10.2.1 Financial analysis

Financial cash flow shows project expenditures for investment, and operation and maintenance. (Table 10.2.1). In order to obtain the 1993 average price for the financial and economic analyses, the estimated investment and operation and maintenance (O&M) costs are deflated by the general whole sale price index since their base time is February 1, 1994. (Table 10.2.2 and 10.2.3) Total amount, investment cost, and O&M cost are USD 18,087,184, USD 13,340,597, and USD 4,746,587 respectively. NPV of the costs discounted by 3% interest rate is USD 16,067,359.

10.2.2 Economic analysis

(1) Basic Consideration

For the calculation of the economic cost and benefit, distortion of the Turkish economy and the factor of transfer within the economy are to be identified. Use of standard or sector particular conversion factor(s) for the economic valuation are desirable for the economic analysis. At present, however, there is no reliable conversion factor applicable to this project. Governmental interventions such as subsidies, taxation, export and import regulation and/or special arrangements, etc. are so widely applied in Turkey. As far as examined the planning reports and confirmed with the related international and Turkish governmental organization, efforts to figure out conversion factor have not been materialized recently except electric power sector. Due to complex and too fluid economic measure application, identification of the influence of the governmental intervention is almost impossible. The conversion factors employed by the planning reports are not reliable for present conditions.

Concerning the value added tax (VAT), which is representative transfer factor, almost all inputs of the project are subject to 15 % VAT. This figure is applicable to value the financial cost to economic cost. In Turkey, current exchange rate reflects current currency value. Shadow exchange rate is not required for economic valuation.

For the benefit side, identification of influence of the governmental intervention is very difficult, too, from the same reason stated above. Comparing to the scale of this study, detailed investigation for the clarification of the influence is too much burdensome. Available data are not ready for distinguishing whether distorted or not. In this circumstance, no adjustment is made for the calculation of the economic benefit.

1.00

(2) Economic Cost and Benefit

Economic costs incorporating VAT factor are shown in Table 10.2.2 and 10.2.3.

As stated in 10.1.4, items of the economic benefits of the project are the following items:

- (a) Substitution effect of the personnel related to the flood forecasting and warning by the system.
- (d) Decrease in flood areas/damages by proper dam operations, and
- (c) Maximization of reservoir water use by more flexible and appropriate dam operations.

Economic value of the item (a) is calculated by the reduced number of personnel for water gauging station record reading and reporting and their salaries. Total 8 personnel paid with TL 117,600 thousand per year are substituted by the system (Table 10.2.4).

Items (d) decrease in flood areas/damages by proper dam operations is calculated by identifying the difference between expected damages/loss without project and with project respectively. Assessed extent of the inundation areas and the economic loss differentiated by the discharge volume of the Seyhan Dam are shown in Table 10.2.5. Table 10.2.6 shows comparison of with and without project losses and expected annual economic benefits discounted by the flood probability. Total expected annual benefit categorized in this item is USD 669,725.

Additional electric power generation is the effect of the item (e). Expected additional electricity by the Çatalan Hydro Power Plant and the Seyhan Hydro Power Plant, their economic, and per annum values discounted by the flood probability USD 595,379 in total are listed in Table 10.2.7.

(3) Economic Analysis

Economic cash flow and result of economic analysis including EIRR (Economic Internal Rate of Return), comparison of nominal values of cost and benefit, and NPV (Net Present Value) discounted by the real interest rate of 3% per annum are shown in Table 10.2.8.

Direct interpretation of the figures of the EIRR and NPV, which are 4.75% and USD 1,722,735 respectively, is that the project is not so beneficial for the society in economic term. Comparing to the other sectors' EIRR criteria for the implementation such as the agricultural development project's 5%, the domestic water supply project's 7%, and the electric power development project's 9.5%, this 4.75% figure is still a little bit lower than the agriculture's

5% which is the lowest among them. Although the economic figures are not favorable for the project implementation, following points have to be born for the project evaluation and the decision making for the implementation.

Measurement of the project benefit in economic term has limitation; economic measurement of beneficial impacts by the main direct project effects including reliability and accuracy increase, and speed up in flood forecasting is not suitable for the monetary valuation. At the same time, the project benefit items such as

- (h) increase in social safety feelings by reliable information, decision making, and proper public sector's action, and decision making for the implementation, and
- decrease in possibility of potential risk realization and increase in social safety feelings by reduced discharge water volume from the Seyhan Dam during the flood time

stated in 10.1.4 are virtually not measurable in monetary term.

Furthermore, the economic evaluation/analysis is only part of the project evaluation and/or the decision making factors of the project implementation. Even though the case in which the project is only the cost for the society in economic term, the implementation of the project is legitimately possible if the expenses for the project is reasonable for the society. Economic feasibility is one of the indicators for the society to decide whether the burden for realization of the desirable results is acceptable or not. Judgment of the EIRR figure is relative to the society's value system.

(4) Sensitivity Analysis

The sensitivity analysis is conducted in four cases; a) benefit is increased by 10%, b) benefit is decreased by 10%, c) investment cost is increased by 10%, and d) investment cost is decreased by 10%. The result is the following.

	EIRR	NPV(Benefit)	(Unit: USD) NPV(Cost)
Case a)	6.33%	18,146,756	14,774,316
Case b)	3.08%	14,847,346	14,774,316
Case c)	3.55%	16,497,051	15,920,253
Case d)	6.16%	16,497,051	13,618,952
Original	4.75%	16,497,051	14,774,316
41. 17.1.7 1 1			

*NPV is discounted by 3% interest rate.

The result of shows that project's EIRR figures are sensitive to the fluctuation the benefit and the investment cost. 10% change in benefit affects the EIRR value by approximately 35% in points. 10% changes in the investment cost varies the EIRR results by 25 to 30%.

NPVs of the benefits discounted by 3% per annum interest rate constantly exceeds the NPVs of the respective costs.

10.3 Technological and Social Evaluation

The Seyhan, River drains into the Mediterranean Sea through the city center of Adana and the meandering downstream area.

Although the river improvement works of this peculiar meandering downstream will be executed in the future, consistent river administration from the upstream area to the river mouth is indispensable for public welfare.

Under these conditions, Flood Control, Forecasting and Warning System not only contributed to the social environment, but also pays a significant role in this district.

10.3.1 Technological evaluation

10

In order to protect the living environment in a basin from successive floods, like that in 1980, radical countermeasures, such as levee and dam construction work, were vigorously developed.

The Çatalan Dam and the levee in the city center of Adana are near completion, therefore, powerful flood control facilities have been eventually implemented.

Under these conditions, the dependable flood forecasting system is technically evaluated as follows:

- (1) Instead of the conventional system, telephone and telegram method, etc., the introduction of a new automatic telemeter system is expected to greatly improve flood forecasting.
- (2) Precise information on flooding is indispensable for flood fighting action which is aimed at protecting security of all the basin's levees.

- (3) For the purpose of synthesized operation of the Seyhan and Çatalan Dams close to the residential areas, a telemeter system is evidently much more effective.
- (4) The valuable experience of DSI in regard to the Seyhan River will help to secure the spread Seyhan River of the up-to-date river administration throughout the country.

The introduction of new technology concerning flood forecasting and the telemeter system is also significant from the viewpoint of friendly relations between both countries.

10.3.2 Social evaluation

(1)

A lot of people surrounding the river are living together with the Seyhan River. Flood forecasting is a serious issue for them.

That is to say, the precise transmission of flood information among them is connected with the saving of lives and stabilization of public sentiment no doubt.

(2)

More than 10,000 people who reside in HWC, depending on the circumstances, must evacuate due to the scale of flooding.

Accurate transmission is directly related to their evacuation and people's lives.

(3)

Flood fighting information is used to assist the flood fighting action to ensure the public welfare of the whole basin.

As mentioned above, the Flood Forecasting and Warning System not only controls the floods by means of optimum operation, but also supports the flood fighting action of the whole basin, so makes a great contribution to stabilization of public welfare.

Further discussion to support the project's raison d'être is the amount of the investment made for the flood protection of the Lower Seyhan Reaches. As stated in Chapter 2, from the Seyhan Dam to the lower regulating structure, the Adana Municipality Government has been constructing the new concrete levees designed by the DSI, which has 1,800 to 2,000 m³/s capacity, immediate to the low water channel within a few years. Based on the above stated condition, the present HWC land area has been getting many buildings and facilities including a large shopping mall, a huge mosque, leisure and entertainment facilities, sports grounds, and a garden park. Some of them are already in service. Some are under construction and some are in a design stage.

Since it is the artificial protection measure, however, there is still possibility of an occurrence of the damages caused by human error in design, construction, or operations. Considering the amount of the huge capital investment being poured in and expected various prosperous activities in this area, implementation of every possible effort for preventing materialization of the potential risk to become a real disaster is indispensable. Lowering the discharge volume from the Seyhan Dam during flood times, which is enabled by optimal operations of the two dams with the new flood forecasting and warning system, is one of these essential efforts.

Furthermore, prior to the new levee construction, the Çatalan Dam construction had been started. One of the main purposes of this huge project, of which investment cost is 453 million US. dollar including hydropower facilities, is flood control. Flood control and protection of the Adana City and agricultural land in Çukurova have long time been a problem for the society to be solved. The Seyhan Dam and the levees in the lower reach are the efforts paid by the society.

Considering the above stated investments and social acceptance of them, the investment of the system may acceptable for the society to have its contribution to more accurate and faster flood forecasting aiming the reliable dam operation and the reliable information provision to the society.

10.4 Synthetic Evaluation

This project does not exert an important influence upon the natural environment of this district, rather it greatly contributes to preserving the social and natural environment by protecting the whole basin from flooding.

If this project is implemented, information related to flooding, such as the rainfall condition of the basin, water level of the river channel, forecasting value of flooding and other information will be presented in real-time to the general public.

Such function become the eye and the ear of the general public and attract public attention.

Therefore this project is appreciated not only as a result of the immediate economic effect, but because it greatly contributes to society.

an an general a factor of free constances of the definition of the second

The benefit of the project cannot be estimated in monetary terms but in terms of the saving of human life, stabilization of living conditions, and advancement of flood forecasting techniques.

11. **RECOMMENDATION**

11.1 Organization and Administration

11.1.1 Proposed organization and administration on flood control, forecasting and warning system for Seyhan River Basin

The existing legal, organizational and administrative functioning system detailed in the previous section seems to be compatible with the envisaged aims. The organization chart and administrative structure implemented by DSI in flood control and fighting measures (see Figure 2.3.3) have a scope that can best serve the system to be proposed.

11.1.2 Staffing

The proposed staffing and the operating system appear to be safer and more economical provided that reliable warning systems are employed.

Organization and management flow chart for the flood control, forecasting and warning system to be designed for the Seyhan River Basin is dependent upon the model suggested at the end of the feasibility study.

After the identification of the model to be proposed, further technical and administrative staff may be needed. In our opinion this possibility must be considered.

The existing organization chart (Figure 2.3.2) which is used by General Directorate of DSI and Regional Directorates for flood protection and fighting measures will be adequate if it is equipped by additional staff and equipment.

11.2 Hydrometeorological Observation

Both DSI and EIE carry out the observation of flood in the main stream together with the major tributaries. The observed data are valuable for the establishment of the flood forecasting model with higher accuracy.

The storage function basin and river models and simple snowmelt runoff model are established for the Seyhan River basin through the past major flood records by the Study. And the estimated flood hydrographs show the sufficient goodness of fit to the observed ones from the forecasting viewpoints. However, it is considered that more accurate and reliable models shall be developed and established against several types of flood before the forecasting system is installed where the updated models are to be loaded in the proposed computer system.

In view of the above, the following works and studies are to be carried out by both DSI and EIE:

- (1) Continuation of flood observation
- (2) Continuation of periodical discharge measurement
- (3) Updating of rating curves
- (4) Continuation of snow depth and related observations

11.3 Maintenance Management System

11.3.1 Establishing maintenance and management system

To efficiently operate the flood forecasting and warning system in the Seyhan River basin and make this system develop its maximum performance, it becomes important to establish a maintenance and management system that matches to the particular configuration of the facility. Figure 11.3.1 shows an example of a maintenance personnel system that is recommended for the maintenance and management of flood forecasting and warning system. It is necessary that seeing Figure 11.3.1, the DSI 6 th regional directorate should secure personnel, then educate/train them, and establish a maintenance and management system.

11.3.2 Training maintenance personnel and a second se

Prior to introducing the flood forecasting and warning system, it is important to secure necessary maintenance personnel and provide them with appropriate, prior education and training. It is not the rare case with conventional users, however, that the promotions, replacements, etc. of the initially educated and trained maintenance personnel cause the lack of sufficiently educated and trained maintenance personnel and thus result in an unsatisfactory situation. This is due to the fact that the education of new personnel or the transfer of technology has not been sufficiently executed. The measures listed below, therefore, should be undertaken.

Establishing and executing periodic education/training programs

Executing periodic education by special engineers such as those of the manufacturer of the system

ing and a star in a star free of the second

- Establishing and executing the programs for periodic education in the factorics of the manufacturer of the system
- Introducing simulation systems for education and training
- Other necessary measures

Since the execution of the measures listed above incurs expenses, the appropriate budges should be set on an annual schedule and on a perennial schedule.

11.3.3 Establishing maintenance and management procedures

Standards for failure recovery and periodic maintenance procedures, for emergency and normal contact routes, for report documentation, and for all other necessary items, should be clearly provided for and executed. The following lists standards that should be established as maintenance management procedures:

- Routine check and periodic check items, and standards for these checks
- Execution standards for failure or abnormal recovery actions
- Standards that specify control procedures concerning various reports and log lists, and their submission routes
- Standards that specify full details of repair request forms and routes
- Standards that specify storage, control, and replenishment procedures concerning spare and consumable parts
- Standards for the control of various maintenance documents and drawings
- Other necessary standards

11.3.4 Budgeting maintenance and operation expenses

It is particularly important that prior to the startup of the flood forecasting and warning system, budgeting and other necessary measures should be set up by estimating maintenance and operation expenses. The appropriate budgets should be set before continued smooth operation of the flood forecasting and warning system can be achieved.

المعالية المعالية المعالمين المعالمين المعالية الم المعالية الم

12. TRANSFER OF TECHNICAL KNOWLEDGE

The transfer of technical knowledge is one of the objectives of the Study and has already been successfully carried out between the officials of DSI and Study Team throughout the Study.

Each member of the Study Team tries to comprehend Turkish history and culture as well as the high technical level in the relevant fields and aims to promote daily amity and mutual understanding.

Through the daily technical exchange and on-the-job training, the way of thinking of Japan has been presented at all times.

In particular, the radio wave propagation test which involved actual site investigation in the mountainous area continued for two and a half months significantly.

Such experience greatly contributed to the promotion of knowledge, related to this telemeter project and it will be useful with the electric wave test in the future.

Mr. Adil Akyatan (VIth Regional Directorate of DSI, Director of Planning Section), from July 11 to August 11, 1993 and Mr. Ayhan Teker (Investigation and Planning Department, Chief of Hydrometric Observation Section), from June 13 to July 3, 1994 attached the overseas training in Japan for approximately one month.

All the while the Ministry of Construction and relevant organizations carried out the transfer of technology concerning the flood forecasting and warning system, river administration, and so on.

By means of site investigation and the introduction of hardware and software, friendly technical exchange was carried out.

The considerable experience of the key experts is a significant factor in the transfer of technical knowledge.

In Turkey the technical foundation for the introduction of a new telemeter system has been established in stages.

Tables

Designation	Name	Position and Agency
Chairman	Kohzo Hukunari	Senior Officer for Water Management, River Division, Kanto Reginal
		Construction Bureau, Ministry of Construction
	en e	(Mar. 1993 - Jul. 1993)
Chairman	Wataru Watanabe	Minister's Secretariat, Ministry of
		Construction, Director for Policy
		Planning
		(Aug. 1993 - Sep. 1994)
Member	Hajime Kubota	Flood Forecasting
(Flood Forecasting)		Chief for River Works, River
	· · · · ·	Department, Kyushu Regional
		Construction Bereau, Ministry of
		Construction
Member	Wataru Kobayashi	Senior Researcher, System Division,
(Communication System)	· · · · · · · · · · · · · · · · · · ·	Construction Management Engineering Center, Public Works Research Institute
		Ministry of Construction
		(Mar. 1993 - Jul. 1993)
Member	Hideto Goshu	Chief for Telecommunication Section,
(Communication System)		River Department, Tohoku Regional
		Construction Bereau, Ministry of
		Construction
:		(Aug. 1993 - Sep. 1994)
	· · · · ·	

Table 1.1.1 List of Members of JICA Advisory Committee

Name	Position	Speciality
(1) Study Team		
(1) Study Team	rty T i lu	Team Leader
Eiichi Yoshitake	Team Leader	Deputy Team Leader/Chief Hydrologist
Masayuki Shiraishi	Member	
Toshihisa Nakatsukuma	Member	Hydrologist/Hydraulic Engineer
Tetsuo Funayama	Member	Telecommunication Expert
Shigeru Maruyama	Member	River Engineer
Takayasu Otake	Member	Economist
Seyfettin Aydın	Member	Management Expert
Toshiaki Kawagishi	Member	System Engineer
Hideyuki Tanaka	Member	Telecommunication System Engineer
2) General Directorate of State	Hydraulic Works(DSI)	
Investigation and Planning	Department	
Hüseyin Yavuz	Director	$(1, \dots, n) = (1, \dots, n) + (1, $
Dinçer Kulga	Deputy Head	Team Leader
Şen Sülün	Deputy Head	
Tuncay Soysal	Chief of Planning Section	Deputy Team Leader/Chief Hydrologist
Ayhan Teker	Chief of Hydrometric	Management Expert
Aylian Tekei	Observation Section	Management Istport
Zekiye Kulga	Meteorological Engineer	Hydrologist/Hydraulic Engineer
D. Ali Çelik	Agro-Economist	Economist
D. Ali Çenx Mustafa Tanrıverdi	Civil Engineer	System Engineer
WIUSTALA LAULIVOUL	Civil Elignice	bystem Lagneer
Operation and Maintenanc	e Department	
Coşkun Temizbal	Electronical Engineer	Telecommunication Expert
Fikret Erdoğan	Meteorological	River Engineer
Fikiel Eldogali	Engineer/Hydrologist	
	Digitizeri iyurorogiov	
2) Vith Degional Directrate of	ופת	
3) VIth Regional Directrate of		40 X 1
Hasan Mert	Deputy General Director of VIth DSI	Team Leader
Adil Akyatan	Director of Planning Section	Deputy Team Leader/Chief Hydrologist
Halil Altınok	Chief Engineer of Observation Section	Hydrologist/Hydraulic Engineer
Ali Dertsiz	Meteorological Engineer	Telecommunication Expert
Mustafa Bakşi	Civil Engincer	River Engineer
Cahit Süğücük	Agro-Economist	Economist
İlgün Toksuk	Civil Engineer	Management Expert
Tuna Alemdar	Irrigation Engineer	System Engineer
Aytekin Erdoğan	Electronical Engineer	Telecommunnication System Engineer
AYICKIII ELUUGAII	EXCLUMICAL ENGINEER	recommunation system Engineer
4) General Directorate of Elect	rical Power Survey	
and Development Adminis		
Hayati Hançer	Meteorological	Hydrologist/Hydraulic Engineer
·	Engineer/Hydrologist	

Table 1.1.2 List of Turkish and Japanese Counterparts

1806 1805 fluence 1818 Date (m3/s) (m3/s) (m3/s) 17 Mar. '39 214.1 590.6 804.7 890.0 3 Apr. '40 382.0 567.4 949.4 1,050.0 29 Jan. '41 203.2 578.2 781.4 870.0 2 Apr. '42 271.8 464.8 736.6 820.0	Date	(m3/s)
17 Mar. '39 214.1 590.6 804.7 890.0 3 Apr. '40 382.0 567.4 949.4 1.050.0 29 Jan. '41 203.2 578.2 781.4 870.0		
29 Jan. '41 203.2 578.2 781.4 870.0		
5 Apr. '43 319.0 569.6 888.6 990.0		
8 Mar. 44 335.8 678.4 1,014.2 1,130.0 7 Apr. 45 182.0 198.8 380.8 410.0		
15 Feb. '46 192.2 550.9 743.1 830.0 14 Mar. '47 140.6 443.2 583.8 650.0		
27 Nov. '48 340.0 826.4 1,166.4 1,300.0		
19 Apr. '49 276.0 440.5 716.5 800.0		
6 Mar. 50 289.0 385.0 674.0 760.0		
21 Jan. 51 190.0 543.0 733.0 819.0		
13 Dec. 52 327.4 670.0 997.4 1,120.0		
4 Apr. 53 329.5 543.0 872.5 970.0		
20 Jan. '54 276.0 719.0 995.0 1,120.0		
31 Jul. 55 224.6 801.0 1.025.6 1.140.0		
4 Feb. '56 167.9 410.8 578.7 645.0		
3 Mar. '57 490.0 926.0 1,416.0 1,600.0		
9 Jan. '58 750.0 1,187.4 1,937.4 2,200.0		
15 Apr. '59 235.0 464.8 699.8 780.0		
26 Apr. '60 245.0 503.4 748.4 840.0		
6 Feb. '61 103.0 158.0 261.0 285.0		
17 Dec. '62 202.0 675.0 877.0 980.0		
19 Dec. '63 970.0 1,440.0 2,410.0 2,700.0 25 Mar. '64 151.0 198.0 349.0 385.0	25 Mar. '64	41.6
25 Mai, 04 131.0 190.0 3470 500.0	165	~
	29 Jan. '66	74.7
16 Dec. '67 279.0 570.0 849.0 1,046.0 20 Dec. '67 52.6	3 May '67	119.0
14 Mar. '68 249.0 870.0 1,119.0 1,224.0 3 Nov. '68 139.0	6 Jun. '68	96.4
28 Dec. '69 313.0 676.0 989.0 1,331.0 27 Nov. '69 153.0	'69	-
18 Dec. '70 277.0 870.0 1,147.0 1,258.0 24 Feb. '70 40.3 '70 -	`70	-
17 Apr. '71 180.0 330.0 510.0 705.0 8 Aug. '71 138.0 2 Nov. '71 190.0	27 Nov. '71	88.0
30 Apr. '72 330.0 461.0 791.0 672.0 30 Apr. '72 273.0 30 Apr. '72 195.0	30 Apr. '72	143.0
26 Feb. '73 154.0 253.0 407.0 405.0 12 Jul. '73 94.0 27 Feb. '73 233.0	12 Jul. '73	33.0
AU DULL II EUSIO DULL DULL II III III	26 Sep. '74	146.0
23 Apr. 15 105:0 1,015:0 1,05010 April 10 April 10	18 Apr. '75	195.0
12 Apr. /0 190.0 Store roote store at tall	25 May '76	66.0
25 Apr. // 5/2.0 00010 /0010 1/20010 25 Apr. // 00010	23 Apr. '77	124.0
1 Jan. '78 201.0 450.0 651.0 988.0		
3 Jan. '79 519.0 1,963.0 2,482.0 3,348.0		
28 Mar. '80 576.0 2,000.0 2,576.0 3,800.0		
Max. 970.0 2,000.0 2,576.0 3,800.0 356.0 320.0		195.0
Avg. 312.7 670.4 983.2 1,148.5 162.8 152.4		80.5
Min. 103.0 158.0 261.0 285.0 40.3 0.0		0.0
Catchment 13 846 1 441 690		1,910
Area (km2) 8,698 4,242 13,846 1,441 690		1,910

16 Seyhan dam was completed in 1956. The flood was controlled by the dat. Farr land between levees was flooded. 6 Karimur discharge was 2,100 m3/s. Adana city and Seyban plain were inundated. 170 houses were damaged. Adama city has little damages. Flood water was over-topped the levee. The worst damage was recorded. Adane city and Seyhan piain were inundated. "Bouses of 277 nos. were damaged, 23% animals were lost. Reservoir water level was so low that the flood was controlled by the dar. 21 Reservoir water level was at 69.07 m. Total damage was of 51 million fL. 18 Reservoir water level was at 66.81 m. Total damage was of 41 million TL. Description 7 Adams city and Seyhar plaim were imundated. 5 Adana city was inundated. 12 23 2 2 20 5 77 Dead Danages Villages (Some villages) 47,000 ha at Çukurova 15 nos. 15 DOS. 115 pos. 85 ha at Yenice river 83 ha at Yenice river 4,700 ha at Cukurova 84 ha at Çakit river 960 he at Cukurove (Çukurove plain) (Ulukişla city) (Tarsus plain) (Çakıt river) Area(ha) 70,000 114 45,000 5,000 (None) Serhar Dar Durilow 1,188 2,671 1,179 831 1, 186 33 1,331 1,400 1, 992 6,040 592 3,600 1,884 2,550 280 635 555 Besaplanan 74 Kar. Discharge Sta.No. (E3/s) 205 825 478 530 18-004 1818 Karaisalı(67.2) Adana(55.7) 16-001 1805 1805 1805 1805 1805 1805 1805 1805 Dar Dar Jar. Xaraisalı(154) Adama(110) Tarsus(74.6) Adama (65.5) Dörtyol(60.7) Feke(56.1) Ceyhan(66.2) Feke(54.0) Mersin(66.5) Feke(33.4) Feke(54.0) Adana(52.8) Fexe(87.5) Kozan(84.5) Adama(110.7 in total) Location(mm) Rainfall Pozant1(148.7) Karaisalı(231) Pozanti(40.5) Adana(102.5) Aûana(41.7) Orman(98.5) Feke(40.0) -----23 27 Kar.-7 Apr. 80 285 181 161 18 25 Dec.-2 Jan. 69 5 21 17 Apr.-9 Xay '75 Date 1 -11 4 1 45 ន 5 R ទ 61. 5 ŝ ŗ 5 5 ŝ 24 21-25 Dec. 27 NDV. 28 Jun. 2 Jul. 2 Dec. 5 Jun. 3 Jan. 5-6 Dec. 3 Apr 14 Juz. 26-25 Jue. 8-17 Dec. 29 Xay 5 Dec. 5 XOV 6-22 Feb. 3-4 Apr. li-1: Feb. 17-18 Mar. 16 May 12-17 Yay 21 1 51 77 ម្ម 4 5 20 m 3 2

Table 2.2.2 Historical Flood Damage

Flood		Bridg	le	Roa	đ	
Year	Road Line	Name	T.L	L(km)	T.L	Total
1980	Tarsus-Pozantı	Çakıt 15	2.4	4.0	16.0	18.4
1980	Tarsus-Pozantı	Taşobası	1.0		-	1.0
1991	Tarsus-Pozantı	Tarihi	2.8	3.0	12.0	14.8
1980	Ímamoğlu-Karsantı	Eğner	4.4	1.0	2.5	6.9
1980	Karaisalı –Aladağ	Eğlence	1.3	0.5	1.5	2.8
1980	Kozan-Feke	Göksu	3.2	1.0	2.5	5.7
1980	Kozan-Feke	Feke	1.3		-	1.3
1980	Feke-Mansurlu	Mansurlu	1.2	2.0	5.0	6.2
1980	Feke-Saimbeyli	Işıklı	0.6	0.5	1.5	2.1
1980	Kozan-Mansurlu	Gökdere	1.2	2.0	5.0	6.2
****		Total	19.4	14.0	46.0	65.4

(unit : billion T.L)

Table 2.2.4 Railway Flood Damage

Flood Year	Km Location	Description
<km 271+50<="" td=""><td>0 - Pozanti></td><td></td></km>	0 - Pozanti>	
1980	271+600/800	Embankment was washed away.
1991	271+700/800	Embankment was washed away.
1980	271+900/272+300	Retaining wall was fallen down.
1980	272+300	Retaining wall was damaged.
1991	272+800/273+350	Inundated.
	273+300/350	Embankment was washed away.
1980	273+500/700	Embankment and retaining wall was damaged.
1980,1991	273+900/274+700	Retaining wall was fallen down.
1980,1991	274+700/275+200	Inundated.
1988	275+744	Train slided out.
1980	276+300/400	Embankment was damaged.
	Belemedik>	
1980,1991	283+500/600	Embankment was damaged. Retaining wall was fallen down.
1980	283+600/700	Embankment was damaged.
	284+550/600	Embankment was damaged. Retaining wall was fallen down.
1980,1991	284+900/285+200	
1991	285+210/250	Retaining wall was fallen down.
1980	285+250/400	Retaining wall was damaged.
1991	285+400/450	Retaining wall was fallen down.
1991	285+450/500	Embankment was damaged.
1980	285+600/750	Embankment was damaged.
1980	286+100/400	Embankment was damaged.
1980	287+300/600	Embankment was damaged.
1991	287+700/750	Embankment was damaged.
1980,1991	288+000/400	Embankment was damaged. Retaining wall was fallen down.
1991	288+400/600	Embankment was damaged.
1980	289+000/050	Embankment was damaged.
1980	289+200/250	Embankment was damaged.
1980,1991	289+800/290+500	Railway was washed away. Retaining wall was fallen down.
<belemedik< td=""><td>- Hacikiri></td><td></td></belemedik<>	- Hacikiri>	
1003	291+200/800	Scouring.
1983	291+926	Conduit was collapsed.
1980	292+000/100	Embankment was damaged.
1981	292+500/700	Embankment was slided.

Item	Seyhan Dam	Çatal	an Dam
Purpose *1	F.C + H.P +	Irr. F.C + H	I.P + C.W.
(Note '1 F.C=Flood control, H.P=Hydr	o power, Irr.=Irriga	tion, C.W=City water	:)
Completion year	19	56 1995 (Schedule)
Dam type	Earth fill	dam Earth	fill dam
Dam slope	Upstream 1:	2.5 Upstream	1:4.0
	Downstream 1:	2.0 Downstrea	am 1:3.0
Dam volume (m ³)	7,500,	000 14	1,000,000
Height (m)	7	7.0	82.0
Crest length (m)	I,95	5.0	894.0
Reservoir Volume (x 10 ⁶ m ³)	÷.,		
Dead volume	15	9	1,422
Active volume	72	0	704
(Flood control volume)	(36	δ)	(526)
Total	87	9	2,126
Reservoir surface area (km²)	6	8.69	84.50
Elevation (m)			
Minimum operation level	4	9.0	115.0
Spillway crest	6	1.0	110.0
Flood season high water level	6	1.0	118.0
Normal high water level	6	7.5	125.0
Dam crest	72	2.7	130.0
	•		
Water use (m3/s)			·
Irrigation		32	-
City water			16.7
Power Plant			
Design discharge		231	360
Unit numbers		3	3
Installed capacity (MW)	3x18:		.3=168.9
Annual energy generation (GWh		350	596

Table 2.2.5 Major Characteristics of Seyhan Dam and Çatalan Dam

T - 7

.

Table 2.2.6 Seyhan Dam Reservoir Surface Area and Volume

	1956	1,96	56	19	71	197	76	198	30	198	36
Elv. (m)	Area	Area	Decrs	Area	Decrs.	Area	Decrs.	Area	Decrs.	Area	Decrs
75.0	100.00	· · · · · · · · · · · · · · · · · · ·									
72.5	91.30				· .	1.1.1			0 57	40.14	
70.0	83.00			77.20			7.20		3.56		4.84
67.5	75.00			69.20		68.20			6.02	68.69	6.31
65.0		66.70	1.1.1			60.90		58.52			
62.5	61.70	60.50	1.20	53.10	8.60		8.40		10.50		11.31
60.0	الم الم الم الم الم الم الم الم	48.10		45.60		45.60					
57.5	48.90	42.30		40.70	8.20	38.40	10.50		12.68		13.73
55.0						31.40		28.56		26.99	
52.5	37.00	and the second second second	3.40	29.50	7.50	26.90	10.10	25.32	11.68		14.44
50.0				24.40		22.70		22.67	:	18.16	·
47.5	27.50			21.10			7.20	19.21	8.29	16.10	11.40
45.0	271.50	21.00		18.40		18.00		16.55		14.16	
42.5	19.70			15.60			4.90	12.77	6.93	11.50	8.20
40.0	19.70			12.60		11.40		8,99		9.15	
37.5	12.00			9.10						6.54	5.46
35.0	12.00	37.00	0.00	6.10					1 - E	3.54	
32.5	4 00	4.00	0.00							0.66	3.34
30.0	0.00			0.00		0.00		0.00		0.00	0.00
			. :	-							
	• •	· ·		•							
2. Re	eservoir	Storage	Volume	(x mil	. m3)						
	1956	190	66	19	71	197	76	19	B0	19	36
Elv. (m)	Volume	Volume	Decrs.	Volume	Decrs.	Volume	Decrs.	Volume	Decrs.	Volume	Decrs
75.0		*** *** *** ***									
72.5	<u>.</u>						÷ .				at . At a start
70.0	1,415.0	1,333.0	82.0	1,209.0	206.0	1,100.0	315.0	1,069.0	346.0	1,063.6	351.4
67.5	1,217.0	1.145.0	72.0	1,028.0	189.0	920.0	297.0	883.5	333.5	878.9	338.1
65 0	1,21,00	968 0		866.0		762.0		724.1		720.1	1.1.1

1. Reservoir Water Surface Area (x mil. m2)

61	1930	19	φυ .	19	/1		· · · · · · · · · · · · · · · · · · ·				
Elv. (m)	Volume	Volume	Decrs	. Volume	Decrs.	Volume	Decrs.	Volume	Decrs.	Volume	Decrs.
75.0							1. A. M.	· · ·	1.1	1. T. T. 1.	
										e a su com	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11
72.5	1 115 0	1 222 0	0 60	1,209.0	206 0	1 100 0	215.0		346 0	1 063 6	351 4
	1,415.0										
67.5	1,217.0			1,028.0			297.0		333.5		330.1
65.0		968.0		866.0		762.0				720.1	
62.5	886.0	809.0	77.0	720.0	166.0		266.0		299.1		302.3
60.0	742.0	677.0	65.0	595.0	147.0	495.0	247.0		273.9		
57.5	620.0	565.0	55.0	486.0	134.0	392.0	228.0	367.9	252.1	367.1	252.9
55.0	500.0	464.0			105.0	304.0	196.0	287.0	213.0	290.0	210.0
52.5	400.0	378.0	22.0	312.0	88.0		165.0		180.4	228.1	171.9
50.0	303.0			247.0	56.0		128.0	160.4	142.6	177.2	125.8
47.5	225.0	225.0		190.0	35.0		106.0	108.7	116.3	134.9	90.1
45.0	158.0		-13.0	138.0	20.0	71.0	87.0	63.8	94.2	96.7	61.3
42.5	94.0	122.0	-28.0	94.0	0.0	29.0	65.0	27.2	66.8	64.6	29.4
40.0	72.0	78.0	-6.0	61.0	11.0	0.0	72.0	0.0	72.0	38.6	33.4
37.5				36.0					. 7 1	19.0	
35.0	16.0	20.0		17.0			·	ana sa ng	3	5.9	
32.5		· .		a de la composition de	÷		· · · · ·	· · · ·	÷ .	.1.5	÷
30.0	0.0	0.0		0.0	 	· · ·				0.0	
X - 4 - 4 - 4											

Note;

"Decrs" stands for decreased value of area or volume in comparison "Decrs" stands for decreased value with the original reservoir in 1956. T - 8

Table 2.2.7 Low Water Channel Water Profile

			Single	Accum.	Lowest	Sho	oulder Ele	ν.	Channel	Water	Surface	Profile	(m3/s)	Shoulder -
Sec. Name	Km Distanc	ie .	Distance	Distance	Elev.	1.cîi	Right	Min.	Width	200	300	400	500	W.Surface
Sec-26A	85 + 9	080	. 0	0	-2.82	1.90	2.23	1,90	92	0.75	1.92	2.11	2.25	-0.35
Sec-25A	85 + 1	20	860	860	-2.77	1.91	2.31	1.91	90	0.93	2.04	2.25	2.38	-0.47
Sec-24A	82 + 4	100	2,720	3,580	-2.66	2.58	3.06	2.58	100	1.49	2.43	2.63	2.65	-0.07
Sec-23A	80 + 9	010	1,490	5,070	-1.76	3.01	2.98	2.98	89	1.81	2.69	2.79	2.88	0.10
Sec-22A	79 + 9	70	940	6,010	-2.10	3.03	2.72	2.72	98	1.97	2.84	3.03	3.23	-0.51
Sec-21A	77 + 3	350	2,620	8,630	-1.30	3.29	3.76	3.29	87	2.35	3.08	3.29	3.44	-0.15
Sec-20A	74 + 7	700	2,650	11,280	-0.54	4.03	3.80	3.80	98	2.81	3.56	3.80	. 3.80	0.00
Sec-19A	73 + 5	575	1,125	12,405	-1.80	3.46	3.89	3.46	83	2.99	3.74	3.84	4.17	-0.71
Sec-16A	71 + 🔅	324	2,251	14,656	0.41	4.23	4.12	4.12	121	3.37	3.96	4.12	4.24	-0.12
Sec-14A	69 + 6	680	1,644	16,300	-1.10	4.36	4.35	4.35	68	3.58	4.21	4.30	4.36	-0.01
Sec-12A	67 + 9	900	1,780	18,080	0.63	4.82	4.38	4.38	105	3.90	4.53	4.80	4.55	-0.17
Sec-10A	66 + 🔅	340	1,560	19,640	1.05	4.88	5.06	4.88	119	4.12	4.64	4.93	4.82	0.06
Sec-9A	64 + 9	000	1,440	21,080	0.19	5.21	5.40	5.21	105	4.30	4.86	5.20	5.28	-0.07
Sec-8A	63 + 4	150	1,450	22,530	-0.85	6.48	5.65	5.65	172	4.50	5.10	5.51	5.71	-0.06
Sec-6A	62 + 2	200	1,250	23,780	1.74	6.32	6.32	6.32	88	4.68	5.30	5.73	່ 5.91	0.41
Sec-5A	60 + 1	195	2,005	25,785	1.70	6:78	6.96	6.78	119	5,02	5.68	6.18	6.50	0.28
Sec-4A	58 + 6	500	1,595	27,380	-0.85	7.00	6.88	6.88	113	5.20	5.88	6.40	6.76	0.12
Sec-2A	57 + 1	180	1,420	28,800	1.49	7.50	7.33	7.33	148	5.42	6.10	6.63	7.02	0.31
Sec-1	55 + 6	550	1,530	30,330	2.97	7.95	7.87	7.87	203	5.79	6.41	6.93	7.32	0.55
Sec-4	53 + 5	550	2,100	32,430	3.41	8.08	8.16	8.08	130	6.10	6.68	7.17	7.56	0.52
Sec-6	52 + 4	450	1,100	33,530	3.28	8.03	8.37	8.03	95	6.26	6.83	7.30	7.68	0.35
Sec-7	51 + 2	225	1,225	34,755	4.26	9.05	9.03	9.03	152	6.66	7.23	7.72	8.12	0.91
Sec-16	43 + 1	10	8,115	42,870	5,71	10.47	10.34	10.34	125	9.08	9.56	10.00	10.34	0.00
Sec-16A	42 +	20	1,090	43,960	5.97	10.61	10.65	10.61	114	9.32	9.84	10.30	10.67	-0.06
Sec-17	40 + 5	510	1,510	45,470	6.16	11.39	11.18	11.18	157	9.55	10.11	10.60	10.99	0.19
Sec-17A	39 + 3	320	1,190	46,660	6.59	11.61	11.63	11.61	100	9.76	10.33	10.82	11.22	0.39
Sec-18	37 + 9	950	1,370	48,030	7.60	- 11.74	11.80	11.74	128	10.11	10.69	11.19	11.61	0.13
Sec-19	34 + 3	380	3,570	51,600	6.39	13.27	12.82	12.82	113	10.95	11.52	12.01	12.45	0.37
Sec-19A	33 + 4	100	980	52,580	8.52	13.90	14.00	13.90	108	11.35	11.87	12.33	12.75	1.15
Sec-20	29 + 1	100	4,300	56,880	8.10	14.31	14.00	14.00	81	13.83	14.15	14.46	14.77	-0.77
Sec-21	27 + 1	150	1,950	58,830	8.14	14.64	15.28	14.64	97	13.92	14.22	14.55	14.79	-0.15
Sec-21A	26 + 1	10	1,040	59,870	8.84	15.21	15.10	15.10	101	13.98	14.33	14.69	14.80	0.30
Sec-42	24 + 2	200	1,910	61,780	10.10	16.31	15.40	15.40	153	14.07	14.48	14.89	15.08	0.32
Sec-41	22 + 8	300	1,400	63,180	8.43	15.65	15.73	15.65	93	14.17	14.63	15.07	15.32	0.33
Sec-39	20 + 6	550	2,150	65,330	11.09	16.56	17.16	16.56	144	14.52	15.07	15.57	15.93	0.63
Sec-38		750	1,900	67,230	10.85	17.91	17.24	17.24	124	14.96	15.56	16.07	16.47	0.77
Sec-35	17 + 7	710	1,040	68,270	12.70	18.06	18.53	18.06	174	15.30	15.90	16.42	16.83	1.23
Sec-27	14 + 7	700	3,010	71 280	13.29	18.92	18.60	18.60	238	16.32	16.92	17.40	17.82	0.78
Min.									68					-0.77
Max.									238					1.23
Avg.									119					

T- 9

Table 2.2.8 High Water Channel Water Profile

					10						· · · ·
			Single	Accum.	Levee	Channel	w	ater Profile		Free Bo	
Sec. Name	Km Dist	ance	Distance	Distance	Elevation	Width -	1,200	1,600	2,000	1,200	2,000
Sec-26A	51 +	90	0	0	3.73	1,952	2.65	2.96	3.27	1.08	0.46
Sec-25A	50 +	750	340	340	3.80	2,160	2.78	3.07	3.36	1.02	0.44
Sec-24A	50 +	120	630	970	3.91	2,210	2.95	3.22	3.50	0.96	0.41
Sec-23A	49 +	410	710	1,680	4.12	2,069	3.20	3,45	3.70	0.92	0.42
Sec-22A	48 +	600	810	2,490	4.33	2,258	3.46	3.71	3.94	0.87	0.39
Sec-21A	47 +	850	750	3,240	4.54	2,260	3.71	3.94	4.16	0.83	0.38
Sec-20A	47 +	125	725	3,965	4,66	2,098	3.92	4.15	4.36	0,74	0.30
Sec-19A	46 +	670	.455	4,420	4.73	1,548	3.97	4.20	4.42	0.76	0.31
Sec-16A	44 +	275	2,395	6,815	5.12	1,411	4.44	4.75	5.02	0.68	0.10
Sec-14A	43 +	30	1,245	8,060	5.41	1,488	4.74	5.06	5.34	0.67	0.07
Sec-12A	41 +	925	1,105	9,165	5.87	1,545	5,03	5,35	5.63	0.84	0.24
Sec-10A	40 +	710	1,215	10,380	6.11	2,119	5.31	5.62	5.90	0.80	0.21
Sec-9A	40 +	300	410		6.59	2,255	5.51	5.79	6.04	1.08	0.55
Sec-8A	39 +	560	740	11,530	6.61	2,092	6.02	6.24	6.43	0.59	0.18
Sec-6A	38 +	190	1,370	12,900	7.51	2,188	6.34	6.61	6.84	1.17	0.67
Sec-5A	37 +	180	1,010	13,910	8.17	1,880	6.86	7.09	7.29	1.31	0.88
Scc-4A	36 +	700	480	14,390	8.51	1,768	7.26	7,47	7.66	1.25	0.85
Sec-2A	35 +	750	950	15,340	8.73	1,350	7.71	7.95	8.15	1.02	0.58
Sec-1	34 +	260	1,490	16,830	8.99	1,673	7.92	8.21	8.46	1.07	0.53
Sec-4	32 +	600	1,660	18,490	9.10	1,950	8.07	8.39	8.66	1.03	0.44
Sec-6	31 +	525	1,075	19,565	9.59	1,097	8.56	8.86	9.11	1.03	0.48
Sec-7	30 +	180	1,345	20,910	10.47	1,138	9.40	9.69	9.94	1.07	0.53
Sec-16	24 +	400	5,780	26,690	12.03	1,355	11.26	11.59	11.88	0.77	0.15
Sec-16A	23 +	550	850	27,540	12.65	1,360	11.68	11.98	12.25	0.97	0.40
Sec-17	22 +	810	740	28,280	12.98	1,626	11.99	12.28	12.54	0.99	0.44
Sec-17A	22 +	95	715	28,995	13.20	1,759	12.20	12.49	12.74	1.00	0.46
Sec-18	21 +	255	840	29,835	13.54	2,426	12.52	12.78	13.02	1.02	0.52
Sec-19	20 +	425	830	30,665	13.92	2,141	12.86	13.10	13.32	1.06	0.60
Sec-19A	19 +	550	875	31,540	14.57	2,289	13.52	13.72	13.90	1.05	0.67
Scc-20	18 +	810	740	32,280	15.01	1,735	14.08	14.28	14.45	0.93	0.56
Scc-21	17 +	915	895	33,175	15.24	1,731	14.33	14.58	14.79	0.91	0.45
Sec-21A	17 +	190	725	33,900	15.89	1,634	14.63	14.88	15.10	1.26	0.79
Sec-42	16 +	360	- 830	34,730	16.16	2,270	15.12	15.36	15.58	1.04	0.58
Sec-41	15 +	680	680	35,410	16.58	2,018	15.62	15.82	16.00	0.96	0.58
Sec-39	15 +	0	680	36,090	17.37	1,990	16.33	16.52	16.69	1.04	0.68
Sec-38	14 +	-90	910	37,000	18.37	1,405	17.13	17.38	17.58	1.24	0.79
Sec-35	13 +	580	510	37,510	18.63	1,498	17.46	17.72	17.93	1.17	0.70
Sec-27	12 +	380	1,200	38,710	19.36	2,224	18.30	18.56	18.77	1.06	0.59
Min.			· · ·			1,097				0.59	0.07
Max.					· ·	2,426				1.31	0.88
Avg.						1,841				0.98	0.48

	Table 2.3.1 List of Weather Information, Hydrometeorological Data and Dam Data Collection
	2.3.1 List of Weather Information
	Table

			Intervals of Observation	Transmission	Means of Transmission	Origin of Transmission	Remarks
Upper part of weather	- Wind direction - Temperature	Picture		02:00, 14:00 GMT	FAX	Frankfurt	From DMI Ankara to DMI Adana
Ground Weather Map	- Weather map	Picture	00:00, 06:00, 12:00 18:00 GMT		FAX	Adana (Íncirlik)	To DMÍ Adana
Surface Weather (Type 1)	- Wind direction - Wind speed - May and min termerstrue	- Letter - Numerical number	07:00, 14:00, 21:00	Once a day (After 07:00)	Urgent telegram	Small climatological station	Hourly rainfall to DSI Adana
	- Temperature - Rainfall - Cloudiness		In flood, every one hour for rainfall	Every one hour	Tclephone		
Surface Weather (Type 2)	In addition to data of type 1, - Evaporation (some) - Presenter (some)	- Letter - Numerical number	07:00, 14:00, 21:00	Once a day (After 07:00)	Urgent telegram	Great climatological station	Hourly rainfall to DSI Adana
	- Soil temperature (some) - Cloud type and heights		In flood, every one hour	Every one hour	Telephone		:
Surface Weather (Type 3)	- Wind direction - Wind speed	- Lotter - Numerical number	Every one hour except rainfall and events	Every one hour	TELEX (PTT line and UHF	Synoptic station - Anamur Siliftee	These data are transmitted DMI
:	- Tur pressure - Temperature - Rainfall		Twice a day for rainfall		rauto)	- Mersin - Nersin - İskenderum	TELEX and HF radio as backup
•	 Type of clouds and height of clouds Horizontal sightseeing distance Meteorological events 		In flood, every one hour for rainfall	· · · · · · · · · · · · · · · · · · ·	•	- Adana(Saldipaşa) - Adana (İncirlik)	• •
Rainfall data of DSI	- Rainfall	- Numerical number	Once a day In flood, every 1H	Daily rainfall Hourly rainfall	Monthly mail Telephone	DSt gauging points	
Water level data of DSI	- Water level	- Numerical number	Once a day. In flood, every 1H, 30M, 15M	Water level	Monthly mail	DSI gauging points	Due to small rivers
Water level data of EIE	- Water level	- Numerical number	08:00, 16:00 In flood, every 2H/1H	Water level (Discharge is concerted in office)	Monthly mail Telephone (In flood)	EfE gauging points	Informed to DSI
Snow depth of DSI	- Snow depth	- Numencal number	Every 15 days (December - March)	Snow depth	Taken back	DS1 gauging points	
Snow depth of ElE	- Snow depth	-Numerical number	Once a month January - May)	Snow depth	Taken back	ElE gauging points	
Reservoir level of Seyhan dam	- Reservoir level	- Numerical number	08:00, 21:00 In flood, every 114/30M	Reservoir level	VHF radio (in voice)	DSI dam	

Table 1	2.3.2 List of Kind of Da	Table 2.3.2 List of Kind of Data and Information Transmitted in Present Conditions	nsmitted in Present	Conditions
Kind of Information	formation	Intervals of Transmission	Transmission Media	Content of Information
	Rainfall	Every 1 H	Numerical (Telephone)	Hourly rainfall by gauge read
Hydrometeorological information	Water level	Every 2/1 H	Numerical (Telephone)	Present water level by gauge read
	Discharge	Every 2H/1H	Numerical (Telephone)	Present discharge by conversion table
Flood protection information	uc	At any time	Voice (VHF)	Necessary information of flood protection action
Flood protective facility information	formation	At any time	Numerical/voice (Telephone/VHF)	Information of flood discharge
		At any time	Letter/voice (FAX/Teleohone)	Villages to be evacuated
Evacuation information			Voice	People downstream to be
			(Çukurova radio broadcasting station)	evacuated

	Span	Summary of Test Result	Remarks
1.	DSİ Adana - Ziyaret T.	1) Line-of-sight was confirmed at each station by mirror test.	
		2) Antenna height at DSI Adana should be high enough to clear trees in the site of DSI Adana.	
2.	Çatalan dam - Ziyaret T.	1) Line-of-sight was confirmed at each station by mirror test.	
		2) No obstruction was existed within the path.	
3.	Çatalan dam - Karlık T.	1) Line-of-sight was confirmed at each station by mirror test.	
		2) The height of antenna tower should be determined by considering a hill which is existed in the front of Çatalan dam.	
4.	Karlık T Nernek T.	1) Line-of-sight was confirmed at each station by mirror test.	
		2) No obstruction was existed within the path.	
5.	Nemek T Feke Dağı	1) Line-of-sight was confirmed at each station by mirror test.	
		2) No obstruction was existed within the path.	
6.	Seyhan dam - Ziyaret T.	1) Line-of-sight was confirmed at each station by mirror test.	
		2) No obstruction was existed between the path.	
		3) Since the path is over the water with unblocked reflective paths, the design should take ground-reflected multipath fading into consideration.	

 Table 3.3.1 The Results of Field Survey for Multiplex Radio Link

Table 3.3.2 Problems and Countermeasures for Simplex Radio Link (1/2)

Span	Problems	Countermeasures
Karsantı - Karlık T.	The radio link quality is not sufficient because a steep slope of mountain blocks the radio path in the front of Karsantı. The terrain profile and result of calculated data suggest that it is less possibility to establish a radio link between the sites even if Karsantı's antenna is located at a height of 20m or more.	Karsantı should be moved to an alternative location where the radio link is possible to establish. Hasandede, as an alternative point, is selected and tested. The result of test, the radio link can be connected to Karlık T
Çamardı - Bileğe T.	The radio link quality is not sufficient because the path is obstructed by a mountain.	Since the ridge of mountain in the path is high (about EL 2.170m), Çamardı (EL 1,490m) should be moved to a higher place within an allowable area in view of hydrometeorological technique. Çamardı (EL 1,670m), as an alternative point is selected and studied. The result of theoretical calculation suggests that the radio link can be connected to Bileğe T. It is advisable to do a further study including a radio wave propagation test in the future.
Mansurlu - Feke Dağı	The radio link quality is not sufficient because the path is obstructed by some mountains.	It is necessary to place a repeater station between the sites, or move to an alternative location where the radio link is possible to establish. Since the gauging station which is situated at the bottom of a mountain in mountain chains, it is difficult to find an alternative location in the vicinity of site. A location of repeater station, Karataş T., is selected for the study.
Saimbeyli - Feke Dağı	The radio link quality is not sufficient because the path is obstructed by some mountains.	It is necessary to place a repeater station between the sites, or move to an alternative location where the radio link is possible to establish. Since the gauging station which is situated at the bottom of a mountain in mountain chains, it is difficult to find an alternative location in the vicinity of site. A location of repeater station, Süt T., is selected for the study.

(1) Telemetry Radio Link

Т - 14

٠

Table 3.3.3 Problems and Countermeasures for Simplex Radio Link (2/2)

(2) UHF Radio Link

Span	Problems	Countermeasures
DSİ Adana - Taşcı	Radio paths extending toward the down stream of Seyhan river from the DSI 6th regional directorate is completely blocked by tall buildings(10 to 12 story). This results in the radio link quality insufficient.	The antenna of UHF radio system in the DSI 6th regional directorate should be high enough so that the obstructions of these buildings are cleared.

T - 15

.

Table 3.3.4 The Results of Radio Wave Propagation Test for Simplex Radio Link (1/3)

(1) T	elemetry Radio Linl	C	· .	
No.	Span	Receiving Voltage Calculated Value (dBµv)	Receiving Voltage Measured Value (dBµv)	Result of Evaluation
1.	Karlık T 1806 WL	38.6	35.0	Possible
2.	Karlık T 1805 WL	38.7	37.0	Possible
3.	Karlık T 1818 (Eğner)	46.7	63.0	Possible
4.	Karlık T Karsantı	14.7	-	The radio link cannot be established because of obstruction. Karsanti should be moved to an alternative location (Hasandede).
5.	Karlık T Hasandede (Alternative point)	32.4	25.5	The radio link can be connected to Karlık T. repeater station.
6.	Feke Dağı - 1801 WL	31.7	47.0	Possible
7.	Feke Dağı - Saimbeyli	25.2	22.0	The radio link cannot be connected directly to Feke Dağı repeater station. Therefore, it is necessary to place a repeater station to extend communication range. Süt Tepe was selected as a repeater station.
8.	Feke Dağı - Mansurlu	-14.0	13.0	The radio link cannot be connected directly to Feke Dağı repeater station. Therefore, it is necessary to place a repeater station to extend communication range. Karataş T. was selected as a repeater station.
9.	Feke Dağı - Karataş T.	45.9	-	The result of theoretical calculation suggests that the radio link is possible.
10.	Feke Dağı - Feke	25.4	-	
11.	Karataş - Mansurlu	51.3	**	-
12.	Süt Tepe - Saimbeyli	29.6	-	-
13.	Süt Tepe - Tufanbeyli	31.2		-
14.	Sallangaç T Çatalan dam	56.5	70.0	Possible
15.	Sallangaç T 1820 WL	45.9	50.0	Possible
16.	Sallangaç T 1825 WL	26.3	39.0	Possible
17.	Sallangaç T 1817 WL	36.4	48.0	Possible
18.	Sallangaç T 1828 WL	37.0		

(1) Telemetry Radio Link

Table 3.3.5 The Results of Radio Wave Propagation Test for Simplex Radio Link (2/3)

	elemetry Radio Lini			
No.	Span	Receiving Voltage Calculated Value (dBµv)	Receiving Voltage Measured Value (dBµv) 57.0	Result of Evaluation
19.	Sallangaç T Karaisalı	(dBµv) 56,2		Possible
20.	Bileğe T Çiftehan	36.5	52.0	Possible
21.	Bileğe T Kamışlı	16.9	38.0	Possible
22.	Bileğe T Çamardı	12.9	18.0	The radio link cannot be established because of obstruction. Çamardı should be moved to an alternative location.
23.	Bileğe T Çamardı (Alternative point)	29.7	-	The result of theoretical calculation suggests that the radio link is possible.
24.	Bileğe T Çatalan dam	31.7	-	-
25.	Bileğe T Pozantı	41.5	~	-
26.	Kılkoyak T Sarız	44.7	~	-
27.	Kılkoyak T Sırvan Dağı	51.0	-	-
28.	Kılkoyak - Süt T	48.9	-	
29.	Sırvan Dağı - Pınarbaşı	62.0	-	-
30.	Sırvan Dağı - Toklar	48.3	-	-
31.	Sırvan Dağı - Kazancık	48.3	-	-
32.	Feke Dağı - Alayli (Ziyaret T.)	52.1	-	-
33.	Alaylı (Ziyaret T.) - Tomarza	49.9	-	-
34.	Alaylı (Ziyaret T.) - 1822 WL	43	-	-
35.	Alaylı (Ziyaret T.) - Kuzören T.	32.5		-
36.	Kuzören T Seyhlı (Sıhlı)	50.6	-	-

(1) Telemetry Radio Link

Note: The evaluation was made by considering the receiving voltage (calculated and measured value), fading, terrain profile, and antenna patterns (horizontal and height pattern), and external noise in all their aspects.

Table 3.3.6 The Results of Radio Wave Propagation Test for Simplex Radio Link (3/3)

No.	Span	Receiving Voltage Calculated Value (dBµv)	Receiving Voltage Measured Value (dBµv)	Result of Evaluation
1.	DSI Adana - Taşcı	32.5	16.0	Receiving voltage of measured valuewas a quite low level compared with calculated one because the path was blocked by tall buildings which have
				surrounded the test antenna at DSI Adana.
·				If the antenna at Adana is located at 40m above the ground, the radio link will be possible.
2.	DSI Adana - Kuranşa	38.5	9.0	ditto
3.	DSI Adana - Yenice	22.6	-	ditto
4.	DSI Adana - Doğankent	33.3		ditto
5.	DSI Adana - Karayusufulu	29.5		ditto
6.	Kuranşa - Baharlı	41.5		
7.	Kuranşa - Tabaklar	43.3		

(2) UHF Radio Link

Note: The evaluation was made by considering the receiving voltage (calculated and measured value), fading, terrain profile, and antenna patterns (horizontal and height pattern), and external noise in all their aspects.

	քկերի()	0.482	0.619	0.472	0.786	0.629	0.507	0.675	345	0.631	0.471	0.819	10.247	0.535	0.516	0303	0.224	0.195	0.195	0.235	94E.0	0.462	0.599	0.373	0.329	0.268	0.155	0.657	0.821	0.539	0.590	0.880	1.000
	งกรู้เท	0.743	0.743	0.804	0.889	0.815	0.490	0.632	0.435	0.775	0.541	0.829	0.725	0.574	0.524	0.333	0.134	0.130	0.138	0.316	0.265	0.374	0.537	0,498	0.414	0.251	0.167	0.647	0.850	0.298	0.671	1.00	
	ilgəri	0.503	0.748	0.534	0.573	0.436	0.378	0.520	0.396	0.358	0.327	0.414	0.857	0.575	0.614	0.559	0.311	0.315	0.302	0.453	0.395	0.456	0.505	0.373	0.643	0.375	0.308	0.394	0.669	0.224	1.000		
	ուտույն	0.566	0.534	0.680	0.760	0.622	0.617	0.595	0.571	0.914	0.553	0.608	0.063	0.722	0.583	0.545	0.322	0.302	0.391	0.348	0.418	0.517	0.696	0.696	0.640	0.611	0.221	0.755	0.540	1,000			
	ட்சமாழ	0.513	0.678	0.519	0.720	0.524	0.686	0.728	0,404	0.586	0.476	0.734	0.334	0.596	0.769	0.572	0.448	0,415	0.342	0.497	0.555	0.572	0.727	0.513	0.628	0.438	0.303	0.599	00.1				
	Gurdöð	0.672	0.338	0.829	0.772	6/17.0	0.599	0.679	0.814	0.820	0.688	0.688	0.968	0.361	0.375	0.202	0.176	0.152	0.167	0.298	0.381	0.603	0.647	0,440	0.308	0.41 [0.210	1.000					
	M. Bugören	0.000	0.000	0.063	0.063	-0.045	0.251	0.000	0.089	0.045	0.145	-0.055	0.130	0.292	58E.0	0.578	0.749	0.792	0.729	0.638	0.669	0.523	0.302	0.476	0.532	0.683	1.000						
	venquusU	0.114	0.195	0.349	0.274	0.114	0,490	0.205	0.339	0.332	0.860	0.105	0.161	0.474	0.550	0.683	0.744	0.762	0.807	0.723	0.846	0.784	0.527	0.657	0.674	1.000						1	-
	estemoT	0.302	0.567	0.602	0.541	0.292	0.612	0.445	0.521	0.484	0.564	0.307	0.032	0.809	0.538	0.872	0.583	0.564	0.462	0.737	0.743	0.700	0.820	0.828	1.000					~		╉	
ysis	Tokiar	0.440	0.429	0.737	0.688	0.609	0.418	0.429	0.375	0.729	0,60	0.499	000.0	0.853	0.581	0.724	0,473	0.491	0.333	0.553	0.665	- 689	0.701	8		:					f	-	:
Anal	ባୟા\$	0.674	0.601	0.737	0.846	0.727	0.783	0.609	0.663	0.779	0.681	0.563	0.00	0.782	0.803	0.756	0.539	0.424	0.295	0.563	0.669	0.694	1,000										1
ion /	sns2	0.219	0.349	0.475	0.483	0.207	0.606	0.434	0.521	0.463	0.567	0.245	0.265	0.567	0.632	0.666	0.671	0.628	0.601	0.691	0.759	000.1											-
gress	Pinarbaşı	0.105	0.307	0.319	0.351	0.095	0.604	0.295	0.397	0.295	0.407	0.158	0.155	0.520	0.704	0.806	0.856	0.797	0.742	0.834	00 1											-	-
r Re	Pazaröten	0.118	0.224	0.268	0.257	0.095	0.552	0.176	0.409	0.202	0.344	0.105	0.224	0.517	0,77,1	0.749	0.752	0.751	0.665	1.000												T	
elation Matrix for Simple Linear Regression Analysis	Örenşehir	0.063	0.045	0.077	0.045	-0.032	0,414	0.084	0.114	0.095	0.164	-0.055	0.187	0.228	0.429	0.556	0.861	0.903	1.000				_										
ple I	Aransta	0.089	0.063	0.118	0.089	0.00	0.464	0.100	0.212	0.100	0.202	-0.032	0.241	0.354	0.508	0.661	0.921	1.000						-†									-
Sim	Kaynar	0.141	0.155	0,173	0.152	0.000	0.507	0.148	0.243	0.134	0.265	0.000	0.237	0.348	0.529	0.694	1.000													-			
x for	rzedi zi	0.230	0.404	0.451	0.445	0.182	0.609	0.313	0.417	0.363	0.440	0.200	0.032	0.680	0.851	1.000									-					-			
Aatri	iləvəU	0.411	0.590	0.579	0.623	0.400	0.686	0.482	0.566	0.510	0.688	0.401	0.071	0.716	000																	1	
on N	ğebyıdaß	0.416	0.533	0.706	0.780	0.495	0.527	0.446	0.594	0.675	0.583	0.543	0.126	1.000					_													┓	
relat	Tufanbeyli	0.405	0.118	0.352	0.161	0.355	0.363	0.212	0.359	0.224	0,446	0.221	1.000																				
Cont	frð nsávoð	0.935	0.875	0.737	0.857	0.928	0.669	0.743	0.387	0_788	0.578	1.000																					
1.1	ityədrais2	0.607	0.587	0.844	0.685	0.633	0.653	0.677	0.625	0.680	.000 I																						
Table 5.1.1	haszof	0.592	0.647	0.727	0.922	0.884	0.724	0.694	0.643	1.000																							
Tal	ularensM	0.346	0.550	0.660	0.639	0.616	0.683	0.507	1.000															:									
	uezoy	0.787	0.802	0.780	0.696	0.734	0.591	1.000													1						~						
	Karsantı	0.475	0.587	0.740	0.712	0.640	1.000	_				1	· .	_							·												
	प्रद्राज्ञश्र	0.832	0.876	0.701	0.910	1.000																	т. 1										
	Kamştı	0.810	0.780	0.863	1.000			•																									
	ગ્યન્ગ	0.656	0.747	1.000																		:								-			
	Catalan	0.742	1.000							:																							
	tatepŲ	1.000						н н н н								-																	
			ġ		11	ile	DT.		. nju	ġ	-yli	Seyhan Brj.	ufanbeyli	žep			Ja	icik .	Ē	üren	cean -			5	ß	Uzunpurar	M. Başbren	ß	udi.	197			el?
		Actana	Catalan	Feke	Kanush	Karaisah	Karsenti	Kozan	Mansuriu	Pozant	Saimbeyli	Seyha	Tufan	Balordağ	Develi	Elbası	Kayrar	Kazancık	Örengehir	Pazarúren	Purarbagi	Sanz	\$this	Toklar	Tomarza	C ₂₁	M.B.	Gökeun	Camardi	Ciftehan	Ee&i	Nigde	Ulukala
:	:			•											T	•	19))															

Table 5.1.2 Effective Rainfall Gauging Station and Its Area Ratio for Subbasins

. ,	5			5 63	0	un to	9 08	ab fe	99	Init's to	atter	:	ulter		0.03	orda		17 01 CA	36	9 8		9.65
1_	Statica Total : (Sathan):(Cathlan)	1	River Basin			1805	1822	1806	1806	Camboo HWL	8		Catalan HWL	-Soyhan Bej.				<u>ب</u>	·	Seybaa HWL		1823
Catalan	1 6	24.4) Sey						17 DATEMONY	(* activitation(*)		0.664		0.693 (0.952)	0.528 (0.138)	(8)			0.244		0.172	0.017	0.005
	1,512.7	(6.3) Seyhan	/han		0.034	0.016		0.139	0.029	0.952		1	(0.048)			0.336		0.208	-			
Seyhan Bri	200.1 (62.5)	Sc	Scyhan										:	0.460 (0.862)	52)					.	· ·	
Ciftehan		Calut	t T							. *	1.								0.001			0.558
Pozanti*	404.3	5	Cakit	-														-	0.017		0.276	0.174
Karaisalı*	815.8	ő	0ctirge								0.017	7 0.029		0.013	0.0	0.051	0.330	0.548	0.070	0.828	0.708	0.189
Kamışlı	792.1	Kö	Körktin	- 						0.002	- 1.4 1			•••••	0	0.561			0.338			0.014
*	1,266.3	Ko	Korktin				;	0.150	0.031	0.045	S				0.0	0.053			0.574			0.061
	852.9	ð	Goksu	0.074	0.326	0.194								: •••••			:	 		: 	1	
uriu*	1,187.8	<u> </u>	Göksu		0.227	0.108		0.388	0.081													
	1.257.7	<u> </u>	Goken	0.310	0.260	\sim						 		•			N.					
سبنيه	1,050.4	ŝ	Göksu	0.395	0.040	0.226	0.008		100.00						 	:						-
	829.5	ő	Göksu	0.220		0.115	0.046		0.037	1												
Bakırdağ	733.3	re2	Zamantı		0.113	25.7	0.070	0.004	0.056	18												
Elbaşı	SI17	28	Zamantı				0.073		0.058	×												
Kaynar	734.3	2a	Zamantı				0.105		0.083													
Kazancık	305.5	28	Zamantı				0.044		0.035	10										•		
Örenşehir	491.4	eZ	Zamanti				0.070		0.056	5									_	· · ·		
Pazarören	627.6	Zai	Zamantı				060.0		0.071	1					. : 							
Pınarbaşı*	6.683	2	Zamantı	0.002		0.001	0.119		0.095	2				•••••								
Suhlt	812.3	28	Zamantı				0.033	0.319	0.092	8												
Toklar	794.5	Za	Zamanti				0.114		060.0)												:
Lowerza		2 2	Zamantı Zamantı				0.139		0.110													
Uzunpinar	433.2	Za	Zamantı				0.062		0.049								. 					
f 8	187,8	Z.a.	Zamantı				0.027		0.021							-					:	
Total	Total 19.337.0 (72.5) (130.6)	(30.6)		1.000	1.000	000.1	000T	1.000	1.000	0001	C 	000.1 00	(1,000)	1.000 1.000 (1.000) 1.000 (1.000)		1,000	1.000	1.000	1.000	1.000	1.000	1.000

$\widehat{}$	
e,	
÷.	
na	
E	
Ā	
S.	
ğ	
tatio	
S	
nfall S	
Ϋ́Ε.	
5	
Å.	
N.	
at	
50	
SS.	
ď.	
f Repre	
Å.	
ă	
tion in	
5	
ei.	
<u>s</u>	
esults of	
Its	
ilus:	
പ്പ	
9	
The Re	
Table 5.1.3	
ŝ	
le	
åb	
[

		Calculation Also	Lecality		Golau	Golissi	Goler	Zaezıb	there Z	Zamantı	Zamatri-Citicu	Zamandu		Zamante-Göksu	Catalan Brj.		Eglenet	Eğlence	Egicare	Korkin	Körkun	ມີເມີຍ	jų U
	Ū	10				01 du	oj da	0101	9 4	n da	Jointio			atian Cotaton Etter				•	up to	ap ta	ap to		91 da
<u> </u>	Total :(Se	Station (Seyhan) (Çatalan)	alan)	Š.		0	ŝ	÷.	(Attenutive 1)	(Abernakive 2)	TAXING	(without Catalar)		(which Carling)	organa hu.			verbook Catalan)	(milde) drive)	0781	TMH BRIAR		
Chicken	738.2	738.2 (10.0) (124.4) Seyhan	4.4) Seyha			{		<u> </u>				0.66	4 0.693	(0.552)	(851)0.5664 0.5933 (0.552) 0.5281(0.138)	1289			0.244		0.172	0.017	0.005
1 A 1	1.512.7	9) 	(6.3) Scyhan	- 		0.034	0.016		05130	0.029	256.0	lui-	91:0:229	0.279:40.048)			0:336	0.105	0.208				
Seyhan Bri.		(62.5)	Seyhan	u I											0.460 (0.862)								E.
Cirkenan :-	988.4		Cakut			, -			:						••••••					0.001			0.558
Pozini.	404.3		Cakut												•••••					0.017		9220	0.174
Karaishi.	815.8		Üçürge	9								0.017	7 0.029		E1019		0.051	056.0	0.548	0.070	0.828		0:080
K chinsh	792.1		Körktin	, in			 ·	:"			0,002	2				م استندا	0.561	-	<u></u>	0.338	 - 		0.014
1.1	1,266.3		Körktin	, E			 .		0.150	0.031	0.045						0.053	 	<u>.</u>				0.061
rue -	852.9		Göksu	. <u>.</u>	0.074	0:326	0.194								•••••								
	1.187.8		Göksu			0.227	0.108		0.388	0.081													
Samberli.	1.257.7		Göksu	<u></u>	enco:	· · .	0.286													-			
Lutanbeyh	1,050,4		Göksu			I.	0.226	0.008		0.007												. :	
Sarız*	829.5		Göksu		0.220		0.115	0.046		0.037													
Bakırdağ	733.3		Zamantı	tu tu		. 0.113	0.054	0.070	0.004	0.056													
Elbaşı	511.7	•••••	Zamanti	, tte				0.073		0.058				1							 		
Kaynar	734.3		Zamantı	nta		-		0.105		0.083					•••••								
Sevanci R	305.5		Zamantı	ndt.				0.044		0.035													
Örensehit	491.4		Zamantı	11				0.070		0.056													
Pazarören	627.6		Zamanti	ntı				0:090		0.071		-											
Amar base	839.9		Zamanti		0.002		0.001	Q 19		0.095										-			
Subtraction of the	812.3	- 	Zamanu	nta .		 		0.033	616.0	0.092													
Tokie	794.5		Zamantı	ttr				l∓[1X		0.090									 				
Fointerat	969.4		Zamantı	: g		:	<u></u>	9E1 0		0.110								- ine					
Uzunpinar	433.2		Zamantı	-FE				0.062		0.049													
M. Başören	187.8	 -	Zamantı	超				0.027		0.021												:	
Total 19	19.337.0 (72.5) (130.6)	72.5):(13	0.6)		1.000	1.000	1.000	1.000	1.000	1,000	1.000	0 1.000	0 1.000	(1.000)	1.000 (1.000) 1.000 (1.000)	(000)	1.000	1.000	1.000	1.000	1.000	1.000	1.000

	المعادي 1828 1828		0.005			955.0	0.174	0.189	0.014	0.061													-					1 000			
	Uçtirge		0.017			<u></u>		a 709	-																	 ::		1.000			
	Kretzia up to Servicia HWL		0.172					0.828				i															:	1.000		÷	
	Korkun up to 1820					0.001	0.017	0.070	0.338	0.574		- -				-									 			1.000			
	Eglence up to Caralus HWL	(with Caratan)	0.244	0.208				0.548	<u></u>			:							-									1.000			
()	Eglence up to Seyhan R	(without Catalan)	0.565	0.105				OEE D			:								 :									1.000			
of Selection of Representative Rainfall Station (Alternative 2)	Eglence up to 1825			9550				0.051	0.561	0.053						-												1.000			•
on (Alte	Çatalan Brj. -Seyhan Brj.		8: (D: t38)		0.460; (0.862)																							0; (1.000)		•	
all Statio		1	0.664 0.693 0.952 0.528 (0.138)	1348	0.46			6.013								* 					-							1.000 1.000 (1.000)			
e Rainfi	N O	(with Catalant)	0.693	0.279 0.048		•••••		0.029										-			 							1.000			
esentativ	Zamanti-Odisu After Chialan HWL	(without Catalan)	0.664	615.0				0.017	-																			1.000	· · •		•
of Repr	Zarustri-Gölicu Joint to Çanılan HWA	-		0.952					0.002	0.045											-							1.000			• .
election	Zamante Up to 1806	(Atternative 2)	. <u></u>	0.029						0.031	- 	0.08.0		0.007	26010	0.056	0.058	0.083	0.035	0.056	0.071	220.0	0.092	0.090	0.110	0.049	0.021	1:000			•
	Zamant a to 1806	(Alternative I)		0.139						0.150		0.388				0.004							0.319		-			1.000			
The Results	Zamauti up to 1822	(Alternative I)												0.008	0.046	0.070	0.073	0.105	0.044	0.070	0.090	0.119	0.033	0.114	0.139	0.062	0.027	1.000			 - -
Table 5.1.4	Geksu up to 1805	(Atternative 2)		0.016							0.194	801.0	0.286		0.115	0.054					:	0.001						1.000	•		 -
Table	Golken up to 1805	(Attended 1)		0.034		1					0.326	0.227		0.040		0.113												1.000			•
	Gebou up to 1801	(Altendative 1)				:					0.074		0.310	562.0	0.220							0.002						1.000			
	Location River Basin		Seyhan	(6.3) Seyhan	Sevhan	Çakıt	Cakut	Octarge	Körktin	Körkiln	Göksu	Geksu	Golesti	Göksu	Goksu	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı	Zamantı		q	tation	יישטיט צעונ
	nt Arca m	i (Scyhan) i (Çabian)	738.2 (10.0) (124.4) Seyhan	(6.3)	(62.5)		-												 -									19.337.0 (72.5) (130.6)	Station with Pluviograph	Reservoir Area Selected Painfall Gauging Station	untau Con
	Catchment Area of Station	Total (Scy)	738.2 (1(1,512.7	200.1 (62	988.4	404.3	815.8	792.1	1,266.3	852.9	1,187.8	1.257.7	1,050.4	829.5	733.3	511.7	734.3	305.S	491.4	627.6	839.9	812.3	794.5	969.4	433.2	187.8	1337.01 (7	Station with	(): Reservoir Area E33. Selected Painfa	ociorina ve
	Station		Catalan	Kursahui 1.	Seyhan Bri.		Potential .				Febe:	- - 9		Tufanbeyli 1		Bakırdağ	Elbaşı	Каулаг	2 20 20	Örensehir	Pazarören	Nation Section 199	sihi.	Toklar	Tomaras.	مىنىت		Total 19	*		- 1221

T - 22

No.	Name of Station	Kind of Station	IIyo	Irometeorologi	cal Gauging It	tems
			Rainfall	Temperature	Water Level	Reservoir
	Seyhan River Basin					
1	Çamardı	RG Station	\checkmark			
2	Çiftehan	RG Station	√ `			
3	Pozanti	RG/TP Station	\checkmark	√ .		
4	Kamışlı	RG/TP Station	\checkmark	\checkmark		
5	Karaisalı	RG Station	\checkmark			
6	Karsantı	RG/TP Station	\checkmark	• • √		
7	1825	WL Station			\checkmark	
8	1820	WL Station	·		\checkmark	
9	1818	WL Station			\checkmark	· .
10	1828	WL Station		• •	\checkmark	۰.
11	Seyhan dam	WL Station				\checkmark
12	Çatalan dam	RG/WL Station	\checkmark	· · ·		\checkmark
	Zamantı River Basin	L *				
13	Kazancık	RG Station	\checkmark			
14	Pınarbaşı	RG Station	\checkmark			
15	Toklar	RG Station	\checkmark	· .		
16	Tomarza	RG/TP Station	\checkmark	\checkmark		
17	Şeyhli	RG/TP Station	\checkmark	\checkmark		
18	1822	WL Station			\checkmark	
19	1806	WL Station			\checkmark	
	Göksu River Basin					
20	Tufanbeyli	RG/TP Station	√	\checkmark	•	•
21	Saimbeyli	RG Station	\checkmark			
22	Feke	RG Station	\checkmark			
23	Sarız	RG Station			· · ·	
24	Mansurlu	RG/TP Station	\checkmark	\checkmark		-
25	1801	WL Station			\checkmark	×.
26	1805	WL Station		•	\checkmark	
	Abbreviation	en en en en en en en en en en en en en e				
	RG: Rainfall				:	

Table 5.2.1 List of Intended Gauging Items

Abbreviation RG: Rainfall TP: Temperature WL: Water level

 Table 5.2.2 Comparative Studies of The Terrestrial Communications Link Scheme and The Satellite

 Communications Link Scheme

Item	-	Satellite Communications Links Scheme
Outline of Scheme		A VSAT (Very Small Aperture Terminal) is to be installed
	e multiplex radio communications links	at gauging stations and data is to be collected through a
	-	communications satellite.
System Design	System design id flexible since circuit are to be designed considering system requirement.	System design will be restricted since it should be complied with the specifications of the satellite used.
Circuit design and radio wave		Although circuit design is required, it is easy. However, the
propagation test	· · · · · · · · · · · · · · · · · · ·	transmitting output power, antenna type, transmission
		method, etc. of VSAT will be determined from the design of the satellite.
Initial investment cost	L	For the VSAT system, VSAT facility should be installed by
	adio communications facility and micro wave	the user. The approximate estimate of the initial investment
	multiplex radio communications facility based on bydrometeorological observation network plan 1 are as	costs for the VSAI facility based on hydrometeorological observation network plan 1 are as follows:
	follows:	
	VHF radio communications facility: \$892,400	
	0	
	Communications facility: 32,119,500	V.S.A.I. Tacility: 35,491,700 T.etal
	v facility cost included)	v facility cost inclu
Operation cost	Maintenance expenses only.	In addition to maintenance expenses, circuit usage charges
		are required. The annual usage charge per one channel of the
		VSAT system of the Republic of Turkey is as follows:
		A1
		Annual usage charge: Approx, 39,000/channel (based on the monthly charge of \$800 surveyed in May
		(based on the monthly charge of your, surveyed in real
Reliability	The necessary reliability level can be set during design.	Depends on the reliability of the satellite. For a system that
		does not have a standby satellite, dangerous situations may
		be encountered since the life of a satellite is usually between about 7 and 10 years. If satellite is launching fails, sudden
		notice on discontinuation of the services may be given.
Influence of attenuation by rainfall	Because of 2 GHz band, operation is not adversely affected	Because of a Ku band (12/14 CHz), operation is adversely
	by ratiality of the second second second second second second second second second second second second second	allected by rainfall. In areas, where snow fails, installation of heaters are undertaken against the influence of icino of
		snow on antenna.
Maintenance expenses	Compared with those of the satellite communications link scheme, the maintenance expenses for the terrestrial	Compared with terrestrial communications link, satellite communications link usually take slight maintenance
E	communications link scheme increased by repeating links	expenses since only terminal stations are required.
Uverall evaluation		V

,

1993	Tabl	Table 5.2.3 Comparative Studies of the Promising Inst	Studies of the Promising Installation Sites of Radar Rain Gauges	
	Study Item	Ziyaret T. Relay Station	Feke Dağı Relay Station	*****
	Site	• Ziyaret T., the scheduled installation location of a multiplex radio line relay station	• Feke Dağı, the scheduled installation location of a multiplex radio line relay station and a telemetering radio line relay station.	
	Supervisory control center	• DSI 6th regional directorate	DSI 6th regional directorate	F
T - 25	Possible ranges of rainfall gauging	 Although a quantitative gauging range of 120km is not perfect, it covers the midstream area of the Seyhan River basin. A qualitative gauging range of 200km almost covers the intended Seyhan River basin. 	 A quantitative gauging range of 120km almost covers the intended Seyhan River basin. A qualitative gauging range of 200km almost fully covers the Seyhan River basin. 	
	Topographical conditions of the radar site	• The relationship between the positions of neighboring mountains and the allowable emitting radar beam angle should be studied in detail.	• The relationship between the positions of neighboring mountains and the allowable emitting radar beam angle should be studied in detail.	
	Power receiving situation	• Power distribution lines are present nearby.	• Power distribution lines are present nearby.	
	Access to the radar site	 Possible by car 	• Possible by car	

Discharge Data Flood Protection Information Evacuation Information Seyhan Dam Operation Information Çatalan Dam Operation Information Evaluation of Related Agencies Evaluation of Related Agencies
00000
0000
0 0 A
0 0 - A
O A
- O A
- O A
O A
O B
O B
O C
O C
O C
O C
0
0
O
0
0
O B
evacuation, but it is excluded because of military use be installed preferentially. od to be installed.

Table 5.2.4 List of Evaluation of Related Agencies to be transmitted of Information

Transmission Media Kinds of Information	Image Information Display	Data Display	FAX	TELEX	Recording	Private Telephone	Simultaneous Messaging	Independent Messaging	General Contact Telephone	Siren Warning	Loud Speaker Broadcasting	Electric Sign Board	Rotation Alarm lamp	Remarks
Hydrometeorological Rainfall	A	A	С	-	В	-	-	-	-	-		1.1		
Information Water level	A	A	C	-	В	-	- -	-	-	-	4	1	-	
Discharge	A	A	с	-	В	-	-	-	-	1 - F - 1	-	1	- 1	
Flood Protection Information	A	Α	В	-	-	В	В	В	С		1	1 I		
Evacuation Information	A	A	B	-	-	-	В	в	B		С	C	С	
Seyhan Dam Operation Information	A	A	в		-	Α	В	В	В	-	-	-	-	
Çatalan Dam Operation Information	A	A	в	-	-	A	в	в	В		1	ł	-	
Maintenance Management Information	A	A	в	-	-		-	-	À			1	-	
														-
			-											
						-								
Note: Siren warning is effe Legend: A; Transmission med B; Transmission med	lia is	s to	be i	nsta	alled	l pro	efer	entia			l be	cau	se o	f military use.

Table 5.2.5 List of Kinds of Information Transmission and Media Recommended

C; Transmission media is to be installed, if possible.

		—				I			**************************************					
Transmission Media	Image Information Display	Data Display	FAX	TELEX	Recording	Private Telephone	Simultaneous Messaging	Independent Messaging	General Contact Telephone	Siren Warning	Loud Speaker Broadcasting	Electric Sign Board	Rotation Alarm lamp	Remarks
Related Agencies		_	to an a state of the state of t	E			S:	Ιū	ŏ	Sii	L,	E	×	
DSI 6 th Flood Control Committee	A	B	B	-	A	A	ļ						-	
DSI General Directorate	A		B	┝╌┙	A	A	<u> </u>	-			-		<u> </u>	
Seyhan Dam Office	A	:-	B		A	A			-	-			-	
Çatalan Dam Office	A	-	B	<u> </u>	A	A	-	-		· -	42			
DMI Adana Regional Directorate	A			ļ	A	-	-	-				-		
EIE Adana Regional Directorate	A	- 7.		<u>.</u>	A	-		-	<u>ــــــــــــــــــــــــــــــــــــ</u>	- 	- 		-	
Doğankent Office of ASO	-		B		-		-	B		-				
Yenice Office of ASO	-		B A			A	-	B	-				-	
Adana Provincial Governor			<u> </u>		-	A 						-		;
Seyhan District		-	B		-			-	B	•		-	-	<u> </u>
Yürcğir District			<u>B</u>			-		-	<u>В</u>					
Seyhan Municipality	~		-		<u> </u>	 		-			-		-	
Yüreğir Municipality	-		B		-			-	-			-	-	
Feke District Office	-		-	-					B	-	-			
Pozantı District Office	-		В			-			B	-	-		-	
Saimbeyli District Office		-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	<u> </u>		-	-			-		
Tufanbeyli District Office								-	-	-	-		1 - 	
Sarız District Office		- (_		<u> </u>			-	-		-	-	
Pınarbaşı District Office	-							-	-		-	-	<u>ند</u>	· · · · · · · · · · · · · · · · · · ·
Karaısalı District Office			-				-	-		-	-			T)1
Heads of Towns and Villages downstream	-	-	B			-	-				-		-	People downstream
	: 													
		5 - 5 - 5 			A 4	ļ						· · ·		
							- :					• •		

Table 5.2.6 List of Transmission Media Between DSI Flood Control Committee and Related Agencies

Legend: A; Transmission media is to be installed preferentially.

B; Transmission media is good to be installed.

			Alternative 1	ve 1			Alterna	Alternative 2			Altern	Alternative 3	
No. Name of Station Kind of Station	n Kind of Station	Hy	Hydrometeorological Gauging Items	Gauging Ite	ms	H	Hydrometeorological Gauging Items	cal Gauging Ite	Stris	Н	ydrometeorologi	Hydrometeorological Gauging Items	SL
		Rainfall	Temperature W	Water Level	Reservoir	Rainfall	Temperature	Water Level	Reservoir	Rainfall	Temperature	Water Level	Reservoir
Seyhan River Basin	asin												
1 Çamardı	RG Station	>			-	~				>			
2 Çiftehan	RG Station	>				>				~			
3 Pozantı	RG/TP Station	>	۰ ۲			~	~			7	>		
4 Kamışlı	RG/TP Station	~	^			Ż	~			~	~		
5 Karaisalı	RG Station	~		·		7				~			
6 Karsantı	RG/TP Station	$\mathbf{\lambda}$	~			7	~			· *	~		
7 1825	WL Station			>		:		5				>	
8 1820	WL Station	· · · ·		~	•			~		- ·		· /	
9 1818	WL Station			7				~				· /~	
10 1828	WL Station			~				7				~	
11 Seyhan dam	WL Station				~			·	>				
12 Çatalan dam	RG/WL Station	>			>	7	:		>	~			
Zamantı River Basin	Basin											·	
13 Kazancık	RG Station	>								:			
14 Pinarbaşı	RG Station	>				>					·		
15 Toklar	RG Station	>											
16 Tomarza	RG/TP Station	>	>			>	~						
17 Şeyhli	RG/TP Station	~	>										
18 1822	WL Station			>								~	
19 1806	WL Station			~				7				>	
Göksu River Basin	asìn												
20 Tufanbeyli	RG/TP Station	\mathbf{i}	Ż			~	~			~	~		
21 Saimbeyli	RG Station	>				>				>			
22 Feke	RG Station	>				7				>			
23 Sanz	RG Station					~							
24 Mansurulu	RG/TP Station	\mathbf{r}	~			7	>			· >	· · · /		
25 1801	WL Station			\mathbf{k}				~	:			>	
26 1805	WL Station			- ^				>	•			>	
Abbreviation:	RG Rainfall TP.	Temperature	RG: Rainfall, TP: Temperature, WL; Water level	•									

Table 5.3.2 Comparison of Alternative Plans for The Data Collection System

	T					
Plan 4	0 8 - 2	20 11 1	 Although Plan 3 can be complemented, further study based on stored data is required after installation of radar rain gauges. 	Same as at left.	Same as at left.	Possible
Plan 3	s 12 8 - 10	20 10	• High accuracy is not ensured for the rainfall only in some specific areas.	Same as at left.	Same as at left.	Impossible
Plan 2	е - г си о о и л - 13	0 13	• A certain degree of accuracy is ensured even for the rainfall only in some specific areas.	 Accuracy significantly fluctuaces according to the particular scale of flooding. 	Same as at left.	Impossible
Plan 1	21 - 80 61 L	25 14 0	• High accuracy is ensured even for the rainfall only in some specific areas.	 Changes in regional runoff can be incorporated. Accuracy becomes stable. 	Implementable with a minimum of 4 frequencies	Impossible
Item	 Data to be collected Rainfall Dam rainfall River water level Dam water level Air temperature 	 2. Facilities (1) Gauging stations (2) Radio repeater stations (2) Multiplex repeater stations (3) Radar rain gauges 	3. Basın rainfall gauging accuracy	4. Water level prediction accuracy	5. VHF radio frequency required	6. Behavioral monitoring of rainy zones (Prediction included)

 Table 5.3.3
 Comparison of the Methods of Data Processing System Structuring

	Item	Plan 1 (Centralized Processing Method)	Plan 2 (Distributed Processing Method)	Remarks
I	System configuration	• Minicomputer	 Distributed processing that mainly uses engineering workstations(EWS's) 	
2	Processing speed	 Under a single CPU arrangement, the speed is limited because of serial processing. 	• The seed can be improved because of load distribution.	
Э	Operation	• Education is required since the appropriate computer operation skill is needed.	• Education on EWS operation is required.	
4	Extendibility	 The operating system and application programs are recreated with each addition or modification of a program. Actual addition/modification of programs is usually consistent to the manufacturer. 	 Addition/modification is possible with each EWS(thus, total adverse effects are minimized) Addition/modification of the EWS section itself by the user may become possible 	
Ś	Maintainability survey	 Various types of fault diagnostic programs are available. After recovery, the restart of the system may require expertise. 	• The EWS section is almost the same as for the minicomputer method. • The total maintainability of the system is high since faults	
Q Q	Reliability	 The hardware is highly reliable. Errors in the CPUs result in immediate system failures. Various types of fault detection are provided. Memory protection is also provided. Duplexing of the system becomes expensive. 	• The hardware is highly reliable. • System failures can be minimized by localizing faults.	
6	Installation conditions	 Installation conditions are slightly strict, and a special room is usually required. Noise arises from the operation of heat release fans. It is preferable that the system should be powered from a CVCF unit. 	 There are not too many limitation on installation conditions, and the system can be installed even in the living room of an office(in terms of power requirements, dimensions, and noise). Power consumption is not significant, a heat release fan is not required, nor does noise almost occur. 	
80	Economy	 High initial investment cost(compared with that of the distributed processing method) Significant power consumption(compared with that of the distributed processing method) Large quantity of related facility 	 Low initial investment cost because of standardization of each functional module Insignificant power consumption Very high cost performance 	
6	Other factors	 Terminal equipment extendible for operation in other rooms. (Limited functions) With appropriate memory, operating system, and processing capability margins, programs separate from those of the intended system can be operated 	 Operation possible even in the living room of the section in charge The EWS can be disconnected from the system at any appropriate time to be operated as a personal computer. 	
ç	Overall evaluation		C	

				- Carlanou				كالطحران										
				Flood Protection Information		Seyhan Dam Operation Information	Catalan Dam Operation Information						Evaluation of Related Agencies					. 12
Information	÷.,			ULLO ULLO	d D	ion	non						Υp					Remarks
Information		ta -	•	a Inf	Evacuation Information	erat	oerat						elate	11	12	13		Ren
	ह्य	Water Level Data	Data	ctio	Info	0 g	ц О						of R	Plan	Alternative Plan	Alternative Plan		
	I Da	Leve	rge I	rote	tion	Dar	L Dau						tion	ative	ative	ative		
	Rainfall Data	ater	Discharge Data	[poc	acua	yhan	talar				· · ·		alua	Alternative	tern	tern		
Related Agencies		-	_	_	-	Contraction of the	-		_				-	minin	_	i a cara a cara a cara a cara a cara a cara a cara a cara a cara a cara a cara a cara a cara a cara a cara a c		
DSI6 th Flood Control Committee	0	0	0	0	0.	0	0						Α	0	0	0		•••
DSI General Directorate	0	Ó	0	0	0	Ö	0						A	0	<u>0</u>	0		
Seyhan Dam Office	0	0	0	-		-	0					 	A	0	0	0		
Çatalan Dam Office	0	0	0			0	·			ы. 			A	0	0	0		
DMİ Adana Regional Directorate	<u>0</u>	-	-	-	+		-	·					A	0	0	0		-:
EIE Adana Regional Directorate	-	0	0	-	 		-						A	Ô	0	0		
Doğankent Office of ASO		-	-	0		-	-						A	0	0	0		
Yenice Office of ASO	··-		-	0	-	-			ļ	<u> </u>			Α	0	0	0		
Adana Provincial Governor	-	-	-		0		-						A	0	0	0		
Seyhan District		-	-	-	0		-						B		0			
Yüreğir District		-	-	-	0	·	-				<u> </u>		В	·	0			
Scyhan Municipality	-	-			0								C		2 	0		
Yüreğir Municipality	-	-			0	-	-		L	 			C			0		<u> </u>
Feke District Office	-	-	-	-	0	-	-						C		0			
Pozantı District Office	-	-	-		0	- ;						ļ	C	L	0			
Sambeylt District Office	-	-	- ;		0	-		-										
Tufanbeylı District Office	-	-	· - · ;	-	0	. <u>-</u>	-			<u> </u>								
Sarız District Office	-	ļ		-	0		-	ļ	ļ	ļ	ļ	 	<u> </u>					<u></u>
Pinarbası District Office	[-	-	-		0	;- 	-	:		[[- 1 - 1 - 1 - 1 - 1 - 1	, , , ,
Karaışalı District Office	-	-	· -		0		. -					<u> </u>		L				
Heads of Towns and Villages downstream	<u> </u>	-	-		0	- 		ŀ		 		 	В	0				
				\square					ļ			Ļ			 		 	
		L					Ŀ		<u> </u>	Ĺ					. :			
	<u> </u>								ļ	L	ļ					<u>.</u>		
														e de pe				
Note: Siren warning is effecti	vefo	or ev	acu	ation	1, bu	t it i	s ex	clud	led t	oeca	use	of m	ilita	rÿ u	se.			
Legend: A; Transmission media	is to	bei	insta	illed	pre	fere	ntial	ly.					t Algeb			²	· · · ·	
B; Transmission media	is go	bod	to be	e ins	talle	:d. 1							·: .·			:		

Table 5.3.4 Alternative Plans of Related Agencies To Be Transmission of Information

Item	Alternative Plan 1	Alternative Plan 2	Alternative Plan 3
Destinations of data and information transmission	Governmental agencies: 7 places • DSI general directorate	Governmental agencies: 7 places • DSI general directorate	Governmental agencies: 7 places • DSI general directorate
	 Seynan dam office Catalan dam office EIE Adama regional directorate DMI Adam regional directorate Doğankent office of ASO Yenice office of ASO 	 Seynan dam office Catalan dam office EIE Adama regional directorate DMI Adam regional directorate Doğankent office of ASO Yenice office of ASO 	 Seynam dam office Catalan dam office EIE Adama regional directorate DMI Adam regional directorate Doğankent office of ASO Yenice office of ASO
	Provincial governor: 1 place	Provincial governor: 1 place	Provincial governor: 1 place
	Heads of towns and villages in downstream area of Seyhan dam: 5 places	Heads of towns and villages in downstream area of Seyhan dam: 5 places	Heads of towns and villages in downstream area of Seyhan dam: 5 places
		Heads of official districts: 4 places	Heads of official districts: 4 places
Hood information monitoring at the DSI general directorate			Municipalities. 2 places
Telephone private line between the DSI 6 th flood control committee and Seyhan dam office			A
Telephone private line between the DSI 6 th flood control committee and Çatalan dam office		· · · · · · · · · · · · · · · · · · ·	7
Telephone private line between the DSI 6 th flood control committee and Adana provincial povemor			7
Liaison radio telephone link between DSI 6 th flood control committee and ASO branch offices			~
Liaison radio telephone link between DSI 6 th flood control committee and offices of towns and villages' head in downstream area of Sevhan dam			~
Liaison radio telephone link between DSI 6 th flood control committee and heads of official districts			*
Liaison radio telephone link between DSI 6 th flood control committee and municipalities			~

Table 6.1.1 List of Collected Rainfall Data(1/3)

Basin EI. First Year Last Year Complete R (m) of Record of Record Years In In 65 1.954 1.992 31 In In 65 1.954 1.992 31 In In 755 1.974 1.992 31 In In <th></th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th> <th></th> <th></th>					· · · · · · · · · · · · · · · · · · ·				
(m) of Record of Record Years held by n Seyhan 65 1,954 1,992 31 DMf 97 99 h Seyhan 65 1,954 1,992 31 DMf 97 99 99 h Seyhan 860 1,960 1,992 19 DSf 90		Station	River Basin	E.	First Year	Last Year	Complete	Records	Collected Rainfall Data
h Sevham 65 1.954 1.992 31 DMf 77 bec Bri Sevham 65 1.954 1.992 31 DMf 77 bec 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				(II)	of Record	of Record	Years	held by	
i Seyhan 65 1.934 1.992 31 DMI Br Seyhan 55 1.974 1.992 19 DSi Br Seyhan 55 1.974 1.992 19 DMI Br Cakt 1.000 1.954 1.992 19 DMI ih Ucinge 400 1.950 1.992 32 DMI ih Ucinge 400 1.950 1.992 32 DMI ih Körkün 1.225 1.963 1.992 30 DSI ih Körkün 1.225 1.942 1.992 30 DSI ih Körkün 1.922 1.992 30 DSI ih Körkün 1.992 1.992 31 DMI ih Körkün 1.992 1.992 31 DMI ih Göksu 1.952 1.992 31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>۲۰۵۵ אלפא אפאר 200 אפאר 200 אפאר 200 אפאר 200 אפאר 200</td>									۲۰۵۵ אלפא אפאר 200 אפאר 200 אפאר 200 אפאר 200 אפאר 200
tr Seyhan 860 1,960 1,992 DMI Bri. Seyhan 55 1,974 1,992 19 DSI n Calut 1,000 1,954 1,992 19 DMI * Calut 778 1,957 1,992 41 DMI * Veutree 400 1,953 1,992 30 DSI * Körktin 1,225 1,963 1,992 30 DMI * Körktin 1,225 1,963 1,992 30 DMI * Körktin 1,225 1,963 1,992 31 DMI * Körktin 1,300 1,964 1,992 31 DMI h** Körktin 1,350 1,957 1,992 31 DMI evi Göksu 1,350 1,952 34 DMI evi Göksu 1,350 1,952 36 DMI evi	Cata		Seyhan	65	1,954	1,992	31	DMİ	
Bri Seyham 55 1,974 1,992 19 DSI n Caktt 1,000 1,954 1,992 DMI DMI n* Caktt 778 1,957 1,992 32 DMI n* Veringe 400 1,950 1,992 30 DSI n* Körkin 1,255 1,963 1,992 30 DSI n* Körkin 1,250 1,942 1,992 51 DMI n* Göksu 620 1,942 1,992 51 DMI n* Göksu 1,050 1,957 1,992 36 DMI eyli Göksu 1,350 1,957 1,992 36 DMI eyli Göksu 1,350 1,957 1,992 36 DMI eyli Göksu 1,350 1,952 36 DMI eyli Göksu 1,350 1,952 36 DMI	Kar		Seyhan	860	1,960			DMİ	
m Cakt 1.000 1.954 1.992 DMi $(*$ Cakt 778 1.937 1.988 32 DMi h Uçünge 400 1.950 1.992 41 DMi h Uçünge 400 1.953 1.992 30 DSI h Körkün 1.225 1.963 1.992 30 DMi h Körkün 1.200 1.964 1.992 51 DMi h Göksu 1.100 1.957 1.992 36 DMi ϕ Göksu 1.350 1.951 1.992 31 DMi ϕ Göksu 1.300 1.951 1.992 28 DMi ϕ Zamanth 1.300 1.955 1.992 28 DMi ϕ Zamanth 1.955 1.992 28 DMi ϕ Zamanth 1.966 1.992 28 DMi ϕ	Seyl		Seyhan	55	1,974	1,992	19	DSİ	
** Cakut 778 1.937 1.988 32 DMi $11*$ Úçürge 400 1.950 1.992 41 DMi 1 Körkin 1.225 1.963 1.992 30 DSi $1*$ Körkin 1.500 1.963 1.992 30 DSi $1*$ Körkin 1.500 1.942 1.992 51 DMi $0*$ Göksu 1.050 1.942 1.992 51 DMi $0*$ Göksu 1.100 1.957 1.992 36 DMi $0*$ Göksu 1.350 1.992 28 DMi $0*$ Zamantu 1.300 1.956 1.992 28 <td< td=""><td>Cifte</td><td></td><td>Çakıt</td><td>1,000</td><td></td><td>1,992</td><td></td><td>DMİ</td><td></td></td<>	Cifte		Çakıt	1,000		1,992		DMİ	
1^* \overline{U} cuirge 4.00 1.950 1.992 41 DMI 1 Körkin 1.225 1.963 1.992 30 $DS1$ 1^* Körkin 1.500 1.961 1.992 51 DMI 1^* Göksu 1.500 1.942 1.992 51 DMI 1^* Göksu 1.050 1.942 1.992 51 DMI 1^* Göksu 1.100 1.957 1.992 31 DMI 1^* Göksu 1.350 1.951 1.992 32 DMI 1.110 1.951 1.992 31 DMI 1.300 1.951 1.992 32 DMI 1.300 1.951 1.992 23 DMI 1.300 1.952 1.992 23 DMI 1.502 1.992 23 DMI 1.992 DMI 2	Poz		Çakıt	778		1,988	32	DMİ	
1Körkim1.2251.9631.99230DSI h^* Körkim1.5001.9611.99251DMI du^* Göksu6201.9421.99251DMI du^* Göksu1.0501.9641.99236DMI v_{11} Göksu1.1001.9571.99236DMI v_{11} Göksu1.5001.9571.99236DMI evi Göksu1.5001.9511.99242DMI evi Jamantu1.5001.9661.99228DMI evi Zamantu1.5501.9661.99228DMI ik Zamantu1.5501.9661.99229DMI ik Zamantu1.5601.9661.99229DMI ik Zamantu1.6001.9641.99229DMI	Kar	*	Üçürge	400			41	DMİ	
$1.*$ Körkin1.5001.9611.992 $-$ DMI 1.0^{1} Göksu6201.9421.99251DMI 1.0^{1} Göksu1.0501.9671.99233DMI $9/1$ Göksu1.3501.9571.99234DMI $9/1$ Göksu1.5001.9511.99231DMI $evli$ Göksu1.5001.9511.99242DMI a_{1}^{2} Zamantu1.3001.9601.99228DMI a_{1}^{2} Zamantu1.4251.9621.99228DMI a_{1}^{2} Zamantu1.5501.9661.99228DMI a_{1}^{2} Zamantu1.5601.9661.99229DMI a_{1}^{2} Zamantu1.5601.9661.99229DMI a_{1}^{2} Zamantu1.5601.9661.99229DMI a_{1}^{2} Zamantu1.5601.9661.99229DMI	Kan		Körkin	1.225		1,992	30	DSÌ	
Iu^* Göksu $(.20)$ 1.942 1.992 51 DMI vli Göksu 1.050 1.957 1.992 36 DMI vli Göksu 1.100 1.957 1.992 36 DMI $evli$ Göksu 1.350 1.957 1.992 31 DMI $evli$ Göksu 1.350 1.951 1.992 42 DMI a^* Zamanth 1.300 1.960 1.992 -42 DMI a^* Zamanth 1.300 1.960 1.992 -28 DMI a^* Zamanth 1.300 1.966 1.992 -28 DMI a^* Zamanth 1.550 1.966 1.992 29 DMI a^* Zamanth 1.966 1.992 27 DSI a^* Zamanth 1.966 1.992 27 DSI a^* Zamanth 1.966 1.992 27 DMI a^* Zamanth 1.966 1.992 27 DMI	Can		Körkün	1,500		1.992		DMİ	
du* Göksu 1,050 1,964 1,992 - DMI vyli Göksu 1,100 1,957 1,992 36 DMI eyli Göksu 1,350 1,957 1,992 31 DMI eyli Göksu 1,500 1,951 1,992 31 DMI ağ Zamantu 1,500 1,960 1,992 42 DMI ağ Zamantu 1,300 1,966 1,992 28 DMI ağ Zamantu 1,425 1,966 1,992 28 DMI zamantu 1,550 1,966 1,992 28 DMI sik Zamantu 1,566 1,992 29 DMI sik Zamantu 1,966 1,992 29 DMI	Fek		Göksu	620		1,992		DMİ	
v/ii Göksu 1,100 1,957 1,992 36 DMI evlii Göksu 1,350 1,957 1,992 31 DMI aš 1,500 1,951 1,992 31 DMI aš 2amantu 1,500 1,960 1,992 42 DMI aš Zamantu 1,300 1,960 1,992 28 DMI aš Zamantu 1,425 1,963 1,992 28 DMI tik Zamantu 1,550 1,964 1,992 29 DMI tik Zamantu 1,560 1,964 1,992 29 DMI	Man		Göksu	1,050		1,992		DMI	
eyliGöksu1.3501.9571.99231DMIRGöksu1.5001.9511.99242DMIağZamantı1.3001.9661.992-DMIZamantı1.4251.9651.96228DMIZamantı1.5501.9641.99229DMIsikZamantı1.5851.9661.99229DMIhirZamantı1.5851.9661.99229DMI	Sain		Göksu	1,100		1,992	36	DMİ	
Göksu 1,500 1,951 1,992 42 ağ Zamantı 1,300 1,960 1,992 - Zamantı 1,425 1,963 1,992 28 Zamantı 1,550 1,964 1,992 28 Zamantı 1,550 1,964 1,992 28 zik Zamantı 1,550 1,964 292 29 zik Zamantı 1,585 1,966 292 29 hir Zamantı 1,600 1,964 1,992 27	Tuf		Göksu	1,350		1,992	31		
Zamanti 1,300 1,960 1,992 - Zamanti 1,425 1,965 1,992 28 Zamanti 1,550 1,964 1,992 29 Zamanti 1,585 1,966 1,992 29 Zamanti 1,585 1,966 1,992 27 Zamanti 1,600 1,964 1,992 27	San		Göksu	1,500		1,992	42	DMİ	
Zamanti 1.425 1.965 1.992 28 Zamanti 1.550 1.964 1.992 29 Zamanti 1.585 1.966 1.992 29 Zamanti 1.585 1.966 1.992 29 Zamanti 1.585 1.966 1.992 27	Bak	ač	Zamantı	1,300		a A		DMİ	
Zamantı 1.550 1.964 1.992 29 Zamantı 1.585 1.966 1.992 27 Zamantı 1.600 1.964 1.992 27	Elba		Zamantı	1,425		4.		DMİ	
Zamanti 1,585 1,966 1,992 27 Zamanti 1,600 1,964 1,992 29	Kav		Zamantı	1.550				DMİ	
Zamanti 1.600 1.964 1.992 29	Kaz	ancık	Zamantı	1,585	1 			DSI	
	Õrei		Zamantı	1,600	1,964	1,992	29	DMI	
Pazarören Zamanti 1,500 1,964 1,992 29 DMI -	Pazi		Zamantı	1.500				DMI	

* Station with Pluviograph Control Daily Rainfall

mum Daily and Hourly Rainfall

Table 6.1.1 List of Collected Rainfall Data(2/3)

River Basin EL First Year amanti 1,470 1,95 amanti 1,400 1,96 amanti 1,400 1,96 amanti 1,400 1,96 amanti 1,400 1,96 amanti 1,400 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,740 1,96 amanti 1,670 1,96 - 1,50 1,96 - 1,50 1,96 - - 1,00 1,96 - - 1,136 1,96 - - 1,00 1,96 - - 3,3 1,96 - - 950 1,97 - - 950 1,97 <t< th=""></t<>
Ver Basin anti anti anti anti anti anti
River B Zamantı Zamantı Zamantı Zamantı

* Station with Pluviograph

Table 6.1.2 List of DSI Stream Gauging Stations (Under Operation)

1/2

													ſ
	Station	River	Latitude	Longitude	Elevation	Elevation Catchment Area		Eval	uated D	Evaluated Data Period (Water Year)	f (Water	Year)	
No.	Name				(m)	(km ²)	0661	0 7 61	0561	0961	0261	0861	0661
18-08	Tacin	Tacin	ī	ı	1,536	6.6				1964		1987 198	1661 6861
18-12	Kamışlı	Körkün	. 1	1	1,109	1,065.0					5/61 1/61	1979 1981	1592
18-16	Nergizlik	Uçürge		1	400	121.0					1578		1592
18-17	Daridere	Göksu	-	I	1,542	315.6						1983	1991
18-18	18-18 Hasan Çavuslar	İnderesi	1	ŀ	1,400	136.0						1982	1992
18-19	Feke	Asmaca		. 1	550	619.0						1982	1992
18-20	B. Çakır	Zamantı	•	1	586	7,769.3						1983 86 '88	8
18-21	18-21 Kapuz	Kapuz	-	1	618	394.5						1986 1988	8
18-22	B. Sofulu	Aksu	I		960	98.0						1986	1992
18-23	18-23 Yeniköy	Yağdeğleme		t	870	23.5						1986	1992
18-24	18-24 Çamlıca	Yayla	1	ł	865	173.7						1987 1988	8
18-25	Çamlıca Köp	Zamantı	-	I	860	7,418.0						1987 1988	8
18-26	18-26 Çamlıca Köyü	Zamantı	F	T	850	7,594.1						1987	
18-27	Elekgölü Köp	Ecemiş	T	L.	1,550	1,833.0							
18-28	Çukurbey	Ecemiș	ŀ	ı	ı	1							1
18-29	Değirmenocağı	Zamantı		•	721	7,674.6							
18-30	18-30 Mustafa Oruç	Zamantı	1	1	626	7,754.5				-			
18-31	Göktaş	Zamantı	-		500	8,291.5							
18-32	18-32 Şarköy	Göksu	F	•	1,400	752.4						1989	1992

		r			<u> </u>		1	:						-						·			
			0661	7661 0661	1991 1992	:							. :			·							
	2/2	ar)		19	199		ľ		:	-				•						:			
		er Y∈	0861		.,,,			÷										÷				:	•
		(Wat	0461	• •		1													·				
		niod																	•				
		ita Pe	0961																			•	
		Evaluated Data Period (Water Year)		•				÷															
		aluat	0561															:					
	(uo	Ш	0761			1						÷	•										
	perati			•••••			·													•			
	er Ol		0561																				a t A t
	List of DSI Stream Gauging Stations (Under Operation)	Elevation Catchment Area			35.4	10.9		•				·	•					-					
	tions	ment	(km)	ſ			-						÷.,										
	g Sta	Catch		1				÷.,					:	•									·
	nigin	tion	(115	1,660		•	•	•			1. 1		:		•						1
	ŭ m	Eleva	(m)	1		1,												-					
	Strea	·····									:	•	•						·				
	DSI	Longitude			1	ı				-						•							:
	ist of	<u>ដ</u>						÷			• .									÷.,			
		Latitude				1		•			•		÷				•		2	:			
	e 6.1.	Lati												•				. '		.:	• •		
	Table 6.1.2						ι.				1 . :			:				• •		• •	· .		· ·
		River	•	Demirozu	Deliçay	Bağlama			- 		• •	•			. '	· .							
				Den	Del	Bağ		•															· .
					ā.	••		•					•			1		•••		•			
			Name	4		pınar					:		х 1		•						• •	 	
•		Station	Z	Akgedik	Hocalı	zaklıj			•		· .			•		• •							
		St			4 Hc	18-35 Kazaklipinar		· ·			. † .			•				з ^с					•
			No.	18-33	18-34	18-3,			-	-				•							. :		
							1				:	10.00				· . ·			11	÷.	· · ·		÷

T - 38

.

StationRiverNo.Name18-01EgnerEgnerSeyhan	ver								
Name Eğner		Lautude	Longitude	Elevation	Longitude [Elevation] Catchment Area	ш́	Evaluated Data Period (Water Year)	Period (Water	Year)
Eğner				(m)	(km ²)	0761 0761	0961 0561	0261	0661
	an	,	1 1 1	190	13,780.0		1960 19	1960 1965 1968	
18-03 Sol. Sh. Sul. Kn. Seyhan	an			26	•			•••••	
18-04 Demirköprü Seyhan	an			25	19,376.0		1959 1961	51	
18-05 Hacılı Körkün	ün		-	255	1,454.0		1959 61	1959 61 64 66 71	
18-06 Sekerpinarı Çakıt			-	800	1,234.0		<u>8</u> 1	1961 1962	
18-07 Bakırdağ Zamantı	ıntı			1,297	6,158.0		19	1964 1968	
18-09 Örencik Beypinar	Inar	1	•	1,562	36.0			1966 1979	
18-10 Yeniköy Terece	<u>е</u>	 	3	1,494	26.9			1967	
18-11 Emeğil Zamantı	untı		-	1,451	2,751.2			1967 1971	
18-13 Saydere Saydere	ere			223	16.0				
18-14 Hacıhasanlı Üçürge	ge			222	144.9			1971 1972	
18-15 Göl Gözlem Seyhan	an		•	1	t				

Table 6.1.3 List of DSI Stream Gauging Stations (Closed)

Table 6.1.4 List of EIE Stream Gauging Stations (Under Operation)

0661 1987 1989 1388 1388 1388 1388 1988 1989 1989 1989 1989 1989 1989 1989 1989 Evaluated Data Period (Water Year) 0861 6.61 1974 0L6I 1969 1969 1962 0961 0561 0761 1936 1939 0E6I 1,440.8 2,756.0 2,596.8 1,526.4 602.0 1,896.9 4,242.8 6,334.8 8,698.1 7,718.0 1,065.0 13,846.0 Elevation Catchment Area (km) 665 350 10 170 1,270 1,200 222 347 760 1,107 800 1,451 8 (H) Longitude Zamanti 30-14'-41"N 35-37'-33"E. 37-39'-15"N 35-34'-35"E Eglence 37-21'-50"N 35-11'-35"E Zamantı |37-39'-54"N |35-34'.44"E. Zamanti 37-51'-19"N 35-29'-08"E. 37-06'-23"N 35-06'-26"E Körkün 37-33'-23"N 34-57'-22"E Körkün 37-29'-00"N 35-04'-10"E 37-51'-57"N 36-03'-34"E 37-36'-49"N 35-36'-50"E Körkün [37-17'-44"N]35-09'-04"E 37-22'-19"N 35-29'-03"E Latitude Zamantı River Seyhan Göksu Goksu Göksu Çakıt Name Hacılıköprü 1826 Ergenuşağı Çukurkışla 1827 |Değirmen Himmetli 1829 Kamışlı Gökdere Eğnbük 1830 Karakuz Fraktin Emeğil Üctepe Station 1828 Salbaş 1805 1820 1818 824 1825 1822 1823 1801 ö Z

	я Year)	0661 0861		••••••		1979											6861 1881 1989		1986
	Evaluated Data Period (Water Year)	0261			962 1968		1971 1972			2	1966 1970	1973	2 1974	1966		1962 1966	1964 '66'68 1971 1979 1981	1969 1970	1970
	ated Data P	0961 0561	1954		1955 1962	1956 1961	1953 1955		1953 1955	1962		1955	1962	1954 1	1959 1963	1963	<u>8</u>		
	Evalu	0761	1936	1939 1944	1941	1939													
losed)		0661				1. de													
ng Stations (C	Catchment Area	(km²)	7,558.0	6,788.8	4,389.2	8,698.4	19,352.4	14,416.4	2,925.6	289.2	546.0	2,623.2	2,144.4	14,006.0	1,826.8	137.2	1,582.4	1,220.0	628.8
of EIE Stream Gauging Stations (Closed)	Elevation Ca		1,000	1,265	1,345	347	22	100	80	1,385	254	1,425	1,521	88	125	1,450	150	800	75
List	Longitude	}	- T	1	•	1		1	. 1		1	I	-	P	ł	-	1	1	1
Table 6.1.5	Latitude	<u>:</u>		-	E	•	1	1	1	I	1	•	-	1		-	-	ł	
	River		Zamantı	Zamantı	Zamantı	Zamantı	Seyhan	Seyhan	Çakıt	Ecemiș	Eğlence	Zamantı	Zamantı	Seyhan	Çakıt	Karagöz	Çakıt	Çakıt	Eğlence
	Station	Name	Faraşa	Fraktin	Söğutlü	Ergenuşağı	Taşköprü	Çatalan	Çakıt	Elekgölü	Boztahta	Pınarbaşı	Çerkezkaraboğazı Zamantı	Malıhıdırlı	Salbaşköy	Yukarı Karagöz	Arapali	Şekerpınarı	1821 Sarimehmetli
		No.	1802	1803	1804	1806	1807		1809	1810	1811	1812	1813	1814	1815	1816	1817	1819	1821
•	.									[- 4	41								

Flood	1975	Flood	1980	Flood	1987 Flood
infall Gauging Station	Apr.17 - 23	Apr.25 - May 1	Mar.24 - 30	Apr.2 - 8	Dec.20 - 25
	Avail	able Hourly Rain	afall Records		
Adana	√	√	√	√	\checkmark
Feke	1	√	\checkmark	√ .	√
Karaisalı	√	√ ¹	\checkmark	\checkmark	:√ :
Kozan	\checkmark	√	\checkmark	\checkmark	√
Pozanti	√	√		√	
Pinarbaşı		√ √		√ - <u>-</u>	
Ereğli	√	↓ · · · ·		√	
Ulukışla	√	√		\checkmark	
Niğde		V		√ s _ ² .	
Ado	pted Rainfall Pa	attern for the Rep	resentative Rain	fall Station	
Çatalan	Karaisalı	Karaisalı	Karaisalı	Pozanti	Karaisalı
Karsantı	Feke	Feke	Karaisalı	Pozanti	Feke
Çiftehan	Pozanti	Feke	Karaisah	Pınarbaşı	Karaisalı
Pozanti		\checkmark	Karaisalı	√	Karaisalı
Karaisalı	\checkmark	1	√	√	- V
Kamışlı	Pozantı	Karaisalı	Karaisalı	Pozanti	Karaisalı
Çamardı	Karaisalı	Feke	Karaisalı	Pozanti	Karaisalı
Feke	\checkmark	\checkmark	√	\checkmark	√
Mansurlu	Feke	Kozan	Feke	Feke	Feke
Saimbeyli	Feke	Feke	Feke	Feke	Feke
Kazancık	Ereğli	Feke	Feke	Feke	Kozan
Pınarbaşı	Karaisalı	√ ¹	Feke	√	Kozan
Sıhlı	Karaisalı	Feke	Feke	Feke	Adana
Toklar	Kozan	Feke	Feke	Feke	Feke
Tomarza	Karaisalı	Feke	Feke	Pınarbaşı	Feke
Tufanbeyli	Feke	Feke	Feke	Feke	Kozan

Table 6.2.1 The Results of the Estimate of Hourly Rainfall Patterns

 $\sqrt{}$: with Pluviograph

Multiple Regression Coefficient (ai)	Реке Мадяшич* Заітьсуіі Гиальсуіі Гиальсуі Гомага Гомаго Гомага Гома Гомага Гомага Гома Гома Гома Гома Гома Гома Гома Гом	0.263 0.318 0.129 0.307	0.385	0.496 0.411	0.386 0.250 0.244										
Multiple Regr	*иавточ Кагазаци Кагазаци Кагазаци Кагазаци Кагаза						0.608	0.374	(0.739)			0.425 0.571	0.965	0.273 0.724	0.462
	Сагадап Кагзали Сагадан		0.192			0.973	0.367	0.569	(0.213)	0.681 0.325					0.534
	Sub - basin	i Zamantup to 1822	2 Zamant up to 1806	3 Göksu up to 1801	4 Gölssu up to 1805	5 Zamantı - Göksu joint to Çatalan HWL	6 Eğlence up to 1825	7 Eğlence up to Seyhan R.	(7) (Eğlence up to Çatalan HWL)	8 Zamanti-Göksu after Çatalan HWL	(8) (9 Körktin up to 1820	10 Kittkön up to Seyhan HWL	11 Üçürge	12 Çatalan Brj - Seyhan Brj.

.

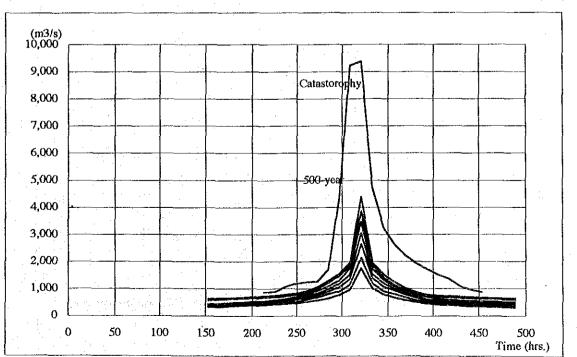
(1	1	3)

	or Flood Runoff Analyses	

		· · · · · · · · · · · · · · · · · · ·			(1/3)
	Table 6.4.1 Comp	parison of the Parar	neter for Flood	Runoff Analyse	S
Basin No.	nya manadari dan kang baripan ing mangan kama dan kang baring mahan akka dala kamatari (kan	'87Flood	'87Flood	'80Flood	'80Flood
iver Channel No.)	Parameter	Case1	Case2	Casel	Case2
1	Area (Km2)	6990	6990	6990	6990
• .	K value	33.5	33.5	33.5	33.5
	p value	0.85	0.85	0.85	0.85
	Tl (hr.)	11	11	3	- 3
	Base flow (m3/s)	31	31	31	31
	f1	0.01	0.1	0.12	0.2
	f2	1	I.	1	1
	Rsa (mm)	200	200	130	130
71)	K value	94092	94092	94092	94092
(1)	A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF	0.695	0.695	0.695	0.695
	p value		43.28	43.28	43.28
~	$\frac{\text{Tl}(\min.)}{(Km^2)}$	43.28		45.28 1833	1833
2	Area (Km2)	1833	1833	40	47
l	K value	47	47	0.7	0.7
	p value	0.7	0.7		the second second second second second second second second second second second second second second second se
	Tl (hr.)	0	3	0	3
	Base flow (m3/s)	14	14	14	14
	f1	0.17	0.2	0.98	0.98
	f2	1	1	1	1
	Rsa (mm)	200	200	130	130
3	Area (Km2)	2298	2298	2298	2298
	K value	33.5	33.5	33.5	33.5
	p value	0.85	0.85	0.85	0.85
1	Ti (hr.)	11	11	11	11
	Base flow (m3/s)	24	24	24	24
	f1	0.132	0.132	0.45	0.45
a a construction de la construct	f2	1	1	1	1
	Rsa (mm)	200	200	130	130
(2)	K value	94233	94233	94233	94233
	p value	0.7	0.7	0.7	0.7
	Tl (min.)	50	50	50	50
4	Area (Km2)	2099	2099	2099	2099
•	K value	28	30	28	28
	p value	0.65	0.65	0.65	0.65
	Ti (hr.)	0.05	3	0.09	0.09
	Base flow (m3/s)		10	10	10
		10		0.85	0.85
	f1	0.25	0.25		C6.U
	f2	1	in the second second second second second second second second second second second second second second second	1	
///>	Rsa (mm)	200	200	130	130
(3)	K value	125000	84000	83000	84000
1	p value	0.79	0.65	0.65	0.65
	T1 (min.)	50	50	50	50
5	Area (Km2)	858	858	858	858
	K value	29	35	29	29
-	p value	0.5	0.65	0.5	0.5
•	Tl (hr.)	1	3	1	1
	Base flow (m3/s)	2.5	2.5	2.5	2.5
	f1	0.7	0.45	0.9	0.9
· .	f2	1	1	1	1
	Rsa (mm)	200	200	130	130
	······	······································	anya ana aka di kata da kata aka ana ana ana ana ana ana ang ang		
an an Ara		na shekar to donto. Na shekar ta shekar			
				: : :	. *
	•				
		T - 44	I .		

Basin No.		'87Flood	'87Flood	'80Flood	'80Flood
(River Channel No.)	Parameter	Case 1	Case2	Casel	Case2
6	Area (Km2)	506	506	506	506
	K value	29.5	. 35	29	29
	p value	0.67	0.67	0.5	0.5
	Tl (hr.)	1	1	3	. 3
	Base flow (m3/s)	3.3	3.3	3.3	3.3
	f1	0.42	0.42	0.9	0.9
-	f2	· 1	1	1	1
	Rsa (mm)	200	200	100	100
(4)	K value	60000	53000	60000	60000
	p value	0.7	0.7	0.7	0.7
	TI (min.)	15	60	15	15
7	Arca (Km2)	167	167	167	167
	K value	45	50	45	45
	p value	0.7	0.68	0.7	0.7
	TI (hr.)	3	3	3	3
-	Base flow (m3/s)	0.5	0.5	0.5	0.5
	f1	0.33	0.24	0.8	0.8
	f2	1	1	1	1
· · · · ·	Rsa (mm)	200	200	100	100
8	Area (Km2)	572	572	572	572
0	K value	45	50	45	45
	p value	0.7	0.68	0.7	0.7
	TI (hr.)	3	3	3	3
	Base flow (m3/s)	0.5	0.5	0.5	0.5
	f1	0.33	0.3	0.5	0.3
	f2				0.8
	and the second second second second second second second second second second second second second second second	1 200	1	1	
	Rsa (mm)	***************************************	200	100	100
(6)	K value	210000	180000	200000	180000
	p value	0.7	0.65	0.69	0.65
~	Tl (mín.)	90	80	90	90
9	Area (Km2)	1427	1427	1427	1427
	K value	25	50	25	25
	p value	0.64	0.7	0.64	0.64
	Tl (hr.)	1	1	3	3
·	Base flow (m3/s)	18.7	18.7	18.7	18.7
	f1	0.11	0.2	0.35	0.35
	f2	ĺ	1	1	1
	Rsa (mm)	300	300	130	130
(5)	K value	60000	80000	80000	80000
	p value	0.7	0.7	0.75	0.7
	<u>T1 (min.)</u>	15	80	60	80
10	Area (Km2)	120	120	120	120
	K value	45	50	45	45
	p value	0.8	0.68	0.8	0.8
e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	Tl (hr.)	3	3	3	3
	Base flow (m3/s)	0.5	0.5	0.5	0.5
	f1 .	0.32	0.24	0.6	0.6
	f2	1	1	1	1
	Rsa (mm)	300	300	100	100

Table 6.4.1	Comparison of the Parameter for Flood Runoff Analyses	


. . .

Basin No.		'87Flood	'87Flo	bod	'80Flood	'80Flood
River Channel No.)	Parameter	Case1	Case	2	Casel	Case2
11	Area (Km2)	263		263	263	26
	K value	45		50	45	5
	p value	0.8		0.68	0.8	0.6
	Tl (hr.)	3		3	3	
	Base flow (m3/s)	- 1		1 .	1	
	f1	0.11	÷ 1,	0.2	0.9	0.
	f2	1		1	. 1	
	Rsa (mm)	280		300	100	10
12	Area (Km2)	435		435	435	43
	K value	40	· · · ·	50	40	- 5
	p value	0.7		0.68	0.7	0.6
* .	Tl (hr.)	3		3	3	
	Base flow (m3/s)	.0	· · ·	0	0	
	fl	0.2	,	0.24	1	
	f2	1		1	1	· · ·
:.	Rsa (mm)	270		270	100	10
13	Arca (Km2)	1769		1769	1769	176
	K value	45		50	45	. 5
	p value	0.7		0.68	0.7	0.6
	Tl (hr.)	3		3	3	:
	Base flow (m3/s)	2		2	2	. •
	- f 1	0.1		0.2	0.9	0.
	f2	1		1	1	
	Rsa (mm)	280		280	100	10

Table 6.4.1 Comparison of the Parameter for Flood Runoff Analyses

		2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	200-Year	500-Year	Catast.
Days	Time	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)
**	0:00									
	24:00									
	48:00									
	96:00									
	120:00									
	144 : 00		, it is							
1st day	153:00	275	320	350	375	400	425	575	625	
1st day	165:00	285	330	375	400	425	450	600	650	
1st day	177:00	300	350	390	425	450	475	624	665	
2nd day	189:00	325	370	410	440	470	495	635	675	
2nd day	201:00	340	385	425	450	485	520	650	700	
3rd day	213:00	360	400	450	475	510	540	675	725	873
3rd day	225:00	375	420	470	.500	550	585	690	740	883
4th day	237:00	400	435	495	535	580	615	720	775	1,077
4th day	249:00	425	470	530	610	650	700	775	825	1,189
5th day	261:00	450	515	600	660	725	790	860	915	1,250
5th day	273:00	475	. 575	690	760	825	925	1,000	1,065	1,260
6th day	285:00	525	640	800	890	985	1,085	1,210	1,280	1,689
6th day	297 : 00	600	780	900	1,065	1,190				4 338
7th day	309 ; 00	740	975	1,160	1,365	1,525	1,735	1,850	1,950	9,226
7th day	321:00	1,175	1,740	2,130	2,650	3,045		•		9,376
8th day	333:00	760	1,000	1,185	1,380	1,535	1,725	1,850	1,950	4,730
8th day	345:00	610	790	900	1,075	1,200	1,300	1,410	1,525	3,234
9th day	357:00	530	675	800	935	1,010	1,100	1,130	1,250	2,619
9th day	369:00	465	575	675	775	860	930	935	1,020	2,214
10th day	381:00	400	500	575	655	735	800	810	865	1,931
10th day	393:00	380	450	500	575	600	700	725	780	1,731
11th day	405:00	355	410	460	520	575	625	690	745	1,523
11th day	417:00	350	380	430	475	530	590	675	725	1,374
12th day	429:00	335	370	425	455	520	575	660	710	
12th day	441:00	325	355	- 400	445	500	555	645	695	975
13th day	453 : 00	310	345	390	430	480	540	630	675	883
13th day	465 : 00	300	330	375	420	475	525	625	665	
14th day	477 : 00	285	320	360	400	455	515	600	650	
14th day	489 : 00	275	300	350	385	435	500	590	640	
Peak Disc	harge	1,175	1,740	2,130	2,650	3,045	3,455	3,850	4,375	9,376
Flood Vo	l. (mil. m3)	538.1	656.4	762.5	870.3	963.7	1,063.3	1,191.5	1,286.4	2,310.4

Table 7.2.1 Flood Hydrograph for Çatalan Dam

.

Dawa										
Days	Time	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	200-Year	500-Year	Catast.
lst day	0 ; 00	20	32	40	46	60	69	80	110	
1st day	6:00	25	35	42	51	62	72	89	119	
1st day	12:00	. 27	37	45	55	65	75	100	129	
1st day	18:00	30	40	50	58	68	80	110	140	
1st day	24:00	35	45	54	64	77	86	122	158	
nd day	30:00	40	50	61	74	89	102	140	170	÷.
nd day	36:00	46	60	75	84	108	129	158	190	
nd day	42:00	55	73	93	110	133	160	182	214	$\{ 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
ind day	48:00	63	88	115	140	165	197	215	255	:
Brd day	54:00	73	106	. 141	175	203	235	260	305	
Brd day	60:00	83	128	167	210	246	280	320	368	
Brd day	66 : 00	97	155	198	253	295	335	390	440	50
Brd day	72:00	120	190	244	312	355	407	480	535	3,3
4th day	78.00	163	245	325	400	445	504	608	682	6,0
4th day	84:00	280	435	550	705	825	955	1,075	1,235	6,7.
4th day	90:00	152	262	340	404	455	515	615	680	5,54
4th day	96:00	112	190	244	308	362	397	485	540	3,12
5th day	102 : 00	91	148	193	247	1 S S S S S S S S S S S S S S S S S S S		395	445	1,5
5th day	108:00	79	120	157	205	244	272	320	365	83
5th day	114:00	. 68	96	130	171	205	228	260	302	4
5th day	120:00	59	80	106	142	168	186	210	250	22
6th day	126 : 00	52	68	87	116	133	150	175	214	
6th day	132:00	45	58	74	93	106	118	155	190	
6th day	138 : 00	40	51	64	77	87	96	140	175	
6th day	144:00	35	47	57	71	79	86	125	162	11.00
7th day	150:00	32	44	55	67	75	82	112	150	÷
7th day	156:00	30	42	52	64	72		100	135	1.1
7th day	162:00	26	38	49	60	68	76	90	123	
7th day	168 : 00	24	35	45	56	63	73	80		e des
	•									
ak Disc		and the second second								
un 17100	harde	280	435	550	705	825	955	1.075	1.235	6.7
í.	harge .(mil. m3)	280 14.1	435 53.4	550 68.7	705 86.0	825 100.8	955 114.0	1,075 138.0	1,235 154.9	
ood Vol	.(mil. m3)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ood Vol	.(mil. m3) 3/s)		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ood Vol	.(mil. m3) 3/s)		53.4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m 7,0	.(mil. m3) 3/s) 600		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ood Vol	.(mil. m3) 3/s) 600		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ood Vol (m 7,0 6,0	.(mil. m3) 3/s) 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m (m 7,0	.(mil. m3) 3/s) 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ood Vol (m 7,0 6,0	.(mil. m3) 3/s) 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
000 Vol (m 7,0 6,0 5,0	.(mil. m3) 3/s) 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ood Vol (m 7,0 6,0	.(mil. m3) 3/s) 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
000 Vol (m 7,0 6,0 5,0	.(mil. m3) 3/s) 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
000 Vol (m 7,0 6,0 5,0	.(mil. m3) 3/s) 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m 7,0 6,0 5,0 4,0	.(mil. m3) 3/s) 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					677
(m 7,0 6,0 5,0 4,0 3,0	.(mil. m3) 3/s) 000 000 000 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m 7,0 6,0 5,0 4,0 3,0	.(mil. m3) 3/s) 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m 7,0 6,0 5,0 4,0 3,0	.(mil. m3) 3/s) 000 000 000 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m) 7,0 6,0 5,0 4,0 3,0 2,6	.(mil. m3) 3/s) 000 000 000 000 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
(m) 7,0 6,0 5,0 4,0 3,0 2,6	.(mil. m3) 3/s) 000 000 000 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
000 Vol (m) 7,0 6,0 5,0 4,0 3,0 2,6	.(mil. m3) 3/s) 000 000 000 000 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
000 Vol (m) 7,0 6,0 5,0 4,0 3,0 2,6	.(mil. m3) 3/s) 000 000 000 000 000 000 000		53.4	68.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Table 7.2.2 Flood Hydrograph for Seyhan Dam

T - 48

- -

Table 7.2.3Catalan Dam Flood Routing for 500-year Flood
(Constant Ratio Operation Qt=600m³/s)

				Sp	illing Out					
Days	Time	Resvr. Inflow (m3/s)	Inflow Vol. (mil.m3)	Open (m)	Coef.	Disch. (m3/s)	Vol.	In/Out Balance (mil.m3)	Resvr. Volume (mil.m3)	RWL (m)
1st day	0:00	625				600			1,644.6	118.60
1st day	12:00	650	27.54	1.02	0.709	602	25.96	1.58	1,646.2	118.62
1st day	24:00	665	28.40	1.01	0.709	598	25.90	2.50	1,648.7	118.66
2nd day	36:00	675	28.94	1.01	0,709	599	25.85	3.09	1,651.8	118.70
2nd day	48:00	700	29.70	1.01	0.710	601	25.93	3.77	1,655.6	118.75
3rd day	60:00	725	30.78	1.01	0.710	604	26.02	4.76	1,660.3	118.82
3rd day	72:00	740	31.64	1.00	0.710	601	26.02	5.62	1,666.0	118.90
4th day	84:00	775	32.72	1.00	0.710	604	26.04	6.68	1,672.6	118.99
4th day	96:00	825	.34.56	0.98	0.711	597	25.96	8.60	1,681.2	119,11
5th day	108:00	915	37.58	0.98	0.709	566	25.14	12.45	1,693.7	119.23
5th day	120:00	1,065	42.77	0.97	0.712	606	25.33	17.44	1,711.1	119.52
6th day	132:00	1,280	50.65	0.94	0.713	600	26.05	24.61	1,735.7	119.8
6th day	144:00	1,550	61.13	0.92	0.714	603	25.98	35.15	1,770.9	120.3
7th day	156:00	1,950	75.60	0.89	0.716	604	26.08	49.52	1,820.4	120.99
7th day	168:00	4,375	136.62	0.82	0.720	598	25.96	110.66	1,931.1	122.42
8th day	180:00	1,950	136.62	0.78	0.724	6()4	25.96	110.66	2,041.7	123.82
8th day	192:00	1,525	75.06	0.76	0.723	580	25.58	49.48	2,091.2	124.4
9th day	204:00	1,250	59.94	0,74	0.730	600	25.50	34.44	2,125.6	124.8
9th day	216:00	1,020	49.03	0.73	0.731	599	25.90	23.13	2,148.8	125.12
10th day	228:00	865	40.72	0.73	0.731	603	25.96	14.76	2,163.5	125.3
10th day	240:00	780	35.53	0.73	0.732	605	26.09	9.44	2,173.0	125.4
11th day	252:00	745	32.94	0.72	0.732	599	26.01	6.93	2,179.9	125.5
11th day	264:00	- 725	31.75	0.72	0.732	601	25.92	-5.83	2,185.7	125.5
12th day	276:00	710	31.00	0.72	0.732	602	25.98	5.02	2,190.7	125.6
12th day	288:00	695	30.35	0.72	0.732	603	26.03	4.32	2,195.1	125.6
13th day	300:00	675	29.59	0,72	0.733	604	26.07		2,198.6	125.7
13th day	312:00	665	28.94	0.72	0.733	604	26.10		2,201.4	125.7
14th day	324:00	650								
14th day	336:00	640								
		4,375	1,230.1				673.3		2,201.4	125.7
							Stored	Volume=	556.8	

Table 7.2.4	Çatalan Dam Flood Routing for 500-year Flood
(0	Constant Ratio Operation Qt=800m ³ /s)

				Sp	illing Out	flow	~ ~ ~	1	D	
Days	Time	Resvr. Inflow (m3/s)	Inflow Vol. (mil.m3)	Open (m)	Coef.	Disch. (m3/s)	Outflow Vol. (mil.m3)	Balance (mil.m3)	Resvr. Volume (mil.m3)	RWL (m)
1st day	0 ; 00	625				625	***==*==***		1,644.6	118.60
1st day	12:00	650	27.54	1.06	0.708	623	26.97	0.57	1,645.2	118.61
1st day	24:00	665	28.40	1.07	0.708	630	27.07	1.33	1,646.5	118.63
2nd day	36:00	675	28.94	1.07	0.708	631	27.22	1.72	1,648.2	118.65
2nd day	48:00	700	29.70	1.07	0.708	632	27.27	2.43	1,650.7	118.68
3rd day	60 : 00	725	30.78	1.07	0.708	634	27.34	3.44	1,654.1	118.73
3rd day	72:00	740	31.64	1.06	0.709	631	27.31	4.33	1,658.5	118.79
4th day	84:00	775	32.72	1.06	0.709	634	27.31	5.41	1,663.9	118.87
4th day	96:00	825	34.56	1.06	0.709	638	27.47	7.09	1,671.0	118.97
5th day	108:00	915	37.58	1.05	0.710	638	27.55	10.03	1,681.0	119.11
5th day	120:00	1,065	42.77	1.05	0.710	645	27.71	15.05	1,696.0	119.31
6th day	132:00	1,280	50.65	1.05	0.711	657	28.14	22.51	1,718.6	119.62
6th day	144:00	1,550	61.13	1.04	0.712	668	28.62	32.51	1,751.1	120.06
7th day	156:00	1,950	75.60	1.04	0.713	690	29.33	46.27	1,797.3	120.68
7th day	168:00	4,375	136.62	1.14	0.713	805	32.28	104.34	1,901.7	122.05
8th day	180:00	1,950	136.62	1.07	0.716	801	34.68	101.94	2,003.6	123.34
8th day	192:00	1,525	75.06	1.05	0.717	803	34.64	40,42	2,044.0	123.84
9th day	204:00	1,250	59.94	1.04	0.718	805	34.73	25.21	2,069.2	124.16
9th day	216:00	1,020	49.03	1.03	0.718	803	34.74	14.29	2,083.5	124.33
10th day	228:00	865	40.72	1.02	0.718	798	34.59	6.13	2,089.7	124.41
10th day	240:00	780	35.53	1.02	0.718	798	34.49	1,04	2,090.7	124.42
11th day	252:00	745	32.94	1.02	0.718	798	34.48	-1.54	2,089.2	124.40
11th day	264:00	725	31.75	1.02	0.718	797	34.45	-2.70	2,086.5	124.37
12th day	276:00	710	31.00	1.03	0.718	803	34.56	-3.56	2,082.9	124.32
12th day	288:00	695	30.35	1.03	0.718	801	34.65	-4.30	2,078.6	124.27
13th day	300:00	675	29.59	1.03	0.718	800	34.58	-4.99	2,073.6	124.21
13th day	312:00	665	28.94	1.03	0.718	797	34,49	-5.55	2,068.1	124.14
14th day	324:00	650								
14th day	336:00	640								
	·	4,375	1,230.1				806.7	**	2,090.7	124.42

Stored Volume=

446.1

Table 7.2.5Çatalan Dam Flood Routing for 500-year Flood
(Constant Ratio Operation Qt=1,000m³/s)

	. •			Sj	silling Ou	ttlow				
Days	Time	Resvr. Inflow (m3/s)	Inflow Vol. (mil.m3)	Open (m)	Coef.	Disch. (m3/s)	Outflow Vol. (mil.m3)	In/Out Balance (mil.m3)	Resvr. Volume (mil.m3)	RWL (m)
1st day	° 0 : 00	625			•••••••	625			1,644.6	118.60
1st day	12:00	650	27.54	1.07	0.708	629	27.09	0.45	1,645.1	118.61
1st day	24:00	665	28:40	1.07	0.708	629	27.18	1.22	1,646.3	118.62
2nd day	36:00	675	28.94	1.07	0,708	631	27,22	1.73	1 648.0	118.65
2nd day	48:00	700	29.70	1.08	0.708	637	27.39	2.31	1,650.3	118.68
3rd day	60:00	725	30.78	- 1.07	0.708	634	27.46	3.32	1,653.7	118.73
3rd day	72:00	740	31.64	1.07	0.709	636	27.43	4.22	1,657.9	118.78
4th day	84:00	775	32.72	1.07	0.709	639	27.54	5.18	1,663.1	118.86
4th day	96:00	825	34.56	1.07	0.709	643	27.69	6.87	1,669.9	118.95
5th day	108:00	915	37.58	1.08	0.709	654	28.01	9.58	1,679,5	119,08
5th day	120:00	1,065	42.77	1.09	0.709	667	28.54	14.23	1,693.7	119.28
6th day	132:00	1,280	50.65	1.11	0,709	691	29.33	21.32	1,715.1	119.57
6th day	144:00	1,550	61.13	1.13	0.710	719	30.46	30.67	1,745.7	119.99
7th day	156:00	1,950	75.60	1.15	0.711	755		43.75	1,789.5	120.58
7th day	168:00	4,375	136.62	1.45	0.709	1,002	37.95	98.67	1,888.2	121.87
8th day	180:00	1,950	136.62	1.37	0.711	1,001	43.27	93.35	1,981.5	123.06
8th day	192:00	1,525	75.06	1.35	0.712	-1,004	43.32	31.74	2,013.3	123.46
9th day	204:00	1,250	59.94	1.33	0.713	998	43.25	16.69	2,029.9	123.67
9th day	216:00	1,020	49.03	1.33	0.713	1,001	43.19	5.84	2,035,8	123.74
10th day	228:00	865	40.72	1.33	0.713	1,000	43.23	-2.51	2,033.3	123.71
10th day	240:00	780	35.53	1.34	0.712	1,003	43.27	-7.74	2,025.5	123.61
11th day	252:00	745	32.94	1.34	0.712	998	43.23	-10.29	2,015.2	123.49
11th day	264:00	725	31.75	1.35	0.712	999	43.14	-11.39	2,003.9	123.34
12th day	276:00	710	31.00	1.36	0.712	1,000	43.18	-12.18	1,991.7	123.19
12th day	288:00	695	30.35	1.37	0.711	1,000	43.20	-12.85	1,978.8	123.03
13th day	300:00	675	29.59	1.38	0.711	1,000	43.19	-13.60	1,965.2	122.86
13th day	312:00	665	28.94	1.39	0.710	999	43.16	-14.22	1,951.0	122.68
14th day	324:00	650								
14th day	336:00	640								
		4,375	1,230,1	•			923.7		2,035.8	123.74

Stored Volume≈

391.2

Table 7.2.6Çatalan Dam Flood Routing for 500-year Flood
(Constant Ratio Operation Qt=1,200m³/s)

		D	1.9	Sp	illing Out	low	Outflow	In/Out	Resvr.	
		Resvr. Inflow	Inflow Vol.	Open	Coef	Disch.	Vol.	Balance	Volume	RWL
Days	Time	(m3/s)	(mil.m3)	(m)	Cuci.	(m3/s)		(mil.m3)	(mil.m3)	(m)
1st day	0:00	625				.625			1,644.6	118.60
1st day	12:00	650	.27.54	1.07	0.708	629	27.09	0.45	1,645.1	118.61
1st day	24:00	665	28,40	1.07	0.708	629	27.18	1.22	1,646.3	118.62
1st day	36:00	675	28.94	1.07	0,708	631	27.22	1.73	1,648.0	118.65
1st day	48:00	700	29.70	1.08	0.708	637	27.39	2.31	1,650.3	118.68
2nd day	60:00	725	30.78	1.08	0.708	639	27.57	3.21	1,653.5	118.72
2nd day	72:00	740	31.64	1.08	0.708	641	27.66	3.99	1,657.5	118.78
2nd day	84:00	775	32.72	1.08	0.709	644	27.77	4.95	1,662.5	118.85
2nd day	96:00	825	34.56	1.09	0,709	654	28.04	6.52	1,669.0	118,94
2nd day	108:00	915	37.58	1.11	0.708	670	28.59	9.00	1,678.0	119.06
3rd day	120:00	1,065	42.77	1.13	0.709	689	29.36	13.41	1,691.4	119.25
3rd day	132:00	1,280	50.65	1.18	0.708	729	30.64	20.01	1,711.4	119.52
3rd day	144:00	1,550	61.13	1.22	0.708	770	32.38	28.74	1,740.2	119,91
4th day	156:00	1,950	75.60	1.28	0.708	-831	34.57	41.03	1,781.2	120.47
4th day	168:00	4,375	136.62	1.78	0.704	1,202	43.91	92.71	1,873.9	121.69
5th day	180 : 00	1,950	136.62	1.69	0.707	1,205	52.00	84.62	1,958.5	122.77
5th day	192:00	1,525	75.06	1.66	0,708	1,201	51.97	23,09	1,981.6	123.07
6th day	204;00	1,250	59.94	1.65	0.708	1,199	51.83	8.11	1,989.7	123.17
6th day	216:00	1,020	49.03	1.65	0.708	1,197	51.75	-2.72	1,987.0	123,13
7th day	228:00	865	40.72	1.66	0.708	1,197	51.70	-10.98	1,976.0	123.00
7th day	240:00	780	35.53	1.68	0.707	1,200	51.76	-16.23	1,959.8	122.79
8th day	252 ; 00	745	32.94	1.70	0.707	1,200	51.83	-18,89	1,940.9	122.55
9th day	264:00	725	31.75	1.72	0.706	1,199	51,82	-20.07	1,920.8	122,29
10th day	276:00	710	31.00	1.75	0.705	1,203	51.90	-20,90	1,899.9	122.02
11th day	288:00	695	30.35	1.77	0.704	1,199	51.90	-21.55	1,878.4	121.75
12th day	300:00	675	29.59	1.80	0.703	1,201	- 51.85	-22.26	1,856.1	121.46
13th day	312:00	665	28.94	1.83	0.702	1,202	51.90	-22.95	1,833.2	121.16
	324:00	650							ni an i	1
	336:00	640								
		4,375	1,230.1				1,041.6		1,989.7	123.17
		1 - 11 					Stored	Volume=	345.1	

•

.

	Adj.Res. Vol.	(mil.m3) 5 1,505.2 2 1,477.2	1,572.3 1,478.7	1,469.6 1,699.4	2,099.1 2 139.0	2,138.6	1,938.1	1,587.3	
1. · · · ·	1	(m) (116.6 116.2	117.6	116.1 119.4	124.5	125.0	122.5	117.8	
		6.5	117.6 116.2	116.1 119.4	124.5 125.0	125.1	122.5	117.8	
۲. ۳. ۳.	5 I.	(mil.m3) (m) 1,505.2 11 1,477.2 11	l, <i>5</i> 72.3 l,478.7	1,469.6 1,699.4	2,099.1 2,126.0	2,150.0	1,938.1	1,587.3	
		E	95.1 1. -93.6 1.	-9.1 I. 229.8 I.	399.8 2, 82.0 2.		-200.5 1,		
	1	E _							ered a t
	HPP Dis.	(m3/s) 101.1 101.1	101.1 199.4	199.4 199.4	199.4 199.4	101.1	101.1	101.1	142.1
Dam	Adj.Res. Vol.	(mil.m3) 1,398.7 1,398.7	1,467.0	1,415.3 1,671.8	2,097.5 2,139.0	2,124.1	1,896.8	1,001.1 1,493.4	
atalan		15.0 15.0	116.0 1	115.3 1 119.0 1	124.5 2		122.0 1		
for Ç		(<u>4</u> 2 8 6 2 8	116.0 1 115.0 1	115.3 1 119.0 1	124.5 I		122.0	. •	
Curve	Cal. RWL	E							
Rule	Rsv. Vol.	(mil.m3) 1,384,4 1,344.8	er en er	1,415.3	2,097.5		1,896.8		
servoii	Vol	(mil.m3) -109.0 -53.9	68.3 -66.8	15.1 256.5	425.7	-14.9	-227.3	-167.8	·
ive Ret	HPP Dis.	(m3/s) (mil.m3) 111.1 -109.0 111.1 -53.5	111.1 189.4	189.4 189.4	189.4 189.4	111.1	111.1	111.1	143.7
Table 7.3.1 Alternative Reservoir Rule Curve for Çatalan Dam	1	- Im 10	9.7	0.3 6.3	4.0	5,4	5.8	3.4	
.1 Al	Adj.Res. Vol	(mil.m3) 9 1,737.3 1 1,605.6	5 1,501.2	1 1,610.3 5 1,786.3	3 1,997.4	•		3 1,843.4	
ole 7.3	Adj. RWL	(m) 119.9 118.1		118.1 120.5	123.3		122.6		
	Cal. RWL	(m) 3 119.9 6 118.1	115.0	118.1	123.3	123.1	122.6	121.3	
		il.m3) 1,737.3 1,605.6	1,399.7	1,610.3	1,997.4	1,985.4	1,945.8	1,843.4	
	Rsv. Vol.	(mil.m3) (mil.m3) -106.1 1,737. -131.7 1,605.		109.0 176.0	211.2	-	-39.5	-61.6 -67.6	
с.		10 -	213.5 -2 126.6 1	150.6 1 219.5 1	272.2 2	•	-		143.7
	HPP Dis.	(m3/s) 110.(141.	12	21	51		4 (n (-	2 1
	CTLN	(m3/s) 7 70.4 6 90.3	136.6 164.5	195.6 285.2	353.6	105.4	26.2	4.25.1 46.4	143.9
		(m) (120.7 118.6	118.6 118.6	118.6	125.0	125.0	125.0	125.0	
	Ţ	Oct. Nov.	- T	Feb. Mar.	Apr. Mav	Jun.	Jul.	Aug. Sep.	Ave

No.	Name of Station	Kind of Station	Hyo	irometeorologi	cal Gauging I	tems
	1		Rainfall	Temperature	Water Level	Reservoir
	Seyhan River Basin			 		
1	Çamardı	RG Station	\checkmark			
2	Çiftehan	RG Station	\checkmark			· .
3	Pozantı	RG/TP Station	\sim	\checkmark	:	
4	Kamışlı	RG/TP Station	\checkmark	\checkmark		
5	Karaisalı	RG Station	\checkmark		:	
6	Karsantı	RG/TP Station	\checkmark	\checkmark		
7	1825	WL Station			√	
8	1820	WL Station		•	\checkmark	,
9	1818	WL Station		:	√	
10	1828	WL Station			°√	* - -
11	Seyhan dam	WL Station		· ·		\checkmark
	Çatalan dam	RG/WL Station	\checkmark			: √
	Zamantı River Basin					
13	Kazancık	RG Station	\checkmark		н. Н	
14	Pınarbaşı	RG Station	√ .			
	Toklar	RG Station	\checkmark			·
16	Tomarza	RG/TP Station	1	\checkmark	:	
17	Şeyhli	RG/TP Station	\checkmark	\checkmark	÷	
	1822	WL Station		5	\checkmark	
19	1806	WL Station			• • • • • • • • • • • • • • • • • • •	
	Göksu River Basin					
20	Tufanbeyli	RG/TP Station		√ ,		
	Saimbeyli	RG Station	√	· · ·		
	Feke	RG Station	\checkmark			
	Mansurlu	RG/TP Station	√	1		
	1801	WL Station			v √, st	
	1805	WL Station			1	
						· · · · · · · · · · · · · · · · · · ·
	Abbreviation				e National de la composition N	
	RG: Rainfall					
	TP: Temperature		14			с.
	WL: Water level					and the second

Table 8.2.1 Hydrometeorological Gauging Items To Be Collected

Month	l c î	Sud	3-4	414 5	144	611 17	741	Sth. 0	40	10%	11461	1044 1	1244 11	1 442 1 4	1544 16	16% 17	1741 1041	L 104L	100	7*10	1.00
	7 × 1	- 4	2 2 2			-1													3	11177	744
1. Detailed Design and Tender																					
(1) Detailed design					T								 	 .					 		
					_							-	_				_				
(2) Supplemental radio wave propagation test	21.																				:
(3) Tender documentation	·. · .			Ţ																	
(4) Tender processing						 Т															
2. Civil construction work	at the		. ,				 					··· ·	<u> </u>						 	 	
(1) Preparatory work						<u> </u>		T	 	 .	·					! 		ļ			
(2) Civil construction work		-													·			 			
3. Equipment Manufacture and Installation/Adjustment Work												· -									
(1) Design								Ţ		·											
(2) Equipment manufacture	:							1													
(3) Inspection	- 44 - 4				 								т	· .			· .				
(4) Transportation and customs clearance processing			· ·					· · ·					5	♦ FOB	T						
(S) Equipment installation									••••••												
(6) Equipment adjustment													·				1			Takir	Taking Over
(7) Acceptance test											· · · · · · · · · · · · · · · · · · ·								L .		
4. Education and Training																					
(1) Overseas OIT								:	· · ·				т.	} 	· · · · · · · · · · · · · · · · · · ·						
(2) Site OIT			. 				 						 _						 		

T - 55

rect Construction Cost uipment Cost lemetering Facility Ita Processing Facility Ita Display Facility ultiplex Radio Communication Facility sice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	Unit : \$ 1,702,290 1,216,960 1,609,790 1,486,530 377,180 1,500,660 473,590 279,770 357,400 9,004,170 0	0 0 0 0	
uipment Cost lemetering Facility nta Processing Facility nta Display Facility ultiplex Radio Communication Facility bice-based Radio Communication Facility bice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost	1,216,960 1,609,790 1,486,530 377,180 1,500,660 473,590 279,770 357,400 9,004,170	0 0 0 0 0 0 0 0 0 0	
lemetering Facility ta Processing Facility ta Display Facility ultiplex Radio Communication Facility bice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	1,216,960 1,609,790 1,486,530 377,180 1,500,660 473,590 279,770 357,400 9,004,170	0 0 0 0 0 0 0 0 0 0	
ta Processing Facility ta Display Facility ultiplex Radio Communication Facility pice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	1,216,960 1,609,790 1,486,530 377,180 1,500,660 473,590 279,770 357,400 9,004,170	0 0 0 0 0 0 0 0 0 0	
ta Display Facility ultiplex Radio Communication Facility pice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost	1,609,790 1,486,530 377,180 1,500,660 473,590 279,770 357,400 9,004,170	0 0 0 0 0 0 0 0	
ultiplex Radio Communication Facility Dice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	1,486,530 377,180 1,500,660 473,590 279,770 357,400 9,004,170	0 0 0 0 0 0 0	
vice-based Radio Communication Facility wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost	377,180 1,500,660 473,590 279,770 357,400 9,004,170 0	0 0 0 0 0 0	
wer Supply Facility are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	1,500,660 473,590 279,770 357,400 9,004,170 0	0 0 0 0 0	
are Units and Parts st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	473,590 279,770 357,400 9,004,170 0	0 0 0	
st Equipment and Maintenance Vehicle aterials Sub-total vil Construction Cost wer Construction Cost	279,770 357,400 9,004,170 0	0 0 0	
aterials Sub-total vil Construction Cost wer Construction Cost	357,400 9,004,170 0	0	
Sub-total vil Construction Cost wer Construction Cost	9,004,170	0	
vil Construction Cost wer Construction Cost	0		
wer Construction Cost	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,041,400	
and the second second second second second second second second second second second second second second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,041,400	
ousing Construction Cost	~		
		5,229,700	
ectricity Service Lines Construction Cost	0	3,889,500	
her Attached Construction Cost	0	7,372,800	
Sub-total	0	17,533,400	
uipment Installation and Adjustment Cost			
T Private Line Initiate Installation Cost	0	18,400	
anpower Cost	1,002,570	780,500	
achine Cost	89,750	0	
hicles for Installation	0	1,189,000	
Sub-total	1,092,320	1,987,900	
and Transportation Cost			
and Transportation Cost	0	47,600	
loading and Warehouse Cost	0	176,500	(9,5408
b-total	0	224,100	
	0	6,600	
	0	197,454	
gineering Fee	1,170,200	0	
aining Fee	148,580	0	Overseas/Site OJ
	554,870	2,630,010	
	er Attached Construction Cost Sub-total hipment Installation and Adjustment Cost T Private Line Initiate Installation Cost npower Cost chine Cost hicles for Installation Sub-total and Transportation Cost toading and Warehouse Cost b-total hd Acquisition Cost cject Overhead Fee by Government gineering Fee ining Fee cvisional Preliminary Fee Grand Total	ner Attached Construction Cost0Sub-total0nipment Installation and Adjustment CostI Private Line Initiate Installation Cost0npower Cost1,002,570chine Cost89,750nicles for Installation0Sub-total1,092,320and Transportation Cost0toading and Warehouse Cost0o-total0nject Overhead Fee by Government0gineering Fee1,170,200ining Fee148,580wisional Preliminary Fee554,870Grand Total11,970,140te: Project cost should be estimated using following foreign ex	ner Attached Construction Cost07,372,800Sub-total017,533,400nipment Installation and Adjustment Cost018,400T Private Line Initiate Installation Cost018,400npower Cost1,002,570780,500chine Cost89,7500nicles for Installation01,189,000Sub-total1,092,3201,987,900and Transportation Cost047,600loading and Warehouse Cost0176,500o-total0224,100nd Acquisition Cost06,600iject Overhead Fee by Government0197,454gineering Fee1,170,2000ining Fee148,5800wisional Preliminary Fee554,8702,630,010Grand Total11,970,14022,579,464te: Project cost should be estimated using following foreign exchange currency rate

Table 9.2.1 Project Cost

(2) 1\$=18,500 TL as of Febuary, 1994

-
.≍
51
<u>ون</u>
CA.
æ.
T)
×.
Ы
1
Ο.
· 🕳
E.
2
1
0
- G
- <u>-</u>
. .
دە
· C.
AĀ.
)
-
ΰĥ.
×
Υ.
C)
- >
<u></u>

27
~
÷.,
دە
-
£.
-
Ħ.
•

	Ouantity	Unit Price	Table ! Total	0.2.2 Cost	Breakdow	Table 9.2.2 Cost Breakdown of Each Station Total Cost Comp	Station Lost Composi	Station Cost Composition of Fach Station Facility	ion Facility		:	
		3	\$	Telemetering	Processing	Multiplex	Contact	Displaying P	1.2	Spare Parts	Test	Installation
				Facility	Facility	Facility	Telephone	Facility	Facility	and Units	Equipment	Materials
1. Control Center		2,955,991	2,955,991	0	1,216,960	171,190	111,813	1,254,947	201.081	O	0	
2. Seyhan Dam Office	1	568,068	568,068	255,861	0	110,632	0	62,454	139,121	0	Ð	·.
3. Çatalan Dam Office	-	475,686	475,686	79,112	0	206,722	0	62,453	127,399	0	0	
4. Data Monitoring Station	ę	111,904	335.712	. 0	0	0	0	76,648	35,256	ΰ	• 0	
5. Multiplex Repeater Station (Zlyaret T.)	***	333,196	333,196	0	0	243,910	0	0	89,286	0	. 0	
6. Multiplex Repeater Station (Karlık T.)	1	282.253	282,253	0	0	192,967	0	0	89,286	0		0
7. Multiplex Repeater Station (Nemce T.)	***	234,112	234,112	0	0	144,826	0	0	89,286	0		0
8. Multiplex Repeater Station (Feke Dağı)		276,850	276,850	0	0	187,564	• •		89,286	Ô	0	
9. Multiplex Repeater Station (Meydancik)	1	224,881	224,881	Ċ	0	135,595	0	0	89,286	0	Ū	
10. Multiplex Repeater Station (Kilkoyak T.)		182,409	182,409	0	0	93,123	0	0	89,286	0)	0
11. Telemetering Repeater Station (V-V)	Ś	63,049	315,245	49,313	0	0	Q	0	13,736	0	Ŭ	0
12. Telemetering Repeater Station $(\mu$ -V)	Ţ	44,753	179,012	44,753	0	0	0	0	0	0	0	_
13. Telemetering Repeater Station (Cross)	64	107,820	215,640	89,505	0	o	0	0	18,315	0	0	_
14. Water Lovel Gauging Station	8	39,533	316,264	32,482	0	0	0	0	1,051	0	0	_
15. Rainfall Gauging Station	80	33,644	269,152	26,593	0	0	0	0	150'2	0	0	
16. Rainnfall & Temperature gauging Station	4	55,183	386,281	41,447	0	0	0	0	13,736	0	o	_
17. UHF Repeater Station & Village's Head		134,286	134,286	0	0	0	111,392	0	22,894	0	0	_
18. Doğ ankent/Y neice Office	77	23,086	46,172	0	0	0	14,020	•	9,066	0	0	
19. Office of Village's Head	4	40,550	162,200	0	0	0	31,484	0	9,066	0	0	
20. Spare Parts and Units		473,590	473,590	0	0	0	0	0	0	473,590	0	
21. Test Equipment and Maintenance Car	, H	279,770	279,770	0	0	0	0	0	0	0	279,770	
22. Installation Materials	щ	357,400	357,400	0	0	•	0	0	C	0	0	0 357,400
					·	:			:			
Grand Tota)			0.004 170									

(Unit: USD)		6	0 279,211	279,211							·		it: 1,000 TL)	Economic	Value(USD)	8,756,039	1,016,947	210,566	1,068	53,258	87,277			145,	450	13,473	1,137,952	144,486	719,040	12,147,605	· · ·
		œ	0 279,211	279,211	18	0 279,211	279,211						/alt	icial [VAT]	(dSD)	8,756,039	,196,408 15%	2,924	1,256 15%	3,258 [7,277]	81,133 15%		1,636 15%	450	13,473	37,952	44,486	719,040	365,656	
		1	0 279,211	279,211	171	0 279,211	279,211						C		Equiv Value (USD)			1 1				,133	3,248	17		13,473	1,13	14		528,687 12,36	
		9	0 279,211	279,211	16	279,211	279,211								USD		[1,]		077 {	123 🖡		∞	36,416 3		5,049	151,063 13				441 1,	vely.
wo		5	0 -	279,211 2	15	0 211	211				.*	ţ.		estic	e Deflated		13	1,5	1	59		 								17,139	s respectively
Financial Cash Flow	Year	4			14	0	211 279,					Investment Cost			TT		17,533,400	1,987,900	18,400	780,5		1,189,000	47,600		6,6	197,454			2,630,010		1.0283
÷		3			13 I car	0 11 279,2	11 279,21			•					Val. Deflated									500 171,636						171,636	071 and
Table 10.2.1				279,211		279,21	279,21					Table 10.2.2			I USD	5,039		2,219		4,942	87,277			176,500			137,952	144,486	539,579		st are 1.307
		2	0 279,211	279,211	12	0 279,211	279,211			- - - -	•. •			Foreign		170 8,756,0		320 1,062,2									1,	 	554,870 53	11,640,2	Foreign Co
, , ,		 	12,202,646 0	12,202,646	11	0 279,211	279,211					·			USD Value	9,004,170		1,092,320		1,002,570	68	-					1,170,200	148	554		tic Cost and
		0		1,137,952 1	10	0 279,211	279,211	13,340,598	4,746,587	16,072,072	3.0%			r					istallation			ation	n	ehouse							*Deflators for Domestic Cost and Foreign Cost are
· · · · · ·	Item		Inv. Cost 1. O&MCost	Total 1		Inv. Cost O&MCost		SimpleSum 18 Inv Cost 13			DiscountRate			Item		Equipment	Civil Works	Installation	PIT Private Line Installation	Manpower	Machine	Vehicles for Installation	Inland Transportation	Unloading and Warehouse	LandAcquisition	Overhead	Engineering	Training	Provisional	Total	*Deflator

T - 58

Table 10.2.3 O&M Cost

U

ltem	TLV alue	Deflated	Financial	VAT	Economi
	(1,000)	(1,000)	-		
Personnel	1,968,000	1,505,623	134,288		134,2
Fuel	137,120	104,904	9,357	15%	6.7
Repair Parts	208,460	159,483	1	15%	12,0
VehicleFuel	19,550	14,957		2	1.1
PTT Private	755,000	577,615	51,518	15%	43,7
Electricity	470,000	359,575	32,071	15%	27,20
Management	533,720	408,324	36,419		36,4
Total	4,091,850	3,130,480	279,211		262,9
Pef	*Deflator for Domestic Cost is	estic Cost is	1.3071.		-

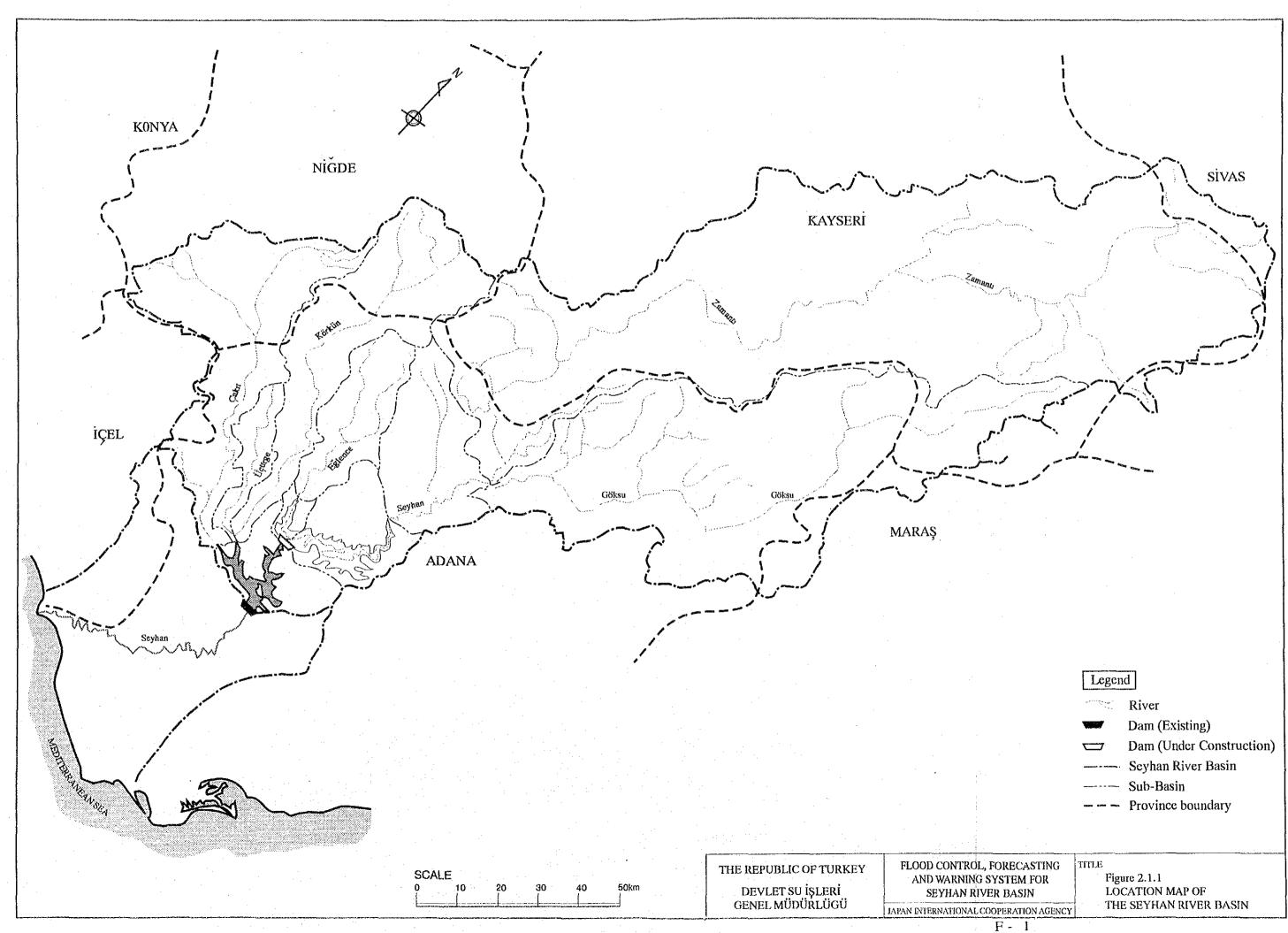
Table 10.2.4 Cost Reduction

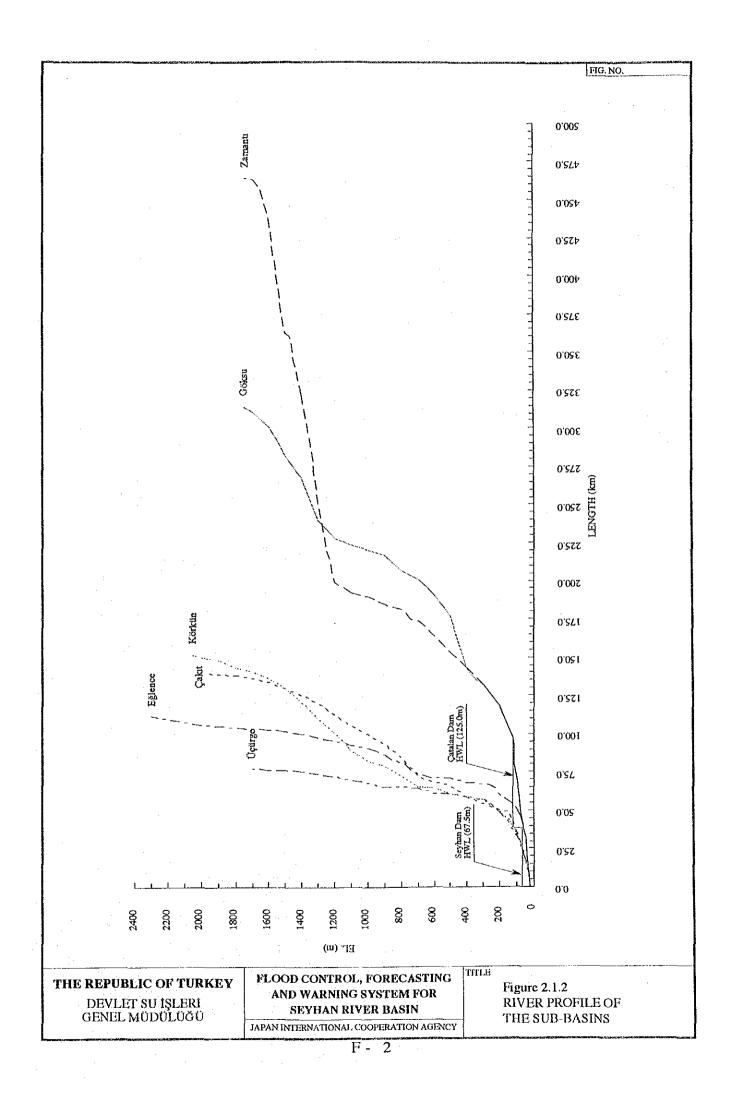
Item	Unit Cost	Number	TLValue	Deflated	Financial	Economic
	(TL1,000)		(1,000)		Value(USD) Value(USD)	Value(USD)
Record Reading	117,600	×	940,800	719,761	64,196	64,196
Total			940,800	719,761	64,196	64,196
*Deflator for Domestic Cost is 1.307	mestic Cost is	1.3071.				

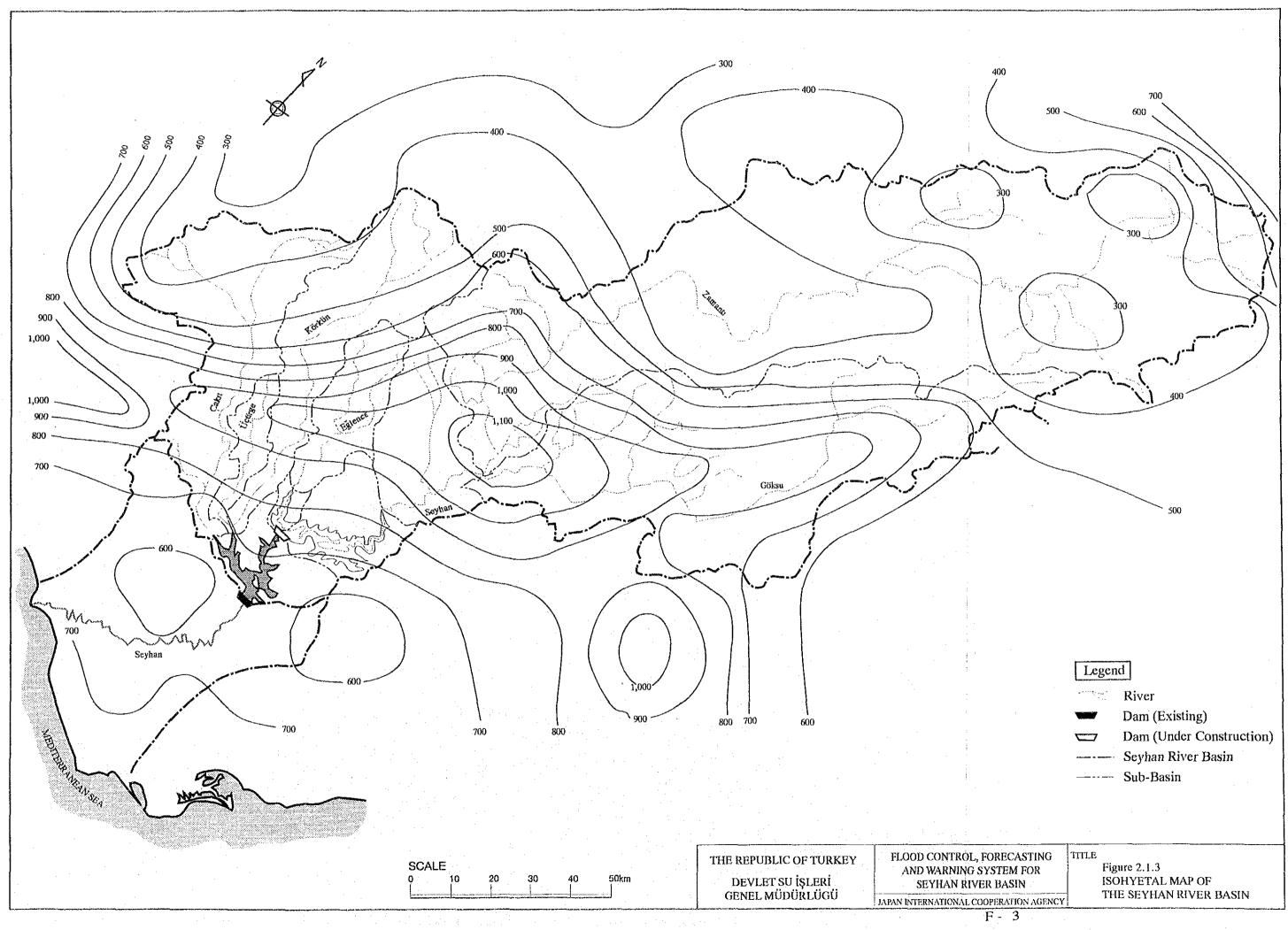
	Table 10.2.5 Expected Inundation Damage Area and Economic Loss by Discharge from the Seyhan Dam (Unit: da for land &	Expected Inunc	lation Damage	Area and Ec	conomic L	oss by Dis	charge fron (1	om the Seyhan Dam (Unit: da for land & mill TL for Loss)	n Dam land & m	ill TL for	Loss)
Item			Discharge	Discharge Volume from the Seyhan Dam (cub. m/s	m the Sey	han Dam (c	\sim				
	500 550 0	600 650	700 750	800	850	300 · 30	800 850 900 950 1,000 1,050 1,100 1,150 1,200	1,050	1,100	1,150	1,200
Right Bank	0 2,557	4,062 5,567	7,071 8,57	6 10,081	11,586	3,090 14,	595 16,10	0 17,059	18,017	18,976	9,934
LeftBank	0 7,361 8	8,683 10,005	5 11.327 12,649 13,970 15,292 16,614 17,936 19,258 19,400 19,542 19,683 19,825	9 13,970	15,292 1	6,614 17,	936 19,25	8 19,400	19,542	19,683	9,825
TotalLand	0 9,918 1.	9,918 12,745 15,571	18,398 21,225 24,051 26,878 29,705 32,531 35,358 36,458 37,559 38,659 39,759	5 { 24,051 }	26,878 2	9,705 32,	531 35,35	8 36,458	37,559	38,659] :	39,759
RB Loss	0 1,016	1,848 2,746	3,708 4,42	3 5,203	6,049	6,960 7,	936 8,97	8 9,683	10,410	11,160	11,933
LB Loss	0 4,971 6	5,583 8,31	$1 \mid 10,152 \mid 12,048 \mid 14,057 \mid 16,180 \mid 18,417 \mid 20,767 \mid 23,230 \mid 24,008 \mid 24,790 \mid 25,577 \mid 26,369 \mid 24,790 \mid 25,577 \mid 26,369 \mid 24,790 \mid 25,577 \mid 26,369 \mid 25,577 \mid 26,369 \mid 25,577 \mid 26,369 \mid 25,577 \mid 25,577 \mid 26,369 \mid 25,577$	8 14,057	16,180 1	8,417 20,	767 23,23	0 24,008	24,790	25,577	26,369
Total Loss	0 5,987 8	3,432 11,05	6 13,860 16,471 19,261 22,229 25,377 28,703 32,209 33,690 35,200 36,737 38,301	1 19,261	22,229 { 2	5,377 28,	703 32,20	9 33,690	35,200	36,737 [38,301

 Table 10.2.6
 Expected Damage Reduction

Construction of the local of th	-		-					
Per Annum Value (mill. TL)		016	3,254	1,786	1,421	139	7,509	669,725
Difference (mill. TL)		2,906	10,845	17,856	17,764	13,877	Total	Equiv. USD
Discharge frm Seyhan (cub. m/s)		(291)	(629)	(720)	(856)	(913)		
Avg. Exp. Damage (mill. TL)		3,996	9,776	13,494	19,017	24,424		
Damage w/ Project (mill. TL)	0	7,992	11,561	15,427	22,607	26,242		
Discharge frm Seyhan (cub. m/s)		(669)	(631)	(1,102)	(1,288)	(1,293)		
Avg. Exp. Damage (mill. TL)		6,902	20,622	31,350	36,781	38,301		
Damage w/o Project (mill. TL)	0	13,804	27,439	35,261	38,301	38,301		
		2 Years	5 Years	10 Years	50 Years	100 Years	-	:


Table 10.2.7 Additional Power Generation


	Power	Avg. Exp.	Power	Avg. Exp.	Total	Economic	Per Annum
		Power		Power	- -	Value	Value
	(HWM)	(HWH)	(HWH)	(HIWIH)	(HIWIH)	(mill TL)	(mill. TL)
Expec. Op.	w/o Project		w/ Project				
	0		0				
2 Years	717,567	358,784		357,981	803		334
5 Years	791,919	754,743	790,301	753,132	1,612	2,142	643
10 Years	996,315	894,117	: ; ::	891,250	2,867	:	381
hange Op.	Catalan		Seyhan				
			0				
2 Years		2,648	1,726	863	1,785	2,373	743
5 Years		7,906	4,203	2,965	4,942	6,569	1,971
0 Years		12,837	5,780	4,992	7,845	10,429	1,043
50 Years	22,097	18,627	6,455	6,118	12,510	16,630	1,330
00 Years		23,421	5,680	6,068	17,353	23,069	231
						Total	6,675
						Equiv. USD	595,379


*Unit Economic Value of Electricity (per KWH): TL1,329

Economic Cash Flow	(Unit: USD) Year	4 5 6 7 8 9	0 262.934	262,934 262,934 262,934	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	595,379 595,379 595,379	64,196 64,196 64,196 64,196	1,329,300 1,329,300 1,329,300 1,329,300	1,066,366 $1,066,366$ $1,066,366$		14 15 16 17 18		0 0	262,934 262,934 262,934	262,934 262,934		002,120 002,120 009,120 009,120 009,120 009,120 000 000 000 000 000 000 000 000 000	64.196 64.196 64.196 64.196	1,329,300	1,066,366 $1,066,366$ $1,066,366$ $1,066,366$ $1,066,366$							
Table 10.2.8 Economic		3 8		262,934 262,9	0 202 202 202 202 202 202 202 202 202 2					Year	13 §			262,934 262,9					-	,066,366 1,066,3							
Table		1 2	0 262.934	262,934	0 669 775				1,066,366		1 12			4 262,934					1,329,300 1	1,066,366							
		<u>0</u>	9,992,70	9,992,70	00		****	0	154,899 -9,992,706		10 1				262,934 262,934		C7/, 600 C7/, 600		,329,300 1,329,300	,366 1,066,366	15 %	,617	,483		,735	,316	100/
		-	2,154,899	2,154,899	Inction	city	st	t -	W -2,					262	262						4		16,617,483	22,598,	1,722,7	14,774,316	10,49
	Item		Cost Inv. Cost O&MCost	Total	Benefit DamageReduction	Add. Electricity	Reduced Cost	TotalBenefit	Net Cash Flow]	Cost	19 Inv. Cost		Total	Benefit	Damagekequeuon	Reduced Cost	TotalBenefit	Net Cash Flow	EIRR	B-C (Simple Sum	Cost	Benefit	B-C (NPV)	Cost	Benetit

Figures

