TO REPORT AND CONTRACTOR OF THE SECOND CONTRAC

in the large of the control of the parent as 1996 on Charlette.

3 (3) 2000 - 6 86 (3) (34.66) (3) (40.63)

the constraint are the participant of the pat-

特別以及問題。

RAPA

A MARKET WENT WITH

TO CAMP TO STORY OF THE STORY O

A Company Communication

JAPAN INTERNATIONAL COOPERATION AGENCY(JICA)

DIRECTORATE GENERAL OF WATER MINISTRY OF PUBLIC WORKS
THE REPUBLIC OF CHILE

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

SUPPORTING REPORT A: SURFACE WATER

27438

MARCH 1995

PACIFIC CONSULTANTS INTERNATIONAL, TOKYO

TABLE OF CONTENTS

			Page
Cha	pter I	SURFACE WATER OF SAN JOSE RIVER BASIN	I-1
1.1	Gener	al	
	1.1.1	Climate and Precipitation	
	1.1.2	River System	
1.2	Surfac	ce Flow Rate	
	1.2.1	Flow Rate at Major Stations	
	1.2.2	Supplementary Observation	
	1.2.3	Calculation of Runoff Coefficient	
1.3	Surfac	ce Water Quality.	
	1.3.1	Water Quality at Major Stations	
	1.3.2		
1.4	Evalua	ation of Surface Water Development Potential	
Cha	pter II	SURFACE WATER OF LLUTA RIVER BASIN	II-1
:			
2.1	Gener	al	
	2.1.1	Climate and Precipitation	
-	2.1.2	River System	II-1
2.2	Surfac	e Flow Rate	II-2
ş	2.2.1	Flow Rate at Major Stations	II-2
	2.2.2	Calculation of Runoff Coefficient	II-4
2.3	Surfac	e Water Quality	II-5
	2.3.1	Water Quality at Major Stations	II-5
	2.3.2	Evaluation of Water Quality	II-5
2.4	Supple	ementary Observation	II-6
	2.4.1	Simultaneous Observation in the Upstream Tributaries	II-6
	2.4.2	Intensive Observation in the Contaminated Tributaries	
2.5	Evalua	ation of Surface Water Development Potential	II-13

Chaj	pter III	SURFACE WATER OF PAMPA DEL TAMARUGAL	
		BASIN	ІП-1
3.1	Genera	1	Ш-1
	3.1.1	Climate and Precipitation	
. :	3.1.2	River System	
3.2	Surfac	e Flow Rate	
	3.2.1	Flow Rate at Major Stations	ІП-2
: :	3.2.2	Calculation of Runoff Coefficient	ІП-2
3.3	Surfac	e Water Quality	Ш-3
		Water Quality at Major Stations	
	3.3.2		ІП-3
	3.3.3	Supplementary Observation	III-4
Cha	pter IV	SURFACE WATER OF SALAR DE HUASCO BASIN	IV -1
4.1	Genera	al	IV-1
	4.1.1	Climate and Precipitation	IV-1
	412	River System	IV-1
4.2	Surfac	e Flow Rate	IV-1
	4.2.1	Flow Rate at Major Stations	IV-1
	4.2.2	Calculation of Runoff Coefficient	
4.3	Surfac	e Water Quality at Major Stations	IV-2
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cha	pter V	EVALUATION OF RUNOFF FROM RAINFALL IN PAMPA DEL TAMARUGAL AND SALAR DE HUASCO BASIN	V_1
	** .		
5.1		al	
5.2	Relati	onship of Rainfall and Runoff Coefficient	V -1

LIST OF TABLES

Chapter I	SURFACE WATER OF SAN JOSE RIVER BASIN	Page
Table A, 1.1	Drainage Basin and Sub-Basin Areas in San José River Basin < Cuenca de Drenaje y Area Sub-cuenca en Cuenca del Río San José>	I-10
Table A, 1.2	Average Surface Flow Rate Observed by DGA at Major Stations River Basin <nivel de="" flujo="" meansual="" observado<br="" promedio="" superficie="">por DGA en las Principales Estaciones de la Cuenca del Río San José></nivel>	
Table A, 1.3	Average Surface Flow Rate in San José River Basin <nivel cuenca="" de="" del<br="" en="" flujo="" la="" promedio="" superficie="">Río San José></nivel>	I-12
Table A, 1.4	Average, Maximum and Minimum Surface Flow Rate in San Jos	sé River Basir
	<promedio, de="" flujo="" maximo="" minimo<br="" superficie="" tasa="" y="">en la Cuenca del Río San José></promedio,>	I-13
Table A, 1.5	Surface Flow Rate Observed on 12 June, 8 October and 29 Nove 1993 in San José River Basin Noviembre 1993 en la Cuenca del Río San José>	tubre y 29
Table A, 1.6	Average Runoff Coefficient in San José River Basin < Coeficientes de Escorrentias Promedio en la Cuenca de Río San José>	I-15
Table A, 1.7	Average Water Quality Observed by DGA in San José River Base <calidad agua="" cuenca<br="" de="" dga="" en="" la="" observado="" por="" promedio="">Río San José></calidad>	del
Table A, 1.8	Average Water Quality and Surface Flow Rate in San José River < Calidad Promedio del Agua y Nivel de Flujo en la Cuenca del Río San José>	
Table A, 1.9	Flood Water Volume at Saucache and Antes Bocatoma	
	<volumen agua="" antes="" bocatoma="" de="" en="" saucache="" y=""></volumen>	I-18

Chapter II SURFACE WATER OF LLUTA RIVER BASIN

Table A, 2.1	Drainage Basin and Sub-Basin Areas in Lluta River Basin <cuenca area="" cuenca="" de="" del="" drenaje="" en="" lluta="" río="" sub-cuenca="" y=""></cuenca>
Table A, 2.2	Average Surface Flow Rate Observed by DGA at Major Stations in Lluta River Basin <nivel de="" flujo="" meansual="" observado<="" promedio="" superficie="" td=""></nivel>
	por DGA en las Principales Estaciones de la Cuenca del Río Lluta>II-16
Table A, 2.3	Average Surface Flow Rate in Lluta River Basin <nivel cuenca="" de="" del="" en="" flujo="" la="" lluta="" promedio="" río="" superficie=""></nivel>
Table A, 2.4	Average and Probable Surface Flow Rate at Major Stations in Lluta River Basin
	<nivel de="" en="" flujo="" las<br="" probable="" promedio="" superficie="" y="">Estaciones Principales en la Cuenca del Río Lluía></nivel>
Table A, 2.5	Average Runoff Coefficient in Lluta River Basin <coefficientes cuenca="" de="" en="" escorrentia="" la="" lluta="" promedios="" río=""></coefficientes>
Table A, 2.6	Average Runoff Coefficient in Lluta River Basin <coefficientes cuenca="" de="" en="" escorrentia="" la="" lluta="" promedios="" río=""></coefficientes>
Table A, 2.7	Average Water Quality Observed by DGA in Lluta River Basin < Calidad Promedio de Agua Observado por DGA en la Cuenca del Río Lluta>
Table A, 2.8	Average Water Quality and Surface Flow Rate in Lluta River Basin < Calidad Promedio del Agua y Nivel de Flujo en la Cuenca del Río Lluta>
Table A, 2.9	Surface Flow Rate Observed on 1st - 3rd June 1993 in Lluta River Basin <nivel 1-3="" 1993="" cuenca="" de="" del="" el="" en="" entre="" flujo="" junio="" la="" lluta="" observado="" río="" superficie=""></nivel>
Table A, 2.10	(1) Water Quality Observed on 1st - 3rd June 1993 in Lluta River Basin < Calidad de Agua Observado entre el 1-3 de Junio 1993 en la Cuenca del Río Lluta >
Table A, 2.10	(2) Water Quality Observed on 1st - 3rd June 1993 in Lluta River Basin < Calidad de Agua Observado entre el 1-3 de Junio 1993 en la Cuenca del Río Lluta>

Table A, 2.10(3)	Water Quality Observed on 1st - 3rd June 1993 in Lluta River Basin Calidad de Agua Observado entre el 1-3 de Junio 1993 en la Cuenca del Río Lluta>II-26
<	urface Flow Rate Observed in Azufre and Colpitas Rivers Nivel de Flujo de Superficie Observado en Río Azufre y olpitas>
Table A, 2.12(1)	Water Quality Observed in Azufre River < Calidad de Agua Observado en Río Azufre > II-28
Table A, 2.12(2)	Water Quality Observed in Azufre River < Calidad de Agua Observado en Río Azufre > II-29
Table A, 2.12(3)	Water Quality Observed in Azufre River < Calidad de Agua Observado en Río Azufre > II-30
Table A, 2.12(4)	Water Quality Observed in Colpitas River < Calidad de Agua Observado en Río Colpitas > II-31
 Table A, 2.12(5)	Water Quality Observed in Colpitas River < Calidad de Agua Observado en Río Colpitas > II-32
Table A, 2.12(6)	Water Quality Observed in Colpitas River < Calidad de Agua Observado en Río Colpitas >
Table A, 2.12(7)	Water Quality Observed in Azufre River < Calidad de Agua Observado en Río Azufre > II-34
Table A, 2.12(8)	Water Quality Observed in Colpitas River < Calidad de Agua Observado en Río Colpitas > II-35
Table A, 2.13(1)	Storage Volume at Tocontasi & Chapisca < Volumen de Almacenamiento en Tocontasi y Chapisca > II-36
Table A, 2.13(2)	Storage Volume at Tocontasi & Chapisca < Volumen de Almacenamiento en Tocontasi y Chapisca > II-37
Table A, 2.14(1)	Storage Volume at Tocontasi & Chapisca < Volumen de Almacenamiento en Tocontasi y Chapisca > II-38
Table A, 2.14(2)	Storage Volume at Tocontasi & Chapisca < Volumen de Almacenamiento en Tocontasi y Chapisca > II-39
<	robability of Storage Volume at Tocontasi & Chapisca Probabilidad de Volumen de Almacenamiento en ocontasi y Chapisca>
Table A, 2.16 P.	robability of Storage Volume at Tocontasi & Chapisca Probabilidad de Volumen de Almacenamiento en Tocontasi y hapisca>
	11-41

Chapter III SURFACE WATER OF PAMPA DEL TAMARUGAL BASIN

Table A, 3.1	Drainage Basin and Sub-Basin Areas in Pampa del Tamarugal Basin «Cuenca de Drenaje y Area Sub-cuenca en Cuenca del
	Pampa del Tamarugal>III-7
Table A, 3.2	Average, Maximum and Minimum Surface Flow Rate in Pampa del Tamarugal Basin <promedio, cuenca="" de="" del="" en="" flujo="" la="" maximo="" minimo="" pampa="" superficie="" tamarugal="" tasa="" y=""> III-8</promedio,>
	en la Cuenca del Pampa del Tamarugal>III-8
Table A, 3.3	Average Runoff Coefficient in Pampa del Tamarugal Basin <coeficientes cuenca="" de="" del="" en="" escorrentias="" la="" pampa="" promedios="" tamarugal=""></coeficientes>
Table A, 3.4	Average Water Quality Observed by DGA in Pampa del Tamarugal Basin < Calidad Promedio de Agua Observado por DGA en la Cuenca del Pampa del Tamarugal >
Table A, 3.5	Surface Flow Rate Observed on 10th October 1993 in Pampa del Tamaruga Basin <nivel 10="" 1993="" cuenca="" de="" del="" el="" en="" entre="" flujo="" la="" observado="" octubre="" pampa="" superficie="" tamarugal=""></nivel>
Table A, 3.6(1	Water Quality Observed on 10th October 1993 in Pampa del Tamarugal Basin < Calidad de Agua Observado entre el 10 de Octubre 1993 en la Cuenca del Pampa del Tamarugal >
Table A, 3.6(2	Water Quality Observed on 10th October 1993 in Pampa del Tamarugal Basin < Calidad de Agua Observado entre el 10 de Octubre 1993 en la Cuenca del Pampa del Tamarugal>
Table A, 3.6(3	Water Quality Observed on 10th October 1993 in Pampa del Tamarugal Basin < Calidad de Agua Observado entre el 10 de Octubre 1993 en la Cuenca del Pampa del Tamarugal>

Chapter IV SURFACE WATER OF SALAR DE HUASCO BASIN

Table A, 4.1	Drainage Basin and Sub-Basin Areas in Salar de Huasco Basin < Cuenca de Drenaje y Area Sub-cuenca en Cuenca del Salar de Huasco>	IV-4
Table A, 4.2	Average, Maximum and Minimum Surface Flow Rate in Salar de Huasco Basin < Promedio, Tasa de Flujo de Superficie Maximo y Minimo en la Cuenca del Salar de Huasco>	IV-5
Table A, 4.3	Average Runoff Coefficient in Salar de Huasco Basin < Coeficientes de Escorrentias Promedios en la Cuenca de Salar de Huasco >	IV-6
Table A, 4.4	Water Quality Observed by DGA in Salar de Huasco Basin < Calidad de Agua Observado por DGA en la Cuenca del Salar de Huasco >	IV-7

Chapter V EVALUATION OF RUNOFF FROM RAINFALL IN PAMPA DEL TAMARUGAL AND SALAR DEL HUASCO BASIN

Table A, 5.1(1)	Calculated Runoff in Pampa del Tamarugal and Salar de Huasco Basin <escorrentias calculadas="" cuenca="" de="" del<br="" en="" la="">Pampa del Tamarugal y Salar de Huasco></escorrentias>	
Table A, 5.1(2)	Calculated Runoff in Pampa del Tamarugal and Salar de	
	Huasco Basin <escorrentias calculadas="" cuenca="" de="" del="" en="" huasco="" la="" pampa="" salar="" tamarugal="" y=""></escorrentias>	V-5

LIST OF FIGURES

		Page
Chapter I	SURFACE WATER OF SAN JOSE RIVER BASIN	
Fig. A, 1.1	River System of San José River Basin <systema cuenca="" de="" del="" fluvial="" josé="" la="" río="" san=""></systema>	. I-19
Fig. A, 1.2	Average Precipitation (Isohyetal Map) in San José River Basin <precipitacion cuenca="" de="" del<br="" en="" isoyeta="" la="" mapa="" promedio="">Río San José></precipitacion>	. I-20
Fig. A, 1.3	Flow Model in San José River Basin <modelo cuenca="" de="" del="" en="" flujo="" josé="" la="" río="" san=""></modelo>	I-21
Fig. A, 1.4	Average Surface Flow Rate in San José River Basin <nivel cuenca="" de="" del="" flujo="" josé="" la="" meansual="" premedio="" río="" san="" superficie=""></nivel>	. I-22
Fig. A, 1.5	Surface Flow Rate at Saucache during Flood Period <nivel de="" durante="" el="" en="" flujo="" periodo<br="" saucache="" superficie="">de Avenidas></nivel>	I-23
Fig. A, 1.6	Relationship of Observed Data at Saucache and Antes Bocatoma and Regression Line <relacion antes="" bocatoma="" datos="" de="" en="" linea="" observado="" regresion="" saucache="" y=""></relacion>	I-24

Chapter II SURFACE WATER OF LLUTA RIVER BASIN

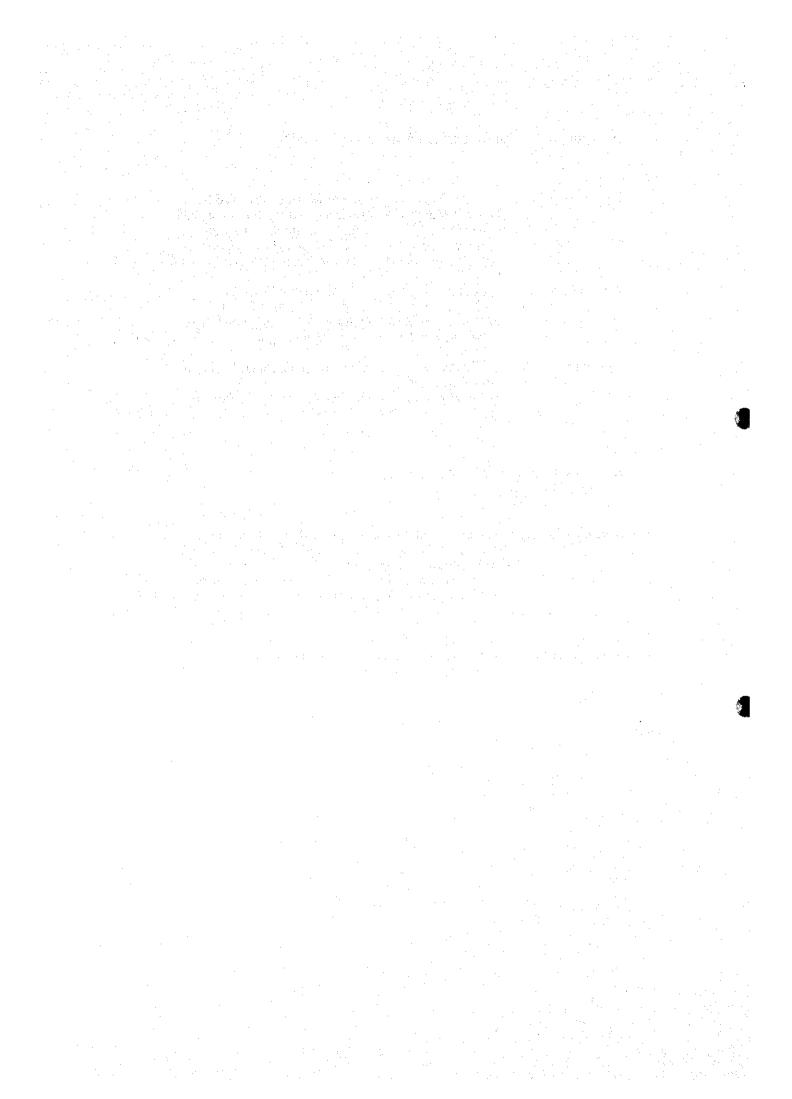
Fig. A, 2.1	River System of Lluta River Basin <systema cuenca="" de="" del="" fluvial="" la="" lluta="" río=""> II-42</systema>
Fig. A, 2.2	Average Precipitation (Isohyetal Map) in Lluta River Basin <precipitacion cuenca<br="" de="" en="" isoyeta="" la="" mapa="" promedio="">del Río Lluta></precipitacion>
Fig. A, 2.3	Flow Model in Lluta River Basin <modelo cuenca="" de="" del="" en="" flujo="" la="" lluta="" río=""></modelo>
Fig. A, 2.4	Average Surface Flow Rate in Lluta River Basin <nivel cuenca="" de="" del="" flujo="" la="" lluta="" meansual="" premedio="" río="" superficie=""></nivel>
Fig. A, 2.5	Relationship of Observed Data in Caracarani and Azufre Rivers and Regression Line <relacion azufre="" caracarani="" datos="" de="" en="" linea="" observado="" regresion="" río="" y=""></relacion>
Fig. A, 2.6	Location of Observation Points on 1st - 3rd June 1993 in Lluta River Basin <ubicacion -="" 1="" 1993="" 3="" cuenca="" de="" del="" el="" en="" junio="" la="" lluta="" los="" observacion="" puntos="" río=""></ubicacion>
Fig. A, 2.7	Location of Observation Points in Azufre River Basin in November 1993 <mapa 1993="" azufre="" cuenca="" de="" del="" el="" en="" la="" los="" noviembre="" puntos="" río="" ubicacion=""></mapa>
Fig. A, 2.8	Location of Observation Points in Colpitas River Basin in November 1993
Fig. A, 2.9	Mass Curve at Tocontasi & Chapisca from 1946 <curva 1946="" chapisca="" de="" desde="" en="" mase="" tocontasi="" y="">II-50</curva>
Fig. A, 2.10	Water Storage (Inflow - Outflow) at Tocontasi & Chapisca <almacenamiento (entrada="" -="" agua="" de="" en="" salida)="" tocontasi<br="">y Chapisca></almacenamiento>

<Nivel de Flujo de Superficie Premedio Meansual de la Cuenca del Pampa del Tamarugal>......III-18

Chapter IV SURFACE WATER OF SALAR DE HUASCO BASIN

Fig. A, 4.1	River System of Salar de Huasco Basin «Systema Fluvial de la Cuenca del Salar de Huasco»	IV-8
Fig. A, 4.2	Average Precipitation (Isohyetal Map) in Salar de Huasco Basin <precipitacion cuenca="" de="" del<br="" en="" isoyeta="" la="" mapa="" promedio="">Salar de Huasco></precipitacion>	IV-9
Fig. A, 4.3	Flow Model in Salar de Huasco Basin < Modelo de Flujo en la Cuenca del Salar de Huasco >	IV-10
Fig. A, 4.4	Average Surface Flow Rate in Salar de Huasco Basin <nivel de="" flujo="" la<br="" meansual="" premedio="" superficie="">Cuenca del Salar de Huasco></nivel>	IV-11

Chapter V	EVALUATION OF RUNOFF FROM RAINFALL IN PAMPA
•	DEL TAMARUGAL AND SALAR DE HUASCO BASIN


Fig. A, 5.1	Relationship of Average Rainfall and Runoff Coefficient in the Study Area
_	< Relacion Promedio de las Lluvias y Coeficiente de Escorrentias
	en el Area Estudiada>V-6

LIST OF APPENDICES

Appendix A, 1 S	SAN JOSE RIVER BASIN Page
Appendix A, 1.1	Average Monthly Surface Flow Rate Observed by DGA at Major Stations in San José River Basin <nivel cuenca="" de="" del="" dga="" en="" estaciones="" flujo="" josé="" la="" las="" mensual="" observado="" por="" principales="" promedio="" río="" san="" superficie=""></nivel>
Appendix A, 1.2	Field Observation in San José River Basin on 12th June 1993 <observacion cuenca="" del<br="" en="" la="" torreno="">Río San José el 12 Junio 1993></observacion>
Appendix A, 1.3	Average Water Quality Observed by DGA at Major Stations in San José River Basin < Calidad Promedio del Agua Observado por DGA en la Cuenca del Río San José >
Appendix A, 1.4	Observed and Calculated Daily Flow Rate at Antes Bocatoma and Saucache <nivel antes="" bocatoma="" calculado="" de="" diario="" flujo="" observado="" saucache="" y=""></nivel>
Appendix A, 2 I	LUTA RIVER BASIN
Appendix A, 2.1	Average Monthly Surface Flow Rate Observed by DGA at Major Stations in Lluta River Basin <nivel cuenca="" de="" del="" dga="" en="" estaciones="" flujo="" la="" las="" lluta="" mensual="" observado="" por="" principales="" promedio="" río="" superficie=""></nivel>
Appendix A, 2.2	Probable Surface Flow Rate (90%) at Major Stations in Lluta River Basin <nivel (90%)<br="" de="" flujo="" probable="" superficie="">en la Cuenca del Río Lluta></nivel>
Appendix A, 2.3	Average Water Quality Observed by DGA at Major Stations in Lluta River Basin < Calidad Promedio del Agua Observado por DGA en la Cuenca del Río Lluta >
Appendix A, 2.4	Field Observation in Lluta River Basin on 1st - 3rd June 1993 <observacion -="" 1="" 1993="" 3="" cuenca="" del="" el="" en="" junio="" la="" lluta="" río="" terreno=""></observacion>

Appendix A, 3 PAMPA DEL TAMARUGAL BASIN

Appendix A, 3.1	Average Monthly Surface Flow Rate Observed by DGA at Major Stations in Pampa del Tamarugal Basin <nivel cuenca="" de="" del="" dga="" en="" estaciones="" flujo="" la="" las="" mensual="" observado="" pampa="" por="" principales="" promedio="" superficie="" tamarugal=""></nivel>
Appendix A, 3.2	Average Water Quality Observed by DGA at Major Stations in Pampa del Tamarugal Basin < Calidad Promedio del Agua Observado por DGA en la Cuenca del Pampa del Tamarugal >
Appendix A, 3.3	Field Observation in Pampa del Tamarugal Basin on 6th October 1993 <observacion 1993="" 6="" cuenca="" del="" el="" en="" la="" octubre="" pampa="" tamarugal="" terreno=""></observacion>
Appendix A, 4	SALAR DEL HUASCO BASIN
Appendix A, 4.1	Average Monthly Surface Flow Rate Observed by DGA at Major Stations in Salar de Huasco Basin <nivel cuenca="" de="" del="" dga="" en="" estaciones="" flujo="" huasco="" la="" las="" mensual="" observado="" por="" principales="" promedio="" salar="" superficie=""></nivel>
Appendix A, 5	Water Quality Standard For Potable Water

Chapter I SURFACE WATER OF SAN JOSE RIVER BASIN

1.1 General

San José River basin located in the Region I in northern Chile has a drainage basin area of about 3,187 km² covering the sub-basins of Laco and Tignamar rivers. The drainage basin area is shown in Fig. A, 1.1 and Table A, 1.1.

1.1.1 Climate and Precipitation

Information on climate in the basin is obtained from Arica Oficina and Azapa weather stations in the downstream of the basin. Maximum monthly average temperature is in December at 36.4 °C and minimum one is in August at 18.5 °C. Humidity does not vary much throughout a year lying within a range of 60 - 80 %.

Precipitation is observed regularly by DGA and Meteorological Department. Most of the stations are distributed in the upstream of the basin as shown in Fig. A, 1.2.

Most of the precipitation fall in the upstream mountain areas with an altitude of higher than 3,000 m. On the other hand, the lower reaches including Arica city and Azapa valley receive no rainfall throughout the year. Average annual precipitation regionally varies from zero in Arica city to 200 mm in the uppermost mountain area as shown in Fig. A,1.2.

1.1.2 River System

San José River originates from the Andes mountains with an elevation of 4,000 - 5,000 m. It flows westwards, joining the main tributaries of Tignamar, Seco and Laco, through the Azapa valley to the Pacific Ocean at Arica city. The river is called as San José River after the confluence of the above main tributaries.

The river runoff is caused by the rainfall and snow melt in the Andes mountains. The indigenous flow rate of the San José River is small. Hence, the Lauca River, flowing toward Bolivia across the border, was diverted to increase the flow rate of San José River in 1962.

The diverted water is discharged at Central Chapiquina located in the upstream tributary (Laco River) of San José River through the Central Chapiquina hydropower station with the maximum output of 10.2 MW.

The water after joining that of the above mentioned tributaries, flows down in the San José main river to the irrigation dam/intake of the Azapa Irrigation Canal.

The irrigation dam/intake called as "Bocatoma" is located 40 km upstream from the river mouth. It usually draws the whole river flow to irrigate approximately 3,200 ha of farmland in Azapa Valley. Only flood water spills over the Bocatoma.

For the river system, see Fig. A, 1.1. Flow model of San José River is shown in Fig. A, 1.3 along the discharge observation stations.

1.2 Surface Flow Rate

1.2.1 Flow Rate at Major Stations

Daily water level is observed at DGA's observation stations by automatic recorder. Flow rate at each station is generally calculated by so called "Discharge Rating Curve" or "H-Q Curve" which is a calibration curve of water level and flow rate. Major observation stations are as follows;

River	Location	Observation Period
Lauca Canal	Bocatoma Lauca	1979 - Present
	Central Chapiquina	1967 - Present
San José	Ausipar	1967 - 1972
	Antes Bocatoma	1974 - 1984
e e e e e e e e e e e e e e e e e e e	Acueducto Azapa	1963 - Present

Their locations are shown in Fig. A, 1.3.

Observation at Ausipar and Antes Bocatoma have ceased since 1973 and 1985 respectively because the stations were damaged by the river floods. However, observation at Ausipar started again in 1993.

Average monthly flow rate of these stations are shown in Table A, 1.2 and Table A, 1.3. Monthly fluctuation of the flow rate at each station is shown in Fig. A.1.4. Monthly maximum, minimum and average flow rates in the recorded years are shown in Table A, 1.4. Recorded monthly flow rates in the past are shown in Appendix A, 1.1.

Ausipar and Antes Bocatoma stations are closely located with a distance of approximately 7 km. Water use and loss between both stations are considered negligibly small. Hence, the discharge data of both stations are combined.

Yearly average flow rate at Central Chapiquina is estimated at 0.796 m³/s. On the other hand, that at Ausipar/Antes Bocatoma is estimated to be 1.101 m³/s. The balance of 0.305 m³/s is considered as the indigenous flow of the San José River. The Lauca diversion water shares approximately 70 % of the total water of San José River.

Flow rate at Acueducto Azapa (irrigation water intake rate) has increased in recent years. Average flow rates during the periods of 1963 - 1975 and 1976 - 1990 were 0.296 m³/s and 0.646 m³/s respectively.

Usually, all the river water is used or infiltrates into underground in the Azapa Valley. Only flood water is discharged to the sea. Flood flow rate to the sea has been observed at Puente Saucache by DGA. The observed monthly average flood flow rates in the past are also shown in Appendix A, 1.1. However, it should be noted that the observation was conducted on ad hoc basis and as a result, the observed data do not include all the floods occurred during the observation period.

1.2.2 Supplementary Observation

1) Objective

The purpose of the supplementary observation is to check the water balance along the San José River, especially to examine the water loss between upstream and downstream stations.

2) Location

Observation points are as follows:

- (1) AusiparAU-1
- (2) Downstream of Tignamar River.....TG-1
- (3) Acueducto AzapaAQ-1

For location, see Fig. A, 1.3.

3) Observation Method

The measurement was conducted by JICA Study Team & DGA. River conditions during measurement are shown in Appendix A, 1.2. Flow velocity was measured by a propeller current meter across the river section at a length interval of about 1/10 of the river width. Flow rate was calculated as the product of average velocity times cross sectional area

$$Q = \sum_{i=1}^{m} V_i \times A_i$$

where

Q = flow rate (m³/s),

V = flow velocity (m/s),

A = cross sectional area of the river (m²) and

m = number of sub-cross sections.

4) Date of Observation

Observations were carried out on 12th June, 8th October and 29th November 1993.

5) Results of Observation

Flow rate at each point is shown in Table A, 1.5. In the table, the flow rate at Central Chapiquina is the one discharged from the hydropower station. It was obtained from the electric company.

(1) First observation

The Seco and Laco (upstream section of Central Chapiquina hydropower station) were almost dried up at the observation time. Hence, only Tignamar River was observed to estimate the indigenous flow rate of San José River. At that time, there was no overflow from the Bocatoma and all the water at Antes Bocatoma was drawn by the irrigation intake. Further, no water was drawn at Sr. Aguero irrigation intake located between Ausipar and Antes Bocatoma stations.

The total flow rate of Tignamar and Lauca diversion is 0.587 m³/s. It is in a well agreement with the flow rates of 0.554 m³/s at Ausipar and 0.549 m³/s at Antes Bocatoma (equal to Acueducto Azapa). This would mean there is no significant infiltration into

underground and other water losses in the upstream reaches of Bocatoma.

(2) Second Observation

The second observation was carried out to further examine the water loss between Ausipar and Antes Bocatoma. All the river water at Antes Bocatoma was drawn by the Azapa irrigation intake with no overflow from Bocatoma at the observation time.

The flow rate at Ausipar and Antes Bocatoma (equal to Acueducto Azapa) were 0.717 m³/s and 0.562 m³/s respectively. The difference is large equivalent to 28 % of the flow rate at Antes Bocatoma. This difference may mainly be due to the water extraction at Sr. Aguero irrigation intake and observation error. However, the extracted water volume was not observed at that time.

(3) Third Observation

A further detailed observation was executed to confirm the water balance between Ausipar and Antes Bocatoma stations. At that time, some water was drawn from Sr. Aguero intake for irrigation use and a little amount of overflow was observed at Bocatoma.

The water balance between the stations was as small as 0.047 m³/s.

Flow rate at Ausipar	:	$0.780 \text{ m}^3/\text{s}$
Water withdrawal at Sr. Aguero	:	-0.061 m ³ /s
Overflow at Bocatoma	:	-0.004 m ³ /s
Flow rate at Acueducto Azapa	:	-0.668 m ³ /s

Balance : $0.047 \text{ m}^3/\text{s}$

From the above observations, it is concluded that there is no significant infiltration loss in the upstream reaches of Antes Bocatoma.

(4) Conclusion

(i) There is some water loss between Ausipar and Antes Bocatoma stations. Major portion of this water loss is caused by the water extraction at Sr. Aguero irrigation intake. No significant infiltration and other losses are identified.

(ii) The water loss between both stations in considered not large. Hence, the discharge data at both stations are collectively used with no modification for evaluation of the surface water potential of San José River.

The observed discharge differences between both stations are as follows.

Observation	(1) Ausipar (2) Antes Bocatoma	((1)-(2))/(2)
	(l/s)	(l/s)	(%)
1st	554	549	1.
2nd	717	562	28
3rd	780	672	16
Average	684	594	15

The surface water potential of the River is to be evaluated by the data at Antes Bocatoma. However, the period of the available data is limited to 1974-1984 (11 years). On the other hand, the data at Ausipar is available for the period of 1967-1972 (6 years). Therefore, these data were combined with no correction of the data at Ausipar to evaluated the surface water potential based on as much data as possible. However, the flow rate of the River was calculated by weighting the data at both stations according to their recorded periods.

As a result, the error (overestimate) of the estimated surface water potential of the River is considered as small as 5% (=15% x $\frac{6}{17}$) at most.

1.2.3 Calculation of Runoff Coefficient

The surface runoff coefficient of San José River at Antes Bocatoma was estimated by comparing the average indigenous flow rate of San José River at Antes Bocatoma with average annual precipitation of the drainage basin of Antes Bocatoma.

The average annual indigenous flow rate was obtained by deducting the flow rate at Central Chapiquiña from the flow rate at Antes Bocatoma. The average annual precipitation of the basin was estimated based on the isohyetal map of annual precipitation prepared by DGA in 1987 as shown in Fig. A, 1.2.

The differences among the average annual precipitations at the DGA stations in the whole study area for the periods until 1987 and until present time are negligibly small. The average difference is approximately 5%.

Therefore, the isohyetal map of DGA - 1987 was used in this study without any modification.

The run-off coefficient of San José River at Antes Bocatoma is estimated to be 0.068 as shown in Table A, 1.6. This means that 6.8 % of the precipitation runs off into the river as surface water. The remaining 93.2 % is mainly lost by evaporation.

1.3 Surface Water Quality

1.3.1 Water Quality at Major Stations

Water quality is observed by DGA. Water quality samples are taken from the river and analyzed in the DGA laboratory. The observation stations are as follows;

River	Location	Observation Period
Lauca Canal	Sifon N1	1959 - Present
San José	Ausipar	1969 - 1981
	Bocatoma	1967 - 1987
No.	Acueducto Azapa	1970 - Present
	Saucache	1972 - 1977

The analyzed water quality elements are as follows;

(1) Health Significance: As, N-NO₃, N-NO₂, N-NH₃

(2) Aesthetic Quality: Cl-, Cu, Fe, Na, P, SO₄, pH

(3) Others: HCO₃, CO₃, Ca, Mg, K, B, E.C.

Average water quality at each station are shown in Table A, 1.7 and A, 1.8. Average monthly data in the past are shown in Appendix A, 1.3.

1.3.2 Evaluation of Water Quality

Permissible drinking water quality of Chile is shown partly as follows;

	pН	Cl-	SO ₄	Mg	As	Cu	Fe	N-
		(ma/l)	(ma/l)	(ma/l)	(mg/l)	(ma/l)	(mg/l)	NO ₃ (mg/l)
Permissible	6.0-						1 11 1	·
Values	8.5	250	250	125	0.05	1.0	0.3	10.0

Water Quality Standard is referred in Appendix A, 5.

Water quality of San José River is generally good. However, As and Fe exceed the permissible limit at almost all the stations. The average concentration of As and Fe at the above five (5) stations are 0.09 mg/l and 0.82 mg/l respectively.

1.4 Evaluation of Surface Water Development Potential

The river water is usually all consumed or infiltrates into underground in Azapa Valley and resultingly, no water flows down to the sea. Only flood water is discharged to the sea. This flood water discharging to the sea is the surface water potential which can be further developed.

The flood flowing to the sea was measured at Puente Saucache by DGA during 1971 to 1989. The observed flood hydrograph is shown in Fig. A, 1.5. However, this hydrograph records do not include all the actual floods during the observation period. Because the DGA observation was conducted on ad hoc basis.

Hence, flood flow at Puente Saucache is estimated from that at Antes Bocatoma. The observed flood flow rates at both stations at the same day in the past are plotted as shown in Fig. A, 1.6.

Relation between the flood flow rates at both stations is expressed as follows;

$$Q_{Saucache} = 0.712 Q_{Antes\ Bocatoma} - 0.577$$
 or
$$Q_{Antes\ Bocatoma} = 1.404 Q_{Saucache} + 0.810$$
 where Correlation Coefficient (r) = 0.7120

$$Q = flow rate (m3/s),$$

a, b = constant

Flood flow rates at Puente Saucache during 1976 to 1984 are estimated from the observed flood flow rates at Antes Bocatoma based on the above equation. The results are shown in Appendix A, 1.4.

Yearly flood flow volume to the sea during 1976 to 1984 is calculated as shown in Table A, 1.9. It ranges from $0~\text{m}^3$ in 1983 to $16,936,933~\text{m}^3$ in 1976 with an average of $4,708,652~\text{m}^3$.

The above average yearly flood flow volume to the sea of $4,708,652 \text{ m}^3/\text{year}$ (= $0.149 \text{ m}^3/\text{s}$) is considered to be the theoretically maximum surface water potential which can be further developed in San José River Basin.

Table A, 1.1 Drainage Basin and Sub-Basin Areas in San José River Basin «Cuenca de Drenaje y Area Sub-cuenca en Cuenca del Rio San Jose»

	River Mode		River	Tributaries	Location	Sub-Basin (km2)	Total Basin (km2)
	NOS			1		(KIII2)	(KIIIZ)
			4	Laco		259.4	259.4
Lauce Cenal							
				Tignamar		593.7	853.1
	Lesso Tign	Artistr .					
				A Figure 1 Comment			
			San Jose	<u> </u>	Ausipar	340.9	1,194.0
	İ						
				•			
Aq	ueducto		San Jose	Ante	s Bocatoma	84.1	1,278.
•							
				· · · · · · · · · · · · · · · · · · ·			
	<u>a</u> <					:	
	Zapa Valley		.				
Sa D:	n Jose ver						
<u>IX1</u>	<u>ver</u>		San Jose		River Mouth	1,908.8	3,186.

«Nivel de Flujo de Superficie Promedio Meansual Observado por DGA en las Principales Estaciones Table A, 1.2 Average Surface Flow Rate observed by DGA at Major Stations in San Jose River Basin de la Cuenca del Rio San Jose>

													Unit: m /s	w_/s	
River	Location	Obs. Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec AVG	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG
Lauca	Bocatoma Lauca	1979-1992 1.050 1.050 1.071 0.905 0.926 0.895 0.893 0.899 0.933 1.003 1.018 0.943 0.965	1.050	1.050	1.071	0.905	0.926	0.895	0.893	0.899	0.933	1.003	1.018	0.943	0.965
Canal	Central Chapiquina 1967-1993 0.879 0.877 0.874 0.752 0.757 0.752 0.791 0.784 0.778 0.769 0.770 0.767 0.796	1967-1993	0.879	0.877	0.874	0.752	0.757	0.752	0.791	0.784	0.778	0.769	0.770	0.767	0.796
San Jose Ausipar	Ausipar	1967-1972 2.325 1.604 0.947 0.565 0.890 0.833 0.773 0.705 0.586 0.506 0.506 0.652 0.907	2.325	1.604	0.947	0.565	0.890	0.833	0.773	0.705	0.586	0.506	0.506	0.652	0.907
	Antes Bocatoma	1974-1984 1.333 2.558 2.137 0.980 1.010 1.030 0.965 0.879 0.843 0.788 0.802 0.929 1.188	1.333	2.558	2.137	0.980	1.010	1.030	0.965	0.879	0.843	0.788	0.802	0.929	1.188
	Ausipar & Antes Bocatoma	xatoma	1.638	2.272	1.740	0.876	0.970	1.638 2.272 1.740 0.876 0.970 0.959 0.901 0.825 0.769 0.694 0.717 0.850 1.101	0.901	0.825	0.769	0.694	0.717	0.850	1.101
	Acueducto Azapa 1963-1990 0.504 0.362 0.380 0.475 0.546 0.520 0.545 0.517 0.486 0.472 0.501 0.536 0.487	1963-1990	0.504	0.362	0.380	0.475	0.546	0.520	0.545	0.517	0.486	0.472	0.501	0.536	0.487
	Note:	Note: Average flow	v rate a	t Ausip	ar & Ai	ntes Boo	catoma	flow rate at Ausipar & Antes Bocatoma is calculated by weighted average of the recorded years	lated b	y weigh	nted ave	rage of	the rec	orded y	ears

(Recorded period of the stations are different but range from 1967 to 1992) Average Surface Flow Rate in San José River Basin <a>Nivel de Flujo de Superficie Promedio en la Cuenca del Rio San Jose> Table A, 1.3

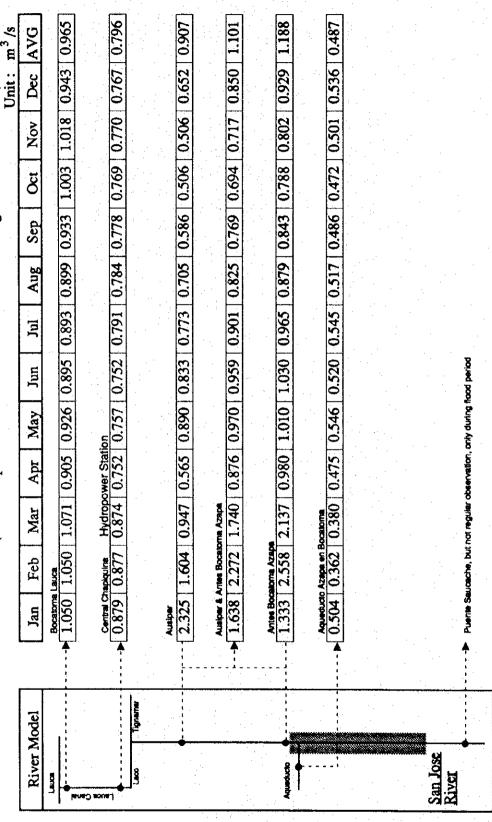


Table A, 1.4 Average, Maximum and Minimum Surface Flow Rate in San José River Basin

Promedio, Tasa de Flujo de Superficie Maximo y Minimo en la Cuenca del Rio San José
(Max. and Min. are the maximum and minimum of average values in a month of the recorded years, not instantaneous values)

				:										Cnit:	m '/s
River	Location		Jan	Feb	Mar	Apr	May	Jun		Aug	Sep	Oct	Nov	Dec	Avg.
San Jose	San Jose Bocatoma	Max.	1.485	1.374	1.584	1.546	1.396	1.203		1.290	1.350	1.452		1.528	1.431
	Lauca	Avg.	1.050	1.050	1.071	0.905	0.926	0.895	. :	0.899	0.933	1.003		0.943	0.965
:		Min.	0.691	0.678	0.520	0.442	0.466	0.552		0.639	0.579	0.619		0.531	0.576
1	Central	Max.	[097]	1.215	1.231	1.121	1.079	1.067		1.190	1.190	1.240		1.193	1.165
	Chapiquina	Avg.	0.879	0.877	0.874	0.752	0.757	0.752		0.784	0.778	0.769		0.767	0.796
		Min.	0.450	0.450	0.465	0.384	0.370	0.200		0.520	0.500	0.430		0.460	0.424
	Ausipar	Max.	[001.9	3.170	2.250	1.070	1.300	1.050		0.796	0.664	0.644		0.935	1.686
		Avg	2.330	1.610	0.948	0.564	0.891	0.833	0.773	0.705	0.586	0.506	0.506	0.652	0.909
		Min.	0.604	0.718	0.120	0.117	0.547	0.663		0.553	0.463	0.391		0.508	0.461
	Antes	Max.	2.720	7.220	5.360	2.110	2.040	1.670		1.420	1.280	1.070	1	1.540	2.413
	Bocatoma	Avg.	1.330	2.560	2.140	0.980	1.010	1.030		0.879	0.842	0.788		0.929	1.188
	Azapa	Min.	0.551	0.620	0.540	0.398	0.259	0.357		0.443	0.475	0.414	1	0.489	0.452
	Ausipar &	Max.	6.700	7.220	5.360	2.110	2.040	1.670		1.420	1.280	1.070		1.540	2.745
	Antes	Avg.	1.638	2.272	1.740	0.876	0.970	0.959		0.825	0.769	0.694		0.850	1.101
	Bocatoma	Min.	0.551	0.620	0.120	0.117	0.259	0.357		0.443	0.463	0.391		0.489	0.381
	Acueducto	Max.	0.943	0.976	1.010	1.030	1.090	1.040		0.863	0.817	[688.0]		1.000	0.970
	Azapa en	Avg.	0.504	0.362	0.380	0.475	0.546	0.520		0.517	0.486	0.472		0.536	0.487
	Bocatoma	Min.	0.000	0.00	0.000	0.000	0.00	0.00		0.000	0.000	0.00		0000	0.000

«Nivel de Flujo de Superficie Observado entre el 12 de Junio y 10 de Octobre y 29 de Noviembre Table A, 1.5 Surface Flow Rate observed on 12 June, 8 October and 29 November 1993 in San Jose River Basin de 1993 en la Cuenca del Rio San Jose>

	Remarks		Flow Pattern	- Ausipar					Sr. Aguero		e Ki	zo t 1	ns2			Aquequero Azapa (Antes Bacatoma		Rocatoma	
	Flow Rate	(S/CIII)		Data from DGA 0.557	0.030	0.554	0.000	0.549	0.000		0.717	not observed	0.562	0.000		0.780	0.061	0.668	0.004
Cross-section	Area	(mz)			0.059	1.021	•	0.391			1.056		0.400			1.213	•	0.450	
Average	Velocity	(s/m)			0.51	0.54		1.40	-		0.68		1.41			0.64	1.	1.49	•
	Location/	Cucorada	12th June 1993	Central Chapiquina	•	Ausipar	Sr. Aguero Intake	Acueducto Azapa	Bocatoma	ith October 1993	Ausipar	Sr. Aguero Intake	Acueducto Azapa	Bocatoma	9th November 1993	Ausipar	Sr. Aguero Intake	Acueducto Azapa	Восатота
	River		Observation on 12	Canal Lauca	Tignamar	San Jose				Observation on 8th October 1993	San Jose				Observation on 29	San Jose			

able A, 1.6 Average Runoff Coefficient in San José River Basin

<Coefficientes de Escorrentias Promedios en la Cuenca de Rio San José>

Location:	Antes Bocatoma	na						
			Upstream		Upstream			Upstream
Rainfall	Average	Total River	Basin of	Average	Avg. Rainfall	Flow Rate	Runoff	Average
Range	Rainfall	Basin	A. Bocatoma	R*A	R (mm)	at A.Bocatoma	Coefficient	Altitude
(mm)	R (mm)	(km2)	A (km2)	(mm.km2)	(R*A/A)	Q (m3/s)	f (= O/R*A)	H (m, msl)
0.0 - 10.0	5.0	1,940.72		159.59		0.305	1.	
10.0 - 50.0	30.0	296.08	296.08	8,882.40		(C.Chapiquina		
50.0 - 100.0	75.0	218.80	218.80	16,410.00		- A.Bocatoma)		
100.0 - 150.0	125.0	372.50	372.50	46,563.00				
150.0 - 200.0	175.0	234.94	234.94	41,113.80				
200.0 - 250.0	225.0	123.86	123.86	27,868.78				
250.0 - 300.0	275.0	00:00						
300.0 - 350.0	325.0	00:0	i	1		→		
> 350.0	•	00.0	*			(m3/year)	-	
		3,186.90	1,278.10	140,997.58	110,32	9.618.480	0.068	3.464

- Flow rate at Antes Bocatoma is the indigeneous flow rate of San Jose River excluding the diversion water from Lauca Canal. - Average basin rainfall is calculated from Average Annual Precipitation Map (Isohyetal Map) by DGA in 1987 Note:

That is the difference of the average flow rate of Ausipar/Antes Bocatoma and average flow rate of Central Chapiquina (1.101 - 0.796 = 0.305 m3/s).

- Upstream average altitude of Antes Bocatoma is obtained by averaging the altitude of the rainfall stations located in the upstream basin of Antes Bocatoma

<Calidad Promedio de Agua Observada por DGA en la Cuenca del Rio San José> Table A, 1.7 Average Water Quality Observed by DGA in San José River Basin

					2.21	· · · · · ·		
N-NH3	(mg/l)	0.117		0.062	0.073	0.000		
Д	(Mg/l)	0.166		0.075	0.133			
N-NO2	(I/gm)	0.003		0.007	0.004	0.005		
Cu Fe N-NO ₃ N-NO ₂ P	(mg/l) (mg/l) (mg/l) (mg/l) (mg/l)	0.092 0.003 0.166 0.117	0.227	0.126 0.007 0.075 0.062	0.83 0.135 0.004 0.133 0.073	0.402 0.005	10.000	
e e	(I/Om)	0.27	0.80	1.40	0.83	0.82	0.30	
ට්	(mg/l)	7.8 55.3 1.41 0.087 0.059 0.27	8.2 68.4 1.02 0.078 0.015 0.80	135 55.4 31.4 7.0 60.5 1.60 0.080 0.015 1.40	8.2 67.5 1.68 0.118 0.061	6.3 47.3 1.13 0.085 0.112 0.82	0.050 1.000 0.30	
As	(mg/l)	0.087	0.078	0.080	0.118	0.085	0.050	
М	(l/gm)	1.41	1.02	1.60	1.68	1.13		
Na	(mg/l)	55.3	68.4	60.5	67.5	47.3		
K	(mg/l)	7.8		7.0				
Mg	(mg/l)	101 34.3 35.8	55.2 35.9	31.4	155 54.3 34.1	130 77.3 15.8	125.0	
బ	(mg/l)	34.3	55.2	55.4	54.3	77.3		
SO4	(mg/l)	101	134	135		1 1	250	
ט	(l/gm) (l/gm) (l/gm) (l/gm) (l/gm) (l/gm)	41	55	50	53	56	250	
нсо3	(mg/l)	232.5	243.8	7.94 756 1.601 191.8	811 6.045 207.4	634 0.100 172.8		
соз нсоз	(mh/cm) (mg/l)	676 5.725 232.5	801 2.695 243.8	1.601	6.045	0.100	·	
E.C	mh/cm)			756		1		
Hd		7.97	7.93	7.94	7.93	7.47	-0.9	8.5
Location		San Jose Canal Lauca	Ausipar	Bocatoma	Acueducto	Saucache	Permissible Value	
Biver		San Jose					Permiss	

<Calidad Promedio del Agua y Nivel de Flujo en la Cuenca del Rio San Jose> Table A, 1.8 Average Water Quality and Surface Flow Rate in San Jose River Basin

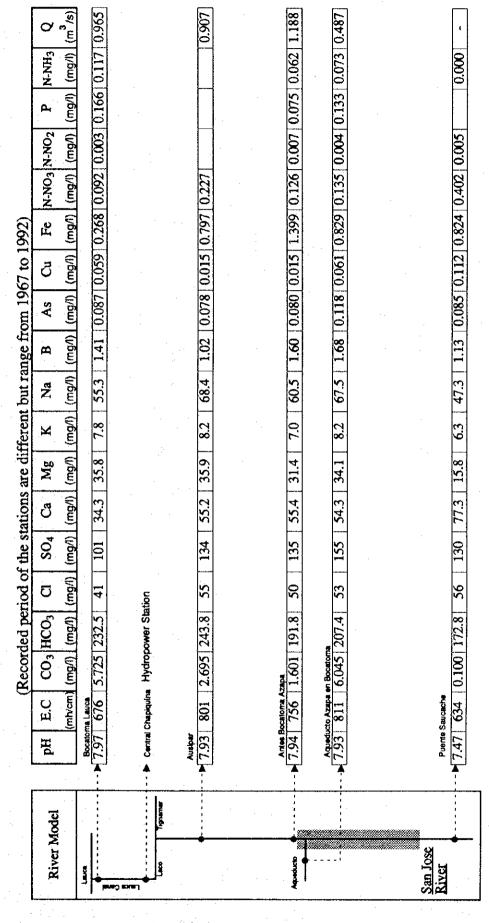


Table A, 1.9 Flood Water Volume at Saucache and Antes Bocatoma < Volumen de Inundación en Saucache y Antes Bocatoma:

	Number of	Total Wa	er Volume	
Year	Flooding	at Saucache	at Antes Bocatoma	Ratio
	days	(m3)	(m3)	(%)
1976	75	16,936,933	55,585,958	30.47 %
1977	33	16,799,754	45,549,302	36.88 %
1978	2	276,096	25,753,162	1.07 %
1979	17	1,826,638	31,185,216	5.86 %
1980	6	642,474	22,796,899	2.82 %
1981	5	984,932	17,212,694	5.72 %
1982	1	60,877	16,775,683	0.36 %
1983	No Flood	0	12,398,659	0.00 %
1984	26	4,850,161	15,255,821	31.79 %
Average fo				v v
9 consecuti	ve years	4,708,652	26,945,933	17.47 %

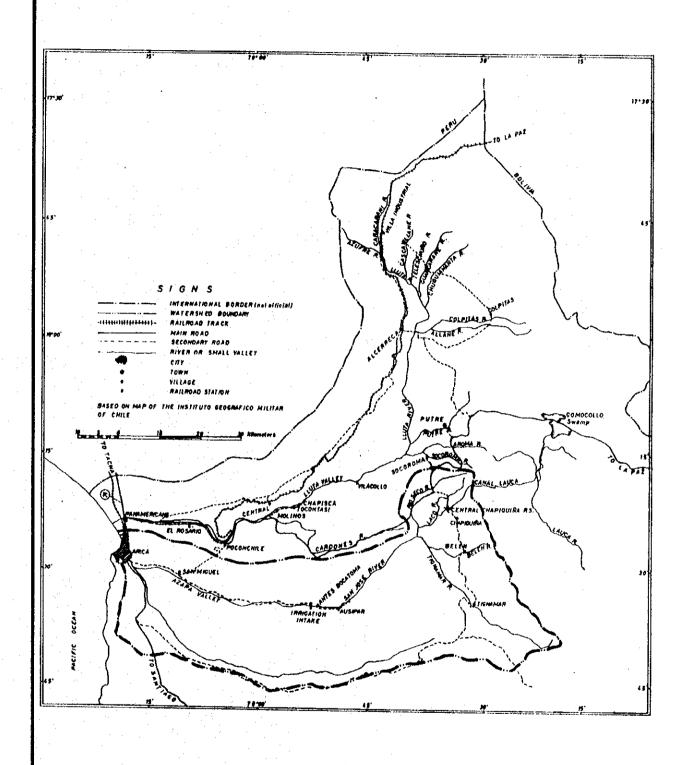


Fig. A, 1.1 River System of San José River Basin

<- Systema Fluvial de la Cuenca del Rio San José>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA

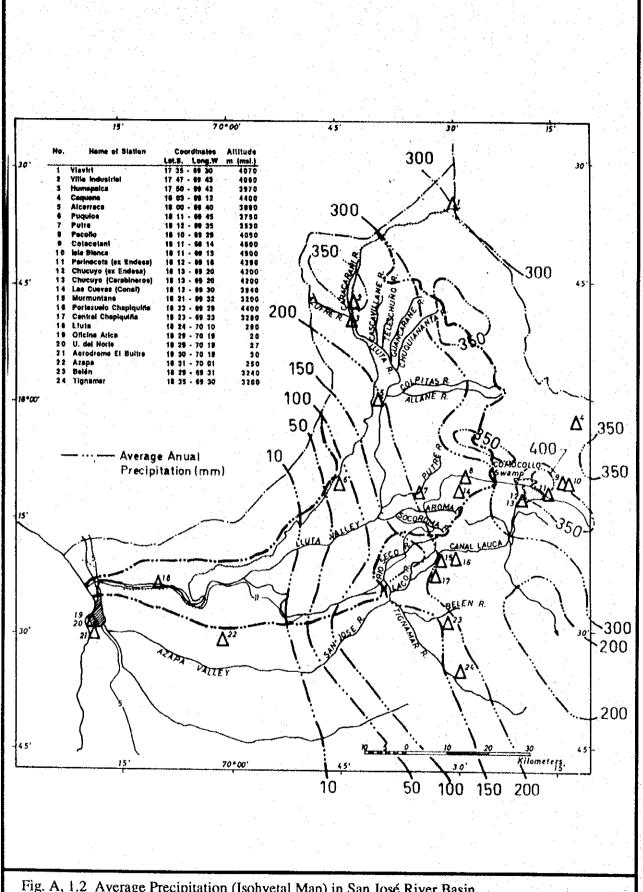
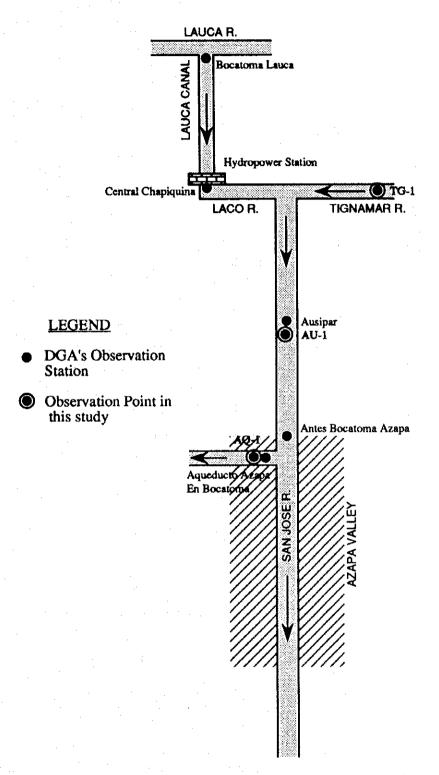



Fig. A, 1.2 Average Precipitation (Isohyetal Map) in San José River Basin

Precipitacion Promedio en Mapa de Isoyeta en la Cuenca del Río San José>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA

Flow Model in San Jose River Basin

Fig. A, 1.3 Flow Model in San José River Basin

< Modelo de Flujo en la Cuenca del Rio San José>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA



Fig. A, 1.4 Average Surface Flow Rate in San José River Basin

< Nivel de Flujo de Superficie Premedio Meansual de la Cuenca del Rio San José>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA

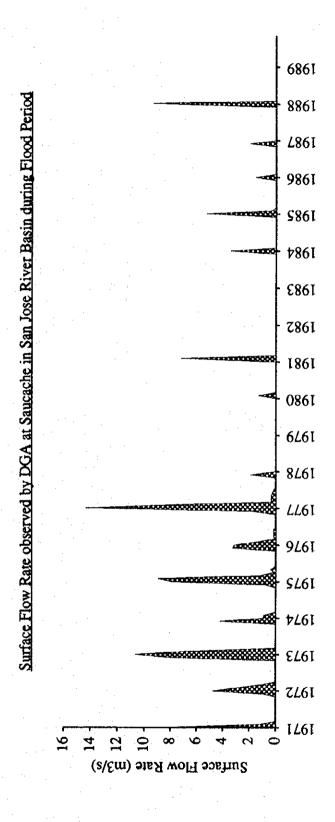


Fig. A, 1.5 Surface Flow Rate at Saucache during Flood Period

<Nivel de Flujo de Superficie en Saucache durante el Periodo de Avenidas>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA

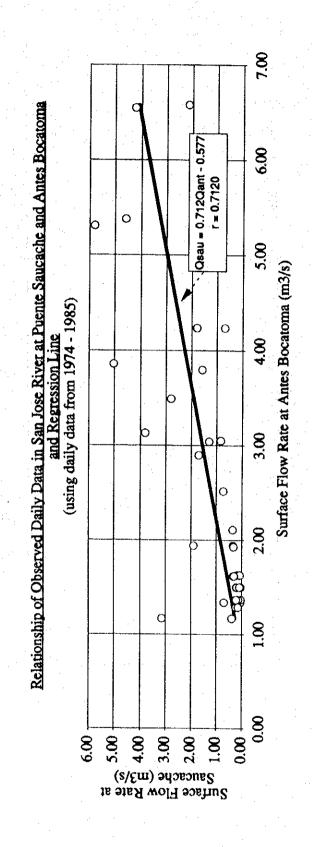


Fig. A, 1.6 Relationship of Observed Data at Saucache and Antes Bocatoma and Regression line < Relacion de Datos Observado en Saucache y Antes Bocatoma y Linea de Regresion>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA

Chapter II SURFACE WATER OF LLUTA RIVER BASIN

2.1 General

Lluta River basin located in the Region I in northern Chile has a drainage basin area of about 3,378 km² covering the sub-basins of Azufre, Caracarani, Cascavillane, Teleschuno, Guancarane, Chuquiananta, Colpitas, Allane, Putre, Aroma and Socoroma rivers. The drainage basin area is shown in Fig. A, 2.1 and Table A, 2.1.

2.1.1 Climate and Precipitation

Information on climate in the basin is obtained from Lluta, Pacollo and Putre weather stations. Average temperature is different between lower and upper basin. In lower basin (Lluta and Pacollo), Maximum monthly average temperature is in January at 34.6 °C and minimum monthly average temperature is in June at 10.1 °C while those of upper basin (Putre) are 29.2 °C and 2.5 °C in the same period. Humidity does not vary much throughout a year lying within a range of 60 - 80 %.

Precipitation is observed regularly by DGA and Meteorological Department. Most of the stations are distributed in the upstream of the basin as shown in Fig. A, 2.2.

Most of the precipitation fall in the upstream mountain areas with an altitude of higher than 3,000 m. On the other hand, the lower reaches receive almost no rainfall throughout the year. Average annual precipitation regionally varies from zero in the lower most reaches to 350 mm at Villa Industrial station located in the upstream highland.

More than 90 % of the precipitation in the basin concentrates during the four (4) months of December and March.

2.1.2 River System

Lluta River, the main river in the basin, flows westwards to Pacific Ocean in the north of San José River basin and is named after the confluence of several tributaries. Main tributaries are Azufre, Caracarani, Cascavillane, Teleschuno, Guancarane, Chuquiananta, Colpitas, Allane, Putre, Aroma and Socoroma. Flow originates from the

mountain areas in the north and north-east. In the north, Caracarani River, a main tributary, flows southwards, joins Azufre, Cascavillane, Teleschuno, Guancarane and Chuquiananta rivers in between Humapalca and Alcerreca. In the north-east, Colpitas and Allane River flow eastwards and meet Caracarani at Alcerreca. Lluta River, named after this confluence, combines with Putre, Aroma and Socoroma River at Putre, flows through Lluta Valley and down to Pacific Ocean at Arica city.

Several tributaries and Quebradas in the basin are not taken into consideration in the flow model because flow rates are negligibly small based on data and information from DGA. Flow model is shown in Fig. A, 2.3.

2.2 Surface Flow Rate

2.2.1 Flow Rate at Major Stations

Daily water level is observed at DGA's observation stations by automatic recorder. Flow rate at each station is generally calculated by so called "Discharge Rating Curve" or "H-Q Curve" which is a calibration curve of water level and flow rate. Major observation stations are as follows:

River	Location	Observation Period
Caracarani	Humapalca	1973 - Present
	Alcerreca	1961 - 1984
Colpitas	Alcerreca	1961 - Present
Lluta	Alcerreca	1961 - Present
	Tocontasi	1946 - 1985
	Chapisca	1987 - Present
	Panamericana	1969 - Present

Data at Tocontasi and Chapisca are combined together in the analysis because the station at Chapisca is a new re-located station of that at Tocontasi.

Monthly average surface flow rate at these stations are shown in Table A, 2.2. Fluctuation of these flows throughout the year are shown in Fig. A.2.4. Recorded monthly flow rates are shown in Appendix A, 2.1.

At Azufre River, there is no permanent observation station. Observation has been done since 1985 up to the present occasionally at about once in a month by measuring velocity and cross sectional area, not by H-Q curve.

Therefore, average monthly flow rate of Azufre River is calculated from the correlation with flow rate of Caracarani River at Humapalca as shown in Fig. A, 2.5. Relationship between these two points is obtained as follows;

$$Q_{Caracarani} = 1.40Q_{Azufre} + 0.261$$

where Correlation Coefficient (r) = 0.7053

Monthly average surface flow rate at Azufre River in Humapalca are shown in Table A, 2.3.

Yearly average flow rate at Tocontasi/Chapisca of Lluta River is 2.216 m³/s. This flow rate is distributed to the upstream tributaries as shown below.

River	Flow Rate (m ³ /s)	<u>Portion</u>
Caracarani	0.378	17 %
Azufre	0.084	4 %
Cascavillane + Teleschuno + Guancarane + Chuquiananta	0.396	18 %
Colpitas	0.521	24 %
Putre + Aroma + Socoroma	0.331	15 %
Unknown	0.509	23 %
Lluta	2.216	100 %

Unknown flow is the balance of Lluta River at Alcerreca (1.885 m³/s) and Caracarani River at Alcerreca (0.855 m³/s) plus Colpitas River at Alcerreca (0.521 m³/s).

Exceedance probability of the surface flow rate was calculated by Hazen Method to evaluate drought flow rate.

Exceedance probability in Hazen Method is defined as follows;

$$P(x_j) = \frac{2j-1}{(2N)}$$
 and $F(x_j) = 1 - P(x_j)$

where $P(x_i) = Exceedance Probability$

x = variable (flow rate)

j = order of x_i counted from the largest sample

N = size of sample

Flow rates with 80 % and 90 % exceedance probability are calculated for the respective stations of Lluta River and its tributaries as shown in Table A, 2.4. Monthly variation of these probable flow rates are shown in Appendix A, 2.2.

Flow rate in Caracarani at Humapalca and Alcerreca, Colpitas at Alcerreca and Lluta at Chapisca & Tocontasi and Panamericana are analyzed as shown in Table A, 2.4 and monthly fluctuations are shown in Appendix A, 2.2.

2.2.2 Calculation of Runoff Coefficient

The surface runoff coefficients of Lluta River at Alcerreca and Tocontasi were estimated by comparing the average indigenous flow rates at these stations with the average annual precipitation in their upstream basin.

The average annual indigenous flow rates in these stations were obtained from the regular observation of DGA. The average annual precipitation in their upstream basin were estimated based on the isohyetal map of annual precipitation prepared by DGA in 1987 as shown in Fig. A, 2.2.

Runoff coefficient is found to be 0.186 at Alcerreca and 0.143 at Tocontasi as shown in Table A, 2.5 and A, 2.6. This can be interpreted that about 18.6 % of rainfall flows through rivers in the upstream and 14.3 % in the midstream as surface flow.

2.3 Surface Water Quality

2.3.1 Water Quality at Major Stations

Water quality is observed regularly by DGA. Water quality samples are taken from the river and analyzed in the laboratory. The observation stations are as follows;

River	Location	Observation Period
Caracarani	Humapalca	1967 - 1985
	Alcerreca	1967 - 1989
Azufre	Humapalca	1967 - 1984
Colpitas	Alcerreca	1967 - 1989
Lluta	Alcerreca	1967 - 1985
	Tocontasi	1967 - 1987
	Poconchile	1968 - 1985
	Panamericana	1967 - 1989

The items of the analysis are classified as follows;

(1) Health Significance: As, N-NO₃, N-NO₂, N-NH₃

(2) Aesthetic Quality: Cl⁻, Cu, Fe, Na, P, SO₄, pH

(3) Others: HCO₃, CO₃, Ca, Mg, K, B, E.C.

Results of the examination are shown in Table A, 2.7 and A, 2.8. Average monthly data are shown in Appendix A, 2.3

2.3.2 Evaluation of Water Quality

Water of Lluta River and tributaries are much contaminated by the pollutants mainly originating from natural contamination sources.

The worst two (2) rivers in terms of the health significance are

Number 1 Azufre River at Humapalca Number 2 Colpitas River at Alcerreca

Information on water quality of the other main tributaries including Cascavillane, Teleschuno, Guancarane, Chuquiananta, Putre, Aroma and

Socoroma, were obtained from the supplementary observation in this study as explained in the following section.

2.4 Supplementary Observation

2.4.1 Simultaneous Observation in the Upstream Tributaries

1) Objective

The purposes of the supplementary observation are to measure flow rates in the tributaries which are not regularly observed by DGA, to check flow balance and the examine water quality in the Lluta River.

2) Location

Observation points are located as follows:

Location	Code	Latitude	Longitude
1. Azufre	AZ-1	17* 50	69* 43′
Caracarani, before confluence with Azufre	CR-1	17° 50′	69* 42′
3. Cascavillane	CV-1	17.51	69° 39′
4. Teleschuno, Queb. Teleschuno	TL-1	17° 51′	69* 38′
5. Teleschuno, Queb. Gualluma	TL-2	17* 51′	69' 38'
6. Guancarane	GC-1	17° 51′	69' 36'
7. Chuquiananta	CQ-1	17* 52′	69° 35′
8. Colpitas	CP-1	17° 57′	69° 28′
9. Allane	AL-1	17° 59′	69° 28′
10. Putre, Queb. Llancomane	PT-1	18° 10′	69 ° 31′
11. Putre, Queb. Pacollo	PT-2	18' 10'	69* 30′
12. Putre, Queb. Taipicahua	PT-3	18' 11'	69° 30′
13. Putre, Queb. Jurase	PT-4	18° 12′	69° 30′
14. Putre, Queb. Lluscuma	PT-5	18' 12'	69° 30′
15. Aroma	AR-1	18* 14′	69° 33′
16. Socoroma	SR-1	18' 16'	69° 31′
17. Chapisca	TC-1	18' 23′	69* 55′

Locations of these points are shown in Fig. A, 2.3 and A, 2.6.

3) Observation Method

The measurement was conducted by JICA Study Team & DGA. River conditions during the measurement are shown in Appendix A, 2.4. The items of measurement are as follows;

(1) Flow Rate

Flow velocity was measured by a propeller current meter across the river section at a length interval of about 1/10th of the river width. Flow rate was calculated as the product of average velocity times cross sectional area

$$Q = \sum_{i=1}^{m} V_i \times A_i$$

where

Q = flow rate (m³/s),

V = flow velocity (m/s),

A = cross sectional area of the river (m²) and

m = number of sub-cross sections.

(2) Water Quality

Samples were taken from the checking points and analyzed mostly in the DGA laboratory following the standard method of water quality analysis. However, pH, EC, Temperature, Turbidity and DO were analyzed in situ. Items of the analysis are classified as follows:

(i) Health Significance: As, Cd, Cr, CN, F, Pb, NO₃

(ii) Aesthetic Quality: Al, Cl., Cu, CaCO₃, Fe, Mn, Na, SO₄, TDS, Zn, pH

(iii) Others:

HCO₃, CO₃, Ca, Mg, K, B, E.C.

Temperature, Turbidity, DO

4) Date of Observation

Observation was carried out on 1st - 3rd June 1993.

5) Results of Observation

(1) Surface Flow Rate

Flow rate at each point is shown in Table A, 2.9.

Results of flow rates measured in Azufre (0.076 m³/s) and Caracarani River (0.394 m³/s) at Humapalca show a good agreement with the calculated flow rate in Caracarani from the correlation as mentioned previously (0.367 m³/s). The difference is about 7 %.

Balance of flow are as follows;

River	Flow Rate (m ³ /s)	Portion
Caracarani	0.394	33%
Azufre	0.076	6%
Cascavillane + Teleschuno + Guancarane + Chuquiananta	0.334	29 %
Colpitas + Allane	0.231	19%
Putre	0.315	27%
Aroma	0.033	3%
Socoroma	0.012	1%
Unknown	-0.211	-15%
Total	1.184	100%

Unknown flow from this balance is -15 % of flow in Lluta River at Alcerreca. This contradicts the unknown flow from average monthly balance (23 %). It may be attributed mainly to the error of measurement.

Major water sources of Lluta River are Caracarani (33 %), Cascavillane+Teleschuno+Guancarane+Chuquiananta (29 %) and Putre River (27 %). These sources contribute about 89 % to Lluta River.

(2) Water Quality

Results of the examination is shown in Table A, 2.10. Classification as acceptable and unacceptable rivers in water

quality of the tributaries of Lluta River according to Water Quality Standard, shown in Appendix A, 5, is as follows;

River	Flow Rate (m ³ /s)	Portion
<u>Unacceptable</u>		
Azufre	0.076	6 %
Colpitas	0.211	17%
Cascavillane	0.082	7%
Allane	0.020	2%
Putre: Pacollo	0.017	2%
Putre: Jurase	0.009	1%
Sub-total	0.415	<u>35%</u>
Acceptable		
Teleschuno	0.007	1%
Guancarane	0.168	15%
Chuquiananta	0.077	7%
Caracarani	0.394	33%
Putre: Liancomane	0.043	4%
Putre: Taipicahua	0.184	16%
Aroma	0.033	3%
Socoroma	0.012	1%
Sub-total	0.918	<u>80%</u>
Putre: Lluscuma	0.062	6%
Unknown	-0.211	-15%
Total at Chapisca	1.184	<u>100%</u>

It should be noted that water quality at Lluscuma was not observed.

2.4.2 Intensive Observation in the Contaminated Tributaries

1) Objective

From the result of water quality examinations mentioned above, Azufre and Colpitas Rivers are the most contaminated tributaries of Lluta River. However, contaminated sources of these rivers need to be observed intensively for water potential development. Identification of the definite contaminated sources of these rivers is the purpose of this observation.

2) Location

Observation points are shown in Fig. A, 2.7 for Azufre River and Fig. A, 2.8 for Colpitas River.

3) Observation Method

The measurement was conducted by DGA in cooperation with JICA Study Team. Observation items and method are the same as that of the simultaneous observation in Section 2.4.1.

4) Date of Observation

Observation was carried out in the middle of November 1993 and took about 2 weeks.

5) Results of Observation

Flow rate and water quality in these tributaries are shown in Table A, 2.11 and A, 2.12(1) to 2.12(6).

Conclusions drawn from the observation result are as follows;

Azufre River (refer to Table A, 2.12(7) and Fig. A, 2.7)

(1) Flow Rate

- The location, so called Agua Calientes is considered as the original water source of Azufre River with the springs AV-1, AV-2, AV-3, AV-4, AV-5, AV-6 and AV-7.
- There was no flow at A-6 and A-7 because water infiltrated into underground from A-8 and emerged to surface again at A-5A. Hence, flow rate and water quality were not measured at A-6 and A-7.
- Flow rate at A-5A is higher than A-3 because water partly infiltrates into underground again along the river course between these 2 points.
- Flow rate at A-1 (Lluta) approximately equals A-3 (Azufre)+ A-4 (Caracarani)

$$A-1 (100\%) = A-3 (30\%) + A-4 (70\%)$$

(2) Water Quality

- Azufre River is contaminated from its original source at Agua Calientes at AV-1, AV-2 and AV-7. Although flow rates of these points are apparently low, in wet season the pollutants will be washed out to the stream.
- Water quality at A-8 is worse than at A-10 although the tributary at A-11 is comparatively clean. This may be because pollutant source is from the river bed along the stream, not from the tributary.
- Water quality becomes better from A-8 to A-5A.
- Another contaminated source is at A-5B.

Colpitas River (refer to Table A, 2.12(8) and Fig. A, 2.8)

(1) Flow Rate

- Flow originates from the mountains in the east outside the study drainage basin with several tributaries flowing into 2 main tributaries.
- Main tributaries are Colpitas and Allane Rivers with the portion of Allane (C-4) 58 % and Colpitas (C-5) 42 %.

(2) Water Quality

- Contaminated source is the whole upstream part of Colpitas River at C-11A, C-11B, C-10, C-6 and C-5.
- Although Allane River is comparatively clean, water quality is still higher than the standard limit.
- Small tributaries between C-3 and confluence of C-4 (Allane) and C-5 (Colpitas) at CV-1 to CV-5 also discharge a large amount of pollutants to the river.

(Note)

The Boron concentration of 5.56 mg/l at C1 point observed in November, 1993 is considered to have some error because that:

(i) This concentration of 5.56 mg/l is very low compared to the average concentration of 9.85 mg/l in the past. The Boron concentrations at C1, C2 and C3 points observed in November, 1993 are compared to their average concentrations in the past (1967-1989) as follows.

Sampling Point	Nov. 1993	Average in Past
C1 (Caracarani Alcerreca)	3.87 mg/l	5.8 mg/l
C2 (Colpitas Alcerreca)	22.61	21.55 mg/l
C3 (Lluta Alcerreca)	5.56	9.85 mg/l

- (ii) The pollution loads (g/s) of Boron at C2 and C3 points observed in November, 1993 are considered nearly correct in comparison with the pollution loads in their upstream reaches.
- (iii) If the concentration of Boron at C1 point observed in November, 1993 is replaced by the average concentration in the past, the pollution loads of Boron among C1, C2 and C3 points are roughly balanced as follows.

$$C2 + C3 = 2.183 \text{ g/s} + 7.823 \text{ g/s} = 10.006 \text{ g/s}$$

 $C1 = 9.180 \text{ g/s}$

Flow balance in the Lluta River is re-calculated based on the assumption that contaminated sources at A-8 point in Azufre River (whose share is 65 % of total flow in Azufre River) and C-10 point in Colpitas River (whose share is 67 % of total flow in Colpitas River) are evaporated. Comparison of the flow balance with and without evaporation at these points are as follows;

	River		evaporation and C-10)	•	aporation 3 and C-10)
Unaccept	able				
	Azufre	0.076	6 %	0.027	3 %
				(35 % o	f Azufre)
	Colpitas	0.211	17%	0.070	7 %
				(33 % o	f Colpitas)
	Cascavillane	0.082	7 %	0.082	8 %
	Allane	0.020	2 %	0.020	2 %
	Putre: Pacollo	0.017	2 %	0.017	2 %
:	Putre: Jurase	0.009	1 %	0.009	1 %
	Sub-total	<u>0.415</u>	<u>35%</u>	0.225	<u>23 %</u>
Acceptabl	<u>le</u>		• •	•	
	Teleschuno	0.007	1 %	0.007	1 %
	Guancarane	0.168	15%	0.168	17 %
grant to the	Chuquiananta	0.077	7 %	0.077	8 %
	Caracarani	0.394	33%	0.394	40 %
	Putre: Llancomane	0.043	4 %	0.043	4 %
	Putre: Taipicahua	0.184	16%	0.184	18 %
	Aroma	0.033	3 %	0.033	3 %
	Socoroma	0.012	1 %	0.012	1 %
	Sub-total	<u>0.918</u>	80 %	<u>0.918</u>	<u>92 %</u>
	Putre: Lluscuma	0.062	6 %	0.062	6 %
S	Unknown	-0.211	-15 %	-0.211	-21 %
	Total at Chapisca	<u>1.184</u>	<u>100 %</u>	0.994	<u>100 %</u>

After evaporation of the contaminated sources in Azufre and Colpitas Rivers, portion of flow rate in Lluta River which water quality is acceptable increases from 80 % to 92 %.

2.5 Evaluation of Surface Water Development Potential

Evaluation of surface water potential in Lluta River basin is done by considering the water potential to be stored by a dam or reservoir before flowing to the sea. Tocontasi & Chapisca is selected for the analysis instead of Panamericana due to the insufficient recorded years at Panamericana.

Accumulated water volume from 1946 to 1990 at Tocontasi & Chapisca is plotted with the assumed amount of water release at this station as shown in Fig. A, 2.9. From this mass curve, approximate slope of the observed data is in between flow rate of 2.0 and 3.0 m³/s. This means that water release from Tocontasi should be less than 3.0 m³/s in order to maintain the storage. Monthly volume storage is calculated as shown in Fig. A, 2.10. Inflow is the actual recorded flow rate and outflow is the assumed water release from this station.

Storage volume of the dam is determined by accumulating the balance of inflow and outflow. Outflow of 1.5 and 2.0 m³/s are selected for the calculation. From this calculation, maximum and minimum accumulated volume storages are listed in Table A, 2.13 and A, 2.14. Rising period means the period that volume storage is in the minimum stage, the following actual flow is higher than the water release (1.5 or 2.0 m³/s) and the volume storage is gradually increasing. The reverse condition implies for decreasing period.

Probability of nonexceedance (F(x)) is used to find out the return period year of the volume storage. The results are shown in Table A, 2.15 and A, 2.16.

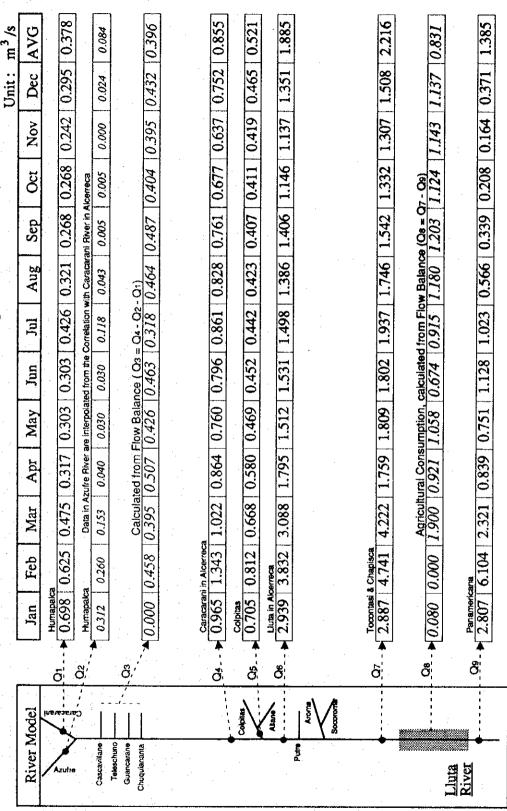
The required volume storage is determined from the maximum storage volume during decreasing period to ensure the condition of no empty storage. It can be briefly summarized that

For return period of 10 years;

```
Storage volume = 15,375,456 \text{ m}^3, if water release = 2.0 \text{ m}^3/s
Storage volume = 5,086,848 \text{ m}^3, if water release = 1.5 \text{ m}^3/s
```

For return period of 5 years;

```
Storage volume = 12,913,171 \text{ m}^3, if water release = 2.0 \text{ m}^3/s
Storage volume = 3,361997 \text{ m}^3, if water release = 1.5 \text{ m}^3/s
```


Table A, 2.1 Drainage Basin and Sub-Basin Areas in Lluta River Basin «Cuenca de Drenaje y Area Sub-cuenca en Cuenca del Rio Lluta»

	River		River	Tributaries	Location	Sub-Basin	Total Basin
	Model					(km2)	(km2)
			>	Caracarani	Humapalca	141.3	141.3
	• 7 3	777	>	Azufre	Humapalca	37.3	178.6
			Lluta	4	Humapalca	90.7	269.3
Cen	cevillane		>	Cascavillane		28.2	297.5
1	leschuno		•	Teleschuno		40.8	338.2
Gu	encerane		7	Guancarane		101.1	439.4
:			►Lluta			123.1	562.5
Chuc	puienanta		•	Chuquiananta		142.1	704.6
	Coloites	/	> ,	Colpitas		218.6	923.2
1	Allere			Allane		245.6	1,168.8
1			Lluta		Alcerreca	-	1,168.8
1			Lluta			485.2	1,654.1
	Putre		>	Putre		304.3	1,958.3
ł	تحا	~ -	P	Aroma		70.5	2,028.9
	Socon	~		Socoroma		50.5	2,079.3
			Lluta		Tocontasi	470.7	2,550.0
Llu Riv			Lluta	***************************************	River Mouth	828.0	3,378.0

«Nivel de Flujo de Superficie Promedio Meansual Observado por DGA en las Principales Estaciones Table A, 2.2 Average Surface Flow Rate Observed by DGA at Major Stations in Lluta River Basin de la Cuenca del Rio Lluta>

								·.					Unit: m3/s	m ³ /s	
River	Location	Obs. Period Jan	Jan	Feb	Маг	Apr	Feb Mar Apr May Jun		Jul	Aug	Sep	Aug Sep Oct Nov Dec AVG	Nov	Dec	AVG
Caracarani	Caracarani Humapalca	1973-1990 0.698 0.625 0.475 0.317 0.303 0.303 0.426 0.321 0.268 0.268 0.242 0.295 0.378	0.698	0.625	0.475	0.317	0.303	0.303	0.426	0.321	0.268	0.268	0.242	0.295	0.378
	Alcerreca	1961-1984	0.965	1.343	1.022	0.864	0.760	0.796	0.861	0.828	0.761	0.965 1.343 1.022 0.864 0.760 0.796 0.861 0.828 0.761 0.677 0.637 0.752 0.855	0.637	0.752	0.855
Colpitas	Alcerreca	1961-1990 0.705 0.812 0.668 0.580 0.469 0.452 0.442 0.423 0.407 0.411 0.419 0.465 0.521	0.705	0.812	0.668	0.580	0.469	0.452	0.442	0.423	0.407	0.411	0.419	0.465	0.521
Lluta	АІсепеса	1961-1990 2.939 3.832 3.088 1.795 1.512 1.531 1.498 1.386 1.406 1.146 1.137 1.351	2.939	3.832	3.088	1.795	1.512	1.531	1.498	1.386	1.406	1.146	1.137	1.351	1.885
	Tocontasi	1946-1985	2.940	4.590	4.410	1.770	1.790	1.840	1.980	1.760	1.560	2 940 4 590 4.410 1.770 1.790 1.840 1.980 1.760 1.560 1.340 1.290 1.490 2.230	1.290	1.490	2.230
	Chapisca	1987-1990 2.250 6.060 1.950 1.670 1.490 1.530 1.500 1.390 1.440 1.230 1.130 1.260 1.908	2.250	6.060	1.950	1.670	1.490	1.530	1.500	1.390	1.440	1.230	1.130	1.260	1.908
	Avg.(Tocontasi+Chapisca) 2.887 4.741 4.222 1.759 1.809 1.802 1.937 1.746 1.542 1.332 1.307 1.508 2.216	i+Chapisca)	2.887	4.741	4.222	1.759	1.809	1.802	1.937	1.746	1.542	1.332	1.307	1.508	2.216
	Panamericana 1969-1990 2.807 6.104 2.321 0.839 0.751 1.128 1.023 0.566 0.339 0.208 0.164 0.371 1.385	1969-1990	2.807	6.104	2.321	0.839	0.751	1.128	1.023	0.566	0.339	0.208	0.164	0.371	1.385

Table A, 2.3 Average Surface Flow Rate in Lluta River Basin Nivel de Flujo de Superficie Promedio en la Cuenca del Rio Lluta (Recorded period of the stations are different but range from 1946 to 1990)

<Nivel Promedio y Flujo Probable de Superficie en las Estaciones Principales en la Cuenca del Rio Lluta> Table A, 2.4 Average and Probable Surface Flow Rate at Major Stations in Lluta River Basin

		-				÷							Cuit	s/ u	
River	Location	Probability	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	AVG
		Exceedance													
Caracarani	Caracarani Humapalca	Average	0.698	0.625	0.475	0.317	0.303	0.303	0.426	0.321	0.268	0.268	0.242	0.295	0.378
		<u></u>	0.258	0.066	0.256	0.255	0.257	0.243	0.240	0.211	0.218	0.182	0.140	0.142	0.206
		%08	0.315	0.167	0.289	0.257	0.268	0.244	0.254	0.244	0.233	0.201	0.185	0.192	0.237
	Alcerreca	Average	0.965	1.343	1.022	0.864	0.760	0.796	0.861	0.828	0.761	0.677	0.637	0.752	0.855
		%06	0.579	0.436	0.368	0.567	0.659	0.559	0.739	0.688	0.619	0.521	0.424	0.514	0.556
		80%	0.710	0.565	0.535	0.617	0.692	0.734	0.784	0.736	0.633	0.528	0.522	0.579	0.636
Colpitas	Alcemeca	Average	0.705	0.812	0.668	0.580	0.469	0.452	0.442	0.423	0.407	0.411	0.419	0.465	0.521
•		3606	0.402	0.412	0.394	0.371	0.288	0.296	0.271	0.264	0.289	0.270	0.282	0.333	0.323
		80%	0.453	0.437	0.446	0.433	0.372	0.365	0.304	0.356	0.344	0.353	0.332	0.355	0.379
Lluta	Tocontasi	Average	2.887	4.741	4.222	1.759	1.809	1.802	1.937	1.746	1.542	1.332	1.307	1.508	2.216
	& Chapisca	%06	1.250	1.502	1.320	1.260	1.215	1.309	1.554	1.328	1.228	1.094	1.037	1.018	1.260
		80%	1.614	1.813	1.830	1.400	1.444	1.521	1.589	1.470	1.302	1.168	1.089	1.091	1.444
	Pan-	Average	2.807	6.104	2.321	0.839	0.751	1.128	1.023	0.566	0.339	0.208	0.164	0.371	1.385
	americana	2606	0.393	0.246	0.382	0.098	0.159	0.565	0.696	0.253	0.096	0.049	0.069	0.072	0.256
,		80%	0.611	0.433	0.517	0.164	0.297	0.710	0.786	0.317	0.125	0.067	0.078	0.082	0.349

able A, 2.5 Average Runoff Coefficient in Lluta River Basin < Coeficientes de Escorrentia Promedios en la Cuenca de Rio Lluta>

Location:	Lluta River at Alcerr	Alcerreca						
			Upstream		Upstream			Upstream
Rainfall	Average	Total River	Basin of	Average	Avg. Rainfall	Flow Rate	Runoff	Average
Range	Rainfall	Basin	Alcerreca	R*A	R (mm)	at Alcerreca	Coefficient	Alritude
(mm)	R (mm)	(km2)	A (km2)	(mm.km2)	(R*A/A)	Q (m3/s)	f = Q/R*A	H (m, msl)
0.0 - 10.0	5.0	967.13	•	•		1.885		
10.0 - 50.0	30.0	165.60	ı	-				
50.0 - 100.0	75.0	256.90	-					
100.0 - 150.0	125.0		•	-				
150.0 - 200.0	175.0	345.60	1	-				
200.0 - 300.0	250.0	1,089.04	885.44	221,360.00		٠		
300.0 - 350.0	325.0	158.80	158.80	51,610.00				
350.0 - 400.0	375.0	124.56	124.56	46,710.00		(m3/year)	·	
		3,378.00	1,168.80	319,680.00	273.51	59,445,360	0.186	4,007
						,		1000

- Average basin rainfall is calculated from Average Annual Precipitation Map (Isohyetal Map) by DGA in 1987

- Flow rate is obtained from monthly data observed by DGA

- Upstream average altitude of the station is obtained by averaging the altitude of the rainfall stations located in the upstream basin of that station

Table A, 2.6 Average Runoff Coefficient in Lluta River Basin < Coefficientes de Escorrentia Promedios en la Cuenca de Rio Lluta>

		-	
	T 1	Liuta River at 1 ocontasi	
		Location:	

E	نه	نه	(Is	Τ					· .			8
Upstream	Average	Altitude	H (m, m									3,899
	Runoff	Coefficient	f = Q/R*A									0.143
	Flow Rate	at Tocontasi	Q (m3/s)	2.216						->	(m3/year)	69,883,776
Орѕтеат	Avg. Rainfall	R (mm)	(R*A/A)			,						192.07
	Average	R*A	(mm.km2)	695.63	4,968.00	19,267.50	33,796.88	60,480.00	272,260.00	51,610.00	46,710.00	489,788.00
Upstream	Basin of	Tocontasi	A (km2)	139.13	165.60	256.90	270.38	345.60	1,089.04	158.80	124.56	2,550.00
	Total River	Basin	(km2)	967.13	165.60	256.90	270.38	345.60	1,089.04	158.80	124.56	3,378.00
	Average	Rainfall	R (mm)	5.0	30.0	75.0	125.0	175.0	250.0	325.0	375.0	
	Rainfall	Range	(mm)	0.0 - 10.0	10.0 - 50.0	50.0 - 100.0	100.0 - 150.0	150.0 - 200.0	200.0 - 300.0	300.0 - 350.0	350.0 - 400.0	

- Average basin rainfall is calculated from Average Annual Precipitation Map (Isohyetal Map) by DGA in 1987 Note:

- Flow rate is obtained from monthly data observed by DGA

- Upstream average altitude of the station is obtained by averaging the altitude of the rainfall stations located in the upstream basin of that station

«Calidad Promedio de Agua Observada por DGA en la Cuenca del Rio Llua» Table A, 2.7 Average Water Quality Observed by DGA in Lluta River Basin

N-NH3	(mg/l)	0.033	0.230	0.118	0.037	-	0.092		0.211		
d,	(mg/l)	0.130	1	0.090 0.000 0.081	0.164	0.000	0.055	1	0.046		
N-NO2	(mg/l)	0.003	0.069	0.000	0.001	0.000	0.003	ι	0.015		
Fe N-NO ₃	(mg/l)	0.150	3.628	- 1	0.124	0.188	0.209	•	0.431	10.000	
F.	(l/gm) (l/gm)	1.17	61.94	4.79	1.41	4.83	3.82	ţ.	2.37	0.30	
ರೆ	(mg/l)	3.23 0.120 0.029	2,111 174.1 190.5 139.8 314.2 19.05 1.246 0.215 61.94	5.81 0.140 0.055	60.4 350.2 21.55 0.465 0.014	9.85 0.209 0.031	0.106	33.9 231.8 11.17 0.173 0.000	53.0 428.6 16.84 0.124 0.075	0.050 1.000	
As	(mg/l) (mg/l)	0.120	1.246	0.140	0.465	0.209	28.5 198.9 10.69 0.305	0.173	0.124	0.050	
В			19.05	5.81	21.55		10.69	11.17	16.84		-
Na	(mg/l)	20.4 155.6	314.2	23.7 129.5	350.2	35.6 193.7	198.9	231.8	428.6		
×	(mg/l)		139.8		l l		- 1	- 1	1		
Mg	(mg/l)	47.1	190.5	35.8	29.3	36.7	36.7	41.2	81.9	125.0	
්	(lygu)	71.6	174.1	61.2	70.8	65.5	92.5	373 125.6	751 269.4		
SO ₄	(l/gm)	285	2,111	305	223	284	310	373	751	250	
ם	(mg/l)	165	1,377	219	545	308	323	411	78	250	
соз нсоз	(mg/l)	213.4	0.0	42.4	132.6	58.9	56.6	55.8	89.1		
ဗွ	(mg/l)	3.644	0.000	0.000	0.725	0.378	0.686	0.00	0.000		
E.C	(mh/cm) (mg/l)	7.80 1,475 3.644 213.4	2.11 9,243 0.000	5.72 1,357	7.53 2,375 0.725 132.6	6.28 1,734 0.378	6.89 1,728 0.686	7.05 2,049	7.43 3,895		
Hd		7.80	2.11	5.72	7.53	6.28	6.89	7.05	7.43	-0.9	8.5
Location		Caracarani Humapalca	Humapalca	АІсеттеса	Alcerreca	АІсеттеса	Tocontasi	Poconchile	Panamericana	Permissible Value	
River		Caracarani	Azufre	Caracarani Alcerreca	Colpitas	Lluta				Permiss	

< Calidad Promedio del Agua y Nivel de Flujo en la Cuenca del Rio Lluta> Average Water Quality and Surface Flow Rate in Lluta River Basin Table A, 2.8

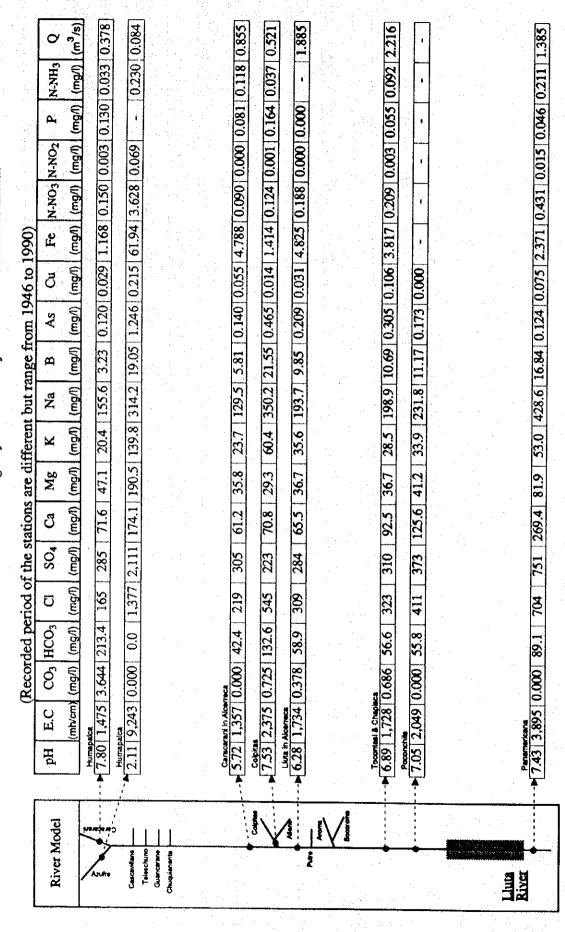


Table A, 2.9 Surface Flow Rate observed on 1st - 3rd June 1993 in Lluta River Basin Lluta

			,	_		_						r					_		,
	Remarks						Total $Q = 0.334$		-			◆ DGA calls "Llancoma"		Total Q = 0.315		•	0.033 DGA calls "Socoroma"	0.012 DGA calls "Colallaque"	
	Flow Rate	(m3/s)	9200		0.082	0.007		0.168	0.077	0.211	0.020		0.017			0.062	0.033	0.012	1.184
	Cross-section Area	(m2)	0.141	0.838	0.139	0.026		0.509	0.208	0.555	0.071	0.063	0.046	0.354	0.023	0.117	0.057	0.041	1.716
V	Average	(s/m)	0.54	0.47	0.59	0.27	no flow	0.33	0.37	0.38	0.28	89.0	0.37	0.52	0.40	0.53	85.0	0.29	69:0
	Code No.		AZ-1	CR-1	CV-1	TL-1	TL-2	GC-1	CQ-1	CP-1	AL-1	PT-1	PT-2	PT-3	PT-4	PT-5	AR-1	SR-1	LT-1
	Location/	Quebrada	Humapalca	Humapalca	1	Oda. Teleschuno	Qda. Gualluma	•	t	ı	\$	Qda. Llancomane	Qda. Pacollo	Qda. Taipicahua	Qda. Jurase	Canal Lluscuma	•	*	Chapisca
	River		Azufre	Caracarani	Cascavillane	Teleschuno		Guancarane	Chuquiananta	Colpitas	Allane	Putre					Aroma	Socoroma	Lluta

Table A, 2.10 (1) Water Quality Observed on 1st - 3rd June 1993 in Lluta River Basin Calidad de Agua Observado entre el 1-3 de Junio 1993 en la Cuenca del Rio Lluta>

				Healt	Health Significance	ance		
River	Code	As	ප	ඊ	CN	Ħ	Pb	NO3
		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(Mg/l)
Azufre	AZ-1	4.308	0.160	0.10		2.002	2.40	0.190
Caracarani	CR-1	0.085	0.002	0.03	0.00	0.350	0.02	0.509
Cascavillane	CV-1	0.421	0.002	0.03	0.00	0.140	0.02	0.000
Teleschuno	TL-1	0.000	0.000	0.02	0.00	0.180	0.02	0.000
Guancarane	GC-1	0.018	0.003	0.03	0.00	0.150	0:03	0.000
Chuquiananta	CQ-1	0.000	0.002	0.04	0.00	0.240	0.02	0.137
Colpitas	G-1	1.058	0.002	0.04	0.00	0.350	0.02	0.563
Allane	AL-1	0.175	0.009	0.03	0.00	0.290	0.0	0.000
Putre: Llancomane	PT-1	0.093	0.001	0.02	0.00	0.260	0.00	0.000
Putre: Pacollo	PT-2	0.149	0.001	0.01	0.00	0.310	0.01	0.000
Putre: Taipicahua	PT-3	0.033	0.002	0.01	0.00	0.220	0.01	0.000
Putre: Jurase	PT-4	0.128	0.001	0.03	0.00	0.210	0.00	0.244
Aroma	AR-1	0.000	0.002	0.02	0.00	0.950	0.00	0.297
Socoroma	SR-1	0.000	0.003	0.02	00.00	0.950	0.05	0.190
Lluta at Chapisca	TC-1	0.270	0.009	0.03	00.00	0.760	0.07	3.291

Table A, 2.10 (2) Water Quality Observed on 1st - 3rd June 1993 in Lluta River Basin Calidad de Agua Observado entre el 1-3 de Junio 1993 en la Cuenca del Rio Lluta>

						Aest	Aesthetic Ouality	ality				
River	Code	Hd	CaCO3	IJ	S04	Na	Zn	A	ට	F.	Mn	TDS
			(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Azufre	AZ-1	3.04	451.5	327.0	716.0	156.4	15.300	240.0	0.105	82.24	11.45	1,935
Caracarani	CR-1	6.30	446.5	151.7	370.0	156.0	0.010	0.3	0.021	0.26	0.08	1,328
Cascavillane	CV-1	6.70	70.5	8.9	80.7	29.7	0.019	6.0	0.200	10.30	0:30	212
Teleschuno	TL-1	6.32	61.0	5.3	0.09	17.5	0.008	0.1	0.015	0.17	0.03	151
Guancarane	GC-1	7.30	28.0	16.3	17.3	17.5	0.005	0.7	0.015	0.31	0.03	94
Chuquiananta	CQ-1	7.80	202.0	6.4	165.2	19.6	0.010	0.9	0.015	0.31	0.05	362
Colpitas	CP-1	6.70	332.4	873.5	254.5	589.0	0.034	0.9	0.030	2.54	0.45	2,452
Allane	AL-1	7.18	146.0	145.0	77.3	132.9	0.010	0.1	0.018	0.74	0.18	768
Putre: Llancomane	PT-1	7.79	103.0	20.2	89.5	25.0	0.007	0.3	0.013	0.90	0.03	276
Putre: Pacollo	PT-2	8.15	127.5	95.7	78.8	80.0	0.005	0.0	0.011	0.07	0.02	495
Putre: Taipicahua	PT-3	4.57	33.0	15.0	26.0	16.6	0.004	0.1	0.010	0.14	0.03	113
Putre: Jurase	PT-4	4.24	757.0	222.3	1129.0	303.6	0.061	5.3	0.037	2.72	0.87	2,018
Aroma	AR-1	3.31	184.0	5.3	374.6	15.2	0.148	22.3	0.024	10.10	0.93	625
Socoroma	SR-1	4.03	0.0	6.7	393.8	20.2	0.121	11.2	0.016	0.37	1.56	650
Lluta at Chapisca	TC-1	5.37	443.5	400.0	402.0	234.6	0.567	9.1	0.027	2.55	0.86	1,700

Table A, 2.10 (3) Water Quality Observed on 1st - 3rd June 1993 in Lluta River Basin < Calidad de Agua Observado entre el 1-3 de Junio 1993 en la Cuenca del Rio Lluta>

						Others	ers				
River	Code	Temp	EC	CO3	HC03	చ	Mg	¥	Turbidity	000	B
		(2)	(mh/cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Azufre	AZ-1	9.0	2,522	0.00	0.00	99.50	49.50	36.50	25	1.90	25.72
Caracarani	CR-1	1.9	1,700	0.00	220.00	96.20	50.20	21.80	12	2.40	2.30
Cascavillane	CV-1	4.4	300	0.00	46.40	18.60	5.90	4.10	116	2.30	0.48
Teleschuno	TL-1	8.7	200	0.00	33.00	18.00	3.90	3.10	15	7.40	0.17
Guancarane	GC-1	ŀ	100	0.00	40.20	6.70	2.80	3.30	16	8.00	0.23
Chuquiananta	CQ-1	6.5	200	0.00	78.10	44.50	22.10	5.20	14	8.80	0.00
Colpitas	CP-1	7.8	3,900	0.00	179.40	96.50	3.00	59.50	38	7.80	14.10
Allane	AL-1	6.1	1,000	0.00	175.10	36.90	13.10	10.40	14	7.90	4.74
Putre: Llancomane	PT-1	1.9	400	0.00	44.50	28.90	7.60	5.30	8	2.20	0.85
Putre: Pacollo	PT-2	11.5	700	0.00	133.00	31.00	12.20	19.00	6	6.40	4.17
Putre: Taipicahua	PT-3	0.0	167	0.00	36.00	9.10	2.60	3.90	13	2.00	0.91
Putre: Jurase	PT-4	6.8	2,500	0.00	9.70	303.50	9.50	14.50	17	8.10	8.26
Aroma	AR-1	3.0	800	0.00	0.00	45.00	17.40	5.90	15	2.10	0.34
Socoroma	SR-1	1.8	800	0.00	0.00	83.10	22.00	4.70	16	2.60	0.28
Lluta at Chapisca	TC-1	ı	2,100	0.00	7.90	116.00	35.00	37.80	46	9.40	12.22

Table A, 2.11 Surface Flow Rate Observed in Azufre and Colpitas Rivers

<Nivel de Flujo de Superficie Observado en Rio Azufre y Colpitas>

Observation Period: November 1993

			Average	Cross-section	Flow	
Code No.	Latitude	Logitude	Velocity	Area	Rate	Remarks
			(m/s)	(m2)	(m3/s)	
Azufre I	River		-			
A-1	17°50′37″	69°42′16″	0.560	0.432	0.242	
A-2	17°50′37″	69°42′16″	-	-	0.000	measured by volume
A-3	17°50′17″	69°42′27″	0.448	0.164	0.074	· · · · · · · · · · · · · · · · · · ·
A-4	17°50′18″	69°42′23″	0.240	0.721	0.173	
A-5A	17°49′01″	69°44′22″	0.707	0.169	0.119	
A-5B	17°49′01″	69°44′22″		· -	0.000	measured by volume
A-8	17°45′46″	69°48′09″	0.532	0.090	0.048	
A-10	17°45′20″	69°49′09″	0.377	0.128	0.048	
A-11	17°45′24″	69°49′07″	0.187	0.034	0.006	
A-12	17°43′25″	69°49′16″	0.248	0.055	0.014	
A-13	17°43′36″	69°49′03″	0.493	0.080	0.039	·
AV-1	17°43′06″	69°49′19″	0.063	0.037	0.002	
AV-2	17°43′08″	69°49′16″	-	-	0.003	measured by volume
AV-3	17°43′21″	69°49′20″	-		0.000	measured by volume
AV-4	17°43′22″	69°49′20″	-	-	0.001	measured by volume
AV-5	17°43′22″	69°49′20″	-	•	0.001	measured by volume
Colpitas	River	*\$				
C-1	17°59′59″	69°37′50″	0.490	1.901	0.932	
C-2	17°59′39″	69°37′48″	0.418	1.350	0.564	
C-3	17°59′45″	69°37′40″	0.540	0.640	0.346	
C-4	17°59′22″	69°35′35″	0.569	0.270	0.154	
C-5	17°59′21″	69°35′35″	0.241	0.457	0.110	
C-6	17°58′15″	69°34′03″	0.245	0.289	0.071	
C-9	17°58′51″	69°27′31″	0.191	0.029	0.006	
C-10	17°58′10″	69°27′14″	0.377	0.195	0.074	
C-11A	17°57′25″	69°25′36″	0.226	0.076	0.017	
C-11B	17°57′25″	69°25′36″	0.124	0.030	0.004	
C-12	17°59′01″	69°26′14″	0.086	0.029	0.002	
C-14	17°58′59″	69°27′31″	-	-	0.001	measured by volume
CV-1	17°59′24″	69°35′38″	-	-	0.002	measured by volume
CV-2	17°59′42″	69°36′22″	-		0.001	measured by volume
CV-3	17°59′42″	69°36′22″	-	-	0.002	measured by volume
CV-4	17°59′48″	69°36′58″	-	-	0.000	measured by volume
CV-5	17°59′24″	69°36′01″	-		0.004	measured by volume

Note: The observation points located in the map but not shown here dried up during the observation period

Table A, 2.12 (1) Water Quality Observed in Azufre River < Calidad de Agua Observado en Rio Azufre>

(mg/l) NO3 (mg/l) Pb (Mg/l) Health Significance (mg/l) CS (mg/l) ප (mg/l) ಶ 1.739 0.010 5.212 0.166 0.006 5.434 6.753 3.189 1.513 4.759 4.663 0.000 0000 0.013 0.785 2.327 0.032 0.193 (mg/l) Observation Period: November 1993 As AV-3 AV-2 A-5B A-13 AV-4 AV-5 **AV-6** A-5A A-10 AV-1 AV-7 AV-8 Code A-11 A-12 A-2 A-8 A-3 A-4 A-1 Qda. Quenuavichiucha Azufre-Agua Caliente River/Quebrada Oda. Chadonasa Caracarani Azufre Azufre Azufre Azufre Azufre Lluta

Table A, 2.12 (2) Water Quality Observed in Azufre River < Calidad de Agua Observado en Rio Azufre>

Observation Period: November 1993

						Aest	Aesthetic Ouality	ality				
River/Quebrada	Code	Hd	CaCO3 (mg/l)	CI (mg/l)	SO4 (mg/l)	Na (mg/l)	Zn (mg/l)	Al (mg/l)	Cu (mg/l)	Fe (mg/l)	Mn (mg/l)	TDS (mg/l)
Lluta	A-1	2.96	1 1	661.9	1,200.8	257.6		1				
Qda. Chadonasa	A-2	2.60	1	211.3	396.2	119.6	*			•		
Azufre	A-3	2.84	1	1,683.5	3,194.0	466.0	ı	1		1		
Caracarani	A-4	5.11	1	173.4	300.2	172.5		1				
Azufre	A-5A	3.23		1,196.8	1,248.8	322.0	1		i,		1	
Qda. Quenuavichiucha	A-5B	2.81	1	1,745.9	3,784.8	420.9	1	-	ŧ			
Azufre	A-8	3.01	1	2044.4	3938.5	506.0	•	1	•		•	
Azufre	A-10	3.76	,	8.796	2,233.4	306.4		:	i	l	•	
Azufre	A-11	3.60	1	786.3	1,248.8	151.8	i		j	-	-	
Azufre-Agua Caliente	A-12		ī		١	. 1	•	-	-	,	. 9	•
Azufre-Agua Caliente	A-13	2.18		352.0	1,858.8	262.2	1	-	1	•	4	
Azufre-Agua Caliente	AV-1	4.10	*	506.2	2,497.6	414.0		•	•	1	•	
Azufre-Agua Caliente	AV-2	2.94	•	459.4	2,497.6	368.0	, i	-	1	ı	ı	
Azufre-Agua Caliente	AV-3	7.17	(11.3	33.1	11.3	• •	_	ţ	1	•	•
Azufre-Agua Caliente	AV-4	7.22		13.5	30.3	11.7	ŧ	1	ı	1	*	•
Azufre-Agua Caliente	AV-5	7.19		42.5	100.9	19.3	. 1	. •	1	1	1	
Azufre-Agua Caliente	AV-6	1.65		156.0	1,508.1	248.4	'	•		•		
Azufre-Agua Caliente	AV-7	1.89		377.9	1,469.7	240.4	. 1	١	,	1	-	
Azufre-Agua Caliente	AV-8	9.00	-	72.3	165.2	72.5			ı			

Table A, 2.12 (3) Water Quality Observed in Azufre River < Calidad de Agua Observado en Rio Azufre>

	ŀ
~	ļ
3	
χ,	
[993	

14	
2	
Ĕ	
Ξ	
5	
×	
5	
ĭ	
~	
٠.	
ਦ	
.ŏ	
Ξ.	
0	
Ω.	
<u>`</u>	
ion	
္	
Ξ	
2	
~	
ပ္က	
Ö	
U	
-	

						Others	ers				
River/Quebrada	Code	Temp (C)	EC (mh/cm)	CO3 (mg/l)	HCO3 (mg/l)	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Turbidity (mg/l)	DO (mg/l)	B (mg/l)
Lluta	A-1	'	6,200	0.00	0.00	153.90	84.00	68.00	•	2.90	8.93
Oda. Chadonasa	A-2	1	1,700	0.00	0.00	90.00	56.50	29.00	9	3.60	3.13
Azufre	A-3	-	18,800	0.00	0.00	285.00	160.00	190.00	1	2.80	27.87
Caracarani	A-4	•	1,800	00.0	298.40	77.60	47.10	27.00		5.40	2.46
Azufre	A-5A	-	19,500	0.00	0.00	410.00	180.00	90.00	. 1	3.40	6.82
Oda. Quenuavichiucha	A-5B	1	5,300	0.00	0.00	322.00	170.00	156.00	ı	1.80	27.87
Azufre	A-8	_	24,700	0.00	0.00	330.10	175.00	210.00	1	4.30	28.93
Azufre	A-10	_	10,600	0.00	0:00	259.90	125.00	160.00	1	3.60	7.03
Azufre	A-11	-	10,800	0.00	0.00	145.10	65.10	50.10	•	3.50	9.56
Azufre-Agua Caliente	A-12	•			•	1	1		1	1	•
Azufre-Agua Caliente	A-13	_	5,700	0.00	0.00	220.00	103.00	104.90		3.90	9.77
Azufre-Agua Caliente	AV-1		9,400	0.00	0.00	185.00	90.00	100.10	1	2.60	12.08
Azufre-Agua Caliente	AV-2	-	9,100	0.00	0.00	195.00	00.00	109.90	•	1.80	11.03
Azufre-Agua Caliente	AV-3	_	200	0.00	24.40	9.40	5.50	5.10	• •	3.10	0.00
Azufre-Agua Caliente	AV-4	•	100	0.00	28.10	10.20	5.70	5.10		2.80	0.00
Azufre-Agua Caliente	AV-5	1	400	0.00	70.20	42.30	17.60	6.70	•	2.00	0.03
Azufre-Agua Caliente	AV-6	•	4,500	00.00	0.00	218.00	104.00	126.30		4.50	2.33
Azufre-Agua Caliente	AV-7		5,600	0.00	0.00	181.00	88.00	116.90	1	4.80	11.87
Azufre-Agua Caliente	AV-8	1	1,000	0.00	167.20	59.90	29.60	12.90	I	2.50	0.84

Table A, 2.12 (4) Water Quality Observed in Colpitas River < Calidad de Agua Observado en Rio Colpitas>

Observation Period: November 1993	: Novemb	er 1993		and The same	1250/			
				Healt	Health Significance	cance		
River/Quebrada	Code	As	Ca Ca	رسمر)	CN	F (man)	Pb	NO3
I luta - after confluence	C-1	0 520	- (1/2/III)	, (1.63.11)	(regim)	(1/9m)	- (1/9/11)	(1/Sm)
Lluta: before confluenc	<u> </u>	0.299	ı	1		-	1	ı
Colpitas		0.674		ı	1	1		1
Colpitas	C-3-4	629.0	-	1		_	-	-
Allane	C-4	0.459	-		_	-	-	1
Colpitas	C-5	866.0	1		•	-	-	:
Colpitas	C-6	1.692	_	•	•	-	1	-
Allane	6-3	0.341	-	-	-	•	1	
Colpitas	C-10	2.081	-	-	*	*	2	3
Colpitas	C-11A	0.810	-	-	•	_	•	-
Colpitas	C-11B	4.489	-	-	_	-	•	-
Allane	C-12	0.444	•	•	•	ı	ş	١
Qda. Curaguara	C-14	860.0	-	1		-	-	-
Colpitas	CV-1	-	-	-	-	-	-	-
Colpitas	CV-2	0.853	**	•	-	-	-	-
Colpitas	CV-2'	0.565	-	1	4	4		-
Colpitas	CV-3	0.913	1	•		•		-
Colpitas	CV-4	1.719	•	.		1	• ·	_
Colpitas	CV-4'	0.587	•	•			Ī	
Colpitas	CV-5	0.578	1		_	i.		•

Table A, 2.12 (5) Water Quality Observed in Colpitas River < Calidad de Agua Observado en Rio Colpitas>

(mg/l) **10**S (mg/l) Ξ (mg/l) E, (mg/l) ♂ (Mg/l) Aesthetic Quality
Na Zn Al (mg/l) (mg/l) 138.0 312.8 165.6 161.0 370.3 425.5 271.4 0.996 731.4 317.4 396.7 1,196.0 1,127.0 100.7 377.2 538.2 381.8 331.2 2,829.0 270.4 1,081.0 259.4 377.0 147.0 665.2 240.2 252.6 206.6 342.0 235.4 665.2 90.3 48.5 307.4 206.6 195.0 206.6 (Mg/l) 241.1 408.4 9.709 149.6 366.2 621.9 426.8 1,099.7 478.6 2,070.3 1,648.1 375.4 142.2 570.0 1,081.2 582.8 1,760.1 4,485.8 1,773.6 573.2 (mg/l) (mg/l) CaCO3 3.20 6.76 69.9 6.93 6.77 6.68 7.13 5.21 7.95 7.88 7.23 8.10 97.9 7.67 6.62 6.08 6.70 7.28 6.80 5.68 Observation Period: November 1993 Hd C-11A C-11B CV-2' C-3'4 CV-5 C-10 CV-2 CV-3 පි C-12 C-14 CV-1 CV-4 C-6 CV-4 C-2 C-5 6-D C_3 **C**4 <u>C-1</u> Juta: before confluence Juta: after confluence River/Quebrada Oda. Curaguara Colpitas Allane Allane Allane

Table A, 2.12 (6) Water Quality Observed in Colpitas River < Calidad de Agua Observado en Rio Colpitas>

Observation Period	: Novemb	ovember 1993						200			-
						Others	ers				
River/Quebrada	Code	Temp (C)	EC (mh/cm)	CO3 (mg/l)	HCO3 (mg/l)	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Turbidity (mg/l)	DO (mg/l)	B (mg/l)
Lluta: after confluence	C-1	-	2,200	0.00	0.00		48.00	38.00	L	2.60	* 5.5(
Lluta: before confluenc	o C-2	•	2,500	0.00	00.00	93.60	47.60	41.10	-	3.10	3.87
Colpitas	C-3		2,500	0.00	378.30	79.60	23.40	71.60	-	3.90	22.6
Colpitas	C-3-4		2,500	0.00	148.30	84.00	21.00	70.00	•	3.30	24.6
Allane	C-4		2,300	0.00	134.20	68.00	21.00	70.00	-	3.70	12.67
Colpitas	C-5	1	3,700	0.00	191.60	117.00	21.00	75.90	1	3.10	72.00
Colpitas	9-2	1	5,900	0.00	251.40	216.00	24.00	120.00	-	3.10	133.05
Allane	C-9	ï	006	0.00	124.50	59.10	19.00	16.40	-	3.40	6.05
Colpitas	C-10	ı	5,800	0.00	251.40	140.10	22.00	120.00	1	4.30	61.79
Colpitas	C-11A	-	1,500	0.00	140.30	53.10	12.70	45.40	1	4.90	20.88
Colpitas	C-11B	1	2,000	0.00	00.609	148.10	25.30	204.90	1	8.10	181.47
Allane	C-12	,	1,800	0.00	299.00	20.40	23.00	13.70	-	4.70	16.18
Oda. Curaguara	C-14		200	0.00	146.40	30.70	11.30	11.30	ł	4.60	4.60
Colpitas	CV-1	'	2,200	1	1	-	*	•	ŧ	3.50	
Colpitas	CV-2	1	8,700	0.00	184.30	114.00	58.00	380.10		4.10	83.58
Colpitas	CV-2	1	2,800	0.00	158.60	78.00	22.00	77.00	-	3.30	19.94
Colpitas	CV-3	ı	9,600	0.00	130.60	110.00	00:09	450.00	•	4.40	93.05
Colpitas	CV4	ı	4,200	0.00	83.00	76.00	36.00	206.50	Ì	5.80	26.67
Colpitas	CV-4'	-	2,700	0.00	140.30	80.00	22.00	70.00		3.80	19.73
Colpitas	CV-5	-	3,600	0.00	218.40	88.20	34.10	70.00	1	4.80	15.73
	* Boron at C-1 may include some error (refer to page II-12)	may inclu	de some en	ror (refer to	o page II-12	ຄ່					

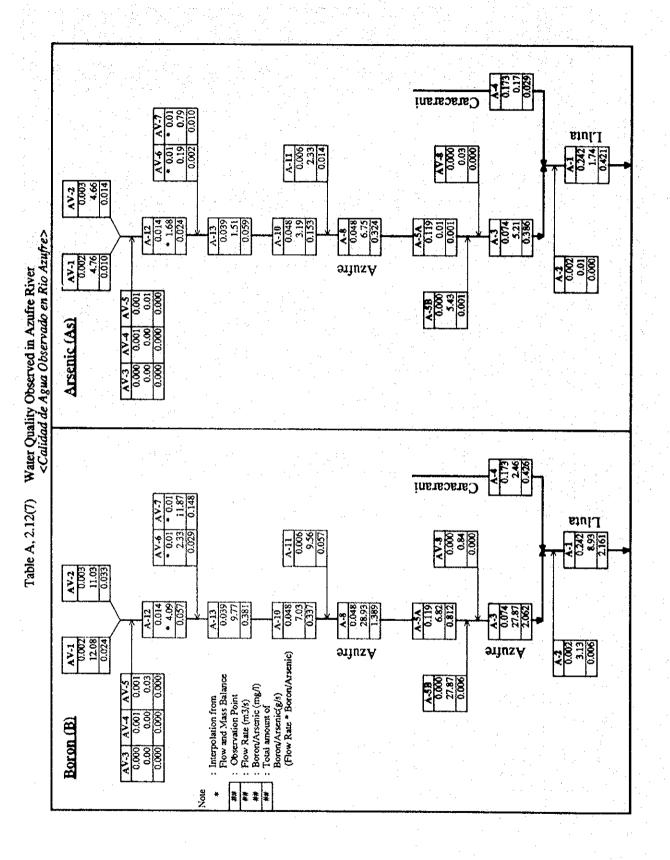


Table A, 2.12(8) Water Quality Observed in Colpitas River < Calidad de Agua Observado en Rio Colpitas>

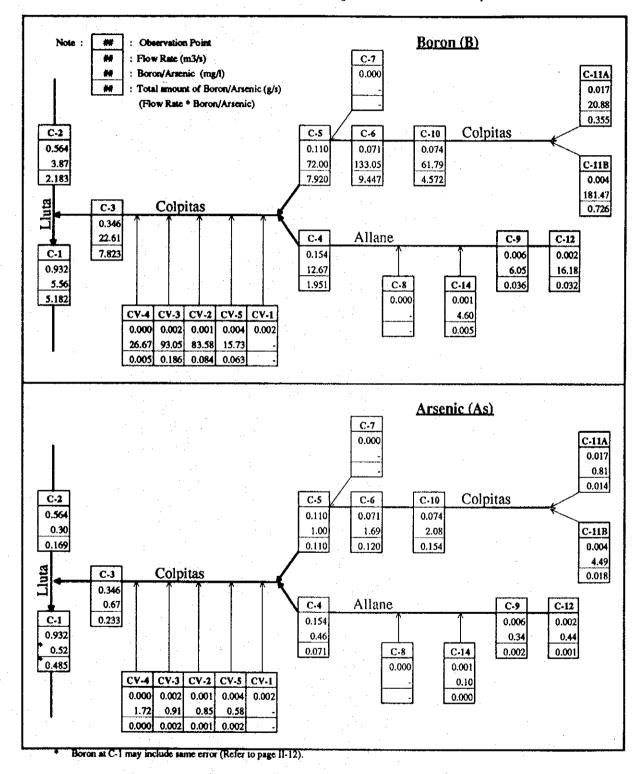


Table A, 2.13 (1) Storage Volume at Tocontasi & Chapisca < Volumen de Almacenamiento en Tocontasi y Chapisca>

(Inflow = Qobs, Outflow = 2.0 m3/s)

("Rising" or "Decreasing" refers to the period that storage volume changes

from Max. to Min. or Min. to Max. in a cycle)

		1 de la 1800 de la 180	Necessa	
		Max or Min	Storage Volu	
Year	Month	Vol.Storage (m3)	Rising Period	Decreasing Period
1946	Mar	14,785,027	4 04304	I CI IOU
1946	Dec	2,643,408		-12,141,61
1947	Jan	2,938,032	294,624	
1947	Nov	-14,799,024		-17,737,05
1947	Dec	-14,209,776	589,248	
1948	Jan	-14,531,184	***************************************	-321,40
1948	Mar	-163,728	14,367,456	***************************************
1948	Dec	-6,769,872		-6,606,14
1949	Jul	54,428,976	61,198,848	
1950	Peb	45,225,302		-9,203,67
1950 1950	Mar Dec	46,135,958	910,656	
1951	Mar	37,162,886 41,656,550		-8,973,07
1951	Dec	30,039,206	4,493,664	
1952	Sep	65,290,406	35,251,200	-11,617,34
1952	Dec	63,048,326		-2,242,08
1953	Mar	121,415,846	58,367,520	-2,242,00
1953	Nov	115,947,850		-5,467,99
1954	Mar	149,035,680	33,087,830	
1954	Dec	140,115,917		-8,919,76
1955	Mar	154,900,944	14,785,027	
1955	Nov	147,653,971	***************************************	-7,246,97
1956	Feb	152,459,539	4,805,568	***************************
1957	Jan	139,546,368		-12,913,17
1957	Mar	147,299,126	7,752,758	•••••
1957 1958	Nov	138,138,307		-9,160,81
1958	Mar	155,880,288 155,260,800	17,741,981	
1958	Apr	155,260,800		-619,48
1959	Sep Jan	153,392,832	4,209,408	Z 0771 00
1959	Mar	165,831,581	12,438,749	-6,077,37
1939	Dec	156,911,818	12,438,749	-8,919,76
1960	Маг	171,696,845	14,785,027	-0,919,70
1960	Dec	162,777,082		-8,919,76
1961	Mar	177,562,109	14,785,027	
1961	Dec	167,705,251		-9,856,85
1962	Mar	181,874,074	14,168,822	
1962	May	180,772,474		-1,101,60
1962	Jun	180,927,994	155,520	
1962	Dec	175,086,490]		-5,841,50
1963	Sep	200,148,538	25,062,048	***************************************
1963	Dec	196,962,883		-3,185,65
1964 1964	Jen Jul	199,309,162	2,346,278	
		194,988,730		-4,320,43
1964	Sep	195,597,850	609,120	********************************
1964	Dec	193,132,858		-2,464,99
1965	Apr	208,391,962	15,259,104	
1965	Jun	203,493,946		-4,898,01
1966	Feb	214,959,226	11,465,280	
1966	May	212,992,762		-1,966,46
1966	Jun	213,718,522	725,760	1,700,40
1967	Jan		123,700	
. 14 / 2004 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*********	200,009,434		-13,709,08
1967	Mar	209,154,874	9,145,440	

Table A, 2.13 (2) Storage Volume at Tocontasi & Chapisca < Volumen de Almacenamiento en

Tocontasi y Chapisca>

(Inflow = Qobs, Outflow = 2.0 m3/s)

("Rising" or "Decreasing" refers to the period that storage volume changes

from	M	ex.	to	Min.	or	Min.	to	Max.	in s	cycle)	١
11.0411	244		**	TATME.	v	ITLUE.	w	TATEV.	HIL O	CTCIC	,

		Max or Min	Neces Storage Vo	lume (m3)
Year	Month	Vol.Storage	Rising	Decreasing
		(m3)	Period	Period
1968	Jan	198,850,205		-10,304,669
1968	Mar	214,821,763	15,971,558	
1968	Dec	200,488,867		-14,332,896
1969	Mar	215,273,894	14,785,027	
1969	Dec	205,346,794		9,927,101
1970	Jan	206,471,722	1,124,928	
1970	Feb	206,036,266		-435,456
1970	Mar	206,464,810	428,544	
1970	Dec	188,014,954		-18,449,856
1971	Mar	197,097,322	9,082,368	
1971	Dec	181,334,506	***************************************	-15,762,816
1972	Mar	229,287,370	47,952,864	
1972	Apr	228,667,882		-619,488
1972 1972	Aug	233,586,634	4,918,752	
1972	Dec	227,860,819	·····	-5,725,814
1973	Mar	242,645,846	14,785,027	
1973	Dec	232,069,018	***************************************	-10,576,829
1974	Mar	249,701,530	17,632,512	
1974	Jul	247,759,258		-1,942,272
1974	Aug	250,250,170	2,490,912	······································
1974	Dec	241,617,773	······	-8,632,397
1975	Mar	254,860,042	13,242,269	
1975	Jun	253,386,058		-1,473,984
1975	Jul	253,787,818	401,760	
1975	Nov	248,017,162		-5,770,656
1976	Маг	289,566,058	41,548,896	**********************
1976	Apr	288,946,570		-619,488
1976	May	288,973,354	26,784	**************************
1976	Dec	281,317,450	······································	-7,655,904
1977	Jun	301,375,382	20,057,933	
1977	Dec	294,631,430	1	-6,743,952
1978	Feb	300,529,094	5,897,664	***************************************
1978	Dec	285,463,526	1	-15,065,568
1979	Jars	286,963,430	1,499,904	
1979	Feb	284,810,342	1	-2,153,088
1979	Mar	288,560,102	3,749,760	
1979	Dec	279,049,709		-9,510,394
1980	Mar	293,834,736	14,785,027	
1981	Jan	279,601,286		-14,233,450
1981	Mar	315,178,214	35,576,928	
1982	Jan	303,011,021	I	-12,167,194
1982	Feb	303,228,749	217,728	
1983	Dec	255,530,938	I	-47,697,811
1984	Маг	268,585,718	13,054,781	
1985	Jan	255,816,662	I	-12,769,056
1985	Mar	269,181,965	13,365,302	***************************************
1985	Nov	261,650,650	I	-7,531,315
1986	Mar	276,837,437	15,186,787	4
1986	Dec	267,917,674		-8,919,763
1987	Mar	282,702,701	14,785,027	
1987	Dec	272,600,208	I	-10,102,493
1988	Mar	304,944,912	32,344,704	**********
1988	Dec	294,030,000	I	-10,914,912
1989	Mar	304,503,494	10,473,494	

Table A, 2.14 (1) Storage Volume at Tocontasi & Chapisca <Volumen de Almacenamiento en Tocontasi y Chapisca>

(Inflow = Qobs, Outflow = 1.5 m3/s)

("Rising" or "Decreasing" refers to the period that storage volume changes from Max. to Min. or Min. to Max. in a cycle)

		Max or Min	Nece Storage Vo	ssary lume (m3)
Year	Month	Vol.Storage	Rising	Decreasing
I Cas	MOM		Period	Period
		(m3)	Period	Periou
1946	Jun	20,857,392		
1946	Dec	18,411,408		-2,445,984
1947	Jan	20,045,232	1,633,824	
1947	Jun	18,444,240	*************	-1,600,997
1947	Jul	18,631,728	187,488	
1947	Nov	15,397,776		-3,233,957
1948	Aug	40,491,792	25,094,016	
1948	Nov	39,677,040		-814,752
1949	Sep	111,623,702	71,946,662	******************************
1949	Dec	110,070,230		-1,553,47
1950	Sep	117,367,142	7,296,912	
1950	Dec	116,002,886		-1,364,250
1951	Sep	126,607,622	10,604,736	***************************************
1951	Dec	124,647,206		-1,960,416
1954	Sep	283,149,475	158,502,269	
1954	Dec	282,027,917		-1,121,55
1955	Sep	304,782,739	22,754,822	
1955	Nov	303,994,771		-787,96
1956	Sep	316,969,632	12,974,861	
1957	Jan	314,333,568	12,717,001	-2,636,06
1957		327,830,371	13,496,803	-2,000,00-
1957	Aug	326,015,107	13,490,603	-1,815,26
	Nov		***************************************	-1,613,20
1958	Oct Jan	361,336,896	35,321,789	
1959		359,716,032	***************************************	-1,620,86
1959	Sep	378,785,376	19,069,344	
1959	Dec	377,663,818	առուսան արագայան այլ	-1,121,55
1960	Sep	400,418,640	22,754,822	
1960	Dec	399,297,082		-1,121,55
1961	Aug	422,015,962	22,718,880	
1961	Dec	419,993,251		-2,022,71
1962	Sep	443,995,258	24,002,006	***************************************
1962	Nov	443,062,138		-933,12
1963	Nov	480,869,914	37,807,776	
1963	Dec	480,786,883		-83,03
1964	Mar	486,014,602	5,227,718	
1964	Apr	485,470,282		-544,32
1964	Oct	491,751,130	6,280,848	
1964	Nov	491,466,010		-285,12
1965	Арг	513,167,962	21,701,952	
1965	Jun	510,905,146		-2,262,81
1966	Jul	537,567,322	26,662,176	*****************************
1967	Jan	532,476,634		-5,090,68
1967	Sep	548,252,669	15,776,035	
1967	Dec	545,746,205		-2,506,46
1968	Арг	566,772,163	21,025,958	
**********		• • • • • • • • • • • • • • • • • • • •	-1,723,730	4305 16
1968	Jun	562,376,995		-4,395,16
1968	Sep	564,274,426	1,897,430	***************************
1968	Dec	563,152,867	* *.	-1,121,55
1969	Sep	585,858,442	22,705,574	
1969	P			1 me 44
	Dec	583,778,794		-2,079,64
1970	Mar	588,784,810	5,006,016	·
1970	Jun	587,164,810	<u> </u>	-1,620,00

Table A, 2.14 (2) Storage Volume at Tocontasi & Chapisca <Volumen de Almacenamiento en Tocontasi y Chapisca>

(Inflow = Qobs, Outflow = 1.5 m3/s)

("Rising" or "Decreasing" refers to the period that storage volume changes

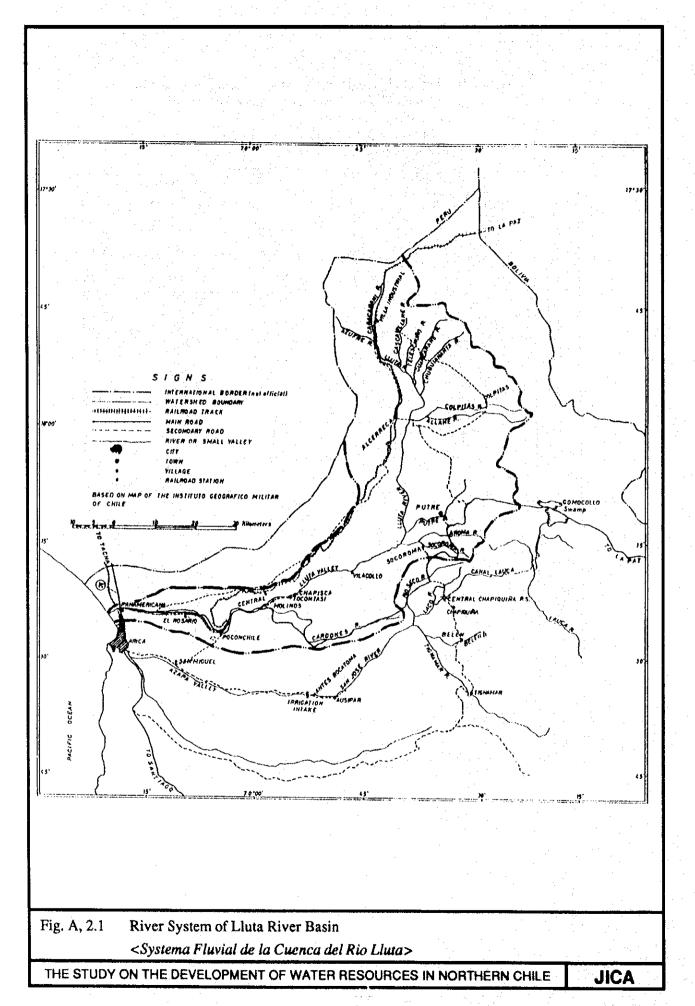
	fn	om Max. to Min. or Min. to	o Max. in a cycle)	•
		Max or Min	Necess Storage Volu	
Year	Month	Vol.Storage (m3)	Rising Period	Decreasing Period
1970	Jul	587,298,730	133,920	
1970	Dec	582,214,954	***************************************	-5,083,776
1971	Mar	595,185,322	12,970,368	***************************************
1971	May	594,790,474	***************************************	-394,848
1971	Jul	595,186,186	395,712	
1971	Dec	591,302,506		-3,883,680
1972	Sep	654,959,434	63,656,928	
1972	Dec	653,596,819	***************************************	-1,362,614
1973	Sep	676,351,642	22,754,822	***************************************
1973	Dec	673,573,018		-2,778,624
1001		500 051 500	60 (00 0 5	·····

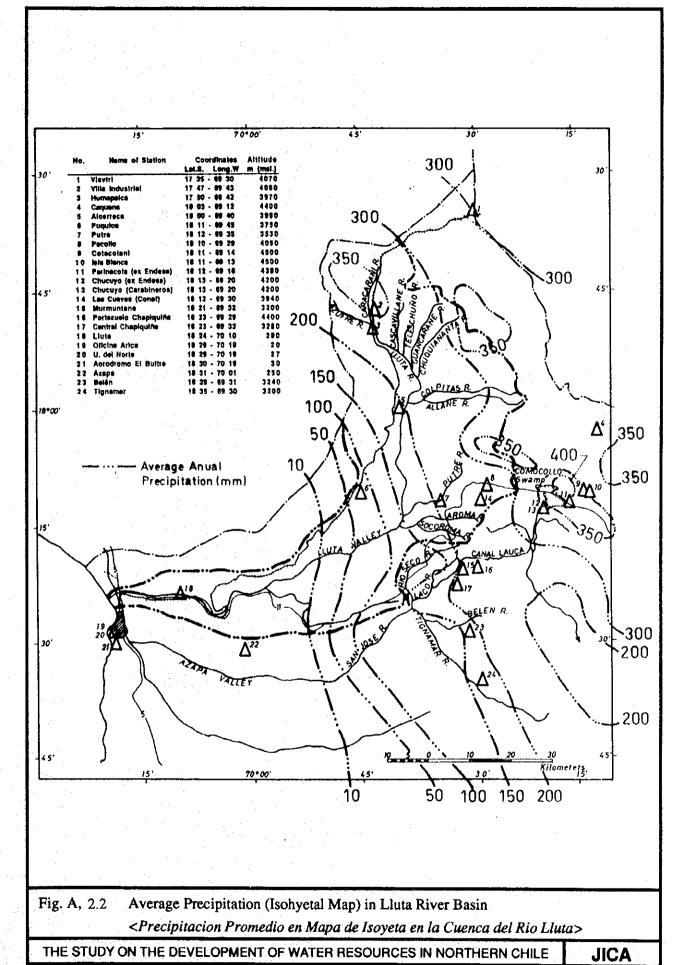
		(m3)	Period	Period
1970	Jul	587,298,730	133,920	1000
1970	Dec	582,214,954		-5,083,776
1971	Mar	595,185,322	12,970,368	
1971	May	594,790,474	,	-394,848
1971	Jul	595,186,186	395,712	***************************************
1971	Dec	591,302,506		-3,883,680
1972	Sep	654,959,434	63,656,928	*******************************
1972	Dec	653,596,819	****************	-1,362,614
1973	Sep	676,351,642	22,754,822	
1973	Dec	673,573,018		-2,778,624
1974	Aug	702,251,770	28,678,752	·
1974	Dec	698,889,773	******************************	-3,361,997
1975	Aug	720,861,034	21,971,261	
1975	Nov	719,717,962		-1,143,072
1976	*****************	772,977,514	£2 250 550	71,175,072
	Sep	************************	53,259,552	
1976	Dec	770,125,450		-2,852,064
1977	Sep	800,947,526	30,822,077	
1977	Dec	799,207,430	•••••	-1,740,096
1978	Feb	807,653,894	8,446,464	***************************************
1978	Mar	807,225, 350		-428,544
1978	Aug	808,509,254	1,283,904	
1978	Dec	805,807,526		-2,701,728
1979	Jan	808,646,630	2,839,104	***************************************
1979	Feb	807,703,142		-943,488
1979	Mar	812,792,102	5,088,960	773,704
1979		812,688,422	2,000,700	102 600
1979	Apr		0.600.054	-103,680
	Oct	816,381,677	3,693,254	***************************************
1979	Dec	815,161,709		-1,219,968
1980	Aug	836,281,757	21,120,048	************************
1980	Dec	832,391,942		-3,889,814
1981	Sep	874,268,813	41,876,870	
1981	Dec	871,676,813		-2,592,000
1982	Feb	873,425,549	1,748,736	***************************************
1982	Apr	872,787,917		-637,632
1982	Jul	873,475,661	687,744	
1982	Nov	864,403,834		-9,071,827
1982	Dec	864,805,594	401,760	-7,071,027
1983		*******************************	401,700	10 000 656
	Dec	854,714,938	10 000 000	-10,090,656
1984	Aug	873,605,174	18,890,237	
1984	Oct	872,573,558		-1,031,616
1984	Nov	872,884,598	311,040	······································
1985	Jan	872,107,862		-776,736
1985	Sep	891,538,618	19,430,755	***************************************
1985	Nov	891,031,450		-507,168
1986	Sep	915,527,232	24,495,782	
1986	Dec	914,405,674	***************************************	-1,121,558
1987	Sep	937,214,928	22,809,254	
1987	Dec	934,856,208		-2,358,720
1988	~ ~ ~ * * * * * * * * * * * * * * * * *	***************************************	38,036,736	-2,336,720
*************	Aug	972,892,944	36,020,730	
1988	Nov	972,027,216		-865,728
1989	May	987,793,747	15,766,531	***************************************
1990	May	977,468,688		-10,325,059
1990	Sep	979,512,912	2,044,224	
	14 A A A A			

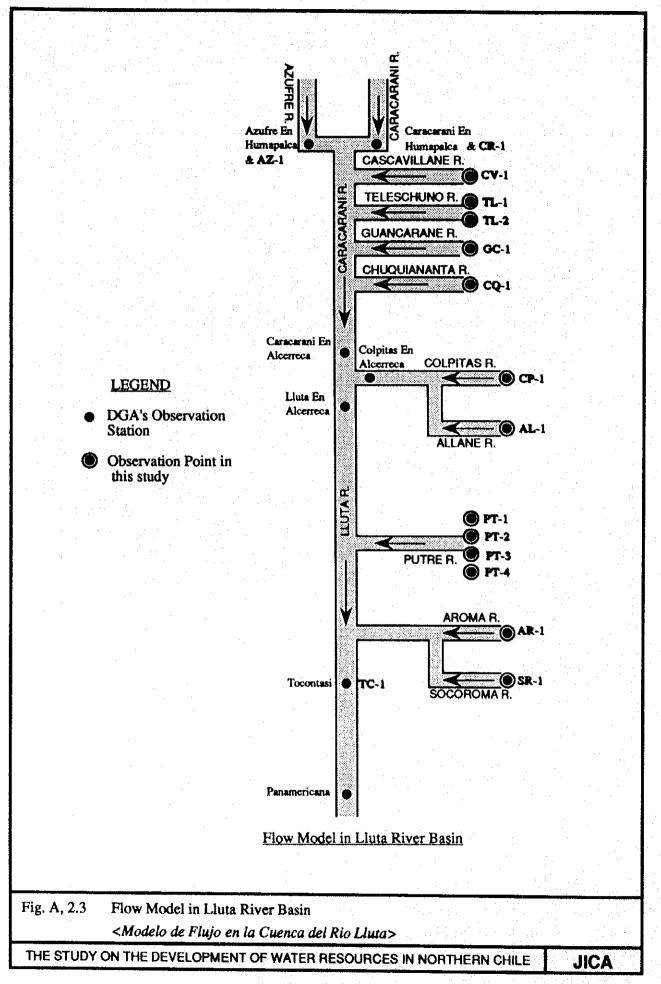
Table A, 2.15 Probability of Storage Volume at Tocontasi & Chapisca <Probabilidad de Volumen de Almacenamiento en Tocontasi y Chapisca>

(Inflow = Qobs, Outflow = 2.0 m3/s)

("Rising" or "Decreasing" refers to the period that storage volume changes from Max. to Min. or Min. to Max. in a cycle)


	Neces Storage Vol	sary	Min. or Min. to Max. in Wo	ibull Probability	
Order	Rising Period	Decreasing Period	T' (Year)	P(x)	F(x)
1	61,198,848	-47,697,811	(1 car)	(%)	(%)
2	58,367,320	-18,449,856	22.500	2,22	97.78 95.56
2 3 4 5 6 7 8	47,952,864	17,737,036	15.000	4.44 6.67	93.33
4	41,548,896	15762.816	11.250	8.89	91.11
5	35,576,928	-15,762,816 -15,065,568	9.000	11.11	88.89
6	35251,200	-14.332.896	7.500	13.33	86.6
7	33,087,830	-14,332,896 -14,233,450	6.429	15.56	84.4
8	32,344,704	-13,709,088 -12,913,171	5.625	17.78	82.2
9	25,062,048	-12,913,171	5.000	20.00	80.0
10	20,057,933	-12,769,056	4.500	22.22	77.75
11	17,741,981	-12,167,194	4.091	24.44	75.50
12	17,632,512 15,971,558	-12,141,619 -11,617,344	3.750	24.44 26.67	73.33
13	15,971,558	-11,617,344	3.462	28 80	71.11
14	15,259,104	-10,914,912	3.214	31.11	68.89
15	15,186,787	-10,576,829	3.000	33.33	66.6
16	14,785,027	-10,304,669 -10,102,493	2.813	35.56	64.4
17	14,785,027	-10,102,493	2.647 2.500	37.78	62.2
18	14,785,027	-9,927,101	2.500	40.00	60.00
19	14,785,027	-9,856,858	2.368 2.250 2.143	42.22	57.79
20	14,785,027	-9,510,394	2.250	44.44	55.56
21 22	14,785,027	-9,203,674	2.143	46.67	53.33
22	14,785,027 14,367,456	-9,160,819	2.045	48.89	51.1
23 24 25	14,367,456	-8,973,072	1.957	51.11	48.89
	14,168,822	-8,919,763	1.875	53.33	46.6
25 26	13,365,302	-8,919,763	1.800 1.731	55,56	44.4
27	13,242,269 13,054,781	-8,919,763	1.731	57.78	42.22
28	12,438,749	-8,919,763	1.667 1.607	60.00	40.00
29	11,465,280	-8,632,397 -7,655,904	1.552	62.22	37.78
30	10,473,494	-7,531,315	1.500	64.44	35.56
31	9,145,440	-7,246,973		66.67 68.89	33.33
32	0 087 388	-6,743,952	1.452 1.406	71.11	31.11
33	9,082,368 7,752,758	-6,606,144	1.364	73.33	28.89
34	5,897,664	-6,077,376	1.324	75.56	26.67
35	4,918,752	-5,841,504	1.286	77.78	24.44
36	4,805,568	-5,770,656	1.250	80.00	22.22 20.00
37	4,493,664	-5,725,814	1.216	82.22	20.00 17.78
38	4,209,408	-5,467,997	1.184	84.44	17.78
39	3,749,760	-4,898,016	1.154	86.67	13.33
40	2,490,912	-4,320,432	1.125	88.89	13.33
40 41	2,346,278	-3,185,654	1.098	91.11	11.11 8.89
42	1,499,904	-2,464,992	1.071	93.33	6.67
43	1,124,928	-2,242,080	1.047	95.36	4.44
44	910,656	-2,153,088	1.023	97.78	2.22


Table A, 2.16 Probability of Storage Volume at Tocontasi & Chapisca Probabilidad de Volumen de Almacenamiento en Tocontasi y Chapisca>


(Inflow = Qobs, Outflow = 1.5 m3/s)

("Rising" or "Decreasing" refers to the period that storage volume changes from Max. to Min. or Min. to Max. in a cycle)

	Necess		fin. or Min. to Max. in a cycle) Weibull Probability			
Order	Storage Volu			ioun riobability		
	Rising Decreasing		т	P(x)	F(x)	
	Period	Period	(Year)	(%)	(%)	
1	158,502,269	-10,325,059	45.000	2.22	97.78	
2 3 4	71,946,662	-10,090,656	22.500	4,44	95.5	
3	63,656,928	-9.071.827	15.000	6.67	93.3	
	53,259,552	-5,090,688	11.250	8.89	91.1	
6	41,876,870	-5,083,776	0.000	11.11	88.8	
6	38,036,736	-4,395,168	7.500	13.33	86.6	
7	37,807,776	-3,889,814	6.429	15.56	84.4	
8	35,321,789	-3,883,680	5.625	17.78	82.2	
····9	30,822,077	-3,361,997	5.000	20.00	80.0	
10	28,678,752	-3,233,952	4.500	22.22	77.7	
11	26,662,176	-2,852,064	4.091	24.44	75.5	
11 12 13	25,094,016	-2,778,624	3.750	26.67	73.3	
13	24,495,782	-2.701.728	3.462	28.89	71.1	
14	24,002,006	-2,636,064	3.214	31.11	68.8	
15	22,809,254	-2,592,000	3.000 2.813	33.33	66.6	
16 17	22,754,822	-2,506,464	2.813	35.56	64,4	
17	22,754,822	-2,445,984	2.647 2.500	37.78	62.2	
18	22,754,822	-2,358,720	2.500	40.00	60.0	
19	22,718,880	-2,262,816	2.368	42.22	37.7	
20 21	22,705,574	-2,079,648	2.250	44.44	55.5	
21	21,971,261	-2,022,710	2.143	46.67	53.3:	
22 23	21,701,952	-1,960,416	2.045	48.89	51.1	
23	21,701,952 21,120,048	-1,815,264	1.957	51.111	48.8	
24	21,025,958 19,430,755	-1,740,096	1.875	53.33	46,6	
25	19,430,755	-1,620,864	1.800	55.56	44.4	
26	19,069,344 18,890,237	-1,620,000	1.731	57.78	42.2	
27	18,890,237	-1,600,992	1.667	60.00	40.00	
28	15,776,035	-1,553,472	1.607	62.22	37.78	
29	15,766,531	-1.364.256	1.552	64.44	35.56	
30	13,496,803	-1,362,614	1.500	66.67	33.33	
31	12,974,861	-1,219,968	1.452	68.89	31.1	
32	12,970,368	-1,143,072	1.406	71.11	28.89	
33	10,604,736	-1,121,558	1.364	73.33	26.67	
34	8,446,464	-1,121,558	1.324	75,56	24.44	
35	7,296,912	-1,121,558	1.286	77.78	22.22	
36	6,280,848	-1,121,558	1.250	80.00	20.00	
37	5,227,718	-1,121,558	1.216	82.22	17.78	
38	5,088,960	-1,031,616	1.184	84.44	15.56	
39	5,006,016	-943,488	1.154	86.67	13.33	
40	3,693,254	-933,120	1.125	88.89	11.11	
41	2,839,104	-865,728	1.098	91.11	8.89	
42	2,044,224	-814,752	1.071	93.33	6.67	
43	1,897,430	-787,968	1,047	91.11 93.33 95.56	4.44	
44	1,748,736	-776,736	1.023	97.78	2.22	

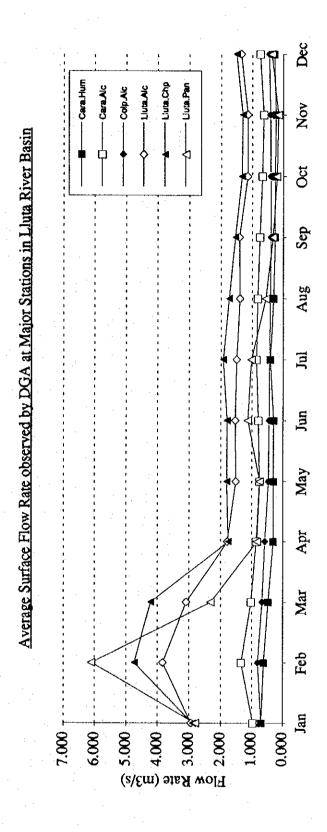


Fig. A, 2.4 Average Surface Flow Rate in Lluta River Basin

< Nivel de Flujo de Superficie Premedio Meansual de la Cuenca del Rio Lluta>

THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE

JICA

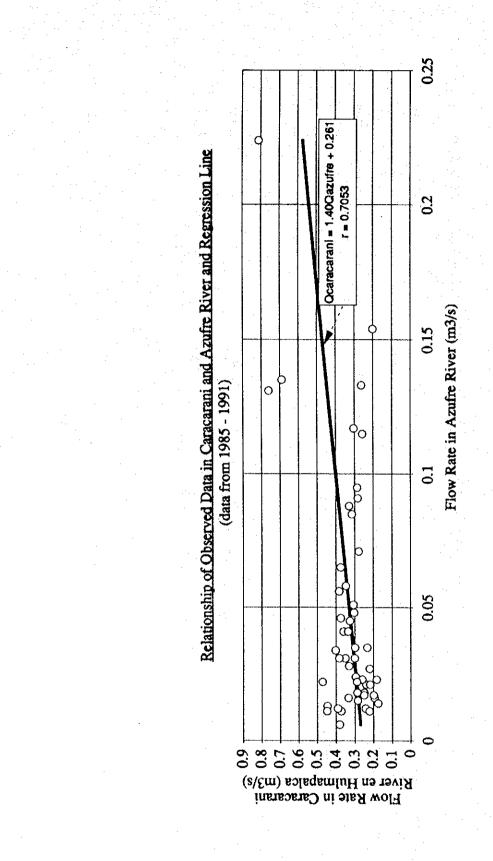


Fig. A, 2.5 Relationship of Observed Data in Caracarani and Azufre River and Regression Line < Relacion de Datos Observado en Rio Caracarani y Azufre y Linea de Regresion>

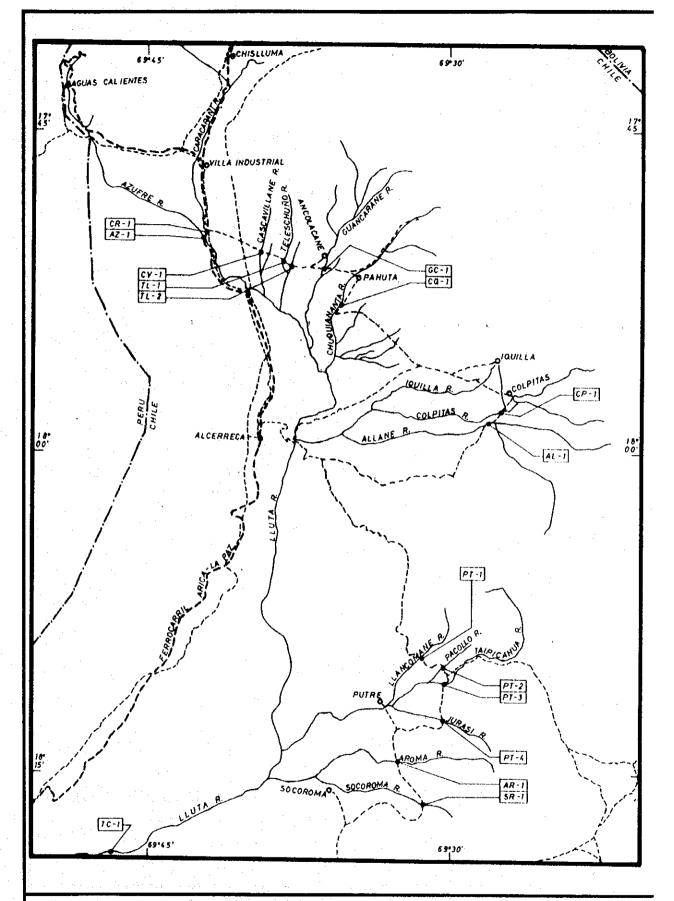
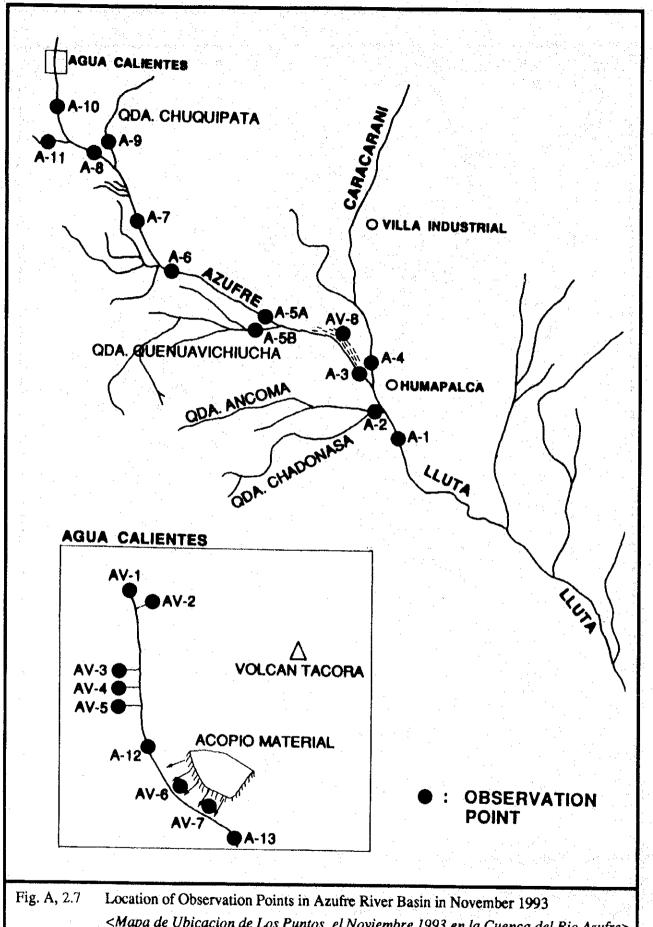



Fig. A, 2.6 Location of Observation Points on 1st - 3rd June 1993 in Lluta River Basin < Ubicacion de Los Puntos de Observacion el 1 - 3 Junio 1993 en la Cuenca del Rio

< Mapa de Ubicacion de Los Puntos el Noviembre 1993 en la Cuenca del Rio Azufre> THE STUDY ON THE DEVELOPMENT OF WATER RESOURCES IN NORTHERN CHILE JICA

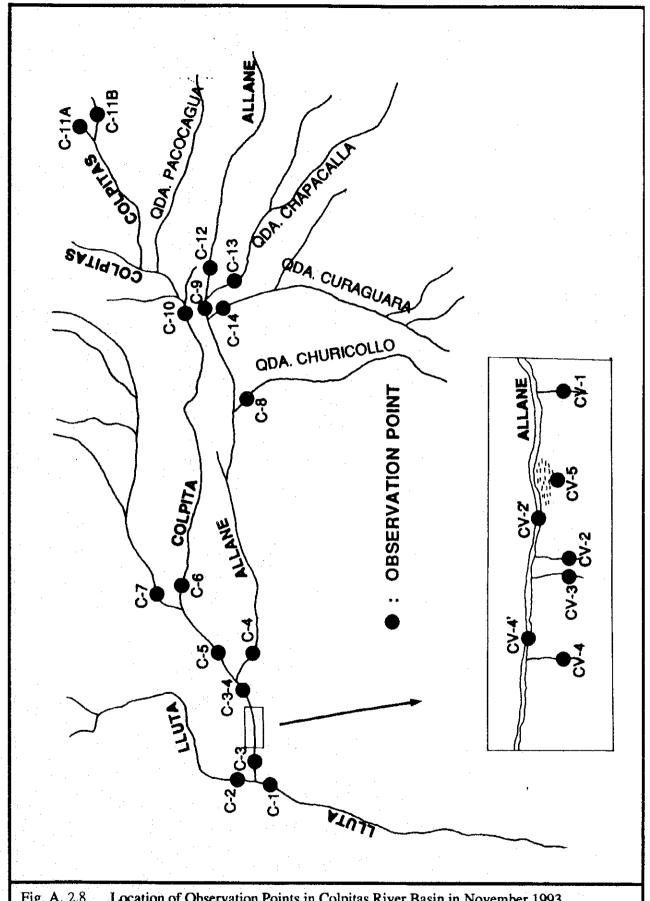
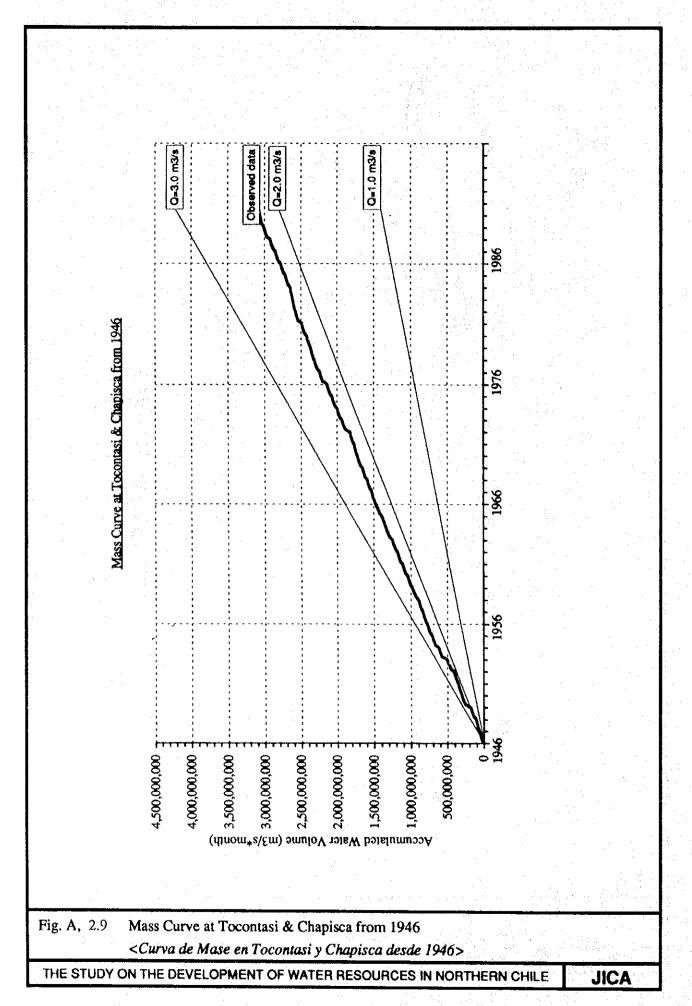



Fig. A, 2,8 Location of Observation Points in Colpitas River Basin in November 1993

Apa de Ubicacion de Los Puntos el Noviembre 1993 en la Cuenca del Rio Colpitas>

11 - 50

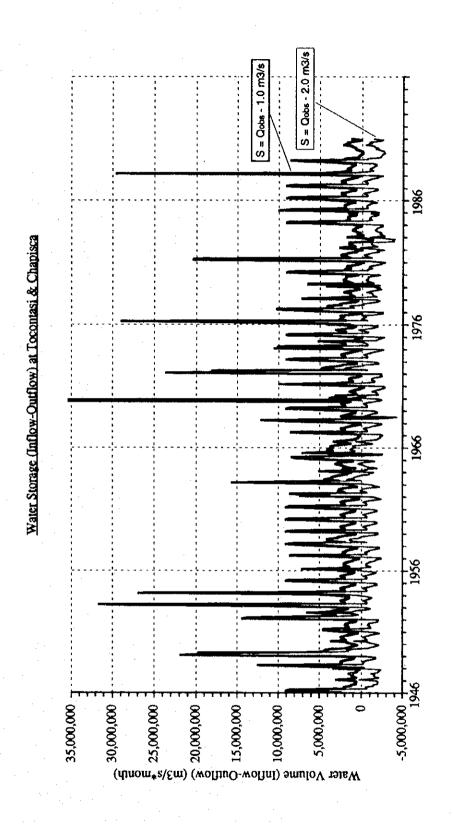


Fig. A, 2.10 Water Storage (Inflow - Outflow) at Tocontasi & Chapisca < Almacenamiento de Agua (Entrada - Salida) en Tocontasi y Chapisca>

Chapter III SURFACE WATER OF PAMPA DEL TAMARUGAL BASIN

3.1 General

Pampa del Tamarugal basin located in the Region I in northern Chile has a total drainage basin area of 18,005 km², covers the river basin of 7,435 km² and residual basin of 10,570 km². Drainage basin area is shown in Fig. A, 3.1 and Table A, 3.1.

3.1.1 Climate and Precipitation

Information on climate in the basin is obtained from Pampa Lirima (Pueblo Nuevo) weather station in the upstream of the basin. Maximum monthly average temperature is in March at 22.4 °C and minimum one is in June at 10.0 °C. Humidity does not vary much throughout a year lying within a range of 35 - 55 %.

Precipitation is observed regularly by DGA and Meteorological Department. Most of the stations are distributed in the upstream of the basin as shown in Fig. A, 3.2.

Most of the precipitation fall in the upstream mountain areas with an altitude of higher than 3,000 m. However, in downstream of the rivers in the middle part of the basin, precipitation is almost nil. Average annual precipitation regionally varies from zero in the Pampa areas to 200 mm in the highest mountain areas as shown in Fig. A,3.2.

3.1.2 River System

Main rivers in the basin are Aroma, Tarapaca, Quipisca, Juan Morales (or Sagasca), Quisma (or Pica), Chacarilla and Ramada rivers. All the rivers originate in the east and flow westwards to the Pampa areas. In downstream, all flows infiltrate to underground and the river courses disappear.

Although there are several rivers in the basin, only above mentioned seven (7) rivers are not dried-up according to the information obtained from DGA. Flow model is shown in Fig., A, 3.3.

3.2 Surface Flow Rate

3.2.1 Flow Rate at Major Stations

Daily water levels are observed at DGA's observation stations by automatic recorders. Flow rate at each stations is generally calculated by so called "Discharge Rating Curve" or "H-Q Curve" which is a calibration curve of water level and flow rate. Data of other basins are also used for the calculation since a few station is available in Pampa del Tamarugal. Major observation stations are as follows;

River	Location	Observation Period		
Tarapacá	Mina San Juan	1984 - 1990		
Coscaya	Saitoco	1985 - 1990		
	Pampa Lirima	1977 - 1989		
Camarones	Conanoxa			
Oda. Camiña	Altusa			
Roa	Lequena	in the second se		

Average, maximum and minimum surface flow rate of these stations in the recorded years are shown in Table A, 3.2, fluctuation of these flows throughout a year are shown in Fig. A.3.4 and recorded monthly flow rates are shown in Appendix A, 3.1.

Information on flow rate in recent years is limited to only in Tarapacá River basin, a main river in the basin, and Coscaya River, a tributary of Tarapacá River in the south. Average total flow rate of Tarapacá is 0.303 m³/s. All this water amount infiltrates into underground in the downstream Pampa areas.

Averaged surface flow rates of other basins are as follows;

Camarones	: 0.52 m ³ /s			
Camiña	: 0.61 m ³ /s			
Loa (Lequeña)	: 0.53 m ³ /s			
Loa (Desp. Junta)	: 1.07 m ³ /s			

3.2.2 Calculation of Runoff Coefficient

Average yearly rainfall contour map prepared by DGA in 1987, as shown in Fig. A, 3.2, is used to calculate the surface runoff coefficient which in this case is the ratio of the average indigenous flow rate of

Tarapacá River at Mina San Juan, the only available observed data in the basin, with average annual precipitation in its upstream basin. Runoff coefficient is found to be 0.054 as shown in Table A, 3.3. This can be interpreted that about 5.4 % of rainfall flows through rivers as surface flow in the upstream of Tarapacá River basin. The remaining 94.6 % is mainly lost by evaporation.

3.3 Surface Water Quality

3.3.1 Water Quality at Major Stations

Water quality is observed at DGA's observation stations. Water samples are taken from the river and analyzed in the laboratory. Observation stations are as follows;

<u>River</u>	Location	Observation Period
Тагараса	Mocha	1970 - 1981
	Pachica	1970 - 1987
Coscaya	Pampa Lirima	1975 - 1989

The items of the analysis are classified as follows;

(1) Health Significance: As, N-NO₃, N-NO₂, N-NH₃

(2) Aesthetic Quality: Cl-, Cu, Fe, Na, P, SO₄, pH

(3) Others: HCO₃, CO₃, Ca, Mg, K, B, E.C.

Results of the examination are shown in Table A, 3.4. Average monthly data are shown in Appendix A, 3.2.

3.3.2 Evaluation of Water Quality

Permissible drinking water quality of Chile is shown partly as follows;

	-	•	_			N-NO ₃ (mg/l)
Permissible				 		10.0
Values	8.5				÷	

Water Quality Standard is referred in Appendix A, 5.