5.10.7 Depreciation Costs

The annual depreciation costs of port facilities and equipment are calculated by the straight line method based on their service lives.

Residual values after all depreciations are estimated as zero. At the end of the project life, fixed assets are assumed to be sold at their residual values.

5.10.8 Fund Raising

Eighty percent of initial investment costs is assumed to be raised by foreign fund and conditions are assumed as follow;

Soft loan

Loan period:

30 years

Grace period:

10 years

Interest rate:

2.6 %

(Note) These conditions are quoted from those of the OECF(Japan)

The remaining initial investment costs are assumed to be raised by government fund.

5.10.9 Appraisal of the Project

The calculation of the FIRR is examined to clarify the viability of the project.

(1) Result of the FIRR calculation

The result of the FIRR calculation is - 4.1 %, as shown in Table 5-10-13. Judging from the this analysis, the project is not regarded as financially feasible. This means that the existing tariff should be raised or more government funds should be employed in the investment costs to secure the viability of the project.

5.10.10 Comparison of Alternative of FIRR.

(1) Alternative cases

The following analysis is aimed to clarify the financially feasible rate of government fund.

Table 5-10-13 FIRR Calculation

n FMG	ø.	Difference	-2, 429	-12, 795	-17,586	-8, 196	-1,066	41	54	71	88	108	135	141	147	153	160	166	173	181	189	-340	205	214	223	232	-11,213	252	263	274	286	49,868	
Unit:milion	Present Value	Diff	036	888	983	245	928		.613	639	999	694	724	755	181	820	855	892	930	696	1,011	1, 725	1,098	1, 145	1,194	1, 245	5, 618	1,353	1,411	1,471	_	47, 970	
Ħ	Net Pre	Cost	80	15	21,	10	⊷																	<u>.</u>			F -1					7- 1	
		Revenues	607		4,397		863	628	667	710	755	802	859	895	934	973	1,015	1,058	1, 103	1,150	1,199	1,385	1,303	1,359	1,417	1, 47	4, 405	1,606	1,674	1,745	1,820	1,89	_
ļ	Revenue-	Cost	-2, 429	-12, 272	-16, 179	-7, 232	-905	33	42	53	64	14	68	88	88	89 69	83	89	88	88	& &	-154	88	89	88	88	-4, 121	89	88	68 8	88	14,878	
	1.5	Total	3,036	15, 340	20, 224	9,040	1,632	477	477	477	477	477	477	477	477	477	477	477	477	477	477	781	477	477	477	477	5,740	477	477	477	477	-14,312	
ing	Cost	Expense	. 0	0	0	0	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	477	
Tariff: Exsiting		nvestment	3,036	15,340	20, 224	9,040	1, 155		1 1 1		••••											304					5, 263					-14,789	
		Total	607		4,045		730	510	519	530	541	551	566	566	568	566	566	566	566	566	566	627	568	566	566	566	1,619	566	566	566	566	566	
G. Fund: 20%	Revenues	Subsidy To	607	3,068	4,045	1,808	231															61					1,053						
Case (Operating Revenues	0	0	0	0	499	510	519	530	541	551	566	566	566	566	566	566	566	566	586	566	566		566	566	566	566	566	566	566	566	
Base Ca	Year	5.6	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2002	2008	5003	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	_
			~~	2	က	₹.	വ	မွ	<u></u>	ဆ	6	0	~₁	2	တ	4	သ	9	ţ-	တ	6	0		2	ŝ	77	ις.	မွ	-	8	S.	8	

Table 5-10-14 Alternative Case of FIRR Calculation (1)

Case	Government Fund	Soft Loan	FIRR	Ave. Interest Rate
Case A	90 %	10 %	4.9 %	0.26 %
Case B	80 %	20 %	1.9 %	0.52 %
Case C	70 %	30 %	0.1 %	0.78 %

^{*} Operating Revenue and Cost are equal to base case

Analyzing the results of the FIRR calculation, Case A and Case B are feasible as the FIRR exceeds the average interest rate. Case C, however, is not feasible, which means that the level of government funds should be set over 80 % to ensure the viability of the project.

In the following analysis, operating revenues are raised based on section 5.8.3; entering the port charge and wharfage charge are 2 times the existing tariffs level. In this case, government fund is set at 70 %, a level which proved to be not feasible in Case C.

The result of the FIRR calculation is shown in Table 5-10-15.

Table 5-10-15 Alternative Case of FIRR Calcuation (2)

Case	Government Fund	Soft Loan	FIRR	Ave. Interest Rate
Case D	70 %	30 %	0.8 %	0.78 %

^{*} Entering the port charge and Wharfage charge: Base case × 2 Costs are equal to Base case

In this case, FIRR is nearly equal to the average interest rate, so it is difficult to ensure financial feasibility.

(2) Financial soundness of the port management body

Case B is the minimum FIRR in which the average interest rate is exceeded (Case D is nearly equal), so Case B is appraised from the viewpoint of financial soundness of the port management body. The projected financial statement for the short-term projects and financial indicators, working ratio, operating ratio, rate of return on net fixed assets and debt service coverage ratio are shown in Table 5-10-16.

1) Profitability

The rate of return on net fixed assets is less than the average interest rate of the fund (See Figure 5-10-1). It is presumed that there will be a problem with profitability of the project.

2) Loan repayment capacity

The debt service coverage ratios are less than 1 (See Figure 5-10-2.). It is presumed that there will be difficulty in repaying the long-term loans using the annual operating revenues.

3) Operational efficiency

Both the operating ratios and the working ratios are not at favorable levels (See Figure 5-10-3, 5-10-4). It is presumed that there will be a problem with the operational efficiency of the organization and the efficiency of the routine operations.

5.10.11 Consideration of the Result

According to the economic analysis, this project is valuable as a national development scheme. So it is desirable to implement the project as soon as possible.

However, judging from the result of the FIRR calculation, it is very difficult to ensure the financial feasibility of the project.

The main reason is that investment costs are much greater than operating revenues, but it is impossible to further trim the project costs.

To increase operating revenues, the port tariff level needs to be reconsidered, but it has a ceiling because port activities must be competitive with neighboring ports and alternative transportation.

In this case, subsidy from government or finance from foreign countries is introduced in general. But from the result of the FIRR calculation, the project is not viable, even if the subsidy is 70 %. Further, subsidy from government is not expected because financial resources are limited in Madagascar. It is often possible to get economic aid from foreign countries, but it is unlikely that they will shoulder all investment costs of the Short-Term Plan. While it is desirable to ensure completion of the entire Short-Term Plan, it may be worth examining the possibility of going ahead with part of the short-term plan in the process of the Short-Term Plan.

A technical examination of the above is shown later in 5.12 Urgent Improvement Plan.

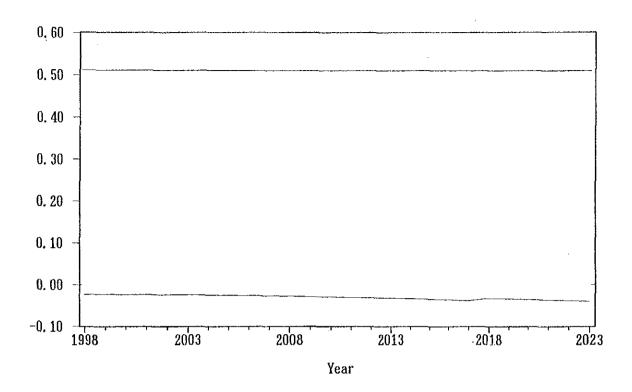


Fig. 5-10-1 Rate of Return on Net Fixed Assets

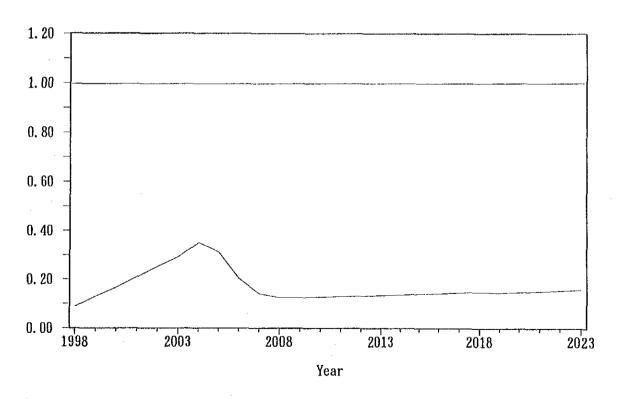


Fig. 5-10-2 Debt Service Coverage Ratio

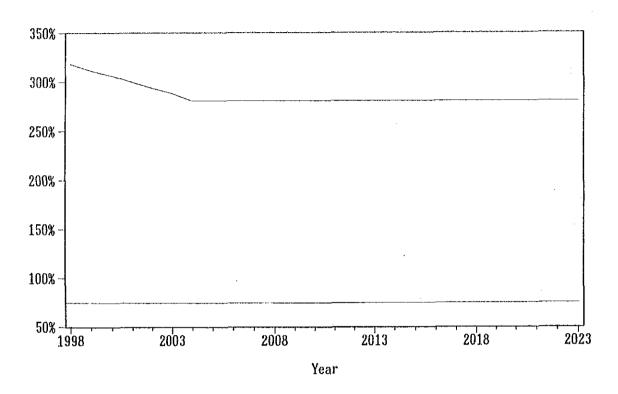


Fig. 5-10-3 Operating Ratio

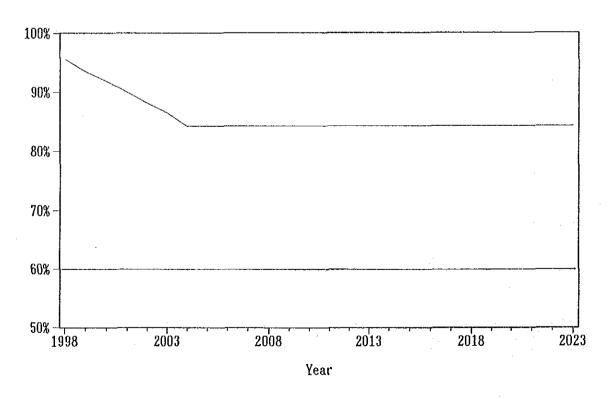


Fig. 5-10-4 Working Ratio

Table 5-10-16 Projected Financial Statements

BROCKS AND LOCK OF PENCHS (BMIT, WILLS	- CHCY	1																												
PROFIT AND LOSS STATEMENT (UNIT: MILLI	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007 566	2008	\$009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Operating Revenue	ď	0	0	0	499	510	519	530	1, 589	551 1,589	566 1,589	1,589	1,589	1,589	1,589	1,589	1.589	1,589	1,589	1,589	566 1,589	1,589	568 1,589	1.589	1,589	1,589	566 1,589	1,589	566 1.589	1.589
Operating Expenses	0	0	0	0	1,589	1,589	1,589	1.589	1, 383	1, 569	1, 303	25	25	25	25	25	25	25	25	1, 303	1, 303	1, 369	25	1, 569	25	25	1, 303	1,389	1,309	1, 589
Personnel	Q.	0	0	Đ	25 437	25 437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	437	411	437
Maintenance and repair	0	O O	0	U	437	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Adalnistration	()	9	ų A	V 0	1, 112	1.112	1. 112	1. 112	1.112	1, 112	1. 112	1, 112	1, 112	1, 112	1, 112	1, 112	1, 112	1, 112	1. 112	1.112	1, 112	1, 112	1, 112	1, 112	1. 112	1, 112	1.112	1, 112	1. 112	1, 112
Depreclation costs	<u>U</u>	<u>v</u> _	<u> </u>	- V	-1, 090	-1,079	-1.070	-1.059	-1.048	1.038	-1,023	-1,023	-1,023	-1.023	-1,023	-1,023	-1,023	-1,023	-1.023	-1,023	-1,023	-1.023	-1,023	-1.023	-1.023	-1,023	-1.023	-1.023	1.023	-1,023
Net Operating Income					<u> </u>	Ď	0	0	0	0	0	0	9		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non-operating Revenues	n n	ň	ň	ŏ	ŏ	Ŏ	0	ė	Ō	0	0_	0	00	0	0	0	0	0	0	0	0	. 0	0	. 0	0	0	0 -	- 0	0	0
Interest on deposit	0	16	98	218	297	345	392	444	503	568	643	726	825	958		1,352	1.602	1.890	2, 221	2,601	3,040	3, 543	4, 121	4, 787	5, 552	6, 459	7. 475	8, 644	9.987	11,533
Non-operating Expenses Interest on long-term loans	ñ	81	96	201	248	254	254	254	254	254	254	254	253	248	218	226	213	200	188	175	164	151	139	126	113	128	115	102	90	77
Interest on short-term loans	ŏ	ō	2	17	50	91	138	190	249	315	389	472	572	710	898	1, 127	1.389	1,690	2,033	2,426	2.876	3, 392	3, 983	4,661	5, 439	6, 331	7, 360	8,541	9,898	11,456
Net Income Before Tax		-16	-98	-218	-1, 387	-1,424	-1,462	-1,503	-1.551	-1,606	-1,656	-1, 749	-1,848	-1,981	-2.159	-2, 375	-2, 625	-2, 913	-3, 244	-3, 624	-4,063	-4,586	-5, 144	-5.810	-6,575	-7, 482	-8.498	9, 687	-11,010	-12,558
Income Tax	0	0	0	0	0	0	0	<u> </u>	U			-1,749	-1 848	-1, 981	-2, 159	-2, 375	-2,625	-2, 913	-3, 244	7 6 3 4	-4.063	-4.556	-5, 144		0 525	2 (62	U	-9, 687	- U	<u>V</u>
Net Income After Tax	0	-16	-98	-218	1, 387	-1, 424	1, 162	-1,503	-1, \$51	-1,606	-1,666	1,143	1, 040	-1, 301	-6,133	- £, 3/3	-2,623	-2, 913	-3, 299	73.024	-q, ve j	-4, 386	-3, 144	-5, 810	-6,575	-7, 482	-8,498	-9, D0/	-11.010	-12,338
(Contribution To the Government)	0	0	0	U.	-1. 387	-1,424	-1,462	-1,503	-1,551	-1.606	-1.686	-1.749	-1,848	-1, 981	-2, 159	-2, 375	-2,625	-2.913	-3, 244	-3,624	-4 063	-4, 586	-5, 144	-5, 810	-6.575	-7.482	-8, 498	-9 667	-11,010	-12 556
Net Income After Contribution	0	-16	-98	-218 -331	1, 719	-3.143	-4, 504	5.107	-7, 558	9.264																		-85, 253		
Retained Farnings		-16_	-114	-311	1, 11,	3, 1,73	1	<u> </u>																	V 0, 0 0 0	<u> </u>				100,015
CASH FLOW STATEMENT (Unit: Willion F	MC)	1																												
CASE ECON STRIEBERT CORECT MILITOR L	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2605	2008	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Cash Beginning		0	-16	-114	-331	-607		-1, 268	-1.659	-2,098	-2, 592	-3, 146	-3,813	-4,732	-5, 987	-7, 511	-9.262	-11, 264	-13.553	-16,172	-19, 172	-22,611	-28, 552	-31,073		-42, 209	-49,068	-56,942	-65, 984	-76, 371
Cash Inflow (excluding G. Funds)	607	3,068	4,045	1,808	253	33	42	53	64	74	89	-1 022	. 1 022	-1,023	-1,023	-1.023	-1 022	88	89	150	89	1 503	89	89	1,142	89	89	89	89	89
Net operating income	Ç	0	0	0	-1,090	-1,079	-1,070	-1,059	-1,048	-1,038	-1,023	-1.023	-1.023 1,112	1, 112	1, 112	1, 112	-1.023 1,112	-1,023	-1.023	-1,023 1,112	-1.023 1.112	-1.023	-1,023 1,112	-1.023	-1.023	-1,023		-1.023	-1,023	-1,023
Depreciation costs	0	9	Ō	0	1, 112	1, 112	1, 112	1, 112	1, 112	1, 112	1, 112	1,112	1, 112	1,112	1,112	1,112	1,112	1, 112	1.112	1, 112	1,112	1, 112	1.112	1, 112	1.112 1.053	1, 112	1, 112	1,112	1.112	1, 112
Long-term loans	607	3,068	4.045	1,808	231	U	U	n n	Ů	0	n.	o	. 1	ŏ	ñ	ä	ก	ň	ň	o i	ň	6	ň	ű	1.033	ň	0	ñ	9	Ô
Interest on deposits		<u> </u>		2,026	528	345	392	444	503	568	843	758	1.009	1. 344	1. 613	1,840	2.090	2, 378	2,709	3, 150	3, 528	4,031	4, 809	5, 275	7.092	5, 947	7, 963	9, 132	10.475	12.021
Cash Outflow (excluding G. funds)	607	3,084 3,068	4, 143 4, 045	1.808	231	343	ñ	ïò	Ö	0	0	0	0	0	9	. 0	0	Đ	9	61	Ö	0	0	0	1,053	Ö	0	0	0	0
Investment	607	1, 100	4,043	1,600	200	ŏ	ō	ō	Ö	Ō	0	30	184	386	476	488	488	488	488	488	488	488	488	488	488	488	488	488	488	488
Repayment for long-term loans		16	30	201	248	254	254	254	254	254	254	254	253	248	238	226	213	200	188	175	164	151	139	128	113	128	115	102	90	77
Interest on long-term loans	ň	ň	ő	Ť	G	Ð	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	Đ
(Contribution to the Government)	ñ	ŏ	Õ	Û	0	Ð	9	0	Ō	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	. 0	0	. 0	0	0
Interest on short-term loans	Ò	Θ	2	17	50	91	138	190	249	315	189	-667	572	710 -1, 255	-1. 524	1.127	1.389 -2.001	1.690	2,033	2.426	2,876	3, 392	3, 983	4, 561	5.439	6, 331	7, 360	8,541	9,898	11,456
Cash Inflow - Cash Outflow	0_	-16	-98	-218	-275	-312	-350	-391	-439	494	-554 -3, 146	-3, 813	-920 -4, 732	-5, 987	-7, 511	-1,751 -9,262		-2.289 -13,553	-2,620	-3,000 -19,172	-3, 439	-3.942 -26.552	-4,520 -31,073	-5, 186 -36, 259	-5, 951 -42, 209	-6, 858	-7.814			-11,932 -88,303
Cash Ending	0	-16	-114	-331	- 607	-919	-1, 268	-1,659	-2.098	-2.592	-3, 140 N	-3, 013 N	-4,732 N	-3, 361 N	-7, JII	-3, 202 A	11,204	-13,333	-10,172	-19,172	-22,011 N	-20,332 N	-31,013	-30, 239 A	-42,209	-49,068	-56,942	~65,984 0	-10,311	-00, 103
Cash excess	0	0	. 0	-331	-607	-919	-1.268	-1.659	-2.098	-2, 592	-3.145	-3.813	-4.732	-5.987	-7, 511	-9.262	-11.284	-13.553	-16.172	-19.172	-22.611	-26.552	-31.073	-35 259	-42 209	-49 068	-56 942	-65, 984	-26 371	-88 303
Cash shortage	<u> </u>	-16	-114	-121	-007	313	1,200		2,000																					
BALANCE SHEET (UNIT: Million Rp.)																							·							
DALKAGE SHEET (SHIFT, MILITON MY.)	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
(Assets)									0	п	٥	n	n	п	n	ก	0	n	n	n	n	n		0		n	0		0	٥
Current Assets	0	0	0	Ū.	Ų	U	0	ň	. 0	ň	ñ	ŏ	ő	ő	ů	ñ	ñ	ň	ň	ñ	ñ	ň	ň	ñ	. 0	Ų	ň	n n	· ň	n
Cash & Deposit	0	0	0 000	47 £40	47, 683	48.571	45.459	44.347	43. 235	42. 123	41.011	39, 899	38, 787	37.675	36, 563	35.451	34.339	33, 227	32, 115	31.307	30. 195	29.083	27. 971	26.859	31.010	29.898	28.786	27.674	26.562	25, 450
Fixed Assets	3,036		38,600	47,640 47,640	48, 795	48, 795	48. 795	48.795	48, 795	48.795	48, 795	48, 795	48,755	48, 795	48, 795	48, 795	48, 795	48, 795	48, 795	49.099	49.099	49.039	49.099	49,099	54, 362	54, 362	54.362	54.362	54.362	54.382
Construction costs	3,036	18, 376	38.600	47,040	1, 112	2. 224	3. 336	4,448	5,560	6, 672	7, 784	8,896	10,003	11, 120	12, 232	13, 344	14,456	15,568	16, 680	17,792	18, 904	20,016	21, 128	22, 240	23.352	24, 464	25, 576	26,688	27,800	28, 912
Accountlated depreciation	3 036	18,376	38,600	47. 640	47, 683	46.571	45, 459	44, 347	43, 235	42, 123	41,011	39,899	38,787	37, 675	36, 563	35, 451	34, 339	33, 227	32, 115	31, 307	30, 195	29.083	27, 971	26,859	31,010	29.898	28, 786	27.674	25.582	25, 450
Net fixed assets Total Assets	3,036 3,036	18.376	38.600	47.640	47.683	46,571	45, 459	44, 347	43, 235	42, 123	41.011	39,899	38,787	37, 675	36,583	35, 451	34, 339	33, 227	32, 115	31, 307	30, 195	29,083	27, 971	26,859	31.010	29,898	28, 786	27, 674	26,562	25, 450
(Liabilities and capital)	3,040												14 075				44				40.10:				40 46-					
Liabilities	697	3, 691	7.834	9,859	10, 356	10,678		11,418	11, 857	12, 351	12, 905	13, 541	14, 277	15, 146	16, 194	17,457	18, 970	20, 771	22,903	25.476	28, 425	31,880	35,912	40,610	47, 126	53,496		69.437		90,779
Current Liabilities (short-term to	0	16	114	331	607	919	1,268	1,659	2,098	2,592	3, 146	3,813	4,732	5, 987	7.511	9, 262	11 264	13,553	16, 172		22.611	26.552	31,073	36,259	42, 209	49,068		65.984	76, 371	88, 303
Fixed Liabilities (Long-term loan)	607	3,675	7,720	9.528	9,759	9.759	9,759	9,759	9, 759	9,759	9,759	9,723	3, 545	9, 159	8, 582	8, 195	7,707	7, 219	8,731	6,304	5,818	5,328	4,840	4, 352	4, 918	4, 428	3,940	3.453	2, 965	2,477
Capital	2, 429		30,786	37, 781	37, 317	35, 893	34, 432	32, 929	31, 378	29,772 39,036	28, 106 39, 036	26,358 39.035	24,510 39,036	22, 529 39, 036	20,369 39.036	17,994 39,036	15.369 39.036	12,456 39,036	9,212 39,036	5,831 39,279	1,769 39,279	-2,797 39,279	-7,941 39,279	-13,751 39,279	-16, 116 43, 490	-23,598 43,490		-41,763 43,490	-52,773 43,490	-85, 329 43, 490
Investment In Kind By Gov. Funds	2.429		30,880	38, 112	39,036	39,036	39.038 -1.462	39,036 -1,503	39,036 -1,551	-1.608	-1,655	-1,749	-1.848	-1.981	-2, 159	-2,375	-2. 625	-2.913	-3, 244	-3, 624	-4.063	-4.588	~5.144	-5, 810	-6,575	-7.482	-8, 498			-12,556
Net Income After Tax and Cont.	0	-16	-98	-218	1.387	-1.424 -3.143	-4,604	-1, 303 -6, 107	-7. 858							-21.042				-33,448						-67.088			-96.263 -	
Retained Earnings Total Liabilities and capital	0 3. 036	-16	-114 38,600	-331 47.640	-1.719 47.683	46.571	45.459		43. 235	42, 123	41,011	39, 893	38, 787	37. 675		35, 451	34, 339	33, 227		31, 307		29.083		26,859	31,010			27,674		25, 450
		18.376		97.090	11. 000				, , , , , , ,					~																

5.11 Environmental Impact Analysis

5.11.1 Basic Concept

It is very important to consider both the environment and development when making a port plan. In the formulation of the Master Plan, the Plan has been examined from the environmental point of view by means of scoping. This is referred to as the Initial Environmental Examination (IEE). As a result, some likely environmental impacts have been pointed out.

After additional surveys and discussions with relevant people such as DTM's director and the hospital's manager, it can be confidently said that the Master Plan will not cause any environmental problem. However, a more detailed examination is necessary. So, a further environmental impact assessment, what is called, an Environmental Impact Analysis (EIA) will be implemented.

As indicated in section 4.11, the most significant environmental impact factor is water pollution by operation of the tuna canning factory and the second is noise by operation of construction machines. However, some other factors will likely have an environmental impact as well. Therefore, EIA is being conducted for all factors pointed out in section 4.11.

5.11.2 Noise and Vibration Generated by Construction Works

Noise and vibration is a public nuisance associated with construction works. They are generated simultaneously. In this section, noise is singled out and the impact is examined, because noise usually affects a larger area than vibration.

Many construction crafts, floating construction plants or machines will be used; details will be decided when construction works step forward to the implementation stage. In this stage, according to the study, the major sources of noise to be considered and power levels are as follows:

Table 5-11-1 Construction Equipment

Machine	Power Level
Road roller	68-72 dB(A)
Back-hoe	80-85 dB(A)
Bulldozer	83 dB(A)
Concrete mixer	83 dB(A)
Grab bucket dredger	112 dB(A)
Pile driving barge	100-130 dB(A)

Among these machines, pile driving barge's power level is the highest and grab bucket dredger's is the second. This means that the most considerable noise will be generated at the time of piling and dredging. Naturally, the noise level declines with distance from the source. As to the relationship between noise level and distance, some studies have been made and a formula has been proposed. Using it, the noise level by piling can be calculated and results are shown as follows:

Table 5-11-2 Noise Level from Source

Distance	Noise Level
100 m	82 dB(A)
200 m	75 dB(A)
300 m	72 dB(A)
500 m	68 dB(A)
1,000 m	62 dB(A)
3,000 m	52 dB(A)

Another surveys indicates typical noise levels as follows in Table 5-11-3:

Table 5-11-3 Typical Noise Level

Noise Level dB(A)	Situation
110-	klaxon at 2m, riveting
100-	under a railway bridge
90-	inside a noisy factory
80-	inside a train, bell of telephone
70-	inside a noisy office
60-	usual conversation, inside a quiet car
50-	inside a quiet office
40-	inside a library, midnight in town
30-	whispering voice, midnight in suburban area
20-	rustling level

There is a hospital (HOPITAL PRINCIPAL D'ANTSIRANANA) about 1,000 m away from the project site on the plateau. As the above tables show, the noise level at the hospital is 60-70 dB(A), which corresponds to that inside a quiet car, in other words, that of a residence in the urban area.

By similar calculation, it is observed that the noise level is 50-60 dB(A) when a dredger is working and it is nearly equivalent to that inside ordinary offices.

According to the discussion, it was confirmed that the manager of the hospital recognizes that the noise at such a level will not bring about any problem.

Consequently, the impact by noise can be regarded as minor.

5.11.3 Change in Economic Activities Caused by Employment of Laborers during Construction Phase

During the construction related to the project, there will be a rise in employment opportunity for local workers. Table 5-6-1(2), 5-7-1, 5-7-2(1) and (2) show the local portion related to the construction. Some workers, for example, directors, will come from other

areas but many workers, namely, skilled and unskilled labors will be employed from the hinterland.

From a rough estimation, during the total construction period, about five hundred people in the district will be employed. On top of that, as shown in Table 5-6-2, a lot of materials will be supplied from the region and relevant companies and people will earn revenue and wages. This extra income will contribute to the local economy.

The total number of workers, including consultants, who will come from other areas is approximately 500. They will stay at hotels in Antsiranana, buy daily goods, eat in restaurant etc. The effect should not be overlooked.

On the negative side, in large and long-time construction projects, there is sometimes some influence on the population distribution and the cultural environment in and around the project site by the inflow of people associated with the construction works. However, judging from the scale of this construction, it is considered negligible.

5.11.4 Air Pollution by Calling Vessels

In 1990, the total staying time by calling vessels was estimated at about 1,690 (vessel*days), possibly the longest time to date. At the stage of operation after completion of the project, it is estimated to decrease to about 1,600, or by 5 % because higher cargo handling efficiency and shorter staying time in the port is expected in the operation phase, even though cargo volume will increase.

Air pollution has never occurred in this region. One of the major reasons is that this area is blessed with good natural conditions. As an example, the visible distance is over 10 km on fine days. Dominant wind direction at the project site is from east-south-east to south-east. On the other hand, the central city is located on the windward side.

Therefore, it is safe to say that air pollution by calling vessels will not cause a serious problem as at present.

5.11.5 Water Pollution by Calling Vessels

With the decrease in staying time of vessels, generated water pollutant load which poured into the sea will also decrease.

According to the survey, water quality in the Diego-Suarez Bay is excellent excluding the place right near the outlet of drainage of the tuna canning factory. The

survey shows that COD (chemical oxygen demand) at observation points was under one ppm(mg/l). In Japan, water quality in terms of COD is desired to be under two ppm even at very clear sea areas. Consequently, it is judged that water pollution by calling vessels will be negligible.

The only concern about water pollution is drainage from the tuna canning factory. This subject will be examined in detail later.

Bilge has to be treated properly, following the relevant laws and regulations. In the port of Antsiranana, there are no disposal facilities nor will there be in the near future. Therefore, it is recommended that DTM strongly instruct shipping companies on their responsibility so as to deal it with by themselves.

5.11.6 Wastes Generated by Calling Vessels

Referring to the study by the Japan Association for Preventing Marine Accidents, the garbage volume generated by calling vessels can be calculated. As a result, the yearly amount is about 215 kl, 150 tons in volume, weight, respectively. Taking into account that calling vessels for refuge or rest account for over 40 % of the total in terms of staying time (vessels*days), the above values must be overestimated. Moreover, as mentioned before, the total staying time at the future port operation is forecasted to decrease compared with the present operation.

In principle, wastes generated by vessels should be treated by those vessels. Wastes from calling vessels do not currently cause any trouble, so that it is expected that wastes will be treated properly in future, too. However, it is better that the administration such as the local government or the port management body, or authorities or companies related to port activities help and cooperate to establish an appropriate waste treatment plan.

5.11.7 Economic Effect Caused by Employment for Cargo Handling and Storage in Operation

According to the interview, at present, CMDM employs about 30 regular labors and 700 irregular skilled and unskilled labors at the busiest period.

It is forecasted that the cargo volume excluding oil products will increase by over 70 % in the operation phase of the Short-Term Development Plan. Additional employees will be required to handle the increase in cargo volume, that is, simply speaking, about 20 and 500 people will regularly and irregularly be employed. That may be a slight overestimation but at least several hundred labors will be needed at the highest time. Moreover, people to take charge of management, accounting, and technicians to maintain facilities and equipment are required.

5.11.8 Noise and Vibration Generated by Road Traffic in Operation

With the increase of cargo handling, road traffic volume will increase. It is forecast that traffic volume into or out of the port in the operation phase will reach about 20 vehicles per hour in terms of 5 tonnage loaded truck. That is rather low and the increase of traffic volume is only several vehicles compared with the present situation.

Considering the present situation of road traffic, the proposed project will not bring about a serious problem of noise and vibration.

However, there are a lot of holes or cracks in the existing roads, so that slight vibration may reach neighboring houses or buildings when large vehicles pass through. So, it is recommended that rehabilitation works or traffic control such as speed control be done.

5.11.9 Traffic Jam or Accident Associated with Transportation of Cargoes in Operation

As explained above, road traffic volume is quite small and will continue to be so in the near future. Therefore, traffic congestion will not become a problem.

However, the roads are winding and the width of almost all of them is narrow. Such conditions are conducive to traffic jams or accidents. Therefore, it is thought effective to introduce speed control in the urban area and around the port.

5.11.10 Water Pollution and Bottom Contamination Generated by Factories Effluent in Operation

At present, the tuna canning factory is operating just behind the port and the drainage is affecting water quality in the sea. It is said that they are going to build another factory; other than that, no other new factories are planned. Therefore, the impact cannot be neglected and the influence must be examined. The impact of human activities in the urban area, livestock effluent and tourism activities on the city will be analyzed. The details are as follows.

(1) Calculation method of pollutant load

As already mentioned, the originated pollutant sources consist of those related to human activities, industrial activities, livestock effluent and tourism activities. The indicator of water quality is COD. The discharged pollutant load is calculated by each origin of pollutant as follows:

Discharged pollutant load = (Volume by each origin of pollutant)*(Unit loading)

Table 5-11-4 Sources of Pollution

classification	origin of pollutant
Human waste	raw sewage, common municipal drainage
Industrial waste	tuna canning factory
Livestock effluent	cattle, pig
Tourism activities	tourists

The attained pollutant load which flows into the sea is calculated as follows:

Attained pollutant load = (Discharged pollutant load)*(1-Removal rate)*(Rate of attainment)

(2) Calculation case

These cases are calculated, taking into account the following conditions:

Present situation (year:1992) (one case)

Future situation (year:1998) in case of non-treatment and treatment for waste water (two cases)

Future unit loading is assumed the same as the present.

Table 5-11-5 Calculation Cases of Pollutant Load

case	year	human waste	industrial waste	livestock effluent	tourism activities
1	1992	current population	current drainage and its COD concentration	current number of cattle and pig	current number of tourists
2	1998	future population	estimated drainage in the future based on the industrial expansion plan	same as the above	same as the above
3	1998	same as the above	estimated drainage in the future taking account of countermeasures	same as the above	same as the above

(3) Results of calculation

Following the above method, the calculation results of attained pollutant load are shown in Tables 5-11-6, 7 and 8. They are 5.3 tons/day, 12.5 tons/day and 2.8 tons/day for case 1, 2 and 3, respectively. A countermeasure in case 3 is an active sludge process.

By numerical analysis, the diffusion of the above attained pollutant load into the sea area was calculated. Based on the surveyed currents, nine calculation cases are shown in Table 5-11-9:

Table 5-11-6 Current Pollutant Load

		frame	unit loading generated poll		v)removal rate	utant load (kg/day)removal ratedischarged pollutant load (kg/day)rate of attainmentattained pollutant load (kg/day))rate of attainment	attained pollutant load (kg/day)
		≪;	В		ū	B=C*(1-D)	Œ,	G=E*F
Population		56419	10g/(day*person)	564	0	564	0.5	282
Canning factory		585cu. m/day	8500g/cu.m	4972. 5	0	4972. 5	1	4972. 5
Livestock	cattle	4200	530g/head	2226	0	2226	0, 01	22.2
	pig	365	130g/head	47	0	47	0.01	0.5
Tourist		10person/day8. 5g/(d	8.5g/(day*person)	0.0085	0	0.085	0.5	0.04
Total								5277. 2

Table 5-11-7 Future Pollutant Load without Countermeasures

Irame unit loading generated pollutant load (kg/day)removal ratedischarged pollutant load (kg/day)rate of attainmentattained poilutant load (kg/day) A B B C-A*B D E-C*(1-D) F C-B*F G-B*F 68000 [10g/(day*person)] 680 0 680	1433cu. m/dayy 8500g/cu. m 12180. 5 0 12180. 5 1	4200 550g/head 2226 0 2226 0.01	365 130g/head 47 0 47 0.01	10person/day% 5g/(day%person) 0.0085 0.085 0.55	
			13	10person/day8.5g/(da	

Table 5-11-8 Future Pollutant Load with Countermeasures

		frame	unit loading generated po	llutant	load (kg/day)removal rate	ratedischarged pollutant load (kg/day)rate of attainmentattained pollutant load	rate of attainment	attained pollutant load (kg/day)
		∢:	23	C=A*E	D	E=C*(1-D)	ĒŁ,	G=B*F
Population		00089	10g/(day*person)	089	0	680	0.5	340
Canning factory		1433cu. m/day	8500g/cu.m	12180.5	0.8	2436. 1	Ţ	2436.1
Livestock	cattle	4200	530g/head	2225	0	2226	0.01	22.2
	pig	365	130g/head	47	0	4.7	0.01	0.5
Tourist		10person/day	8. 5g/(day*person)	0.0085	O	0.085	0.5	0.04
Total								2798.8

Table 5-11-9 Calculation Cases of Diffusion

case	1	2	3	4	ĸ	9	<u></u>	8	တ
pollutant load(COD)(kg/day)	5, 277	5, 277	5, 277	12, 543	12, 543	12, 543	2, 799	2, 799	2, 799
current velocity(cm/s)	13	25	40	13	25	40	13	25	40

The results are shown in Figure 5-11-1 to 5-11-9. They indicate that at present, high value of COD is restricted right near the outlet of the drainage of tuna canning factory, but when pollutant load increases in future, the contour of two mg/l (COD) spreads out. However, its range is limited to alongside the quay.

Consequently, it can be said that it will not affect seriously other activities in the port. However, the drainage from the tuna canning factory needs to be treated properly. It is suggested that, as a means of treatment, a settling pond is not sufficient. Rather, an active sludge process would be more effective.

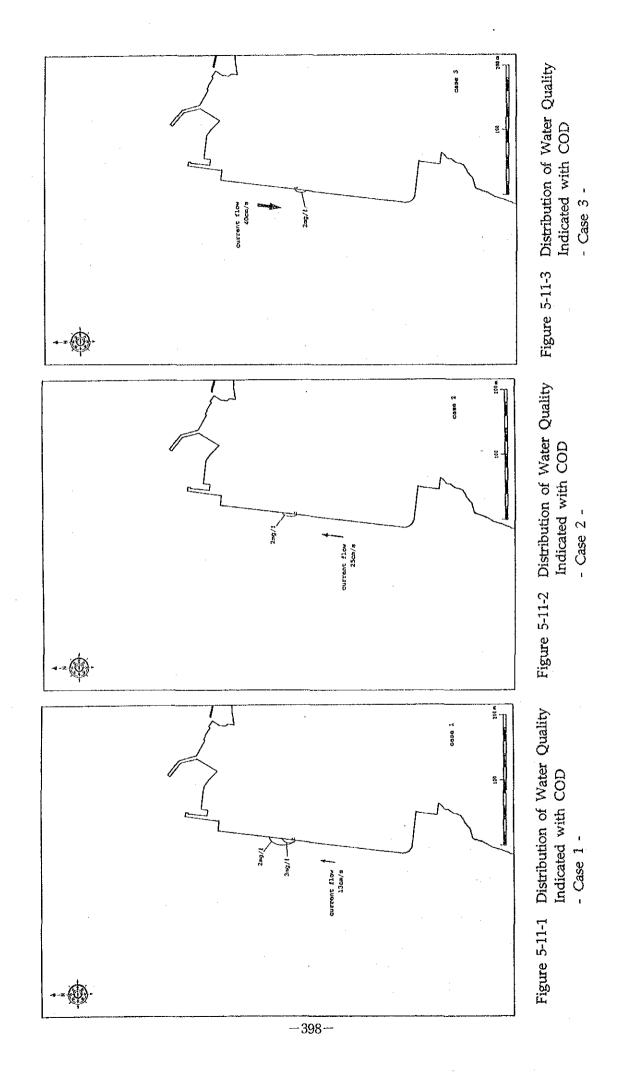
5.11.11 Offensive Odor Generated by Factories in Operation

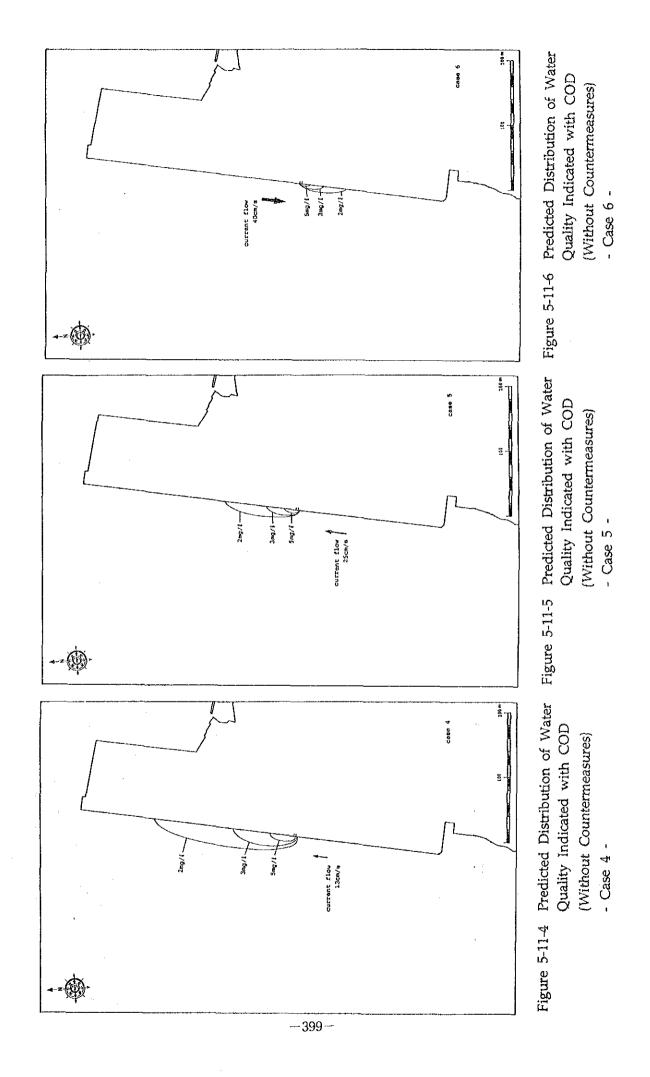
There is a possibility that odors will be generated when materials are carried into the factory from the port area. However, as mentioned before, this area is blessed with good natural conditions (the urban area is on the windward side) and in addition, generally speaking, odor by tuna is not so intense.

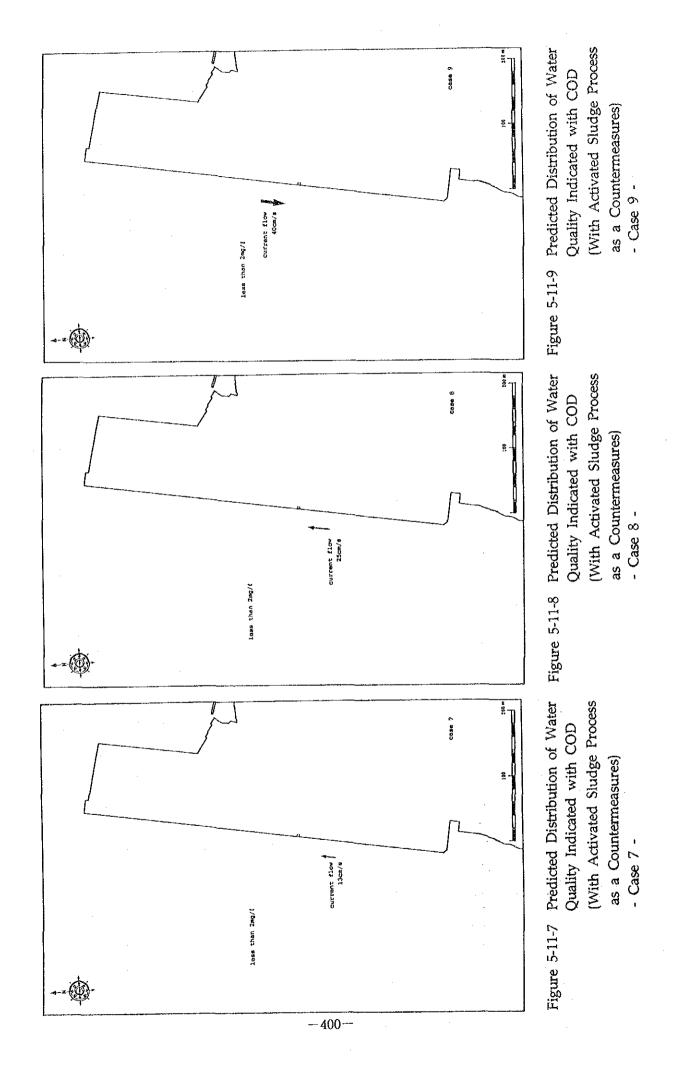
Therefore, there is no need to be nervous about an odor problem.

5.11.12 Treatment of Wastes Generated by Operation of Industrial Activities

A lot of wastes are generated in the process of producing food stuffs. Japanese statistics reveal that about 40 kg of sludge and about 100 kg of solid wastes are generated per production in terms of one million yen on average. It cannot be precisely determined if the same will be true in Madagascar. However, a considerable amount of wastes will be generated, in particular, as a result of doubling production capacity.


Basically, the canning factory must deal with the disposal by itself. It is expected that the local government or the port management body will instruct and help the factory and thus it will not cause a serious problem.


5.11.13 Employment Effect by Operation of New Tuna Canning Factory


In the near future, the tuna canning factory is going to double its production. At present, the number of employees is about 650. The factory's plan is closely connected to the Short-Term Development Plan. This means that the implementation of the project has a rather large employment effect.

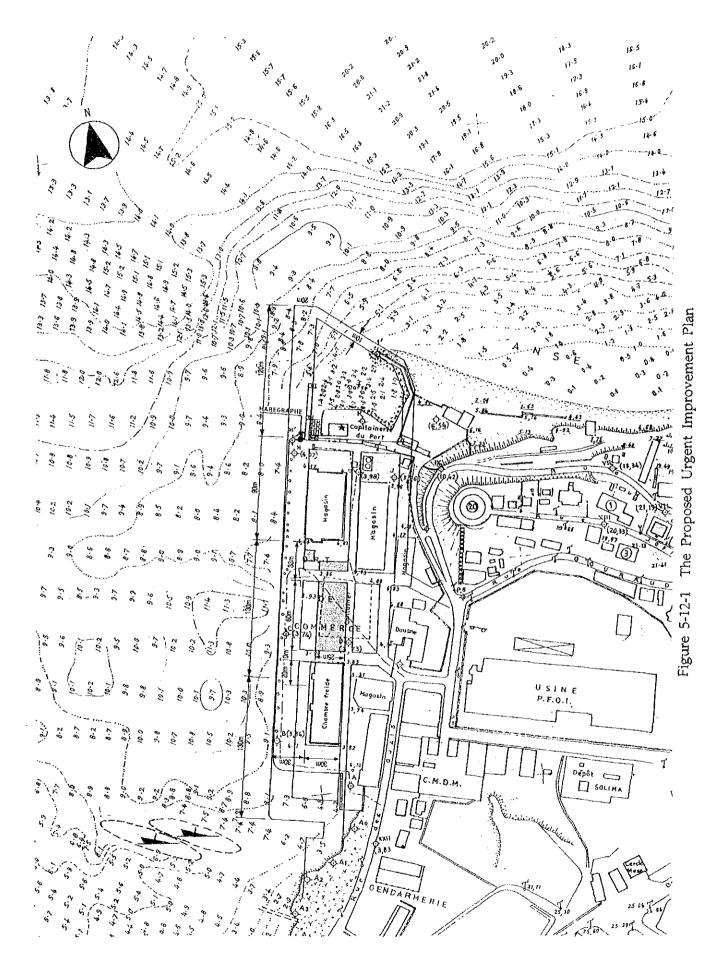
5.11.14 Conclusion

Considering comprehensively everything mentioned above, the implementation of the project in the Short-Term Development Plan will not cause any problem for the environment. One thing that must be given attention is the drainage from the tuna canning factory. The implementation of the plan to double the production brings about positive impacts such as employment effect as well as a negative impact (water contamination). It is already the leading company and the major user of the port and this situation will continue. Therefore, it is expected that it will make efforts to reduce the unfavorable impact on water quality.

5.12 Urgent Improvement Plan

As mentioned in the financial analysis, the Madagascar government is faced with heavy financial constraints. In order to implement the Plan, it must be financed by foreign countries or international assistance aid. However, it is doubtful the total necessary funds can be attained. If the funds cannot be raised, the situation arises in which only some parts of the Plan can be implemented. Under such a scenario, the level of port services world not be as high as it could be if the entire Plan were to be completed. Clearly then, every effort should be made to secure the required funds. At the very least, enough budget to rehabilitate or improve superannuated or deteriorated facilities should be secured.

From the above point of view, the urgent improvement plan is examined. It will be the first step in the implementation of the whole Short-Term Development Plan and the basic concept should be as follows:


- Rehabilitation works should be completed.
- Consideration should be given to minimizing the influence to port activities as much as possible during rehabilitation works.

The proposed urgent improvement plan is shown in Figure 5-12-1. The main contents and characteristics of the urgent improvement plan are as follows:

- The length of quay extension is 120 m, the same as the existing "Old Quay" which corresponds to the length necessary to accommodate a fishery cargo vessel with freezers.
- In this plan, 10,000 DWT class vessels cannot be accommodated in full load unless the quay were to be extended by an additional 50m.
- Judging from the record of calling vessels in 1990, it is estimated that about 54% of ocean-going cargo vessels, 83% of coastal cargo vessels and almost all fishery boats can be accommodated at the extended quay.
- The berth occupancy ratio in the urgent improvement plan becomes greater than in the Short-Term Development Plan in case that the forecasted cargo volume is handled. Namely, the ratio in the urgent improvement plan is over 50% in 1994, 64% in 1998, whereas it is about 50% in 1998 in the Short-Term Development Plan. The maximum berth occupancy for three berths recommended by UNCTAD is 55%, which means that some congestion would unavoidable in 1998 when the ratio will

be 64%.

- Rehabilitation works will not cause major problems for accommodating vessels, when those works start from the end of the "Old Quay" coming after the construction work of the extension.
- The construction cost of public portion including corresponding consultant fee is estimated at about 16.9 million US dollars, about 64% of the total construction cost for the Short-Term Development Plan.
- However, additional construction cost so as to implement the remaining parts of the whole Short-Term Development Plan is estimated at about 14.5 million US dollars, so that the total construction cost results in an increase of about 5.2 million US dollars, if the stage construction works are scheduled.
- The extension of the quay will be completed within two years from the commencement of construction works.

-403-

APPENDICES

A-1.5 Socioeconomic Activities

- 1. Credit for structural adjustment program by World Bank
- 1) Industrial sectors

Date

: March 1985

Amount

: 40.20 million SDR

Objective: The realization of structural reform to improve efficiency and

productivity

2) Public sectors

Date

: July 1988

Amount

: 92.50 million SDR

Measures: a) creation of a public expenditure program with careful monitoring

b) liberalization of exports

c) rationalization of public sector enterprises

d) improvement of liquidity and effectiveness of the barking system

e) privatization or liquidation of public enterprises

- 2. Instruction by IMF
 - 1) Measures for structural adjustment

Date

: August 1987 - August 1990

Contents

: a) Substantial depreciation of FMG

b) liberalization of import system

c) raising of production cost of principle agricultural products

d) gradual elimination of price control

Remark

: Due to unsatisfactory results, the above program was canceled in May

1989 at the request of the Madagascar government

2) Measures for promotion of structural adjustment

Date

: May 1989 - May 1992

Contents: a) reformation of fiscal policy

b) reformation of investment code

c) restructuring of banking system

d) creation of free trade zone

SECREN

D'AFFAIRES

CHIFFRE

Table A-1-8-1 Result of Activities of SECREN

SOCIETE D'ETUDES, DE CONSTRUCTION ET DE REPARATION NAVALES (SECREN)

		NO
ا -	1	GESTION
ZZZ	į	
- ANTSIRAN	1111111111	CONTROLE
•		RAVIOR

				·
1992	2.725 2.910 6.206 3.65	12.206	222080W	ស
1991	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11.639	W 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	71
1990	1.88 6.88 6.883 7.231 1.211	16.636	36 110 10 7	59
1989	1. 6.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.	11.287	თოთო ს ს	75
1988	1.843 1.004 1.004 793	9.515	W 1 W 4 17 4 12 W	72
1987	1.702 3.579 189 189 521	6.087	4	77
1986	1.004 1.642 1.65 2.53 4.05	3.269	м н м н	70
1985	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.276	30 10 10 10 10 10	9
1984	578 138 170	1.029	20 0 4	4 0
1983	555 172 49	1.060	2 H 2 C B D C C C C C C C C C C C C C C C C C	44
UNITE	A A A A A A A A A A A A A A A A A A A			
	- NATIONAUX - THONIERS - AUTRES ETRANG - C.N.		-NATIONPECHE -MILITAUTRES -ETRANGTH FRA -TH ESP	
	CA en FMG	·	NBRE DE NAVIRES	

Table A-1-8-2 Regional Development Orientation (West of Faritany Antsiranana-1/2)

Blocking Factors	Development Factors	Objective and Actions	Projects to be Promoted
• Low productivity of agricultural products and particularly food crops • Non profitable farm gate prices • Ever-increasing input costs • Lack of storage regulations • Monopoly and guaranteed income in some collecting and supply channels • Difficulty in obtaining agricultural loans • Weak leadership and inconsistent objectives • Pluctuating international prices of exports • Superannuation of the irrigation networks and stagnation of managed areas • Generally deficient communication routes combined with a high transport cost • Weakness of farmers' organization in collecting information and defending their interests	• Great diversity of crops and implementarily among the sub-zone • Availability of plain that can be managed(20,000 ha) • Available funds connected with the trade of income-generating products • Possibility to export zebus from Vohémar • Promising projects either at a cruising speed like Soavoanio or at a launching phase like the Antalaha oil palm trees • Same experience of NGO in fishery and profession training • Existence of towns(of more than 20,000 inhabitants); Vohémar, Sambava, Antalaha as solvent outlets for the farmers' products • Existence as regards vanilla of association of products and processors capable of better organizing the profession	• Short term program of rehabilitation of the most vital communication routes in connecting with high productive potential areas • Enforcement of a coherent cost/price policy which ensures a minimum income to farmers • Reform of the trade network and control of middlemen's abuse • Urging the organization within the Association of defence and promotion of farmers(ADPE) • Decentralization of the agricultural credit and easing of credit grant terms • Control the problem of international price fluctuation of a stabilization policy • Initiate important rural development and environment protection works which will release at the same time a supplementary income as a support to the farmers	* Management of the plains of: • Antenina, Antanamangakitro, Ambendrana in the Fivondronana of Andapa • Anjana, Ankorena, Anipanga in the Fivondronana of Sambava • Ambalajombilana in the Fivondronana of Vohémar • Ambalajombilana in the Fivondronana of Vohémar • Valambanina, Ifaho VF, Ambinanifaho VF, Isahana VF of a global area of 3,600 ha and a management total cost of 611 billion FMG • Installation of a rice-processing factory at the Biblical school of Soavinandriana • Rehabilitation of the windmills for the supplying of troughs • Construction of an artificial insemination center
• Poor definition of the functions of the various urban centers. Potential conflict between Antalaha and Sambava over the fundamental role of the zone • Weakness if not absence of suitable port developments for Sambava and Antalaha, the 2 largest centers for shipping and receiving goods • Quasi-absence of industrial units apart from Soavoanio which has launched a small ecconut oil extraction plant • Inadequacy of urban community means and technical services to structure the cities does not make them play their training pole role • Lack of social leader ship in training and promotion particularly for young people that are more and more rejected by the educational system without any prospect	• Existence of 2 urban centers of sub- regional dimensions; Antalaha(pop.48,000) and Sambava(pop.30,000) and the latter has experienced a consistent demographic dynamism(+5.4% per year) • Support to towns through a secular trade experience related to the income- generating crops and the zebu export in Vohémar • Productive diversity of the agricultural hinterland which has resulted in a continuity of trade and services in the cities • A good air link with Sambava on whose airport a B727 can land • Existence promotional projects such as the "alcohol project" of Antalaha which can contribute to the energization of the region	 Definition of an urban development planning for the zone which allows a frame of organization and the assembling of the different city functions. Development of important facilities, parti-cularly ports to sustain the commercial and fishery functions of the cities. Rehabilitation of service networks to accompany urbanization dynamics which is most noticeable in Sambava. Strengthen public and private organizations involved in social aid and solidarity particularly those of health and primary education sectors Strengthening of the decentralized community means and technical services as they go along with development 	

Table A-1-8-3 Regional Development Orientation (West of Faritany Antsiranana-2/2)

Blocking Factors	Development Factors	Objective and Actions	Projects to he Promoted
* Precariousness of the people's living conditions:	* A strong aspiration to better social living conditions:	* Rehabilitate the socio-collective public service and the social network of solidarity.	 Social projects targeted to strata with most precarious conditions: Provision of medicine for the whole
• Decrease of 3% per year in the total number of students	 Providing the youth of the population with the prospect of social mobility, particularly at the level of urban property 	Restore State's capacity to intervene in the social field	Fivondronana for one year, these provisions should be given to NGO to ensure good distribution
• An average of 10 schools per year close down	of Diego and Nosy-Be	• Specifically, ensure minimum service in	Improvement of drinking water supply at Miadana, Mahazandry, Ambenoro, Mangirang Persaka Mangirahawa.
 Increase of morbidity for all kinds of disease 	 Social leadership at the decentralized community level with a view to reducing social difficulties 	health and basic education Restore human and material capacities of the december of the social	laidama, Anivorano-Nord, Sakaramy as well as the digging of 18 wells in the Fivondronana of Ambanja
 Hygiene and water problems for 80% of the population 	• Presence of NGOs which attempt to compensate for the inadequacy of the	matters	 Rehabilitation of health centers in Ambanja; the city of Diego, Ambilobe, Sirama
Malnutrition; perceptible when certain	יארחור פבו אוכב	social solidarity	• Rehabilitation of educational centers in Hell-Vill and Ambilobe
• Precariousness of socio-collective means particularly those of public health		• Introduce new association approaches of the social and the productive for the process durability	 Setting up of a village community pharmacies in Diego II Setting up of a nutritional recuperation center for about 360 children/year in Diego I
• Medicine shortage			
* Advanced degradation of the road transport network and the telephone communication network: • Difficult connection between the whole Faritany and its spatial neighborhood, particularly near Mahajanga. • Difficult connection between Diego, the regional capital and the Faritany territory. • Difficult connection from East to West between the two halves of the province. • Disastrous consequences on the hemmed-in position of peripheral zones, on the product distribution and on the supply of the population in public service	* A strong dynamism of port and air transport activity: • Control up to 10 to 15% of the national air and sea transport by the West-Antsiranana planning zone • Strong participation through this in the Malagasy effort towards export(30% of the national volume) • Existence of a commercial tradition and an opening to foreign countries • Predisposition of the ragion to tourism	• Global system balance of flow and exchange for the internal link and the road network: • Rehabilitation of the North-South(RN 6) road trunk connecting the city of Diego to Faritany of Mahajanga. • Rehabilitation of the East-West(RN 5a) trunk • Operating road information service antenna in contact with settlement and production zones. • Establish an intervention team for road maintenance and good service	• First road transport difficulty-freeing related projects: • A 22 km track at Ambahivahibe • A 12 km road on the trunk Ambanja—Ankatafa • Rehabilitation of a road of 8 km on the trunk Ambanja—Analavory—Antsatsaka • Rerepairment of a road of 12 km on the trunk Ambalavelona—Ambalahonka—Ambiky • Rehabilitation of the link road Ambalafary—Anjiaboky(8 km) • Development of the trunk Ambaliho—Nosy Faly(8 km)

Table A-1-8-4 Regional Development Orientation (East of Faritany Antsiranana-1/3)

Blocking Factors	Development Factors	Objective and Actions	Projects to be Promoted
* Problems in communication facilities	•	* Rehabilitation of	Rehabilitation of the link road
· Acute problems in telephone connections		COMMINGUICATION TACINITIES.	riana
Ouasi-absence of telex connections		 Rehabilitate telephone network 	 Repairment of the Namakia bridge Rehabilitation of the
		• Make the region have access to the higher service of telex and other modern	Beramanja-Analavana road Remaking of 2 tracks;
		necessar	Siranonkova-Madiromiarina(8 km)
		uevelopinent	Acidonitation of the foats Bomanondrobe(6 km) Andrianakonko–Mahazandribe(6km) Andrianakongo–Mahazandry(5 km)
" Weakness of productivity and	* Realizing existing potential of agricul-	* Implement a development strategy for	* Management of some plains as a start
agricultural tood production:	tural areas and improvement of agricultural methods:	the productive potential in agriculture:	 ior the potential development process: Rehabilitation of the hydro-agricultural
• Poor rice crop yield zone despite its		· Defend against potential calamities;	network of Andrianakonko(200 ha)
potential	 Only 200,000 ha are now cultivated from a potential estimated at 1,000,000 ha. 	tavy(slash-burn), bushtires, erosion	 Rehabilitation of the hydro-agricultural network of Ampasindava(50 ha)
Low average yield in rice-farming;	400,000 of which stand as pastures for	 Start a hydro-agricultural management 	• Plain management of Navetsy
about 1.2 ton	animal breeding	process on the rice-farming plains in the	Plain management of Mahabe(50 ha)
• Limited rice-field area (70.000 ha) in	• As for irrigable areas, only half of the	rich basins of the Mahavavy and the Sambirano	 Plain management of Andrahioo(50 ha) Plain management of Masovariaka(100
relation to the population's needs	potential of 10,000 ha is irrigated		ha)
		· Urge cashew-growing which is easily	• Construction of 2 irrigation canals in
heads for more than 400,000 ha of pasture	which can be cultivated through leader-	adaptica to the region's ecological conditions and yields a nut with a high	Autharing and Ambanivarior Rehabilitation of a "husking" plant and
• Tarreson of incut one and low wateron	ship and rural extension	commercial value	an irrigation canal in Sadjoavato • Remoking of an Amamakia polder(5)
surplus per hectare(about 60,000 FMG for		• Implement a cattle-breeding intensifi-	ha)
rice)		cation policy through fodder-growing and	• Hydro-agricultural rehabilitation of the
Strong pressure on land due to shortage		cilciosare rayoar	• Hydro-agricultural management of 3
of arable land(average arable land; 3 ha		· Improve agricultural methods, particular-	plains in the Fivondronana of Ambilobe
per farm)		ly in respect to the seasons	

Table A-1-8-5 Regional Development Orientation (East of Faritany Antsiranana-2/3)

Table A-1-8-6 Regional Development Orientation (East of Faritany Antsiranana-3/3)

Blocking Factors	Development Factors	Objective and Actions	Projects to be Promoted
• Interference of the scope of activities between decentralized communities who are supposed to have the "decisionmaking power" on the regional scale on one hand and the decentralized technical services	• Existence of a regional "consciousness" and a will of the elites to review the structures and modernize the production and service apparatus	• Elaboration on the regional and sub- regional scale of a strategy of territory and socio-economic development articulated to the national strategy	
which depend on ministries on the other hand • Lack of a drawing-up and follow-up frame of a regional development strategy	• Existence of some experience in regional and local administration even if the means are inadequate and the prerogatives not always specified	regional(or sub-regional) scale in charge of the follow-up of this strategy implementation • Substantially improve the means of intervention of decentralized communities	
 Inadequacy of the decentralized community means with nominal budgets Weakness of the local associative movement which could have played the development partner role 	• The regional representation of the Ministry of the Planning in the , absence of other executives, can promote a coherent approach to regional development	• Support the emergence of an associative and representative movement that is capable of setting itself up as a genuine development partner and arousing the population's concern to the general problems of the region • Favor the sectorial decentralization policies particularly those related to	
Multiplicity of operators without obligation of coordination and without referring to a hierarchy of the objectives		credits and in the long run the emergence of a regional credit capable of taking responsibility for the specific conditions of project promotion	

Table A-1-8-7 EPZ of Philipines

	Z Performan 1987	1988	1989	1992
11 1	1001	1000		
Number of Firms Operating	Į.	1	14	90
Average Employment	. 99	323	3294	20204
Salaries and Wages (P000)	876	6017	43497	711316
Local Sales (P000)			1364	
Local Purchases (P000)		277	4418	
Exports (US\$000)	739	3021	15306	251855
Imports (US\$000)	712	2843	11631	232668
Trade Balance (US\$000)	27	178	3675	19187

Table Features of the Operating Companies by PSIC code (As of Aug., 1991)

					•			
	Number		Average	Average	Total		Total	
PSIC) o	(%)	Employment	Area (m2)	Employ~	(X)	Land Area	(%)
Code	Company		per Firms	per Firms	ment		Occupied	
			(Persons)		(Persons)		(m2)	
312	1	1.7		5,000	U	0.0	5,000	1.1
321	3	5.2	142	8,333	125	3.3	25,000	5.4
322	23	39.7	216	4,689	4,317	33.6	107,836	23.3
331	1	1.7		5,000	0	0.0	5,000	1.1
341,	2	3, 4	98	4,002	195	1.5	8,003	1.7
355	1	1.7	2034	31,077	2,034	15.8	31,077	6.7
356	1	1.7		5,000	0	0.0	5,000	- 1.1
369	1	1.7		5,000	0	0.0	5,000	1.1
371	1	1.7	7	10,000	7	0.1	10,000	2.2
372	1	1.7	40	10,000	10	0.3	10,000	2.2
381	5	8.6	113	10,000	565	4.4	50,000	10.8
382	2	3.4	293	11,642	586	4.6	23,284	5: 0
383	8	13.8	580	18,725	4.062	31.6	131,076	28. 4
384	1	1.7	2 G	5,000	26	0.2	5,000	1.1
385	i	1.7	39	3,003	39	0.3	3,003	0. G
390	6	10.3	113	6,331	564	4. 4	37,984	3, 2
	58	100.0	308	8,110	12,860	100.0	462, 263	100.0

0.0	100.0	000	0, 110			
Source:	EPZA.					
Note: F	PSIC (Phipip	ine Stand	and Indust	rial CI	assifi	cation)

312	Food	371	Iron & Steel Basic
321	Textiles		Products
331	Wood & Wood Product	372	Non-ferrous Metal
332	Furniture & Fixtures		Products
341	Paper & Paper Produ	381	Pabricated Metal Products
35 I	Industrial Chemical	382	Mashinery except electrical
355	Rubber Products	383	Electrical Mashinery
356	Plastic Products	384	Transport Equipment
369	Non-metalic Mineral	385	Other Equipment &
	Products		Infrastructure
	•	390	Other, Manufacturing
			Industries

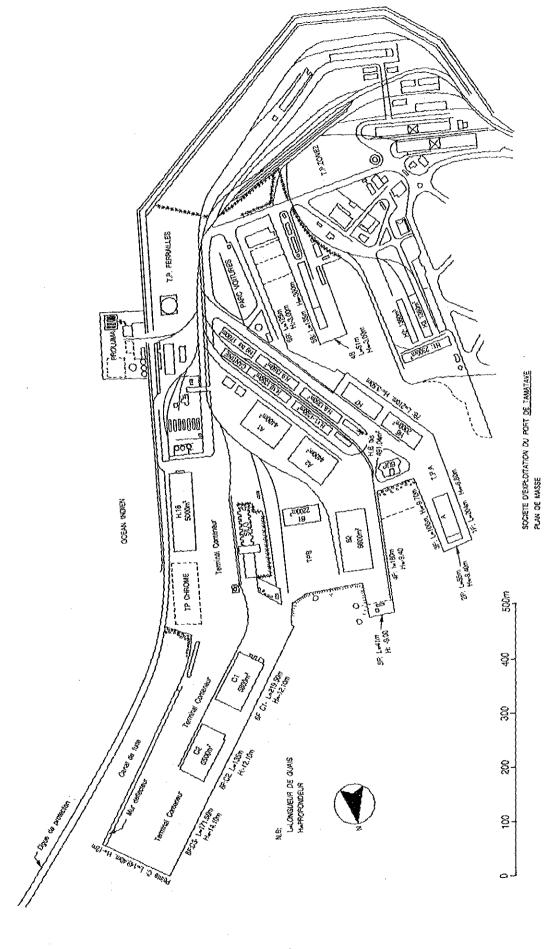


Figure A-2-2-1 Ground Plan of the port of Toamasina

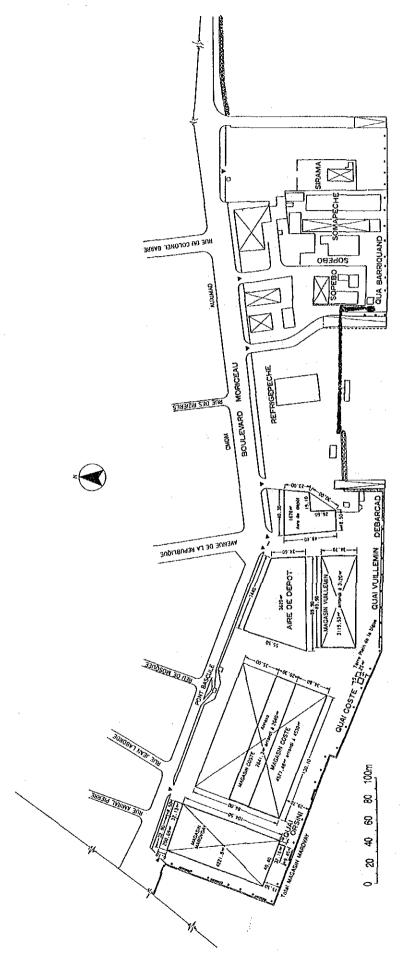
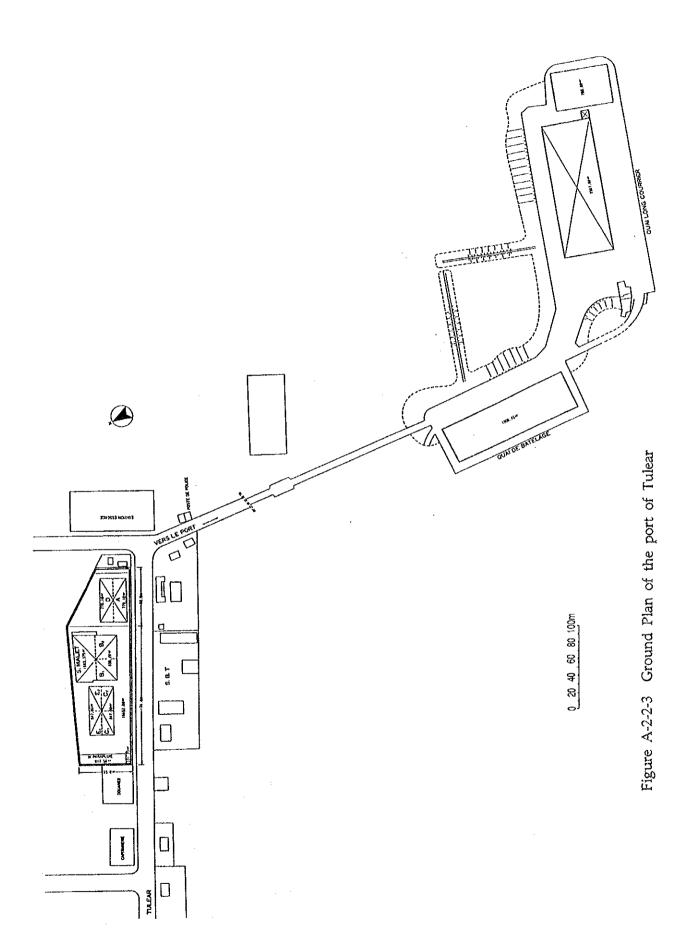



Figure A-2-2-2 Ground Plan of the port of Mahajanga

Λ --11

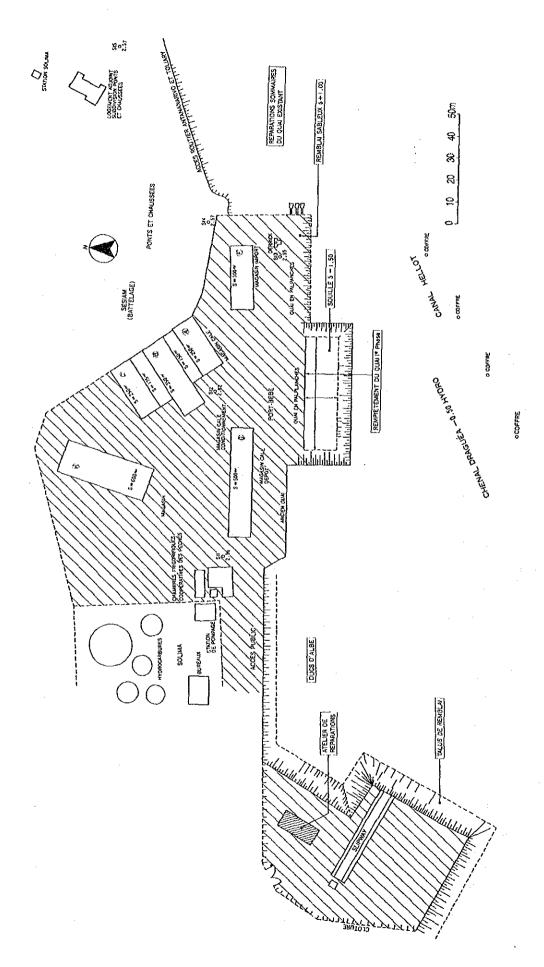


Figure A-2-2-4 Ground Plan of the port of Morondava

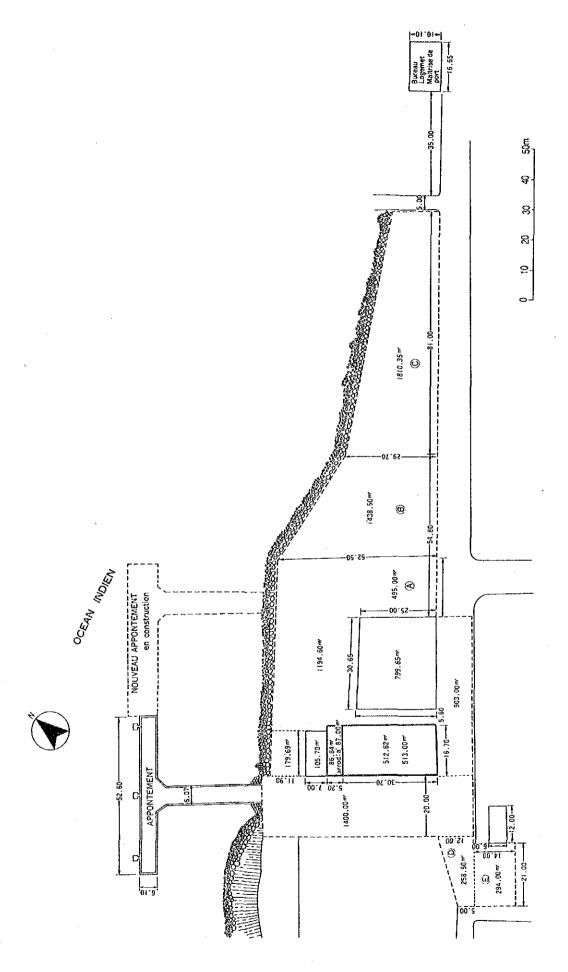


Figure A-2-2-5 Ground Plan of the port of Vohemar

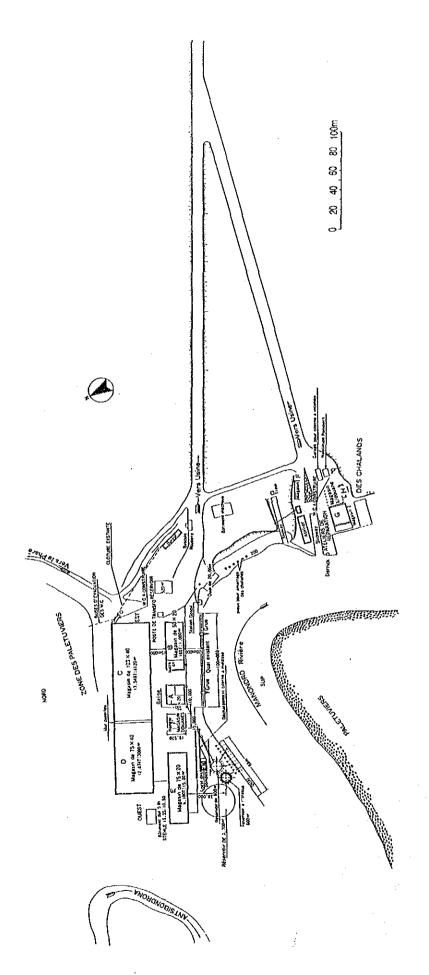


Figure A-2-2-6 Ground Plan of the port of Saintlouis

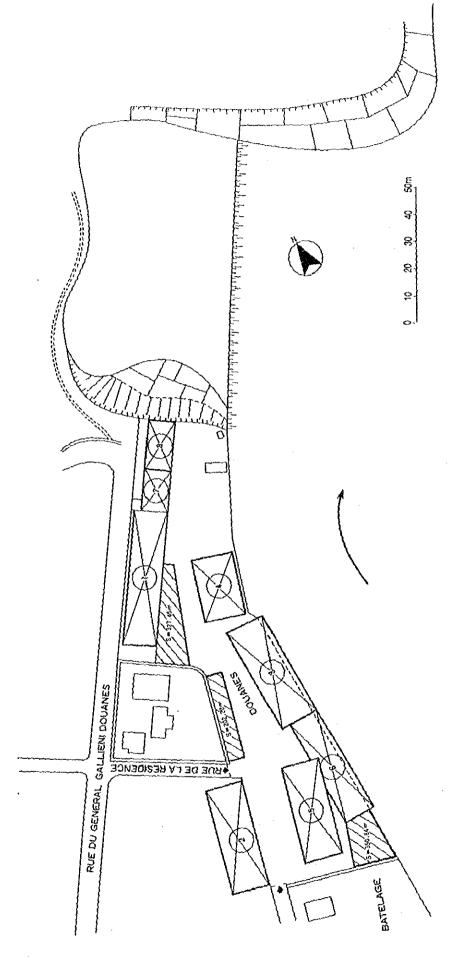


Figure A-2-2-7 Ground Plan of the port of Mananjary

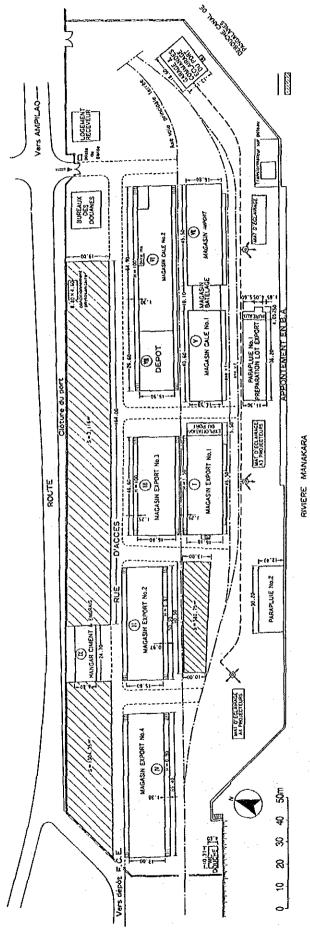


Figure A-2-2-8 Ground Plan of the port of Manakara

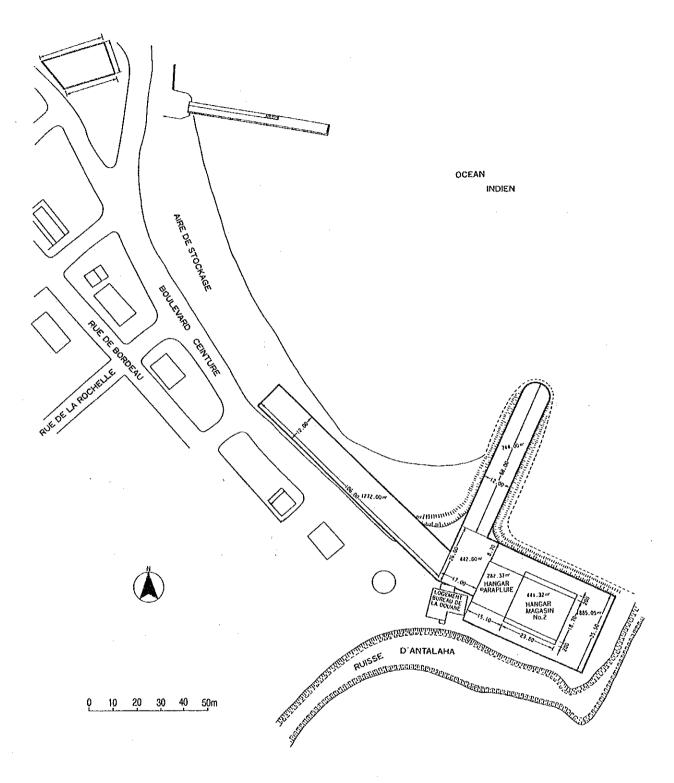


Figure A-2-2-9 Ground Plan of the port of Antalaha

A-3.2 Natural Conditions

A-3.2.1 Wave Computation

(1) Wave Computation on Ordinary Surface Wind Condition

Waves reaching the port of Antsiranana under normal condition are mostly generated by surface winds inside of the bay of Diego-Suarez. And the influence of ocean waves invading from the mouth of the bay is negligibly small, that is to say the height of waves reaching the port of Antsiranana decays only 5 % of that of waves at the mouth as proved in the following paragraph 3) of (2). Also, since the wind region, that is the Bay, is relatively small and the fetch, that is the distance of wind blowing, is not more than 10 km, it is not necessary to consider the effect of attenuation due to the change of duration and direction of winds. Therefore, the waves reaching the Port can be directly computed by means of S.M.B method using wind data of Table 3-2-2 presented in preceding subsection 3-2-2, provided that those wind speeds are multiplied by 1.5 for the adoption to this wave computation for the following reasons:

- Wind records have been made at the airport of Antsiranana 10 km away from the Port, and generally the conversion factor of from 1.2 to 1.5 is adopted for this case,
- Wind records have been made hourly and ten minutes averages have been taken and
- In the case that the duration of wind blowing is short, actual wind speed on sea possibly exceeds the average wind speed.

Effective fetch required to apply the S.M.B method, which is the average distance of each fetch divided every 5° in range from + 45° to - 45° with the center being zero "0", can be obtained by using following Saville Formula:

$$F_{\text{eff}} = \frac{\Sigma \text{ Fi} \cdot \text{COS}^2 \ \theta \text{i}}{\Sigma \text{ COS} \ \theta \text{i}}$$

where,

Feff: Effective fetch

Fi: Fetch of component direction

 θ_i : Component direction

An example of calculating the effective fetch for the case of ENE is illustrated in Figure A-3-2-1.

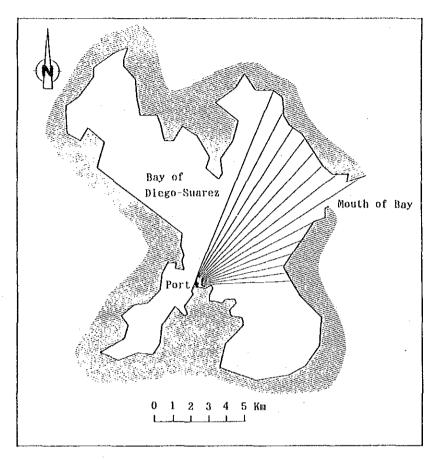


Figure A-3-2-1 Illustrated Example of Calculation of Fetch (Direction ENE)

Table A-3-2-1 shows effective fetches for each direction.

Table A-3-2-1 Effective Fetch (km)

Direction	N	NNE	NE	ENE	E	ESE	SE	SSE
Feff	5.8	7.5	7.6	5.9	3.3	1.4	0.3	0.2
Direction	S	SSW	SW	wsw	W	WNW	NW	NNW
Feff .	0.7	1.7	2.5	2.6	2.2	1.5	2.1	3.5

Consequently, the frequencies of occurrence of waves on ordinary surface wind condition are obtained as shown in Table 3-2-7 of subsection 3-2-3.

(2) Wave Computation on Extraordinary Wind Condition

Waves under extraordinary wind condition in Antsiranana are brought by cyclones generated in the Indian Ocean. Here the wave dimensions will be obtained by computing such cyclones as described in the following flow chart:

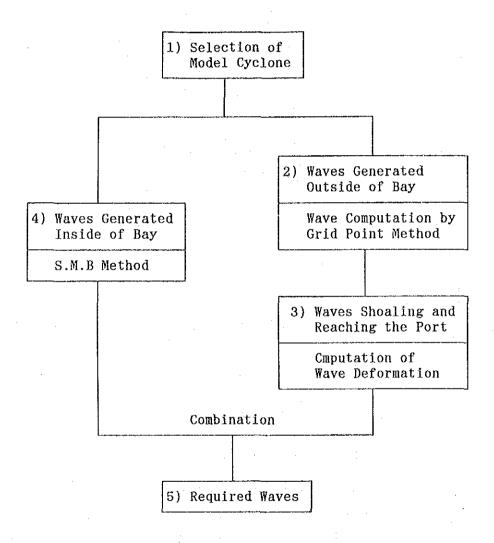


Figure A-3-2-2 Flow Chart of Wave Computation

1) Selection of Model Cyclone

Table A-3-2-2 is a list of cyclones that attacked Antsiranana from 1979 to 1990. Among those cyclones, three large-sized cyclones having the instantaneous maximum wind speed of over 250 km/h (70 m/s), namely, cyclone "ANDRY", "KAMISY" and "BENEDICTE" will be discussed here. But since there are no data on the central pressure and the track for those cyclones, some assumptions on those data have been made by adjusting the simulated wind speeds to the actually recorded ones. From the above assumptions, it was found that two cyclones, "ANDRY" and "KAMISY", had similar properties, and thus both cyclones will be called "B type" and the cyclone "BENEDICTE" "A type" for the sake of convenience.

2) Wave Computation by Grid Point Method

Figure A-3-2-3 shows the area for wave computation where the interval of grid point is set at 30 km. Figure A-3-2-4 shows the computed hourly changes of winds inside of the bay by type A. From the Figure, the maximum wind speed is found to be 25 m/s, which is nearly the same as that indicated in the weather map(See Figure A-3-2-5). Figure A-3-2-6 shows the computed hourly changes of waves at the mouth of the bay by type A and B, where the maximum height of wave is found to be 5.0 m for the case of A type and 4.3 m for B type. And the periods and directions of both waves have nearly the same value, that is 8 seconds in period and North-North-East in direction. Since type A is found to be bigger than type B from the above results, the cyclone "BENEDICTE" (type A) will be adopted as the final model cyclone. Figure A-3-2-7 shows the computed plane of distribution of wave dimensions of type A.

3) Computation of Wave Deformations

The above computed waves of type A will decay due to the influences of wave refraction and diffraction caused by water depth, sea bottom shape and so on. Here the wave dimensions reaching the port of Antsiranana will be obtained by applying the above computed wave dimensions to energy equilibrium equation that includes the effect of wave irregularity. The wave conditions of computation are shown in Table A-3-2-3. As for the direction of incident waves, the most influential direction is conjectured to be North-North-East but three other directions, NE, ENE and E, will also be included with the consideration of topographical conditions.

Table A-3-2-2 List of Cyclones that have Attacked the Port of Antsiranana (1979 to 1990)

Period	Name	Zone	Max. Wind Speed	Date of Passage
1979 - 1980	D.T BERENICE	ANTALAHA	19 km/h	16/12/79
1980 - 1981	D.T BETTINA	ANTSIRANANA	90 km/h	29/11/80
1981 - 1982	C.T BENEDICTE	ANTSIRANANA	252 km/h	19/12 to 20/12/81
		VOHEMAR	65 km/h	ditto
	D.T JUSTINE	VOHEMAR	104 km/h	18/03/82
		SAMBAVA	86 km/h	ditto
		ANTALAHA	76 km/h	ditto
		ANTSIRANANA	97 km/h	ditto
1982 - 1983	D.T ARILISY	ANTSIRANANA	79 km/h	01/11/82
		VOHEMAR	52 km/h	31/10/82
		ANTALAHA	40 km/h	ditto
	C.T BEMANY	ANTALAHA	54 km/h	03/12/82
1983 - 1984	C.T ANDRY	ANTSIRANANA	>250 km/h	10/12/83
-	C.T KAMISY	ANTSIRANANA	>250 km/h	U.K
		SAMBAVA	U.K	U.K
	•	VOHEMAR	60 km/h	U.K
1984 - 1985	D.T ANETY	ANTSIRANANA	22 km/h	20/11/84
	+	VOHEMAR	43 km/h	ditto
	•	SAMBAVA	50 km/h	ditto
	; · · ·	ANTALAHA	50 km/h	ditto
1985 - 1986	C.T COSTA	ANTSIRANANA	54 km/h	07/01 to 12/01/86
		VOHEMAR	28 km/h	ditto
		SAMBAVA	36 km/h	ditto
		ANTALAHA	36 km/h	ditto
1987 - 1988	C.T CALIDERA	SAMBAVA	37 km/h	13/01/88
		VOHEMAR	32 km/h	ditto
-	C.T FILAO	ANTSIRANANA	58 km/h	24/02/88
		SAMBAVA	U.K	ditto
		ANTALAHA	43 km/h	ditto
		ANDAPA	14 km/h	ditto
	D.T HELY	ANTSIRANANA	40 km/h	20/03/88
	•	SAMBAVA	U.K	ditto

Note: D.T: Tropical Depression (Wind Speed, 20 to 60 km/h)

C.T: Tropical Cyclone (Wind Speed, 119 to 168 km/h)

U.K; Unknown

Table A-3-2-3 Wave Conditions of Computation

Wave Direction	NNE, NE, ENE, E
Wave Period	8.0 seconds
Spreading Parameter	10

The computed results are as shown in Figures A-3-2-8-(1) to A-3-2-8-(3) for the wave direction of NNE, Figures A-3-2-9-(1) to A-3-2-9-(3) for the wave direction of NE, Figures A-3-2-10-(1) to A-3-2-10-(3) for the wave direction of ENE and Figures A-3-2-11-(1) to A-3-2-11-(3) for the wave direction of E. Figures (1) of A-3-2-8 to A-3-2-11 show distributions of rate of wave height against the wave height, 100 %, outside of the bay by cyclone, which indicate that the wave height at the port is 5 %. Figures (2) of A-3-2-8 to A-3-2-11 show distributions of coefficient of wave refraction against a 100 % of waves outside of the bay by cyclone, which indicate that the coefficient at the port is 5 %. Figures (3) of A-3-2-8 to A-3-2-11 show distributions of wave direction, which indicate that the wave direction at the port is NNE regardless of direction of incident waves. To summarize, the rate of wave height at the port decays 5 % of wave height outside of the bay that has been computed in preceding paragraph 2) regardless of the This is probably because the mouth of the bay is direction of incident waves. remarkably narrow compared with the width of the bay inside so that the waves decay rapidly at the mouth and expand radially.

From the above results, the wave height at the port can be calculated to be 25 cm by multiplying 5.0 meters of wave height at the mouth by 0.05 of the rate of wave height computed above(i.e. 5.0 meters \times 0.05 = 0.25 meters).

4) Computation of Waves Generated Inside of the Bay

Using the S.M.B method, the computation of waves generated inside of the bay for the case of type A was performed under the following conditions:

- Maximum wind speed: 25 m/s

- Fetch: 7.6 km (the longest fetch, NNE)

As a result, the wave dimensions are 1.58 meters in height and 3.9 seconds in period.

5) Combination of Waves

Consequently, the wave during extraordinary wind condition can be obtained to be 1.6 meters in height by combining both waves computed above, in which the following formula is applied.

$$H_1 = \sqrt{H_1^2 + H_2^2}$$

where,

H,: Height of combined wave

H₁: Height of wave reaching the Port which was generated outside of the bay

H₂: Height of wave generated inside of the Bay

Since the wave period is largely influenced by wind waves generated inside of the bay and the energy of waves generated outside of the bay has decayed as explained before, the wave period of wind waves generated inside of the Bay, that is 3.9 seconds, will be adopted.

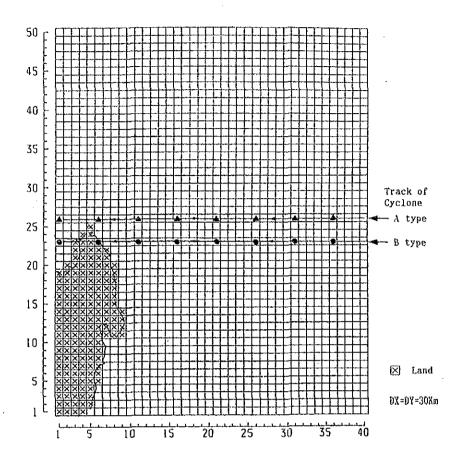


Figure A-3-2-3 Area for Wave Computation

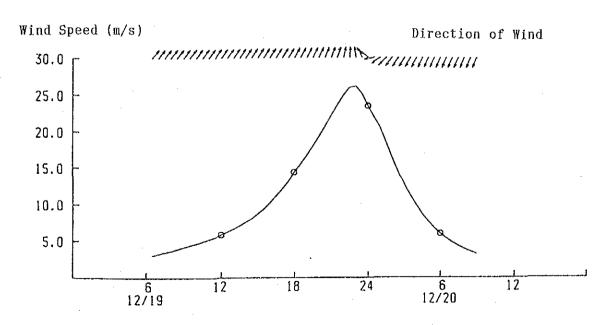


Figure A-3-2-4 Hourly Changes of Winds (Type A: "BENEDICTE")

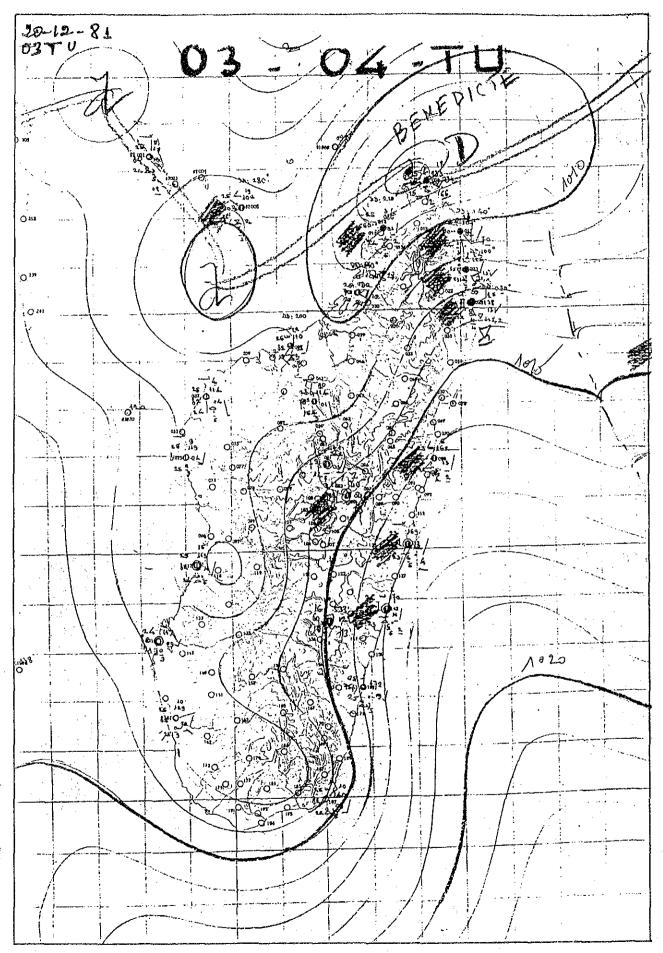
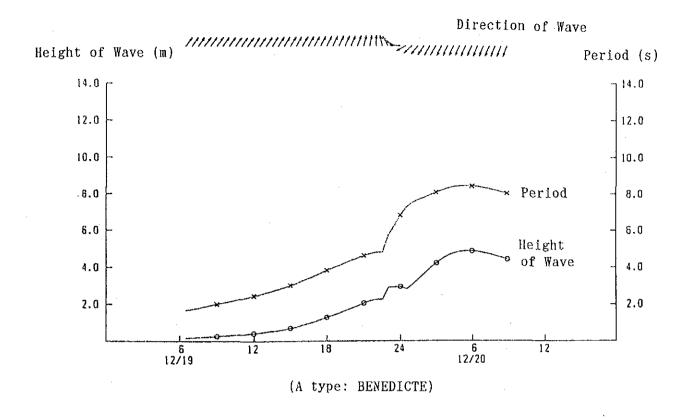



Figure A-3-2-5 Weather Map (BENEDICTE, 20th/Dec./1981)

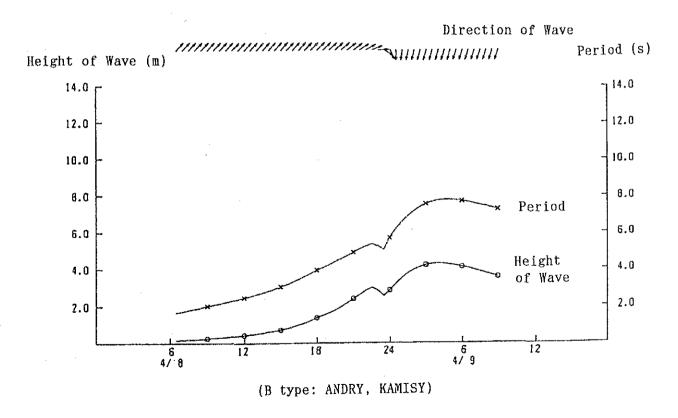


Figure A-3-2-6 Hourly Changes of Waves at the Mouth

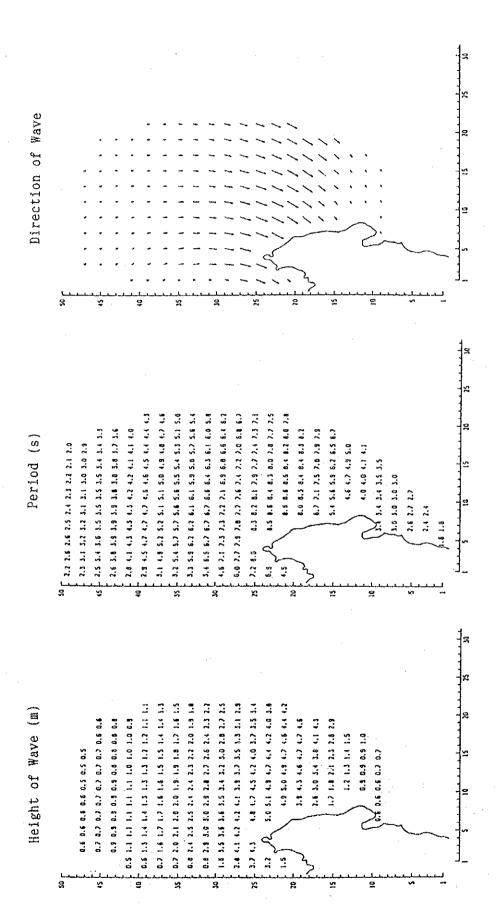


Figure A-3-2-7 Plane of Distribution of Wave Dimension (Type A, BENEDICTE)

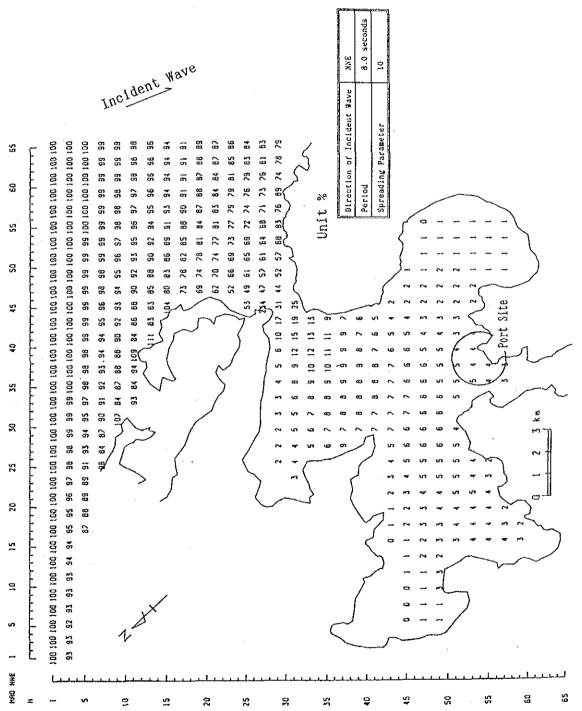


Figure A-3-2-8-(1) Plane of Distribution of Rate of Wave Height (Direction of Incident Waves: NNE)

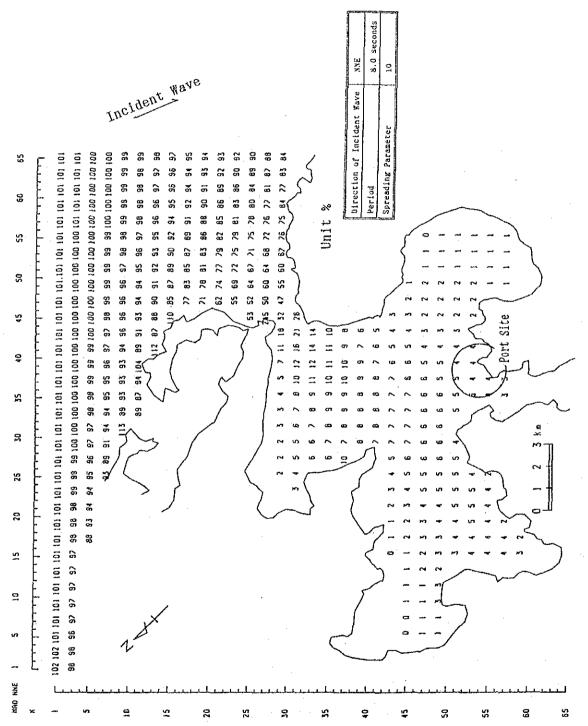


Figure A-3-2-8-(2) Plane of Distribution of Coefficient of Wave Refraction (Direction of Incident Waves: NNE)

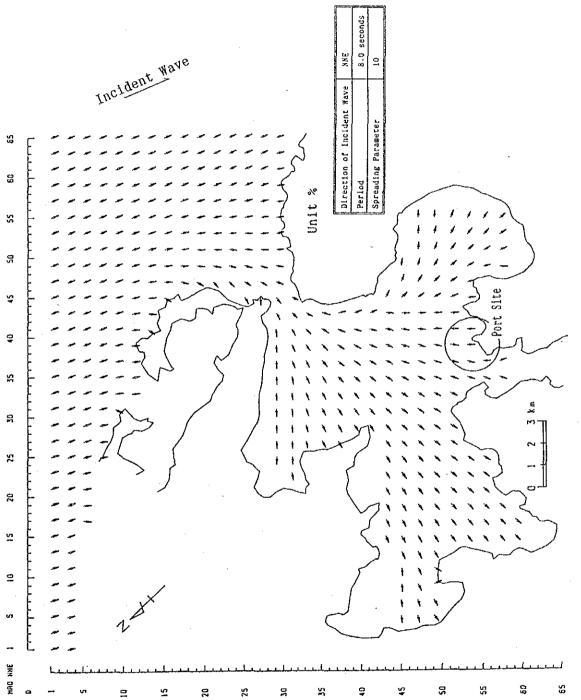


Figure A-3-2-8-(3) Plane of Distribution of Wave Direction (Direction of Incident Waves: NNE)

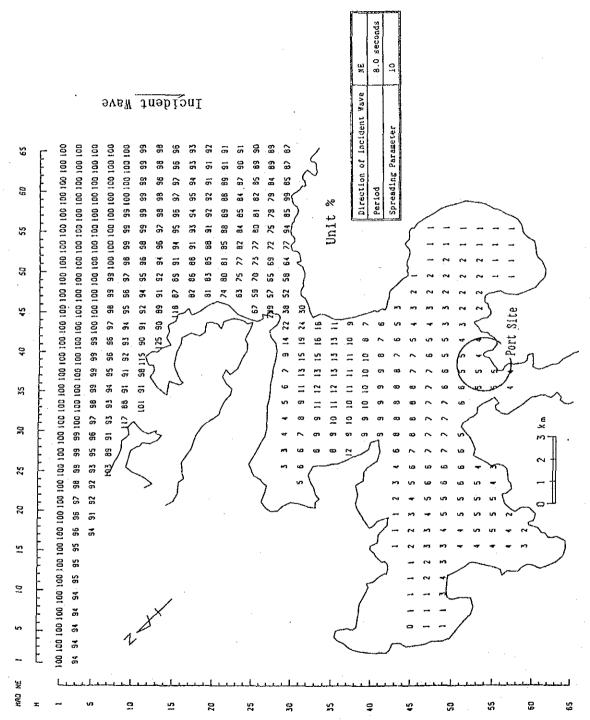


Figure A-3-2-9-(1) Plane of Distribution of Rate of Wave Height (Direction of Incident Waves: NE)

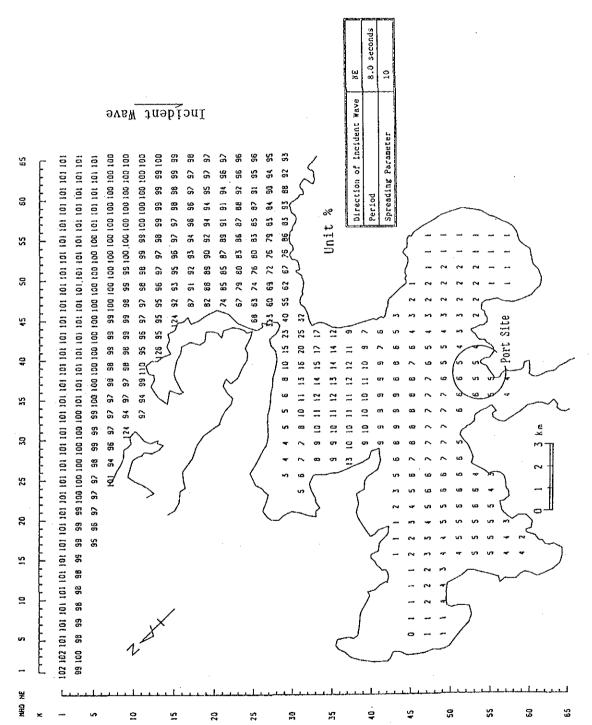


Figure A-3-2-9-(2) Plane of Distribution of Coefficient of Wave Refraction (Direction of Incident Waves: NE)

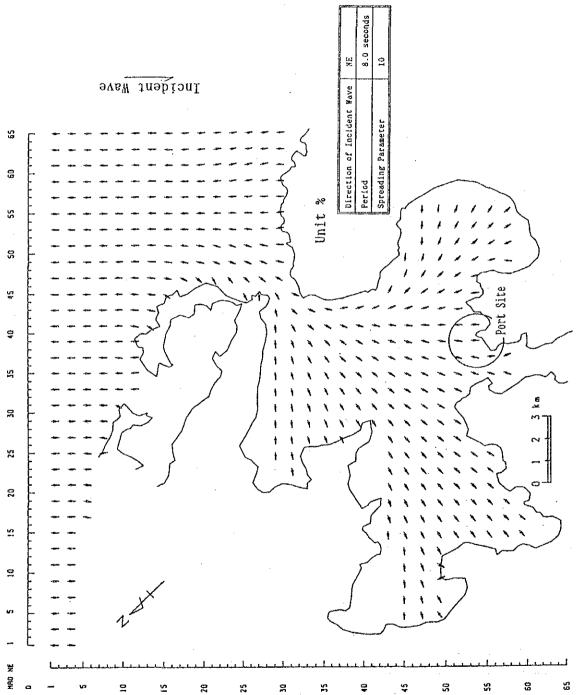


Figure A-3-2-9-(3) Plane of Distribution of Wave Direction (Direction of Incident Waves: NE)

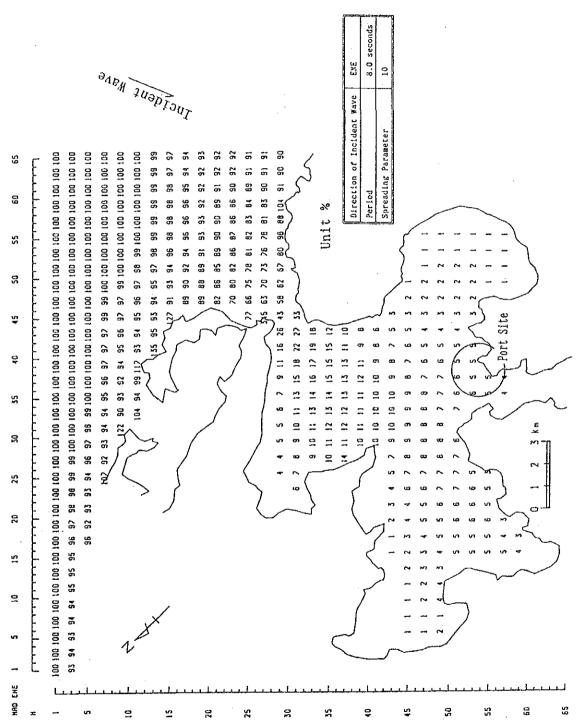


Figure A-3-2-10-(1) Plane of Distribution of Rate of Wave Height (Direction of Incident Waves: ENE)

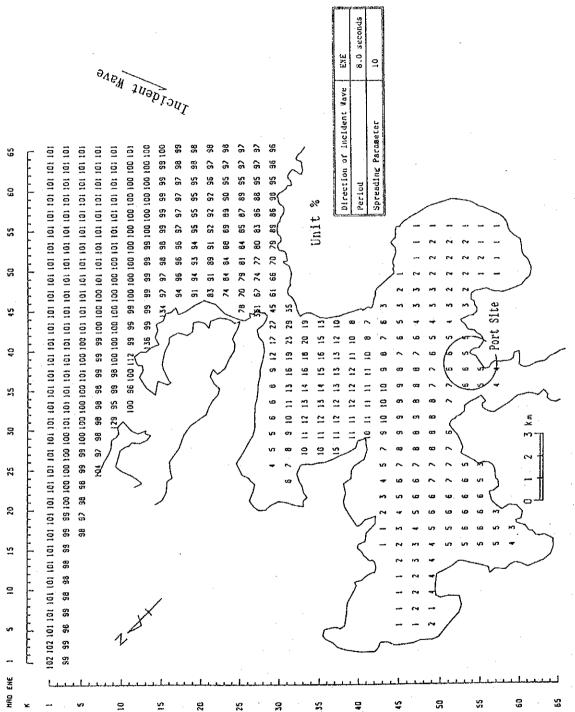


Figure A-3-2-10-(2) Plane of Distribution of Coefficient of Wave Refraction (Direction of Incident Waves: ENE)

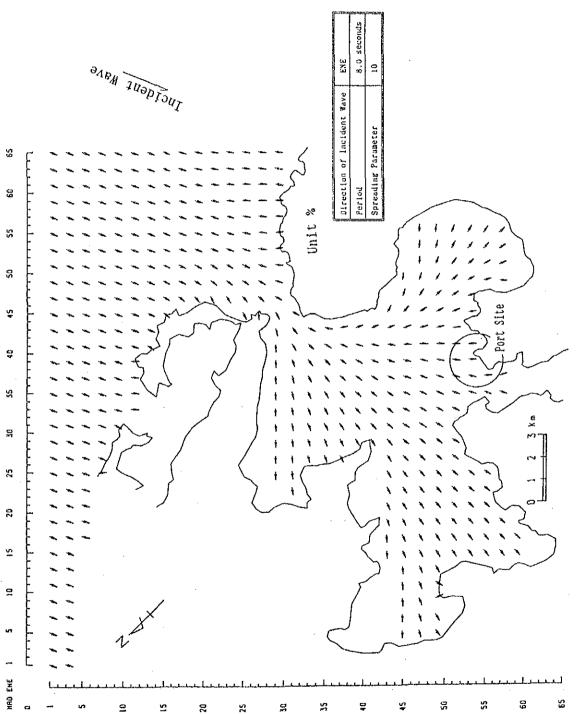


Figure A-3-2-10-(3) Plane of Distribution of Wave Direction (Direction of Incident Waves: ENE)

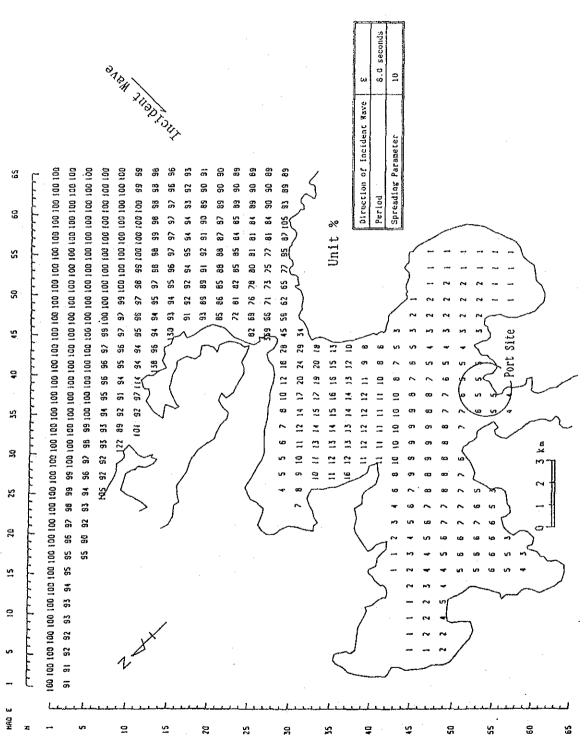


Figure A-3-2-11-(1) Plane of Distribution of Rate of Wave Height (Direction of Incident Waves: E)

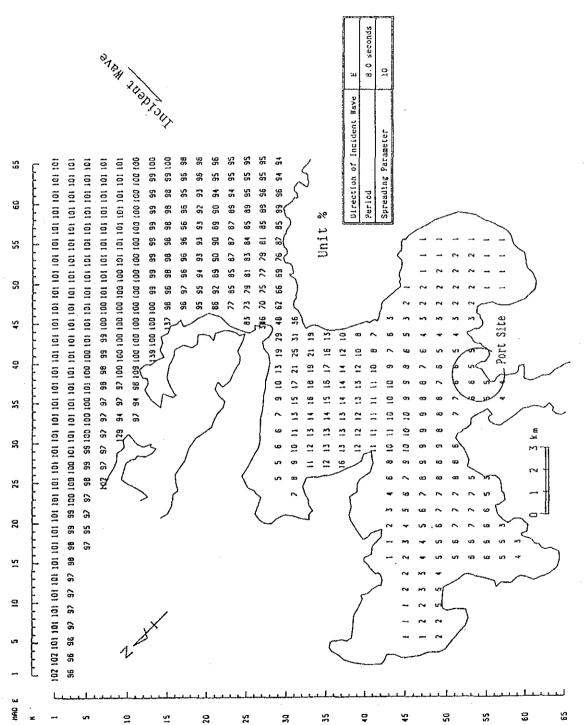


Figure A-3-2-11-(2) Plane of Distribution of Coefficient of Wave Refraction (Direction of Incident Waves: E)

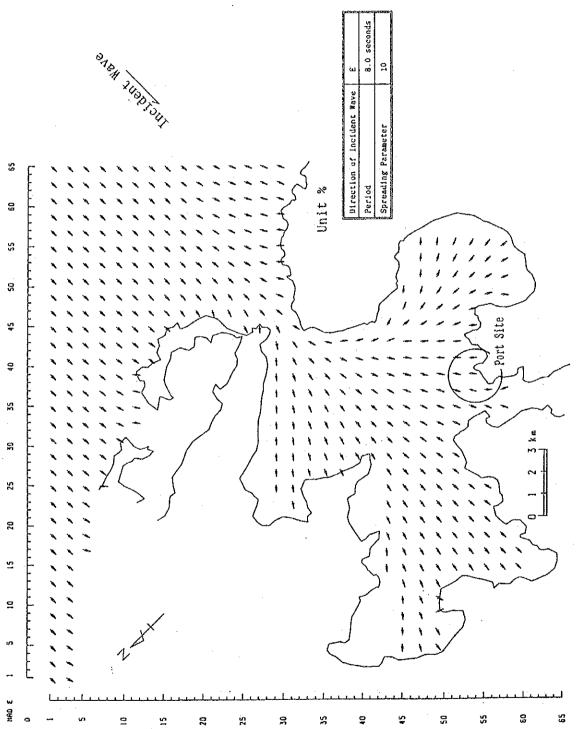


Figure A-3-2-11-(3) Plane of Distribution of Wave Direction (Direction of Incident Waves: E)

A-3.2.2 Boring Data

Detailed soil profiles and the results of laboratory tests of recovered soil samples are presented in this subsection.

5 BACHY

SOULT MALGATHER SOUDAGES INTERTIONS FORAGES

OVIRAIMERTREGAMOVAN ANA EAS CVIRAMANATUR

TELEPHONE HE 400.24

Client: NIPPON TETRAPOD Co, LTD

MR : 719 ANTSIRANANA

Sondage n° S (1

Beginning 25-09-93 End 30-09-93

			<u> </u>	\$ Core	-t	,	r	,
Notes	Casing	Diamèters	Snils or rocks description	* Core	hickness	Cross section	Depth	Peigh
		 		ļ		ļ <u>.</u>		ļ. <i></i> -
					i	ļ]	
Depth of tide		1		}			i	
ot law water		i .		1	1	1		j
: 10.40 m					1		i	1
: 10.40 m		ļ			1		! ,	Į
		ł					}	1
							1	ì
					i .			Ι.
				İ	1	1	1	
							[ĺ
						Ì		
	~ ~			h~~	 		0.00	ł
				1.				
i] i i		ľ	1	1		
1			Gray silt	1	1		1	İ
1		1 1	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	1	1		ĺ	
ŀ		0 1/4	}		4.50	İ	4,50	
-	0	·a ·		+	4.90		7,20	1
	158	1 1	Grey soft clay with remains of				i .	
Pr à 6.50 Hal -	8	Soupape	shells	_	Z,00	· (- , - , - , -	6,50	1
PEI8.00	57	6		1			1	
8,50	1	3	·	Samples	1		ļ	1
PT = 8,50 N=1 -		ทั		Jampies	1		į	ł
		1 1		[1 .		1	
10,50 BPT 4 10,50 N=1	10.50		Grey plastic clay with remains of		1		1	
PE] /2.00	10,30	10.50	shells	1	İ		ļ	
12,50	1 1	1 !!		ł	1	<u> </u>	ł	1
PT 0 12.50 HS2 -	6	1 11			1		1	1
	140	"		1			1	1
PT a 14,50 N=2	`%	3 8 1	All and and another the		9.60		15.10	
PE [-15.80]	y. s7	100	Peat clay with shells and gravels of basall Boulders of basalt	100.7	10.20		115.30	1
PF @ (6.30 N30	1	of 114 Soupapas	Boulders of Basair		0.30		1560	1
			Grey plastic clay with gravels of basalt		1,90	<u> </u>	17.50	1
PT & (8.00 N=38 -	17.50	1750		100%	0.50	L, t. T	18.00	1
						<u> </u>		1.
ŀ		9		ಟ್/		┝┾┸┯╵┌	22.20	
PT - 20.00 N:50		[6]	More or less yellowish grey	[2.00		20,00	1
J			chalky mart	M]	<i>-</i>)	ļ
(AT > 22.00 H-50		36	Cierry mari	M	2.00		22.00	
PT à 22,00 N=60-	1	22		68 /		7]
		* *			1.25	[23.25	4
A# \ a7 A= 71 A= -1	i i	1 11	· ·	100%	0.75		24.00	ı
PT à 24,00 N:80		2500		55%		4144		7

* Height from NGM

SHILL MYTPALIN DE SUNDAGES INTECTIONS FOR AGES

OVIRAIMIRTHANGOVAR ARATAJ ANTANANARIVO

Client: NIPPON TETRAPOD

Co, LTD

FELFPHONE HE ROOMA TELEY 82.307 , BR 188

MR : 719 ANTSIRANANA

Sondage n° SC 2

Beginning : 01 - 10 - 93 End : 04 - 10 - 93

Notes	Casing	Diamèter	Soils or rocks description	Core	Thickness	Cross sector	Depth	Heigh
Depth of tide at law water = 10,10 m								
		المناح					0.00	
3.00 PEI 4.50		140	Blackish silt Grey soft clay		2.20		2,20	
5.00 PEI 6.50 PEI 7.00 PEI 7.00 PEI 8.00 PEI 8.00	¢ 168	Saupape # 14	yellowish gray plastic clay with ramains of shells and detribus	Samples	2.50	- V	7.00	+
PE 10,00 10,50 PT & 10,50 M-36	10,00	10,00g	Yellowish grey chalky marl, more or less soft	80%	3.00		12.00	1
PT & 14,00 N:51		12,00	More or less yellowish gray chalky marl	80%	2,00		14.00	
PT & 16,00 N:125		14.65		100%	1.15		-16,00	1
PT & 20,00 Meks		42 96	More or less compact grey chalky marl	80%				
PT à 24.00 Refus		2500			9.00		25.00	

* Height from NGM

BACHY

SOURCE MALGALITE DESCRIPTION STORAGES

CALAMA TAYONINAHIJIRINIARIVO ANEANANATIVO

Client: NIPPON TETRAPOD Co, LTD

MR : 719 ANTSIRANANA

Y 82.307 - BR 186 Sondage n° SC3

ste " > C >

Beginning . 12 - 10 - 93 End 14 - 10-93

		·						
Notes	Casing	Diamèlera	Soils or rocks description	% Core	ihickness	Cross section	Cepth	Heigh
								}
		 						
					•		1	1
epth of tide		ļ			ł			1
law water		i		1			İ	
= 10,90 m		}					ļ	Ì
2 10, yo m		İ	•	•			Į	
.]				1	1	·	ł	
]					•	1
					!		ŀ	1
							j	ĺ
·					l			I
]			!		l	1
								1
					1			
				<u> </u>	├	** ***	0,00	1
			Silly sand and remains of shells and delcitus		0.80	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>	0.80	-
				1	1			
3,50			Clayey sand and remains of shells	!	1	ا مشت	1	ł
4,00			and chalky marl		i i		l	1
3 4.00 N2 3	0		,	1	1		1	1
1 5.50	12	i		[·	4.20		5.00	ļ
6,00	B 77]] [1		- -				1
7 2 6,00 N=2	27			Samples	Ì			
El 8,00	7 57	Rowo			l		1	1
8,50	1	å :	Send with shells and detritus of		l		l	}
T & 8.50 N= 4		1 1 1 1	chalky marl and cobbles					ĺ
9,50		977	•	:	İ		1	1
T & 10,00 No16		N	•		l .		1	1
10,50		1			١.			1
11.00					6.80	4	11.80	
			Boulders and gravels of basalt (5 - 10 cm)			00		. i
	12,50		(5 - 10 cm)		1.60		13,40	4
7 à 13,80 N:41				1 28	ł	<u> </u>		
1				[l			
21580 N=46	1	1 : L			1		ł	
		15.80		80%	1			1
		1		* * ¥ ·	1	┍╌╸ ┠┈┋ ╺	:	1
T d 17.80 N=76	1	1 .11	Compact yellowish grey chalky	3			1	1
	1	9	mar!		1	├ ~ T		
F 3 76 86 U.W	1	Row			6.40		19,80	4
A 19,80 N. X	1	1 11		# . T		المراجي		
	1	9,1		1)	1		1	1
7 d 22 so Refus		71		90%		= 1		1
		2		[~~./ *	} .			1
				3	l ·	┝╾┸┯┸		1
1 à 25,00 Ra his -				1 2 23	520		25.00	
		25.00			1 140		4.2.00	

Height from NGM

SOMETE MALGAMON OF SUNDAGES INTECTIONS LORAGES

ANTANANARION

Client: NIPPON

TETRAPOD

Co, LTD

TELEPHONE HE agg-14

MR : 719 ANTSIRANANA

Sondage n° SC 4

Beginning 08-10-93 End 11-10-93

Notes	Casing Diamen	rs. Soils or rocks description	& Core	Thickness	Cross section	Depth	Heigh
Depth of tide of law water = 10,10 m							
PEI 100 PEI 200 250 PEI 3,00 3,50 FY d 350 N: 1 PEI 4.50 5,00 PEI 9,	8 15 \$ 140 05 8 15 15 4 168 8 15 \$ 146 Rower & Soupepee \$ 140	Grey plastic clay Grey sandy plastic clay Fine grains clayey sand with gravels and boulders of basalt Gravels and boulders of basalt (10 - 20 cm) Yellowish grey chalky marl friable Yellowish grey chalky marl very friable Grey chalky marl, more or less compact	54%	2,60 1,40 2,30 2,00 2,00 1,30 9,70		3.80 5.20 7.50 9,50 11.50 12.80 13.50	
PT & 15.50 N:52 PT & 17.50 N:62 PT & 19.50 N:72 PT & 21.50 N:85	K2 116 Rowor	More or less compact chalky marl	90%	2,00 2,00		15,50 17,50 19,50	

SOURTH MALGACITE III SONDAGES INTECTIONS FORAGES

OVERAMINET HANDOWARE A 144 LA L OVIDAMANATIVA

Client : NIPPON TETRAPOD CO, LTD

MR + 719 ANTSTRANANA

Sondage n° SC5

Beginging . 18-10-93 Ford . 21-10-93

Depth of hide of law water = 8.30 m 100	Notes	. Casing	Diameters	Soils or rocks description	*/. Core	Thickness	Crosssedion	Depth	Heigh
### 15.00 Miss Accomposed sandy rock, with gravels of basalt (5-8 cm) 1.00									
Remains of shells and cords with 1,50	t law water								
Remains of shells and corals with 1.50		2	-						
Sandy soft clay Sandy	PEI /		$+\tau$	Remains of shalls and corals with	- 			0.00	
### 1,50 ### 5,30 ### 5,	2,20		300		Samples :	1,60		1,80	
### Bluish gray soft chalky mar/ ###################################	4 3.00 Na /		1 1	Sandy soft clay	7 27	1		3.80	
7.30 2.30 No.23 Decomposed sandy rock, with gravels of basalt Samples 4.10 + + 11.30 Gravels of basalt (5 - 8 cm) More or less compact grey chelky marl Gravels of basalt 3.13.40 No.55 15.70 More or less compact chalky marl 3.13.40 No.55 Nore or less compact chalky marl	7,30 3 5,30 Na/8		7.50	Bluish grey soft chalky marl		1.00	工工		
Decomposed sandy rock, with gravels of basalt Samples 4.10 . + + 11.30 Gravels of basalt (5 - 8 em) 1.40	7.30				H-1001/2 7	2.00		7.20	-
### 15.40 No. 68 12.70 12	3 8 80 No 22	ø 57	Rower	Decomposed sandy rock, with gravels of basalt	 		+ +		
3 12.70 No.49 12.70 More or less compact grey chalky 200 14.70 Gravels of basalt 2,00 15.40 80% 15.70 More or less compact chalky marl 25% 15.70 More or less compact chalky marl 25% 2.00 15.70 15.70	a 10,80 Na 30				- Samples	4,10	+ +	11.30	
# 15.10 No.55 # 15.1	å 12.70 H= 49 -	(2)70	2	Gravels of basalt (5-8 cm)		1.40		12,70	-
# 15.40 No 55 15.70 15.60 15.40		12,70		More or less compact grey chelky	2.172%	2,00	├ <u></u> ──~	14,70	
J19.40 Mare or less compact chalky marl 200	į.		15.70	Gravels of basalt	-	0,70	71,	15.40	\dagger
319.40 Parts	- 17,40 N:68					2,00	弄		
	à 19.40 Rel'as			More or less compact chalky mark	95 %	2.00			
100%				·	2		至宝		
F~,~					100 %		<u> </u>		
25,00	· [~~		

* Height From NGM

S-BACHY

SOURTE MALLATHE DE SONDAGES INTECHNIS EBRAGES

OWRAINBERMINOVAR AMA IAJ

Client : NIPPON TETRAPOD CO, LTD

FEEFFIGNE HE 200 24

MR : 719 ANTSIRANANA

Sondage n' SC 6

Beginning - 10 - 11-93

End . 12-11-93

			Beginning -	10-11-93		End .	I Z - I I	-93
Notes	Casing	Diamil	Soils or rocks description	* Care	Thickness	Cross section	Depth .	Heigh
Depth of tide of law water = 5,60 m								
		9		<u> </u>		٠,	0.00	
PBI 0,75 PBI 1,25 PBI 1,80	087	300,0	Sound with remains of corals and shells	Samples	1.80		1.80	,
PE) 230 1.00	, φ \$7	1.80	Gravels of basalt (5 - 10 cm)		1.75	00	3.55	
PEI 4.50	4,00		Yellowish grey chalky marl, more or less compact	95 %	2.00		6,00	
Pr à 6,00 N= 75			More or less compact chalky mark	80%	200		8,00	
				73 %	1.30		9.30	
PT & 10.00 Rates			Compact chalky marl	100%	0,70	حجيب	10,00	4
			More or less compact chalky marl	82%	1.40		11.40	
T & 14.00 Refus -		Rowor	Compact grey chalky mar! More or less compact chalky mar!	87%	2,00		12,00	
PT à 14.00 Re/us		1/6 Re					74100	
PT à 15,00 Refus -		8						
Tà 18,00 Refus		0.5	Compact grey chalky marl	100 %		4.7. 4.7.		
7 à 20,00 Refus -				2				
o T & 22.00 Aelus								
		25.00			11,00		25.00	

* Height from NGM

SOURTH MALGACUE DE CO SUMBAGES INTERTIONS FORAGES

ONDAINMENT HAVING VALLE OF THE INT OVINANANATIVO

TELEPHONE HE BOURS

Co, LTD Client: NIPPON TETRAPOD

MR : 719 ANTSIRANANA

Sondage n° SC7

Beginning 13-11-93 End 16-11-93

			beginning	3 1. 00		Cira	.• ; .	.0.0
Notes	Casing	Diamèters	Soils or rocks description	4 Core	hickness	Cross section	Depth	Heigh
Depth of tide at law water = 7.50 m								
							0.00	
PEI 1.50 PEI 2.60 PEI 3.10 PEI 3.80		411 X	Sand with remains of corals and shall					
4,30 SPT 3 4,30 H=22	140	380	Gray clay with remains of shells	Samples	9,60 0,85		3.80 4.65	
7,30 7,80	15 g		Blackish scoria sand with gravels		265	ò	7.30	
SPT à 7.80 Nº79 -		1 11	Soft yellowish grey chalky marl	1.7667. X	0,75	T~-~	805	1 .
SPT 2900 N.95	8.00		Compact grey chalky marl Compact grey chalky marl with soft	82 %	0.95	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.00	}
Pf & 11,00 Refue			layer More or less compact gray chalky	80%	2,00		11,00	
SPT à 13.00 Refus -		Rowe	mar/		2,00	, <u>T</u>	/300	1
SPT à 15.00 Rehis		116			2.00		15.00	
SPY à 15,50 Relas -		0 42				5-		
SFT à 18,00 Refus -		ال	Compact gray chalky marl					
ser à 20.00 Refus					:	一二二		
SPr à 22.00 Refus				A PARTY		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		25.00				二 一 一	25,00	

* Height from NGM

SOURTH MALGASON DE SONDAGES INTELLIONS FORAGES

ANTANANABISM

Highwork 18 and 34

Client: NIPPON TETRAPOD Co, LTD

MR : 719 ANTSIRANANA

Sondage n° SC 8

Beginning 18-11-93 End 20-11-93

Notes	Casing	Diamèlets	Soils or racks description	Core	Thickness	Goss sedion	Depth	Heighl
Depth of tide at law water = 7,30 m								
					<u> </u>		0.00	<u> </u>
PEI 1,60 PEI 2,80 1,30 PEI 4,00 4,50	140	Soupape \$ 114	sand with remains of carals and shells	Samples	4,00	à	4.00	
SPT 6 450 N = 1 - 4 SPT 6 6,00 N = (- 7,50	\$ S7	4.00	Grey cloy with remains of shells Grey peaty clay Soil yellowish grey shalky mart		2.40 0.70 0.40		6.40 7.10 7.50	
8,00 BY & 800 N = 63 SPT & 9,50 N = 72	8.00		Soft to compact yellowish gray chalky marl	47.%	2.00	~;	9,50	
SPT à 11,50 Refus			Mora or less compact yellowish grey	85%,-	2.00		11.50	
SPT à 13,50 Refus		6 Row	chalky marl	93-%	2.00		13,50	
SPT à 15.50 Actus -		K2 11	More or less compact chalky marl	80%	2.00		15.50	1 .
spr à 17.50 Na 58		0.0	with soft layers	62%	2,00	三三	19.50	
507 à 20,00 Refus			Compact grey chalky marl	100%				
		25.00			5,50		25,00	

* Height From NGM

MADASHSEAR

TABLEAU DE RESULTATS DES ESSAIS DE LABORATOIRE

Dossier nº 93 5 L 46

Annexe nº...I......

Tableau nº ..01

	ADAG		9 8 / C	HANTIER :	ETUDE ANTSIN	GEOTECHI A NANA	NORD	MR719	Tableau n	° 01
f and a second	QND/	- Company	SC1	SC1 M	SC1 H	5C1 B	5C1 M	SC1 H	# 501 B	5 C. 2. B
PROF		URS	8.00 8.50	8.00 8.50	8.50 8.50	12.00 12.50	12.00 12.50	12.50	15,80 16,30	8,00 8,30
SOLS	IRE AI NTE DI SECH LONN	es Ian-	Argile molle quise + loquilles	Argile molle grae 4 coquilles	Argile molle grise	Argile molle grise + g. g. coquil	Argile smalle grise + q.q. coquil	Argile molla grive + g. g coquil	brgile githe hvee cailloux	Aryle molle guse
	8 (k)	Vm3)	16.3	16,0	16,0	18.0	18,0	18,1	20,3	16,8
ETAT	W	(%)	64,7	68,2	66.6	44,0	45,0	45,3	33,5	57,1
7. D.	8 d(kl	√m3)	9,9	9,5	9.6	12,5	12,4	12,4	15.2	10,7
CARAC.	Sr (%)	100	9 9	39	100	100	(00	100	100
8 -	s(k)	l/m3)	27,3	27.3	27.3	27.4	27.4	24.អ	27.4	27.3
	~	mm 2	99			99		et .	95	400
	Granulo-Sédimento - % de passani à	0,40 mn	49			99			91	100
7.10 N	nulo-Sédime de passani	90 4.	93			92			84	83
DENTIFICATION	anulo % de	20 µ	Ţ			64			61	61
× 1 1 2	Ö.	2 µ	39		T	38			40	40
301	erg .	WL	73			51			53	60
	_d'Atterberg	(%) (%)	36			25			2.7	30
<u> </u>	۳	15 (×)	37			26			2.6	- 30
	SIFIC LPC	AΤ°	址	,		Αt			Αt	At
BRUTE	G'c(l	(Pa)	<i>5</i> 0 .	46		34 ±Rimanie	ร์		*	38 .
COMPRESSE	С	c	0,570	0.595		0.342	0,372.		**	0,414.
COMF	С	9							*	
		kPa)	18'8	19.7	13,6	32,1	3 <i>5</i> ,3	2.6,1	*	11,8
EMENI ITE XIAL	Enn	(*)								
CISAIL LEMENT BOITE TRIAXIAL	C' (k	Pa)								
၁	પ્ટ(۰,								
AUTRE			·						क्र क्रिक्टो र क्राज़िक्ट	

TABLEAU DE RESULTATS Dossier nº.93.51.46 DES ESSAIS DE LABORATOIRE Аппехе nº...Т..... Tableau nº...02 ETUDE GEOTECHNIQUE MR 719 CHANTIER: ANTSIRANANA - NORD , SC2 ec3 SCZ SC3 SC3 SC2 M. S C 2 SC2 Nº SONDAGE M H M H 3.50 8.00 8.00 10.00 10.00 10.00 3.50 3.50 PROFONDEURS 10.50 10.50 4.00 8.50 8.50 10.50 -+,00 4.00 (m) Sable SAble sable teame Marine Augile Azile Marne nzileur NATURE APPAougilous azilase argilema agilare argileux molk RENTE DES mille mou verdati men verdat gime giñoc SOLS ECHANguse guise 2 Modules later word. + Nodules TILLONNES 20.6 20,3 ờ (kN/m3) 19.7 20,2 21.0 169 16.8 CARACT. D'ETAT 21.5 W (%) 26.8 20.4 27.0 57.1 57.7 23.3 d(kN/m3) 16.0 16.4 17,4 10.6 * 10.7 15.5 16.9 Sr (%) 100 DOL 94 94 96 100 100 śs(kN/m3) 16.6 27.6 27.6 27.6 27.5 24.3 26.6 33 100 Granulo-Sédimento % de passant à № 🛨 🛭 🛨 😤 ពារា 0.40 57 98 mm 80 DENTIFICATION 24 99 81 11 2 5 52 μ WI d'Allarbarg. 59 31 (<u>%</u>) 30 22 (%) 1P 29 CLASSIFICAT. ۸t SA LPC G'c(kPa) COMPRESSIBILITE 160 40 * 0.117 Cc * 0.095 × Cg R.C (kPa) * 217.6 18,3 152 371.5 26.6 20.3 8,9 **U**uu (*) C' (kPa) (°) Celly in age in \$50 no to all tomat અકે કે≾લ**ાં** AUTRE irealisal'e

TABLEAU DE RESULTATS DES ESSAIS DE LABORATOIRE

Dossier nº 935L46

Annexe n°. I.....

3.00	ADAG	13 1 3 2	1 Vit 2 2 2	HANTIER :	ETUDE ANTSI	GEOTECHI	NOUE	N. N. R. F. 19	Tableau r	∘ 03
Nº 50	OND/	GE	Sc.3	SC3 M	<i>5</i> c3 ม	SC4	504 M	5 C T	<u> </u>	Sc5 M
PROF	ONDE (m)	URS	8.00 8.50	8.00 8.50	8.00 8.50	3.00 3.50	3.00 3.50	3.50	4,80 5.30	4,80 5,30
SOLS	RE AF ITE DI ECH ONNI	ES AN-	Sable angiteux men vendatie + Hodules	Sable argileup mou verdate a woduled	Sable argiteur mou verdátes t Nodules	sable ngilenr verdatre	Sable angileur vedātu	Sable angileux vadatre	Araile matheus grisc	Argile marheuse grise
	8 (KI	Vm3}	2.0,0	19.9	19.9	20,3	20,6	19.£	18.9	19.0
ETAT	W	(%)	2.5,6	26.4	26,0	33,2.	30.3	29.8	33,7	32,9
	14)b	Vm3)	15.9	15.7	15,8	15,2	15,8	15,1	14,1	14,3
CABAC	Sr (%)	96	44	96	100	100	100	99	100
•	s(ki	l/m3)	27.5	2. <i>1</i> .5	27.5	27,3	2.7,3	27,3	27,0	27.0
	_	2 mm	94			100			99	
	mento ntà	0,40 mn	74			85		•	98	
100	-Sed passa	80 .μ	49			42			96	
IDENTIFICATION	Granulo-Sédimento % de passant à	20 μ	41			30			87	
J. LN	Ö	2 µ	27	-		2.0			70	
10.5	erg .	WL	34			33			59	
	L.d'Allerberg	(%) WP (%)	2.2			23			31	
	5	(%)	12			10			28	
	SIFIC	ΑT°	\$ A			SA			LŁ	
ILITE	G'c(kPa)	50	46		56	60			
COMPRESSIBIL	C	kc	0,112	0,106		0,132	0,114			
COMP	C	9								
		(kPa)	28.1	19.9	14.6	25,4	24.7	2.3.7.	87.5	7.7.2.
CISAILLEMENT BOITE TRIAXIAL	L uu	(°)						:		
ISAIL L BO TRIA	C, ()	(Pa)								
.0	પ્દા	°)	·							
AUTRE					·		day a garage and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and			

TABLEAU DE RESULTATS Dossier nº, 93.54.46 DES ESSAIS DE LABORATOIRE Annexe nº...... Tableau nº..º4 ETUDE GEOTECHNIQUE ANTSTRANANA - NORD MR 719 CHANTIER: 5c5 5 c 5 Sc. 5 Nº SONDAGE SC5 6.80 7.30 6.80 7.30 6.80 4.80 PRIOFONDEURS 7.30 (m) 9.30 Arzila Aryla argile Argile NATURE APPA ATHUS MAYNUS Arn cus PRENTE DES grisc grise grisi grise SOLS ECHAN-TILLONNES ờ (kN/m3) 18,0 18.9 17.5 18,1 CARACT. B'ETAT W (%) 35,6 45.2 44.0 47.0 ß d(kN/m3) 13.9 12,0 12,5 12.2 Sr (%) 100 100 100 96. 27.0 s(kN/m3) 27,4 27.4 27.4 400 99 IDENTIFICATION 98 90 75 Ψ WL d'Atterberg 80 (%) Wr 39 (<u>%)</u> 41 CLASSIFICATE Lt LPC COMPRESSIBILITE G'c(kPa) Cç Çg R.C(kPa) 66.7 70,7 65.9 57.3 Haling C. (kba) C' (kPa) (e) AUTRE

TABLEAU DE RESULTATS

Dossier no..... Annexe no......

DES ESSAIS DE LABORATOIRE Tableau nº. 01 ETUDE GEOTECHNIQUE ANTSIRANANA_NORD CHANTIER: MR 719 SC8 568 Sc7 SC7 SCF S C 7 SC7 SCF Nº SONDAGE H В M M В M Н 3,80 7.30 7.80 7.30 7.80 1,00 100 3.80 3.80 7,30 PROFONDEURS 1.50 4.30 1.50 4.30 (m) 4.30 7.80 Argile plastique grisc Argile plastique grise Argile molle Argile molle Argile Argile Argile molle Argile molle NATURE APPA-RENTE DES grise grise grise grise + coques + Enques arise SOLS ECHAN-TILLONNES 17.8 18,8 17.7 19.9 18.8 18.6 ኝ (kN/m3) 19.7 19.6 D'ETAT 459 W (%) 24.3 36,4 36.4 36.0 46,9 31.1 32.0 8 d(kN/m3) 12.2 12,0 CARACT. 15.0 15.1 15.1 13.8 13.6 13.8 100 Sr (%) 100 400 27,0 1s(kN/m3) 279 27.0 92 100 93 Granulo-Sedimento % de passant à 99 83 76 DENTIFICATION 98 40 71 88 57 24 38 54 11 WL. d'Atterbarg. 69 50 43 (%) WP 2.6 34 (%) IP 2.2 24 35 21 **CLASSIFICAT®** AP/At SA Lt LPC 34 G'c(kPa) COMPRESSIBILITE 28 - 140 0,374 Cc 0.218 0,210 Cg -± Remanie Cuu(kPa) CISALLEMENT BOITE BOITE T BAXIAL C(kba) 13,9 240 22.9 21.8 66.3 57.1 41.2 14,4 AUTRE

TABLEAU DE RESULTATS Dossier nº..... DES ESSAIS DE LABORATOIRE Annexe na..... Tableau nº. 02..... ETUDE GEOTECHNIQUE CHANTIER: MAIG ANTSIRANANA .. HORD \$68 SC8 Sc8 SC8 Nº SONDAGE H M В Н 7.50 7.50 7.50 PROFONDEURS 1,00 8.00 8.00 8.00 (m) 1.50 argile Atgile Argile narneuse Argile plastique NATURE APPA-RENTE DES marnous grise grise grice grise SOLS ECHAN-TILLONNES ሄ (kN/m3) 175 211 217 20,7 CARACT, D'ETAT W (%) 15,2 47.4 17.1 16.0 8 d(kN/m3) 11.9 18.2 48,8 17.7 Sr (%) 88 √s(kN/m3) 27.2 100 mn 99. DENTIFICATION 98 87 2 54 μ Wί L.d'Allerberg 43 (%) WP 2.2 2. CLASSIFICAT® AP LPC G'c(kPa) COMPRESSIBILITE 100 $C_{\mathbf{C}}$ 0,103 Сg Cuu(kPa) CISAILLEMENT BOIDE BOIDE RIAXIAL BYAIL BYAIL C(Kba) 13.4 1242 107.5 122.0

AUTRE

A-3.3 Port Facilities

A-3.3.1 Criteria for Judgement of Deterioration

Table A-3-3-1 Criteria for Judgement of Degree of Deterioration of Members

Item	Corrosion of the reinforcing bar	Cracking of the concrete	Spalling of the cover concrete
Degree		Visual inspection	
0 -	Not observed	Not observed	Not observed
1	Small patches of dotted rusts are observed on the concrete surface	A few cracks are observed on the concrete surface	Not observed
2	A few rust strains are observed on the concrete surface	Some cracks are observed on the concrete surface	A few swellings (expansions) are observed on the concrete surface
3	Many rust strains are observed on the concrete surface	Many cracks are observed on the concrete surface	A few spallings are observed on the concrete surface
4		Many wide cracks (more than 2mm in width) are observed on the concrete surface	Many spallings are observed on the concrete surface
5			Heavy spallings are observed on the concrete surface

Table A-3-3-2 Criteria for Judgement of Degree of Deterioration

Degree	Visual inspection.
0	Steel is not corroded.
1	Only the surface of the steel is corroded partially.
2	Only the surface of the steel is corroded generally, or some deficits are observed on the steel.
3	Many deficits are observed on the steel.
4	Heavy deficits are observed on the steel.
5	

Table A-3-3-3 Judgement for Necessity of Repair

Degree of Deterioration	0	1	2	3	4	5
Necessity of			Not necessary		.· 	Need to repair
Repair			(execute repair depends on situation)	depends		(execute reinforcement depends on situation)

A-3.3.2 Compression Test for Concrete Core Sample

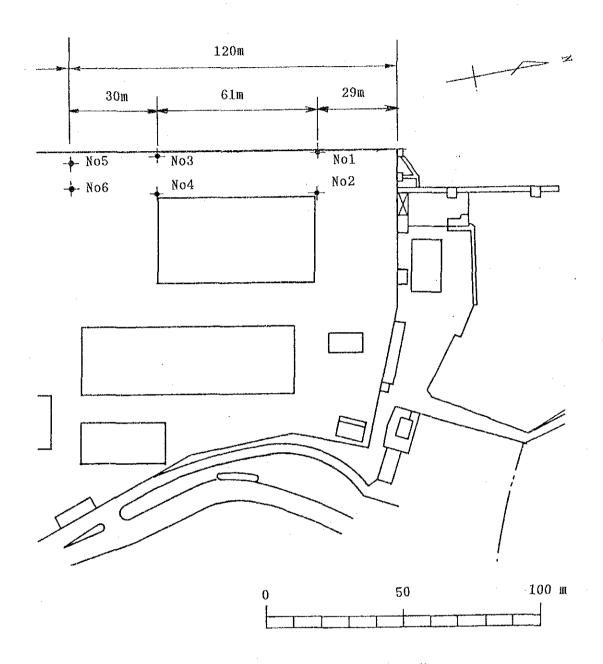


Figure A-3-3-1 Location of Core Sampling

Table A-3-3-4 Results of Simple Compression Test

Location	Sample	Dimension	(cm)	Unit Weight	Compressive Strength
No		Diameter	Height	(tf/m³)	(kgf/cm²)
No 1	1	11.5 11.8		2.43	324*
	2	11.5	11.3	2.53	304*
	3	11.5	11.6	2.66	265*
No 2	1	11.5	11.4	2,31	265*
	2	11.5	11.7	2.26	225
No 3	1	11.5	11.6	2.66	320*
	2	11.5	11.6	2.65	312
No 4	1	11.5	11.5	2,31	278
	2	11.5	11.5	2,30	320
	3	11.5	11.6	2,27	285
No 5	1	11.5	11.7	2.62	280*
No 6	1	11.5	11.6	2.22	246
	2	11.5	11.6	2.30	285

Note: Asterisk(*) means presence of reinforcing bar.

A-3.6 Calling Vessels

Excerpts from calling vessel data of the Port Office are shown. Date which is unreliable or unavailable is denoted by the bar line.

Table A-3-6-1 Calling Vessel Data by the Port Office

				MOIS D'AVRIL 1990	4		
	1 CONSIGNATA		! PROVENANCE		I DESTINATION	LIBRUTE (Tx) !	L.H.,TOUT (m) ! (m) TUOT,H.J
	1 AUXIMAD	101/4/90 10530	I SECREN	1 10/4/90 17h15	! Vohimar	1 587.01 !	52.40 VATSY 2
	ISCAC	1 01/4/90 13h05	l Toamasina	[02/4/90 08h25	Arabia GoV	! 18,211.00	176 06 ! LIA
	! AUXIMAD	101/4/90 13h35	l Toamasina	101/4/90 19530	! Mahajanga	1 1,103.10 l 1 175.31 l	77.02 ! VATSY 4 25.02 ! ASGARI
	I SAMA	1 02/4/90 06h30 1 02/4/90 12h15	l Mahajanga I Nosy Be	1 04/4/90 03h00 1 04/4/90 03h10	i Mahajanga I Mahajanga	122333	27.97 SAINT LOUIS
	LAUXIMAD	104/4/90 07h40	! Nosy Be	104/4/90 18h15	! Toamasina	11,530.00!	158.00 ! TOAMASINA
	DAMIXUA	104/4/90 07140	! Nosy Be	08/4/90 10h00	I SECREN	171.12	33.00 LACQUES ORSINI
	I SOUMA	I 04/4/90 - 12h00	l Toamasina	1 08/4/90 05h00	I Nosy Be	4,205.00 !	108.00 TSIMIRORO
	DAMIXUA	106/4/90 08h20	! Mayotte	10/4/90 7h30	1 Haute Mer	1 760,491	59.20 ! GOMBESSA
	AUXIMAD	108/4/90 10500	1 SECREN	110/4/90 20h30	1 Vohimar	! 429.00!	47.99! KINGA
	EAUXIMAD	110/4/90 7h00	1 Seychellos	121/4/90 16h30	I Haute Mer	! 1,475.00!	77.30! ALBACORA 14
	DAMIXUA	110/4/90 10545	l Haute Mer	121/4/90 16h30	l Haute Mer	1 1,344.88 !	78.75 LBACORA 8
	I AUXIMAD	110/4/90 14h15	t Haute Mer	123/4/90 05h30	I Haute Mer	1,498.98!	77.301 ALBACORA ONCE
	1 AUXII.AD	11/4/90 10h30	l Singapore	1 18/4/90 07h30	! Bangkok	1,782.381	83.151 TANYO 1 33.001 JACQUES ORSINI
90/84	CAMIXUAT	11/4/90 15500			l Mahajanga	! 171.12! ! 1,475.001	77.30 ALBACCRA 12
90/85 90/86	Fauximad Fauximad	! 12/4/90 10h15 ! 12/4/90 20h10	l Haule Mer l Haule Mer	24/4/90 05h00 24/4/90 06h00	! Haute Mer ! Haute Mer	1 760.49 1	58.20 ! GOMBESSA
90/87	LAUXIMAD	113/4/90 08h45	l Dieddah	102/5/90 17h10	i Bangkok	1 4,731.00!	11.50! VICTORIA REEFER
90/88	LAUXIMAD	14/4/90 07h45	l Haute Mer	115/4/90 16h00	1 Haute Mer	1 131,12 !	23.001 MARO DE FATIMA
90/89	AUXIMAD	114/4/90 22h10	l Saychelles	123/4/90 06ht0	l Haute Mer	1 1,365.11!	76.75 I EUZKADI ALAI
90/90	1 AUXIMAD	114/4/90 22h15	Seychelles	120/4/90 17h30	l Haute Mer	988.15 1	
90/91	DAMKUALI	115/4/90 085/30	I Seychelles	124/4/90 171-30	t Porto Rico	1,479.77 !	
90/92	DAMIXUA	f 15/4/90 07h30		I 18/4/90 15h30	i Haute Mer	833.901	
90/93	DAMIXUA 1	116/4/90 06h30	I Haute Mer	27/4/90 181/30	l Haute Mer	1,351,691	
90/94	AUXIMAD	118/4/90 16h30	! Antalaha	l 19/4/90 ISh30	l Antsohihy	1 429.001	47,991 KINGA
90/95	AUXIMAD	117/4/90 08F/00		125/4/90 6N00	I Haute Mer	1,300,001	72.20 KAI ALA1
90/98	I AUXIMAD	F 14/4/90 18h15	Victoria	123/4/90 16h15 118/4/90 19h15	f Italie I Nosy Be	97.841 1 3,704.401	68.00 FADH 110.00 BARBARA D
90/97	I TRANS 7 I AUXIMAD	1 18/4/90 23h12 1 19/4/90 07h20	l La Riunion I Hauta Mar	F27/4/90 17h00	I House Mer	! 2,107.001	
90/93 90/99	I ALY MAMAD	19/4/90 23h30	! Mitsemudu	123/4/90 23h00	Vohimer	1 317,481	50.45 SOALALA
90/100	LAUXIMAD	120/4/90 07500	Mitsamudu	120/4/90 09h00	I SECREN	! 458,34 !	51.00! YLANG YLANG
90/101	DAMIXUA	I 19/4/90 13h00			l Bangkok	1,656,161	
90/102	LSOLIMA	T21/490 7055451	! Toamasina	127/4/90 18h30 [12174/90 02h00]	! Nosy Be	! 4,205,60!	
90/103	DAMIXUA	121/4/90 09h10	! Haute Mer	121/4/90 14h30	I Havle Mer	1,132.73	71.50 ! BAYOTA
90/104	CAMIXUA	121/4/90 11508	Hodeldah (Ymen)	114/5/90 17h00	l Espagne	1,948.40!	
90/105	SOLIMA	! 22/4/90 17h15	! Las Palmas	1 04/5/90 05h10	I Haute Mer	557.68	1 733 00 ! INTERTUNA UNO
90/106	I AUXIMAD	1 24/4/90 (. Lopingine	12/5/90 14/100	! Espagn o	1 1,220.06!	
90/107	LAUXIMAD	124/4/90 081600	l Haute Mer	! 02/5/90 17h20	I Raute Mer	! 851.19!	
90/108	LAUXIMAD	125/4/90 06h30	! Haute Mer	! 03/5/90 06h30	! Haute Mer	! 1,475.35!	
90/109	AUXIMAD	! 25/4/90 08h00	Seycheles	126/5/90 06h30	I SECREN	1 1,200.28 1 2,058.00 1	
90/110	1 ALIXIMAD 1 ALIXIMAD	l 25/4/90 10h18 l 26/4/90 06h30	l Djeddah I Haute Mer	1 25/4/90 14h48 1 04/5/90 05h10	! SECREN ! Hauta Mer	1 2,059,00! ! 1,475.38!	
				MOIS DE MAI 1990			
	I CONSIGNATA		! PROVENANCE	! DEPART		! J.BRUTE (fx) !	L.H.TOUT (m) NOMS NAVIRES
90/120	LAUXIMAD LAUXIMAD	101/5/90 06h30	l Haute Mer I Haute Mer	1 06/5/90 20h15 1 10/5/90 11h45	l Haute Mer I Haute Mer	1 855.00 ! ! 851,19 !	
90/121 90/122	DAMIXUA	101/5/90 09h30 101/5/90 10h45	l Cieuta (Esp.)	110/5/90 11h45 105/6/90 14h60	l Victoria (Sey.)	1,386.801	92.00 I ALBACORA FRISA
90/123	DAMIXUAT	101/5/90 07500	l Haute Mer	110/5/90 09h30	1 Haute Mer	! 607.93!	51,001 GEVREDO
90/124	LAUXIMAD	102/5/90 07500	Haute Mer	06/5/90 12h30	I Haute Mer	1 633.901	63,301 TXORI-URD
90/125	LAUXII AD	[[02/8/50] 0af-00]	1 Haute Mer	1 08/5/90 14100	! Haute Mer	1,308.491	73.80 ALMADASRA
90/126	ISCUMA	1 03/5/90 15h00	SECREN	105/5/90 101/20	I SECREN	! 2,734.00!	100.00 BEMOLANGA
90/127	LALI MAMADE	1 04/5/90 20h00	! Mahajanga	110/5/90 23500	I Vohimar	1 317.98 [50,451 SOALALA
	ISOLIMA	1 06/5/90 08h30		11 05/5 50 CONO	! Toemasina	2,734.00 !	100.00 BEMOLANGA
90/129	LAUXIMAD	106/5/90 091/00	! Haute Mer	115/5/90 10h04	I SECREN	1 1,332.911	69.48 ! TXORI ZURI
90/130	AUXIMAD	106/5/90 141-34	! Singapore	1 07/5/90 17h30	l Zona ico. Piche	1 424.00 f	42,881 YAH YOW 8
90/131	LAUXIMAD	I 06/5/90 15h00	Haute Mer	114/5/90 14500	! Haute Mer	[1,146 50]	69,001 TREVIGNON!
90/132	LAUXIMAD	107/5/90 04h30	l Mahajanga	111/5/90 231-10	l Mahajanga	182.00 !	35.00 WUBBINA

42.65 17/91 VARS YANG 1

45.00 | WLDBINA | 1

55.00 | WLDBINA | 1

52.00 | ATERPE ALA | 1

55.00 | ALBACORA 1 4 | 1

55.00 | ALBACORA 1 4 | 1

55.00 | ALBACORA 1 4 | 1

55.00 | ALBACORA 1 4 | 1

55.00 | ALBACORA 1 4 | 1

55.00 | ALBACORA 1 4 | 1

56.00 | ALBACORA 1 4 | 1

57.01 | ALBACORA 1 4 | 1

57.01 | ALBACORA 1 4 | 1

57.01 | ALBACORA 1 4 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 | ALBACORA 1 6 | 1

57.01 106//89 15/00 107//890 06/30 107//890 06/30 107//890 06/30 107//890 10/30 107//890 10/30 107//890 10/30 107//890 10/30 109//890 07/30 109//890 06/30 10/3/890 11/20 10/3/890 11/20 10/3/890 11/20 10/3/890 11/20 11/2/390 14/30 11/2/390 14/30 11/2/390 14/30 11/2/390 14/30 11/2/390 14/30 11/2/390 14/30 11/2/390 14/30 11/2/390 06/30 11/2/390 06/30 I Haufe Mer
I Mahajunga
I Haufe Mer
I SECREN
I Haufe Mer
I Durban
I SECREN
I Haufe Mer
I Durban
I Haufe Mer
I Haufe Mer
I Mahi (Sey.)
I Haufe Mer
I Mosy Be
I Moroni (Cornores) 11/5/90 11/5/90 10/5/90 10/5/90 11/5/90 10/5/90 11/5/90 11/5/90 11/5/90 11/5/90 I Mahajanga I Haute Mer I Haute Mer I Haute Mer I La Riunion I Haute Mer I Haute Mer I Haute Mer I Haute Mer 23h10 05h30 14h30 07h30 18h00 17h30 17h10 05h15 96h00 96h30 17h15 182.00 | 1,475.00 | 988.15 | 1,475.00 | 988.15 | 1,73.00 | 9,192.14 | 1,146.50 | 1,46.50 | 1,365.11 | 4,205.00 | 1,46.50 | 1,46.50 | 1,46.50 | 1,46.50 | 1,46.50 | 1,43.60 | 1,132.73 | 4,91.50 | 4,20.00 | 1,146.50 | 1,146.50 | 1,146.50 | 1,163.00 | 4,13.24 | 1,632.00 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 4,13.24 | 90/132 | 90/133 | 90/133 | 90/134 | 90/135 | 90/136 | 90/136 | 90/137 | 90/136 | 90/140 | 90/141 | 90/142 | 90/144 | 90/145 | 90/146 | 90/146 | 90/146 | 90/147 | 90/146 | 90/147 | 90/156 | 90/157 | 90/156 | 90/155 | 90/156 | 90/156 | 90/156 | 90/156 | 90/156 | 90/156 | 90/157 | 90/156 | 90/157 | 9 AUXIMAD
I AUXIMAD
I AUXIMAD
I MSC
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD
I AUXIMAD I Toamasina I Mahajanga I SECREN 110/590 (7815
11/590 (7815
11/590 (5816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816)
11/590 (6816) I Houte Mer I Maronniseba I Mayotte I Haule Mer I Port Victoria I SECREN Haute Mer
Porto-Rico
Moroni (Comores)
Toameshe
Toameshe
Toameshe
Toameshe
Toamssine
Toamssine
Toamssine
SECREN
Fort Dauphin
Vohimar
Houte Mer
Port StLouis
Haute Mer
Haute Mer
Haute Mer
Haute Mer
Haute Mer
Haute Mer
Haute Mer
Thaute Mer
Thaute Mer
Thaute Mer
Thaute Mer
Thaute Mer
Thaute Mer
Thaute Mer
Thaute Mer 1 Hauto Mer 13/590 08h00 114/590 10h45 114/590 10h45 114/590 10h45 116/590 08h30 116/590 38h30 116/590 10h45 116/590 10h45 116/590 10h45 116/590 10h45 116/590 15h00 105/590 15h00 120/590 15h00 120/590 15h00 120/590 15h00 120/590 16h00 I SECREN
I Maurice
I Toemasina
I Mahejanga
I Toemasina
I Haute Mer
I Fort Dauphin
I Haute Mer
I SECREN I AUXIMAD I AUXIMAD I AUXIMAD I SCAC I AUXIMAD I AUXIMAD I AUXIMAD I AUXIMAD I AUXIMAD I AUXIMAD I AUXIMAD l Toamasina I SECREN I Haute Mer I Taowan I Moroni 190/159 **HASIKIN**

A-4.4 Demand Forecast

The results of demand forecast in the case of low economic growth are shown in the following tables and figures.

Table A-4-4-1 Result of GDP Forecast in 1990 Price

(UNIT: BILLION FMG, %) YEAR AGRICULT INDUSTRY SERVICE TOTAL PRICE SHARE SHARE PRICE | SHARE PRICE | SHARE PRICE 1992 Price 1383 33.6 577 14.0 2155 52.4 4115 100 2010 Case 1 Price 2581 28.0 1833 19.9 4793 52.1 9207 100 3.5 6.6 4.5 Ave growth rate 4.6 Case 2 1103 15.7 3669 52.4 7006 2234 100 Price 3, 7 Ave growth rate 2. 7 3.0

Table A-4-4-2 Results of Cargo Volume Forecast (1)

	1			(UNIT:TON)
	YEAR	Casel(A)	Case2(B)	(A)~(B)
FOREIGN	EXPORT	89100	78600	10500
}	IMPORT	86800	70700	16100
	TOTAL	175900	149300	26600
DOMESTIC	LOAD	60000	54700	5300
1	UNLOAD	87300	78900	8400
	TOTAL	147300	133600	13700
TRANSHIP		164000	148300	15700
TOTAL	LOAD	149100	133300	15800
	UNLOAD	174100	149600	24500
	TRANSHIP	164000	148300	15700
•	TOTAL	487200	431200	56000

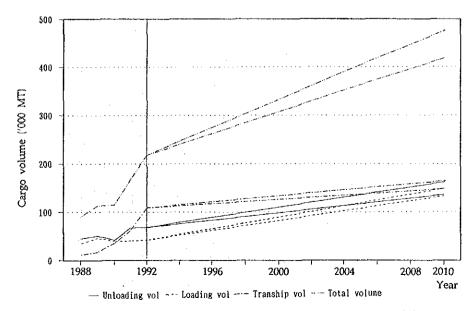


Figure A-4-4-1 Results of Cargo Volume Forecast (1)

Table A-4-4-3 Results of Cargo Volume Forecast (2)

		(UNIT:TON Case1(A) Case2(B) (A)-(B)			
YEAR			Case2(B)	(A)-(B)	
LOAD	FOREIGN	89100	78600	10500	
	TUNA-related	15200	15200	0	
	SALTS	25600	25600	0	
	PETROLEUM	0	Ó	. 0	
	OTHERS	48300	37800	10500	
	DOMESTIC	60000	54700	5300	
	TUNA-related	0	0	0	
	SALTS	29900	29900	0	
	PETROLEUM	12200	10400	1800	
	OTHERS	17900	14400	3500	
	TOTAL	149100	133300	15800	
	TUNA-related	15200	15200	0	
	SALTS	55500	55500	0	
	PETROLEUM	12200	10400	1800	
	OTHERS	66200	52200	14000	
UNLOAD	FOREIGN	86800	70700	16100	
OUDOUD	TUNA-related	8000	8000	0	
	SALTS	0	0	ő	
	PETROLEUM	48700	41600	7100	
	OTHERS	30100	21100	9000	
	DOMESTIC	87300	78900	8400	
	TUNA-related	37000	37000	0	
	SALTS	0,000	0,000	ő	
	PETROLEUM	19100	15900	3200	
	OTHERS	31200	26000	5200	
	FOTAL	174100	149600	24500	
	TUNA-related	45000	45000	0	
	SALTS	. 0	0	Ö	
	PETROLEUM	67800	57500	10300	
	OTHERS	61300	47100	14200	
TRANSHIP	TOTAL	164000	148300	15700	
HIMOHH	TUNA	52000	52000	0	
	PETROLEUM	112000	96300	15700	
TOTAL	FOREIGN	175900	149300	26600	
. 41110	TUNA-related	23200	23200	0	
	SALTS	25600	25600	Ö	
	PETROLEUM	48700	41600	7100	
	OTHERS	78400	58900	19500	
	DOMESTIC	147300	133600	13700	
	TUNA-related	37000	37000	0	
	SALTS	29900	29900	0	
	PETROLEUM	31300	26300	5000	
	OTHERS	49100	40400	8700	
	TRANSHIP	164000	148300	15700	
	TUNA	52000	52000	0	
	PETROLEUM	112000	96300	15700	
	TOTAL	487200	431200	56000	
	TUNA-related	112200	112200	00000	
	SALTS	55500	55500	ő	
	PETROLEUM	192000	164200	27800	
	2 .			and the second second	
	OTHERS	127500	99300	28200	

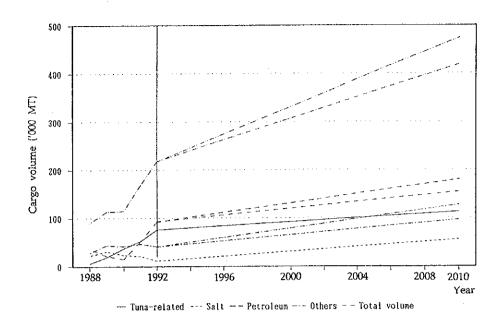


Figure A-4-4-2 Results of Cargo Volume Forecast (2)

Table A-4-4-4 Results of Forecast in Loading General Cargo

(Unit:ton) Casel(A) Case2(B) (A)-(B)141, 100 130,600 10,500 Foreign cargo 52,000 52,000 Tuna(tranship) 25,600 25,600 0 Rice 0 Flour 0 0 Cement 0 0 Fertilizer 15,200 15,200 Canned food 48,300 37,800 10.500 0thers 47,800 44,300 3,500 Domestic cargo 0 Tuna(tranship) 0 0 29,900 0 29,900 Salts 1,500 1,500 0 Rice 2,200 2,200 0 Flour 400 300 100 1,000 700 1,700 Fertilizer 0 0 0 Canned food 2,700 9,400 12,100 0thers 174,900 14,000 188,900 Total 52,000 52,000 tuna(tranship) 55,500 55,500 Salts 1,500 1,500 Rice 2,200 2,200 Flour 400 300 100 Cement 1,700 1,000 700 Fertilizer 15,200 15,200 Canned food 60,400 47,200 Others

Table A-4-4-5 Results of Forecast in Unloading General Cargo

			(Unit:ton)
	Casel(A)	Case2(B)	(A)-(B)
Foreign cargo	38, 100	29, 100	9,000
Rice	0	0	0
Flour	0	0	0
Tuna-related	8,000	8,000	0
Cement	6, 200	4,600	1,600
Coffee	0	0	0
Fertilizer	1, 900	1, 200	700
Animal & Vegetable oil	1, 100	700	400
Metal products	1, 100	1, 100	0
Others	19,800	13, 500	6, 300
Domestic cargo	120, 200	115,000	5, 200
Rice	4,600	4,600	0
Flour	7, 200	7, 200	0
Tuna-related	89,000	89,000	0
Cement	4, 100	3,000	1,100
Coffee	1,600	1,600	0
Fertilizer	0	0	0
Animal & Vegetable oil	200	200	0
Metal products	300	300	0
Others	13, 200	9, 100	4, 100
Total	158, 300	144, 100	14, 200
(TRANSHIP)	52000	52000	0
Rice	4,600	4,600	0
Flour	7, 200	7, 200	0
Tuna-related	97, 000	97,000	0 [
(TRANSHIP)	52000	52000	0
Cement	10,300	7,600	2, 700
Coffee	1,600	1,600	0
Fertilizer	1,900	1, 200	700
Animal & Vegetable oil	1, 300	900	400
Metal products	1, 400	1,400	0
Others	33,000	22, 600	10, 400

SITUATION HANGAR "METALLIQUE / HANGAR DE LA CAMBERCE | CHAMBRE | H PLAN DE A-5.5.1 Reconstruction Works of the Old Quay (1972) BOLLARDS D'ANMARRAGE QUAL & RECONSTRUIRE A-5.5 Structural Design

Figure A-5-5-1 General Plan

A-65

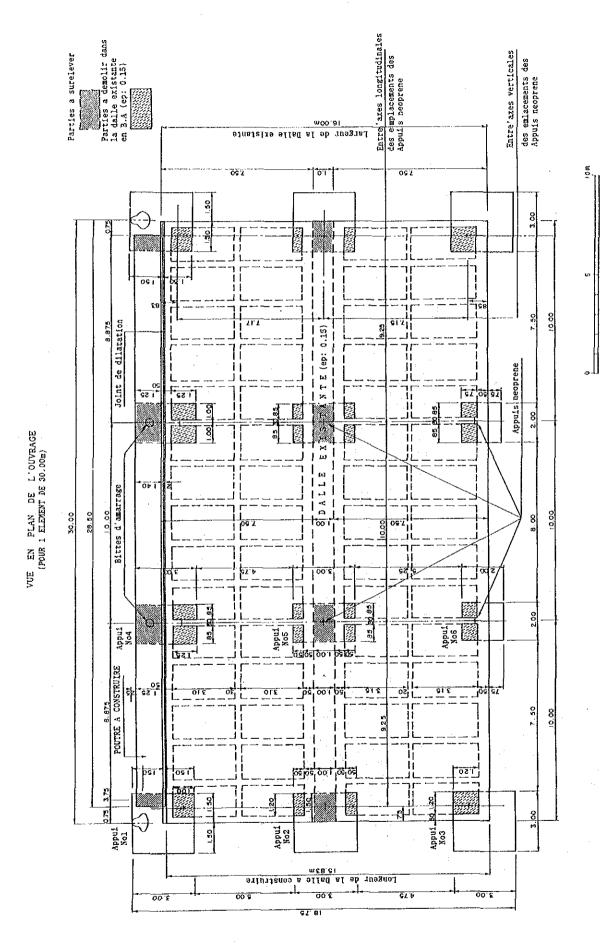
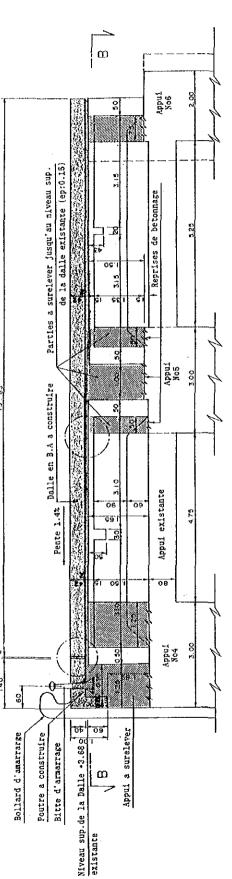



Figure A-5-5-2 View of Structure

PLAN-COUPE B-B DE L'OUVRAGE EXISTANT

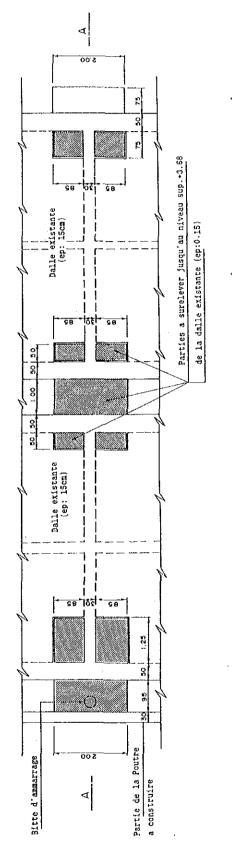
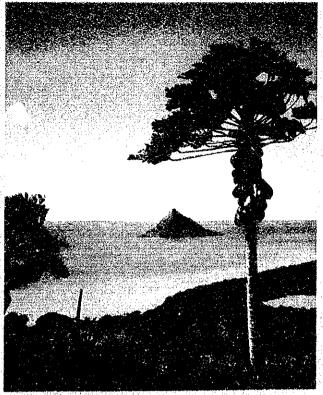
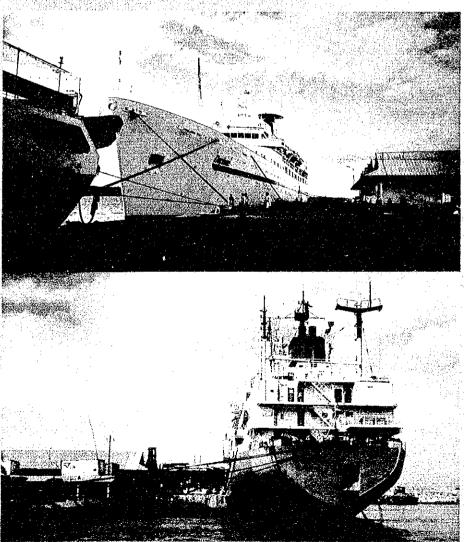




Figure A-5-5-3 Slab and Front Wall

