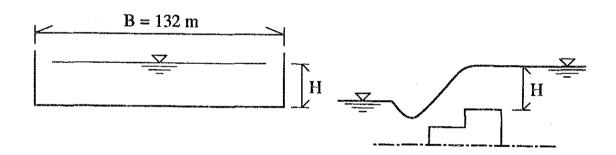


Proposed Ground Sill for New Bagmati Bridge

Existing ground sill is constructed to protect piers of Bagmati Bridge at Thapathali when New Bridge is constructed the ground sill should be reconstructed to maintain present condition.


In view point of hydraulics, high ground sills have disadvantages of inundation problems in upstream area. Back water calculation is performed on the following two alternative to study the effect due to change height of ground sill.

Alternative 1

Crest of proposed ground sill is 1279.9 of the same level as one of existing ground sill.

Design discharge Crest width 1,121.01 m³/s

h 132.0 m

Calculation of head over crest is performed by following formula.

Q =
$$0.35 \text{ B} \sqrt{2} \text{ g H}^{3/2}$$

where,

Q: discharge (m³/s)

B: width of crest (m)

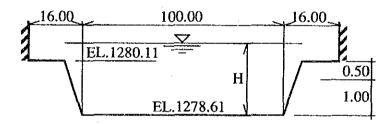
g: acceleration due to gravity = 9.8 m/sec^2

H: head over crest

given
$$H = 3.15$$

 $Q = 1143.5 \text{m/s} > 1121.2 \text{ m}^3/\text{s} ----- OK$

Water elevation at control point over crest is;


$$1279.9 + 3.15 = 1283.05$$

The result of calculation of back water is shown on Fig.A4.3.5 (1/2). In this case, innandation area due to backwater upstream is approximately 60 ha.

Alternative (2)

Crest of proposed ground sill is 1278.56 of the same level as top of footing of pier of Bagmati Bridge at Thapathali.

Design discharge	1,121.7 m ³ /s
Under Crest width	130 m
Upper Crest Width	132

given H =
$$3.5 \text{ m}$$

Q = $1128.5 \text{ m}^3/\text{sec} > 1121.7 \text{ m}^3/\text{s}$ OK

Water elevation at control point over crest is;

$$1278.56 + 3.50 = 1282.06 \text{ m}$$

The result of calculation of back water is shown on Fig.A4.3.5 (2/2). In this case, innandation problem due to back water upstream is almost evaded.

Therefore it is recommended that crest of proposed ground sill is lowered upto 1278.56 on the basis of view point of hydraulics.

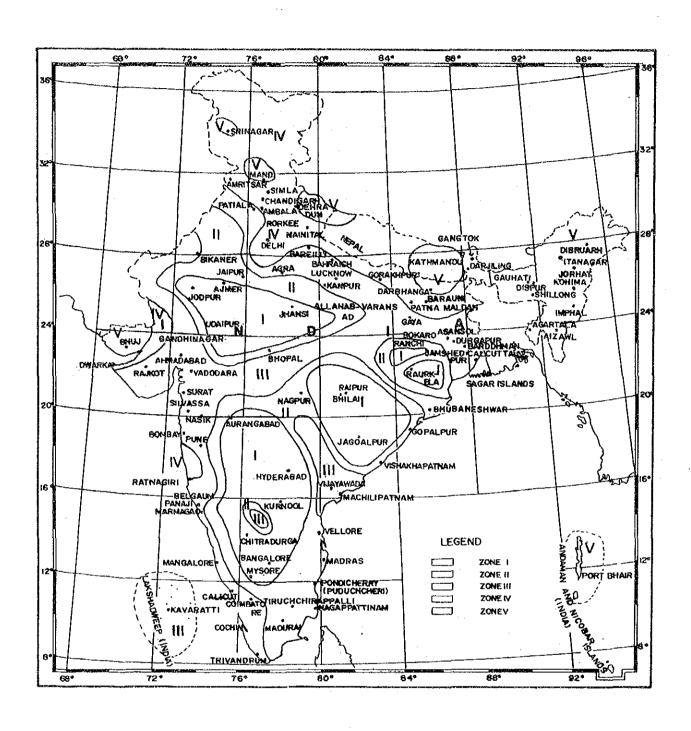


Figure A.4.4.1 MAP OF INDIA SHOWING SEISMIC ZONES

Table A.4.4.1 SEISMIC COEFFICIENTS FOR SOME IMPORTANT TOWNS (BNCI)

Town	Seismic Coefficient		Town	Zone	Horzontal Seismic Coefficient
Agra	Ш	0.0 4	Jorhat	٧	0.0 8
Ahmadabad	${ m III}$	0.0 4	Jabalpur	\mathbf{m}	0.0 4
Ajmer	I	0.0 1	Kanpur	Ш	0.0 4
Allahabad	Π	0.0 2	Kathmandu	V	0.0 8
Almora	IV	0.0 5	Kohima	V	0.0 8
Ambala	IV	0.0 5	Kurnool	I	0.0 1
Amristar	IV	0.0 5	Lucknow	Ш	0.0 4
Asansol	Ш	0.0 4	Ludhiana	IV	0.0 5
aurangabad	I	0.0 1	Madras	П	0.0 2
Bahraich	īV	0.0 5	Madurai	П	0.0 2
Bangalore	Ī	0.0 1	Mandi	Ÿ	0.0 8
Barauni	ĪV	0.0 5	Managalore	m	0.0 4
Bareilly	Ш	0.0 4	Monghyr	ĨV	0.0 5
Baroda	m	0.0 4	Moradabad	ÎV .	0.0 5
Bhatinda	m	0.0 4	Mysore	Ĩ	0.0 1
Bhilai	I	0.0 1	Nagpur	Π	0.0 2
Bhopal	II	0.0 2	Nainital	IV	0.0 5
Bhubaneswar	Ш	0.0 2	Nasik	Ш	0.0 3
	V	0.0 4	Nellore	II	0.0 4
Bhuj	m	0.0 8		m	0.0 2
Bikaner			Panjim	Ш	0.0 4
Bokaro	Ш	0.0 4	Patiala		
Bombay	Ш	0.0 4	Patna	IV	0.0 5
Burdwan	Ш	0.0 4	Pilibhit	IV	0.0 5
Calcutta	$\overline{\mathbf{m}}$	0.0 4	Pondicherry	II	0.0 2
Calicut	Ш	0.0 4	Pune	III	0.0 4
Chandigarh	Ĩ	0.0 5	Rajpur	I	0.0 1
Chitradurga	I	0.0 1	Rajkot	Ш	0.0 4
Coimbatore	Ш	0.0 4	Ranchi	II	0.0 2
Cuttack	m	0.0 4	Roorkee	IV	0.0 5
Darbhanga	V	0.0 8	Raurkela	I	0.0 1
Darjiling	IV.	0.0 5	Sadiya	V	0.0 8
Dehra Dun	IV	0.0 5	Simla	IV	0.0 5
Delhi	IV	0.0 5	Sironj	I	0.0 1
Durgapur	\mathbf{m}	0.0 4	Srinagar	V	0.0 8
Gangtok	IV	0.0 5	Surat	\mathbf{m}	0.0 4
Gauhati	V	0.0 8	Tezpur	V	0.0 8
Gaya	\mathbf{m}	0.0 4	Thanjavur	П	0.0 2
Gorakhpur	IV	0.0 5	Tiruchchirappalli	Π	0.0 2
Hyderabad	I	0.0 1	Trivandrum	${f m}$	0.0 4
Imphal	\mathbf{V}	0.0 8	Udaipur	Π	0.0 2
Jaipur	n	0.0 2	Varanasi	\mathbf{m}	0.0 4
Jamshedpur	Ī	0.0 2	Vijayawada	Ш	0.0 4
Jhansi	Ĩ	0.0 1	Vishakhapatna	П	0.0 2
Jodhpur	Ī	0.0 1			

Note: The coefficients given are according to 5.2.1 and should be suitably modified for important structures according to 5.2.2 and 5.4

Table A.4.4.2 LIST OF EARTHQUAKES OF MORE THAN 5 MAGNITUDE ON RICHTER SCALE, OCCURRED WITHIN THE NEPAL REGION

Ÿ	MD	EPCL	AREA				DEPT	TNT	MAG	REF
1966	12 10	WEST	NEPAL			81.000	KM	ММ	5.0	USC
1966	12 21		KELVP			80.790			5,2	ISC
1967	01 05					86.000			5.2	LAO
1967	08 14			28,0	00	80.000			5.0	LAO
1967	12 18	l .				81.710		ė	5.0	ISC
1968		NEPA!	L			80.400			5.1	USV
1969	02 04					81.400			5.1	LAO
1969	02 11					82.700	•		6.2 5.0	LAO
1969 1969	02 13 02 13					85,400 81,800			5.3	LAO LAO
1969	02 24					85.600			5.2	CAJ
1969	03 03					79.840			5.0	ISC
1969	03 05					81.100			5.2	HARI
1970	02 12			29.2	40	81,570			5.3	ISC
1970	.02 26					85.700			5.0	ISC
1971		TIBET		30.7	90	84.330	27		\$,3	ISC
1971		NEPAI		27.5	30	87.950	29 18		5.2 5.1	ISC
1972 1972		TIBET				84.470 84.502	33	4.	5.3	NEIS
1972		TIBET				84.920	32		5.0	ISC
1973		TIBET				88.080			5.1	ISC
1973		TIBET				86.993	33		5.2	NEIS
1973	10 16	NEPAI	L	28.2	19	82.945	33		5.2	NEIS
1974		TIBET				86.320			5.5	ISC
1974		MEDY				86.000			5.4	ISC
1974		NEPA				85.510	20		5.5	ISC
1974		NEPA				81.380	45 33		5.2 5.4	NEIS
1975 1975	06 19	NEPAI	L.			84.729 87.500	33		5.1	NEIS
1975		NEPAI	t.			81.950	33		5.1	ISC
1975		TIBET		28.1	50	87.800	. 33		5.0	IZC
1976		NEPAI				81.460	33		5.2	NEIS
1976	09 14	TIBET				89.559	82		5.5	NEIS
1976		NEPA				81.390	33		5.0	neis
1976		TIBET				86.228	63		5.1	NEIS
1977		TIBET				88.058	33		5.2	NEIS
1977		TIBET				89.380 88.388	33 33		5.0 6.5	ISC NEIS
1977		TIBET				£4.700	"		5.3	ISC
1978		TIBET				83,100			5.1	ISC
1978		NEPA				85.963	33		5.2	NEIS
1979			LINDIA BORDE	R 30.0	129	80.310	33		5.9	NEIS
1979	06 19	NEPAI	L INDIA BORDE						5.2	ISC
1980		TIBET				88.860	14		5.7	ISC
1980		TIBET				81.760	28		5.1	ISC
1980		NEPAI NEPAI				81.210 81.092	3 18		5.7 6.1	ISC NEIS
1980 1980		TIBET				87.666	. 33		5.0	NEIS
1980		NEPA				81.208	33		5.0	NEIS
1980		TIBET				85.180	24		5.0	ISC
1980	11 19	SIKKU	M	27.4	00	88.800			6.0	ISC
1981	05 15					81.942			5.1	
1982	04 05					88.984			5.1	NEIS
1983			CHINA BORDE				33		5.2	NEIS
1983			CHINA BORDE				33 58		5.0	NEIS NEIS
1984 1984		NEPAI	L INDIA BORDE	∿ ፈሃ.℃ የነየ	75	82.262	33		5.0	NEIS
1984		NEPA		-		81.884	33		5.6	NEIS
1984			BANGLADESH			91.519	33		5.3	NEIS
1984			BANGLADESH			92.839	33		5.6	NEIS
1985	06 15	;		34.6	30	82,990	20		5.4	ISC
1986	01-10					86.560	63		5.5	ISC
1986	02 12					82.930	33		5.0	ISC
1986	03 01					82.969	33		5.0	NEIS
1986	04 26					76.400 86.820	33 33		5.5 5.9	ISC ISC
1986 1986	06 20 07 06					80.200	9		5.7	ISC
1986	07 16					78.000	4		5.6	1SC
1986	07 19					86.860	17		5.1	ISC .
1986	09 09					85.050	7		5.4	ISC
1987	01 19					83.600	33		5.2	ISC
1987	08 09					83.740	74		5.5	ISC
1988	04 20					86.720	55		5.4	ISC
1988	08 20					86.610	71		6.4	PDE
1989 1989	02 09 04 03					89.760 90.020	33 10		5.4 5.2	PDE PDE
1989	05 22					87.770	33		5.0	PDE
1990	02 22					89.940	33		5.0	PDE

Abbreviation

Y = year

D = day

E

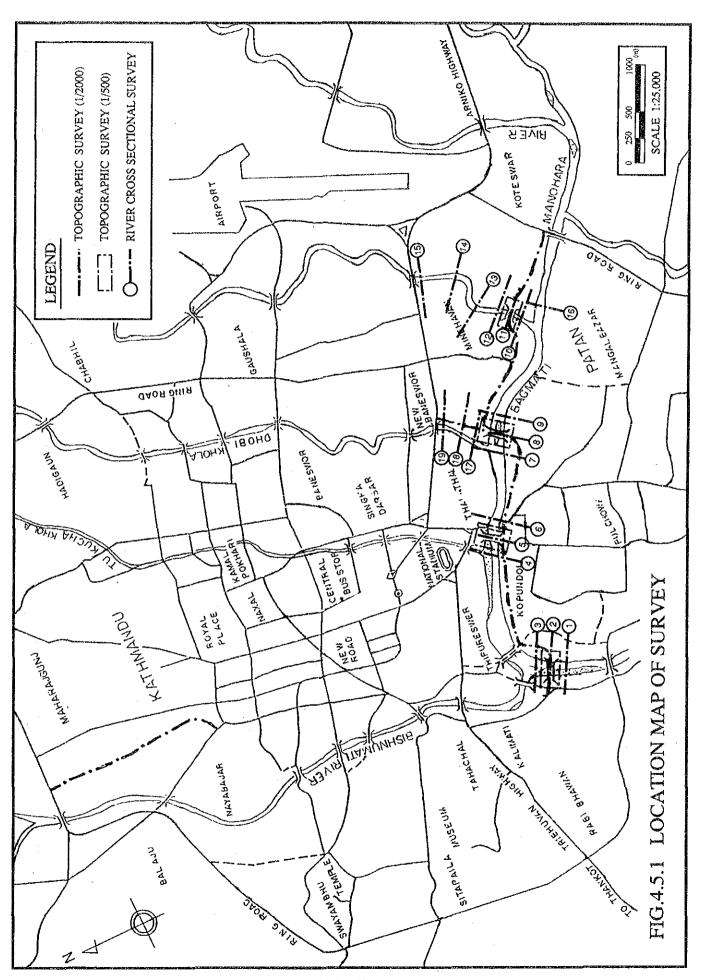
LAT = latitude

Dept = depth of hypocentre

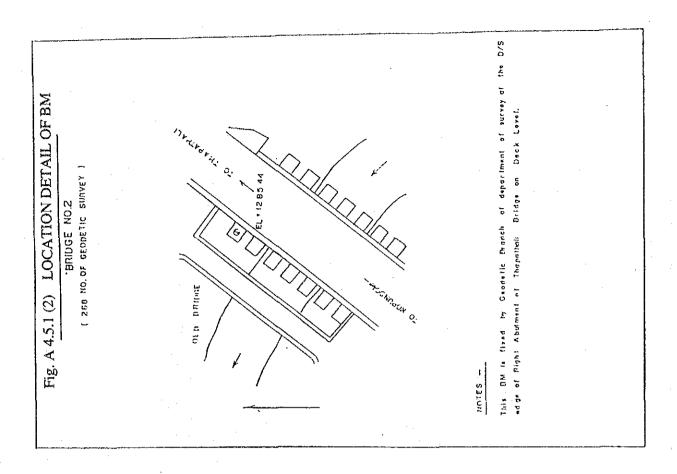
Mag = Magnitude

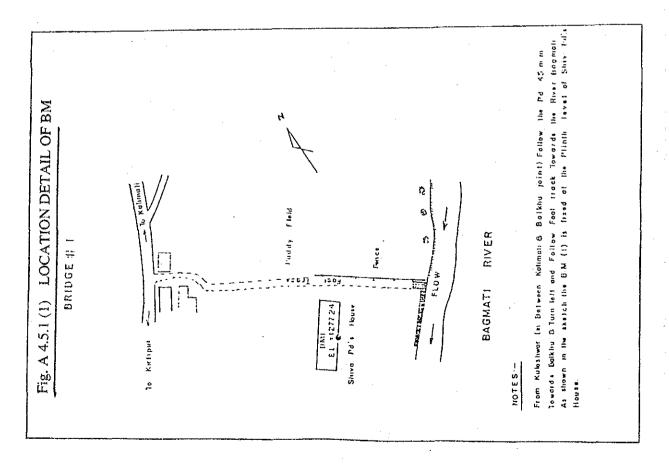
REF = Reference Agency

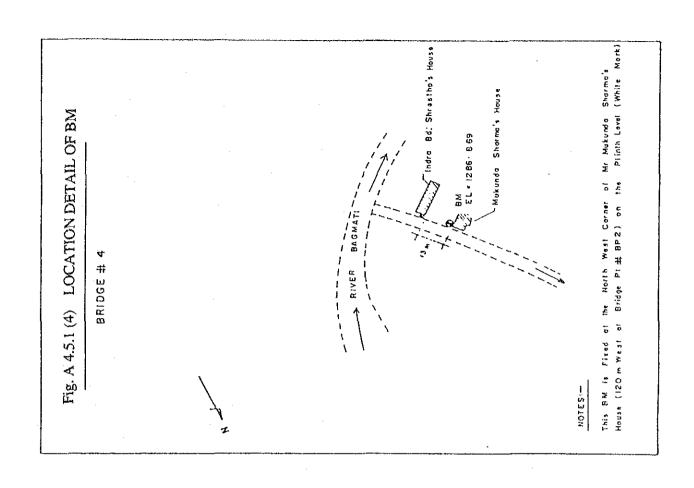
ISC = International Seismological Centre, UK


NEIS = National Earthquake Informations Service, USA

PDE = Preliminary Determination of epiccotre


M = month


EPCL = epicentre location


LONG = longitude

A4 - 53

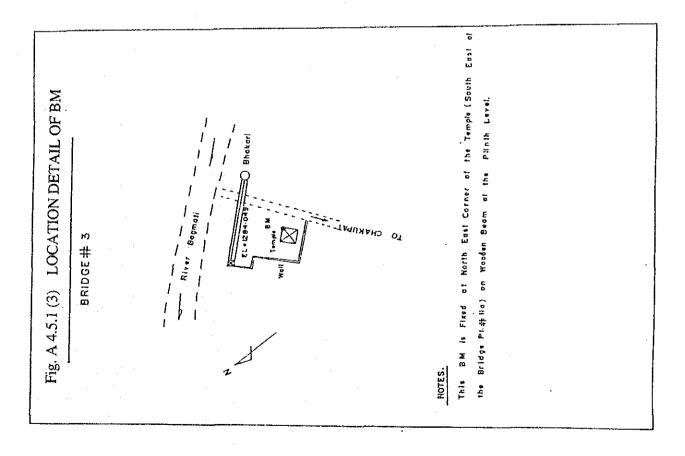


Table A.4.5.1 (1) COORDINATES OF TRAVERSE POINT (1/2)

ATIONS		BEARING	DISTANCE	EASTING	NORTHING
		(W. C. B.)	(m.)	(m.)	(m.)
TP 11974		225,34740	077.018	631,644.22	3,062,951.62
	- T 1	031.80710	137.323	631,771.39	3,063,122.45
T 1	- T 2	091.92876	116.533	631,887.86	3,063,118.53
	- T 3	303.05766	219.454	631,587.46	3,063,242.16
Γ3	- T4	297,34821	119.401	631,481.40	3,063,297.01
T 4	- T 5	328.80210	245.358	631,354.30	3,063,506.88
T 6	- T 7R	329.00377	223.358	631,202.57	3,063,777.72
T 5	- T6	335.20266	087.491	631,317.60	3,063,586.31
T 7R	- T 8a	165.55988	031.985	631,210.55	3,063,746.80
	- T 8R	321.28710	111.825	631,132.64	3,063,865.03
	- Tlla	244.06905	267.714	630,961.81	3,063,660.70
T 11a	- T8	277.16849	313.406	630,650.86	3,063,699.81
T 8a	- T9	303.06016	163.760	630,513.61	3,063,789.14
T 9	- T 10	291.86249	117.806	630,404.28	3,063,833.01
• /	- T 11	306.32599	600.221	630,030.04	3,064,144.70
Т 11	- B P1	181.49349	103.637	630,027.34	3,064,041.10
	- TP 5476	013.06470	103.564	630,053.45	3,064,245.58
Т 11	- T 11#	311.52043	456.803	629,688.02	3,064,447.51
1 11 T 11#	- T 12	260.02793	238.446	629,453.55	3,064,407.92
	- T 12	197.60738	073.556	629,431.30	3,064,337.81
T 12	- 1 12 - T 13		268.616	629,201.98	3,064,400.05
T 101		290.05905	172.915	629,262.26	3,064,374.18
T 12/1	- T 12/2	282.14182	247.910	629,014.61	3,064,362.56
T 12/2	- T 14	267.31349		-	•
Γ 14	- T 15	202.43932	075.795	628,985.68	3,064,173.33
Т 15	- T 16	319.591.55	062.420	628,945.22	3,064,292.51
T 16	- T 17	210.69321	193.865	628,846.26	3,064,173.33
T 17	- T 18	217.31932	115.135	628,776.46	3,064,081.77
T 18	- T 19	254,44460	103.589	628,676.66	3,064,053.99
T 19	- T 20	235.83405	042.631	628,641.39	3,064,030.04
T 20	- BP 2	237.23294	035.010	628,611.95	3,064,011.10
T 2	- T1	271.92877			
	- BP 2 (T 21)	119,44460	137.889	632,007.94	3,063,050.74
BP 2	- BP 1 (T22)	128.45238	066.252	632,059.82	3,063,009.54
T 22	- T 23	135.33738	260.088	632,242.64	3,062,824.55
T 23	- T 24	159.84627	040.337	632,256.54	3,062,786.68
T 24	- T 25	142.18880	072.451	632,300.96	3,062,729.44
T	- T 26	141.37960	144.239	632,346.51	3,062,673.99
Т 26	- T 27	124.51849	395.078	632,672.07	3,062,450.14
T 28	- T 29	015.74266	122.683	628,539.12	3,063,696.16
T 29	- T 30	013.40432	243.625	628,595.60	3,063,933.14
	- BP 2			628,611.95	3,064,011.10
T 30		011.84118	079.645		3,064,030.61
BP 2	- BH	335.78516	021.400	628,603.17	
	T 31	348.82738	043.357	628,603.54	3,064,053.63
	T20 (BP1)	057.23294	035.010	628,641.39	3,064,030.04
T 31	- E	273.89960	086.261	628,517.48	3,064,059.50
E	- D	297.18849	069.711	628,455.47	3,064,091.35
D	- T 32	316.01349	094.240	628,390.02	3,064,159.15
Г 32	- T 33	342.36405	194.810	628,330.97	3,064,344.91
	- A	149,44127	009.560	628,394.88	3,064,150.92
8 (R)	- 34	246.61543	034.230	631,101.22	3,063,851.44
	- 35	047.38960	060.520	631,177.18	3,063,906.00
	- 36	024.55960	242.440	631,233.41	3,064,085.84
	- 37	016.67850	386.641	631,243.61	3,064,235.41
T 37	- T 38	182.61322	084.721	631,239.75	3,064,150.78
	- T 38A	119.10072	062.282	631,298.03	3,064,205.12

Table A.4.5.1 (2) COORDINATES OF TRAVERSE POINT (2/2)

AOITA	IS	BEARING (W. C. B.)	DISTANCE (m.)	EASTING (m.)	NORTHING (m.)
T 39	- T 40	180.75794	414.706	629,493.53	3,068,710.04
T 40	- T41	185.97182	249.697	629,467.55	3,068,461.69
T 40	- T 42	349.24294	057.774	629,482.75	3,068,766.80
T 41	- T 43	193.39682	185.028	629,424.68	3,068,281.70
T 43	- T 44	109.55738	065.885	629,486.73	3,068,259.53
T 44	- T 45	175.48682	223.188	629,503.87	3,068,037.00
T 45	- T 46	129.22294	015.390	629,515.77	3,068,027.24
T 45	- T 47	175.41627	095.934	629,511.36	3,067,941.36
T 47	- T 48	071.27821	024.920	629,534.97	3,067,949.34
T 47	- T 49	157.89182	199.769	629,586.20	3,067,756.14
T 49	- T 50	174.78766	117.147	629,596.63	3,067,639.46
T 50	- T 51	280.06349	009.810	629,586.98	3,067,641.19
T 50	- T 52	188.07321	068.273	629,586.92	3,067,571.88
T 52	- T 53	193.58483	080.276	629,568.07	3,067,493.85
T 53	- T 54	194.28066	059.162	629,553.48	3,067,436.51
T 54	- T 55	217.00150	074.725	629,508.51	3,067,376.84
T 55	- T 56	220.80872	056.783	629,530.52	3,067,429.18
T 55	- T 57	260.72566	099.511	629,410.30	3,067,360.80
T 57	- T 58	046.05400	035.000	629,435.50	3,067,385.09
T 57	- T 59	258.57566	054.832	629,356.55	3,067,349.94
T 59	- T 60	15.61066	027.763	629,363.75	3,067,375.72

Appendix 5.3.1 Alternative Study on Protection Works of Existing Bagmati Bridge

The existing 2-lane Bagmati Bridge at Thapathali was constructed in 1968, about 25 years back. During the flood in September 1991, one of its pear suffered settlement and rotation. It was demolished and a new pier was constructed with a gabion checkdam against the lowering of river bed to open the traffic in early 1992. These protection works however are

The existing bridge is supposed to be utilized for another 10 years from now on, so that appropriate protection work should be provided on the piers of existing bridge.

The following four (4) alternative plans are studied as shown in Fig. A 5.1 on the protection work of existing bridge.

A - Plan: Construction of a new 2-lane bridge on d/s side and

protection of the existing piers

B - Plan: This plan is same as A-Plan. The only difference is that

instead of permanent ground sill, gabion ground sill will be

provided.

C - Plan: Construction of a new 2-lane bridge on d/s side and

reconstruction of the existing piers.

D - Plan: Construction of a new 4-lane bridge.

The detail of each alternatives are explained below:

A - Plan and B- Plan: Construction of a new 2-lane bridge on d/s side and protection of the existing piers

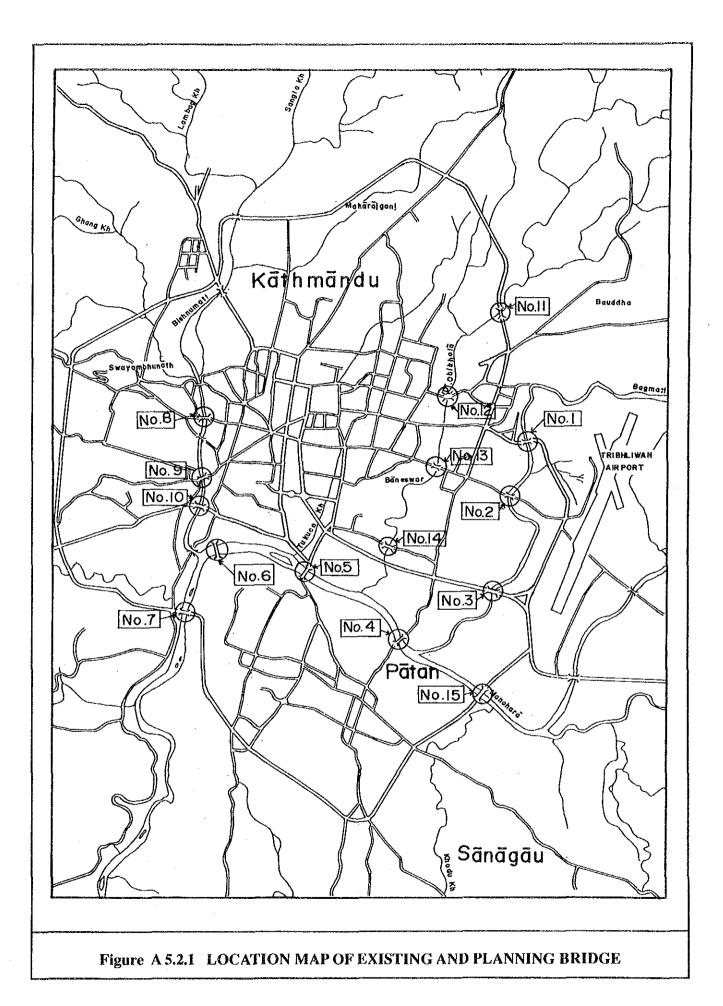
A check-dam (ground sill) should be provided on downstream to raise the river bed level and prevent it's further erosion. The materials of check-dam should be either reinforced concrete or gabion. The check-dam made of reinforced concrete is used as the permanent structure while gabion check-dam temporary stricture. Selection of materials depends on availability of funds.

In addition to the check-dam, the scour protection around the existing piers should also be constructed. The elevation of this protection will be the same as that for the ground sill. From hydrological considerations, the top of ground sill should be 1.5 m below the top of existing pier footing.

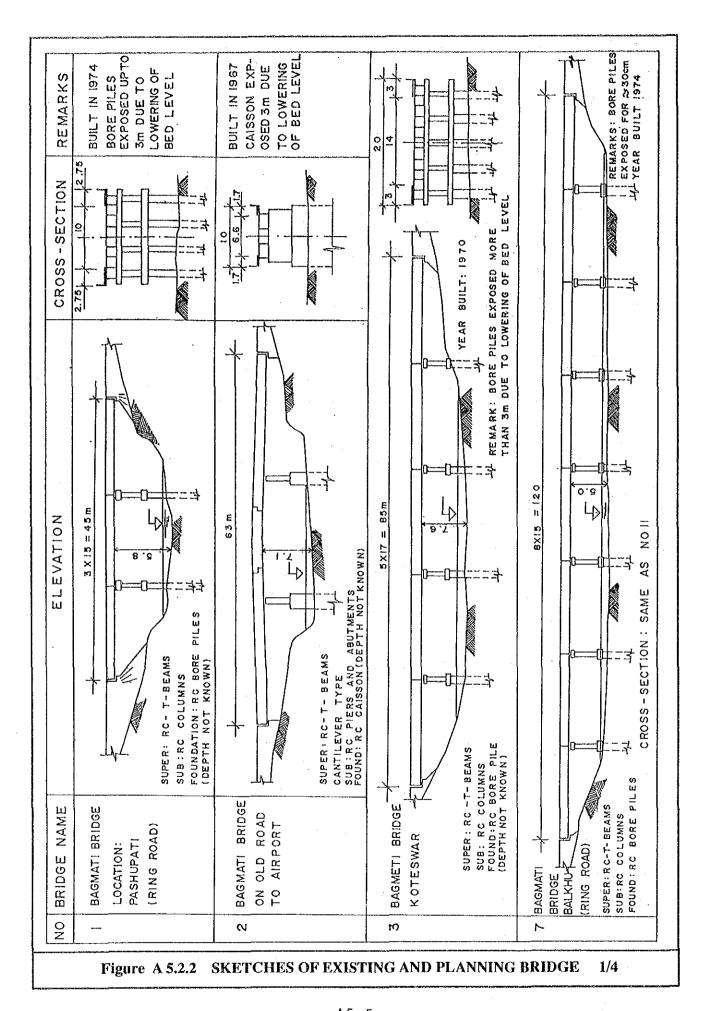
C - Plan: Construction of a new 2-lane bridge on d/s side and reconstruction of the existing piers.

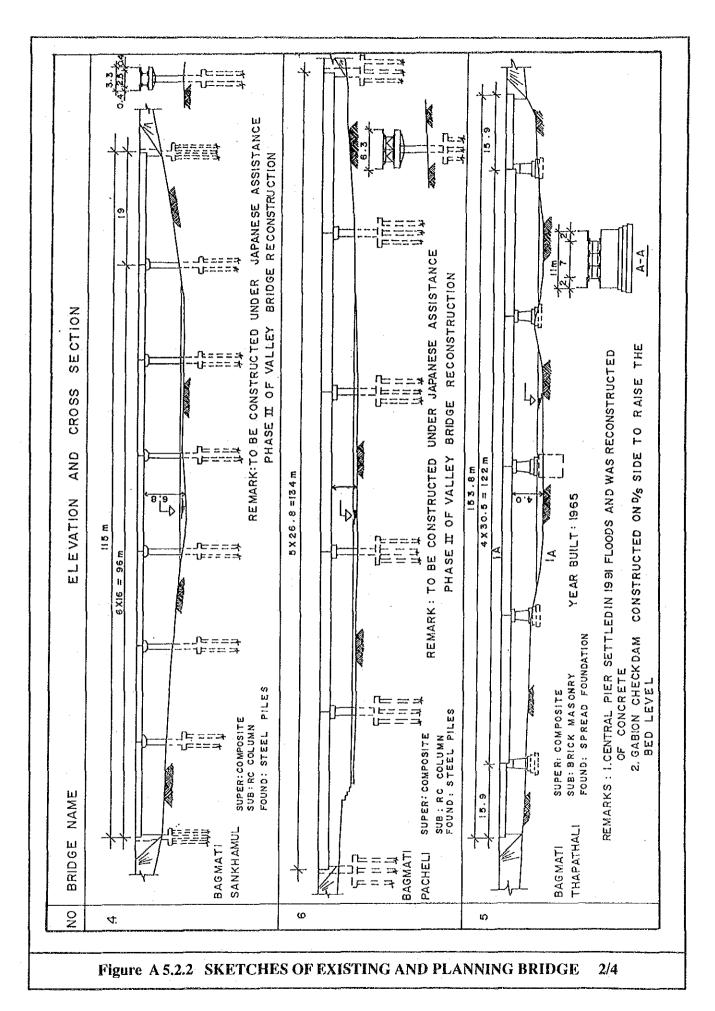
After the construction of the new bridge, the traffic is diverted to the new bridge and the superstructure of the existing bridge is dismantled temporarily for the foundation works and sheet pile works. The existing piers are then demolished and new piers with pile foundations are constructed. After this, the superstructure is again placed on the new piers. In this plan there is no necessity of constructing the ground sill and scour protection. The difficult works associated with this plan are that the superstructure should be repaired and adjusted for new type of rivet connections, camber, etc. For this it has to be carried to a factory. In this way the cost for rehabilitation is sometime more than the cost for new construction. The construction period required for this plan will be longer, and temporary gabion has to be provided for the protection of existing bridge during new bridge construction.

D - Plan : Construction of a new dual 2-lane bridge.

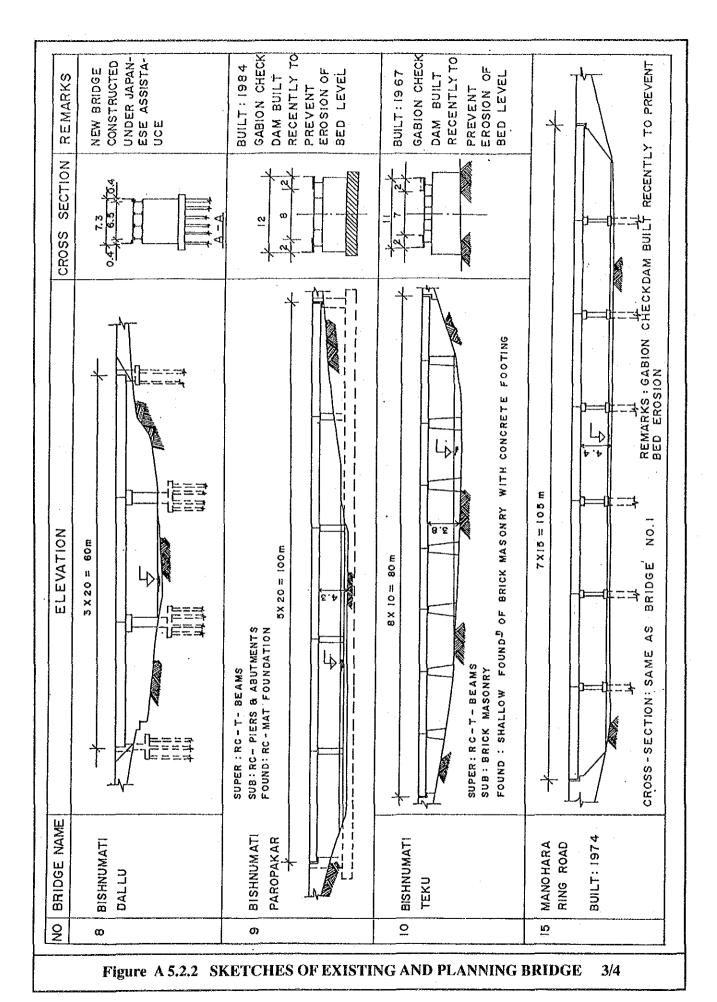

This plan is total replacement of the existing 2 lane bridge to the new bridge with dual 2 lane. A first, a new 2-lane bridge is constructed on d/s side and the traffic is diverted through this new bridge. Then the existing bridge is completely demolished. The next is the construction of another new 2-lane bridge on the u/s side and their connection with each other. This plan has three disadvantages. One is its very high construction cost, second is the longer construction period and the third is the need for providing temporary gabion structure for the protection of the existing bridge during the construction of the first 2-lane bridge on d/s side.

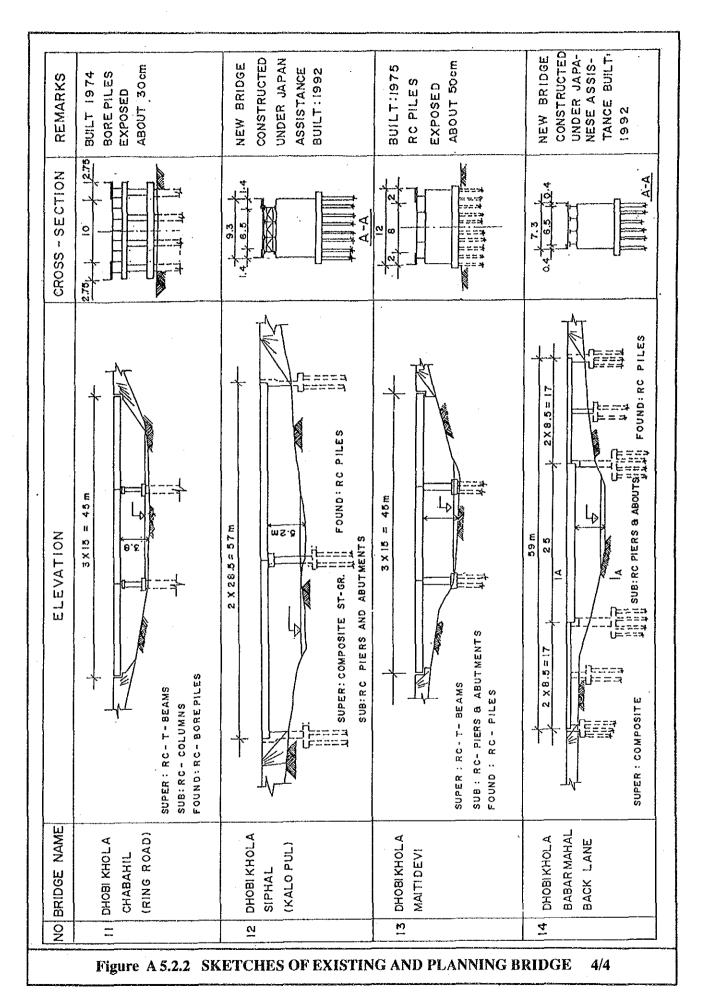
On comparison of the above 4 plans, A-plan seems to be the most favorable and recommended to be implemented.


Appendix 5.3.2 Inspection of Existing Bridges and Topo. Conditions


For the planning and design of the bridges the existing bridges across Bagmati, Bishnumati, Dhobi Khola and Manohara rivers have been visually inspected. Also, some planned bridges and bridges under construction have been referred to. These bridges have been indicated in Fig. A 5.2 (1) and sketches of these bridges are shown in Fig. A 5.2 (2). These data have been used to fix the bridge length, the minimum span, span arrangement, the lowering of river bed, the girder bottom elevation, etc.

In addition to this, the aerial photo of 1987 and survey map of around 1974 has been referred to for estimation of the natural course change. The enlarged bridge site plans which resulted form the combination of the aerial photo and survey map are shown in the Fig. A 5.2 (3) and Fig. A 5.2 (4). The indicated new river line in the plans has been scaled up from the aerial photos.




A5 - 4

A5 - 6

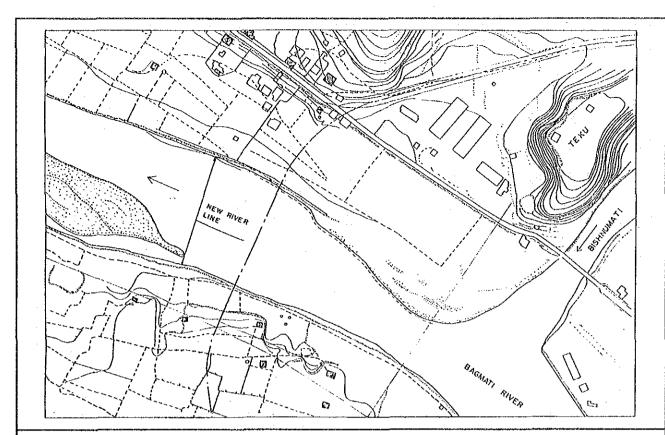


Figure A 5.2.3 (1) BAGMATI BRIDGE No.1 MAP

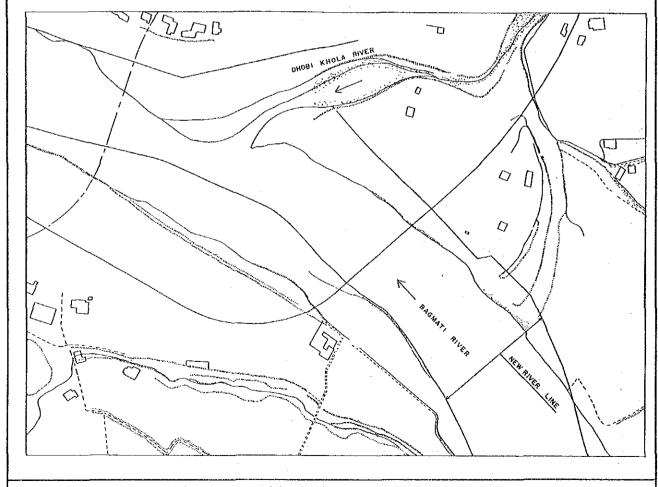
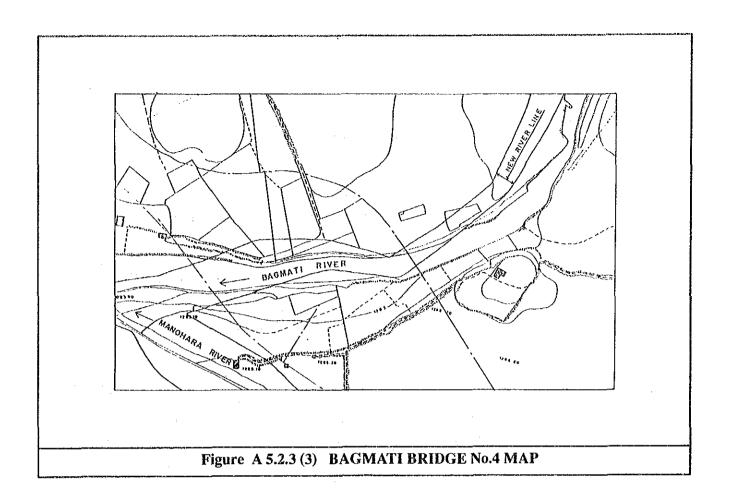



Figure A 5.2.3 (2) BAGMATI BRIDGE No.3 MAP

Appendix 5.5.2 Traffic Volume on the Project Roads

TRAFFIC VOLUME ON THE SECTIONS OF THE PROJECT ROADS

Section		Traffic V	olume - 1	1997 (100	Vehicles/	day)	
	M/C	Taxi	Bus	P/C	Truck	Total	HV*
1	17	19	3	13	5	57	8
2	38	35	7	29	11	120	18
3	19	9	3	13	8	52	. 11
4	46	23	.8	32	11	120	19
5	38	17	6	29	5	95	11
6	28	26	7	21	8	90	15
7	135	100	20	87	19	361	39
8	39	15	6	28	8	96	14
9	34	8	4	20	7	73	11
10	28	14	5	18	3	68	8
11	20	56	8	20	3	107	11

Section		Traffic V	olume - 2	002 (100	Vehicles/	day)	
	M/C	Taxi	Bus	P/C	Truck	Total	HV*
1	20	19	3	17	7	67	10
2	46	35	8	39	15	143	23
3	23	9	3	17	11	64	15
4	55	23	9	43	15	146	24
5	46	17	7	39	7	116	14
6	34	26	8	28	11	107	19
7	163	100	23	117	26	429	49
8	47	15	. 7	38	11	118	18
9	41	8	5	27	10	90	14
10	34	14	6	24	4	82	10
11	24	56	9	27	4	120	13
Growth Rate	3.8	0.0	2.6	6.1	6.8		
(% per annum)							
Expansion Factor	1.20	1.00	1.14	1.34	1.39		
(2002/1997)							

Location Map

Description	Unit	South link of inner ring road	Sanepa access	Patan access	Koteswor access	Central bus terminal access	New bagnmati bridge Thaphatali side intersection with signal	New bagnmati bridge Patan side intersection
Clear site and stripping	m2	76,464	8,830	3,556	45,000	38,012		
Removal of existing pavement material	m3	•		•			100	100
Removal of existing bridge at Thaphatali	L.S		•		÷.,			
Removal of existing structures	m3						100	100
Fill in soft material	m3	120,713	9,582	2,511	68,173	41,384	1,300	862
Spoil in soft material	m3 -	5,162	1,373	275	11,004	196	130	493
Sodding	m2	25,648	2,414	1,086	15,599	10,856		
Plant selected trees	no.	744						
Gabion	m3						50	500
Stone Masonry	m2	4.880	•	490			250	
Excavation in soft material for structures	m3					120		
Backfilling with selectedmaterials for structures	m3	•				40		
Side block	m	2,840				•		•
Kerb stone (A)	m	2,521	990	400	4,064	3,730	· I	•
Kerb stone (B)	m	1,345		,,,,	150	51,00	400	450
Kerb stone for bridge	m	1,510			. 250		400	430
Pipe culvert D300	m	1,155	188	80	1,600	750	i	
Pipe culvert D600	m	1,720		200	1,060	760		50
Pipe culvert D1000	m	205	74	200	. 81	133		30
U shaped drain ditch (0.3 x 0.3m)	m	203	940	365	01	133	ev.	
U shaped drain ditch (0.5 x 0.5m)	m	3,167	740	303	3,615	3,572		
U shaped drain ditch (1.0 x 1.0m)		300			3,013	132		
Side drain with stone pitching	m	1,934				132		
Catch pit	m	1,934	47	20	20.6	107		02
Manhole	no.	96	47	4	206	187 90		23
Subbase course	no.	12,831	102	423	114			107
	m3		638		2,894	4,875		197
Base course	m3	11,134	552	368	2,504			164
Prime coat, 1.0 litre/m2	m2	34,400	4,880	1,600	22,140	18,650		2,408
Tack coat, 0.4litre/m2	m2	68,880	4,880	1,600	22,140	18,650		2,408
Asphalt concrete binder course t=6cm	m2		4,880	1,600	22,140	18,650		1,750
Asphalt concrete binder course t=10cm	m2	34,440					1,280	660
Asphalt concrete surfase course t=4cm	m2		4,880	1,600	22,140	18,650		1,750
Asphalt concrete surfase course t=5cm	m2	34,440					1,280	660
Side walk t=13cm	m2	17,220	2,440	1,600	11,070	9,325		750
Road lighting	no.	32					18	10
Traffic signal	portion	4	1	1	1	. 2		
Lane marking 15cm	m	11,721	1,575	690	6,681	5,775	1,120	700
Information sign	no.	19	3	3	3	6	4	
Steel pile D800	m							
Steel pile D500								
Concrete class-A, 240kg	m3					73		
Concrete class-C, 180kg	m3				•	8		
Formwork for superstructures	m2		·					
Formwork for all structures other than superstructur	m2					245		
Reinforcement	ton				•	8		
$Prate\ girder\ (material, assemble, transportation, electi$	ton							
Bridge railing	m							
Excavation for diversion of the river	m3							
Construction and removal of temporary road	m3							
Temporary bridge	m							
Steel sheet pile	m							

TOTAL	Demolishing of existing old truss bridge	Check dam at Bagmati bridge No.2	Pedestrian bridge at Patan with signal	Pedestrian bridge at Thaphatali	gmati bridge No.4	agmati bridge Ba No.3	ngmati bridge Ba No.2	Jagmati bridge Ba No.1
171,80			······································					
20								
	1							
20								
244,52								
18,63								
55,60								
74		2.00			600	2010	- 0-0	2-4
7,29		2,100			620	2,010	1,060	950
7,12		1,000	900	(20	250	190	4.000	66
26,75		9,000	800	630	2,630	3,110	4,980	5,480
19,42 2,84		7,000	200	160	2,020	2,410	3,300	4,290
11,70								
2,34								
94					120	240	276	306
3,77			:					300
4,13			•					
57								
1.30								
10,35						•		
43								
1,93								
63						·		
41								
22,14								
19,25						0.40		
92,28					480	960	1,380	1,200
122,74 51,93								
36,38								
56,93			570	410	480	960	1,380	1,200
36,38			310	410	. 400	200	1,500	1,200
45,50					300	600	414	765
(4	702
			1			•		•
28,73					60	120	138	153
3								
7,68					1,530	1,414	1,680	3,060
3.4			1,840	1,640				
7,18			450	330	970	1,470	1,840	2,050
3,29		2,263	30	23	30	35	850	55
7,13			110	800	910	1,820	2,170	2,280
13,12 84		6,466	410	300	880	1,300	1,940	1,580
1,20			27 152	20 137	112	195 234	230	250
9,			1,72	137	117 120	234	268 276	292
2,6					120	240	210	306 2,680
9,9					1,670	4,540		2,680 3,750
7,7					1,070	Tione	70	3,730
8,2		4,300					3,960	12

(1) Cost of Inner Ring Road including Checkdam

Description	Unit	Quantity	Unit Cost	<u> </u>		Amount	
			Foreign	Local	Foreign	Local	Total
			Portion	Portion	Portion	Portion	
Clear site and stripping	m2	76,464	16	4	1,223,424	305,856	152928
temoval of existing pavement material	m3		308	77	. 0	0	
temoval of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	. 0	
temoval of existing structures	m3		1,566	392	0	0	
Fill in soft material	m3	120,713	335	84	40,462,998	10,115,749	5057874
poil in soft material	m3	5,162	241	60	1,243,010	310,752	155376
Codding	m2	25,648	156	39	4,001,088	1,000,272	500136
Plant selected trees	no.	744	1,292	0	961,248	0	96124
Sabion	m3		1,957	345	0	0	
	m2	4,880	4,885	1,221	23,837,824	5,959,456	2979728
Stone Masonry	m3	4,000	40	10	0	0	2777120
excavation in soft material for structures		•			0	0	
Backfilling with selectedmaterials for structures	m3	2040	36	9	-	_	
ide block	m	2,840	558	239	1,584,436	679,044	226348
Kerb stone (A)	m	2,521	1,352	580	3,409,400	1,461,172	487057
Cerb stone (B)	m	1,345	2,668	1,143	3,588,057	1,537,739	512579.
Kerb stone for bridge	m		570	244	0	0	(
ipe culvert D300	m	1,155	2,110	904	2,436,819	1,044,351	348117
Pipe culvert D600	m	1,720	3,720	1,594	6,398,056	2,742,024	914008
Pipe culvert D1000	m	205	7,445	3,191	1,526,123	654,053	218017
U shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	0	
U shaped drain ditch (0.5 x 0.5m)	m	3,167	1,912	820	6,056,571	2,595,673	865224
J shaped drain ditch (1.0 x 1.0m)	m	300	4,624	1,982	1,387,260	594,540	198180
Side drain with stone pitching	m	1,934	1,373	343	2,654,995	663,749	331874
Catch pit	no.	135	6,811	2,919	919,485	394,065	131355
Manhole	no.	96	11,379	4,877	1,092,403	468,173	1560576
Subbase course	m3	12,831	648	162	8,314,488	2,078,622	10393110
Base course	m3	11,134	1,173	293	13,057,955	3,264,489	1632244
Prime coat, 1.0 litre/m2	m2	34,400	33	1	1,134,512	35,088	116960
Tack coat, 0.4litre/m2	m2	68,880	11	0	734,950	22,730	75768
Asphalt concrete binder course t=6cm	m2	******	577	86	0	0	
Asphalt concrete binder course t=10cm	m2	34,440	968	145	33,348,596	4,983,124	3833172
Asphalt concrete surfase course t=4cm	m2	31,110	415	62	0	0	1
•	m2	34,440	512	77	17,648,089	2,637,071	2028516
Asphalt concrete surfase course t=5cm		-					795564
Side walk t=13cm	m2	17,220	402	60	6,921,407	1,034,233	
Road lighting	no.	32	269,413	5,498	8,621,209	175,943	879715
Traffic signal	portion	4	4,598,410	93,845	18,393,640	375,380	1876902
Lane marking 15cm	m	11,721	54	1	631,762	12,893	64465
Information sign	no.	19	222,546	4,542	4,228,379	86,293	431467
Steel pile D800	m		22,121	451	0	0	
Steel pile D500			11,060	226	0	0	+
Concrete class-A, 240kg	m3		4,598	94	0	0	•
Concrete class-C, 180kg	m3		3,627	74	0	0	•
Formwork for superstructures	m2		632	271	0	0	
Formwork for all structures other than superstructur	m2		408	175	0	0	
Reinforcement	ton		37,914	774	. 0	0	
Prate girder (material, assemble, transportation, electi-	ton		488,414	25,706	0	0	
Bridge railing	m		21,742	1,144	0	0	
Excavation for diversion of the river	m3		40	10	0	0	
Construction and removal of temporary road	m3		335	84	0	0	
Temporary bridge	m		52,156	2,745	0	. 0	
			2,673	141	0	0	1
Steel sheet pile TOTAL	m		£,U/J	141	215,818,182	45,232,534	261,050,71

Description	Unit	Quantity _	Unit Cost			Amount		
			Foreign	Local	Foreign	Local	Total	
			Portion	Portion	Portion	Portion		
Clear site and stripping	m2		16	4	0	0	C	
Removal of existing pavement material	m3		308	77	0	0	(
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	C	
Removal of existing structures	m3		1,566	392	0	0	0	
Fill in soft material	m3		335	84	0	0	C	
Spoil in soft material	m3		241	60	0	0	O	
Sodding	m2		156	39	0	0	0	
Plant selected trees	no.		1,292	0	0	0	0	
Gabion	m3	2,100	1,957	345	4,109,070	725,130	4,834,200	
Stone Masonry	m2	1,000	4,885	1,221	4,884,800	1,221,200	6,106,000	
Excavation in soft material for structures	m3	9,000	40	10	360,000	90,000	450,000	
Backfilling with selectedmaterials for structures	m3	7,000	36	9	252,000	63,000	315,000	
Side block	m		558	239	0	0	0	
Kerb stone (A)	m		1,352	580	0	0	0	
Kerb stone (B)	m		2,668	1,143	0	. 0	0	
Kerb stone for bridge	m		570	244	0	0	O	
Pipe culvert D300	m		2,110	904	0	0	. 0	
Pipe culvert D600	m		3,720	1,594	0	0	0	
Pipe culvert D1000	m		7,445	3,191	0	0	0	
U shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	0.	. 0	
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	0	o	
U shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	0	
Side drain with stone pitching	m		1,373	343	0 ·	0	0	
Catch pit	no.		6,811	2,919	0	0	0	
Manhole	no.		11,379	4,877	0	0	0	
Subbase course	m3		648	162	0	0	0	
Base course	m3		1,173	293	0	0	0	
Prime coat, 1.0 litre/m2	m2		33	1	0	0	0	
Tack coat, 0.4litre/m2	m2		11	0	0	0	0	
Asphalt concrete binder course t=6cm	m2		577	86	0	0	0	
Asphalt concrete binder course t=10cm	m2		968	145	0	0	0	
Asphalt concrete surfase course t=4cm	m2		415	62	0	0	0	
Asphalt concrete surfase course t=5cm	m2		512	77	0	0	0	
Side walk t=13cm	m2		402	60	0	0	0	
Road lighting	no.		269,413	5,498	0	0	0	
Traffic signal	portion		4,598,410	93,845	0	0	0	
Lane marking 15cm	m		54	1	0	0	. 0	
Information sign	no.		222,546	4,542	0	0	0	
Steel pile D800	m		22,121	451	. 0	0 .	0	
Steel pile D500			11,060	226	0	0	0	
Concrete class-A, 240kg	m3		4,598	94	0	0	0	
Concrete class-C, 180kg	m3	2,263	3,627	74	8,207,856	167,507	8,375,363	
Formwork for superstructures	m2		632	271	0	0	0	
Formwork for all structures other than superstructur	m2	6,466	408	175	2,638,775	1,130,903	3,769,678	
Reinforcement	ton		37,914	774	0	0	0	
Prate girder (material, assemble, transportation, electi-	ton		488,414	25,706	0	0	0	
Bridge railing	m		21,742	1,144	0	0	O	
Excavation for diversion of the river	m3		40	10	0	0	(
Construction and removal of temporary road	m3		335	84	0	0	C	
Temporary bridge	m		52,156	2,745	0	0	. (
Steel sheet pile	m	4,300	2,673	141	11,495,190	605,010	12,100,200	
TOTAL					31,947,690	4,002,751	35,950,441	

Appendix 6.6.1 (2) Cost of Access (Sanepa, Koteswor, Patan Core and New Bus of Sanepa Access Terminal Access)

Construction Cost of Sanepa Access

Inal Access)
Unit: NRs.

Description	Unit	Quantity	Unit Cost		· · · · · · · · · · · · · · · · · · ·	Amount	
			Foreign	Local	Foreign	Local	Total
			Portion	Portion	Portion	Portion	
Clear site and stripping	m2	8,830	16	4	141,280	35,320	176600
Removal of existing pavement material	m3		308	77	0	0	. 0
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	0
Removal of existing structures	m3		1,566	392	. 0	. 0	. 0
Fill in soft material	m3	9,582	335	84	3,211,886	802,972	4014858
Spoil in soft material	m3	1,373	241	60	330,618	82,655	413273
Sodding	m2	2,414	156	39	376,584	94,146	470730
Plant selected trees	no.		1,292	. 0	0	0	0
Gabion	m3		1,957	345	0	0	Ó
Stone Masonry	m2		4,885	1,221	0	0	0
Excavation in soft material for structures	m3		. 40	10	0	. 0	0
Backfilling with selectedmaterials for structures	m3		36	9	0	0	. 0
Side block	m		558	239	0	0	: 0
Kerb stone (A)	m	990	1,352	580	1,338,876	573,804	1912680
Kerb stone (B)	m		2,668	1,143	0	0	0
Kerb stone for bridge	m		570	244	0	0	
Pipe culvert D300	m	188	2,110	904	396,642	169,990	566632
Pipe culvert D600	m	240	3,720	1,594	892,752	382,608	1275360
Pipe culvert D1000	m	74	7,445	3,191	550,893	236,097	786990
U shaped drain ditch (0.3 x 0.3m)	m	940	1,384	593	1,300,866	557,514	1858380
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	0	C
U shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	C
Side drain with stone pitching	en		1,373	343	0	0	0
Catch pit	no.	47	6,811	2,919	320,117	137,193	457310
Manhole	no.	102	11,379	4,877	1,160,678	497,434	1658112
	m3	638	648	162	413,424	103,356	516780
Subbase course Base course	m3	552	1,173	293	647,386	161,846	809232
	m2	4,880	33	1	160,942	4,978	165920
Prime coat, 1.0 litre/m2	m2	4,880	11	0	52,070	1,610	53680
Tack coat, 0.4litre/m2	m2	4,880	577	86	2,814,833	420,607	3235440
Asphalt concrete binder course t=6cm	m2	. 4,000	968	145	0	.0	0
Asphalt concrete binder course t=10cm		4,880	415	62	2,025,151	302,609	2327760
Asphalt concrete surface course t=4cm	m2 m2	4,600	512	77	2,023,131	0.	2527700
Asphalt concrete surfase course t=5cm		2.440	402	60	980,734	146,546	1127280
Side walk t=13cm	m2	2,440		5,498	960,754	0	112/200
Road lighting	no.		269,413	93,845	4,598,410	93,845	4692255
Traffic signal	portion	1 626	4,598,410			1,733	. 86625
Lane marking 15cm	m	1,575	54	1 540	84,893		681264
Information sign	no.	3	222,546	4,542	667,639	13,625	
Steel pile D800	m		22,121	451	0	0	(
Steel pile D500			11,060	226	0	0	(
Concrete class-A, 240kg	m3		4,598	94	0	0	(
Concrete class-C, 180kg	m3		3,627	74	0	0	
Formwork for superstructures	m2		632	271	0	. 0	. (
Formwork for all structures other than superstructur	m2		408	175	0	0	. (
Reinforcement	ton		37,914	774	0	0	. , (
Prate girder (material, assemble, transportation, electi	ton		488,414	25,706	. 0	0	
Bridge railing	m		21,742	1,144	0	0	(
Excavation for diversion of the river	m3		40	10	0	0	
Construction and removal of temporary road	m3		335	84	0	0	. (
Temporary bridge	m		52,156	2,745	0	0	. •
Steel sheet pile	m		2,673	141	0	0	

Steel sheet pile

Description	Unit	Quantity	Unit Cos	t		Amount	
•			Foreign	Local	Foreign	Local	Total
Close site and stringing		46 000	Portion	Portion	Portion	Portion 180 000	900000
Clear site and stripping	m2	45,000	16	4	720,000	180,000	
Removal of existing pavement material	m3		308	77	0	0	(
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0.	(
Removal of existing structures	m3 2	60 122	1,566	392	0	5 712 907	205(4495
Fill in soft material	m3 .	68,173	335	84	22,851,590	5,712,897	28564487
Spoil in soft material	m3 m2	11,004 15,599	241	60	2,649,763	662,441	3312204 3041805
Sodding		15,599	156	39	2,433,444	608,361	
Plant selected trees	no.		1,292	0	0	0	0
Gabion Stone Manager	m3		1,957	345	0	0	0
Stone Masonry	m2		4,885	1,221	0	0	0
Excavation in soft material for structures	m3		40	10	0	0	0
Backfilling with selectedmaterials for structures	m3		36	9	0	0	. 0
Side block	m		558	239	0	0	0
Kerb stone (A)	m	4,064	1,352	580	5,496,154	2,355,494	7851648
Kerb stone (B)	m	150	2,668	1,143	400,155	171,495	571650
Kerb stone for bridge	m		570	244	0	0 .	0
Pipe culvert D300	m	1,600	2,110	904	3,375,680	1,446,720	4822400
Pipe culvert D600	m ·	1,060	3,720	1,594	3,942,988	1,689,852	5632840
Pipe culvert D1000	m .	81	7,445	3,191	603,005	258,431	861435
U shaped drain ditch (0.3 x 0.3m)	BJ .		1,384	593	0	0	0
U shaped drain ditch (0.5 x 0.5m)	m ,	3,615	1,912	820	6,913,326	2,962,854	9876180
U shaped drain ditch (1.0 x 1.0m)	m ·		4,624	1,982	0	0	- 0
Side drain with stone pitching	m		1,373	343	0	0	0
Catch pit	no.	206	6,811	2,919	1,403,066	601,314	2004380
Manhole	no.	. 114	11,379	4,877	1,297,229	555,955	1853184
Subbase course	m3	2,894	648	162	1,875,312	468,828	2344140
Base course	m3	2,504	1,173	293	2,936,691	734,173	3670864
Prime coat, 1.0 litre/m2	m2	22,140	33	1	730,177	22,583	752760
Tack coat, 0.4litre/m2	m2	22,140	11	0	236,234	7,306	243540
Asphalt concrete binder course t=6cm	m2	22,140	577	86	12,770,573	1,908,247	14678820
Asphalt concrete binder course t=10cm	m2		968	145	0	0	0
Asphalt concrete surfase course t=4cm	m2	22,140	415	62	9,187,879	1,372,901	10560780
Asphalt concrete surfase course t=5cm	m2		512	77	0	0 .	0
Side walk t=13cm	m2	11,070	402	60	4,449,476	664,864	5114340
Road lighting	no.		269,413	5,498	0	0	0
Traffic signal	portion	1	4,598,410	93,845	4,598,410	93,845	4692255
Lane marking 15cm	m	6,681	54	1	360,106	7,349	367455
Information sign	no.	3	222,546	4,542	667,639	13,625	681264
Steel pile D800	m		22,121	451	0	0	0
Steel pile D500			11,060	226	0	0	. 0
Concrete class-A, 240kg	m3	1.0	4,598	94	0	0	0
Concrete class-C, 180kg	m3		3,627	74	0	0	0
Formwork for superstructures	m2		632	271	0	0	0
Formwork for all structures other than superstructur	m2		408	175	0	0	. 0
Reinforcement	ton		37,914	774	0	0	0
Prate girder (material, assemble, transportation, electi-	ton		488,414	25,706	0	. 0	0
Bridge railing	m		21,742	1,144	0	0	0
Excavation for diversion of the river	m3 ·		40	10	0	0	0
Construction and removal of temporary road	m3		335	84	0	0	0
Temporary bridge	m		52,156	2,745	0	0	0
			0.700				-

Description	Unit	Quantity	Unit Cost			Amount	Unit : NRs.
режирия	Omi	Anumità' ""	Foreign Portion	Local Portion	Foreign Portion	Local Portion	Total
Clear site and stripping	m2	3,556	16	4	56,896	14,224	7112
Removal of existing pavement material	m3		308	77	0	0	
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	
Removal of existing structures	m3	•	1,566	392	0	0	
Fill in soft material	m3	2,511	335	84	841,687	210,422	105210
Spoil in soft material	m3	275	241	60	66,220	16,555	8277
Sodding	m2	1,086	156	39	169,416	42,354	211770
Plant selected trees	no.	-,	1,292	0	0	0	
Gabion	m3		1,957	345	0	0	. (
Stone Masonry	m2	490	4,885	1,221	2,393,552	598,388	2991940
Excavation in soft material for structures	m3	490	40	1,221	2,575,552	0	2771741
				9	0	-	
Backfilling with selectedmaterials for structures	m3		36			. 0	(
Side block	m	400	558	239	0	023.040	
Kerb stone (A)	m	400	1,352	580	540,960	231,840	772800
Kerb stone (B)	m		2,668	1,143	0	0	
Kerb stone for bridge	m		570	244	0	0	
Pipe culvert D300	m	80	2.110	904	168,784	72,336	241120
Pipe culvert D600	m	200	3,720	1,594	743,960	318,840	1062800
Pipe culvert D1000	m		7,445	3,191	0	0	(
U shaped drain ditch (0.3 x 0.3m)	m	365	1,384	593	505,124	216,482	721605
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	0	(
U shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	(
Side drain with stone pitching	m		1,373	343	0	0	. (
Catch pit	no.	20	6,811	2,919	136,220	58,380	194600
Manhole	no.	4	11,379	4,877	45,517	19,507	65024
Subbase course	m3	423	648	162	274,104	68,526	342630
Base course	m3	368	1,173	293	431,590	107,898	539488
Prime coat, 1.0 litre/m2	m2	1,600	33	- 1	52,768	1,632	54400
Tack coat, 0.4litre/m2	m2	1,600	13	0	17,072	528	17600
Asphalt concrete binder course t=6cm	m2	1,600	577	86	922,896	137,904	1060800
Asphalt concrete binder course t=10cm	m2		968	145	0	0	. (
Asphalt concrete surfase course t=4cm	m2	1,600	415	62	663,984	99,216	763200
Asphalt concrete surfase course t=5cm	m2		512	77	0	0	(
Side walk (=13cm	m2	1,600	402	60	643,104	96,096	739200
Road lighting	no.		269,413	5,498	0	0	(
Traffic signal	portion	1	4,598,410	93,845	4,598,410	93,845	4692255
Lane marking 15cm	m	690	54	1	37,191	759	37950
Information sign	no.	3	222,546	4,542	667,639	13,625	681264
Steel pile D800	m	,	22,121	451	007,037	13,029	(8120
Steel pile D500	****		11,060	226	0	0	(
Concrete class-A, 240kg	?			220 94			
· •	m3		4,598		0	0	
Concrete class-C, 180kg	m3		3,627	74	0	0	(
Formwork for superstructures	m2 2		632	271	0	0	(
Formwork for all structures other than superstructur	m2		408	175	. 0	0	(
Reinforcement	ton		37,914	774	0	0	(
Prate girder (material, assemble, transportation, electi-	ton		488,414	25,706	0	0	(
Bridge railing	m		21,742	1,144	0	0	(
Excavation for diversion of the river	m3		40	10	0	0	(
Construction and removal of temporary road	m3		335	84	0	0	(
Temporary bridge	m		52,156	2,745	0	0	(
Steel sheet pile	m		2,673	141	0	0	(

Description	Unit	Quantity	Unit Cos	t		Amount	Unit: NRs.
•		-	Foreign	Local	Foreign	Local	Total
			Portion	Portion	Portion	Portion	
Clear site and stripping	m2	38,012	16	4	608,192	152,048	760240
Removal of existing pavement material	m3		308	77	0	0	C
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	0
Removal of existing structures	m3		1,566	392	0	0	. 0
Fill in soft material	m3	41,384	335	84	13,871,917	3,467,979	17339896
Spoil in soft material	m3	196	241	60	47,197	11,799	58996
Sodding	m2	10,856	156	39	1,693,536	423,384	2116920
Plant selected trees	BO.		1,292	0	0	0	o
Gabion	m3		1,957	345	0	0	o
Stone Masonry	m2		4,885	1,221	0	0	O
Excavation in soft material for structures	m3	120	40	10	4,800	1,200	6000
Backfilling with selectedmaterials for structures	m3	40	36	9	1,440	360	1800
Side block	m		558	239	0	0	0
Kerb stone (A)	m	3,730	1,352	580	5,044,452	2,161,908	7206360
Kerb stone (B)	m		2,668	1,143	0	0	. 0
Kerb stone for bridge	m		570	244	0	0	0
Pipe culvert D300	m	750	2,110	904	1,582,350	678,150	2260500
Pipe culvert D600	m	760	3,720	1,594	2,827,048	1,211,592	4038640
Pipe culvert D1000	m	133	7,445	3,191	990,119	424,337	1414455
U shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	0	0
U shaped drain ditch (0.5 x 0.5m)	m	3,572	1,912	820	6,831,093	2,927,611	9758704
U shaped drain ditch (1.0 x 1.0m)	m	132	4,624	1,982	610,394	261,598	871992
Side drain with stone pitching	m	_	1,373	343	0	0	0
Catch pit	no.	187	6,811	2,919	1,273,657	545,853	1819510
Manhole	no.	90	11,379	4,877	1,024,128	438,912	1463040
Subbase course	m3	4,875	648	162	3,159,000	789,750	3948750
Base course	m3	4,219	1,173	293	4,948,043	1,237,011	6185054
Prime coat, 1.0 litre/m2	m2	18,650	33	1	615,077	19,023	634100
Tack coat, 0.4litre/m2	m2	18,650	11	0	198,996	6,155	205150
Asphalt concrete binder course t=6cm	m2	18,650	577	86	10,757,507	1,607,444	12364950
Asphalt concrete binder course t=10cm	m2	20,000	968	145	0	0	0
Asphalt concrete surfase course t=4cm	m2	18,650	415	62	7,739,564	1,156,487	8896050
Asphalt concrete surfase course t=5cm	m2	10,000	512	77	0	0	0
Side walk t=13cm	m2	9,325	402	60	3,748,091	560,060	4308150
Road lighting	no.	7,020	269,413	5,498	0	0	G
Traffic signal	portion	2	4,598,410	93,845	9,196,820	187,690	9384510
Lane marking 15cm	m	5,775	54	1	311,273	6,353	317625
Information sign	no.	6	222,546	4,542	1,335,277	27,251	1362528
Steel pile D800	m		22,121	451	0	0	0
Steel pile D500			11,060	226	0	0	o
Concrete class-A, 240kg	m3	73	4,598	94	335,666	6,850	342516
Concrete class-C, 180kg	m3	8	3,627	74	29,016	592	29608
Formwork for superstructures	m2	•	632	271	0	0	0
Pormwork for all structures other than superstructur		245	408	175	99,985	42,851	142835
Reinforcement	ton	8	37,914	774	303,314	6,190	309504
Prate girder (material, assemble, transportation, electi-		•	488,414	25,706	0	0	0
Bridge railing	m		21,742	1,144	0	0	0
Excavation for diversion of the river	m3		40	10	0	0	0
Construction and removal of temporary road	m3		335	84	0	0	0
Temporary bridge	m		52,156	2,745	0	0	0
Steel sheet pile			2,673	141	0	0	0
TOTAL	m		2,073	141	79,187,948	18,360,435	

Appendix 6.6.1 (3) Cost of Bridges and Pedestrian Bridges Construction Cost of Bagmati Bridge No.1

Local	Foreign	Local	Total	
4	0	0	. (
77	0	0	(
1,200,600	0	0	(
392	0	0	. (
84	0	0	(
60	0	0	. (
39	0	. 0	(
0	0	0	(
345	1,858,865	328,035	218690	
		80,599	40299	
10		54,800	27400	
9			19305	
-	•	0	7.	
		0		
•			24908	
	•		21,500	
· ·				
-		_		
	<u>-</u>	-		
-				
		_		
	-			
	-			
	-	1.224	4080	
	_	0		
		•		
•	_	-	57240	
•		•		
	-		35343	
		-	0.00	
			841	
	-		6907032	
			0 ,0.0	
	_		96186	
			2035	
			205884	
			92114	
		·	967200	
			15012304	
			70031	
			1340	
			15712:	
			6588	
			0,500	
	Portion 4 77 1,200,600 392 84 60 39 0 345 1,221 10	Portion 4 0 77 0 1,200,600 0 392 0 84 0 60 0 39 0 0 0 345 1,858,865 1,221 322,397 10 219,200 9 154,440 239 0 580 0 1,143 0 244 174,359 904 0 1,594 0 3,191 0 593 0 820 0 1,982 0 343 0 2,919 0 4,877 0 162 0 293 0 1 39,576 0 0 86 0 145 0 62 497,988 77 0 60 <td>Portion Portion 4 0 0 77 0 0 1,200,600 0 0 392 0 0 84 0 0 60 0 0 39 0 0 0 0 0 345 1,858,865 328,035 1,221 322,397 80,599 10 219,200 54,800 9 154,440 38,610 239 0 0 580 0 0 1,143 0 0 244 174,359 74,725 904 0 0 1,594 0 0 3,191 0 0 3,191 0 0 593 0 0 820 0 0 1,982 0 0 343 0 0 2,919</td>	Portion Portion 4 0 0 77 0 0 1,200,600 0 0 392 0 0 84 0 0 60 0 0 39 0 0 0 0 0 345 1,858,865 328,035 1,221 322,397 80,599 10 219,200 54,800 9 154,440 38,610 239 0 0 580 0 0 1,143 0 0 244 174,359 74,725 904 0 0 1,594 0 0 3,191 0 0 3,191 0 0 593 0 0 820 0 0 1,982 0 0 343 0 0 2,919	

Description	Unit	Quantity	Unit Cos	l		Amount	
			Foreign	Local	Foreign	Local	Total
		·	Portion	Portion	Portion	Portion	
Clear site and stripping	m2		16	4	0	0	0
Removal of existing pavement material	m3		308	77	0	0	0
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	. 0
Removal of existing structures	m3		1,566	392	0	0	0
Fill in soft material	m3		335	84	0	0	0
Spoil in soft material	m3		241	60	0	0	. 0
Sodding	m2		156	39	0	0	0
Plant selected trees	no.		1,292	0	0	0	0
Gabion	m3	1,060	1,957	345	2,074,102	366,018	2,440,120
Stone Masonry	m2		4,885	1,221	. 0	0	0
Excavation in soft material for structures	m3	4,980	40	10	199,200	49,800	249,000
Backfilling with selectedmaterials for structures	m3	3,300	36	9	118,800	29,700	148,500
Side block	m		558	239	0	0	0
Kerb stone (A)	m		1,352	580	. 0	0	. 0
Kerb stone (B)	m		2,668	1,143	0	0	. 0
Kerb stone for bridge	m	276	570	244	157,265	67,399	224,664
Pipe culvert D300	m		2,110	904	0	0	0
Pipe culvert D600	m		3,720	1,594	0	0	, ,0
Pipe culvert D1000	m		7,445	3,191	0	0	0
U shaped drain ditch (0.3 x 0.3m)	m .		1,384	593	0	0.	0
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	0	. 0
U shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	0
Side drain with stone pitching	m		1,373	343	0	0	0
Catch pit	no.		6,811	2,919	0	0	0
Manhole	no.		11,379	4,877	0	0	0
Subbase course	m3		648	162	0	0	. 0
Base course	m3		1,173	293	0	0	0
Prime coat, 1.0 litre/m2	m2	1,380	33	1	45,512	1,408	46,920
Tack coat, 0.4litre/m2	m2		11	0	0	0	.0
Asphalt concrete binder course t=6cm	m2		577	86	0	0	0
Asphalt concrete binder course t=10cm	m2		968	145	0	. 0	0
Asphalt concrete surfase course t=4cm	m2	1,380	415	62	572,686	85,574	658,260
Asphalt concrete surfase course t=5cm	m2		512	77	0	0	0
Side walk t=13cm	m2	414	402	60	166,403	24,865	191,268
Road lighting	no.	4	269,413	5,498	1,077,651	21,993	1,099,644
Traffic signal	portion	•	4,598,410	93,845	0	0	0
Lane marking 15cm	m	138	54	1	7,438	152	7,590
Information sign	no.		222,546	4,542	0	0	0
Steel pile D800	m	1,680	22,121	451	37,162,541	758,419	37,920,960
Steel pile D500			11,060	226	0	0	. 0
Concrete class-A, 240kg	m3	1,840	4,598	94	8,460,614	172,666	8,633,280
Concrete class-C, 180kg	m3	850	3,627	74	3,082,933	62,917	3,145,850
Formwork for superstructures	m2	2,170	632	271	1,371,657	587,853	1,959,510
Formwork for all structures other than superstructur	m2	1,940	408	175	791,714	339,306	1,131,020
Reinforcement	ton	230	37,914	774	8,720,275	177,965	8,898,240
Prate girder (material, assemble, transportation, electi	ton	268	488,414	25,706	130,894,952	6,889,208	137,784,160
Bridge railing	m	276	21,742	1,144	6,000,709	315,827	6,316,536
Excavation for diversion of the river	m3		40	10	0	0	(
Construction and removal of temporary road	m3		335	84	0	0	(
Temporary bridge	m	70	52,156	2,745	3,650,917	192,154	3,843,070
Steel sheet pile	m	3,960	2,673	141	10,586,268	557,172	11,143,440
TOTAL			V		215,141,638	10,700,394	225,842,032

Description	Unit	Quantity	Unit Cost			Amount		
			Foreign	Local	Foreign	Local	Total	
			Portion	Portion	Portion	Portion		
Clear site and stripping	m2		16	4	0	0	0	
Removal of existing pavement material	m3		308	77	0	0	0	
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	0	
Removal of existing structures	m3		1,566	392	0	0	0	
Fill in soft material	m3		335	84	0	0	0	
Spoil in soft material	m3		241	60	0	0	0	
Sodding	m2		156	39	0	0	. 0	
Plant selected trees	no.		1,292	0	0	0	0	
Gabion	m3	2,010	1,957	345	3,932,967	694,053	4,627,020	
Stone Masonry	m2	190	4,885	1,221	928,112	232,028	1,160,140	
Excavation in soft material for structures	m3	3,110	40	10	124,400	31,100	155,500	
Backfilling with selectedmaterials for structures	m3	2,410	36	. 9	86,760	21,690	108,450	
Side block	n)		558	239	0	0	0	
Kerb stone (A)	m		1,352	580	0	0	0	
Kerb stone (B)	m.		2,668	1,143	0	. 0	O	
Kerb stone for bridge	m	240	570	244	136,752	58,608	195,360	
Pipe culvert D300	m		2,110	904	0	0	0	
Pipe culvert D600	m		3,720	1,594	0	0	0	
Pipe cuivert D1000	m		7,445	. 3,191	0	0	0	
U shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	0	. 0	
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	0	0	
U shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	0	
Side drain with stone pitching	m		1,373	343	0	0	0	
Catch pit	no.		6,811	2,919	0	0	0	
Manhole	no.		11,379	4,877	0	0	0	
Subbase course	m3		648	162	0	0	0	
Base course	m3		1,173	293	0	0	0	
Prime coat, 1.0 litre/m2	m2	960	33	1	31,661	979	32,640	
Tack coat, 0.4litre/m2	m2		- 11	0	0	0	0	
Asphalt concrete binder course t=6cm	m2		577	86	0	0	0	
Asphalt concrete binder course t=10cm	m2		968	145	0	0	. 0	
Asphalt concrete surfase course t=4cm	m2	960	415	62	398,390	59,530	457,920	
Asphalt concrete surfase course t=5cm	m2		512	77	0	0	0	
Side walk t=13cm	m2	600	402	60	241,164	36,036	277,200	
Road lighting	no.		269,413	5,498	0	0	0	
Traffic signal	portion		4,598,410	93,845	0	0	0	
Lane marking 15cm	m	120	54	1	6,468	132	6,600	
Information sign	no.		222,546	4,542	0	0	0	
Steel pile D800	m	1,414	22,121	451	31,278,472	638,336	31,916,808	
Steel pile D500			11,060	226	0	0	. 0	
Concrete class-A, 240kg	m3	1,470	4,598	94	6,759,295	137,945	6,897,240	
Concrete class-C, 180kg	m3	35	3,627	74	126,944	2,591	129,535	
Formwork for superstructures	m2 .	1,820	632	271	1,150,422	493,038	1,643,460	
Formwork for all structures other than superstructur	m2	1,300	408	175	530,530	227,370	757,900	
Reinforcement	ton	195	37,914	774	7,393,277	150,883	7,544,160	
Prate girder (material, assemble, transportation, electi-	ton	234	488,414	25,706	114,288,876	6,015,204	120,304,080	
Bridge railing	m	240	21,742	1,144	5,218,008	274,632	5,492,640	
Excavation for diversion of the river	m3		40	10	0	0	C	
Construction and removal of temporary road	m3	4,540	335	84	1,521,808	380,452	1,902,260	
							^	
Temporary bridge	m		52,156	2,745	0	0	C	

Description	Unit	Quantity	Unit Cos			Amount	Unit: NRs.
·	Omt	Quantity	Foreign	Local	Foreign	Local	Total
			Portion	Portion	Portion	Portion	Total
Clear site and stripping	m2		16	4	0	0	
Removal of existing pavement material	m3		308	77	0	0	0
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	0
Removal of existing structures	m3		1,566	392	0	0	0
Fill in soft material	m3		335	84	0	0	(
Spoil in soft material	m3		241	60	0	0	0
Sodding	m2		156	39	0	0	o
Plant selected trees	no.		1,292	0	0	0	0
Cabion	m3	620	1,957	345	1,213,154	214,086	1,427,240
Stone Masonry	m2	250	4,885	1,221	1,221,200	305,300	1,526,500
Excavation in soft material for structures	m3	2,630	40	10	105,200	26,300	131,500
Backfilling with selected materials for structures	m3	2,020	36	9	72,720	18,180	90,900
Side block	m	-,	558	239	0	0	0
Kerb stone (A)	m		1,352	580	0	0	0
Kerb stone (B)	m		2,668	1,143	0	0	0
Kerb stone for bridge	m	120	570	244	68,376	29,304	97,680
Pipe culvert D300	m	120	2,110	904	0	0	0
Pipe culvert D600	m		3,720	1,594	0	0	0
Pipe culvert D1000	m		7,445	3,191	0	0	0
U shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	0	0
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	0	0
U shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	0
Side drain with stone pitching	m		1,373	343	0	0	. 0
			6,811	2,919	0	0	
Catch pit Manhole	no.		11,379	2,919 4,877	0	0	0
Subbase course	no. m3		648	162	0	0	0
		•			0	0	0
Base course	m3	400	1,173	293	_	490	-
Prime coat, 1.0 litre/m2	m2 m2	480	33 11	1	15,830 0	490	16,320 0
Fack coat, 0.4litre/m2 Asphalt concrete binder course t≃6cm	m2		577	86	0	0	0
•	m2		968	145	0	0	0
Asphalt concrete binder course t=10cm	m2	480	415	62	199,195	29,765	-
Asphalt concrete surface course t=4cm		460	512	77	199,193	29,703	228,960 0
Asphalt concrete surfase course t=5cm	m2	200	402			-	
Side walk t=13cm	m2	300		60 5.400	120,582 0	18,018 0	138,600
Road lighting	по.		269,413	5,498	0		0
Craffic signal	portion	60	4,598,410	93,845		0	,
ane marking 15cm	m	60	54	1	3,234	66	3,300
information sign	no.	1.500	222,546	4,542	0	0	0
Steel pile D800	m	1,530	22,121	451	33,844,457	690,703	34,535,160
Steel pile D500		000	11,060	226	0	0	0
Concrete class-A, 240kg	m3 -	970	4,598	94	4,460,215	91,025	4,551,240
Concrete class-C, 180kg	m3	30	3,627	74	108,809	2,221	111,030
Formwork for superstructures	m2	910	632	271	575,211	246,519	821,730
Formwork for all structures other than superstructur	m2	880	408	175	359,128	153,912	513,040
Reinforcement	ton	112	37,914	774	4,246,395	86,661	4,333,056
Prate girder (material, assemble, transportation, electi	ton	. 117	488,414	25,706	57,144,438	3,007,602	60,152,040
Bridge railing	m	120	21,742	1,144	2,609,004	137,316	2,746,320
Excavation for diversion of the river	m3		40	10	0	0	0
Construction and removal of temporary road	m3	1,670	335	84	559,784	139,946	699,730
l'emporary bridge	m	•	52,156	2,745	0	0	0
Steel sheet pile			2,673	141	. 0	0	0

Description	Unit	Quantity	Unit Cost			Amount	
			Foreign Portion	Local Portion	Foreign Portion	Local Portion	Total
Clear site and stripping	m2		16	4	0	0	
Removal of existing pavement material	m3		308	77	0	. 0	
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	
Removal of existing structures	m3		1,566	392	0	0	•
Fill in soft material	m3		335	84	0	0	
Spoil in soft material	m3		241	60	0	0	
Sodding	m2		156	39	. 0	0	
Plant selected trees	no.		1,292	0	0	. 0	
Gabion	m3		1,957	345	0	0	
Stone Masonry	m2		4,885	1,221	0	0	
Excavation in soft material for structures	m3	630	40	10	25,200	6,300	31,50
Backfilling with selectedmaterials for structures	m3	160	36	9	5,760	1,440	7,20
Side block	m	100	558	239	0	0	.,
Kerb stone (A)	m		1,352	580	0	0	
Kerb stone (A) Kerb stone (B)	m.		2,668	1,143	0	0	
Kerb stone (B) Kerb stone for bridge	m	•	570	244	0	0	1 11 To 1
Pipe culvert D300			2,110	904	0	0.	
	m		3,720	1,594	0	. 0	1 - 1
Pipe culvert D600	m		7,445	3,191	0	0	
Pipe culvert D1000	m .		1,384	593	0	. 0	
U shaped drain ditch (0.3 x 0.3m)	m		1,912	820	0	. 0	
U shaped drain ditch (0.5 x 0.5m)	m .		4,624	1,982	0	, ,	100
U shaped drain ditch (1.0 x 1.0m)	m		1,373	343	0	. 0	1 to 1 to 1 to 1
Side drain with stone pitching	m .		6,811	2,919	0		
Catch pit Manhole	BO.		11,379	4,877	0	. 0	* .
	no.	•	648	162	0	0	
Subbase course	m3		1,173	293	0	0	•
Base course	m3		33		0	. 0	
Prime coat, 1.0 litre/m2	m2		11	1	0	0	10 mm
Tack coat, 0.4litre/m2	m2 2			0	0		No. of No. System
Asphalt concrete binder course t=6cm	m2		577	86		0.	en e
Asphalt concrete binder course t=10cm	m2	410	968	145	170 146	25 424	195,5
Asphalt concrete surfase course t=4cm	m2	410	415	62	170,146	25,424	193,3
Asphalt concrete surfase course t=5cm	m2		512	77	0	0	×
Side walk t=13cm	m2		402	60	0	0	
Road lighting	no.		269,413	5,498	0	0	
Traffic signal	portion		4,598,410	93,845	0	0	
Lane marking 15cm	m		54	1.	0	0	
Information sign	no.		222,546	4,542	0	0	$\xi_{ij} = (-1, 1, \dots, n)$
Steel pile D800	m		22,121	451	0	0	40.500.0
Steel pile D500		1,640	11,060	226	18,138,859	370,181	18,509,0
Concrete class-A, 240kg	m3	330	4,598	94		30,967	1,548,3
Concrete class-C, 180kg	m3	23	3,627	74	83,421	1,702	85,1
Formwork for superstructures	m2		632	271	0	0	
Formwork for all structures other than superstructur	m2	300	408	175	122,430	52,470	174,9
Reinforcement	ton	20	37,914	774	758,285	15,475	773,7
Prate girder (material assemble transportation electi	ton	137	488,414	25,706	66,912,718	3,521,722	70,434,4
Bridge railing	m		21,742	1,144	0	0	
Excavation for diversion of the river	m3	19	40	10	0	0	
Construction and removal of temporary road	m3		335	84	0	0	
Temporary bridge	m		52,156	2,745	0	0	÷ .
Steel sheet pile	m		2,673	141	0	0	

Description	Unit	Quantity	Unit Cos	t		Amount		
- ,			Foreign	Local	Foreign	l.ocal	Total	
			Portion	Portion	Portion	Portion		
Clear site and stripping	m2		16	4	0	0	(
Removal of existing pavement material	m3		308	77	0	0	(
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	. 0	(
Removal of existing structures	m3		1,566	392	0	0	. (
Fill in soft material	m3		335	84	0	0		
Spoil in soft material	m3		241	60	0	0	(
Sodding	m2		156	39	0	0	(
Plant selected trees	no.		1,292	0	0	0	(
Gabion	m3		1,957	345	0	0	(
Stone Masonry	m2		4,885	1,221	0	0	,	
Excavation in soft material for structures	m3	800	40	10	32,000	8,000	40,000	
Backfilling with selectedmaterials for structures	m3	200	36	9	7,200	1,800	9,000	
Side block	m		558	239	0	0	(
Kerb stone (A)	m		1,352	580	0	0	. (
Kerb stone (B)	m		2,668	1,143	0	0.	(
Kerb stone for bridge	m		570	244	0	0	(
Pipe culvert D300	m		2,110	904	0	. 0.	. (
Pipe culvert D600	m		3,720	1,594	0	~ 0	(
Pipe culvert D1000	m		7,445	3,191	0	0	(
U shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	. 0 .	1	
U shaped drain ditch (0.5 x 0.5m)	m		1,912	820	0	. 0		
J shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	: 0 -	i (
Side drain with stone pitching	m		1,373	343	0	0.		
Catch pit	пo.		6,811	2,919	0	0	. 0	
Manhole	no.		11,379	4,877	0	0	. (
Subbase course	m3		648	162	0	0	. (
Base course	m3		1,173	293	0	0	. (
Prime coat, 1.0 litre/m2	m2		33	- 1	0	. 0	(
Fack coat, 0.4litre/m2	m2		11	0	0	. 0	(
Asphalt concrete binder course t=6cm	m2		577	86	0	0	(
Asphalt concrete binder course t=10cm	m2		968	145	0	0	(
Asphalt concrete surfase course t=4cm	m2	570	415	62	236,544	35,346	271,890	
Asphalt concrete surfase course t=5cm	m2		512	77	0	. 0	(
Side walk t=13cm	m2		402	60	0	0	(
Road lighting	no.		269,413	5,498	0	0		
Praffic signal	portion	1	4,598,410	93,845	4,598,410	93,845	4,692,255	
Lane marking 15cm	m		54	1	0	0	. (
Information sign	no.		222,546	4,542	0	0		
Steel pile D800	m		22,121	451	0	0	(
Steel pile D500		1,840	11,060	226	20,350,915	415,325	20,765,240	
Concrete class-A, 240kg	m3	450	4,598	94	2,069,172	42,228	2,111,400	
Concrete class-C, 180kg	m3	30	3,627	74	108,809	2,221	111,030	
Formwork for superstructures	m2		632	271	0	. 0	(
Formwork for all structures other than superstructur		410	408	175	167,321	71,709	239,030	
Reinforcement	ton	27	37,914	774	1,023,684	20,892	1,044,57	
Prate girder (material, assemble, transportation, electi		152	488,414	25,706	74,238,928	3,907,312	78,146,240	
Bridge railing	m		21,742	1,144	0	0	(
Excavation for diversion of the river	m3		40	10	0	0		
Construction and removal of temporary road	m3		335	- 84	0	. 0	(
Temporary bridge	· m		52,156	2,745	0	0		
Steel sheet pile	m		2,673	141	0	0	(
TOTAL				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	102,832,984	4,598,677	107,431,66	

ppendix 6.6.1 (4) Cost of Intersections at Patan and Thapathali

Appendix 6.6.1 (4)
Construction Cost of Patan Side Intersection

Description	Unit	Quantity	Unit Cos				
			Foreign	Local	Foreign	Local	Total
<u>ang mananananananananananananananananananan</u>			Portion	Portion	Portion	Portion	
Clear site and stripping	m2		16	4	0	0	
Removal of existing pavement material	m3	100	308	77	30,800	7,700	3850
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	. 0	0	
Removal of existing structures	m3	100	1,566	392	156,640	39,160	1958
fill in soft material	m3	862	335	84	288,942	72,236	3611
Spoil în soft material	m3	493	241	60	118,714	29,679	1483
Godding	m2		156	39	0	0	
Plant selected trees	no.		1,292	0	0	0	
Jabion	m3	500	1,957	345	978,350	172,650	11510
Stone Masonry	m2		4,885	1,221	0	0	
excavation in soft material for structures	m3		40	10	0	0	
Backfilling with selectedmaterials for structures	m3		36	9	. 0	0	
ide block	m		558	239	0	0	
Cerb stone (A)	m		1,352	580	. 0	0	
(erb stone (B)	m	450	2,668	1,143	1,200,465	514,485	17149
Kerb stone for bridge	m		570	244	0	0	
Pipe culvert D300	m		2,110	904	0	0	
Pipe culvert D600	m	50	3,720	1,594	185,990	79,710	2657
ipe culvert D1000	m		7,445	3,191	0	0	
J shaped drain ditch (0.3 x 0.3m)	m		1,384	593	0	0	
J shaped drain ditch (0.5 x 0.5m)	w		1,912	820	0 -	· 0	
J shaped drain ditch (1.0 x 1.0m)	m		4,624	1,982	0	0	
Side drain with stone pitching	m	•	1,373	343	0	0	
Catch pit	no.	. 23	6,811	2,919	156,653	67,137	2237
Manhole	no.		11,379	4,877	0	0	
Subbase course	m3	197	648	162	127,656	31,914	1595
Base course	m3	164	1,173	293	192,339	48,085	2404
Prime coat, 1.0 litre/m2	m2	2,408	33	1	79,416	2,456	818
Fack coat, 0.4litre/m2	m2	2,408	11	0	25,693	795	264
Asphalt concrete binder course t=6cm	m2	1,750	577	86	1,009,418	150,833	11602
Asphalt concrete binder course t=10cm	m2	660	968	145	639,035	95,495	7345
Asphalt concrete surfase course t=4cm	m2	1,750	415	62	726,233	108,518	8347
Asphalt concrete surfase course t=5cm	m2	660	512	77	338,204	50,536	3887
Side walk t=13cm	m2	750	402	60	301,455	45,045	3465
Road lighting	no.	10	269,413	5,498	2,694,128	54,982	27491
Traffic signal	portion		4,598,410	93,845	0	0	
Lane marking 15cm	វា	700	54	1	37,730	770	385
information sign	no.		222,546	4,542	0	0	:
Steel pile D800	m		22,121	451	0	0	
Steel pile D500			11,060	226	0	0	
Concrete class-A, 240kg	m3		4,598	94	0	0	
Concrete class-C, 180kg	m3		3,627	74	0	. 0	
Formwork for superstructures	m2		632	271	0	0	
Formwork for all structures other than superstructur	m2		408	175	0	0	
Reinforcement	ton		37,914	774	0	0	
Prate girder (material, assemble, transportation, electi	ton		488,414	25,706	0	0	
Bridge railing	m		21,742	1,144	0	0	
Excavation for diversion of the river	m3		40	10	0	0	
Construction and removal of temporary road	m3		335	84	0	0	
Femporary bridge	m		52,156	2,745	. 0	0	
Steel sheet pile	m		2,673	141	9,287,910	1,572,185	10,860,

Description	Unit	Quantity	Unit Cost	1		Amount	
·			Foreign Portion	Local Portion	Foreign	Local Portion	Total
Clear site and stripping	m2		16	4	Portion 0	0	0
Removal of existing pavement material	m3	100	308	77	30,800	7,700	38500
Removal of existing bridge at Thaphatali	L.S		4,802,398	1,200,600	0	0	0
Removal of existing structures	m3	100	1,566	392	156,640	39,160	195800
Fill in soft material	m3	1,300	335	84	435,760	108,940	544700
Spoil in soft material	m3	130	241	60	31,304	7,826	39130
Sodding	m2	150	156	39	0	0	0
Plant selected trees	no.		1,292	0	0	0	0
Gabion	m3	50	1,957	345	97,835	17,265	115100
Stone Masonry	m2	250	4,885	. 1,221	1,221,200	305,300	1526500
Excavation in soft material for structures	m3	250	40	10	0	0	0
Backfilling with selectedmaterials for structures	m3		36	9	0	0	0
Side block	m		558	239	ő	0	0
Kerb stone (A)	m		1,352	580	ő	0	0
Kerb stone (B)	m	400	2,668	1,143	1,067,080	457,320	1524400
Kerb stone for bridge	m	400	570	244	0	457,520	0
Pipe culvert D300	m		2,110	904	0	0	0
Pipe culvert D600	m	100	3,720	1,594	371,980	159,420	531400
Pipe culvert D1000	m	80	7,445	3,191	595,560	255,240	850800
U shaped drain ditch (0.3 x 0.3m)	m	80	1,384	593	0	255,240	0
U shaped drain ditch (0.5 x 0.5m)			1,912	820	0	0	0
<u>-</u>	m		4,624	1,982	0	0	0
U shaped drain ditch (1.0 x 1.0m)	m		1,373	343	0	0	0
Side drain with stone pitching	m	20	6,811		136,220	58,380	194600
Catch pit	no.	20		2,919		19,507	65024
Manhole	no.	200	11,379 648	4,877	45,517		234900
Subbase course	m3	290		162	187,920	46,980	454460
Base course	m3	310	1,173	293	363,568	90,892	
Prime coat, 1.0 litre/m2	m2	4,185	33	1	138,021	4,269	142290
Tack coat, 0.4litre/m2	m2	4,185	11	0	44,654	1,381	46035
Asphalt concrete binder course t=6cm	m2	2,910	577	86	1,678,517	250,813	1929330
Asphalt concrete binder course t=10cm	m2	1,280	968	145	1,239,437	185,203	1424640
Asphalt concrete surfase course t=4cm	m2	2,910	415	62	1,207,621	180,449 98,010	1388070
Asphalt concrete surfase course t=5cm	m2	1,280	512	77	655,910		753920
Side walk t=13cm	m2	1,076	402	60 5,498	432,487 4,849,430	64,625 98,968	497112 4948398
Road lighting	no.	18	269,413		4,598,410	93,845	4692255
Traffic signal	portion	1 120	4,598,410 54	93,845 1	60,368	1,232	61600
Lane marking 15cm	m	1,120 4	222,546	4,542	890,185	18,167	908352
Information sign Steel pile D800	no.	~	22,121	4,542	070,103	18,107	3,003,0
•	m				0	0	0
Steel pile D500	-m2		11,060 4,598	226 94	0	0	0
Concrete class-A, 240kg	m3		3,627	74 74	0	0	0
Concrete class-C, 180kg	m3 2		632		0	0	0
Formwork for superstructures	m2			271			
Formwork for all structures other than superstructur	m2		408 37.014	175	0	0	0
Reinforcement	ton		37,914	774		0	
Prate girder (material, assemble, transportation, electi-			488,414	25,706	0	0	0
Bridge railing	m ?		21,742	1,144	0	0	0
Excavation for diversion of the river	m3		40	10	0	0	0
Construction and removal of temporary road	m3		335	84	0	0	0
Temporary bridge	m		52,156	2,745	0	0	0
Steel sheet pile	m		2,673	141	0	0	0

