# 9.2 Operation Planning

This study was made to estimate the necessary number of ships to be used for the cargo transportation on the Parnaiba river, considering the maximum transport capacity restricted by the Boa Esperanca Lock, the depth of the river, ship's speed, capacity of cargo work, and other necessary factors.

# 9.2.1 Scenario of Operation

To estimate the necessary number of ships, two scenarios were studied under the following conditions.

#### (1) Conditions

- Maximum navigable cargo volume are used.
- Soy Beans shall be transported between February and May.
- Monthly cargo volume passing the locks shall be within the maximum transport capacity in the case of 18 hours of lock operation in Table 7.3.6.
- Daytime navigation.

#### (2) Alternatives

Alternative 1 : Cargo Average

Cargoes other than soybeans and cargoes passing the locks shall be transported on an average through the year considering the demand of the consumer.

Alternative 2 : Ship Average

Some cargoes shall be adjusted so that number of ships shall become almost even through the year. Since scenario 1 shall require a large number of ships at the peak, this scenario has been studied.

#### 9.2.2 Cargo to be Transported

Monthly cargo volume to be transported by each alternative is as per Table 9.2.1 and 9.2.2.

#### 9.2.3 Ship's Speed

| Average river flow           | : about 2.0 knots (see Table 3.1.6)  |
|------------------------------|--------------------------------------|
| Ship's speed without current | : 8.0 knots                          |
| Downward Navigation          | : 8.0 + 2.0 = 10.0 knots (18.5 km/h) |
| Upward Navigation            | : 8.0 - 2.0 = 6.0 knots (11.1 km/h)  |

#### 9.2.4 Navigation Hours

Table 9.2.3 shows the estimated distance and navigation hours between major ports along the Parnaiba river. It is estimated that it takes about 70 hours from Santa Filomena to Parnaiba for downward navigation and about 109 hours from Parnaiba to Santa Filomena for upward

|               |          |        |           |            |       |            |                 |           |        |            |       |           |            |          |         |          |         | 1                                                                                                |               |            |               |             |        |                  |       |         |              |         |        |      |     |       |                   |
|---------------|----------|--------|-----------|------------|-------|------------|-----------------|-----------|--------|------------|-------|-----------|------------|----------|---------|----------|---------|--------------------------------------------------------------------------------------------------|---------------|------------|---------------|-------------|--------|------------------|-------|---------|--------------|---------|--------|------|-----|-------|-------------------|
|               |          | · .    |           |            | r 1   |            | - <del>1.</del> |           | · .    | - <b>T</b> | 11    | T         |            | :<br>    | -1      | T        | [       | -r                                                                                               | -1            | <b>ا</b> ا | ·             | -1          | I1     | <b>.</b>         | т-    | I I     | - <b>T</b> - |         | -1     | Ţ]   |     |       |                   |
|               | 737520   | TOTAL  | 400       | 4300       | 83650 | 275050     | 243550          | 1.9000    | 23000  | 36900      | 35000 | 815750    | 26900      | 1123000  | 167000  | 982750   | 11500   | 55000                                                                                            | 0006          | 22500      | 1100          | 2000        | 49800  | 29200            | 6700  | 277000  | 25000        | 20005   | 1500   | 1000 | 500 | 3000  | 1312750           |
|               | 68380    | DEC    | 10000     | 360        | 15250 | 31850      | 4250            | 3850      | 0071   | 3050       | 2900  | 75335     | 2200       | 0 2 2 0  | 13900   | 89235    | 950     | 4600                                                                                             | 42UU-         | 1900       | 450           | 200         | 4150   | 2500             | 600   | 23190   | 2050         | nen2    | 125    | 90   | 50  | 265   | 116790            |
|               | 52160    | NON    | 35        | 360        | 13900 | 29000      |                 | 2960 1    | 13001  | 3050 1     | 2900  | 68635 1   | 2200       |          | 12900 - | 82535    | 950     | 4600 -                                                                                           | 750           | 0061       | 450           | 200         | 4150   | 2500             | 600   | 23190   | 2050         | 2050    | 4 52 1 | 06   | 50  | 265 1 | 060011            |
| Average)      | 33600    | 0CT    |           | 360        | 7400  | 15500 1    | 21001           | 2000 1    | 1.001  | 3050 1     | 29001 | 40075     | 2250       | 1 0120   | 13950 1 | 54025    | 950     | 4600                                                                                             | 42001         | 0061       | 45.0 1        | 301         | 4150   | 2500 1           | 550 1 | 23140 j | 2050         | 2050 1  | 1521   | 06   |     |       | 81520             |
| (Cargo Av     |          | SEP    | 35 -      | 360        | 6000  | 12600      | 1 1 1 1 1 1     | 1180-1    | 003    | 3050       | 2900  | 33355 1   | 2250       | 0120     | 13950 1 | 47305 1  | 9501    | 4500                                                                                             | 7501          | 10061      | 450-1         | -2001       | 41501  | 2500 1           | - 095 | 23140   | 2050         | 2020    | 1521   | 06   | 40  | 255   | 74800             |
|               | 26880    | AUG    | 35        | 360        | 6000  | 12500      | 1 100 1         | 1180      | 6301   | 3050       | 2900  |           | <b> </b> - |          | 103621  |          |         | 4700                                                                                             | 4200  <br>750 | 1 0 0 6 1  | 400           | 150 -       | 4150   | 24001            |       | 23040   | 2100         | 1 0012  | 1251   | 08   | 40  | 245   | CR412             |
| Alternative1  | 26830    | JUL    | 35        | 350        | 6000  | 12500      | 1 100 1         | 0.81.1    | 600    |            |       |           | 2250       | _        |         |          |         | 4700                                                                                             | 4200   750    | 1 0 0 6 1  | 400 1         | 120         | 4150 1 | 2400             | 2007  | 23040   | 2100         | 2100    | 125 -  | 80   | 40  | 245   | 74780             |
|               |          | JUN    | 40        | 350        |       | 600        | 1 100 1         | 1 1 8 0 1 | 600    | 3100 -     |       |           | 2250       |          |         |          |         | 4700 1                                                                                           | 4150          | 1850       | 400           | <br>120 -   | 4150 i | 2400             | 220   | 22940   | 21.00        | 1 002 7 | 125 -  | 80   |     |       | 74685             |
| e transported | 48720 2  |        | 40 -      | 360        | 1.    | -          | 24800           | 0,0       |        |            |       |           | 2250       |          |         | _        |         | _                                                                                                |               | 1850 -     | 400           | - 1 2 0 - I | 4150   | 2400 1           |       |         | _            |         |        | 80   | 40  |       | 96535             |
| ne to<br>be   |          |        | 40-40-4   | 360        | - 0   |            | 0 1 0 0 7 2 9   |           |        | 1001       | .]    |           | 2250       | _[       |         | 246001 6 |         | [                                                                                                |               |            | 400           |             |        | 2400             |       | 3090    | 2100         |         | 122 1  | 80   | 40  |       | 52135   9         |
| cargo volume  | 04150 10 |        | 0         | 360        | 0     |            | 3400 L          |           |        |            |       | Ξ         | 2250       |          | _       |          |         |                                                                                                  |               | 1850       |               | 150 1       |        | 2400             |       | -       | 2100         |         | 30     | 80   | _   |       | <u>52135   15</u> |
| Monthly ca    | - · ·    |        | 40        | 360        | 0     | 2 0 0 2    | 9 1 0 0 F       |           |        | 3100 1     |       |           | 2250   2   | <u> </u> |         | - -      |         |                                                                                                  | 4150 1 4      |            |               | 1501        |        |                  |       | 2       |              | 1 0012  |        | 0.8  |     |       | <u>52245   15</u> |
| vear Mo       |          | R.     |           | 360        |       | 300   2980 | . u             | 2         |        | 3100 1 3   |       | 11        |            |          |         |          |         |                                                                                                  | 4150 1 4      |            | <br>          |             |        | 2400 1 2         |       |         | 2100 1       |         |        | 1 00 | 40  |       | 52245   152       |
| 2010          | th 104   | ۲<br>۲ |           | r LK 14    | 23    | 4 8        | -               |           | T3S 2: | -          |       |           | PNB 2250   |          |         |          |         | +<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |            |               | ·.          |        | TRS 2            | -     | 2       |              | MAL Z   |        | PNB  | PNB | . ©   | 07AL 152          |
| · · · ·       | 0        |        | ==  <br>1 |            | 1     |            | 1               | t         | ł      |            | 1     | SUB TTL O | 1          | 1        |         | 07.41    | ы.<br>↓ | 8. G ← F                                                                                         | ι. μ.<br>Ι Ι  | Ļ          | ţ.            | - [         | 1      | 1                | 1     | TTL     |              | t le    | ]1     | 1    | t   | -1-   | GRAND TO          |
| Table 9.2.1   |          | ا ته ا | S. F      | - U<br>/ H | 0     | 2          | U B C           |           |        |            | - 10. | 100       | えい         |          | ייור    | 4        | 2       | 2                                                                                                | - 19          | 12.        | <u>ا مع</u> ز | <b>~</b>  ° | 12     | ۱ <sup>-</sup> ۲ | ۲ľ″   | ľ″      | []           | ٠. I    | 1-     | 1    | 1   |       |                   |

| · .      |            |      |          |       | <br>   |        |         |         |       | · ·    | ·<br>· |         | · · · · |          |        |       |         | •       | -       |                                           |          |               |        |       | ·<br>· · | -<br>  |        |        |        |           | •      |        |        | •       |        |          |             |      | · · ·     |         | <br><br> | - |
|----------|------------|------|----------|-------|--------|--------|---------|---------|-------|--------|--------|---------|---------|----------|--------|-------|---------|---------|---------|-------------------------------------------|----------|---------------|--------|-------|----------|--------|--------|--------|--------|-----------|--------|--------|--------|---------|--------|----------|-------------|------|-----------|---------|----------|---|
| 737520   | TOTAL      | 450  | 72500    | 4300  | 83650  | 275050 | 15750   | 243550  | 00061 | 28000  |        | 36900   |         |          | 67     |       | [       |         | 982750  | ÷.                                        | 55000    | 20100         | 0006   | 22500 | 5000     | 1100   | 2000   | 49800  | 29200  | 34000     | 6700   | 277000 | 25000  | 25000   | 5.0000 | 1500     | 1000        | 500  | 3000      | 330000  | 1312750  |   |
| 68880    | DEC        | 35   | 9300     | 360   | 15250  | 31850  | 2950    | 4250    | 3860  | 1400   | 130    | 3050    | 2900    | 75335    | 2200   | 2200  | 0006    | 13400   | 88735   | 1760                                      | 9370     | 8.270         | 1520   | 3670  | 820      | 190    | 305    | 8285   | 4825   | 5890      |        | 4603   | 2      | 2       | 4      | 200      | 50          | 50   | 300       | 50935   | 139670   |   |
| 62160    | NON        | 35   | 8500     | 360   | 00621  | 29000  | 2.6 0 0 | 3900    | 2960  | 1300   | 130    | 3050    | 2900    | 68635    | 11001  | 006   | 5000    | 7000    | 75635   | 0611                                      | 5750     | 5250          | 935    | 2375  | 560      | 115    | 250    | 5190   | 3125   | . 3500    | 750    | 28990  | 2100   | 2100    | 4200   | 1.50     | 50          | . 50 | 250       | 33440   | 109075   |   |
| 33600    | 0CT        | 35   | 4500     | 360   | 7400   | 15500  | 1400    | 2100    | 2000  | 100    | 130    | - 61:00 | 5 80.0  | 46025    | 006    | 850   | 4200    | 5950    | 51975   | 1190                                      | 5750     | 5250          | 93.5   | 2375  | 560      | 115    | 250    | 5190   | 3125   | 3500      | 685    | 28925  | 1700   | 1700    | 3400   | . 50     | 50          | 20   | 1.20      | 32445   | 84420    |   |
| 26880    | SEP        | 35   | 3700     | 360   | 6000   | 12600  | 0011    | 1700    | 1180  | 600    | 130    | 6300.1  | 5800    | 39505 1  | 500 1  | 500   | 2000    | 3000    | 42505 1 | 1470                                      | 5750     | 5250 1        | 935.1  | 2375  | 560      | 115    | 250    | 5190   | 3125   | 3500      | 685    | 29205  | 1300   | 1300    | 2600   | 201      | 50          | 201  | 120       | 31925 1 | 74430    |   |
| 25880    | A UG       | 35   | 3700     | 360   | 0009   | 12600  | 1100    | 17001   | 1180  | 600    | 130    | 6100-1  | 5900    | 39405 (  | 500    | 5001  | 2000    | 3000    | 42405 1 | 1425                                      | 7.050    | 6300.1        | 1125 1 | 2850  | 600      | 135    | 225 1  | 6225 1 | 3600:1 | 4200      | 325    | 34560  | 1300.1 | 1300    | 2500   | 20<br>20 | 50 8        | 201  | 1201      | 37280   | 79685    |   |
| 26380    | JUL        | 35   | 3700     | 3.5.0 | 6000   | 12600  | 1.100   | 1700    | 10811 | 600    | 130    | 61001   | 5900 1  | 39395    | 1000   | 9201  | 4200    | 6150    | 455451  | 1425                                      | 7050     | 6300          | 1125   | 2850  | 600      | 135    | 225    | 6225   | 3600   | 4200      | 825    | 3456.0 | 1300   | $\sim$  | 2600   | 501      | 50          | 20   | 120       | 0       | 82825    |   |
| 26880    | JUN        | 40   | 3700     | 350   | 6000   | 12600  | 1100    | 00.21   | 1180  | 009    | 130-1  | 3100    | 2900    | 334001   | 2100   | 21001 | 85001   | 12700   | 461001  | 15651                                     | 8230     | 7265          | 1310   | 3240  | 1 002    | . 160  | 260    | 7250   | 4200   | 4900      | .965.1 | +0155  | 1300   | 1300    | 2600   | 50       | 50 {        | 20)  | 120       | 287     | 88975    |   |
| 48720    | HAY        | 40   | 2720     | 360   | 0      | 13600  | 0       | 29800   | 0     | 2600   | 130    | 3100    | 2900    | 55250 +  | 3400   | 3400  | 15000-1 | 21800   | 770501  | 475 1                                     | 2350     | 2075          | 375.1  | 925.  | 2 0.0    | 45     | 75     | 2075   | 1200   | 1400      | 275    | 11470  | 12001  | . 17.00 | 3400   | 1001     | 50          | 20   | 170       | 15040   | 92090    | • |
| 104160   | 01<br>d.   | 40   | 6160     | 360   | 0      | 28800  | 0       | 63400 1 | 0     | 53001  | 140    | 0       | 1.0     | 104700 1 | 3800 1 | 3600  | 161001  | 23500   | 1282001 | 250                                       | 1175     | 1035.1        | 1851   | 460   | 10.01    | 20 1-  | 40     | 1040   | 500 :  | 725 ]     | 140    | 5770   | 30.00  | 3000    | 6000   | 200      | 150         | 70   | 420       | 12190   | 140390   |   |
| 104160   | a Vi       | 40   | 6160     | 360   | 0      | 28800  | 0       | 63400   | 0     | 5800 1 | 1401   | 0       | 0       | 104700 1 | 38001  | 3600  | 161001  | 23508   | 128200  | 2501                                      | 1175     | 10351         | 185    | 4601  | 10.01    | 201    | 40     | 1040   | 600    | 725       | 140    | 5770   | 3000   | 3000    | 6000   | 2001     | 150         | 7.0  | 4201      | 12190   | 140390 } | • |
| 104160   | FEB        | 40   | 6160     | 360   | 0      | 28800  | 0       | 63400   | 0     | 5800   | 140    | 0       | 0       | 104700   | 3800   | 3600  | 161001  | 23500   | 128200  | 250                                       | 1175     | 1035          | 135    | 450   | 1001     | 25     | 40     | 1040   | 500    | 730       | 140    | 5780   | 3000   | 3000    | 6000.1 | 200      | 150         | 0.2  | 420       | 12200   | 140400   |   |
| 104150   | JAN<br>VAN | 40   | 14200    | 360   | 23100  | 48300  | 4400    | 6500    | 5460  | 2200   | 1011   | 0       | 0       | 104700   | 3800   | 3500  | 16100   | 23500 1 | 128200  | 250 1                                     | 1175     | 1035 1        | 185    | 460   | 100      | 25     | 40     | 1040   | 600    | 730       | 140    | 5780   | 3000   | 3000    | 6000   | 200      | 150         | 10.  | 420       | 12200   | 140400   |   |
| Max Load |            | t    | 873<br>1 | 1     | t FLR  | SEL †  | t       | t       | t     | 1      | 1      | 1       | + TRS   | TTL      | †      | t     | t       | TTLO    |         | +<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1        | + FLR         | ţ      | ţ     | + PAL    | ł      | 1      | +      | t TRS  | 1         | ŧ      | 115    | Ì      | 4       | 111.0  | ŧ        | A<br>A<br>A | ŧ    | 1 TTL @ . | TOTAL   | ND TOTAL |   |
| 7        | 0<br>      | S. F | S. F     | R. G  | 3<br>8 | В. G   | URC     | URC     | GUD   | GUD    | FLR    | A # 8   | PAL     | SUB      | MAL    | 7.8.2 | LZL     | SUB     | F-1     | S. F                                      | ເງ<br>ດາ | . <b>U</b> AC | GUD    | F13   | FLR      | S<br>S | ය<br>ස | C B C  | 3<br>3 | 51.8<br>1 | 3      | SUB    | TRS    | TRS     | SUB    | YND .    | MAL         | PRT  | SU8       |         | GRAND    |   |

navigation. It means that in the case of daytime navigation, it takes about 6 days from Santa Filomena to Parnaiba and 9 days from Parnaiba to Santa Filomena.

|                            | [        |       | Navigati | on Hours |      |
|----------------------------|----------|-------|----------|----------|------|
| Port to Port               | Distance | Down  | ward     | Up       | vard |
|                            | (km)     | Hours | Days     | Hour     | Days |
| Santa Filomena to Floriano | 585      | 36.0  | 3.0      | 52.0     | 4.3  |
| Santa Filomena to Teresina | 830      | 49.2  | 4.1      | 74.0     | 6.2  |
| Santa Filomena to Parnaiba | 1,215    | 70.0  | 5.8      | 108.7    | 9.1  |
| Floriano to Teresina       | 245      | 13.2  | 1.1      | 22.0     | 1.8  |
| Floriano to Parnaiba       | 630      | 34.0  | 2.8      | 56.7     | 4.7  |
| Teresina to Parnaiba       | 385      | 20.8  | 1.7      | 34.6     | 2,9  |

 Table 9.2.4 Distance and Navigation Hours (Main Ports)

Source: JICA Study Team

Note : Distance was obtained by map of 1:200,000 scale.

#### 9.2.5 Capacity of Cargo Work

# (1) General Cargo

Considering the effective ship's turn round, a ship is recommended to install a crane with the capacity of about 1 ton which shall be possible to turn 20 times per hour. It means that the capacity of cargo work is 20 tons per hour for general cargo.

## (2) Bulk Cargo

The following capacities are to be used for the estimation of the required number of ships which are scheduled to be installed under Scenario 1.

| Port                                                                                                            | Loader/ | Unloader Capacit | y (ton/h) |
|-----------------------------------------------------------------------------------------------------------------|---------|------------------|-----------|
| a de la companya de l | Nminal  | Loading          | Unloading |
| Parnaiba                                                                                                        | 200     | 100              | 140       |
| Luzilandia                                                                                                      | 100     | 50               | 70        |
| Porto                                                                                                           | 100     | 50               | 70        |
| Miguel Alves                                                                                                    | 100     | 50               | 70        |
| Uniao                                                                                                           | 100     | 50               | 70        |
| Teresina                                                                                                        | 700     | 350              | 490       |
| Palmeiras                                                                                                       | 100     | . 50             | 70        |
| Amarante                                                                                                        | 100     | 50               | 70        |
| Floriano                                                                                                        | 200     | 100              | 140       |
| Guadalupe                                                                                                       | 100     | . 50             | 70        |
| Urucui                                                                                                          | 200     | 100              | 140       |
| Ribeiro Goncalves                                                                                               | 300     | 150              | 210       |
| Santa Filomena                                                                                                  | 100     | 50               | 70        |

Table 9.2.5 Capacity of Cargo Work of Bulk Cargo

Source : JICA Study Team

Table 9.2.3 Distance and Navigation Hours

Unit : Xm

Distance

|                 |             |                          |            |            |          |             |            |          |       |          |       |            | r       |
|-----------------|-------------|--------------------------|------------|------------|----------|-------------|------------|----------|-------|----------|-------|------------|---------|
|                 | S Filomena  | S Filomena   8 Goncalves | Ilreui     | Guada lupe | Floriano | Amarante    | Palmeirais | Teresina | Uniao | M. Alves | Porto | Luzilandia | Pamaiba |
| C Pilomona      |             | 275                      | 375        |            | 285      | <b>(</b> 99 | 1 710      | 830      | 006   | 965      | 1010  | 1095       | 1215    |
| P Gonce Ives    | 205         |                          | 001        | 240        | 310      | ŝ           | 435        | 188      | 625   | 690      | 735   | 820        | 940     |
|                 |             | 1001                     |            | 140        | 210      | 582<br>5    | 335        | 455      | 525   | 230      | 535   | 120        | 840     |
| Guada Lupe      | 212         |                          | 140        |            | 02       | 145         | 195        | 315      | 385   | 450      | 495   | 280        | 700     |
| Floriano        | 585         | -                        | 210        | 02         |          | 15          | 125        | 245      | 315   | 380      | 425   | 2012       |         |
| 1 TO LOUIS      | 2000<br>EEU |                          | 38         |            | 75       |             | 20         | 021      | 240   | 305      | 350   | 435        | 555     |
| Da Ime irra i e | 1012        |                          | 335        |            | 125      | 8           |            | 120      | 190   | 255      | 300   | 382        | 1 505   |
| Terecina        | 1028        |                          | 455        |            | 245      | 21          | 120        |          | 02    | 135      | 180   |            |         |
|                 | 38          |                          | 595        |            | 315 1    | 240         | 190        | 02       |       | 65       | 110   | 195        | 315     |
|                 | 200         |                          |            |            | 080      | 38          |            | 135      | 33    |          | 45    | 1 130      | 250     |
| Dorro           | 1010        |                          | 835<br>835 |            | 425      | 88          |            | 180      | 110   | 45       |       | 8          | 205     |
| ine landia      | 1005        |                          | 720        |            | 510      | -435<br>153 | 385        | 265      | 195   | 130      | 85    |            | 120     |
| Parnaiba        | 1 1215      |                          | 078        | 002        | 830      | ß           | 505        | 385      | 315   | 250      | 205   | 130        |         |
|                 | +           |                          |            |            |          |             |            |          |       |          |       |            |         |
|                 |             |                          |            |            |          |             |            |          |       |          |       |            |         |

| Mavigation Hours<br>S.Filomena<br>S.Filomena | Ę                                     | · · · · · · · · · · · ·    |                           | 2                                |                                 |                       |                                                                                               |            |                       |                                  |                                                                                        |            |
|----------------------------------------------|---------------------------------------|----------------------------|---------------------------|----------------------------------|---------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|------------|-----------------------|----------------------------------|----------------------------------------------------------------------------------------|------------|
|                                              | 8                                     | ip s opena .               | Ship's Speed : 8.0 knots. | FICH : 2. U KNOTS.               |                                 | STIL 6 -2 - X001      |                                                                                               |            | 110                   | / A - num - num - num - num      | 21 21 200 0 0                                                                          |            |
|                                              | S.Filomena R. Goncalves               | Urcui                      | Guadalupe                 | Floriano                         | Amarante                        | Amarante Palmeirais   | Teresina                                                                                      | Uniao      | A Alves               | Porto                            | Luzilandia                                                                             | Parnaiba   |
|                                              | 14.8 (1.2)                            | 14.8 (1.2) 20.2 (1.7) 29.7 |                           | (2.5) 36.0 (3.0) 40.0 (3.3)      | 40.0 (3.3)                      | 42.8 (3.6)            | 49.2 (4.1)                                                                                    | 53.0 (4.4) | 56.5 (4.7)            | 58.9 (4.9)                       | 63.5 (5.3)                                                                             | 70.0 (5.8) |
| R. Goncalves 24.7 (2.1)                      | -1                                    | 5.4 (0.4) 14.8             |                           | 21.1 (1.8)                       | 25.2 (2.1)                      | 27.9 (2.3)            | (1.2) 21.1 (1.8) 25.2 (2.1) 27.9 (2.3) 34.4 (2.9)                                             | 38.1 (3.2) | 41.6 (3.5)            | 38.1 (3.2) 41.6 (3.5) 44.1 (3.7) | 48.7 (4.1)                                                                             | 55.1 (4.6) |
| Urucui 33.7 (2.8)                            | 0 9 0.0                               |                            | 9.4 (0.8)                 | 15.7 (0.8)                       | 19.8 (1.6)                      | 22.5 (1.9)            | (0.8) 15.7 (0.8) 19.8 (1.6) 22.5 (1.9) 29.0 (2.4) 32.7 (2.7) 36.2 (3.0) 38.7 (3.2) 43.3 (3.6) | 32.7 (2.7) | 36.2 (3.0)            | 38.7 (3.2)                       | 43.3 (3.6)                                                                             | 49.7       |
| Guadalupe 43.2 (3.6) 18.4 (1.5)              | ) 18.4 (1.5)                          | 9.4 (0.8)                  |                           | 6.3 (0.5)                        | 10.3 (0.9)                      | 13.0 (1.1)            | 19.5 (1.6)                                                                                    | 23.3 (1.9) | 26.8 (2.2)            | 29.2 (2.4)                       | 6.3 (0.5) 10.3 (0.9) 13.0 (1.1) 19.5 (1.6) 23.3 (1.9) 25.8 (2.2) 29.2 (2.4) 33.8 (2.8) |            |
| Floriano 52.0 (4.3) 27.2 (2.3)               | 0 27.2 (2.3)                          | 18.2 (1.5)                 | 8.8 (0.7)                 |                                  | 4.0 (0.3)                       | 6.8 (0.6)             | 13.2 (1.1)                                                                                    | 17.0 (1.4) | 20.5 (1.7)            | 22.9 (1.9)                       | (0.6) 13.2 (1.1) 17.0 (1.4) 20.5 (1.7) 22.9 (1.9) 27.5 (2.3)                           | 34.0 (2.8) |
| Amarante 58.7 (4.9                           | 58.7 (4.9) 34.0 (2.8) 25.0 (2.1)      | 25.0 (2.1)                 | 15.5 (1.3)                | 6.7 (0.6)                        |                                 | 2.7 (0.2)             | 9.2 (0.8)                                                                                     | 13.0 (1.1) | 16.5 (1.4)            | 13.0 (1.1) 16.5 (1.4) 18.9 (1.6) | 23.5 (2.0)                                                                             | 30.0 (2.5) |
|                                              | 63.2 (5.3) 38.5 (3.2)                 | 29.5 (2.5) 20.0            | 80                        | (1.7) 11.2 (0.9) 4.5 (0.4)       | 4.5 (0.4)                       |                       | 6.5 (0.5)                                                                                     | 19.5 (1.6) | 19.5 (1.6) 23.0 (1.9) | 25.4 (2.1)                       | 30.0 (2.5)                                                                             | 36.5 (3.0) |
|                                              | 74.0 (6.2) 49.3 (3.4)                 | 40.3 (3.4)                 | (2.6)                     | 22.0 (L 8) 15.3 (L 3) 10.8 (0.9) | 15.3 (1.3)                      | 10.8 (0.9)            |                                                                                               | 3.8 (0.3)  | 7.3 (0.6)             | 3.8 (0.3) 7.3 (0.6) 9.7 (0.8)    | 14.3 (1.2)                                                                             | 20.8 (1.7) |
| +                                            | 55.6 (4.6)                            | 46.6 (3.9)                 | 37.1 (3.1)                | 28.3 (2.4)                       | 21.6 (1.8) 17.1 (1.4) 6.3 (0.5) | 17.1 (1.4)            | 6.3 (0.5)                                                                                     |            | 3.5 (0.3)             | 5.9 (0.5)                        | 5.9 (0.5) 10.5 (0.9)                                                                   | 17.0 (1.4) |
| -                                            | 61.4 (5.1)                            | 52 4 (4.4)                 | 43.0 (3.6)                | 34.2 (2.8)                       | 27.4 (2.3)                      | 23.0 (1.9)            | 12.1 (1.0)                                                                                    | 5.8 (0.5)  |                       | 2.4 (0.2)                        | 7.0 (0.6)                                                                              | 13.5 (1.1) |
| - <b> </b>                                   | 90.2 (7.5) 65.5 (5.5) 56.5 (4.7) 47.0 | 56.5 (4.7)                 | 47.0 (3.9)                | 38.2 (3.2)                       | 31.5 (2.6)                      | 27.0 (2.3)            | 16.2 (1.3)                                                                                    | 9.9 (0.8)  | 4.0 (0.3)             |                                  | 4.6 (0.4)                                                                              | 11.1 (0.9) |
|                                              | 97.9 (8.2) 73.1 (6.1) 64.1 (5.3)      | 64.1 (5.3)                 | 54.7 (4.6)                | 45.9 (3.8)                       | 39.1 (3.3)                      | 34.7 (2.9)            | 23.8 (2.0)                                                                                    | 17.5 (1.5) | 11.7 (1.0)            | 7.6 (0.6)                        |                                                                                        | 6.5 (0.5)  |
| -                                            | (0.7) 83.9 (7.0)                      |                            | 65.5 (5.5)                | 56.7 (4.7)                       | 49.9 (4.2)                      | 49.9 (4.2) 45.5 (3.8) | 34.6 (2.9)                                                                                    | 28.3 (2.4) | 22.5 (1.9)            | 18.4 (1.5) 10.8                  | 10.8 (0.9)                                                                             |            |
| Source : JICA Study Team                     | 6                                     |                            |                           |                                  |                                 |                       |                                                                                               |            |                       | · .                              |                                                                                        |            |

## 9.2.6 Days in Port

The days in port were obtained by dividing the port to port cargo volume by the loader/unloader capacity on the basis of 12 hours per day of which a sample calculation is shown as per Table 9.2.6.

A 80 percent of port operation rate is used considering berthing/unberthing time, the cargo documentation and the maintenance of port facilities etc.

#### 9.2.7 Number of Ships Required

To estimate the number of ships required for cargo transportation on a monthly basis, the following measures were applied of which the calculation is shown hereunder and in Table 9.2.7 (Alternative 1) and Table 9.2.8 (Alternative 2) attached as a sample calculation.

1) The number of ships was estimated separately for upstream and downstream of Teresina.

2) Separate the cargo movements into Downward and Upward.

3) The use of the larger number of sub total of navigation days out of Downward and Upward because cargo of smaller navigation days shall be considered to be carried as ballastl of larger ones.

4) A 90 percent of ship's operation rate is used when considering the following items.

- Repair and inspection of the ship.

- Hours awaiting passage in a narrow channel or lock.

- Hours to move to another shipment without cargo.

5) The calculation for the number of ships required for monthly cargo transportation is made from;

a.: The larger number of sub total of navigation days out of Downward and Upward.

b.: Total days in port for Downward movement

c.: Total days in port for Upward movement

Case-1: Daytime navigation and Daytime cargo work

(a+b+c)/30/0.9 = Number of ships on a monthly basis

In addition, the following case study was conducted

Case-2 : Daytime navigation and Halfnight cargo work (a+(b+c)/1.5)/30/0.9 = Number of ships on a monthly basis

Case-3 : Daytime navigation and Overnight cargo work (a+(b+c)/2)/30/0.9 = Number of ships on a monthly basis

Case-4 : Day and night navigation and Daytime cargo work (a/2+b+c)/30/0.9 = Number of ships on amonthly basis

Table 9.2.7 Number of Ship Required Month : Sep. Year : 2010 Cargo Average (Alternartive-1)

|            |             |                       | ŝ        | 0.00                        |                                                                                                   | = 55. U                     |         | ę                              |                                   |                                                   |                             |      | Ę        | = 21.0   |          | 3                             |          | = 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 13.0    | = 39.0 |              | -                                              | = 23.0                                                                         | = 12.0                  | = 35.0    |           | ä                                               | 0 61 -    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |                  | · · ·    | · ·               |                            | ·<br>·             |           |           | ·<br>· ·                   | -           |             |                        |
|------------|-------------|-----------------------|----------|-----------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|---------|--------------------------------|-----------------------------------|---------------------------------------------------|-----------------------------|------|----------|----------|----------|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------------|------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|-----------|-----------|-------------------------------------------------|-----------|-----------------------------------------|------------|------------------|----------|-------------------|----------------------------|--------------------|-----------|-----------|----------------------------|-------------|-------------|------------------------|
|            | REMARKS     |                       | vigal    | (((Dor (0, +() +()) /30/0.9 | ream                                                                                              | Total Upstream + Downstream |         | vigation 12 Hours & Cargo Mork | ( Dor(U) + (4) +(6) /1.5) /3U/U.9 | tream { 20 + 30r(3) + (30+(0+(0+(3)) /1.5) /30/0. | Total Upstream + Downstream |      | V L ST   | ð        |          | IOLAI UPSTFEAU T UOWING LEVAN |          | doction is a set of the set of th | 35 C[ C28 |        | Iotal        | errest Souther 24 Hours & Carton Mork 18 hours | 2027-0-118418841901 61 11001 0 # 041 80 100 1 40 100 10 10 100 100 100 100 100 | upsustream<br>Drustream |           |           | ase-6:Navigation 24 Hours & Cargo Work 24 hours | Upstream  | Downstream                              | lotai      |                  |          |                   | Speed Downward : 18.5 Ka/h | Upward : II.1 Km/h |           |           | Ship Uperation Kate - 30 A |             |             | · · · ·                |
|            | ā           |                       | 2        | 75.0 [Ur                    |                                                                                                   |                             |         |                                |                                   | 2.6 D                                             |                             |      | · ·      |          | (1) 5/.5 |                               | 107.5 P  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 20      |        |              | C.2C                                           | <u>,</u>                                                                       | - 0                     |           | -<br>. ო  | <br>                                            |           |                                         | 52.5       | 2 418 4 (6)185.7 | 10       | 14.7              | 18.9 D 9.4                 | 9.5                | 5.6       |           | 17.1 10 2.1                | 7 106 1 101 |             |                        |
| DAYS       | TOTAL TOTAL | AYS I                 | .4       | 89.5 7.5                    | I4.6 1.3                                                                                          | -4 <sup>+</sup>             | ~       | ಣೆ<br>                         | 6 .<br>5                          |                                                   | -4 <sup>;</sup>             |      | 24.6 2.1 | 17.4 1.5 | 1        | ຕ່<br><br>ເນ                  |          | 1.4 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3         |        | ⊳ <b>-</b> • | 49.8 4.2                                       |                                                                                | -i -                    | 10-3 T-0  | ġ         | . 1.                                            | ເກ່<br>   |                                         | 35.4 3.0   | う<br>-           | 1001011  |                   |                            |                    | 36.2      | 29.6      | <b>9</b>                   |             |             |                        |
| NAVIGATION | LOCK        | WARD (Hrs) PASS (Hrs) | i 1      | •                           |                                                                                                   | 28.0 5.0                    | הי<br>י | <br>                           |                                   | ين<br>م                                           |                             | · '  |          |          |          | 6, 0.                         | 18.5 0.0 | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        | ທ່ :<br>     | ייהי<br>                                       |                                                                                |                         |           | 5 ic<br>  | 5 15<br>                                        | 2<br>0    | 4<br>                                   | 22.1 0.0   | -<br>-           |          | 12.2 0.0          |                            | -<br>-             |           | 5 0.      |                            |             |             |                        |
|            | dil NAUQ    | -isi                  | 20.3     | 31.7                        | ີ.<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>เ<br>เ<br>เ<br>เ | 16.8                        | 30.0    | 11.4                           | 24.5                              | 3.8                                               | 17.1                        | 13.3 | 9.2      | 6.51     |          |                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |        |              |                                                |                                                                                |                         |           |           |                                                 |           |                                         | 5 13.3     |                  |          | 2.0               |                            |                    | 0 13.6    | 11.       |                            |             |             |                        |
|            | VOYAGE      |                       | 1-0      | 10.0                        | C                                                                                                 |                             | 78.8    | 3.0                            | 10.7                              | 2.0                                               | 00<br>(1)                   | 6 0  | 19.1     | 18.2 120 |          | 45.0                          | 43.0 205 | 191.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        | 2.6          | 12.5                                           | 11.4                                                                           | - <b>1</b> - 3-         | ອດ<br>ທີ່ | 4 U       | 5 m                                             | 26.0      | 15.7                                    | 1 17.5 245 | 3.5              | •        | 4.5<br>8.6<br>135 | <u>}</u>                   | 2.5                | 0 1.8 250 | 0.8       |                            |             |             |                        |
|            | CO LONDALE  | 0.TY(Ton) 0.TY(Ton)   | 35.1 370 |                             |                                                                                                   | 500 370<br>6000 370         |         |                                | ;                                 |                                                   |                             |      |          | 2900 150 | 33355    |                               | 2150 50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13950     | 47305  |              |                                                |                                                                                | 750 620                 |           |           | 200 150                                         |           | 1.<br>                                  | 2800 160   |                  |          | 2050 45U          |                            |                    | 6         |           | 255                        | 27495       | 74800       | udy Team               |
|            |             | 1.0                   |          | 1                           | 1                                                                                                 | 1                           | 1       | 1                              |                                   | t                                                 |                             | : †  | t        | 1        |          |                               | t 181    | LZL - PNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SUB TTLO  | TOTAL  | S.F + FLR    |                                                | ŧ                                                                              | 1                       | ŧ         | FLR + PAL |                                                 | IRC ← TRS | 1                                       | Ŧ          | FLR + UNA        | SUB TLUU |                   |                            |                    | NAL + PNB | BNY + TXY | SUB TTLO                   | TOTAL       | GRAND TOTAL | Source: JICA Study Tea |

Table 9.2.8 Number of Ship Required Month : Jan. Year : 2010 Ship Average (Alternartive-2)

|           |           |           | = 45.0                                          | į r                                        | = 52.0 |                                                                                             | 9                                             | ч.<br>Ц                                           | .ค่า<br>ค<br>50                           | = 47.0                      |        | = 41.0                                                                                     | ייי<br>וו<br>י                                                                                                  |                              |                      |                                                  | = 27.0   | -0-1<br>-0-1<br>-0-1 | = 32.0     |        | ġ                                               | 4        | #  <br>0.4.6 | Ś          |                                                 | = 23.0      | = 4.0      | = 27.0               |       |              |             |                            |                    |                      |            |                            |       |             |                         |
|-----------|-----------|-----------|-------------------------------------------------|--------------------------------------------|--------|---------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------|--------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|--------------------------------------------------|----------|----------------------|------------|--------|-------------------------------------------------|----------|--------------|------------|-------------------------------------------------|-------------|------------|----------------------|-------|--------------|-------------|----------------------------|--------------------|----------------------|------------|----------------------------|-------|-------------|-------------------------|
|           | REMARKS   |           | ase-1:Navigation 12 Hours & Cargo Work 12 Hours | upsuteam (2) + 30r(3) + (5+(7+(3)) /30/0.9 | -      | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | e-2:Navigation 12 Hours & Cargo Work 18 Hours | Upstream { Dor 0 + ( + ( + ( + 0) / 1.5) / 30/0.9 | wnstream { 2 + 3 or 3 + (5+0+8) /1.5} /3( | Total Upstream + Downstream |        | はse-3:Navigation 12 Hours & Cargo Work 24 Hours<br>Hustman f のパーの + (の + (の + (の ) /20/0 9 | 0-2000 cum { 0.1 + 0.000 + (0+0+0) /3) /30/0 9                                                                  | Potal linetream + Dounctream |                      | Case-4:Navigation 24 Hours & Cargo Work 12 hours | Upstream | Downstream           | Total      |        | ase-5:Navigation 24 Hours & Cargo Work 18 hours | Upstream | Downstream   | lotal      | aso-6' Navination 24 Hours 2 Carac Hor 24 hours |             | Downstream | Total                |       |              |             | Speed Downward : 18.5 Km/h | Upward : 11.1 km/h |                      |            | Ship Operation Rate : 90 X |       |             |                         |
| -         | DAYS IN   |           |                                                 | 5 4                                        | Ē      | <b>1</b>                                                                                    |                                               | 5                                                 | <u>ă</u>                                  | t≍<br>                      |        | 23<br>23                                                                                   | 0 158 3 D                                                                                                       | <del>,</del> Т               |                      | ġ                                                | 67.3     | Ā                    | - <u>1</u> |        | E<br>L<br>L                                     | 5        |              |            | £                                               |             |            | <u> </u>             | 9     | \$<br>2<br>2 |             | ) 13.8                     |                    |                      |            | 4.4                        |       | 290.0       | ;                       |
|           | TOTAL     |           | 179.5                                           | 0.0                                        | 156.7  | 553.8                                                                                       | 21.3                                          | 62.0                                              | 11.6                                      | 15.5                        | 0.7    | 00                                                                                         |                                                                                                                 |                              |                      | 36.6                                             | 68.4 (5) | ****                 | 3.8        | 8      | 2° -                                            | 0.4      | 0.5          | 4 · 7      |                                                 |             | 4.3        | ຕ<br>ຕີ              | 1.    |              | ם ע<br>מימ  | 9.5 17                     | 1.6                | 1.0                  | 0.5        | 3.1 🕼                      | 51.2  | 1115        |                         |
| •         |           | DAYS      | 4° 0<br>9 4                                     | 2.00                                       | 4.2    |                                                                                             |                                               | ດ<br>ທ່                                           |                                           | 4°.3                        | 3.0    | 2°1                                                                                        | - ©                                                                                                             |                              | 20 +<br>50 +<br>50 + |                                                  | œ        |                      | 7.5        |        | 3.0                                             | 1.3      | 0            | 9-1-2      | 10.4<br>1                                       | - 6<br>- 13 | 4.3        | 3.0                  | 8     | Э<br>,       | ה ה<br>הי ה | Ø                          | 00                 | 3.1                  | 2.5        | 0                          |       |             |                         |
| 07.10     | TOTAL     | (Hrs)     | 54. 1<br>20 E                                   | 14.6                                       | 49.8   | 85.0                                                                                        | 35.4                                          | 70.6                                              | 15.2                                      | 50.5                        | 35.4   | 24.6                                                                                       |                                                                                                                 | 16 95                        | 29.62<br>79.62       | 17.4                                             |          |                      | 89.5       | 49.8   | 35.4                                            | 15.2     | 10.9         | 1          | 1.24.7                                          | 20.6        | 50.5       | 35.4                 | 45.5  |              | 2 0         | *                          | 45.5               | 36.2                 | 29.6       |                            |       |             |                         |
| 10191010H | LOCK TOTA | PASS(Hrs) | 0 U                                             |                                            | 20     | ំ ព<br>ភ្                                                                                   | <br>ທີ                                        | ດ<br>ທ່                                           | ດ<br>ທີ່                                  | 5.0                         | 0.0    | 0.0                                                                                        | -                                                                                                               |                              | 0.0                  | 0.0                                              |          |                      | 5.0        | 5.0    | 5.0                                             | 2°0      |              | 5 0<br>5 1 | <br>ວັບ                                         | - 0<br>- 0  | 5.0        | 0.0                  | 0.0   | •            |             |                            | 0.0                | 0.0                  | 0.0        |                            |       |             |                         |
|           |           |           | 8.8<br>8.8                                      | 1 <b>1</b> 6                               | 28.0   | 50.01                                                                                       | 19-0                                          | 41.01                                             | 6.4                                       | 28.4                        | 22 1   | 15.4                                                                                       |                                                                                                                 | 27 61                        | 18.5                 | 10.9                                             |          |                      | 52.8       | 28.0   | 19.0                                            | 6.4      | 6.8          | 11.3       | 74-81<br>50 01                                  | 41.0        | 28.4       | 22.1                 | 28.41 |              | 2 0 4       |                            | 28.4               | 22.6                 | 18.5       |                            |       |             |                         |
|           | ·         |           | 20.3                                            | 5.5                                        | 16.8   | 30.0                                                                                        | 11.4                                          | 24.6                                              | ວ<br>ຕີ                                   | 1 21                        | 13.3   | 2 v<br>9 v                                                                                 |                                                                                                                 | 13.6                         | 11.1                 | 6.5                                              |          |                      | 31.7       | I6.8   | 11.4                                            | e<br>n   |              | ວ ດ<br>ດີ  | 24. U -<br>20 0 -                               | 24.6        | 17.1       | 13.3                 | 17.1  |              | 5 C C       |                            | 17.1               | 13.6                 | 11.1       |                            |       |             |                         |
|           | DIST      | Xm)       | 375                                             | 301                                        | 310    | 555                                                                                         | 210                                           | 455                                               | 2                                         | 315                         | 245    | 170                                                                                        | -                                                                                                               | 250                          | 202                  | 120                                              |          |                      | 585        | 310    | 210                                             | 10       | 75           | C7 1       | 555                                             | 455         | 315        | 245                  | 315   |              | 5<br>135    |                            | 315                | 250                  | 205        |                            | _     | ;           |                         |
| 1         |           |           | 2.0                                             | 0<br>4                                     | 37.3   | 78.0                                                                                        | 1.1                                           | 10.5                                              | ත<br>න්                                   | ເມ<br>ເກີ                   | 0.2    | 00                                                                                         | ;                                                                                                               | ς.                           | ານ<br>ເບີ            | 24.4                                             |          |                      | 0.5        | 6<br>1 | 1.7                                             |          | 0<br>0<br>0  | 3,0        |                                                 | 1.7<br>1.7  | I.0        | 1.1                  | 0.2   |              | າ ແ<br>ວ່ ຕ |                            |                    | 0.3                  |            |                            |       |             |                         |
|           | LOADABLE  | _         | 930                                             | 930                                        | 620    | 620                                                                                         | 620                                           | 620                                               | 620                                       | 620                         | 012    | 710                                                                                        | 2.                                                                                                              | RED 1                        | 660                  | 660                                              |          |                      | 620        | 620    | 620                                             | 620      | 930          | 930        | 620                                             | 620         | 620        | 710                  | 710   | 000          | 800         |                            | 660                | 660                  | 660        |                            |       |             |                         |
|           | CARGO     |           | 40                                              | 360                                        | 23100  | 48300                                                                                       | 4400                                          | 6500                                              | 5460                                      | 2200                        | 140    |                                                                                            | 104700                                                                                                          | 0080                         | 3600                 | 16100                                            | 23500    | 128200               | 250        | 1175   | 1035                                            | 185      | 460          | 100        | 3 5                                             | 1040        | 600        | 130                  | 140   | 10000        | 3000        | 6000                       | 200                | 150                  | 70         | 420                        | 12200 | 140400      | Study Team              |
|           | PORT      |           | 080<br>1 ↑                                      | 1                                          |        | î                                                                                           |                                               | URC + TRS                                         |                                           | GUD ↓ TRS                   | t      | AMR   TRS                                                                                  | The second se |                              |                      | LZL → PNB                                        | SUB TTLO | TOTAL                | ÷.         |        |                                                 | ŧ        |              |            |                                                 | URC + TRS   | GUD ← TRS  | $FLR \leftarrow TRS$ |       |              | RS + NAL    |                            | UNA - PNB          | $MAL \leftarrow PNB$ | RT ← PNB   | SUB TTL@                   | TOTAL | GRAND TOTAL | Source: JICA Study Team |
| F         |           |           | 50                                              | <u>اما</u> د                               | ત્વં   | <u>e</u> l                                                                                  |                                               |                                                   | ت<br>0                                    | ©<br>≖                      | L<br>Z | ≂ a<br>≖.∢                                                                                 |                                                                                                                 | 2                            | <u>।</u> द्र<br>,    | <u>1-1</u>                                       | Ľ        |                      | 5          | ~"     | <u>5</u>                                        | 5        |              | <u></u>    | <u>ା ଜ</u>                                      | <u> </u>    | A G        | <u>د</u>             |       | δļē          | Ē           | -<br>I<br>Ø                | 15                 | Σ                    | <u>ت</u> م | র্তা                       |       | 5           | ន្ត្រី                  |

| G.C. (B) LOAD (( |           | ENERAL CARGO |            | REMARKS               |                                                            |
|------------------|-----------|--------------|------------|-----------------------|------------------------------------------------------------|
|                  | UNLOAD    | NILOAD (     | PORT       |                       |                                                            |
|                  |           |              |            |                       |                                                            |
|                  | 140       | 20 20 20     | 40.1       | Uperacion Kate. 80%6  | ouyo ( Taking into account  <br>berthing / unberthing time |
|                  |           |              | 34.0       | and t                 |                                                            |
|                  |           |              | 43.8       | etc                   | <u> </u>                                                   |
|                  | 100 1 140 |              | 8.5        |                       |                                                            |
|                  |           |              | 9.3        |                       |                                                            |
| 0                |           |              | 15.4       | Operation hour: 12    | 12 hours / day                                             |
|                  | 50 490    |              | 6.3        |                       |                                                            |
|                  |           |              | 0.2        |                       | -<br>-<br>-                                                |
| 0                |           |              | 0.0        | Days in port = (A/C+. | (A/C+A/D+B/E+B/F)/0.8/12                                   |
| 0                | 50 490    |              | 0.0        |                       |                                                            |
| 440 -            | •         | -            | 158.3      | •                     |                                                            |
| 0                | 50 140    |              | 10.7       |                       |                                                            |
| 0                | 50   140  | 20 20        | 10.2       |                       |                                                            |
| 0                | 50 140    |              | 45.5       | •                     |                                                            |
| 1<br>0           |           |              | 66.4       |                       |                                                            |
|                  |           | 1            | 224.8      |                       | · · · · · · · · · · · · · · · · · · ·                      |
|                  | 100   100 | 20 20        | 2.6        |                       |                                                            |
|                  | 100 210   | 20 20        | 11.8       |                       |                                                            |
|                  |           |              | 6.9        |                       |                                                            |
| 185              |           |              | 6          |                       |                                                            |
|                  |           |              | [<br>[     |                       |                                                            |
| 0                | 50 0 140  | 20 20 20     | 03         |                       |                                                            |
|                  |           |              | E U        |                       |                                                            |
|                  | 350 210   | 20 20        | 4          |                       |                                                            |
|                  |           |              | 10 8       |                       |                                                            |
|                  |           |              |            |                       |                                                            |
| 15               |           |              |            |                       |                                                            |
|                  |           |              |            | •                     |                                                            |
| 4 145 1 -        |           | -            |            |                       |                                                            |
|                  | 50 1 400  |              |            |                       |                                                            |
|                  | 1001      | 20           | 50         |                       |                                                            |
|                  |           | _            |            |                       |                                                            |
| <b>۲</b>         | •         | •            | 13.8       |                       |                                                            |
|                  |           |              | 2.1        |                       |                                                            |
|                  | 100 001   | 20 20        | 1.6        |                       |                                                            |
| 70 [             | 100 001   |              | 0.7        |                       |                                                            |
| 420 -            |           | 1            | 4          |                       |                                                            |
| 4, 565   -       | •         | 1            | 64.4       |                       |                                                            |
| 5_005            | :         |              | 280.9      |                       |                                                            |
|                  |           |              |            |                       |                                                            |
| •                |           |              | -<br>-<br> |                       |                                                            |
|                  |           |              | · ·        |                       |                                                            |
|                  |           |              |            |                       |                                                            |

•

# Case-5 : Day and night navigation and Halfnight cargo work (a/2+(b+c)/1.5)/30/0.9 = Number of ships on a monthly basis

# Case-6 : Day and night navigation and Overnight cargo work (a+b+c)/2/30/0.9 = Number of ships on a monthly basis

A summary of the above calculations is shown in Table 9.2.9. A maximum of 65 vessels are required to be operated along the Parnaiba river in a same day for Alternative 1 and 54 vessels for Alternative 2.

|      |      |      | Altern | ative 1 |      |      |      |    | Altern | ative 2 |    |    |
|------|------|------|--------|---------|------|------|------|----|--------|---------|----|----|
| Case | 1    | 2    | 3      | 4       | . 5  | 6    | 1    | 2  | 3      | 4       | 5  | 6  |
| Jan  | 55   | 51   | 48     | 35      | . 31 | 29   | 52   | 47 | 46     | 32      | 28 | 27 |
| Feb  | 56   | 51   | 49     | 36      | 32   | 29   | 52   | 49 | 48     | 32      | 28 | 27 |
| Mar  | 56   | 51   | 49     | 36      | 30   | 28   | 52   | 49 | 47     | 32      | 28 | 27 |
| Apr  | 56   | 51   | 49     | 36      | 31   | 28   | 52   | 49 | . 47   | 32      | 28 | 27 |
| May  | 54   | 50   | 48     | 34      | 29   | 28   | 53   | 50 | 48     | 31      | 28 | 27 |
| Jun  | 48   | - 44 | 42     | - 30    | -27  | . 25 | 52   | 46 | 44     | 35      | 29 | 27 |
| Jul  | 55 ~ | 51   | 49     | 33      | 30   | 29   | 54   | 49 | 47     | 34      | 30 | 28 |
| Aug  | - 64 | 60   | 59     | 38      | 34   | 33   | 54   | 49 | 47     | 34      | 29 | 27 |
| Sep  | 65   | 61   | 59     | 39      | 35   | 33   | - 53 | 49 | 47     | 32      | 28 | 27 |
| Oct  | 56   | 52   | 50     | 34      | 31   | 29   | 53   | 48 | 46     | 33      | 29 | 27 |
| Nov  | 55   | 51   | 49     | . 35    | 30   | 28   | 52   | 48 | .46    | 34      | 29 | 27 |
| Dec  | 46   | 41   | 39     | 30      | 25   | 23   | 53   | 46 | 43     | 37      | 30 | 27 |

Table 9.2.9 Number of Ships Required

Source : JICA Study Team

# 9.2.8 Evaluation of Each Alternative

From a view point of operation costs, safety of navigation, maintenance of ship etc., each alternative shall be evaluated as follows;

|                      | Alternative - 1                                                        | Alternative - 2                                  |
|----------------------|------------------------------------------------------------------------|--------------------------------------------------|
| Operation Cost       | About 65 ships are required at the peak.                               | About 53 ships are required<br>through the year. |
| Safety of Navigation | Concentration of ship is<br>expected.                                  | Safer.                                           |
| Maitenance of Ships  | About 15 ships must be<br>maintained without working at<br>the bottom. | No maintenance without<br>working.               |
| Port Operationrt     | Congestion is expected at the peak.                                    | Not so much congestion is<br>expected.           |

Table 9.2.10 Evaluation of Transportation Alternative

Note : 1: Recommendable 2: Not Recommendable

# 9.3 Required Ship Number and Navigational Cost

## (1) Required Ship Number

Referring to chapter 8 and the view of the above Table 9.2.10, for ship operations on the Parnaíba river it is recommendable to adopt Alternative 2 which means " ship average". The daytime navigation should be adopted for the sake of safe navigation. Table 9.3.1 shows the number of ships required in 2000 and 2010 for each scenario, calculated under the conditions of 12 hours navigation and 12 hours of cargo work.

| Year     |    | 20 | 00 | a de la cale |    | 20 | 10  |        |
|----------|----|----|----|--------------|----|----|-----|--------|
| Scenario | 1  | 2  | 3  | 4            | 1  | 2  | 3   | 4      |
| Jan      | 21 | 19 | 12 | 15           | 52 | 45 | 31  | 40     |
| Feb      | 20 | 18 | 12 | 15           | 52 | 46 | 29  | - × 40 |
| Mar      | 20 | 18 | 12 | 15           | 52 | 46 | 29  | 40     |
| Apr      | 20 | 18 | 12 | 15           | 52 | 46 | 29  | 40     |
| May      | 20 | 19 | 7  | 7            | 53 | 46 | 29  | 29     |
| Jun      | 19 | 18 | 9  | 9            | 52 | 45 | 30  | 30     |
| Jul      | 19 | 17 | 9. | 9            | 54 | 47 | .32 | 32     |
| Aug      | 21 | 18 | 9  | 9            | 54 | 48 | 32  | 32     |
| Sep      | 20 | 17 | 9  | 9            | 53 | 47 | 31  | 31     |
| Oct      | 20 | 17 | 9  | 9            | 53 | 46 | 33  | 33     |
| Nov      | 20 | 17 | 9  | 9            | 52 | 46 | 31  | 31     |
| Dec      | 19 | 16 | 11 | 9            | 53 | 45 | 31  | 31     |
| Average  | 21 | 18 | 10 | 11           | 53 | 46 | 31  | 34     |

 Table 9.3.1 Number of Ship Required in 2000 and 2010

Source : JICA Study Team

#### (2) Ship Operation Cost

Based on the above required number of ships, ship operation costs are estimated. Table 9.3.2 shows the ship operation costs in 2010 for each scenario. In Scenario 1, 53 ships are required which contains 46 ships in the section from the upper region to Teresina and 7 ships from Teresina to Parnaíba. The cost of Scenario 1 is the most expensive of all the Scenario because passing downstream is so inefficient owing to shallow basin.

In Scenario 2, 46 ships are required, the same as upstream in Scenario 1. This is not planned to operate downstream from Teresina.

In Scenario 3, to minimize the ship's operation costs for Scenario 1 and 2, the cargo unloading at Teresina in Scenario 1 and 2 is transferred to unload at Floriano, and therefore, soybean should be transported by truck. Restriction of draft is eased so that transportation cargo is increased slightly. Scenario 4 means the improvement of Scenario 3 so carrying soybean to Teresina during rainy season is possible.

|                                                              | Scenario 1                 | Scenario 2                 | Scenario 3                 | Scenario 4                            |
|--------------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------------|
| Operation Section                                            | Upper region -<br>Parnaíba | Upper region -<br>Teresina | Upper region -<br>Floriano | Upper region -<br>Floriano & Teresina |
| Number of Ship<br>Required                                   | 53                         | 46                         | 31                         | 40                                    |
| Cargo Volume<br>(ton.km/ship)                                | 8,874,000                  | 9,417,000                  | 13,930,000                 | 10,749,000                            |
| Operation Cost<br>including capital<br>cost<br>(US\$/ton.km) | 0.0429                     | 0.0388                     | 0.0262                     | 0.0272                                |
| Operation Cost<br>excluding capital<br>cost<br>(US\$/ton.km) | 0.0281                     | 0.0249                     | 0.0168                     | 0.0182                                |

# Table 9.3.2 Ship Operation Cost in 2010

# 9.4 Comments on the Vessel Fabrication and Operation

Remarkable points for the accomplishment of vessel fabrication and operation are as follows :

- To prepare a suitable assistance and rescue system for accidents such as groundings, collisions and engine trouble.
- To provide emergency repair facilities and staff for the above accidents and machineries trouble.
- To improve especially narrow channels and sharp curves where it seems very difficult for a ship's safe navigation.
- To give ship's crew training for manoeuvring.
- To provide suitable and adequate navigation aids throughout the river.
- To conduct a survey of the depth, width and flow rate of the navigable waters throughout the Parnaíba river before commencement of the river navigation.
- To prepare maps of the waterway showing the positions of the buoys, under water obstructions and other necessary information.
- To establish the waiting areas for daytime navigation at the both sides (upstream and downstream) of the locks.
- To maintain the width of the river for straight channels as follows;
  - Min. 30 m for one-way traffic
  - Min. 50 m for two-way traffic
- To keep the suitable overhead clearance for electric cables depending on the possibility of a dangerous electrical discharge between the cable and a ship passing underneath.

# 10. PLANNING OF RESUMPTION OF BOA ESPERANÇA LOCKS

## 10. PLANNING OF RESUMPTION OF THE BOA ESPERANÇA LOCKS

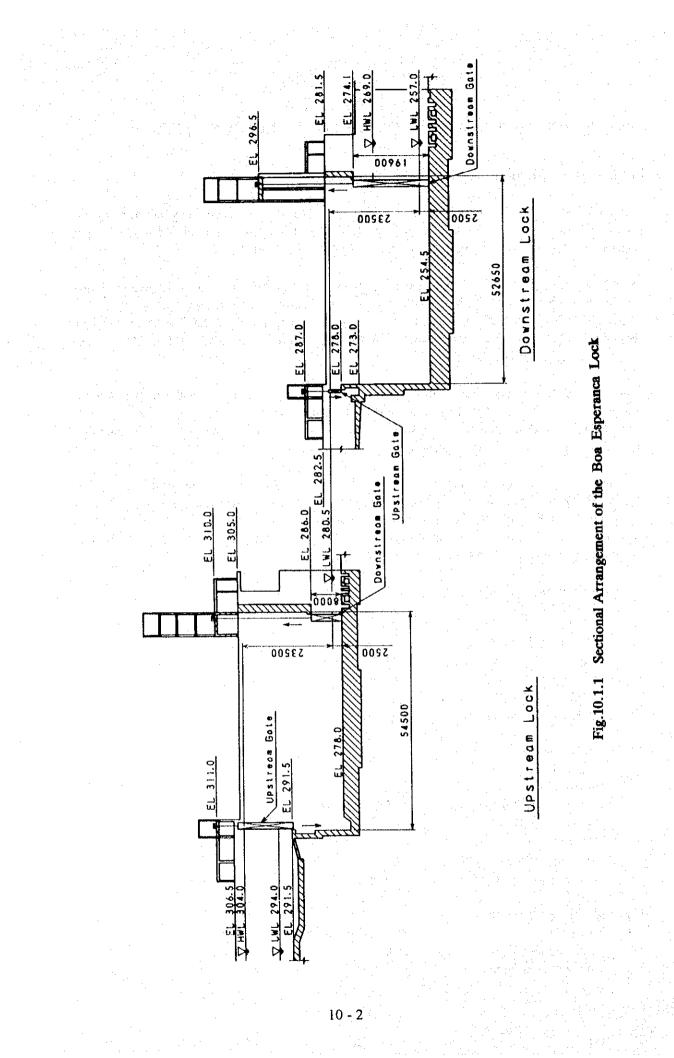
## 10.1 Present Circumstances of the Boa Esperança Lock

Construction of the Boa Esperança Dam was started for hydraulic power generation by the Hydro Electric Company of Sao Francisco (CHESF) in 1962, and completed in 1965. The completed reservoir is 155 km in length and 352 km2 in its deposit area.

Ship navigation became impossible because of the construction of the Boa Esperança Dam, and so to enable ship navigation past the dam, construction planning for a lock system was established. The lock system was planned to be located in the right bank area of the Boa Esperança Dam, latitudinally southward 6°45' and longitudinally eastward 43°34', in the neighboring town of Guadalupe.

The water level difference between the reservoir and the downstream Parnaíba river is 47m at the maximum. To overcome this water level difference, the lock is designed to be a double lock chamber system, namely an upstream lock chamber, and a downstream lock chamber connected by an intermediate reservoir.

Construction of the system started in 1974, and concreting work was completed in 1982, but the work stopped for financial reasons. Presently, due to the existence of no mechanical equipment such as gate structures and control equipment, the lock system does not work. A sectional arrangement of the Boa Esperança Lock System is shown in Fig. 10.1.1. Specifications of the lock system are as follows :


(1) Upstream Lock Chamber

| Useful Length          | : 50m                       |
|------------------------|-----------------------------|
| Width                  | : 12m                       |
| Upstream Water Level   | : H.W.L.304.0m-L.W.L.294.0m |
| Downstream Water Level | : L.W.L.280.5m              |
| Bottom Elevation       | : 278.0m                    |
| Minimum Water Depth    | : 2.5m                      |
| Water Level Difference | : 23.5m(Maximum)            |
|                        |                             |

(2) Downstream Lock Chamber

| Useful Length              | : 50m                                 |
|----------------------------|---------------------------------------|
| Width                      | : 12m                                 |
| Upstream Water Level       | : 280.5m(Maximum)                     |
| Downstream Water Level     | : H.W.L.269.0m-L.W.L.257.0m           |
| <b>Bottom Elevation</b>    | : 254.5m                              |
| Minimum Water Depth        | : 2.5m                                |
| Water Level Difference     | : 23.5m(Maximum)                      |
| (3) Intermediate Reservoir | · · · · · · · · · · · · · · · · · · · |
| Water Level                | : 280.5m(Average)                     |

Embankment Crest Elevation : 282.5m Accumulated Volume : 675,000m3



| Area of Basin                       | : 124,000m2                  |
|-------------------------------------|------------------------------|
| Control of Water Level              | : Discharge by Bottom Outlet |
| (4) Access and Restitution Channels |                              |
| Access to Upstream Chamber          |                              |
| Width                               | : Variable                   |
| Bottom Elevation                    | : 291.5m                     |
| Upstream Chamber Restitution        |                              |
| Width                               | : 12.0m                      |
| Bottom Elevation                    | : 278.0m                     |
| Access to Downstream Chamber        |                              |
| Width                               | : 12.0m                      |
| Bottom Elevation                    | : 278.0m                     |
| Downstream Chamber Restitution      |                              |
| Width                               | 12.0m                        |
| Bottom Elevation                    | : 254.5m                     |

In order to enable ship navigation between the Boa Esperança Dam and the downstream Parnaiba river, the presently suspended lock system must be continued and completed, or otherwise, the new construction of another type of navigation system must be made in lieu of the lock system.

#### 10.2 Comparison of Navigation Systems

From the Boa Esperança Dam to the Parnaíba river, the water level difference reaches 47m. To overcome this water level difference and enable the navigation of ships between the Boa Esperança Dam and the Parnaíba river, the following systems are to be considered.

- Lock System

- Vertical Lift System

- Inclined Lift System

Sectional arrangements of respective systems are shown in Fig. 10.2.1, and explanations for the three systems are made as follows.

#### (1) Lock System

This system is generally composed of a lock chamber wherein the upstream and downstream closing gates are contained, along with filling and emptying facilities.

After the intrusion of the ship and closing of the entrance gate, the up and down movement of the ship can be made through the filling and discharging of the chamber water.

For the Boa Esperança Lock System, where a 47m water level difference exists, two lock systems are designed upstream and downstream of the Dam.

# (2) Vertical Lift System

This system is composed of a huge vessel to enclose the ship and water, two towers to raise and lower the vessel, and an approach flume to access the towers from the upstream end. A schematic arrangement of the vertical lift system is shown in Fig. 10.2.2.

After the balancing of water level in the vessel, a ship intrudes into the vessel and by closure of the entrance gate enables the segregation from the flume, whereby up and down movement can be made by the operation of the lift equipment, suspended vertically from the two towers.

From the suspension devices at the two respective towers, a vessel is connected by wire-ropes to the counter weight through a huge sheave, and is balanced with a counter weight.

Operation of the up and down movement of the vessel is performed by the turning of a nut around a spindle which is fixed vertically along the tower.

#### (3) Inclined System

This system is formed by a carriage supporting a vessel which encloses the ship together with the water. There is an inclined rail path and a control tower with the driving equipment. A schematic arrangement of the Inclined Lift System is shown in Fig. 10.2.3.

The vessel wherein ship and water are enclosed is loaded on to carriage, and then the carriage runs up and down on the inclined rail by the operation of driving equipment located in the control tower.

The carriage with the vessel is connected by wire-ropes to a counterweight through a sheave which is located at the control tower.

The counter weight and carriage balance each other and run on the lined rail, but in the reverse direction to the operation of the driving equipment.

## (4) Comparison of the Systems

Comparison of the three systems, namely the lock system, the vertical lift system and the inclined lift system is made and summarized as shown in Table 10.2.1.

For the comparison of the three systems, the specifications of the navigating ship are defined as follows:

| Overall length  | : 47.0 m   |
|-----------------|------------|
| Breadth         | : 11.0 m   |
| Depth           | : 3.5 m    |
| Operation draft | : 2.3 m    |
| Dead weight     | : 620 tons |

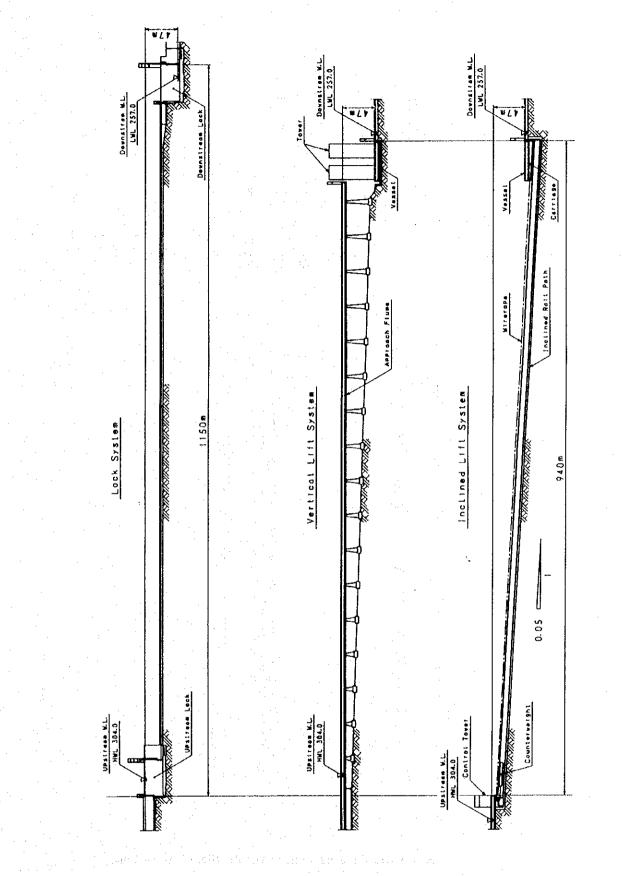



Fig.10.2.1 Sectional Arrangements of the Lock System, Vertical Lift System and Inclined Lift System

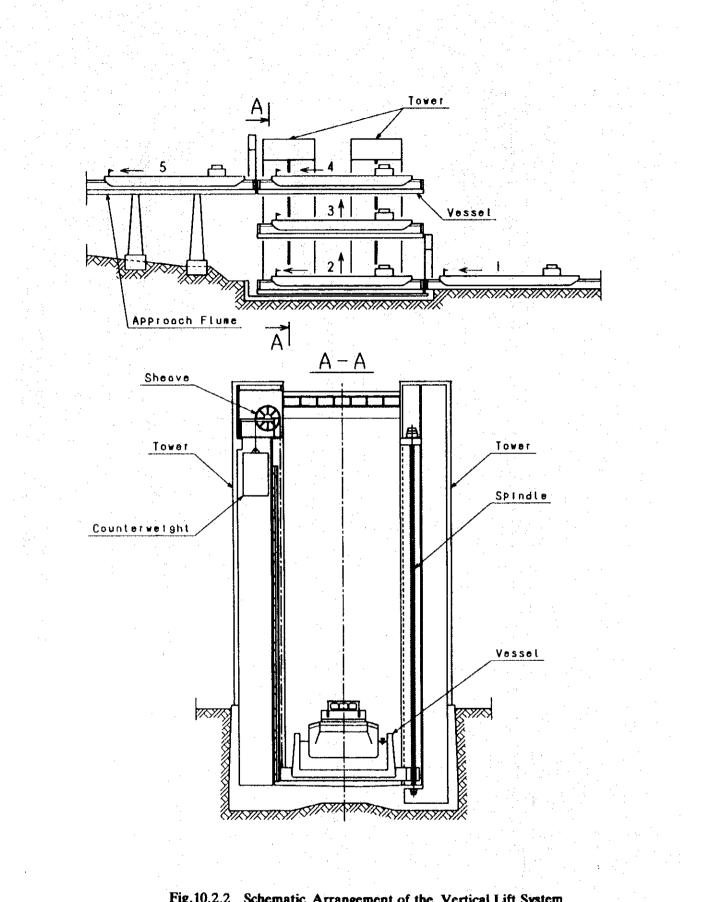
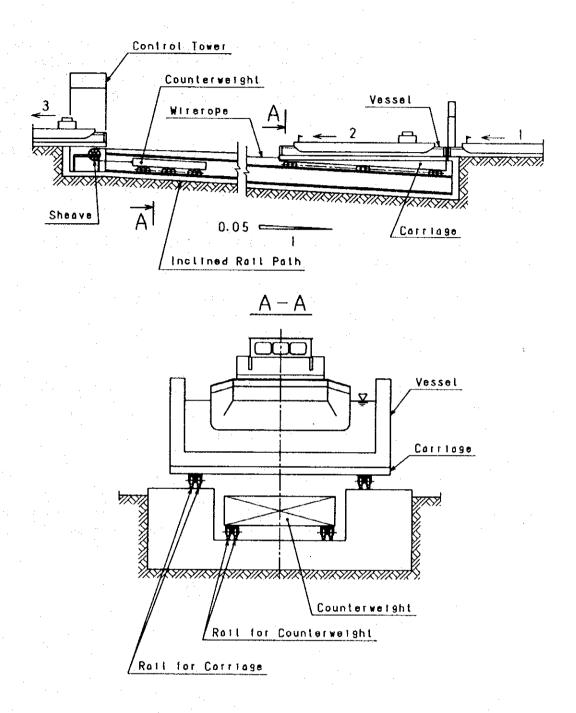
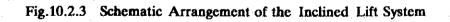





Fig.10.2.2 Schematic Arrangement of the Vertical Lift System





# (5) Results

The significant characteristic of the locational arrangement of navigation system is the fluctuation of water level. The maximum water difference between the Boa Esperança Dam and the Parnaíba river reaches 47m, and the maximum fluctuation of the surface water level at the upstream Boa Esperança Dam is 10m, and is similarly 12m at the downstream Parnaíba river.

For the satisfactory overcoming of such a big water level difference and fluctuation of surface water levels, the planning of a vertical lift system or an inclined lift system needs fairly big initial investments, and must solve difficult problems of locational selection and technical difficulties.

On the other hand, a lock system has no substantial problems with the water level difference and is also advantageous because of the followings points:

- Existing civil structures including lock chambers are applicable.
- Economically excellent
- Construction period is comparatively short
- No existence of technical anxieties

For the result, as summarized in the Table 10.2.1, a lock system is definitely recommendable and conclusive.

#### 10.3 Planning of Resumption of Boa Esperança Locks

#### 10.3.1 Necessary Equipment to Complete the Lock System

The Boa Esperança Lock was suspended after the completion of the concrete works. In order to complete the lock system, the following remaining works must be accomplished:

- Gate equipment for lock chamber
- Filling and emptying equipment for lock chamber
- Stoplogs
- Control equipment
- Ancillary equipment

#### (1) Gate Equipment for Lock Chamber

1) Gates for upstream lock chamber

The arrangement of the gates for the upstream lock chamber is shown in Fig. 10.3.1, and specification of the gates is as follows.

| Туре         | :Vertical Lift Gate |           |
|--------------|---------------------|-----------|
| Clear Width  | : 12.0m             |           |
| Clear Height | : Upstream Gate     | 14.0 m    |
|              | : Downstream Ga     | ite 8.0 m |

| Type of System                       | Lock System                                                                                                                                                                                           | Vertical Lift System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inclined Lift System                                                                                                                                                                                                                |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Composition                    | - Upstream chamber<br>- Downstream chamber<br>- Gates in the chamber<br>- Filling & discharging facilities                                                                                            | - Vessel<br>- Tower lift<br>- Approach flume<br>- Gates for vessel & approach flume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Carriage with vessel<br>- Inclined rail path<br>- Control tower<br>- Gates for vessel & Flume                                                                                                                                     |
| Civil Work                           | Upstream and downstream lock chambers had been almost completed, except slight civil work remains.                                                                                                    | en almost Construction of towers and approach flume are needed.<br>For the foundation of the tower, firstly a geological investigation By reason that the heavy load acts along the inclined rail path, a must be made to find the most suitable foundation to support the geological investigation must be made to find out a suitable heavily concentrated load for the system.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Construction of inclined rail path and control tower are needed.<br>By reason that the heavy load acts along the inclined rail path, a<br>geological investigation must be made to find out a suitable<br>foundation to support the |
| Structural Construction Work         | Construction of lock gates, and filling & discharge facilities has<br>been experienced in the Brazil, and no technical difficulties exist.                                                            | Construction of lock gates, and filling & discharge facilities has Vessel to contain ship and also towers with driving equipment are Carriage with vessel to contain ship and driving equipment are been experienced in the Brazil, and no technical difficulties exist. Very complicated. Accordingly manufacturing and construction extraordinary large structures and manufacturing and been experienced in the Brazil, and no technical difficulties exist. Nery complicated. Accordingly manufacturing and construction lextraordinary large structures and manufacturing and heen experienced in the Brazil, and no technical difficulties exist. Nery complicated. Accordingly manufacturing and construction lextraordinary large structures and manufacturing and heen experienced in the Brazil, and no technical difficulties exist. | Carriage with vessel to contain ship and driving equipment are<br>extraordinary large structures and manufacturing and<br>construction needs advanced techniques and is difficult.                                                  |
| Control of Water<br>Level            | Control of water level is possible by the matured technique<br>applying with filling and discharging facilities, and no difficulty<br>exist.                                                          | technique To comply with the fluctuation of surface water level in the To comply with the fluctuation of surface water level in the difficulty Parnaiba River i.e. "12m", height of vessel exceed 15m. For the approach flume of the system, height of flume wall exceed 11m to suit the fluctuation of surface water level of the dam. Both structures are extraordinary large.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To comply with the fluctuation of surface water level in Parnaiba River i.e. "12m", height of vessel exceed 15m.                                                                                                                    |
| Navigability of Ship                 | Upstream chamber and downstream chamber are independent to Ship<br>each other, and accordingly, ship navigation becomes effective ship.<br>through the stand-by period at the intermediate reservoir. | Upstream chamber and downstream chamber are independent to Ship navigation become possible just after the navigation of former Identical to the description of vertical lift system each other, and accordingly, ship navigation becomes effective ship. Involution the stand-by period at the intermediate reservoir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Identical to the description of vertical lift system                                                                                                                                                                                |
| Maintenance                          | Maintenance work is considered to be the same as for ordinary gate equipment.                                                                                                                         | Maintenance work is considered to be the same as for ordinary A lot of maintenance works are needed for the driving equipment [Not only for the maintenance of the huge carriage with vessel and gate equipment.<br>and in the towers. In addition there is the vessel and complicated driving equipment, but also difficult maintenance must be made longered on the rail and wire rope of more than 1000m length.                                                                                                                                                                                                                                                                                                                                                                                                                             | Not only for the maintenance of the lauge carriage with vessel a<br>driving equipment, but also difficult maintenance must be ma<br>for the rail and wire rope of more than 1000m length.                                           |
| Work Period                          | Remaining civil work is not so much, and work period for the<br>steel structures can be shortened<br>through the parallel performance of manufacturing and<br>installation.                           | e steel structural works,<br>period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identical to the vertical lift system.                                                                                                                                                                                              |
| Work Experience                      | Work experiences commonly exist in Brazil.                                                                                                                                                            | Work experience do not exist in the Brazil and techniques must be Identical to the vertical lift system<br>transferred from foreign countries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Identical to the vertical lift system                                                                                                                                                                                               |
| Weight ratio of the steel structures |                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                   |
| Concrete volume                      | negligibie                                                                                                                                                                                            | 30,000m3<br>(excluding approach flume)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60,000m <sup>3</sup>                                                                                                                                                                                                                |
| Construction Cost                    | Approx. US \$ 16 million                                                                                                                                                                              | Approx. US \$ 100 million<br>(excluding approach flume)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Approx. US \$ 120 million                                                                                                                                                                                                           |
| Total evaluation                     | Recommendable                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |

Note : Construction cost of this radie is prepared for the comparison purpose.

| Design Water Level | : Upstream Gate 304.0 m + 1.5 m (wave height by wind) |
|--------------------|-------------------------------------------------------|
|                    | :Downstream Gate 304.0 m + 0.25m(wave height by wind) |
| Sill Elevation     | : Upstream Gate 291.5 m                               |
|                    | :Downstream Gate 278.0 m                              |
| Operating Head     | :Balanced Water Level                                 |
| Operating System   | :Chain Hoist Combined with Counter weight             |
| Operating Speed    | :2.0m/min.                                            |
| Lifting Height     | : Upstream Gate 14.1 m                                |
|                    | Downstream Gate 8.1 m                                 |

2) Gates for downstream lock chamber

The arrangement of the gates for the downstream lock chamber is shown in Fig. 10.3.2, and specification of the gates is as follows.

| Туре               | Vertical Lift Gate                                    |
|--------------------|-------------------------------------------------------|
| Clear Width        | :12.0m                                                |
| Clear Height       | :Upstream Gate 3.4m                                   |
|                    | :Downstream Gate 19.6m                                |
| Design Water Level | :Upstream Gate 280.5m + 0.5 m (wave height by wind)   |
|                    | :Downstream Gate 280.5 m + 0.25m(wave height by wind) |
| Sill Elevation     | :Upstream Gate 278.0m                                 |
|                    | :Downstream Gate 254.5m                               |
| Operating Head     | Balanced Water Level                                  |
| Operating System   | Chain Hoist Combined with Counter Weight              |
| Operating Speed    | :2.0m/min.                                            |
| Lifting Height     | : Upstream Gate 3.5 m                                 |
|                    | : Downstream Gate 19.7 m                              |

# (2) Filling and Emptying Equipment for Lock Chamber

The arrangement of the filling and emptying gates is shown in Fig. 10.3.3. Specifications for the filling and emptying gates, and trashrack at the culvert inlet are as follows:

1) Filling and emptying gates

| Type Rever         | sal Tainter Gate     |               |         |          |                                          |
|--------------------|----------------------|---------------|---------|----------|------------------------------------------|
| Quantity           | :8 sets              |               |         |          | an a |
| Conduit Width      | :2.0m                |               |         | · . · .  |                                          |
| Conduit Height     | :1.2m                |               |         |          |                                          |
| Design Water Level | :Upstream chamber    |               |         |          |                                          |
|                    | :Downstream chamb    | per 280.5m+0. | 5m(wave | height   | by wind)                                 |
| Sill Elevation     | :Upstream chamber    | 276.05m       |         |          |                                          |
|                    | :Downstream chamb    | per 252.55m   |         |          |                                          |
| Operating System   | : Hydraulic cylinder |               |         | ·· · · · |                                          |
| Operating Speed    | :1.2m/min.           |               |         |          |                                          |
| Lifting Height     | : 1.25 m             |               |         | 1. Aut   |                                          |

2) Trashrack

Type

Removable bar-screen type

| Quantity       | :Upstream chamber 2 sets   |
|----------------|----------------------------|
|                | Downstream chamber 2 sets  |
| Width          | :Upstream chamber 5.76m    |
|                | :Downstream chamber 5.49m  |
| Height         | :3.0m                      |
| Bar Pitch      | :0.1m                      |
| Sill Elevation | :Upstream chamber 290.0m   |
|                | :Downstream chamber 274.0m |

# (3) Stoplogs

1) Stoplogs for lock chambers

| Туре             | :Multiple slide gate                |
|------------------|-------------------------------------|
| Quantity         | :2 sets                             |
| Clear Width      | :12.0m                              |
| Height           | :15.0m(height for one block : 1.5m) |
| Design Head      | : 15.0m                             |
| Operating system | : Monorail Hoist                    |
|                  |                                     |

2) Stoplogs for filling and emptying gates

| Туре             | Roller gate      |
|------------------|------------------|
| Quantity         | :4 sets          |
| Conduit Width    | :2.0m            |
| Conduit Height   | 1.2m             |
| Design Head      | : 24.45m         |
| Operating system | : Monorail Hoist |
|                  |                  |

# (4) Control Equipment

# 1) Control panel

The arrangement of the control panels is shown in Fig. 10.3.4, and their purpose and function are shown in the Table 10.3.1.

| Purpose                                               | Qty | Function                                                                                                                           |
|-------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|
| Local Control Panel for Lock<br>Gate                  | 4   | Local control of respective gates for lock chamber                                                                                 |
| Local Control Panel for Filling<br>and Emptying Gates | 8   | Local control of respective filling and emptying gates                                                                             |
| Remote Control Panel                                  | 2   | Remote control of gates for lock chamber,<br>filling and emptying gates from the control<br>room of upstream and downstream locks. |
| Remote Control Panel for<br>Emergency                 | 1   | Remote control of overall gates from the remote control room of upstream lock.                                                     |

| <b>Table 10.3.1</b> | <b>Purpose and</b> | <b>Function of</b> | Control Panel |
|---------------------|--------------------|--------------------|---------------|
|---------------------|--------------------|--------------------|---------------|

# 2) Other Equipment

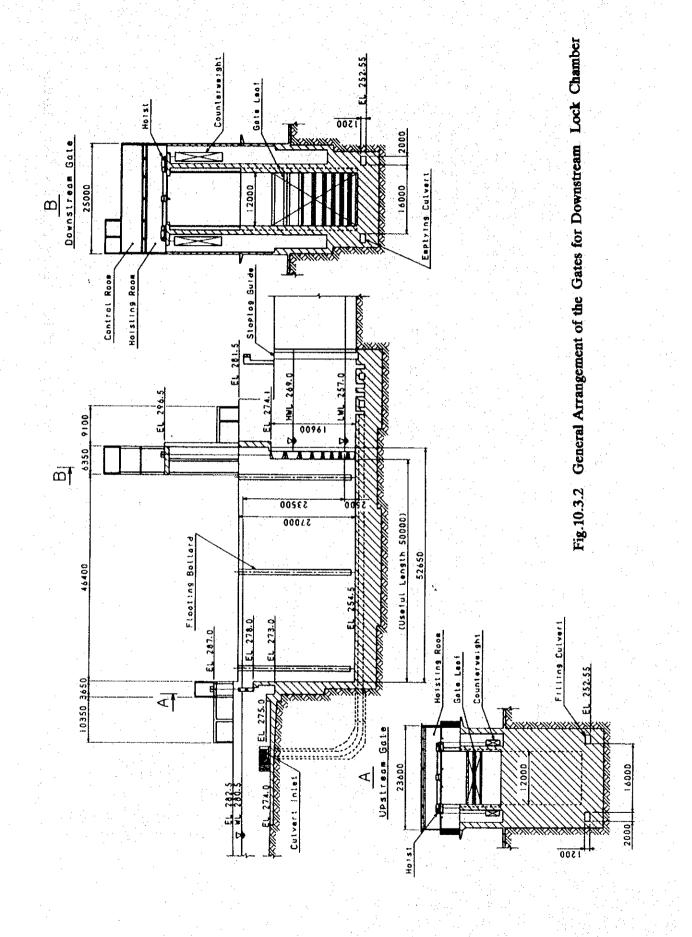
Following equipment is needed for the purpose of a ship's safe navigation :

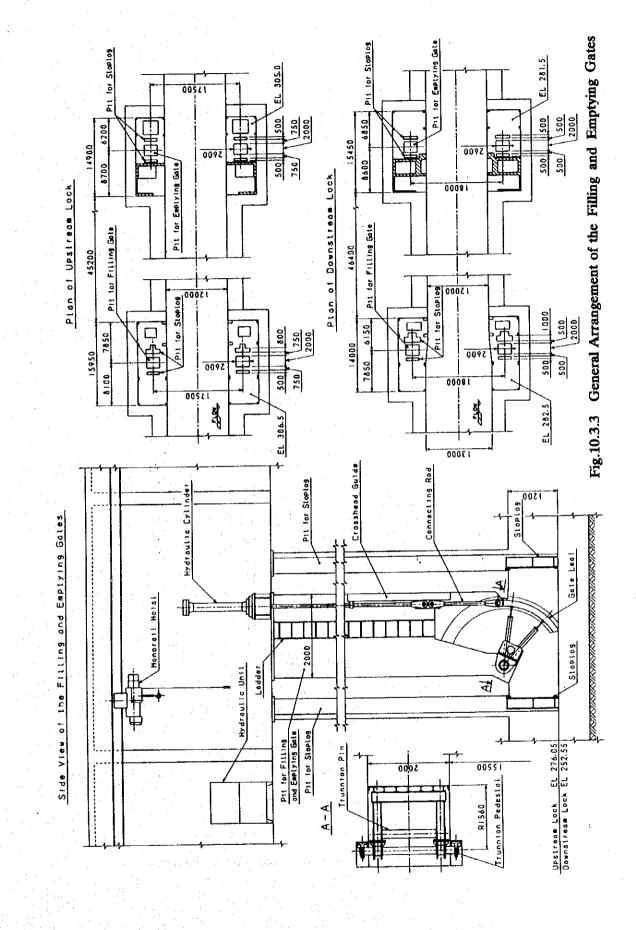
- ITV Monitoring Equipment
- Traffic Signals
- Announcement Equipment
- Water Level Indicator
- Lighting Equipment

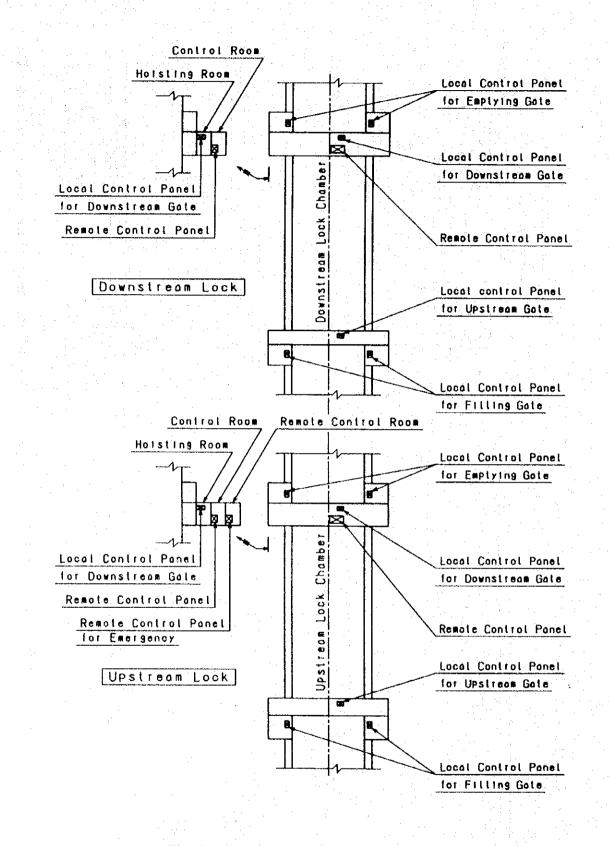
# (5) Ancillary Equipment

Following ancillary equipment is necessary

- Elevator for the control room
- Floating bollards in the lock chamber
- Monorail hoist for the maintenance purpose of operating equipment
- Handrails on the lock chamber deck and staircase
- Ladders for the lock chamber and pit
- Pit cover in the hoisting room
- Mooring wharf in the reservoir


## 10.3.2 Relevant Civil Works


Following civil works are needed additionally.


- Jetty on the right bank in the intermediate reservoir and access road
- Walls for hoisting room and control room
- Storage facility for stoplogs
- Removing of plants and bushes on the navigation line in the intermediate reservoir
- Removing of a concrete bulkhead in the upstream flume for the upstream lock
- chamber

- Removing of gravel and rocks which are interrupting the ship's navigation in the downstream flume and the Parnaíba river

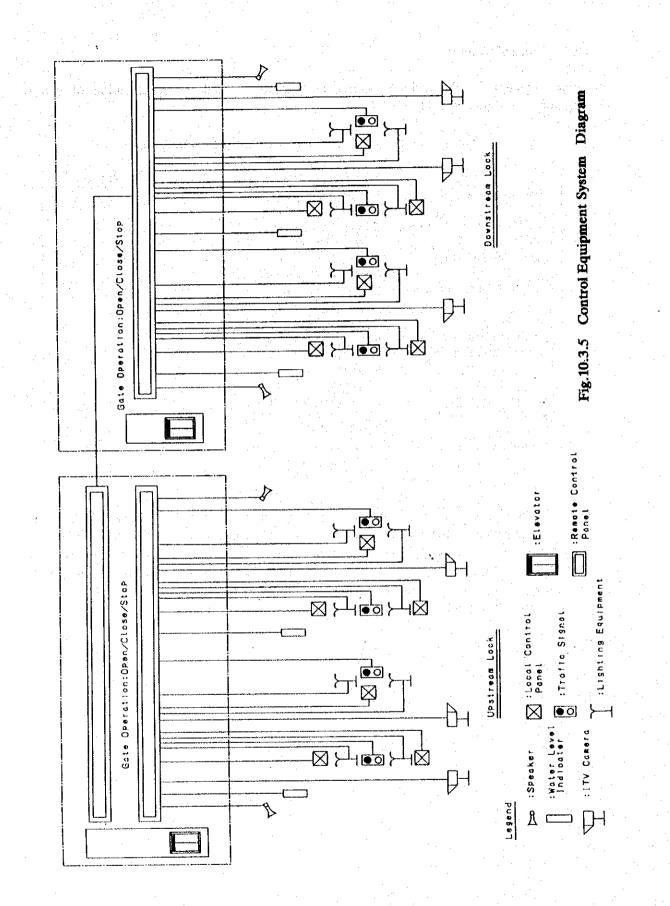






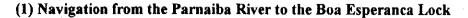


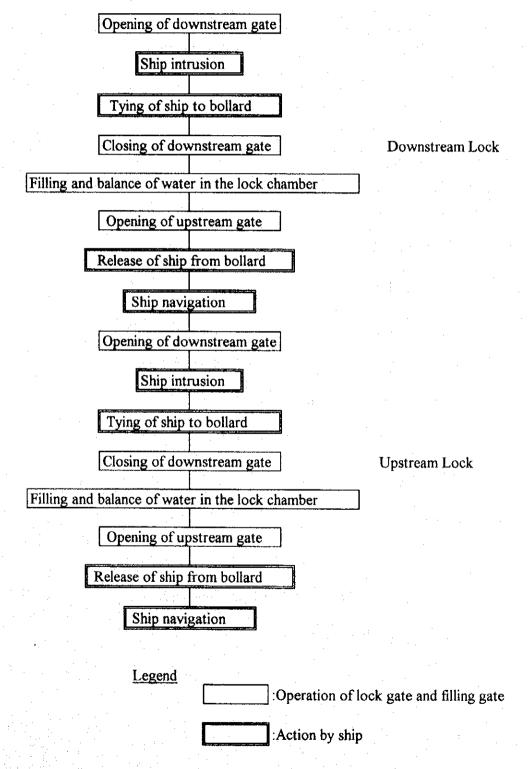


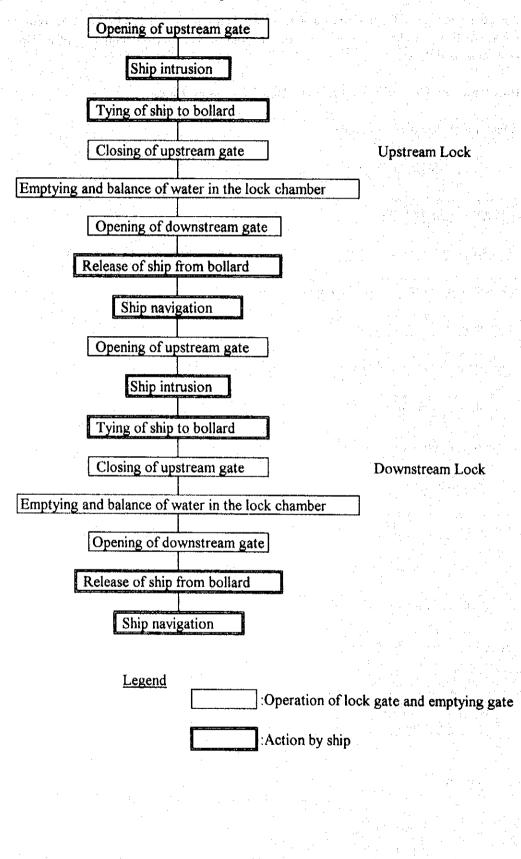

# 10.3.3 Control System

Control system for the locks is shown in Fig. 10.3.5, and the specification of control equipments is shown in Table 10.3.2.

| Item                            | Specification                | Quantity |
|---------------------------------|------------------------------|----------|
| Local Control Panel for Lock    | Type : Outdoor type          | 4        |
| Gate                            | Size : 800w x 600d x 2000h   | ·····    |
| Local Control Panel for Filling | Type : Outdoor type          | 8        |
| and Emptying Gate               | Size : 800w x 600d x 2000h   |          |
| Remote Control Panel            | Type : Indoor type           | 3        |
|                                 | Size : 3000w x 1000d x 1500h |          |
| ITV Monitoring Equipment        | Type : Outdoor type          | 6        |
|                                 | Camera and Controller        |          |
| Traffic Signal                  | Type : Outdoor type          | 8        |
| Water Level Indicator           | Pressure Detective type      | 5        |
| Announcement Equipment          | Microphone : 2               | 1 set    |
|                                 | Speaker : 4                  |          |
|                                 | Amplifier : 2                |          |
| Lighting Equipment              | Mercury Vapor Lamp           | 16       |
| Elevator for upstream Locks     | Lifting Load : 200kg         | 1        |
|                                 | Lifting Height : 21m         |          |
| Elevator for Downstream Lock    | Lifting Load : 200kg         | 1        |
|                                 | Lifting Height : 15m         |          |


| Table 10.3.2 | Specification | of the Control | Equipments |
|--------------|---------------|----------------|------------|
|--------------|---------------|----------------|------------|


The operation of lock gates, filling and emptying gates could be made generally from the remote control panel in the control room, which is located independently to each upstream and downstream lock. An operator who is always stays in the control room can operate the lock gates, filling and emptying gates, watching the ship by ITV monitoring equipment. In case of emergency, the operation at the remote control panel enables gate equipment of the upstream and downstream locks to be functioned.




# 10.3.4. Navigation Sequence of Lock System

Necessary period to navigate from the Boa Eaperanca Dam to the Parnaiba river through upstream and downstream locks is 2.5 hours at the maximum. Navigation sequence of a ship in the lock system is as follows:







(2) Navigation from the Boa Esperanca Dam to the Parnaiba River

# 10.4 Comments on the Resumption of the Boa Esperança Lock

# (1) Design of Steel Structures and Control Equipment

The detailed design work for the steel structures and control equipment was made once about 20 years ago. However present techniques for the design and manufacturing, and characteristics of the material and articles have been developed greatly. Accordingly, resumption work is recommended to start a new design and not to use the performance based on the previous design so as to achieve the advantages of new functions and economy.

## (2) Investigation of the Existing Structures

Due to the elapse of a long period after the completion, the existing structure is recommended to be investigated for deterioration and damage, and as a result the inappropriate portion must be corrected, where necessary.

#### (3) Check of Existing Concrete Structure for the Practical Loads

Especially for the emplacement of hoist equipment in the hoisting room, the floor with beams need to be checked against the practical loads, after a review of the allowable loads given by the previous design, and structural modifications provided, where necessary.

# 11. PLANNING OF THE PORT FACILITIES

# **11. PLANNING OF THE PORT FACILITIES**

# 11.1 Cargo Handling Volume in the River Ports

From Tables 11.1.1 to 11.1.4 show the annual loading and unloading cargo volumes in each scenario along the Parnaíba river basin obtained by the cargo transportation planning. (see Tables A4.1 in Appendix 4 for forecasted cargo volume by agricultural products and commodities in 2010, respectively).

|                       |                       |            |                 | Unit      | : Tons/year |  |
|-----------------------|-----------------------|------------|-----------------|-----------|-------------|--|
|                       | Agricultural Products |            | Necessary Goods |           |             |  |
| Location              | Loading               | Unloading  | Loading         | Unloading | Total       |  |
| 1. Parnaíba           | -                     | 167,000    | 3,000           | -         | 170,000     |  |
| 2. Luzilandia         | 114,300               | -          | +               | -         | 114,300     |  |
| 3. Porto              | 25,800                | -          | -               | 500       | 26,300      |  |
| 4. Miguel Alves       | 51,900                | -          | -               | 1,000     | 52,900      |  |
| 5. Uniao              | 31,700                | -          | -               | 1,500     | 33,200      |  |
| 6. Teresina           | 33,500                | 670,100    | 82,600          | -         | 786,200     |  |
| 7. Palmeiras          | 40,000                | -          | -               | -         | 40,000      |  |
| 8. Amarante           | 59,400                | -          | F               | -         | 59,400      |  |
| 9. Floriano           | 11,600                | 258,600    | 116,700         | 500       | 387,400     |  |
| 10. Guadalupe         | 47,000                | <b>_</b> . | -               | 38,200    | 85,200      |  |
| 11. Urucui            | 259,300               | 12,750     | -               | 91,900    | 363,950     |  |
| 12. Ribeiro Goncalves | 363,000               | 2,000      | -               | 56,000    | 421,000     |  |
| 13. Santa Filomena    | 72,950                | -          |                 | 12,700    | 85,650      |  |
| Total                 | 1,110,450             | 1,110,450  | 202,300         | 202,300   | 2,625,500   |  |

| Table 11.1.1 | Loading and | Unloading | Cargo | Volumes | in Scenario 1 |
|--------------|-------------|-----------|-------|---------|---------------|
|              |             |           |       |         | TT 1. (75)    |

Source : JICA Study Team

| Table 11.1.2 | Loading and Unloadin | g Cargo | Volumes i | n Scenario 2 |
|--------------|----------------------|---------|-----------|--------------|
|              |                      |         |           | 27           |

|                       | Agricultural Products |           | Necessary Goods |           |           |
|-----------------------|-----------------------|-----------|-----------------|-----------|-----------|
| Location              | Loading               | Unloading | Loading         | Unloading | Total     |
| 1. Parnaíba           | -                     |           |                 | -         | -         |
| 2. Luzilandia         | -                     | -         | +               | -         | -         |
| 3. Porto              | -                     | -         | -               | -         | -         |
| 4. Miguel Alves       | -                     | -         | ÷               | -         | -         |
| 5. Uniao              | -                     | -         | -               | -         | -         |
| 6. Teresina           | 33,500                | 620,100   | 82,600          | -         | 736,200   |
| 7. Palmeiras          | 40,000                | -         | -               | -         | 40,000    |
| 8. Amarante           | 59,400                | -         | -               | +         | 59,400    |
| 9. Floriano           | 11,600                | 258,600   | 116,700         | 500       | 380,700   |
| 10. Guadalupe         | 47,000                | -         | -               | 38,200    | 85,200    |
| 11. Urneui            | 259,300               | 12,750    |                 | 91,900    | 363,950   |
| 12. Ribeiro Goncalves | 363,000               | 2,000     | -               | 56,000    | 421,000   |
| 13. Santa Filomena    | 72,950                | -         | -               | 12,700    | 85,650    |
| Total                 | 886,750               | 886,750   | 199,300         | 199,300   | 2,172,100 |

Source : JICA Study Team

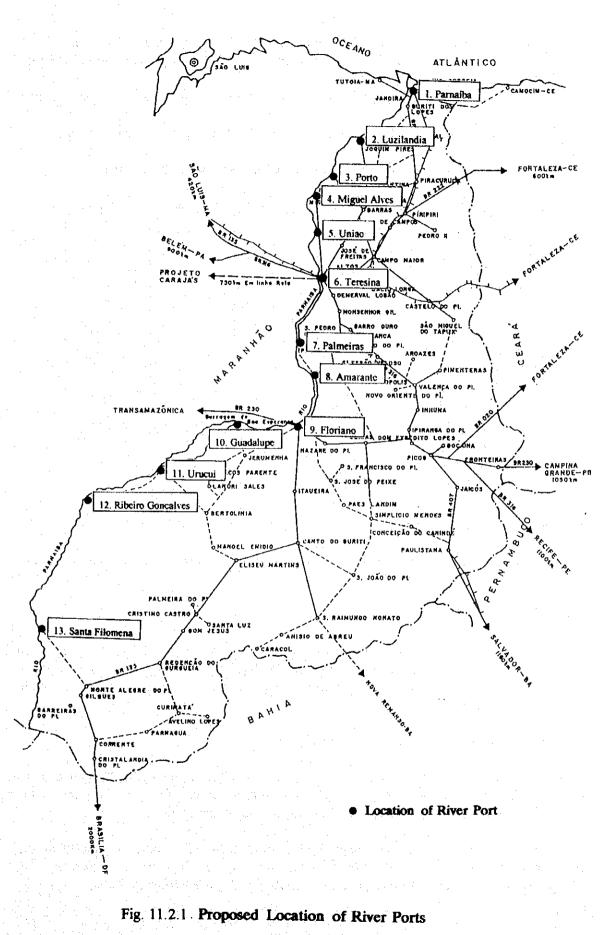
|                       | Agricultura | al Products | Necessar | ry Goods  |           |
|-----------------------|-------------|-------------|----------|-----------|-----------|
| Location              | Loading     | Unloading   | Loading  | Unloading | Total     |
| 1. Parnaiba           | -           |             |          | •         | 1         |
| 2. Luzilandia         | •           | -           | -        | -         |           |
| 3. Porto              |             | •           |          | •         |           |
| 4. Miguel Alves       |             |             | -        |           | •         |
| 5. Uniao              | •           |             | -        | -         |           |
| 6. Teresina           |             | -           | -        | -         | •         |
| 7. Palmeiras          | • • •       | <b>-</b>    | *        |           |           |
| 8. Amarante           | -           |             |          |           | -         |
| 9. Floriano           | 10,000      | 979,300     | 198,800  | -         | 1,188,100 |
| 10. Guadalupe         | 132,650     | -           | -        | 38,200    | 170,850   |
| 11. Urucui            | 410,700     | 8,000       |          | 91,900    | 510,600   |
| 12. Ribeiro Goncalves | 363,000     | 2,000       |          | 56,000    | 421,000   |
| 13. Santa Filomena    | 72,950      | 4 at 2      | •        | 12,700    | 85,650    |
| Total                 | 989,300     | 989,300     | 198,800  | 198,800   | 2,376,200 |

## Table 11.1.3 Loading and Unloading Cargo Volumes in Scenario 3

Source : JICA Study Team

# Table 11.1.4 Loading and Unloading Cargo Volumes in Scenario 4

|                       |            |                                       | e de la companya de l | Unit      | : Tons/year |
|-----------------------|------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------|
|                       | Agricultur | al Products                           | Necessar                                                                                                        | y Goods   |             |
| Location              | Loading    | Unloading                             | Loading                                                                                                         | Unloading | Total       |
| i. Parnaiba           | •          | a a a a a a a a a a a a a a a a a a a | -                                                                                                               | -         |             |
| 2. Luzilandia         | -          | -                                     |                                                                                                                 |           | -           |
| 3. Porto              | -          | -                                     | •                                                                                                               |           | •           |
| 4. Miguel Alves       | -          | -                                     | •                                                                                                               | -         | -           |
| 5. Uniao              | -          | -                                     | -                                                                                                               |           |             |
| 6. Teresina           | 33,500     | 378,200                               | 103,000                                                                                                         | -         | 514,700     |
| 7. Palmeiras          | 20,000     | -                                     | -                                                                                                               |           | 20,000      |
| 8. Amarante           | 37,500     | -                                     | •                                                                                                               | -         | 37,500      |
| 9. Floriano           | 11,600     | 451,900                               | 96,300                                                                                                          | 500       | 560,300     |
| 10. Guadalupe         | 47,000     | -                                     | •                                                                                                               | 38,200    | 85,200      |
| 11. Urucui            | 259,300    | 12,750                                | -                                                                                                               | 91,900    | 363,950     |
| 12. Ribeiro Goncalves | 363,000    | 2,000                                 | -                                                                                                               | 56,000    | 421,000     |
| 13. Santa Filomena    | 72,950     | -                                     | -                                                                                                               | 12,700    | 85,650      |
| Total                 | 844,850    | 844,850                               | 199,300                                                                                                         | 199,300   | 2,088,300   |


Source : JICA Study Team

#### **11.2 Port Locations**

A total 13 river ports are planned along the Parnaíba river basin based on the forecasted cargo volume under Scenario 1 (see Fig. 11.2.1 for the location of the river ports under Scenario 1). Table 11.2.1 shows the required river ports locations in other scenarios.

No definite sites, however are decided yet since no topographic and hydrographic survey map for the selection of the sites along the Parnaíba river is available. Only the cities are selected for the river port location. The following matters should be considered for the site selection of the definite river ports.

1) Access to the road and rail road.



11 - 3

2) Access to the agricultural products center for Teresina, Floriano, and Parnaíba.

3) Access to the farmhouses for Santa Filomena, Ribeiro Goncalves, Amarante, Palmeiras, Miguel Alves, Porto and Luzilandia.

4) Wide enough land area especially for Teresina, Floriano, Guadalupe, Ribeiro Goncalves, and Urucui.

5) Wide enough water area for Teresina, Parnaíba, Floriano, Urucui, and Guadalupe.

| Table 11.2.1 | <b>Required River</b> | Ports Location | on in Each | Scenario |
|--------------|-----------------------|----------------|------------|----------|
|              |                       |                |            |          |

| Location              | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
|-----------------------|------------|------------|------------|------------|
| 1. Parnaiba           | x          | -          | -          | ÷          |
| 2. Luzilandia         | X          | •          | •          | •          |
| 3. Porto              | X          | •          | -          | -          |
| 4. Miguel Alves       | x          |            |            |            |
| 5. Uniao              | x          | -          | -          | -          |
| 6. Teresina           | x          | x          | -          | x          |
| 7. Palmeiras          | x          | x          | -          | . <u>x</u> |
| 8. Amarante           | x          | х          | -          | • x        |
| 9. Floriano           | X          | x          | <b>x</b>   | x          |
| 10. Guadalupe         | x          | x          | x          | x          |
| 11. Urucui            | x          | х          | <b>x</b>   | x          |
| 12. Ribeiro Goncalves | x          | x          | x          | <u>x</u>   |
| 13. Santa Filomena    | x          | x          | x          | x          |
| Total                 | 13         | 8          | 5 5        | 8          |

Source : JICA Study Team

Note : x : Required,

- : Not required

## **11.3 Required Port Facilities**

The study of the required port facilities at each river port is carried out in Scenario 1 since Scenario 1 includes all river ports.

## (1) Cargo Flow

The cargo flow of each river port in Scenario 1 is presented in Fig. A4.1 in Appendix 4. In these figures, you can easily understand the relationship between the cargo volume and the port facilities. Cargo flows in other scenarios are basically the same. Only the cargo handling volume is the different.

# (2) Type of Packing and Handling Facilities

Viewing the prospect of transportation in 2010, large quantities of agricultural products leads to packing by bulk except general goods and fruits in order to ease the cargo handling. Table 11.3.1 shows the type of packing and handling facilities by commodities.

Basically, the cago for which the packing type is other than bulk should be handled by the ship's crane. There will need to be a loader or unloader in the case of total cargo other than bulk in excess of 240 tons/day/berth, and also for 30 tons/day/berth for forklifts.

| Commodity     | Package | Loader   | Unloader | Hopper   | Belt<br>Conveyor | Hand  | Forklift | Truck | Shed | Silo     |
|---------------|---------|----------|----------|----------|------------------|-------|----------|-------|------|----------|
| 1. Rice       | Bulk    | xx       | xx       | XX       | xx               | 1 • 1 | -        | -     | -    | x        |
| 2. Com        | Bulk    | XX       | xx       | xx       | xx               | 1 - 1 | -        | -     | -    | x        |
| 3. Fejon      | Bulk    | xx       | xx       | xx       | xx ·             |       | •        | -     | -    | x        |
| 4. Soy Beans  | Bulk    | xx       | xx       | xx       | xx               |       | •        | -     | -    | x        |
| 5. Fruit      | Case    | Over 240 | Over 240 |          | x                | x     | Over 30  | x     | x    |          |
| 6. Nuts       | Bulk    | xx       | xx       | xx       | xx               | † - † |          | •     | -    | x        |
| 7. Babassu    | Bulk    | xx       | xx       | xx       | xx               | ·     | •        | 1 •   | -    | x        |
| 8. Salt       | Sack    | Over 240 | Over 240 | -        | x                | x     | Over 30  | x     | x    | ~        |
| 9. Fertilizer | Sack    | Over 240 | Over 240 |          | x                | x     | Over 30  | x     | x    |          |
| 10. Sugar     | Sack    | Over 240 | Over 240 | -        | x                | x     | Over 30  | x     | x    | -        |
| 11. Flour     | Sack    | Over 240 | Over 240 | -        | x                | x     | Over 30  | x     | x    | -        |
| 12. Petroleum | Drum    | -        | -        | · · ·    | •                | -     | Over 30  | x     | x    | -        |
| LPG           | Bomb    | •        | · ·      | -        |                  | x     | Over 30  | x     | x    | <u> </u> |
| 13. Cement    | Sack    | Over 240 | Over 240 | <u> </u> | x                | x     | Over 30  | x     | x    | -        |

Table 11.3.1 Type of Packing and Handling Facilities by Commoditiy

Source : JICA Study Team

xx : Always necessary

x : Applicable

- : Not applicable

Unit : ton/day/berth

Over 240 : Need equipment more than 240 ton/day/berth Over 30 : Need equipment more than 30 ton/day/berth

## (3) Required Port Facilities

Table 11.3.2 shows the required port facilities based on the above cargo flow, type of packing and handling facilities in Scenario 1 (see Tables A4.2.1 in Appendix 4 for the required port facilities in other scenarios).

|                       | Mooring<br>Basin | Berthing<br>Facilities | Loading<br>Equipment | Unloading<br>Equipment | Silo     | Shed or<br>Warehouse |
|-----------------------|------------------|------------------------|----------------------|------------------------|----------|----------------------|
| 1. Parnaíba           | х                | x                      | X                    | х                      | х        | x                    |
| 2. Luzilandia         | -                | X                      | x                    | -                      | X        | -                    |
| 3. Porto              |                  | х                      | x                    | . <b>X</b>             | х        | x                    |
| 4. Miguel Alves       | -                | х                      | x                    | x                      | x        | x                    |
| 5. Uniao              | <b>.</b> .       | х                      | x                    | x                      | x        | х                    |
| 6. Teresina           | x                | х                      | x                    | x                      | x        | x                    |
| 7. Palmeiras          | -                | x                      | x                    | -                      | x        | -                    |
| 8. Amarante           | •                | X                      | x                    | •                      | x        | -                    |
| 9. Floriano           | x                | x                      | x                    | x                      | x        | x                    |
| 10. Guadalupe         | x                | X                      | . x                  | x                      | <b>X</b> | х                    |
| 11. Urucui            | x                | X                      | x                    | X                      | x        | х                    |
| 12. Riberio Goncalves | x                | X                      | x                    | х                      | x        | X                    |
| 13. Santa Filomena    | -                | x                      | x                    | x                      | x        | x                    |

| Table 11.3.2 Required | <b>Port Facilities at Each</b> | River Port in Scenario 1 |
|-----------------------|--------------------------------|--------------------------|
|                       |                                |                          |

Source : JICA Study Team

Note : x : Required

- : Not required

# 11.4 Requirements of the River Ports

# (1) Berth Requirements

Berthing facilities are the most important infrastructure at the port. Therefore, berth requirements at each river port are estimated based on the forecasted cargo volume and cargo handling system with the following assumptions. Tables 11.4.2 and 11.4.3 show the results of the estimation for bulk berth and general cargo berth in Scenario 1, respectively.

| <ul> <li>Fraction of time : 0.5</li> <li>Working hours per day : 12 hr</li> <li>Number of working days : 350 days</li> <li>Maximum loading and unloading capacities : 20 ton/hr for general cargo bert</li> </ul> | - Annual cargo volume           | n de la seconomia.<br>La seconomia | : see Tables 11.1.2 to 11.1.3       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|-------------------------------------|
| <ul> <li>Number of working days</li> <li>Maximum loading and unloading capacities : 20 ton/hr for general cargo bert</li> </ul>                                                                                   | - Fraction of time              |                                    | :0.5                                |
| - Maximum loading and unloading capacities : 20 ton/hr for general cargo bert                                                                                                                                     | - Working hours per day         | a di sa sa                         | : 12 hr                             |
|                                                                                                                                                                                                                   | - Number of working days        |                                    | : 350 days                          |
| min 100 ton the for built built                                                                                                                                                                                   | - Maximum loading and unloading | capacities                         | : 20 ton/hr for general cargo berth |
| . Init. 100 toh/hr for bulk berth                                                                                                                                                                                 |                                 |                                    | : min. 100 ton/hr for bulk berth    |
| - Berth occupancy ratio (BOR) 50 - 70 %                                                                                                                                                                           | - Berth occupancy ratio (BOR)   |                                    | : 50 - 70 %                         |

Therefore, the number of berths and type of berth at each river port in Scenario 1 are summarized as follows :

| River Ports           | Number of Berth | Type of Berth                         |
|-----------------------|-----------------|---------------------------------------|
| 1. Parnaíba           | 1               | Bulk with general cago berth          |
| 2. Luzilandia         | l               | Bulk berth                            |
| 3. Porto              | 1               | Bulk with general cago berth          |
| 4. Miguel Alves       | 1               | Bulk with general cago berth          |
| 5. Uniao              | 1               | Bulk with general cago berth          |
| 6. Teresina           | 3               | One bulk and two general cargo berths |
| 7. Palmeiras          | 1               | Bulk berth                            |
| 8. Amarante           | 1               | Bulk berth                            |
| 9. Floriano           | 3               | One bulk and two general cargo berth  |
| 10. Guadalupe         | 2               | One bulk and one general cargo berth  |
| 11. Urucui            | 3               | One bulk and two general cargo berth  |
| 12. Ribeiro Goncalves | 2               | One bulk and one general cargo berth  |
| 13. Santa Filomena    | 2               | One bulk and one general cargo berth  |

# Table 11.4.1 Number and Type of Berth at Each River Port

Source : JICA Study Team

Table 11.4.2 Annual Berth Day Requirement and Utilization for Bulk Berth

|                                        | Loading/Unioading Loader/Unloader | Loader/Unloader   | Average Cargo         | Average Berth      | Annual Berth                                                                               | Berth Utilization |
|----------------------------------------|-----------------------------------|-------------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------|-------------------|
| Location                               | Cargo Volume (ton)                | Capacity (ton/hr) | Volume per Ship (ton) | Time per Ship (hr) | ume (ton) Capacity (ton/hr) Volume per Ship (ton Time per Ship (hr) Day Requirement (days) |                   |
| 1. Parnaiba                            | 167,000                           | 200               | 380                   | 7.4                | 136                                                                                        | 0.39              |
| 2. Luzilandia                          | 114,300                           | 100               | 380                   | 17.2               | 216                                                                                        |                   |
| 3. Porto                               | 25,800                            | 100               | 380                   | 17.2               | 49                                                                                         |                   |
| 4. Miguel Alves                        | 51,900                            | 100               | 360                   | 16.4               | 66                                                                                         | 0.28              |
| 5. Uniao                               | 31,700                            | 100               | 380                   | 17.2               | 09                                                                                         | 0.17              |
| 6. Teresina                            | 703,600                           | 004               | 390                   | 3.9                | 290                                                                                        | · · · ·           |
| 7. Palmeiras                           | 40,000                            | 100               | 420                   | 18.8               | 75                                                                                         | 0.21              |
| 8. Amarante                            | 59,400                            | 001               | 420                   | 18.8               | 111                                                                                        | 0.32              |
| 9. Floriano                            | 270,200                           | 200               | 540                   | 11.0               | 229                                                                                        | 0.66              |
| 10. Guadalupe                          | 47,000                            | 100               | 650                   | 28.0               | <b>*</b>                                                                                   | 0.24              |
| 11. Urncui                             | 272,050                           | 200               | 650                   | 15.0               | 261                                                                                        | 0.75              |
| 12. Ribeiro Goncalves                  | 365,000                           | 300               | 600                   | 10.0               | 254                                                                                        | 0.72              |
| 13. Santa Filomena                     | 72,950                            | 100               | 009                   | 26.0               | 132                                                                                        | 0.38              |
| Note : Working hour per day : 12 hours | er day : 12 hours                 |                   |                       |                    |                                                                                            |                   |

Working days per year : 350 days Loader and unloader productivity rate : Loader : 0.5, Unloader : 0.7

Table 11.4.3 Annual Berth Day Requirement and Number of Berth Requirement for General Cargo Berth

|                       | Loading/Unloading Cargo Handling    | Cargo Handling    | Berth Occupancy | Annual Berth Day  | Number of Berth | Type of Berth |
|-----------------------|-------------------------------------|-------------------|-----------------|-------------------|-----------------|---------------|
| Location              | Cago Volume (ton) Capacity (ton/hr) | Capacity (ton/hr) | Rate (%)        | Requirement (days | Requirement     |               |
| 1. Parnaiba           | 3,000                               | 101 x 1           | 50              | 25.0              | 0.14            | Bulk & GC     |
| 2. Luzilandia         | 8                                   | 1                 | ł               |                   |                 | Bulk Only     |
| 3. Porto              | 500                                 | 10t x 1           | 50              | 4.1               | 0.02            | Bulk & GC     |
| 4. Miguel Alves       | 1,000                               | 10t x 1           | 50              | 8.3               | 0.03            | Bulk & GC     |
| 5. Uniao              | 1.500                               | 10t x 1           | 50              | 12.5              | 0.07            | Bulk & GC     |
| 6. Teresina           | 82,600                              | 10t x 2           | 70              | 344.0             | 1.4             | Bulk + 2GC    |
| 7. Palmeiras          |                                     |                   | 1               | I                 |                 | Bulk Only     |
| 8. Amarante           |                                     |                   |                 |                   | •               | Bulk Only     |
| 9. Floriano           | 117,200                             | 10t x 2           | 70              | 488 0             | 1.99            | Bulk + 2GC    |
| 10. Guadalupe         | 38,200                              | 10t x 2           | 70              | 159.0             | 0.65            | Bulk + GC     |
| 11. Urucui            | 91,900                              | 10t x 2           | 70              | 383.0             | 1.56            | Bulk + 2GC    |
| 12. Ribeiro Goncalves | 56,000                              | 10t x 2           | 70              | 233.0             | 0.95            | Bulk + GC     |
| 13. Santa Filomena    | 12,700                              | 10t x 1           | 70              | 106.0             | 0.43            | Bulk + GC     |
|                       |                                     |                   |                 |                   |                 |               |

# (2) Shed Requirements

Required capacity of the Sheds at each river port was estimated based on the general cargo volume handled in the ports. Table 11.4.4 shows the results of the estimation (see Table A4.3 in Appendix 4 for the detailed estimation).

| River Ports           | Number of Sheds | Minimum Capacity (m2) |
|-----------------------|-----------------|-----------------------|
| 1. Parnaiba           | 1               | 300                   |
| 2. Luzilandia         | -               | -                     |
| 3. Porto              | 1               | 50                    |
| 4. Miguel Alves       | 1               | 100                   |
| 5. Uniao              | 1               | 150                   |
| 6. Teresina           | 2               | 2,400                 |
| 7. Palmeiras          | •               | -                     |
| 8. Amarante           | -               | -                     |
| 9. Floriano           | 2               | 2,400                 |
| 10. Guadalupe         | - 1             | 1,200                 |
| 11. Urucui            | 2               | 2,400                 |
| 12. Ribeiro Goncalves | 1               | 1,200                 |
| 13. Santa Filomena    | 1               | 1,200                 |

Table 11.4.4 Shed Requirements of Each River Port in Scenario 1

## (3) Silo Requirements

Required capacity of the Silos at each river port was estimated based on the cargo volume of agricultural products excluding fruits since the type of packing for fruits is assumed as in cases. Table 11.4.5 shows the results of the estimation.

|                  |         | Cargo Volumes |         | Required Silo  | ilo Capacity  |  |
|------------------|---------|---------------|---------|----------------|---------------|--|
| Location         | Loading | Unloading     | Total   | Capacity (ton) | Dia (dia : m) |  |
| 1. Parnaíba      | -       | 167,000       | 167,000 | 6,000 x 1 unit | 25.5 m        |  |
| 2. Luzilandia    | 114,300 | -             | 114,300 | 5,000 x 1      | 23.5          |  |
| 3, Porto         | 25,800  | -             | 25,800  | 1,000 x 1      | 16.5          |  |
| 4. Miguel Alves  | 51,900  | -             | 51,900  | 2,000 x 1      | 23.0          |  |
| 5. Uniao         | 31,700  | -             | 31,700  | 2,000 x 1      | 23.0          |  |
| 6. Teresina      | 33,500  | 667,900       | 701,400 | 6,000 x 5      | 25.5 / unit   |  |
| 7. Palmeiras     | 40,000  | -             | 40,000  | 2,000 x 1      | 23.0          |  |
| 8. Amarante      | 59,400  | · -           | 59,400  | 3,000 x 1      | 28.0          |  |
| 9. Floriano      | 11,600  | 257,350       | 268,950 | 5,000 x 2      | 23.5 / unit   |  |
| 10. Guadalupe    | 45,850  | -             | 45,850  | 2,000 x 1      | 23.0          |  |
| 11. Urucui       | 257,700 | 12,750        | 270,450 | 5,000 x 2      | 23,5 /unit    |  |
| 12. R. Goncalves | 362,300 | 2,000         | 364,300 | 5,000 x 3      | 23,5 /unit    |  |
| 13. S. Filomena  | 72,950  | -             | 72,950  | 3,000 x 1      | 28.0          |  |

| Table 11.4.5 | Required Ca | pacity of the Silos a | at Each River Port in Scenario 1 |  |
|--------------|-------------|-----------------------|----------------------------------|--|
|              |             |                       |                                  |  |

Note (1) Storage factor : 52 cu.ft/Lt

(2) Rotation rate : 25 times per year

(3) The height of silo : 10 m for less than 3,000 capacity

20 m for more than 3,000 capacity

# 11.5 River Port Plan

#### (1) Port Layout

Based on the above requirements, four types of port layout are established, Type 1 for a bulk berth, Type 2 for a bulk with general cargo berth, Type 3 for a bulk and one general cargo berth, and Type 4 for a bulk and two general cargo berths. Figs: 11.5.1 to 11.5.4 show each type of port layout. Table 11.5.1 shows the type of each river port in Scenario 1.

# Table 11.5.1 Type of Each River Port

| Туре | Berth Type                        | River Ports                                  |
|------|-----------------------------------|----------------------------------------------|
| · 1  | Bulk berth                        | Luzilandia, Palmeiras, Amarante              |
| 2    | Bulk with general cargo berth     | Parnaíba, Porto, Miguel Alves, União         |
| 3    | Bulk and general cargo berth      | Guadalupe, Ribeiro Goncalves, Santa Filomena |
| 4    | Bulk and two general cargo berths | Teresina, Floriano, Urucui                   |

## (2) Cargo Handling Facilities

Table 11.5.2 shows the required cargo handling facilities.

|                  |              |                |          | · · · ·     | · · · · · · · · · · · · · · · · · · ·                                                                            |           |
|------------------|--------------|----------------|----------|-------------|------------------------------------------------------------------------------------------------------------------|-----------|
|                  |              |                | Belt     | Hopper      | Fork                                                                                                             | Silo      |
| Location         | Loader       | Unloader       | Conveyor | • • • • • • | lift                                                                                                             |           |
| 1. Parnaiba      | -            | 200 x 1 u/t    | X        | ≥ j X       | e de la composition de | 6000t x 1 |
| 2. Luzilandia    | 100 x 1 u/t  | -              | X        | •           |                                                                                                                  | 5000t x 1 |
| 3. Porto         | 100 x 1 u/t  | <b>-</b> 1 - 1 | x        | -           | -                                                                                                                | 1000t x 1 |
| 4. Miguel Alves  | 100 x 1 u/t  | <b>-</b> '     | x        | -           | -                                                                                                                | 2000t x 1 |
| 5. Uniao         | 100 x 1 u/t  | -              | x        | -           |                                                                                                                  | 2000t x 1 |
| 6. Teresina      | 100 x 1 u/t  | 400 x 1 u/t    | x        | x           | 3 u/t                                                                                                            | 6000t x 5 |
|                  |              | 200 x 1 u/t    | x        | x           |                                                                                                                  |           |
| 7. Palmeirais    | 100 x 1 u/t  | -              | x        | -           | -                                                                                                                | 2000t x 1 |
| 8. Amarante      | 100 x 1 u/t  | -              | х        | -           | -                                                                                                                | 3000t x 1 |
| 9. Floriano      | use Unloader | 200 x 1 u/t    | x        | x           | 4 u/t                                                                                                            | 5000t x 2 |
| 10. Guadalupe    | 100 x 1 u/t  | -              | x        | -           | 1 u/t                                                                                                            | 2000t x 1 |
| 11. Urucui       | 200 x l u/t  | use Loader     | x        | x           | 3 u/t                                                                                                            | 5000t x 2 |
| 12. R. Goncalves | 300 x 1 u/t  | use Loader     | X        | x           | 2 u/t                                                                                                            | 5000t x 3 |
| 13. S. Filomena  | 100 x 1 u/t  |                | x        | -           |                                                                                                                  | 3000t x 1 |
| Total            | 11           | 4              |          | 1           | 14                                                                                                               | 21        |

# Table 11.5.2 Required Cargo Handling Facilities at Each River Port

Source : JICA Study Team

x : Necessary

- : Not available

# (3) Structural Type of the Port Facilities

Table 11.5.3 shows the structural type of the basic port facilities.

| Facilities                                                                                                       | Structural Type                                                              | Size                                                                                              |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1. Platform                                                                                                      | Concrete deck supported with                                                 | - 10 m width x 15 m length for Type 1                                                             |
|                                                                                                                  | foundation piles, and -3.5 m                                                 | - 10 m width x 25 m length for Type 2                                                             |
| and the second | depth with fender system and                                                 | - 10 m width x 50 m length for Type 3                                                             |
|                                                                                                                  | mooring bit.                                                                 | - 10 m width x 100 m length for Type 4                                                            |
| 2. Bresting Dolphin                                                                                              | Pile type dolphin with fender<br>system and mooring bit, Depth : -<br>3.5 m. | 2.5 m x 2.5 m deck size                                                                           |
| 3. Mooring Dolphin                                                                                               | Concrete base with mooring bit supported with foundation piles.              | 2.0 m x 2.0 m                                                                                     |
| 4. Revetment                                                                                                     | Stone with concrete with 10 m slope length                                   | App. 80 m for Type 1 and Type 2.<br>App. 150 m for Type 3<br>App. 200 m for Type 4                |
| 5. Shed                                                                                                          | Steel frame structure                                                        | - 300 m2 x 1 unit for Type 2<br>- 1,200 m2 x 1 unit for Type 3<br>- 1,200 m2 x 2 units for Type 4 |

Table 11.5.3 Structural Type of the Basic Port Facilities

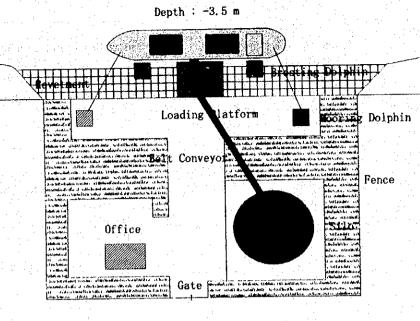



Fig. 11.5.1 River Port Layout - Type 1

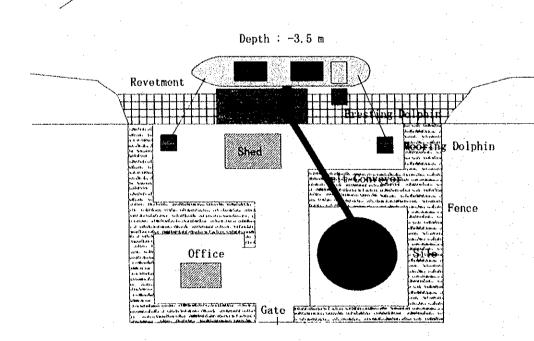



Fig. 11.5.2 River Port Layout - Type 2

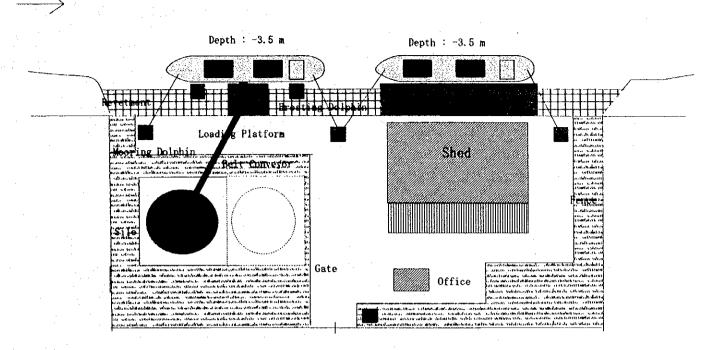
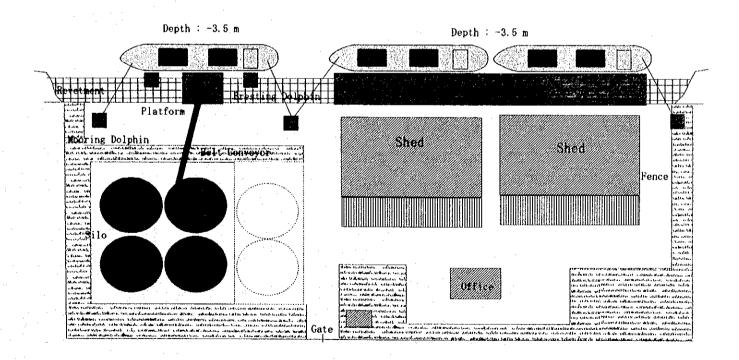
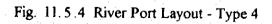





Fig. 11.5.3 River Port Layout - Type 3





12. NAVIGATION AIDS PLANNING

## 12. NAVIGATION AIDS PLANNING

The basic functions attributed to aids to navigation are divided into improvement in traffic efficiency for a ships navigation from one point to another so as to reach the destination in the most economical way, and safety of navigation providing forewarnings to mariners on navigation dangers such as shoals, sunken rocks, sand bars etc.

#### 12.1 Present Condition of Navigation Aids

At present, in the Parnaíba river basin, no navigation aids are installed except for the navigation aids for the "Spur Dike" installed by the JICA Study Team to indicate the channel-width-limit.

#### 12.2 Navigation Aids for the River Basin in Brasil

The navigation aids for rivers in Brazil are installed in accordance with the regulations of "Permanent International Association of Navigation Conference (PIANC)". The signalling indicative symbols are shown in Fig. 12.1.1.

#### 12.3 Proposal of Navigation Aids

A suitable navigation aids system shall be established indicating the shallow sandbank areas, the isolated danger areas and the safe position under bridges including the safe area of channel.

According to the aforesaid, the vessel navigation is limited to daylight time. Navigation aids are indicated by a signal board of beacon colour and shape in accordance with the regulations.

A general arrangement of beacons is shown in Fig.12.3.1. Table 12.3.1 shows the required number of navigation aids in each scenario (see Table 12.3.2 for the required number of navigation aids along the Parnaíba river basin in each area). The required number of the navigation aids in the tables is estimated based on the aerial photography taken by the JICA Study team and topographic maps.

| Table 12.3.1 | Required | Number | of Navigation | n Aids 🕺 |
|--------------|----------|--------|---------------|----------|
|--------------|----------|--------|---------------|----------|

|                    | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
|--------------------|------------|------------|------------|------------|
| Required Number of | 475        | 213        | 109        | 213        |
| Navigation Aids    |            |            |            |            |

The installation of beacons shall be done before the operation of vessels. Navigation aid beacons shall be installed on a concrete base fixed with anchor bolts on the bank of river. Trees around each beacons shall be cut to keep visibility.

Fig. 12.3.2 shows an example of the installation of navigation aids. The actual location of the navigation aids shall be decided based on the local conditions of the river.

Table 12.3.2 Required Number of Navigation Aids

|                            | Distance     | Number of | N                 | Navigation Aids       | Kind o     | Kind of Navigation Aids | s      |
|----------------------------|--------------|-----------|-------------------|-----------------------|------------|-------------------------|--------|
| Port                       | (km)         | Sand Bar  | Quantity          | Average Distance (km) | Navigation | Obstruction             | Bridge |
| S. FILOMENA                | 275          |           | 60                | 4                     |            | 09                      |        |
| R. GONCALVES               | 100          |           | 25                | 4.0                   |            | 25                      |        |
| URCUI                      | UV I         |           | C                 |                       |            |                         |        |
| GUADALUPE                  | 140          |           |                   |                       |            | ç                       |        |
| 07-140-14                  | 20           |           | 24                | 3. 5                  |            | 70                      | 1 (4)  |
| LUKIANU                    | 75           |           | ហ                 | 15.0                  |            | ູ                       |        |
| AMARANTE                   | 20           |           | 2<br>2            | 10.0                  |            | S                       |        |
| PALMEIRAIS                 | 120          | 27        | 94                | 1. 3                  | 06         |                         | 1 (4)  |
| TERESINA                   | 70           | 70        | 64                | 1.2                   | 60         |                         | 1 (4)  |
| UNI AO                     | 65           | 40        | 40                | 1.6                   | 40         |                         |        |
| M. ALVES                   | 45           | 30        | 35                | 1.3                   | 35         |                         |        |
| PORTO                      | 85           | 60        | ວິຍ               |                       | 53         | 2                       |        |
| LUZILANDIA<br>PARNAIBA     | 120          | 80        | 89                | 2.0                   | 99         |                         | 2 (8)  |
| TOTAL                      | 1, 215       | 308       | 475               | 2.7                   | 338        | 117                     | 5 (20) |
| Source : Topographical Map | raphical Map | (Sata     | Filomena - Urcui) |                       |            |                         |        |

Aerial Photography (Guadalupe - Parnaiba)

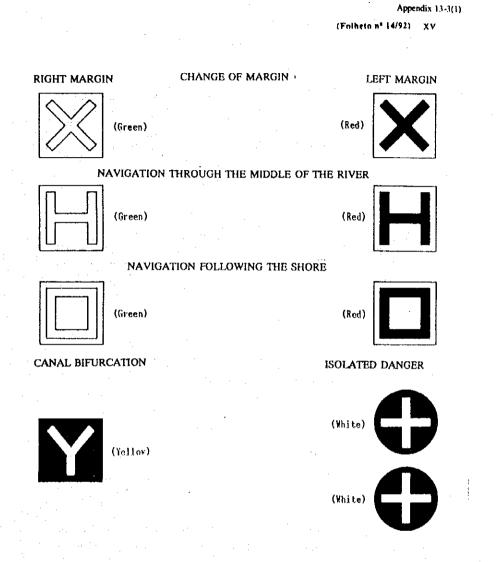



Fig. 12.1.1 Complementary Signalling Indicative Symbols, Approved for Diurnal and Nocturnal Fluvial Navigation (1)

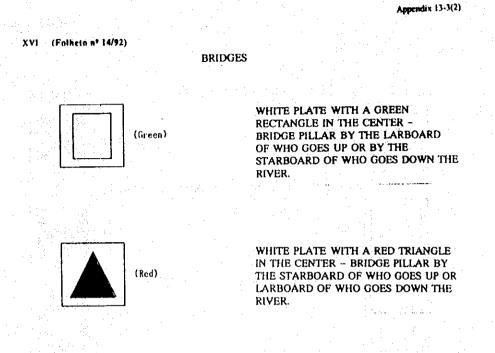



Fig. 12.1.2 Complementary Signalling Indicative Symbols, Approved for Diurnal and Nocturnal Fluvial Navigation (2)

Note: The first three signals are placed by the navigable margin and the last two ones in proper places.

The symbols are painted in the beacon plates with retro-reflective material (paint or adhesive tape) of the type used in highway signalling to allow also the nocturnal identification, through the spotlight utilization.

The beacons also have kilometer measurement plates which are a very important help to the position knowledge and to the navigation. The numbers indicating the kilometers are painted with retro-reflective material.

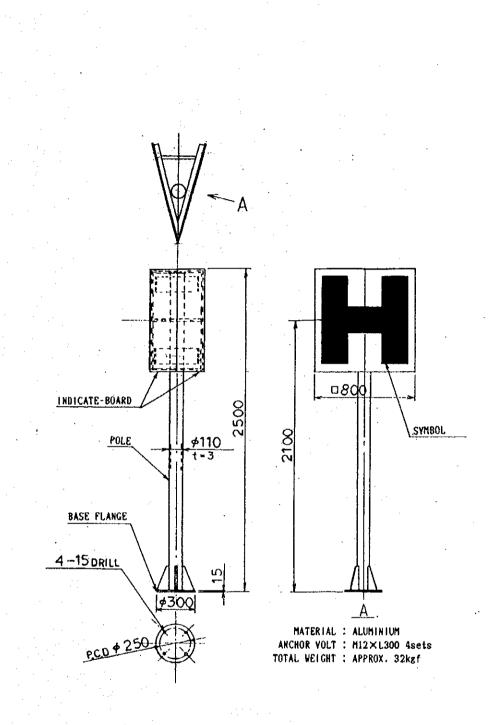
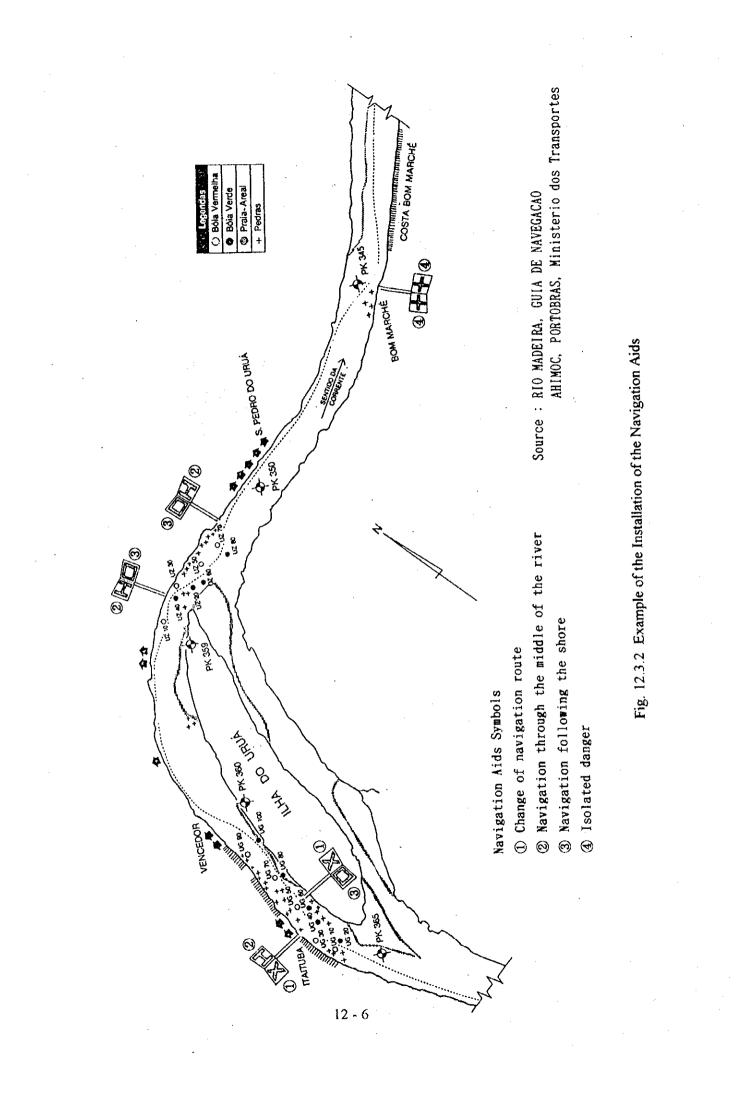




Fig. 12.3.1 General Arrangement of Beacon



# 13. OPERATION AND MAINTENANCE PLANNING

## **13. OPERATION AND MAINTENANCE PLANNING**

## 13.1 Present Situation of the Operation and Maintenance

In Brazil, rivers crossing either the National border or state border are under the control of the Federal government. The Parnaíba river is under the Federal government, for it passes across the state boundary to Maranhão State and therefore falls into the above category.

The actual operation and maintenance program of the channel is administered by the northeast channel authority at Sao Luis city, abbreviated as AHINOR, and is responsible for provision of any structures installed in the channel, including navigation aids and groins, etc.. Vessels maneuvering in the Parnaíba river and in the surrounding sea area are registered at the Port Authority of Parnaíba city, abbreviated as CPPI. The authority organizes the overall administration of vessels utilizing the channel with the help of their patrolling boats.

On the other hand, CHESF, possesses seven field stations for the observation of the water depth along the Parnaiba river. These stations warn of possible rises in the high water levels to the nearby towns/villages in the case of discharging water during reservoir operations. They are responsible for safety precautions in the channel resulting from the operation/maintenance of Boa Esperança Dam.

#### 13.2 Organization for the Maintenance, Administration and Operation

The action plan to achieve a practical transport network in the Parnaíba river should consist of the following three phases:

- Study Phase,
- Construction Phase and
- Operation phase.

At the first stage, organization of the committee composed of various concerned firms should be established towards the implementation of the plan. The organization shall conduct the survey, investigation and design of the facilities such as locks, ports, etc., to be constructed in the project. They will be preferably be based around the State of Piauí and will be responsible for the works/studies on the status quo of the transport, the design of the facilities, tendering and construction programming/management as well as the financial arrangement.

At the same time, other organizations shall be arranged so as to continue the project smoothly. One shall be responsible for the construction and operation phase and the other for maintenance/administration/operation phase covering the facilities such as locks, ports, vessels and control/utilization of the river.

The schematic structure of the organization is shown in Table 13.2.1. In the operation stage, the department of operation and administration of transport in the Parnaíba river, tentatively named here, shall be established in the State of Piauí. The department will function as an authority organizing and managing the overall activities on transport in the channel. The establishment is expected to contribute to the flexible transport provision.

| Responsibility                   | Construction Phase                             | Operation Phase                                         | Maintenance/Administration<br>Phase   |
|----------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 1 Vessels                        | Private Firms                                  | Private Firms                                           | Private Firms                         |
| 2 Locks                          | State government of Piauí<br>or the Ministry   | CHESF                                                   | CHESF                                 |
| 3 Ports in the Channel           | State government of Piaul                      | Concerned City/Towns                                    | Concerned Towns/Villages              |
| 4 Navigational Aiding<br>Markers | State government of Piauí<br>or of the Federal | -                                                       | Government of the Federal<br>(AHINOR) |
| 5 Management of the<br>Channel   |                                                | an on an good search.<br>Carl of the company and search | AHINOR (existing)                     |

Table 13.2.1 General Structure of the Organization

#### 13.2.1 Vessels

## (1) Organization

The operation and management of the vessels shall be carried out by private firms. It is recommended to arrange basic key spots of the above firms for marketing and management of operating vessels at Parnaiba, Teresina, Floriano and Ulucui. The related branch offices should be set for other ports where required.

# (2) Function

The following functions shall be assigned :

- Marketing and operational management of vessels,
- Managing the safety precautions and crew allocation, and
- Supervision on shipbuilding and maintenance.

# (3) Staffing

Proposed allocation of staff members in Scenario 1 is shown in Table 13.2.2. The other scenarios' cases are presented in Tables A5.1 in Appendix 5.

|                      | Staff Members |                               |             |       |  |  |  |
|----------------------|---------------|-------------------------------|-------------|-------|--|--|--|
| Liaison Offices      | Manager       | Office<br>Supporting<br>Staff | Technicians | Total |  |  |  |
| 1 Parnaiba           | 1             | 3                             | 2           | 6     |  |  |  |
| 2 Luzilandia         | 1             | 2                             | -           | 3     |  |  |  |
| 3 Porto              | 1             | -                             | · -         | 1     |  |  |  |
| 4 Miguel Alves       | 1             |                               | -           | 1     |  |  |  |
| 5 Uniao              | 1             | _                             | -           | 1     |  |  |  |
| 6 Teresina           | 1             | 6                             | 2           | 9     |  |  |  |
| 7 Palmeiras          | 1             | <b>_</b>                      |             | 1     |  |  |  |
| 8 Amarante           | 1             | ÷                             | -           | 1     |  |  |  |
| 9 Floriano           | 1             | 4:                            | 2           | 7     |  |  |  |
| 10 Guadalupe         | 1             | 2                             | -           | . 3   |  |  |  |
| 11 Urucui            | 1             | 3                             | 2           | 6     |  |  |  |
| 12 Libeiro Goncalves | 1             | 3                             | -           | 4     |  |  |  |
| 13 Santa Filomena    | 1             |                               | -           | 1     |  |  |  |
| Total                | 13            | 23                            | 8           | 44    |  |  |  |

# Table 13.2.2 Staff Allocation of Each Vessel Office in Scenario 1

#### 13.2.2 Locks

# (1) Organization

Matters on operation, maintenance and management of the locks shall be carried out by CHESF, who owns the Boa Esperança Dam. Consequent activities at the power station shall be arranged by a division of CHESF to be organized at the site as their branch office.

#### (2) Function

The following functions shall be assigned to the above division :

- Operation, maintenance and management of locks,
- Recording and storing the operational statistics of the locks and
- Coordination and arrangement with the private shipping firms.

#### (3) Staffing

In general, the locks should be operated in daytime for providing safe navigation/maneuvering of vessels in the river channel. Night time operation should be avoided. The operators should be assigned one for each lock either upstream or downstream, forming a shifting working system of two teams. The staffing may be as follows.

- Manager : 1
- Operators : 5, including a reserved substitution personnel.