- Conclusion and recommendations
 - (1) Conclusion

5-2

The implementation of this project will greatly improve the fisheries condition, and heighten the expectations for progress and development in commercial fisheries. The following specific effects can be expected:

- 1) By constructing a jetty adjacent processing and storage facilities, the landing and handling of large fish such as tuna will become more efficient, the freshness of fish for export will be maintained, and profits from sales will be increased.
- 2) By securing processing and storage facilities of an appropriate scale for fresh fish for export, distribution and sales functions will be improved, exports will be promoted, foreign currency will be acquired, and the living standards of fishermen will be improved and more stable.
- 3) Ice will be supplied to fishermen, thereby improving the quality of fish after they are caught. This will revitalize the domestic fresh fish market.
- 4) In the fisheries environment in Grenada in which the catch fluctuates greatly depending on the season, the securing of domestic freezing and storage facilities will increase the willingness of fishermen to work during the busiest season, and thereby the fisheries industry will be promoted and the catch increased.
- 5) By effectively using the fisheries resources in the seas around Grenada, the increase in the catch will increase demand for domestically caught fish, contribute to the tourist industry, reduce imports of foodstuffs, and contribute to preventing foreign currency from being spent and the acquisition of more foreign currency.
- 6) From the above, this project will contribute not only to the living standards of fishermen, but it will also contribute to the living standards and economic stability of all Grenadians.

Therefore, we believe that Grant Aid provided by the Government of Japan for this project has great significant.

(2) Suggestions

1) Policies for improving operations

1993 to 1995

The existing facilities (Burns Point, Gouyave, Grenville) were constructed as the land based facilities for the Artisanal Fisheries Development Project and Coastal Fisheries Development Project. Trying to convert them into facilities for the purchase and sales of fish for export, especially large fresh fish (tuna), is something which they were just not made for. In other words, the sticking point is that the landing, cleaning, processing and shipping process is not simple enough. If results are to be improved during these two years, then the following points should be considered.

- a) The repair, reorganization and improvement of the existing facilities. (At Gouyave, a water supply line for cleaning and repair of the roof of the processing plant is being started.)
- b) The efficient and planned use of cold storage and chilled storage facilities.
- c) Minimum required operation of facilities.
- d) Re-education of employees and workers. (In fish handling, the importance of quality control, facility functions, work processes based on sales plans, etc.)
- e) Gaining a grasp of the catch when landing the catch every day, and an organization which can cope flexibly. Especially the supply of ice and measures to maintain the freshness of fish at Burns Point.
- f) Management and education as a private company.
- g) Reduction of expenses with the above.

With the number of participants increasing in the export tuna market, all employees must be aware of the business aspects, reflect the trends in the work place, and make efforts to win in the competition with other companies.

1996 and after

When the facilities in this project are completed, it goes without saying that they will be the biggest fishing processing facilities in Grenada. In order to operate these facilities as the core of GCFL and the Grenada fisheries industry, the assignment of appropriate personnel must be added to the aforementioned points. When facilities are expanded in scale, there is a tendency to increase the scale of manpower, but in this case the project facilities only increase the scale of the processing area, and the other facilities are about the same size as the existing facilities. (Although chilled storage and cold storage capacity will increase, total capacity will not change that much.)

In regard to the assignment of personnel to the cleaning and processing processes, the prerequisite should be assistance (cooperation) from fishermen. The reasoning behind this is that under the current circumstances, fishermen are responsible for the cleaning of fish. Therefore, it is likely that fishermen would accept helping with cleaning at work benches. Instruction and promotion activities to this end should be started now. In addition, it is desirable to create a quality inspection and control posture which will allow the organization to negotiate increases from the current sales prices with customers, in expectation of the freshness and quality created by the handling devices and forklifts used at the jetty.

2) Regarding the business activities

If the complex in this project is to be the main operations facility for GCFL, the current business format of "purchasing, cleaning, processing, packing and selling" should remain the basis. By keeping it the basis, it will be easier to understand the situation when considering future management situations. As was mentioned before, trial calculations were based on the difference in profits from the sales price and purchasing price.

Here, we have considered the possibilities for business formats other than the above, if GCFL is to play the role of the engine in the fisheries industry in Grenada.

D Processing business

This is business which was attempted in May and June 1993 with one client. The processing [cleaning, processing, packing] charges at the time were US \$1.0/lb (US \$2.2/kg). The contents of the processing charges were probably:

a) Personnel cost

b) Water and utilities costs

c) Packing materials expenses

d) Transportation expenses

In future profitability calculations, comparisons between the scales of the facilities in this project and the existing facilities, between the quantities which can be handled, and between the percentages of expenses must be considered. At the same time, the maintenance of freshness at [landing, and processing] will be increased dramatically, so that if negotiations to increase the processing charges because of the increase in the selling price of the fish are possible, then the possibility as a business will increase.

② Consigned sales business

In this case, the prerequisite is that Grenada's fish for export be concentrated at the facilities in this project. The reason for this is that at the present time, buyers purchase fish directly from fishermen at each of the landing areas. The quantity of consigned sales will determine if it is feasible as a business. Therefore, fish should be shipped from the landing areas to the project site, where they will be cleaned, processed, weighed, divided into grades (currently three grades are used), and packed. Then, buyers will purchase the fish under the supervision of GCFL. GCFL will receive a percentage of the sales plus the processing charges from the fishermen.

This method will be effective as long as this complex is the only one in Grenada which can maintain the freshness of fish. If private companies should start to compete, however, this is no longer viable. Also, as we mentioned before, the fishermen and GCFL must have a sufficiently trustworthy relationship, so that all the fish are gathered at this complex, and GCFL must maintain the quality of fish from the viewpoint of nurturing and protecting fishermen. If the facts that there are only a few buyers and the catch of fish for export is limited to several hundred tons are considered, however, collecting fish for export at this complex, consigning GCFL to sell them, and introducing the auction and bidding methods of sales would provide the following advantages.

- 1. It would lead to an increase in the incomes of fishermen.
- 2. Because the quality of the fish caught is reflected in the price, fishermen would make greater efforts in the handling and processing of fish, and maintaining freshness.
- 3. GCFL sales risks could be avoided.

At the present time the fisheries cooperatives have not developed sufficiently and the AFDP-GCFL will still require some time before it can act as the fishermen's representative, so that we believe that it will take some time for this system to be feasible.

③ Leasing business (Real estate business)

This method involves the leasing of ice making machines, chilled storage $(0^{\circ}C)$ and processing plants and other facilities which are mainly export related. If the equipment at the project site is divided into export, domestic and management systems, then the electricity, water and other utilities charges for each system will be clear, so that this method of business would be fairly easy to consider.

The problems are that fisheries cooperatives and semi-public organizations such as a fisheries export enterprise cooperative are not yet functional, and that there are only five small and large companies in this market, so that the facilities can only be leased to one company. In this situation, the survival of companies which are not leasing the facilities might be threatened. At the same time, in a situation in which only purchasing fish for export is difficult, it might be difficult for GCFL to purchase only fish for the domestic market and leave exports to the leasing company. If these problems are solved, however, GCFL's lease rates could be estimated from building repair expenses, depreciation of equipment with short depreciation periods such as ice making machines, maintenance and control expenses, labor expenses in the domestic department, utilities expenses, etc. If the lease rate seemed reasonable for a tuna buyer, then this type of business would be feasible and worthy of consideration.

Regardless whether format 1), 2) or 3) is taken in the future, healthy management by GCFL is desirable from the policy viewpoint of nurturing and protecting fishermen through cooperation with the Fisheries Division. In the future, when the commercial fisheries industry has matured and the fisheries condition is better, this project site should remain under the ownership of the government in order to further expand the fresh fish distribution market centered on North America. And in order to further increase the will of fishermen to work at that time, the operation of this complex should be transferred from GCFL to a semipublic organization, such as the Grenada Fisheries Cooperative, which will take the stance of the fishermen. Until that time comes, the government and GCFL should develop the current business format, and contribute to the development of a semipublic organization. APPENDIX

Appendix-1: List of Study Members

(1) Basic Design Study Team

Team Leader	FUJITA HITOSHI	Chief Fisheries Officer, Office of the Overseas Fisheries Cooperation, Fisheries Agency, Ministry of Agriculture, Forestry and Fisheries
Grant Aid Planner	KIMURA HIDEO	Councilor, Kanagawa International Fisheries Training Center, Japan International Cooperation Agency (JICA)
Fisheries Development Planner	HIRASHIMA SATORU	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)
Port Planner	NAMIKI MAMORU	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)
Architect	OHDERA YASUO	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)
Facilities Planner	MORI JUNICHIRO	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)
Natural Condition Surveyor	TAKAHASHI AKIYOSHI	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)

(2) Draft Report Explanation Team

Team Leader	ISHIYAMA YOSHIO	Second Basic Design Study Division Grant Aid Study & Design Department, Japan International Cooperation Agency (JICA)
Fisheries Development Planner	IKEZU HIROFUMI	Chief Fisheries Officer, Far Seas Fisheries Division, Fisheries Agency, Ministry of Agriculture, Forestry & Fisheries
Facilities Designer	HIRASHIMA SATORU	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)
Architectural Planner	OHDERA YASUO	Overseas Agro-Fisheries Consultants, Co., Ltd. (OAFIC)

-117-

Appendix-2: Itinerary

Departure for New York. Sept. 21 (Tue.) Leave New York for Grenada. 22 (Wed.) Courtesy call to the Prime Minister, Ministry of Finance, Ministry of 23 (Thu.) Agriculture (submitting the inception report and the questionnaire, adjusting the survey schedule). Survey of facilities of Grenada Commercial Fisheries Limited (GCFL). Meeting with Fisheries Division. 24 (Fri.) Survey of St. George's Fish Market, Fisheries Centers of Gouyave and Grenvill (Japanese Grant Aid Facilities). (Sat.) Survey of project site (Grand Mal). 25 Meeting among the Mission members and study of data and 26 (Sun.) information. Boring of project site, commence survey of the tide level and the 27 (Mon.) current. Discussion with GCFL and the Minister of Agriculture. Preparation and discussion of the Minutes (draft) with GCFL. (Tue.) 28 Two consultants (port planning, facilities planning) arrive at Grenada. Discussion of the Minutes (draft) with GCFL and Fisheries Division, 29 (Wed.) hearing and survey of Finance Division. (Thu.) Signing of the Minutes of Discussion. 30 Survey of Victoria Fisheries Center. Two members leave Grenada for Trinidad and Tobago. Oct. (Fri.) 1 Visit to the Embassy of Japan in Trinidad and Tobago. Discussion with Fisheries Division. Survey of the waterworks, harbor bureau, the periphery of the project site. Two members move to New York. 2 (Sat.) Survey of the periphery and the offshore of the project site. Two members leave New York. 3 (Sun.) Meeting among the Mission members and study of data and information.

4	(Mon.)	Two members return to Tokyo. Discussion with GCFL and Fisheries Division.
5	(Tue.)	Discussion with Fisheries Division. Study of data and information. Survey of local construction condition. One consultant (natural condition survey) departs Grenada.
6	(Wed.)	Survey of private fish smoking plant, Meteorological Agency, shipbuilding plant. Discussion with GCFL, survey of electric power company.
7	(Thu.)	Survey of Carriacou fishery/marketing condition. Discussion with GCFL.
8	(Fri.)	Survey of Petit Martinique Survey of the private ice making plant, shipbuilding plant, pier, etc.
9	(Sta.)	Meeting among the Mission members. Study of data and information.
10	(Sun.)	Meeting among the Mission members. Study of data and information.
11	(Mon.)	Collection of the information on the oil company, survey of port condition.
12	(Tue.)	Discussion with Waterworks Division, collection of information on the Telephone Agency. Discussion with the vice-minister of Ministry of Finance
13	(Wed.)	Discussion with the vice-minister of Ministry of Finance and GCFL. Discussion with Fisheries Division, collection of information on the city planning division.
14	(Thu.)	Discussion of the Supplement to Minutes with GCFL. Discussion with Minister of Agriculture, signing of the Supplement to Minutes.
15	(Fri.)	Collection of information on private tuna import agencies. Discussion with GCFL.
16	(Sat.)	Detailed survey of Grand Mal and the shrimp nursery. Discussion with the consulting company. Discussion with the Minister of Agriculture.
17	(Sun.)	Meeting among the Mission members. Study of data and information.
18	(Mon.)	Four consultants leave Grenada for New York.
19	(Tue.)	Leave New York.
20	(Wed.)	Return to Tokyo.

(2) Draft Report Explanation Team

Jan.	24	(Mon.)	Departure for New York.
	25	(Tue.)	Leave New York for Grenada.
	26	(Wed.)	Courtesy call to Minister of Agriculture.
			Visit to Fisheries Division and explanation of the draft final report.
	27	(Thu.)	Explanation and discussion of the draft final report.
	28	(Fri.)	Preparation of a draft Minutes of Discussions
	29	(Sat.)	Survey of project site, study of data and information.
	30	(Sun.)	Meeting among the Mission members.
	31	(Mon.)	Signing and exchange of the Minutes of Discussion.
Feb.	1	(Tue.)	Leave Grenada for Trinidad and Tobago.
	·		Visit to the Embassy of Japan in Trinidad and Tobago.
	2	(Wed.)	Leave Trinidad and Tobago for New York.
	3	(Thu.)	Leave New York.
	4	(Fri.)	Return to Tokyo.

-120-

Appendix-3: List of Persons Met by the Mission

Grenada:

Prime Minister

Minister of Agriculture, Trade, Industry, Minister Energy, and Production Permanent Vice-Minister

Ministry of Agriculture

Fisheries Division

Grenada Commercial Fisheries Limited (GCFL)

Grand Mal Fishermens Cooperations

Ministry of Finance

Ministry of Communication & Works

Fisheries Officer JICA Expert JICA Expert General Manager

Technical Consultant

Chief Fisheries Officer

Fisheries Officer (Biology)

Fisheries Officer (Biology)

Fisheries Officer (Biology)

Fisheries Officer (Carriacou)

Facilities Manger Technician

Chairman

Permanent Secretary (Chairman of GCFL) Assistant Director Budget Officer

Quantity Surveyor Planning Officer Mr. Hon. Nicholas Brathwaite

Mr. Hon. George I. Brizan Mr. William Joseph

Dr. Keith Braveboy

Mr. James Finlay Mr. Paul Phillip Mr. Crafton J. Isac Mr. Justin A. Rennie Mr. Richard Gabriel Mr. Johnson St. Louis Kazuo Senga Tomishige Kondo

Mr. Joseph. P. Burke Mr. Randolph McIntosh Mr. Venn

Mr. James Nicholas

Dr. Carlyle Mitchell

Mr. Nolan Murray Mr. Dennis Cornwall

Mr. Kenneth Moore Mr. Swinton Lambert Grenada Ports Authority

Marine Supervisor Port Manager Port Manager Senior Pilot Officer

National water & Sewerage Authority Officer

Land Development & Management Authority

Meteorological Station

Fire Office (Private corporations are omitted.) Officer

Officer

Officer

Mr. Ronald A. Haywood Mr. Ian Evans Mr. Ambrose Phillip Mr. Michael T. Forshaw Mr. Anthony Belmar

Mr. D. Lewis

Mr. Glamtz Mr. Fredlic

Trinidad and Tobago:

Embassy of Japan

Ambassador

Councilor

Mr. Takeshi Tsuruta Mr. Takashi Suzuki

Second Secretary Mr. Masami Moriyoshi

(in charge of technical assistance)

-122-

Appendix - 4: Minutes of discussions

MINUTES OF DISCUSSIONS BASIC DESIGN STUDY

ON

THE ST. GEORGE'S ARTISANAL FISHERIES COMPLEX PROJECT IN GRENADA

In response to a request from the Government of Grenada, the Government of Japan decided to conduct a basic design study on the St. George's Artisanal Fisheries Complex Project (hereinafter referred to as "the Project"), and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to Grenada a study team, which is headed by Mr. Hitoshi Fujita, Chief Fisheries Officer, Office of the Overseas Fisheries Cooperation, Fisheries Agency, and is scheduled to stay in the country from 22 September to 18 October 1993.

The team held discussions with the officials concerned of the Government of the Grenada and conducted a field survey in the study area.

In the course of discussions and field survey, both parties have confirmed the main items described on the attached sheets. The team will proceed with further works and prepare the basic design study report.

123

Mr. Hitoshi Fujita

Leader Basic Design Study Team JICA St. George's, 30 September, 1993

Mr. Honourable George I. Brizan

Minister of Agriculture, Trade, Industry, Energy and Production

ATTACHMENT

1. Objectives

The objective of the project are the establishment of artisanal fisheries complex in order to strengthen the commercial artisanal fishery which contributes to the increasing and securement of effectively demand for fish products from local and foreign markets, and generating new income earning opportunities for existing and potential fishermen in Grenada.

2. Project site

The project site is in Grand Mal as shown in Annex I.

3. Executing agency

Ministry of Agriculture, Trade, Industry, Energy and Production Fisheries Division

4. Item requested by the Government of Grenada

After discussions with the basic design study team, the items listed in Annex II were finally requested by the Grenada side.

However, the final components of the Project will be decided after further studies.

5. Japan's Grant Aid system

- (1) The Government of Grenada has understood the system of Japanese Grant Aid explained by the study team.
- (2) The Government of Grenada will take necessary measures, described in Annex III for smooth implementation of the Project, on condition that the Grant Aid Assistance by the Government of Japan is extended to the Project.

in the second second

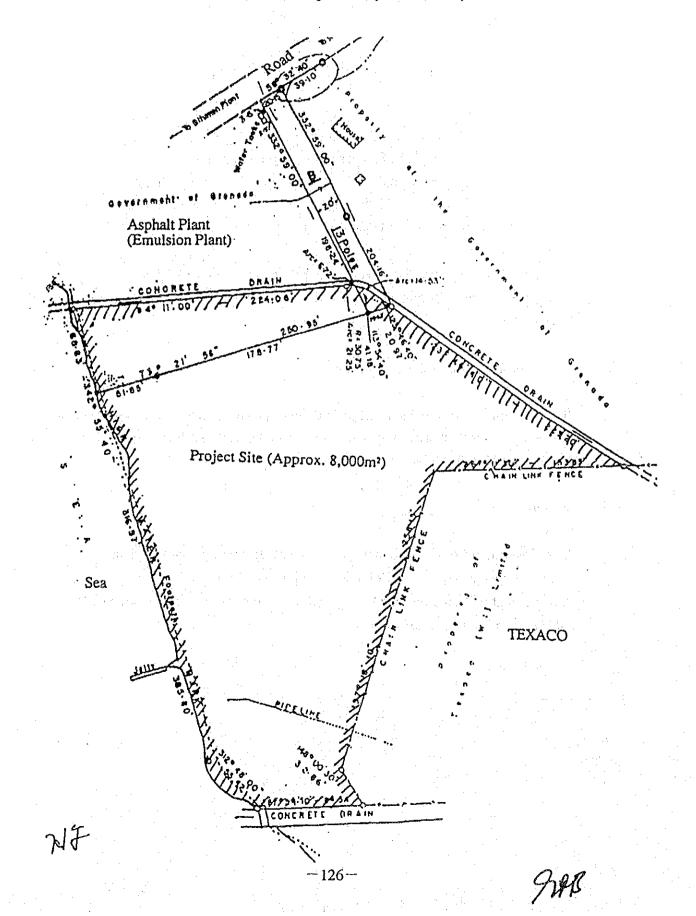
6. Schedule of the study

- (1) The consultants will proceed to further studies in Grenada until 18 October 1993.
- (2) JICA will prepare the draft final report in English and dispatch a mission to explain its contents around January, 1994.

-124-

- (3) In case that the contents of the report is accepted in principle by the Grenada side, JICA will complete the final report and send it to the Government of Grenada by March, 1994.
- 7. The plans for operation, management, financing and proper use of facilities
- (1) Any facilities constructed under grant aid for Grenada by the Government of Japan including those through the former project, are to be the property of the Government of Grenada and these facilities should not be given as a security under any circumstances. In the case that these facilities are designated as assets of the Grenada Commercial Fisheries Limited(GCFL), the capital structure of the GCFL is to be composed of 100% government shares.
- (2) Ministry of Agriculture, Trade, Industry, Energy and Production is to be designated as an executing agency for the Project with GCFL as the operating organization.
- 8. The reconfirmation of the project site

The Government of Grenada will provide the movement plan of the asphalt plant bounding the project site, to the Government of Japan through the diplomatic channel by March, 1994.


9. Report

The Government of Grenada will make an annual report about the project including the activities of GCFL and submit the report annually to the Government of Japan through the diplomatic channel after the exchange of Note between the both governments.

-125-

946.

Annex I. Project site (Grand Mal)

Annex II

Item Requested by The Government of Grenada. (in order of priority)

Artisanal fisheries complex in Grand Mal

1) Fish preservation and processing facilities

Ice making plant, Ice storage, Cold storage, Chilled storage, Processing quarter and equipment, Air blast freezer, Quality control laboratory, Stand-by generator

2) Fish landing facilities

Jetty

3) Fisheries extension and supporting facilities

Administration and management office, Conference room, Storage for spare parts and packing materials, Maintenance workshop, washroom and lockers

4) Utilities

Electricity, water, sewage and supply

5) Supporting equipment

1. Fish handling equipment

2. Equipment for fish preservation, processing and destribution, etc.

3. Maintenance tools

4. Vehicle

Annex III

Necessary measures to be taken by the Government of Grenada in case Japan's Grant Aid is executed.

- 1. To secure the ownership and/or right of sites for the Project.
- 2. To clear and level the site prior to commencement of the Project.
- 3. To ensure that the sea area necessary for the construction of the facilities be freely accessible.
- 4. To secure yard for stocking material and constructing temporary facilities at the Project site.
- 5. To remove the asphalt plant and construct the access road to the Project site.
- 6. To provide necessary permissions, licenses and other authorizations for smooth implementation of the Project.
- 7. To provide facilities for distribution of electricity, water supply, drainage, telephone line and other incidental facilities.
- 8. To bear commissions to the Japanese foreign exchange bank for the banking services based upon the Banking Arrangement.
- 9. To exempt taxes and to take necessary measures for custom clearance of the materials and equipment brought for the project at the port of disembarkation.
- 10. To accord Japanese Nationals whose services may be required in connection with the supply of products and the services under the verified contract such facilities as may be necessary for their entry into Grenada and stay therein for the performance of their work.
- 11. To maintain and use properly and effectively the facilities constructed and equipment purchased under the Grant.
- 12. To bear all the expenses other than those to be borne by the Grant, necessary for construction of facilities as well as for the transportation and the installation of the equipment.
- 13. To coordinate and solve any matters which may arise with third party and inhabitants living in the Project area during implementation of the Project.

-128-

MINUTES OF DISCUSSIONS BASIC DESIGN STUDY ON

THE ST. GEORGE'S ARTISANAL FISHERIES COMPLEX PROJECT IN GRENADA

Regarding the request from the Government of Grenada, the basic design study team on the St. George's Artisanal Fisheries Complex Project (hereinafter referred to as "the Project"), held discussions with the pertinent officials of the Government of Grenada.

In the course of discussions and field survey, both parties have confirmed the following items in addition to MINUTES OF DISCUSSIONS signed September 30th, 1993, in case Japan's Grant Aid is executed.

Item :

- 1. The Government of Grenada and Port Authority will ensure that the related sea area necessary for the construction and operation of the Project be freely accessible.
- 2. The Government of Grenada will take care of the necessary facilities and conditions to ensure the safety around the related sea area of the Project.

Mr. Satoru Hirashima

Member Basic Design Study Team JICA St. George's, 14 October, 1993

Mr. Honourable George I. Brizan

Minister of Agriculture, Trade, Industry, Energy and Production

- 129 --

MINUTES OF DISCUSSIONS

BASIC DESIGN STUDY

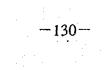
ON

THE ST. GEURGE'S ARTISANAL FISHERIES COMPLEX PROJECT

IN GRENADA

(CONSULTATION ON DRAFT REPORT)

In September 1993, the Japan International Cooperation Agency (JICA) dispatched a basic design study team on the St. George's Artisanal Fisheries Complex Project (hereinafter referred to as "the Project") to Grenada and through discussions, field survey, and technical examination of the results in Japan, has prepared the draft report of the study.


In order to explain and to consult Grenada on the components of the draft report, JICA sent to Grenada a study team, which is headed by Yoshio Ishiyama, Associate Specialist on Fisheries, Second Basic Design Study Division, Grant Aid Study & Design Department, JICA, and is schedule to stay in the country from 25 January to 1 February, 1994.

As a result of discussions, both parties confirmed the main items described on the attached sheets.

Mr. Yoshio Ishiyama Leader Basic Design Study Team JICA

St. George's, 31 January, 1994.

Hon. George I. Brizan Minister of Agriculture, Trade, Industry, Energy and Production.

ATTACHMENT

1. Components of draft report

The Government of Grenada has agreed and accepted in principle the components of the draft report proposed by the team.

- 2. Japan's Grant Aid System
 - 1. The Government of Grenada has understood the system of the Japanese Grant Aid explained by the Team.
 - The Government of Grenada reconfirmed the measures to be taken by the Grenada side for the realization of the Project as agreed upon in the Minutes of Discussions dated 30 September, 1993.

3. Further schedule

Tra dr

The team will make the final report in accordance with the confirmed items, and send it to the Government of Grenzda by around April, 1994.

												ก	Unit: Pound
Local name	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
Pelagic fish											:		
Great barracuda	40.362	23,760	34,491	48, 279	48, 3/2	54,208	43,783	67,673	94,451	74,424	55,829	47,586	83.589
Common dolphin fish	68. 278	48.563	100,009	209,683	66,504	80,990	149,450	102,085	157,127	119.585	302.538	340, 302	346,889
Spanish mackerel	1.666	1.894	597	2.849	649	3,992	17.322	686	448	1.386	4,295	317	100
Moon fish	0	0	0	0	214	268	1.496	100	781	175	452	204	149
Southern scnnet	0	0	0	0	2,198	016	323	1,390	0	1.024	413	457	0
kahoo	47,170	40,100	69,475	154,649	73,490	57.265	85,591	119,121	172,506	72,072	68,220	06,299	131.016
Yellow fin tuna	929, 728	110,047	98, 322	280,760	213, 397	190,183	524,871	409.229	474.670	518.158	667,730	781,349	749,536
Atlantic sailfish	57.708	61,924	45.455	61.649	96,684	183,559	218,971	229,248	250,283	215,665	274,369	397,605	300.541
Black fin tuna	137.730	144,162	238,086	166,952	341,149	217,018	205,659	309,680	276,503	169,125	369, 191	245,401	183,911
Skipjack tuna	16,256	2,125	1.817	24,544	18,233	8,465	9, 735	10,568	48,269	25,363	28.5/3	31,514	37,888
Blue merlin	1.888	1.12	20,750	9,135	12, 122	12.299	37.245	50,932	15,206	50.437	62, 379	80.476	65,249
Rainbow runner	0	0	0	0	9,058	33.653	39,856	72,466	33,087	28,313	66.522	31,897	24,469
Keeltail needle fish	10,029	15.223	13, 199	58,305	8,675	5.681	3.353	4.914	5, 309	6.046	4.597	2,277	3,042
Round scad	25,720	47.535	198,657	205, 123	106,816	239,004	185.358	171.666	245,469	261.931	150,920	128,157	226.214
Bigere scad	720,984	245.774	128, 105	316,248	852,973	127,416	250,791	508,667	437,228	187.570	644,089	514.579	714.149
Ballyhoo halfbeak	5,905	37.580	32,645	- 6,123	14,833	11,235	11.358	9.364	3,938	12,618	17,323	18.221	11.484
Connon snook	0	0	0	0	1,433	600	14	6.921	8.642	0	504	1.300	1,719
Flying fish	325,200	108.283	133,236	133.044	230,689	114,273	74,009	123,538	76,255	18,814	25.338	62,316	163,669
Faise herring	852	5, 130	13,094	6,092	50,314	7,695	1.225	2,100	8,209	1.943	3,761	1,531	0
Atlantic thread herring	2,590	614	1.715	250,191	1.488	613	700	490	253	4,284	7.056	1.050	502
Brazilian sardine	0	0	0	0	57,645	2,713	37, 546	166, 149	200	21.621	54,282	64,617	9, 121
Jack	53,039	50,414	71.582	42,966	34.524	35,569	26,905	36,134	45,616	22,923	19.107	15,316	17,210
Sword fish	0	0	0	0	:0	0	0	0	122,371	11.289	1.178	2.522	3.920
Biscye tuna	0	0	0	0	0	0	0	0	0	0	0	81.624	31,462
Shark	13,503	21.572	18.452	32,226	19.217	22,305	30,091	37.174	39,053	19.588	17,029	17,042	16, 107
Porpoise	0	0	0	0	611	2.741	1,122	1,955	504	528	172	. 0	0
Subtotal for pelagic fish	2,458,708	965,838 1.219	1.219.747	2,008,878	2.351.258	1.412.895	2,016,773	2,442,649	2,547,188	1.845.492	2.849.507	2,974,579	3,212,210

Annual haul per type of fish

Appendix - 5: Date related to Fishery

					-				-				Unit: Pound
Local name	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
Bottom fish				-									
Grouper	3,203	1,327	904-00	46,435	15,475	18,317	0.557	25.610	10,574	18,195	17.542	19.354	9,424
Snapper	37.636	45,351	42.254	70,810	73,680	196'19	23,260	100,482	191,66	58,997	79,637	70,210	71,124
Squirral fish	0	0	0	2, 161	2,545	4,016	5,339	150'6	21.656	3.747	2,555	2,851	1.150
Parrot fish	0	0	0	6, 636	99	116	0	1,692	1,465	126	285	6.458	1.346
Sandtile fish	0	0	0	2,468	3,239	323	518	7,751	12,709	1.550	4,158	5,832	1,016
Grunt	0	0	0	0	329	802	1,017	18	320	1.036	2,238	1.771	4.302
Goat fish	0	0	0	0	530	21	0	0	0	0	0	0	0
Red hind	36,338	33.040	78.043	142,965	165,401	198,819	268,235	286,686	278,315	88,002	178,269	185,512	38,278
Queen trigger fish	0	0	0	0	338	82	0	1.874	1.8.7	254	1,303	546	214
Doctor fish	0	0	0	611	0	404	325	2,368	3,936	2.008	0	0	357.
Coney	3,505	5,681	3,010	22,139	3,549	6,823	3.085	15,318	25,002	13,559	13,984	11.456	12,362
Subtotal for bottom fish	80,732	156, 399	132,713	224,225	265,146	292,340	341,993	447,896	500,411	191.254	300,121	304,660	202,603
Crustaceans and mollusks													
Conch	7,350	25,316	43,517	6,339	32.477	4,366	15, 181	56,317	198,384	53,676	16,590	33,458	SOI
Lobster	5, 180	15,768	8 517	9,643	2,583	3, 301	2,417	14,190	15,764	568*62	4.538	21,180	49,156
Turtle	7,936	7,467	4,513	338	6,424	11.674	9,674	18,076	14.551	12,045	9,030	17,598	23,667
Sea urchin	0	0	0	0	0	0	0	0	2.518	0	0	10,224	1,428
Squid	0	0	0	0	0	0	0	0	0	2.275	0	0	0
Subtotal	20,466	48,551	56, 547	16,980	41,484	19.341	27.272	88,583	102.217	97,895	30,158	82,460	74,752
Others	220,137	264,333	510,932	506, 738	855,713	1.443.251	2,209,650	1, 900, 902	1,258,161	1.634.440	752,149	1.026.659	1.0/0.105
Total	2,780,043	1.435.171	1,919,939	2,946,821	3,513,601	3,167,827	4,655,628	4,880,030	4,407,977	3, 769, 081	3, 931, 935	4.338.358	4 529,671
								-				-	
In kg	1.261.005	650,982	870,869	869 1.336,654		1.593.741 1.436.901	2 111 756	2,213,543	1,999,423	1,709,625	1,783,494 1,990,524	1.990.524	2.054.623
								· ·					

.

- 133 -

of fisl
9
type
per t
haul
nnual

Local mene 1 9 00 1 9 31 1 9 23 1 9 44 1 9 56 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					An	Annual haul per type of fish	per type	of fish						
Cried Constrained Constrained <th< th=""><th>I ocal name</th><th>1980</th><th>80</th><th>1982</th><th>1983</th><th>1984</th><th>σ</th><th>σ</th><th>1987</th><th>19881</th><th>1980</th><th>1 9 9 0</th><th>00</th><th>Unit: EC\$</th></th<>	I ocal name	1980	80	1982	1983	1984	σ	σ	1987	19881	1980	1 9 9 0	00	Unit: EC\$
Intervención 65,60 15,700 15,700 15,700 15,700 25	Pelagic fish					•		2				222	2	0
ololhalin [1sh] 185.867 116.51 20.168 50.276 155.86 1.177 2.871 1.128 2.812 1.131 261 ñ modereri 3.98 4.56 1.457 2.871 1.135 2.812 1.135 <td>Great barracuda</td> <td>938.859</td> <td>57,024</td> <td>82.778</td> <td>115,870</td> <td>116.021</td> <td>130,099</td> <td>105.079</td> <td>162.415</td> <td>259,740</td> <td>201,605</td> <td>153.530</td> <td>130,852</td> <td>229.870</td>	Great barracuda	938.859	57,024	82.778	115,870	116.021	130,099	105.079	162.415	259,740	201,605	153.530	130,852	229.870
h andwreti 3.06 4.56 1.63 1.63 3.50 2.74 1.25 3.81 1.161 951 Tab 0 0 0 0 1.01 1.05 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.33 1.261 2.35 1.261 2.35 1.261 1.351	Common dolphin fish	163,867	116,551	240.166	503,239	159.610	194.376	358,680	245,004	432,099	328,859	831.980	937,205	953, 945
ich 0 0 0 0 514 3.350 2105 1.365 1.365 1.366 1.365 1.366 1.365 1.366 1.365 1.366 <	Spanish mackerel	3,998	4.546	1,433	6,838	1.558	9.581	41.573	2,374	1,22	3,812	11.811	954	781
n. somet 0 0 0 5.775 2.326 771 3.336 0 3.311 1.133 1.136	Moon fish	0	0	0	0	514	643	3,590	240	1,953	438	1.2/3	322	410
113.206 96.200 105.701 271.38 175.705 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 265.401 211.205 267.400 265.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 267.401 211.205 211.205	Southern sennet	0	0	0	0	5,275	2,328	733	3,336	0	3,311	1,136	1,257	0
a 1.868.015 255.001 211.326 655.531 368.323 341.075 1.686.303 1.686.323 341.037 1.687.325 2.146.105 37.14 351.175 37.125 37.135 37.653 351.015 356.323 341.015 353.113 37.75 17.653 655.323 341.015 353.113 37.75 37.435 37.43 37.75 37.435 37.75 37.435 37.75 37.435 37.75	Viahoo	113,208	96,240	106,740	371,158	176,376	137,436	205,418	285.890	474, 392	198,198	187.605	254,822	350,294
iaih 124,07h 123,171 97,728 126,562 267,071 665,381 763,471 665,381 760,556 665,601 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 66,001 10,167 60,163 10,102 10,103	Yellow fin tuna	1,998,915	236,601	211,392	603,634	458,804		1.128.473	879,842	1.305.343	1,424,935	1.836.258	2.148.710	2,061,224
281.070 309.08 511.885 38.947 733.471 465.580 571.167 56.061 1.015.775 674.885 7.338 7.138 7.138 7.138 7.138 7.138 7.138 7.138 7.138 7.138 7.138 7.138 7.138 7.1	Atlantic sailfish	124.074	133, 137	97.728	132,545	207.871	394.652	470,788	492.883	625.708	539, 163	685, 923	994,013	976,353
31.972 4.569 3.607 82.770 32.901 62.703 53.402 71.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36 72.36	Black fin tuna	281,070	309,948	511.885	358.917	733.471	406,589	571,167	665,812	760.548	465,094	1.015.275	674,853	459,778
4,050 2,434 4,613 10,646 26,053 26,443 26,147 106,540 113,165 126,053 164,945 201,106 1 e fish 21,552 23,738 125,556 13,213 73,233 151,151 11,463 5,633 73,733 73,733 73,735 73,235 73,735 73,235 73,735 73,235 73,735 73,235 73,145 74,145	Skipjack tuna	34.972	4,569	3,907	52.770	39.201	16.200	20,930	22.721	120,673	63,408	71.358	78,785	94.720
0 0 0 13,475 72.354 85.050 155.105 115.115 11.469 5.607 73.742 15.115 11.465 5.603 a.855, 181 21.502 27.702 285.131 255.103 255.103 255.331 255.331 255.331 255.331 255.331 255.331 255.331 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 277.25 275.35 275.35 277.25 275.35 275.35 275.35 275.35 275.35 275.35 277.25 275.35	Blue marlin	4,059	2.434	44,613	19.640	20,003	26,443	80,077	109,504	113, 165	126,003	164,948	201,190	163.123
II needle $24,502$ $28,378$ $12,365$ $18,651$ $12,362$ $18,531$ $22,333$ $318,1/7$ $235,176$ $235,331$ $225,331$ $225,337$ $225,332$ $230,337$ $225,335$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $231,355$ $230,337$ $711,280$ $10,225$ $265,313$ $711,280$ $201,327$ $11,225$ $201,337$ $711,280$ $10,225$ $265,315$ $11,225$ $201,337$ $711,280$ $201,327$ $11,225$ $201,327$ $11,225$ $201,327$ $11,222$ $201,327$ $11,222$ $201,327$ $11,222$ $201,377$ $711,320$ $201,327$ $711,320$ $201,377$ $711,320$ $711,320$ $711,320$ $711,320$ $711,320$ $711,320$ $711,320$ $711,320$ $711,320$ $721,320$ $721,320$ $721,320$	Rainbov runner	0	0	0	0	19.475	72.354	85.030	155,802	82,718	70,858	166, 330	79, 743	61.173
scad $30.8i$ $57.0z$ $228.3z$ $318.1/T$ 256.131 $257.3z$ $318.1/T$ 256.131 $270.3z$ $320.8i$ $57.0z$ $287.3z$ $320.8i$ $37.0z$ $320.5z$ <t< td=""><td>Keeltail needle fish</td><td>24.562</td><td>32,729</td><td>28,378</td><td>125,356</td><td>18,651</td><td>12.214</td><td>7.209</td><td>10.561</td><td>13, 423</td><td>15,115</td><td>11,403</td><td>5.603</td><td>7.605</td></t<>	Keeltail needle fish	24.562	32,729	28,378	125,356	18,651	12.214	7.209	10.561	13, 423	15,115	11,403	5.603	7.605
card 855, 181 294, 620 153, 756 771, 466 423, 560 300, 965 610, 400 800, 871 281, 261 711, 263 11. cohaltheak 5,906 37, 530 20, 537 6,123 14, 323 11.235 11.235 11.235 11.235 11.236	Round scad	30,864	57,042	238,323	318,	236,179	286.913	222.430	205,992	466.391	392,897	226,330	207.236	339, 321
or halfheak 5,905 37.500 27.500 3.033 11.235 11.335 0.361 3.938 12.018 17.323 13.321 snook 0 0 0 1.433 600 1.433 600 1.433 6.201 17.281 0 1.008 2.600 fish 255.200 106/233 133.206 1.443 20.668 114.773 74,003 123.538 65.251 1.467 2.821 1.148 herring 4.25 3.046 25.157 3.848 613 1.698 6.202 1.457 2.821 1.146 herring 1.295 307 85.05 7.457 3.8107 3.213 5.222 7.821 1.146 icithice 0 0 2.860 7.41 3.015 8.213 4.713 8.201 3.213 6.221 1.146 3.213 6.222 7.81 7.81 8.702 1.457 3.213 6.222 7.81 8.702 1.457 8.702 <t< td=""><td>Bigeye scad</td><td>865, 181</td><td>294,929</td><td>153,726</td><td>379,498</td><td>423,568</td><td>152.899</td><td>300,949</td><td>610,400</td><td>830,847</td><td>281,355</td><td>906,134</td><td>771,869</td><td>1.071.224</td></t<>	Bigeye scad	865, 181	294,929	153,726	379,498	423,568	152.899	300,949	610,400	830,847	281,355	906,134	771,869	1.071.224
strock 0 0 0 1,433 600 14 6,921 17.281 0 1,000 2,600 fish 255,250 106,253 133,236 133,056 114,273 74,009 123,538 65,316 1 hmrning 4/25 2,538 6,547 3,046 25,157 3,846 613 1,658 1,677 2,821 1,148 hmrning 1,255 307 838 13,773 34,05 13,773 83,075 528 62,343 738 ien sarctine 0 1,056 30 25,823 13,377 345 528 13,473 83,075 528 62,343 738 ien sarctine 0 0 0 25,823 13,773 83,075 528 13,435 32,635 14,435 32,635 32,643 32,635 32,643 32,643 32,643 32,643 32,643 32,643 32,643 32,643 32,643 32,643 32,643 32,643 <	Ballyhoo halfbeak	5,905	37.580	32,645	6,123	14.833	11.235	11.358	9.364	3,938	12,618	17.323	18,221	11,484
Fish 225.200 106,233 133.235 133,044 206.680 114,273 74,000 123.538 76.256 18,814 25.380 62.316 1 herring 1,05 2,533 6,547 3,846 613 1,038 6,522 1,457 2,821 1,437 2,821 1,436 783 fic thread herring 1,265 307 858 125,055 744 373 3,213 5,282 783 78 783<	Comon snook	0	0	0	0	1,433	80	14	6,921	17,284	0	1.008	2,600	3.438
herring 425 2.553 6.547 3.046 25.157 3.845 613 1.038 6.202 1.457 2.821 1.143 ic thread herring 1.235 307 288 $125,056$ 744 307 350 245 107 3.213 5.232 728 ian sardine 0 0 0 $28,822$ 1.357 1.357 18.773 $8.5.752$ 16.216 40.712 48.433 ian sardine 0 0 0 $28,823$ $8.5.356$ 64.572 86.722 15.216 3.746 $3.2.30$ fish 0 0 0 0 0 0 0 0 236.722 125.444 57.326 56.465 32.405 fish 0 0 0 0 0 0 0 0 0 0 0 24.452 22.94 3.200 fish 0 0 0 0 0 0 0 0 0 0 0 0 0 funa 13.503 21.572 18.452 22.226 19.217 22.356 30.001 37.174 55.520 24.465 21.206 21.303 se 0 0 0 0 0 1.314 5.833 2.412 4.205 1.6752 21.206 21.303 se 0 0 0 0 0 0 0 0 0 0 $2.24.465$ $2.1.225$ se 0 0 <td< td=""><td>Flying fish</td><td>325.230</td><td>108,283</td><td>133,236</td><td>133,044</td><td>230,689</td><td>114,273</td><td>74,009</td><td>123,538</td><td>76,255</td><td>18.814</td><td>25,398</td><td>62,316</td><td>163,699</td></td<>	Flying fish	325.230	108,283	133,236	133,044	230,689	114,273	74,009	123,538	76,255	18.814	25,398	62,316	163,699
ic. thread herring 1.255 307 853 12.56 307 55.27 723 5.232 723 5.232 783 73.10 5.254 725 78.475 78.475 78.475 78.475 78.475 78.475 78.475 78.736 61.772 40.712 <td>Faise herring</td> <td>128</td> <td>2.568</td> <td>6.547</td> <td></td> <td>25,157</td> <td>3,848</td> <td>613</td> <td>1,098</td> <td>6,202</td> <td>1,457</td> <td>2.821</td> <td>1.148</td> <td>0</td>	Faise herring	128	2.568	6.547		25,157	3,848	613	1,098	6,202	1,457	2.821	1.148	0
ian survitine 0 0 0 28.323 1.357 18.773 83.075 555 16.216 40.712 48.463 127.204 120.994 171.797 103.118 87.366 64.572 86.772 125.344 57.308 52.544 33.200 f1sh 0 0 0 0 0 0 336.520 56.465 3.240 6.536 f1sh 0 0 0 0 0 0 336.520 56.465 3.240 6.536 fuma 0 0 0 0 0 0 0 0 236.520 56.465 3.240 6.533 fuma 0 0 0 0 0 0 0 0 24.405 57.305 56.465 3.240 6.533 56.465 3.240 6.533 56.465 3.240 6.533 56.465 3.240 6.533 56.465 3.240 6.546 21.335 52.446 7.533 52.446 7.533 52.4465 7.133 52.4465 7.133 52.4465 7.1333 <td< td=""><td>Atlantic thread herring</td><td></td><td>307</td><td>858</td><td>125,</td><td>744</td><td>202</td><td>350</td><td>245</td><td>131</td><td>3,213</td><td>5,202</td><td>788</td><td>444</td></td<>	Atlantic thread herring		307	858	125,	744	202	350	245	131	3,213	5,202	788	444
I27,201 I27,201 I27,201 I27,201 I27,201 I27,201 I27,201 I27,308 S.5.541 38.200 fish 0 <td>Brazilian sardine</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>28,823</td> <td>1,357</td> <td>18,773</td> <td>83.075</td> <td>525</td> <td>16.216</td> <td>40.712</td> <td>48,463</td> <td>6,841</td>	Brazilian sardine	0	0	0	0	28,823	1,357	18,773	83.075	525	16.216	40.712	48,463	6,841
Fish 0 0 0 0 0 0 56.445 3.240 6.938 tuna 0 24.455 3.24.455 21.303 24.455 21.303 <td< td=""><td>Jack</td><td>127,294</td><td>120,994</td><td>121, 797</td><td></td><td>82,858</td><td>85,366</td><td>64.572</td><td>86.722</td><td>125.444</td><td>57,308</td><td>52.544</td><td>38,200</td><td>43.025</td></td<>	Jack	127,294	120,994	121, 797		82,858	85,366	64.572	86.722	125.444	57,308	52.544	38,200	43.025
tuna 0 2/133	Sword fish	0	0	0	0	0	0	0	0	326,520	56.445	3,240	6,935	15.680
13.503 21.572 18.452 32.286 19.217 22.395 30.001 37.174 58.580 24.485 21.280 21.303 ise 0 0 0 1.314 5.803 2.412 4.203 1.392 344 0 ibit for pelagic fish 4.212.350 1.637.054 2.144.669 3.300.355 3.027.705 2.558.804 3.805.018 4.205.116 6.114.185 4.310.150 6.501.372 6.922.459 7.1	Bigeye tuna	0	0	0	0	0	0	0	0	0	0	0	224 406	78,655
0 0 0 0 1.314 5.833 2.412 4.203 1.332 344 0 for pelagic fish 4.212.350 1.037.054 2.144.659 3.330.355 3.027.705 2.558.804 3.805.018 4.205.116 6.114.185 4.310.150 6.501.372 6.922.439 7.127.2	Shark	13,503	21,572	 	ы В	19.217	22,395	30,091	- 37, 174	58,580	24,485	21,286	21, 303	24.161
for pelagic fish 4.212.350 1.637.054 2.144.659 3.300.355 3.027.705 2.558.804 3.805,018 4.205.116 6.114.185 4.310.150 6.501.372 6.922.459	Porpoise	0	0	0	0	1,314	5, 803	2.412	4,203	1,008	1, 392	3/4	0	0
	Subtotal for pelagic fish	1		2.144.669	3,390.	3.027,705	2.558,894		4,205,116	6.114.185	4,310,150	6.501.372	6.022,459	7.127.248
										: .			•	
		·	•							-				

		:,																						
Unit: Pound	1992		25,916	195,591	2,875	3,305	10,115	10, 755	0	245,695	428	714	30, 905	526, 359		2,255	442,404	100.17	7.140	0	522,800	2,860,202	11,036,699	
C	1991		54,874	193.078	7, 128	16, 170	14, 730	4.428	0	463,780	1,092	0	28.540	783,920		150,561	190,620	52.794	51.120	0	445,095	2.823,312	10,974.786	
•	1990		48,241	219.002	6,388	784	10,395	5,745	0	445,673	2,786	0	34,960	773.974		74,655	40,842	27,000	0	0	142.587	2,068,410	9,486,343	:
	1989		50,036	162,242	9,368	1,816	11.375	2,590	0	220,230	381	5,245	33,898	497, 181		214, 304	160'692	30,135	0	4,550	524,080	4,086,100	9,417,511	
	1988		136, 329	273,518	54, 140	3,662	31, 773	815	0	605, 788	15,694	7,932	62,730	1,282,381		312,228	141.876	58,204	12.590	0	524,898	3,145,403	11.005.867	
: *	1987		61,464	241,157	19,559	3,638	16,665	30	0	975'609	1.874	2,368	32,934	989,623		197,110	119,280	54,228	0	0	370,618	4.752.225	10.330.436 10.317.582 11.006.867	
	1.9.86		22,937	127,824	11.479	0.	1.114	2,187	0	576,705	0	922	6,633	749,801		53, 134	19.336	20,022	0	0	101,492	5,674,125		
· · · ·	1985		43,961	148,706	8,634	249	1,795	1,724	575	191/121	92	101	14.669	648,104		15,281	26,408	35,022	0	0	76,711	3,608,128	6.891,837	
• • • •	1984		37.140	176,832	5,472	129	6.004	202	1,140	355,612	338	0	7,630	591,964		113.670	20,664	19,272	0	0	153,606	2, 139, 283	5,912,558	
	1983		111,444	169,944	4,646	14.267	5,305	0	0	307,375	0	611	47,590	661,192		22,187	77,144	2,094	0	0	102,325	1, 133, 476	5,287,348	
	1982		22,574	101.410	0	0	0	0	0	162,792	0	0	6.472	293,248		152,310	68,136	13,539	•	0	233,985	1,021.854	3,693,766	
	1981		17.585	108.812	0	0	0	0	0	210,785	0	0	12.214	349.427		88,606	126,144	22,401	0	0	237,151	528.766	2,752,398	
	1980		7.687	90,326	0	0	0	0	0	78.234	0	0	7,530	183,783		25.725	41,440	23,808	0	0	90,973	440, 274	4,927,380	
	Local name	Bottom fish	Grouper	Snapper	Squirral fish	Parrot fish	Sandtile fish	Grunt	Goat fish	Red hind	Queen trigger fish	Doctor fish	Coney	Subtotal for bottom fish	Crustaceans and mollusks	Conch	Lobster	Turtle	Sea urchin	Squid	Subtotal	Others	Total	

.

.

•

Monthly haul in quantity and price caught by the seven ships built using Japanese Grand Aid Assistance (by location)

.

												·																		÷.,
	Price (ESS)	32.244	37,526	5,000	5.25	23,105	19,932	33.752	23.376	17.206	17.325	16,464	30,670	266.985	b for price	TOTA	Price	32.244	37.527	2,000	5.22	23.105	19, 332	38.752	23,376	17,266	17.325	16.463	30,670	266,985
TOTAL	Quantity (Ib)	11,023	14,791	2,040	1,002	7,021	6,518	13.792	8,718	6,888	7,119	6,238	9,802	95,972	sh species) Unit: lb for quantity and ES\$ for price	0	Quantity	11,023	14,791	2.010	1, 362	7.021	6,518	****	8,718	6,838	611.7	6,238	9,802	95,972
-	Price (ESS) Q	10, 499	3,603	8	5/15	1	437	3,228	5,469	3,641	2.822	4,833	5,958	41.845	s) or quanti	OTHER	Price			. .	3.718	• • •	• 		83			8	88	5,924
WILLET BAY		3,508	1.23	357	218		114	1,131	1,902	386	1,246	2, 186	1.960	15, 423 4	h specie Init: lb fc	0	Quantity		 	• •	1.352	, 				8	36	ង្ម	- 76	3 2.478
	() Quantity (Io)		:												(by fis L	B.F. TUNA	Price		3	8		171	:		1.760	8		• •		2,168
BAY	Price (ESS)	7,210	3.477		2,272	2,960	4,049	3.747	2,555	1,285	3.683	3,000	5.634	39,872	sistance	B.F.	Quantity	1	ଷ	ĸ	1	8	. 1	ន	010	15		•	•	38
IRVINCS BAY	Quantity (Jb)	2,614	1.218	1	828	1.246	1.371	1,450	1.014	713	1,252	957	1.549	14.483	Aid As	B. WARLIN	Price	518	762	428	۱. 	1 677	2,236	5,967	2,070	2,690	35 35	1.517	137	18.537
	Price (ESS) Qu	1	1,212	505	1	2,909	361	8,037	• •	- - 1 -	•	L L	144	13,218	e Grand	B.M	Quantity	247	305	171	• • •	22	813	2,376	828	1,320	8	614	52	7,596
GRAND BAY				166	1	946 2	108			I.			48	367 13	Japanes	SILARK	Price	.1	1.111	1	1	ŝ	<u>8</u>	:	852	1.253	88	1.10	1.153	1.201
9	Quantity (Ib)							2.300	· · ·					÷	t using	ß	Quantity	1 2 2 2 2 2	1.111		• • •	8	8	370	8	1,253	98 	1,074	1.065	6.90
D BAY	Price (ESS)	1,572	7,149	528	r ·	4.974	6,041	6, 783	4,182	527	1,900	3,227	5,520	42,499	tips buil	NIN	Price	1.058	2,118	131	1			448	<u>1</u> 8	হি	1.00	525	731	6,822
FLAHINGO BAY	Quantity (Ib)	513	3, 153	273		1.000	2.070	2,733	1,523	231	1.00	1,179	1,672	15.375	seven st	NINGTOO	Quantity	385	772	8	1	•	1 	163	8	108	ĸ	8	ĝ	2,483
	_	10.271	5.514	2,121	1,301	3,804	1.640	3.014	2.371	122	3,256	2.754	ł	36,773	t by the	KING FISH	Price	8	705	137	1	187	8	6		<u>8</u>	121	346	179	2.634
DUCIDESKE BAY	(lb) Price (ESS)								830	ß	÷.	908	•		e caugh	VINC	Quantity	103	278 278	ន	t	8	117	ន	•	8	44	126	65	ß
DND	Quantity		2,013	764	84	1,244	61	-		ম	1.054			12,571	and pric	GAR	Price	2.041	2,645	1.011	202	3	3 <u>3</u>	3.272	2,810	918	1.972	828	826	17.842
E BAY	Price (ESS)	1.074	2,791	573	129	4,123	624	4.278	4,630	5,445	2,971	2.008	6,053	35,280	uantity :	0. GAR	Quantity	1.123	1.764	88 20	282	147	122	1,851	1.606	645	1.574	1 99	£2	11,159
CONFERENCE BAY	Quantity (lb)	387	86	243	245	1,252	802	1,650	1,758	2.334	1.175	32	1,939	12,954	Monthly haul in quantity and price caught by the seven ships built using Japanese Grand Aid Assistance (by fish species) Unit lb for	ANUT	Price	27.510	30,076	3.104	802	13.310	12.620	23.645	12.172	8,618	11.332	9,768	23, 102	176, 159
_		1.619	13.781	406	SS SS	4,275	6.790	9,665	4.169	5.GM	2.586	582	7.361	57,498	fonthly l	3 7	Quantity	9,049	10.541	1.113	33	4.288	4.047	7,773	4,049	2,598	3,731	2,991	6.597	57,102
BACAYE BAY	Quantity (lb) Price (ESS)	492		237	191							382				FISH	Price	734	- E	3		6,929	3,846	4, 107	3,033	3,026	1,819	1,832	4.239	29.607
BM	Quantity	¥	5,375	2	1	1,333	2.070	3.440	-1,691	1,933	1,115	ନ୍ଧ 	2,634	20,799		SWORD FISH	Quentity	119	•	7	ı	1.289	869	040	667	758	479	407	942	6.472
	Year /month	4	ß	9	2	60	6	10	11	12	7	2	3	Total			Year/month	~	<u>ی</u>	9	7	0	6	10		12	1	2	3	Total
	Ycar	1902	•••	:			•			<	1993			F			Year/	1992									1993	:		F

- 136 -

	1001
xports per type of fish	1000
Breakdown of annual exports per type of fish	1080
щ	

				2																					
92	Price (ES\$)	21,142	1,261,860	2,304	4,750	258,952	23,222	41,227	8,160	1,518	99,619	0	88	17,095	0	0	2,609	7,663	0	0	0	0	0	3,474,788	5,236,808
1992	Quantity (Ib)	2,850	215,394	644	2,234	20,245	5,553	7,187	816	214	29,559	0	116	3,502	0	0	1,531	2,002	0	0	0	0	0	579,131	870,978
91	Price (ESS)	8,362	895,645	6,346	154,520	129,435	18,628	88, 115	59,056	152,785	75,594	0	0	4,952	1,200	0	9,857	17,247	0	0	2,142	78	186	3, 362, 869	4,987,017
1661	Quantity (Ib)	1,058	189, 395	2,405	53,419	8,689	3,627	17,035	7,382	19, 119	19,529	0	0	828	200	0	1,871	6,559	0	0	357	13	31	571,895	903,412
90	Price (ES\$)	3,946	447,018	0	59,562	64,620	29,505	53, 142	0	97,881	37,533	12,684	0	288	330	1,324	1,329	10,865	92	109,268	1	ł	1	3,652,120	4,581,491
1990	Quantity (Ib)	994	96,133	0	16,921	4,426	5,674	13,839	0	16,590	17,539	3,171	0	72	88	331	219	3,406	19	18,520	1	1	1	730,424	928,364
89	Price (ES\$)	613,008	454, 752	88	98,244	186,696	37.377	360	0	213,072	4,698	30	1,185	4,200	1	-	•		1	3	8	t		3, 956, 565	5,570,275
1989	Quantity (Ib)	38,313	75,792	85	24,561	15,558	6,230	60	0	26,634	783	<u></u> 2	395	200	I	I			1	-	1	1	I	791,313	980,429
8.8	Price (ES\$)	69,926 1,258,668	322,175	4,349	24,018	44,928	8,454	26,814	11,512	299,904	999	1	1	1	1	1	1		1	-	8	1	ł	3,512,420	5,513,908
1988	Quantity (Ib)	69,926	46,692	1.629	8,006	3,744	1,409	4,469	1,439	37,488	111		ł	8	ŀ	1	I		• •	I	-	I	ł	702,484	877,397
	Type of fish	Sword fish	Yellow fin tuna	Shark	Sail fish	Lobster	Snappers	Red hind	Sea urchin	Conch	Dolphin fish	Rainbow runner	Flying fish	Wahoo	Coney	Cavally	Groupers	Blue marlin	Spanish mackerel	Big eye scad	Barracuda	Squirrel fish	Parrot fish	Unclassifieds	Total

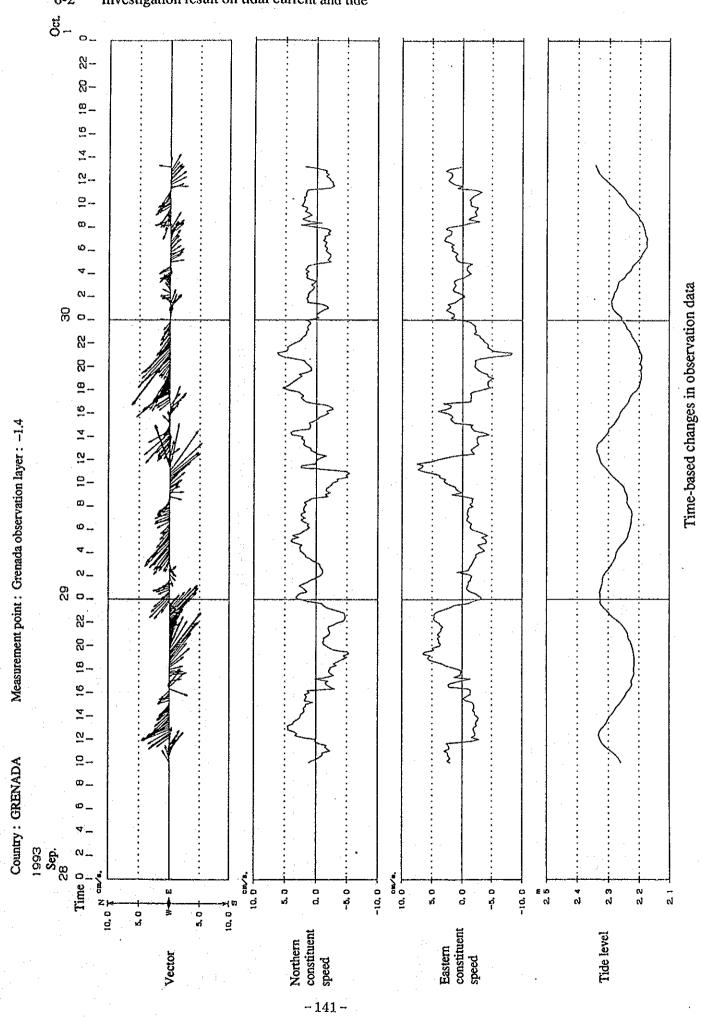
Annual exports

Fiscal year	Exports (lb)	Export price (ES\$)
1984	- 471,100	2,355,500
1985	797,060	3,985,300
1986	1,278,730	6,393,650
1987	1,062,960	5,314,800
1988	877,397	5,513,908
1989	980,429	5,570,275
1990	928, 364	4,581,491
1991	903,412	4,987,017
1992	870,978	5,236,808

Exports and domestic consumption of catch by the seven ships built using Japanese Grand Aid Assistance

· .				•							Unit: 1	lb for qı	antity :	and ES\$	for price
Type of	_					1	992					1	993		
fish	Cate	gory	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Маг,	Total
SVORD FISH	Do.	Q'ıy	*	-	7	-	-	93	-	48	12	153	-	-	313
	D0.	Price	- · ·	-	42	-	~	372	+	144	42	536	-	-	1,136
	Ex.	Qty	119	-	-		1,289	778	940	619	746	321	407	942	6.159
	EA.	Price	734	-	-	-	6,929	3,474	4,107	2,889	2,984	1,284	1.831	4,239	28,471
Y.F.TUNA	Do.	Q'ty	3,598	4,020	666	328		234	2,183	1,975	351	1,391	842	568	16,156
	D0.	Price	9,745	10,208	1,763	902		685	6,003	5,431	754	3.142	2,105	1,420	42,158
	Ex,	Qʻiy	5,448	6,521	447	-	4,288	3,813	5,590	2.074	2,247	2,340	2,149	6,029	40,945
	1021	Prico	17,768	19,868	1,341	-	13,310	11,936	17,642	6,741	7.864	8,190	7,662	21,682	134,002
O.GAR	Do.	Qty	1,123	1,764	598	282	147	172	1,851	1,606	645	1,574	661	736	11,159
	10.	Рпсе	2,041	2.645	1,011	705	327	395	3,272	2.810	918	1,972	826	920	17.842
	Ex.	Qʻiy	-	-	-	-	-	-	-	-	-	-	-	-	
		Price	-	•••	-	*	-	-	-	-	-	-	-		-
KING FISH	Do.	Q'ty	72	181	50	-	68	- 85	33		12		75	43	619
	20.	Price	193	498	138	+	187	255	91	-	33	-	206	118	-1,724
	Ex.	Q'ty	31	97	-			32	-	-	. 57	44	51	22	- 334
1	2	Price	85	267	-	-		80		-	157	121	140	61	911
DOLPHIN	Do.	Quy	252	503	65	- 		-	\$3	31	63	245	193	156	1,612
•		Price	693	1.378	182		-	*	270	85	173	674	544	429	4,428
	Ex.	Qty	133	269	-	· - ·		-	65	27	45	120	102	110	871
	<u>ь</u> л.	Price	<u>3</u> 35	740	-		-	-	179	74	124	330	281	302	2,395
SHARK	Do.	Qʻıy	-	1,111	- [-	500	500	370	581	1.253	386	1,074	1.065	6,940
		Ртісе	-	1.111	-	-	500	500	437	851	1,253	386	1,101	1,153	7,291
	Ex.	Q'ıy	-	-		-		·+·	-	-	-		-	-	
		Price		-				-			-		-	-	
B. MARLIN	Do.	Q'ty	247	305	171		671	813	2,376	828	1.320	196	614	55	7,596
		Price	618	763	427		1,678	2,235	5,967	2,070	2,690	435	1,517	137	18,537
	Ex.	Qʻty						-	•	-	-	•		-	
		Prico	-				-	-					~	-	
B.F.TUNA	Do.	Q'ty	-	20	35	-	58	+	21	640	15			-	789
; ; ;		Price	-	50	96	-	174	-	58	1.760	30	-		~	2,168
	Ex.	Q'ty					-	-	-		-		-		
		Price		-	· · · · · ·				-	-		-	-		
OTHER	Do.	Qʻty			-	1,352		-	265	189	122	349	125	76	2,478
		Price				3,718			728	520	244	256	250	209	5,924
	Ex.	Qʻiy				-			•		-		-	-	
	· · · ·	Price				1 000		1 007		ļ	-	-	-	-	-
Total	Do.	Qty	5.292	7,904	1,593	1,962	1.444	1,897	7,197	5.998	3,793	4.294	3,589	2,699	47.662
		[13,294	16.652	3,659	5,325	2,866	4,443	·	13,672	6,137	7,400	6,549	4.387	101.207
	Ex.	Qty	5,731	6,887	447	• ·	5.577	4,621	6.595	2.720	3,095	2,825	2,709	7,103	48.310
			18,950	20,875	1,341		20,239		21,928	·	11.129	9,925	9,915	26,284	165,778
Grand		Q'ıy		14,791	2,040	1,962	7.021		13,792	+	6,888	7,119	6,298	9,802	95,972
total		Price	32,244	37,527	5,000	5,325	23.105	119.92	38,752	23.376	17,265	17.325	10,464	30.670	266.985

Tinles In Car


Do. : Domestic Ex. : Export

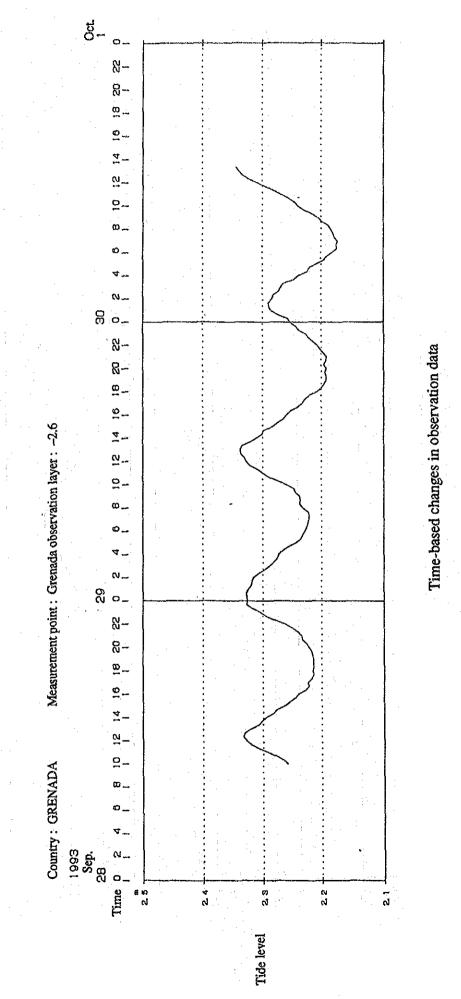
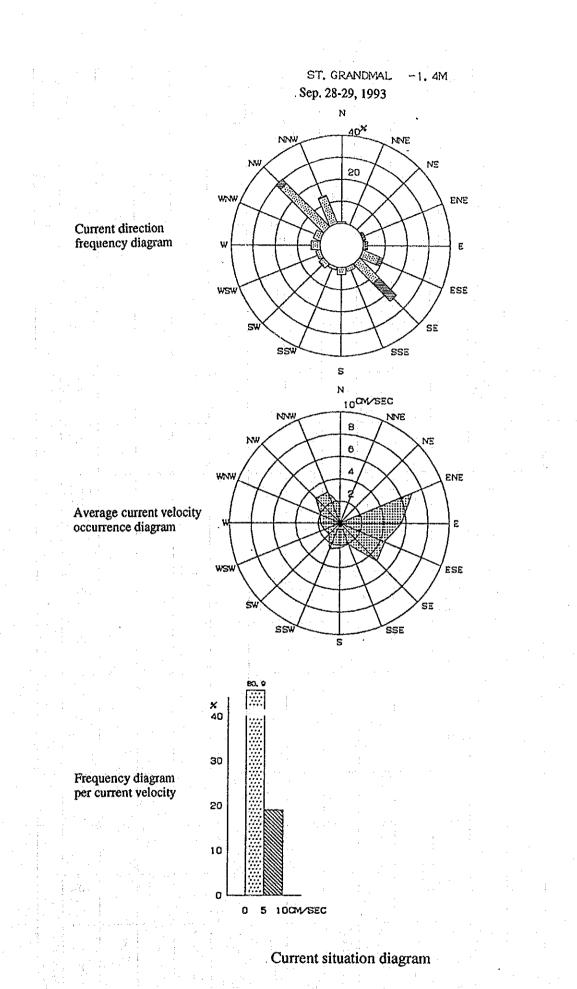

	,							
STORM FORWARD SPEED AT CPA(KTS)	15.9 11.8 9.7 9.9	14.7 13.0 10.8 13.8	8.9 11.1 16.6	213 213 219	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.4 22.4 11.1	23.3 21.1 14.0 9.8 10.9	21.7 13.4 18.6 18.3
STORM HEADING (DESS) AT CPA	292 275 279 279 279 279	318 328 270 278	275 285 270 271	280 300 311 300 282 300 232 300	305 306 306	273 292 285 285	285 285 281 281 281 281	271 287 276 276 285
CLOSEST POINT OF APPROACH (CPA) N. MI,	& کی کی م	28843	22 29 28	36 36 24 87	5 o 23	38 6 27	2 2 8 8 9 2 <u>5</u>	8881E
MAXIMUM WIND (KTS) NEAR STORM CNTR AT CLOSEST PT. OF APPROACH	2 X K 4 4	8888	\$ & % %	ន្តនេង	8888	****	64868;	5 8 8 8 S
STORM NUMBER FOR YEAR	שטמט	80223	t∞ N ⇔	4 - <u>0</u>	0 m ~ N		NN402.	-1-044
DAY (GMT)	<u>∾ ∾ 8 8 2 2</u>	2 9 2 1	2 m u u	887-	2°	• 21 <u>5</u> 5	525~28	3 ஜ ∾ ⊒ ∞
HINOM		22222	S입된되	AUG AUG	AUG SUP AUG	SEP AUG SEP		SEP OCT SEP
YEAR	1880 1887 1887 1887 1887	1888 1891 1895 1895	8681 1061	6061 0161 8161	1918 1921 1928 1928	1931 1933 1933 1933	1938 1944 1944 1955 1955	1963 1974 1978 1978
STORM NAME	NOT NAMED NOT NAMED NOT NAMED NOT NAMED	NOT NAMED NOT NAMED NOT NAMED NOT NAMED	NOT NAMED NOT NAMED NOT NAMED	NOT NAMED NOT NAMED NOT NAMED NOT NAMED	NOT NAMED NOT NAMED NOT NAMED NOT NAMED	NOF NAMED NOT NAMED NOT NAMED NOT NAMED	NOT NAMED NOT NAMED NOT NAMED HAZEL JANKY	GERTRUDE CORA DANIELLE
STORM INDEX NUMBER	- 0 0 4 5	0 - 00 0	8=88	422C	5 8 2 8	ននុងង	និតដឹងខ្លះ	*88**

CHART 1


Appendix - 6: Investigation Result on Natural Conditions

6-1 Cyclone list

-142 -

GRENADA

- 143 -

Frequency of current direction and velocity occurrence

Sea area : GRENADA Measurement point : GRANDMAL Observation layer : -1.4m Observation date : Sep. 28-29, 1993

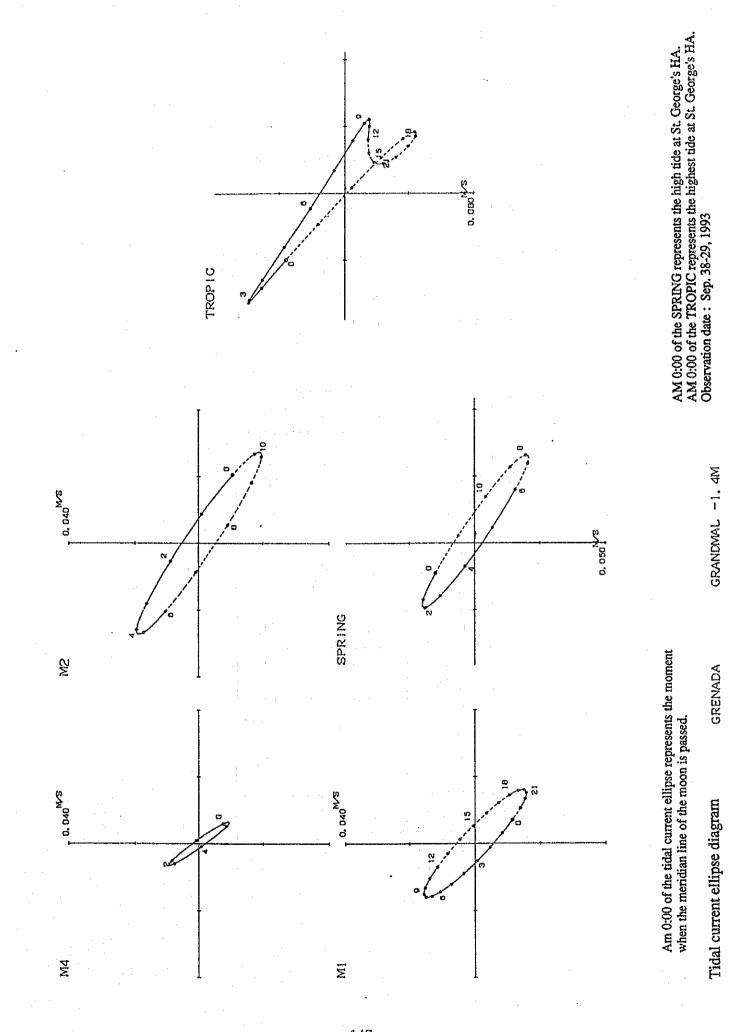
•

			-														Unit: Time (%)
Current direction Current velocity, cm/sec.	N	NNE	NE	ENE	ы	ESE	S E	SSE	ß	SSW	SW	M S M	M	WNW	MN	MNN	Total
0.0																	
0.1~ 5.0	(0.7)				(0. ¹)	(7.9)	19 (12.5)	(2.0)	(3.3)	(1.3)	(2.6)	(2.0)	(3.9)	. (3.3) . (3.3)	42 (27.6)	20 (13.2)	(80.9)
5.1~ 10.0				(1.3)	(1.3)	(2.0)	(11.2)								(2.6)	(0.7)	(19.1)
10.1~ 15.0																	
15. 1~ 20. 0																	
20, 1~ 25, 0																	
25.1~ 30.0									: .			-					
30. 1~ 35. 0																	•
35.1~ 40.0																	
40.1~ 45.0					÷												
45, 1~ 50, 0																	
50.1 Over														:			
Total	(0. ¹)			(1.3)	(2.0)	(9.9)	36 (23.7)	(2.0)	(3.3)	(1.3)	(2.6)	(2.0)	(3.9)	(3.3)	(30.3)	(13.8)	(100.0)
Average current velocity	1.7			7.1	5.6	4.4	4.8	2.1	23	2.5	1.4	1.6	1.8	2.0	3.1	3.0	3.5

- 144 - •

Analysis table of 24-hour harmonic tide

.


Country	:	GRENADA
Measurement point	:	GRANDMAL
Location	:	East longitude 61° 45' 6" North latitude 12° 4' 36"
Observation layer	:	1.4m
Observation date	:	Sep. 28-29, 1993
Measurement apparatus	:	ANDELER current velocity meter (ROM-7)

	Norti		Easte			E	lliptical	leleme	nt		Main current direction		
Tide con-	consti		constit			Major axi	S	1	Minor axi	s .	311	•	
stituent	Current velocity, cm/sec.	Delay angle	Current velocity, cm/sec.	Delay angle	direc- tion	Current velocity, cm/sec.	Delay angle	direc- tion	Current velocity, cm/sec.	Delay angle	Current velocity, cm/sec.	Delay angle	
M2	1. 4	106	1. 9	301	305	2. 3	116	35	0. 3	26	2. 3	115	
S2	0.7	134	1. 0	330	305	1. 2	144	35	0. 2	54	1. 2	144	
K2	0.4	134	0.6	330	305	0.7	144	35	0. 1	-54	0.7	144	
N2													
K1	2. 2	261	2.3	60	314	3.1	250	44	0.6	340	3. 1	250	
01	1.9	252	2. 0	50	314	2.7	241	44	0. 5	331	2.7	240	
P1	0. 7	261	0. 8	60	314	1. 0	250	44	0. 2	340	1.0	250	
Q1								 					
M4	: .												
MS4			I				÷						
AO	0.0		0.4			0. 4		94			-0.3		

Table of elliptical element of tide (24-hour data)

GRENADA

Measurement point and	Observation data and			M 1			M 2			M 4		Cons	stant
observation layer	age of the moon	Axis	θ	V cm/s	H h	9	°V cm∕s	H h	0	V cot/s	H h	θ	V cn/s
GRANDMAL	Sep. 28-29,	L	314	2. 2	8.4	305	3.3	4.4	325	1.1	2.5	94	0.4
-1.4	1993	S	44	0.4	14. 4	35	0.4	1.4	55	0.1	1.0		
	13.0	S/L		0. 19			0. 13			0. 10			

-147 -

Analysis table of 24-hour harmonic tide

:	Grenada			·
:	Grandmal			
:	East longitude North latitude	60° 12°	45' 4'	6" 36"
	Sep. 28-29, 199	3		•
;	Tide indicator			
		Grandmal East longitude North latitude Sep. 28-29, 199	: Grandmal : East longitude 60° North latitude 12° Sep. 28-29, 1993	Grandmal East longitude 60° 45' North latitude 12° 4' Sep. 28-29, 1993

	Tidal co	onstant
Tidal component	Amplitude cm	Delay angle
M 2	3.7	40
S 2	1.9	69
K 2	1.2	69
N 2		· · · · · · · · · · · · · · · · · · ·
K 1	5.2	240
01	4.6	230
P 1	1.8	240
Q 1		
M 4		
MS4		
A 0	226	8

- 148 -

LEON TAYLOR B.Sc. M. Eng. MASCE Consulting Civil Engineer

NOTES ON BOREHOLE REPORTS

SOIL DESCRIPTION:

Each subsoil stralum is described using the following terminology. The relative density of granular soils is determined by the standard penetration index ("N" value), while the consistency of clayey soils is measured by the value of the undrained shear strength (Cu).

CLASSIFICATION (UNIFIED SOIL CLASSIFICATION)	TERMINOLOGY		
Sill and clay Passing sieve No. 200 Sand Sieve No. 200 (o No. 4 Gravel Sieve No. 4 to 3 in. (76 mm) Cobble 3 in. (75 mm) to 8 in. (200 mm) Boulder >8 in. (200 mm)	"traces" "little" adjective (sandy, silty) "and"		<10% 10-20% 20-35% 35-50%
	<u>Energia de la compositiva de la</u>		
RELATIVE DENSITY "N" VALUE (BLOWS/FT 300 mm) (GRANULAR SOILS)	CONSISTENCY (COHESIVE SOILS)	UNDRAINED STRENGT (P.S.F.)	
	Very Soll	<250	< 2
/ery loose 0-4 .oose 4-10	Solt Medium	250-500 500-1000	12-25 26-50
Compaci 10-30	Still	1000-2000	50-100
Dense 30-50	Very stiff	2000-4000	10200

ROCK QUALITY DESI (R.O.D.)	GNATION		STRATIGRAP	HIC LEGEND	
<25 25:50 50-75 75:90 >90	very poor poor fair good excellent		Gravel	Cobbles & Boulders Cobsers Corganic Soil (topsoil)	Bedrozk Fili

TYPE AND NUMBER:

SAMPLES

The type of sample recovered is shown on the log by the abbreviation listed hereafter. The numbering of samples is sequential for each type of sample.

WS: Wash sample	PS:	Piston sample (Osterberg)	SS	: Split scoon
AG: Auger	ST:	Thin well (Shelby)	RC	: Rock core

RECOVERY:

The recovery, shown as a percentage, is the ratio of the length of the sample obtained to the distance the sampler was driven/pushed into the soil.

OTHER TESTS (in-situ or laboratory)

H: Hydrometer	CS.	Grain size distribution		A:
W: Moisture content	Υ:	Unit weight	· ·	CS:
K: Permeability	PI.	Plasticity index		WL:
	÷			C:

Atterberg limits Swedish fall cone Liquid limit Consolidation

- WP: Plastic limit
- EM: Pressuremeter modulus
- PL: Limit pressure

-149-

	2	:		LEON TAYLOI Consulting Civil Eng	2 n ine	5c. M. 1 er	Eng. N	ANSC	Ē	PAGE OI				
		×	<u> </u>	5 Lucas St. St. Goorge				ť.1.			OREHOLE No.			
ľ:	O_{i}	AFL	(⊠ SS S 122 ST S	SPLI SHE	T SPO	ON JBE				۲l)			
				IS LS L	0S'	T SAM	PLE	: -	and the second		sh) Checked by:			
'ION:	,					ER LE			00000					
		ST	BATIG	RAPHY	T.	SAMPL	E			т	EST RESULTS			
			T			102	ERV	ESTS	BLOWS	110N X	Shear test (Cu)			
HEdeo		ELEVATION	STRATIGRAPHY	DESCRIPTION OF SOILS AND BEDROCK	STATE	TYPE AND KO	RECOVERY	OTHER TESTS	BLOWS 6 in./15 cm	NETRA1 INDEX	O Water Content (%) H-4 Atterberg limits (%)			
0		8	STR			<u>گ</u>		ő		13d	We We Not Value (Blows/12 in30 cm)			
М	elers 0			GROUND SURFACE SOFT DACK BLOWN	5		%			N	10 20 30 40 50 60 70 .50 D0			
	v .			PLASTIC SILTY CLAY	X	531	72				0			
-	1	 .	Į <u>₹</u> Z	DALK BLOWN VERY	1		.							
	:0		~	SOFF FIBUROUS	∇	SSZ	10							
- -			~~	PEZT.	$ \Delta $	226								
-			~											
-	2.0		~		X	553	100				Q			
			~~											
		•	~ .				. ·							
	3.0				IX	554	105		0-0-1					
		•	~											
	1.4.5													
-	4.0	•	~		ĮĂ	555	100		0-0-1					
			~			 	1							
			~		$\overline{\mathbf{v}}$	554.	100		0-0-1	1	, Z			
~ 	5.0		\sim		42									
			~						0-100/2"	e.				
			~	END OF BOREHOLL		::57	0		C WOLF					
	6.0			REFUSAL ON	.									
F		·		PROBABLE BEDROCK	.									
-		:					ĺ		1					
	7.0													
		· .												
	8.0			an a	 		l							
-										.				
	9.0						1.							
	<u></u>				.L	. I		 	1 <u></u>	<u> </u>	<u>1. 1999 (</u>			
		•	* ÷			- 15()	÷.,						

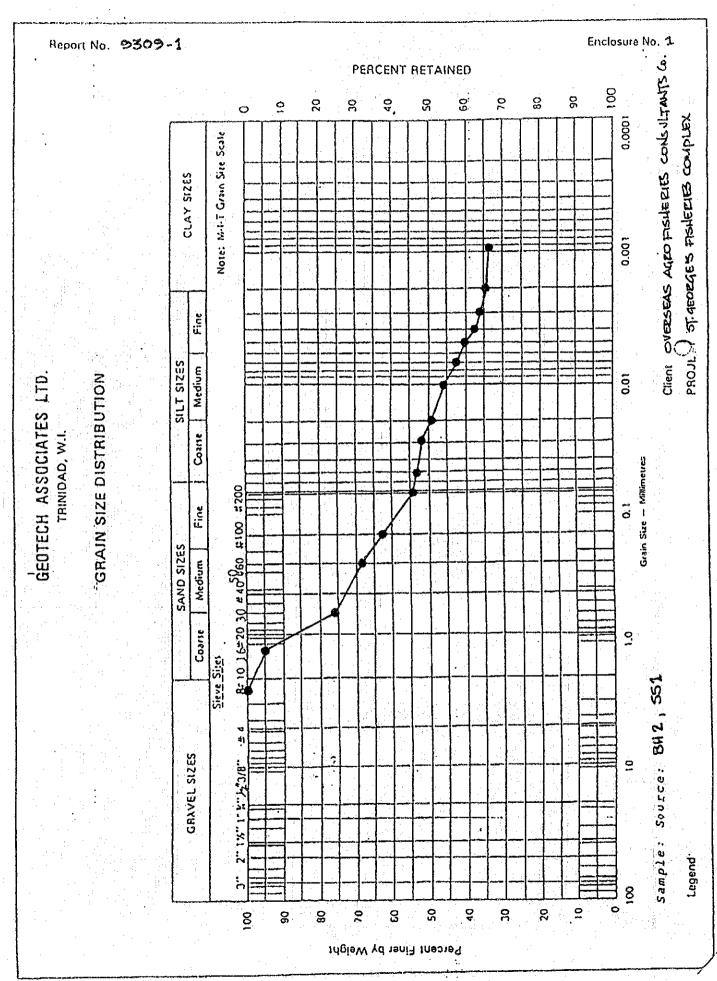
			LEON TAYLOI Consulting Civil Eng	ine	er -				PA	NCLOSURE No.:
- *			5 Lucas St. St. George				.1.			DREHOLE No.
ENT: <u>ORE</u>	<u>-1 C</u>		SS S ST S				•			1)
DJECT:	PAND	UA	L. PROJECT. BILS L	0.51	SAMP	LE		DATE (
ATION:								Describ	ed -	by: <u>BB</u> Checked by: E-T
•			₩₩ V	7A1 -	ER LEV	/=_				
	STI	ATIG	RAPHY	 	SAMPL	E			T	EST RESULTS
	z	VHAN			NPE AND NO.	ĒRY	OTHER TESTS	BLOWS	ATION X	Sensitivity (S)
DEPTH	ELEVATION	STRATIGRAPHY	DESCRIPTION OF SOILS AND BEDROCK	STATE	E AN	RECOVERY	ÊB]	6 in./15 cm	NCTR NOE	O Water Content (%)
Ō	ELE	STRA		ŀ	۹۲۲ ۲	œ:	8		PE	"N" Value (Blows/12 in30 cm)
cct Motors			GROUND SURFACE	7		%			N	
		KA.	BIZOWN PLASTIC SOFT SILTY LLAY	X	551	67		1-0-1	l i i	0
E		1/	WITH OCCASIONAL							
		A	ORGANICS					a da		
1.0		V	SOFT	X	552	100		1-1-1	2	
		$ 1\rangle$		\sim				•		
5		~	DALK BROWN					•		
- 2.0		~	FIBEROUS PEAT.		হাঁ3	100				
		 ~	CRASSONLLY INTO2-	ĮŰ.	• •				ĺ.	
		~	BEDDED WITH THIN						[
- - [~	BANDS OF GCEY SILLY	∇				•		
10		~	CLAY.	Å	554	100		0-0-1	Ŧ `	
		~	(VERY SUFT).							
		~		k-						
		~	n an an Araba an Araba an Araba. Na Araba an Araba an Araba an Araba an Araba Na Araba	IX	\$\$5	ŝ		0-0-1	{ t -	
			•	ŕ						
ı5		~		307			· · .			
		~			STL	1/05		0-0-1.	1	
5.0		.		<u> </u>				•		
		(· · ·	DOSE BECONING			Ì			1	
			COMPACT DACK	\mathbb{N}	557	100		1-1-2	3	
6.0			GREY MEDIUM TO	μ					ļ	
20			FINE SAND WITH							
		0	SOME GRAVEL AND	∇	558	100		2-3-4	-	
			TRACES OF SILT	\square	-70	100		2-3-9	['	
		1 ju	OCCASIONAL OXIDATION	1	· .				1	
			· · · · · · · · · · · · · · · · · · ·	∇	1.1.1.	wo		6-6-4		e la
25				Ŕ	599	100				
		8						1		
		i.		∇	5510	w		10-10-9		
		P		$ \Delta $	0100	100		10-7-9,551		
		. '3								
30 9.0	L	<u> </u>	L	<u> </u>	l	<u>l'</u> ,	L	<u>l</u>	.L	DURING HILLING
				ŗ						
				. •	-151 -	• ·				

FERENCE No .: __ ENCLOSURE No .: __ LEON TAYLOR B.Sc. M. Eng. MASCE Consulting Civil Engineer PAGE _____ Of ____ 5 Lucas St. St. George's Grenada W.I. BOREHOLE No. DATE (start) SS SPLIT SPOON IENT: M ST SHELBY TUBE DATE (finish) OJECT: S LS LOST SAMPLE Described by: _____ Checked by: ___ I RC ROCK CORE CATION: * WATER LEVEL TEST RESULTS SAMPLE STRATIGRAPHY A Field Shear lest (Cu) Sensitivity (S) O Water Content (%) TESTS g RECOVERY STRATIGRAPHD ELEVATION BLOWS DESCRIPTION OF SOILS AND BEDROCK STATE TYPE AND DEPTH 6 in./15 cm OTHER 1 Water being limits (%)
 W₂ W₂ A
 ● "N" Value (Blows/12 In.-30 cm) ž 10 20 30 40 50 60 70 60 90 Ν GROUND SURFACE % Feel Motors 57,0 SII 7-10-12 27 ŵ LOOSE GLEY DALK GREY SILTY FINE - 1.0 **S12** 2-1-2 3 100 SAND WITH OLLASIONAL PUCKETS OF CXIVIZED ; 5 · SILT SSIS 4-7-20 - 2.0 100 11 SOFT TO FIRM GREENIN BLOWN OXIDIZED WITH SILTY CUTY WITH OCCASIONAL OKIDATION 3 2-1-2 5514 100 - 3.0 10 -STAINS . LOMPACT TO DEUSE 5515 80 8-14-16 30 PLOUN SILT MUP 4.0 FINE TO MEDIUM SAND WITH SUME . 15 TO TRACES OF GRAVEL. 9-11-15 26 5516 100 - 5.0 - 6.0 20 -5517 8-12-14 26 loo END OF BORING - 7.0 25 -~ 8.0 9.0 30

i

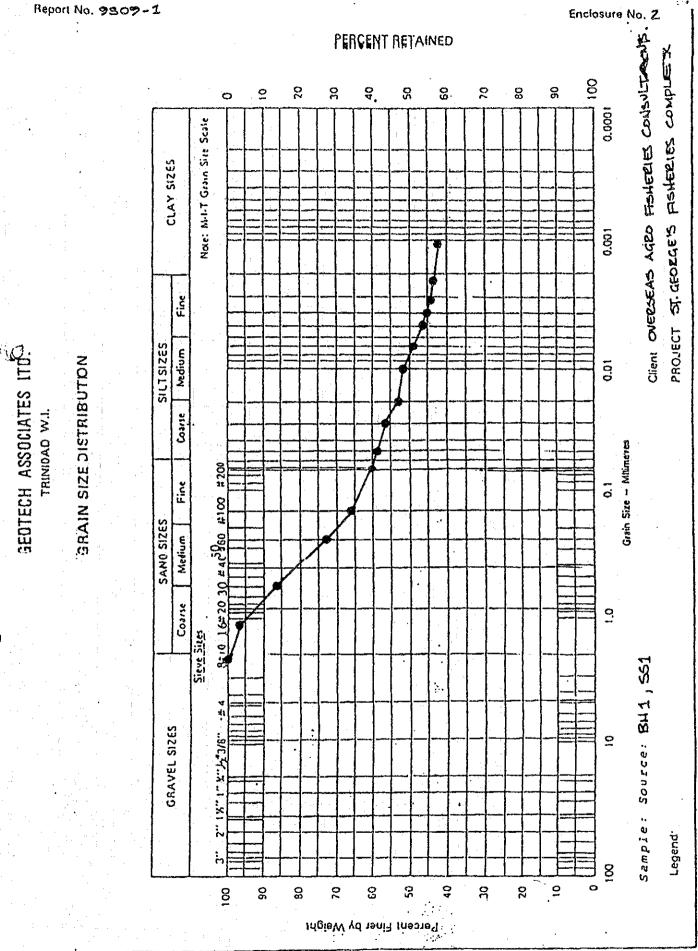
-152-

			·							
IEFERENCE No.	·	-	LEON TAYLOI Consulting Civil Eng	R B.:	Sc. M. E Ər	.ng. №	IÁSCE			NCLOSURE NO.:
PLIENT: OAT				SPLI SHEL	T SPO BY TU SAM	ON JBE PLE	7.1	DATE	BC (star (linis	DREHOLE No. 3 it)
					ER LE					
	STF		RAPHY		SAMPL	E		· · · · · · · · · · · · · · · · · · ·	۲ ا	EST RESULTS Shear tost (Cu)
DEPTH	ELEVATION	STRATIGRAPHY	DESCRIPTION OF SOILS AND BEDROCK	STATE	TYPE AND NO	RECOVERY	OTHER TESTS	BLOWS 6 in./15 cm	PENETRATION INDEX	Sensitivity (S) [] Lab. O Water Content (%) I
Feci Meters			GROUND SURFACE	<u> </u>	· · · ·	%		. : 	N	10 20 30 40 50 60 70 63 90
			WATER							
s —		<!--</td--><td>Loose grey medium coral sand Soft to very soft dark brown fiberous peat. Occasionity</td><td>X</td><td>551</td><td>ୟା</td><td></td><td>4-1-1</td><td>2</td><td></td>	Loose grey medium coral sand Soft to very soft dark brown fiberous peat. Occasionity	X	551	ୟା		4-1-1	2	
		1111	Interbodded with thin bands of grey silty clay	X	552	100	-	1-0-1	1	
		1, 1, 1, 2, 2		X	55.5	জ		1-0-1		
		111		X	554	45		1-0-6	6	
			Loose dark grey fine to medium sand, with some fine gravel and traces of slit	X	585	100		6-4-5	9	
20 6.0				X	<u>ج</u> د (۲	67		5-6-6	15	
				X	557	IUD		4-4-5	9	
25				X	ડડદ	ଜ		2-3-2	5	
- 9.0		 0			· .					


1

-

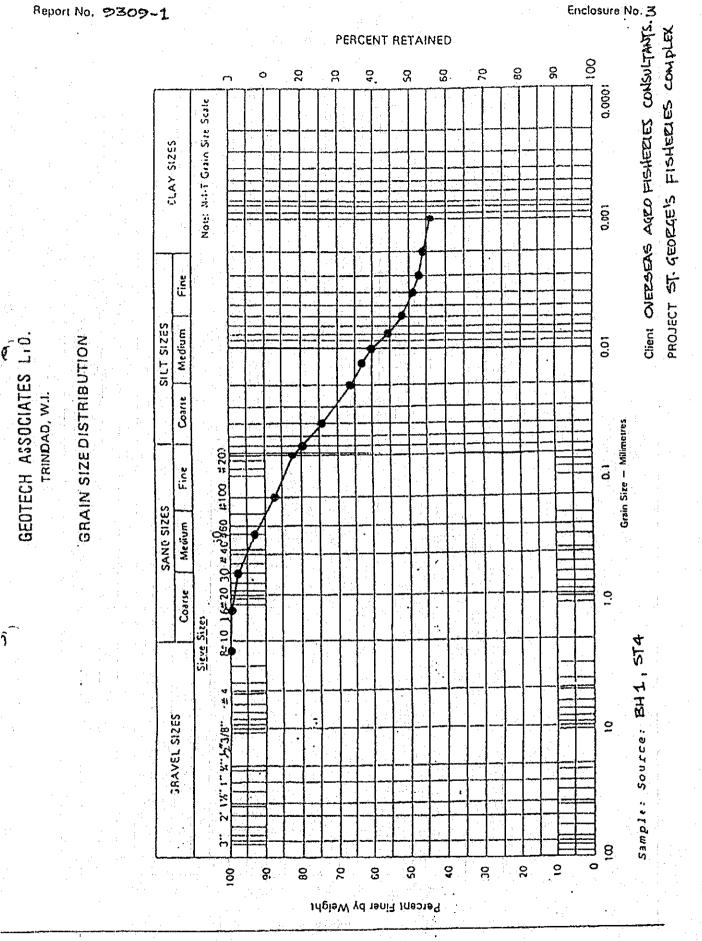
- 153 -


HEFERENCE No		•	LEON TAYLOI Consulting Civil Eng	ςв. ine	sc. M. E er	ng. M	INSCE	:		NCLOSURE No.:	
· · ·			5 Lucas St. St. George	•		a W	.1.			OREHOLE No.	(3
	4EIC	•	SS S	PLI	T SPO	ON	-			rt)	
PROJECT:				051	r SAMF	νLΕ				sh)	
OCATION:			([] RC F		K COR		•	. Descril	bed	by: Checked by	
	STI	RATIC	RAPHY		SAMPL	E			T	EST RESULTS	A Fiek
DEPTH	ELEVATION	STRATIGRAPHY	DESCRIPTION OF SOILS AND BEDROCK	STATE	TYPE AND NO.	RECOVERY	other tests	BLOWS 6 in./15 cm	PENETHATION INDEX		[] Lab
Feel Melors		S.	GROUND SURFACE			%			N	10 20 30 40 50 60 70	
0 0				X	559	6		1-1-2	3		
			Very dense brown slit and				1 - 14 - 1	9 - L			
-		. .	fine to medium sand with traces of gravel.	\mathbf{X}	5510	100		18-44-7	121		
5			•	<u> </u>		e de la					
							· · ·				
				k 7			an an Na		68		
-				X	5511	100		12-24-44			
10 3.0											
					-						
				57							
				Х	5512	56		15-27-31	P8		
15		1 									
				1			а 				
				X	5513	lvo		18-30-42	72		
20 6.0		لبنيل	END OF BORING		1						
		··· .	SHE OF BORING								
25											
8.0						·. ·					
				1			А. Ц.				
30 9.0				L	L	<u> </u>	L	L	<u> </u>		<u>1111111</u>
•					154 -						

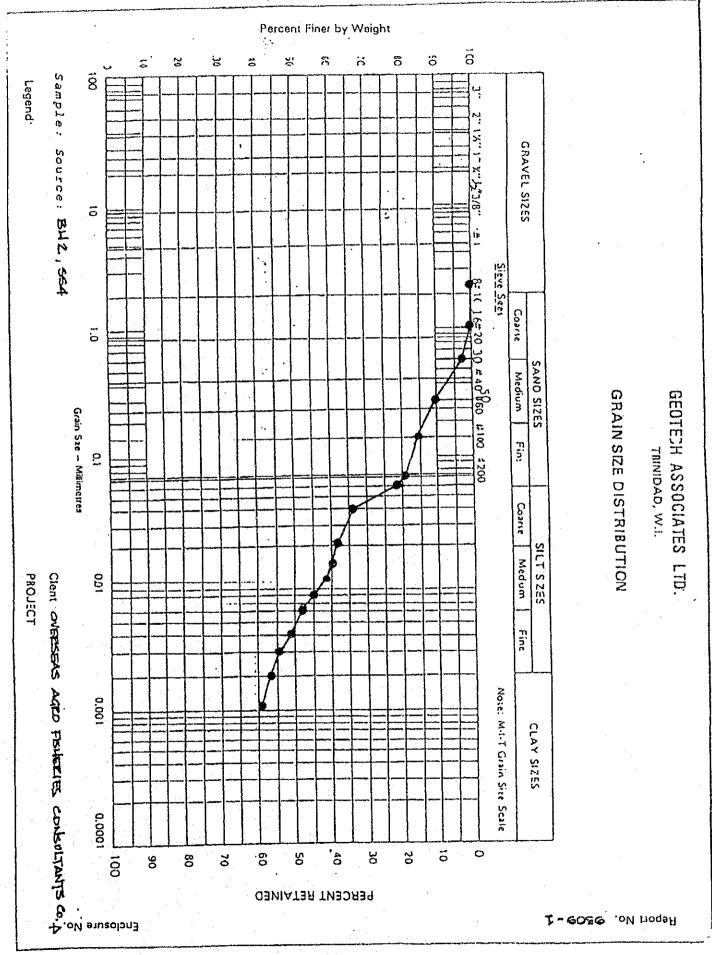
			• •	LEON TAYLC Consulting Civil En)R s. Igine	sc. M. E er	ng M	IASCE			LOSURE No		
				5 Lucas St. St. Georg	jes (Grønac	la W	.!.		60R	EHOLE No.	,	(4)
LIEN	r: <u>over</u>	GEAS	acil	o Elsiliction Co. X SS	SPU		DN .		-		**************************************		
ROJE	cr: Are	TISANA	P	silveres complex. Es LS	LOSI	SAMF	PLE		1	-	<u></u>		
	100^{-10}	PAND	MAG		-800	K COR	E:		Destribe	d by	: Ćh	ескеа ру	
GR	ENAD					SAMPL				TES	T RESULTS		•
	- السراف ^{مستعر}بين ها في را ب	1	And in case of the local division of the loc	RAPHY				SIS		S S	hear test (Cu)		A Field
	DEPTH	ELEVATION	STRATIGRAPHY	DESCRIPTION OF SOILS AND BEDROCK	STATE	NPE AND ND	*******	other tests	BLOW) 6 In./15 Jm	1 N	hear lest (Cu) ensitivity (S) O Wator Conton 	l (%) 15 (%)	
	В	E E	STRAT		ŝ	TYPE	11	Ho		; W,			
Feel	the second s	-1.60m		GROUND SURFACE			(6				10 20 00 40	50 60 70	00 DO
0	°			WATER .									
	- 1.0							-					
- 													
5 -													
. •	2.0) ₁							
•								t		li			
			-										
10 -				LOOSE DACK GETY SAN									
			•	NITH TEACES OF SILT.	- I A	451	100		1-2-2	4			
	+		••••										
			0	COMPACT GERY MEDI	∇	552	100		4-5-7	0			
	-			gravel.	P	1	100						
15			.4							İH			
	5.0				X	553	1/0		7-4-7		- - /		
					F					Н			
•	L-				k7				47				
20 -	6.0		3.0	VERY DELSE DALK	٦X	554.	Ø		7-50-92	Ĭ			
•	_F			BROWN GENVEL.]							
			4.0	(well comented)									
	- 7.0		0			1.0	: 						
•			4.0		X	555	12 0		100/4 4	2			
25 -	Ē		0.0										
			4										
		•	÷ 4			550	100	 .	100/15*	R			
30	9.0	l		END OF BORE HOLE		L	J		L			<u></u>	(ئىمەت لىنىت
	•					1.5	·						

6-4 Indoor soil test data

- 156 -


- 157 -

1


Report No. 9309-1

ŝ

- 158 -

ł

- 159 -

