APPENDIX-H

TABLES

Table H.1 EXISTING WATER RIGHTS IN THE BASIN (1/2)

Ser	Reg	Grantee	Water	Purpose	Extract	Remarks
No.	No		Source	•.	Water(m3/s)	
	3564	The Procura the Holy Fathers	Bigwa R.	Dom/Irr	0.00329	
2	338	Karimiee Iivaniee Estate	Brama L/Soga	Dom/Ind	0.00288	Water impounded
2	337	Karimiee Iivaniee Estate	Factory L/Soga	Dom/Ind	0.00360	Water impounded
Å	336	Karimiee Jivaniee Estate	Hippo L/Soga	Dom/Ind	0.00086	Water impounded
5	1417	P.S. Ministry of Apriculture	Kihonde R.	Dom/irr	0.00708	•
6	1418	P.S. Ministry of Agriculture	Kikundi R.	Dom/Irr	0.01416	
7	1477	Morogoro Native Auth. Coun.	Kikundi Stream	Dom	0.00005	4 F
8	1494	Mafiga Sisal Estate Ltd.	Kikundi Stream	Dom	0.00058	
9	1489	National Lutheran Council	Kinyanduni R.	Dom	0.00003	
10	3335	Fatehali K. Ramji	Kiroka R	Dom/Irr	0.00160	
11	964	J.W.T. Holloway	Kivungwi Spr.	Dom/Liv.	whole	
12	242	Karimjee Jivanjee Estate	Lake Soga	Dom/Ind	0.00842	ан сайтаан ал ан
13	4868	Wilson M.Karuwesa	Lukuyu R.	Dom/Irr/Liv	(0.0123)	Expire Mar. 92
14	3563	The Procura, the Holy Fathers	Mahangazi R.	Dom/Ind	0.00263	
15	138	Tanzania Sisal Corp.	Mbiki R.	Ind.	0.00362	
16	2912	Tanzania Sisal Corp.	Mbiki R.	Ind.	0.00079	Dam
17		Chairman Mlali/Kipera/Melela Vg.	Mgera R.	Dom	0.00700	÷
18	3301	Morogoro Native Auth. Coun.	Mgera R.	All purpose	0.02832	
19	4602	Taj Mohamed	Mgera R.	Dom/Ind/Liv	0.00788	
20	. 931	The Procura, the Holy Fathers	Mgeta R.	Dom	0.00016	
21	3333	Edward Seitz	Mgeta R.	Dom/Irr	0.14269	
22	3562	The Procura, the Holy Fathers	Mgeta R.	Dom/Irr	0.00526	Mgeta Total (m3/s)
23	3962	Edward Seitz	Mgeta R.	Dom/Irr	0.14269	0.334
24	1613	Morogoro Native Auth. Coun.	Mgolole R.	Dom	0.00210	
25	4299	E.L.C.T. Arusha	Mgolole R.	Dom	0.00158	
26	4691	Principal Morogoro CNE	Mgolole R.	Dom	0.01911	
27	4701	Regional Dev. Director	Mgolole R.	Fishery	(0.2170)	Expire Apr.'85
28	4828	Bigwa Folk Dev.Colledge	Mgolole R.	Dom/Irr/Liv	0.00500	Mgolole Total (m3/s)
29	4553	Deocese of Morogoro	Mgololo R.	Ind/Liv	0.00132	0.029
30	4714	P.S. Water & Energy	Mindu Dam	Dom/Ind	(0.3009)	Expire Dec.'84
31	1419	P.S. Agriculture	Mlali R.	Dom/Irr	0.00708	
32	2729	Morogoro Dist.Council	Mlali R.	Dom	0.00105	Mlali Total (m3/s)
33	3581	Morogoro Dist.Council	Mlali R.	ln	0.14160	0.150
34	2028	Mwananchi Sisal Estate Ltd.	Morogoro R.	Dom/Ind	0.00368	
35	3502	Provincial Agric. Officer	Morogoro R.	Irr	0.01421	•
36	3503	Provincial Agric. Officer	Morogoro R.	Irr	0.21309	
37	3527	Distr.Eng., EAR&H	Morogoro R.	Dom/Railway	0.00474	Morogoro Total (m3/s
38	3545	Provincial Eng. P.W.D.	Morogoro R.	Dom	0.05262	0.288
39	1024	Ruvu Valley Sugar Co., Ltd.	Msumbiji R.	Dom/Liv/Irr	0.29028	
40	3298	Morogoro Native Auth. Coun.	Mzinga R.	Dom	0.00284	
41	3299	Morogoro Native Auth. Coun.	Mzinga R.	Dom/Irr	0.01421	
42	2850	Chief of Defenceforces(TPDF Mainga)	Mzinga stream	Dom/Ind	0.01368	Mzinga Total (m3/s)
43	3623	Morogoro Native Auth. Coun.	Mzinga/Mindu R.	Dom/Irr	0.02841	0.059
44	3302	Morogoro Native Auth. Coun.	Ngadangi R.	Dom/Irr	0.00284	l

Ser.	Reg.	Grantee	Water	Purpose	Extract	Remarks
No.	No.	·	Source		Water(m3/s)	
45	327	Karimjee Jivanjee Estate	Ngerengere R.	Dom/Ind	0.00758	<i>.</i> .
46	328	Karimjee Jivanjee Estate	Ngerengere R.	Ind	0.57877	to impound
47	498	Commissioner of Prisons	Ngerengere K.	Dom	0.00203	
48	044	Amatoughi Sisal Estate Ltd	Ngerengere R	Dom/Ind	0.00347	
50	920	Kihonda Sisal Estate Ltd.	Ngerengere R.	Dom/Ind Dom/Ind	0.00526	
51	1025	George Stylianos	Ngerengere R.	Irr/Liv	0.00047	·
52	1486	NACO Ltd.	Ngerengere R.	Dom	0.00053	
53	1487	NACO Ltd.	Ngerengere R.	Dom/Liv	0.00684	
54	1953	Masimba Sisal Estate Ltd.	Ngerengere R.	Dom	0.00526	
55	2293	Tanzania Sisal Cooperation	Ngerengere R.	Ind	0.00520	unto Jul '77
50	2999	PS water Dev. & P(1PDF Ngerengere)	Ngerengere R.	Dom/ind	0.05758	upto 301.77
58	3222	Tanzania Sisal Cooporation	Ngerengere R.	Dom/Ind	0.00758	
59	3236	Asgerali Akberali	Ngerengere R.	Dom/Ind	0.00168	
60	3347	Afentakis Estate Ltd.	Ngerengere R.	Dom/Ind	0.00053	
61	3505	Mafiga Estate Ltd.	Ngerengere R.	Dom/Ind	0.00631	
62	3507	Commissoner of Prisons	Ngerengere R.	Dom/Liv	0.00395	
63	3508	Droungas Sisal Estate Ltd.	Ngerengere R.	Donvind Dom/Ind	0.00631	
64	3509	Lukosee Estate Ltd.	Ngerengere R.	Dom/Ind	0.00003	
66	3512	Kizuka Sisal Estate I td	Ngerengere R	Dom/Ind	0.00631	
67	3513	Commissoner of Prisons	Ngerengere R.	Dom/Ind/Liv	0.00342	- 14
68	3536	Tungi Ltd.	Ngerengere R.	Dom/Ind	0.00991	
69	3546	Distr.Eng., EAR&H	Ngerengere R.	Dom/Ind	0.00210	
70	3550	Fazal Kassani Mills Ltd.	Ngerengere R.	Dom/Irr	0.03552	Ngere. Total (m3/s)
71	4007	Tanzania Pipelines Ltd.	Ngerengere R.	Dom/Ind	0.00053	0.764
	4426	Tanzania Leather Ass. Indust.	Ngerengere R.	Dom/Ind	0.00525	aunica Dag (2222)
73	4585	Chief of Defenceforce	Ngerengere K.	Dom/Ind	0.00525	provisional
14	4009	Principal ID M Mzumbe	Nøerengere R	Dom/Ind	0.00323	provisional
76	4859	A.N.C. Mazibabu	Ngerengere R.	Irr	(0.0167)	Expire Mar.'92
77	4883	Register SUA	Ngerengere R.	Irr	0.00007	differred Dec. 92
78	3297	Morogoro Native Auth. Coun.	Nyambuywa R.	Dom/Irr	0.01421	
79	172	H.Kumbruch	Pangani Dam	Dom/Ind	0.00852	Water impounded
80	4851	Charles A.Mrema	Pangwa Spr.	Dom	0.00002	under process
81	3237	Tanzania Sisal Cooperation	Pangwe Spr.	Dom Dom/Ind	0.00090	to impound
83	105	Ruyn Sisal Estate Ltd	Ruvu R	Dom/Ind	0.00532	to impound
84	196	Ruyu Sisal Estate Ltd.	Ruvu R.	Dom/Ind	0.00477	
85	609	Chhtlar Shivramvyas & VKB	Ruvu R.	Dom/Irr	0.00326	
86	797	DG.NUWA (Upper)	Ruvu R.	Dom/Ind	3.15694	Dar es Salaam W/S
87	798	Chow Hsien	Ruvu R.	Dom/Irr	0.00326	
88	966	JWT Holloway	Ruvu R.	Don/Liv/Itt/Inc	0.17100	
89	1012	H.Kumonich Russi Vallas Sugar Co. Ltd	RUVU K. Duvo D	ilf Dom/Irr/Ind	0.11320	
01	1025	Director National Service	Ruvu R.	In	0.84960	provisional
92	1653	Native authority	Ruvu R.	Dom	0.00005	
93	1721	NACO Ltd.	Ruvu R.	Dom/Liv.	0.00063	
94	1895	General Manager EAR&H	Ruvu R.	Ind	0.00105	· · · ·
95	2427	DG.NUWA (Lower)	Ruvu R.	Dom/Ind	1.05231	Dar es Salaam W/S
96	2441	General Manager BAR&H	Kuvu K.	Dom/Ind	0.00526	· ·
9/	2011	Director Production Kilimo	Ruvu K.	In In	0.00308	
90	2077	Director Production Kilimo	Ruvu R.	Dom/Liv.	0.00342	n na shina shekara shekara k
100	4433	Tanzania Zambia R/way Auht.	Ruvu R.	Dom/Ind	0.00272	н. -
101	4449	DDD. Bagamoyo	Ruvu R.	Іп	0.08496	
102	4700	DR Sugarcane breeding Sta. Kibaha	Ruvu R.	Dom/irr/ind	0.05675	Ruvu Total (m3/s)
103	4805	United Farming Co.,Ltd.	Ruvu R.	Dom/Irr	0.89422	6.863
104	3571	The Procura, the Holy Fathers	Spr.near Mgeta R.	Dom/Irr	0.00142	Water immediate
105	225	Karimjee Jivanjee Estate Karimiga Jivanjae Estate	Swamp A/Soga	Dom/ind	0.00086	Water impounded
100	339	Karimjee livanjee Estate	Fanganyika L/Sog	Dom/Ind	0.00144	Water imnounded
108	341	Karimjee Jivanice Estate	Tanganyika L./Sog	Dom/Ind	0.00144	Water impounded
109		The Procura, the Holy Fathers	Tangeni R.	Dom/Irr	0.00053	
110	3331	Principal ID M. Mzumbe	Tangeni R.	Dom	0.00921	Tangeni Total (m3/s)
111	4570	The Procura, the Holy Fathers	Tangeni R.	Dom/Irr	0.00011	0.010
112	3528	Morogoro Town Council	Trib. Kiarakala R.	In	0.00005	Lune Committee OFF
113	3338	Tom Henshaw	un-named stream	Dom/Irr	0.00011	transition No.955
114	3349	winca winning Ltd.	VINWCIC SUCAM	Dom	0.00003	
1115	1855	G Samhotakie	Well near N/R	Dom/fre		

EXISTING WATER RIGHTS IN THE BASIN (2/2) Table H.1

HT - 2

9.39545

Table H.2

SUMMARY OF WATER EXTRACTION FROM RIVERS

Source of Water No.	of	Abstruction
Water	Rights	Amount (m3/s)
Ruvu River(direct)	21	6.863
Ngerengere River	34	0.764
Mgeta River	6	0.334
Other Tributaries	41	0.879
Small Ponds	9	0.555
Spring	3	0.001
Well/boreholes	. 1	0.001
Total	115	9.397

Table H.3 SUMMARY OF WATER USES

Purpose No. of	Abstruction	Weight
Water Rights	Amount (m3/s)	(%)
Domestic(main) 25	5.035	53.6
NUWA Upper Ruvu	1.052	11.2
NUWA Lower Ruvu	3.157	33.6
Mindu Dam(Morogoro)	0.301	3.2
Others	0.525	5.6
Irrigation 43	3.167	33.7
Mlali Irrigation Project	0.142	1.5
Bagamoyo Irrigation Dev. Projec	ct 0.085	0.9
Sugarcane Breeding Station	0.568	6.0
United Farming Co., Ltd.	0.894	9.5
Prov. Agricultural Office	0.213	2.3
Others	1.265	13.5
Industry 6	0.596	6.3
Others 41	0.598	6.4
Total 115	9.396	100.0

LOW WATER CHANNEL FLOW CAPACITY IN THE Table H.4 LOWER RUVU FLOOD PLAIN

Section	Chainage	Lowest	High Water	Channel		Water	Level	in mete	r	Flo	₩
No.		River Bed	Bank	Mean	100m3/s	150m3/s	200m3/s	250m3/s	300m3/s	Capac	city
	(km)	EL(m)	EL (m)	EL(m)	EL(m)	EL(m)	<u>EL (m)</u>	<u>EL (m)</u>	EL (m)	(m3/	<u>/s)</u>
0	0.00	-3.70	3.00	3.00	2.30	2.30	2.30	2, 30	2.30		
1	15.20	-7.70	1.90	1.75	2.33	2.38	2.43	2.51	2.59	Þ100 n	n3/s
2	23.80	-2.59	1.48	2.60	2.42	2.55	2.71	2.88	3.05	⊳100 m	n3/s
20	26, 30	-2.85	1.70	2.50	2.47	2.65	2.86	3.07	3.28	Þ100 π	n3/s
3	31, 90	-4.32	3. 30	3, 54	2.66	2.98	3. 32	3.65	3.97	200 r	n3/s
- 4	42.50	-0.83	6.67	7.21	4.40	5.10	5.67	6,15	6.68	300 r	n3/s
5	51.20	2.16	9.50	8.04	7.00	7.80	8,42	8.94	9.38		
6	61.70	4.82	12.70	11.40	9.83	10.62	11.26	11.82	12.31		
7	70.30	9.41	15.41	13.90	12.54	13.26	13.87	14.42	14.91		
7.4	79,70	10.51	17.02	16.44	14.96	15.61	16.19	16.70	17.16	300 r	n3/s
8	80.60	11.14	17.84	16.90	15.11	15.77	16.35	16.86	17.32		
9	94, 20	16.31	21.00	19.80	19.56	20.39	21.07	21.54	21.92	200 1	n3/s
10	107.10	20. 52	25.30	23.60	23.67	24:38	25.01	25.48	25.87	250 1	n3/s
10A	113.20	22.04	27.22	25.50	25.30	26.04	26.68	27.23	27.72	250 1	n3/s
11	115.60	22.27	27.80	26.00	25.86	26.62	27.26	27.81	28.30	250 I	n3/s
12	126.30	26.12	31. 38	29.60	29.07	29.82	30.46	31.01	31.47	300 t	m3/s
13	134.70	28.49	32.51	32.70	31.59	32.27	32.82	33.30	33.74	200 1	m3/s
14	142.80	31.47	36.36	35.40	34.20	34.79	35.25	35.64	36.00		
15	151.80	34.47	39.80	39.20	36.90	37.44	37.91	38.32	38.69		
16	156.30	35.90	39.90	41.15	38.24	38.82	39.30	39.74	40.12	300 1	m3/s

Table H.5FLOOD PLAIN OF LOWER RUVU

Section	Chainage	Lowest	High Wate	r Channel	Natural	Bank	Natural
No.		River Bed	Bank	Mean	Left	Right	Plain
	(km)	EL. (m)	EL. (m)	EL. (m)	EL. (m)	EL. (m)	Width(m)
0	0.00	-3.70	3.00	3,00	3.00	3.00	
1	15.20	-7.70	1.90	1.75	14.86	11.34	4, 754
2	23.80	-2.59	1.48	2.60	11.89	14.36	5, 389
"2A	24.10	-1.81	1.50	2:50	12.87	16.79	5, 714
2B(Road/Ferry)	25.50	-4. 90	2.50	4.60	17.44	16.84	4,500
2C	26.30	-2.85	1. 70	2.50	12.38	16.43	5, 530
3	31.90	-4.32	3.30	3.54	13.44	27.69	3,437
NUWALR D/S	39.48	0.53	6.94	6.00	14.00	20.00	
NUWALR Weir	39, 50	3. 27	6.94	6.00	14.00	20.00	
NUWALR U/S	39.51	0. 53	6.94	6.00	14.00	20.00	
4	42.50	-0.83	6.67	7.21	15.23	19.87	4, 120
5	51.20	2.16	9, 50	8.04	14.57	32.61	3,850
6	61.70	4.82	12.70	11.40	19.28	30.61	3, 990
7	70.30	9.41	15.41	13.90	17.29	21.67	3, 750
7A	79.70	10.51	16.90	16.44	23.80	23.81	2, 100
7B(Bridge)	79.72	10.65	19.68	19.68	25.80	26.30	1, 900
GS1H8	79.97	10.74	17.40	18.30	27.93	24.01	2, 200
8	80.60	11.14	17.85	16.90	27.93	24.01	2, 200
9	94.20	16.31	21.00	19.80	25.67	38.60	3,000
10	107.10	20. 52	25.30	23.60	30.56	28.47	3, 380
10A	113.20	22.04	27.10	25.50	30.00	28.55	2,700
10B(R/Wbridge)	113.30	20.38	27.05	28.47	33.91	32. 33	3, 350
10C	113.35	20.23	27.15	25.20	30.80	32.37	3, 500
-11	115.60	22. 27	27.80	26.00	31.72	38.20	3, 900
12	126.30	26.12	31.38	29.60	37.60	34.20	3,850
13	134.70	28.49	33.80	32, 70	45.75	36.66	2,800
14	142.80	31.47	36.75	35.40	49.27	42.60	2, 575
15	151.80	34. 47	39.80	39.20	49.70	44.81	1,600
16	156.30	35.90	40.30	41.15	49.64	54.59	1,700

HT - 4

 Table H.6
 TIDE LEVEL OBSERVATION AT MBEGANI (1/3)

		April	April	April	April	April	April	April	April	Apri1	April	April	May
llr	:Min	20	21	• 22	23	24	25	26	27	O 28	29	30	1
1	:00	· ·	2. 22	1.84	1.98 *	1.24	1.08	0. 80	0. 91	1.14	1. 70	2. 35	3. 13
2	:00			2.62	2.57 #	2. 01	1. 52	1. 25	1.67 *	1.40	1.44	2.16	3.04
3	:00		3.67	3.75 #	3. 15	2.65	2.60	1.95	1.97	1.90	1.39	1.54	2. 92
4	:00		3. 74	3.80 #	3. 58	3. 35	3. 35	2.97	2.62	2.30	1.68	1.48	2.45
5	:00		3. 48	3. 75	3.90	3. 74	3.64	3. 28	3.35 #	2.52	2.08	1.62	2.12
6	:00		3. 01	3. 33	3.63	4. 32	3. 75	3. 62	3. 59	2.82	2. 31	1.90	1.98
7	:00		2. 32	2. 61	2. 98	3. 28	3.40	3. 62	3. 44	3. 21	2.69	2.12	1. 78
8	:00	2 - 1	1. 62	1. 79 *	2. 22	2.62	3.00	3. 21	3. 26	3. 40	2. 98	2.57 *	2.41
9	:00		0. 98	1.18	1.58	1.84	2. 21	2,66	2.80 #	3.05	3.06	3.00	2.87
10	:00		0. 79	0.75	0.90	1.16	1.50	1. 98	2. 35	2. 70	2.85 *#	2.58	3. 02
11	:00	1.70 *	1.05	0.75 *	0.66	0.76	0.94	1. 39	1.65 #	2. 25	2.60 *	2.46	3.13
12	:00	2.07 *	1.61	1. 25	1.00	0.68 #	0.94 *	1.01	1. 33	1.88	2.30	2. 21	3.19
13	:00	2. 72	2.39	2.04	1.67	1.36	1.10	1.03	1.04	1.55	1.96	2.25 #	3. 01
14	:00	3.50	3. 20	2.85	2.49	2.05	2.08 *	1.48	1. 03	1.40	1. 79	2.12 #	2. 81
15	:00	3. 97	3. 89	3.65	3.39 #	2.95	2.88 #	2.15	1.08	1.55	1.60	2.02 #	2. 54
16	:00	4.03	4.19	4.20	4.04	3. 78	3.40	2. 91	2. 38	1. 92	1.80	1.72 #	2.09
17	:00	3. 71	3. 98	4. 25	4. 27	4.19	4.00	3. 57	2.99	2.50	2. 25	1.42 #	1. 72
18	:00	3.16	3.44 #	3. 79	4.16	4.24	4.30	3. 98	3. 54	3.00	2.45	1. 42	1. 57
19	:00	2. 43	2. 71	3.10	3.58	3.86	3. 98	4.04	3. 78	3.40	2.78	1.51	1.70
20	:00	1.58	1.86	2. 30	2.75	3.18	3. 49	3.69	3. 83	3. 60	3. 21	1. 74	1. 90
21	:00	1. 02	0. 98	1.43	1.98	2. 32	2.72	3. 22	3.40	3.50	3. 30	1. 93	2.18
22	:00	0. 81	0.75	0. 75	1.07	1. 48	1.88	2. 47	2.85	3. 17	3. 25	2. 24	2. 62
23	:00	1.04	1.03	0.56	0. 82	0.80	1.15	1.86	2.15	2. 73	3.04	2.59 #	3. 09
24	:00	1.01	1. 29	1.30	0.86	0.80	0.75	1.07	1.45	2.18	2.70	2. 93	3. 33

Note :

* reading delay within 30 minutes

data modified by the Study Team

Table H.6 TIDE LEVEL OBSERVATION AT MBEGANI (2/3)

[Nav	May	Nav	Nav	Nav	Way	Nav	Hav	May	May	Mav	May
Hr ·¥in	2	3	4	5.	0.6	7	8	 9 -	10	11	12	O 13
1 :00	3.74 #	3. 54	3, 20	2.65	2.11	2.00 *	1, 45	0. 54	1.43	0.88	1. 22	1.75
2:00	3.69 #	3.71	3.64	3.40	3. 41	2.35	2. 02	1.35	1. 95	1.08	1. 20	1.45
3:00	3.00	3. 45	3, 50	3. 73 *#	3.96 #	3. 29	2.59	1.96	2. 41	1.50	1. 45	1.61
4 :00	2.74	3, 20	2. 93	3.80	4. 52	3.90	3.64 #	2.95	2.71	2.00	1. 75	1.94
5:00	2.12	1. 93	2. 30	3. 38	3. 71	4.00	4. 21	3.73	3. 14	2. 58	2.35	2.04
6:00	1. 25	1.50	2.07	2.74	3. 15	3.60	3. 80	3. 82	3. 55	3. 05	2.60	2.26
7:00	1.23	1.05	1.15	1.78	2. 36	2.87	3. 29	3. 56	3, 50	3. 10	3. 01	2.62
8:00	1.46	1.00	0.85	1.01	1. 55	2.06	2.56	3. 29	3. 30	3. 30	3. 17	2.84
9:00	1.80	1. 34	0. 82	0.63	0. 70	1. 20	1. 78	2.46	2. 78	3.00	3. 10	3.02
10 :00	2.28	1.78	1.15	0.76	0.40	0. 55	0. 99	1.56	2.10	2.58	2.85	2.93
11 :00	2.83	2.38	1.89	1. 30	0.80	0.46	0. 52	1. 07	1. 35	2.03	2.43	2.82
12 :00	3. 30	3.16	2.85	1.96	1.40	0. 92	0. 58	0.65	0. 97	1. 50	2.01	2.52
13 :00	3.56	3. 75	3.40	2.90	2. 25	1: 72	1. 20	0. 95	0. 92	1. 15	1.60	2.14
14 :00	3.41	3. 93	4.10	3. 87	3. 50	2.60	1. 98	1.30	1.36	1.25	1.45	1.90
15 :00	3.10	3. 75	4. 30	4. 45	4. 17	3. 57	2. 91	2.45	1.90	1.62	1.55	1.75
16 :00	2.64	3. 31	4.05	4.45	4.65	4.36	3. 79	3.51	2.55	2.15	1.86	1.81
17 :00	2.09	2.65	3. 25	3. 97	4. 55	4. 57	4. 38	4.09 #	3. 44	2.67	2. 27	2.03
18 :00	1. 57	1. 94	2.50	3. 31	3.65	4. 35	4. 47	4.63	3. 85	3. 23	2. 70	2. 27
19:00	1.52	1. 52	1.80	2. 37	2, 98	3. 45	4. 27	4.14 #	4. 29	3. 56	3.15	2.67
20 :00	1. 52	1. 38	1.00	1.36	1.89	2.63	3. 01	2. 85	3. 67	3. 65	3.30	2.92
21 :00	1.56	1.20	0.88	0.67	0. 90	1.65	2.40	2.45 #	3. 19	3. 34	3. 35	3.10
22 :00	1.97	1.65	0.98	0.61	0. 30	0.67	1.93	2, 04	2.67	3. 00	3. 09	3. 15
23 :00	2.55	2.10	1.70	0. 81	0. 50	0.42	1.70	1.30	1.60	2.60	2.72	2. 82
24 :00	3.40	2.73	2. 01	1. 29	1.88	0. 71	1.00	0.99	1. 31	1.85	2. 02	2. 41

Note :

* reading delay within 30 minutes

data modified by the Study Team

Table H.6

TIDE LEVEL OBSERVATION AT MBEGANI (3/3)

	May	May	May	May	May	Nay	May
Hr :Min	14	15	16	17	18	19	20
1 :00	2.03	2.74	2.87	3.11	3.00	3. 30	2. 48
2:00	1.84	2.38	2.79	3.06	3. 25	3. 81	3.15
3 :00	1.69	2.04	2.43	2.90	3. 20	3. 57	3. 56
4 :00	1.42	1. 92	2.18	2. 62	2.60	3. 20	3.50
5:00	1. 72	1.75	1.82	2.11	2.10	2. 85	3. 07
6 :00	1.91	1.76	1.71	1. 74	1.93	2. 34	2.65
7 :00	2.16	1.81	1.65	1.46	1.54	1.72	1.90
8 :00	2.51	2.09	1.79	1.49	1. 35	1. 23	1.41
9:00	2, 80	2.41	2.07	1. 70	1. 37	1. 18	1.01
10:00	2. 99	2. 77	2.49	2.15	1.71	1.40	1.30
11 :00	2. 98	2.95	2.86	2. 55	2. 25	2.00 *	1.50
12 :00	2.89	3.01	3. 15	3.00	2.84	2. 42	2. 03
13 :00	2.64	3. 05	3. 33	3. 40	3. 38	3. 14	2. 81
14 :00	2. 34	2. 83	3. 20	3. 52 *	3. 53 *#	3. 75	3. 56
15 :00	2.06	2.55	2.97	3.30 *	3.70	3. 95	4.06
16 :00	1.85	2.14	2.57	2.90	3. 52	3. 85	4. 10
17 :00	1.86	1.89	2.15	2. 40	2, 96	3. 30	
18 :00	2.01	1.85	1.83	2. 03	2. 24	2. 70	
19:00	2.18	1.88	1.65	1.40	1. 74	2. 05	
20 :00	2.42	1.99	1.65	1.30	1. 30	1. 23	
21 :00	2.68	2.23	1.84	1.55	1. 21	1.00	
22 :00	2. 92	2.62	2.20	2.00	1. 38	0. 91	
23 :00	2. 98	2. 91	2. 55	2.40 *	1. 81	1.40	
24 :00	2. 89	2. 95	2.82	2. 70	2. 45	2.20 *	

Note :

*

reading delay within 30 minutes

data modified by the Study Team

Table H.7 RESULTS OF FLOOD ROUTINE ANALYSIS

Section	Chainage	Lowest	High Wate	r Channel		Water	Level in	m	
No.		River Bed	Bank	Mean	635m3/s	820m3/s	1005m3/s	1255m3/s	1460m3/s
	(km)	EL (m)	EL (m)	EL(m)	EL(m)	EL (m)	EL (m)	<u>EL(m)</u>	EL (m)
0	0.00	-3.70	3.00	3.00	2.30	2, 30	2.30	2.30	2.30
1	15.20	-7.70	1.90	1.75	2.77	2.97	3.15	3. 38	3.55
2	23.80	-2.59	1.48	2.60	3.12	3.34	3.54	3.78	3.96
Ferry	25.50	-4.90			3. 22	3.49	3.64	3.88	4.06
	25.51	-4.90			3. 31	3.61	3.84	4.32	4.74
2C	26.30	-2.85	1.70	2.50	3.35	3.64	3.88	4.35	4.76
3	31.90	-4. 32	3.30	3.54	3. 97	4.25	4.48	4.82	5.13
4	42.50	-0.83	6. 67	7.21	6.57	6.79	6.96	7.14	7.27
5	51.20	2.16	9.50	8.04	8.80	9.01	9. <u>1</u> 8	9.39	9, 54
6	61.70	4.82	12. 70	11.40	12.02	12.21	12.38	12.58	12.72
7	70.30	9.41	15.41	13.90	14.50	14.66	14.80	14.99	15.12
Bridge	79.72	10.65			17.58	17.78	17.94	18.14	18.29
	79.73	10.65	:		18.50	19.35	19.61	19.77	19.99
8	80.60	11.14	17.84	16.90	18.54	19.37	19.63	19.80	20.01
9	94.20	16.31	21.00	19.80	21.13	21.39	21.63	21.89	22.10
10	107.10	20.52	25.30	23.60	24.85	25.02	25.18	25.38	25.53
10A	113.20	22.04	27.22	25.50	26.49	26, 68	26.84	27.03	27.17
. R∕₩	113.30	20.38	-		27.25	27.25	27.25	27.25	27.25
	113.31	20.38			27.36	27.73	28.10	28.20	28.31
11	115.60	22.27	27.80	26.00	27.48	27.84	28.19	28.31	28.43
12	126.30	26.12	31.38	29.60	30.33	30.49	30.64	30.80	30.93
13	134.70	28.49	32. 51	32.70	33.13	33. 31	33.45	33.65	33. 7.9
14	142.80	31.47	36.36	35.40	36.00	36. 23	36.41	36.62	36.78
16	156.30	35.90	39.90	41.15	41.71	41.94	42.13	42.37	42.54

Table H.8SUMMARY OF FLOOD CONTROL WORKS FOR
IRRIGATION PROJECTS

[Constructio	n of Flood Dik	e	Construc	tion of Drain	nage Outle	t (Sluices)
	Name	Length	Excavation		Slope	No. of	Concrete	Flap	Slide
No.	of	of	&	Embankment	Protection	Sluices	(*1)	Gates	Gates
	Scheme	Dike	Stripping		Sodding			(*2)	(*2)
		(km)	(m3)	<u>(m3)</u>	(m2)		(m3)		
1	Bagamoyo	13.5	90,000	250,000	140,000	8	1,000	16	16
2	Low Lift Pump	11.5	71,000	173,000	73,000	2	250	4	4
3	Makurunge	3.5	23,000	61,000	25,000	1	130	2	2
4	Ruvu National Youth	6.0	20,000	68,000	36,000	2	250	2	2
5	Kidunda	28.5	120,000	333,000	140,000	15	1,250	20	20
6	Mgeta	48.0	310,000	845,000	36,000	10	1,250	20	20

Note (*1) reinforced concrete with strength of 210 kgf/cm2, and reinforcement bar and forms

per concrete 1 m3 are assumed at 100 kg and 3.5 m2, respectively.

(*2) 1,500 x 1,500 mm

Table H.9BREAKDOWN OF CONSTRUCTION COST FOR FLOOD
CONTROL WORK FOR
BAGAMOYO IRRIGATION PROJECT
(DEVELOPMENT SCENARIO-1)

Iten	Work	Unit	Ouantity	Foreign	Currency	Local C	итепсу	Тс	tal
No	ti ork		L	0	(USS)		(USS)		(US\$)
1.0.			а. 	Unit Price	Amount	Unit Price	Amount	Unit Price	Amount
I	Direct Construction Cost								
1.	Preparatory Works (General)	L.S.			243,000		115,000		358,000
2.	Flood Dike								
	2.1 Excavation	m3	90,000	2.20	198,000	1.30	117,000	3.50	315,000
	2.2 Embankment	m3	250,000	5.00	1,250,000	2.90	725,000	7.90	1,975,000
	2.3 Slope protection	m2	140,000	0.00	. 0	0.50	70,000	0.50	70,000
. • •	2.4 Others(5 %)	L.S.	0		72,400		45,600		118,000
	(Subtotal-2)				1,520,400		957,600		2,478,000
3.	Drainage Outlet								
• • • •	3.1 Concrete	m3	1,000	85.40	85,400	43.10	43,100	128.50	128,500
	3.2 Flap gate	no	16	22860.00	365,760	4030.00	64,480	26,890.00	430,240
	3.3 Slide gate	no	16	25970.00	415,520	4580.00	73,280	30,550.00	488,800
÷.	3.4 Others(5%)	L.S.			43,334		9,043		52,377
	(Subtotal-3)				910,014		189,903		1,099,917
	Total of Direct Construction Cost (1)				2,673,414		1,262,503		3,935,917
п	Land Aquisition and Compensation	L.S.	·		0		0		0
ш	Administration Expenses	L.S.			0		39,000		39,000
IV	Engineering Services (Detailed design and	L.S.			335,000		59,000		394 ,0 00
	supervision)					-	-		
	Total(I to IV)				3,008,414		1,360,503		4,368,917
• V .	Physical Contengency (15%)	L.S.			451,000		204,000		655,000
a 1.	Grand Total				3,459,414		1,564,503		5,023,917

HT - 9

Ite	r. Work	Unit	Quantity	Foreign	Currency (USS)	Local C	urrency (USS)	· To	otal (US\$)
	•			Unit Price	Amount	Unit Price	Amount	Unit Price	Amount
I	Direct Construction Cost								
1.	Preparatory Works (General)	L.S.			130,000		71,000		201,000
2.	Flood Dike			н				· · ·	
	2.1 Excavation2.2 Embankment2.3 Slope protection2.4 Others(5 %)	m3 m3 m2 L.S.	71,000 173,000 73,000	2.20 5.00 0.00	156,200 865,000 0 51,060	1.30 2.90 0.50	92,300 501,700 36,500 31,525	3.50 7.90 0.50	248,500 1,366,700 36,500 82,585
	(Subtotal-2)				1,072,260		662,025		1,734,285
3.	Drainage Outlet								
	3.1 Concrete3.2 Flap gate3.3 Slide gate3.4 Others(5 %)	m3 no no L.S.	250 4 4	85.40 22860.00 25970.00	21,350 91,440 103,880 10,834	43.10 4030.00 4580.00	10,775 16,120 18,320 2,261	128.50 26,890.00 30,550.00	32,125 107,560 122,200 13,094
	(Subtotal-3)				227,504		47,476	÷	274,979
	Total of Direct Construction Cost (1)				1,429,764		780,501	х., ,	2,210,264
Π	Land Aquisition and Compensation	L.S.			0		0		0
Ш	Administration Expenses	L.S.			0		22,000		22,000
IV	Engineering Services (Detailed design and supervision)	L.S.			188,000		33,000		221,000
	Total(I to IV)				1,617,764		835,501		2,453,264
v	Physical Contengency (15%)	L.S.			243,000		125,000	** · · ·	368,000
	Grand Total			-	1,860,764		960,501		2,821,264

Table H.10 BREAKDOWN OF CONSTRUCTION COST FOR FLOOD
CONTROL WORK FOR
LOW LIFT PUMP IRRIGATION PROJECT
(DEVELOPMENT SCENARIO-1)

Table H.11BREAKDOWN OF CONSTRUCTION COST FOR FLOOD
CONTROL WORK FOR
MAKURUNGE IRRIGATION PROJECT
(DEVELOPMENT SCENARIO-1)

Iten	Work	Unit	Quantity	Foreign	Currency	Local C	urrency	То	tal
No.	•				(US\$)	1. 	(US\$)		(US\$)
				Unit Price	Amount	Unit Price	Amount	Unit Price	Amount
I	Direct Construction Cost						•••		
1.	Preparatory Works (General)	L.S.			49,000		25,000	÷	74,000
2.	Flood Dike								
	2.1 Excavation	m3	23,000	2.20	50,600	1.30	29,900	3.50	80,500
	2.2 Embankment	m3	61,000	5.00	305.000	2.90	176,900	7.90	481,900
	2.3 Sinne protection	m2	25.000	0.00	Ó	0.50	12,500	0.50	12,500
	2.4 Others(5 %)	L.S.			17,780		10,965		28,745
	(Subtotal-2)			· ·	373,380		230,265		603,645
3.	Drainage outlet								
	3.1 Concrete	m3	130	85.40	11,102	43.10	5,603	128.50	16,705
	3.2 Flap gate	no	2	22860.00	45,720	4030.00	8,060	26,890.00	53,780
	3.3 Slide gate	no	2	25970.00	51,940	4580.00	9,160	30,550.00	61,100
	3.4 Others(5%)	L.S.			5,438		1,141		6,579
	(Subtotal-3)				114,200		23,964		138,164
	Total of Direct Construction Cost (1)		·		536,580		279,229		815,809
П	Land Aquisition and Compensation	L.S.			0		0		0
ш	Administration Expenses	L.S.			Ó		8,000		8,000
IV	Engineering Services (Detailed design and supervision)	L.S.			69,000		12,000		81,000
	Total(I to IV)				605,580		299,229		904,809
V	Physical Contengency (15%)	L.S.			91,000		45,000		136,000
	Grand Total				696,580		344,229		1,040,809

Iten	. Work	Unit	Quantity	Foreign	Currency	Local C	urrency	To	tal
No.				Unit Price	(USS) Amount	Unit Price	(USS) Amount	Unit Price	(US\$) Amount
I	Direct Construction Cost						• •		e na l
1.	Preparatory Works (General)	L.S.			53,000		28,000		81,000
2.	Flood Dike							:1	
	 2.1 Excavation 2.2 Embankment 2.3 Slope protection 2.4 Others(5 %) 	m3 m3 m2 L.S.	20,000 68,000 36,000	2.20 5.00 0.00	44,000 340,000 0 19,200	1.30 2.90 0.50	26,000 197,200 18,000 12,060	3.50 7.90 0.50	70,000 537,200 18,000 31,260
	(Subtotal-2)				403,200		253,260	. • .	656,460
3.	Drainage Outlet						· ·		
	3.1 Concrete3.2 Flap gate3.3 Slide gate3.4 Others(5 %)	m3 no no L.S.	250 2 2	85.40 22860.00 25970.00	21,350 45,720 51,940 5,951	43.10 4030.00 4580.00	10,775 8,060 9,160 1,400	128.50 26,890.00 30,550.00	32,125 53,780 61,100 7,350
	(Subtotal-3)				124,961		29,395	۰.	154,355
	Total of Direct Construction Cost (I)			•	581,161		310,655	• .	891,815
ц	Land Aquisition and Compensation	L.S.			0		0		0
ш	Administration Expenses	L.S.			0		9,000	1	9,000
IV	Engineering Services (Detailed design and supervision)	L.S.			76,000	· · · ·	13,000	· ·	89,000
	Total(I to IV)		,		657,161		332,655	1 - N	989,815
۷	Physical Contengency (15%)	L.S.			99,000		50,000		149,000
	Grand Total				756,161		382,655	- · · .	1,138,815

Table H.12 BREAKDOWN OF CONSTRUCTION COST FOR FLOOD
CONTROL WORK FOR
RUVU NATIONAL YOUTH IRRIGATION PROJECT
(DEVELOPMENT SCENARIO-1)

Table H.13 BREAKDOWN OF CONSTRUCTION COST FOR FLOOD
CONTROL WORK FOR
KIDUNDA IRRIGATION PROJECT
(DEVELOPMENT SCENARIO-1)

Iten No.	Work	Unit	Quantity	Foreign	Currency (USS)	Local C	urrency (US\$)	To	nal (US\$)
				Unit Price	Amount	Unit Price	Amount	Unit Price	Amount
I	Direct Construction Cost								
1.	Preparatory Works (General)	L.S.			316,000	·	149,000		465,000
2.	Flood Dike			· · · · · · · · · · · · · · · · · · ·					
	2.1 Excavation2.2 Embankment2.3 Slope protection2.4 Others(5 %)	m3 m3 m2 L.S.	120,000 333,000 140,000	2.20 5.00 0.00	264,000 1,665,000 0 96,450	1.30 2.90 0.50	156,000 965,700 70,000 59,585	3.50 7.90 0.50	420,000 2,630,700 70,000 156,035
	(Subtotal-2)				2,025,450		1,251,285		3,276,735
3.	Drainage Outlet								
	3.1 Concrete3.2 Flap gate3.3 Slide gate3.4 Others(5 %)	m3 no no L.S.	1,250 20 20	85,40 22860.00 25970.00	106,750 457,200 519,400 54,168	43.10 4030.00 4580.00	53,875 80,600 91,600 11,304	128.50 26,890.00 30,550.00	160,625 537,800 611,000 65,471
	(Subtotal-3)				1,137,518		237,379		1,374,896
	Total of Direct Construction Cost (1)	·		· ·	3,478,968		1,637,664		5,116,631
п	Land Aquisition and Compensation	L.S.			0	·	0		0
Ш	Administration Expenses	L.S.		· · · ·	0		51,000		51,000
IV	Engineering Services	L.S.			435,000		77,000		512,000
	supervision)	:			•				
	Total(I to IV)				3,913,968		1,765,664		5,679,631
v	Physical Contengency (15%)	L.S.			587,000		265,000		852,000
	Grand Total				4,500,968		2,030,664		6,531,631

Table H.14ANNUAL DISBURSEMENT SCHEDULE FOR
CONSTRUCTION COST OF FLOOD CONTROL WORK

i) Annual disbursement schedule - Bagamoyo irrigation scheme

		(Unit : 1,000 USS)				
Ycar	Foreign currency	Local currency	Total			
4th	385	68	453			
5th	1,558	453	2,011			
6th	1,983	577	2,560			
Total	3,926	1,098	5,024			

ii)

Annual disbursement schedule - Low Lift Pump P/S irrigation scheme (Unit : 1.000 USS)

		(Ont .	1,000 0307
Year	Foreign	Local	Total
	currency	currency	
7th	41	7	48
8th	376	112	488
9th	0	0	0
10th	0	0	0
11th	0	0	0
12th	175	30	205
13th	515	153	668
14th	515	153	668
15th	574	171	745
Total	2,196	626	2,822

iii) Annual disbursement schedule - Makurunge Irrigation scheme

		(Unit : 1,000 USS)				
Year	Foreign currency	Local	Total			
20th	80	15	95			
21st	732	214	946			
Total	812	229	1,041			

iv) Annual disbursement schedule - Ruvu National Youth irrigation scheme

	(Unit .	1,000 033)
Foreign	Local	Total
currency	currency	
87	16	103
795	241	1,036
882	257	1,139
	Foreign currency 87 795 882	Foreign Local currency currency 87 16 795 241 882 257

v) Annual disbursement schedule - Kidunda irrigation scheme

		(Unit :	1,000 055)
Year	Foreign	Local	Total
	currency	currency	010
6th	180	32	212
7th	1,662	476	2,138
8th	0	0	0
9th	160	29	189
10th	1,478	425	1,903
11th	0	0	0
12th	0	0	0
13th	160	28	188
14th	1,478	424	1,902
Total	5.118	1.414	6.532

HT - 14

APPENDIX-H

FIGURES

. . .

HF- 3

,

400 Tributary NR-1 350 LONGITUDINAL PROFILES OF MAJOR RIVERS (3/3) Tributary NR-2 300 250 Tributary NR-3 Distance (km) 200 Matule R. 150 Whazi R. 100 Mkurunge R. Fig. H.2 20 Ngerensere R. Ruvu River 171.2 km \circ 2, 500 2.000 1,500 500 1,000 c (m) noitsvell

HF - 12

Fig. H.10 FLOOD WATER LEVEL AT LOWER RUVU

Fig. H.14	IMPLEMENTATION SCHEDULE OF FLOOD CONTROL WORKS FOR IRRIGATION PROJECT BY DEVELOPMENT SCENARIO	[
No. of Y	I Year - 4th - 3rd - 1st 1st 2ad 3rd 4th 5th 8th 9th 10th 11th 12th 13th 16th 17th 18th 19th 20th 21th 22th (1995) - 4th - 3rd - 4th 5rd 4th 5th 10th 11th 12th 13th 16th 17th 18th 19th 20th 21th 22th (1995) - 4th - 2th 2th 2th 10th 11th 12th 13th 16th 17th 18th 19th 20th 21th 22th (1995) - 4th - 2th 2th 2th 10th 11th 12th 13th 16th 17th 18th 19th 20th 21th 22th (1995) - 2th 2th	22th (2020)
Scenario 1: Kidunda Dam		- _
• Dam Project		
(1) Kidunda Dam Project		
Dam Related Irrigation Projects Area	Project	
(1) Bagamoyo Irrigation 1,1(
(2) 1.ow-lift Pump Irrigation 2.44	2.4(X) [1:xtension of Low-lift project	
(3) Makurunge Irrigation		
(4) Ruvu National Youth	200 Stage I for Trans-immigrants	
(5) Kidunda Irrigation 10.5	0.500 0.500	
- Flood Protection Works for Irrigation Project		
Bagamoyo Schertte		
Low-Lift Pump Scheme		
K idunda Scheme		
Ruvu National Youth and Makurunge		
Scenario 2 : Mgeta Dam and Ngcrengera Dam		
- Dam Project		
(i) Mgeta Dam		
(2) Ngerengere Dam		
- Dam Related Irrigation Project Are	Project	
(1) Bagamoyo Irrigation	980	
- Flood Protection Dyke		
Bagamoyo Schene		

Construction **INNOMIAL Detailed Design**

> Feasibility Study Legend: _____ Pre-Feasibility Study

APPENDIX-I

WATER RESOURCES DEVELOPMENT PLAN

APPENDIX - I

WATER RESOURCES DEVELOPMENT

Table of Contents

		Page
1. B	ASIC POLICY	I - 1
1.1	Principles for Planning Water Resources Development	I - 1
1.2	Necessity of Water Resources Development	I - 1
2. A	SSESSMENT OF DAM SITES IDENTIFIED IN THE PREVIOUS STUDY	I - 2
2.1	Dam Sites Identified by the FAO's Study	I - 2
2.2	Geological Condition	I - 3
2.3	Hydrological Condition	I - 4
2.4	Efficiency of Reservoir	I - 5
2.5	Accessibility	I - 5
2.6	First Screening of Dam Sites	I - 5
3. P	RELIMINARY OPTIMIZATION OF DAM DEVELOPMENT SCALES	I - 6
3.1	General	I - 6
3.2	Reservoir Operation Study	I - 7
3.3	Preliminary Construction Cost Estimate	I - 8
3.4	Optimum Development Scale of Dam	I - 9
3.5	Features of Selected Dam Schemes	I - 10
4. W	ATER BALANCE FOR WATER SUPPLY TO MOROGORO	
M	IUNICIPALITY	I - 11
4.1	Existing Morogoro Water Supply Plan	I - 11
4.2	Balance of Water Demand and Water Supply for Morogoro Municipality	I - 12
5. V	VATER BALANCE FOR WATER SUPPLY TO DAR ES SALAAM	I - 12
5.1	General	I - 12
5.2	River Maintenance Flow	I - 12
5.3	Scenario of Water Resources Development to Meet Water Demand in Dar Es Salaam	I - 13

6.	POTENTIALS OF HYDROPOWER	I - 14
6	5.1 General	I - 14
6	5.2 Hydropower Development	I - 14
7.	WATER RESOURCES DEVELOPMENT PLAN IN THE	
	RUVU RIVER BASIN	I - 15
8.	PRELIMINARY DESIGN OF SELECTED DAM PROJECT	I - 17
	8.1 Dam	I - 17
	8.2 Spillway	I - 17
	8.3 Diversion Facilities	I - 18
	8.4 Power Facility	I - 18
9.	PRELIMINARY INSTALLATION PLAN OF NEW WATER	
	CONVEYANCE AND PURIFICATION FACILITY FOR MUNICIPAL	
	WATER SUPPLY TO DAR ES SALAAM	I - 19

ATTACHMENT TO APPENDIX-I

PRELIMINARY DESIGN OF WATER CONVEYANCE AND PURIFICATION FACILITY FOR MUNICIPAL WATER SUPPLY TO DAR ES SALAAM.

and the second second

List of Tables

Table No.	Title	Page
Table I.1	Main Features of 23 Dam Sites Identified by the Previous Study	IT - 1
Table I.2	Results of Overall Assessment of 23 Dam Sites Identified	
	by the Previous Study	IT - 2
Table I.3	Comparison of Dam Development Scales for Rudete Dam	IT - 3
Table I.4	Comparison of Dam Development Scales for Ngerengere Dam	IT - 3
Table I.5	Comparison of Dam Development Scales for Mkombezi Dam	IT - 4
Table I.6	Comparison of Dam Development Scales for Mgeta Dam	IT - 4
Table I.7	Comparison of Dam Development Scales for Kidunda Dam	IT - 5
Table I.8	Main Features of Existing Mindu Dam	IT - 6
Table I.9	Water Balance by Development Scenario	IT - 7

List of Figures

Fig. No.	Title	Page
:		
Fig. 1.1	Location of Dam Sites Identified by the Previous Study	IF - 1
Fig. 1.2	Reservoir Storage Curve and River Cross Section	
	at the Rudete Dam Site	IF - 2
Fig. I.3	Reservoir Storage Curve and River Cross Section	
	at the Ngerengere Dam Site	IF - 3
Fig. I.4	Reservoir Storage Curve and River Cross Section	÷ • . '
	at the Mkombezi Dam Site	IF - 4
Fig. I.5	Reservoir Storage Curve and River Cross Section	
	at the Mgeta Dam Site	IF - 5
Fig. I.6	Reservoir Storage Curve and River Cross Section	
	at the Kidunda Dam Site	IF - 6
Fig. I.7	Relation between Dam Embankment Volume	
	and Dam Construction Cost	IF - 7
Fig. I.8	Comparison of Dam Development Scales for Rudete Dam	IF - 8
Fig. I.9	Comparison of Dam Development Scales for Ngerengere Dam	IF - 9
Fig. I.10	Comparison of Dam Development Scales for Mkombezi Dam	IF - 10
Fig. I.11	Comparison of Dam Development Scales for Mgeta Dam	IF - 11
Fig. I.12	Comparison of Dam Development Scales for Kidunda Dam	IF - 12
Fig. I.13	General Plan of Rudete Dam	IF - 13
Fig. I.14	General Plan of Ngerengere Dam	IF - 14
Fig. I.15	General Plan of Mgeta Dam	IF - 15
Fig. I.16	General Plan of Kidunda Dam	IF - 16
Fig. I.17	Municipal Water Demand and Water Supply for Morogoro	
	Municipality	IF - 17
Fig. I.18	Municipal Water Demand and Water Supply for Dar Es Salaam	
	in Case of Development Scenario-1	IF - 18
Fig. I.19	Municipal Water Demand and Water Supply for Dar Es Salaam	
	in Case of Development Scenario-2	IF - 19
Fig. I.20	Layout Plan of Kidunda Dam Project	IF - 20
Fig. I.21	Layout Plan of Mgeta Dam Project	IF - 21
Fig. I.22	Layout Plan of Ngerengere Dam Project	IF - 22
Fig. I.23	Expansion Plan of Water Conveyance Facility of Dar Es Salaam	
	Water Supply System	IF - 23

APPENDIX - I

WATER RESOURCES DEVELOPMENT

1. BASIC POLICY

1.1 Principles for Planning Water Resources Development

As stressed in the Inception Report, the primary objective of the Study is to formulate a water resource development plan in the Ruvu River basin to meet the municipal water demand in Dar Es Salaam city by the year 2020. Thus, the municipal water supply to Dar Es Salaam City is given the first priority in establishing the water resources development plan.

Since the streamflow of the Ruvu River varies seasonally throughout the year to a large extent and even year by year, it is necessary to construct a reservoir type dam to augment the dry season flow in order to enable the stable water supply to Dar Es Salaam city over the entire period by means of developing the surface water. Another way to suffice the municipal water demand is exploitation of the ground water resources by combining the surface water development. As explained in Appendix-B of this Supporting Report, however, the ground water resources economically exploitable in the Study Area are considered very less from the hydrogeological condition and quality of ground water. Hence, most of new water resources required to meet the municipal water demand would have to rely on the surface water.

The dependability of design discharge for municipal water supply and return flow from the irrigation area are set at the following figures in order to examine the water balance in the Ruvu River basin in connection with planning of the water resources development;

-	Dependability of design discharge for municipal	•
	water supply scheme	: 95 %
-	Rate of return flow for irrigation scheme	: 20 %

With regard to other water resources development than the municipal water supply such as irrigation and hydropower development, the development plan is established so that the surplus water in excess of the municipal water demand in Dar Es Salaam city which might be exploitable through provision of the promising reservoir type dams in the basin will be utilized for other development than the municipal water supply as far as possible.

1.2 Necessity of Water Resources Development

At present, most of the municipal water for Dar Es Salaam city is being supplied from the Ruvu River. As the Government's policy, the increasing water demand of the city is planned to be met through water resources development in the Ruvu River basin which comprise provision of reservoir type dams because of its proximity to the city as compared with other surrounding rivers. The municipal water demand in Dar Es Salaam city is forecast to reach about 11.2 m³/sec or 969,173 m³/day in the year 2020 as discussed in Appendix-E of this Suppring Report. While, a 95 % dependable discharge at the NUWA's Upper Ruvu intake site is estimated at 9.1 m³/sec based on the long-term mean daily runoff data at existing gauging station 1H8, which is situated at the existing Morogoro Road Bridge, about 80 km upstream of the Ruvu River mouth. Thus, it is envisaged that no urgent water resources development plan would need to be implemented to cope with the municipal water demand in Dar Es Salaam, if the entire river flow of the Ruvu River could be utilized for the municipal water supply.

On the other hand, it was confirmed through the field investigation in the Phase 1 Field Work that the water rights along the downstream reach of the NUWA's Upper Ruvu intake site have already been officially registered by existing various kind of farms. A total of the required irrigation water supply for the downstream farms comes to about 1.0 m³/sec.

In addition to the irrigation water supply, it is essential to discharge down the river maintenance flow to the river mouth from the environmental aspects, in particular in order to safeguard the mangrove trees growing in the lowermost area as well as to avoid occurrence of salinity problems in the downstream farm lands due to intrusion of sea water. The required minimum river maintenance flow is derived to be 4.3 m^3 /sec, which is equivalent to the minimum mean monthly discharge at the Upper Ruvu intake site.

As a result, the minimum discharge to be released to the downstream reach of the lower Ruvu intake sites is derived to be 5.1 m^3 /sec by summing up the required net irrigation water supply (0.8 m³/sec) in consideration of the return flow and the river maintenance flow (4.3 m³/sec). Therefore, the discharge available for the municipal water supply to Dar Es Salaam city comes to about 3.9 m³/sec with 95 % confidence under the present condition. Thus, the available discharge is by far insufficient for the municipal water demand in Dar Es Salaam in 2020 and it is considered essential to develop the water resources in the Ruvu River basin, if it is possible to exploit the municipal water therein economically.

2. ASSESSMENT OF DAM SITES IDENTIFIED IN THE PREVIOUS STUDY

2.1 Dam Sites Identified by the FAO's Study

In 1961, the previous study carried out under FAO in relation to the water resources development in the Ruvu River basin identified 23 dam sites therein, whose locations are depicted in Fig. I.1.

In succession to the FAO's study, the further study on the identified dam sites was made by the aid of the French Government in 1962 so that 4 dam sites, namely Mkombezi, Mgeta, Ngerengere and Kidunda, were retained as the priority ones among the 23 dam sites identified by FAO. Moreover, the study report states that out of the four dams the Kidunda dam would enable the most efficient storage of the river runoff for the purpose of flood control, municipal and irrigation water supply, hydroelectric power generation. Thereafter, the additional investigation on the Kidunda dam, which includes core drilling at the dam site, was carried out

in 1964. The investigation results are summarized in a report titled "Selection of the Kidunda Dam Site, Ministry of Agriculture, Tanzania (1964)".

With regard to the aforesaid 23 dam sites, the preliminary assessment was made to screen out the prospective dam sites from the following aspects applying the project features proposed in the FAO's Report ;

- Geological condition
- Hydrological condition
- Storage efficiency
- Accessibility to the dam site
- Topographic condition

2.2 Geological Condition

On the basis of the site reconnaissance and geologic data collected, the geological assessment was made for each of the 23 dam sites in the Ruvu River basin, identified by the previous studies, as summarized in Table I.1.

In case of the water resources development by means of providing the dam in the Ruvu River basin, it is detected that the following issues on the dam geology might come out;

- 1) Major fault
- 2) Seepage through dam foundation and surrounding mountains of reservoir
- 3) Insufficient bearing capacity of dam foundation

(1) Major fault

The active fault is one that has a possibility to cause movement of ground in near future. Concerning dam constructed on or near the active fault, there is a high possibility that it cause the dam failure when an earthquake takes place. Therefore, the dam needs to be constructed not adjacent to the active fault.

In the Ruvu River basin, there exists the major fault along the Mgeta River, southern section of the Uluguru Mountains according to the geological maps collected during the Phase 1 Field Work. The major fault delineates the Pre-Cambrian rock and Quaternary alluvial deposit. Although the further study is required to clarify the extent of the major fault and geological movement in the next study stage, there is a possibility that the dam sites selected on the Mgeta River and its tributaries are to be affected by the major fault in view of the dam safety. Of the proposed 23 dam sites, the following five (5) ones are located close to the major fault as mentioned in Appendix-B of this Supporting Report;

- Mgeta
- M/LB/R1
- Mngazi
- Bwakila
- Dutumi

(2) Seepage through dam foundation and surrounding mountain of reservoir

In the Jurassic limestone, Calcareous rocks and Cretaceous marl and limestone distributing in the Ruvu River basin, there is a possibility that there exist a lot of holes in those rocks. At these sites, therefore, the reservoir could not store inflow discharge as expected, due to seepage along the foundation rock and surrounding mountain after construction of dam. Moreover, the dam body might result in failure due to piping and uplift in the foundation. Judging from the geologic maps, there is a possibility that the following dam sites are dominated by such geological condition;

- Kidunda
- Mkulazi
- LB/R1
- Mbiki

(3) Insufficient bearing capacity

It is considered that dam founded on alluvial deposits with insufficient bearing capacity would result in failure of dam, provided that the dam is founded on the alluvial layer. Besides, the seepage through the dam foundation is expected to occur so that it may not function properly as expected. On the other hand, it is anticipated that the dam construction cost will increase remarkably, in case the dam is founded on the firm rock overlaid by the alluvial layer. On the basis of the geological data and site reconnaissance, it deems that the following dam sites are covered by the comparatively thick river deposits;

- RB/R2
- Banda
- Mbwawa
- Chomthe

2.3 Hydrological Condition

As mentioned in Appendix-C of this Supporting Report, the high annual rainfall exceeding 2,000 mm takes place in and around the Uluguru Mountains areas located in the western part of the Ruvu River basin, while the relatively low annual rainfalls of less than 1,000 mm are usually recorded in the eastern part thereof. Besides, the low runoff coefficients are obtained through the present hydrological analyses in the tributaries originating on the left bank side of the Ruvu mainstream. Using isohyetal map of annual rainfall which is explained in Appendix-C, the basin average rainfall for those covered by each of the 23 dam sites is estimated as shown in Table I.1.

For each sub-basin of the Ruvu River, the runoff coefficient is derived as explained in Appendix-C. The runoff coefficient in the entire Ruvu River basin is estimated at about 12%. The rather low runoff coefficient of less than 10 % is derived for the Ngerengere basin and the lower Ruvu basin.

The following two (2) factors are applied to represent the hydrological features for each catchment of the 23 dam sites;

Specific runoff depth ("IR" in mm/year/km ²)	 :	IR=Ra x f/100
Annual inflow volume ("IV' in Million m ³)	:	IV=A x Ra x f/1000

where, Ra : Annual mean rainfall in the catchment (mm/year) f : Runoff coefficient (%) A : Catchment area (km²)

The factor "IR" shows annual average runoff rate per km², while annual mean gross runoff volume from the whole catchment is represented by the factor "IV". The larger values of "IR" and "IV" mean larger inflow volume that exhibits the high attractiveness from the hydrological viewpoint. Those factors for the respective dam sites are tabulated in Table I.1.

2.4 Efficiency of Reservoir

The storage efficiency factor defined below is used to compare with the efficiencies of the respective reservoirs;

Storage efficiency (SE) : SE=Vr/Ve

where, Vr : Reservoir storage capacity (Million m³) Ve : Embankment volume of main dam (Thousand m³)

The factor "SE" exhibits a simple storage efficiency. The larger value means more efficient dam scheme. As shown in Table I.1, the Kidunda dam reveals the distinguished high storage efficiency among the 23 dams.

2.5 Accessibility

In implementing the dam scheme, construction of the access road from existing trunk road to the dam site is indispensable. The approximate length of access rood required therefor is measured on existing 1 to 50,000 scaled maps based on the site reconnaissance and with reference to aero photographs. The required access road is divided into two portions, namely the section for which road is required to be newly constructed and that requiring only improvement works for existing road such as widening and/or pavement.

2.6 First Screening of Dam Sites

The above factors for the respective dam sites are summarized in Table I.1. As seen in the Table, the dam sites No.11 to No.22 show rather low runoff depth and inflow volume due to their extremely small runoff coefficients. Presumably, such unattractive hydrological features would be responsible for lesser annual rainfall in the catchment as well as geologic condition of the catchment. These dam schemes are considered to be not attractive from the hydrological viewpoint.

I - 5

Out of the retained 10 dam schemes, 5 dam sites are located closed to the major fault as aforesaid. In this Study stage, however, the major fault is not necessarily critical issue to disqualify them as the unfavorable dam sites for the water resources development, but as a matter of course these dam sites require detailed geological investigation in the successive prefeasibility or feasibility study stage.

Concerning the Kidunda dam, the geological investigation including core drilling was performed for the downstream locations under the French aid, which covers a catchment area of about 5,760 km². Since the runoff at the downstream locations is by far than that at the upstream site identified by the FAO's Study, it is determined that the further examination is to be made for the downstream sites. It deems that the downstream area of the proposed dam site is clearly composed of limestone judging from the geological maps and topographic features of both banks based on existing 1 to 50,000 scaled topographic maps. While, the bore holes drilled at the proposed dam site in the course of the French study encountered the sandstone and shales as well as clayey layer. Although the Kidunda dam requires more detailed geological investigation in the next prefeasibility or feasibility study stage, it is retained as one of the candidate dam sites for the reason of the high reservoir efficiency as well as abundant inflow at the proposed dam site.

The results of the overall assessment on the 23 dam sites are summarized in Table I.2. Although the Msoro dam site is given the highest rank of "A" in the Table, it is judged that the topographic condition at the dam sites could not allow construction of a storage type dam. Hence, the Msoro dam is excluded from the candidate dams. As a result, the following four (4) dam schemes are selected as the candidate dams for the water resource development;

- Rudete
- Ngerengere
- Kidunda
- Mgeta

As mentioned above, it is essential to clarify the geological condition of the Mgeta and Kidunda dams in the prefeasibility or feasibility study that is expected to be carried out after this Study.

3. PRELIMINARY OPTIMIZATION OF DAM DEVELOPMENT SCALES

3.1 General

Four (4) dam sites have been selected as the candidate dam sites among the 23 ones through the first screening as aforesaid. These four dam sites include three dams out of four (4) ones selected by the French study as the promising ones in the Ruvu River basin. In this Section, the optimization study to determine the most appropriate development scale is made for the five dams which comprise the aforesaid four (4) candidates dams and the Mkombezi dam for reference.

The development scale for each of five (5) dam schemes selected above is optimized through the following procedures;

- Preparation of reservoir storage curve showing a relation among reservoir water level, reservoir area and volume, and river cross section along dam axis
- Selection of alternative development cases with respect to dam height
- Reservoir operation for each case to estimate the available discharge
- Construction cost estimate for each case based on the dam embankment volume and required length of access road
- Determination of the least cost case for each dam scheme

The above procedures are explained in the following Sections;

3.2 Reservoir Operation Study

(1) Reservoir storage curve and river cross section along dam axis

The reservoir storage curve is constructed based on existing 1 to 50,000 scaled topographic maps to be applied to the reservoir operation study for each of the five (5) dams. Besides, the river cross section along the dam axis, which is used to calculate the embankment volume for each dam, is prepared based on the 1 to 50,000 scaled topographic maps and river cross sections obtained through the topographic survey performed in the Phase 1 Field Work.

The reservoir storage curve and river cross section thus derived are shown in Figs. I.2 to I.6 by the dam scheme.

(2) Selection of alternative development cases for each dam scheme

a. Dead storage capacity of the reservoir

In planning the reservoir type development, at first, the dead storage capacity needs to be secured below the low water level (LWL) of the reservoir. As stated in Appendix-C, the sediment transport rate was derived to be about 100 m³/km²/year and 400 m³/km²/year at the existing stream gauging stations 1H8 and 1H10 respectively based on the limited data of suspended sediment load. On the other hand, in case of the Lower Kihansi Hydrower Project whose construction is going to start soon, the sediment yield at the Lower Kihansi intake dam site with a catchment area of 590 km² was estimated at about 70 m³/km²/year. Broadly speaking, therefore, the denudation rate in the Ruvu River basin seems to range between 1 mm/year and 5 mm/year depending on the regional conditions including vegetation, land slopes, vegetation, land use, etc. Hence, it is recommended to carry out the intensive water sampling for the suspended load analysis at the proposed dam site in the next study stage so as to estimate the sediment transport rate with accuracy. In this Study carried out at a level of master plan study, the dead storage capacity was determined to be the volume yielded at the denudation rate of 5 mm/year for 100 years taking into the slightly safer side design for a life of reservoir. The required dead storage volume was calculated by the following formula;

 $Vd=Er \times Ca \times 0.1$

Where,

Vd : Required dead storage capacity (Million m³)

Er : Denudation rate of the Ruvu River basin (mm/year)

Ca : Catchment area covered by the proposed dam site (km²)

b. Selection of alternative development cases

The low water level (LWL) is taken at the reservoir water level which corresponds to the above dead storage capacity. To find out the least-cost case for each dam scheme, six alternative cases are selected by varying the full supply level which is set above the dead minimum operation level for every case. Those alternative cases are shown in Tables 1.3 to 1.7 by the dam scheme.

(3) Reservoir operation study

Concerning each alternative case, the reservoir operation study is carried out to estimate the dependable discharge to be increased after regulating the natural inflow through the planned reservoir storage volume. The reservoir operation study is made applying the reservoir storage curve, long-term mean monthly discharges at the proposed dam site, obtained through the hydrological analysis, and monthly evaporation observed in the Ruvu River basin. The general equation for the reservoir operation is expressed as follows;

 $V_{n+1}=V_n - (A_n + A_{n+1}) \times E_v \times Nd \times 0.001 + (Q_i - Q_d) \times Nd \times 0.0864$

Where,

Vn+1	: Effective storage vol	ume at the end of the month (Million m^3)	
Vn	- do -	at the end of the previous month (Million m^3)	
An+1	: Reservoir area at the	end of the month (km ²)	
An	- do -	at the end of the previous month (km^2)	
Ev	: Average evaporation	from the reservoir surface for the month (mm/day)	
Nd	: Number of days of the month		
Qi Qd	: Mean monthly inflow : Dependable outflow	w into the reservoir (m ³ /sec) from the reservoir	

The inflow data for forty (40) years are worked out for the reservoir operation study through the hydrological analysis. The evaporation rate from the reservoir surface is adopted to be 70 % of the Pan-A evaporation records at Kibaha. The dependable discharge in each alternative case is estimated to enable a definite outflow throughout the available period of inflow data of 40 years.

The results of the reservoir operation study are summarized in Tables I.3 to I.7. It is verified through the reservoir operation study that the dependable discharge doesn't increase in proportion to the effective storage volume when the full supply level rises, since rate of loss of water stored in the reservoir becomes larger according to enlargement of the reservoir area. Especially, this phenomenon is seen in case of the Kidunda dam. Thus, it is not necessarily economical to construct high dam taking into account the evaporation loss from the reservoir surface.

3.3 Preliminary Construction Cost Estimate

In the optimizations study, the construction cost for each alternative development case is estimated simply based on the dam embankment volume as well as that for access road to the dam site. Concerning the dam type, the fill type dam is selected for every dam site in
consideration of the geological conditions. The dam embankment volumes are estimated applying the following criteria based on the river cross section at each dam site;

- Dam crest level is set at 5 m above the Full Supply Level (FSL), adopting a free board of 5 m.
- Upstream and downstream slopes of dam body are 1 : 2.50 and 1: 1.95, respectively.
- Depth of excavation for placing foundation of impervious core zone of embankment is assumed at 5 m below original ground surface except for the Kidunda dam whose geological profile is made available through the previous French study.

According to the Study on the National Water Master Plan in Kenya, the relation between the embankment volume and the dam construction cost is derived to be represented by exponential curve shown in Fig. I.7. This formula is tentatively applied to estimate the dam construction cost. Besides, the construction cost of the access road is estimated using unit rate of US\$ 400,000/km and US\$ 55,000/km for new construction of access road and improvement of existing road, respectively, with reference to the unit rates prevailing in Tanzania. Thus, the direct construction cost is estimated by summing up these costs.

The total construction cost is then estimated adding the engineering service/administration cost and physical contingency cost, which are assumed to be equivalent to 12.5 % and 15 % of the direct cost, respectively. The estimated total construction cost for each alternative case is depicted in Figs. I.8 to I.12.

3.4 Optimum Development Scale of Dam

The alternative cases for each dam scheme are compared with one another in terms of the construction cost per dependable discharge, which is derived dividing the total construction cost by the dependable discharge. The values are depicted in Figs. I.8 to I.12. As a result, the optimum case for each dam scheme is determined by means of the least-cost criteria as shown below;

		4.5		1. S.		
Name of Dam	Catchment Area	Mean Inflow	Dam Height	Effective storage Volume	Dependable discharge	Construct. Cost per Dep. Disch.
	(km2)	(m3/sec)	(m)	(Mill, m3)	(m3/sec)	(Mill, US\$/m3/sec)
Rudete	247	3.03	35.0	15.9	1.40	31.6
Ngerengere	2,809	4.32	31.0	143.9	1.81	56.9
Mkombezi	603	1.13	25.0	40.2	0.36	173.1
Mgeta	939	12.63	40.0	63.4	5.82	13.7
Kidunda	5.761	48.97	26.0	456.4	28,16	1.6
					and the second	and the second sec

As shown in above table, the Kidunda dam exhibits the considerably low construction cost per dependable discharge for the sake of the distinguished reservoir storage efficiency, while the Mkombezi dam requires very high construction cost as compared with that of the Kidunda to develop the same quantity of water for the municipal water supply.

3.5 Features of Selected Dam Schemes

From the above preliminary examination, the following results are derived for each dam scheme;

a. <u>Kidunda dam</u>

The Kidunda dam shows the lowest rate in terms of construction cost per dependable discharge exploitable, if there exists no fatal geologic problems in relation to the existence of limestone at the dam foundation and in the reservoir area. As stated in Appendix-B, it is recommended that two alternative sites, the "Lower Downstream site" and "Intermediate site", are investigated in detail in the next study stage with respect to their geological conditions. As a result of the field reconnaissance conducted in the Phase 1 Field Work, it is found that there exist sandy limestone layers at the "Lower Downstream Site". On the other hand, the "Intermediate Site" consists of the carbonate and mudstone, which is differentiated from the "Lower Downstream Site" by fault running between these two alternative dam sites. Of these two alternative dam sites, the upper site may be hardly affected by the limestone. In view of the existence of the limestone at the "Lower Downstream Site", it is considered that the "Intermediate site" is more favorable, although there is a possibility that the clayey layer exist in the mudstone at the "Intermediate Site". Furthermore, the Kidunda dam would be able to yield abundant water which exceeds the municipal water demand in Dar Es Salaam city in the year 2020. Accordingly, in case it is verified through geological investigation in the successive prefeasibility or feasibility study that the dam site and reservoir area are technically sound for construction of around 21 m high fill type dam above the river bed, the Kidunda dam will be ranked as the most attractive one from the economical aspect. In addition, the surplus water which exceeds the water demand in Dar Es Salaam City in 2020 enables to develop new irrigation areas spreading in the downstream areas of the dam site.

b. Mgeta dam

The Mgeta River is also blessed with abundant river flow which is sourced mainly from the high rainfall in the Uluguru Mountains area. The Mgeta dam is located very far from the NUWA's Upper Ruvu intake site, about 300 km downstream therefrom. While, a wide area of potential irrigation areas spread downstream thereof. Therefore, it is anticipated that water to be yielded by the Mgeta dam is to be utilized for the irrigation development. On the other hand, the Mgeta dam is located comparatively close to the major fault running in the downstream floodplain of the Mgeta River. Accordingly, the geological issue will have to be resolved in the next feasibility or feasibility study stage before implementing the Mgeta dam scheme.

The Mgeta reservoir can discharge downstream a comparatively large quantity of regulated flow throughout the whole period. In planning the Mgeta dam for the purpose of water supply to Dar Es Salaam, however, it is considered necessary to clarify the loss of water discharged from the reservoir, which may take place in the downstream floodplains due to evaporation before arriving at the intake sites.

c. <u>Ngerengere</u> dam

The Ngerengere dam is located about 175 km downstream of existing Mindu dam on the Ngerengere River. Although the construction cost of the Ngerengere dam estimated in this stage is higher than those of the Kidunda and Mgeta dams, the water to be regulated by the

Ngerengere dam would contribute to municipal water supply to Dar Es Salaam city. Besides, it is possible to utilize water to be exploited through provision of the Ngerengere dam for irrigation development in the downstream areas of the planned dam site.

d. <u>Rudete dam</u>

The Rudete River is a tributary of the Msoro River, draining the most western part of the Ruvu catchment. The Rudete dam site is located about 15 km upstream of the confluence of the Rudete and Msoro Rivers or about 310 km upstream of the NUWA's Upper Ruvu intake site. Thus, the Rudete dam site is very distant from the NUWA's Upper/Lower Ruvu intake sites as well as the case in the Mgeta dam so that there is a possibility that a larage part of water released from the Rudete reservoir is loosed until it arrives at the downstream intake sites taking into consideration the smaller regulated flow, even though the dam scheme is planned to be developed for the purpose of municipal water supply to Dar Es Salaam. Therefore, it is foreseen that water regulated by the Rudete reservoir is to be utilized to irrigate the downstream areas of the dam site if there exists the promising potential irrigation areas therein.

e. <u>Mkombezi dam</u>

The Mkombezi dam is assessed to be unattractive in terms of the considerable high rate of construction cost per dependable discharge exploitable. Therefore, the Mkombezi dam is excluded from the candidate dam sites as verified through the first screening.

The general plans of above four (4) dams are shown in Fig. I.13 to I.16. As a result of the above examination, three (3) dams of the Kidunda, Ngerengere and Mgeta are selected as the candidate dam schemes for coping with the municipal water demand in Dar Es Salaam by to the year 2020.

4. WATER BALANCE FOR WATER SUPPLY TO MOROGORO MUNICIPALITY

4.1 Existing Morogoro Water Supply Plan

The municipal water for Morogoro, the second largest town in the Study Area, is being supplied from existing Mindu dam. In this Section, the water balance of water demand in Morogoro and water supply capacity of the Mindu dam is examined based on the dam heightening plan and water demand up to the year 2020.

The Mindu dam is situated on the Ngerengere River, about 7 km southwest of the Morogoro municipality. It was constructed for the purpose of the municipal water supply to Morogoro municipality.

In 1972, the Ministry of Water Development and Power carried out a feasibility study on Morogoro town water supply covering a period up to the year 1995. The study examined various alternative sources of water to meet the future water requirement therein. The alternative modes of water supply were as follows:

Construction of Mindu dam

- Extension of the existing water supply system using the Morogoro River water
- Development of tributaries of the Ngerengere River
- Draw-off from the Ngerengere River (at Konga)
- Supply from Mlali River
- Ground water supply

As a result of the study, construction of the Mindu dam was selected as the best alternative. The project has inherent problems but it had advantages and was more substantial alternative than the other modes. The Mindu dam was completed in 1985. Main features of the dam are shown in Table I.8.

Also the project considered the second stage construction, which includes heightening the dam by 2.5 m to get additional storage reservoir capacity to meet the future water demand and cope with siltation in the reservoir.

4.2 Balance of Water Demand and Water Supply for Morogoro Municipality

As explained in the foregoing Appendix-E, the municipal water demand in Morogoro in the year 2020 is forecast at 0.95 m³/sec or 82,373 m³/day. The balance of water demand and water supply for the Morogoro municipality is shown in Fig. I.17. As seen in the Figure, the water deficit is forecast to take place in the year 2017, even though the water supply capacity of the Mindu dam is augmented through heightening of existing dam as originally planned.

5. WATER BALANCE FOR WATER SUPPLY TO DAR ES SALAAM

5.1 General

Apart from the irrigation development in the Ruvu River basin, as discussed in the forgoing Section 10.3, the Kidunda, Mgeta and Ngerengere dams are expected to be prospective water resources for coping with the municipal water demand in Dar Es Salaam. In principle, the water resources development plan is established to meet the municipal water demand in Dar Es Salaam in the year 2020 by means of provision of those dams, in case the natural flow of the Ruvu is not able to meet the increasing water demand in Dar Es Salaam.

Judging from the topographic condition along the Ruvu River, there exist the suitable intake sites only in the downstream reach of the Kidunda dam site, which include existing Upper and Lower Ruvu intake sites. Therefore, the water balance is examined at the existing stream gauging station 1H8, the Morogoro Road Bridge site.

5.2 River Maintenance Flow

In making the balance of water demand and supply, the river maintenance flow constitutes key component of water demand. The maintenance flow of a river needs to be determined taking into account various aspects such as navigation, fishing, picturesque scenery, salt water intrusion, clogging of river mouth, riparian structures, ground water table, flora and fauna, river water quality. In case of the Ruvu River, it is the most important to secure a river flow required to conserve mangrove trees growing in the lowermost reach. Besides, there exist

various farms in the downstream reach of the Upper Ruvu intake site, which register the water rights with respect to use of the river water. Therefore, the dams planned in the upstream reach have to be operated to release a discharge which is equivalent to a sum of the river maintenance flow and water requirement for existing farms.

To determine the river maintenance flow, the minimum monthly discharges observed and simulated at existing stream gauging station 1H8 are compared with the probable minimum mean daily discharges thereat.

The lowest mean monthly discharge at the stream gauging station is derived to be 4.3 m^3 /sec in November 1959 among the mean monthly runoff data for 31 years from 1959 to 1989 according to the simulation results. On the other hand, the water requirement in the downstream reach totals about 1.0 m³/sec. Consequently, the minimum flow to be secured in the downstream reach is derived to be 5.1 m^3 /sec taking account the return flow from the downstream farms. While, the probable 10-year and 20-year minimum mean daily discharges at the gauging station 1H8 are calculated at 5.4 and 4.6 m³/sec, respectively, based on the observed annual minimum data. Thus, the river maintenance flow of 5.1 m^3 /sec is considered to be in an appropriate range as the minimum requirement.

5.3 Scenario of Water Resources Development to Meet Water Demand in Dar Es Salaam

The 95 % dependable mean daily discharge at the Upper Ruvu intake site is derived to be about 9.1 m^3 /sec based on the long-term mean daily discharges observed at existing stream gauging station 1H8 which covers a catchment area of 15,180 km². By deducting the aforesaid minimum flow of 5.12 m^3 /sec in the downstream reach from the 95 % dependable discharge, the maximum water which can be supplied from the Ruvu River to Dar Es Salaam under the present condition comes to about 3.9 m^3 /sec. In case no upstream dams are developed, that is, under the present condition, the natural flow of the Ruvu would meet the municipal water in Dar Es Salaam up to the year 1994. Therefore, the natural flow in the dry season is required to be regulated by the upstream dams in order to cope with the water demand in Dar Es Salaam by the year 2020, which is forecast to be about 11.2 m^3 /sec.

Thus, it is essential to provide the reservoir type dam(s) in the upstream reaches of the Ruvu River. The water balance is made concerning the discharges at the Upper Ruvu intake site at the existing Morogoro Road Bridge. The surplus water available for irrigation is calculated by the following equation neglecting evaporation loss of the released outflow;

$QI = \sum QDi + QR_{95\%} - Qm - Q_{2020}$

Where,	QI	: Discharge available for new irrigation development (m ³ /sec)
	ΣQDi	: Regulated outflow from upstream dam(s) (m ³ /sec)
:•	QR95%	: 95 % dependable discharge for area not covered by the upstream
		dam(s) (m ³ /sec)
· · · · · ·	Qm	: Sum of river maintenance flow and irrigation water requirement in
		the downstream reach (m ³ /sec)
	Q2020	: Water demand in Dar Es Salaam City in the year 2020 (m ³ /sec)

To make the above value of "QI" positive, the following three (3) scenarios are tentatively conceived in terms of the reservoir type development;

Development Scenario -1: Kidunda dam only

Development Scenario -2: Mgeta dam and Ngerengere dam

The water balance in each of the Development Scenarios-1 and -2 is shown in Table I.9. The development plans of the those dam projects in the Development Scenarios-1 and -2 are depicted in Figs. I.18 and I.19 respectively taking into consideration the future municipal water demand in Dar Es Salaam and time required for construction of those dam projects.

6. POTENTIALS OF HYDROPOWER

6.1 General

Following provision of the reservoir type dams, the regulated water will be able to be utilized for development of new irrigation area as well as hydropower generation. The former is planned to use the surplus water that exceeds the municipal water demand in Dar Es Salaam in the year 2020 out of water to be exploited through provision of the upstream dams. In case of the latter, electricity will be generated by harnessing a head created through provision of dam as well as regulated outflow, which is released downstream to be utilized for the municipal water supply to Dar Es Salaam.

6.2 Hydropower Development

The Ruvu River basin is located relatively close to Dar Es salaam, the largest electricityconsuming area in Tanzania, as compared with other river basins with the hydropower potentials around the city. In the Ruvu River basin, on the other hand, the large head to generate hydropower is exploitable only in the Uluguru Mountain area located in the western part of the Ruvu River basin, but the available discharge at these locations are less because of small catchments. Thus, it is envisaged that the large scale of hydropower potential sites are considered very less in the Ruvu River basin.

The installed capacity and annual energy output of the hydropower plant are determined by the following equation for each of the dam schemes which are examined in the aforesaid second screening;

P=Cf x 9.8 x He x Qd x Fc E=P x 24 x $365/10^3$

Where, P

: Installed capacity (kw)

Cf : Combined efficiency of generator and turbine (=0.85)

He : Effective head (m)

Qd : Dependable discharge released from reservoir (m^3/sec)

Fc : Plant factor

E : Average annual energy output (MWh/year)

The daily power output of hydropower plant to be installed at each dam site will be controlled by discharge released from the reservoir for the water supply to Dar Es Salaam. On the other hand, discharge to be released from the reservoir varies in accordance with the water demand in Dar Es Salaam during 24 hours. According to the water demand forecast for Dar Es Salaam which is stated in the foregoing Appendix-E, a ratio of maximum daily water demand to mean daily one in the year 2020 is predicted to be about 1.25. Therefore, 1.25 is adopted as the plant factor.

The rated water level of the reservoir is set at an elevation of Normal High Water Level (NHWL) minus one-third of a difference between NHWL and Low Water Level (LWL). The effective head is then estimated by deducting the tail water level and head loss from the rated water level.

The installed capacity and annual average energy output for each dam scheme which are worked out through the aforesaid procedures are summarized below;

Name of Dam Scheme	Installed Capacity (KW)	Annual Energy Output (MWh/year)
Rudete	500	4,380
Ngerengere	400	3,504
Mgeta	2,300	20,148
Kidunda	3,900	34,164

As shown in above table, the installed capacities for the Rudete and Ngerengere schemes are as small as to 400 kw to 500 kw. Therefore, it is recommended that electricity generated by these hydropower plants are utilized for use in the rural area and/or station use, even though the dam scheme will involve installation of hydropower plant.

The main features of hydropower plants for each dam scheme are described in Appendix-J of this Supporting Report.

7. WATER RESOURCES DEVELOPMENT PLAN IN THE RUVU RIVER BASIN

As discussed in the foregoing Section 5.3, two development scenarios of the water resources development in the Ruvu River basin were set up for the purpose of coping with the municipal water demand in Dar Es Salaam by the year 2020. In association with the construction of dam projects involved in the development scenario, it is prospected that the irrigation and hydropower development, and flood control in case of the development scenario-1 (Kidunda dam project) will be able to be realized. Those water resources development are summarized below;

I - 15

(1) Dam Project(s)

·		Development Scenario-1	Development Scenario-2	
	(1)	Kidunda dam project	(1) Mgeta dam project	
	;	and the second spectrum and the second s	(2) Ngerengere dam project	-11

(2) Hydropower development

Scenario	-1	Scenario –2	
Name of Dam Project	Installed Capacity (kw)	Name of Dam Project	Installed Capacity (kw)
- Kidunda	3,900	- Megta - Ngerengere	2,300 400
Total	3,900	Total	2,700

(3) Irrigation Development

Name of Irrigation Project	Irrigated Are	a under the Development Scenario (ha)
	Scenario –1	Scenario2
	· · · · · · · · · · · · · · · · · · ·	
 Kidunda Irrigation 	10,500	
ii) Bagamoyo Irrigation	1,100	980
iii) Low-lift pump irrigation	2,400	en de la companya de
iv) Ruvu National Youth	200	· -
v) Makurunge Irrigation	150	
Total	14,350	980

Note: The above irrigation projects are explained in detail in Appendix-G of this Supporting Report.

(4) Flood Control Plan in the Kidunda Dam Project (Scenario-1)

The flooding damage in the Ruvu River basin is insignificant as a result of the field survey conducted in the course of the Study as discussed in Appendix-H of this Supporting Report. On the other hand, the aforesaid new irrigation areas which mostly lie close to the floodplains along the river require the flood control works in order to ensure the stable agricultural production at a certain level.

The 5-year probable flood is adopted as the design flood for the flood control. As seen in the deteriorated dikes in the lower reaches, it appears that it is rather difficult to obtain the earth

embankment materials with good quality in the flood prone areas. Therefore, it is preferred from the technical viewpoint that a height of the dike should be limited to less than 2 m above the original ground surface. Taking into consideration such a situation in the planned irrigation areas, it was proposed that in case of the Development Scenario-1 the surcharge water level (SWL) of the Kidunda reservoir was set up to retain the outflow from the reservoir at a constant discharge of 200 m3/sec at the time of occurrence of the 5-year probable flood in the basin.

In case of the Development Scenario-1, thus, the flood control plan for the new irrigation projects consists of the one combined by the proposed flood control works and the flood control by the Kidunda reservoir.

8. PRELIMINARY DESIGN OF SELECTED DAM PROJECT

With regard to each of the three (3) dam projects involved in the two Development Scenarios, namely the Kidunda, Mgeta and Ngerengere dam projects, the dam and its appurtenant structures are preliminarily designed in accordance with the following criteria and principles;

8.1 Dam

The dam is designed to be of a rockfill type dam utilizing abundant rock materials exploitable in the neighborhood of the proposed dam site concerning every dam project. The upstream and downstream slopes are taken at 1:2.55 and 1:1.95, respectively, for every dam as shown in Figs. I.20 to I.22. The embankment volumes are calculated based on the available topographic and geologic data and information as follows;

				(Unit : thousand m3)
No.	Embankment		Name of Dar	n Project
·	Zone	Kidunda	Mgeta	Ngerengere
1.	Core	240	420	510
2.	Filter	100	180	220
3.	Rockfill	420	1,500	1.500
	Total	760	2,100	2,230

8.2 Spillway

The gated type spillway is selected in consideration of the rather moderate rise of the reservoir water level during the rainy season. The flood equivalent to 1.2 times of a 200-year probable flood at the proposed dam site is adopted as the design flood for spillway in accordance with the design standard in Japan, while the spillway is designed to pass the 10,000-year flood with a freeboard of 1m below the dam crest. The design flood as well as dimensions of the spillway gate for each of the dam projects are as follows;

No.	Description		Name of Dam Pr	oject
		Kidunda	Mgeta	Ngerengere
1.	Design flood : 1.2 times of 200-year probable flood (m ³ /sec	1,530)	580	100
2.	Dimensions of gate leaf (height x width)	6.0 x 13.0	6.0 x 10.0	6.0 x 5.0
3	Nos. of spillway gates (nos.)	4	2	11

8.3 Diversion Facilities

The diversion facilities during construction of main dam are designed for a 20-year probable flood at the proposed dam site. To use the diversion facilities as the outlet facility to release the water to downstream reach after completion of construction, the diversion tunnel is adopted for the purpose of diverting flood during construction of the main dam. The design flood as well as dimensions of the diversion tunnel are as follows;

No.	Description		Name of Dam	Proiect
		Kidunda	Mgeta	Ngerengere
1.	Design flood : 20-year probable flood (m ³ /sec)	740	260	63
2.	Diameter of diversion tunnel (m)	5.0	3.9	2.0
3.	Nos. of diversion tunnel (lanes)	2	1	1

The intake structure for the outlet facility is aligned to be connected with the diversion tunnel and it is to be utilized as the permanent structure.

8.4 Power Facility

The power house and generating equipment are designed for the following installed capacity and other main features presented in Appendix-J of this Supporting Report;

				· · · · · · · · · · · · · · · · · · ·
No.	Description		Name of Dam	Project
		Kidunda	Mgeta	Ngerengere
1.	Installed capacity (kW)	3.900	2,300	400

The penstock line is laid out to connect the power house and diversion tunnel as shown in Figs. I.20 to I.22.

9. PRELIMINARY INSTALLATION PLAN OF NEW WATER CONVEYANCE AND PURIFICATION FACILITY FOR MUNICIPAL WATER SUPPLY TO DAR ES SALAAM

The water conveyance project comprises mainly the intake structure on the downstream reach of the Ruvu River, treatment facilities for raw water, pumping facilities, transmission pipe main and reservoir to store water distributed to each consumer in the city.

There are two existing schemes on the Ruvu River, which are supplying the municipal water to Dar Es Salaam city and its surrounding area, namely the Lower and Upper Ruvu schemes. The design capacity of the treatment facilities for the existing three (3) water supply schemes totals about 3.16 m3/sec as referred to in Appendix-E of this Supporting Report.

Of the three schemes, the Lower Ruvu scheme is originally planned to allow the capacity to be expanded to 3.16 m³/sec according to the Operation Manual for the scheme and the NUWA has a plan to extend the scheme although it has not been announced officially yet. On the assumption that rehabilitation of existing water supply schemes as well as expansion of the Lower Ruvu scheme are realized under the related projects, the total capacity of water conveyance for Dar Es Salaam comes to about 4.2 m³/sec. While, the gross water demand in the Dar Es Salaam water supply system is predicted to reach about 11.2 m³/sec in average daily demand and 14.0 m³/sec in the maximum daily demand in the year 2020.

Since the water conveyance facilities are required to be designed for the maximum daily demand, those facilities for conveying treated water of about 9.8 m³/sec need to be newly constructed even in case the capacity of the Lower Ruvu scheme is expanded as aforesaid before implementation of the Kidunda dam.

Herein assumed is that the three (3) water conveyance projects, each with a conveyance capacity of a

bout 3.3 m³/sec, will be newly installed in accordance with the increase of the water demand. To cope with the municipal water demand in Dar Es Salaam, the following three (3) new water conveyance projects will have to be implemented;

No.	Name of New Water Conveyance Project	Water Conveyance Capacity (m ³ /sec)
1.	New Lower Ruvu Scheme-1	3.27
2.	New Lower Ruyu Scheme-2	3.27
3.	New Upper Ruvu Scheme	3.28
	Total	9.82

The installation plan of these three water supply facilities is shown in Fig. I.23.

The preliminary design of water conveyance and purificaation facilities involved in the above 3 new water conveyance projects are discussed in Attachment to this Appendix-I.

APPENDIX-I

TABLES

Table I.1 MAIN FEATURES OF 23 DAM SITES IDENTIFIED BY THE PREVIOUS STUDY

	Name	Catchment	Dam	H	vdrological.	Feature	Stora	ge Efficiency	/ of Reservoi		Requiremen	at of New A	ccess road
°N N	of	Area	Height	Annual	Runoff	Inflow	Annual	Reservoir	Dam	Storage	Improve.	New	• •
	Dam Site	·	•	rainfall (Coefficient	Rate	Inflow	Storage	Embank.	Efficiency	of Existing	road	Total
				:			Volume	Capacity	Volume		road	Construct	
		(km2)	(u)	(mm)	(%)	(mm/year/km2)	(Mill. m3/year)	(Mill. m3)	(Thous. m3)	•	(km)	(un)	
		Ξ		(2)	(2)	(2)x(3)/100	(4)x(1)/1000	(9)	£	(2)/(2)	(6)	(10)	(01)+(6)
-	Moeta	914	21	1.220	35	427	390	57	405	0.14	121	10 1	131
0	Rudete	249	8	1.150	33	383	95	13	421	0.03	121	12	133
1 m	Msoro	808	ŝ	1.080	19	205	184	13	230	90 0	125	00	133
1	M/LB/R1	\$	50	1,110	55	611	33	3	380	0.01	116	9	122
ŝ	Mngazi	223	50	1,110	0 0 0 0 0 0	555	124	13	278	0.04	110	4	114
9	Bwakira	75	8	1,110	55	611	46	9	278	0.03	13	7	10
~	Dutumi	114	8	1,110	45	200	22	4	464	0.01	95	ς	88
00	Nzerenzere	2,701	17	970	ŝ	49	131	2 0	340	0.25	59	ŝ	62
9	Ruvu-Mgeta	3,672	21	1,340	20	268	984	1,665	1,542	1.08	85	4	68
0	Mkulazi	352	16	1,050	10	105	37	8	221	0.28	85	17	102
Π	LB/R1	47	6	940	9	56	ŝ	9	192	0.03	40	6	42
1	Msus	526	15	930	9	56	29	37	439	0.08	0	17	12
5	Mbiki (Major)	492	15	940	9	56	28	26	508	0.05	9	74	2
4	Mbiki (Minor)	16	14	9 <u>4</u> 0	9	56	دى	11	351	0.03	. 13	şæt	14
5	Mkombezi	588	18	1,030	9	62	36	47	257	0.18	56	m	6 7
16	Msigwe	205	17	1,020	9	61	13	39	802	0.05	31	0	B
17	RB/R1	210	14	890	ŝ	45	6	19	141	0.14	54	. 18	72
81	RB/R2	129	10	890	S	45.	6	2	256	0.03	43	6	22
61	RB/R3	67	00	890	ŝ	45	ŝ	9	112	0.05	¥.	ŝ	50
20	Banda	311	12	920	ŝ	46	14	13	134	0.0	25	۳٦	87
51	Mandisi	78	17	950	ŝ	48	4	6	229	0.04	7	- -1	00
22	Mbwawa	184	27	1.090	v	55	10	46	496	0.09	11	4	15
33	Chombe	189	15	1,090	s	55 :	10	- 12	164	0.07	30	5	32
							· ·						
Note					1 						• •		
4 dar	n sites, the Mget	a (No.1), N	sgerengere	; (No.8), RI	uvu-Mgeta	(NO.9) and Mkor	nbezi (No.15) are :	selected by the	ne French stu	dy as the pron	nising dam site	s in the	
Ruvi	i river basin.))	:	F			,			I		

IT - 1

RESULTS OF OVERALL ASSESSMENT OF 23 DAM Table I.2 SITES IDENTIFIED BY THE PREVIOUS STUDY

No.			Items of Ratin	g		Overall	
	(1)	(2)	(3)		(4)	(5)	Rating
	Name of	Geologinal	Hydrological		Storage	Accessib-	
	Dam Site	Condition	Condition		Efficiency	ility	
1	Mgeta	В	В		Ć	С	В
2	Rudete	Α	D		D	C	B
3	Msoro	A	C C		D	C	Α
4	M/LB/R1	В	E	ана се на 1910 г. на се на 1910 г. на се н	D	C C	С
5	Mngagi	В	С		D	: B	C
6	Bwakira	В	E		D	B	D
7	Dutumi	в	D		D	В	E
8	Ngerengere	A	C	÷	C	A	A
.9	Kidunda	C	A		A	B	В
10	Mkulazi	C	E		C	D	E
11	LB/R1	В	Е		D	A	D
12	Msus	C	E		D D	C C	E D
13	Mbiki (Major)	c	E		D	A	E
14	Mbiki (Minor)	A	E		D	A	D D
15	Mkombezi	A	E			A	D D
-16	Msigwe	A	E		C D		D D
17	KB/K1	A	E			C C	F
10	RB/RZ	· · · · · · ·	E		D D	<u>د</u>	
- 19	RB/R3	A D	E			A .	E I
20	Banda Malandini	D A	E E			ι <u>Λ</u>	יי ק איי
21	Malanoisi	A	E			Λ Λ	F
22	Mowawa	D R	4		D	Å	Ē
2.)	Childo						
Note						ана. Алана (1996)	
Rating standard applied							
 Gelogical condition A : No geological problem identified 					oarge efficiend	cy	
					SE>1.0		
B	Posiiblity of ex	istence of ma	jor fault at dam	В:	0.5 <se<1.0< td=""><td></td><td></td></se<1.0<>		
	site or thick all	uvial deposit a	at dam site	С:	0.1 <se<0.5< td=""><td>·</td><td></td></se<0.5<>	·	
C :	Possibility of e	xistence of lin	nestone at dam	D:	SE<0.1		and the second sec
	and reservoir a	irea		Wher	e,	· · · · · · · · · · · · · · · · · · ·	

and reservoir area

(2) Hydrological Condition

- A : IR>200 and IV>450
- B: IR<200 and IV>450
- C: 100<IV<450
- D: 50<IV<100

E: IV<50

where,

- IR : Inflow rate
- IV : Annual Inflow volume

IT - 2

SE : Storage efficiency

Ln: Length of new access road required (km)

Li: Length of existing access road improved (km)

A: Ln<5.5 and Li<60

B: Ln<5.5 and Li>60

(4) Accessibility

C: 5.5<Ln<15

D: Ln>15

where,

		T)60		Da	Eastration	Canation	Construction Cost
Vase No	NOMAI High Water	Storage	Discharge	Crest	Volume	Construction	per dependable
	Level	Volume	DistimBe	Level	(on the		discharge
	(El.m)	(Mill.m3)	(m3/sec)	(El.m)	(Mill, m3)	(Million US\$)	(Million US\$/cms)
1	230.0	0.89	0.61	235.0	0.287	30.8	50.6
2	235.0	7.26	0.98	240.0	0.428	36.8	37.6
3	240.0	15.93	1.40	245.0	0.604	44.1	31.6
4	245.0	29.10	1.61	250.0	0.826	53.0	32.9
5	250.0	43.50	1.78	255.0	1.097	63.7	35.8
6	255.0	61.32	1.99	260.0	1.411	75.8	38.1

Table I.3	COMPARISON OF DAM DEVELOPMENT SCALES
	FOR RUDETE DAM

Table I.4COMPARISON OF DAM DEVELOPMENT SCALESFOR NGERENGERE DAM

Case No.	Nomal High Water Level	Effective Storage Volume	Dependable Discharge	Dam Crest Level	Embankmet Volume	Construction Cost	Construction Cost per dependable discharge
	(El.m)	(Mill. m3)	(m3/scc)	(El.m)	(Mill. m3)	(Million USS)	(Million US\$/cms)
1	120.0	19.49	0.13	125.0	1.410	74.4	586.0
2	122.5	72.69	1.15	127.5	1.774	88.1	76.9
3	125.0	143.94	1.81	130.0	2.183	103.2	56.9
4	127.5	229.32	2.00	132.5	2.666	120.8	60.4
5	130.0	318.79	2.20	135.0	3.245	141.6	64.2
6	132.0	404.82	.2.40	137.0	3.785	160.7	66.9

Case No.	Nomal High Water Level	Effective Storage Volume	Dependable Discharge	Dam Crest Level	Embankmet Volume	Construction Cost	Construction Cost per dependable discharge
	(El.m)	(Mill. m3)	(m3/scc)	(El.m)	(Mill. m3)	(Million US\$)	(Million US\$/cms)
1	130.0	13.37	0.18	135.0	0.750	42.8	238.9
2	135.0	40.22	0.36	140.0	1.262	62.6	173.1
3	140.0	82.60	0.43	145.0	1.962	89.0	205.0
4	145.0	163.17	0.59	150.0	2.892	122.9	208.3
5	147.5	205.76	0.65	152.5	3.462	143.3	222.2
6	148.0	214.28	0.65	153.0	3.583	147.6	227.1

Table I.5COMPARISON OF DAM DEVELOPMENT SCALESFOR MKOMBEZI DAM

Table I.6COMPARISON OF DAM DEVELOPMENT SCALESFOR MGETA DAM

Case No.	Nomal High Water Level	Effective Storage Volume	Dependable Discharge	Dam' Crest Level	Embankmet Volume	Construction Cost	Construction Cost per dependable discharge
	(El.m)	(Mill, m3)	(m3/sec)	(El.m)	(Mill.m3)	(Million US\$)	(Million US\$/cms)
1	205.0	4.00	2.64	210.0	0.717	48.7	18.5
2	210.0	29.01	4.07	215.0	1.076	62.9	15.4
3	215.0	63.39	5.82	220.0	1.512	79.6	13.7
4	220.0	110.11	7.11	225.0	2.035	99.3	14.0
5	225.0	172.25	8.04	230.0	2.655	122.0	15.2
6	230.0	240.54	8.82	235.0	3.376	148.0	16.8

Case No.Nomal High Water LevelEffective StorageDependable DischargeDam CrestEmbankmet VolumeConstruction CostConstruction per dependa dischargeLevelVolumeImageDischargeCrest LevelVolumeCostVolumeCostPer dependa discharge(El.m)(Mill.m3)(m3/sec)(El.m)(Mill.m3)(Million US\$)(Million US\$)187.0186.8917.2493.00.48936.12.1288.0321.6423.6794.00.60540.81.7389.0456.4028.1695.00.73946.21.6490.0591.1529.5396.00.88952.11.8		FOR KIDONDA DAM						
CaseNomalEffectiveDependableDamEmbankmetConstructionConstructionNo.High WaterStorageDischargeCrestVolumeCostper dependaLevelVolumeLevelLevelCostMillion US\$(Million US\$)(El.m)(Mill. m3)(m3/sec)(El.m)(Mill. m3)(Million US\$)(Million US\$)187.0186.8917.2493.00.48936.12.1288.0321.6423.6794.00.60540.81.7389.0456.4028.1695.00.73946.21.6490.0591.1529.5396.00.88952.11.8		ч	*		·		· · ·	·
(El.m)(Mill. m3)(m3/sec)(El.m)(Mill. m3)(Million US\$)(Million US\$)187.0186.8917.2493.00.48936.12.1288.0321.6423.6794.00.60540.81.7389.0456.4028.1695.00.73946.21.6490.0591.1529.5396.00.88952.11.8	Case No.	Nomal High Water Level	Effective Storage Volume	Dependable Discharge	Dam Crest Level	Embankmet Volume	Construction Cost	Construction Cost per dependable discharge
187.0186.8917.2493.00.48936.12.1288.0321.6423.6794.00.60540.81.7389.0456.4028.1695.00.73946.21.6490.0591.1529.5396.00.88952.11.8		(El.m)	(Mill, m3)	(m3/sec)	(El.m)	(Mill. m3)	(Million US\$)	(Million US\$/cms)
288.0321.6423.6794.00.60540.81.7389.0456.4028.1695.00.73946.21.6490.0591.1529.5396.00.88952.11.8	1	87.0	186.89	17.24	93.0	0.489	36.1	2.1
389.0456.4028.1695.00.73946.21.6490.0591.1529.5396.00.88952.11.8	2	88.0	321.64	23.67	94.0	0.605	40.8	1.7
4 90.0 591.15 29.53 96.0 0.889 52.1 1.8	3	89.0	456.40	28.16	95.0	0.739	46.2	1.6
	4	90.0	591.15	29.53	96.0	0.889	52.1	1.8
5 91.0 690.16 30.66 97.0 1.061 58.9 1.9	5	91.0	690.16	30.66	97.0	1.061	58.9	1.9
<u>6 92.0 931.16 32.29 98.0 1.256 66.4 2.1</u>	6	92.0	931.16	32.29	98.0	1.256	66.4	2.1

Table I.7	COMPARISON OF DAM DEVELOPMENT SCAL	ES
	FOR KIDUNDA DAM	

IT - 5

Table I.8 MAIN FEATURES OF EXISTING MINDU DAM

Catchment Area	303	km²
Reservoir Area	3.8	km²
Reservoir Storage (total)	13.0	Mill m ³
Reservoir Storage (effective)	11.3	Mill m ³
High Water Level	507.0	El.m
Low Water Level	501.5	El.m
Design Flood Discharge	710.0	m³/s
Normal Discharge (initial)	57,500	m³/day
Normal Discharge (after 20 years)	43,000	m³/day *
	1	
Type of Dam	Earth fill wi	th a concrete spillway
Crest Level of Dam	501.1	El.m
Crest Length of Dam	1,600	m
Crest Width of Dam	8.0	m
Slopes of Dam (down stream)	1:2.25	
Slopes of Dam (up stream)	1:2.50	
Type of Spillway	Overf	low
Crest Level of Spillway	507.0	m
Length of Spillway Weir	100.0	~
Longh of Opinway won	100.0	111

Note

*: Estimated

IT - 6

				(Unit : m3/sec)	
Component		Scenar	io-1	Scenario-2		
	of	Dam Name	Outflow	Dam Name	Outflow	
	WaterBalance			· · · · · · · · · · · · · · · · · · ·	······································	
1	Regulated Outflow	(1)Kidunda	28.16	(1)Ngerenger	1.81	
	from upstream dam(s)			(2)Mgeta	7.11	
		Total-1	28.16	Total-1	8.92	
2	95 % Dependable Discharge	(1)U.R.I.S.	9.06	(1)U.R.I.S.	9.06	
	Yielded in Area not Covered	(2)Kidunda	-8.60	(2)Ngerenger	-0.02	
	by Upstream Dam(s)			(3)Mgeta	-1.38	
	• • • • • • • • • • • • • • • • • • •	Total-2	0.46	Total-2	7.66	
3	River Maintenance Flow	(1)River flow*	4.12	(1)River flow	4.12	
	for Downstream Reach of	(2)Irrigation	1.00	(2)Irrigation	1.00	
	U.R.I.S.					
	. ·	Total-3	5.12	Total-3	5.12	
4	Water Demand			· .		
	in Year 2020		11.23		11.23	
5	Water Balance					
	(Available Discharge for					
	New Irrigation Development)		12.27		0.23	

Table 1.9 WATER BALANCE BY DEVELOPMENT SCENARIO

Note

1. U.R.I.S. means existing Upper Ruvu intkae site.

2. The water balance is made on the basis of annual mean discharge data.

3. *; the required minimum river maintenance flow is the minimum mean monthly discharge

at the existing gauging station 1H8.

4. Development Scenarios

Scenario-1 : (Kidunda dam)

Scenario-2 : (Mgeta dam) + (Ngerengere dam)

APPENDIX-I

ŝ

FIGURES

ÍF - 3

IF - 9

