified around the world.

The rainfall stations selected are given in Figure 4.1.1, covering all the basins almost uniformly. Frequency curves are first prepared for each station based on 24 hour rainfall data to define hydrologic characteristics by applying the Gumbel's Extreme Distribution Type I, that has been used successfully in Ecuador. This first evaluation for the 8 selected stations indicates that the upper bound be represented by the stations Chamotete, Dos Bocas and Chone, and the lower bound be basically represented by the stations Rocafuerte and Portoviejo. On the other hand, Calceta station represents an intermediate zone between the lower and upper bounds.

The Point-Frequency Curves are given in Figure 4.1.2 at the stations of Chamotete, Calceta, Rocafuerte, and Portoviejo which clearly show the variation of rainfall characteristics from the mountain to the sea.

- 5 -

It is considered to be convenient to define three zones which have their own pattern of precipitation and a particular intensity of rainfall as shown in Figure 4.1.1. This proposed zoning is almost the same as the classification of the bio-climatic indexes defined by Manabi Rehabilitation Center (CRM), based on precipitation and potential evapotranspiration.

The next step is to evaluate the rainfall-duration-frequency curve of each zone by considering the stations of Chamotete, Calceta, and Rocafuerte for the zones 1, 2, and 3, respectively.

The problem at this point is how to assume an hourly rainfall intensity curve from daily rainfall data registered at the representative rainfall stations. There are several automatic rainfall gaging stations in the Guayas River Basin immediately to the east of the project basins, where hourly rainfall data are available as well as daily rainfall data. The hourly rainfall distribution of the daily rainfall is determined as shown in Figure 4.1.3 based on the rainfall distribution in the Guayas River Basin.

Finally, the hourly rainfall distribution is applied to the stations of Chamotete, Calceta and Rocafuerte, and Intensity of Rainfall-Duration-Frequency Curves for zone 1, 2, and 3 are prepared as shown in Figures 4.1.4 to 4.1.6, respectively.

4.1.3 Rainfall distribution

Precipitation varies geographically, temporally and seasonally and should be understood that both regional and temporal variations are important in hydrological studies.

The intensity of rainfall-duration-frequency curves, as a result of the regional analysis, were used to define the rainfall depth for a certain duration of the storm. The rainfall depth is affected by a coefficient of areal distribution(only for drainage areas greater than 25 km^2) of the point rainfall that has been defined through the analysis of many storms recorded simultaneously in stations in Manabi Province, which is given in Figure 4.1.7.

On the other hand, the temporal distribution of daily rainfall was done by considering the Figure 4.1.3, that was developed for the project through the analysis of recorded hourly rainfall depths in the Guayas River Basins.

A hyetograph for calculation of flood hydrograph can be established in the following manner based on the criteria of the U. S. Corps of Engineers.

- 6 -

When we have an odd number of hourly rainfall data, the biggest one is placed in the center of the time of a storm and the next biggest is placed in an alternate way beginning from the left side of the center. If the number of rainfall data is even, place the biggest one in the central left of the storm time and then place the next biggest in an alternate way, beginning from the right side of the biggest one.

4.2. Rainfall - Flood Model

4.2.1 Description of the model

(1) Introduction

For a flood frequency analysis in this study has used a rainfall-flood model named Hydro, which is basically the same as the Hydrograph Evaluation of the Hydrologic Model Package of the Agricultural Research Service of the U.S. Department of Agriculture.

The model is briefly explained herein and the details can be referred to Reference 4.1.

(2) Mathematical formulation

The first input is related to physical parameters of the basin such as the drainage area in km^2 (S), the total length of the river course from the uppermost point to the point of interest in Km (L), and the difference of level between the highest point of the river and a level of the point of interest in m (H).

- 7.-

(A) Components of a unit hydrograph

A hydrograph to be generated by a unit effective rainfall of 10 mm during unit time interval of 30 minutes can be defined by several components shown in Figure 4.2.1, and the equations to calculate each component of the unit hydrograph are as follows:

a. Rising limb including crest segment

 $0 \le t < t_0$

$$q = q_p \left(\frac{t}{t_p}\right)^{(n-1)} e^{(1-n)} \left(\frac{t}{t_p} - 1\right)$$

b. Falling limb

$$t_0 \leq t < t_1$$

$$q = q_0 e^{(to-t)/k}$$

Recession curve

c.

$$t \ge t_1$$

$$q = q_1 e^{(t_1 - t)/3k}$$

Where:

 t_p and q_p are the time and the discharge at the peak of the unit hydrograph, t_0 and q_0 are the time and the discharge at the beginning of the falling limb after the peak segment, and t_1 and q_1 are the time and the discharge at the beginning of the recession curve.

k and t_p included in the formula are evaluated as follows:

$$k = 5.951 \text{ s}^{0.231} * (\frac{\text{H}}{\text{L}})^{-0.777} * (\frac{\text{L}^2}{\text{s}})^{0.124}$$
$$t_p = 1.442 * \text{s}^{0.442} * (\frac{\text{H}}{\text{L}})^{-0.46} * (\frac{\text{L}^2}{\text{s}})^{0.133}$$

The exponent n_1 and n_2 , which determine the shape of the unit hydrograph, are calculated by the following equations.

$$n_2 = 1 + \frac{1}{\sqrt{n_1 - 1}}$$

$$n_1 = \frac{0.05}{(\frac{k}{t_p}) (\ln (\frac{n_2}{n_2 + 0.05}) + 0.05)} + 1$$

.

Then,

$$t_0 = n_2 * t_p = (1 + \frac{1}{\sqrt{n_1 - 1}}) t_p, t_1 = t_0 + 2k$$

In order to calculate the peak discharge, it is necessary to compute the coefficient B, as follows:

$$B = \frac{2.777}{S_2 + S_1 \frac{k}{t_p} (1 + 2e^{-2})}$$

Where:

 S_2 is the area of the dimensionless unit hydrograph until t_0 , and S_1 is the ordinate at t_0 , when q_p is set to be 1.0.

Finally, discharges of the unit hydrograph at the three control points are calculated by the following formula.

$$q_p = B \frac{S}{t_p}$$
 (S is the drainage area in km²)
 $q_0 = q_p * S_1$
 $q_1 = q_0^{e-2}$

(B) Effective Rainfall (SCS Method)

The Soil Conservation Service developed a method for computing abstractions from storm rainfall. The hypothesis of the SCS method is that the ratios of the two actual to the two potential quantities are equal as follows.

$$\frac{Fa}{S} = \frac{Pe}{P \cdot Ia}$$
$$P = Pe + Ia + Fa$$

- 9 -

P: Total rainfall (cm)
Pe: Effective rainfall (cm)
Ia: Initial abstraction (cm)
Fa: Continuing abstraction (cm)
S: Potential maximum retention (cm)

Also, Ia = 0.2 S as an empirical relation. Then,

$$Pe = \frac{(P-0.2S)^2}{P+0.8S}$$

Where

The potential maximum retention can be calculated by the following formula, where CN is a dimensionless curve number varying from 0 to 100 depending on soil conditions, kind of vegetation and antecedent moisture condition.

$$S = 25.4 \; (\frac{100}{CN} - 1)$$

It is to be noted that P, Pe and Fa are cumulative values from the start of a storm to a certain time after the storm starts. Then, a hyetograph of total rainfall given an input data can be converted to a hyetograph of effective rainfall as (Pe at t_{i-1}) after Ia is first taken into account.

(3) Total Hydrograph

A total hydrograph can be determined from the unit hydrographs based on the effective rainfall as calculated in (1) and (2).

5. HYDROLOGY

5.1. Long - Term Monthly Streamflow

Surface water hydrology deals with the transfer of water along the earth's surface and it is highly important to many applications related to water resources development such as municipal and industrial water supply, conservation, streamflow forecasting, water quality, reservoir design, irrigation, etc. The relationship between precipitation and runoff is influenced by many factors on rainfall patterns and on basin characteristics, resulting in a complex phenomenon.

Because of these complexities, many approximate formulas have been developed to relate rainfall and runoff. The earliest of these were usually crude and empirical statement. In this study, however, has been used a model composed of sound rational equations based on physical principles.

5.2. Monthly Hydrological Model

(1) Introduction

In this study has been used a determinist model for hydrology simulation, where the Hydrologic Cycle is represented by a series of formulas which describe the system response to a certain input functions. The model was developed in 1986 in the INTERAMERICAN CENTER FOR THE WATER AND LAND DEVELOPMENT (CIDIAT) by Roberto A. Duque and Alex G. Barrios.

This section involves a brief description of the model and the details can be referred to Reference 5.1 of the CIDIAT documents.

This model has been applied to drainage areas with defined boundaries where a balance of the inflows and outflows are considered, resulting in a continuous system governed by the principle of mass conservation.

Because of the used time interval is a month, only the slow processes such as evapotranspiration, infiltration, percolation, surface runoff and base flow are considered.

(2) Mathematical Formulation

Various factors duly taken into account in the streamflow simulation model are explained hereunder.

(A) **Precipitation**

Because the precipitation is a point registered data, it is required to do some approximations in order to determine its areal distribution and its mean value for each

- 11 -

drainage area.

The formula used to determine the adjusted mean precipitation for each area are as follows:

(1)

(2)

 $PRE_{i,1} = (\sum_{j=1}^{NEPRE} PP_{i,j} \times PORCP_{j,1}) \times FACPRE_{1}$

$$FACPRE_1 = \frac{PMI_1}{PMT_1}$$

Where;

PRE _{i,1} :	Adjustment mean precipitation, month I and sub-basin 1
PP _{i,j} :	Point precipitation during month i in station J
PORCP _{j,1} :	Percentage of area of the sub-basin 1 covered by the rainfall
	station j
NEPRE:	Number of considered rainfall stations
FACPRE1:	Adjustment factor for the mean precipitation in
	sub-basin 1
PMI1:	Mean precipitation estimated by the Isohyetal method
PMT ₁ :	Mean precipitation estimated by the Thiessen method

(B) Evapotranspiration

This model considers that the evaporation demand can only be supplied by the soil moisture storage. The same as precipitation, it is necessary to evaluate the adjusted mean evaporation for each area, as follows:

 $EVM_{i,1} = (\sum_{j=1}^{NEVAP} EV_{i,j} \times PORCE_{j,1}) \times FACEVA_1$ (3) $FACEVA_1 = \frac{EMI_1}{EMT_1}$ (4) Where; $EVM_{i,1}: Adjustment mean evaporation, month i and sub-basin 1$

EV _{i,j} :	Point evaporation during month i in station j
PORCE _{j,1} :	Percentage of area of the sub-basin 1 covered by the
	evaporation station j
NEVAP:	Number of considered evaporation stations
FACEVA1:	Adjustment factor for the mean evaporation in sub-basin 1
EMI ₁ :	Mean evaporation estimated by the Isohyetal method
EMT ₁ :	Mean evaporation estimated by the Thiessen method

In order to evaluate the monthly real evapotranspiration, a limit of soil moisture is considered which means that below this value the real evapotranspiration is less than the potential one. The mathematical formula are as follows:

ETD. _	ETP ,	if HSM ≥ CLE	(5a)
$ETR_{i,1} =$	ETP x (HSM/CLE) ,	if HSM < CLE	(5b)
ETP = I	EVM _{i,1} x CT ₁		(6)
CLE = 0	0.25 x HSN1		(7)
Where;			

ETR _{i,1} :	Real evapotranspiration during month i and
	sub-basin 1
ETP:	Potential evapotranspiration
HSM:	Mean soil moisture during the month
CLE:	Limit of moisture amount
EVM _{i,1} :	Mean evaporation during month i and sub-basin 1
CT ₁ :	Factor in order to convert the mean evaporation to potential
an an an Arian An Arian	evapotranspiration.
HSN ₁ :	Soil moisture storage for the sub-basin 1

(C) Infiltration

The flow of the water through the soil surface is called infiltration. Generally, infiltration has a high initial rate which gradually reduces during continued rainfall toward a nearly constant lower rate.

On the other hand, when the moisture supply on the soil surface exceeds the

infiltration velocity, the maximum infiltration is attained for the existing conditions and is called as the potential infiltration, which is evaluated as follows:

(8)

(10) (11)

(12)

(13)

AINFP = CINF₁ x $\left[\frac{\text{HSN}_1}{\text{HSM}}\right]^{2.0}$

Where;

AINFP:	Potential infiltration
CINF1:	Infiltration capacity for the sub-basin 1
HSN ₁ :	Soil moisture storage for the sub-basin 1
HSM:	Mean soil moisture during the month

In order to evaluate the real infiltration, the following two cases are considered, depending upon the value of moisture supply.

	0.5	x AINFP	, if HDI ≥	AINFP	(9a)
AINFRE	= 1 + 1	0.0			
	HD	$\frac{(\text{HDI})^{0.2}}{2.0 \text{ x AINFP}}$, if HDI <	< AINFP	(9b)

HDI =
$$PRE_{i,1}$$
 + ASUPI
ASUPI = $ESCURT^{(i-1)}$ + $ESCUTA$

Where;

AINFRE :	Real infiltration during the month	
HDI :	Available moisture for infiltration	l
ASUPI :	Initial moisture on surface storage	e
ESCURT ⁽ⁱ⁻¹⁾ :	Retarded runoff	
ESCUTA :	Total runoff	

(D) Percolation

Percolation is a fraction of the infiltration that goes to the groundwater storage and is dependent on the relation of the groundwater storage.

The following two cases of groundwater storage are considered to evaluate this fraction of the infiltration.

PERC = FPER x AINFRE REL = HSM/HSN1

$$POT = 10.0 \times [REL - 0.75] + 1.0$$
(14)

FPER =
$$(\frac{1.0}{1.0 + POT})^{POT}$$
, if REL < 0.75 (15a)
FPER = $1.0 - (\frac{1.0}{1.0 + POT})^{POT}$, if REL ≥ 0.75 (15b)

PER =
$$1.0 - (\frac{1.0}{1.0 + POT})^{POT}$$
, if REL ≥ 0.75 (15b)

Where;

•	PERC:	Percolation during the month
·	FPER:	Fraction of real infiltration that percolates
	REL:	Relation of soil moisture
	POT:	Adjustment factor of FPER and REL to the curve that relates both
		factors.

(E) Surface Storage

The surface storage considered in the model includes not only the precipitation, but also the storage volume in the streams. The formula used are as follows:

$$ASUP = PRE_{i,1} + ESCURT^{(i-1)} + ESCUTA - AINFRE$$
(16)

$$ASUPF = ASUP + ESCOTA + ESCORT^{(1-1)} - ESCD - ESCORR$$
(17)

Where;

, ,	ASUPF:	Final surface storage
:	ASUP:	Surface storage during the month
	ESCOTA:	Total streamflow
•	ESCD:	Runoff during the month
	ESCORR:	Fraction of ESCOTA and ESCORT ^{$(i-1)$} that is a part of the
: •		streamflow during the month.
	ESCORT ⁽ⁱ⁻¹⁾ :	Retarded runoff

Soil Moisture Storage **(F)**

The water balance of the existing soil moisture, the infiltration, the real evapotranspiration, and the percolation gives the soil moisture storage. The formula used are as follows:

 $HSF = HIS + (FNPER \times AINFRE) - ETR_{i,1}$ (18) HSM = (HIS + HSF)/2.0(19) FNPER = 1.0 - FPER(20)

Where;

HSF:	Final soil moisture for the month
HIS:	Initial soil moisture for the month
FNPER:	Fraction of infiltration which does not percolate
HSM:	Mean soil moisture for the month

(G) Groundwater Storage

The groundwater storage can flow out as groundwater flow or as surface flow(base flow). The used formula are as follows:

VF =	AASI + PERC + F	SUBA1 - QB	- FSUBE _{i,1}	(21)
VM =	(AASI + VF)/2.0	· · · · ·		(22)

Where;

AASI:	Initial groundwater storage
PERC:	Percolation
FSUBA	: Groundwater inflow for the sub-basin 1
QB:	Base flow
VM:	Mean groundwater storage
FSUBE _i	,1: Groundwater inflow during the month i
	and sub-basin 1
VF:	Final groundwater storage

(H) Surface Runoff

Surface runoff is a fraction of the difference between the available moisture for infiltration and the real infiltration. The used formula are as follows:

$ESCD = PESC_1 \times ASUP$	(23)
$\text{ESCURT}^{(i)} = (1.0 - \text{PESC}_1) \times \text{ASUP}$	(24)

Where;

	Runoff during the month		
ESCURT ⁽ⁱ⁾ :	Retarded runoff		į.
 PESC ₁ :	Fraction of surface storage that is a part of str	eamfle	ow

(I) Base Flow

As mentioned before, base flow is a fraction of groundwater storage that flows out to the river. The formula are as follows:

$$QB = PQB_1 \times VM$$
(25)

Where;

QB:	Base flow					
PQB ₁ :	Fraction of grou	ndwater sto	orage that	at goes out a	is base flow	W .

(J) Groundwater Outflow

This is the flow which goes out from the basin as groundwater flow. The formula are as follows:

$$FSUBE_{i,1} = PFSE_1 \times VM$$

Where;

FSUBE _{i,1} :	Groundwater outflow during the month i which goes out			
	of sub-basin 1.			
PFSE ₁ :	Fraction of groundwater	storage that goes out as		
	groundwater outflow.			

$$PQB_1 + PFSE_1 \leq 1.0$$

(27)

(26)

(K) Streamflow

This is the flow which leaves the basin through the river and is the result of the surface runoff, the streamflow from the other basin, the retarded streamflow and the base flow. The formula involved are as follows:

$ESCT_{i,1} =$	ESCD + ESCORR + QB (28)
	$PESC_{1} \times (ESCOTA + ESCORT^{(i-1)}) $ (29)
$ESCORT^{(i)} =$	$(1.0 - \text{PESC}_1) \times (\text{ESCOTA} + \text{ESCORT}^{(i-1)}) $ (30)

Where;

ESCT _{i,1} :	Total streamflow during the month i, supplied by the
	sub-basin 1
ESCORR:	Runoff during the month
	Retarded runoff of month before
ESCORT ⁽ⁱ⁾ :	Retarded runoff during the month i

5.3. Fitting of the Monthly Hydrological Model

The drainage areas involved in this study have some meteorological stations controlled by National and Regional Institutions. The information has been detailed in Chapter 3.

The development of water resources project depends on a good estimation of the water resources, in order to maximize its use for human benefits.

Along the basins, we do not find many streamflow gaging stations which have a continuous records permitting to fit the hydrological model. The following three streamflow gaging stations are finally selected for fitting of the model because they have some continuous records.

STATION	REGISTERED PERIOD
Carrizal river at Calceta	(1964 - 1980)
Chico river at Alajuela	(1970 - 1982)
Grande river at A.J. Mosquito	(1970 - 1980)

The evaporation data used for the fitting of the model were those recorded in Portoviejo Meteorological Station which gives evaporation data measured in a Class A. This station is located in the study area and the spatial variation of the evaporation is considered small.

The objective of the fitting process is to optimize some characteristics parameters,

considering the precipitation and evaporation of the drainage area, as well as the recorded streamflow.

The parameters optimized by the monthly hydrological model in each drainage area to be calibrated are the following:

- 1. CINF: Infiltration capacity
- 2. HSN: Soil moisture storage
- 3. CT: Factor in order to convert the mean evaporation to potential evapotranspiration.
- 4. PQB: Fraction of groundwater storage that goes out as base flow
- 5. PFSE: Fraction of groundwater storage that goes out as groundwater flow.
- 6. PESC: Fraction of surface storage that leaves the sub-basin as streamflow during the month.
- 7. AIHS: Initial soil moisture capacity.
- 8. AIAS: Initial groundwater storage.
- 9. AISUP: Initial surface storage.

The precipitation stations used to fit the model were the following:

- DOS BOCAS in order to fit Carrizal river at Calceta
- CHAMOTETE in order to fit Chico river at Alajuela
- CHONE in order to fit Grande river at A.J. Mosquito

The results obtained for each basin are presented in Appendix 1 including the rainfall station used for the model fitting as well as the parameters optimized and a summary of the results for the considered period. It also shows the correlation coefficient between the observed and simulated discharges. The model makes the optimization of the parameters automatically. However, it is necessary to adjust some parameters to be consistent with the physical and hydrological characteristics of the drainage area.

In Figures 5.3.1 to 5.3.3, the fitting obtained in each site is shown, indicating a satisfactory fitting.

5.4. Long - Term Monthly Streamflow Generation

As can be seen in Section 5.3, out of the three drainage areas chosen for the model fitting, one is located in the Portoviejo river basin , and the other two in the Chone river system (one in the Carrizal river basin and the other in the Chone river basin). For that reason, the streamflow generation at the sites located in the Portoviejo river system has been done applying the parameters optimized and obtained through the fitting of the model in the Chico river at Alajuela. On the other hand, the generation at the sites located in the Carrizal and the Chone river system has been done applying the parameters optimized in the carrizal and the Grande river system has been done applying the parameters optimized in the Carrizal and the Grande rivers.

In Appendix 2, is given a detailed output of the model's streamflow generation in m3/s and MCM, which has been done for the following 12 sites.

	LOCATION	DRAINAGE AREA (km ²)
1.	La Esperanza dam site	445.0
2.	Poza Honda dam site	170.0
3.	Santa Ana new diversion dam site	481.9
4.	La Estancilla diversion dam	769.6
5.	Chico river at La Cienega	347.2
6.	Portoviejo river at El Ceibal	1794.4
1. J.	(Chico river at Alajuela	183.0 for fitting)
	(Crande river at A.J. Mosquito	187.2 for fitting)
-	(Carrizal river at Calceta	523.0 for fitting)
7.	Portoviejo river (confluent with Chico river)	1190.0
8.	Chico river (confluent with Portoviejo river)	585.0
9.	Estuary of Portoviejo river	2060.0
10.	Carrizal river (confluent with Chone river)	1166.0
11.	Chone river (confluent with Carrizal river)	755,0
12.	Estuary of Chone river	2267.0

It is important to mention that in order to carry out the streamflow generation in each drainage area, rainfall data at the precipitation stations were used which are influencing the area, considering the Thiessen Polygon defined in Figure 4.1.1.

The streamflow generated on the mentioned sites are shown in Tables 5.4.1 to 5.4.15

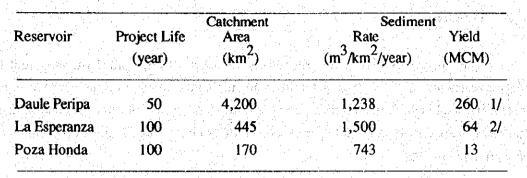
in m^3 /s and Tables 5.4.16 to 5.4.30 in MCM.

SEDIMENT ANALYSIS IN RESERVOIRS

6.1. General

6.

The Project involves three reservoirs, i.e. Daule Peripa, La Esperanza and Poza Honda reservoirs and the related facilities for their integrated transbasin. Two existing reservoirs, the Daule Peripa reservoir and the Poza Honda reservoir, have been built in 1987 and 1971, respectively, and La Esperanza reservoir is under construction at present and will be completed in 1996.


As is well known, all reservoirs created by dams on natural river courses are subject to some degree of sediment inflow and its deposition in a reservoir. It is broadly appreciated to take some provisions and guarantees of the reservoir functions during the useful life of a dam against the sedimentation problem.

In the project, the inlet and outlet facilities as well as the pumping station are planned to locate at upper reach of the reservoirs where the sedimentation problems are generally anticipated. For the design of the facilities, intake and outlet water levels should be defined in consideration of sediment deposit level analyzed in this study and countermeasures against sedimentation, if necessary, will also be studied based on the results of the sediment study.

A reservoir operation study is normally based on the area-storage curves with deposit of sedimentation after a useful life of reservoir. The modified area-storage curve obtained in the study should, therefore, be used for the integrated reservoir operation study including the three transbasin schemes.

- 21 -

6.2. Sediment Yield

In the design stage of the three dams, the sediment analysis had been conducted for the project life as summarized below:

 Based on Reservoir Operation Report of Daule-Peripa Dam Feasibility Study.

2/ Taking account of trap efficiency at 95%.

As far as Poza Honda reservoir is concerned, the bathymetric survey conducted from 1978 to 1985 were used during the Master Plan stage (1987-1990) to confirm the sediment rate after impounding the reservoir and a rate of sediment were estimated at 1,750 $m^3/km^2/year$, resulting in a sediment yield of 30 MCM in a useful life of 100 years. Based on the measured sediment rate of Poza Honda reservoir, La Esperanza reservoir sedimentation was designed at 1,500 $m^3/km^2/year$.

On the other hand, the sediment analysis for the reservoirs had been done in the Master Plan using a modified delivery ratio curve as recommended by the American Society of Civil Engineers, as shown below.

Reservoir	Project Life (year)	Area	t Erosion Potential (ton/km ² /year)	Delivery	d Sediment Production ton/km ² /year)	Sediment	
Daule-Peripa	50	4,200		-		-	260 (*)
La Esperanza	100	445	4,645	0.2787	1,295	69.15	53.19
Poza Honda	100	170	4,734	0.3596	1,702	36.17	27.83

Estimation of Sediment Loads at Damsites (Master Plan)

(*) Based on Reservoir Operation Report of Daule-Peripa Dam Feasibility Study.

Source: PHIMA, Sediment Transport Report

However, if the upper delivery ratio curve recommended by the American Society of Civil Engineers is applied, then the total sediment volume for Poza Honda and La Esperanza reservoir will be 14 MCM and 29 MCM respectively for the project life. These results are in accordance with values registered mainly in the United States. Summary of sediment estimation is shown below.

Summary of Sediment Estimation

Reservoir	Project Life		Sediment	(MCM)	
		Design	Bathymetric	Master Plan	ASCE
					· · · ·
Daule Peripa	50	260			, ··· -
La Esperanza	100	64	••	53	29
Poza Honda	100 sector	13	30	28	14

In this study, the maximum sediment rate of each reservoir is applied and the sedimentation after 25 years, 50 years and 100 years is studied.

This conservative approach is important for taking decision for the definition of inlet and outlet elevations of the transbasin structures, because in many cases reservoirs suffer from larger sedimentation than anticipated. The study cases are then summarized as follows.

	그는 것 같아요. 그렇게 지하는 것 같아요. 이번 것 같아. 지수 있는 것 같아. 걸 때 문법
	STUDIES CASES Project Life
Reservoir 100	50 25 12.5
Daule Peripa	260 130 65
La Esperanza 64	32 (*) 12 (**) 7 5
Poza Honda 30	13. 7.5

(*) Corresponding to 100 years of project life in accordance with the American Society of Civil Engineers Delivery Ratio and Potential Erosion obtained during the Master Plan.

(**) In agreement with Design Stage.

6.3. Reservoir Sediment Deposition

6.3.1 Sediment distribution within reservoirs

The procedure applied in this study covers the essential sedimentation characteristics to be considered in the design of dams and reservoirs and is related to the sedimentation processes in a reservoir that is quite complex because of the variation of the many influencing factors such as the hydrological fluctuations in water and sediment inflow, variation on grain size distribution, reservoir operation fluctuation and the size and shape of the reservoir.

The procedure used in this study represents a combination of state-of-the-art together with methods which are practical, technically sound, and sufficiently verified to fit the complexity of the problem. There are empirical methods such as the Area-Reduction Method in order to estimate the sediment distribution in a reservoir assuming the sediment yield that will be deposited from the bottom of the reservoirs during the useful life.

The used method was developed by Borland and Miller (1960) and revised by Lara in 1962 and is based on bathymetric surveys conducted in 30 reservoirs in USA. The method recognizes that the sediment distribution is dependent upon:

1. The manner in which the reservoir is operated

- 2. The texture and size of deposited sediment particles
- 3. Shape of the reservoir
- 4. Volume of sediment deposited in the reservoir.

The third one is the criteria that have been used in this study, because it has been adopted as the best one in order to predict the sediment distribution in a reservoir considering the design curves obtained empirically. In fact, the shape of the reservoir is defined by the depth to capacity relationship where "m" is the reciprocal of the slope of the depth versus capacity plotted on a logarithmic paper. The classification of reservoirs on this basis is as follows:

Reservoir Type	Classification	·	m	
	· 	· · ·		
I	Lake	1	3.5 to 4.5	
II	Flood plain-foothill		3.5 to 4.5 2.5 to 3.5	
III	Hill	1.1	1.5 to 2.5	
IV	Normally empty (Gorge)		1.0 to 1.5	

Source: Reservoir Sedimentation by Strand and Pemberton

The reservoir sediment deposition evaluated for each reservoir by using the sediment yields is analyzed in the following tables.

Reservoir Sediment Yield (MCM)	Table No.
Poza Honda 30 13 7.5	6.3.1 and 6.3.2 6.3.3 and 6.3.4 6.3.4 and 6.3.6
La Esperanza 64	6.3.7 and 6.3.8
32 16	6.3.9 and 6.3.10 6.3.11 and 6.3.12
Daule-Peripa 260	6.3.13 and 6.3.14
130 65	6.3.15 and 6.3.16 6.3.17 and 6.3.18

From the corresponding Tables of each reservoirs, plot the depth in col.2 versus the original capacity in col.4 on logarithmic paper as shown in Figures 6.3.1 to 6.3.3. According to the classification presented before, each reservoir is classified into the following type.

RESERVOIR	TYPE
Poza Honda	III
La Esperanza	III
Daule-Peripa	II .

(2) Compute col.5 by dividing the original depth represented by elevations in col.1, by the original total depth (H).

POZA HONDA		H = 33.5 m.
LA ESPERANZA		H = 43.0 m.
DAULE-PERIPA	a at in	H = 69.0 m.

网络哈拉尔地名美国拉尔地名

The depths of the reservoir are based on the High Water Level, the values of 106.5 m., 66.0 m and 85.0 m for Poza Honda, La Esperanza and Daule-Peripa, respectively.

(3) By using col.1, 3, 4, and 5 of Table 6.3.1, Table 6.3.2 is prepared and the col.2 and 6 are plotted as shown in Figures 6.3.4 to 6.3.6 obtained from reference 6.3 pag.785, in order to determine the elevation of sediment deposited at dams. The results are presented as follows:

Reservoir	Sediment	Relative	New Reservoir
	Yield	Depth	Bottom
	(MCM)	P = Po/H	Above m.s.l.
Poza Honda	30.0	0.425 (Po=14.25)	87.25
	13.0	0.260 (Po= 8.71)	81.71
	7.5	0.080 (Po= 2.70)	75.70
La Esperanza	64.0	0.100 (Po= 4.30)	27.30
	32.0	0.052 (Po= 2.25)	25.25
	16.0	0.052 (Po= 2.25)	25.25
Daule-Peripa	260.0	0.070 (Po= 4.83)	21.83
	130.0	0.064 (Po= 4.42)	20.42
	65.0	0.030 (Po= 2.07)	18.07

* New Bottom Elevation=Po+Original Bottom Elevation

(4) From Figure H.8 pag. 783 of the reference 6.3, compute the relative area (col. 6 of Table 6.3.1) by using the corresponding curve according to the type of the reservoir. It can also be calculated by the formula giving in the mentioned reference, that are presented as follows:

New Botton Elevation = Po + Original Botton Elevation

Туре	I · ·	a =	5.074 p ^{1.84}	$(1-p)^{0.35}$
Туре	П	a =	2.487 p ^{0.57}	$(1-p)^{0.45}$
Туре		a =	16.967 p ^{1.15}	$(1-p)^{2.32}$
Туре	IV	°°a ⊭	1.486 p ^{-0.25}	(l-p) ^{1.34}

where:

a = Relative sediment area

 $\mathbf{p} = \mathbf{R}\mathbf{e}\mathbf{l}$ at the bottom measured from the bottom

(5) Compute the K1 factor, dividing the original area at the new zero elevation by the relative area at that elevation.

(6) In Table 6.3.1, compute col.7 by multiplying each of the values in col.6 by the K1 factor.

(7) In Table 6.3.1, compute sediment volumes in col.8 with the Average End Area Method using areas from col.7.

(8) Accumulate values of col.8 to compute col.9. If the accumulated total sediment volume S1 does not agree with the design value of S, compute a new K as follows:

 $K_2 = K_1 (S / S_1)$

and repeat from step 6.

(9) In the same Table 6.3.1, compute col.10 as the difference between col.3 and col.7.

(10) As step 9, compute col.11 with the differences between values in col.4 and 9.

New area capacity curves were drawn from data of col.10 and 11 and are presented in Figures 6.3.7 to 6.3.9 for Poza Honda, La Esperanza, and Daule-Peripa reservoirs respectively and considering in the same order a Sediment Yield of 13.0, 64.0, and 260.0 MCM.

- 27 -

6.3.2 Delta deposits

Another phenomenon of Reservoir Sediment Deposition is the distribution of sediment longitudinally and this has to receive a special attention because of the problem associated with this. In reality, the life of a reservoir is dependent upon the rate at which sediment is moved into it. A deposition profile in its extreme upstream portion is the formation of Delta Deposits. There are many consequences of these delta deposits related to the loss of the operational volume and the structures located at the end of reservoirs such as the Inlet and Outlet of the transbasin.

Sediments deposited in the delta are continually being reworked into the downstream storage area during low reservoir stage and during extreme flood discharges. Therefore, predicting the delta development within a reservoir is a complex problem because of the variables involved into the phenomenon such as operation of the reservoir, sizes of sediment and hydraulics.

The prediction of delta formation is as yet an empirical procedure based upon observed delta deposits in existing reservoirs and proposed by the U.S. Department of the Interior, Bureau of Reclamation(reference 6.2). A typical delta profile can be seen on the sketch of Figure 6.3.10 and it is defined by a Topset slope, Foreset slope, and a Pivot Point between the two slopes dependent on the reservoir operating level.

In general terms, the procedure followed in this study has been taken from reference 6.2. However, it is important to mention that the sediment deposition has been estimated by considering the distribution of the sediment evaluated in subsection 6.3.1.

With respect to La Esperanza reservoir, considering that the reservoir is mainly formed by two branches or systems (Carrizal River System and Barro River System), it was necessary to consider the sediment yield proportionally to drainage areas and in that way factors of 0.64 and 0.36 for Carrizal River and Barro River, respectively, was found. On the other hand, the cross sections considered along the river were taken from the National Topographic Maps, in the scale of 1:50,000 and 1:25,000. The sediment inflows considered were of 64.0 and 32.0 MCM and the results are presented in Figures 6.3.11 and 6.3.12 for Carrizal River System and Figures 6.3.13 and 6.3.14 for Barro River System.

With respect to Poza Honda Reservoir, the cross sections were taken from the bathymetric survey done in 1985 and making some corrections considering points with

known elevation, in order to elaborate a longitudinal bed profile of the river before the building of the dam. The sediment inflows considered were of 30.0 and 13.0 MCM and the results are presented in Figures 6.3.15 and 6.3.16 respectively. Also, in those Figures can be seen the actual delta formation that we would be developed in Poza Honda reservoir during its operating years.

In case of the Conquillo river where the Conquillo tunnel inlet is located, sediment inflow of 11.0 MCM is estimated from a drainage area of 177 km^2 in 50 years, and the delta formation is drawn as shown in Figure 6.3.17.

According to the proposed method, the topset slope can be found by a statistical analysis of existing delta slopes which supports a value equal to one-half of the existing channel slope. This criteria was used with small modification of the topset slope, in order to fit the sediment distribution on the reservoir evaluated previously in 6.3.1.

On the other hand, the location of the pivot point between the topset and foreset slopes depends primarily on the operation of reservoirs and the foreset slopes is about 6.5 times the topset slope according to the Bureau of Reclamation Reservoir Resurveys. This criteria was also used with small modification in order to fit the sediment distribution by considering the bottom slope from the new zero bottom elevation estimated in 6.3.1.

In order to locate the pivot point, the mean level of reservoir water fluctuation is taken into account.

6.4 Remarks on Sediment Analysis

Before making the conclusion of the sedimentation study and in order to create a propitious feeling for taking decisions with respect to the location of the transbasin structures, it will be necessary to say that the concepts and theories which can be applied to the behavior of rivers and reservoirs are numerous. However, in many instances, especially in the field of this project, only empirical relationships have been developed and these are pertinent to situations involved in the range that originated the method.

As a matter of fact, predicting the response of reservoir sedimentation is a very complex task because of the large number of variables involved in the analysis, that are interrelated and can respond to changes in many influencing factors as was explained under Subsection 6.3.1. However, such a prediction is necessary and recognition of the limitations

- 29 -

of the method is important for any engineering judgment based on the knowledge of the factors involved in the problem.

Now, it is important to refer to two important aspects involved in the study as follows:

- 1. The sediment yield
- 2. The reservoir operation

According to the sediment yields evaluated for Poza Honda and La Esperanza reservoir by using the rate of sediment computed from the bathymetric survey made in Poza Honda, the annual erosion rates will be 1.50 mm and 1.75 mm in La Esperanza and Poza Honda reservoir drainage areas, respectively, which seems very high compared with the arithmetic average of sediment-production rates for various groups of drainage areas in the United States as follows:

Watershed-size range, sq mi	No. of measurements	Average Annual Sediment-Production Rate, Acre-ft /sq mi
		<u>n a para ang ang ang ang ang ang ang ang ang an</u>
Under 10	650	$3.80 (1830 \text{ m}^3/\text{km}^2)$
10 - 100	250	$1.60 \ (770 \ m^3/km^2)$
100 - 1000	123 (1888) - 123 (1888) - 1888) - 1888) - 1888) - 1888) - 1888) - 1888) - 1888) - 1888) - 1888) - 1888) - 1888)	1.01 (486 m^3/km^2)
Over - 1000	118	$0.50 \ (240 \ m^3/km^2)$

Source: Handbook of applied hydrology, V.T. Chow, 1964.

On the other hand, the sediment yields evaluated by using the upper bound of the American Society Curve referred above, correspond more reasonably to the sediment-production rates found in the United States and are almost the fifty percent (50 years) of those evaluated by the bathymetric surveys under the present study.

In view of the above and further considering the project life, it would be recommended for Poza Honda to use the sediment yield of 30 MCM and 13 MCM and their corresponding reservoir sedimentation distribution to locate the inlet and outlet structures of the transbasin.

According to the reservoir operation fluctuations, it is important to mention that the

method applied in this study have considered that the reservoirs are going to have an annual regulation and this situation can move the delta into the reservoir, improving the conditions of the structure location at the upper end of the reservoirs. On the other hand, if by any reason the reservoir is not going to fluctuate much, then it would allow a typical delta formation.

Finally, it is important to carry out a reservoir survey periodically in order to know how the sediment deposition is developed within the reservoir and then to take some decisions or countermeasures, if necessary.

REFERENCES

- 4.1 Instituto Nacional de Reforma y Desarrollo Agrario (IRYDA), 1986, Diseño y Construcción de Pequeños Embalses, Madrid España.
- 5.1 Duque R. Barrios A., 1986, Modelo de Simulación Hidrológica a Escala Mensual, CIDIAT, Merida - Venezuela
- 6.1 Vanoni V.A. ed., "Sedimentation Engineering", Prepared by the ASCE Task Committee for the Preparation of the Manual on Sedimentation of the Sedimentation Committee of the Hydraulics Division, 1977.
- 6.2 Strand R.I. and Pemberton E.L., "Reservoir Sedimentation", Technical Guideline for Bureau of Reclamation, Denver, Colorado, USA, 1982.
- 6.3 Design of Small Dams", U.S. Department of the Interior, Bureau of Reclamation, Washington, 1977.

TABLES

						MIN	, mu	ATIC	SFP	ç	NON	DEC	ANNUAL
YEAR	JAN	FEB	MAR	APK	MAY	NUL C			C V.		40	6.8	1,453.5
1064	455.1	213.3	460.8	278.6	8.5	1.8	6.9	y.'	- 1 F (. c i c		137 8	1 844 0
55	194.2	266.3	564.2	312.8	328.9	30.3	6.7	2.3	0.0	0.0		015	1 6183
	5817	279.1	278.3	153.5	141.0	22.2	33.0	0.2	54.3	<u> </u>	0.0		1 5 8 1 F
2	1527	452.4	186.6	51.8	103.3	0.5	0.0	0.2	0.0	0.7	Y.U.	C 4 4	
		0.002	222	120.8	37.0	0.0	0.1	0.0	90.2	0.7	0.1	0.4	0.051,1
33	1.0.2	0.750		102.1	345 4	93.0	0.5	5.7	0.0	. 13.2	43.0	12.3	1 459.5
<u>ي</u>	239.1	122.3	4/0.8	162.1		×	46.3	00	0.1	1.3	0.7	83.1	1,314.3
970	208.0	157.8	219.0	220.0	4.107	0. L		V.	C 14	5	1.5	45.5	1.2995
971	159.9	331.9	604.1	73.1	22.8	C.EI	0.0	t C			00	175.2	2,140.0
072	1.921	479.1	458.2	200.2	102.5	366.1	142.0	n. c				47.3	1.649.7
973	541.7	80.5	449.3	218.9	252.9	47.2	4.0	0.0					0.903
1074	67.7	309.3	162.4	85.2	52.1	10.1	0.0	0.0	12.5	7.11	4) () ()		1 003.1
07.5	443.6	630.0	436.6	120.1	29.0	2.4	12.8	27	32.5	4. 4	0.6		
1076	5312	230.5	282.0	182.1	114.8	15.9	0.0	3.8	5.3 E	4.0	0.0	49.0	10201
222	405.0	370.0	501.0	88.0	38.5	0.0	0.0	1.6	19.1	7.4	0.0	48.0 0.0	
0.0	0.224	263.0	334.5	104.5	195.0	0.0	0.0	0.0	1.9	0.0	0.0	C.4	
0.0	375.8	209.9	169.4	219.9	199.9	30.5	10.0	0.0	9.7	4	0.0	1.8	1.180.9
000	1111	280.8	201.3	L.122	36.9	0.0	0.0	0.0	0.0	0.3	0.0	84.V	0.0001
130	135.6	533.8	268.4	270.5	0.0	0.0	43.0	0.0	0.0	2.0	5.0	88.9	2.076,1
1061	136.4	210.0	202.8	160.3	33.5	21.5	11.0	0.0	12.0	197.8	326.1	454.3	1.41.1
		361 6	6501	477.5	375.2	294.5	421.2	227.4	161.7	13.4	10.2	87.5	0.00.5
		0.100	1.000	305	650	40	3.0	0.0	7.5	0.0	0.0	107.5	1 464.5
130	4.72	1.000	0100	176.0	4.00	23.8	0.0	0.0	0.0	0.0	0.0	155.2	1,001 \$
	1.121	0.412	6'1 67 6 00 1	2 GYC		00	0.0	0.0	0.0	70.5	0.0	67.4	1,320.5
980	426.9	1.612	152.0	0.640			00	50.4	0.0	0.0	0.0	79.4	2,456.0
987	341.3	727.8	3.225	491.9	1.007		241	0.0	0.0	34.0	22.4	65.6	1.576.2
886	229.5	574.4	101.0	\$.00.\$	7.177				0.53	10.6	Ú.O	72.0	1 647.7
1989	542.8	423.3	144.9	365.5	35.2	4.Uc			5.0	11.6	0.1.	29.3	611.0
0561	112.8	205.0	144.6	106.5	0.0	0.0) () (15	00	59.0	1,197.6
1561	204.0	316.0	335.9	152.8	43.4		4. 4	2		 		59.0	1.294.0
19\$2	145.0	190.6	420.1	335.5	100.1	30.2	0.0			107 0	1 404	4543	3,603.0
MMX	753.7	2727	659.1	497.9	375.2	366.1	4212	4177	1.101	41.01	0 11	81.6	1518.5
MEAN	304.6	339.4	330.7	2213	1159	38.3	26.7	13.0	Г/Т	orer	247	2.10	119
			1	5	-	د -		-		<u>خ</u>	>	2	

Monthly Rainfall at Dos Bocas Station • **Table** 3.1.1.

			• • : • .								(Unit mm)	
	FEB	MAR	APR	MAY	NUL	Inr	AUG	SEP	oct	NOV	DEC	ANNUAL
	148.3	359.0	372.9	47	15.7	10.3	5.2	97	6.3	6.8	5.8	1,160.5
	160.6	- 346.1	339.6	E.101	75.0	59.5	26.3	7.1	23.4	10.2	37.0	1309.3
	373.0	288.2	113.2	67.4	36.7	8.2	27.8	39.1	30.2	10.8	34.7	1,341.8
	411.5	87.6	50.1	54.3	8.5	9.6	3.9	39.0	8 M	0.0	6.4	1.083.1
	117.8	109.2	94.5	15.2	21.0	4.0	0.0	47	11.5	0.7	5.1	498.5
	59.2	251.4	169.5	115.6	145.8	80.0	3:0	24	4.1	21.9	12.6	1,004.8
	107.6	244.2	357.9	85.4	36.8	14.1	10.2	6.0	18.2	28.1	28.1	1.094.8
	238.0	629.0	60.2	18.2	18.0	0.0	4.1	14.3	26.2	2.0	24.3	1,105.9
	342.7	285.5	127.8	54.4	321.4	63.5	110.4	40	11.2	5.9	204.0	1 569 5
	115.0	352.7	194.6	148.9	2.6.6	32.9	7.1	18.0	7.2		33.3	1,231.3
	481.2	44.9	193.1	26.9	26.4	2.2	0.5	7.11	.	12.9	86.7	973.1
	424.5	516.5	221.6	7.9	55.6	20.0	5.7	8,0	11.2	47	75.2	1.761.7
-	307.8	327.1	260.1	156.5	218.0	12.8	20	1.0	1.8	20	61.0	1.814.9
	486.9	354.6	145.1	0.0	23.3	0.0	i7 8	13.5	63	0.2	33.8	1,473.9
	285.5	228.2	62.7	79.5	8.6	7.0	L4	1	28.8	0.0	12.6	546.8
	247.9	123.6	85.4	22.0	68.5	0:0	0.9	15.0	4.4	1.0	0.0	738.\$
÷.	243.8	342.8	210.9	75.1	13.0	0.0	20	04	7.8	2.9	31.2	1.099.7
÷.,	291.2	229.8	229.8	4	5.8	15.6	6.3	10.8	4		25.0	5843
	83.0	150.1	85.9	54.4	14.2	3.0	0.0	8.2	240.9	215.8	391.3	1,402.3
	593.0	\$41.5	284.1	681.6	395.3	310.1	133.8	114.5	9.2	8.5	62. 8	3,583.1
	377.0	428.8	239.7	20.8	31.2	5.0	2.5	1.6	8 .0	2.2	141 6	1,280.4
÷., .,	234.1	153.1	108.0	38.4	9.0	6.3	1.1	44	3.0	3.6	926	1840
	117.4	201.2	270.2	21.6	2.3	2.4	7.4	19.0	31.1	5.3	92.8	1,159.3
	652.6	380.0	504.1	124.1	2.2	14.4	68.3	14.3	5.5	6.6	58.7	2.051.3
	270.6	50.0	123.4	76.5	27.1	10.2	14.3	8.5	6.0	7.6	21.9	\$06.0
	434.3	145.1	244.7	60.2	31.0	L'L	4.1	11.5	22.1	0.9	29.3	1,310 \$
	178.1	207.2	232.4	7,8	11.8	2.5	0.1	0.4	3.4	1.0	24.3	799.4
	253.3	127.4	69.6	13.1	15.2	3.5	5.0	0.3	0.6	12.5	32.9	637.2
1.1	180.1	253.0	278.7	175.8	13.1	17.2	2.6	38	3.5	4.0	14.9	1,153.5
ŀ.	651.6	629.0	504.1	681.6	395.3	310.1	133.8	114.5	240.9	215.8	291.3	3.683
ŀ	283.3	267.5	197.6	9.61	57.8	24.9	16.1	139	18.8	13.1	582	1.250.4
1												

× – – – – – – – – – – – – – – – – – – –		Table 3.13	Monthly	ly Rainfal	Rainfall at Portoviejo Station	oviejo Sta	tion				ed G
										(Unit : mm)	
ا مع ص مع د		APR	MAY	NUL	JUL	AUG	SEP	OCI	NON	DEC	ANNUAL
		69.1	51	8.3	0.0	0.5	000	4	0.0	200	4 7 7 7 7
	136.0	67.2	46.8	47.6	15.3	2.7	0.2	4,0	2.2	2.2	
	2001	68.0	18.9	7,0	3.1	80	8.2	1.7	1.8	10.5	412.4
	206	2.2	11.6	0.3	5.8	0.0	1.0	0.1	0.0	1.0	4 1 1
	7 0 I C	34 D	50	17	0.0	10	6.0	0.0	1.0	2.1	186.0
00.0	×17		83.7	\$0.4	17.0	0.2	01	63	4	72	503.1
	0.24	2.0			0.3	0.2	20	0.1	£.1	19	382.4
	110.0				10	0.1	3.3	1.3	2.8	1.3	407.0
	219.5	×			30.5		3.6	1.6	0.7	18.3	740.0
	245.7	1.18	7.7	;			00	0.0	80	4.1	529.8
1771	55.1	68.8	29.1	o †			1	44	\$	24.2	299.1
ہ۔ 	54.6	50.1	13.3	4.0	0	- v 5 c		0	07	24.6	757.8
247.5	166.2	63.0	3.2	38 F	4 D		- C	1 0	- C	90	599.5
	124.5	65.8	44.9	19.2	1.0		2.0	4 C		15.5	444 8
126.2	143.7	107.9	0.0	6.0	0.0	0	× ×				374 8
· .	58.8	122.2	11.5	00	4.4	0.0	4.0				3140
	20.5	20.9	9.9	4.0	1.0	1.0		0.0			U FEC
33.1	50.7	54.4	12.8	2.2	0.0	0.0	0.1	5			0 1 1 0
	41 0	18.4	0.0	0.0	0.0	0.2	0.0	2.3	7.0		
3.00	080	5	9.7	2.6	0.0	00		35.2	28.3	101	070
		7.4.7	2715	338.0	231.6	23.4	46.8	1.7	0.1	0.42	7.521.1
	1.65	315 215	200	00	0.6	0.0	0.0	0.1	8.5	120.1	513.9
• 			X C P	2	00	0.0	0.0	0.3	0.0	17.1	310.5
		000).i.r.		0.7	00	0.0	3.5	0.0	38	5 557
	1.01				8	15.5	1.5	0	2.4	5 .3	685.3
	138.3				a C	03	12.2	0.0	1.3	6.8	238.5
51.1 96.1	30.0	- C.DO	0.04			00	6.1	5.0	0.0	0'0	665 8
	189.1	60.5	4	<u>,</u>				00		8.8	218.1
	59.3	38.8	0.9	1.1						8.8	257.2
57.4 96.1	28.4	34.1	17.0	0.1	0.0	7.0				00 00	941.4
	295.0	235.7	145.8	9.4	0.5	00	0.0	0.0		1061	1 780 1
	295.0	254.7	271.5	338.9	231.6	23.4	807	8		T-CAL	0.01
	1104	69.2	32.0	T12	10.7	22	43	2.7		101	107
	304	r y	CO.	0.0	0.0	0.0	00	00	00		1.061

	ANNUAL	353.6	355.9	366.5	367.4	209.6	2855	3165	357 0	559.5	380.0	2681	659.0	704.2	484 0	208.3	228.2	254.9	260.0	208.8	1.689.0	607.7	208.3	303.3	485.8	192.4	506.3	138.2	167.3	789.0	1,689.0	411.7	4-00 F
(Unit: mm)	DEC	0.0	1.9	0.6	05	42.7	6 4	3.6	12	20.5	0.0	30.0	56	12.5	00	00	00	E.0	2.5	60.8	33.0	143.6	17.3	0.0	C-1 %	3.5	0.4	17.9	6.4	1.0	143.6	14.4	4
	NON	0.0	00	1.2	0.0	0.0	8	12	0.0	0.0	0.0	00	1.5	0.0	00	0.0	0.0	C1 90	0.6	49.5	1.9	3.1	0.0	0.0	3.0	0.0	00	0.0	2.2	0.0	49.5	2.6	4
	50 OCT	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.7	1.5	27.2	1.1	0.0	0.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	272	1.6	9
	STP	00	1.0	5.8	3.2	23	0.0	0.2	0.8	00	0.0	2.0	40	10.6	4.0	2.5	81	00	00	0.7	52.8	0.0	0.0	0.0	00	1.2	0.0	0.0	0.0	00	52.8	3.4	
	AUG	0.0	5.0	0.0	0.0	0.0	00	0.0	0.4	32	0.0	0.0	1.5	00	0.0	0.0	0.0	0.0	0.0	0.0	13.7	0.2	1.0	0.0	9.4	00	0.0	0.0	00	0.0	13.7	1.1	00
		1.1	2.4	0.0	2.8	4.0	0.0	1.2	0.0	60	0.0	0.0	0.5	0.0	0.0	0.5	0.0	0.0	0.0	0.8	235.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0:0	235.0	8.6	
	JUN	0.0	36.6	1.4	0.0	16	94	53	6.2	70.6	1.5	4.7	7.5	11.6	9.2	0.0	0.6	2.8	0.0	6.2	196.9	5.6	6. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1969	12.9	00
	MAY	5.6	29.5	19.7	123	0.0	27.1	86.4	0.0	4.3	19.1	5.2	4.5	33.1	0.5	23	4 9	13.0	0.0	7.8	337.4	8.2	63.7	1.7	38.6	24.6	0.0	0.0	5 4	89.8	337.4	293	U U
	APR	66.4	81.0	31.3	22.0	4.2	22.7	81.9	11.6	110.9	39.7	32.9	48.4	82.0	80.5	23	11.5	42.6	12.5	5.5	188.9	12.6	10.4	94.5	49.9	S IE	31.7	13.2	30.5	212.2	2122	50.7	
	MAR	191.9	131.1	79.2	81.7	9.5	96.1	35.0	230.0	169.8	55.4	78.7	133.1	176.3	183.4	59.9	23.2	\$2.7	31.2	15.9	170.1	131.3	10.6	17.9	122.7	38.1	126.0	20.6	31.0	284.2	284.3	96.4	×0.
	FEB	55.0	54.4	122.5	164.3	79.2	14.5	32.9	81.7	157.3	115.0	8 4 .9	261.1	201 4	111.7	94.0	129.6	83.5	147.5	•	185.2	303.1	62.2	c s	257.0	60.3	228.3	76.3	46,4	130.9	303.1	1162	4.0.1
	NAL	33.6	12.4	104.8	80.6	6 6.1	110.5	72.2	24.9	22.4	149.3	25.2	182.3	176.7	94.7	46.9	50.1	41.2	64,2	26.2	273.0	0.0	42.8	180.0	00	32.8	119.9	10.2	45.4	70.9	273.0	74.5	00
	YLAR	1964	1965	1965	1967	1968	1969	1370	1301	1972	1973	1524	5721	1376	1977	1978	1979	1980	1361	1982	1983	1984	1985	1986	1967	19£8	1989	1990	1991	1992	MAX	MEAN	NUN

 Table 3.1.4
 Monthly Rainfall at Rocafuerte Station (INAMHI)

7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	994.5	8,958	397.3	5.75%	981.9	007.0	1.178.6	946.8	22.5	.636.2	60	E	2		0	00	m					5		5	5	0	5	-1		9
2				1 				<u></u>	20	1,63	1.43	1.03	789.2	616.1	862.0	\$25.8	1,000.3	2,935.	506	660.2	1.1256	1.540	0008	1,300 0	550.0	6000	1,000.0	2.935.	1.031.1	1010
	15.8	17	3.4	14.9	13.1	12.5	64.0	7.4	84.3	102.6	26.3	24.7	1.7	0.0	62.3	6.5	230.7	79.4	150.6	1.0	60.8	83.2	43.2	70.2	29.7	32.4	54.0	. 230.7	48.4	0.0
• •	3.3	0.0	0.0	83	6.5	6.1	14.7	16	6.8	2.9	00	0.0	0.0	0.0	0.0	2.4	127.7	73	3.6	0.0	146	20.0	4.01	16.9 *	7.2	7.8	13.0	1277	12.1	0.0
21.2	16.2	0.0	6.4	40	4.2	14.3	1.1	2.5	0.5	16.6	1.4	2.1	Ξ. Έ	3.3	0.0	12	76.8	0.0	3.9	0.0	0.0	12.3	6,4	10.4	4.4	4,8	8.0	76.8	8,6	0.0
- o		46.4	24.6	0.0	3.1	6.8	6.4	8.5	8.7	2.2	8.1	14.4	10.0	1.4	0.0	3.7	26.3	118.2	5.5	0.0	14.5	20.0	10.4	16.9 4	7.2	7.8	13.0 .:	118.2	13.8	0.0
 	20.5	0.7	1.4	0.6	0.7	0.6	51.6	3.5	0.0	1.8	10.6	0.0	0.0	0.0	0.0	0.5	0.0	85.2	2.5	00	10.1	13.9 +	7.2	11.7 -	4.9	5.4	9.0	85.2	8.7	0.0
1.75	- -	4 5	1.7	12.2	7.1	1.2	26.6	241	3.1	0.8	57.4	1.5	6.6	0.0	00	57	7.3	485.5	0.0	5.5	40.6	55.4	28.8	46.8	19.8	21.6	36.0	485.5	33.9	0.0
SA K	20.3	5.0	0.6	96.2	46.9	13.6	208.6	23.0	13.0	.6.6	116.8	18.1	0.0	10.0	4.S	3.2	5:8	336.6	11.6	7.1	53.0	72.4	37.6 +	61.1	25.8	28.2	47.0	336.6	46.8	0.0
	7.01 10	18.2	12.9	114.7	55.9	10.4	40.3	128.0	16.0	11.4	106.2	0.5	79,4	59.0	46.5	0.0	16.5	357.7	4.9	24.0	60.8 •	83.2	43.2	70.2	29.7	32.4	54.0	357.7	562	0:0
E 75C	0.011	38.0	128.2	175.4	399.8	58.7	174.0	1.86	8 .5	205.2	198.9	140.3	18.9	80.2	189.0	1917	186.7	331.7	59.7	122.3	162.3	221.8	1152 -	187.2	79.2 +	85.4	144.0	399.8	155.2	18.9
4.40 A	216.5	78.9	2 1	2114	175.8	554.8	193.8	180.2	119.8	479.1	556.7	257.1	178.0	118.2	£ 152	263.0	118.0	270.9	354.4	120.8	270.4 *	369.6	192.0	312.0	132.0	144.0	240.0	556.7	252.2	1.22 2.12
1.012	257.3	267.7	0.88	32.6	130.3	246.6	259.4	217.6	328.3	397.2	214.8	267.5	280.5	216.5	192.5	278.5	143.7	365.0	304.9	176.6	256.9 +	351.1	182.4	296.4	125.4	136.8	228.0	397.2	226.5	32.6
4 4 1 1	239.5	393.9	67.6	198.3	138.5	81.4	113.8	252.3	67.4	398.3	138.8	310.0	209.5	127.1	75.5	65.4	60.8 5	497.6	3.6	132.9	173.5	- 237.1. +	123.2	200.2	84.7	92.4	154.0	497.6	168.5	3.6
1065	1965	1967	1968	1969	0461	1.61	1972	1973	1974	5451	1976	1977	8101	6461	0361	1981	1982	1983	1984	1985	1986	1987	8901	1969	0.561	1061	1992	MAX	MEAN	NIIN
		134.8 1111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.9 239.5 257.3 216.5 110.0 71.0 20.3 5.4 20.5 8.8	134.8 111.8 469.8 224.3 78.2 54.6 56.1 1.3 6.9 31.7 239.5 257.3 216.5 110.9 71.0 29.3 5.4 20.5 8.8 16.2 393.9 267.7 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0	134.8 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.2 31.7 239.5 257.3 216.5 110.9 71.0 29.3 5.4 20.5 8.8 16.2 333.9 267.7 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0 361.6 12.9 9.0 1.7 1.4 24.6 6.4	134.8 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.9 31.7 239.5 257.3 216.5 110.9 71.0 29.3 5.4 20.5 8.9 16.2 239.5 257.7 78.9 38.9 18.2 5.0 7.4 20.5 8.9 16.2 333.9 257.7 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 12.9 9.0 1.7 1.4 24.6 6.4 196.3 32.6 211.4 175.4 114.7 96.2 12.2 0.6 0.0 0.4	134.8 111.8 460.8 234.3 78.2 54.6 56.1 1.3 6.9 31.7 2395 257.3 216.5 110.9 71.0 29.3 5.4 20.5 8.8 16.2 393.9 267.7 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 18.2 5.0 7.4 0.7 46.4 0.0 156.3 33.6 18.2 9.0 1.7 1.4 24.6 6.4 6.4 156.3 33.6 175.4 114.7 96.2 12.2 0.6 0.0 0.4 1365.3 175.8 399.6 55.9 46.9 7.1 0.7 3.1 4.2	134.8 111.8 460.8 234.3 78.2 54.6 56.1 1.3 6.2 31.7 239.5 257.3 216.5 110.9 71.0 29.3 5.4 20.5 8.8 16.2 393.9 257.7 78.9 38.9 182 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 182 5.0 7.4 0.7 46.4 0.0 158.3 32.6 114.7 9.0 1.7 1.4 24.6 6.4 138.5 130.3 175.8 399.8 55.9 46.9 7.1 0.7 3.1 138.5 136.5 156.7 16.4 13.6 1.2 0.6 0.0 0.4 81.4 246.6 555.9 46.9 7.1 0.7 3.1 4.3 81.4 246.6 555.9 10.4 13.6 1.2 0.6 6.8 14.3	134.8 111.8 460.8 234.3 78.2 54.6 56.1 1.3 6.2 31.7 23395 257.3 216.5 110.9 71.0 29.3 5.4 0.5 8.8 16.2 39339 257.3 216.5 110.9 71.0 29.3 5.4 0.5 8.8 16.2 39339 257.7 78.9 38.9 71.0 29.3 5.4 0.7 46.4 0.0 376 88.0 54.1 128.2 12.9 9.0 1.7 1.4 24.6 6.4 138.5 130.3 175.8 399.8 55.9 46.9 7.1 0.7 46.4 0.0 138.5 130.3 175.8 399.8 55.9 46.9 7.1 0.7 46.4 0.0 138.5 130.3 175.8 399.8 55.9 46.9 7.1 0.7 46.4 0.0 138.5 130.3 174.0 40.3 208.6 51.6 51.6 6.8 14.3 138.8 259.4 193.8 174.0 40.3 208.6 51.6 51.6 6.8 14.3	134.8 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.2 31.7 2395 257.3 216.5 110.9 71.0 29.3 5.4 5.6 1.3 6.2 31.7 3939 267.7 78.9 38.9 110.9 71.0 29.3 5.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 12.9 9.0 1.7 1.4 24.6 0.0 198.3 32.6 211.4 175.4 114.7 96.2 12.2 0.6 0.0 0.4 198.3 175.8 399.8 55.9 46.9 7.1 0.7 46.4 0.0 138.5 175.8 399.8 55.9 46.9 7.1 0.7 0.6 6.4 0.0 1138 256.4 55.9 174.0 10.4 13.6 12.2 0.6 6.4 0.1 14.3 14.3 14.3 14.3 14.3 14.3 14.3 12.4 0.7 0.6 6.4 0.0 0.4 14.3	134.8 111.18 469.8 234.3 78.2 54.6 56.1 1.3 6.5 31.7 2395 257.3 216.5 110.9 71.0 29.3 54 205 8.8 162 393.9 267.7 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 12.8 118.2 5.0 1.7 1.4 24.6 6.4 198.3 32.6 211.4 175.4 114.7 96.2 12.2 0.6 0.0 0.4 198.3 130.3 175.8 399.8 55.9 46.9 7.1 0.7 46.4 0.0 81.4 246.6 554.8 55.9 10.4 13.6 1.2 0.6 6.8 14.3 113.8 246.5 554.8 58.7 10.4 13.6 1.2 0.6 6.8 14.3 113.8 255.4 196.0 13.0 21.1 0.7 24.6 6.4 7.1 113.8 2554.8 58.7 10.6	134.8 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.5 31.7 2395 257.3 2165 110.9 71.0 29.3 54.6 56.1 1.3 6.5 31.7 2395 267.7 78.9 28.0 54.1 128.2 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 12.9 9.0 1.7 1.4 24.6 6.4 0.0 198.3 32.6 211.4 175.4 114.7 96.2 12.2 0.6 0.0 0.4 24.6 6.4 0.0 198.3 32.6 554.8 559 46.9 7.1 0.7 14.3 24.6 6.4 0.0 198.5 1365 175.8 339.8 55.9 46.5 7.1 0.7 6.4 24.6 6.4 26.6 51.6 54.6 6.4 26.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5	134.8 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.5 317 2395 25773 216.5 110.9 71.0 29.3 54.6 56.1 1.3 6.5 317 393.9 25773 216.5 110.9 71.0 29.3 54.6 56.1 1.3 6.5 8.8 16.2 375.6 54.1 128.2 110.9 71.0 29.3 5.0 7.4 0.7 46.4 0.0 67.6 58.0 51.4 175.8 399.8 55.9 46.5 71 0.7 24.6 6.4 0.0 138.5 130.3 175.8 399.8 55.9 46.5 71 0.7 31 4.3 113.8 259.4 190.3 10.4 136.5 13.6 51.6 6.4 0.0 113.8 259.4 190.3 10.4 13.6 12.2 0.6 6.8 14.3 113.8 259.4 190.3 10.4 13.6 12.2 0.6 6.8 14.3	134.8 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.5 31.7 239.5 257.3 216.5 110.9 71.0 29.3 54.6 56.1 1.3 6.5 31.7 333.9 267.7 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 14.7 96.2 12.2 0.6 6.8 16.2 198.3 32.6 511.4 175.4 114.7 96.2 12.2 0.6 0.0 0.4 198.3 130.3 175.8 339.8 55.9 46.9 71 0.7 24.6 6.4 0.0 113.8 259.4 195.3 114.7 96.2 12.2 0.6 6.8 14.3 113.8 259.4 195.3 171 0.7 12.2 0.6 6.8 14.3 113.8 259.4 180.4 13.6 13.6	1348 111.8 469.8 234.3 78.2 54.6 56.1 1.3 6.5 31.7 2395 257.3 216.5 110.9 710 29.3 54 56.1 1.3 6.5 31.7 3359 257.3 216.5 110.9 710 29.3 54.1 1.3 6.5 31.7 67.6 88.0 54.1 128.2 114.7 96.2 1.7 1.4 24.6 6.4 0.0 198.3 130.3 175.8 399.8 55.9 46.9 7.1 0.7 46.4 0.0 198.3 130.3 175.8 399.8 55.9 46.9 7.1 0.7 31.4 4.2 138.5 130.3 175.8 399.8 55.9 46.9 7.1 0.7 31.4 4.2 138.5 136.6 51.6 137.8 10.4 135.6 21.6 51.6 4.7 7.1 138.6 136.6 130.6				1348 111.8 4608 234.3 78.2 54.6 56.1 1.3 65.9 31.7 2395 25773 216.5 110.9 71.0 293 54.1 205 8.8 16.2 3339 2677 78.9 38.9 18.2 5.0 7.4 0.7 46.4 0.0 67.6 88.0 54.1 128.2 12.9 9.0 17.7 1.4 205 8.8 16.2 138.5 130.3 175.8 39.9 85.2 12.2 0.0 0.4 20.6 0.0 0.4 138.5 217.6 190.3 174.0 40.3 26.6 51.6 4.7 71.1 275.1 190.3 174.0 40.3 26.6 51.6 4.7 71.1 275.3 217.6 180.2 28.1 13.5 20.5 51.6 4.7 71.1 275.4 190.3 174.0 20.5 51.6 51.6 51.6 <t< td=""><td></td><td></td><td></td><td>134.8 111.8 460.8 234.3 78.2 54.6 56.1 1.3 65.9 317 2395 25773 2165 110.9 71.0 293 54 205 69 162 3939 25773 2165 110.9 71.0 293 54 205 69 162 976.0 38.0 114.7 203 54.1 175.4 114.7 205 69 00 98.3 130.6 554.8 58.7 1044 13.6 11.2 0.7 14.3 24.6 56.6 14.3 113.8 259.4 195.8 174.0 403 206.6 26.6 14.3 4.4 252.3 217.6 180.2 286.7 230.6 51.6 4.7 7.1 252.3 119.8 174.0 40.3 13.6 13.6 11.2 20.5 6.8 14.3 252.3 214.8 57.4 10.6 13.6 11.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>[346] [113] 4698 [234] 782 546 561 [13] 659 [317] 2395 25773 2165 [1109 71.0 2293 54 205 86 60 97.6 840 541 1754 1147 902 127 14 246 60 97.6 840 541 1754 1147 962 122 0.6 60 00 97.6 554 1758 3998 559 1447 962 112 0.6 68 143 1138 2176 1802 981 147 962 214 375 11 47 47 466 60 00 1138 2593 1740 403 206 214 37 47 47 47 3863 2867 1980 1062 116 31 26 81 14 3863 2867 1980 1062 11</td><td>1348 1118 4638 2343 782 546 561 13 65 317 2395 25773 786 1009 710 223 54 561 13 65 317 9769 267 786 1009 710 223 54 205 65 114 9763 2165 1103 710 223 54 205 65 117 9763 2103 781 178 711 127 06 00 04 9763 716 713 723 206 516 47 711 9783 7176 1802 403 206 213 711 235 23 9744 711 205 711 100 23 266 711 118 47 711 974 713 710 711 92 711 93 23 23 23 23 23 23</td></td<></td></t<>				134.8 111.8 460.8 234.3 78.2 54.6 56.1 1.3 65.9 317 2395 25773 2165 110.9 71.0 293 54 205 69 162 3939 25773 2165 110.9 71.0 293 54 205 69 162 976.0 38.0 114.7 203 54.1 175.4 114.7 205 69 00 98.3 130.6 554.8 58.7 1044 13.6 11.2 0.7 14.3 24.6 56.6 14.3 113.8 259.4 195.8 174.0 403 206.6 26.6 14.3 4.4 252.3 217.6 180.2 286.7 230.6 51.6 4.7 7.1 252.3 119.8 174.0 40.3 13.6 13.6 11.2 20.5 6.8 14.3 252.3 214.8 57.4 10.6 13.6 11.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>[346] [113] 4698 [234] 782 546 561 [13] 659 [317] 2395 25773 2165 [1109 71.0 2293 54 205 86 60 97.6 840 541 1754 1147 902 127 14 246 60 97.6 840 541 1754 1147 962 122 0.6 60 00 97.6 554 1758 3998 559 1447 962 112 0.6 68 143 1138 2176 1802 981 147 962 214 375 11 47 47 466 60 00 1138 2593 1740 403 206 214 37 47 47 47 3863 2867 1980 1062 116 31 26 81 14 3863 2867 1980 1062 11</td><td>1348 1118 4638 2343 782 546 561 13 65 317 2395 25773 786 1009 710 223 54 561 13 65 317 9769 267 786 1009 710 223 54 205 65 114 9763 2165 1103 710 223 54 205 65 117 9763 2103 781 178 711 127 06 00 04 9763 716 713 723 206 516 47 711 9783 7176 1802 403 206 213 711 235 23 9744 711 205 711 100 23 266 711 118 47 711 974 713 710 711 92 711 93 23 23 23 23 23 23</td></td<>							[346] [113] 4698 [234] 782 546 561 [13] 659 [317] 2395 25773 2165 [1109 71.0 2293 54 205 86 60 97.6 840 541 1754 1147 902 127 14 246 60 97.6 840 541 1754 1147 962 122 0.6 60 00 97.6 554 1758 3998 559 1447 962 112 0.6 68 143 1138 2176 1802 981 147 962 214 375 11 47 47 466 60 00 1138 2593 1740 403 206 214 37 47 47 47 3863 2867 1980 1062 116 31 26 81 14 3863 2867 1980 1062 11	1348 1118 4638 2343 782 546 561 13 65 317 2395 25773 786 1009 710 223 54 561 13 65 317 9769 267 786 1009 710 223 54 205 65 114 9763 2165 1103 710 223 54 205 65 117 9763 2103 781 178 711 127 06 00 04 9763 716 713 723 206 516 47 711 9783 7176 1802 403 206 213 711 235 23 9744 711 205 711 100 23 266 711 118 47 711 974 713 710 711 92 711 93 23 23 23 23 23 23

Table 3.1.5 Monthly Rainfall at Calceta Station

TVUNIAL	T		- 		- 1	: :: :	57 1 1		<u> </u>				<u></u>	· · · ·	. — 	782.5			<u>.</u>		1 1 2 7 1 1 2 7 1 2 7 1 1 1 1			5 <u></u>	7 1 1,107.7		<u> </u>	8 950.1				21- 0
DFC		200	× • •		2 2 7	B	8 8 1	18.7	13.9	166.8	29.62	57.2	\$	45.4	60.7	4	10.7	46	8 7 7					49.8	40.7	25.4	\$8	27.8	34.7	456.4	1.12	0.0
NUN		<u>-</u> -) (- (C. 7	<u>.</u>	1.2	20.1	6.5	6.7	29.0	6.0	9.6		1.4	0.0	0.0	10.7	6.6	00	4.2/1			> <	137	33.1	90	00	17.5	4.0	179.4	11.8	00
LUC .		t t t t t t t t t t t t t t t t t t t		n .	4	, 0	6.2	2.4	6.2	80	2.2	3.0	31.6	0.0	22	0.3	4	00	00	180.9		3		00	0.0	12.5	0.2	0.0	10	1869	103	60
				4, <u>5</u>	Г 0 0	105.6	000	1.2	36	59.8	10.7	7.3	5.6	3.7	5.6	04	3.6	0.0	10	12.0	2417	2. 19. 1	6.1 6.0	у с. 4	5 U F	30.3	20	11	0.6	241.7	20.3	ç
	Vnc.	רי אי אי	N 7	0.5	•	000	4.4	0.0	0.7	44.6	4.6	00	24	5.3	0.6	0.0	0.0	1.6		00	187.4	<u>e</u> ;	4.1		44	r o F C	9 G	28	1.8	187.4	113	¢
		•	- n n	18.9	• 0.0	0.0	100	5.5	4	18.6	10.3	11	9.2	32.8	0.0	0. 4	7.1	0.0	9.7	27.7	381.5	.	4.1	0.5	⊃ v • v	n a n m	9 C	00	33	381.5	19.6	<
1	NOC	4 •	22.1 7	15.5 +	100	0.0	25.0 -	8 4.3	303	283.1	46.0	385	34.0	124.5	16.4	3.0	27.6	4.6	2.2	3 4	238.8	4. 4	56.2	5 S	0 4		2	2 7 2 0 2 0	78.0	1.531	42.0	
	MAY	00	267.0	110.2	787	23.4 +	280.8	\$7.7		115.8	170.5	1.5	34.1	194.2	11.7	80.7	38.9	112.4	103.9	42.9	353.7	14,0	57.0	16.3	C.CCI	2.41	7.02 7.02	4.1 2 2 4	413.0	413.0	104.0	
	APR	226.3	216.7	96.8	15.0	62.9	128.0	2747	33.5	2021	166.7	7.02	1011	374.4	180,0	79.8	109.6	305.3	195.8	39.5	527.4	75.9	239.2	200.3	461.8	287.8	1.5 42	241.9	424.2	527.4	198.4	
	MAR	383.7	488.4	199.0	106.2	40	303.0	1 0 3 0		7-010	5.74	10.1	3557	A110	343.7	203.1	189.8	247.5	139.1	159.8	427.3	461.7	265.1	73.9	262.3	24.7	204.0	254.9	0.805 656.8	656.8	291.6	
	FEB	89.2	147.6	161.7 -	359.4	* L X2 *			139.9	100 1	C 761	V.VE	415.0	5.264	318.4	232.6	192.4	131.2	430.6	68.3	421.0	594.6	182.3	119.3	584.5	368.0	396.3	90.1 2	2.111	594.6	2814	
	JAN	120.1	- 111.7 -	569.8	773.1	114.1	0.79	<u>.</u>	148.0	90.0 0	4.72	5,10 4	40.7		1,220	1774	124.7	65.4	100.0	128.5	413.7	235.2	97.3	602.9	276.0	152.8	702.4	87.4	166.0	LELL	2672	
	YEAR	1964	: 965	1965	1961	950	0.00	50.5	13/11	1971	19/2	1973	1974	C 16	D/2	1076	1070	1950	1961	1962	1983	1984	1985	1986	1961	1958	1969	200	1991	MAY	MEAN	

Monthly Rainfall at Chamotete - Jesús María Station **Table 3.1.6**

Table 3.1.7 Monthly Rainfall at Santa Ana Station

724.7 850.3 850.3 850.5 850.5 740.3 719.6 835.5 835.6 855.6 TYDNN 832.8 250.2 451.3 (Unit mm 36.7 0.0 DEC 8 83.8 8.5 VON ğ SEP AUC Ē 10.7 10.7 10.0 243.5 47.6 0.0 Ĕ
 5.0
 73.4

 73.4
 23.5

 23.5
 23.5

 23.5
 23.5

 37.1
 107.8

 37.1
 5.6

 37.1
 5.6

 37.1
 5.6

 37.1
 5.6

 37.1
 5.6

 37.1
 5.6

 37.1
 5.6

 37.1
 5.7

 52.1
 55.1

 52.1
 55.1

 52.1
 55.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.1

 57.2
 52.2

 32.5
 52.2

 57.2
 52.2

 57.2
 52.2

 57.2
 52.2

 57.2
 52.2

 57.2
 52.2

 57.2
 52.2

 57.2
 403.5 69.6 MAV APR MAR Estimated Monthly Values 43.4 89.0 75.8 75.8 75.8 19.4 19.0 1920.5 191.5 330.5 304.2 137.0 137.0 156.7 65.8 25.0 25.0 117.2 235.0 117.2 235.0 1299.6 83.3 85.2 85.2 <u>131.0</u> <u>330.6</u> <u>330.6</u> <u>330.6</u> <u>330.6</u> 8
 JAN

 1106

 1106

 185,4

 3933

 395,4

 329,2

 329,2

 329,2

 329,2

 329,2

 329,2

 329,2

 320,2

 320,1

 19,9

 102,4

 80,2

 119,9

 175,9

 318,0

 320,1

 320,1

 338,7

 91,4

 91,4

 91,4

 91,4

 91,4

 91,4

 91,4

 91,4

 91,4

 91,4

 90,5

 56,7

 331,9

 331,9

 331,9

 58,3

 58,3

 58,3

 58,3

 58,1

 58,1

 58,3

 58,3

 58,1

 58,1

 143.6 11.4 YEAR MEAN MAX 1990 1991 686

(Unit imm)	NOV DEC	8.0 + 0.8	23.3		0.0		17.3			1 12 12 13 14 14	31	5.0 46.4							4.6	1,42.2 2,46 1,45					11.8 33.8	11.3 32.6						1 <u>0.0</u>
	oct	• • •	15.6	- 11- 	5.0	5.3	.									च 										14.2	12.2					2 0.0
	SEP	1 2.6	15.6	10.3	11.5	4	53	5.01	92	25.5	10.8	10.1	45	2	32.5	23.4	191	0.6	•			17	¢ t)	36.5	18.4	17.7	15.3	16.1				9.0
	AUC	22.7	13.6	22.6	5.0	4	3.8	47	5.7	14.5	12.2	53	7.0	8.6	9.7	4	10.2	5.6	23.8	0.0	13.6	771	2.C.1	205	10.3	9.6	8.5	9.0	14.0	73.6	123	0.0
	Ē	36.0	12.7	12.6	0.0	0.7	19.7	12.5	8.8	28.4	19.7	7.8	25.0	0.0	28.4	8.9	1.3	1.9	18.2	9.1	246.2	20.1	29.1	8.54	30	21.2	18.3	19.3	30.0	246.2	25.2	0.7
	NILL		4 4	18.8	92	31.2	49.4	13.8	46.0	172.3	16.9	8.5	9.6	44.3	122.2	1.1	25.3	9.1	2.5	11.3	162.0	4] 8	410	10.0	35.2	34.0	29.3	30.8	48.0	1713	414	1.1
	VAV	1 22	120	49.0	101.3	4.0	90.8	112	5.8	23.9	106.0	231	8.2	89.1	5.5	137	0.0	69.8	0.2	25.8	4413	56.6	4.8	7.07	L 14	46.0	7.9E	41.8	65.0	4413	60.5	02
	0.01		215.5	02.0	515	101.2	135.2	353.6	24.3	120.8	127.8	5.29	121.4	127.3	122.6	28.5	\$3.7	E.40	120.3	60.8	391.1	118.3	134.9	0.7.0	0.00	590	831 8	87.4	136.0	391.1	121.7	243
	1 0.51		1.220	7747	0.57	187	1 666	1942	280.8	217.5	192.6	77.6	346.8	135.3	214.6	121.0	64.9	214.7	150.9	203.0	425.4	191.4	218.1	85.2	1.1.50	155.8	T PEI	1414	220.0	425.4	1923	43.9
				1644	5001	C.002		80.6 1	218 5	7.47	177 \$	2 k1 4	412.8	129.1	267.0	5171	261.8	160.8	1917	41.6	208.2	282.7	208.2	813	5.005	7.4C1 7.9L1	1.011	0.021	210.0	412.8	192.7	373
	1	UAL	2.761	1601	1.001	1 212	, L	1.851	485		2508	0.00	376.6	316.4	101 2	196.5	106.0	62.8	150.7	90.1	244.6	147.5	168.6	65.8	248.4	5.421	1.020	7.00 7.00	170.0	376.6	153.5	452
		HAN STREET	1904	1000	202	069	0001	1909				200	1075	1076	2.0	\$40	010	0801	1861	1382	: 963	1364	1965	9 301	1361	8	<u> </u>	-5A	5 8	MAX	MEAN	NTN

8

Monthly Evaporation Class A Land Pan at Portoviejo Station

Table 3.2.1

(Unit : mm)

1,542.0 645.6 519.6 .529.9 619.6 1.854 0 1,785.2 1.571.5 1 723 6 5.444.5 1,657.5. 1.5707 457.0 1.707.6 1,705.0 :.670.2 1,769.2 730.9 1405.1 088.7 5.95 ÷ 153 010 1.532.2 385.5 1,860.3 6.242.3 1,457.1 60 1 1 910 ANNUAL 316 149.4 97.8 47.5 171.5 198.5 130.4 157.6 147.8 154.3 166.5 129.9 1.9.4 142.4 144.9 141.6 161.9 158.3 157.3 118.9 124.3 150.1 198.5 145.0 196.9 165.5 158.0 130.6 122.3 153.7 185.1 153.7 DEC 106.4 168.8 168.8 144.3 158.0 356.3 149.6 106.4 128.5 135.4 131.5 148.4 124.6 154.4 158.1 136.4 161.1 142.1 152.0 149.4 127.7 138.6 141.2 149.4 133.1 153.3 158.7 146.8 142.8 147.3 148.1 136.5 NOV 169.9 140.6 141.7 169.6 163.8 1475 107.4 155.4 142.6 107.4 155.3 162.2 131.9 135.0 140.5 142.9 142.2 153.7 169.9 154.6 155.7 39.3 149.9 137.4 132.8 150.9 158.0 145.3 137.3 169.5 151.9 39.1 ដ្ដ 160.0 121.8 99.4 131.5 136.8 1751 182.4 149.4 151.6 121.5 146.8 162.9 146.9 118.6 138.5 187.7 168.3 141.6 167.9 149.7 194.2 99.4 155.2 137.1 128.8 152.2 132.1 132.0 142.2 139.1 SEP 120.6 198.8 144.4 150.0 173.4 155.9 198.8 123.0 124.3 152.8 166.5 123.3 142.1 160.2 152.9 146.2 118.6 145.4 153.2 143.6 106.2 38.8 (40.7 148.7 149.7 444 119.4 134.8 181.2 116.7 155.7 AUG 192:0 192.0 93.8 110.1 148.8 127.7 140.6 159.0 131.6 113.0 116.0 130.9 138.4 09.2 126.1 08.1 123.9 138.3 129.6 122.9 101.6 121.6 93.8 115.6 5 9E I 112.4 114.1 140.4 Ę 155.8 155.8 115.3 505 107.9 123.7 132.0 119.5 112.2 96.4 131.7 103.1 121.6 114.9 110.5 124.0 139.3 119.2 106.0 90.5 98.8 110.9 94.5 114.3 154.1 113.0 137.0 96.9 124.9 92.6 104:7 93.7 Ę 165.8 165.8 135.3 157.9 1174 106.6 125.2 136.0 159.5 125.5 123.5 150.8 127.1 118.7 127.1 135.2 144.4 160.9 122.0 111.7 121.5 138.1 131.2 129.6 150.1 117.7 164.1 106.6 138.7 MAY 125.9 126.5 133.9 179.4 115.2 1813 132.2 582 137.2 126.9 140.8 130.0 122.6 138.3 163.3 139.5 144.2 129.1 137.1 130.9 108.4 101.8 137.2 181.3 124.7 121.9 127.9 127.6 132.1 112.8 98.2 APR (62.0 133.8 143.6 108.6 118.3 52.4 121.7 Ŷ 145.9 140.9 163.5 145,8 142.2 137.6 135.8 144.1 145.9 126.0 139.3 136.1 8.4 132.5 20 0 20 143.7 168.9 100.3 119.2 129.4 122.1 186.1 84.1 MAR 105.0 112.8 113.8 1573 040 110.3 101.4 104.3 133.8 100.0 147.7 108.9 122.2 125.8 133.5 **S**£.2 118.5 101.4 125.3 132.0 93.7 93.7 82.0 111.7 76.9 100.0 8.9 45.6 147.9 128.3 157.3 77.5 EB 118.6 110.0 110.5 184.8 129.8 52.4 8 169.0 117.8 142.8 150.1 146.9 E.841 89.4 1253 83.1 42.6 141.7 123.5 94.3 147.4 83.1 118.3 1197 32.0 42.2 152.2 146.7 84.8 201 5.5 INN MEAN KEW NIIN 1982 1983 1984 1985 989 1989 000 YEAR 1987 1661 1970 1974 1975 1976 1978 1361 222 1371 1972 1973 1977 1961 1965 1966 SS. 1968 1969 T-9

Obsevation of Streamflow (Carrizal River at Calceta) Table 3.3.1

ر س									r 				بيصم					()		
ANUAL	162.36	228.38	172.76	228.31	175.52	164.81	147.10	181.70	261.61	317.40	53.00	249.20	241.20	115.60	56.30	28.30	38.20	317.40	166.01	28.30
Dic	0.10	020	020	0.13	0.84	0.45	050	020	020	6.10	2.70	0.20	0.40	0+0	020	0:60	0.10	6.10	080	0.10
NON	0.20	0.40	020	0.80	1.10	0.20	0.40	0:30	4.20	2.60	0.20	0+0	0.70	0.20	0.20	0.10	0.10	4.20	0.72	0 10
ocr	0.20	0.45	020	2.20	2.50	0.30	0.50	020	4.80	2.70	0:00	09:0	0.70	0:30	0:30	0.10	0.10	4.80	8	0.10
SEP	0.25	0.65	040	1.30	7.20	080	0.70	0.70	5.00	2.70	0.30	1.8	1.30	0.30	0:00	0.10	0.20	7.20	138	0.10
AGO	0.40	1.20	520	1.70	23.60	2.80	1.50	0.80	5.70	2.80	0.60	1.20	2.30	0:00	000	0.20	05.0	23.00	2.74	0.20
JUL	0.70	5.48	06.0	2.20	33.91	4.09	2,40	1 80	34,10	9.6	8.1	1.80	8.00	1.30	06.0	05:0	05.0	33,91	6.01	0.30
NUL	1.23	18,42	2.53	2,83	59.08	36.37	68.4	2:40	61,30	8.50	1.20	3.20	11.90	1.80	1.90	1.20	1.30	61.90	12.98	1.20
MAY	6.60	43.19	8.21	5.31	28.50	52.50	28.50	3.30	6.70	96. 11	2.70	5.90	36.30	3.70	7.70	1,70	3.70	52.50	17.02	1.70
ABR	69.42	7,01	28.56	6.98	4.40	36.70	78,40	30.10	42.71	63.00	1 70	45.20	43.10	12.20	8.80	08.6	23.60	78.40	34.39	1.70
MAR	3,5	66.11	53.59	47.13	5.40	27.80	17.20	108.70	62.60	51.80	24.30	8	63.80	8.95	20.60	6.90	5.20	106,70	44.46	5.20
FEB	23.66	14.67	54,65	94.73	3.36	1.20	11.70	31.00	31.70	78.40	14.90	77.50	45.80	33.80	12.50	5.50	3.20	94.73	32.25	c.10 1.20 5.20
ENE	5.45	0.60	12,48	60.09	2.23	1.80	0.30	1 60	2.00	23.50	2.70	24.20	26.70	10.70	2:40	8	0.10	80:00	12.26	G. 10
AŇO	1964	1965	1966	1967	1968	1969	1570	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	MAX	MEDIA	NIM

Obsevation of Streamflow (Chico River at Alajuela) Table 3.3.2

	0.00 20.70												
	0.00												
3													
2													
ŝ	0.30	0.30 7.10	2.30 7.19 4.90 2.10	2.30 7.10 4.90 2.10 3.30	5.30 7.10 4.90 2.10 8.20	9.30 7.10 4.90 3.30 8.20 8.20	9.30 7.10 4.90 3.30 8.20 0.00	0.30 7.10 4.90 2.10 3.30 8.20 8.20 8.20 0.20	9.30 7.10 4.90 4.90 3.30 8.20 8.20 0.20 0.20 0.40				
	02:0	020	0.50 0.50 8.10 2.70	0.50 0.50 8.10 2.70	0.30 0.30 8.10 2.70 13.70	0.30 0.50 8,10 2,70 13,70 6,10	0.30 0.30 8.10 2.70 2.00 13.70 6.10	0.30 0.50 8.10 2.00 13.70 0.10 0.10 0.70	0.30 0.30 8.10 2.00 13.70 6.10 0.10 0.10 0.10	0.30 0.50 8,10 2,70 2,00 13,70 6,10 0,10 0,10 0,10 0,10 0,70	0.50 0.50 8,10 2.70 2.70 6,10 6,10 0,10 0,10 0,10 0,10 0,10 0,1	0.30 0.50 8.10 8.10 2.00 13.70 13.70 6.10 0.10 0.10 0.70 0.70 0.70 13.70	0.50 0.50 8,10 2,70 2,70 2,70 6,10 0,10 0,10 0,10 0,10 0,10 0,10 0,1
	2.30				-								
2 6 0 14 60		+											
200		+											
1701		1972	1972 1973 1974	1972 1973 1974 1975	1972 1973 1974 1975	1972 1973 1974 1975 1975	1972 1973 1974 1975 1976 1976 1977	1973 1973 1974 1975 1976 1976 1978	1972 1973 1974 1975 1975 1975 1977 1979 1980	1972 1973 1974 1974 1976 1976 1976 1978 1978 1980	1972 1973 1974 1976 1976 1976 1976 1978 1978 1980 1982	1972 1973 1974 1975 1976 1976 1976 1976 1976 1980 1980 1980 1980	1973 1973 1974 1974 1976 1976 1976 1976 1978 1978 1980 1980 1980 1981 1982 1982 1982 1982 1982 1982 1982

 Table 3.3.3
 Obsevation of Streamflow

 (Grande River at A.J. Mosquito)

(Unit:m3/s)

ENE	w	FEB	MAR	ABR	MAY	NNr	JUL	AGO	SEP	OCT	NON	DIC	ANUAL
P	0.60	9.60	34.10	5.70	1.70	1.30	1.10	06.0	0.80	0.70	0.70	1.10 +	38.30
	8	4.00	17.50	12.60	3.60	11.40	3.80	06.0	0.00	0.40	0.20	0.70	38.60
·	11.40	12.70	12.80	14.20	8.6	2.10	 1.8	1.10	0.80	0.20	09 :0	1:20	67.70
L	80	8.30	5.63	. 0 . 70	0.60	0:30	0.20	0.20	0.10	0.10	0.10	0.50	17.20
. 1	10.10	22.80	26.50	17.30	1.60	0.0	800	0.0	80	800	0.0	0.30	73.60
	1.40	16.20	15.80	11.30	10.50	3.20	0.00	0.00	0.0	0.0	0.0	0.0	68.40
- 1	8	10.20	18.50	95	800	0.0	0.0	0.00	8.0	0.0	80	1.10	36.30
	080	6.00	7.20	3.00	02.0	0:30	0.20	0.10	010	0.10	0.10	0.10	18.30
	00.0	3.00	0.50	10.60	3.20	0.00	0.20	0.10	0110	0.10	0.10	0.10	19,20
	80	16.00	10.50	1.80	1.80	0.20	0.10	0.0	800	* 00:0	× 0+0	0.20	31.60
	0.40	2.20	3.40	4.20	3.10	2.00	1.00	0.60	0.40	2.00	3.50	8.4	27.10
	1.40	22.80	34.10	17.30	10.50	11,40	3.80	1.10	080	2.00	3.30	8	78.60
1	380	10.09	13.85	7.54	3.24	1.97	0.83	0.35	0.25	0.35	0.52	0.87	43.77
1	0.00	2.20	0:0	0.70	0.0	00.0	0.00	0.0	0.00	0.00	0.00	0.0	17.20

STOLES ESILMATEL

1.51
1.1
1
- <u>-</u>
- 5
- 2
-
1
~
12
: + emé
۱÷
ັບ
_ <u> </u>
Ľ.
Ö
-
÷.
C
-
- 7
for Chico River in Alaluela
يشبعه
1.5.5

Table 5.4.1

m^J/sec

YEAR	IVN	Ē	MAR	APR	MAY	ND	ЛЛГ	AUG	SEP	0CL	NOV	DEC	MEAN
1964	4	1 12	6.60	6.75	2.01	2	1.32	1.17	1.01	0.92	0.84	0.72	21
1965	0.61	1.8	8.85	7.57	7.54	2.66	1.69	1.50	1.37	1.18	1.08	0.94	3.01
1966	9.83	8.02	6.19	3.76	3.02	2.28	1.94	1.72	1.58	1:35	1.24	1.06	3.50
1961	14.73	18.07	9.42	3.43	2.43	1.97	1.69	1.50	1.38	1.18	8	0.93	4.82
1968	0.86	6.83	2.26	1.35	1.03	E6 0	0.80	0.71	0.68	0.56	0.51	0.44	1.58
1969	0.54	0.43	4.91	3.04	5.20	2.02	1.46	1.30	1.19	1.02	0.93	0.60	1:90
1970	0.82	1.23	3.03	6.63	2.58	2.10	1 47	1.30	1.19	1.02	0.94	0.81	1.96
1971	0.74	2.36	11.53	5.04	1.76	1.50	1.26	1.12	1.02	0.88	0.80	0.69	2.39
1972	\$	1.52	8.23	4.63	2.80	5.72	2.39	1.97	1.81	1.51	1.38	1.48	3.8
1973	7.31	11.43	13.76	9.30	6.65	3.56	2.64	2.34	2.14	1.84	1.68	1.4	5.34
1974	1.28	6.10	3.38	2.05	1.47	1.36	1.16	1.03	0.94	0.81	0.74	0.04	1.74
1975	7.82	15.95	14.48	10.41	3.96	2.50	2.04	1.81	8.1	1.42	1.30	1.12	5.37
1976	8.50	13.55	14.92	14.53	10.03	6.21	3.17	2.57	2.35	2.02	1.85	1.59	6.77
1977	2.86	7.48	9.34	6.92	2.70	2.20	1.88	1.07	1.53	1.31	1.20	1.04	3,34
1978	1.33	3.47	3.72	2.13	1.65	1.32	1.13	1.01	0.92	0.79	0.72	0.62	1.57
62.61	0.61	1.57	2.24	1.58	0.91	0.78	0.67	0.59	0.54	0.46	043	0.37	06.0
1980	0.33	0.50	2.27	5.55	2.66	1.18	0.09	0.87	0.80	0.69	0.63	0.54	1.42
1981	0.50	6.09	3.89	3.75	2.27	1.46	1.25	1,10	1.01	0.87	0:80	0.68	2.02
1982	0.69	0.73	1 08	0.52	0.42	0.37	0.31	0.28	0.26	0.50	141	8.80	1.28
1983	12.60	16.85	16.85	21.30	18.34	14.40	15.36	10.93	10.27	4.33	3.46	2.97	12.31
1984	3.62	15.69	17.92	9.61	3.94	8	2.60	2.31	2.11	1.81	1.8	4	5.48
1985	1.36	2.19	4.26	5.18	2.29	1.78	4	1.27	1.17	1.00	0.92	0.79	1.97
1986	10.43	6.97	2.59	3.53	17.1	1.50	1.29	1.14	9.1	0.90	0.82	0.71	2.73
1987	1.89	14.68	11.07	15.76	9.62	3.52	2.28	2.04	28	1.58	145	1.25	5.60
1988	134	5.41	3.03	5.60	3.39	2.05	1.73	1.54	1.41	1.21	1.11	0.95	2.48
1980	12.71	17.26	· 12.59	11.04	4.09	2.45	2.05	1.82	1.67	1.43	1.31	1.12	5.80
1990	1 02	1.10	272	4.34	1.39	1.17	1.00	0.89	0.81	0.70	0.6	0.55	1.36
1001	0.79	1.73	5.69	2,65	1.52	1.12	0.93	0.82	0.75	0.65	0.59	0.51	1.48
1992	5.30	11.26	20.14	20.52	19.42	10.59	3.85	2.63	2.40	2.06	1.89	1.62	8.47
MAX	14.73	18.07	20.14	21:30	19.42	14.40	15.36	10.93	10.27	433	3.46	8.80	12.31
MEAN	3.88	7.05	7.83	6.84	4.30	2.87	2.13	1.76	1.62	1.24	1.15	1.26	3.50
MIN	0.11	570	5				-		-				

· .	
8	3

LEAK	NVC	EEB	MAR	APR	MAY	NUL	Ē	AUG	ÊJ	oct	NOV	DEC	MEAN
1964	12.99	9.61	15.31	19.31	4.08	1.29	0.94	0.77	0.65	0.51	0.43	0.34	5.52
1965	0.42	1.68	10.00	14.62	5.71	1.8.1	0.66	0.29	0.22	0.17	0.15	0.12	2.99
1966	4.30	15.32	14.14	7.04	2.25	0.79	40	0.37	0.32	0.25	0.20	0.17	3.80
1967	8.37	16.91	7.28	1.90	0.79	0.42	0.33	0.27	0.23	0.18	0.15	0.12	3.28
908	0.21		0.75	0.59	0.00	0.04	0.03	0.03	0.02	0.02	0.01	0.01	0.20
80	0.24	0.15	3.80	4.47	2.64	3.46	1.50	0.32	0.26	0.21	0.18	0.14	1.45
0,0	0.54		4.88	12.94	4.43	0.82	0.25	0.19	0.16	0.13	0.11	0.09	2.12
L 0	0.12		23.52	8.03	80	0.26	0.19	0.15	0.13	0.10	0.08	0.0	308
1972	0.0	6.41	10.70	5.58	1.24	66.9	2.98	2.29	0.45	0.35	0.29	1.35	3.47
573	8.35		12.82	9.37	5.68	1.04	0.50	0.34	0.20	0.23	0.19	0.15	3.67
974	019	14.30	3 05	4.94	80	0.24	0.16	0.13	0.11	0.09	0.07	0.11	2.00
975	10.02	•	25.15	15.85	2.79	1.05	044	0.33	0.28	0.22	0.18	0.17	6.40
976	11.55		15.35	13.39	7.68	8.52	1.16	0.42	0.35	0.28	0.24	0.20	618
57	8.92	22.42	18.68	3.47	0.87	0.33	0.24	0.19	0.16	0.13	0.13	0.09	5.13
378	1.76	9.39	8.81	2.22	1.8	0.24	0.18	0.15	0.12	0.10	0.08	0.0	2.01
ŝ	0.57	5.74	2 98	1.28	0.20	0.28	010	0.08	10 0	0.05	0.05	0.04	0.95
8	440	5.06	11.68	9.39	2.59	0.31	0.18	0.15	0.12	0.10	0.08	0.0	2.53
1961	0.60	8.00	8.39	8.75	0.70	0.20	0.16	0.13	0.11	0.09	0.0	0.06	2.27
5	0.48	0.45	1.39	0.67	0.19	0.03	0.02	0.02	0.01	1.54	5.27	14.15	2.02
튌	24.69	34.19	30.68	20.58	32.40	26.34	19.28	9.38	4.91	0.77	0.48	0.47	17.03
2	0.31	7.69	17.30	13.22	2.22	0.57	0.32	0.26	0.22	017	0.15	0.37	3.57
No.	1.02		4.17	2.21	0.41	0.18	0.14	0.12	0.10	0.08	0.0	0.10	1.19
980	9.26	:	5.79	9.58	1.35	0.28	0.22	0.18	0.15	0.12	0.10	0.15	2.70
8	2.54	26.99	21.61	26.23	11.26	1.49	0.38	0.44	0.24	0.19	0.16	0.14	16
1988	1.37	7.69	1.46	1.74	0.79	0.21	0.13	0.10	800	0.0	0.06	0.05	1.15
1989	4.16	18.02	8.61	9.88	2.50	0.60	0.31	0.25	0.21	0.17	0.14	110	3.75
190	0.36	241	4.87	7.34	0.58	0.17	0 13	0.10	0:00	0.07	0.06	0.05	.1.35
1991	0.14	4.49	2.77	0.76	0.11	0:00	0.07	0.06	0.05	0.0	0.03	600	0.72
1991	1.39	4.01	8.07	11.17	7.67	1.06	0.36	0.27	0.23	0.18	0.15	0.12	2.89
XVW	24.05	34.19	30.88	26.13	32.40	26.34	19.28	938	4.91	1.54	5.27	14.15	17.03
MEAN	3.98	9.64	10.50	8.71	3.58	2.14	1.10	0.61	9C 0	0.23	0.32	0.66	3.48
NIIN	0.06	0.15	0.75	0.50	0.06	0.03	0.0	0.02	0.01	0.01	10.0	100	0.20

Estimated Long-term Runoff in m³/sec for Grande River in A. J. Mosquito

Table 5.4.2

Table 5.4.3Estimated Long-ferm Runoff in m3/secfor Carrizal River in Calceta

YLAR	JAN	831	MAR	APR	МАУ	NGS	JUL	AUG	SEP	OCT	NON	DEC	MEAN
1964	25.36	27.26	52.28	49.46	18.31	8.49	4.03	1.77	0.79	0.33	0.14	0,06	15.69
1965	0.95	10.91	\$1.34	51.77	50.80	22.21	8.68	4.33	1.93	0.80	0,36	0.56	17.05
1966	37.40	42.97	42.12	31.91	23.49	11.35	6.60	3.24	1.83	067	0:30	0.27	16.85
1967	52.92	71.59	46.53	23.56	15.62	7.65	3.56	1.53	0.68	0.28	0.12	0.05	18,67
1908	1.35	45.69	22.14	15.68	7.02	3.55	1.49	0.64	0.55	0.12	0.05	0.02	8,19
6961	2.05	3.02	36.67	30.35	42.31	19.38	8.48	4.27	1.91	0.80	0.39	0.15	12.48
1970		5.02	13.95	32.17	34.40]4.23	8.60	4.43	1.98	0.82	0.37	0.24	9.85
LOI	146	20.45	61.28	33.18	12.91	6.85	3.20	138	0.69	0.25	0.11	0.0	11.82
1972	1.05	34.11	53.77	42.06	23.82	42.86	29.01	15.03	7.62	3.38	1.50	00 E	21.43
1973	42.46	25.69	50.20	41.33	37.91	18.09	8.29	4 18	1.86	0.78	0.35	0.17	19.28
1974	0.16	10.44	11.93	9.74	6.23	3.31	1.42	0.61	0.27	0.11	0.05	0.19	3.71
1975	22.41	73.06	70.84	42.54	17.52	8.50	4.22	1.90	0.54	0.52	0.16	1.20	20.32
1976	56.05	47.11	44.29	34,80	21.59	96.6	4.99	2.17	0.96	0.40	0.18	0.09	18.55
1977	13.85	39.16	60.80	33.30	13.59	6.43	2.84	1.21	0.55	0.22	0.10	0.05	14.34
1978	2.61	· · · ·	33.16	21.04	22.35	8.96	4.45	1.93	0.86	0.35	0.16	0.01	9.34
1979	5.81	• .	16.58	23.84	24.30	11.27	5.77	2.63	1.17	0.48	0.21	60.0	8.92
1980	0.67	11.24	16.54	31.93	13.14	6.42		1.23	0.55	0.23	0.10	0.0	1.09
1981	0.74		38.55	40.75	13.43	6.28	3.05	1 28	0.57	0.24	0.10	0.14	12.05
1981	0.89		13.51	15.56	7.23	3.99		0.75	0.34	1.78	18.46	45.88	9.79
1983	65.52		90.03	87.54	72.24	60.31	v	47.88	34.68	13.56	7.50	5.53	51.65
1984	2.80	46.35	51.70	51.71	24.82	10.04	5.16	2.28	1.01	0.42	0.18	0.29	16.40
1985	1.16	8.98	24.47	23.70	8.78	4.80	2.18	E6'0	0,41	0.17	0.08	0.46	6.35
1986	23.81	28.38	25.42	41.25	14.19	7.02	3.14	1.35	0.60	0.33	0.11	0.11	12.14
1987	10.98	76.13	83.12	86.34	55.10	21.91	8.89	5.52	2.77	1.15	0.51	0.37	29.40
1988	9.13	55.46	29.67	29.23	29.59	13.23	7.10	3.47	1.54	0.66	0.30	0.22	14.97
1980	30.86	54.97	33.83	47.91	20.06	10.32	5.29	2.33	1.06	0.43	0.19	0.15	17.28
1990	0.51	5.50	7.59	8.52	4.09	16.1	0.79	0.34	0.15	0.06	0.03	0.01	2.46
1991	1.29	18.06	33.34	25.09	10.25	7.38	338	1.46	0.65	0.27	0.12	0.07	8.45
1992	0.75		34.54	45.44	25.69	12.08	6.15	2.80	1.25	0.52	0.23	0.14	11.25
MAX	65.52	76.13	90.03	87.54	72.24	60.31	63.99	47.88	34.68	13.56	18.46	45.88	51.65
MEAR	14.38		30.05	36.27	23.13	11.72	751	4.24	2.42	1.04	1.12	2.06	14.68
1			S.									10.0	21.6

Table 5.4.4Estimated Long-term Runoff in m³/secat Proposed La Esperanza Damsite

Table

YEAR	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SLP	OCT	NOV	DEC	MLAN
1964	21.57	23.19	44.48	42.09	15.58	7.23	3.43	1.51	0.67	0.28	0.12	0.05	13.35
1965	0.81	9.28	43.68	44.05	43.22	18.90	7.38	3.68	1.65	0.68	0.30	0.48	14.51
1966	31.83	36.56	35.84	27.15	19.99	9.66	5.62	2.76	1.56	0.57	0.25	0.23	14.34
1967	45.03	60.91	39.59	20.04	13.29	6.51	3.03	1.30	0.58	0.24	0.11	0.05	15.89
1968	1.15	38.87	18.84	13.34	5.97	3.02	1.27	0.54	0.47	0.10	0.04	0.02	6.97
1969	1.75	2.57	31.20	25.82	36.00	16.49	7.21	3.63	1.62	0.68	0.33	0.13	10.62
1970	1.69	4.27	11.87	27.38	29.27	12.11	7.32	3.77	1.69	0.70	0.31	0.20	8.38
1971	1.24	17.40	52.14	28.23	10.98	5.83	2.72	1.17	0.59	0.22	0.10	0.06	10.06
1972	0.89	29.03	45.75	35.79	20.27	36.47	24.68	12.79	6.49	2.88	1.28	2.55	18.24
1973	36.13	21.85	42.71	35.17	32.26	15.40	7.05	3.56	1.60	0.66	0.29	0.14	
1974	0.14	8.88	10.15	8.28	5.30	2.82	1.20	0.52	0.23	0.10	0.0	0.16	3.15
1975	19.07	62.16	60.27	36.20	14.91	7.23	3.59	1.62	0.80	4.0	0.14	1.02	
1976	47.69	40.09	37.69	29.61	18.37	8 47	4.24	1.85	0.82	0.34	0.15	0.08	
1977	11.78	33.32	51.73	28.33	11.57	5.47	2.41	1.03	0.47	0.19	0.08	0.05	
1978	2.22	13.77	28.21	17.91	19.02	7.63	67.E	1.64	0.73	0.30	0.13	0.06	7.95
1979	4.94	12.65	14.11	20.28	20.67	9.59	4.91	2.24	0.99	0.41	0.18	0.07	
0861	0.57	9.56	14.08	27.17	11.18	5.46	2.45	1.05	0.47	0.19	0.09	0.08	
1861	0.63	33.58	32.80	34.67	11.42	5.34	2.59	1.09	0.48	0.20	0.09	0.12	10.25
286T	0.76	6.26	11.49	13.24	6.15	3.39	1.49	0.64	0.29	1.51	15.71	39.04	8.33
1983	55.75	60.47	76.61	74.48	61.47	51.31	54.45	40.74	29.51	11.54	6.38	4.70	43.95
1984	2.38	39.44	43.99	44,00	21.11	8.54	4.39	1.94	0.86	0.36	0.16	0.25	13.95
5861	0.99	7.64	20.82	20.17	7.47	4.16	1.85	0.79	0.35	0.15	0.07	0.40	5.41
1986	20.26	24.15	21.63	35.09	12.08	5.97	2.67	1.15	0.51	0.28	0.09	0.10	10.33
1987	9.34	64. 78	70.72	73 46	46.88	18.64	7.57	4.70	2.35	0.98	0.44	0.31	
1988	1.77	47.19	25.24	24.87	25.17	11.26	6.04	2.95	1.31	0.56	0.25	0.18	
1989	26.26	46.77	28.79	40.76	17.07	8.78	4.50	1.98	0.90	0.37	0.16	0.13	
1990	0.44	4.68	6.46	7.25	3.48	1.62	0.67	0.29	0.13	0.05	0.02	0.01	2.09
1661	1.10	15.36	28.37	21.35	8.72	6.28	2.88	1.25	0.55	0.23	0.10	0.06	1.19
992	0.64	4.56	29.39	38.66	21.86	10.27	5.23	2.38	1 06	0.44	0.20	0.12	9.57
MAX	55.75	64.78	76.61	74.48	61.47	51.31	54.45	40.74	29.51	11.54	15.71	39.04	43.95
MEAN	12.24	26.87	33.75	30.86	19.68	10.82	6.44	3.61	2.06	0.88	0.95	1 75	12.49
Ň	0.14	2.57	6.46	7.25	3.48	1.62	0.67	0.29	0.13	0.05	0.02	0.01	2.09

1.1.1	111
- X.,	
<u>_</u>	
~	1.1.1
C.T.	2 t
- E-	- 1 T
. -	199
. 🗯	11
<u> </u>	4.5
<u>بنې</u>	1.1
-	1.1
ି 🔿	
–	 a02
· =	17.00
=	·
\simeq	<u>ب</u>
	- -
. 	17
_	
: E	- E -
ెల్	_
12	14
	<u> </u>
: C1	
. 🚍	<u> </u>
_	
<u> </u>	ŭ
1	one
Ц Т	Iont
od Lo	Hond
ted Lo	Hone
nted Lo	a Hont
iated Lo	za Hont
mated Lo	oza Hone
imated Lo	oza Hone
timated Le	Poza Hone
stimated Lo	t Poza Hond
Estimated Lo	at Poza Hond
Estimated Lo	at Poza Hond
Estimated Lo	at Poza Honda Damsite
Estimated Lo	at Poza Hond
Estimated Lo	at Poza Hone
Estimated Lo	at Poza Hone
5 Estimated Lo	at Poza Hone
4.5 Estimated Lo	at Poza Hone
.4.5 Estimated Lo	at Poza Hone
5.4.5 Estimated Lo	at Poza Hond
5.4.5 Estimated Lo	at Poza Hond
e 5.4.5 Estimated Lo	at Poza Hond
le 5.4.5 Estimated Lo	at Poza Hond
ble 5.4.5 Estimated Lo	at Poza Hond
able 5.4.5 Estimated Lo	at Poza Hone
able 5.4.5 Estimated Lo	at Poza Hone
Table 5.4.5 Estimated Lo	at Peza Hone
Table 5.4.5 Estimated Long-term Runoff in m ³ /sec	at Poza Hone

(Unit: m3/s)

YEAR	NVF	FILB	MAR	APR	MAY	Nin	JUL	AUG	SEP	ocr	NOV	DEC	MEAN
1964	1.34	104	613	6.27	1.87	1 43	1.23	1.09	1.00	0.86	0.78		1.98
1965	0.62	0.96	8.22	7.03	7.01	2.47	1.57	1.39	1.27	1.09	1.00		2.79
1966	9 13	7.45	5.75	3.49	2.81	2.11	1.80	1.60	1.47		1.15	4	3.25
1967	13.69	16.79	8 75	3.19	2.26	1.83	1.57	1.39	1.28		1.01		-
1968	0.80	8.20	2.10	1.26	0.95	0.87	0.74	0 66	0.63		0.48	i Const	
1969	0.50	0 40	4.56	2.82	4.83	1.88	1.36	1.20	1.10		0.87		
1970	0.76	1.14	2.81	6.16	2.76	1.95	1.37	1.21	111	0.95	0.87	0.75	1.82
161	0.69	2.20	10.71	4.68	1.64	1.39	1.17	1.04	0.95		0.75	- 194 - 194 - 194	
1972	0 00	141	7.65	4.30	2.60	5.31	2.22	1.83	1.68	•.	1.28		
1973	6.79	10.61	12.79	8.64	6.17	3.31	2.46	2.17	1.99	- : -	1.56		
1974	1.19	5.66	3.14	1.90	1.37	1.26	1.07	26.0	0.87	et. Str	0.69		
1975	7.27	14.81	13.45	9.67	3.68	2.32	1.90	1.68	1.54		1.21		
1976	7.90	12.59	13.86	13.49	9.32	5.77	2.94	2.39	2.18		1.72		•
1977	2.66	6.95	8.68	6.43	2.50	2.05	1.75	1.55	1.42	:	1.12	:	· ·
1978	1.24	3.23	3.46	1.98	1.53	1.23	1.05	0.93	0.86		0.67		і.
1979	0.56	1.46	2.08	1.47	0.84	0.73	0.62	0.55	0.50		0.40		. • •
1980	0.31	0.46	2.11	5.15	2.49	1.10	0.92	0.81	0.74		0.59		• •
1981	0.47	6.21	3.62	3.49	2.11	1.35	1.16	1.03	0.94		0.74		
1982	0.64	0.68	1 00	0.48	0.39	0.34	0.29	0.26	0.24		1.31		•
1983	11.71	15.65	15.65	19.79	17.03	13.38	14.27	10.15	9.54		3.21		
1984	3.37	14.58	16.64	8.93	3.66	2.82	2.42	2.14	1.96	· ·.	1.54		
1985	1.26	2.03	3.96	4.81	2.13	1.65	1.33	1.18	1.08	·	0.85	. :	
1986	9.69	6.48	2.40	3.28	1.59	1.39	1.20	1.06	0.97		0.76		
1987	1.76	13.82	10.28	14.64	8.93	3.27	2.12	1.90	1.71		1.34		
1988	1.25	5.95	2.82	5.21	3.15	1.90	1.61	1.43	1.31		1.03		
1989	11.81	16.03	11.69	10.25	3.80	2.27	1.90	1.69	1.55		1.22		
1990	0.95	1.02	2.53	4.03	1.29	1.08	0.93	0.83	0.76	•	0.59		
1991	0.74	1.61	5.29	2.46	1.41	1.04	0.86	0.76	0.70		0.55	6	
1992	4.92	10.46	18.71	19.06	18.04	9.83	3.58	2.44	2.23	1.91	1.75	1.50	7.87
XXX	13.69	16.79	18.71	19.79	18.04	13.38	14.27	10.15	9.54	4.02	3.21	8.17	11.43
MEAN	3.61	6.55	7.27	6.36	4.07	2.67	1.98	1.63	1.50	1.15	1.07	1.17	3.25
NIN	0.31	0.40	1.00	0.48	0.39	0.34	0.29	0.26	0.24	0.43	0.40	0.34	0.83

Estimated Long-term Runoff in	Santa Ana New Diversion Da	
S	ät	
·		11
Table 5.4.6		

			100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			a state of the					a de producto d	(Units: m3/s)	/s)
YEAR	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NON	DEC	MEAN
1964	3.65	2.55	15.46	16.63	5.04	3.91	3.35	2.97	2.72	2.34	2.14	1.84	5.22
1965	1.67	2.20	19.75	16.41	13.71	5.67	4.06	3.59	3.29	2.82	2.59	2.23	6.50
1966	16.18	14.70	12.01	7.51	5.98	4.95	4.24	3.75	3.45	2.95	2.71	2.32	6.73
1967	28.17	39.67	20.62	7.59	5.43	4.62	3.96	3.51	3.22	2.76	2.53	2.17	10.35
1968	2.00	13.30	3.29	2.49	2.00	1.83	1.57	1.39	1.29	1.09	1.00	0.86	2.68
1969	1.06	0.89	8.65	8.08	12.15	5.17	3.65	3 22	2.95	2.53	2.32	1.99	4.39
1970	2.02	2.85	6.15	13.88	6.52	4.42	3.31	2.93	2.69	2.31	2.11	1.81	4.25
1971	1.67	5.20	25.83	10.24	3.95	3.48	2.94	2.61	2.39	2.05	1.88	1.61	5.32
1972	1.53	4.14	17.46	9.52	5.54	12.17	5.58	4 61	4.17	3.53	3 24	3.10	6.22
1973	12.81	21.97	28.24	20.12	13.84	8.48	6.41	5.67	5.19	4.46	4.08	3.50	11.23
1974	3.11	11.12	6.71	4.51	3.36	3.08	2.63	2 34	2.14	1.84	1.68	1.45	3.66
1975	16.03	35.88	34.25	24.37	8.88	6.11	5.04	4.46	4.09	3.51	3.22	2.76	12.38
1976	17.64	30.95	32.24	30.24	19.10	13.53	7.67	6.41	5.87	2 , 2	4.62	3.97	14.77
1977	5.86	15.16	19.76	13.84	6.14	5.33	4.54	4 03	3.69	3.17	2.90	2.50	7.24
1978	2.99	6.99	8.57	4.55	3.69	2.97	2.54	2.25	2.06	1.77	1.62	1.39	3.45
1979	1.33	3.36	4.27	3.36	1.92	1.62	1.37	1.22	1.12	0.96	0.88	0.75	1.85
1980	0,69	0.96	4.02	9.41	5.12	2.43	2.05	1.81	1.66	1.43	1.31	1.12	2.67
1861	1.03	11.59	9.08	8.30	4.40	3.17	2.72	2.41	2.21	1.90	1.74	1.49	4.17
1982	1.42	4	1.83	1.06	0.87	0.76	0.65	0.58	0.53	0.78	2.05	17.19	243
1983	29.06	38.98	39.54	47.44	45.55	36.24	35.96	23.67	20.37	9.78	8.51	7.31	28.53
1984	7.35	29.40	37.22	18.12	8.35	7.11	6.10	5.41	4.96	4.25	3.90	3.40	11.30
5861	3.25	4.91	8.67	9.85	4.57	3.74	3.11	2.76	2.53	2.17	1.99	1.71	411
1986	20.94	13.91	6.29	7.89	4.13	3.60	3.09	2.74	2.51	2.15	1.97	1.69	5.91
1987	4.19	29.89	22.59	31.72	19.50	7.51	5.53	5.00	4.49	3.85	3.53	3.03	11.74
8861	3.20	12.87	7.11	11.46	7.18	4.71	4.01	3.56	3.26	2.80	2.56	2.21	5.41
6861	21.29	33.10	26.11	22.06	8.95	6.11	5.08	4.50	4.13	ы. Ж	3.24	2.79	11.74
1996	2.53	2.69	4.91	6.77	2.72	2.39	2.05	1 82	1.66	1.43	1.31	1.13	2 62
1661	1.36	2.70	8.72	3.9 3	2.37	1.86	L55	1.38	1.26	1.08	0.99	0.85	2.34
1992	8.21	19.35	38.54	38.74	35.19	17.93	7.62	6.15	5.63	4.83	443	3.80	15.87
MAX	29.06	39.67	39.54	47.44	45.55	36.24	35.96	23.67	20.37	9.78	8.51	17.19	28.53
MEAN	7.66	14.23	16.48	14.14	9.18	6.38	4.91	4-03	3.64	2.87	2.66	2.83	7.42
NIN	A A A												

YEAR	JAN	FEB	MAR	APR	MAY	NIOC	JUL	ADG	SEP	oct	NON	DEC	MEAN
1964	20.03	31.04	59.06	66.91	40.25	25.89	15.17	8.64	4 8	2.54	1.38	0.69	23.04
1965	1.13	8.84	49.77	62.93	65.44	44.77	26.92	16.33	9.59	5.09	2.81	1.73	24.61
1966	30.05	49.12	53.92	49.24	39.75	27.65	17.95	11.06	6.86	3.67	2.05	1.16	24.45
1967	45.71	78.29	64.63	46.17	32.80	21.92	12.87	7.35	4.18	2.17	1.18	0.60	26.49
1968	1.24	35.41	27.71	25.39	16.52	10.84	6.17	3.46	2.13	1:06	0.57	0.29	10.90
1969	18	2.85	31.72	37.25	49.86	36.64	23.03	14.35	6.56	4.59	2.58	1.32	17 89
061	2.23	5.12	13.94	36.78	41 24	29.01	19.96	12.92	7.89	4.29	2.41	1.30	14.82
1971 -	1 68	17.85	62.69	50.42	30.55	20.34	11.92	6.78	3.8	2.01	1.08	0.56	17.48
1972	1.11	29.32	54.83	56.62	41.24	56.01	45.10	32.09	21 62	12.58	7.38	5.76	30.31
1973	38.52	37.85	57.49	57.09	54.47	37.87	23.76	14.62	8.68	4.04	2.58	1.33	28.24
1974	0.78	10.53	13.76	14.45	11.38	8.10	4.79	2.75	1.56	0.81	0.45	0.39	5.81
1975	21.38	74.ET	16.78	72.07	43.22	27.52	16.20	9.25	5.32	2.87	1.54	1.68	30.20
1976	45.71	56.15	63.90	57.56	42.05	28/14	17.18	9.97	5.66	2.93	1.59	0.82	27.64
1977	12.82	39.95	65.88	53.53	32.49	20.88	11.90	6.66	3.74	1.92	8	0.53	20.95
1978	2.61	16.59	34.38	29.95	30.88	21.07	13.12	7.74	4.49	2.36	1.30	0.66	13.76
1979	4.53	14.60	19.09	27.93	30.84	22.69	14.82	9.06	5.37	2.87	1.59	0.81	12,85
1980	0.88	9.48	0.01	35.85	24.18	16.58	9.88	5.66	3.23	1.68	0.91	0.50	10.66
1981	0.80	33.49	44.08	52.63	30.62	19.77	11.52	6.50	3.67	1.90	1.03	0.58	17.22
1982	0.80	6.01	12.61	18.98	13.50	9.69	5.80	3.34	1.91	2.21	14.97	44.31	11.19
1983	75.88	95.02	110.82	119.48	19.03	99.27	98.67	79.97	64.04	37.64	24.53	16.01	70.03
1984	9.72	45.36	61.34	66.52	44.86	28.94	17.43	10.13	5.82	3.04		1.09	24.66
1985	1.68	9.20	23.88	29.38	18.92	13.06	7.68	4.39	2.49	1.29	0.70	0.67	9.45
1986	18.86	32.68	35.37	50.48	30.97	20.65	12.08	6.82	3.84	2.04	1.09	0.61	17.90
1987	9.75	70.32	94.24	109.30	86.15	54.89	32.06	19.93	12.05	6.51	3.64	2.03	41.74
1988	8.20	49.46	41 64	42.44	41.09	28.89	18.85	11.68	6.96	3.74	2.08	1.14	21.35
1989	25 02	57.43	50.38	62.84	40.80	27.82	17.20	10.08	5.81	3.03	1.65	16.0	25.25
1990	0.88	4.94	8.20	10.70	7.92	5.35	3.06	1.72	0.61	0.50	0.27	0.14	3.72
1991	104	14.34	32.17	32.67	21.50	16.18	9.96	5.89	3.42	1.80	0.09	0.52	11.71
1992	0.96	5.88	32.82	50.53	39.45	27.76	1770	10.65	6.23	3.29	1.82	0.97	16.51
MAX	75.88	95.02	110.82	119.48	\$6.18	99.27	98.67	79.97	64.04	37.64	14.53	44.31	20.01
MEAN	13.34	31.43	45.77	49.18	35.27	27.87	18.71	12.06	7.76	431	3.00	3.07	21.06
		101											

Table 5.4.7Estimated Long-term Runoff in m3/secfor Carrizal River in La Estancilla

- 4 g		<u>.</u>
	t start i d	
. :		
	$x_{-1} \in A^*$	2
1.1	$(1+1) \in \mathbb{N}$	ЗЧ ЗЧ
		٤
	ine North S	
	n an ch	्म
	e di te t	Б
$(x_i,y_i) \in [0,\infty)$	a i	- C
		9
	Ĕ	1
14 11	ς	74
1.1	<u>7</u>	2
1	$\mathbf{v}_{1} \in \mathcal{V}_{1}$:
	Ģ	
2		. 1
. *		
	3	
	S.	
	o S	
	. .	à
	0	1
-	5	• . •
	2	÷ .
1997 - 1997 -		, ··
	ဗ္ဗ	ę. –
. 1. 3	S	۱.
() ()	<u> </u>	$\mathcal{A}^{(1)}$
, is	<u></u>	16
	, c .	
	c	; •
	.=	· .
	<u>.</u>	
	1	
1.1	ž	
	$\tilde{\boldsymbol{\lambda}}$	
		10
	F	
1.	E . '	
	<u> </u>	1
1.1		/
	: 60 X	
:	୍ଦ୍	
		2
	- E	ĺ.
	5 G	
	_ <u>_</u>	
	15	
•	្ម ភ្	
1.1	्रम् <u>२</u>	
	37	
	hand have	
	00	
	4	
	្លរី	
· ·	- 47.	
	Table 5.4.8Estimated Long-term Runoff in m ³ /sec at Proposed La CiénegaDiversion Damsite	
	Ĭ	
	ą	•
	Ľ	
	5	
	1.1	

	3.77	5.33	6.30	8.73	2.96		2	3.53	40	4	8	4	<u> 8</u>	8	28	8	2	46	4	8	16	10.55	86	3	96	58	C	2.68	2	4 9	1110 TT	म	<u>e</u>]
NEAN	'n	5.	ن ه.	60	2	1 .	n I	m	ব	Ś	Ø	e.	o.	엄	vo	ς Γ		ন	m. Isti		5	2	n)	Ś	0	4	2	~	~	4	2		
DEC	1.68	2.22	245	2 22	1 05	3 4	7.97	8	1.62	2.98	3.40	1.51	2.69	3.86	2.47	1.45	0.82	13	1.51	10.42	\$19	3.48	1.86	1.66	8	2.17	2.72	1.29	1.15	4.14	10.42	1.65	0.83
NOV	1.96	2.61	2.85	2 61	1 23	-	7.12	211	1.91	3.17	3.99	1.74	3.18	4.60	−2.89	1.67	0.95	1.42	1.76	1.83	10.35	4.07	2.16	1.33	3.62	2.52	3.22	1.50	4	5.0	10.35	1.1 1	50.0
001	2.16	2 93	112	0 80	24	<u>ן</u>	2.33	2.32	2.11	3.50	4.43	1.90	3.56	5.20	3.17	1 82	1.94	1.51	1.93	0.79	12.91	4.51	236	2.11	4.11	2.76	3.60	2	1.47	5.93	12.91	80	0.79
SEP	2:56	3 5 5	3.65	AA	2.5	3	2.76	2.73	2.52	4.19	5.31	2.21	4.32	6.39	3.75	2.12	1.21	3.86	2.27	0.60	20.66	5.39	2.77	2.48	5.08	3.23	4.38	12	1.73	7.63	20.66	3.87	0.60
AUC	2.86	4 14	с. г	3 5	32.	<u> </u>	3.09	3.05	2.86	4 70	6.05	2.42	5 00	7.53	4.20	2.32	1.32	2.10	2.53	0.66	22 62	6.12	3.06	2.76	6.04	3.57	5.09	2.12	1.93	9.51	22.62	430	0.66
JUL	7 77	;;;	1.1		4.14	5.02	3.63	3.57	3.42	5.61	7.29	2.76	6.14	9.57	4.93	2.63	1.50	2.50	2.94	0.75	28.67	7.34	3.53	3.20	7.61	4.12	6.27	2.44	2.26	13.16	18.67	5.37	0.75
NUL	4 18		() 1		70.0	2.47	4.69	4.60	4.34	8.84	9.51	3.28	8.11	14.05	6.10	3.11	1.79	3.15	3.59	0.89	28.75	9:33	4.32	3.91	10.69	5.00	8.27	2.95	2.80	22.57	28.75	06.0	080
MAY	515	01.0		2.0	0C'1	2.89	7.36	5.64	5.35	5.84	13.08	3.68	10.95	18.55	7.39	3.61	2.03	4.56	4.56	101	31.94	11.76	5.12	4.60	17.46	6.41	11.33	3.45	3.44	31.96	31.96	8.73	μ
APR	0.54	5 5	10.50	+7 R	64.0[3.78	4.82	8.58	9.11	8.06	16.42	4.69	18.74	23.34	12.02	4.43	2.75	6.71	6.06	1.23	33.55	18.80	1.73	6.91	23.42	8.36	19.60	5.99	4.72	31.66	33.55	1141	50 L
MAR		3	10.54	10.01	17.22	4.93	5.73	4.10	14,48	10.73	19.82	5.90	22.11	22 00	13,45	5.58	3,14	2.75	5.87	1.67	26.26	26.40	6.21	6.45	16.92	5.56	20.89	3.93	6.83	27.27	1212	11.57	rx 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	2	1.88	12.12	25.82	10.46	1.01	2.15	3 41	2.57	16.26	8 13	21.61	1875	10.25	4.99	2.46	0.80	7.75	147	24.67	21.58	4.05	11.25	18.75	8.31	24.28	2.48	2.56	14.49	15.82	9.87	
NVA		1.72	1.52	11.58	17.82	2.00	1.12	172	2	57	0.45	200	9.56	10.85	4 18	2.60	134	074	110	1 42	17.33	778	3.17	12.97	273	2.89	15.52	241	1 45	619	17.82	5.44	
1 1	TAR	1964	1965	800	563	896	000	C.C	110	1.0		7201	101	240	077	20	20	500	8	1001	50	3	1 Offs	1986	5	1005	1080	1000	1001	1001	MAX	MEAN	