JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

DEPARTMENT OF IRRIGATION AND DRAINAGE MINISTRY OF AGRICULTURE MALAYSIA

THE NATIONAL RIVER MOUTHS STUDY IN MALAYSIA

VOL. IV

SUPPORTING REPORT - 1

AUGUST 1994

CTI ENGINEERING CO., LTD.

SSS JR 94-079

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

DEPARTMENT OF IRRIGATION AND DRAINAGE MINISTRY OF AGRICULTURE MALAYSIA

THE NATIONAL RIVER MOUTHS STUDY IN MALAYSIA

VOL. IV

LIBRARY 1118956[0]

SUPPORTING REPORT – 1

z7446

AUGUST 1994

CTI ENGINEERING CO., LTD.

	祭協力事業団 27446		
	·		•

LIST OF REPORTS

VOL.	I	EXECUTIVE SUMMARY
VOL.	П	MAIN REPORT, MASTER PLAN STUDY
VOL.	III	MAIN REPORT, FEASIBILITY STUDY
VOL.	IV	SUPPORTING REPORT - 1
VOL.	V	SUPPORTING REPORT - 2
VOL.	VI	DATA BOOK
VOL.	VII	DRAWINGS
VOL.	VIII	PHOTOGRAPHS

SUPPORTING REPORTS

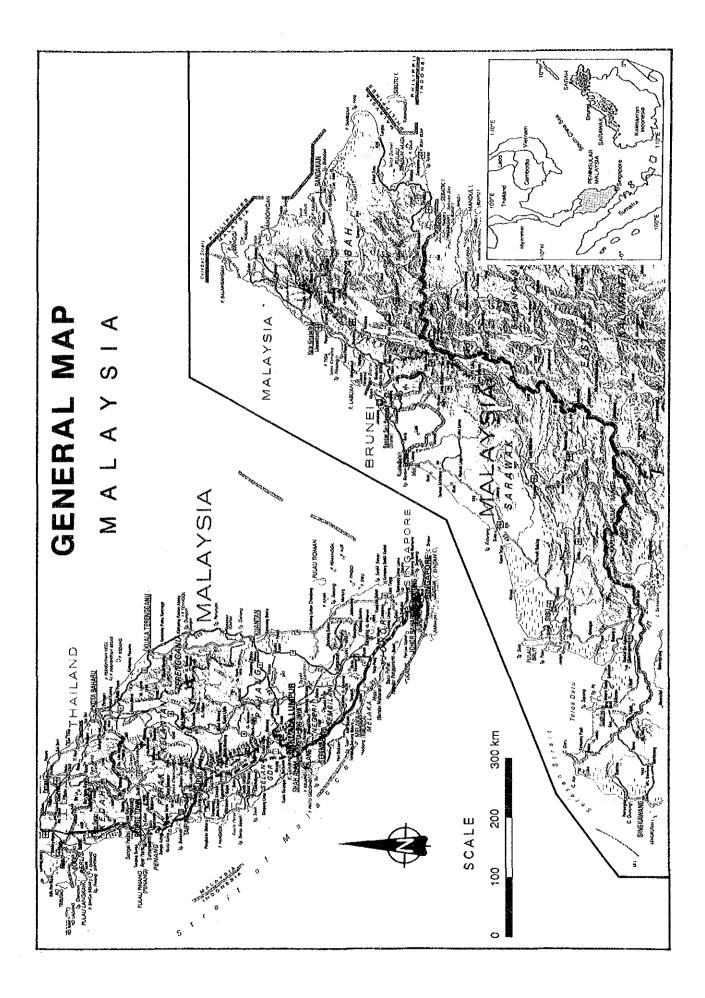
<u>VOL. IV</u>

- 1. HYDROLOGY AND OCEANOGRAPHY
- 2. RIVER MOUTH GEOMORPHOLOGY
- 3. HYDRAULIC MODEL TEST
- 4. NUMERICAL ANALYSIS
- 5. RIVER MOUTH IMPROVEMENT PLAN

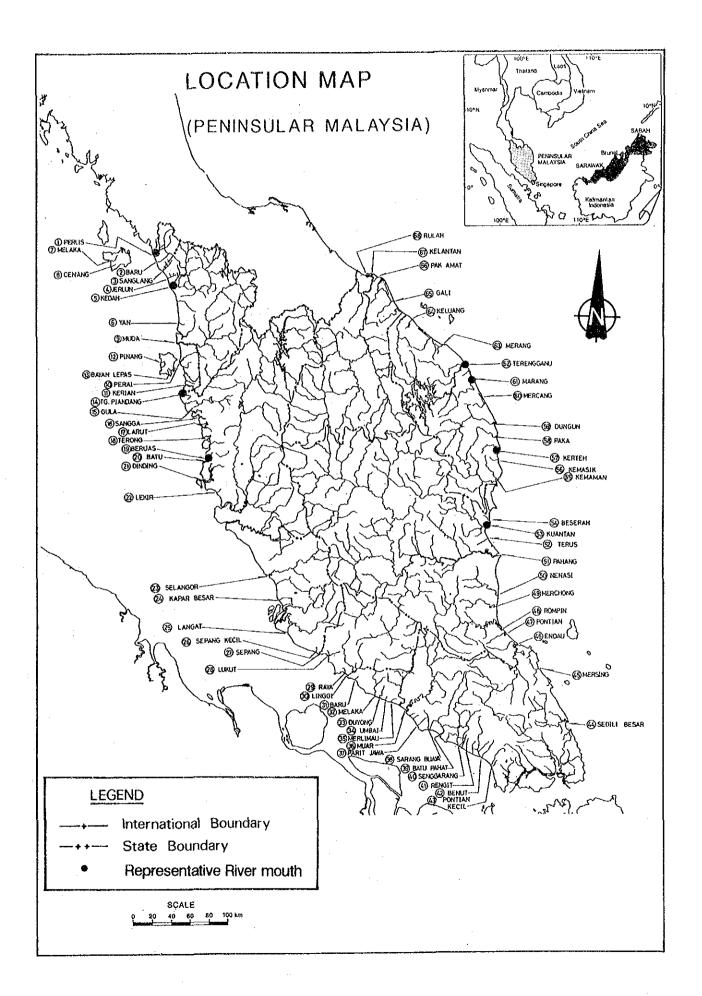
VOL. V

- 6. **PRELIMINARY DESIGN**
- 7. CONSTRUCTION PLAN AND COST ESTIMATE
- 8. **PROJECT EVALUATION**
- 9. ENVIRONMENTAL IMPACT STUDY
- 10. INSTITUTIONS AND REGULATIONS
- 11. DATABASE

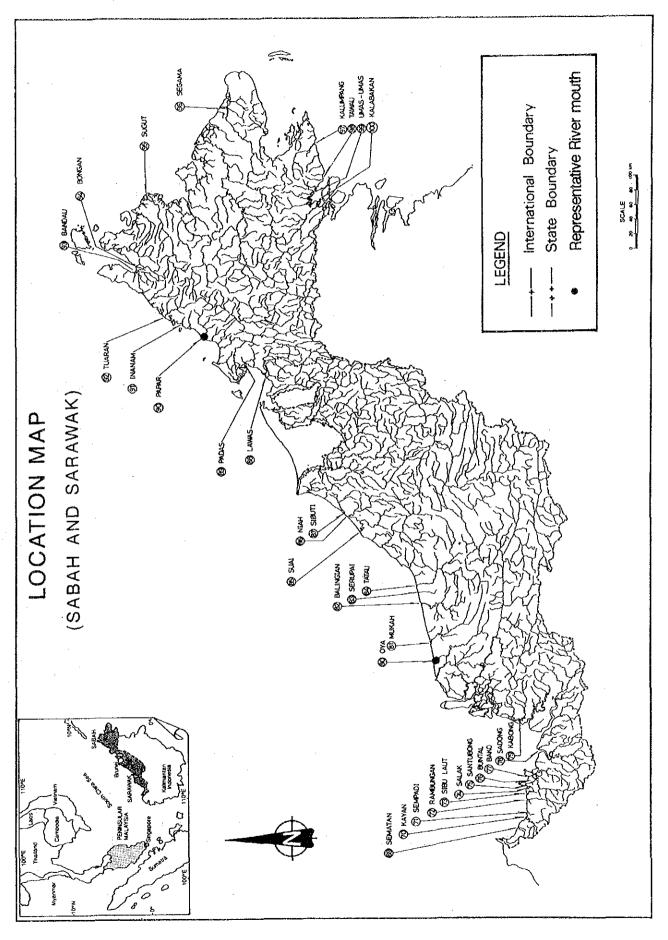
THE COST ESTIMATE IS BASED ON NOVEMBER 1992


PRICE LEVEL AND EXPRESSED IN MALAYSIAN

RINGGIT (RM) ACCORDING TO THE FOLLOWING


EXCHANGE RATE:

 US1.00 = RM2.530 = \pm 124.75$


(AS OF NOVEMBER 27, 1992)

.

.

·

1. HYDROLOGY AND OCEANOGRAPHY

THE NATIONAL RIVER MOUTHS STUDY IN MALAYSIA

SUPPORTING REPORT NO. 1

HYDROLOGY AND OCEANOGRAPHY

TABLE OF CONTENTS

1.	GENERAL	1-1
2.	NATIONWIDE NATURAL SETTING	·
2.1	Topography and Geology	1-1
2.2	Meteorology and Hydrology	1-2
2.3	Oceanography	1-4
2.4	River Features	1-5
2.5	Coastal Condition and River Mouth Formation	1-6
3.	STUDY ON REPRESENTATIVE RIVER MOUTH	
3.1	Hydrological Analysis	1-10
3.1.1	River Discharge	1-10
3.1.2	Flooding Problem	1-13
3.1.3	Sediment	1-15
3.1.4	One-Dimensional Dispersion Analysis	1-17
3.2	Oceanographic Analysis	1-23
3.2.1	Tides	1-23
3.2.2	Waves	1-24
3.2.3	Longshore Transport Rate	1-27
4.	STUDY ON FEASIBILITY STUDY RIVER MOUTH	
4.1	Tanjung Piandang River Mouth	1-32
4.1.1	Hydrologic and Oceanographic Observation	1-32
4.1.2	Study on Intrusion of Wave into River Mouth	1-33
4.1.3	In Situ Siltation Monitoring	1-35
4.2	Marang River Mouth	1-40
4.2.1	Hydrologic and Oceanographic Observation	1-40
4.2.2	Study on Outlet Opening of River Mouth	1-41
423	Review on Longshore Transport Rate	1-41

LIST OF TABLES

Table	1.2-1	TIDAL LEVEL AT STANDARD PORTS	T1-1
	1.2-2	STRETCH OF TIDAL INFLUENCE	T1-2
	1.2-3	ANNUAL EROSION RATE BY MAJOR RIVER BASIN	T1-3
Table	1.3-1	OBSERVED MONTHLY MEAN DISCHARGE AND SUSPENDED LOAD	T1-4
	1.3-2	FLOOD DISCHARGE OF REPRESENTATIVE RIVER MOUTHS	T1-5
	1.3-3	FLOOD DISCHARGE AT RIVER MOUTH REDUCED BY DAM RESERVOIR'S EFFECT	T1-6
	1.3-4	TIDAL LEVELS OF REPRESENTATIVE RIVER MOUTHS	T1-7
	1,3-5	SEDIMENT TRANSPORT CAPACITY	T1-8
	1.3-6	WAVE STATISTICS BY APPROACHING DIRECTION	T1-10
	1,3-7	WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES	T1-16
	1.3-8	EVALUATION OF BREAKER INDEX	T1-26
	1.3-9	WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES FOR MERSING	T1-27
	1.3-10	BREAKDOWN OF LONGSHORE ENERGY FLUX FACTOR FOR MERSING	T1-28
	1.3-11	BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION	T1-29
Table	1,4-1	NUMBER OF WAVES BY DIRECTION, PERIOD AND HEIGHT FOR PERIOD FROM OCT. 26 - NOV. 23, 1992	T1-35

Table 1.4-2	BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION USING LEO DATA (MARANG)	T1-36
1.4-3	ESTIMATION OF LONGSHORE ENERGY FLUX USING LEO DATA (PANTAI MARANG STATION)	T1-37
	a secondaria de la companya de la co La companya de la comp La companya de la comp	

LIST OF FIGURES

Fig.	1.2-1	WIND FLOW PATTERN IN SOUTHEAST ASIA	F1-1
	1.2-2	RAINFALL REGIONS	F1-2
	1.2-3	TIDES IN MALAYSIA	F1-4
	1.2-4	TEN SEA AREAS FOR STATISTICAL ANALYSIS OF DEEPWATER WAVES	F1-6
	1.2-5	WAVE ROSES DURING NORTHEAST MONSOON	F1-7
	1.2-6	WAVE ROSES DURING SOUTHWEST MONSOON	F1-9
. *	1.2-7	ANNUAL EROSION RATE BY MAJOR RIVER BASIN	F1-11
	1.2-8	DISTRIBUTION OF SHORELINE MATERIAL	F1-13
	1.2-9	NET LONGSHORE SEDIMENT TRANSPORT AND RELATIVE RATES	F1-15
Fig.	1.3-1	RIVER BASIN OF REPRESENTATIVE RIVER MOUTH	F1-17
	1.3-2	OBSERVED MONTHLY DISCHARGE AND SUSPENDED LOAD	F1 -27
	1.3-3	ESTIMATION OF FLOOD DISCHARGE FOR REPRESENTATIVE RIVER MOUTH	F1-28
	1.3-4	ESTIMATED DURATION CURVE FOR REPRESENTATIVE RIVER MOUTH	F1-29
	1,3-5	ESTIMATED WATER LEVEL PROFILE	F1-30
	1.3-6	FLOOD INUNDATION AREA NEAR TERENGGANU RIVER MOUTH	F1-35
	1.3-7	SEDIMENT RATING CURVES	F1-36
	1,3-8	SETTLING VELOCITY OF MUD MATERIAL	F1-37

.

Fig.	1.3-9	TARGET STRETCH FOR ONE-DIMENSIONAL DISPERSION ANALYSIS	F1-38
	1.3-10	RESULT OF UNSTEADY FLOW ANALYSIS	F1-39
	1.3-11	ESTIMATED SILTATION RATE	F1-40
	1.3-12	OBSERVED TIDAL FLUCTUATION	F1-41
	1.3-13	LOCATION OF LEO PROGRAM STATIONS	F1-42
	1.3-14	WAVE REFRACTION DIAGRAM FOR REPRESENTATIVE RIVER MOUTH	F1-43
	1.3-15	WAVE REFRACTION DIAGRAM FOR MERSING RIVER MOUTH	F1-51
Fig.	1.4-1	LOCATION OF WATER LEVEL AND WAVE GAUGES IN TG. PIANDANG	F1-52
	1.4-2	LOCATION OF HYDROLOGIC OBSERVATION IN TG. PIANDANG	F1-53
	1.4-3	OBSERVED HYDROGRAPHS IN TG. PIANDANG	F1-54
	1.4-4	GENERAL LAYOUT OF OPTIMUM MEASURES AT TG. PIANDANG RIVER MOUTH	F1-55
	1.4-5	WAVE REFRACTION DIAGRAM IN TG. PIANDANG	F1-56
	1.4-6	LOCATION OF IN-SITU SURVEY SITE	F1-57
	1.4-7	DISTRIBUTION OF MEAN MUD CONCENTRATION	F1-59
	1.4-8	DIMENSIONS OF TEST PIT	F1-61
	1.4-9	CROSS SECTIONAL PROFILE OF TEST PIT	F1-63
	1.4-10	CHANGE OF AVERAGE BED ELEVATION OF TEST PIT	F1-70
	1.4-11	SAMPLING POINT FOR MUD DENSITY	F1-71

- vi -

Fig.	1.4-12	RELATIONSHIP BETWEEN NAUTICAL DEPTH AND MUD DENSITY	F1-72
	1.4-13	DISTRIBUTION OF MUD DENSITY	F1-73
	1.4-14	CHANGE OF MUD DENSITY	F1-77
	1.4-15	LOCATION OF WATER LEVEL AND WAVE GAUGES IN MARANG	F1-79
	1.4-16	LOCATION OF HYDROLOGIC OBSERVATION IN MARANG	F1-80
	1.4-17	OBSERVED HYDROGRAPHS IN MARANG	F1-81
	1.4-18	GENERAL LAYOUT OF OPTIMUM MEASURES AT MARANG RIVER MOUTH	F1-82
	1.4-19	ESTIMATED WATER LEVEL PROFILE IN MARANG RIVER MOUTH	F1-83
	1.4-20	SOUNDING SURVEY AREA IN KERTEH RIVER MOUTH	F1-84
	1.4-21	CHANGE OF CROSS SECTION IN KERTEH	F1-85

· ·

.

SUPPORTING REPORT NO. 1 HYDROLOGY AND OCEANOGRAPHY

1. GENERAL

The purpose of the hydrologic and oceanographic study is to provide the basic information and conditions to formulate a river mouth improvement plan. This supporting report presents the study including the hydrologic and oceanographic observations.

Section 2 presents the existing condition of the 100 river mouths proposed for the Study, and the environment is discussed from a nationwide point of view. A more detailed study for the 10 representative river mouths for the Master Plan is carried out in Section 3. Flooding conditions of the river mouths are examined, and longshore transport rates are estimated by the energy flux method.

In Section 4, the Feasibility Study concentrates on two river mouths, Tanjung Piandang and Marang. To collect additional hydrologic and oceanographic data, new water level and wave gauges were installed at the river mouths. At Tg. Piandang River Mouth, an in situ pit survey was conducted.

2. NATIONWIDE NATURAL SETTING

2.1 Topography and Geology

Topography

Malaysia consists of Peninsular Malaysia and East Malaysia. East Malaysia occupies the northern part of Borneo Island and is divided into the states of Sabah and Sarawak. The area of Peninsular Malaysia is 131,598 km², while those of Sabah and Sarawak are 73,711 km² and 124,449 km², respectively.

The topography of Peninsular Malaysia is characterized by a central mountain range, the Main Range. The mountain range splits the Peninsula into the east and west coasts and is surrounded by coastal flat plains. Flat plains are developed widely in the southern part of the Peninsula.

The Crocker Range which runs parallel to the northwest coast divides the State of Sabah into two regions, the narrow northwest coastal low belt and the central and eastern plain areas. Swampy low areas adjacent to the northeast coast are densely covered with mangroves. In Sarawak, alluvial coastal plains have developed northward and westward from the mountain ranges of the interior of Borneo Island.

Geology

Peninsular Malaysia, as a part of the stable crotonic block which covers the Sunda Shelf and Borneo, is composed mainly of Paleozoic and early Mesozoic sedimentary rocks as well as intrusive granite masses. The western margin of this block is located off Sumatra Island in the Indian Ocean. While Sumatra Island is seismically and volcanically active in the recent age, Peninsular Malaysia is fairly stable in both aspects.

Borneo Island is geologically composed of Paleozoic to Mesozoic meta-sedimentary rocks associated with intrusive and extrusive rocks ranging from acidic to ultra-basic. Sabah and Sarawak are situated on the belt of the cretaceous Northwest Borneo Geosyncline, or the Sibu and Miri zones.

2.2 Meteorology and Hydrology

Climate

Malaysian climate is equatorial with high uniform temperature, high humidity and copious rainfall, influenced by the northeast and southwest monsoons. Northeast monsoons prevail from November to February and bring heavy rainfalls to the east coast of the Peninsula and to Sabah and Sarawak. Southwest monsoons usually start in April or May and end in September.

Wind

Wind over Malaysia is generally light and variable. There are, however, some uniform periodic changes in the wind flow patterns and four seasons can be identified; namely, southwest monsoon, northeast monsoon and two shorter inter-monsoon seasons.

During the northeast monsoon the prevailing wind flow is easterly or northeasterly with a speed of 5 to 10 m/s. The more affected areas are the east coast of Peninsular Malaysia, where the winds may reach 15 m/s or more during periods of intense surges of cold air from the north.

In the later half of May, the southwest monsoon comes to the west coast of Peninsular Malaysia. The prevailing wind flow is generally light, below 5 m/s, due to the shelter effect of Sumatra Island. The winds during the two inter-monsoon seasons are light and variable. Thunderstorm is common during these seasons.

During the months of April to November, typhoons frequently develop over the west Pacific and move westward across the Philippines. Southwesterly strong winds with a speed of 10 m/s or more often blow over the northwest coast of Sabah and Sarawak as the typhoons approach the regions.

The seasonal wind flow patterns are presented in Fig. 1.2-l.

<u>Rainfall</u>

Malaysia receives comparatively abundant rainfall with an annual mean rainfall of 2,420 mm at Peninsular Malaysia, 2,630 mm at Sabah and 3,830 mm at Sarawak. Such heavy rainfall has contributed to the development of dense networks of rivers and streams.

The rainfall distribution pattern of Malaysia is dependent on the seasonal wind patterns and the local topographic features. According to the National Water Resources Study by JICA (hereinafter referred to as the NWRS), Peninsular Malaysia and East Malaysia are divided into 5 and 7 rainfall regions, respectively, as shown in Fig. 1.2-2. Heavier rainfall has been experienced in the east coast region of Peninsular Malaysia and the coastal regions of Sabah and Sarawak during the northeast monsoon season. More than 1,000 mm of monthly rainfall has been recorded in these regions. Rainfall is generally less during the southwest monsoon season than during the northeast monsoon due to the shelter effect of Sumatra Island.

2.3 Oceanography

Tide

Malaysian coasts are influenced by three types of tides, diurnal, semi-diurnal and mixed, according to location and time of occurrence.

Tide levels at standard ports have been predicted and are tabulated in Tide Tables by the Directorate of Hydrography, Royal Malaysian Navy. The major features of the tides are summarized in Table 1.2-1 and the astronomical maximum tidal ranges along the coasts are shown in Fig. 1.2-3.

The maximum tidal ranges are in a scope of 2 to 6 m. The maximum ranges greater than 5 m are observed along the coastlines near the Port Klang of the west coast of Peninsular Malaysia and near Kuching of Sarawak.

<u>Wave</u>

Statistical analyses of deepwater waves were carried out in the NCES to construct wave roses for 10 square sea areas surrounding the territory of Malaysia, as shown in Fig. 1.2-4, 1.2-5 and 1.2-6.

Along the east coast of Peninsular Malaysia, northeast waves are predominant during the northeast monsoon. Over 65% of the waves are northeasterly with a maximum height of 4 to 5 m.

The southern part of the west coast of Peninsular Malaysia receives comparatively calm waves because of the short fetch length across the Strait of Malacca.

Northwesterly waves from the Andaman Sea are predominant along the northern part of the west coast during the southwest monsoon. The wave heights are usually 0.5 to 1.0 m with a maximum height of 2 to 3 m.

The coast of Sarawak and the northwest coast of Sabah are affected by the northeast monsoon waves with a maximum height of more than 4 m. The northeast and southeast coasts of Sabah also receive the northeasterly wave during the monsoon, but the wave heights are comparatively low because the shorter fetch length due to the presence of the Philippine Islands prevents the waves to develop very much. In addition, during the months of April to November, typhoons often pass off the northeast coast and develop the waves.

2.4 River Features

Although the number of the rivers in Malaysia is not clear, the river feature for the 100 objective river mouths related to the Study such as the size of river basin, riverbed gradient, flow capacity and sediment are described as follows.

Size of River Basin

The size of river basin relates to the supply of sediment and maintenance flow. The catchment area of the objective rivers in the study area vary in size from 3 km² to 28,492 km², as shown in the following table.

Class		ment Area km ²)	No. of River Basins in the Class	
1		< 10	9	
2	10	- 50	15	
3	-50	- 100	13	
4	100	- 500	25	
5	500	- 1,000	8	
6	1,000	- 5,000	26	
7	5,000	- 10,000	2	
8	10,000	<	2	

Riverbed Gradient

Riverbed gradient relates to the tidal prism and the discharge velocity necessary to flush the river mouth of siltation. Most of the objective rivers are presumed to have gentle gradients of less than 1/5,000 from the condition that the river stretch showing a tidal influence is longer than 20 km as shown in Table 1.2-2.

Flow Capacity

Data on flow capacity related to the flooding problem and the flush water against river mouth siltation are available only in Sg. Terengganu $(3,500 \text{ m}^3/\text{s})$, Kelantan $(3,000 \text{ m}^3/\text{s})$ and Pahang $(1,000 \text{ m}^3/\text{s})$. The NWRS shows that most of the rivers have the flow capacity corresponding to a 2 to 3-year return period flood discharge.

Sediment

Annual erosion rates by major river basins were estimated in the NWRS based on land use condition. The results are presented in Table 1.2-3 and in Fig. 1.2-7.

The average annual erosion rate is 359 ton/km²/yr for Peninsular Malaysia, 510 ton/km²/yr for Sabah, and 1,496 ton/km²/yr for Sarawak. Sarawak has a very high erosion rate compared with the other two regions, and this is attributed mainly to the activities of shifting cultivation. The areas covered by shifting cultivation are already over half of the total area in several districts of Sarawak.

2.5 Coastal Condition and River Mouth Formation

Location

The coastline of Malaysia is about 4,800 km in total length. This is composed of 860 km in the east coast of the Peninsula, 1,110 km in the west coast, 1,040 km in Sarawak and 1,800 km in Sabah.

The Peninsula is bounded by the South China Sea on the east and the Strait of Malacca on the west. Sabah and Sarawak face the South China Sea on the west. Northern and

eastern boundaries of Sabah are the Sulu and Celebes seas. The South China Sea is the largest body of water incident to the Malaysian coasts. The effective minimum and maximum fetches for Sabah-Sarawak and the east coast of the Peninsula are 360 and 1,240 km, respectively.

The body of water lying to the west coast of Peninsular Malaysia is the Strait of Malacca, a narrow, shallow channel lying between the Peninsula and Sumatra Island. Fetches in the Strait are 500 km to the north and 40 km in the south, averaging about 130 km.

Coastal Geomorphology

The east coast of Peninsular Malaysia is less irregular than the west coast. Much of the coast is a series of large and small hook-shaped bays. Almost the entire length of coastline is fully exposed to direct wave attack from the South China Sea. The coastal landscape is dominated by low elevation coastal plains, interrupted by numerous upland spurs and river outlets. The major rivers are the Kelantan, Besut, Terengganu, Kuantan and Pahang. The coastline has very gentle slope ranging from 1/400 to 1/600 with 5 m depth contour at 2 km to 3 km from the coastline. The depth contours generally run parallel to the coastline.

The west coast of Peninsular Malaysia is relatively long and irregular. A majority of the coast is open to the waters of the Strait of Malacca. Exceptions to this condition are the island sheltering effects of the islands of Langkawi and Pinang. A majority of the coast is comprised of low elevation coastal plains. The plains are formed from a deep marine clay strata. The presence of this clay material reflects the relatively calm seas in the Strait. In the Perak area, the plain is dissected by numerous rivers and estuaries.

The Sarawak coastline is characterized by long and straight sandy beaches on the east half and mangrove fringed shoreline on the west half. The entire coastline is open to wave attack from the South China Sea during the Northeast Monsoon. The mangrove shore is punctured by wide estuaries at fairly regular intervals and by pocket beaches bounded between rock outcrops and headlands. Most of the deltaic and estuarine areas are fringed by mangrove forests. Sand buildup is evident at most of the estuarine areas due to the sediments brought down by the many rivers.

Sabah has the longest shoreline of all the coastal states in Malaysia. The coastline is rugged and faces the South China Sea to the Northwest, the Sulu Sea to the Northeast and the Celebes Sea to the Southeast. Numerous offshore islands shelter the coastline from the open sea at its western tip, the northern coast and the southeastern coasts. Coral reefs abound in the waters off the southeastern coast attending protection against wave attack. The coastline is also characterized by bays of various shapes and sizes; the notable ones being Kimanis Bay, Marudu Bay, Labuk Bay, Lahad Datu Bay and Tawau Bay.

Bed Material

As the fact that a majority of the coastland in Malaysia consists of alluvial low flat lands shows, beaches are composed mainly of sandy to muddy materials. The distribution of shoreline material is illustrated in Fig. 1.2-8.

Along the entire stretch of the coastline in the east coast of Peninsular Malaysia, sandy beaches dominate. The notable exception is the stretch of coast north of Kuala Pahang where mangrove and nipa palms grow profusely.

On the contrary, very few sand beach areas can be found on the west coast. The areas that do exist include Pulau Langkawi, the north and south coast of Pulau Pinang, south from the mouth of Sg. Muda to Butterworth, north and south of Lumut, in the Port Dickson to Tanjung Tuan area and in the Tanjung Keling area north of Melaka, and at the mouths of some other rivers. In general, sand beaches are formed as pocket beaches between prominent rocky headlands.

The Sarawak coastline generally consists of sandy beaches on the east half and mangrove-fringed muddy shores on the west half. In Sabah, sandy beaches dominate the northeastern coastline; whereas, clay material is more commonly encountered on the northeastern and southeastern coasts.

Longshore Sediment Transport

Net longshore sediment transport direction and relative rates presented in the National Coastal Erosion Study (NCES) are shown in Fig. 1.2-9. As shown in the illustration, there is no distinct tendency of longshore sediment transport direction in the west coast of Peninsular Malaysia where no high waves attack. On the contrary, the east coast of Peninsular Malaysia is attacked by high waves during the northeast monsoon season and a clear tendency is found; namely, in the northern east coast, longshore sediment transport directions are to the north and south from the mouths of Sg. Kelantan and Terengganu, respectively, whereas, in the southern half, southward sediment transport is more distinct.

In the west coast of Sabah and Sarawak, westward longshore sediment transport is dominant. This corresponds to the wave direction during the northeast monsoons.

Coastal Change

In Malaysia, a larger part of coastal erosion/accretion is a natural phenomenon and some by human action. Coastal erosion is persistent and serious, as well as extensive, occurring in every state and along at least 1,300 km of the 4,800 km coast of the country. The major cause of erosion and accretion in Malaysia is longshore transport by storm waves.

The rate of erosion varies widely from year to year at any given location and from location to location at any given time. Over long terms of 25 years or more, the average rate is usually less than 10 m/year. In the short term, the erosion rate is often as much as 20 m/year. Along 140 km of shore, coastal erosion seriously threatens important facilities. Along another 240 km, it may seriously threaten other important facilities in the foreseeable future.

River Mouth Formation

The formation of river mouths in Malaysia corresponds well to the coastal material distribution. The east coast of Peninsular Malaysia is composed mainly of sandy material and the river mouths there are distinguished by sand bar development caused

by littoral current and subsequent siltation. This tendency is found also in river mouths in the northeastern shore of the Sarawak coast and the western shore of the Sabah coast.

The west coast of the Peninsula, on the other hand, consists mainly of muddy shallow beach extending several hundred meters to a few kilometers from the coastline, and long and narrow channels develop in the muddy beach from the river mouth to the sea. This formation is also found in the western coast of Sarawak and the eastern and southern coasts of Sabah. Rivers with a relatively larger catchment area and a larger tidal prism in this area generally maintain wider and deeper river mouths.

The location of the river mouth is directly affected by the coastal change mentioned above. Where the coast is eroded, the river mouth is retreating and vice versa. Artificial influence to the river mouth is by the construction of structures. A lot of barrages for irrigation and drainage, as well as for the prevention of tidal inflow, have been constructed in the west coast of Peninsular Malaysia, especially in the northern and southern districts where river mouths are generally shallow due to the regulation of high discharges. In the east coast of the Peninsula, breakwaters have been constructed in several river mouths for the purpose of maintaining them in good condition for navigation and passage of flood flow.

3. STUDY ON REPRESENTATIVE RIVER MOUTH

Ten (10) river mouths are selected as the representative river mouths for the Master Plan Study. They are Perlis, Kedah, Tg. Piandang, Bernas, Kuantan, Kerteh, Marang, Terengganu, Oya and Papar. The hydrologic and oceanographic studies for these 10 representative river mouths are carried out as follows.

3.1 Hydrological Analysis

3.1.1 River Discharge

River discharge is one of the major factors to determine the river mouth configuration.

River Basin

The river basins of the 10 representative river mouths are identified from the topographical maps, as shown in Fig. 1.3-1. The catchment areas range from 9 km^2 for Tanjung Piandang to 4,650 km² for Terengganu.

		1. Sec.	
River Mouth Catchment		River Area	Channel
Serial	Name	(km ²)	Length (km)
1	Perlis	600	45
5	Kedah	*4,040	110
14	Tg. Piandang	9	10
19	Beruas	240	45
53	Kuantan	1,710	80
57	Kerteh	240	40
61	Marang	460	50
62	Terengganu	4,650	180
80	Оуа	1,820	150
90	Papar	770	70

* Catchment area of Muda Dam (980 km²) is included.

Observations

River discharge has been measured by DID for a long period along the four rivers, i.e., Perlis, Kuantan, Terengganu and Papar. In addition, water level observations have been conducted in Kerteh and Marang. The location and observed discharges are shown in Fig. 1.3-1, Fig. 1.3-2 and Table 1.3-1, respectively.

Flood Discharge

Probable flood discharges are estimated for the representative river mouths based on the results of the NWRS. The probable flood discharges are compared with the flow capacity of the river channel in Subsection 3.1.2 to examine the flood inundation problems caused by river mouth siltation.

Previously, the NWRS had developed the regional flood curves which will enable approximation of probable flood discharges. Peninsular Malaysia and East Malaysia were divided into four and two areas, respectively, in view of flood magnitude. The flood discharge curves of 50 and 100-year return periods for Peninsular Malaysia and 20, 50 and 100-year return period for East Malaysia were obtained against the catchment area for each flood area.

Smaller flood discharges of shorter return periods such as 2, 5, 10 and 20-year were determined by assuming the log normal distribution. The results are shown in Fig. 1.3-3 and Table 1.3-2.

As for the Perlis, Kedah and Terengganu river mouths, flood regulation effects by dam reservoirs shall be further considered. The effect is estimated by a flood reduction ratio determined according to the catchment area of the whole basin and the dam site, as well as the discharge cut ratio of the dam (Table 1.3-3).

The probable flood discharges by return period for the representative river mouths are given as follows:

River Mouth		Catchment		Flood Discharge (m ³ /s)					
Serial	Name	Area (km²)	2-yr	5-yr	10-yr	20-yr	50-yr	100-yr	
	.	<00		• • •	100				
ł	Perlis	600	90	150	190	240	280	330	
5	Kedah	4,040	510	690	790	920	1,070	1,200	
14	Tg. Piandang	. 9	9	12	14	16	18	20	
19	Beruas	240	50	80	110	140	170	200	
53	Kuantan	1,710	1,000	1,600	2,000	2,400	3,000	3,500	
57	Kerteh	240	450	600	690	780	900	1,000	
61	Marang	460	580	820	1,000	1,100	1,300	1,500	
62	Terengganu	4,650	2,300	4,100	5,300	6,600	8,600	10,100	
80	Oya	1,820	1,400	2,400	3,200	4,000	5,300	6,400	
90	Papar	770	700	1,000	1,300	1,600	1,900	2,200	

Source: NWRS

Long term run-off characteristics are often expressed in a flow duration curve. Fig. 1.3-4 shows the flow duration curves of the representative river mouths, which were obtained by modifying the non-dimensional duration curves constructed for the main discharge stations in the NWRS.

3.1.2 Flooding Problem

Excessive siltation at a river mouth may raise water level and cause overflow to adjacent low areas. If flood damage is attributed to such a rise of water level in the river mouth, some countermeasures shall be taken into consideration.

Non-Uniform Flow Calculation

In the Study, non-uniform flow calculation is carried out to estimate the flood water levels of the representative river mouths. The water level profiles were obtained, as shown in Fig. 1.3-5, under the following conditions:

- (a) River Channel: Existing channels surveyed in the Study
- (b) Water Level at Downstream End: Mean High Water Springs or Mean Higher High Water (Table 1.3-4)
- (c) Manning's Roughness Coefficient: 0.030

A sudden rise of water level is seen at the river mouths of Kerteh, Marang, Terengganu, Oya and Papar, where well developed sand spits block flood flow. The river mouths at the west coast and Kuantan are so wide that flood water level is hardly affected by siltation.

Flooding Problem

The calculated water levels were compared with the elevations of the river banks to estimate the flow capacities, and the results are shown in the following table. In this table, also given are the flow capacities estimated in the NWRS, which could be regarded as those of the upper reaches from the river mouths.

River Mouth		Existing Flow Capacity				
		Near River Mouth*		Upper Stretches**		
Serial	Name	(m ³ /s)	Return Period	(m ³ /s)	Return Period	
1	Perlis	280	50 years		3 years	
5	Kedah	1,070	50 years		3 years	
14	Tg. Piandang	56	more than 100 years	No Data	· · · ·	
19	Beruas	730	-do-	No Data		
53	Kuantan	3,700	-do-	-	2 years	
57	Kerteh	1,000	50 years	_	2 years	
51	Marang	1,300	50 years	-	2 years	
62	Terengganu	2,600	2.4 years	3,500	3.8 years	
80	Оуа	2,000	3.6 years		l year	
90	Papar	840	3.0 years	-	1 year	

* Estimated in this Study

** Estimated in the NWRS

The river mouths, except Terengganu, Oya and Papar, have a large capacity of not less than the 50-year floods. In particular, those of Tg. Piandang, Beruas and Kuantan exceed the 100-year flood discharges. Kerteh and Marang's large flow capacity at their river mouths is because of the higher banks along the channel, although the water level is increased by the existence of sand spits. For the seven river mouths, flooding is considered to be negligible.

Near the river mouths of Oya and Papar the flow capacity is as small as a 3-year flood, but it is greater than those of the upper reaches. This means that a flood overflows in the upper reaches before reaching the river mouth and, consequently, flood damage is attributed to the lesser flow capacity in the upper reaches and not to siltation at the river mouth. The situation of the Terengganu river mouth differs from the others. The flow capacity near the river mouth is $2,600 \text{ m}^3/\text{s}$, $900 \text{ m}^3/\text{s}$ less than $3,500 \text{ m}^3/\text{s}$ capacity of the upper reaches. A maximum of $3,500 \text{ m}^3/\text{s}$ flood could possibly reach the lower channels near the river mouth without overspill from the upper channels and this results in the inundation of low areas near the river mouth. The cause of the inundation is the insufficient flow capacity due to the southeasterly expanding sand spit at the river mouth, and some countermeasures shall be taken to mitigate the flooding problem.

Based on the river cross section survey results, the inundation area by the $3,500 \text{ m}^3/\text{s}$ maximum probable flood has been identified, as shown in Fig. 1.3-6. A total of 45 ha of land and some 530 houses are estimated to be inundated.

3.1.3 Sediment

A river is one of the biggest suppliers of sediment around the river mouth. Therefore, it is very important to estimate the quantity of sediment transported into the river mouth to clarify the river mouth configuration.

Observation

At the discharge gauging stations mentioned in the preceding subsection, suspended load has been also periodically measured by DID. The results are given in Table 1.3-1 and summarized in Fig. 1.3-2. The following table shows the annual suspended loads. Bed load has not been systematically observed in Malaysia.

Station	River	Catchment	Annual Su	spended Load*
Name	System	Area (km ²)	(ton/yr)	(ton/km²/yr)
Titi Baru	Perlis	126	3,000	. 24
Bt. Keneu	Kuantan	582	260,000	447
Kg. Tanggol	Terengganu	3,340	1,492,000	447
Kagopan	Papar	536	42,000	78

* Wash load included.

Annual Sediment Discharge

(1) Sediment Rating Curve

To determine the sediment supply volume to the sandy river mouths, except those in the muddy west coast, sediment discharge is calculated. This supply volume is used to estimate the siltation rate of the dredged navigation channel proposed.

Sediment discharge consists of bed load, suspended load and wash load. However, wash load particles are so small that they are transported farther into the sea not falling near the river mouth. In other words, wash load hardly contributes to siltation in the river mouth, and sediment discharge calculation is conducted only for bed and suspended loads.

The following Brown's formula is employed to calculate the total sediment discharge of bed and suspended loads. Necessary hydraulic parameters such as friction velocity are obtained through the non-uniform calculation.

Brown's Formula:

$$q_B / (u \cdot d) = 10 \cdot [u \cdot 2/\{ (\sigma / \rho - 1) \cdot g \cdot d \}]^2$$

where,

q_B	:	total sediment volume
U•	:	friction velocity
d	:	grain size of sand
σ	:	density of sand
ρ	:	density of water
g	:	gravitational acceleration

The calculation is conducted for several magnitudes of water discharge (Table 1.3-5), and the sediment rating curves for the river mouth are obtained by regression analysis of water and sediment discharge as shown in Fig. 1.3-7.

(2) Annual Sediment Discharge

The annual sediment discharge can be estimated by a combination of sediment rating curve and duration curve. The results are given as follows:

River Mouth			Annual Sediment Discharge		
Serial	Name	Catchment Area (km ²)	(1000 m ³ /yr) (m ³ /km ² /yr)		
53	Kuantan	1,710	12	7	
57	Kerteh	240	11	45	
61	Marang	460	37	81	
62	Terengganu	4,650	230	50	
80	Oya	1,820	72	40	
90	Papar	770	9	12	
Average		1,608	62	39	

3.1.4 One-Dimensional Dispersion Analysis

As discussed in Section 2.5, the west coast of Peninsular Malaysia is almost wholly covered with muddy material. The movement of muddy material is very complicated because of many factors such as flocculation, deposition, consolidation and erosion. The location of the river mouth where wave, tidal flow and river flow are existing and interfering with each other, makes the phenomenon more difficult to understand.

In this section, a numerical approach is tried to estimate the siltation rate in the river channel of Tg. Plandang by introducing the results of the recent studies.

The catchment area of the Tg. Piandang river mouth is as small as 9 km^2 , and a tidal gate located about 2.8 km upstream of the river mouth is kept closed in most parts of the year. Therefore, the sediment supply from the upstream is negligible and the source of sediment to the closed inner channel is considered to be the surf zone. Namely, bottom materials stirred up by waves come up and enter the inner channel with flood tide and then fall there.

The one-dimensional dispersion model can be applied to simulate such comparatively simple phenomena. First, the unsteady flow analysis is carried out to determine hydraulic parameters such as velocity, discharge area and shear stress. Then, using the parameters, the dispersion analysis is conducted to chase the movement of bottom materials.

Calculation Model

(1) One-Dimensional Unsteady Flow Model

The one-dimensional unsteady flow model is presented by the following equations:

(a) Equation of Motion

 $\frac{\partial H}{\partial x} + \frac{l}{g} \frac{\partial u}{\partial t} + \frac{l}{2g} \frac{\partial u^2}{\partial x} + \frac{n^2 u |u|}{R^{4/3}} = 0$

(b) Equation of Continuity

 $\frac{\partial A}{\partial t} + \frac{\partial (Au)}{\partial x} = 0$

where,

t	:	time
x	:	distance
H	:	water level
u	:	velocity
A	:	discharge area
R		hydraulic radius
n	÷	Manning's roughness
g	:	gravitational acceleration

(2) One-Dimensional Dispersion Model

The one-dimensional dispersion model is expressed by the following equations:

(a) One-Dimensional Dispersion Equation

 $\frac{\partial (AC)}{\partial t} + \frac{\partial (AuC)}{\partial x} = \frac{\partial}{\partial x} \left\{ \begin{array}{ccc} \partial C \\ \partial E_L \\ \partial x \end{array} \right\} + E_r - F_r$

(b) Erosion Rate E_r

$$E_r = B \cdot M \cdot \{ \frac{\tau}{--} - I \}$$

(c) Falling Rate F_r

$$F_r = A \times C \times W_s / R$$

where,

t	:	time
x	:	distance
u	:	velocity
Å	:	discharge area
R	:	hydraulic radius
В	:	water surface width
C	:	mud concentration
E_L	:	longitudinal dispersion coefficient
τ	:	shear stress
το	;	critical shear stress for erosion
М	:	constant
Ws	:	settling velocity

(3) Setting of Coefficients

The coefficients such as E_L , τ_c , M and W_s are determined by referring to the previous studies.

(a)

Longitudinal Dispersion Coefficient E_L

The average value of Fisher's observation results $(E_L/(Ru) = 340)$ is adopted.

$E_L/(Ru)$
50
131
355
510
654
340

 u_* : friction velocity

Data Source: Fischer, H. B.; Analytical Prediction of Longitudinal Dispersion Coefficients in Natural Streams, Proc. 12th Congress, IAHR, 1967

(b) Critical Shear Stress for Erosion τ_e

Adopted is a value of 0.1 Pa which was used by Tsuruya for the Kumamoto Port in Japan.

(c) Coefficient M°

According to Van Leussen and Dronkers, the value of M is in a scope of 0.006 - 0.24 kg/m²/min. In this study the value of 0.05 kg/m²/min is applied.

(d) Settling Velocity

As in the Tsuruya's study, the following equation is adopted as presented in Fig. 1.3-8.

$$W_s = A_1 x C \qquad (C < C_H)$$

$$W_s = 2.6 \times 10^{-1} \text{ cm/s}$$
 $(C \ge C_H)$

$$A_1 = 0.6 \times 10^{-3} m^4 / kg/s$$

 $C_H = 4.3 kg/m^3$

(4) Boundary Condition

The calculation is carried out for the 2.8 km long stretch from the river mouth (0.0 km) to the tidal gate (2.8 km) as shown in Fig. 6.2-9. The boundary conditions are summarized as follows:

Doundom	Boundary Condition			
Boundary	Item	Applied Condition		
Downstream End (0.0 km)	Water Level	Sine curve with the mean tide amplitude (Fig. 6.2-10)		
	Mud Concentration	C = 500 mg/l		
Upstream End	Water Discharge	Q = 0		
(2.7 km)	Mud Concentration	C = 0		

<u>Results</u>

The 24-hour calculation is conducted for both the existing and the proposed dredged channel. A 3.53 km long and 45 m wide navigation channel with a base elevation of LSD -3.7 m is proposed to be constructed by dredging in this Master Plan Study, as

shown in Fig. 1.3-9. Through this calculation, the siltation rate of the inner dredged channel is estimated.

The results of the unsteady flow and dispersion analyses are presented in Fig. 1.3-10 and Fig. 1.3-11, respectively. The annual siltation rate is obtained by multiplying the 24-hour estimated rate by 365 days, and the findings are given as follows:

- (1) As shown in Fig. 1.3-10, velocity will decrease according to the dredging depth. In the existing channel 12 cm/s of the maximum velocity is expected, but only 4 cm/s in the proposed dredged channel. Discharge itself, however, will not change even after dredging because of the increase of cross sectional area.
- (2) Siltation is remarkable near the river mouth. Siltation rates of 40 and 30 cm/yr at the lowest sections of the existing and proposed dredged channels, respectively, are estimated. In the upper stretches, siltation rate is in the order of 10 cm/yr for both channels although erosion is seen at 1.3 km.
- (3) Considering that the existing channel has been practically stable, the obtained rates seem to be over-estimated. The inner channel is expected to be stable even after dredging.
- (4) The dispersion analysis is governed by several coefficients of varying values due to local conditions. In this present study, the coefficient values assumed in preceding studies are adopted, but the available data is not enough to examine the assumptions. To upgrade accuracy, further data collection such as observation of mud concentration should be conducted.

3.2 Oceanographic Analysis

3.2.1 Tides

Malaysian coasts are influenced by three types of tides, i.e., diurnal, semi-diurnal and mixed tides according to the location and time of occurrence. The Strait of Malacca has a mixed, prevailing semi-diurnal tide, while a diurnal tide is predominant in the

South China Sea. Fig. 1.3-12 shows the observed tidal fluctuations of Pulau Pinang, Chedering of Terengganu and Kota Kinabalu.

Tide levels at standard ports have been predicted and are compiled in Tide Tables by the Directorate of Hydrology, Royal Malaysian Navy. The predictions were based on 6 to 12 months of recorded observations. In addition, DSM has established a network of tide gauges along the Malaysian coast for purposes of recording water level. A yearly record book entitled "Tidal Observation Records" is published.

Tidal levels of the 10 representative river mouths are determined with reference to the above-mentioned data. The closest stations to the representative river mouths are selected, and their tidal levels are substituted for those of the river mouths, as shown in Table 1.3-4. All the tidal levels are reduced to the Land and Survey Datum (LSD) established at Pelabuhan Kelang in 1912 by the British Admiralty. Such reduction makes it possible to compare elevations of the tide levels and the topographic survey.

The astronomical maximum tidal ranges are in a scope of 2 to 4 m for the representative river mouths. Large tidal ranges greater than 3.5 m are observed in Perlis, Kedah, Kuantan and Kerteh. On the other hand, small tidal ranges lesser than 2.5 m can be found in Papar.

3.2.2 Waves

Waves are the principal causes of littoral processes. The significant characteristics of waves affecting sediment transport near a beach are height, period and direction of breaking waves.

Available Data

(1) Shipboard Observation

DID has a database of deepwater waves around the territory of Malaysia which were observed on shipboard for a long period from 1949 to 1983. Wave statistics were obtained for each square area called Marsden Square measuring 1 degree (latitude) by 1 degree (longitude). In the Master Plan Study, these deepwater wave statistics are used in principle.

1-24

The statistical analyses of deepwater waves were carried out in the NCES to construct wave roses for 10 sea areas as shown in Fig. 1.2-4, 1.2-5 and 1.2-6. Each of the 10 sea areas is composed of 7 to 15 Marsden squares, and the combination of representative river mouths and NCES sea areas is given as follows:

River Mouth		Con Area by MODOR		
Serial	Name	Sea Area by NCES*	Number of Wave Data	
1	Perlis	E	11,235	
5	Kedah	-do-	-do-	
14	Tg. Piandang	-do-	-do-	
19	Beruas	D	13,600	
53	Kuantan	В	43,458	
57	Kerteh	-do-	-do-	
61	Marang	А	17,585	
62	Terengganu	-do-	-do-	
80	Oya	F	9,414	
90	Papar	Н	7,914	

* Refer to Fig. 1.2-4.

The wave statistics are summarized in Table 1.3-6, in which the approaching wave frequency is tabulated by wave height, period and approaching direction.

(2) LEO Program

DID established the Littoral Environmental Observation (LEO) Program in 1988 to provide data on coastal phenomena at low cost. At present, there are 17 LEO stations along the Malaysian coast. Breaker height, wave period, direction of wave approach, wind speed, wind direction, longshore current velocity and beach slope, as well as the presence of beach cusps and rip currents have been observed almost daily. Among the 17 stations, two stations, C01 and T01, are close to the representative river mouths of Kuantan and Terengganu, respectively, as shown in Fig. 1.3-13. The observed data of these two stations are expected to provide valuable information on waves, currents and longshore sand transport.

Refraction Analysis

The deepwater waves are transformed into the shallow water condition by wave refraction analysis. Deepwater waves with several combinations of the approaching directions and the wave period of 6, 8 and 10 seconds are considered for each river mouth.

The results are summarized in Table 1.3-6 and examples of the wave refraction diagram are shown in Fig. 1.3-14. The wave height at any location, H_d is given by:

$$H_d = K_s \times K_r \times H_o$$

where,

Ks	:	shoaling coefficient
K _r	:	refraction coefficient
Ho	:	deepwater wave height

Breaker Index

The breaker height index is used to determine the location along any wave orthogonal at which a particular approaching deepwater wave breaks. The breaker index is estimated by using the following Weggel's formula.

$$\gamma_{b} = H_{b} / D = b - c \cdot [H_{b} / (g \times T^{2})]$$

$$b = 1.56 / (1 + e^{-19.5 \times \tan \beta})$$

$$c = 43.8 (1 - e^{-19.5 \times \tan \beta})$$

үь	:	breaker index
H_b	:	breaking wave height
Т	:	wave period
σ	:	density of sand
β	:	beach slope
g	:	gravitational acceleration
D	:	water depth

The estimated breaker indices for the representative river mouths are presented in Table 1.3-7. Since the beach slopes of the representative river mouths are in common very gentle, less than 1/100, the estimated indices are all in a scope of 0.77 to 0.79. The value of 0.78 is adopted as a common breaker index for all the river mouths.

3.2.3 Longshore Transport Rate

Longshore transport is a principal factor to govern the river mouth configuration. At the sandy river mouths of Kuantan, Kerteh, Marang, Terengganu, Oya and Papar, the longshore transport rates are estimated. These transport rates are used to estimate the siltation rates of the dredged navigation channel proposed.

Energy Flux Method

The energy flux method is an acceptable practice when sufficient data showing historical changes in the topography of the littoral zone (bathymetric survey charts, dredging records) are not available. This method is based on the assumption that the longshore transport rate depends on the longshore component of energy flux in the surf zone.

The estimation formula is expressed as follows:

$$P_{ls} = \frac{\rho \cdot g}{16} (H_{sb})^2 \cdot C_{gb} \cdot \sin 2\alpha_b$$

$$Q = K \cdot P_{ls}$$

Q	:	longshore transport rate
P_{ls}	:	longshore energy flux factor
K	:	coefficient
ρ	:	mass density of water
α_b	:	angle between breaking wave crest and shoreline
g	:	gravitational acceleration
H_{sb}	:	significant breaking wave height
C_{gb}	:	group velocity at breaking

The coefficient K is usually to be determined by observation. In this Study, K is estimated based on the observed siltation rate of the dredged outer channel of the Mersing River Mouth.

Calibration of Coefficient K

As discussed in Supporting Report No. 2, River Mouth Morphology, the siltation rate in the dredged outer channel of the Mersing River Mouth is estimated at 130,000 m^3/yr by comparing the bathymetric survey results of July 1981 and April 1982. If the silted volume is assumed to be the sum of the longshore transport and the sediment transport by the river (this assumption is considered reasonable if the dredged channel is long enough and deep), the balance of the sediment is expressed as follows:

$$K \times (P_{lsr} + P_{lsl}) + Q_r = 130,000 \text{ m}^3/\text{yr}$$

Q,	:	annual sediment discharge by the river
K	:	coefficient
Plin	:	longshore energy flux factor from observer's left to right
P_{lsl}	:	longshore energy flux factor from observer's right to left

If the annual sediment discharge by the river is assumed to be equal to 39 m³/km²/yr, the averaged rate of the sandy representative river mouths, $Q_r = 250 \ km^2 x$ $39 \ m^3/km^2/yr = 9,750 \ m^3/yr$.

The longshore energy flux factor P_{lsr} and P_{lsl} are determined through the refraction analysis of the deepwater waves as presented in Fig. 1.3-15 and Table 1.3-8 and 1.3-9. $P_{lsr} = 408.9 J/m/s$ and $P_{lsl} = 270.6 J/m/s$, and then finally K is obtained as follows:

 $K = (130,000 - 9,750) / (408.9 + 270.6) = 177 m^3 m s/yr/J$

Longshore Transport Rate

Using the obtained coefficient K, the longshore transport rates are estimated for the six sandy representative river mouths of Kuantan, Kerteh, Marang, Terangganu, Oya and Papar. The breakdown of the calculation is presented in Table 1.3-10, and the transport rates are summarized as follows:

River Mouth		Longshore Transport Rate (1000 m ³ /yr)			
Serial	Name	Q,	Qi	Qr+Qi	
53	Kuantan	205	0	205	
57	Kerteh	202	2	204	
60	Marang	287	194	481	
61	Terengganu	238	191	429	
80	Oya	186	257	443	
90	Papar	22	85	107	

 Q_r : Longshore transport rate from observer's left to right. Q_l : Longshore transport rate from observer's right to left.

Use of LEO Data

An alternative method of calculating the energy flux factor P_{ls} is to use the LEO data. To evaluate the obtained transport rates at the representative river mouths, the available LEO data is used.

According to Walton, the longshore flux factor P_{ls} is expressed with LEO data as follows:

$$P_{ls} = \frac{\rho \cdot g \cdot H_{sb} \cdot W \cdot V_{LEO} \cdot C_f}{\frac{5\pi}{(\frac{1}{2}) \cdot (\frac{1}{2})_{LH}}}$$

where,

fluid density • ρ gravitational acceleration g : H_{sb} breaking wave height ÷ Ŵ ÷ width of surf zone V_{LEO} average longshore current due to breaking waves : C_f : friction factor (assume 0.01) X : distance to dye patch from shoreline

As discussed in Subsection 3.2.2, the two LEO Stations C01 and T01 are close to the representative river mouths of Kuantan and Terengganu, respectively (Fig. 1.3-13). The estimation is, however, conducted for only the C01 station because the T01 observation is found to be less accurate. The results are summarized as follows:

Station	Data No. Period of		Energy Flux Factor (J/s/m)			Longshore Transport Rate (1000 m³/yr)		
		Data	Plsr	P _{IsI}	Qr	Qı	$Q_r + Q_r$	
C01	Jun. '88 to Dec. '90	375	395	346	70	61	131	
$P_{lsr} = P_{lsl} = P_{l$	longshor longshor	e energy fl e transport	ux from o t rate fron	bserver's left bserver's rig 1 observer's l 1 observer's l	ht to left. eft to righ			

The total rate of 131,000 m³/yr is fairly smaller than the 205,000 m³/yr for the Kuantan River Mouth, but still remains in the same order. The reason why Q_{1} and Q_{1} are almost balanced is that the shoreline at the station faces more perpendicularly to the

and,

approaching wave. The obtained transport rate of the representative river mouths is reasonable, taking the accuracy of such estimation into consideration.

4. STUDY ON FEASIBILITY STUDY RIVER MOUTH

The Tg. Piandang and Marang river mouths are selected as the objective river mouths for the Feasibility Study. In this section, hydrologic and oceanographic analyses are made to give the basic information and conditions to formulate the river mouth improvement plan.

4.1 Tanjung Piandang River Mouth

4.1.1 Hydrologic and Oceanographic Observation

Installation of Water Level and Wave Gauges

A water level gauging station was constructed at the river mouth and a wave gauge equipped with an automatic recorder of wave height, direction and tidal current was installed about 5 km off the river mouth. Their observation operation started at the end of October 1992, but the wave observation was suspended due to damage of the pressure sensor in July 1993. Their locations are as shown in Fig. 1.4-1 and summarized in the following table, while the observation records are compiled in the Data Book.

Course	Location		
Gauge	Latitude	Longitude	
Water Level Gauge	5° 4.51' N	100° 22.15' E	
Wave Gauge	5° 4.37' N	100° 19.76' E	

Discharge and Electrical Conductivity Measurement

To know the scale of the tidal prism, a 24-hour discharge measurement was carried out twice at the river mouth: on the 13th and 27th of October 1992. Simultaneously, electrical conductivity was measured along the river channel. The location of the measuring sites is given in Fig. 1.4-2, and the observed hydrographs are shown in Fig. 1.4-3. The records of electrical conductivity observation are compiled in the Data Book.

A tide gate is located about 2.8 km upstream of the river mouth to prevent saline water from going up into the upper paddy fields. The gate is kept closed in most parts of the year and is opened only to drain floodwaters during heavy rainfall. This results in a short stretch of tidal influence, a low velocity and a small tidal prism.

4.1.2 Study on Intrusion of Wave into River Mouth

In Tg. Piandang River Mouth, a combination of capital and maintenance dredging has been selected as the optimum countermeasure for river mouth siltation. In addition, a shipping facility is proposed to be constructed 0.65 km inward from the river mouth to ensure the landing of fishermen's catch even during low tide. The location and cross section of the proposed dredging are presented in Fig. 1.4-4.

The intrusion of waves is examined by wave refraction analysis. The calculation conditions are as follows:

(1) Tide Level

The mean high water springs of 1.0 m above LSD is applied as the tide level.

(2) Intruding Wave

The initial waves with a height of 2.5 m and a period of 6, 8 and 10 seconds are given in parallel with the proposed dredged channel at minus 0.5 km. The wave height of 2.5 m is the breaking wave height at this section, namely; the probable maximum wave height.

Through 4-step wave chasing, the wave refraction diagram is obtained, as shown in Fig. 1.4-5, and the wave height at the proposed shipping facility is as follows:

		· · · · · · · · · · · · · · · · · · ·	
Intruding Waves		Refraction Coefficient	Wave Height at Landing
Initial Height (m)	Period (sec)	Kr	Facility (0.65K) (m)
			· · · ·
2.5	6	0.12	0.30
2.5	8	0.10	0.25
2.5	10	0.10	0.25
			·

Intruding high waves are refracted and attenuated to smaller waves. The wave height at the proposed facility is 0.3 m at the highest, which is the allowable wave height limit for port activities. Therefore, the inner channel of Tg. Piandang is calm enough for fishing port activities such as mooring of boats, and loading and unloading of fish catch and equipment.

Ŭ	U	
Diana	Water Dep	oth at the Place
Place	3 m>	3 m<
Navigation Channel	0.9 m	1.2 m
Loading Place	0.3 m	0.4 m
Mooring Place	0.4 m	0,5 m

Wave Height Limit for Fishing Port Facilities

Source: Manual for Design of Fishing Port, Japan Port Association

Place	Wave Height Limit	
Mooring Place	0.3 m	
Other Places	0.5 - 0.7 m	

Source: Design Standard for Port Facilities, Japan Port Association

4.1.3 In Situ Siltation Monitoring

Siltation of muddy materials is a very complicated process because of many factors involved such as flocculation, deposition, consolidation and erosion. The river mouth is where waves, tidal flow and river flow exist and interfere with each other, making the siltation process in the river mouth more difficult to understand.

One of the ways to understand siltation is to conduct an in situ survey. To find a clue to the siltation phenomenon in Tg. Piandang River Mouth, mud concentration survey and test pit monitoring were carried out.

Mud Concentration Survey

(1) Objective

The objectives of the mud concentration survey were to know the distribution of mud concentration and the influence of boat navigation to the erosion and stirring up of muddy bed materials. A turbidity meter was used to measure mud concentration. When water is too dense beyond the meter capacity, the density of the water sample is measured and converted into mud concentration.

(2) Location

The concentration measurement was done not only for Tg. Piandang River Mouth but also for Sg. Betul River Mouth. At Tg. Piandang River Mouth, where fishing boats go out and come in very frequently, a navigation boat survey was also conducted. The measuring sites are as shown in Fig. 1.4-6.

(3) Results

The measurement was conducted three times for each river mouth. Together with the predicted tide at Kedah Pier, Pulau Pinang and the traffic volume of navigation boats, the mean mud concentrations observed are as given in Fig. 1.4-7.

The findings of this survey are summarized as follows:

- (a) In Tg. Piandang River Mouth, mud concentration at the outer channel (-1.0K and 0.5K) is as low as 300 to 2,000 mg/l and comparatively constant during the day.
- (b) On the other hand, mud concentration at the inner channel (0.0k, 0.5K, 1.0K and 1.5K) fluctuates between 300 and 40,000 mg/l. The highest concentration of more than 10,000 mg/l appeared on 25 July 1993 at 12:00 noon when the tide was low and boat traffic was heavy. A similar tendency was observed on 23 July 1993.
- (c) Mud concentration in the inner channel seems to be low when the tide level is high, because cleaner seawater comes in. Boat navigation stirs up bed materials, in particular, when the tide level is low. The reason why mud concentration was low at about 15:00 on 21 July 1993 in spite of the heavy navigation was the high tide.
- (d) In Sg. Betul River Mouth, mud concentration is as low as the outer channel of Tg. Piandang River Mouth. Although time and spatial change of the concentration is small, the concentration at the inner channel (0.0k, 0.5k, 1.0k and 1.5k) becomes fairly high on the ebb tide, as seen on 15 July and 19 July 1993. Erosion may be caused by ebb flow.

Test Pit Monitoring

(1) Objective

Five test pits were excavated in the Tg. Piandang and Sg. Betul river mouths in July 1993. Since then, monitoring composed of measurements of water depth and density of bed materials has been conducted periodically. The objectives of the monitoring are to know the siltation rate in the test pits and the consolidation process of settled sediment.

(2) Location and Dimension of Test Pit

Two test pits in the inner channel and two in the outer channel of Tg. Piandang River Mouth, and one in the inner channel of Sg. Betul River Mouth were excavated, as shown in Fig. 1.4-6. The dimension of the five pits are as presented in Fig. 1.4-8.

Test pit No. 2 and No. 4 are sheltered by a tin box, as shown in Fig. 1.4-8, to prevent dense fluid mud from passing into the pits.

(3) Results of Water Depth Measurement

To monitor the change of pit bottom by siltation, water depth measurements were done using a 2.7 kg lead with 113 cm^2 of base area. The lead passes through the upper fluid and settles on the harder mud layer.

Based on the results of the water depth measurements by the lead, cross sectional profiles of the pits were drawn, as shown in Fig. 1.4-9. The gradual change of the average bed elevation is as shown in Fig. 1.4-10.

The findings of the water depth measurements are given as follows:

(a) Test pit No. 1 and No. 2 in the inner channel of Tg. Piandang River Mouth have refilled fast at the rate of about 100 cm per 200 days (180 cm/yr).

- (b) In the outer channel, the refilling rate is much smaller than that of the inner channel. In 140 days the average bed levels of Test Pit No. 3 and No. 4 rose by about 25 cm; namely, the rate is about 70 cm/yr.
- (c) The refilling rate of the test pit in Sg. Betul was as low as 25 cm per 180 days (50 cm/yr).
- (d) The installation of a shelter seemed to be effective to prevent fluid mud from passing into the test pit as long as the surroundings of the shelter were deep enough for fluid mud to fall in. The effect, however, became less according to the progress of siltation around the shelter box, as shown in the case of Test Pit No. 2.
- (e) The high refilling rate in the inner channel and the low rate in the outer channel of Tg. Piandang can be attributed to the high and low mud concentration, respectively.
- (f) The refilling rates of the test pit in Sg. Betul were also low because mud concentration was usually kept low since boat navigation was negligible.
- (4) Results of Mud Density Measurement

To monitor the consolidation process of deposited sediment at the test pits, the density of bottom materials was measured. Five or four samples from different depth of the sampling point were subjected to density measurement. The first sample was a fluid mud sample 25 cm above the surface of the harder mud layer. The second one was from the surface, and two or three more samples were from the points of 25, 50 and 75 cm below the surface, as shown in Fig. 1.4-11.

The results of mud density measurement are presented in Fig. 1.4-13 and 1.4-14. The findings are summarized as follows:

(a) The density of fluid mud samples taken 25 cm above the mud surface ranges from 1.07 to 1.16 g/cm3 for the inner channel (Test Pit No. 1

and No. 2) and from 1.00 to 1.06 g/cm3 for the outer channel (Test Pit No. 3 and No. 4) and Sg. Betul (Test Pit No. 5). This high density of fluid mud in the inner channel corresponds to the mud concentration measurement results.

- (b) In taking samples using a bamboo pole at the sites, mud samples were observed. The mud surface, the boundary between fluid mud and the harder mud layer is clearly distinguished, and the lead settled on this surface as shown in Fig. 1.4-11.
- (c) The density of the mud surface (the second sample) is in the range of 1.2 to 1.3 g/cm3 for all the test pits.
- (d) According to the previous study report, the nautical depth which is defined as the minimum depth where boats can navigate without any damage, is proposed to be from the bottom layer with density greater than 1.2 g/cm3. In other words, fluid mud with smaller density does not damage boat bodies but denser mud damage them (refer to Fig. 1.4-12).

In Tg. Piandang, the density of the mud surface is greater than 1.2 g/cm3 and the mud surface can be defined as the channel bottom for navigation. In addition, the lead can be used for measuring water depth from the mud surface.

(e) Fig. 1.4-14 shows the change of mud density at a certain elevation estimated from Fig. 1.4-13. The density increases through the consolidation process. In general, the rate of increase depends on the elevation, i.e., the higher the elevation, the greater is the rate.

The density increased by 0.10 to 0.25 g/cm³ per 200 days at the inner channel and 0.10 to 0.15 g/cm³ per 140 days at the outer channel of Tg. Piandang, and 0.06 to 0.20 g/cm³ per 180 days at Sg. Betul.

4.2 Marang River Mouth

4.2.1 Hydrologic and Oceanographic Observation

Installation of Water Level and Wage Gauges

A water level gauging station was constructed at the Marang Bridge, and a wave gauge was installed at the sea bottom about 2.6 km off the river mouth. The wave gauge is equipped with an automatic recorder of wave height, direction and tidal current. The locations of the gauges are as shown in Fig. 1.4-15 and summarized in the following table.

an	Loca	tion
Gauge	Latitude	Longitude
Water Level Gauge	5° 12.15' N	103° 12.50' E
Wave Gauge	5° 13.29' N	103° 13.92' E

The operation of the two gauges started at the end of October 1992, but the wave gauge was found missing in December of the same year. It is suspected that the gauge was pulled out and taken away by an illegal trawler. The observation records are compiled in the Data Book.

Discharge and Electrical Conductivity Measurement

A 24-hour discharge measurement was carried out twice at the Marang River Mouth like in the Tg. Piandang River Mouth on the 6th and 23rd of October 1992. Simultaneously, electrical conductivity along the river channel was measured using an EC meter. The measuring sites are as shown in Fig. 1.4-16, and the observed hydrolographs are shown in Fig. 1.4-17. The records of electrical conductivity are compiled in the Data Book. According to the electrical conductivity measurement, seawater goes up to the EC-7 Site about 23 km upstream from the river mouth. This long stretch of tidal influence results in a high velocity and large tidal prism, as shown in Fig. 1.4-17.

4.2.2 Study on Outlet Opening of River Mouth

As an optimum countermeasure of river mouth siltation, a combination of one breakwater, two jetties, groins and dredging is proposed, as shown in Fig. 1.4-18. Two jetties will be constructed seaward from the left and right sides. From the end of the left jetty, a curved breakwater will be extended right to prevent high waves from coming into the inner channel.

The outlet opening of the channel is desired to be so narrow that high waves will be blocked by the breakwater and jetties. On the other hand, a narrow opening may raise flood water level and cause overflow to the adjacent low areas. In view of flood mitigation, the opening shall be designed with enough width.

The optimum opening is determined to be the minimum opening to confine the existing flow capacity of 1,300 m³/s (refer to Subsection 3.1.2). Non-uniform flow calculation is carried out to estimate flood water levels along the inner channel.

The optimum opening is obtained at 90 m through several numerical trials for various openings. The estimated water level profile when the discharge is $1,300 \text{ m}^3/\text{s}$ is as shown in Fig. 1.4-19.

4.2.3 Review on Longshore Transport Rate

In the Master Plan Study, the longshore transport rate was estimated by the energy flux method using the deepwater waves of shipboard observation, as follows:

Item	North to South	South to North	Total
Energy Flux Factor (J/s/m) P _{ls}	1,620	1,090	-
Longshore Transport Rate $(m^3/yr) Q$	287,000	194,000	481,000

Note: $Q = 177 \times P_{ls}$

The longshore transport rate is a very important factor to determine the optimum countermeasure for river mouth siltation. The rate is reviewed in this section using additionally collected data.

Observed Wave Data

The observed wave data at the newly installed gauge are useful for estimating the longshore transport rate, although the available data period is as short as 29 days from October 26 to November 23, 1992 because the wave gauge was lost. Table 1.4-1 shows the observed data.

The energy flux method was applied to estimate the rate as presented in Table 1.4-2, and summarized as follows:

Item	North to South	South to North	Total
Energy Flux Factor (J/s/m) P _{ls}	970	243	-
Longshore Transport Rate (m ³ /yr) Q	172,000	43,000	215,000

The annual total amount of 215,000 m^3 /yr was obtained based on the available data at the beginning of the northeast monsoon assuming that the wave conditions of the data available period would continue through a year. It is fairly smaller than the previous estimation of 481,000 m^3 but still in the same order.

LEO Data

After the loss of the wave gauge, DID started Littoral Environmental Observation (LEO) at the beach close to the river mouth to substitute for the lost gauge. The same method mentioned in Subsection 3.2.3 was applied for the obtained data from April to October 1993. The longshore energy flux factor of -14.5 J/m/s was

obtained using the effective 58 data (refer to Table 1.4-3). The energy flux of -14.5 J/m/s was converted into the southerly longshore transport rate of 2,600 m³/yr.

This value is much smaller than the previous value. Considering the fact that all the data were from the non-monsoon season and 102 out of the 160 observed data were abandoned because of low reliability, it seems to be difficult to use the obtained data for the estimation.

Siltation in Kerteh River Mouth

In 1992, dredging works was conducted at the Kerteh River Mouth using a suction type dredger. The dredging volume was estimated at $53,000 \text{ m}^3$ although the exact dredging stretch was not clear. It is useful to monitor the dredged section to know the magnitude of longshore transport.

Fig. 1.4-20 shows the location of sounding surveys conducted in November 1992 and December 1993, and Fig. 1.4-21 shows the changes of the cross sections. According to Fig. 1.4-21, the dredged channel got fully refilled with sediment in one year, implying that the total volume of longshore transport and sediment supply from the river is greater than $53,000 \text{ m}^3$. That of Marang River Mouth is considered to be in the same order as Kerteh River Mouth.

Summary of Review

In the Feasibility Study Stage, the longshore transport rate at Marang River Mouth was reviewed using the additionally obtained data. Consequently, the previous value of $481,000 \text{ m}^3$ /s was adopted in the study, too, because the review study did not indicate any reason to change this value.

TABLES

Table 1.2-1 TIDAL LEVEL AT STANDARD PORTS

Location	Standard Port	LAT (m)	MLWS /MLLW (m)	MLXN /MHLW (m)	MSL (m)	MHWN /MLHW (m)	MH¥S /MHH¥ (m)	(m)	Tidal Range - HAT-LAT (m)	Datum (below LSD)	Remarks
West Coast	Teluk Ewa	0.0	0.6 *1	1.5 *3	1.9	2.2 <5	3.1 <7	3.8	3.8		
	Kuah	0.0	0.2 *1	1.0 *3	1.4	1.7 <5	2.6 <7	3.0	3.0		
	Kuala Perlis	0.0	0.6 *1	1.5 *3	1.9	2.2 <5	3.1 <7	3.8	3.8		
	Pulau Pinang	0.0	0.6 *1	1.3 *3	1.6	1.8 <5	2.6 <7	3.2	3.2	1.4 m	
	Lunut	-0.1	0.5 *1	1.2 *3	1.6	2.0 <5	2.7 <7	3.3	3.4		
	Bagan Datoh	0.0	0.4 *1	1.2 *3	1.7	2.1 <5	2.9 <7	3.4	3,4	1.7 m	
	Pelabuhan Klang	-0.1	0.8 *1	2.2 *3	2.9	3.6 <5	5.0 <7	5.8	5.9	2.7 m	
	Beting Sedepa	-0.2	0.6 *1	1.8 *3	2.4	3.1 <5	4.3 <7	5.0	5.2		
	Port Dickson	-0.1	0.3 *1	1.1 *3	1.5	1.9 <5	2.8 <7	3.4	3.5	1.5 m	
	Tanjung Kling	0.0	0.6 *1	1.2 *3	1.5	1.8 <5	2.4 <7	3.1	3.1		
	Kuala Batu Pahat	-0.2	0.3 *1	1.1 *3	1.5	1.9 <5	2.7 <7	3.3	3.5		
	Pulau Pisang	-0.2	0.5 *1	1.3 *3	1.8	2.3 <5	3.1 <7	3.9	4.1		
	Raffles Lighthouse	-0.1	0.5 *1	1.2 *3	1.7	2.1 <5	2.9 <7	3.5	3.6		
	Keppel Harbour	-0.3	0.4 *1	1.1 *3	1.6	2.1 <5	2.7 <7	3.4	3.7	1.6 m	
	Pasir Gudang	0.0	0.9 *1	1.6 *3	2.1	2.6 <5	3.3 <7	4.0	4.0		
	Sembawang Shipyard	-0.2	0.7 *1	1.3 *3	1.9	2.4 <5	3.1 <7	3.9	4.1	1.8 m	
	Sungai Belungkor	0.0	0.8 *1	1.4 *3	1.9	2.3 <5	3.0 <7	3.7	3.7		
East Coast	Horsburgh Lighthouse	-0.3	0.6 <2	1.3 <4	1.5	2.1 <6	2.2 <8	2.8	3.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Teluk Tekek	0.0	0.6 <2	1.4 <4	1.6	1.8 <6	2.6 <8	3.4	3.4		
	Tanjung Gelang	-0.1	0.9 <2	1.7 <4	1.9	2.1 <6	2.8 <8	3.8	3.9	1.6 m	
	Tanjung Berhala	-0.1	0.7 <2	1.5 <4	1.6	1.7 <δ	2.4 <8	3.2	3.3	1.3 m	
	Kertih	-0.1	0.4 <2	0.8 <4	0.9	1.0 <6	1.4 <8	1.9	2.0	0.8 m	
	Chender ing	-0.1	0.8 <2	1.5 <4	1.5	1.5 <6	2.2 <8	3.2	3.3		
	Kuala Terengganu	-0.4	0.4 <2	1.0 <4	1.0	1.0 <6	1.7 <8	2.6	3.0		
	Geting	0.0	0.6 <2	0.9 <4	0.9	0.9 <6	1.2 <8	2.4	2.4		
Sarawak &	Lundu, Kuala	0.2	1.0 <2	1.7 <4	2.4	3.6 <6	3.8 <8	4.4	4.2		
Burnei	Santubong, Kuala	0.2	1.3 <2	1.9 <4	2.9	4.1 <6	4.3 <8	5.2	5.0		
	Lakei, Pulau	0.0	1.4 <2	2.4 <4	3.1	4.2 <6	4.5 <8	5.7	5.7	3.1 m	
	Kuching	0.2	1.2 <2	2.2 <4	3.1	4.4 <6	4.7 <8	5.8	5.6	3.0 m	
	Pending	0.2	1.3 <2	2.3 <4	3.4	4.9 <6	5.2 <8	5.9	5.7	3.4 m	
	Sri Aman	0.0	0.7 <2	1.0 <4	2.2	3.6 <6	4.4 <8	5.9	5.9	0.5 m	
	Kanowit	-0.1	0.4 <2	0.8 <4	0.9	1.2 <6	1.4 <8	2.6	2.7		
	Sibu	0.5	1.4 <2	2.0 <4	2.4	2.9 <6	3.3 <8	3.9	3.4	•0.4 m	
	Leba an	0.1	1.3 <2	2.2 <4	2.8	3.8 <6	4.0 <8	4.8	4.7		
	Sarikei	0.0	0.9 <2	2.1 <4	2.9	4.2 <6	4.5 <8	5.5	5.5		
	Manis, Tanjung	0.0	1.1 <2	2.2 <4	3.4	4.5 <6	4.9 <8	5.8	5.8		
	Paloh, Kuala	0.1	1.1 <2	2.0 <4	2.7	3.6 <6	4.0 <8	4.6	4.5		
	Kut, Muara	0.0	0.8 <2	1.6 <4	1.7	2.1 <õ	2.7 <8	3.3	3.3		
	Igan, Kuala	0.0	0.6 <2	1.6 <4	1.7	2.0 <6	2.3 <8	2.9	2,9		
	Mukah, Kuala	-0.1	0.8 <2	1.5 <4	1.6	1.9 <6	2.2 <8	2.6	2.7		
	Balingian, Kuala	-0.1	0.6 <2	1.2 <4	1.3	1.6 <6	1.7 <8	2.2	2.3		
	Tatau, Kuala	0.1	0.7 <2		1.3		1.6 <8	2.3			<9
	Bintulu, Pelabuhan	0.2	0.6 <2		1.4		1.7 <8	2.4	2.2	1.5 m	<9
	Miri	0.0	0.6 <2		1.2		1.7 <8	2.1	2.1	1.0 m	<9
	Baram, Kuala	-0.2	0.3 <2	÷	0.9		1.5 <8	2.0	2.2		<9
	Limbang, Kuala	0.2	0.9 <2	1.5 <4	1.7	1.8 <6	2.4 <8	2.9	2.7		-
	Lawas, Kuala	0.3	0.8 <2	1.5 <4	1.5	1.6 <6	2.2 <8	2.7	2.4		
Sabah &	Labuan	0.1	0.8 <2	1.5 <4	1.5	1.6 <6	2.1 <8	2.8	2.7		
Labuan	Muara Harbour	0.0	0.6 <2	1.2 <4	1.3	1.5 <6	2.0 <8	2.7	2.7		
	Kota Kinaba]u	-0.1	0.5 <2	1.1 <4	1.1	1.2 <6	1.7 <8	2.3	2.4		
	Sandakan	-0.1	0.4 <2	0.9 <4	1.1	1.2 <6	1.9 <8	2.7	2.8		
	Tawau	-0.3	0.1 <1	1.1 <3	1.5	1.8 <5	2.8 <7	3.0	3.3		

Note <1:MLWS, <2:MLLW, <3:MLWN <4:MLHW <5:MHWN <6:MHLW <7:MHWS <8:MHHW <9:usually diurnal Abbrevations;

LAT : Lowest Astronomical Tide MLLW : Mean Lower Low Water MHLW : Mean Higher Low Water MHWN : Mean High Water Neaps MHWN : Mean High Water Springs Hat : Highest Astronomical Tide Data Source : Tide Tables 1992 MLWS : Mean Low Water Springs MLWH : Mean Low Water Neaps MSL : Mean Sea Level MLHW : Mean Lower High Water MHHW : Mean Higher High Water LSD : Land Survey Datum

-

Table 1.2-2 STRETCH OF TIDAL INFLUENCE

rial		Catchment	Stretch of
No.	River Mouth	Area	Tidal Influence
		(km2)	(km)
23924997 1	парийнаанаталжийнаас Dowlie		다 바 옷 코 전 부 적 철 고 고 과 과 당 것 및 과 과 고 한 것
1 5	Perlis Kedah	600 3,060	15
э 9			35
9 10	Muda Perai	4,300 450	20
23			20
25	Selangor	1,820	25
	Langat	1,815	90
30	Linggi	1,270	20
32	Melaka	500	5
36	Muar	6,160	130
39	Batu Pahat	2,230	40
44	Sedili Besar	1,445	70
46	Endau	4,740	80
48	Rompin	3,980	100
51	Pahang	29,140	25
53	Kuantan	1,710	25
55	Kemaman	1,775	- 25
59	Dungun	1,875	20
62	Terengganu	4,650	25
67	Kelantan	12,900	20
- 70	Kayan	1,020	65
78	Sadong	3,100	75
80	Oya	1,820	95
81		2,150	80
82	Balingian	2,520	100
84	Tatau	4,780	45
86	Niah	1,270	30
87	Sibuti	830	20
88	Lawas	930	30

Source : National Water Resouces Study, 1982, JICA

,

asin No.	Location / Name of Basin				Basin No.	Location / Name of Basin			AASSL (ton/km2/ym)
	Peninsular Malaysi		과 과 의 공 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	(양종학(19월 19일 20일 19일 19일 19일 19일 19일 19일 19일 19일 19일 19		Sabah)		, , , , , , , , , , , , , , , , , , ,	
1	Perlis	790	277	351	206	Merutai Besar	558	526	943
2	Pulau Langkawi	475	85	179	207	Tawau	888	442	498
3	Kedah	3,695	1,533	415	208	Kalumpang	2,792	1,203	431
4	Merbok	520	326	627	209	Silabukan	2,714		858
5	Muda	4,300	1,928	448	210	Segama	5,558		331
6	Perai	895	815	911	211	Kinabatangan	16,755		401
7	Pulau Pinang	300	380	1,267	212	Segalid	2,335	1,425	610
8	Kerian	1,420	1,428	1,006	213	Labuk	6,829	3,525	516
9	Kurau	3,255	955	293	214	Sugut	3,094	1,254	405
10	Perak	14,700	5,507	375	215	Paitan	1,474	1,279	868
11	Bernam	3,335	1,299	390	216	Bengkoka	1,866	1,981	1,062
12	Tengi	565	17	30	217	Bongan	2,126		1,777
13	Selangor	1,820	1,320	725	218	Kadamaian	1,336	•	2,382
14	8u loh	560	160	286	219	Tuaran	1,247	2,742	2,199
15	Kelang	1,425	578	406	220	Putatan	629	553	879
16	Langat	1,815	1,535	846	221	Papar	805	31	39
10	Sepang	640	363	567	222	Kimanis	607	38	63
18	Linggi	1,420	373	263	223	Membakut	736	31	42
19	Melaka		536	531	224	Padas	9,180		219
20		1,010 705	255	362	225	Labuan	3,100		953
20	Kesang		3,385	513	226	Lakutan	1,291		256
	Muar Ratu Dobat	6,595				Lakulan		551	230
22	Batu Pahat	2,600	1,157	445				27 126	510
23	Pontian Kechil	2,660	1,407	529		Sub-total	72,850	37,135	510
24	Johor	3,250	2,406	740					
25	Sedili Besar	1,820	982	540		Sarawak	1 000	1 207	1 220
26	Mersing	- 880	171	194	227	Lawas	1,080		1,229
27	Endau	4,740	1,357	286	228	Trusan	2,768		731
28	Rompin	4,285	1,138	266	229	L imbang	3,920		1,554
29	Bebar	1,895	15	8	230	Baram	22,325		702
30	Pahang	29,300	8,269	282	231	Miri	. 788		1,996
31	Kuantan	2,025	398	197	232	Sibuti	935	-	3,094
32	Kemaman	2,570		83	233	Niah	1,345		1,687
33	Paka	850	367	432	234	Suai	1,440		567
34	Dungun	1,875	259	138	235	Simi lajau	1,268		133
35	Marang	.760	320	421	236	Kemana	6,000		1,439
36	Trengganu	4,650	2,042	439	237	Tatau	5,150		859
37	Setiu	1,035	140	135	238	Balingian	2,518		1,461
38	Besut	1,230	432	351	239	Mukah	2,625		1,849
39	Kemasin	1,020	579	568	240	Oya :	2,005		3,263
40		13,100	1,803	138	241	Rajang	51,053		1,244
41	Golok	895	794	887	242	Kerian	1,675		4,077
					243	Saribas	1,900		2,895
	Sub-total	131,680	47,305	35 9	244	Lupar	6,813		3,301
					245	Sadong	3,645		2,835
	Sabah				246	Sarawak	3,358		4,033
201	Pens iangan	5,971	550	92	247	Kayan	1,838	3,045	1,657
202	Serudong	1,308	35	27					
203	Kalabakan	1,371	553	403		Sub-total	124,449	186,231	1,496
204	Brantian	741	389	525					
205	Umas Umas	553	308	557		Total	328,979	270,671	823

Table 1.2-3 ANNUAL EROSION RATE BY MAJOR RIVER BASIN

Source : National Water Resources Study, 1982, JICA Note TASSL : Total annual surface soil loss. AASSL : Average annual surface soil loss.

-

Table 1.3-1 OBSERVED MONTHLY MEAN DISCHARGE AND SUSPENDED LOAD

.

	Catchment	Station	Catchment	nt Up	per:	£	onthly	- 2	e e	Ē	D i s	е 	a D L	਼ੁੱ	(ສ3/s)	
14		Ċ		ں بر	o ¥er :	Σ	onth	y Y	м С	C,	Susp	pend	۲ و و و	0 a d	Load (ton/day)	n/day)
Serial Kiver mouth	(km2)	Jerial Kiver mouth Area		Jan.	. Feb.		Har. Apr.	ABA BA	Jun.	Jul.	Aug.	Sep.	Oct. Nov.	Nov.	Dec.	Area
1 Perlis	600	6502432 Titi Baru Tasoh	ł	0.1	1.0.1	0.1	1.0 1.1	1.1	0.4	1.0	1.4	1.8	2.5	2.0	1.6	1.1 <1
					5.4	ы. 1	3°2	11-1	1.4	0.4	9.7	5.7	5,3	37.8	8.1	8.2 <1
53 Kuantan	1,710	3930401 Bukit Keneu Kuantan	itan 582	27.2		11.2 53.3	29.5 28.3 20.1	28.3		15.7	15.1	24.2	30.9	30.9 33.6	83.1	31.0 <1
	·			506.9		1260.5	733.2 1260.5 688 591.2 398.2	91.2 3		296.9 2	265.8 467.5	67.5 7	706.7	865 1764.6	1764.6	712 <1
62 Terengganu	4,650	5130432 Kg. Tanggol Terengganu	angganu 3,340		405.4 244.1	151.8	151.8 198.9 133.8 170.1 196.2 181.4 214.1 237.7 302.6 579.9	33.8	70.1 1	96.2 1	81.4 2		237.7	302.6	579.9	251.3 <2
÷			·	828	8284 1747.3		815.5 873.3 558.1 1162.4 1623.8 1313.3 2749.1	58.1 11	62.4 16	23.8 13	13.3 27		2410 4	2410 4473.1 22943.9	2943.9	4087.8 <2
90 Papar	770	5760401 Kagopan Papar	ır 536	84.6	5 62.6		52.8 67.4 91.9 77.3	9.19		66.4	59.6 80.9		97.7 102.7		78.7	76.9 <1
			•						÷				•	.:		115.1 <3
· · · ·		•												-		

<2 : Streamflow and River Suspended Sediment Records 1986 - 1990, DID <3 : National Mater Resources Study, 1982, JICA</p>

Seria1	River Mouth	Catchment Area (km2)	R	lood egion by -	Flood	Discha	rge by	Return	Period	(m3/s)
		Ared (RHZ)		WRS -	2yr.	5yr.	10yr.	20yr.	50yr.	100yr.
	Perlis	600	inenen I	(West Coast)	100	160	200	250	300	350
5	Kedah	4,040 *	r	(Ditto)	600	800	920	1.070		1,400
14	Tg.Piandang	9	Ī	(Ditto)	9	12	14	16	18	20
19	Beruas	240	I	(Ditto)	-50	80	110	140	170	200
53	Kuantan	1,710	III	(Pahang-East)	1,000	1,600	2,000	2,400	3,000	3,500
57	Kerteh	240	1V	(Kelantan, Terengganu Perak (north))	450	600	690	780	900	1,000
61	Marang	460	I۷	(Ditto)	580	820	1,000	1,200	1,400	1,600
62	Terengganu	4,650	I۷	(Ditto)	3,000	5,200	6,800	8,500	11,000	13,000
80	Oya	1,820		F1	1,400	2,400	3,200	4,000	5,300	6,400
90	Papar	770		F2	700	1,000	1,300	1,600	1,900	2,200

Table 1.3-2 FLOOD DISCHARGE OF REPRESENTATIVE RIVER MOUTHS

* : The 980 km2 catchment area of the Muda Dam is included.

Table 1.3-3 FLOOD DISCHARGE AT RIVER MOUTH REDUCED BY DAM RESERVOIR'S EFFECT

Serial Niver noutly vacciment Area (km2) Name a m2 <1 (1-m2)*a/A 2yr. 5yr. 10yr. 20yr. 50yr. 10 1 Perlis 600 Timah-Tasoh 150 0.53 0.118 0.94 90 150 190 280 5 Kedah 4,040 Muda + Peda 1,155 0.115 0.243 280 100 280 100	Area (km2) a m2 <1	Ation Month	A Catabut		Dam	Reservoir		2	Deduc	5100C	בליטיע ל	10 +0 000	41.0N 80.	(-) ()
Perlis 600 Kedah 4,040 Terengganu 4,650	C.A(km2) C.A(km2) 2yr. 5yr. 10yr. 20yr. 50yr. 50yr. 10yr. 1 Perlis 600 Timah-Tasoh 150 0.53 0.118 0.94 90 150 193 240 280 33 5 Kedah 4,040 Muda + Peda 1,155 0.15 0.243 90 150 193 240 280 33 5 Kedah 4,040 Muda + Peda 1,155 0.15 0.243 90 150 193 240 280 33 6 Ahning 120 0.25 0.022 0.022 0.032 90 190 790 90 1,20 62 Terengganu 4,650 Kenyir 2,600 0.30 0.391 0.78 2,300 6,600 8,600 10,10 Note <1<05 0.5300 0.301 0.78 2,300 6,600 8,600 10,10 10,10	erial Kiver mouth		Name		m2 <1 (1_m2)*a/A	× ×	una de la como			נאים בייבי	ver mouth	(s/sa)
Perlis 600 Timah-Tasoh 150 0.53 0.118 0.94 90 150 240 280 Kedah 4,040 Muda + Peda 1,155 0.15 0.243 240 280 Kedah 4,040 Muda + Peda 1,155 0.15 0.243 240 280 Ahning 120 0.25 0.022 0.022 0.022 210 510 690 790 920 1,070 Terengganu 4,650 Kenyir 2,600 0.391 0.78 2,300 6,600 8,600	1 Perlis 600 Timah-Tasoh 150 0.53 0.118 0.94 90 150 240 280 33 5 Kedah 4,040 Muda + Peda 1,155 0.15 0.243 6 Mahing 1,155 0.15 0.243 120 0.25 0.120 120 7 Ahning 120 0.25 0.022 0.86 510 690 790 920 1,20 52 Terengganu 4,650 Kenyir 2,600 0.301 0.78 2,300 6,600 8,600 10,10 Note <1<0 Discharce cut ratio at damsite 0.391 0.78 2,300 6,600 8,600 10,10	***************************************			C.A(km2)			유해한 한 번 한 한 한 한 한 한 한	2yr.	5yr.	10yr.	20yr.	50yr.	100yr.
Kedah 4,040 Muda + Peda 1,155 0.15 0.243 Ahning 120 0.25 0.022 Sub-total 0.265 0.86 510 690 790 1,070 Terengganu 4,650 Kenyir 2,600 0.391 0.78 2,300 6,600 8,600	5 Kedah 4,040 Muda + Peda 1,155 0.15 0.243 Ahning 120 0.25 0.022 52 Terengganu 4,650 Kenyir 2,600 0.30 0.391 0.78 2,300 4,100 5,300 6,600 8,600 10,10 Note <1 : Discharge cut ratio at damsite	1 Perl'is	600	Timah-Tasoh	150	0.53	0.118	0.94	06	150		240	280	330
Ahning 120 0.25 0.022 Sub-total 0.265 0.86 510 690 790 920 1.070 Terengganu 4.650 Kenyir 2.600 0.30 0.391 0.78 2.300 4.100 5.300 6.600 8.600	Ahning 120 0.25 0.022 Sub-total 0.265 0.86 510 690 790 920 1.070 1.20 52 Terengganu 4,650 Kenyir 2,600 0.30 0.391 0.78 2,300 4,100 5,300 6,600 8,600 10,10 Note Discharge cut ratio at damsite</td <td></td> <td>4,040</td> <td>Muda + Peda</td> <td>1,155</td> <td>0.15</td> <td>0.243</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		4,040	Muda + Peda	1,155	0.15	0.243							
Terengganu 4,650 Kenyir 2,600 0.30 0.391 0.78 2,300 4,100 5,300 6,600 8,600	52 Terengganu 4,650 Kenyir 2,600 0.30 0.391 0.78 2,300 4,100 5,300 6,600 8,600 10,10 Note : Discharge cut ratio at damsite</td <td></td> <td></td> <td>Ahning</td> <td></td> <td>0.25 ub-total</td> <td>0.022 0.265</td> <td>0.86</td> <td>510</td> <td></td> <td></td> <td>920</td> <td></td> <td>1,200</td>			Ahning		0.25 ub-total	0.022 0.265	0.86	510			920		1,200
	our <1 : Discharge cut ratio at damsite			Kenyir	2,600	0.30	0.391	0.78	2,300	4,100	5,300	6,600		10,100
<2 : Flood reduction ratio at downstream end			4000 V - V											

Table 1.3-4 TIDAL LEVELS OF REPRESENTATIVE RIVER MOUTHS

(1) Semi-diurnal Tide

ieria I	River Mouth		. Tidal	Levels	`	n above LS			Tidal Station referred t
er la i	Kiver nouth	LAT	MLWS	MLWN	MSL	MHWN	MHWS	HAT	That Station referred t
1	Perlis	-1.9	-1.3	-0.3	0.0	0.3	1.3	1.9	Pulau Langkawi,Kedah
5	Kedah	-1.9	-1.3	-0.3	0.0	0.3	1.3	1.9	ditto
14	Tg.Piandang	-1.5	-1.0	-0.1	0.1	0.3	1.0	1.7	Kedah Pier,Penang
19	Beruas	-1.5	-1.0	-0.2	0.2	0.6	1.3	1.9	Lumut,Perak
80	Oya	-1.7	-0.8	-0.1 <1	0.0	0.3 <2	0.6	1.0	Mukah,Sarawak <3

Note:

<1 : NHLW, <2: MLHW

<3: Tidal levels are reduced to LSD by assuming MSL is equal to LSD.

(2) Diurnal Tide

Serial	River Mouth		Tida }	Levels	(m	above L	SD)		Tidal Station referred t
serial	River nouth	LAT	MLLW	ML₩	MSL	мнж	мнни	HAT	Hual Station referred t
53	Kuantan	-1.7	-1.1	-0.3	 0.3	0.8	1.6	2.2	Tanjung Gelang,Kuantan
57	Kerteh	-1.7	-1.1	-0.3	0.3	0.8	1.6	2.2	ditto
61	Marang	-1.3	-0.8	-0.1	0.3	0.6	1.3	2.0	Chendar ing , Terengganu
62	Terengganu	-1.3	-0.8	-0.1	0.3	0.6	1.3	2.0	ditto
90	Papar	-1.2	-0.9	-0.3	0.0	0.2	0.9	1.2	Kota Kinabalu,Sabah

Abbrevations;

LAT : Lowest Astronomical TideMLLW: Mean Lower Low WaterMLWS: Mean Low Water SpringsMLW : Mean Low WaterMLWN: Mean Low Water NeapsMHLW: Mean Higher Low WaterMHWN: Mean High Water NeapsMSL : Mean Sea LevelMHWS: Mean High Water SpringsMLHW: Mean Lower High WaterHAT : Highest Astronomical TideMHW : Mean High WaterMHW: Mean High WaterMHW : Mean High Water

Data Source;

1) Tidal Observation Records 1990, DSM

2) Tide Tables 1992, RMN

	Hydrau]	ic Parame	ters at S	ection of ().00 km	Sedimen	t Transpo	rt Rate
)ischarge O	Area A	Breadth B	Velocity	Sh.Str. Tauo	Fr.Vel.	qB		Qs
(m3/s)	(m2)	ы (m)	(m/s)	(100kg/m2)	•	(1000m3/s/m)	(m3/s)	(1000m3/yr)
. 50	1318.9	267.1	0.038	0.07	0.273	0.0000	0.0000	0.0
100	1319.3	267.2	0.076	0.30	0.545	0.0000	0.0000	0.0
200	1320.7	267.7	0.151	1.19	1.089	0.000	0.0000	0.0
500	1330.0	270.6	0.376	7.32	2.706	0.0058	0.0016	49.7
1000	1360.5	280.3	0.735	28.10	5.301	0.0858	0.0240	758.0
2000	1454.0	309.9	1,376	99.60	9.980	1.0773	0.3339	10528.5

Table 1.3-5(1/2) SEDIMENT TRANSPORT CAPACITY

Falling Velocity wo= 3.95 (cm/s)

Critical Fr. Velocity U*c = 1.48 (cm/s)

(2)KERTEH

)ischarge	Hydrau]	ic Parame	ters at Se	ection of ().00 km	Sedimen	t Transpo	rt Rate
Q	Area A	Breadth B	Velocity V	Sh.Str. Tauo	Fr.Vel. U*	qB		Qs
(m3/s)	(m2)	(m)	(m/s)	(100kg/m2)	(cm/s)	(1000m3/s/m)	(m3/s)	(1000m3/yr)
5 ·	139.5	120.8	0,036	0.11	0.329	0.0000	0.0000	0.0
10	139.6	120.8	0.072	0.43	0.659	0.0000	0.0000	0.0
20	139.7	120.8	0.143	1.73	1.316	0.0000	0.0000	0.0
50	140.6	121.0	0.356	10.66	3.265	0.0078	0.0009	29.8
100	143.7	121.6	0.696	40.61	6.372	0.1132	0.0138	434.2
200	153.6	123.5	1.302	139.64	11.817	1.3393	0.1654	5216.1

Falling Velocity wo= 7.28 (cm/s) Critical Fr. Velocity U*c = 1.73 (cm/s)

(3)MARANG

scharge	Hydrau I	ic Parame	ters at So	ection of C	0.00 km	Sedimen	t Transpo	rt Rate
Q	Area A	Breadth B	Velocity V	Sh.Str. Tauo	Fr.Vel. U*	qB		Qs
(m3/s)	(m2)	(m)	(m/s)	(100kg/m2)	(cm/s)	(1000m3/s/m)	(m3/s)	(1000m3/yr
5	254.2	204.3	0.020	0.03	0.178	0.0000	0.0000	0.0
10	254.2	204.3	0.039	0.13	0.357	0.0000	0.0000	0.0
20	254.2	204.3	0.079	0.51	0.713	0.0000	0.0000	0.0
50	254.6	204.3	0.196	3.17	1.780	0.0007	0.0001	4.4
100	255.9	204.5	0.391	12.53	3.540	0.0108	0.0022	69.6
200	260.5	205.2	0.768	48.12	6.937	0.1591	0.0326	1029.2

Mean Grain Size dm = 0.05 (cm)

Falling Velocity wo= 7.28 (cm/s)

Critical Fr. Velocity U*c = 1.73 (cm/s)

(4)	TERENGGANU	

Table 1.3-5(2/2)

SEDIMENT TRANSPORT CAPACITY

d a shew we	Hydrau1	ic Parame	ters at Se	ction of O	.00 km	Sedimen	t Transpo	rt Rate
)ischarge O	Area	Breadth B	Velocity V	Sh.Str. Tauo	Fr.Vel.	qB		Qs
(m3/s)	(m2)	(m)	(m/s)	(100kg/m2	(cm/s)	(1000m3/s/m)	(m3/s)	(1000m3/yr)
50	1976.6	1121.2	0.056	0.05	0.217	0.0000	0.0000	0.0
100	1978.5	1121.4	0.111	0.19	0.433	0.0000	0.0000	0.0
200	1986.0	1122.2	0.222	0.74	0.862	0.0000	0.0000	0.0
500	2038.9	1127.9	0.551	4.37	2.091	0.0015	0.0017	52.2
1000	2213.1	1146.7	1.081	14.52	3.811	0.0162	0.0186	585.8
2000	2774.0	1207.0	2.026	34.76	5.895	0.0927	0.1119	3529.8

Mean Grain Size dm = 0.04 (cm)

Falling Velocity wo= 6.46 (cm/s)

Critical Fr. Velocity U*c = 1.67 (cm/s)

(5)0YA

Vicebaume	Hydraul	ic Parame	ters at Se	ction of ().00 km	Sedimen	t Transpo	rt Rate
Discharge 0	Area A	Breadth B	Velocity V	Sh.Str. Tauo	Fr.Vel.	qB		Qs
√ (m3/s)	(m2)	(m)	(m/s)	(100kg/m2	(cm/s)	(1000m3/s/m)	(m3/s)	(1000m3/yr)
50 s	1238.9	921.5	0.040	0.12	0.341	0.0000	0.0000	0.0
100	1241.4	922.4	0.081	0.46	0.681	0.0000	0.0000	0.0
200	1251.6	925.9	0.160	1.82	1.350	0.0000	0.0000	0.0
500	1317.8	949.0	0.379	10.24	3.201	0.0114	0.0108	341.2
1000	1521.5	1019.9	0.657	30.48	5.521	0,1009	0.1029	3245.3
2000	2065.4	1209.0	0.968	64.78	8.048	0.4556	0.5508	17370.1

Mean Grain Size dm = 0.02 (cm) Falling Velocity wo= 3.95 (cm/s) Critical Fr. Velocity U*c = 1.48 (cm/s)

(6)PAPAR

	Hydrau]	ic Parame	ters at Se	ection of O	1.00 km	Sedimen	t Transpo	rt Rate
)ischarge Q	Area A	Breadth B	Velocity V	Sh.Str. Tauo	Fr.Vei. U*	qß		Qs
(m3/s)	(m2)	(m)	(m/s)	(100kg/m2)	(çm/s)	(1000m3/s/m)	(m3/s)	(1000m3/yr)
	nessuo _{de} e:			1070====x2####			222075225	overeeve####
10	482.0	473.4	0.021	0.04	0.188	0.0000	0.0000	0.0
20	483.1	473.5	0.041	0.14	0.374	0.0000	0.0000	0.0
50	491.4	474.1	0.102	0.84	0.919	0.000	0.0000	0.0
100	517.9	475.8	0.193	3.01	1.734	0.0010	0.0005	14.7
200	596.6	481.2	0.335	8.78	2.963	0.0084	0.0040	127.0
500	859.2	489.8	0.582	24.13	4.912	0.0632	0.0310	976.5

Mean Grain Size dm = 0.02 (cm)

Falling Velocity wo= 3.95 (cm/s)

Critical Fr. Velocity U*c = 1.48 (cm/s)

Table 1.3-6(1/6) WAVE STATISTICS BY APPROACHING DIRECTION (AREA-A)

Marsden Squares : 2652,2653,2654,2655,2656,2662,2663,2664,2665,2666, 2672,2673,2674,2675,2676 01/01/1949

Starting Date : Ending Date : 31/12/1949 Nos of Data : 17,585 Percent of Calm :

5.2 ------Wave Frequency (%) by Wave Period (sec)

Wave Direction	Wave		Frequen	cy (%)	by Wave	Period	(sec)	
	Height (m)	5-6	7-8	9-10	11-12	13-14	>14	Total
NNW	< 0.75	0.9	0.1	0.0	0.0	0.0	0.0	1.0
(315 - 345)	0.75 - 1.75	0.9	0.4	0.1		0.0	0.1	1.4
	1.75 - 2.75	0.1	0.2	0.1	0.0	0.0	0.1	0.3
	2.75 - 3.75	0.0	0.1	0.0		0.0		0.1
	> 3.75		0.0	0.0		0.0	0.0	0.0
	TOTAL	1.9	0.6	0.1	0.0		0.1	
N	< 0.75		0.0	0.0	0.0			1.0
(345 - 15)		0.7	0.2	0.0	0.0	0.0	0.0	1.0
	1.75 - 2.75	0.1	0.1	0.0	0.0	0.0	0.0	0.3
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
	> 3.75		0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	1.9	0.3	0.0	0.0	0.0	0.0	2.4
NNE	< 0.75	2.4	0.2	0.0	0.0	0.0	0.0	2.7
(15 - 45)	0.75 - 1.75	4.1	1.9	0.5	0.1	0.1	0.2	7.0
	1.75 - 2.75	1.1	2.0	0.9	0.1	0.0	0.0	4.3
	2.75 - 3.75	0.2	0.6	0.5	0.1	0.0	0.0	1.6
	> 3.75	0.0	0.1	0.2	0.0		0.0	0.5
	TOTAL		4.9	2.2	0.4	0.2	0.3	16.1
	< 0.75	3.7	0.2	0.1	0.0	0.0	0.0	4.1
(45 - 75)	0.75 - 1.75	5.9	3.2	0.8	0.1		0.3	10.3
			1.9	0.8	0.1	0.0	0.0	4.0
	2.75 - 3.75	0.1	0.3	0.4		0.0	0.0	1.0
	> 3.75	0.0	0.1	0.1	0.0	0.0	0.0	0.3
	TOTAL	10.7	5.7	2.3	0.3	0.2	0.4	19.7
E	< 0.75	3.4	0.0	0.0	0.0	0.0	0.0	3.6
(75 - 105)	0.75 - 1.75		0.9	0.2	0.0	0.0	0.0	3.9
	1.75 - 2.75	0.2	0.4	0.2	0.0	0.0	0.0	0.9
	2.75 - 3.75	0.0		0.0	0.0	0.0	0.0	0.2
	> 3.75 TOTAL	0.0 6.2	0.0 1.4	0.0 0.5	0.0 0.1	0.0 0.0	0.0 0.0	0.0 8.7
ESE								
	< 0.75 < 0.75 0.75 - 1.75		0.1	0.0 0.0	0.0 0.0		0.0	2.2
(105 - 155)	1.75 - 2.75	0.0	0.2	0.0		0.0		1.4
	2.75 - 3.75	0.0	0.0	0.0	.0.0 0.0		0.0	0.1
	> 3.75	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0
	TOTAL	3.2	0.3	0.0	0.0	0.0	0.0	0.0 3.8
TOTAL	< 0.75	13.5	0.6	0,1		0.0	0.0	
(315 - 135)		15.5	6.8	1.7	0.0 0.2	0.0	0.0	14.5
(212 - 122)	1.75 - 2.75	2.6	0.8 4,6	2.0	0.3	0.3	0.0	25.1
	2.75 ~ 3.75	0.4	1.1	1.0	0.3	0.0		9.9
	> 3.75	0.4	0.2	0.3	0.2	0.0	0.0	3.0
	TOTAL	31.9	13.2	5.1	0.9	0.0	0.0	0.9 53.4
	,,,,nL Nationalise			~•1		V.7	V.U	1114

Table 1.3-6(2/6) WAVE STATISTICS BY APPROACHING DIRECTION (AREA-B)

 Marsden Squares
 2614,2615,2616,2623,2624,2625,2626,2633,2634, 2635,2636,2643,2644,2645,2646

 Starting Date
 01/01/1949

 Ending Date
 31/12/1983

Nos of Data : 43,458 Percent of Calm : 7.8

Direction	Height					Period		
	(m)	5-6	7-8	9-10	11-12	13-14	>14	Total
N	< 0.75	2.4	0.2	0.1	0.0	0.0	0.0	2.6
(345 - 15)	0.75 - 1.75	2.3	0.9	0.2	0.0	0.1	0.1	3.5
	1.75 - 2.75	0.4	0.6	0.3	0.0	0.0	0.0	1.3
	2.75 - 3.75		0.1	0.1	0.0	0.0	0.0	0.3
	> 3.75			0.0	0.0	0.0	0.0	0.1
	TOTAL	5.1	1.7	0.6	0.0	0.1	0.1	7.7
NNE	< 0.75		0.3	0.1	0.1	0.0	0.0	5.9
(15 - 45)	0.75 - 1.75	7.2	3.1	0.7	0.2	0.2	0.2	11.6
	1.75 - 2.75	1.4	2.0	0.9	0.2	0.1	0.0	4.5
	2.75 - 3.75	0.3	0.5	0.4	0.1	0.0	0.0	1.2
	> 3.75		0.2	0.2	0.1	0.0	0.0	0.4
	TOTAL	14.3	5.9	2.2	0.6	0.2	0.2	23.6
ENE	< 0.75	3.7	0.3	0.1	0.0	0.0	0.0	4.1
(45 - 75)	0.75 - 1.75	3.1	1.3	0.3	0.0	0.1	0.1	4.9
	1.75 - 2.75	0.4	0.5	0.2	0.1	0.0	0.0	1.2
	2.75 - 3.75	0.1	0.1	0.1	0.0	0.0	0.0	0.3
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	TOTAL	7.3	2.1	0.6	0.1	0.1	0.1	10.5
E	< 0.75	2.0	0.1	0.0	0.0	0.0	0.0	2.1
(75 - 105)		0.8	0.2	0.0	0.0	0.0	0.0	1.1
	1.75 - 2.75	0.1	0.1	0.0	0.0	0.0	0.0	0.1
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	2.9	0.4	0.0	0.0	0.0	0.0	3.3
ESE	< 0.75	2.0	0.0	0.0	0.0	0.0	0.0	2.1
(105 - 135)		0.7	0.1	0.0	0.0	0.0	0.0	1.0
	1.75 - 2.75	0.0		0.0	0.0	0.0	0.0	0.0
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.0 2.8		0.0	0.0	0.0	0.0	0.0
	TOTAL	2.0 		0.0	0.0	0.0	0.0	3.1
SSE	< 0.75		0.1		0.0	0.0		3.9
	0.75 - 1.75		0.5	0.1	0.0	0.0	0.0	2.9
	1.75 - 2.75	0.1	0.0	0.0	0.0	0.0	0.0	0.2
	2,75 - 3,75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75 TOTAL	0.0 6.1	0.0 0.6	0.0 0.1	0.0	0.0 0.0	0.0 0.0	0.0
TOTAL	< 0.75	19.4	0.9	0.2	0.1	0.0	0.0	20.7
(15 - 165)		16.3	6.2	1.3	0.2	0.3	0.4	24.9
	1.75 - 2.75	2.4	3.1	1.4	0.3	0.1	0.0	7.3
	2.75 - 3.75	0.4	0.7	0.5	0.1	0.0	0.0	1.7
	> 3.75	0.1	0.2	0.2 3.4	0.1 0.7	0.0 0.4	0.0 0.5	0.6 55.2
	TOTAL	38.5						

Table 1.3-6(3/6) WAVE STATISTICS BY APPROACHING DIRECTION (AREA-D)

Marsden Squares : 2630,2631,2640,2738,2739,2748,2749 Starting Date : 01/01/1949 Ending Date : 31/12/1983 Nos of Data : 13,600 Percent of Calm : 16.7

Wave Dimension	Wave Height	I	Frequenc	∴y (%)	by Wave	Period	(sec)	÷
Direction	mengint (m)	5-6	7-8	9-10	11-12	13-14	>14	Total
SSW	< 0.75	2.8	0.1	0.0	0.0	0.0	0.0	3.0
(195 - 225)	0.75 - 1.75	0.5	0.1	0,0	0.0	0.0	0.0	0.7
	1.75 - 2.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	3.4	0.2	0.0	0.0	0.0	0.0	3.7
WSW	< 0.75	2.6	0.0	0.0	0.0	0.0	0.0	2.7
(225 - 255)	0.75 - 1.75	0.7	0.1	0:0	0.0	0.0	0.0	0.9
	1.75 - 2.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0
	TOTAL	3.3	0.2	0.0	0.0	0.0	0.0	3.7
W	< 0.75	4.4	0.1	0.0	0.0	0.0	0.0	4.6
(255 - 285)	0.75 - 1.75	1.2	0.2	0.1	0.0	0.0	0.0	1.6
	1.75 - 2.75	0.1	0.0	0.0	0.0	0.0	0.0	0.1
	2.75 - 3.75	0.0	0.0	0.0	0.0		0.0	0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	5.6	0.4	0.2	0.1	0.0	0.0	6.4
WNW	< 0.75	6.6	0.3	0.1	0.1	0.0	0.1	7.2
(285 - 315)		3.9	0.7	0.1	0.0	0.1	0.1	5.1
	1.75 - 2.75	0.2	0.1	0.0	0.0	0.0	0.0	0.4
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.1		0.0	0.0	0.0	0.0	0.1
	TOTAL	11.0	1.2	0.2	0.1	0.1	0.2	12.9
NNW	< 0.75	7.2	0.3	0.1	0.0	0.0	0.0	7.7
(315 - 345)		4.2	1.1	0.2	0.0	0.0	0.1	6.0
	1.75 - 2.75	0.4	0.2	0.0	0.0	0.0	0.0	0.7
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	11.8	1.7	0.4	0.1	0.1	0.3	14.5
TOTAL	< 0.75			0.2	0.1	0.0	0.1	25.1
(195 - 345)	0.75 - 1.75			0.4	0.0	0.1		14.3
	1.75 - 2.75	0.7	0.3	0.0	0.0	0.0	0.0	1.3
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.1	0.0	0.0	0.0	0.0	0.0	0.1
	TOTAL	35.1	3.8	0.8	. 0.3	0.3	0.6	41.1

.

Table 1.3-6(4/6) WAVE STATISTICS BY APPROACHING DIRECTION (AREA-E)

Marsden Squares : 2650,2660,2757,2758,2759,2767,2768,2769 Starting Date : 01/01/1949 Ending Date : 31/12/1983 Nos of Data : 11,235 Percent of Calm : 14.0

Wave	Wave	1	Frequen	су (%)	by Wave	Period	(sec)	
Direction	Height (m)		7-8		11-12		>14	Total
s	< 0.75	2.2	0.1	0.0	0.0	0.0	0.0	2.2
(165 - 195)	0.75 - 1.75	0.5	.0.2	0,0	0.0	0.0	0.0	0.9
• • • •	1.75 - 2.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2.75 - 3.75	0.0	0.0	0.0		0.0	0.0	0.0
	> 3.75		0.0	0.0		0.0	0.0	0.0
	TOTAL		0.3	0.1		0.0	0.0	3.2
SSN	< 0.75	2.0	0.0	0.1	0.0	0.0	0.0	2.2
(195 - 225)	0.75 - 1.75	0.6	0.2	0.0	0.1	0.0	0.0	0.9
•	1.75 - 2.75	0.0	0.0	0.0	0.0	0.0	0.0	0.2
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	2.7	0.3	0.1	0.1	0.0	0.1	3.4
WSW	< 0.75	2.4	0.0	0.0	0.0	0.0	0.0	2.5
(225 - 255)	0.75 - 1.75	1.1	0.2	0.1	0.1	0.0	0.0	1.6
````	1.75 - 2.75	0.0	0.0	0.1	0.0	0.0	0.0	0.3
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
•	> 3.75	0.0	0.0	0.0		0.0	0.0	0.0
	TOTAL	3.6	0.4	0.2	0.1	0.1	0.1	4.5
 W	< 0.75	4.2	0.1	0.0	0.0	0.0	0.1	4.6
(255 - 285 )	0.75 - 1.75	2.7	0.9	0.3	0.0	0.0	0.0	4.0
	1.75 - 2.75	0.2	0.2	0.1	0.0	0.0	0.0	0.6
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	7.2	1.4	0.5	0.0	0.0	0.1	9.3
WNW	< 0.75	5.8	0.4	0.1	0.0	0.0	0.0	6.4
(285 - 315)	0.75 - 1.75	5.1	2.0	0.4	0.1	0.0	0.1	7.9
	1.75 - 2.75	0.5	0.6	0.2	0.0	0.0	0.0	1.3
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	> 3.75		0.0			0.0	0.0	0.0
	TOTAL	11.4				0.2		15.8
NNW	< 0.75	4.9	0.2	0.1	0.0	0.0	0.1	 5.4
(315 - 345 )	0.75 - 1.75	2.8	0.9	0.3	0.0	0.0	0.0	4.2
	1.75 - 2.75		0.2	0.0		0.0		0.4
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	8.0	1.4	0.4	0.0	0.1	0.1	10.1
TOTAL	< 0.75	21.5	0.9	0.3	0.0	0.1	0.3	23.3
	0.75 - 1.75	12.8	4.5	1.1	0.4	0.1	0.2	19.6
	1.75 - 2.75	0.9	1.2	0.4	0.0	0.0	0.0	2.9
	2.75 - 3.75	0.0	0.1	0.1	0.0	0.0	0.0	0.3
	> 3.75	0.0	0.1	0.0	0.0	0.0	0.0	0.1
	TOTAL	35.5	6.9	2.1	0.6	0.6	0.7	46.3
					~•··	-+•		

## Table 1.3-6(5/6) WAVE STATISTICS BY APPROACHING DIRECTION ( AREA-F )

Marsden Squares : 2510,2511,2520,2521,2530,2531,2532,2540,2541, 2542,2629,2639,2649 Starting Date : 01/01/1949 Ending Date : 31/12/1983 Nos of Data : 9,414 Percent of Calm : 9.1

Wave Direction	Wave Height		Frequenc	су (%)	by Wave	Period	(sec)	
	(m)	5-6	7-8	9-10	11-12	13-14	>14	Total
WNW	< 0.75	1.5	0.2	0,0	0.0	0.0	0.0	1.7
(285 - 315 )	0.75 - 1.75	1.1	0.5	0.1	0.0	0.0	0.0	1.7
	1.75 - 2.75	0.2	0.2	0.1	0.0	0.0	0.0	0.5
	2.75 - 3.75	0.0	0.0	0.1		0.0	0.0	0.2
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	2.8	0.8	0.3	0.1	0.0	0.0	4.1
NNW	< 0.75	1.4	0.1	0.0	0.0	0.0	0.0	1.5
(315 - 345 )	0.75 - 1.75	1.2	0.9	0.2	0.0	0.1	0.0	2.3
	1.75 - 2.75	0.2	0.4	0.2	0.2	0.0	0.0	0.9
	2.75 - 3.75	0.0	0.1	0.1	0.0	0.0	0.0	0.2
	> 3.75	0.0	0.0	0.1	0.0	0.0	0.0	0.1
	TOTAL	2.7	1.4	0.5	0.3	0.1	0.1	5.1
Ν	< 0.75	2.1	0.2	0.0	0.1	0.0	0.0	2.5
(345 - 15)		2.4	2.4	0.5	0.2	0.1	0.1	5.6
· .	1.75 - 2.75	0.7	1.4	1.0		0.0	0.0	3.3
	2.75 - 3.75	0.2	0.3	0.4	0.2	0.1	0.0	1.1
	> 3.75	0.0	0.1	0.1	0.1	0.1	0.0	0.5
	TOTAL	5.4	4.3	2.1	0.7	0.3	0.2	13.1
NNE	< 0.75	4.6	0.3	0.1	0.1	0.0	0.0	5.2
(15 - 45)	0.75 - 1.75	5.5	3.1	0.7	0.2	0.2	0.1	9.9
	1.75 - 2.75	1.2	2.0	0.8	0.2	0.1	0.1	4.2
	2.75 - 3.75	0.1	0.6		0.2	0.0	0.0	1.3
	> 3.75	0.1	0.1	0.2	0.1	0.0	0.0	
	TOTAL	11.4	6.2	2.3	0.6	0.3	0.2	21.0
ENE	< 0.75	3.8	0.2	0.1	0.0	0.0	0.1	4.1
(45 - 75)	0.75 - 1.75	3.1	1.3	0.1	0.1	0.1	0.0	4.7
	1.75 - 2.75	0.5	0.7	0.3	0.0	0.0	0.0	1.6
	2.75 - 3.75	0.1	0.1	0.1	0.0	0.0	0.0	0.3
	> 3.75	0.0	0.1	0.0	0.0	0.0	0.0	0.1
	TOTAL	7.5	2.5	0.6	0.1	0.1	0.1	10.9
TOTAL	< 0.75	13.3	1.0		0.1	0.0	0.1	15.0
(285 - 75 )		13.2	8.2	1.5	0.4	0.4	0.2	24.2
	1.75 - 2.75	2.8	4.6	2.4	0.5	0.1	0.1	10.5
	2.75 - 3.75	0.4	1.0	0.9	0.4	0.1	0.0	3.1
	> 3.75	0.1	0.2	0.3	0.2	0.1	0.0	1.2
	TOTAL	29.8	15.1	5.8	1.8	0.7	0.5	54.2

Table 1.3-6(6/6) WAVE STATISTICS BY APPROACHING DIRECTION ( AREA-H )

Marsden Squares : 2554,2555,2556,2564,2565,2566,2574,2575,2576 Starting Date : 01/01/1949 Ending Date : 31/12/1983 Nos of Data : 7,914 Percent of Calm : 7.4

Wave Direction	Wave Height		requent	:y (%)	by Wave	Period	(sec)	
Sheetion	(m)	5-6			11-12			Total
	< 0.75	2.1	0.1	0.0	0.0	0.0	0.0	2.4
	0.75 - 1.75	2.2	1.0	0.2		0.0	0.1	3.5
(200 200 )	1.75 - 2.75		0.4	0.2		0.0	0.0	1.1
	2.75 - 3.75		0.2	0.1	0.0	0.0	0.0	0.4
	> 3.75		0.1	0.0	0.0	0.0	0.0	0.1
	TOTAL	4.7	1.8	0.7	0.1	0.0	0.1	7.6
WNW	< 0.75	1.1	0.2	0.0	0.0	0.0	0.0	1.3
(285 - 315 )	0.75 - 1.75	1.1	0.6	0.1	0.0	0.0	0.0	1.9
	1.75 ~ 2.75	0.1	0.3	0.1	0.0	0.0	0.0	0.6
	2.75 - 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	TOTAL	2.4	1.1	0.3	0.0	0.1	0.0	4.0
NNW	< 0.75	1.1	0.1	0.0	0.0	0.0	0.0	1.2
(315 - 345 )		0.9	0.5	0.2	0.0	0.0	0.0	1.7
	1.75 - 2.75	0.1	0.4	0.3	0.0	0.0	0.0	0.8
	2.75 - 3.75	0.1	0.1	0.1	0.0	0.0	0.0	0.3
•	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	2.2	1.2	0.5	0.1	0.0	0.0	4.2
N		1.8	0.1	0.0	0.0	0.0	0.0	2.0
(345 - 15)		0.8	0.2	0.2	0.1	0.1	0.0	1.4
	1.75 - 2.75	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	2.75 - 3.75	0.0	0.1	0.0	0.0	0.0	0.0	0.1
	> 3.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL	2.7	0.4	0.3	0.1	0.1	0.0	3.6
TOTAL	< 0.75	6.1	0.5	0.1	0.0	0.0	0.0	6,9
(255 - 15)		5.1	2.3	0.7	0.2	0.1	0.1	8.5
			1.1	0.7	0.1	0.0	0.0	2.6
	2.75 - 3.75	0.1	0.4	0.2	0.0	0.0	0.0	0.9
	> 3.75	0.0	0.1	0.0	0.0	0.0	0.0	0.2
	TOTAL	12.0	4.5	1.8	0.4	0.2	0.2	19.4

Table 1.3-7(1/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (PERLIS)

	Characteristics		Depth - 5 m	е v			Depth -	4 11			Depth -	۲ ۲			Depth -	E N			Depth -	E	•
		Distriction Vie Vie VietVeetVe			1 															ł.	
ection N	Ulfection Period N (sec)	Nirection X	ž	2	64-14-A	N K	L.	2	K-KI-XS	N N	х	Š	Kakraks	N	ł	2		Ulrection N	2	5 5	K-KT-KS
	* * * *																				
180	9.0	194.8	106-0	CC2.0		5-002	0.853	185.0	0.83/	205.7	0.840	1.024	0.860	210.7	0,830	1.104	0.923	215.2	0.829	1.158	0.985
	8.0	203.0	0.824	1.068	0.880	207.7	0.811	1.112	0.902	211.1	0.807	1.177	0.950	215.0	0,800	1.283	1.026	218.0	0.794	1.370	1.088
	10.0	210.7	0.735	1.198	0.881	214.3	0.736	1.253	0,922	215.7	0.735	1.330	0.978	218.8	0.730	1.462	1.067	221.0	0.727	1.556	1.131
												· .									•
210	6.0	221.7	0.877	0.947	0.831	223.6	0.859	0.973	0.836	225.3	0.854	1.019	0.870	225.4	0.855	1.097	0.938	227.4	0.856	1.175	1.006
	8.0	221.9	0.921	1.070	0.878	222.5	0.800	1.112	0.890	222.2	0.790	1.174	0.927	223.9	0.780	1.282	1.000	225.8	0.774	1.377	1.066
	10.0	221.0	0.797	1.208	0.963	219.3	0.778	1.264	0.983	218.3	0.764	1.348	1.030	220.2	0,753	1.475	III.I	221.8	0.747	1.558	1.164
															•						
240	6.0	235.2	0.538	0.994	0.535	236.2	0,525	1.021	0.536	238.0	0.514	1.064	0.547	241.3	0.500	1.148	0.574	243.2	0.439	I.318	0.645
	8.0	235.3	0.772	1.110	0.857	238.1	0.760	1.158	0.880	241.0	0.747	1.227	216-0	241.8	0.736	1.334	0.982	242.2	0.730	1.438	1.050
	10.0	2 020	0.751	1 207	0.906	235.9	0.736	1.266	0 032	238.3	0 725	1 243	0 074	241.8	0.713	1.475	1-052	243 4	0.706	1 577	1,113

Table 1.3-7(2/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (KEDAH)

Direction     Kr     Ks     K+Kr*Ks     Direction       N     (sec)     N     N     N       180     6.0     201.5     0.257     0.976     0.261.2       180     6.0     201.5     0.257     0.976     0.24.0       8.0     213.0     0.730     1.102     0.866     214.3       10.0     213.6     0.717     1.211     0.866     215.9       210     6.0     219.3     1.026     0.974     0.979     219.9       210     213.6     0.717     1.211     0.866     219.9       210     219.3     1.026     0.954     0.979     219.9       210     6.0     219.3     1.026     0.954     0.979     219.9       210     236.9     0.914     1.212     1.108     239.7       240     6.0     240.9     0.976     0.926     241.4       8.0     249.6     0.949     0.926     241.4       10.0     246.5     0.8028     1.216     1.007     245.7	0.2 0.2	Ks X=K			Depth = 3	5 5 5			Depth =	5 E			Depth =	臣	
6.0       201.5       0.257       0.976         8.0       213.0       0.730       1.102         10.0       213.6       0.717       1.211         10.0       213.6       0.717       1.211         6.0       219.3       1.026       0.954         8.0       219.3       1.026       0.954         10.0       219.3       1.026       0.954         8.0       225.7       1.145       1.088         10.0       236.9       0.914       1.212         6.0       240.9       0.976       0.949         8.0       246.6       0.372       1.061         10.0       246.5       0.828       1.061	0.2		K=Kr*Ks	Direction N	Кr	Ks	K-Kr*Ks	Direction	۲. ۲	Ks K	K=Kr*Ks	Direction	Kr	s X	K=Kr*Ks
5.0       201.5       0.23/       0.976         8.0       213.6       0.717       1.211         10.0       213.6       0.717       1.211         6.0       213.5       0.717       1.211         6.0       213.5       0.717       1.211         10.0       213.5       0.717       1.212         10.0       225.7       1.145       1.088         10.0       235.9       0.914       1.212         6.0       240.9       0.976       0.949         8.0       248.6       0.342       1.061         10.0       246.5       0.328       1.216	0.0	1									2 F C				
10.0         213.6         0.717         1.211           6.0         213.5         0.717         1.211           6.0         213.5         1.025         0.954           8.0         225.7         1.145         1.088           10.0         236.9         0.914         1.212           6.0         240.9         0.976         0.949           8.0         248.6         0.342         1.061           10.0         246.5         0.328         1.216	214.3 0.730	141 I	0.255 0.833	206.3	0.231	1 214	0.262	211.9	0.248	1.12/	6/2-0 0-960	220.3	U. 24U 0. 728	767 1	015.0
6.0       219.3       1.026       0.954         8.0       225.7       1.145       1.088         10.0       236.9       0.914       1.212         6.0       240.9       0.976       0.949         8.0       248.6       0.342       1.061         10.0       246.5       0.328       1.216	6.0		116.0	218.4	0.709	1.351	0.958	222.2	0.704	1.493	1.051	224.1	0.701	1.588	1.113
8.0         225.7         1.145         1.088           10.0         236.9         0.914         1.212           6.0         240.9         0.976         0.949           8.0         248.6         0.942         1.061           10.0         246.5         0.828         1.216	219.9 1.027	0.978	1.004	220.8	1.029	1.026	1.056	221.6	1.030	1.099	1.132	0.0	0.000	0.000	0.000
10.0         236.9         0.914         1.212           6.0         240.9         0.976         0.949           8.0         248.6         0.942         1.061           10.0         246.5         0.828         1.216	227.7 1.153	1.125	1.296	229.7	1.162	1 197	1.390	0.0	0.000	0.000	00010	0.0	0.000	0.000	0-000
6.0 240.9 0.976 0.949 8.0 248.6 0.942 1.061 10.0 246.5 0.828 1.216	239.7 0.909	1.273	1.157	241.1	0.907	I.348	I.223	0.0	0.000	0*000	0.000	0.0	0.000	0.000	0.000
6.0 240.9 0.976 0.949 8.0 248.6 0.842 1.061 10.0 246.5 0.828 1.216											:				
248.6 0.842 1.061 246.5 0.828 1.216	241.4 0.974	1.971	0.945	242.4	0.972	1.013	0.984	244.2	0.970	1.088	1.055	245.4	0.969	1.148	1.112
246.5 0.828 1.216	248.4 0.838	1.110	0.930	247.5	0.835	1.173	0.979	245.5	0.831	1.279	1.062	243.9	0.829	1.356	1.123
	245.7 0.326	1.254	1.036	244.6	0.823	1.332	1.096	243.5	0.820	1.466	1.202	243.5	0.820	1.466	1.202
270 6.0 264.7 0.963 0.947 0.912	264.3 0.964	1/6.0	0.936	264.0	0.965	1.019	0.983	264.0	0.966	1.089	1.052	264.2	0.967	1.149	1.111
8.0 258.7 0.851 1.069 0.910	258.9 0.850	1.108	0.942	259.3	0.850	1.180	1.003	260.0	0.851	1.277	1.037	260.6	0.852	1.349	1.149
10.0 258.9 0.808 1.201 0.970	259.4 0.805	1.269	1.022	260.4	0.804	1.347	1.083	262.6	0.803	1.472	1.132	262.6	0.803	1.472	1.182

Table 1.3-7(3/10) MAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (TG.PIANDANG)

Ocean Wave Characteristics	Wave 1stics		Depth = 5 m	50 10			Depth -	4 E			Depth =	ເ≊ .ຕາ ∎			Depth =	= 2 II			Depth .	Ē	
Direction Period N (sec)	Per lod (sec)	Direction	Kr	\$¥	K=Kr*Ks	Direction	Ŷ	\$¥	K-Kr+Ks	Direction N	۲ ۲	ş	K=Kr*Ks	D1rection N	r X	Ks Ks	K=Kr*Ks	Direction	х	S S	K=Kr*Ks
210	0.6	210 6.0 242.0 0.629 0.948 0.566 2	0.629	0.948	0.596	243.8	0.624	0.968	0.604	247.2	0.616	1.015	0.625	252.0	0.603	1.087	0.655	263.5	0.582	1.261	0.734
l	8.0	249.0	0.517	1.032		250.5	0.514	1.070	0.550	252.5	0.511	1.131	0.578	256.0	0.508	1.233		262.1	0.505	1.436	0.725
	10.0	250.8	0.705	1.033	0.728	251.5	0.699	1.074	0.751	252.9	0.692	1.132	0.783	254.4	0.680	1.235	0,840	260.8	0.657	1.455	0.956
240	6.0	250.1	0.611	1.033	0.631	249.4	0.607	1.072	0.650	247.8	0.602	1.132	0.681	247.3	0.594	1.234	0.733	241.5	0.581	1,446	0.840
	8.0	254.8	0.756	1.152		252.6	0.753	1.217	0.916	250.7	0.751	1.297	0.974	250.7	0.751	1.412	1,050	247.4	0.751	1.650	1.239
	10.0	257.1	0.761	1.173	0.893	259.1	0.756	1.218	0.921	261.5	0.749	1,300	0.974	265.0	0.741	1.420	1.052	270.0	0.716	1.669	1.195
270	6.0	265.3	0.759	1.163	0.882	264.0	0.755	1.218	0.919	261.3	0.750	1.299	0.974	258.0	0.746	1.416	1.056	249.6	0.734	1.660	1.217
	8.0	264.3	0.889	0.948	0.843	263.1	0.288	0.965	0.857	263.6	0,888	1 006	0.893	266.6	0.827	1.083	0,896	271.2	0.826	1.262	1.042
	10.0	270.1	0.867	1.033	0.896	267.2	0.865	1.074	0.929	259.8	0.862	1.136	0.979	259.8	0.862	1.136	0,979	259.8	0.797	1.449	1,155
300	6.0	281.3	0.879	1.166	1.025	276.6	0.876	1.223	1.071	277.1	0.873	1.297	1.132	277.9	0.870	1.423	1,238	284.1	0.866	1.662	1,439
	8.0	298.7	0.883	0.950	0.839	294.2	0.880	0.969	0.853	286.7	0,876	1.013	0.887	276.7	0.873	1.082	0,945	261.7	0.867	1.274	1.105
	10.0	303.6	0.850	1 050	0.000	0 000	010	000		0 000				0.000	010 0			0 220	000 0		. 200

وللموالية والمرابع والم

Table 1.3-7(4/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (BERUAS)

Character	Ocean Wave Characteristics		Depth * 5 m	۲ ۲ ۲			Depth •	4 E			Depth -	۲ ۲ ۲			Depth -	E 01			Depth -	₽ 1 ₩	
N	Direction Period N (sec)	Direction	L Y	Kr Ks	Kr Ks K-Kr*Ks	:		Ks.	Kr Ks K-Kr*Ks	Direction N		\$¥	Kr Ks K-Kr*Ks	Direction		Kr Ks K≡Kr*Ks	Х=Кт*Кs	Direction #	Kr Ks	1	K=Kr*Ks
240	6.0	240 6.0 250.0 0.844 0.942 0.795	0.844	0.942	. 0.795	252.0	0.836	0.971 0.812	0.812	254.6	0.830	1,008	0.830 1.008 0.837	256.8	0.826	1.043	0.862	252.3	0.793	1,250	166-0
	8.0	253.0	0.802	1.029	0.825	254.5	0.795	1.065	0.847	257.4	0.788	1.133	0.893	258.9	0.785	1.168	0.917	260.2	0.773	1.433	1.108
	10.0	253.2	0.837	1.147	0,960	255.0	0.831	1.201	366.0	258.0	0.825	1.282	1.058	259.0	0.700	1.343	0.940	261.3	0.690	1.470	1.014
270	6.0	270.3	0.858	0.943	0.809	234.3	0.853	0.969	0.827	271.0	0.849	1.015	0.862	271.5	0.848	1.038	0.880	272.5	0.830	1.223	1.015
	8.0	268.6			0.831	268.9	0.797	1.078	0.859	270.0	0.793	I.138		270.8	0.792	1.171	0.927	271.0	0.730	1.439	1.122
	10.0	271.3	0.694	1.161	0,806	271.3	0.686	1.222	0.838	272.2	0.681	1.297	0.883	273.0	0.679	1.349	. 916-0	274.2	0.561	1.500	0.992
300	6.0	274.5	0.817	0.944	1771	268.6	0.795	170.0	0.772	249.0	0.712	110.1	0.720	251.1	0.628	1.086	0.682	252.0	0.605	1.235	0.747
	8.0	280.8	0.649	1:031	0.669	279.8	0.641	1.075	0.690	279.4	0.638	1.130	0.721	279.7	0.635	1.218	0.773	280.1	0.622	1.399	0.870
	10.0	261.8	0.469	1.163	3 0.545	258.1	0.453	1.216	0.551	256.7	0.443	1.296	0.574	256.3	0.433	1.417	0.614	256.9	0.420	1.498	0.629

Table 1.3-7(5/10) WAYE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAYES (KUANTAN)

Characteristic	ristic	ð	Depth -	E G		å	Depth =	4 E		9	Depth -	ы С		Ċ	Depth -	5 10 10		Ğ	Depth =	E	
								*									****				
Direction Period	Period	Direction	¥	Ks	K=Kr*Ks	Direction	Kr	s	K=Kr*Ks	Direction	Kr	Ks	K=Kr*Ks	Direction	ĸ	Ks	KeKr*Ks	Direction "	κ	Ks	K-Kr-Ks
N (Sec)	(sec)					2. FT 11 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
ន	6.0	71.8	0.586	0.969	0.568	8.27	0.544	0.997	0.542	83.0	0.512	1,036	0.530	96.9	0.396	1.118	0.442	107.4	0.338	1.302	0.440
	8.0	73.5	0.533	1.088	0.580	80.7	0.504	1.127	0.568	86.7	0,468	1.193	0.558	98.6	0.409	1.300	0.532	102.3	162.0	1.521	0.595
	10.0	72.9	0.712	1.209	0.861	80.3	0.672	1.255	0.843	86.3	0.619	1.340	0.830	1.001	0.513	1.469	0.754	102.5	0.477	1.730	0.824
60	6.0	6.77	0.702	0.957	0.671	83.7	0.663	0.982	0.651	88.1	0,612	1.024	0.627	100.6	0.558	1.105	0.617	103.4	0.486	1.280	0.622
	3.0	85.0	0.736	1.085	0.798	91.7	0.693	1.134	0.786	96.7	0,624	1.200	0.749	97.3	0.580	1,295	0.751	87 7	0.680	1.507	1.024
	10.0	85.3	0.490	1.210	0.592	92.2	0.461	1.274	0.587	97.2	0,417	I.356	0.565	98.2	0.387	1.470	0.569	84.9	0.280	1.760	0.493
6	6.0	92.1	0.739	0.979	0.723	54.4	0.731	1.001	0.732	98.7	0,692	1.047	0.724	101.2	0.663	1.125	0.747	93.1	0.453	1.328	0.602
	8.0	88.5	0.763	1.106	0.844	93.4	0.759	1.160	0.880	54.8	0.767	1.223	0.938	107.5	0.786	1.321	1.038	112.3	0.306	1.583	1.279
	10.0	81.4	0.707	1,206	0.852	87.1	0.702	1.261	0.885	92.3	0,688	1.350	0.929	97.0	0.627	1,479	0.928	5-701	0.588	1.744	1.026
120	6.0	121.9	0.733	0.956	0.701	123.7	0.732	0.982	0.719	124.5	0.727	1.032	0.751	122.3	0.697	1.105	0.770	108.9	0.562	1.284	0.850
	8.0	122.0	0.476	1.088	0.517	124.0	0.474	1.133	0.537	124.8	0,471	1.209	0.570	122.5	0.445	1.308	0.583	108.8	0.420	1.539	0.646
	10.0	103.6	0.432	1.221	0.528	105.2	0.430	1.273	0.547	107.4	0,427	1.345	0.575	113.5	0.405	1.469	0.594	103.4	0.390	1.727	0.673
150	6.0	123.2	0.494	1.008	0.498	123.4	0.494	1.021	0.504	124.5	0.491	1.076	0.528	123.9	0.438	1.155	0.506	112.3	0.410	1.322	0.542
	8.0	120.1	0.374	1.102	0.412	122.3	0.373	1.149	0.429	123.8	0.371	1.227	0.456	126.4	0.358	1.329	0.475	111.2	0.339	1 574	0.533
	10.0	118.2	0.364	1.187	0.432	120.7	0.364	1 245	0 453	4.001	292 0	1 240	0.486	121.0	0 362	1.469	0.518	121.3	0.343	1 765	0 408

Table 1.3-7(6/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (KERTEH)

Ocean Wave Characteristic	lave intstic	ă	Depth =	10		ő	Depth -	4 E		á	Depth -	e M		ă	Depth +	E 2		á	Oepth -	Ø. .⊷	
Direction	Period (sec)	Period Direction (sec) N	۲¥ ۲	Š	K≖Kr*Ks	l e	Кr	Ks .	K+Kr*Ks	Direction	ŗ	Ks	K=Kr*Ks	Direction N	ъ	Ks	K=Kr*Ks	Direction M	ъх	Ks ł	K=Kr*Ks
R	6.0	30 6.0 65.8 0.636 0.542 0.599	0.636	0.942	0.599	67.7 0.60	0.600	0.962	0.577	71.2	0.532	1.006	0.535	80,1	0.432	1.084	0.468	8.99 8.99	0.377	1.242	0.469
	8.0	6.9	0.698	1.010	0.706	73.0	0.64]	I.051	0.674	26.6	0.553	1.118	0.618	90.06	0.459	1.211	0.556	114.6	0.352	1,416	0.499
	10.0	76.3	0.600	1.114	0.668	83.9	0.538	1.160	0.624	87.4	0.491	1.244	0.611	92.9	0.419	1.357	0,569	105.9	0.361	1.605	0.580
60	6.0	75.7	0.871	0.948	0.825	76.9	0.846	0,969	0.819	79.0	0.777	1.016	0,790	87.2	0.680	1,085	0.738	99.2	0.476	1.271	0.605
	8.0	79.0	0.836	1 017	0.850	81.1	0.813	1.061	0.863	85.6	0.788	1.121	0.883	92.4	0.741	1.222	0.905	95.7	0.734	1.431	1.051
	10.0	87.1	1.016	1.148	1.166	87.6	1.062	1.206	1.280	93.2	1.105	1.287	1.423	96.8	I.146	1.408	1.614	116.3	1.024	1.651	1.691
6	6.0	94.9	0.944	0.946	0.893	93.9	0.921	0.967	0.890	96.7	0.877	1.009	0.885	103.6	0.831	1.086	0.902	115.3	0.745	1.258	0.938
	8.0	94.7	0.873	1.039	0.907	93.6	0.845	1.072	0.905	96.8	0.796	1.133	0,902	103.9	0.744	1.234	0.918	116.0	0.651	1.450	0.944
	10.0	94.3	0.801	1.175	0.941	1'66	0.774	1.215	0.940	6.72	0.732	1.293	0.946	105.9	0.677	1.432	0.970	116.6	0.595	1.675	0.997
120	6.0	118.7	0.968	0.946	0.916	120.0	0.973	0.973	0.947	119.0	0,998	1.018	1.015	119.0	1.029	160.1	1.123	130.4	I20.I	1.271	1.298
	8.0	112.8	0.893	1.044	0.933	115.4	0.900	1.090	0.981	117.1	0.931	1.154	1.075	118.0	0.973	1.260	1.226	117.0	1.053	1.458	1.535
	10.0	109.1	1.031	1.182	1.219	110.6	1.042	1.244	1.297	109.4	1.094	1.326	1.450	114.9	1.134	1.452	1.647	119.2	1.187	1.693	2.009
150	6.0	127.5	0.811	0.957	0.776	128.0	0.810	0.978	0.792	128-5	0.801	1.018	0.815	128.6	0.795	1.096	0.871	128.7	0.766	1.271	0.974
	8.0	123.4	0.900	1.074	0.965	122.9	0.897	1.110	955.0	117.5	0.881	1.178	1.038	120.1	0.865	1.286	1.112	122.4	0.828	1,499	1.240
	10.0	113.8	0.716	1.244	0.891	114.5	0.715	1.274	0.911	107.2	0.724	1.347	0.976	107.5	0.729	1.476	1.077	127.6	0.696	1.758	1.223

Table 1.3-7(7/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (WARANG)

Characteristic	ristic	0	Oepth -	5			Depth -	4 E		-	Depth =	E M		ō	Oepth =	8 0		ŏ	Oepth -	ŧ	
Direction Period	Period	Direction	ъ¥	Xs	K-Kr+Ks	Direction	۲	Ks	K=Kr*Ks	Direction	ž	х Х	K-Kr*Ks	Direction	Kr	Ks.	K=Kr*Ks	Direction	Kr.	S S	K=Kr*Ks
Z	(sec)	£				2								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	두 또 한 것 두 두 속 같 같			2	1		
0	6.0	23.3	0.823	0.937	0.771	24.4	0.817	0,968	0.791	23.9	0.817	1.005	0.822	26.2	0.798	1.085	0.865	31.3	0.724	1.249	0.905
	8.0	33.4	0.603	1.047	0.840	33.5	0.797	1,076	0.857	35.8	0.775	1.146	0.888	40.2	0.724	1.244	106.0	41.8	0.320	1.441	1.182
	10.0	3.7	0.805	1.173	0.944	34.7	0.805	1.231	166.0	34.6	0.806	1.307	1.054	42.1	0.548	1.280	0.702	44.5	0.509	1.508	0.767
30	6.0	33.0	0.988	0.941	0.930	33.2	0.986	0,960	0.946	31,9	0.979	1.001	0.980	31.5	0.897	1.085	0.974	33.0	0.883	1.258	1.110
	8.0	37.2	1.022	1.035	1.058	42.3	1.020	1,088	1.110	45.8	1.019	1.148	1.170	42.5	1.029	1.246	1-282	40.0	1.000	1.452	1.453
	10.0	39.1	1.017	1.175	1.195	38.6	1.021	1.237	1.263	36.8	1.027	1.311	1.346	44.7	1.027	1.437	1.476	47.0	1.027	1.764	1.812
60	6.0	61.8	0.995	0.945	0.940	64.2	0.994	0.967	0.961	67.7	0.992	1.002	0.994	71:4	0.945	1.086	1.026	58.3	0.913	1.252	1.144
•	8.0	91.5	0.983	1.028	1.010	64.9	0.983	1.082	1.064	68.4	0.982	1.138	1.117	63.7	0.963	1.241	1,195	52.7	0.953	1.472	1.402
	10.0	60.8	0.975	1.155	1.126	60.3	0.975	1,229	1.198	60.4	0.975	1.297	1.265	56.4	0.972	1.420	1.380	55.7	0.970	1.676	1.626
6	6.0	80.5	0.963	0.941	0.907	78.5	0.959	0.968	0.929	78.3	0.957	1.015	1/6.0	82.8	0.956	1.028	1.039	75.2	0.955	1.255	1.198
	8.0	70.5	0.845	1.041	0.879	69.2	0.840	1.079	0.906	69.4	0.837	1.151	0.963	73.1	0.821	1.236	1.015	67.5	0.311	1.469	1.192
	10.0	6*69	0.862	1.172	1.010	69.5	0.857	1.217	1.043	68.2	0.852	1.302	1.109	55.4	0.838	1.426	1.195	62.9	0.834	1.651	1.376
120	6.0	96.3	0.971	0.942	0.915	92.0	1/6.0	0,970	0.942	88.8	0.975	1.020	0.994	87.5	0.940	160.1	1.025	67.6	0.870	1.262	1.098
	8.0	84.8	0.762	1.045	0.796	83.6	0.753	1,090	0.821	84.5	0.747	1.153	0.851	83.7	0.675	1.254	0.847	53.6	0.615	1.475	0.907
	10.0	85.5	0.754	1.179	0.889	82.5	0.740	1,244	0.921	81.3	0.733	1.335	0.979	82.5	0.713	1.454	1.036	73.8	0.699	1,724	1.204

Table 1.3-7(8/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (TERENGGANU)

Ocean Wave	ave			÷																	
Characterist1c	ristic	ă	Depth = (	₽ vo		9 0	Vepth - /	4 1		á	Oepth =	Ē		L.	Depth =	Е 2		8	Depth - J	ē	
Direction Period N (sec)	Period (sec)	Direction N	х х	ξ.	K-Kr*Ks	Direction	چ ۲	Š.	K=Kr*Ks	Direction	τ Σ	× ×	K*Kr*Ks	Direction	بر لا	¥s X	K=Kr*KS	Direction N	Y.	ş	K=Kr*Ks
	6.0	37.1	0.863	0.951	0.821	17.1 0.863 0.951 0.821 18.1	0.864	0.972	0.840	18.5	0.867	1.020	0.885	22.2	0.847	1,096	0.928	31.0	0.818	1.261	1.032
	8.0	30.1	0.817	1.033	0.843	33.9	0.820	1.072	0.879	34.4	0.831	1.137	0.944	35.7	0.852	1.232	1.049	39.9	0.864	I.435	1.240
	10.0	37.0	0.942	1.149	1.082	40,4	0.938	1.196	1.122	42.0	0.938	1.283	1.203	43.2	0.907	1.406	1.276	46.1	0.881	1.665	1.466
30	6.0	40.3	1.009	0.960	0,968	43.0	1.009	0.982	166.0	43.9	1.014	1.028	1,042	42.2	1.024	1.106	1.132	51.9	1.025	1.279	1.311
	8.0	37.8	0.980	1.032	1.011	35.6	0,982	1.070	1.050	39.2	0.988	1.133	1.119	40.9	0.997	1.232	1.229	62.3	0.982	1,445	1.419
	10.0	46.9	1.066	1.147	1.223	47.1	1.072	1.208	1.295	45.0	1.085	1.280	1.391	37.6	1.112	1.403	1.560	43.0	1.165	1.674	1.950
60	6.0	58.1	0.997	0.937	0.935	57.5	0.997	0.964	0.961	58.7	0.995	1.003	0.999	62.8	0.980	1.078	1.056	82.9	0.965	1.243	1.200
	8.0	57.6	0.978	1.042	1.019	57.6	0.977	1.086	1.061	60.9	0.976	1.143	1.116	65.6	0.960	1.244	1.195	84,4	0.953	1.442	1.374
	10.0	57.7	0.951	1.182	1.124	58.0	0.951	1.240	1.179	61.0	0.950	1.310	1.245	66.2	0.935	1.435	1.342	85.2	0.930	1.681	1.563
8	6.0	83.0	1.052	0.943	0.992	82.5	1.056	0.964	1.018	80.9	1.060	110.1	1.072	0.77	1.055	1.082	1.141	79.6	1.068	1.236	1.321
	8.0	78.9	1.107	1.034	1.145	78.9	1.119	1.075	1.203	79.7	1.130	1.116	1.261	75.0	1.210	1,230	1.488	71.0	1.171	I.484	1.737
	10.0	76.5	066.0	1.142	1.130	74.8	0.986	1.198	1.182	72.1	0,993	1.277	1.268	69.8	0.981	1.396	1.370	62.5	0.980	1.637	1.605
120	6.0	93.7	0.915	0.942	0.861	87.1	0.898	0,968	0.869	76.5	0.897	110.1	0.907	71.1	0.941	1.088	1.024	47.5	0.948	1.266	1.200
	8.0	90.0	0.902	1.035	0.933	0.28	0.902	1,069	0.964	36.5	106'0	1.131	1.019	81.4	0.891	1.226	1.092	1.97	0.893	1.416	1.265
	10.0	85.5	0.932	1.155	1.076	84.2	0.934	1.203	1,124	1.48	0 022	1 286	1 1 2 5	8 28	0 262	1.405	1.219	74 8	0 846	1 667	GUV 1

Table 1.3-7(9/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (OYA)

Ucean wave Characteristic	Have Sristic	ă	Depth -	ទា		De	Denth "	4 E			Deoth +	Ę M		a	Depth -	6 6		ă	Deoth =	1	
Direction N	Perlod (sec)	Dfrection N	Х	Ks	K*Kr*Ks	Direction N	ĸ	, sy	K=Kr*Ks	Dfrection	K	Ks	K=Kr*Ks	Direction N	Kr	Ks	K*Kr*KS	Direction K	۴	Ks Ks	K=Kr#Ks
300	6.0	320.1	0.935	0.949	0.887	524.1	0.929	0.973	0.904	329.8	0.909	1,017	0.925	335.5	0.870	1.096	0.953	349.5	0.832	1.275	190.1
	8.0	328.0	0.997	1,099	1.096	332.5	1.006	1.147	1.154	336.1	166.0	1.213	1,202	339.8	066-0	1.314	1.301	345.5	0.973	1.554	1.512
	10.0	334.7	0.978	1.219	1.192	335.7	0.966	1.272	1.229	335.4	0.964	I.354	1.305	338.1	0.967	1.484	1.435	327.0	1.022	1.753	1.792
330	6.0	339.4	0.988	0.945	0.934	341.9	0,994	0.940	0.935	345.9	0.962	1.013	0.975	356.6	0.907	1.096	<b>\$65.0</b>	7.0	0.888	1.265	1.125
	8.0	340.6	0.983	1.072	1.054	342.7	0.991	1.116	1.106	348.4	0.972	1.178	1.146	354.4	0.977	1.279	1.250	1.5	0.977	1.489	1.455
	10.0	335.7	0.980	1.192	1.168	342.0	0.989	I.249	1.235	347.5	0,963	1.329	1.280	358.5	0,921	1.450	1.336	4.6	016.0	1.699	1.546
o	6.0	358.2	666.0	0.958	0.957	359.5	0.998	0.983	0.981	359.8	0,996	1.025	1.021	359.5	0.994	1.098	1.091	5.0	266'0	1.271	1.261
	8.0	357.3	656*0	1.090	I.089	358.8	0.998	I.132	1.130	359.6	0.997	1.198	1.195	7.2	0.980	1.297	1.271	5.2	0.973	1.518	1.477
	10.0	357.3	666 0	1.202	1.201	358.9	0,998	1.254	1.251	359.5	0.997	1.335	1.331	1.1	0.981	1.453	1,426	5.1	0.974	1.712	1.668
8	6.0	21.0	0.958	0.952	0.912	20.4	0.963	0.977	0.941	19.2	0.968	1.021	0.988	1.6.7	0.973	1.098	1.069	3.3	0.958	1.282	1.228
	6.0	11.4	068-0	1.080	0.961	11.0	0.888	1.123	0.997	9.8	0.884	1.189	1.051	5.7	0.877	1.294	1.135	5.9	0.873	1.521	1.328
	10.0	7.2	0.907	1.210	1.097	7.0	0.910	1.261	1.147	6.4	0.912	1.335	1.218	5.6	0.915	1.466	1.342	4.6	0.915	1.711	1.566
60	6.0	36.1	0,797	0.968	0.771	34.2	0.784	0.994	0.779	30.4	0.739	1.037	0.766	29.8	0.715	1.118	0.800	37.4	0.733	1.296	0.950
	8.0	25.5	0.892	1.104	0.985	24.5	0.886	1.150	1.019	21.5	0.873	1.217	1,063	21.6	0.875	1.320	1.155	34.3	0.903	1.549	1.399
	10.0	1.91	1.006	1 21	1 230	0 0 0	010	1 22	. 200	0 7	000 0		. 000	5 6 7	010	0.75					

Table 1.3-7(10/10) WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES (PAPAR)

.

Characteristic	'istic		Depth = 5	ۍ ۲		ă	Depth =	년 - 111-111-111-111-111-111-111-111-111-1			Depth =	۲ ۳			Depth -	2 B		ч	Depth -	E -1	
Jirection Period N (sec)	Per lod (sec)	Direction Period Direction N (sec) N	<u>भू</u>	Direction. Kr. Ks K-K N		Direction Kr Ks N	х х	Ks K	Ks K=Kr*Ks	Direction Kr Ks K-Kr*Ks N	ž	Ks.	Ks K=Kr=Ks	Direction Kr Ks - H	Υ. Υ	¥ s¥	Ks K-Kr*Ks	Direction Kr Ks K-Kr*Ks N	х х	\$ ¥	Ks K•Kr*Ks
300	6.0	300 6.0 295.5 0.985 0.946 0.5	0,985	295.5 0.985 0.946 0.5		298.4	0.983	0.971 (	0.954	32 298.4 0.933 9.971 0.954 300.4 0.986 1.004 0.990 302.6 0.987 1.091 1.077 305.9 0.984 1.304 1.283	0.986	0.986 L.004	0.990	302.6	0.987	1.091	1.077	306.9	0.984	1.304 1.283	1.283
	8.0	297.7	1.046	1.046 1.058 1.1	.106	297.2	1.080	1.097	1.165	294.9	1.105	1.173	1.297	294.7	1.114	1.271	1.417	296.3	1.109	1.474	1.635
	10.0	296.8	0.995	1.192 1.1	.136	299.7	0.983	1.249	1.228	300.6	0.989	1.310	1.295	299.8	1.004	1.434	1.439	289.6	1.034	1.709	1.766
330	6.0	327.9	0.984	0.947	0.932	329.3	0.984	0.971 (	0.955	333.6	0.983	1.015	0.998	333.4	0.983	160.1	1.072	331.7	0.982	1.258	1.235
	8.0	324.9		0.919 1.036 0.953	.953	326.6	0.918	1.074 (	0.986	330.5	0.917	1.153	1.057	337.3	0.916	1.245	1.141	347.5	0.882	1.450	1.279
	10.0	323.6	0.952	1.166 1.110	.110	325.9	0.949	1.221	1.159	333,8	0.946	1.304	1.233	339.2	0.938	1.409	1.322	354,8	0.745	1.668	1.248
0	6.0	349.4		0.876 0.946 0	0.829	350.8	0.858	0.974 (	0.836	354.9	0.866	1.018	0.881	355.4	0.871	1.096	0.955	355.9	0.866	I.260	160-1
	8.0	346.0	0.930	1.044 0.971	1.971	347.9	0.914	1.091	0.998	351.2	0.917	1.145	1.050	355.7	0.926	1.254	1.161	356.8	0.939	1.491	1.399
	10.0	346.4		0.949 1.180 1.	.120	348.6	0.929 1.241		1.152	350.5	0.929	1.307	1 213	354.1	0.927	1.435	1.331	356.8	606.0	1.691	1.537

.

River Mouth	Beach Slone -	Coeffic	ients	Wave Period -				iker heigt	nt 
	រា	a	b	T (sec)	5 m	4 m	3 m	2 m	1 m
Perlis	1/1000	0.823	0.788		0.776	0.778	0.781	0.783	0.78
				8	0.781	0.782	0.784	0,785	0.78
				10	0.783	0.784	0.785	0.786	0.78
Kedah	1/1000	0.823	0.788	6	0.776	0.778	0.781	0.783	0.78
				8	0.781	0.782	0.784	0.785	0.78
				10	0.783	0.784	0.785	0.786	0.78
Tg.Piandang	1/ 500	1.631	0.795	6	0.772	0.777	0.781	0.786	0.79
				8	0.782	0.785	0.787	0.790	0,79
				10	0.787	0.789	0.790	0.792	0.79
Beruas	1/ 500	1.631	0.795	6	0.772	0.777	0.781	0.786	0.79
				8	0.782	0.785	0.787	0.790	0.79
				10	0.787	0.789	0.790	0.792	0.79
Kuantan	1/ 500	1.631	0.795	6	0.772	0.777	0.781	0.786	0.79
				8	0.782	0.785	0.787	0,790	0.79
				10	0.787	0.789	0.790	0.792	0.794
Kerten	1/ 300	2.685	0.805	6	0.772	0.777	0.781	0.786	0.79
				8	0.782	0.785	0.787	0.790	0.79
				10	0.787	0.789	0.790	0.792	0.79
Marang	1/ 100	7.571	0.856	6	0.772	0.777	0.781	0.786	0.79
				8	0.782	0.785	•	0.790	0.793
				10	0,787	0.789	0.790	0.792	0.794
Terenggan	1/ 100	7.571	0.856	6	0.772	0.777	0.781	0.786	0.79
				8	0.782	0.785	0.787	0.790	0.793
				10	0.787	0.789	0,790	0.792	0.794
Dya	1/ 400	2.030	0.799	6	0.772	0.777	0.781	0.786	0.791
				8	0.782	0.785	0,787	0.790	0.793
				10	0.787	0.789	0.790	0.792	0.794
Papar	1/ 100	7.571	0.856	6	0.772	0.777	0.781	0.786	0,791
				8	0.782	0.785	0.787	0.790	0.793
				10	0.787	0.789	0.790	0.792	0.794

# Table 1.3-8 EVALUATION OF BREAKER INDEX

Table 1.3-9 WAVE HEIGHT COEFFICIENTS FOR REFRACTED DEEPWATER WAVES FOR MERSING

Ocean Wave	łave						•														
Characteristic	eristic	ă		E S		ă	Depth -	4 E		L	Depth *	E C		Ó	Depth -	57 52		a	Depth -		
Direction	Direction Period N (sec)	Direction Kr N	1	Ks	Xs Kerriks	Direction	¥. ¥	¥ X	K=Kr*Ks	Direction	х. Ж	Ks	K-Kr*Ks	Direction	ž	\$ X	K=Kr*Ks	Direction	r K	Ks	K=Kr*Ks
0	6.0	34.8	0.642	0.958	0.615	41.6	0.623	0.984	0.6I3	47.4	0.607	I.031	0.626	51.4	0.598	1.110	0.663	55.4	0.587	1.277	0.749
	8.0	32.6	0.835	1.099	0.918	36.6	0.826	1.143	0.944	45.4	0.810	1.206	0.977	55.0	0.738	1.318	1.039	58.9	0.775	1.544	1.197
	10.0	38.3	0.658	1.217	0.800	41.6	0.668	1.270	0.849	44.4	0.788	1.353	1.067	46.3	0.707	1.484	I.049	45.2	0.708	1.750	1.239
ន	6.0	50.9	0.798	0.946	0.755	54.8	0.785	0.970	0.762	58.4	0.774	1.015	0.786	60.6	0.763	1.00.1	0.833	62.2	0.750	1.257	0.943
	8.0	51.1	0.638	1.056	0.674	54.7	0.653	1.098	0.717	57.5	0.604	1.159	0.700	60.2	0.600	1.260	0.756	62.1	0.676	1.467	166-0
	10.0	66.1	0.707	1.196	0.845	64.9	0.648	1.252	0.811	64.3	0.520	1.331	0.692	64.4	0.520	1.464	0,761	65.1	0.588	1.685	165.0
60	6.0	68.4	1.051	0.945	0.993	70.6	1.046	0.971	1.016	73.3	1.038	1.016	1.055	74.3	1.025	1.094	1.121	72.5	1,001	1.266	1.267
	8.0	66.8	0.840	1.063	0.893	68.7	0.836	1.107	0.926	72.7	0.830	1.168	0.970	76.4	0.814	1.272	1.035	71.7	0.786	1.490	1.171
	10.0	65.5	0.736	1.203	0.885	65.9	0.733	1.261	0.925	66.3	0.730	I.333	0.973	70.0	0.721	1.467	1.058	68.2	0.701	1.719	1.205
66	6.0	83.8	0.751	0.946	0.710	82.0	0.896	0.970	0.870	80.8	0.889	1.012	0.900	78.9	0.869	1.089	0,946	78.4	0.833	1.258	1.048
	8.0	70.0	0.770	1.040	0.801	68.2	0.700	1.079	0.755	68.4	0.700	1.151	0.806	72.1	0.590	1.236	0.853	66.5	0.660	1.469	0.970
	10.0	60.0	0.730	1.172	0.856	68.5	0.720	1.217	0.876	67.2	C.720	1.302	0.937	64.0	0.701	1.426	1.000	61.3	0.650	165.1	I.073
120	6.0	88.9	0.751	0.942	0.707	87.7	0.743	0.970	0.721	87.8	0.677	1.020	0.691	86.5	0.731	1.001	0.798	83.0	0.694	1.262	0.876
	8.0	83.8	0.734	1.045	0.767	82.5	0.776	1.090	0.346	84.0	0.600	1.153	0.692	81.6	0.665	1.254	0.834	19.0	0.620	1.475	0.915
	10.0	84.5	0.721	1.179	0.850	81.4	0.765	1.244	0.962	2.9.5	0.620	1 325	0 841	61.0	0 200	1 464	0.045	3 61	00E 4	*** *	144 1

			BREAKDOWN 334		HORE EN	ERGY FLUX F	actor for	MERSING	
oreline Or	******		e h = = = = = = = = = = = = = = = = = =		***		*****		
						ve Characte		Longshore Energy	Longshore Transport
frection P	eriod (sec)	Height (m)	Percent (%)	Depth (m)	Height (p)	Direction N	Angle<1 (deg.)	Flux Factor (J/m/s)	Rate (1000m3/yr)
		0.50	2.4	0,48	0.37			1,3	0.2
(Ň)	U	1.25	2.3	1 16	0.90	55	9	15.8	2.8
		2.25 3.25	0.4 0.1	1.92	1.50 2.07	52 49	12	12.7 8,6	2.3
	8	4.00 0.50	0.0	3.19	2.49 0.60	47 60	17	0.0	0.0
		1.25 2.25	0.9	1.70	1.33	56.		13.8	2.4 12.1
		3.25	0.1	3.94	3.07	37	27	37.0	6.6
	10	4.00 0.50	$0.0 \\ 0.1$	4.74 0.79	3.69 0.62	34 45	30 19	0.0	0.0 0.1
		1.25	0.4	1.72 3.04	1.34 2.37	57 55 52 49 47 60 55 37 34 45 44 44 42	18 20	13.7 45.8	2.4 8.1
		3.25 4.00	0.1 0.0	3.71 4.27	2.90	42 41	22 23	27.2	4.8
Sub	total	4.00	7.9	7.61	5155	North to S	outh	245.0	43.4
					~~~~~	South to N		0.0	0.0
30 (NNE)	6	0.50 1.25	5.5 7.2	0.60	1.10	63 62	1 2	1.0 21.6	0.2 3.8
		2.25 3.25	1.4	2.34	1.83	60	2 4 5	25.2 19.1	4.5 3.4
	٥	4.00	0.1	3.92	3.06	55	9	13.9	2.5
	8	$0.50 \\ 1.35$	0.3 3.1	0.64 1.36	0.50	58 55 63 61 60 58 56	. 1	0.1 9.0	$0.0 \\ 1.6$
		2.25 3.25	2.0	2.15 2.93	1.67	60 58	4	29.0 23.4	5.1 4.1
	10	4.00 0.50	0.2 0.2	3.65 0.64	2.85 0.50	56 65	8 -1	21.7 -0.0	3.8 -0.0
		1.25	1.3	1.37	1.07	65 64	-1 0	-1.2 -1.6	-0.2
		3.25	0.5	2,90	2.26	64	0	-1.0	-0.2
Sub	-tota]	4.00	0.3 24.1	4,20	3.28	65 North to S		-5.6 163.9	-1.2 29.0
						South to N	orth	-10.5	-1.9
60 (ENE)	6	0.50 1.25	3.7 3.1	0.81 1.82	0.63		-8 -10	-9.2 -70.4	-1.6 -12.5
		2.25 3.25	0.4 0.1	3.04 4.21	2.37 3.28	73 70	-9 -6	-30.2 -11.5	-5.4 -2.1
	8	4.00	0.0 0.3	5.09 0.75	3.97 0.59	68 71	-4 -7	0.0	0.0
	U	1.25	1.3	1.69 2.82	1.32	75	-11	-27.2	-4.8
		2.25	0.1	3.87	2.20 3.02	69	-9 -5	-32.0 -7.9	-5.7 -1.4
	10	4.00 0.50	0.0	4.63 0.77	3.61 0.60	67 68	-3 -4	0.0 -0.1	0.0 -0.0
		1.25	0.5	1.73 2.83	1.35	70 67	-6 -3	-5.6 -6.2	-1.0 -1.1
		3.25 4.00	0.1	3.87 4.61	3.02	66	-2	-3.0	-0.5
Sub	-total	1.00	10.5	4,01	3.33	North to S	outh		0 -36.1
						30010 10 0		-203.9	
90 (E)	6	0.50	2.0 0.8	0.67	1.22	78	-14 -15	-5.3 -17.8	-0.9 -3.1
		2.25 3.25	$0.1 \\ 0.0$	2.63 3.66	2.05 2.85	80 82	-16 -18	-8.9 0.0	-1.6
	8	4.00	0.0 0.1	4.22 0.62	3.29 0.48	82 64	-18	0.0 -0.0	0.0 -0.0
	-	1.25	0.2	1.43	1.12	69 71	-5	-0.0 -1.3 -3.0	-0.2
		3.25	0.0	3.28	2.56	68	-4	-5.0	0.0
	10	4.00	0.0	3.89 0.69	5.04 0.54	68 60	-4 4	0.0	0.0
		1.25 2.25	0.0	1.63 2.74	1.27 2.13	63 66	-2	0.0 0.0	0.0 0.0
		3.25	0.0 0.0	3.71 4.44	2.89 3.46	North to S South to N 78 79 80 82 82 82 64 69 71 68 69 71 68 63 66 63 66 66 68 65 North to S	-4 -1	0.0	0.0
Sub	-total		3.3			North to South to N	outh ~	-36.3	0 -6.4
120		0.50	2.0	0.56	0.44				-0.7
(ÊŠÊ)	·	1.25	0.7	1.34	1.04		-20	-14.0	-2.5
		2.25 3.25	0.0	2.21 2.90	1.72	87 88	-23 -24	0.0	0.0
	8	4.00 0.50	0.0 0.0 0.1	3.65 0.59	2.85 0.46	88 78	-24 -14	0.0 0.0	0.0 0.0
		1.25	0.1 0.0	1.39	1.08	80 82	-16	-1.8 0.0 0.0	-0.3 0.0 0.0
		3.25	0.0	2 01	2.27	84	-20	0.0	0.0
	10	4.00	0.0 0.0 0.0 0.0	4.22 0.80	3.29 0.62	83 71	-19 -7	0.0 0.0	0.0
		1.25 2.25	0.0	1.61 2.53	1.25 1.97	78 80	-14 -16	0.0 0.0	0.0
		3.25 4.00	0.0 0.0 2.8	3.94 4.55	3,55	83	-19	0.0 0.0	0.0
Sub	-total		2.8		2,00	North to S South to N	outh	0.0 0.0 -19.9	0.0 -3.5
and-total						North to N South to N			
and total						NOT OF LU 3	outil.	408.9 ~270.6	72.4 -47.9

Table 1.3-10 BREAKDOWN	θF	LONGSHORE	ENERGY	FLUX	FACTOR	FOR	MERSING	
------------------------	----	-----------	--------	------	--------	-----	---------	--

Note <1 : Angle between wave crest and shoreline

Ocean	Wave Chara	cterist	lcs	Break	1ng Wa	ve Character	ristics	Longshore Energy	Longshore
rection N	n Period	Height	Percent (*)	Depth-	Height (m)	Direction	Angle<1	Flux Factor	Rate (1000m3/yr
30 (NNE)	6	0.50 1.25 2.25 3.25 4.00	5.5 7.2 1.4 0.3 0.1	0.28 0.71 1.27 1.84 2.53	0.22 0.55 0.99 1.44 1.98	115 110 105 99 105 103 100 96 89 104 102 97 83 78 North to Sc	27 32 37 43 53	2.8 40.1 36.9 20.6 14.7	0.5 7.1 6.5 3.6 2.6
	8	0.50 1.25 2.25 3.25 4.00 0.50	0.3 3.1 2.0 0.5 0.2 0.2	0.38 0.95 1.58 2.25 2.84 0.53	0.30 0.74 1.23 1.76 2.22 0.41	105 103 100 95 89 104	37 39 42 46 53 38	0.4 40.3 92.9 56.7 39.0 0.6	0.1 7.1 16.4 10.0 6.9 0.1
	Sub-total	1.25 2.25 3.25 4.00	1.3 1.2 0.5 0.3 24.1	1.27 2.24 3.49 4.36	0.99 1.75 2.72 3.40	102 97 83 78 North to Sc	40 45 59 64 suth	34,8 134,6 150,9 138,9 804,3	6.2 23.8 26.7 24.6 142.4
60	6			0 40	0 31	South to No	orth 37	0.0 5.3	0.0
(ENĔ)		1.25 2.25 3.25 4.00 0.50 1.25 2.25 3.25	3.1 0.4 0.1 0.0 0.3 1.3 0.5 0.1	1.00 1.78 2.60 3.25 0.66 1.37 2.16 3.15	0.78 1.39 2.03 2.54 0.51 1.07 1.69 2.45	105 103 101 93 87 84 91 97 96 91 76 82 93 93 98 97 80 98 97 North to Sc South to Ke	39 41 49 55 58 51 45 46		7.9 4.4 2.9 0.0 7.4 9.1 4.6 0.0 0.0
	10	4.00 0.50 1.25 2.25 3.25 4.00	0.0 0.1 0.5 0.3 0.1 0.0	4.03 0.32 0.79 1.57 2.36 2.90	3.15 0.25 0.62 1.23 1.84 2.26	91 76 82 93 98 97	51 66 60 49 44 45	13.8 12.8 0.0	0.6 2.4 2.3 0.0
	Sub-total		10.5			North to Se South to No	orth	242.5 0.0	42.9 0.0
90 (E)	6	0.50 1.25 2.25 3.25 4.00	2.0 0.8 0.1 0.0	0.39 0.95 2.14 3.02 3.75	0.30 0.75 1.67 2.36 2.92	88 93 101 99 95	54 49 41 43 47	2.6 10.8 9.9 0.0	0.5 1.9 1.8 0.0 0.0
	8	0.50 1.25 2.25 3.25 4.00	0.1 0.2 0.1 0.0 0.0	0.39 0.96 2.14 3.02 3.75 0.82 1.72 2.75 3.72 4.42 0.66 1.53 2.68 3.73	0.64 1.34 2.15 2.90 3.45	88 93 101 99 95 113 109 98 94 91 111 102 94 89	29 33 44 48 51	9.9 0.0 0.8 10.6 18.8 0.0 0.0 0.0 0.0 0.0	0.1 1.9 3.3 0.0 0.0
	10 Sub-total	0.50 1.25 2.25 3.25 4.00	0.0 0.0 0.0 0.0 0.0 3.3	0.66 1.53 2.68 3.73 4.45	0.51 1.19 2.09 2.91 3.47	111 102 94 89 85 North to Sc	57	0.0 0.0 0.0 0.0 0.0 53.5	0.0 0.0 0.0 0.0 0.0 9.5
						South to No	orth	0.0	0.0
120 (ESE)		0.50 1.25 2.25 3.25 4.00	2.0 0.7 0.0 0.0 0.0 0.0	0.54 1.30 2.21 3.11 3.72 0.41	0.43 1.01 1.72 2.42 2.90	103 113 123 124 124 124 101 109	39 29 19 18 18	6.4 17.1 0.0 0.0 0.0	1.1 3.0 0.0 0.0 0.0
	8	0.50 1.25 2.25 3.25 4.00	0.0 0.1 0.0 0.0 0.0	0.41 1.03 1.71 2.40 2.93	0.32 0.80 1.33 1.87 2.28	119 123 125	23 19 17	0.0 1.5 0.0 0.0 0.0	0.0 0.3 0.0 0.0 0.0
	10		0.0 0.0 0.0 0.0 0.0	0.43 1.06 1.74 2.43 2.95	0.34 0.83 1.36 1.90 2.30	98 104 111 111 108	44 38 31 31 34	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
	Sub-total		2.8			North to So South to No		25.0 0.0	4.4 0.0
150 (SSE)		0.50 1.25 2.25 3.25 4.00	3.8 2.2 0.1 0.0 0.0	0.35 0.87 1.49 2.12 2.68	0.27 0.68 1.16 1.66 2.09	111 118 124 124	37 31 24 18 18	3.9 20.5 3.0 0.0 0.0	0.7 3.6 0.5 0.0 0.0
	8	0.50 1.25 2.25 3.25 4.00	0.1 0.5 0.0 0.0 0.0 0.0	0.34 0.85 1.43 1.98 2.39	0.27 0.67 1.12 1.55 1.86	109 118 126 125	41 33 24 16 17	0.1 4.6 0.0 0.0 0.0	0.0 0.8 0.0 0.0 0.0
	10 Sub-total	0.50 1.25 2.25 3.25 4.00	0.0 0.1 0.0 0.0 0.0 6.8	0.38 0.96 1.55 2.13 2.55	0.30 0.75 1.21 1.66 1.99	121	21 20	0.0 0.9 0.0 0.0 0.0 33.0	0.0 0.2 0.0 0.0 0.0 5.8
						South to No	rth 	0.0	0.0
and-tot	ai		47.5			North to So South to No		1,158.2	205.0

Table 1.3-11(1/6) BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION (KUANTAN)

Ocean Wave	Chara	cterist	lcs	Brea	king Wav	e Charact	er istics	Longshore Energy	Longshore Transport
rection Pe N (	riod sec)	Height (m)	Percent (차)	Depth (m)	Height D (m)	irection N	Angle<1 (deg.)	Flux Factor (J/m/s)	Rate (1000m3/yr
30 (NNE)	6	0.50	5.5	0.30	0.23	114 105 93 81 74 131 120 101 85	13 22	1.8 37.0	0.3 6.5
		2.25 3.25	1.4	1.35 1.95 2.64 0.32	1.05	93 81	. 34 46	41.2 23.8	7.3
	8	4.00	0.1 0.3	2.64	2.06	74	53	16.3	2.9
	•	1.25		0.80	0.62	120	7	-0.0 6.8	1.2
		2.25 3.25	2.0	1.55 2.45	1.21	101 85 78 114 107	26 42	70.5 69.8	12.5 12.4
	10	4.00 0.50	0.2	3.25	2.54	78 114	49 13	56.4 0.1	10.0 0.0
		1.25 2.25		0.93 1.65	0.72		20	10.5 53.5	1.9
		3.25	0.5	1.65 2.47 3.15	1.92	90 87	37 40	68.4 77.6	12.1 13.7
Sub-	total	,	24.1	0110		North 1	to South to North	533.8 -0.0	94.5 -0.0
60 (ENE)	6	0.50	3.7 3.1	0,39 0.97	0.30	107 100	20 27	3.4 35.0	0.6 6.2
(Line)		2.25	0.4	2.16	1.69	86	41 49	40.6	7.2
		4.00	0.0	3.34 4.22	3.29	- 78 69	58 30	30.2 0.0	5.3 0.0
	8	0.50	1.3	0.67	2.60 3.29 0.53 1.18	97 94	. 33	1.5 50.3	0.3 8.9
		2.25 3.25	0.5	2.57 3.62	2.83	83	- 38 44	76.9 37.3	13.6 6.6
	10	4.00	0.0	4.40	3.43 0.84	80 115	47	0.0	0.0
		1.25	0.5 0.3	1.08 2.42 3.75	1.89	95 89	32 38	60.7 119.5	10.7 21.2
		3.25 4.00	0.1 0.0	4.90 5.72	3.82 4.46	87 87	40 40	77.9	13.8
Sub-	total		10.5	5		North 1 South 1	to South to North	534.0 0.0	94.5 0.0
90 (E)	6	0.50	2.0 0.8	0.60 1.47	0.47	120 110	7 17	2.0 17.6	0.4 3.1
( . )		2.25	0.1	2.57	2.00	100	27 32	12.9	2.3
		4.00	0.0	4.58	3.57	95 94	33	0.0 0.0	0.0 0.0
	8	0.50	0.1 0.2	0.61	0.47	121 110	6 17	0.1 4.5	0.0 0.8
		2.25 3.25	0.1 0.0	2.62 3.77	2.04 2.94	100 94	27	13.5 0.0	2.4 0.0
	10	4.00 0.50	0.0	4.65 0.64	3.63 0.50	94 120	3 <del>3</del> 7	0.0	0.0 0.0
		1.25	0.0	1.57 2.74	1.22 2.14	111 100	16 27	0.0	0.0
	:	3.25	0.0	3.92 4.83	3.06 3.77	93 94	34 33	0.0	0.0
Sub-	total	••••	3.3			North #	to South to North	50.6 0.0	9.0 0.0
120 (ESE)	6	0.50	2.0 0.7	0.83 1.82	0.65	132	-5 6	-3.5 9.7	-0.6 1.7
(100)		2.25	0.0	2.94	2.29	121 119 120 119	8	0.0	0.0
	•	4.00	0.0	4.73	3.69	119	8	0.0	0.0 0.0
	8	0.50	0.0	0,98	1.54	118	10 9	0.0 2.5	0.0 0.4
		2.25	0.0	3.07 4.07	2.40 3.17	117 115	10 12	0.0	0.0 0.0
	10	4.00 0.50	0.0 0.0	4.82 1.20	3.76 0.94	113 118	· 14 9	0.0	0.0
		1.25 2.25	0.0	2.45 3.80	1.91 2.97	112 110	15 17	0.0	0.0
		3.25	0.0	5.05 6.01	3.95 4.69	109 108	18 19	0.0	0.0 0.0
Sub-	total	•	2.8			North 1	to South to North	12.3 -3.5	2.2
150 (SSE)	6	0.50	3.8 2.2	0.62	0.49	129 129	-2 -2	-1.1 -4.8	-0.2 -0.9
		2.25	0.1	2.43	1.89	129 128	-2 -1	-0.7	-0.1
	8	4.00	0.0	4.06	3.16	128	-1	0.0	0.0 0.0
	ø		0.1	0.80	0.62	123 121	. 6	0.1 7.3	0.0
		2.25	0.0	2.99 4.13	2.34	118 123	9 4	0.0 0.0	0.0
	10	4.00	0.0	4.96 0.78	3.87 0.61	123 132	4 ~5	0.0 0.0	0.0
		1.25	0.1 0.0		1.37	112 107	-5 15 20 14	3.0 0.0	0.5 0.0
		3.25	0.0	3.83	2.99	113 114	14 13	0.0	0.0
Sub-	total	3,54	6.8	7100		North 1	to South	10.4 -6.7	1.8
and-total			47.5	•••••••• ·		North t	o South	1,141.1	202.0
	1					South t	o North	-10.1	-1.8

Table 1.3-11(2/6) BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION (KERTEH)

.

	Wave Char					Character		Longshore Energy	Longshore Transport
rection N	(sec)	(m)	(%)	Depth (m)	(m)	irect ion N	(deg.)	Flux Factor (J/m/s)	Rate (1000m3/yr
о (N)	6	0.50 1.25 2.25 3.25 4.00	1.0 0.7 0.1 0.0 0.0	0.58 1.41 2.43 3.37 4.05	0.45 1.10 1.89 2.63 3.16	33 29 25	22 26 30	2.6 19.4 11.8 0.0 0.0	0.5 3.4 2.1 0.0 0.0
	8	0.50 1.25 2.25 3.25 4.00	0.0 0.2 0.1 0.0 0.0	0.76 1.55 2.57 3.61 4.36	0.59 1.21 2.01 2.82 3.40	24 24 42 38 34 33 46	13 14 17 21 22	0.0 4.2 9.0 0.0 0.0	0.0 0.7 1.6 0.0 0.0
	10 Sub-total	0.50 1.25 2.25 3.25 4.00	0.0 0.0 0.0 0.0 0.0 2.1	0.49 1.19 3.03 4.10 4.87	0.38 0.93 2.36 3.20 3.80	44 35 35 35	9 11 20 20 20 50 South	0.0 0.0 0.0 0.0 0.0 47.2	0.0 0.0 0.0 0.0 0.0 8.3
						South t	o North	0.0	0.0
30 (NHE)	6 8	0.50 1.25 2.25 3.25 4.00 0.50 1.25	2.4 4.1 1.1 0.2 0.0 0.2 1.9	0.71 1.61 2.82 3.95 5.05 0.93 2.04	0.55 1.25 2.20 3.08 3.94 0.73 1.59	33 32 32 33 33 40 43	22 23 23 22 22 15	10.5 144.0 159.4 64.0 0.0 1.3 70.3	1.9 25.5 28.2 11.3 0.0 0.2 12.5
	10	2.25 3.25 4.00 0.50 1.25	2.0 0.6 0.1 0.0 0.9	3.31 4.50 5.36 1.11 2.28	2.58 3.51 4.18 0.87 1.78	45 40 35 47 42	22 15 12 10 15 20 8 13 17	208.0 195.1 62.7 0.0 44.8	36.8 34.5 11.1 0.0 7.9
	Sub-total	2.25 3.25 4.00	1.0 0.6 0.2 15.3	3.70 4.98 5.93	2.89 3.89 4.62	39 40 North 1 South 1	17 16 15 to South to North	218.9 261.7 131.2 1,571.9 0.0	38.7 46.3 23.2 278.2 0.0
60 (ENE)		0.50 1.25 2.25 3.25 4.00	3.7 5.9 1.0 0.1 0.0	0.73 1.68 2.87 4.00 4.84	0.57 1.31 2.24 3.12 3.77	55 67 68 64 62	0 -12 -13 -9 -7	0.2 -132.3 -92.7 -15.2 0.0	0.0 -23.4 -16.4 -2.7 0.0
	8 10	0.50 1.25 2.25 3.25 4.00 0.50 1.25 2.25	0.2 3.2 1.9 0.3 0.1 0.1 1.3 0.9	0.90 1.93 3.19 4.34 5.15 1.03 2.17 3.53	1.50 2.48	52 63 68 64 61 56 57 60	3 -8 -13 -9 -6 -1 -2 -5	0.3 -67.0 -221.4 -53.0 -19.0 -0.0 -9.8 -58.1	0.0 -11.9 -39.2 -9.4 -3.4 -0.0 -1.7 -10.3
	Sub-total	3.25 4.00	0.5 0.1 19.3	4.75 5.62	3.71 4.39	61 61 North t South t	-6 -6 o South o North	-72.1 -23.7 0.5 -764.3	-12.8 -4.2 0.1 -135.3
90 (E)	6	0.50 1.25 2.25 3.25 4.00	3.4 2.6 0.2 0.0 0.0	0.77 1.70 2.82 3.88 4.68	0.60 1.33 2.20 3.03 3.65	73 81 79 79 80	-18 -26 -24 -24 -25	-15.8 -114.8 -29.8 0.0 0.0	-2.8 -20.3 -5.3 0.0 0.0
	8	0.50 1.25 2.25 3.25 4.00	0.0 0.9 0.4 0.1 0.0	0.76 1.68 2.80 3.81 4.56	0.60 1.31 2.18 2.97 3.56	66 71 70 69 70	-11 -16 -15 -14 -15	0.0 -26.3 -39.6 -20.2 0.0	0.0 -4.7 ~7.0 -3.6 0.0
	10	0.50 1.25 2.25 3.25 4.00	0.0 0.2 0.2 0.0 0.0	0.88 1.93 3.16 4.30 5.16	0.69 1.50 2.46 3.35 4.03	63 65 68 70 70	-8 -10 -13 -15 -15	0.0 -5.4 -24.0 0.0 0.0	0.0 ~1.0 ~4.2 0.0 0.0
	Sub-total		8.0			North t South t	o North	0.0 -275.8	0.0 -48.8
120 (ESE)	6 8	0.50 1.25 2.25 3.25 4.00 0.50 1.25	2.1 1.1 0.0 0.0 0.0 0.1 0.2	0.70 1.66 2.88 3.93 4.72 0.58 1.40	0.55 1,30 2.24 3.07 3,68 0,45 1.09	62 81 92 95 62 75	-7 -26 -34 -37 -40 -7 -20	-3.0 -46.1 0.0 0.0 -0.1 -4.4	-0.5 -8.2 0.0 0.0 0.0 -0.0 -0.8
÷	10	2.25 3.25 4.00 0.50 1.25 2.25	0.0 0.0 0.0 0.0 0.0 0.0	2.47 3.49 4.18 0.77 1.70 2.84	1.92 2.72 3,26 0.60 1.33 2.22	84 84 72 80 82	-29 -29 -29 -17 -25 -27	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
:	Sub-total	3.25 4.00	0.0 0.0 3.5	3.86 4.61	3,01 3,50	82 84 North t South t		0.0 0.0 -53.5	0.0 0.0 0.0 -9.5
and-tota	 1 î		48.2				o South	1,619.6 -1,093.6	286.7 -193.6

.

Table 1.3-11(3/6) BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION (MARANG)

	lave Char	acterist	ics		iking Nave	Characte	ristics	Longshore Energy	Longshore Transport
irection N	Period (sec)	Height (m)	Percent (%)	Depth (m)	Height C (m)	lirection N	Angle<1 (deg.)	Flux Factor (J/m/s)	Raté (1000m3/yr)
(N)	6 8	0.50	1.6	0.66 1.53 2.59 3.57 4.28 0.79	0.52 1.20 2.02 2.78 3.34 0.62	N 34 26 20 18 18 41 37 35 34 32 46	21 29 35 37 37 14	3.6 25.7 15.2 0.0 0.0 0.0 6.9	0.6 4.5 2.7 0.0 0.0 0.0 1.2
	10	2.25 3.25 4.00 0.50 1.25 2.25	0.1	2.77 3.72 4.42 0.94 2.04 3.35 4.57 5.48	2,16 2,90 3,45 0,73 1,59 2,62 3,56 4,28	40	. 12	12.4 0.0 0.0 0.0 0.0 0.0	2.2 0.0 0.0 0.0 0.0 0.0
S	ub-total	3.25	0.0 0.0 2.1		÷	South	to South to North	0.0 0.0 63.8 0.0	0.0 0.0 11.3 0.0
30 (NNE)	6	0.50 1.25 2.25 3.25 4.00	2.4 4.1 1.1 0.2 0.0	0.84 1.84 3.01 4.12 5.02	0.66 1.43 2.34 3.21 3.92 0.71 1.54 2.48 3.37 4.03	53 44 44 43 43	2 11 11 12 8	1.2 106.9 97.5 42.7 0.0	0.2 18.9 17.3 7.6 0.0
	8	0.50 1.25 2.25 3.25 4.00 0.50 1.25 2.25	0.2 1.9 2.0 0.6 0.1 0.0 0.9 1.0	1.17	0.71 1.54 2.48 3.37 4.03 0.91 1.85 2.95	53 44 44 43 47 64 41 39 36 38 42 40 47	2 11 11 12 -9 14 16 19 13 15 15 8 8 8 8 to South to North -33	-0.7 70.5 292.4 210.4 50.1 0.0 56.9 119.1	-0.1 12.5 51.7 37.2 8.9 0.0 10.1 21.1
\$	ub-tota)	3.25 4.00	0.6 0.2 15.3	5.08 6.04	2.95 3.95 4.71	47 47 North South	8 8 to South to North	146.2 77.6 1,271.4 -0.7	25.9 13.7 225.0 -0.1
60 (ENE)	6	0.50 1.25 2.25 3.25 4.00 0.50	1.0	0.77 1.73 2.89 4.00 4.81 0.88				-26.0 -154.6 -30.8 -4.2 0.0 -1.9	-4.6 -27.4 -5.4 -0.7 0.0 -0.3
	10	1.25 2.25 3.25 4.00 0.50 1.25 2.25	3.2 1.9 0.3 0.1 0.1 1.3 0.9	4.00 4.81 0.88 1.92 3.18 4.35 5.19 1.00 2.12 3.48 4.73 5.55	1.50 2.48 3.39 4.05 0.78 1.65 2.72	68 59 58 58 67 67 60 58 85 66 60 58 85 66 58 85 78 North	-12 -5 -3 -3 -30 -11 -5	-100.0 -93.7 -15.9 -8.3 -1.3 -45.9 -48.2	-17.7 -16.6 -2.8 -1.5 -0.2 -8.1 -8.5
S	Sub-total	3.25 4.00	0.5 0.1 19.3	4.73 5.65		South	to North	-35.3 -10.1 0.0 -576.4	-6.2 -1.8 0.0 -102.0
90 (E)	6	4.00	3.4 2.6 0.2 0.0 0.0	0.85 1.85 3.08 4.21 5.08	0.66 1.44 2.40 3.29 3.96 0.85	80 77 81 83 83 71 76	-25 -22 -26 -28 -28	-25.7 -127.2 -39.1 0.0	-4.5 -22.5 -6.9 0.0 0.0
	8 10	0.50 1.25 2.25 3.25 4.00 0.50	0.0 0.9 0.4 0.1 0.0 0.0	1.08 2.25 3.53 4.81 5.73 1.02	0.85 1.75 2.76 3.75 4.47 0.80	71 76 79 79 79 63	-16 -21 -24 -24 -24 -8	0.0 -68.8 -105.2 -56.1 0.0 0.0	0.0 -12.2 -18.6 -9.9 0.0 0.0
S	iub-tota1	1.25 2.25 3.25 4.00	0.2 0.2 0.0 0.0 8.0	2.16 3.51 4.75 5.68	1.68 2.74 3.71 4.43		-15 -18 -21 -23 to South to North	-10.3 -41.4 0.0 0.0 0.0 -473.7	-1.8 -7.3 0.0 0.0 0.0 -83.8
120 (ESE)	6	0.50 1.25 2.25 3.25 4.00 0.50	2.1 1.1 0.0 0.0 0.0 0.1	0.77 1.69 2.69 3.66 4.44 0.81	0.60 1.32 2.10 2.86 3.46 0.63	42 64 75 84 90 79	13 -9 -20 -29 -35 -24	7.1 -18.2 0.0 0.0 0.0 -0.7	1.2 -3.2 0.0 0.0 0.0 -0.1
	10	1,25 2,25 3,25 4,00 0,50 1,25	0.2 0.0 0.0 0.0 0.0 0.0	1.78 2.95 4.01 4.81 0.90 1.95	1.39 2.30 3.13 3.75 0.70 1.53	81 85 89 90 74 83	-24 -26 -31 -34 -35 -19 -28	-0.7 -9.9 0.0 0.0 0.0 0.0 0.0	-0.1 -1.8 0.0 0.0 0.0 0.0 0.0
S	Sub-total	2.25 3.25 4.00	0.0 0.0 0.0 3.5	3.34 4.56 5.44	2.61 3.56 4.25	84 85 86 North	-29 -30 -31 to South to North	0.0 0.0 7.1 -28.8	0.0 0.0 0.0 1.2 -5.1
rand-tota	1		48.2				to South to North	1,342.2 -1,079.6	237.6 -191.1

Table 1.3-11(4/6) BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION (TERENGGANU)

T1-32

.

Ocean Wa	ve Chara	cterist	ics	Break	ing Wave	Character	istics	Longshore Energy	Longshore Transport
rection N	Period (sec)	Height ( (m)	Percent (%)	.Depth (m)	Height D (m)	irection N	Angle<1 (deg.)	Flux Factor (J/m/s)	Longshore Transport Rate (1000m3/yr)
300 (WNW)	6	0.50	1.5 1.1	0.68	0.53	354 342	8 20	2.4 33.3	0.4 5.9
		2.25 3.25	0.2	2.69 3.78	2.10 2.95	332 325	30 37	30.8	5.5
	8	4.00	0.0	4.58 0.97	3.57 0.76	322 346	40 16	0.0	0.0
	•	1.25	0.5	2.07	1.61	340	22	32.4	5.7
		3.25	0.0	4.64	3.62	330	32	0.0	0.0
	10	0.50	0.0	1.10	0.86	328	34	0.0	0.0
		2.25	0.1	2.23	2.82	337 336	25 26	29.5	5.2
		3.25 4.00	0.2	4.97 6.00	3.88	335 334	27 28	134.1	23.7
รข	b-total		4,1			West East	to East to West	2,4 33,3 30,8 0,0 0,0 1,5 32,4 52,0 0,0 0,0 0,0 0,0 0,0 8,4 29,5 134,1 0,0 324,4 0,0	57.4 0.0
330	б	0.50	1.4	0.72	0.56	10	-8	0.0 -2.5 3.5 18.9 0.0 0.0 -0.0 20.1 58.1 41.5 0.0 0.0 5.0 85.9 55.0 91.1 379.1	-0.4
(NNW)		2.25	0.2	2.82	2.20	348	14	3.5 18.9	0.6 3.4
		3.25 4.00	0.0 0.0	3.91 4.92	3.05 3.84	342 325	20 37	0.0	0.0 0.0
	8	0.50	0.1	0.93	0.73	2 354	0	-0.0 20.1	-0.0 3.6
		2.25	0.4	3.27	2.55	347	15	58.1	10.3 7.3
	10	4.00	0.0	5.34 0.99 2.12 3.60 4.89 5.81	4.16	340	22	0.0	0.0
	10	1.25	0.3	2.12	1.66	357	-3	5.0	0.9
		2.25 3.25	0.4	3.60 4.89	3.81	344 340	18 22	85.9 55.0	15.2 9.7
Su	b-total	4.00	0.1 5.2	5.81	4.53	338 West	24 to East	91.1 379.1 -2.5	16.1 67.1
0	 6	0.60	· · · · · · · · · · · · · · · · · · ·	0.81	0.63	Last	to West	-2.5	-0.4
(Ň)	0	1.25	2.4	0.81 1.78 2.95 4.08 4.92 0.95	1.39	1	1	5.8	1.2
		3.25	0.2	4.08	3.18	359	3	9.0	1.6
	. 8	4.00	0.2	0.95	0.74	358	-3	-0.3	-0.0
		1.25 2.25	2.4 1.4	2.03 3.36	1.58	359	-5 3	-36.5	7.2
		3.25 4.00	0.3	4.60 5.51	3.59 4.30	358 356	4 6 :	28.9 20.4	5.1 3.6
	10	0.50 1.25	$0.1 \\ 0.9$	1.05	0.82	5	-3	-0.2	-0.0
		2.25	1.2	1.05 2.23 3.67 5.00 6.00	2.86	359 357	3	46.7	8.3
Su	b-tota]		0.3 13.0		4.68	356 West	ő to East	-2.6 5.8 12.3 9.0 0.0 -0.3 -36.5 40.5 28.9 20.4 -0.2 -11.7 46.7 95.7 86.1 346.4 -51.2	15.2 61.3
						East	to West	-51.2	-9.1
.30 (NNE)	6	0.50	4.6 5.5	0.79	0.61	0 13	-11	2.0 -126.8 -139.0 -27.3 -44.1 -0.4	0.4 -22.4 -24.6
		2.25 3.25	1.2	2.87 3.93	2.24 3.07	19 . 20	-17 -18	-139.0 -27.3	-24.6 -4.8
	8	4.00 0.50	0.1 0.3	4.71 0.85	3.68 0.66	21 6	-19 -4	-44.1	-7.8 -0.1
	-	1.25 2.25	3.1 2.0	1.84 3.03	1.44 2.36	6 10	-4 -8	-27.5 -128.1	-4.9 -22.7
		3.25	0.6 0.1	4.13 4.94	3.22 3.85	11 11	-9 -9	-96.5 -26.1	-17.1 -4.6
	10	0.50	0.2	1.00	0.78	5	-3	-0.3	-0.0
		1.25 2.25	1.2	2.12 3.41	1.65	6 7	-4 -5	-15.0 -62.2	-2.7 -11.0
		3.25 4.00	0.5	4.63 5.53	3.61 4.31	7	-5 -5	-61.1 -58.8	-10.8 -10.4
Su	b-total		21.0				to East to West	2.0 -813.1	0.4 -143.9
60 (FNE)	6	0,50	3.8	0.61	0.48	40 25	-38	-16.0	-2.8
(ENE)		1.25	3.1 0.5	1.38	1.08	35 30	-33 -28	-93.9 -48.1	-16.6 -8.5
	_	3.25 4.00	0.1 0.0	3.21 4.00	2.50 3.12	31 34	-29 -32	-23.4 0.0	-4.1 0.0
	8	0,50 1,25	0.2 1.3	0.90	0.70 1.46	36 23	-34 -21	-2.1 -62.9	-0.4 -11.1
		2.25 3.25	0.7	3.05 4.21	2.38 3.28	22 25	-20 -23	-108.1 -38.7	-19.1 -6.9
	10	4.00	0.1	5.04	3.93	26 5	-24	-62.5	-11.1
	10	1.25	0.1	2.24	1.75	16	-14	-16.1	-2.9
		2.25	0.3	3.73	2.91	19 19	-17 -17	-65.7 -49.5	-11.6 -8.8
Su	b-total	4.00	0.0 10.7	6.13	4.78		~17 to East	0.0	0.0
and-total			54.0			West	to West to East	-587.3	-103.9 186.2
				*********		East	to West	-1,454.1	-257.4

Table 1.3-11(5/6) BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION (OVA)

Ocean Wa	ive Chara	cterist	lcs	Br	eaking Wa	ive Charac	teristics	Longshore Energy	Longshöre Transport
Direction N	Period (sec)	Height (m)	Percent (%)	Depth (m)	Height ( (m)	lirection N	Angle<1 (deg.)	Longshore Energy Flux Factor (J/m/s)	Rate (1000%3/yr)
300	6	0.50	1.1	0.82	0.64	308	2	0.8	Q.1
(WNW)		1.25	1.1	1.76	1.38	304	6	15.0	2.7
		2.25	0.1	2.88	2.24	301	.9	6.7	1.2
		3.25	0.0	3.98 4.80	3,10	298	12	0.0	0.0
	8	0.50	0.2	1.04	0.81	296	14	1.5	0.3
	v	1.25	2.0	2.21	1.72	295	15	33.0	5.8
		2.25	0.3	3.54	2.76	296	9 12 14 15 14 15 14 12 20 10 10	49.1	8.7
		3.25	0.0	4.69	3.66	298	12	0.0	0.0
	10	4.00	0.0	5.53	4.31	298	12	0.0	0.0
	10	0.50	0.0	2 23	1 74	290	20	0.0 3.8	0.0
		2.25	0.1	3.60	2.81	300	10	12.6	2.2
		3.25	0.0	4.95	3.86	297		0.0	0.0
		4.00	0.0	5.95	3.66 4.31 0.85 1.74 2.81 3.86 4.64	294	16	0.0	0.0
Su	b-total		3.6			Hest t East t	o East o West	122.6	21.7 0.0
330	6	0.50	1.1	0.79	0.62	331 333 334 329 334 349 349	-21	-6.2	-1.1
(NXW)		1.25	0.9	1.75	1.37	333	-23	-39.2	-6.9
		2.25	0.1	2.89	2.20	334	-24	-15.0	-2.8
		3.25	0.1 0.0	3.90	3.11	334	-19	-29.0	0.0
	8	0.50	0.1	0.82	0.64	349	-39	-0.9	-0.2
	•	1.25	0.5	1.84	1.44	339	-29	-29.2	-5.2
		2.25	0.4	3.04	2.37	330	-20	-62.6	-11.1
		3.25	0.1	4.09	3.19	326	-16	-27.4	-4.9
	10	4.00	0.0	4.90	3.82	323	-15	0.0	0.0 0.0
	10	1.25	0.2	2.10	1.64	339	-29	-16.0	-2.8
		2.25	0.3	3.44	2.69	333 334 329 334 349 339 330 326 325 358 339 330 324	-20	-39.2 -15.6 -29.6 0.0 -0.9 -29.2 -62.6 -27.4 0.0 0.0 -16.0 -64.2 -34.0	-11.4
		3.25	0.1	4.68		324	-14	-34.0	-6.0
		4.00	0.0	4.90 0.80 2.10 3.44 4.68 5.59	4.36	322	-12	0.0	0.0
50	b-total		3.9			East t	o East o West	0.0	0.0 -57.5
	6	0.50	1.8 0.8 0.0 0.0 0.1 0.2 0.0 0.1 0.2	0.70	0.55	355	-45	-11.0	-1.9
( N )		2 25	0.8	2 60	2.02	308 327	-48 -47	-37.5 0.0	-6.6
		3.25	0.0	3.55	2.77	353	-43	0.0	0.0
		4.00	0.0	4.27	3.33	350	-43 -40	0.0	0.0
	8	0.50	0.1	0.90	0.70	357	-40 -47 -46 -38 -36 -47 -44 -40	-1.1	-0.2
		1.25	0.2	1.88	1.47	355	-46	-14.5	-2.6
		2.20	0.0	3.0Z	2.30	308	-41	0.0 -50.3	0.0
		4.00	0.0	4.98	3.89	346	-38 -36	0.0	0.0
	10	0.50	0.0	4.98 0.99 2.10 3.41	3.89 0.77 1.64 2.66	357	-47	0.0	0.0
		1.25	0.4	2.10	1.64	354	-44	-38.3	-6.8
		2.25	0.0	3.41	2.66				0.0
		3.25 4.00	0.0 0.0	4,/0	3.0/	347 345	-37 -35	0.0 0.0	0.0
\$n	b-total	4.00	3.4	5.07	3.67 4.42		o East	0.0	0.0
30			<b>J</b> •7			East t	o West	-152.7	-27.0
rand-total			10.9			West t	o East o West	122.6 -477.7	21.7 -84.6

Table 1.3-11(6/6) BREAKDOWN OF LONGSHORE TRANSPORT RATE CALCULATION (PAPAR)

Note <1 : Angle between wave crest and shoreline

					Wave Hei	ght		
Direction: D	Period: I (sec)	0.0<=	0.5<=	1.0<-	1.5<=	2.0<=	2.5<=	Total
	,	<0.5	<1.0	<1.5			<3.0	
345<≃ D <15	5<≃ T <7	0	4	. 1	0	0	0	
	7<≕ T <9	2	-		-	+	_	2
15<= D <45	5<≃ T <7	3	44	20	4	0	Ö	7
(NNE)	7<= T <9	14	29	35	10	15	· 1	10
	9<= T	0	8	1	0	0	0	
45<= D <75	5<= T`<7	3	12	17	0	0	0	3
(ENE)	7<≏ ĭ <9	2	16	55	15	11	1	10
	9<= T	0	1	3	0	0	0	
Total		24	130	137	29	26	2	34

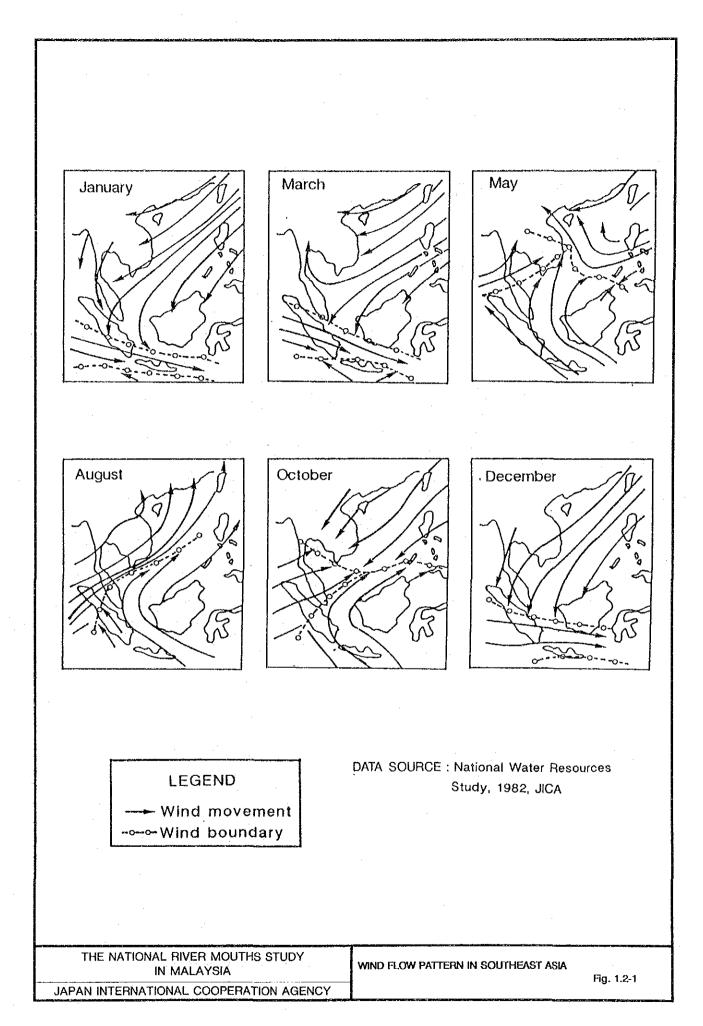
## Table 1.4-1 NUMBER OF WAVES BY DIRECTION.PERIOD AND HEIGHT FOR PERIOD FROM OCT.26 - NOV.23. 1992

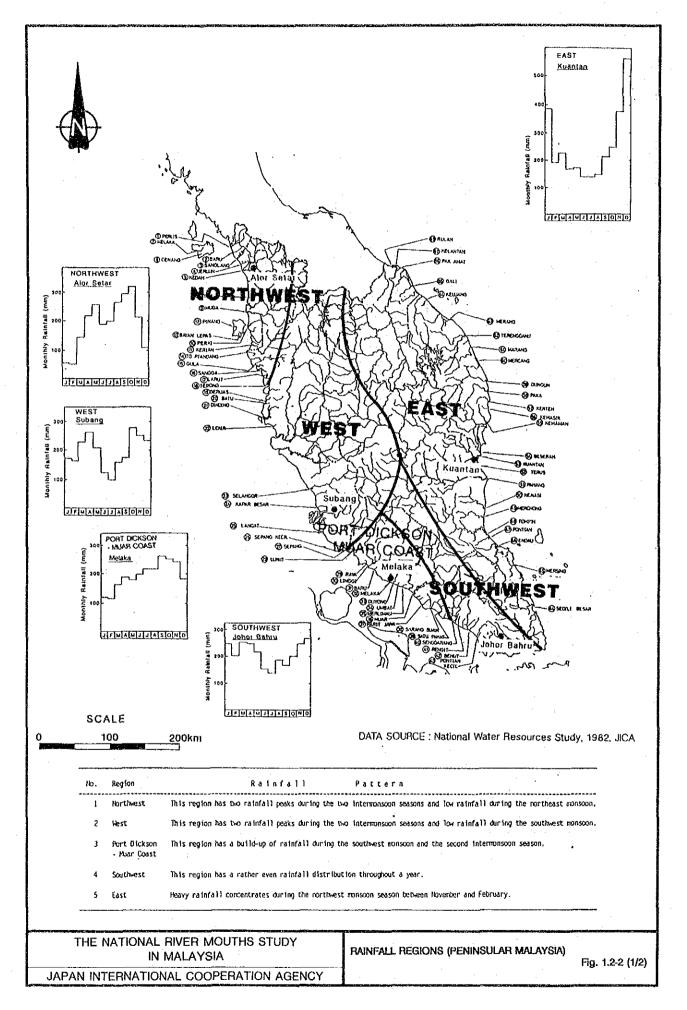
.

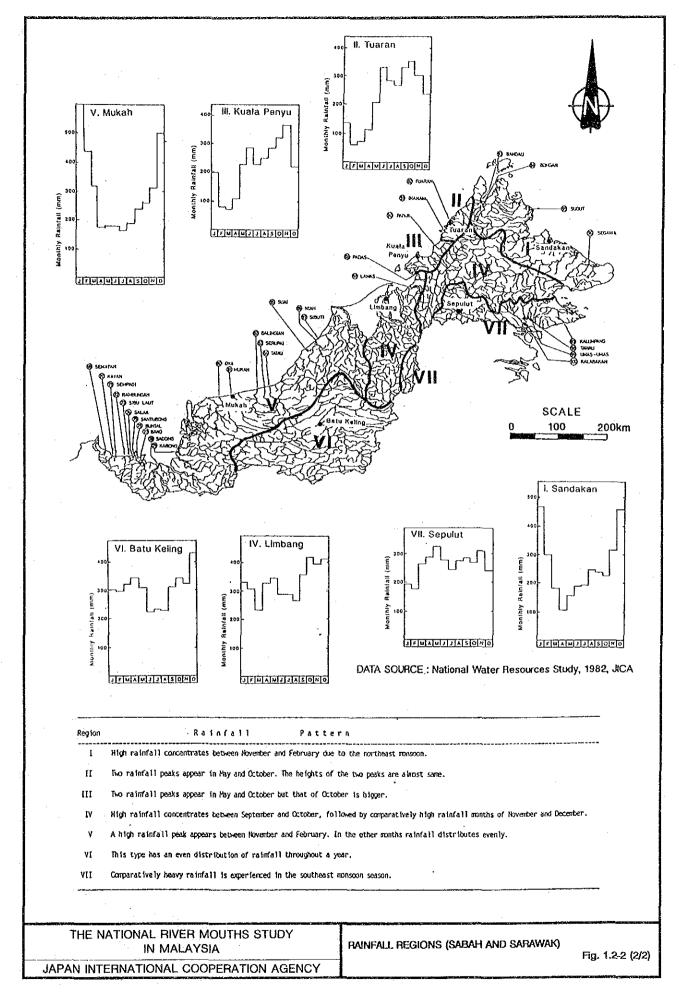
Table 1.4-2	BREAKDOWN OF	LONGSHORE	TRANSPORT	RATE	CALCULATION	USING	leo data	(MARANG)
nreline Orientat	ion + 330	N ·	· · · ·		1. J. S.			

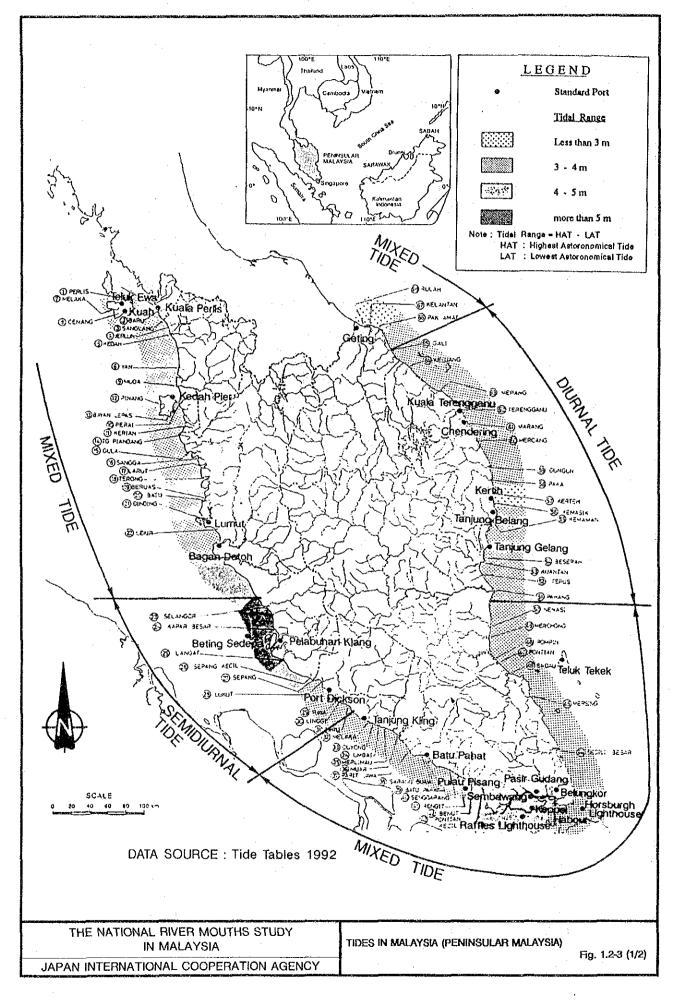
Ocean Wave Char Nirection Perio	acteri Keicht	stics	Brea	ik Ing Wav	e Character Direction	istics	Longshore Energy Flux Factor	Longshore Transport
Nirection Perio	(m)	(4)	(m)	(n)	N	(deg.)	(J/m/s)	(1000m3/yr)
0 6 (N) 8 10	0.75 1.25 2.25 2.75 0.75 1.25 2.75 1.25 2.75 0.75 1.25 2.75 0.75 1.25 1.75 2.25	$\begin{array}{c} 1.15\\ 0.29\\ 0.00\\ 0.00\\ 4.60\\ 1.44\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$	0.87 1.41 1.94 2.43 2.91 1.08 1.55 2.02 2.57 3.11 0.74 1.19 1.61 3.03	0.68 1.10 1.52 1.89 2.27 0.85 1.21 1.58 2.01 2.43 0.58 0.93 1.25 2.36	32 29 26 25 24 41 40 38 36 45 44 43 35 35	28 31 34 35 36 18 19 20 22 24 15 16 17 25	280 996 2,317 4,109 6,527 348 883 1,776 3,566 6,155 111 393 873 5,911	4.1 3.7 0.0 0.0 20.7 16.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sub-total	2.75	0.00 7.48	3.57	2.78			South to North	0.0
30 6 (NNE)	1.25	12.64 5.75 1.15 0.00 0.00	1.05 1.61 2.19 2.82 3.46	0.82 1.25 1.71 2.20 2.70	33 32 32 32 32	27 28 28 28 28 28	440 1,294 2,827 5,325 8,804	71.7 96.0 41.9 0.0 0.0
8	0.75 1.25 1.75 2.25 2.75	8.33 10.06 2.87 4.31 0.29	1.31 2.04 2.68 3.31 3.92	1.02 1.59 2.09 2.58 3.06 1.18	41 43 45 45 43	19 17 15 15 17	585 1,614 2,841 4,816 8,304	62.9 209.4 105.2 267.7 31.1
10	0.75 1.25 1.75 2.25 2.75	2.30 0.29 0.00 0.00 0.00	1.51 2.28 3.02 3.70 4.35	1.18 1.78 2.35 2.89 3.39	46 42 37 38 39	14 18 23 22 21	634 2,157 5,449 8,698 12,719	18.8 8.1 0.0 0.0 0.0
Sub-total		47.99	. •				North to South South to North	912.8 0.0
60 6 (ENE) 8	0.75	3.45 4.89 0.00 0.00 0.00 4.60 15.80 4.31		0.84 1.31 1.77 2.24 2.69 0.98 1.50 2.00	59 67 70 68 66 56 63	1 353 350 352 354 4 357 354	14 (430) (1,320) (1,875) (2,238) 130 (248) (1,104)	0.6 (27.1) 0.0 0.0 7.7 (50.6) (61.4)
10	2.25 2.75 0.75 1.25 1.75 2.25 2.75	3.16 0.29 0.86 0.00 0.00 0.00	3.19 3.78 1.42 2.17 2.86 3.53 4.17	2.48 2.95 1.10 1.69 2.23 2.75 3.25	68 66 56 57 60 60	352 354 4 3 0 360 360	(2,311) (2,608) 158 334 44 (124) (218)	(94.2) (9.8) 0.6 3.7 0.0 0.0 0.0
Sub-totał		37.65					North to South South to North	12.6 (243.1)
90 6 (E) 8 10		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.12 1.70 2.27 2.82 3.36 1.11 1.68 2.24 2.80 3.32 1.25 1.93 2.55 3.16	0,87 1,33 1,77 2,20 2,62 0,86 1,31 1,75 2,18 2,59 0,97 1,50 1,59 2,46	82 79 78 68 71 72 70 69 64 65 65	330	(335) (1,192) (2,546) (3,952) (5,904) (173) (665) (1,481) (2,176) (3,067) (101) (448) (1,200) (2,459)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sub-total	2.75	0.00	3.73	2.91	69	351	(4,034) North to South South to North	0.0
120 6 (ESE)	0.75 1.25 1.75 2.25	0.00 0.00 0.00 0.00	1.05 1.66 2.27 2.88	0.82 1.30 1.77 2.24	69 81 88 89	351 339 332 331	(158) (1,134) (3,075) (5,628)	0.0 0.0 0.0 0.0 0.0
8	2.75 0.75 1.25 1.75 2.25 2.75 0.75	0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.41 0.87 1.40 1.91 2.47 3.03 1.12	2.66 0.68 1.09 1.49 1.92 2.36 0.87	90 67 75 82 84 84 75	330 353 345 338 336 336 336 345	(8,912) (78) (537) (1,679) (3,392) (5,745) (212)	0.0 0.0 0.0 0.0 0.0 0.0
Sub-tota)	1.25 1.75 2.25 2.75	0.00 0.00 0.00 0.00 0.00	1.12 1.70 2.28 2.84 3.35	0.87 1.33 1.78 2.22 2.62	80 82 82	345 340 338 338 338	(313) (1,155) (2,607) (4,427) (6,795) North to South South to North	0.0 0.0 0.0 0.0 0.0 0.0
rand-total		93.12			· · · · · · · · · · · · · · · · · · ·		North to South	970.4

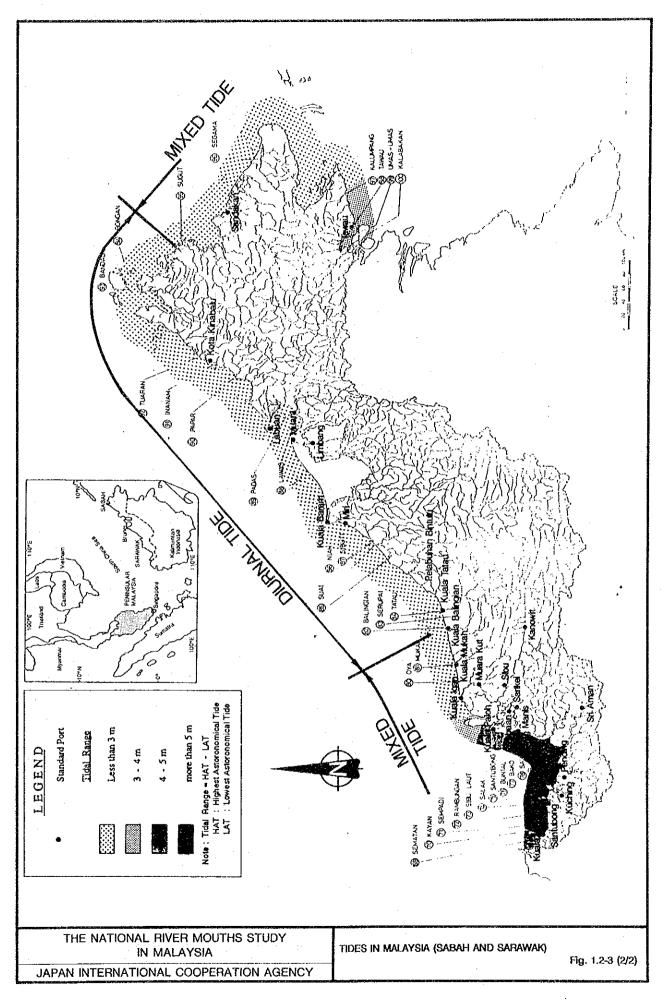
Note <1 : Angle between wave crest and shoreline


.


No.	Date	Time	Wave Perlod T (sec)	Breaker Height Hsb (m)	Surf-zone Width W (m)	Current Speed VLEO (m/min)	Distanc to Dye Patc X (m)	Direct-	Dimensionless Longshore Current (V/VO)LH	Longshore Energy Flux Factor Pls (J/m/s)
***		VDUDEAN						************	وع وغ من به منه منه من من من من	
1	01-Apr-93	1830	8.9	0.2	9	3			0.295	-3.9
2	04-Apr-93	1800	10.2	0.5	8	6			0.200	-25.6
3	05-Apr-93	1800	11.2	0.5	10	1			0.287	~26.0
4	07-Apr-93	1800	9.9	0.3	8	6			0.258	-11.9
5	08-Apr-93	1800	11.6	0.5	8	7			0.200	-29.8
6	09-Apr-93	1800	12.0	0.4	1	6			0.200	-17.9
7. 8	11-Apr-93	1800 1830	11.8 8.8	0.1 0.4	9	4			0.295	-2.6 -20.5
9	13-Apr-93 14-Apr-93	1800	9.8	0.4	9	5			0.200 0.253	-11.4
10	15-Apr-88	1800	11.0	0.3	, 9	4			0.295	-7.8
n	16-Apr-93	1830	9.0	0.3	8	9			0.258	-17.8
12	17-Apr-93	1800	7.8	0.5	10	6			0.287	-22.2
13	18-Apr-93	1830	9.4	0.3	. 9	5			0.253	-11.4
14	20-Apr-93	1830	8.2	0.4	10	7			0.287	-20.8
15	21-Apr-93	1830	8.8	0.4	10	7			0.287	-20.8
16	22-Apr-93	1800	11.1	0.3	9	5	8	-1	0.253	-11.4
17	23-Apr-93	1800	7.8	0.5	9	. 6	8	-1	0.253	-22.8
18	24-Apr-93	1800	8.2	0.2	8	6			0.200	-10.2
19	25-Apr-93	1830	11.3	0.3	8	5			0.258	-9.9
20	26-Apr-93	1830	11.1	0.2	9	6			0.253	-9.1
21	27-Apr-93	1800	9.4	0.4	7	5			0.200	-14.9
22	28-Apr-93	1800	9.4	0.4	8	5			0.200	-17.1
23	30-Apr-93	1800	10.2	0.2	9	6			0.253	-9.1
24	09-May-93	1730	9.9	0.4	. 7	5			0.200	-14.9
25	12-Hay-93	1730	7.9	0.5		2			0.200	-8.5
26	16-May-93	1730	9.9	0.4	9	3			0.253	-9.1
27	17-May-93	1730	9.8	0.3	9	2			0.200	-5.8
28 29	19-May-93 20-May-93	1730 1730	11.4 9.8	0.5 0.6	10 9	3			0.248 0.253	-17.2 -13.7
30	21-May-93	1730	11.2	0.3	9	4			0.253	-9.1
31	22-May-93	1730	9.6	0.5	8	5			0.258	-16.5
32	23-May-93	1730	8.5	0.6	10	3			0.287	-13.3
33	25-May-93	1730	9.1	0.4	10	2			0.287	-5.9
34	26-May-93	1730	10.0	0.5	10	3		-i	0.287	-11.1
35	27-Hay-93	1730	8.1	0.6	8	4		-1	0.304	-13.5
36	28-May-93	1730	8.3	0.7	9	9			0.253	-47.9
37	29-Hay-93	1730	11.5	0.4	11	5			0.311	-15.1
38	30-Sep-88	1730	8.8	0.6	9	5			0.295	-19.5
39	06-Jun-93	1027	7.1	0.2	8	4			0.304	-4.5
40	07-Jun-93	1109	. 5.9	0.2	8	4			0.200	-6.8
41	08-Jun-93	1147	6.2	0.3	10	5			0.248	-12.9 -7.6
42 43	09-Jun-93 10-Jun-93	1221 1252	6.4 6.4	0.2	9 10	5			0.253 0.287	-7.6
4J 44	13-Jun-93	1346	6.4	0.2	10	3			0.287	-6.7
45	14-Jun-93	1403	6.0	0.3	9	5			0.295	-9.8
46	14-Jun-93	706	6.9	0.2	9	5			0.200	-9.6
47	21-Jun-93	1819	6.0	0.3	9	5			0.253	-11.4
48	22-Jun-93	1054	6.8	0.2	9	5			0.253	-7.6
49	23-Jun-93	1130	6.9	0.3	9	6			0.253	-13.7
50	25-Jun-93	.300	7.4	0.3	10	6	9	-1	0.248	-15.5
51	26-Jun-93	1302	5.7		11	6		-1	0.281	-15.0
52	28-Jun-93	1344	7.0	0.3	10	5			0.287	-11.1
53	29-Jun-93	1355	5.8	0.3	10	6			0.248	-15.5
54	08-Ju1-93	1145	8.0	0.2	8	4			0.200	-6.8
55	09-Ju1-93	1206	6.8	0.4	9	6		-	0.200	-23.0
56 67	20-Ju1-93	957	5.1	0.4	9	8		-	0.200	-30.7
57 58	21-Ju1-93 08-Oct-93	1035 815	7.0 6.6	0.2 0.5	7 10	6 8			0.200 0.200	-9.0 -42.6
	Average		8.6	0.4	8.9	5.1	7.9		0.250	-14.5
					*******		********	****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(	urrent Direc	0	: No long	er's left  shore mov  sr's right	rement					


## Table 1.4-3 ESTIMATION OF LONGSHORE ENERGY FLUX BY USING LEO DATA (PANTAL MARANG STATION)


. .


## FIGURES

