TABLES AND FIGURES

TABLE 9.1 (1) PROPOSED FACILITIES FOR STORMWATER DRAINAGEIMPROVEMENT PLAN (1)

Area	Proposed Facilities		Total
A-1			
IV-3 ii	Construction of Drainage Channel Box Culvert (3m x 2.6m) Concrete Lining Open Channel (1.5m x 1.5m, 0.5)		L= 2,300 m (800 m) (1,300 m)
OS	Construction of Drainage Channel Box Culvert (1.5m x 1.8m)		L= 800 m (800 m)
F.T.	Construction of Grand-Yoff Infiltration Pond 1		A= 5 ha
A-2			
O.B.	Construction of Ouakam Infiltration Ponds (2 pls)		A= 3.24 ha
	Construction of Drainage Channel Concrete Lining Open Channel (1.5m x 1.5m, 0.5)		L= 2,050 m (2,050 m)
G.Y. G.Y. 1	Drain to Grand Niaye		
	Construction of Drainage Channel Concrete Lining Open Channel (3.0m x 1.7m, 0.5) Concrete Lining Open Channel (1.5m x 1.5m, 0)		L= 3,850 m (2,800 m) (1,050 m)
	Construction of Patte d'Oie Infiltration Pond (2 pls)		A= 4 ha
G.Y. 2	Drain to Grand-Yoff Infiltration Pond		
	Construction of Drainage Channel Box Culvert (2m x 2m x 2) Concrete Lining Open Channel (2m x 2m, 0.5)		L= 1,200 m (500 m) (700 m)
	Stormwater Pumping Station (Q=1.5 m3/s)		1 place
	Stormwater Transmission Pipe (DCIP d=1,100mm)		L= 300 m
	Construction of Grand-Yoff Infiltration Pond 2		A= 2.25 ha
A-3			
AI S	Construction of Drainage Channel Earth Channel (9m x 2m, 2) Concrete Lining Open Channel (2.5m x 1.6m, 0.5)		L= 6,150 m (2,850 m) (3,300 m)
AI N1	Construction of Airport inflitration Pond		A= 1 ha
Ai N2	Improvement of Existing Channel Concrete Lining Open Channel (2m x 1.2m, 0)		L= 1,300 m (1,300 m)
C.Y.	Improvement and Construction of Drainage Channel Concrete Lining Open Channel (2m x 1.6m, 0.5) Concrete Lining Open Channel (2m x 1.6m, 0.5)	Construction Improvement	L= 3,500 m (2,850 m) (650 m)

TABLE 9.1 (2)PROPOSED FACILITIES FOR STORMWATER DRÁINAGE
IMPROVEMENT PLAN (2)

Area	Proposed Facilities		Total
A-6			
CP EP	Construction of Main Drainage Channel along National Roa Concrete Lining Open Channel (3m x 1	ld 1.5m,1)	L= 3,610
CP			
CP 1	Drain to Grand Nlaye		
	Construction of Storm Sewer C.P.1-1 d=1,100r		(L=2,970) (250m)
	d=1,000r d=900r d=800r	mm CP	(1,050m (620m) (1,050m
	C.P.1-2 d≕1,100r d=1,000r		(L=1,490) (260m) (550m)
	d≖600r		(680m)
	Construction of open channel (2m x 0.4 - 0.6m, 1) C.P.1-1 C.P.1-2	2 Systems Total	L = 400r (100 m (300 m
	Stormwater Pumping Station C.P.1-1 (1.0 m3/s 2pis, 0.3 m3/s 1pis) C.P.1-2 (1.5 m3/s , 1.0 m3/s, 0.5m3/s, 0.3m3/s)	2 Systems Total	7 pls 3 pls 4 pls
	Stormwater Transmission Pipe (Ductile Iron Pipe) C.P. 1-1	2 Systems Total	L= 2,630 (L=690m
	d=600mr d=800mr		(420m) (270m)
	C.P. 1-2 d=600m d=1100mr d=801mr	m DCIP	(L=1,940) (570m) (920m) (450m)
CP 2	Drain to Sea		
	Construction of main Drainage Channel (1-3m x 0.4-1.6m, Improvement of Existing Drainage Channel (3m x 0.9m, 1) Stormwater Pumping Station (1.5 m3/s) Retention Pond	1) Total	L = 2,940 L= 770 r 1 Place 5 .1ha
		10(4)	φ., μια
A-7			
L1	Construction of Drainage Channel Concrete Lining Open Channel (4.5m x 1.5		L= 1,750

ltem	Unit	Unit Price/Cost
Open Channel		
Earth Channel		
Type I (B=9m, H=2m, m=2)	m	207,700
Concrete Lining Open Channel		
Type I (B=4.5m, H=1.5m, m=0.5)	m	295,300
Type III (B=3m, H=1.7m, m=0.5)	m	271,280
Type IV (B=3m, H=1.7m, m=1)	m	311,000
Type V (B=2.5m, H=1.6m, m=0.5)	m	226,710
Type V (B=2m, H=2m, m=0)	m	310,650
Type VI (B=2m, H=1.6m, m=1)	m	196,000
Type VII (B=2m, H=1.6m, m=0.5)	m	190,000
Type VIII (B=2m, H=1.2m, m=0)	m	164,600
Type IX (B=1.5m, H=1.5m, m=0.5)	m	188,900
Type X (B=1.5m, H=1.5m, m=0)	m	176,150
Type XI ($B=1m$, $H=1.m$, $m=1$)	m	162,000
Box Culvert		
Type I (B=3m, H=2.6m)	m	640,800
Type II (B=1.8m, H=1.5m)	m	387,960
Type III (B=3m, H=2.5m x 2)	m	1,226,480
Storm Sewer		
Type I (d=600mm Concrete Pipe)	m	316,000
Type II (d=800mm Concrete Pipe)	m	378,000
Type III (d=900mm Concrete Pipe)	m	413,000
Type IV (d=1,000mm Concrete Pipe)	m	466,000
Type V (d=1,100mm Concrete Pipe)	m	525,000
nfilteration Pond	ha	31,680,000
Retention Pond	ha	42,500,000
Storm Water Pumping Station		
Type I (0.3 m2/s)	pls	209,800,000
Type II (0.5 m3/s)	pls	242,800,000
Type III (1.0 m3/s)	pls	311,800,000
Type IV (1.5m3/s)	pls	395,900,000
ransmission Pipe Line		
Type I (d=600mm Ductile Iron Pipe)	m	283,700
Type II (d=800mm Ductile Iron Pipe)	m	387,300
Type III (d=1,100mm Ductile Iron Pipe)	m	608,600
Land Acquisition	m2	1,650

TABLE 9.2 UNIT PRICE/COST FOR WORK ITEMS

TABLE 9.3 WORK VOLUME FOR THE MASTER PLAN

			A-1			A-2			A-3	9			A-6		A-7
Item	ب ة ت	= 0.54		ł		G.Y						ł	- C		3
Open Channel		IC-3 II	s S		0.8	G.Y.1	G.Y.2	AS AS	2 Z	A N2	C.Y.	₽	5	CPZ	5
Earth Channel Type I (B=9m, H⊸2m, m≟2)	E						<u> </u>	2,850		<u> </u>			•		
Concrete Lining Open Channel Type I (B=4.5m, H=1.5m, m=0.5) Type IN (B=3m, H=1.7m, m=0.5) Type IV (B=3m, H=1.5m, m=1)	EEEE					2,800						2,850		2,710	1,750
Type V (B=Z)1, H=2.0, H=2.0, Type V (B=Zm, H=2.0, m=0) Type VI (B=Zm, H=1.6m, m=1) Type VII (B=Zm, H=1.2m, m=0.5) Type VII (B=Zm, H=1.2m, m=0.5)							700	00010		1 300	3,500		400	300	
Type IX (B=1.5m, H=1.5m, m=0.5) Type X (B=1.5m, H=1.5m, m=0) Type XI (B=1m, H=1.m, m=1)	EEE	1,300			2,050	1,050	<u></u>	·····					<u> </u>	700	·
Box Culvert Type I (B=3m, H=2.6m) Type II (B=1.8m, H=1.5m) Type III (B=3m, H=2.5m x 2)	EEE	800	800				200	m		40-40-14-14-4 	·				
Storm Sewer Type I (d=600mm Concrete Pipe) Type II (d=800mm Concrete Pipe) Type II (d=900mm Concrete Pipe) Type IV (d=1,000mm Concrete Pipe) Type V (d=1,100mm Concrete Pipe)	EEEEE						·····	811-00-02-07-07-07-07-07-07-07-07-07-07-07-07-07-	<u> </u>				680 1,050 620 1,600 510	an ann aidemead	
Infilteration Pond Retention Pond	क्र क्र	<u>., , , , , ,</u>		5.00	3.24	4.00	2.25		1.00	<u> </u>			2.50	5.10	
Storm Water Pumping Station Type I (0.3 m2/s) Type II (0.5 m3/s) Type II (1.0 m3/s) Type IV (1.5m3/s)	sig sig sig sig									17 - 1 4 4 6 7 - 4 700 A 4 70 4 - 4 - 4			N		<u></u>
Transmission Pipe Line Type I (d=600mm Ductile Iron Pipe) Type II (d=800mm Ductile Iron Pipe) Type II (d=1,100mm Ductile Iron Pipe)	EEE					<u></u>	30				- · · · · · · · · · · · · · · · · · · ·		1,190 990 450		
Land Acquisition	R			60,000	39,000	48,000	32,000		12,000				25,000	51,000	

PLAN
MASTER
THE
FOR
COST
PROJECT
9.4
TABLE

											 					Unit	Unit : x 1000 FCFA	FCFA
Item	C III	Unit Price/Cost					A-2 G.Y.			2				A-6 CP		A-7	Dakar and	Total
Direct Construction Post	_	(FCFA)	N-3 #	8	F.T.	ю В О	G.Y.1	G.Y.2	AIS	AI N1	AI N2	<u>۲</u>	ــــــ ۵۵	C ₂ 1	CP2	11	Pikine	
1 Open Channel Earth Channel Turo I no An U-2m m_2	E	202											n			<u>. , . </u>	•••••••	
Concrete Lining Open Channel		201107							C+6.180				•					
Type I (8–4.5m, H=1.5m, m=0.5)	E	296,300														516,775		516,775
Type II (B=3m, H=1.7m, m=0.0) Type III (B=3m, H=1.7m, m=1)	ΕE	311,000					126,584						886,350		842,810			759,584
Type IV (B–2.5m, H–1.6m, m–0.5) Tune V (B–2.5m, H 2m, m, 0.1)	E	226,710							748,143	•								748,143
Type V (B-201, T-201, II-0) Type VI (B-2m, H-1.6m, m-1)	EE	196,000						CC4 / 12						78.400	58,800			217,455
Type VII (B-2m, H-1.6m, m-0.5)	E	190,000										665,000						665,000
Type VIII (8–2n, H=1.2m, n–0) Tyne IX (8–1 5m, H–1 5m, n–0 5)	EE	164,600	245 570			387 245					213,980							213,980
Type X (B-1.5m, H-1.5m, m-0) Type X (B-1.6m, H-1.5m, m-1)	EE	176,150					184,958											184,958
															13,400			113,400
2 Box Cutwert Type I (B_2:10; H=2.6m) Type II (B=1.8m, H=1.5m) Type III (B=3m, H=2.5m x 2)	EEE	640,800 387,960 1,226,480	512,640	310,368				613,240										512,640 310,368 613,240
3 Storm Sewer																· · · · ·		
Type I (d=600mm Concrete Pipe) Type II (d=600mm Concrete Pipe)	EE	316,000	· · · · · · · · ·											214,880				214,880
Type II (d-900mm Concrete Pipe)	≣ E	413,000	·											356,060 256,060				396,900 256,060
Type IV (d=1,000mm Concrete Pipe) Type V (d=1,100mm Concrete Pipe)	εE	466,000 525,000							•					745,600 267,750				745,600 267,750
4 Infitueration Pond	ца	31,680,000			158,400	102,643	126,720	71,280		31,680								490,723
5 Retertion Pond	Åa	42,500,000					-	 .			÷		••	106,250	216,750			323,000
6 Storm Water Pumping Station Type I (0.3 m2/s) Type II (0.5 m2/s) Type II (1.5 m2/s) Type IV (1.5 m2/s)	ਲ ਦ ਦ ਦ	209,800,000 242,800,000 311,800,000 311,800,000						395,900						419,600 242,800 335,400 385,900	395,900			419,600 242,800 935,400 1,187,700
7 Transmission Pipe Line													<u> </u>					
Type I (d=600mm Ductile Iron Pipe) Type II (d=800mm Ductile Iron Pipe) Type III (d=1,100mm Ductile Iron Pipe)	EEE	283,700 387,300 608,600						182,580		<u> </u>				337,603 383,427 273,870		<u>-</u>		337,603 383,427 456,450
8 Secondary Drain			227,463	93,110	47,520	146,966	321,378	444,137	402,026	9,504	54, 194	199,500	265,905	1,516,332	488,298	155,033		4,381,367
Sub-Total of (1)			985,673	403,478	205,920	636,855	1,392,640	1,924,592	1,742,114	41,164	278,174	864,500	1,152,255	6,570,772	2,115,958	671,808		18,985,922
ill. Pumping Car																	500,000	500,000
 Isnd Acquisition/Compensation Land Acquisition Compensation 	ភូន	1,650			000'86 000'86	64,350 64,350	79,200	52,800 52,800		19,800 19,800				41,250	84,150 84,150			440,550 440,550
Sub-Total of (H)					198,000	128,700	158,400	105,600	<u> </u>	39,600			****	82,500	168,300			881,100
IV. Engineering Service		(7% of I)	68,997	28,243	14,414	44,580	97,485	134,721	121,948	2,883	19,472	60,515	80,658	459,954	148,117	47,027		1,329,015
V. Government Adminstration		(1.5% of I+III)	14,785	6,052	6,059	11,483	23,266	30,453	26,132	1,212	4,173	12,968	17,284	56/'86	34,264	10,077		298,005
VI. Physical Contingency	(10	(10% of I+11+1V+V)	106,946	43,777	42,439	82,182	167,179	219,537	189,019	8,488	30,182	33,798	125,020	721,303	246,664	72,891		2,149,404
VII. Project Cost			1,176,401	481,551	466,833	903,780	1,838,969	2,414,902	2,079,214	53,367	332,001	1,031,781	1,375,216	7,934,328	2,713,303	801,802	500,000	24,143,447

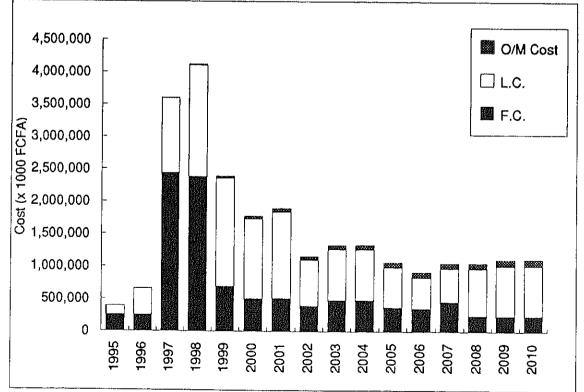
M/PCOST-2

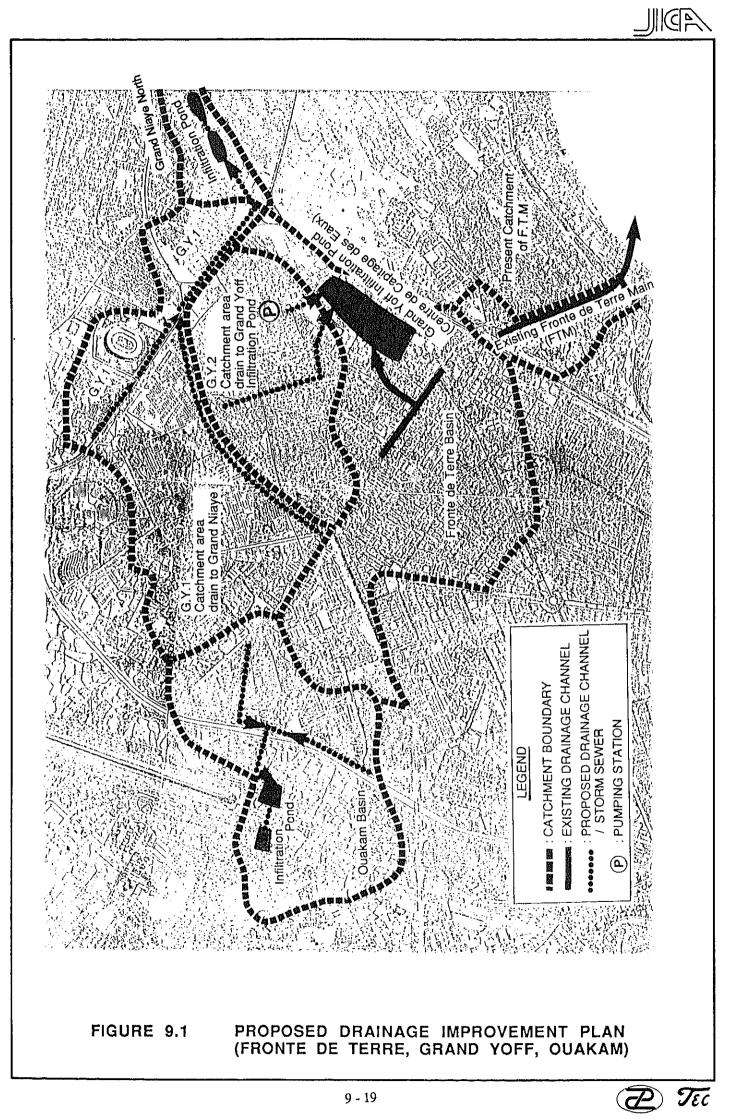
TABLE 9.5 BREAKDOWN OF PROJECT COST

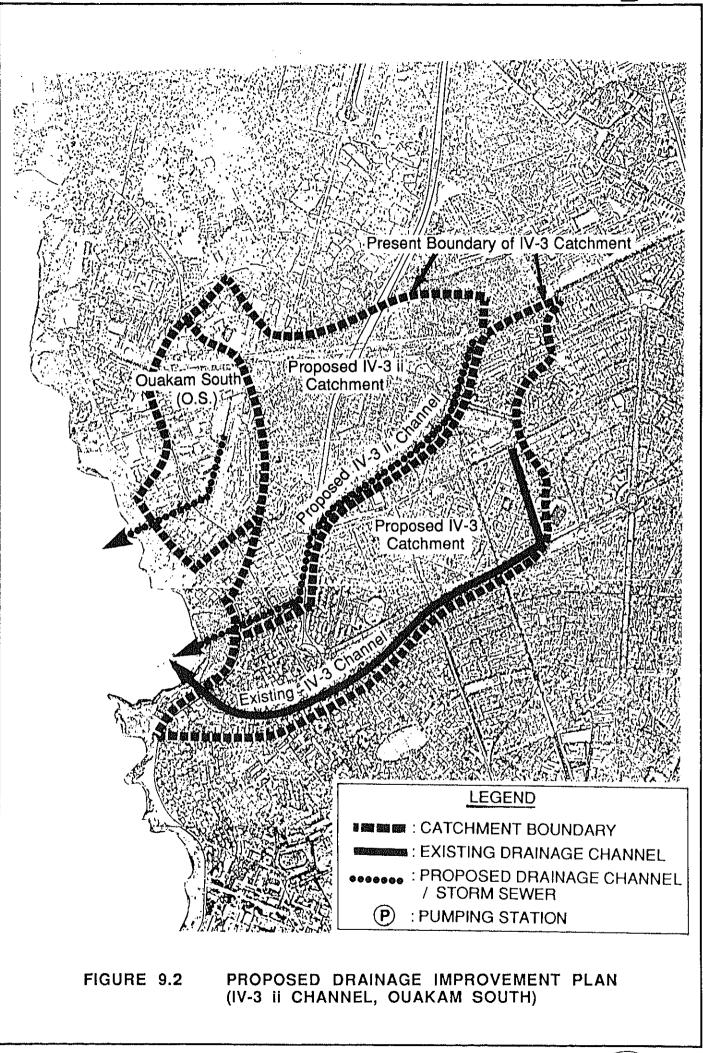
	FC I		······································
1st Priority	FV		TT
a. Grand-Yoff			
1	170 604	79.006	046.60
1) Survey, Design, Contract Process	172,634	73,986	246,62
2) Land acquisition / Compensation	0	462,000	462,00
3) Pumping station / Pond	452,118	126,362	578,48
4) G.Y.1 drainage channels	141,681	802,861	944,54
5) G.Y.2 drainage channels	400,568	430,127	830,69
6) infiltration pond	53,460	302,940	356,40
7) Government Administration	0	47,582	47,58
8) Physical contingency	0	346,632	346,63
Sub-total	1,220,461	2,592,590	3,812,98
p. Central Pikine			
1) Survey, Design, Contract Process	425,650	182,422	608,07
2) Land acquisition / Compensation	0	250,800	250,80
3) Pumping station / Pond	2,637,865	746,635	3,384,50
4) C.P.1 drainage channels	1,610,772	348,819	1,959,59
5) C.P.2 drainage channels	152,252	862,758	1,015,01
6) Retention pond		*	
	48,450	274,551	323,00
7) Secondary Drain	1,002,314	1,002,315	2,004,6
8) Government Administration	U U	134,063	134,06
9) Physical contingency		967,967	967,96
Sub-total	5,877,302	4,770,420	10,647,63
2nd Priority			
Survey, Design, Contract Process	133,931	57,399	191,33
Land acquisition / Compensation	0	39,600	39,60
a. Dakar-Yoff airport			
1) Ouakam town drainge	112,221	635,922	748,14
2) Airport South channel	88,792	503,153	591,94
 Airport North channel 	32,097	181,883	213,98
4) Infiltration pond	4,752	26,928	31,68
b. Lac 1 Drainage Channels			
1) Construction cost	77,516	439,259	516,77
Government Administration	0	32,132	32,13
Physical contingency	0	236,558	236,55
Sub-total	449,309	2,512,851	2,602,14
3rd Priority			
Survey, Design, Contract Process	198,095	84,898	282,99
Land acquisition / Compensation	o	128,700	128,70
a. Channel IV-3		,	
1) Channel IV-3.2	344,420	413,790	758,21
2) O.S. drainage channel	186,221	124,147	310,36
b. Ouakam Basin		,	
1) Drainage channels	58,087	329,158	387,24
2) Infilteration pond	15,396	87,247	102,64
c. Yoff Channel	15,580	07,247	102,0-
	00.750		
1) Construction cost	99,750	565,250	665,00
d. Channel Along the Road (E.P.)	100.050	750 000	000 0
1) Construction cost	132,952	753,398	886,3
Government Administration	0	48,578	48,51
Physical contingency		357,009	357,0
Sub-total	1,034,921	2,892,285	3,927,0
Secondary Drain & On-site Infiltration pond			
Construction cost	1,188,369	1,188,369	2,376,7
Government Administration	0	35,651	35,6
Physical contingency	0	241,239	241,23
Sub-total	1,188,369	1,465,300	2,653,6
Pumping Car	500,000	0	500,0
Total	10,270,362	14,233,446	24,143,4

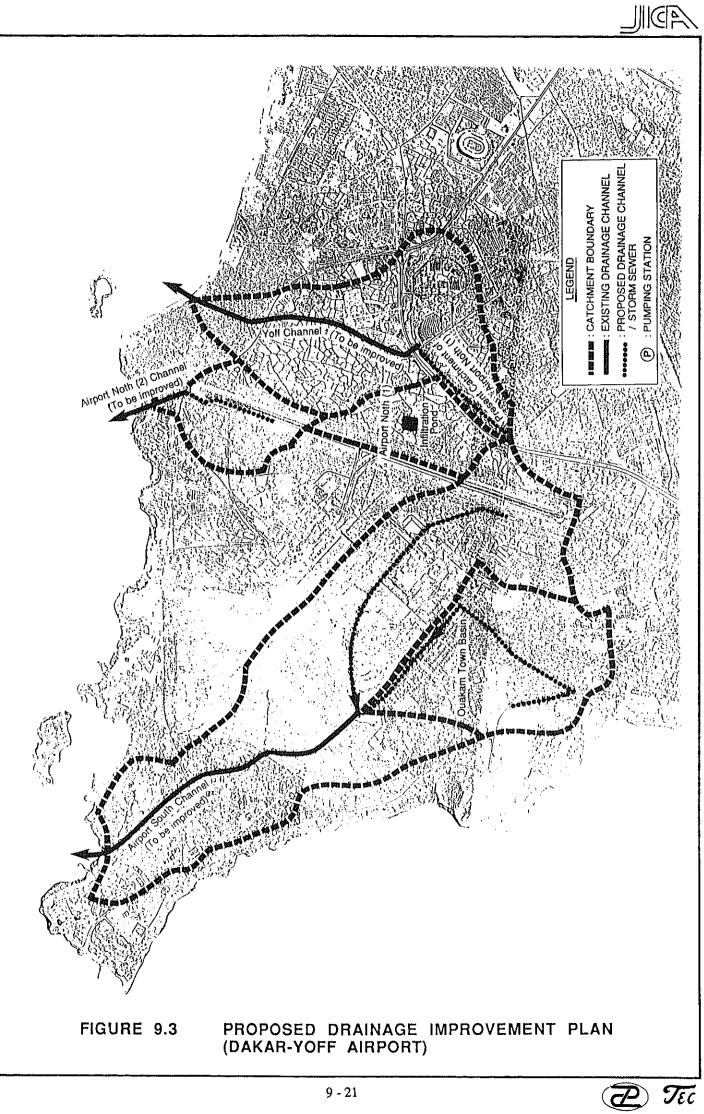
Unit : x 1000 FCFA

FC = Forign Currency Portion

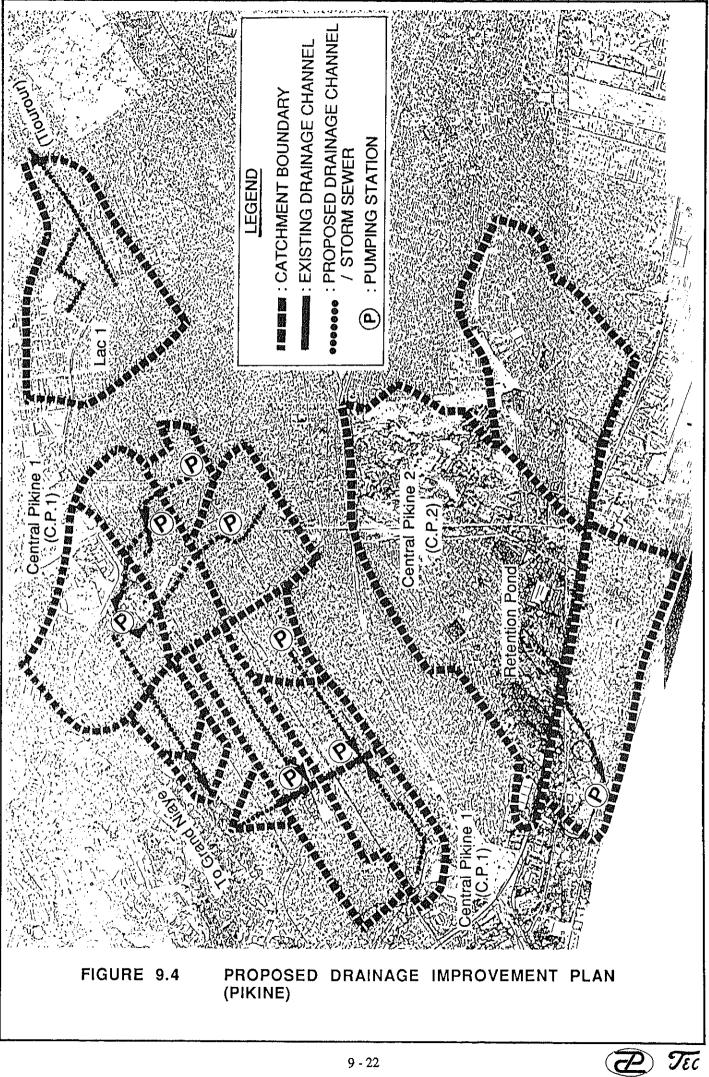

LC = Local Currency Portion

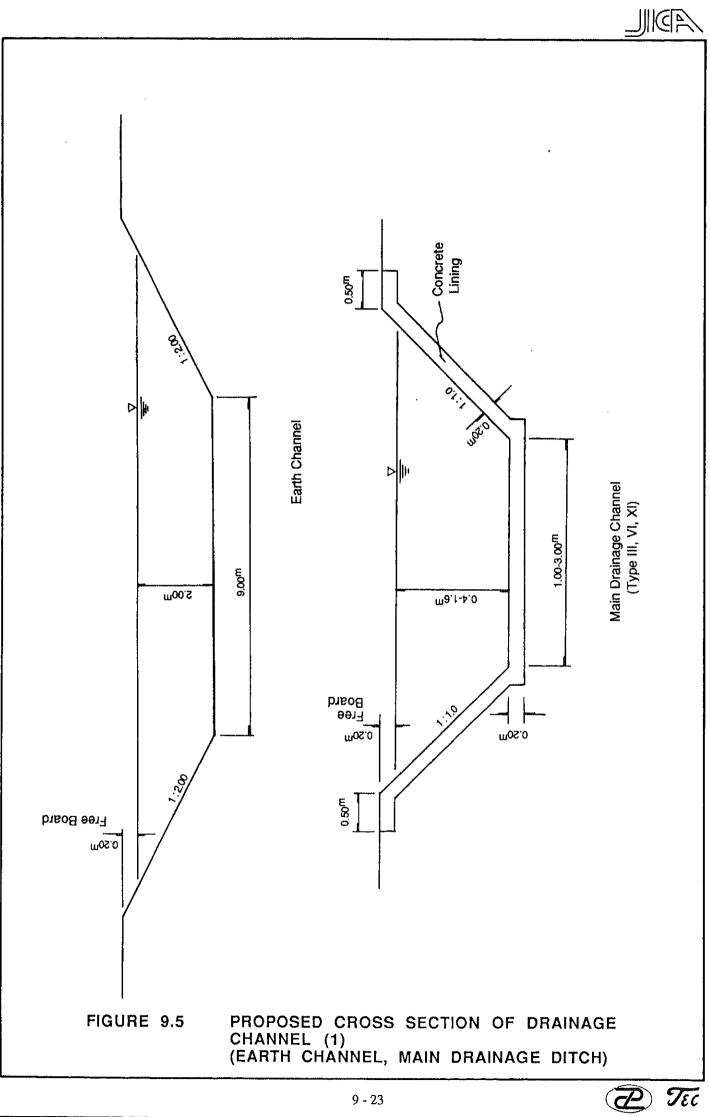

TT = Total Currency Portion

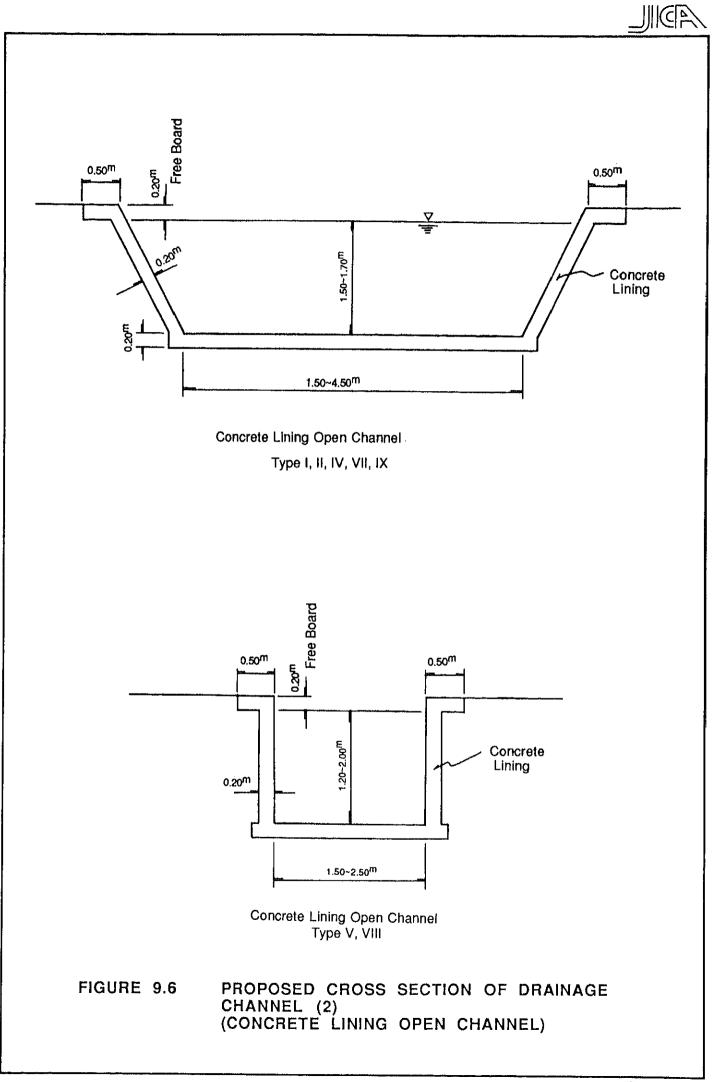

TABLE 9.6COST DISBURSEMENT SCHEDULE FOR
DRAINAGE IMPROVEMENT PROJECT

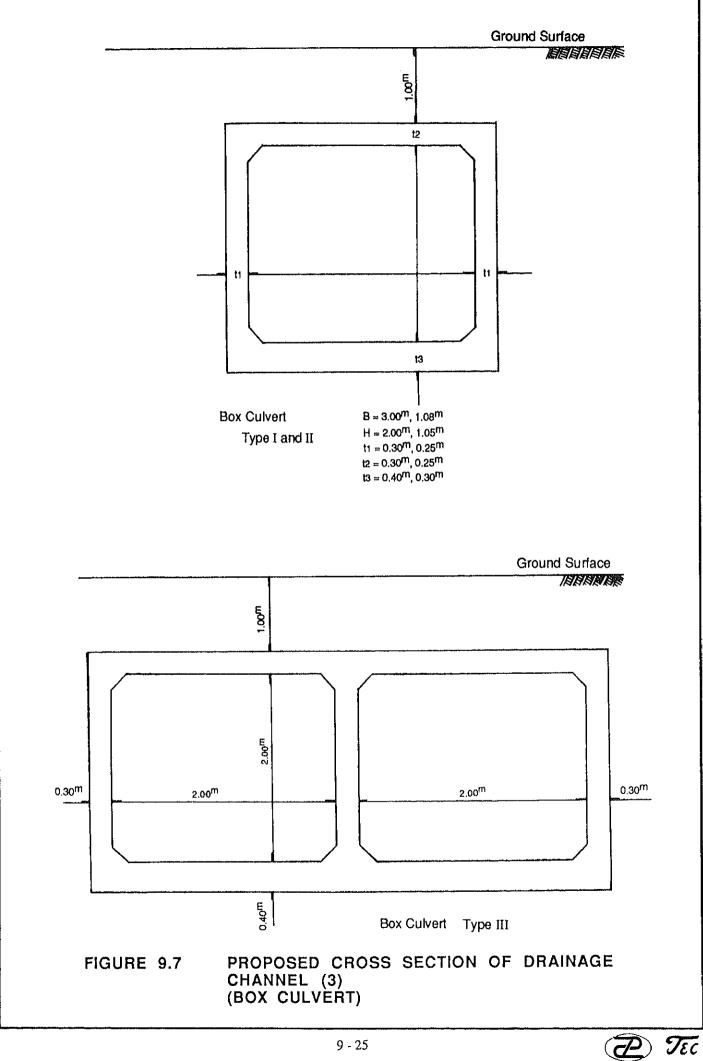

	Сс	onstruction Cost		O/M	
	F.C.	L.C.	Sub-Total	O/M Cost	Total
1995	251,188	143,536	394,724	0	394,724
1996	251,188	408,817	660,005	0	660,005
1997	2,435,873	1,160,882	3,596,755	1,446	3,598,201
1998	2,377,531	1,725,655	4,103,186	14,976	4,118,162
1999	689,886	1,668,460	2,358,346	34,604	2,392,950
2000	502,397	1,231,912	1,734,308	45,606	1,779,914
2001	506,006	1,338,250	1,844,255	53,298	1,897,554
2002	393,357	710,716	1,104,074	57,862	1,161,935
2003	479,462	788,349	1,267,811	63,372	1,331,183
2004	479,462	788,349	1,267,811	68,883	1,336,694
2005	372,110	621,330	993,440	75,169	1,068,609
2006	351,021	485,447	836,468	78,748	915,217
2007	458,547	516,503	975,050	81,828	1,056,878
2008	241,568	729,268	970,836	86,009	1,056,846
2009	240,383	777,806	1,018,189	90,469	1,108,658
2010	240,383	777,806	1,018,189	94,930	1,113,118
lotal Cost (1995-2010)	10,270,362	13,873,084	24,143,446		· · · · · · · · · · · · · · · · · · ·

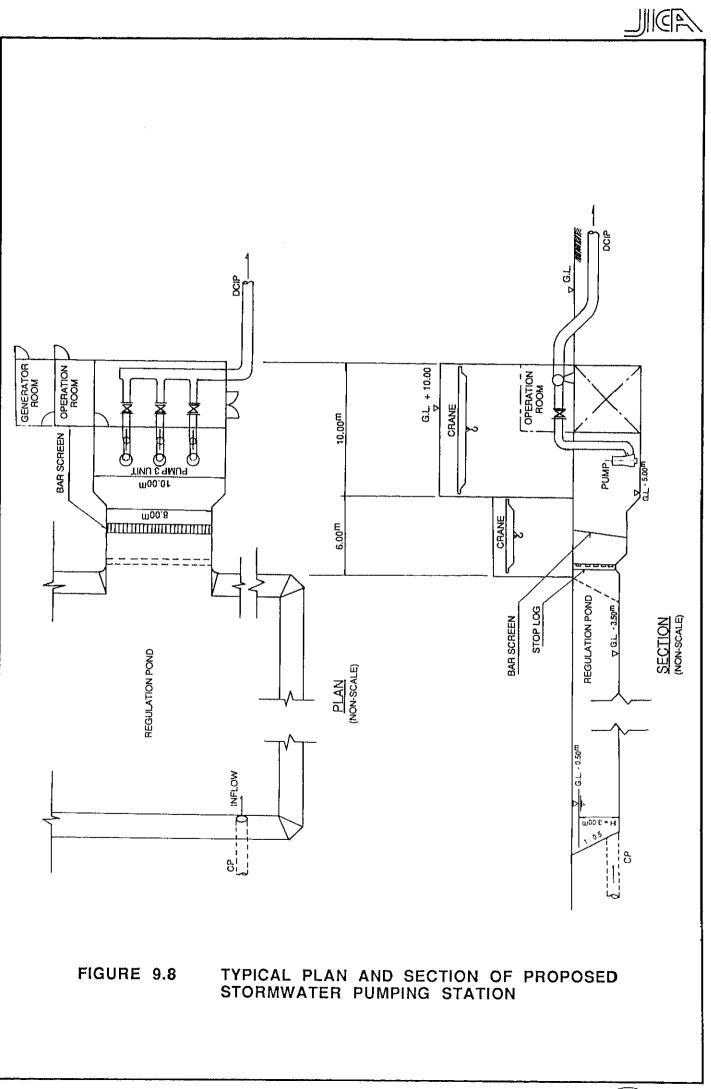
Unit : x 1000 FCFA



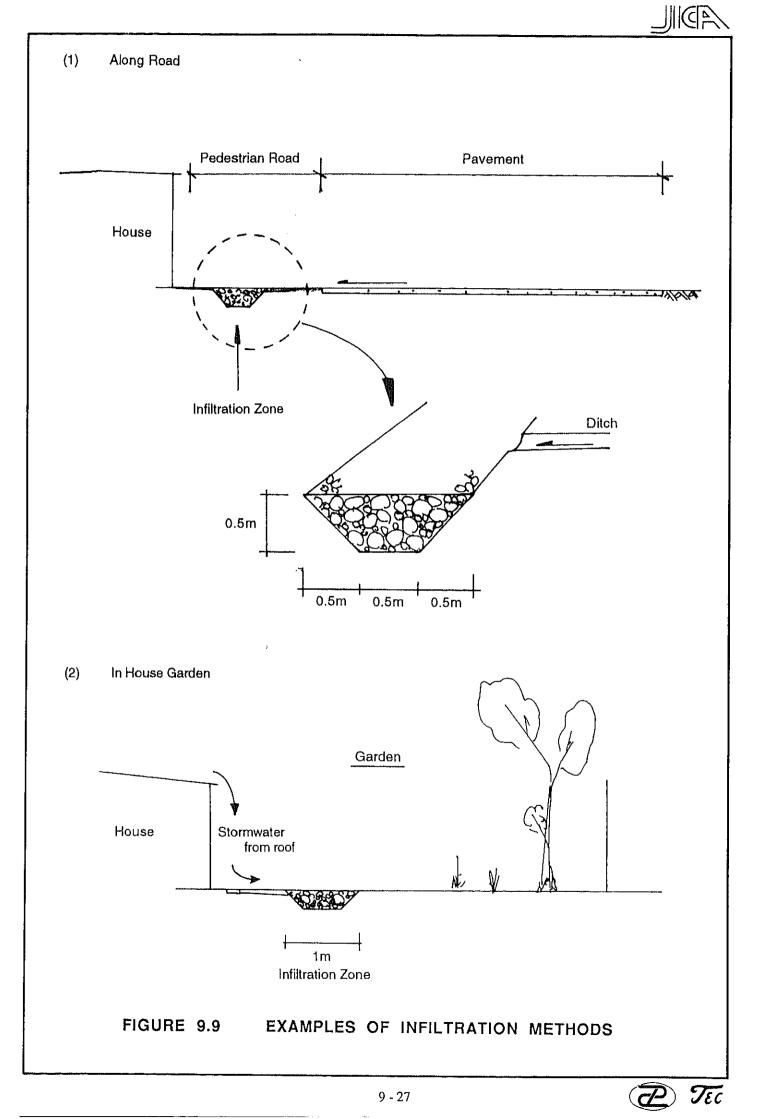








P Tec



9 - 26

P Tec

DRAINAGE IMPROVEMENT PROJECT IMPLEMENTATION SCHEDULE FOR STORMWATER FIGURE 9.10

Year	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
				Ţ											Ť	
1) Survey, Design, Contract Process																
	╞┸															
 G.Y.1 drainage channels 																
5) G.Y.2 drainage channels																
							I									
										ŀ					T	
ennal Plane 1) Sumov Docine Contract Drockee	+-															Ì
4																
3) Primning stations / monds																
6) Retention Pond																
		-														
Survey, Design, Contract Process																
Land Acquisition / Compensation																
1) Ouakam town drainage																
2) Airmont South Channel																
3) Airport North Channel																
								-	-							
Survey, Design, Contract Process				-												
Land Acquisition / Compensation													-	-		
														-		
O.S. drainage channel												Ī				
							~	_								
							_									
														T		
				_							1				İ	
					Ī											

,

CHAPTER 10

FEASIBILITY STUDY ON URBAN DRAINAGE OF PRIORITY PROJECT

-

· · ·

CHAPTER 10 FEASIBILITY STUDY ON URBAN DRAINAGE OF PRIORITY PROJECT

10.1 PROJECT AREA

The feasibility study area covers the Central Pikine (C.P.) recommended by the Master Plan as the first priority area and a part of its surroundings and is shown in *Figure* 10.1. Total area for the feasibility study covers an area of 11.3 sq. km. Through discussion between the Senegalese side and the study team, the drainage channel proposed along the National Road, a part of main channels of the proposed pump drainage system, was included because of on-going development in its catchment area. Therefore, an area of E shown in Figure 10.1, which is a catchment of the drainage channel, is included to the feasibility study area. Areas of W and O are included to the feasibility study area with consideration of the location of pumping stations and drainage channels.

The study area consists of sandy areas and the topography is flat with the maximum elevation of 23 m. Areas lower than mean sea level are located in Thiaroye. The western urban area has four major lines of sand dunes with top elevations of 6 m to 12 m. The low strips (Niayes) between these sand dunes have ground elevations of 2 m to 9 m. Flood prone areas are located in the Niayes of eastern urban area having elevations of less than 4 m and in the low areas in Thiaroye having elevations of less than 2 m. Existing drainage conditions are shown in *Figure* 10.2.

10.2 DRAINAGE SYSTEM PLAN

10.2.1 Drainage Sub-Basin

The feasibility study area has been divided into 20 drainage sub-areas based on topographic conditions. The drainage sub-areas are shown in *Figure* 10.3 and details are given in *Table* 10.1.

10.2.2 Drainage Method

Since the stormwater discharged from the feasibility study area is impossible to drain to the sea or grand Niaye by gravity flow due to its topographic conditions, either drain by pumps or infiltration will be applied as drainage method for the area. The drainage subareas are classified as shown in *Figure* 10.4 by applicable drainage method.

10.2.3 Pump Drainage System

Two areas (C.P.1 and C.P.2) to be drained by pumps, as shown in *Figure* 10.4, exist independently from view points of topographic boundary and possible receiving body of stormwater. Therefore, an independent pump drainage system will be provided in each area.

The pump drainage system for C.P.1 is further divided into two systems considering topographic conditions and difference in development conditions in the area (Pikine Regular and Pikine Irregular).

Thus, three independent pump drainage systems: C.P.1-1 for Pikine Regular area, C.P.1-2 for Pikine Irregular and C.P.2 for Thiaroye, are proposed as follows:

- 1) Pikine Urban South (regular, C.P.1-1)
 - Three (3) pumping stations with a pond at each site
 - Drainage channels with a total length of 3,760 m

Figure 10.5 shows the proposed pump drainage system for C.P.1-1 pump drainage area.

- 2) Pikine Urban North (regular and irregular, C.P.1-2)
 - Four (4) pumping stations with a pond at each site
 - Drainage channels with a total length of 3,730 m

Figure 10.5 shows the proposed pump drainage system for C.P.1-2 pump drainage area.

- 3) Thiaroye (C.P.2)
 - One pumping station with a pond
 - Drainage channel along the National Road with a total length of 2,940 m
 - Drainage channel to the pumping station with a total length of 770 m
 - One retention pond with a total area of about 5.1 ha

Figure 10.6 shows the proposed pump drainage system for C.P.2 pump drainage area.

10.2.4 Areas to be Drained by Infiltration

For these areas, no particular structural measures are proposed, but the following nonstructural measures are recommended from view point of urban drainage:

- Depressed areas in every independent catchment should be kept for infiltration/retention and on-site infiltration should be applied as much as possible.
- There are small scale possible flood areas in Pikine irregular area, having ground elevation of less than 4 m, in the north of the proposed pump drainage area. These areas should be reclaimed for easy infiltration when the areas are redeveloped.
- Wide low laying area is spread along the Rufisque Road and areas lower than
 2 m and 1m in the north and south of the road respectively are flood prone.
 These areas should be reclaimed if developed.
- A depressed area located at the northern edge of the Central Pikine is an important place for drainage and should not be urbanized.

10.3 FACILITY PLAN

10.3.1 General

The facilities are planned based on the following strategic concepts:

- Precast concrete pipes for the drainage channels of the Pikine urban pump drainage area (C.P.1) are proposed because they are of small sizes.
- Concrete lined open channels for the main drainage channels of the Thiaroye pump drainage area (C.P.2) are proposed in principle because,
 - Proposed sites are not urbanized yet and land acquisition is not difficult.
 - Ease of maintenance
 - Lower cost than box culvert type, and other reasons.

Comparison of the open channel and the box culvert types is shown in *Table* 10.2.

- Submergible type for the pumps is recommended taking the capacities and the required total heads into account. At least two units of pumps are proposed in one pumping station for ease of operation/maintenance and for economy. One generator having a capacity for driving one pump unit is proposed to provide. The generator will be used in emergency case when electricity is not available.
- Agricultural activity is considered in the planning of each retention pond.

- The drainage pipes are proposed to provide, in principle, along the roads with earth cover of about 1.0 m. Provision of pipes with large depth is avoided because of difficulty in construction and operation/maintenance. Therefore, a transmission pipe to lift the flood water by pumping to the highest point is proposed at each required site.
- Hydraulic requirements such as pump capacity, storage capacity of retention pond, size of storm sewer and drainage channel, etc. are calculated by the methods and criteria described in the Master Plan.

10.3.2 Main Features of Proposed Facilities

Main features of the proposed facilities are summarized in *Table* 10.3 and their layouts are shown in *Figure* 10.5 and 10.6. Typical designs of the facilities are shown in *Figure* 10.7 to 10.11.

10.4 CONSTRUCTION PLAN AND COST ESTIMATE

10.4.1 General

Construction works for the drainage project consists of earth works, concrete works, pipe works, mechanical/electrical works for the pumping stations and other miscellaneous works. These works will be executed by ordinary methods of construction using construction equipment available in Senegal. This will facilitate equipment maintenance and supply of spare parts as well.

Major works are planned to be carried out by mechanical power. However, in order to enhance employment opportunity, man power will be used to the maximum extent wherever possible.

10.4.2 Construction Plan

1) Construction Method

Construction methods of major works are expected as follows:

- Excavation of retention ponds
- Excavation for storm sewers
- Installation of precast concrete pipes for storm sewers
- Back filling of soil for storm sewers
- Excavation of drainage open channels
- Concrete casting

2) Required Construction Period

Construction period will depend on rainfall and holidays. In Dakar, however, number of rainy days with depth of more than 10 mm in one year is only about 20 days. Therefore, yearly workable days for construction are large in number.

Required construction period for each work is estimated as follows:

Pikine Urban South System (C.P. 1-1) :

Pumping stations:	6 months
Retention ponds:	6 months
Drainage pipes:	12 months

Pikine Urban North System (C.P. 1-2) :

Pumping stations:	6 months
Retention ponds:	6 months
Drainage pipes:	12 months

Thiaroye System (C.P. 2) :

Pumping station:	12 months
Retention Ponds:	24 months
Drainage channels:	18 months

- 3) Sequence of works is proposed as follows:
 - The facilities should be constructed from the downstream toward the upstream.
 - The pumping stations in one drainage system should be constructed at the same time for convenience of installation and training.
 - Storm sewers flowing into the sub-pumping stations should be constructed later.

10.4.3 Cost Estimate

1) Basis of Cost Estimate

The project cost consists of (1) construction cost, (2) land acquisition/compensation cost, (3) administration cost, (4) engineering service cost and (5) physical contingency and is estimated based on the following conditions:

- All costs are expressed under the economic conditions that prevailed in March 1994.
- The exchange rates of currencies are as follows: FF 1=FCFA 100
- The cost is classified into foreign and local currency portions and the rates of currency portion estimated in the Master Plan are applied.
- Administration cost is assumed to be 1.5 % of the total of construction and land acquisition/ compensation costs.
- Engineering cost is assumed to be 7 % of the total of construction cost .
- Physical contingency is assumed to be 10 % of the total of construction, land acquisition/compensation, administration and engineering service costs.
- Price escalation is not counted.

2) Cost Estimate

The construction cost is estimated by multiplying the quantity of work (*Table* 10.4) by unit price based on the data obtained from SONEES, Ministry of Hydraulics and other agencies.

The unit prices include site expenses, contractors overhead, profit and tax. Unit prices and construction costs are shown in *Table* 10.5.

The total project cost, including land acquisition/compensation cost, engineering service, government administration and physical contingency, is estimated at FCFA 10,647 million consisting of the local currency portion of FCFA 4,770 million and foreign currency portion of FCFA 5,877 million at March 1994 prices as shown below. Breakdown of the project cost is given in *Tables* 10.6 and 10.7.

Item	Total FCFA (1000 FCFA)	Local Currency Portion	Foreign Currency Portion	
	· · · ·	(1000FCFA)	(1000FCFA)	
Direct Construction Cost (DCC)	8,686,730	3,235,077	5,451,653	
Land Acquisition	250,800	250,800	0	
Engineering Service	608,071	182,421	425,650	
Government Administration	134,063	134,063	0	
Physical Contingency	967,966	967,966	0	
Total	10,647,630	4,770,327	5,877,303	

Annual operation and maintenance cost of the project facilities after construction is assumed to be 0.5 % of the construction cost.

Items	1000 FCFA	
Direct Construction Cost (DCC)	8,686,730	
Land Acquisition	250,800	
Engineering Service	608,071	(7 % of DCC)
Government Administration	134,063	(1.5 % of DCC)
Physical Contingency	967,966	(10 % of DCC)
Total	10,647,630	

10.5 IMPLEMENTATION PROGRAM

Sequence of the construction works is planned considering the construction plan described in the previous section.

Proposed implementation schedule of the project works is shown in Figure 10.12.

Annual disbursement of the required project cost is prepared based on the implementation schedule as shown in *Table* 10.8

10.6 MANAGEMENT OF THE PROJECT

The proposed new organization and institution for urban drainage project are considered to be basically applied during construction stage of this project. After completion of construction of the facilities, following organization is proposed for operation/maintenance.

The urban drainage networks under the priority project can be divided into three systems, i.e. Pikine Urban South System, Pikine Urban North System and Thiaroye System.

It is recommended that site offices be established to manage those systems. One site office will take care of one drainage system. Therefore, there will be three site offices.

Manpower required for the management of drainage facilities such as drainage channels (storm sewers, transmission pipes and open channels) and pumping stations is proposed as follows:

Item	Chief	Sub-Chief	Workers	Driver	Total
1. Pikine Urban North System	1	1	2	1	5
2. Pikine Urban South System	1	1	2	1	5
3. Thiaroye System	1	1	2	1	5
4. Overheads					2
TOTAL					17

The eligibility of the chief and sub-chief will be engineer. One vehicle will be stationed in each site office to be used essentially for operation and maintenance of the facilities. Office personnel will come from both CUD and SONEES or from a new organization.

10.7 PROJECT EVALUATION

10.7.1 General

The proposed urban drainage project for Central Pikine area is evaluated as follows:

The project is technically sound without any difficulty in construction, and no serious problem is expected in drainage function of the facilities and in operation/maintenance.

10.7.2. Environmental Evaluation

Negative impacts to noise/vibration conditions and traffic in the vicinity of construction sites would be unavoidable during the construction phase. However, any of such impacts would be limited to short time and to small areas. Although construction of pumping stations and retention ponds may require land acquisition, since sites for these facilities have been selected in wet lands, residential areas discarded due to repeated inundation and vacant place in public facilities, any particular problems are not foreseen.

Following impacts are concerned during operation phase:

- Pumping Stations: Noise and vibration: Operation will be of very low frequency and short every time.
- Retention Ponds: Deprivation of farming land: Retention ponds impound water only in heavy rains. They are dried up in other period, therefore, can be opened to people who want to cultivate.

As such, limited negative impacts by the project are expected, but they are considered to be very minor.

10.7.3. Economic Evaluation

Economic evaluation is carried out based on the economic costs and economic benefits calculated by the same method applied to the Master Plan Study. The results are as follows:

Net Present Value (NPV):430 million FCFABenefit Cost Ratio (B/C):1.07Economic Internal Rate of Return (EIRR):10.8 %

The project is judged to be economically feasible.

10.8 RECOMMENDATION

Immediate construction of the facilities is recommended in consideration of serious flood problem.

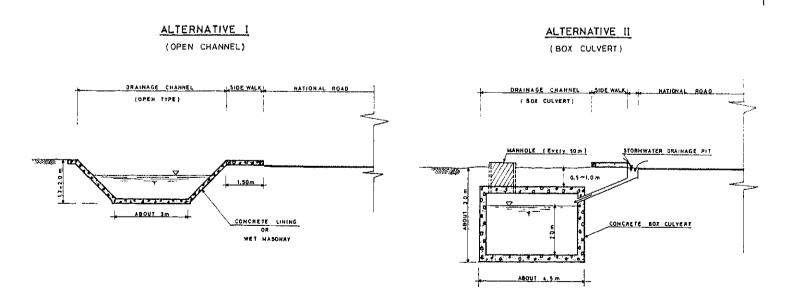
The following non-structural measures are also recommended to support the proposed structural measures and to achieve successful drainage of the project area.

- Drainage of all areas having elevation of higher than 4 m should be done by infiltration, in principle. The depressed area in each closed catchment area, except the proposed pump drainage areas, should be kept for infiltration/retention, and on-site infiltration should be applied in high areas.
- In relation to Technopole development, an open channel for drainage of a part of Pikine urban and Technopole project areas into Grand Niaye should be provided. Excavated soils during construction of the channel can be used for reclamation of the Technopole area.
- There have small scale flood prone areas in Pikine irregular area located in the north of the pump drainage area. These areas should be slightly reclaimed for easy infiltration when the areas will be redeveloped.
- Areas with elevation of less than 2 m and 1 m in the north and the south of the Rufisque Road respectively are flood prone. These areas, except the proposed retention pond areas, should be reclaimed if developed.
- A depressed area located at the northern edge of the project area is an important land for drainage and should not be urbanized.
- Operation and maintenance of the proposed drainage facilities will be done by the proposed new organization. A part of the work is recommended to be done under participation of the residents in the flood prone areas who are the direct beneficiaries of the project. Such work items are as follows:
- Maintenance work of the drainage channels in the flood prone areas such as cleaning of the channels before rainy season, preventive activities to keep the channels clean, etc.
- Management of the retention ponds by the farmers who have agricultural activities in the pond areas.

TABLES AND FIGURES

. .

TABLE 10.1SUMMERY OF FEASIBILITYSTUDY AREA (km²)


.

S1 (0.281) S2 (0.179) S3 (0.213) S4 (0.344) S5 (0.244)	C.P.1-1 (1.261)	C.P.1 (3.119)	9.1 19)	9.1 19)	2.1 19)	2.1 19)	2.1 19)	2.1 19)	Area		
N1 (0.745) N2 (0.483) N3 (0.185) N4 (0.445)	C.P.1-2 (1.858)		Main Drainage Area (5.211)	Central Pikine (9.096)							
W1 (0.208) W2 (1.055) W3 (0.245) W4 (0.584)		C.P.2 (2.092)	2	Cent	udy Area						
		Rest of	C.P. (3.885)		Feasibility Study Area (11.293)						
E1 (0.242) E2 (0.865)	Added from E.C.P. (1.107) Fe			Ë							
W5 (0.789)	Added from S.C.P. (0.789)										
OS (0.076) ON1 (0.134) ON2 (0.091)	Outlet of C.P. (0.301)										

TABLE 10.2 COMPARISON OF ALTERNATIVE STRUCTURAL TYPE FOR DRAINAGE CHANNEL ALONG THE RUFISQUE ROAD

		OPEN CHANNEL	BOX CULVERT	
1	Construction			
	1) Cost	331,000 FCFA/m	1,794,000 FCFA/m	
		(Low)	(High)	
	2) Ease of Work	Easy and short	Long period	
2	Maintenance			
	1) Cost	Low	High	
	2) Sureness	High	Low	
3	Land Acquisition			
	1) Cost	11,550 FCFA/m	13,200 FCFA/m	
	2) Social problem	Not serious	Not serious	
4	Compensation			
	1) Cost	11,550 FCFA	13,200 FCFA	
	2) Sureness	Not serious	Not serious	
5	Safety			
	1) Against flood	High	Medium	
	2) For Traffic	Medium	High	
6	Flexibility for future urbanization	High	Low	

COMPARISON OF ALTERNATIVES FOR DRAINAGE CHANNEL ALONG THE NATIONAL ROAD

Area	Proposed Facilities		Total
CP 1	Drain to Grand Niaye		
	Construction of Storm Sewer	2 Systems Total	L= 4,460 m
	C.P.1-1		(L=2,970m
	d=1,100	mm CP	(250m)
	d=1,000	mm CP	(1,050m)
	d=900r	mm CP	(620m)
	d=8001	mm CP	(1,050m)
	C.P.1-2		(L=1,490m
	d=1,100r	mm CP	(260m)
	d=1,000r		(550m)
	d=600r		(680m)
	Construction of open channel (2m x 0.4 - 0.6m, 1)	2 Systems Total	L = 400m
	C.P.1-1	-	(100 m)
	C.P.1-2		(300 m)
	Stormwater Pumping Station	2 Systems Total	7 pis
	C.P.1-1 (1.0 m3/s 2pls, 0.3 m3/s 1pls)		3 pls
	C.P.1-2 (1.5 m3/s , 1.0 m3/s, 0.5m3/s, 0.3m3/s	s)	4 pls
	Stormwater Transmission Pipe (Ductile Iron Pipe)	2 Systems Total	L= 2,630m
	C.P. 1-1		(L=690m)
	d=600mn	n DCIP	(420m)
	d=800mn	n DCIP	(270m)
	C.P. 1-2		(L=1,940m
	d=600m	mDCIP	(570m)
	d=1100mn	n DCIP	(920m)
	d=801mn	n DCIP	(450m)
CP 2	Drain to Sea		
	Construction of main Drainage Channel (1-3m x 0.4-1		L = 2,940 n
	Improvement of Existing Drainage Channel (3m x 0.9	m, 1)	L= 770 m
	Stormwater Pumping Station (1.5 m3/s)		1 Place
	Retention Pond	Total	5.1ha

TABLE 10.3 SUMMARY OF PROPOSED FACILITY

Item	Unit	Unit Price/Cost (FCFA)
Concrete Lining Open Channel		 44678, 44
Type F-1 (Bottom Width=3m)	m	311,000
Type F-2 (Bottom Width=2m)	m	196,000
Type F-3 (Bottom Width=1m)	m	162,000
Storm Sewer		
Type F-1 (d=600mm Concrete Pipe)	m	316,000
Type F-2 (d=800mm Concrete Pipe)	m	378,000
Type F-3 (d=900mm Concrete Pipe)	m	413,000
Type F-4 (d=1,000mm Concrete Pipe)	m	466,000
Type F-5 (d=1,100mm Concrete Pipe)	m	525,000
Retention Pond	ha	42,500,000
Stormwater Pumping Station		
Type F-1 (1.5m3/s)	pls	395,900,000
Type F-2 (1.0m3/s)	pls	311,800,000
Type F-3 (0.5m3/s)	pls	242,800,000
Type F-4 (0.3m3/s)	pls	209,800,000
Transmission Pipe Line		
Type F-1 (d=600mm Ductile Iron Pipe)	m	283,700
Type F-2 (d=800mm Ductile Iron Pipe)	m	387,300
Type F-3 (d=1,100mm Ductile Iron Pipe)	m	608,600
Land Acquisition	m2	1,650

TABLE 10.4 UNIT PRICE/COST FOR WORK ITEMS

.

.

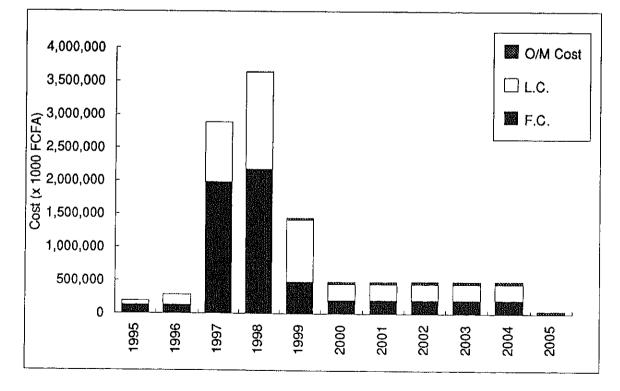
TABLE 10.5WORK VOLUME (FEASIBILITY STUDY)

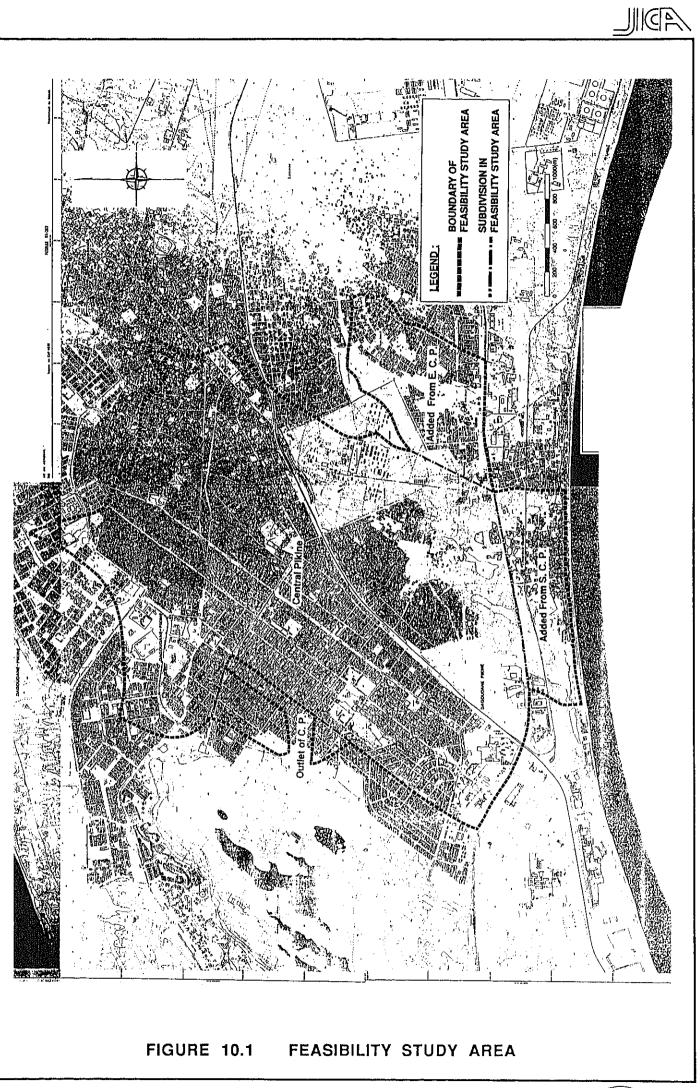
			Work Vo	olume	
Item	Unit	C.P.1-1	C.P.1-2	C.P.2	Total
Concrete Lining Open Channel					
Type F-1 (Bottom Width=3m)	m			2,710	2,710
Type F-2 (Bottom Width=2m)	m	100	300	300	700
Type F-3 (Bottom Width=1m)	m			700	700
Storm Sewer					
Type F-1 (d=600mm Concrete Pipe)	m		680		680
Type F-2 (d=800mm Concrete Pipe)	m	1,050			1,050
Type F-3 (d=900mm Concrete Pipe)	m	620			620
Type F-4 (d=1,000mm Concrete Pipe)	m	1,050	550		1,600
Type F-5 (d=1,100mm Concrete Pipe)	m	250	260		510
Retention Pond	ha	1.2	1.3	5.1	7.6
Stormwater Pumping Station					
Type F-1 (1.5m3/s: 0.5m3/sx3sets)	pls		1	1	2
Type F-2 (1.0m3/s: 0.33m3/sx3sets)	pls	2	. 1		3
Type F-3 (0.5m3/s: 0.25m3/sx2sets)	pls		1		1
Type F-4 (0.3m3/s: 0.15m3/sx2sets)	pls	1	1		2
Transmission Pipe Line					
Type F-1 (d=600mm Ductile Iron Pipe)	m	270	920		1,190
Type F-2 (d=800mm Ductile Iron Pipe)	m	420	570		990
Type F-3 (d=1,100mm Ductile Iron Pipe)	m		450		450
Land Acquisition	m2	12,000	13,000	51,000	76,000

TABLE 10.6 CONSTRUCTION COST (FEASIBILITY STUDY)

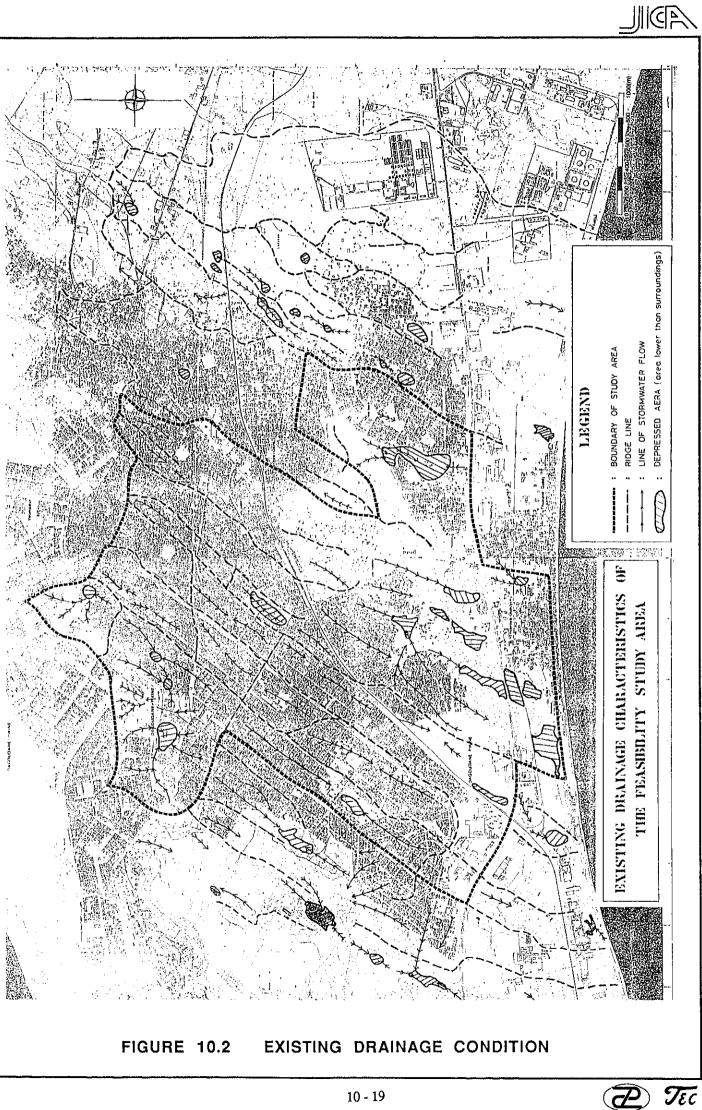
ltem	Unit Price/Cost	Unit	Con	struction Cost	t (x1000 FCF	A)
itom	(FCFA)		C.P.1-1	C.P.1-2	C.P.2	Total
I. Direct Construction Cost		<u></u>				
1. Concrete Lining Open Channel						
Type F-1 (Bottom Width=3m)	311,000	m			842,810	842,810
Type F-2 (Bottom Width=2m)	196,000	m	19,600	58,800	58,800	137,200
Type F-3 (Bottom Width=1m)	162,000	m			113,400	113,400
2. Storm Swer						
Type F-1 (d=600mm Concrete Pipe)	316,000	m		214,880		214,880
Type F-2 (d=800mm Concrete Pipe)	378,000	m	396,900			396,900
Type F-3 (d=900mm Concrete Pipe)	413,000	m	256,060			256,060
Type F-4 (d=1,000mm Concrete Pipe)	466,000	m	489,300	256,300		745,600
Type F-5 (d=1,100mm Concrete Pipe)	525,000	m	131,250	136,500		267,750
3. Retention Pond	42,500,000	ha	51,000	55,250	216,750	323,000
4. Stormwater Pumping Station						
Type F-1 (1.5m3/s)	395,900,000	pls		395,900	395,900	791,800
Type F-2 (1.0m3/s)	311,800,000	pls	623,600	311,800		935,400
Type F-3 (0.5m3/s)	242,800,000	pls		242,800		242,800
Type F-4 (0.3m3/s)	209,800,000	pls	209,800	209,800		419,600
5. Transmission Pipe Line						
Type F-1 (d=600mm Ductile Iron Pipe)	283,700	m	76,599	261,004		337,603
Type F-2 (d=800mm Ductile Iron Pipe)	387,300	m	162,666	220,761		383,427
Type F-3 (d=1,100mm Ductile Iron Pipe)			,	273,870		273,870
6, Secondery Drain		L.S.	725,033	791,300	488,298	2,004,630
Sub-Total			3,141,808	3,428,965	2,115,958	8,686,730
II. Land Acquisition and Compensation						
1 Land Acquinition	1,650	m2	19,800	21,450	84,150	125,400
1. Land Acquisition 2. Compensation	1,650		19,800	21,450	84,150	125,400
Sub-Total			39,600	42,900	168,300	250,800
III. Engineering Service	7% of 1		219,927	240,028	148,117	608,071
IV. Government Administration	1.5% of I + II		47,721	52,078	34,264	134,063
V. Physical Contingency	10% of (I to IV)		344,906	376,397	246,664	967,966
VI. Project Cost			3,793,961	4,140,367	2,713,303	10,647,630

TABLE 10.7BREAKDOWN OF CONSTRUCTION COST
(FEASIBILITY STUDY)

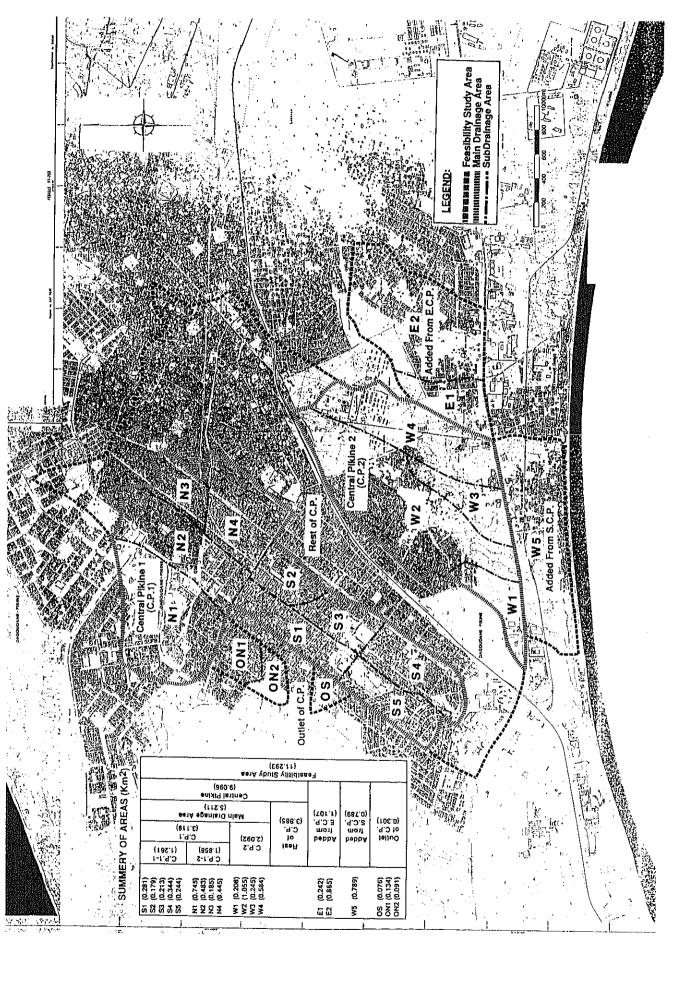
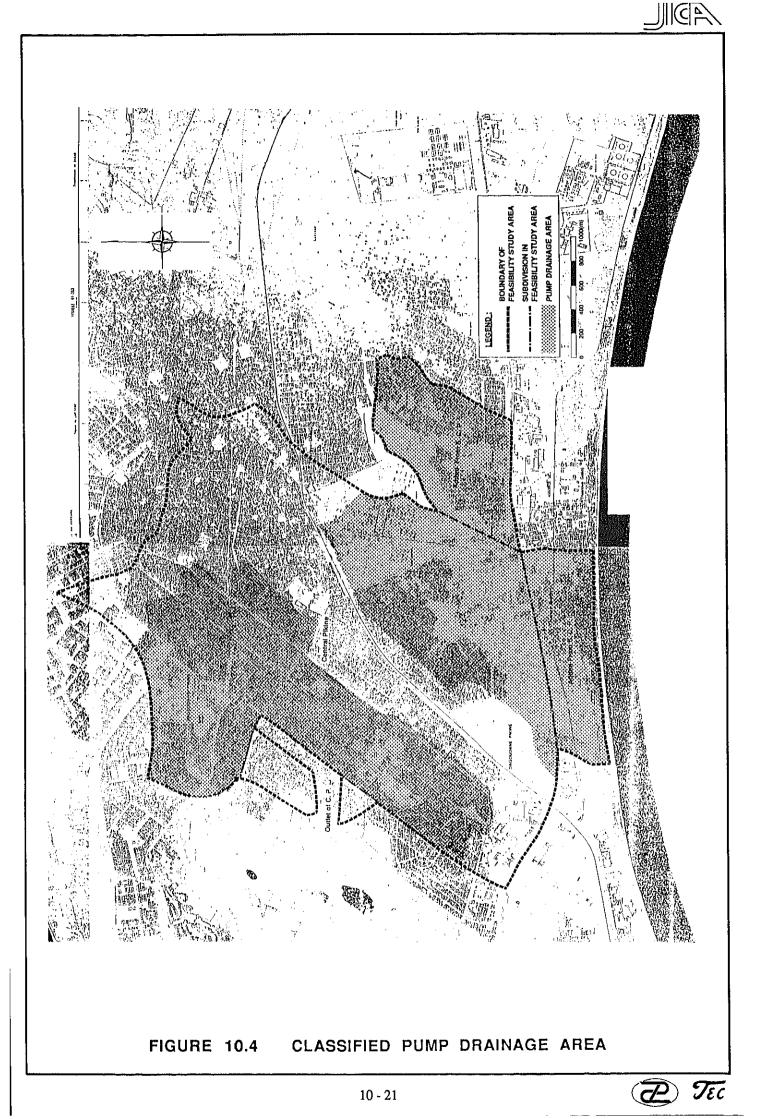
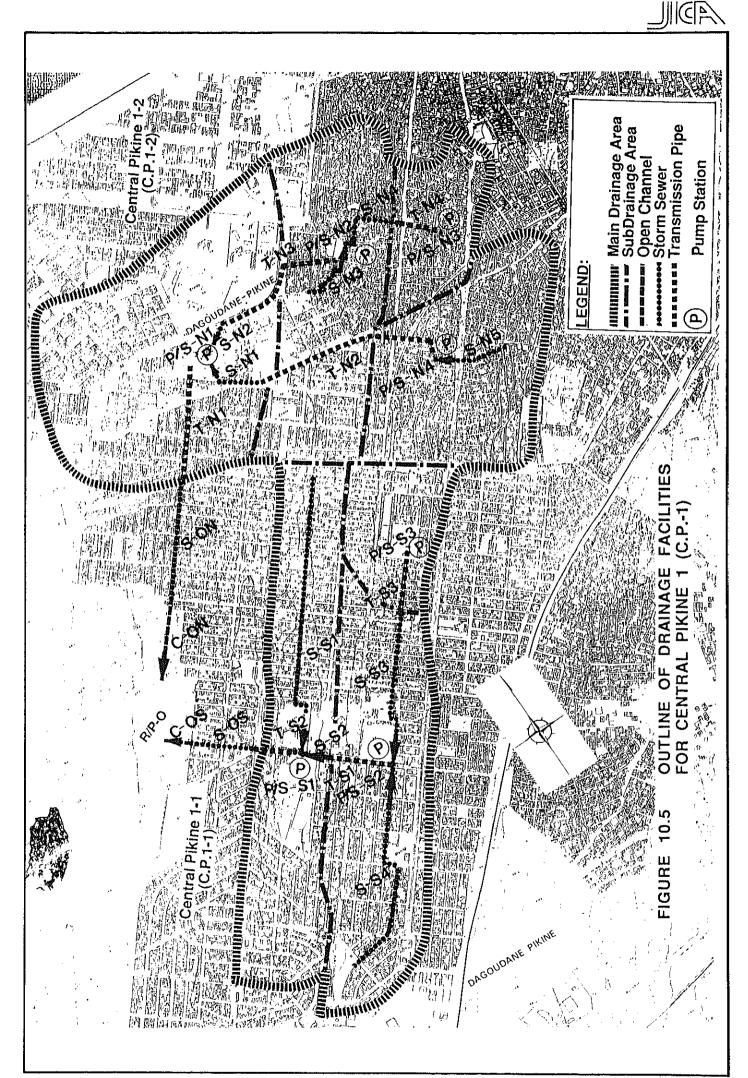

	CONS	TRUCTION COST	
	FC	LC	TT
CP-1 and CP-2			
Engineering Service	425,650	182,421	608,071
Land Acquisition / Compensation	0	250,800	250,800
CP-1 Drainage System System-S			
Pumping Stations	625,050	208,350	833,400
Transmission Pipe	203,375	35,890	239,265
Storm Sewer	1,082,484	191,027	1,273,510
Drainage Channel	2,940	16,660	19,600
Retention Pond	7,650	43,350	51,000
System-N			
Pumping Stations	870,225	290,075	1,160,300
Transmission Pipe	642,290	113,345	755,635
Storm Sewer	516,528	91,152	607,680
Drainage Channel	8,820	49,980	58,800
Retention Pond	8,288	46,963	55,250
Sub-total of CP1	3,967,649	1,086,791	5,054,440
CP-2 Drainage System			
Pumping Station	296,925	98,975	395,900
Drainage Channel	152,252	862,759	1,015,010
Retention Pond	32,513	184,238	216,750
Sub-total of CP2	481,689	1,145,971	1,627,660
Secondary Drain	1,002,315	1,002,315	2,004,630
Government Administration	o	134,063	134,063
Physical Contingency	0	967,966	967,966
Project Cost	5,877,303	4,770,328	10,647,630
Operation and Maintenance	0	270,122	
Grand Total	5,877,303	5,040,450	10,917,752

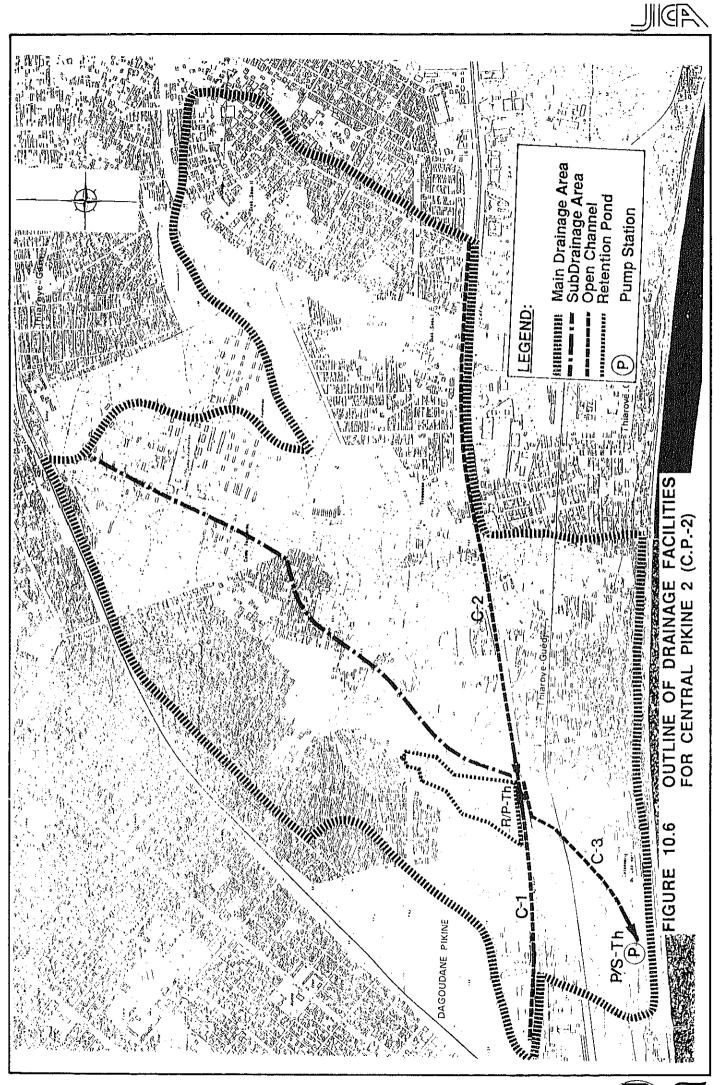

Unit : x 1000 FCFA

	Co	nstruction Cost	· · · · · · · · · · · · · · · · · · ·		
	F.C.	L.C.	Sub-Total	O/M Cost	Total
1995	121,614	69,494	191,108		191,108
1996	121,614	162,833	284,447		284,447
1997	1,982,306	904,917	2,887,223		2,887,223
1998	2,173,964	1,458,636	3,632,600	12,084	3,644,684
1999	475,489	938,593	1,414,083	27,506	1,441,589
2000	200,463	247,171	447,634	33,411	481,044
2001	200,463	247,171	447,634	35,415	483,049
2002	200,463	247,171	447,634	37,420	485,054
2003	200,463	247,171	447,634	39,424	487,058
2004	200,463	247,171	447,634	41,429	489,063
2005	0	0	o	43,434	43,434
Total Cost (1995-2010)	5,877,303	4,770,328	10,647,630	270,122	10,917,752


TABLE 10.8COST DISBURSEMENT SCHEDULE
(FEASIBILITY STUDY)

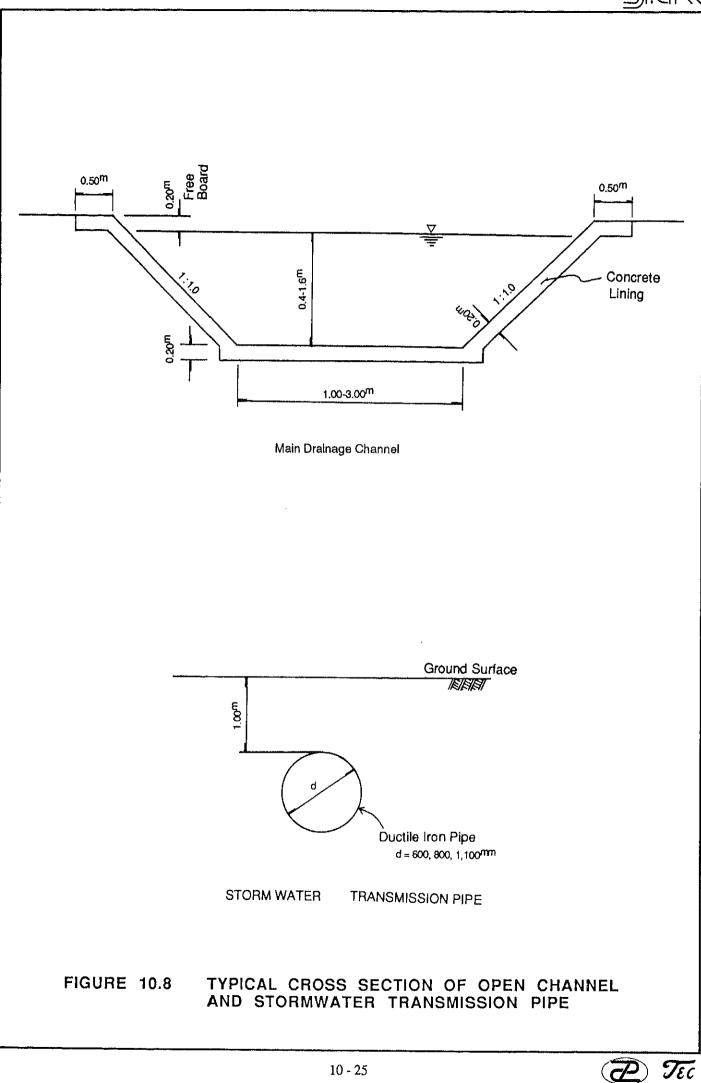
Unit : x 1000 FCFA

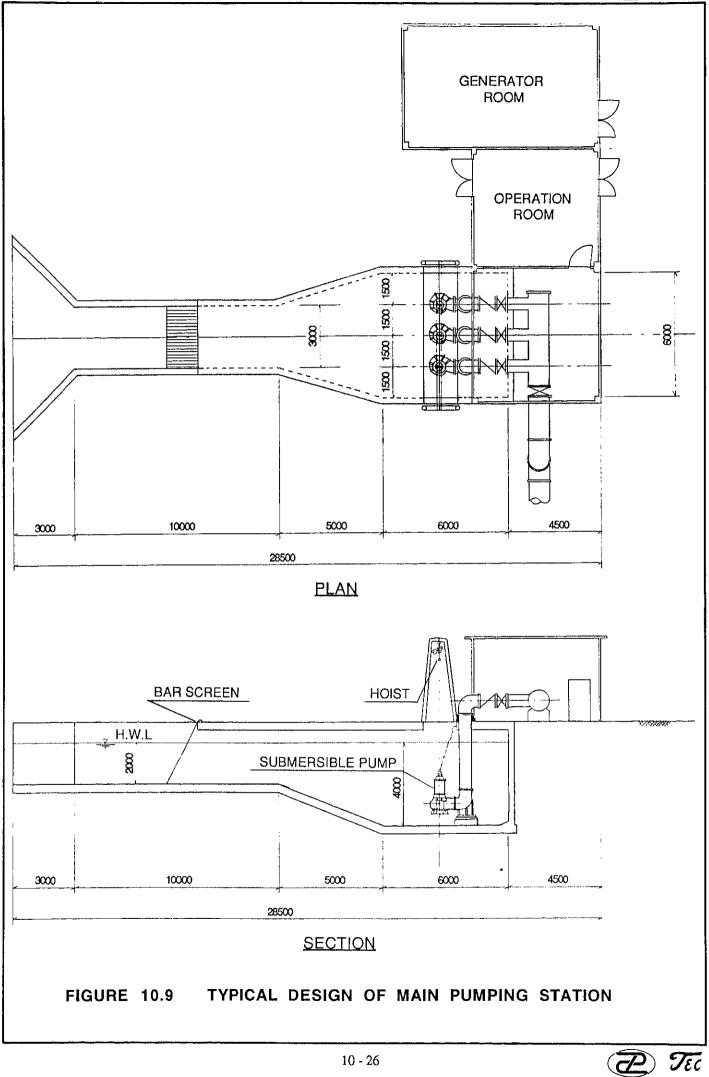

FIGURE 10.3 DRAINAGE SUB-AREAS

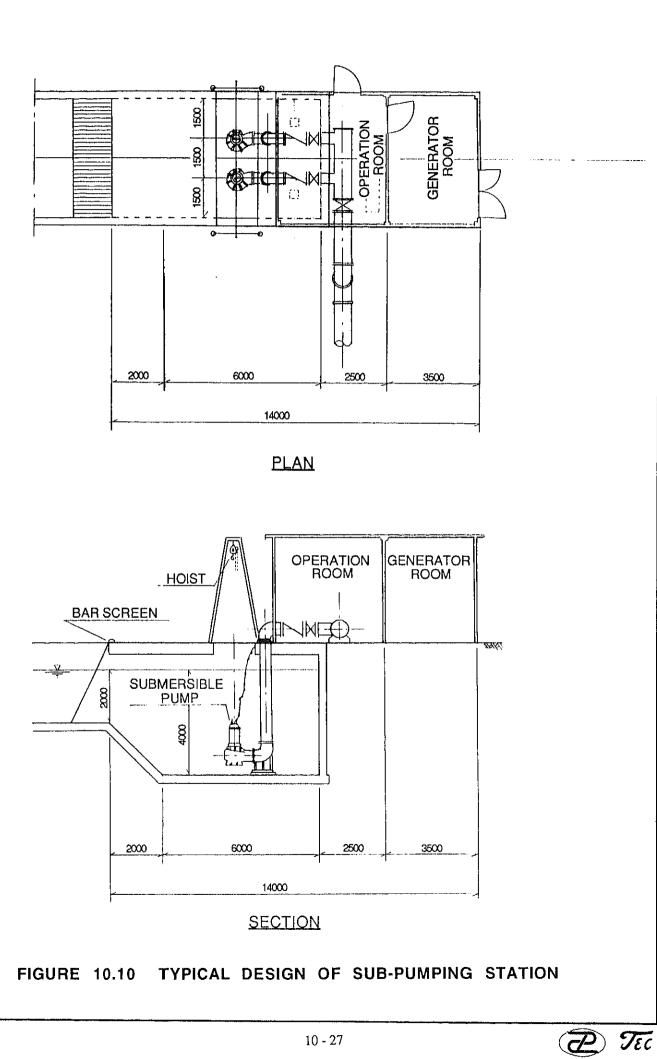


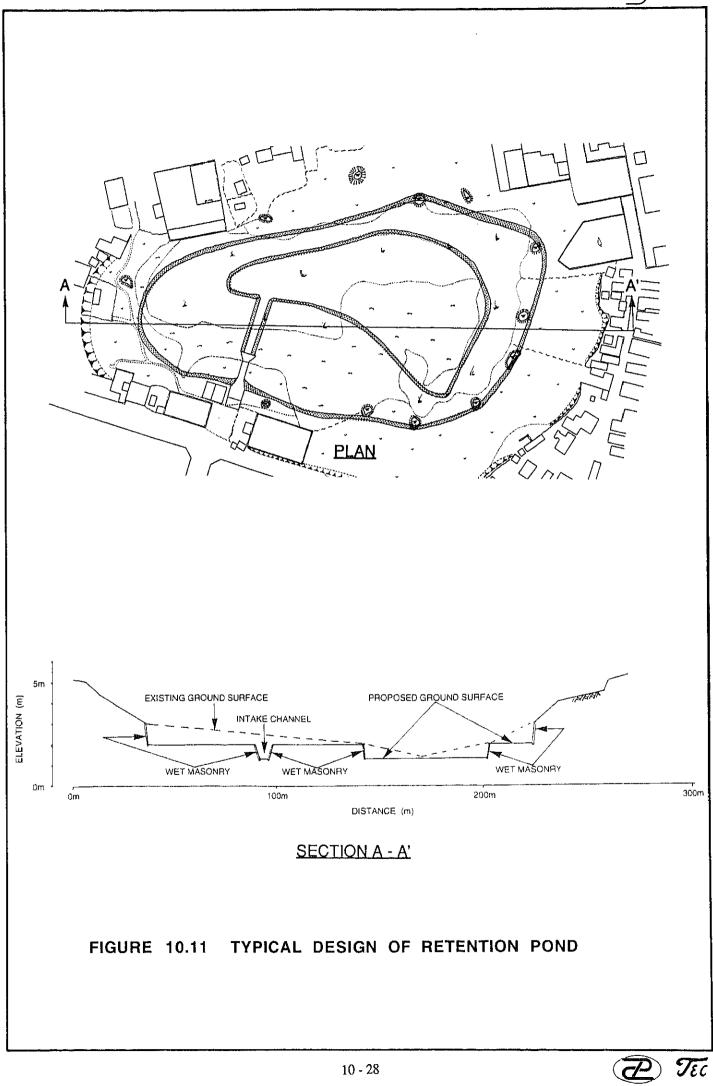
TEC

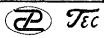


10 - 23


TEC







10 - 27

Work Item	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Central Pikine Drainage Area										
Survey, Design, Contruct Process Land Acquisition / Compensation		• •	l							
CP-1 Drainage System										
<u>System-S</u> Pumping Stations / Transmission Pipe Storm Sewer / Drainage Channel										
<u>System-N</u> Pumping Stations / Transmission Pipe Storm Sewer / Drainage Channel										
CP-2 Drainage System										
Pumping Stations Drainage Channel Retention Pond										
Secondary Drain						8 11)) 	1 1 1	11 12 13	0
FIGURE	JRE 10.12		PROPOSED OF PRIORITY		EMENTA	IMPLEMENTATION SCHEDULE	снери			

