In addition, the Coastal Engineering Branch should commence shifting its focus of attention from engineering measures for coastal erosion to management of the coastal zone with comprehensive integrated coastal zone management. This is to ensure that any works in connection with river mouth improvement and port development will not result in increased coastal erosion and in turn other development projects in and outside the coastal zone will not adversely affect the river mouth. The Branch will therefore be in a position to provide technical advice on the actions to be taken to reduce or eliminate undesirable effects on the coastal zone that will occur due to natural or human-induced actions both upstream and within the coastal zone itself.

The role of the Dredging Committee and the Fisheries Development Committee of the Ministry of Agriculture should be maintained, since they are the most appropriate bodies to establish the policy for the dredging of river mouths as well as to finalize and approve the dredging programme.

The Marine Department shall continue with its responsibility of maintenance of river mouths and river channels leading to commercial ports. In view of the availability of private dredgers, the Marine Department may wish to contract out its dredging works as is being practiced by the Department of Irrigation and Drainage. The possibility of establishing a private national dredging company to carry out the works of both Departments should be considered.

The increased volume and the assurance of a long term contract based on a continuous dredging program, will most probably increase efficiency and reduce costs.

4.4 Financial Considerations

The present dredging programme is drawn up based on the demands and needs of the fishermen. As such, almost all river mouths with fisheries activities require improvement. However, in many cases, the more feasible and less costly option is to move the fishing activities elsewhere and allow the existing problem to remain rather than solve it.

In accordance with the National Agriculture Policy, future development of the fisheries sector will stress on deep-sea fishing, which will mainly be concentrated in the East

4-8

Coast of Malaysia. This fact is confirmed by the development plans of both LKIM and the Fisheries Department, which show the development of large LKIM fishing ports and the projection of expansion of fishing boat size to be mainly concentrated in the East Coast of Malaysia.

In view of the development plans of the Fisheries Department and LKIM, it is proposed that the status quo of existing river mouths which have not been identified for expansion of landing facilities be maintained. This means that only nominal dredging works need to be carried out to maintain or restore accessibility for existing boats of 10 GRT and below.

For river mouths where fishing facilities are to be expanded, it is important that more permanent solutions are recommended for implementation. In any case, all proposed projects should undergo feasibility studies before proceeding to detail design and implementation.

At present, the Federal Government finances all capital works on river mouths, whether it is dredging or structural works. The State Government provides no funding, and neither do the beneficiaries contribute towards the cost of the capital works.

However, siltation of river mouths is a natural and continuous phenomenon. Hence, even after dredging, further maintenance dredging on a regular basis has to be carried out to ensure that the dredged channel remains accessible throughout the year. The financing of this maintenance dredging is now in contention.

As a result of lack of funding for capital dredging, no such dredging works are carried out in the ensuing years, resulting in the dredged river mouths becoming inaccessible again within a year or two.

The existing practice of funding for capital dredging through the Malaysia Plan is adequate and should be maintained. However, the provision of funds for maintenance dredging has to be seriously considered. Some of the options available are:

(1) Federal Government to finance both capital and maintenance dredging costs.

4-9

- (2) Federal Government and State Government to share the cost of maintenance dredging in the proportion to be mutually agreed.
- (3) State Governments to finance maintenance dredging cost.
- (4) The beneficiaries, i.e., the fishing boat owners, to contribute towards the cost of maintenance dredging.
- (5) Only commercial fishing boats of 40 GRT and above are to contribute towards the cost of maintenance dredging.

In considering the above options, it should be noted that rivers are basic infrastructures provided by nature at no cost to the communities. One of the normal and natural functions of a river is to provide navigation to boats. Thus, compared to roads and highways which are developed at very high costs, rivers are available for transportation of people and goods at no capital cost. From this perspective, it is therefore reasonable that public funds are provided to maintain rivers in their natural form, especially when the deterioration to a river's navigational capacity is due to adverse impacts of development.

However, for deepening and maintenance of river mouths and channels beyond their natural or normal capacities, in order to cater for increased boat sizes, then it is logical and fair that the beneficiaries should contribute either in full or partially for the cost of the capital and maintenance works.

CHAPTER 5. RECOMMENDATIONS

- (1) In this Feasibility Study, river mouth improvement plans for Tg. Piandang and Marang are formulated, and it is confirmed that the river mouth improvement projects for these two river mouths are both technically feasible and economically viable with the Economic Internal Rate of Return (EIRR) of 17.0% and 11.1%, respectively. Therefore, it is strongly recommended that the projects be promoted to the next stage of implementation at the earliest possible opportunity.
- (2) In the case of Tg. Piandang River Mouth, dredging in combination with capital and maintenance dredging is selected as the optimum countermeasure. Under past experiences, only capital dredging is undertaken and maintenance dredging is never executed due to financial restrictions, so that the river mouth easily returns to its original condition before dredging. In this connection, it is recommended that maintenance dredging be carried out on a regular basis to ensure the accessibility of the river channel throughout the year. For this purpose, the provision of funds for maintenance dredging should be considered from among the options for financial sources including the Federal and State governments and beneficiaries.
- (3) In the case of Marang River Mouth, a combination of structural measures including the jetty, the breakwater, the river and coastal groins, and the reservoir, as well as capital dredging, is selected as the optimum countermeasure. Such coastal structures may bring about adverse influences to the adjacent coastal zone. Although the magnitude of the influence has been examined through the physical model study and numerical analysis, the construction should be implemented in a phased fashion with monitoring of the influences.
- (4) From the environmental impact study, it is confirmed that the projects will not give severe adverse impacts to the environment in the objective areas. However, the timing of construction works should be carefully examined to

minimize any adverse environmental impact. In this connection, it is recommended that construction works should be undertaken with monitoring of such impacts.

- (5) From the flood control aspect, these two river mouths are currently free from flood damage because of the present land use conditions therearound. However, flooding problems may be brought about by future land development unless this is undertaken considering the potential flood-prone areas. In this connection, it is recommended that future land development should be carefully monitored to minimize future flood damage.
- (6) To decide on the design features of the proposed breakwater and jetty at the Marang River Mouth, a physical model is constructed in the feasibility study. Since the model is, at present, still in the laboratory of the DID Ampang Branch Office, this should be utilized to examine any drastic change affecting the design features in the further study stage.
- (7) In this Feasibility Study, the projects are formulated under the limited monitoring data collected such as wave, current and geomorphology. In this connection, regular monitoring programs should be provided for a better understanding of the features of the objective river mouths.
- (8) The feasibility of the projects is concerned with the fishing activities which may change in the future area development, although the projects are formulated putting emphasis on the technical and economical aspects but not the future fishing industry. In this connection, it is desirable to confirm the necessity of the projects in line with the future development of the fishing industry.

5-2

TABLES

Table 1.1-1	FEATURES OF	RIVER	MOUTH

Coast	Serial	Name	Catchment Area	No. of Fishing Boats	No, of Fishermen	No. of Commer- cial Boats	Expected Minimum Water Depth (m)	B/C Ratio
		***************	*********	*********			• •	
	5	Kedah*	3,060	536	1,716	77	3.0	2.8
Muddy	14	Tg.Piandang	•	486	1,042		1.5	1.7
(West)	19	Beruas*	220	655	1,595	_	0.9	2.2
(23	Selangor	1,820	189	397	•	1.2	0.10
Sandy	1	Perlis*	600	432	2,333	20	0.6	2.40
(West)	9	Muda*	4,300	201	504	~	1.0	0.14
	32	Melaka	500	111	311	**	1.2	0.28
-								
	45	Mersing*	250	290	435	**	0.8	0.39
Sandy	53	Kuantan*	1,710	163	570	45	2.6	1.70
(East)	61	Marang*	360	188	715	-	0.5	1.49
	62	Terengganu*	4,650	107	417	161	3.3	0.34
	67	Kelantan*	12,900	208	666	**	1.7	0.88

* : Dredging work has been conducted or scheduled.

** : Data is not available.

· · · · · · ·				n-coming					lut-going		
iver Mouth/ urvey Date (1993)		F		loats	Tourist Boats	Total	F		loats	Tourist Boats	Tota
(1992)	*****	•		>=10GRT	upoposis		Sampan	<10GRT	>=10GRT		
ig. Pianda	ng										
30 June	Wed.	40	237	0	0	277	54	256	.0	0	310
2 July	Fri.	19	411	0	0	430	26	376	0	0	402
4 July	Sun.	59	324	0	0	383	54	365	0	0	419
14 July	Wed.	12	276	0	0	288	22	256	0	0	278
18 July	Fri.	73	397	0	0	470	57	421	0	0	478
21 July	Wed.	68	192	0	0	260	72	251	0	0	323
23 July	Fri.	67	253	0	0	320	83	297	0	0	380
25 July	Sun.	42	269	0	0	311	39	313	0	0	352
larang			-								÷
16 June	Wed.	42	76	25	51	194	50	53	26	68	197
18 June	Fri.	11	30	13	65	119	19	18	34	72	143
20 June	Sun.	11	36	34	75	156	20	36	36	73	165

Table 2.1-1 SUMMARY OF NAVIGATION SURVEY RESULTS

. •

Table 2.1-2 WATER QUALITY (TG. PIANDANG)

									3				
	Temp.	Salinity	Cond.	D0	рH	BOD	COD	N-NH	PO P	SS	0i1 &	TC	FC
Station	(°C)	(ppt)	(uS/ca)	(mg/1)		5 (mg/1)	(mg/1)	3 (mg/1)	4- (mg/1)		Grease (mg/l)	(MPN/100ml)	(MPN/100m1)
PS *	29.6	33.5	39,625	4.8	8.00	3	-	0.029	0.003	394	N.D.	9.1x10 [^] 3	9.1x10 ³
P1	29.3	31.8	38,375	4.4	7.85	4	-	0.156	0.004	1,634	N.D.	6.5x10 ⁴	6.0x10 ⁴
P2	29.2	25.5	36,125	1.6	7.58	8	~	0.236	0.046	15,736	N.D.	3.1x10 ⁵	3.1x10 ⁵
P3	29.6	11.3	16,000	0.6	7.55	6	-	1.975	0.110	9,766	2.5	7.1x10 ⁵	7.1x10 ⁵
P4	29.8	0.8	2,750	1.0	7.25	11	144	2.515	0.166	2,662	3.6	3.4x10 ⁵	2.5x10 ⁵
P5	29.9	N.D.	243	2.0	6.50	16	73	1.265	0.180	39	0.5	7.1x10 ⁵	7.1x10 ⁵

Note * Sampling station for coastal waters off river mouth.

N.D. Not detected.

T - 3

Table 2.1-3 MEAN CONCENTRATION OF HEAVY METAL. (Tg. Plandang)

Sampling	Pb	Zn	Cu	Cd	Hg
Station	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)
Total Metals)					
PS *	81	352	11	351	1.4
P1 .	76	361	11	296	1.0
P2	80	318	19	389	1.
P3	80	285	133	2,434	2.0
P4	109	289	94	391	2.3
Р5	169	681	721	926	4.0
Mean	116	381	165	798	2.3
Non-residual M	etals)		· ·		
Non-residual M PS *	letals) 31		4.6	81	N.D
	-	 36 39	4.6 5.7	81 95	
PS *	31				N.D
PS * P1	31 31	39	5.7	95	N.D N.D N.D N.D
PS * P1 P2	31 31 32	39 50	5.7 14	95 114	N.D.
PS * P1 P2 P3	31 31 32 35	39 50 64	5.7 14 19	95 114 100	N.D N.D N.D

Note * : Samples collected off river mouth.

N.D. Not detected.

	Item	Unit	Quantity	Remarks
•	Dredging Works			
	1) Captial Dredging			
	Outer	cu.m.	56,500	L=1900 m
	Inner	cu.m.	58,900	L=900 m , mooring area
	2) Maintenance Dredging			
	Outer	cu.m.	47,900	assume siltation return
	Inner	cu.m.	7,500	0.9m outer, 0.3m inne
•	Shiping Jetty Works	· . ·	·	
	1) Clearing and Grubbing	sq.m.	2,000	
	2) Embanhment	cu.m.	300	
	3) Reddish sand	cu.m.	300	t=0.15 m
	4) Gravel Pavement	sq.m.	2,800	t=0.2 m
	5) Wooden Works for Jetty	sq.m.	720	(40.0m*6.0m*3 jetties
	6) Jetty House	Ł.\$.	· 1	
•	Bank Protection			
	1) Stone Masonry	cu.m.	42	with concrete
	2) Gabion Mattress	sq.m.	1,050	used gabion mattress (3.0m*1.5m*0.5m)

Table 2.3-1 WORK ITEMS AND QUANTITIES OF TG. PIANDANG RIVER MOUTH IMPROVEMENT PROJECT

T - 5

Particular	Method 1 Cutter Suction Dredger	Method 2 Dredging Machine (Cutter Suction)	Method 3 Grab (Clamshell) Dredger	Method 4 Trailing Suction Hopper Dredger
Operation of dredger and Water depth and Waves	Approach from the offshore sea is required due to the deep draft of the dredger.	Not applicable against big waves. Employed only in inner channel.	Approach from the offshore sea is required due to the deep draft of the dredger.	The nearshore zone is too shallow for this dredger to pass during low tide.
Dumping Site of Dredged Materials	Disposal by pipeline to the spoil bank provided on the coastal area.	Disposal by pipeline to the spoil bank provided on the coastal area.	Offshore sea more than 3 km away from the river mouth.	Offshore sea far away from the river mouth. It takes a lot of time.
Impact on Fishing Boats	Pipeline Might be obstructive to the passage of fishing boats.	Pipeline Might be slightly obstructive to the passage of fishing boats.	Almost no problem.	Fishing boats will be affected in the inner channel.
Disposal of Dredged material and Environmental Impact	About 9 ha. of mangrove swamp will be converted into spoil bank. Impact study is neccessary.	About 6 ha. of mangrove No serious problem swamp will be converted expected. into spoil bank. Investigation on fish Impact study is neccessary. zone is neccessary.	No serious problem will be expected. Investigation on fishing zone is neccessary.	No serious problem will be expected. Investigation on fishing zone is neccessary.
Economical Aspect	Most efficient method. Usually economical, but pipeline setting is costly.	Usually economical, unless dumping site is very far from dredging site.	Usually economical, unless A little higher than method 1. dumping site is very far from dredging site.	Can be economical if the water depth is deep enough and volume is big.
Assesment	This can be a alternative plan Not applicable for both inner and outer outer channel channel dredging. Suitable for th Environmental impact study nance dredgir on the area around spoil bank inner channel. is neccessary.	Not applicable for the outer channel dredging. Suitable for the mainten – nance dredging of the inner channel.	This can be a alternative plan for both inner and outer channel dredging. Investigation for the dumping site at sea is neccessary.	Not preferable.

Table 2.3-2 COMPARISON OF DREDGING METHOD

T - 6

 $^{\pm 1}$

	Particular	Cutter Suction Dredger (Method 1)	Grab (Clamshell) Dredger (Method 3)
1.	Dredging Capacity – Dredger – Hourly Production – Daily Production	1350 HP (Diesel) Class 390 m3 5,460 m3	Grab Dredger 320 HP,3 m3 115 m3 1,150 m3
2.	Working and Operation Hour	18 hours (2 shifts) 14 hours Operation	11 hours 10 hours Operation
3.	Dumping Site of Dredged Material	Spoil Bank on the coastal area $A = 90,000 \text{ m}2$ (600m x 150m)	Offshore Sea more than 3 km away from river mouth
4.	Conveyance Method of Dredged Material	Discharging by Pipeline Length = 2,000m - 700m (Average 1,500 m)	Dumping by Hauling Barge Hauling Distance = 2,000 - 4,000 m (Average 3,000 m)
5.	Necessary Equipment,Machines and Vessels	Discharging Pipe,Floater, Support of Pipe , Anchor Barge (1), Tug Boat (1)	Anchor Boat (1), Tug Boat (2) Hauling Barge 90m3 (3) Lighting Equipment and others
6.	Cost of Dredging V=100,000 m3 - Operation of Dredger - Pipeline Setting(1,500 m) - Spoil Bank Treatment - Others	100,000 m3 x 6.2 RM/m3 = 620,000 RM 205,000 RM 140,000 RM	100,000 m3 x 8.5 RM/m3 = 850,000 RM
7.	Required Time for Dredging Work – Operation Time of Dredger – Other Works		3.5 Month 0.5 Month Total 4.0 Month
В.	Impact on Navigation of Fishing Boats	Pipeline may be obstructive to the passage of fishing boats.	No serious problem is expected
9.	Impact on Surrounding Environment	About 9 ha. of mangrove area will be converted into spoil bank but discharged water from spoil bank will not affect surrounding ecology.	
0.	ASSESSMENT	Total cost is estimated to be a little higher than Grab Dredger. Not preferable for the navigation of fishing boats and preservation of mangrove.	•

Table 2.3-3 DETAILED COMPARISON OF CUTTER SUCTION DREDGING AND GRAB (CLAMSHELL) DREDGING

	Work Item	Unit	Calculated Unit Cost (RM)
	17 # 2 6 h a b a z 0 h 3 h 0 h 3 h b a a d a g 3 % 3 % k 2 z b z a a a z 0 2 % 6 h 4 h z a b	ᄧᇑᇊᅊᇏᅿᇵᇶᆤᇥᇸᆋᆺ	,299952225252525
ι.	Dredging by Grab (Clamshell) Dredger		
	for Muddy Soil (Average Hauling Dis. 3.0 km)	cu.m.	8,50
	- for Outer Channel (Hauling dis. = 2.0 km)	cu.m.	7.60
	- for Inner Channel (Hauling dis. = 3.5 km)	cu.m.	9.50
2.	Dredging by Cutter Suction Dredger		
	for Loose Sand (Average Hauling Dis. 600 m)	cu.m.	6.44
3.	Dredging by Breaker and Grab Dredger		
	for Soft Rock	cu.m.	20.00
1.	Excavation for Structure	cu.m.	3.68
5.	Embankment for Bund (Using excavated		
	material nearby Bund)	cu.m.	3.08
6.	Embankment by Using Borrow Pit Material	cu.m.	16.36
7.	Clearing and Grubbing	sq.m.	0.78
8.	Sodding	sq.m.	5.51
9.	Gravel Pavement	sq.m.	4.63
10.	Stone Masonry with Concrete	CU.M.	137.04
11.	Supply,Delivery and Placing Gabion mattress (1.5m x 1.2m x 0.5m)	sq.m.	58.81
12.	Supply,Delivery and Placing Geo-textile Mat	sq.m.	29.34
13.	Concrete without Reinforcing Bar	cu.m.	195.00
14.	Supply,Delivery and Placing Rock/Stone		
	1) Armor Stone 1 , 3 - 5 ton	cu.m.	87.94
	2) Armor Stone 2 , 1 - 3 ton	cu.m.	84.79
	3) Secondary Stone , 300 - 500 kg	cu.m.	63,48
	4) Core Stone 1 , 100 - 300 kg	cu.m.	60.10
	5) Core Stone 2 , 10 - 100 kg	cu.m.	55.31
15.	Wooden Works for Jetty	ea.	16,200
16	Bank protection for River Mouth Reservoir	m	10.00

Table 2.3-4 SUMMARY OF UNIT CONSTRUCTION COST

1. Unit costs are composed of direct cost and indirect cost. Direct cost includes material, labor and equipment costs, and indirect cost covers overhead contingencies, miscellaneous and profit of the contractor.

 $\ensuremath{\textbf{2}}.$ Unit cost of dredging does not include spoil bank treatment cost.

3. Assumed that rock materials are locally available (within 30 km).

T - 8

Work Items	Unit	Quantit	Unit Cost (RM)	Total (RM)
I. Main Construction				1,471,00
 Preparatory Works (10% of Main & Miscel. Works including Mobilization/Demobil.) 	1.s.	1		134,00
2. Main Works				1,215,00
(1) Navigation channel Dredging				
1) Dredging for Muddy Soil (Outer)	cu.m.	56,500	7.60	429,00
2) Dredging for Muddy Soil (Inner)	cu.m.	58,900	9.50	560,000
3) Lighting Equipment and others	l.s.	1	70,000	70,00
(2) Jetty Works for Fishing Boat				
1) Clearing and Grubbing	sq.m.	2,000	0.78	2,00
2) Filling (Using Job Site Materials)	cu.m	300	3.08	1,00
3) Embankment(Using Borrow Pit Materials)	cu.m	300	16.36	5,00
4) Gravel Pavement 20 cm thick	sq.m.	2,800	4.63	13,00
5) Wooden Works for Jetty	ea.	3	16,200	49,00
6) Jetty House	l.s.	1	18,000	18,00
(3) Bank Protection				
1) Stone Masonry (Using concrete)	cu.m	42	137.04	6,00
2) Gabion Mattress $(3.0m \times 1.2m \times 0.5m)$	sq.m.	1,050	58.81	62,00
3. Miscellaneous Works (10% of Main Works)	1.s.	1		122,00
II. Compensation	sq.m.	0		
II. Engineering and Administration Cost	1.s.	1		147,00
(10 % of Main construction)				
<pre>/. Physical Contingencies</pre>	1.s.	1		162,00
(10 % of (I + II + III))				*****
Sub – Total				1,780,000
 Price Escalation 				129,00
***************************************	====&xa	**************************************	******	
TOTAL				1,909,000

Table 2.3-5 PROJECT COST OF TG. PIANDANG RIVER MOUTH IMPROVEMENT

rate is assumed at 2.4%.
Assuming that engineering services will commence in 1994 and construction will terminat in 1995.

Table 2.4-1 ANNUAL CASH FLOW OF TG. PIANDANG RIVER MOUTH IMPROVEMENT PROJECT

		8922222222222222		• •			Unit : '00)0 RM
			nic Project					·.
0.	Year	Construc-	-	Physical		Total	Fishery Benefit	Annua Cash
		tion	Admi.	Conti.	nance	· · · · · · · · · · · · · · · · · · ·		Flow
1 1	1994	96229928238	88.0	8.8	122222244222	96.8		-96.
2	1995	1.294.5	59.0	135.3		1,488.8	• • •	-1,488.
3	1996	1,20110	60.0	6.0	528.0	594.0	899.4	305.
4	1997		60.0	6.0	528.0	594.0	891.8	297.
5	1998		60.0	6.0	528.0	594.0	884.2	290.
6	1999		60.0	6.0	528.0	594.0	876.6	282.
7	2000		60.0	6.0	528.0	594.0	869.0	275.
	2001	-	60.0	6.0	528.0	594.0	862.0	268.
9	2002		60.0	6.0	528.0	594.0	855.0	261.
10	2003		60.0	6.0	528.0	594.0	848.0	254.
11	2004		60.0	6.0	528.0		841.0	247.
12	2005		60.0	6.0	528.0	594.0	834.0	240.
13	2006		60.0	6.0	528.0	594.0	834.0	240.
14	2007		60.0	6.0	528.0	594.0	834.0	240.
15	2008		60.0	6.0	528.0	594.0	834.0	240.
16	2009		60.0	6.0	528.0	594.0	834.0	240.
17	2010		60.0	6.0	528.0	594.0	834.0	240.
18	2011		60.0	6.0	528.0	594.0	834.0	240.
19	2012		60.0	6.0	528.0	594.0	834.0	240.
20	2013		60.0	6.0	528.0	594.0	834.0	240.
21	2014		60.0	6.0	528.0	594.0	834.0	240.
22	2015		60.0	6.0	528.0	594.0	834.0	240.
23	2016		60.0	6.0	528.0	594.0	.834.0	240.
24	2017		60.0	6.0	528.0	594.0	834.0	240.
25	2018		60.0	6.0	528.0	594.0	834.0	240.
26	2019		60.0	6.0	528.0	594.0	834.0	240.
27	2020		60.0	6.0	528.0	594.0	834.0	240.
28	2021		60.0	6.0	528.0	594.0	834.0	240.
29	2022		60.0	6.0	528.0	594.0	834.0	240.
30	2023		60.0	6.0	528.0	594.0	834.0	240.
31	2024		60.0	6.0	528.0	594.0	834.0	240.
32	2025		60.0	6.0	528.0	594.0	834.0	240.
33	2026		60.0	6.0	528.0	594.0	834.0	240.
34			60.0	6.0	528.0	594.0	834.0	240.
35	2028		60.0	6.0	528.0	594.0	834.0	240.
36	2029		60.0	6.0	528.0	594.0	834.0	240.
37	2030		60.0	6.0	528.0	594.0	834.0	240.
38	2031		60.0	6.0	528.0	594.0	834.0	240.
39	2032		60.0	6.0	528.0	594.0	834.0	240.
40	2033		60.0	6.0	528.0	594.0	834.0	. 2

Internal Rate of Return (IRR) =

16.98%

B/C (annual discount rate ; 8%) =

1.173

Table 3.1-1 WATER QUALITY	(MARANG)
---------------------------	----------

0 88322222	987989:				-2223	*======	.222232		 3-				,eaguessenee
Sampling	Temp.	Salinity	Cond.	DO	рН	BOD	COD	N-NH	PO	P SS	0i1 &	тс	FC
Station	(°C)	(ppt)	(uS/ca)	(mg/1)		5 (mg/1)	(mg/1)	3 (mg/1)	•) (mg/1)	Grease (mg/1)	(MPN/100m1)	(MPN/100m1)
984czoźz				********		*******	*****		aneczad		*****		**********
MS *	30.2	32.8	43,400	5.9	8.20	1	-	0.015	N.C	. 75	0.1		-
M1	30.0	25.9	42,500	5.9	8.24	1	-	0.023	N.D	. 77	0.4	_	-
M2	29.9	25.0	41,150	6.0	8.24	1	-	0.019	N.C	. 78	0.4	-	-
M3	30.0	23.8	39,750	6.4	8.18	1	-	0.038	0.00	6 76	0.6	-	-
M5	30.6	25.3	35,125	4.4	7.48	1	-	0.080	N.O	. 65	0.3	-	-
M6	27.5	3.5	4,038	5.5	5.96	1	48	0.069	N.D	. 30	0.8	-	-
M7	27.9	0.0	94	6.9	5.82	2	72	0.044	0.00	2 27	0.4	-	~
					4=====		220355		*******		*=====		

Note * Sampling station for coastal waters off river mouth.

N.D. Not detected.

T - 11

Table 3.1-2 MEAN CONCENTRATION OF HEAVY METAL (Marang)

Sampling	Pb	Zn	Cu	Cd	Hg
Station	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g
Total Metals)					
MS *	41	203	2.7	77	1.1
M1	31	241	2.5	84	1.
M2	47	206	2.5	127	3.
M3	31	199	2.7	61	1.
M4	60	198	6.6	99	2.
M5	46	192	12	101	2.
M6	37	202	2.9	63	1.
M7	51	148	8.4	100	2.
M8	59	233	29	107	2.8
C **	33	265	2.3	140	0.9
Mean	44	209	7.2	96	2.0
Non-residual M	etals)	- .			
MS *	1.3	1.3	0.10	10	0.02
M1	1.4	1.9	0.09	11	N.D.
M2	2.7	3.6	0.18	10	N.D
M3 -	3.2	2.2	0.32	< 10	N.D.
M4	8.1	7.8	1.1	91	Trace
M5	2.6	2.9	0.64	100	0.021
M6	7.3	12.0	0.42	38	N.D.
M7	1.5	2.9	0.60	14	0.020
M8	6.1	5.0	4.8	34	0.093
C **	1.1	2.0	0.08	< 10	N.D.
Mean	3.5	4.2	0.89	33	0.040

Note * : Samples collected off river mouth.

** : Composite sample of sand collected at the river mouth.

N.D. Not detected.

,

Item		Unit	Quantity	Remarks
1. Dredging Wor	^ks			
1) 20 GRT	Sand	cu.m.	42,000	Boat clearlance 0.6 m
2) 30 GRT	Rock Sand	cu.m. cu.m.	9,800 75,500	Boat clearlance 0.8 m
3) 40 GRT	Rock Sand	cu.m. cu.m.	15,900 109,000	Boat clearlance 1.0 m
	Rock	cu.m.	22,000	
2. Structure Wo	orks			
1) Breakwate	Armor Stone 1	cu.m.	15,700	L= 200 m 3-5 t
		cu.m.	11,200 11,300	300-500 kg 100-300 kg
	Geo-Textile Mat	sq.m.	2,200	440 m * 5 m
2) Jetty North	Jetty			L= 490 m
	Armor Stone 2 Core Stone 2	Cu.m. Cu.m.	19,600 18,800	1-3 t 10-100 kg
:	Geo-Textile Mat		2,450	490 m * 5 m
South	Jetty Armor Stone 2	cu.m.	12,600	L= 450 m 1-3 t
	Core Stone 2	cu.m.	10,900	10-100 kg
	Geo-Textile Mat	sq.m.	2,250	450 m * 5 m
3) River Gro	Armor Stone 2	cu.m.	1,840	L= 40 m * 2 1-3 t
	Core Stone	cu.m.	720	10-100 kg
4) Coastal (Broin Armor Stone 2	cu.m.	9,900	L≖ 200 m * 2 1-3 t
	Core Stone 2	cu.m.	7,800	10-100 kg
5) Reservoir	.	m	4,100	Excavation & Bank Worl

Table 3.3-1 WORK ITEMS AND QUANTITIES OF MARANG RIVER MOUTH IMPROVEMENT PROJECT

.

T - 13

**	Work Items	Unit	Quantity	Unit Cost (RM)	Total (RM)
	in Construction reparatory Works (10% of Main & Misce.	sce. I.s.		1,066,000	11,722,00
	orks including Mobilization and		1	1,000,000	2,000,00
De	emobilization of Dredger & Vessels)	-			
	ain Works				10,149,00
(1)	Breakwater				
	1) Armor Stone 1, 3 - 5 ton	cu.m.	15,700	87.94	1,381,00
	 (Supply,Delivery and Placing Rock) 2) Secondary stone , 300 - 500 kg (Supply,Delivery and Placing Rock) 	cu.m.	11,200	63.48	711,00
	 3) Core Stone 1 , 100 - 300 kg (Supply,Delivery and Placing Rock) 	cu.m.	11,300	60.10	679,00
	 Supply, Delivery and Placing Geotextile Mat 	sq.m.	2,200	29.34	65,00
(2)					
	1) Armor Stone 2 , 1 - 3 ton (Supply,Delivery and Placing Rock)	cu.m.	19,600	84.79	1,662,00
	 Core Stone 2 , 10 - 100 kg (Supply,Delivery and Placing Rock) Supply Delivery and Placing 	cu.m.	18,800	55.31	1,040,00
(2)	 Supply, Delivery and Placing Geotextile Mat 	sq.m.	2,450	29.34	72,00
(3)	South Jetty 1) Armor Stone 2 , 1 - 3 ton (Supply,Delivery and Placing Rock)	cu.m.	12,600	84.79	1,068,00
	 2) Core Stone 2 , 10 - 100 kg (Supply,Delivery and Placing Rock) 	Cu.M.	10,900	55.31	603,00
	 Supply ,Delivery and Placing Geotextile Mat 	sq.m.	2,250	29,34	66,00
(4)					
	1) Armor Stone 2, 1 - 3 ton	cu.m.	9,900	84.79	839,00
(5)	2) Core Stone , 10 - 100 kg River Groin	cu.m	7,800	55.31	431,00
(3)	1) Armor Stone 2, 1 - 3 ton	cu.m.	1,840	84.79	156,00
(6)	2) Core Stone , 10 - 100 kg Navigation channel Work	cu.m.	720	55.31	40,00
	1) Dredging for Loose Sand	cu.m.	109,000	6.44	702,00
	Dredging for Soft Rock	cu.m.	22,000	20.00	440,00
	3) Pipe Line Setting	1.s.	1	133,000	133,00
<i>(</i> - \	4) Spoil Bank Treatment	l.s.	1	20,000	20,00
•••	Reservoir	m	4,100	10.00	41,00
	scellaneous Works (5% of Main Works)	1.s.	1		507,00
	pensation	sq.m.	0	-	1 170 00
L+ Elig	jineering and Administration Cost (10 % of Main Construction)	l.s.	1	1,172,000	1,172,00
. Con	otingencies (10 % of I + II + III)	1.s.	1	1,289,000	1,289,00
Sub	p-Total			*****	14,183,00
	ce Escalation				1,183,00
	AL				15,366,000

Table 3.3-2 PROJECT COST OF MARANG RIVER MOUTH IMPROVEMENT

T - 14

	Description	Amount	First Year (1994)	Second Year (1995)	Third Year (1996)	
	Main Construction	11,722,000		6,753,000	4,969,00	
•	1. Preparatory Works	1,066,000		614,000	452,00	
	2. Breakwater	1,000,000		0111000	102,000	
	Armor Stone 1	1,381,000		1,381,000	_	
	Armor Stone 2	0	_	0	-	
	Secondary Stone	711,000	-	711,000	-	
	Core Stone 1	679,000	-	679,000	-	
	Geotextile	65,000	_	65,000	-	
	3. North Jetty	051000		001000		
	Armor Stone 2	1,662,000	-	1,662,000	-	
	Core Stone 2	1,040,000	-	1,040,000		
	Geotextile	72,000	<u> </u>	72,000	-	
	4. South Jetty	12,000		121000		
	Armor Stone 2	1,068,000	-	-	1,068,00	
	Core Stone 2	603,000	_	-	603,00	
	Geotextile	66,000	_	-	66,00	
	5. Coastal Groin				,	
	Armor Stone 2	839,000	_	-	839,00	
	Core Stone 2	431,000	-	~	431,00	
	6. River Groin				,	
	Armor Stone 2	156,000	-	156,000	-	
	Core Stone 2	40,000	_	40,000	-	
	7. Navigation Channel Work					
	Dredging (Sand)	702,000	-	-	702,000	
	Dredging (Soft Rock)	440,000	_	-	440,00	
	Pipe Line Setting	133,000	-	•	133,00	
	Spoil Bank Treatment	20,000	-	-	20,00	
	8. Reservoir	41,000		41,000		
	9. Miscellaneous Works	507,000	-	292,000	215,00	
•	Compensation	-	-	<u>-</u>	-	
I	. Engineering and	1,172,000	469,000	387,000	316,00	
	Administration Cost					
/. 	Physical Contingencies	1,289,000	47,000	714,000	529,00	
	Sub-Tota I	14,183,000	516,000	7,854,000	5,814,00	
•	Price Contingencies	1,183,000	25,000	579,000	579,00	
	TOTAL	15,366,000	541,000	8,433,000	6,393,00	

Table 3.3-3 ANNUAL DISBURSEMENT SCHEDULE OF MARANG RIVER MOUTH IMPROVEMENT PROJECT Unit : RM

(1) All costs are expressed at on the price level of late 1992 and an annual escalation rate is assumed at 2.4%.

(2) Annually recurrent 0 & M cost after the year 1997 is estimated to be RM 227,000 including administration cost of RM 21,000.

.

Description	Amount	Firat Year	Second Year	Third Year
			;	***********
• Main Construction	10,315,360	-	5,942,640	4,372,720
1. Preparatory Works	938,080	. -	540,320	397,760
2. Breakwater	2,495,680	~ .	2,495,680	(
3. North Jetty	2,441,120	-	2,441,120	
4. South Jetty	1,528,560	-	0	1,528,560
5. Coastal Groin	1,117,600	-	0	1,117,600
6. River Groin	172,480		172,480	
7. Navigation Channel Wor	k 1,139,600	~	0	1,139,600
8. Reservoir	36,080	-	36,080	(
9. Miscellaneous Works	446,160	-	256,960	189,200
I. Compensation	-	-	0	(
II. Engineering and Administration Cost	1,172,000	469,000	387,000	316,000
V. Physical Contingency	1,148,736	46,900	632,964	468,872
TOTAL	12,636,096	515,900	6,962,604	5,157,59

Table 3.4-1 ECONOMIC COST OF MARANG RIVER MOUTH IMPROVEMENT PROJECT

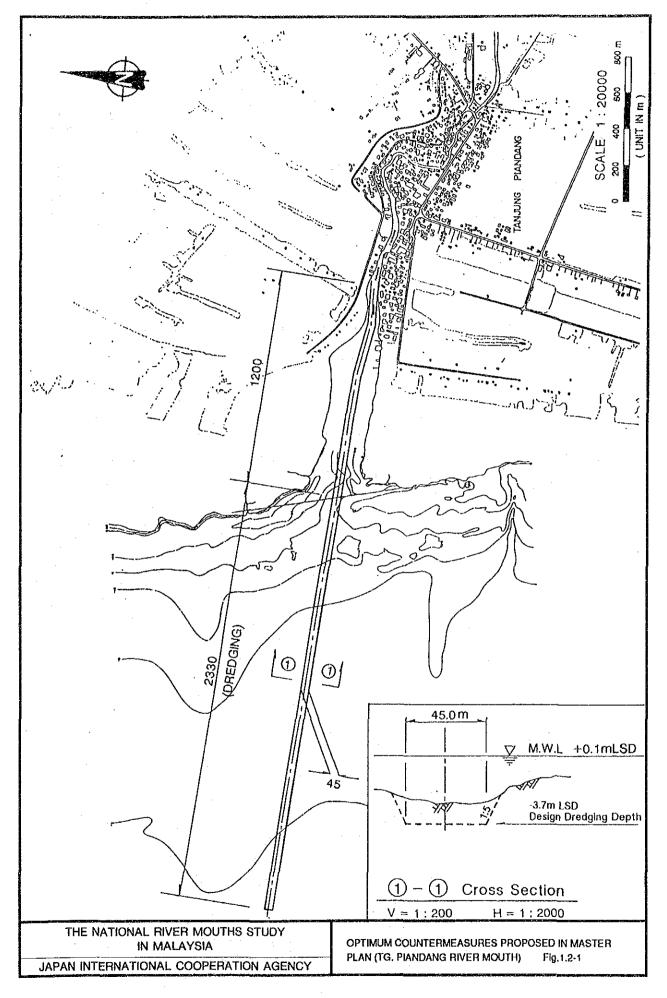
Table 3.4-2 ANNUAL CASH FLOW OF MARANG RIVER MOUTH IMPROVEMENT PROJECT

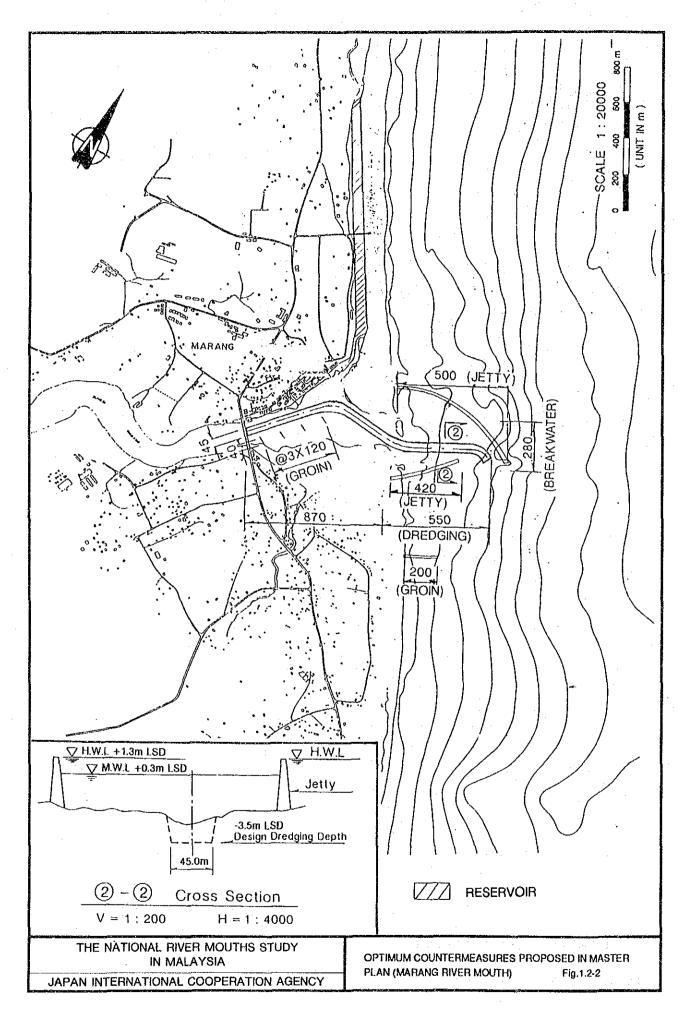
H.			mic Project		Вe	•				
0.		Construc- tion	Eng. & Admi.	Physical Conti	Mainte- nance	Total	Fishery	Sea Trans.	Total	Annua Cash Flow
1	1994		469.0	46.9		515.9				-515.
2	1995	5,942.6	387.0	633.0		6,962.6				-6,962
3	1996	4,372.7	316.0	468.9		5,157.6	745.8	183.3	929.1	-4,228.
4	1997		21.0	2.1	181.3	204.4	1,152.6	281.0	1,433.6	1,229.
5	1998		21.0	2.1	181.3	204.4	1,186.4	286.0	1,472.4	1,268.
6	1999		21.0	2.1	181.3	204.4	1,220.2	292.0	1.512.2	1,307.
7	2000		21.0	2.1	181.3	204.4	1,254.0	298.0	1,552.0	1,347.
8	2001		21.0	2.1	181.3	204.4	1,287.6	304.0	1,591.6	1,387.
9	2002		21.0	2.1	181.3	204.4	1,321.2	310.0	1,631.2	1,426.
10	2003		21.0	2,1	181.3	204.4	1,354.8	316.0	1,670.8	1,466
11	2004		21.0	2.1	181.3	204.4	1,388,4	322.0	1,710.4	1,506.
12	2005		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
13	2006		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
14	2007		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
15	2008		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
16	2009		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
17	2010		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
18	2011	•	21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546
19	2012		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
20	2013		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
21	2014	·	21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
22	2014		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
23	2015		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
24	2010		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
25	2017		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546
26	2010		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546
27	2019		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
28	2020		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
20 29	2021		21.0	2.1		204.4		329.0		
			21.0		181.3		1,422.0		1,751.0	1,546.
30	2023			2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
31	2024		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
32			21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
	2026		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
	2027		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.0
	2028		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
	2029		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
	2030		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
	2031		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
39	2032		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546.
40	2033		21.0	2.1	181.3	204.4	1,422.0	329.0	1,751.0	1,546

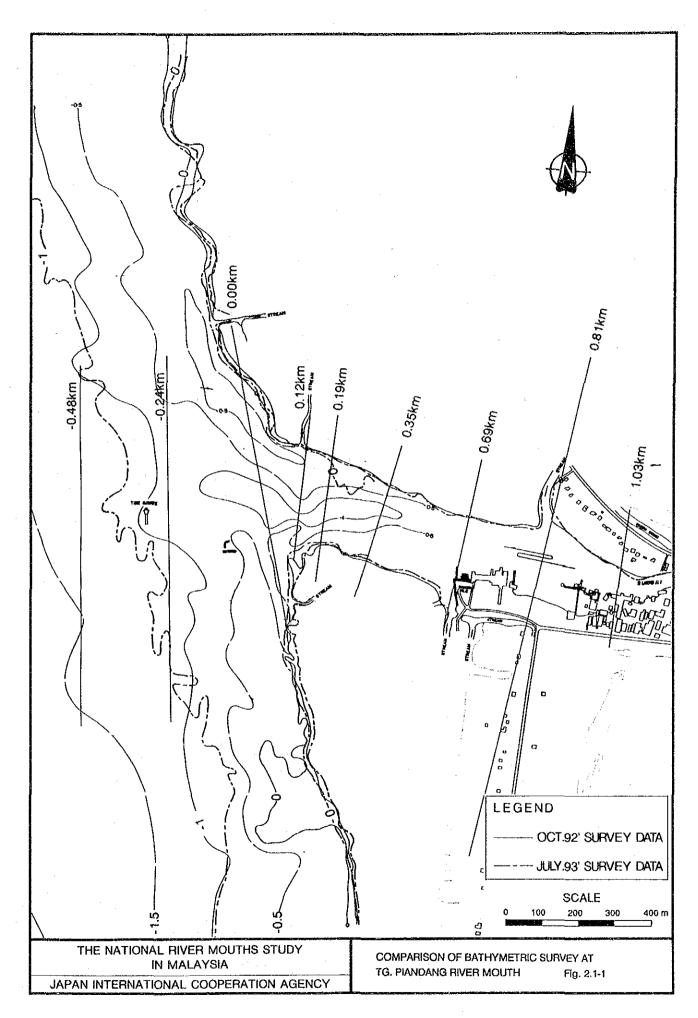
Internal Rate of Return (IRR) = 11.12%

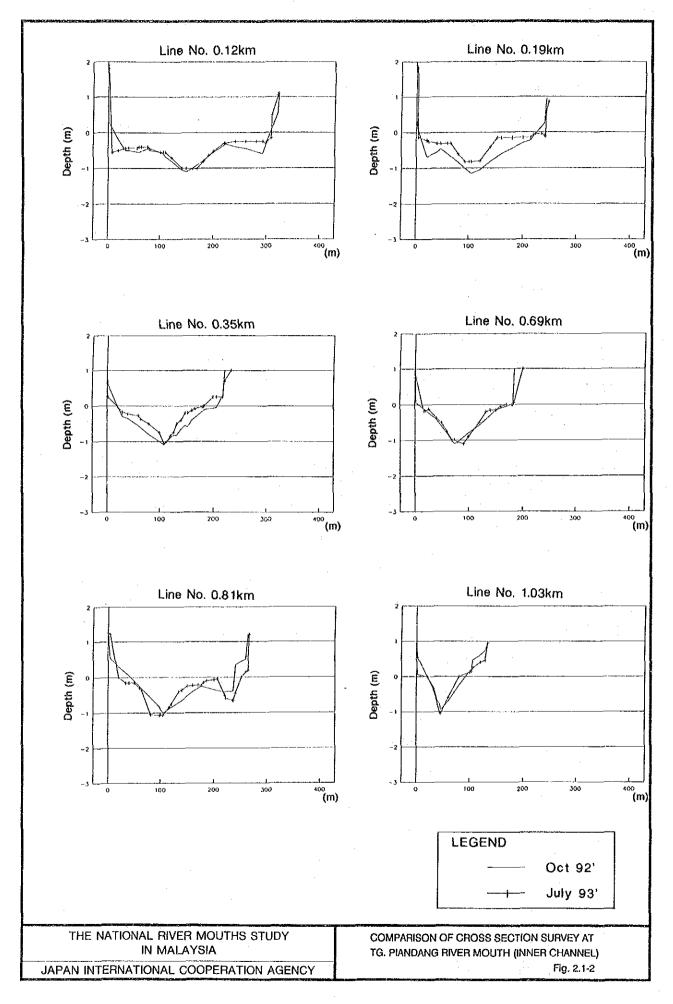
B/C (annual discount rate : 8%) = 1.302

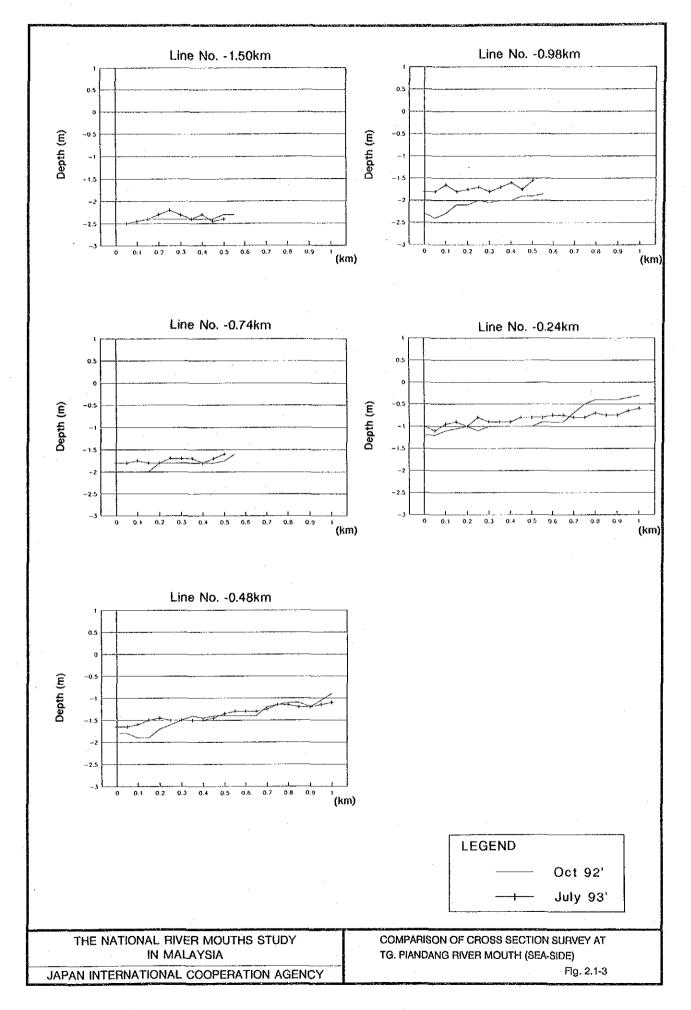
Note : It is assumed that 2/3 (66.6%) of the benefit in 1996 may accrue due to progress

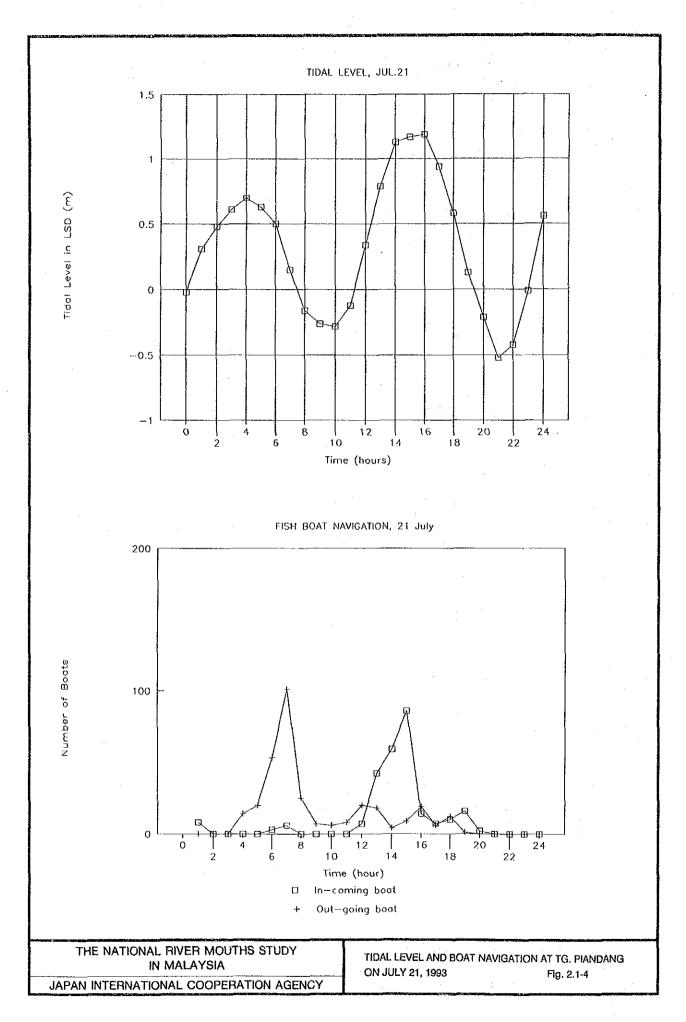

of dredging works.

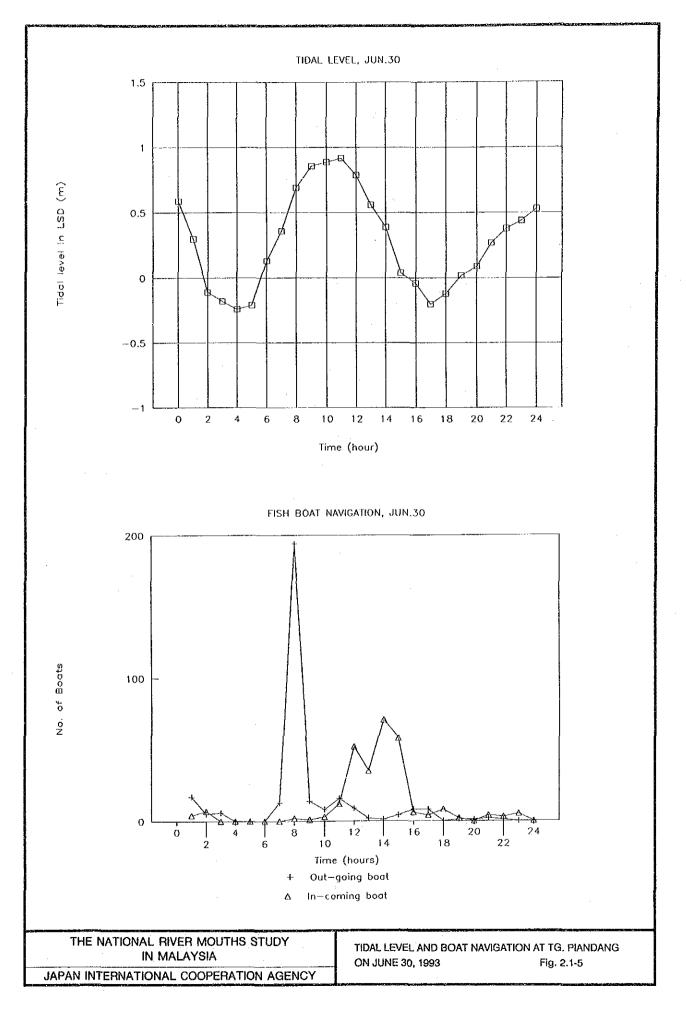

.

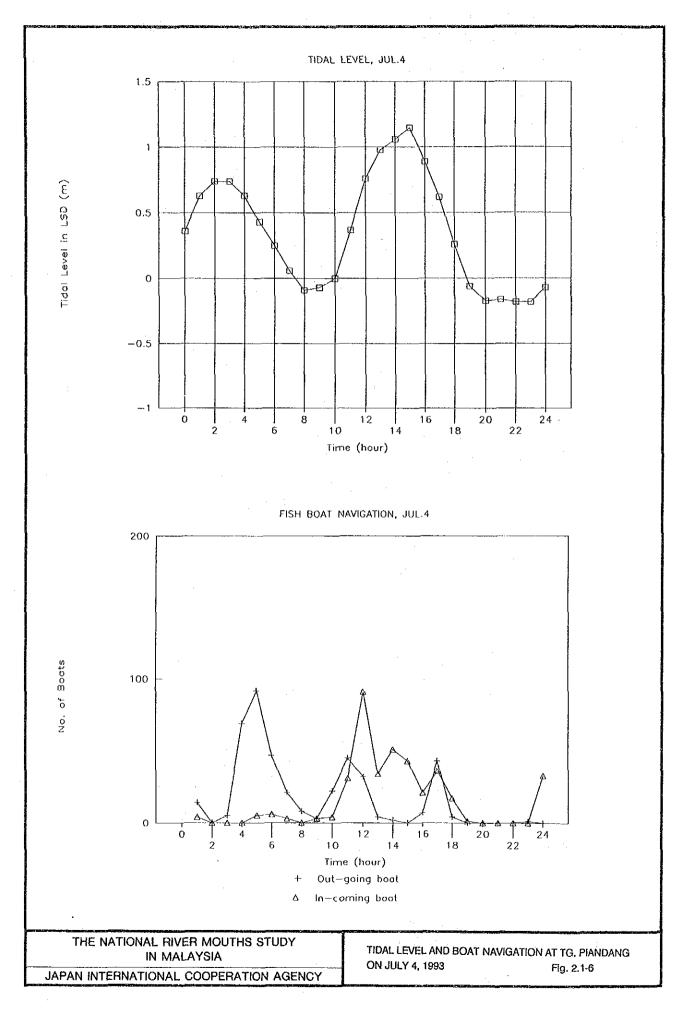

.

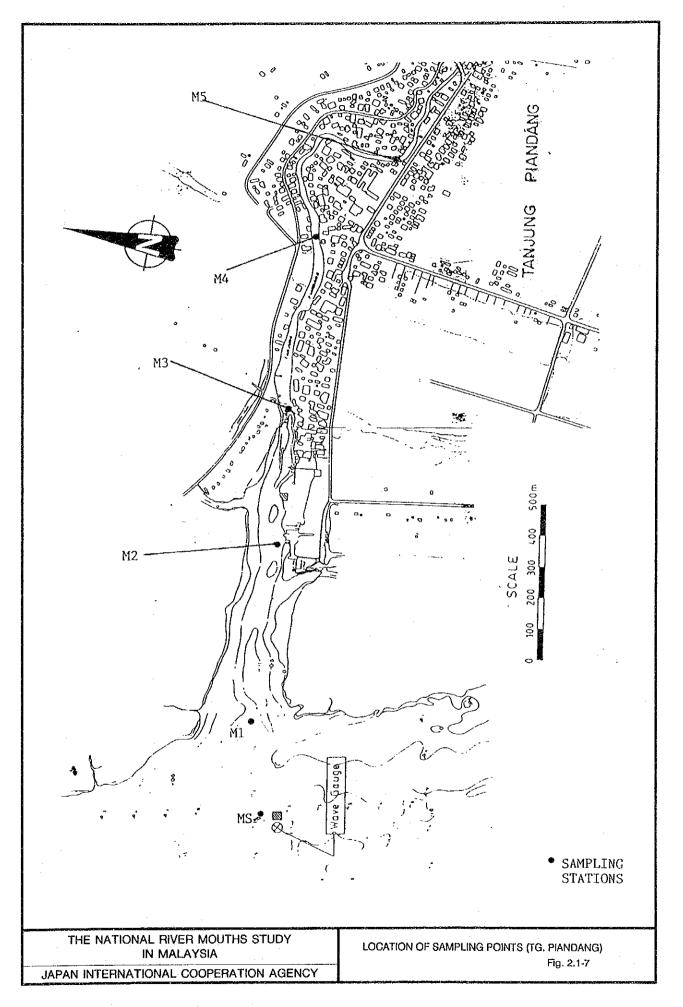

FICUDES

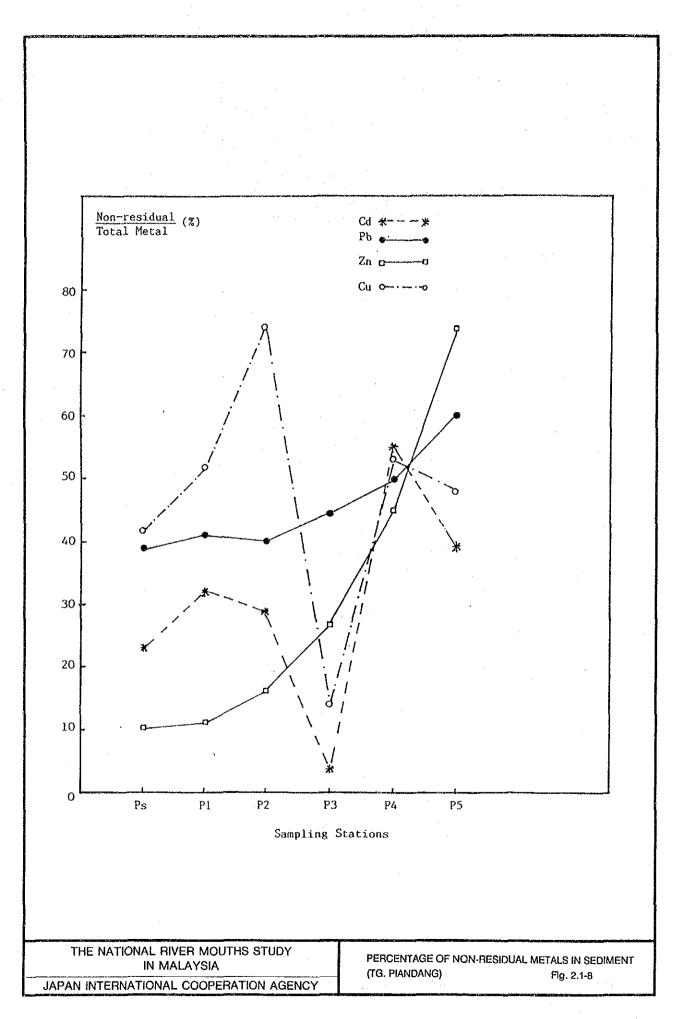

FIGURES

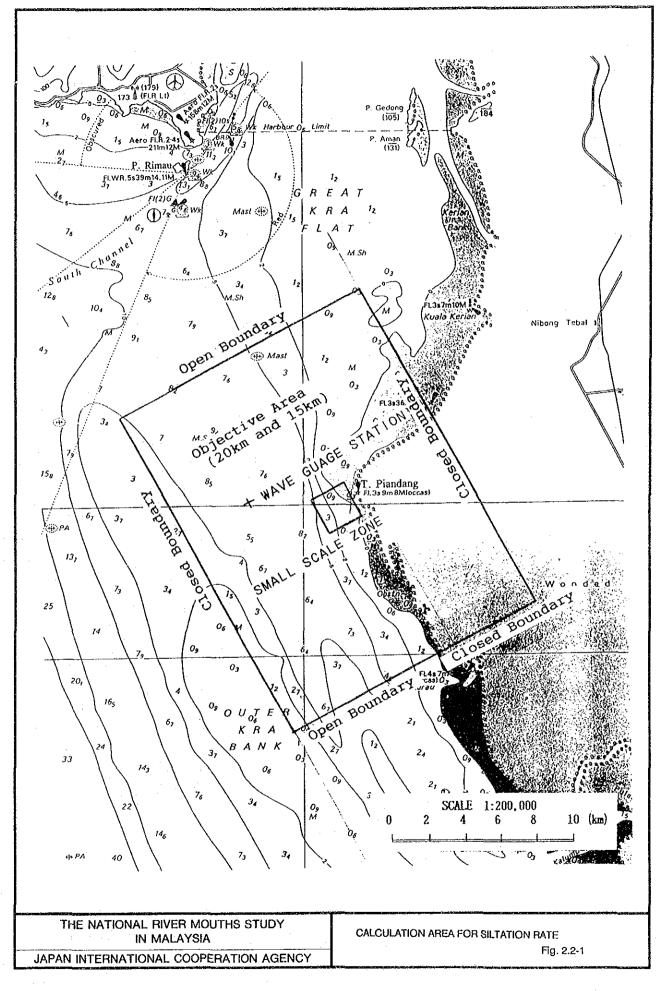


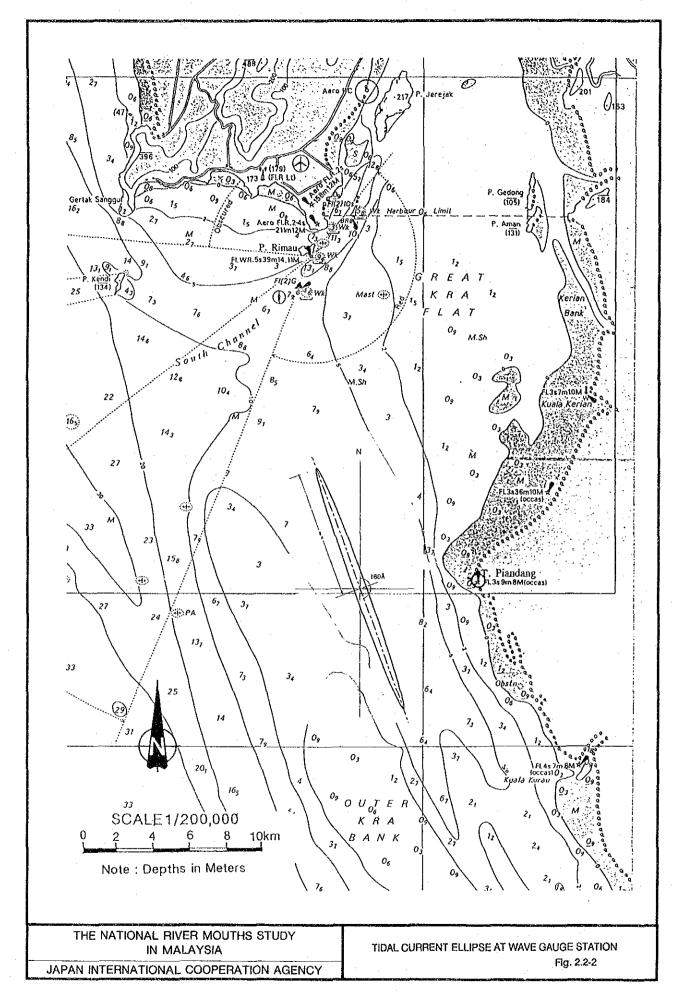


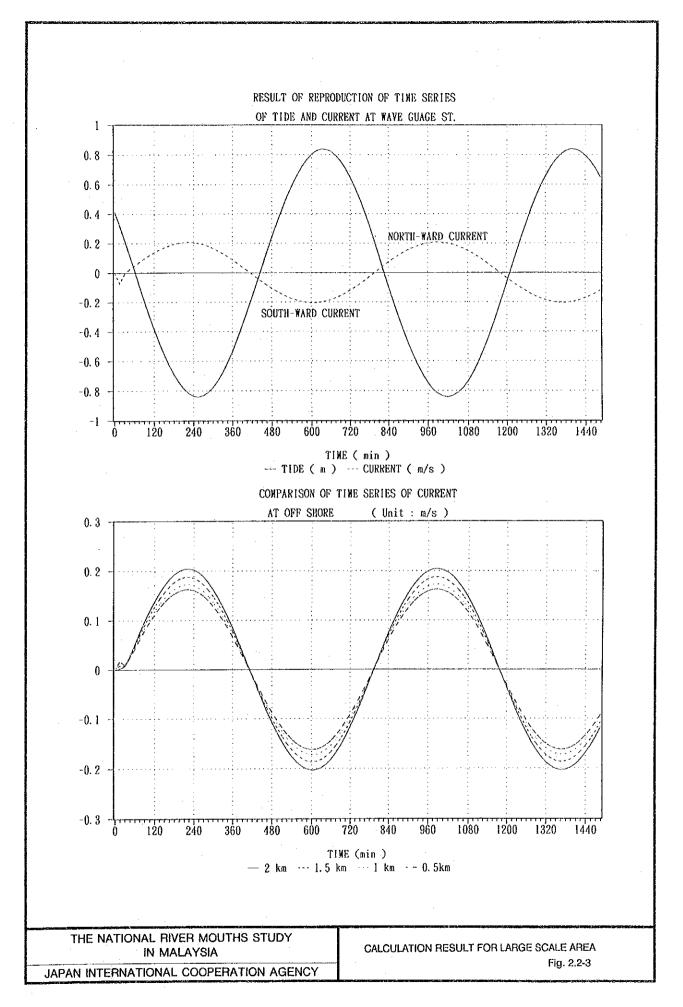


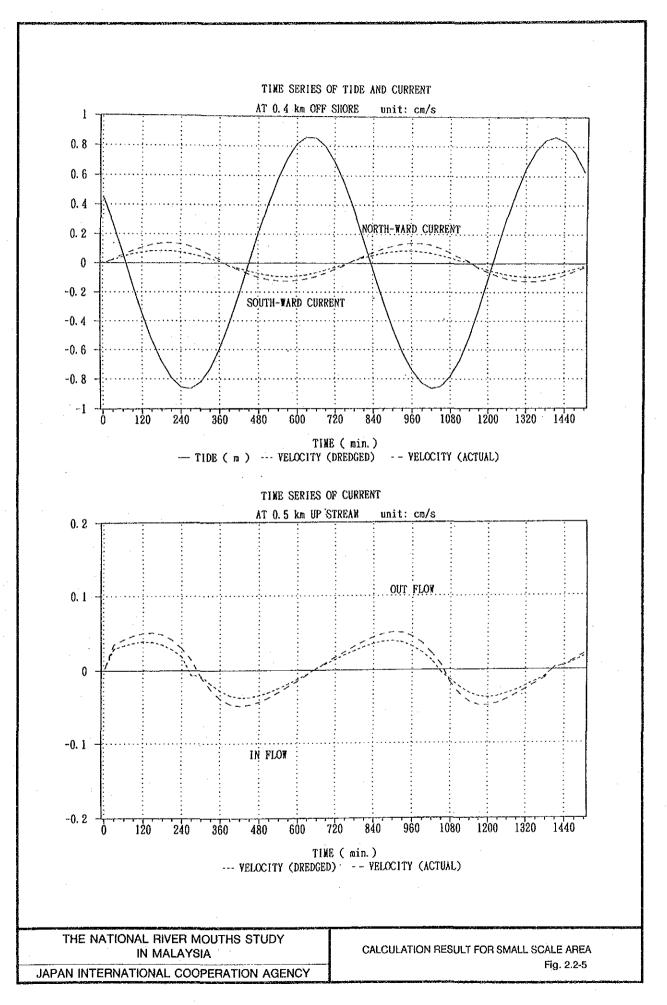


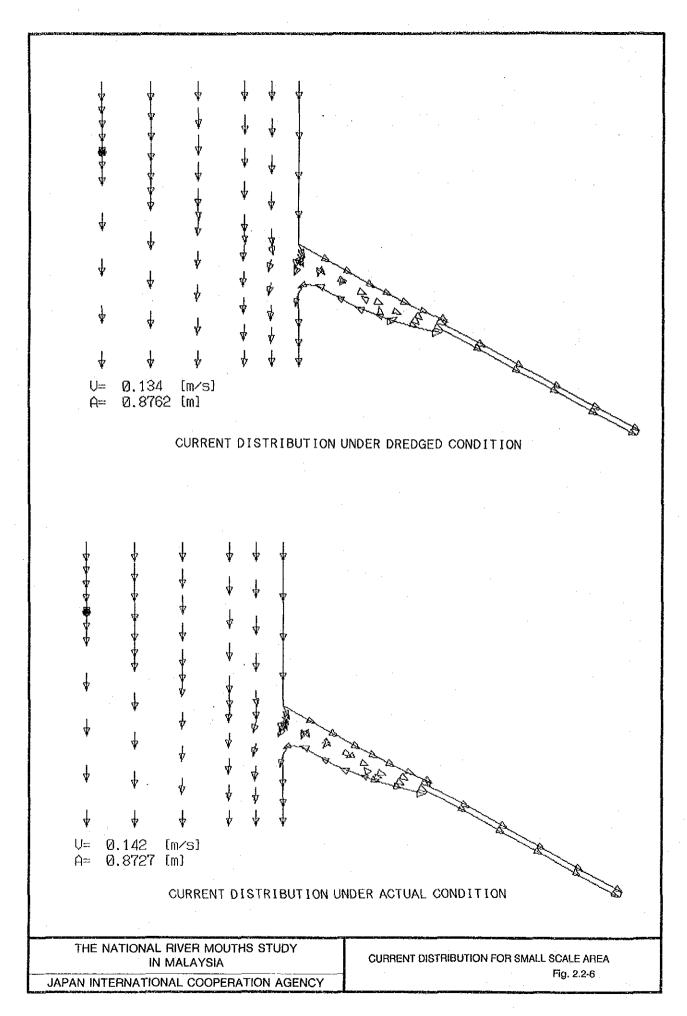


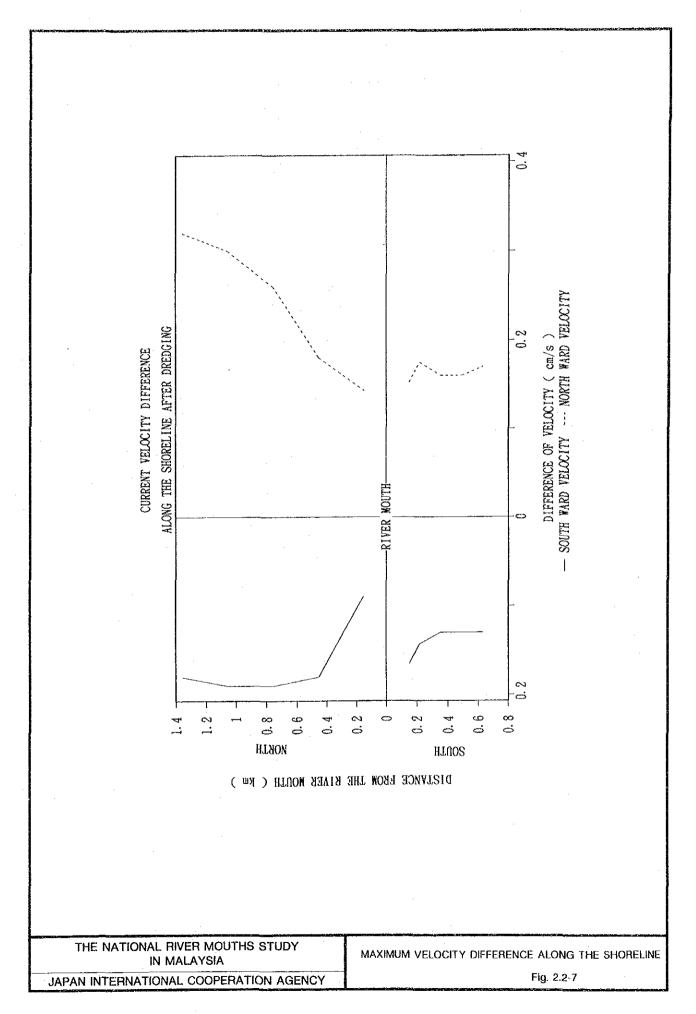


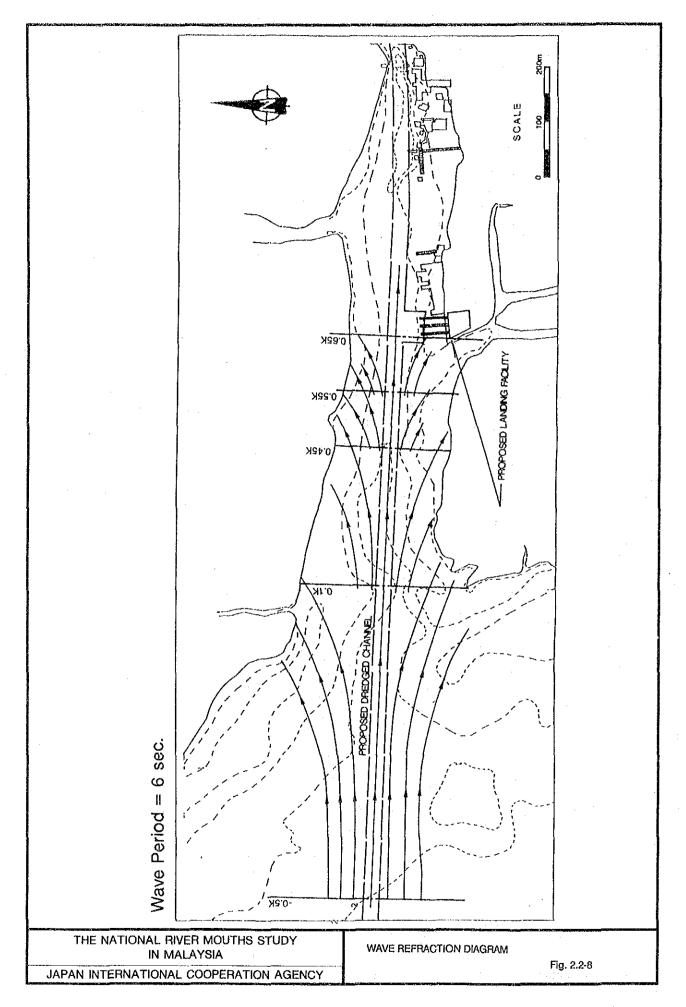


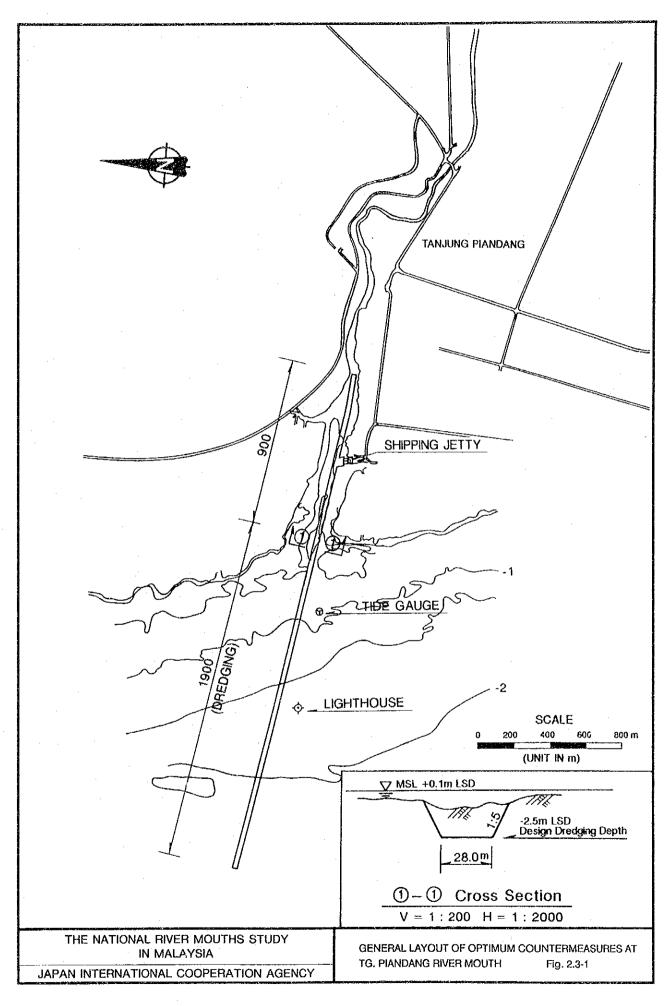


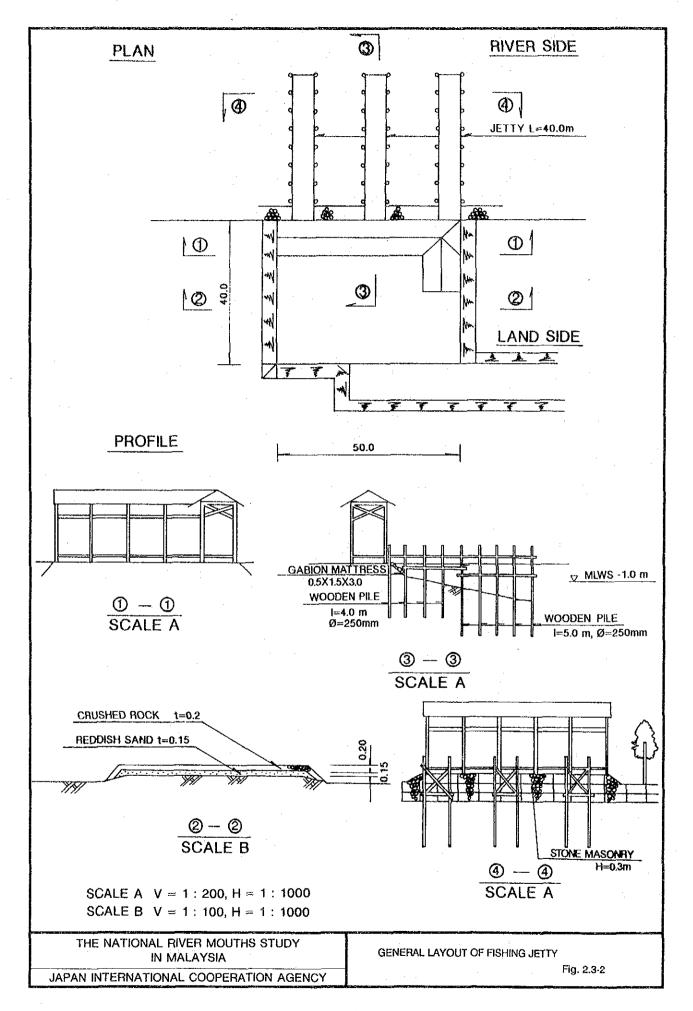


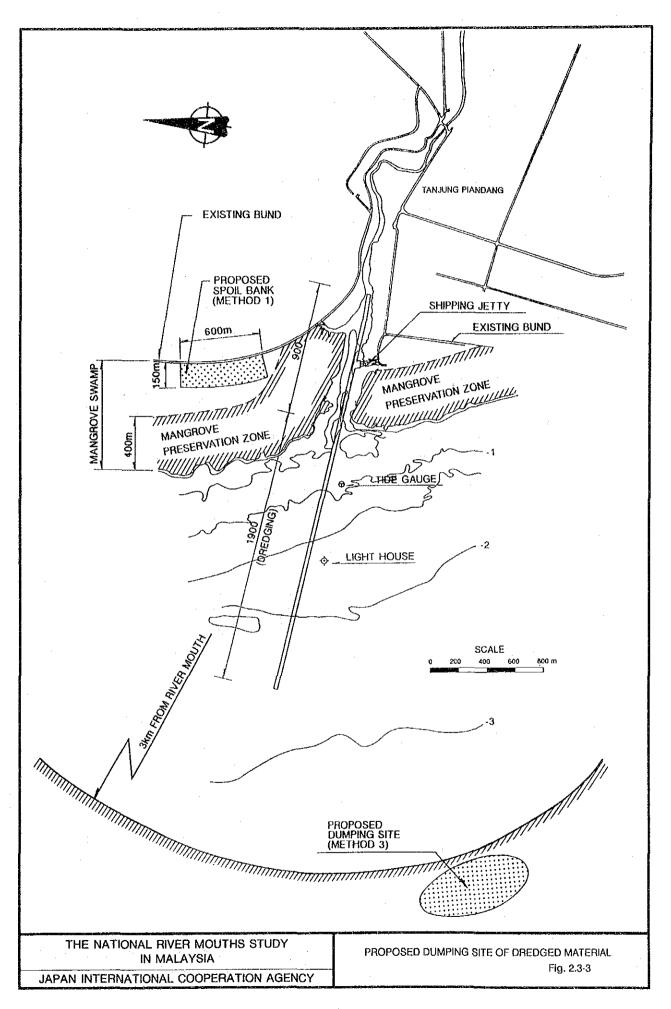


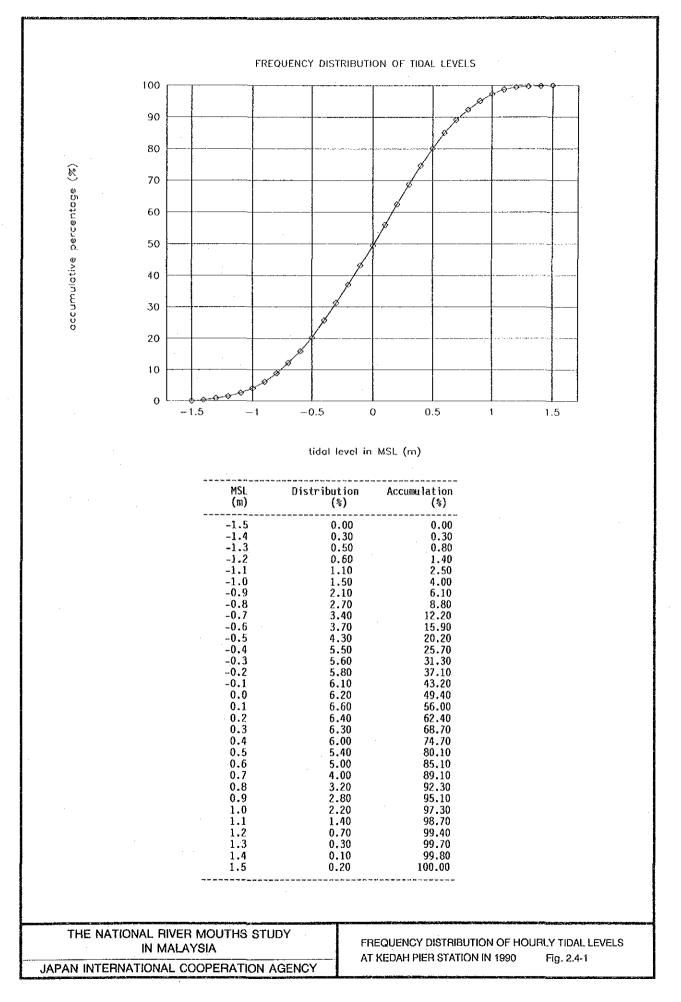


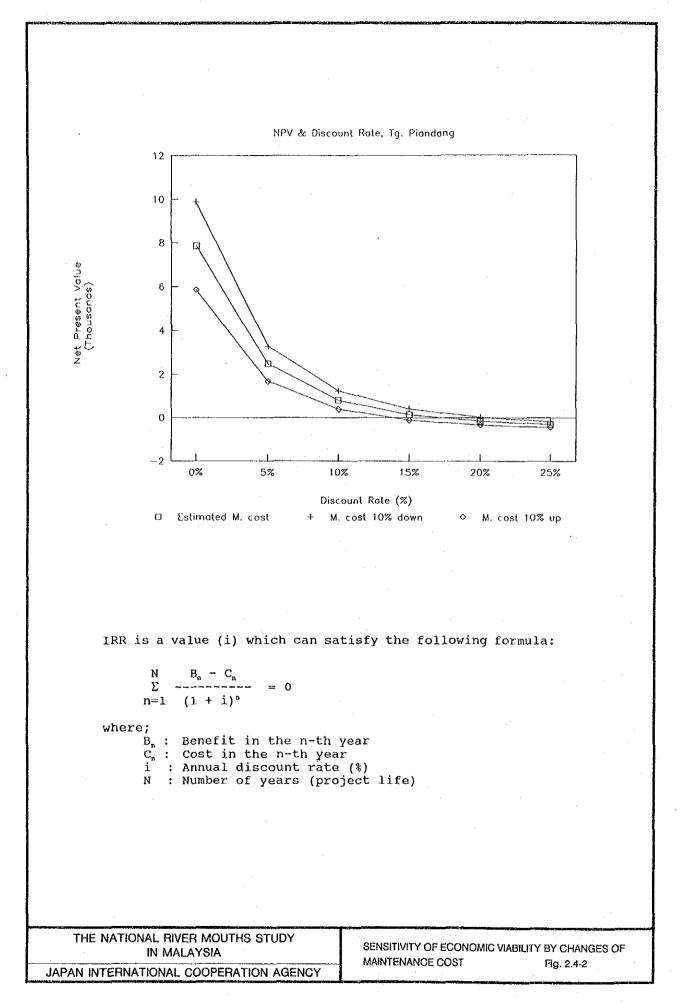


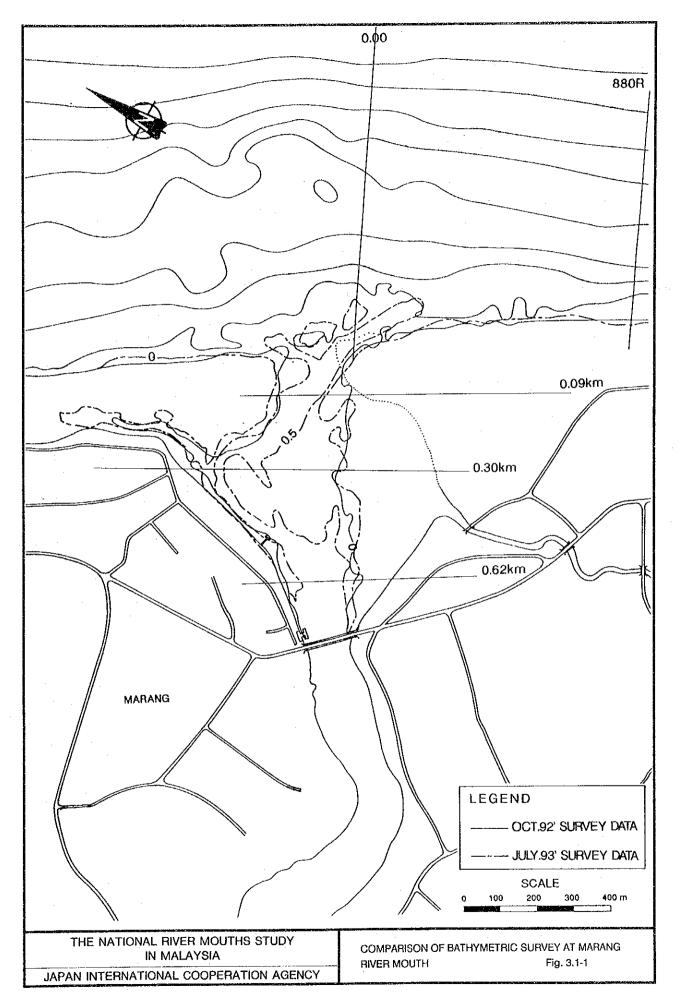

0.198 [m/s] 0.4643 [m] **∪**== À= 8 ø D ģ ĩÞ Ŷ Þ D Ŷ 4 ৸ マーマーマ 4-4-4-0.200 (m/ 0.5445 [m] [m∕s] Ų= 4 4 4 4 4 4 A= 4 4 4 4 4 ŝ s \$ \$ 4 4 s 4 4 4 Å 4 4 4 4 4 111 444444 4 4 2-2-2 444 444 4 THE NATIONAL RIVER MOUTHS STUDY CURRENT DISTRIBUTION FOR LARGE SCALE AREA IN MALAYSIA Fig. 2.2-4 JAPAN INTERNATIONAL COOPERATION AGENCY

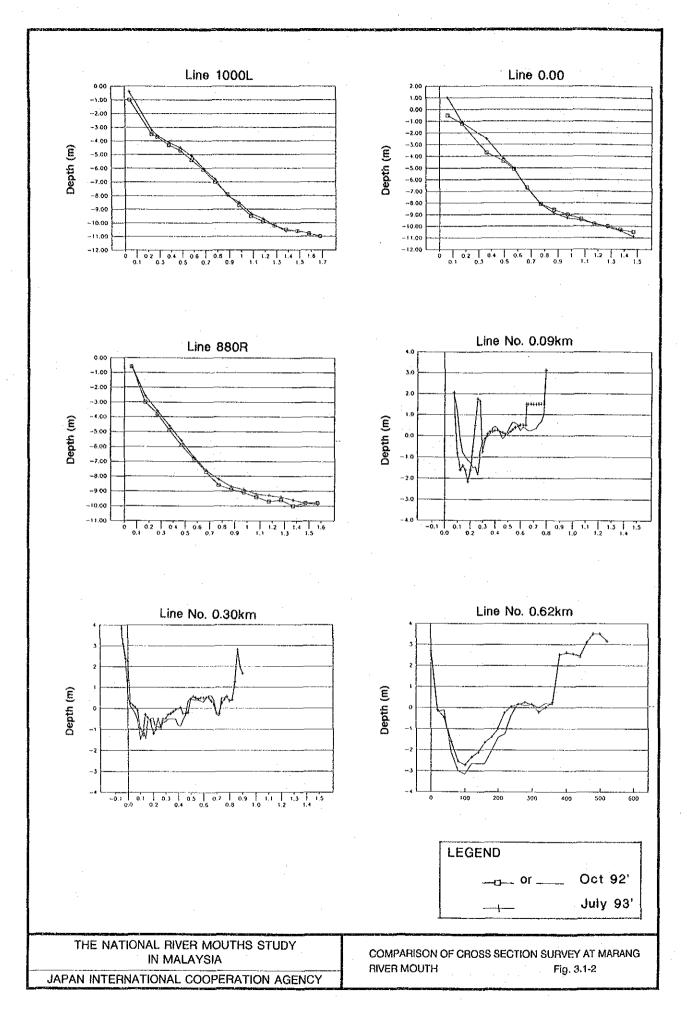


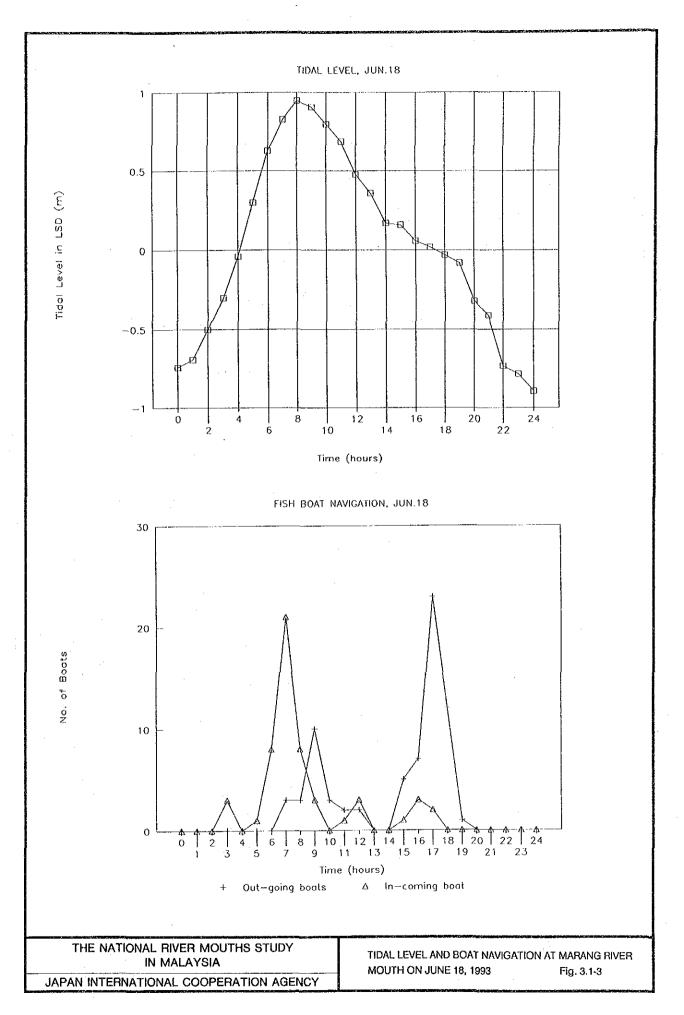


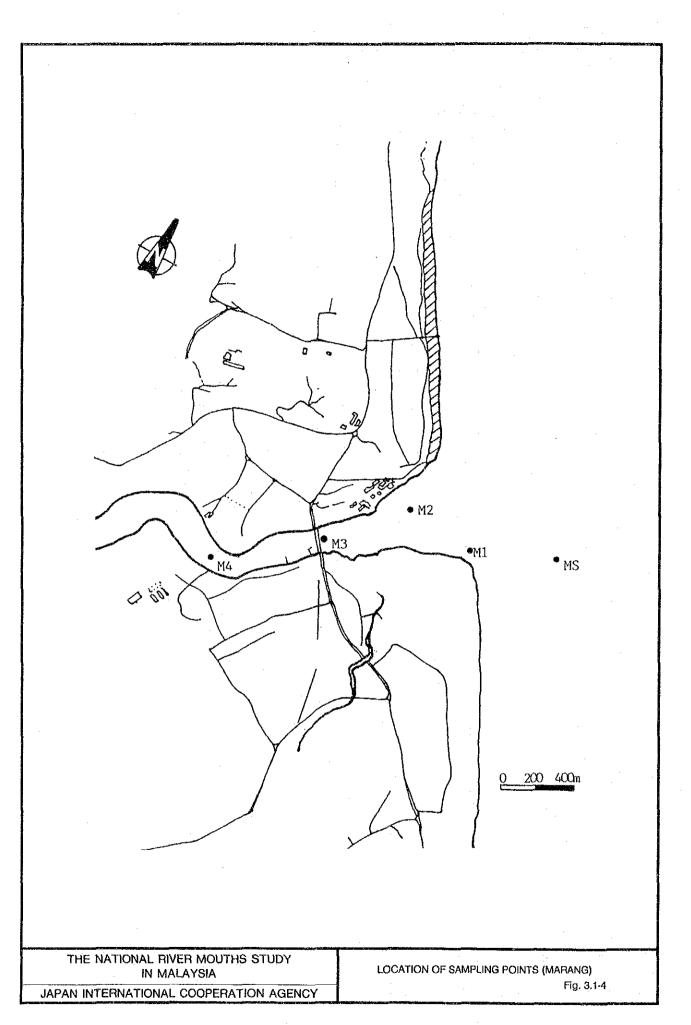


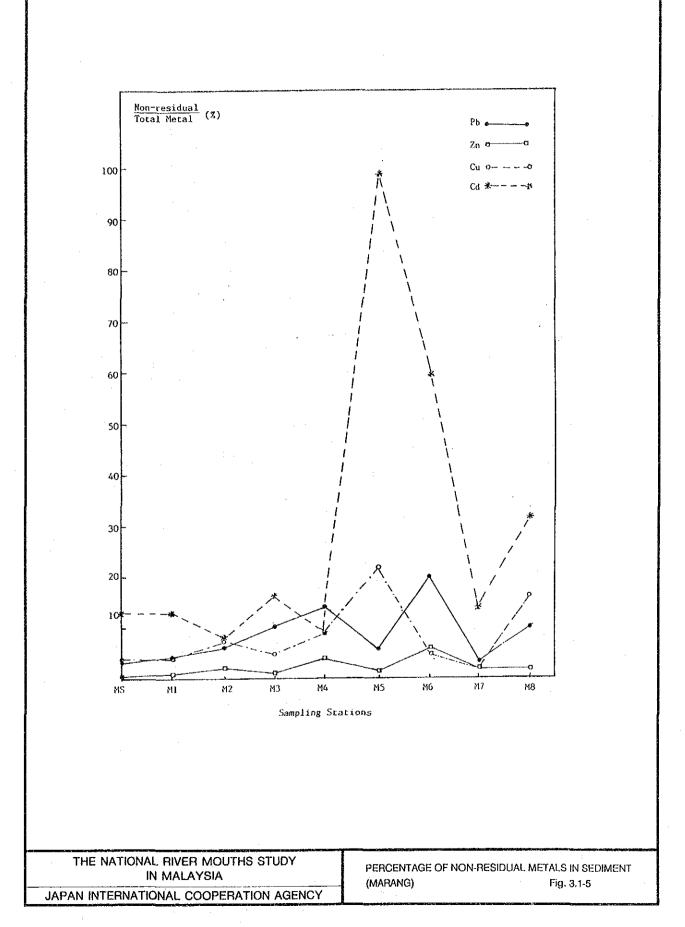


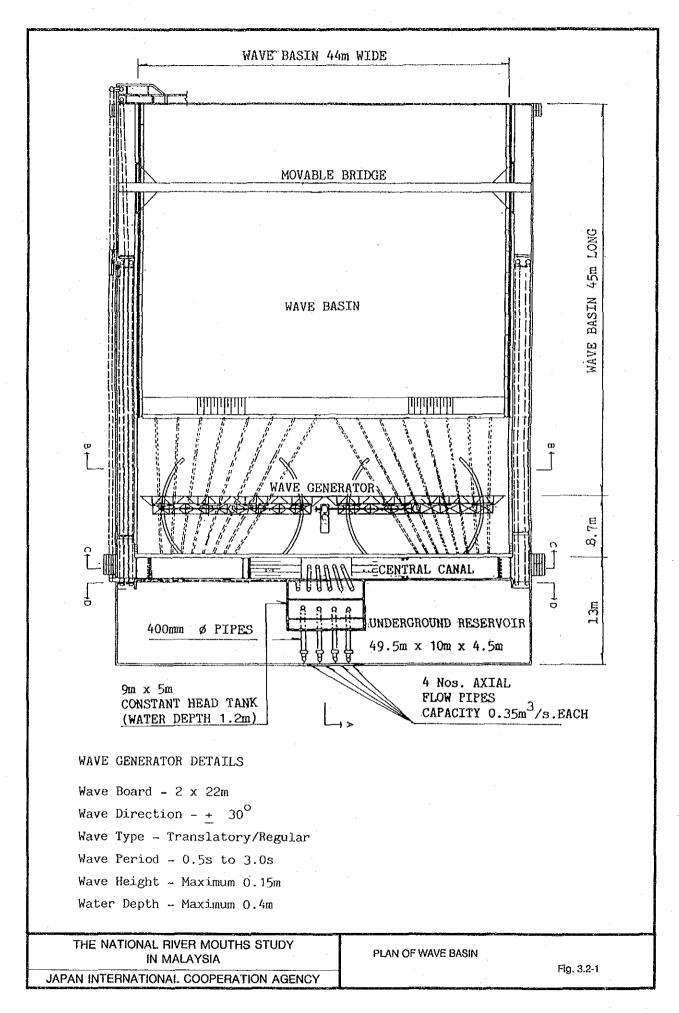


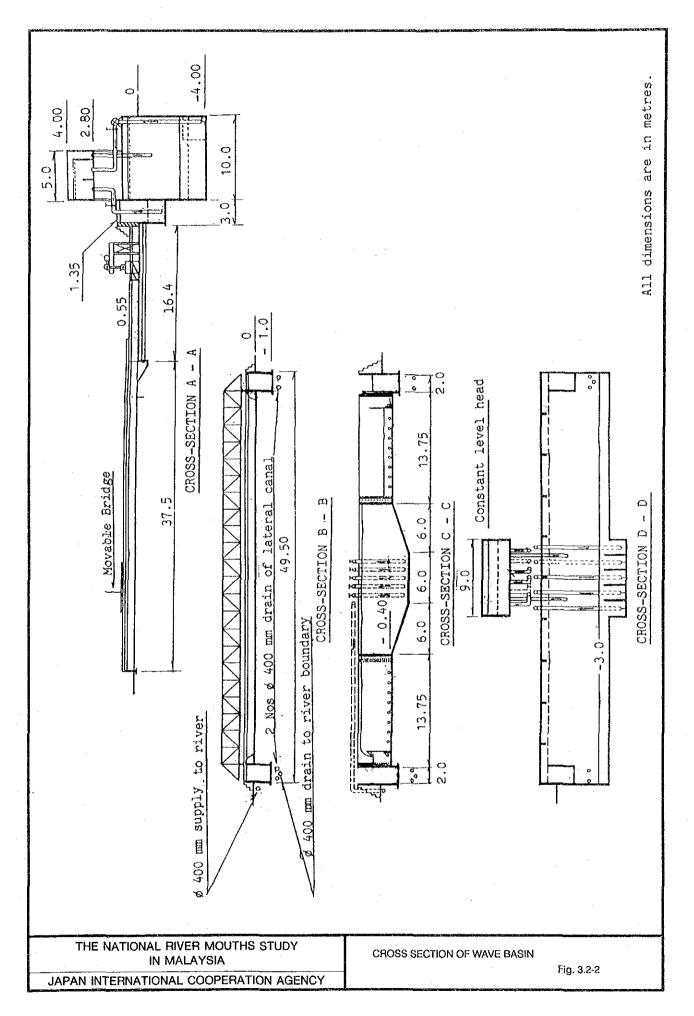


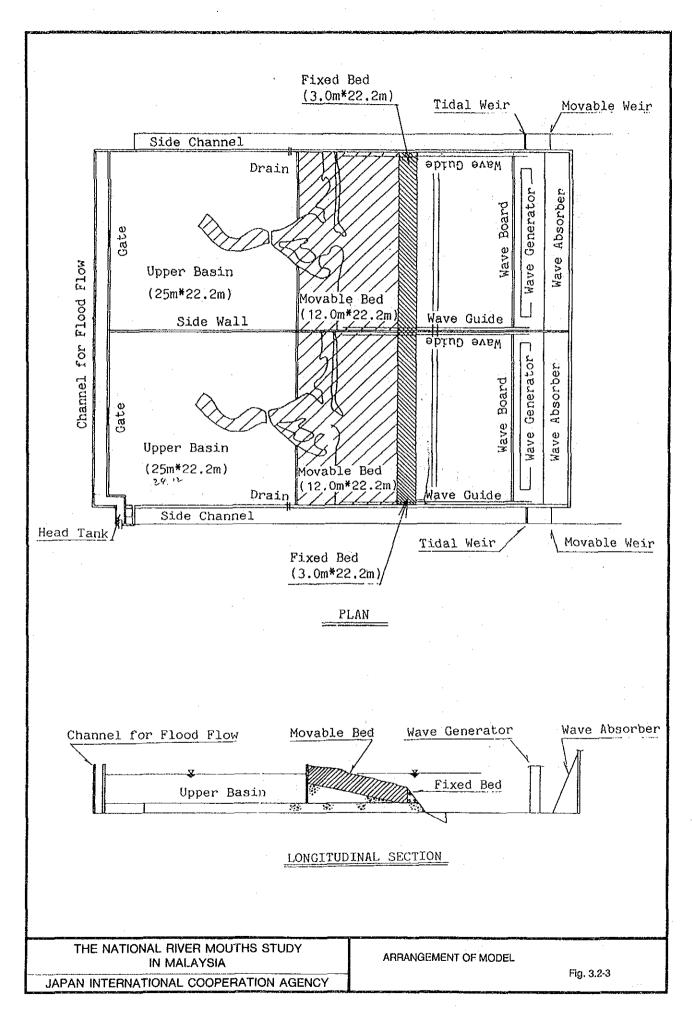

ENT PROJECT	After Third Year									·		
R MOUTH INPROVEM	Ihird Year (1996)											
IMPLEMENTATION SCHEDULE FOR TG. PIANDANG RIVER MOUTH IMPROVEMENT PROJECT	Second Year (1995)	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								
N SCHEDULE FOR	First Year (1994)					······································						
WPLEMENTATIO	Quantity	<u> </u>	i	I	i		r-1		115,400	Ч	⊢ 1	55,400
	Unit						L.S.	L.S.	щ3 11 11 11 11 11 11 11 11 11 11 11 11 11	L.S.	E.S.	Ê
Fig. 2.3-4	Description	Survey and Study	Detailed Design	Financing	P/Q and Tendering	Construction	Mobilization	Preparatory Work	Capital Dredging	Bank Protection	Jetty Works	Maintenance Dredging
			STU	ν							2	

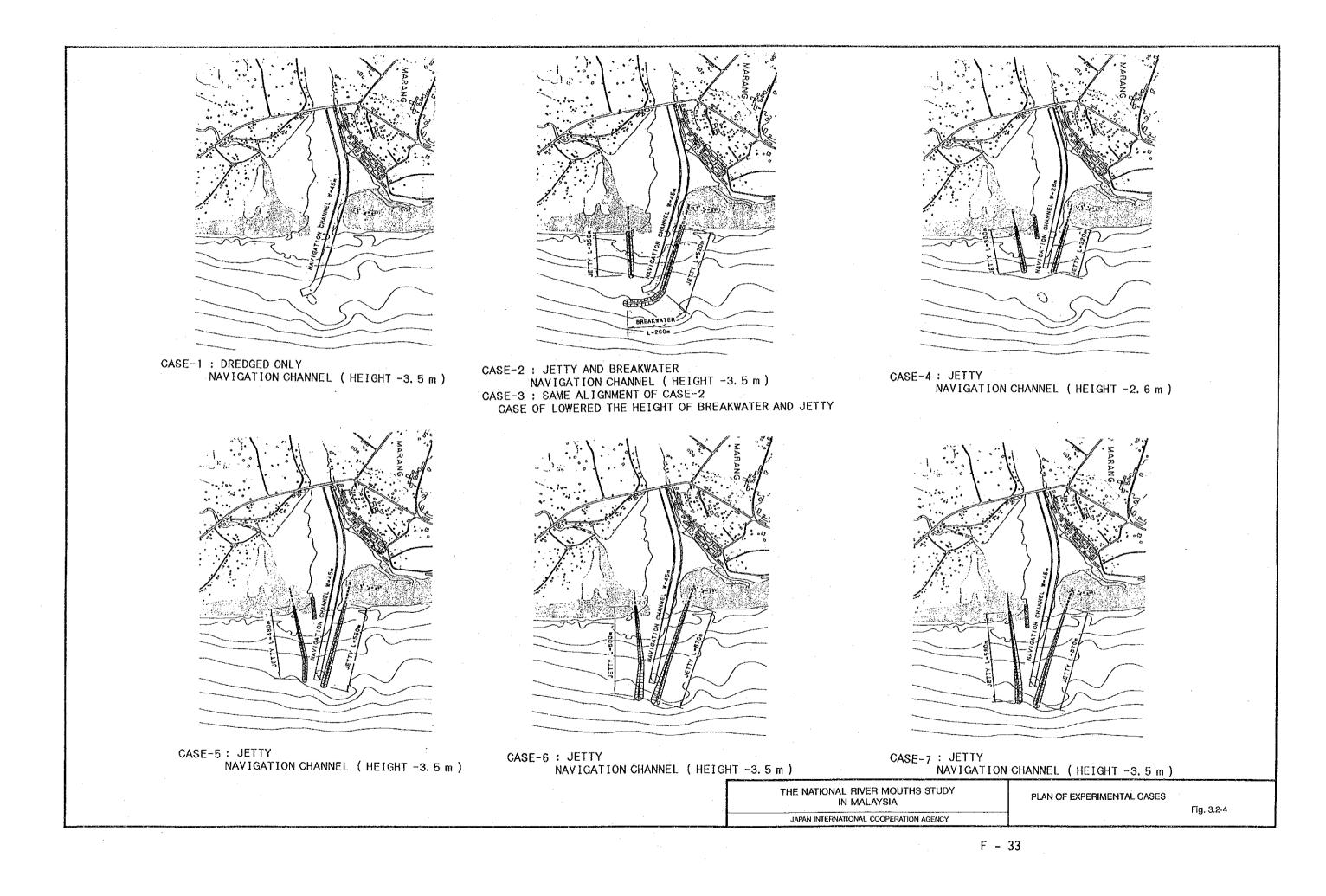


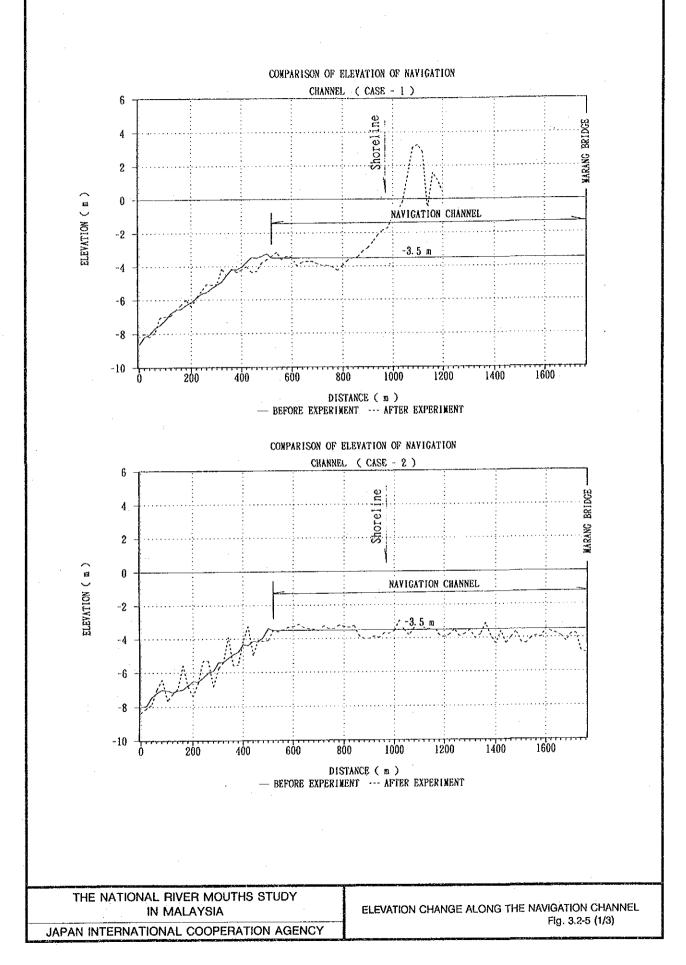


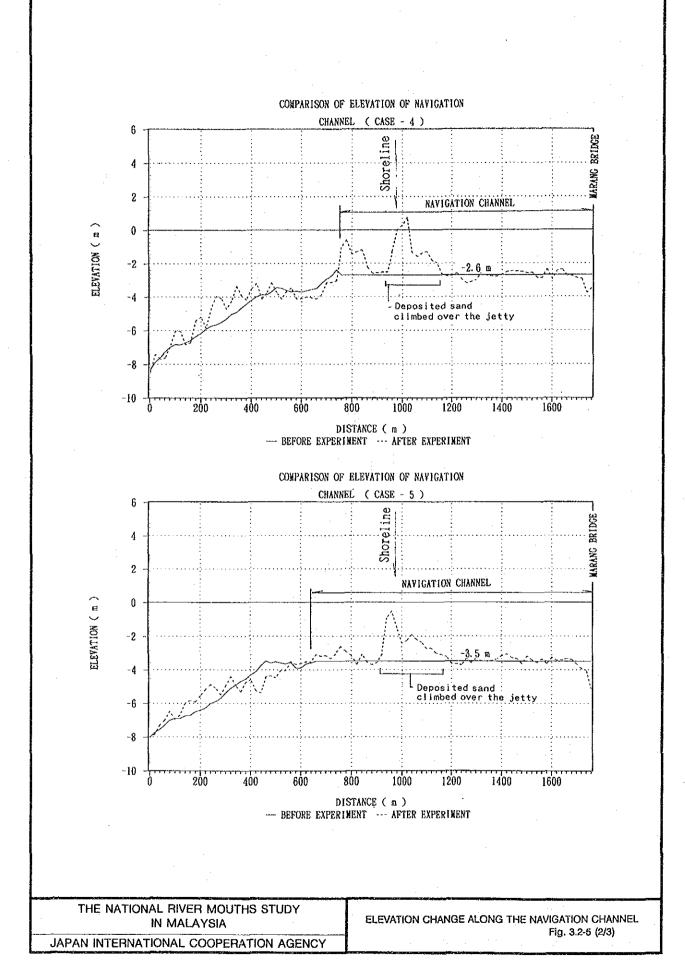


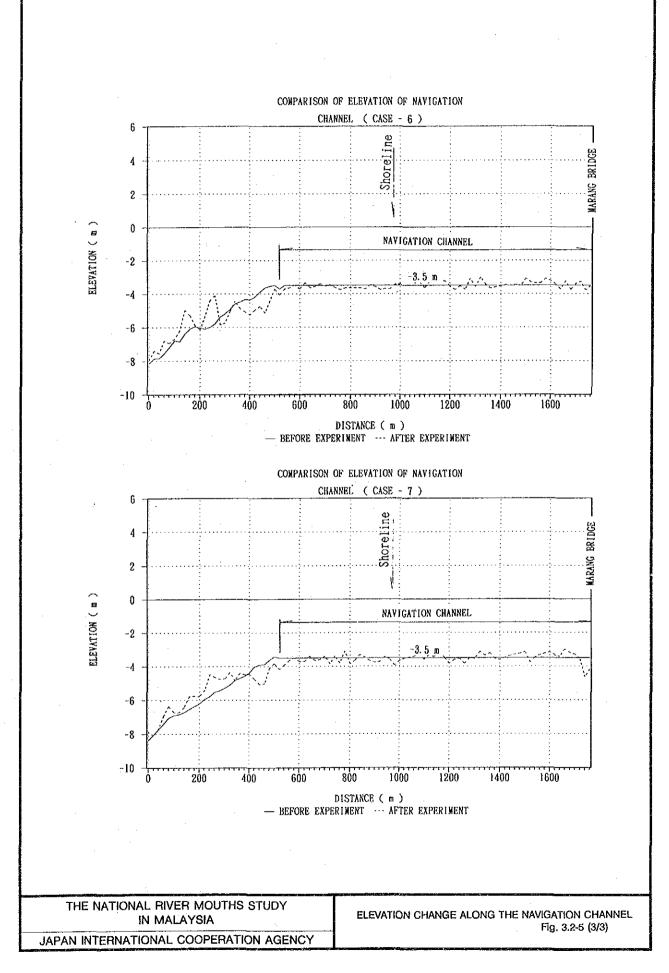


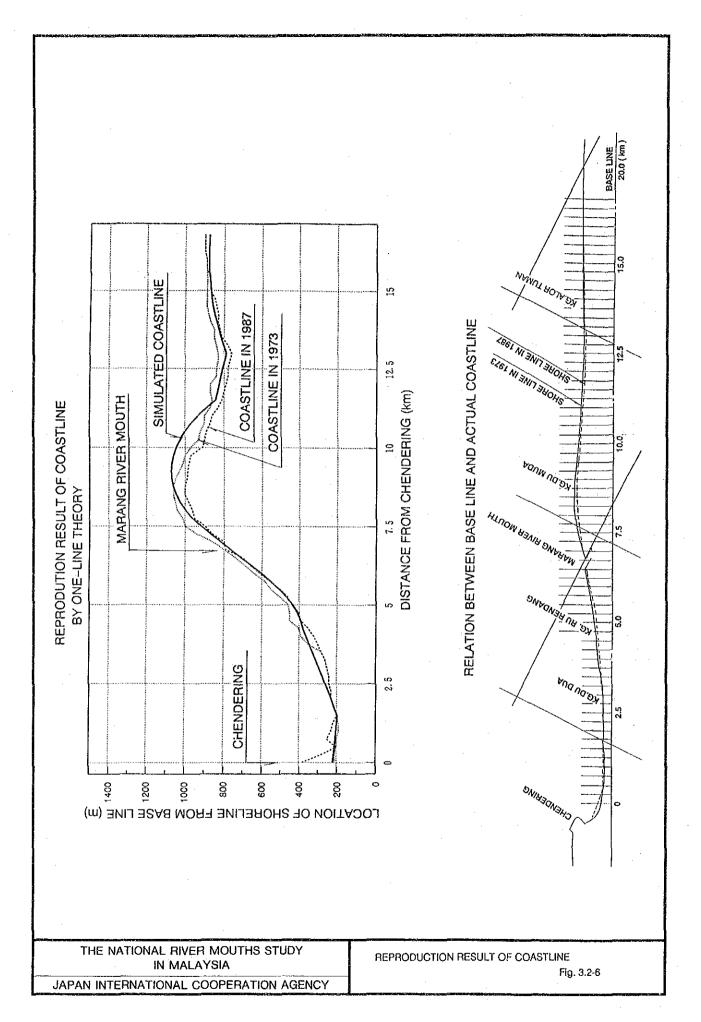


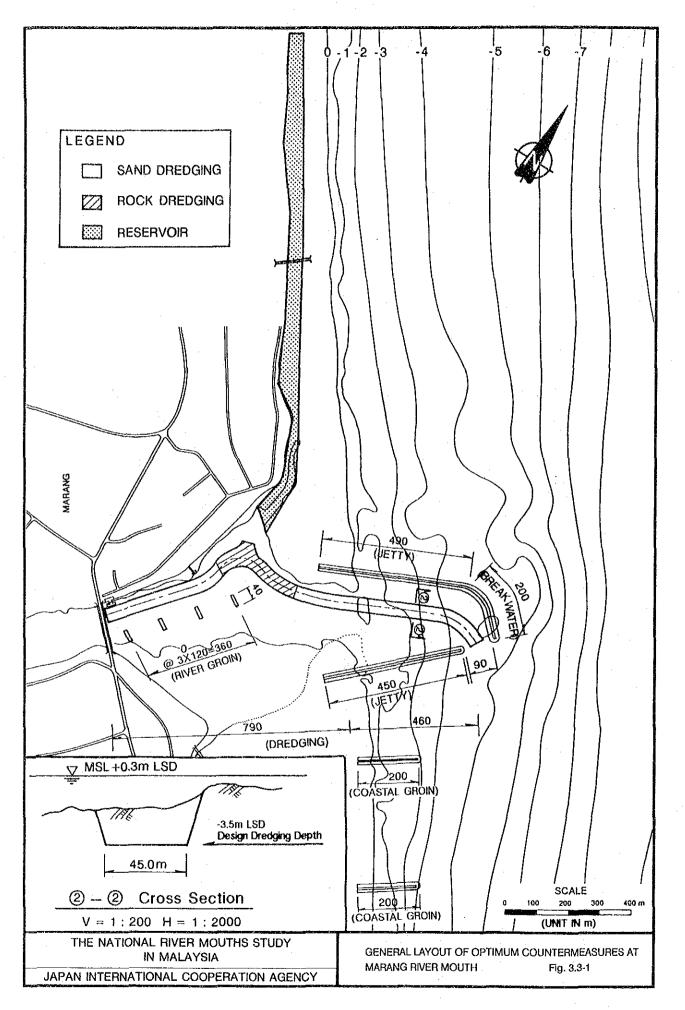


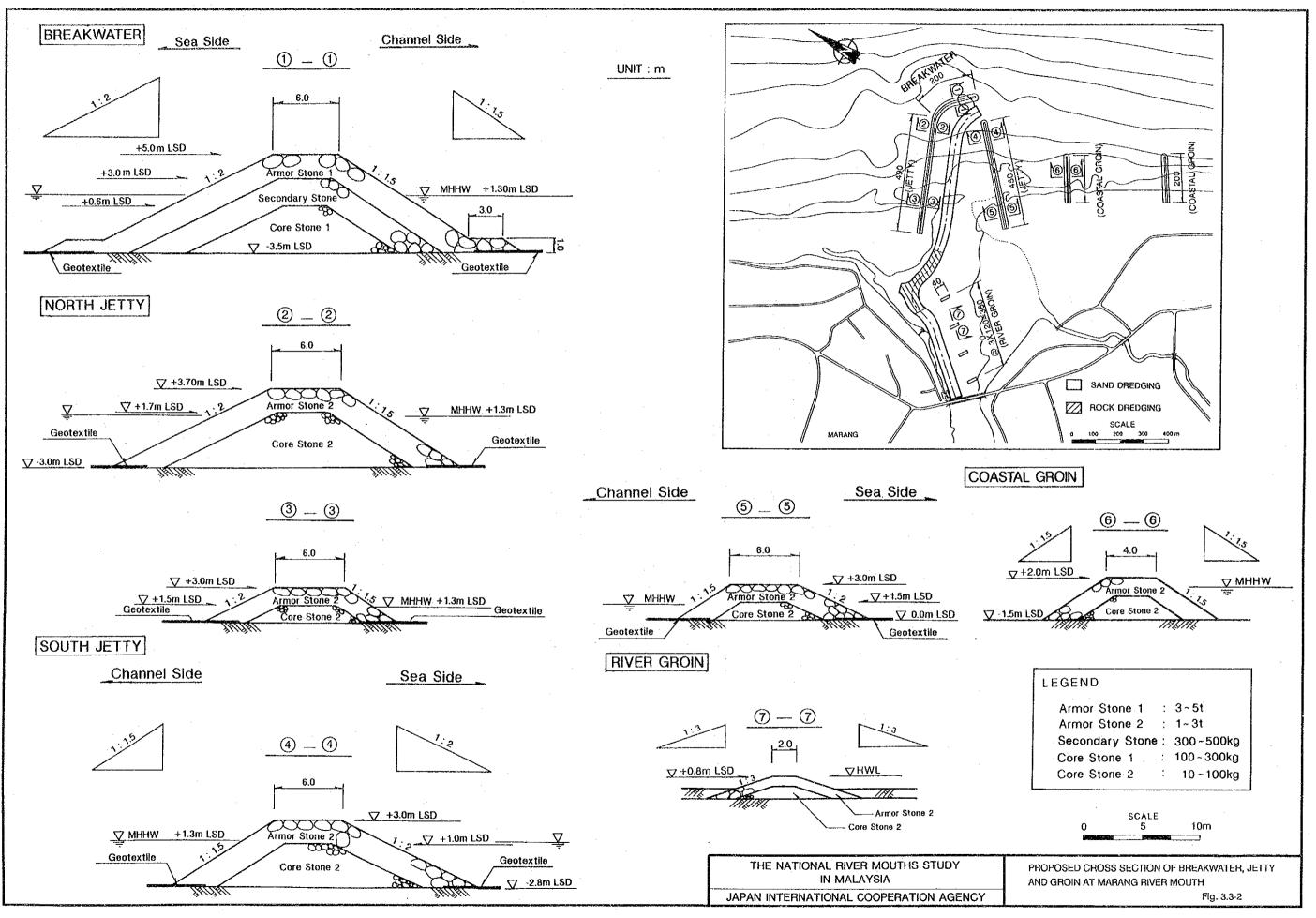


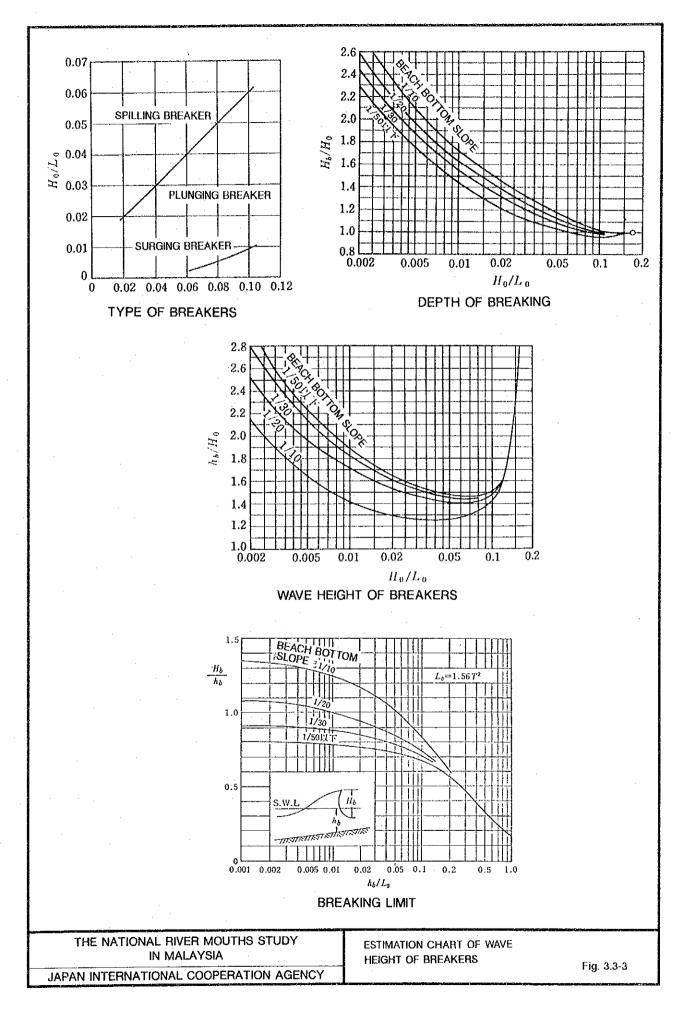


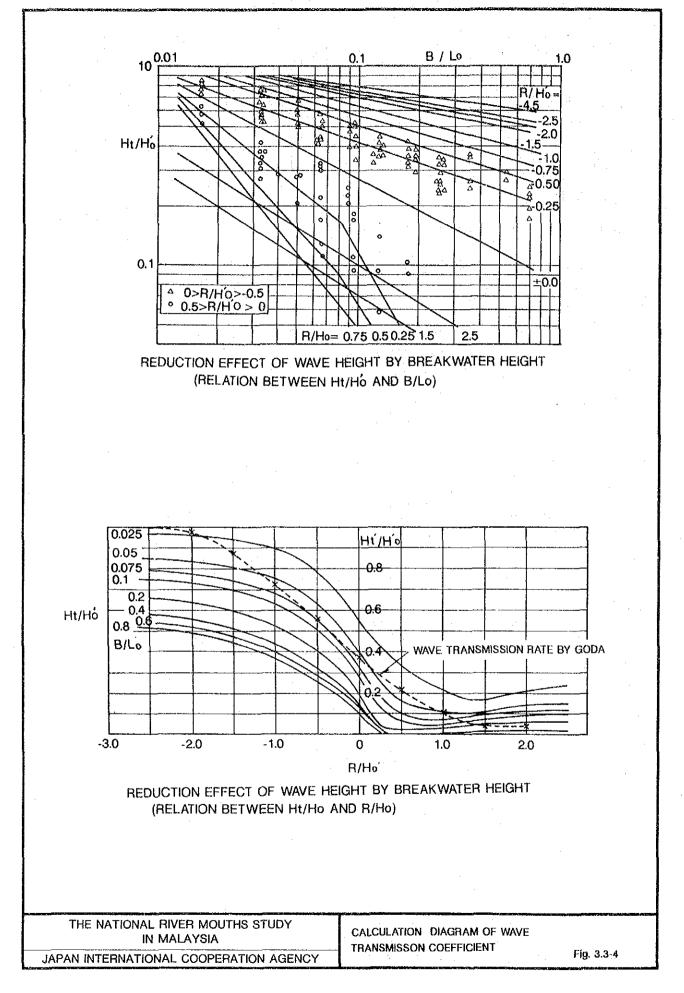


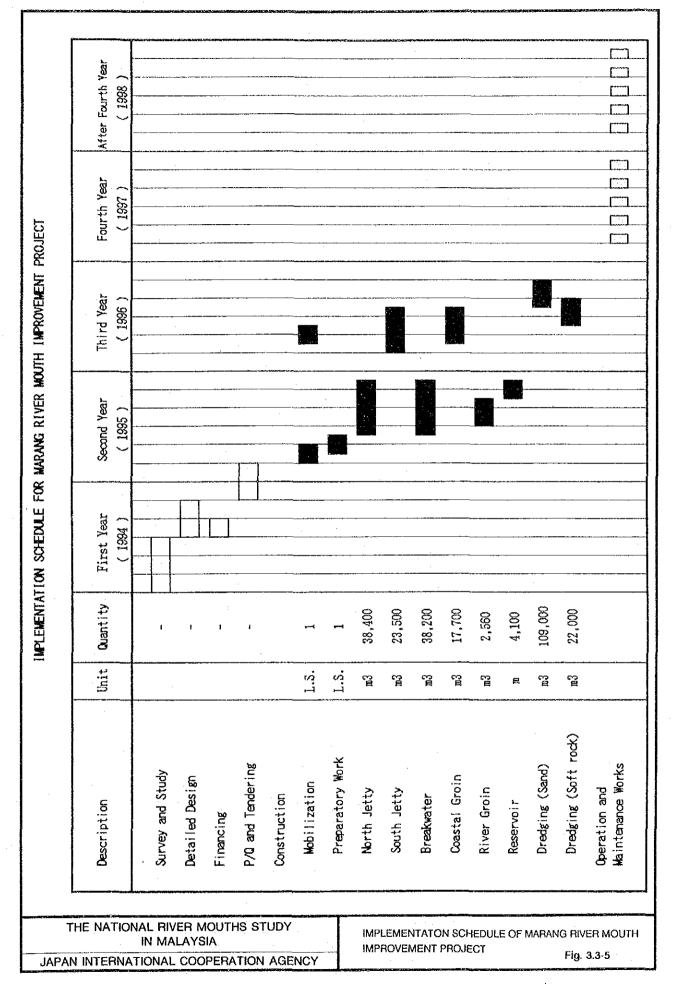


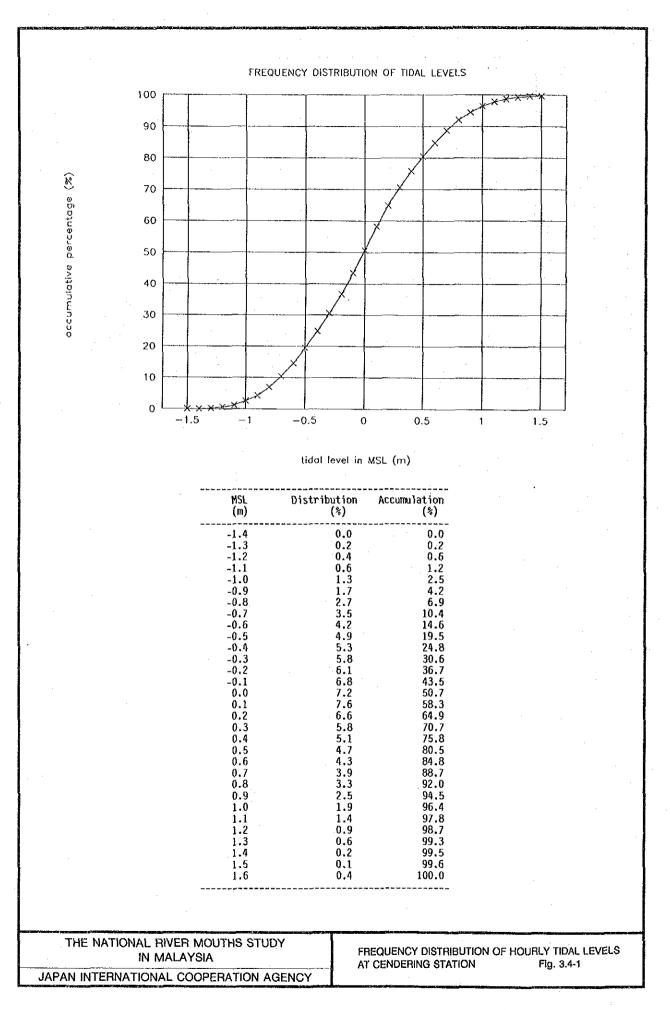

F ~ 34






BASE LINE 15.0 30 Y 12.5 SHORELINE CHANGE DUE TO STRUCTURE + VALUE: ADVANCE - VALUE: RETREAT (m) MARANG RIVER MOUTH 25 Y 10.0 DISTANCE (km) 20 Y 7 2 ţŝΥ 5.0 10 Y AFTER 5 YEARS ນ. ເມ CHENDERING 0 8 ş o 40 20 MORELINE CHANGE m THE NATIONAL RIVER MOUTHS STUDY IN MALAYSIA CALCULATION RESULT OF COASTLINE CHANGE Fig. 3.2-7 JAPAN INTERNATIONAL COOPERATION AGENCY




.

