6.4 Test with the MSF Test Plant

6.4.1 Modification of the MSF Test Plant

CONTENTS

	1.	Introduction	
J	2.	Installation	
	3.	Confirmation of Actuation	
	4.	Others	
	t		
	1 .		

List of Tables

Table	Description
Table 1	Time Table for Modification of MSF Test Plant
Table 2	Results of the Performance Test of the Oil Injection Pump
	n en

List of Figures

Figure	

Description

Page

Fig. 1	Piping of Brine Sampling	5
Fig. 2	Piping of Distillate Water Sampling	6
Fig. 3	The Relation between Recorder Number and Sensor	7
Fig. 4	Results of the Performance Test of the Oil Injection Pump	8
Fig. 5	Suction Piping & Installation of Brine Sampling Pump	9
Fig. 6	Installation of Resistance Thermometer Bulb (Vapor Stage Side)	9
Fig. 7	Installation of Resistance Thermometer Bulb (Brine Inlet Side)	10
Fig. 8	Control Panel & Recorder	10

a second a second s

daar eela oo xwaxaa ah

1. Introduction

The test with the modified MSF test plant should be carried out in order to evaluate the phenomena of contaminants which were assumed by the computer programming. Consequently, the modification of the MSF test plant has been conducted so as to add the sampling instrumentation to the MSF test plant.

This work has been done from Aug. 13 to Sep. 14, 1994 according to the schedule shown in Table 1. The contents of the work are as follows.

2. Installation

The installation works were as follows.

(1) Installation of the pump for the sampling of brine

To sample brine at each stage from No. one to six, five pumps were installed at the loop seal pipe. The piping work was carried out. The piping drawing is shown in Fig. 1.

(2) Installation of the pumps for the sampling of product water

For the purpose of sampling product water at each stage from No. one to six, five pumps were installed at the loop seal pipe, and one pump was installed at the drain pipe of product water and then the piping work was carried out. The piping drawing is shown in Fig. 2.

- (3) Installation of the pump for oil injection
 To inject oil into the brine, the pump for oil injection was installed at the pipe after the brine heater and then piping work was carried out.
- (4) Installation of the oil separator and the pump for oily seawater transfer Because it was decided that the separated oil from the oily seawater should be stored in the oil tank, a FRP tank was installed.
- (5) Installation of electrical and instrument To measure temperature of vapor at each stage from No. one to six and of brine at each inlet of stage from No. one to five, RTDs were installed at each optimum point.

And each sensor were connected with recorder in the center control panel. The start and stop control of the sampling pump for the brine and the product water and, of the transfer pump for the oily seawater are manipulated at the center control panel. The start and stop control of the transfer pump for the oil seawater manipulated at the satellite control panel.

an shi tan Banda Ansar a

3. Confirmation of Actuation

Confirmation of each actuation were as follows.

- (1) Brine sampling pump After flushing the pipe, the direction of rotation of the pump was confirmed.
- (2) Product water sampling pump After flushing the pipe, the direction of rotation of the pump was confirmed.
- (3) Oil injection pump After confirmation of the direction of rotation, the discharge was measured. The results of measure were shown in Table 2 and Fig. 3.

(4) Oil separator

- 1) The direction of rotation of the transfer pump for the oily seawater was confirmed.
- 2) The interlock between the oily seawater transfer pump and the level meter was confirmed.
- 3) The interlock between the valve for oil discharge at the oil separator and the level meter was confirmed.
- (5) Fixation of numbers between the recorder and sensors

The range of temperature at the recorder was fixed from 0 to 150[°]C. The record numbers of each sensor which is consisted of a resistance thermometer bulb are as follows.

a na mange di Palanga kup

vapor temperature		CH-1, CH-2, CH-3, CH-4, CH-5, CH-6
brine temperature	1 : 1993	CH-11, CH-12, CH-13, CH-14, CH-15

The relation between the sensor and the record number is shown in Fig.4.

(6) Air test

The air test was carried out and the air tightness was confirmed at a pressure of 0.75 kg/cm²•G.

4. Others

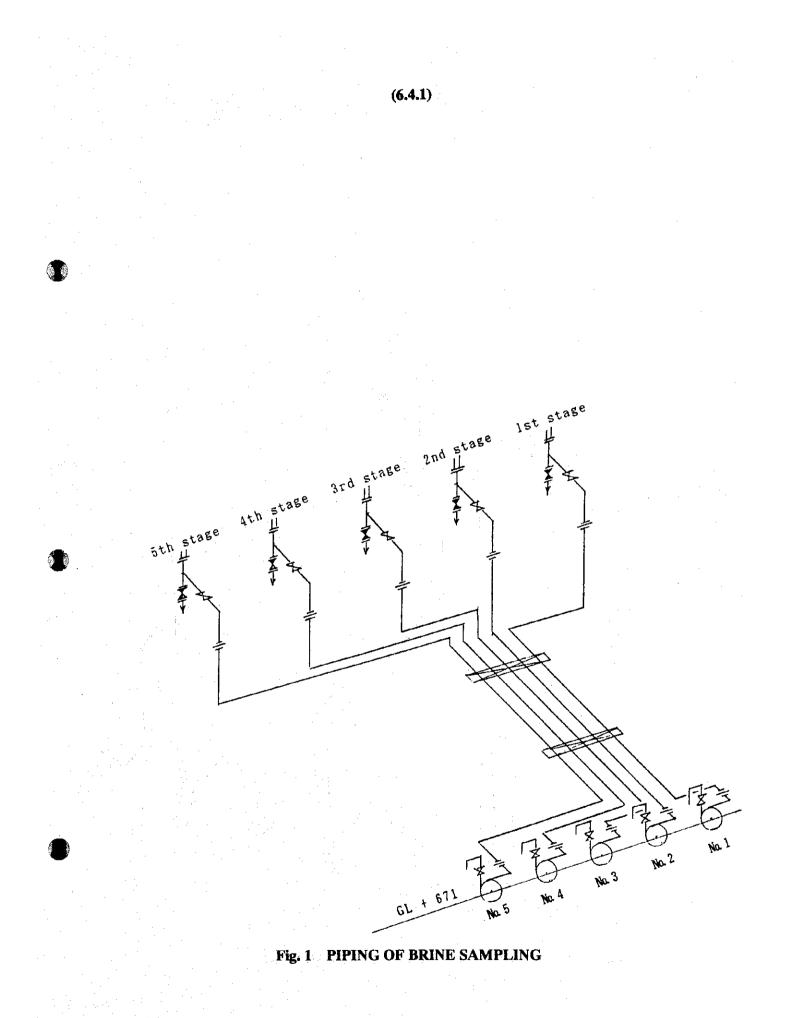
Matters to be attended under operation are as follows.

(1) Brine sampling pump

Because discharge operation is not for the pump, one person should wait at that place to open the outlet valve as soon as the pump starts.

(2) Oil separator

When the blow down water is poured into the oil separator under the carryover testing, close the manual valve slowly.


3

Above mentioned modification works are shown in photos from Fig. 5 to Fig. 8.

N OF MSF TEST PLANT	
DIFICATIO	
TIME TABLE FOR MOI	
Table 1	

													÷	
TTFW	HINOM			AUGUST	T			:			SEPTEMBER	BER .		
	DAY 1	lį 13	18		25	26	5	· · .	8		12 1	1516	22	
1. Meeting with JICA/SWCC at MERIDIEN shout the schedule t contexts	_	Ó ← Mr. Ni)	/amoto	. Miyamoto arrives at SWCC Jubail	at SWCC	Jubail.		. 4 v - 1				Mr.Hamada arrives at	ves at	
annar file schonare a contrains.				a reakes	5		+					SHUL JUDGIL.		
2. Making of the structure for equipment	ipmemt	Mr. Tanaka leaves	ra leav	es SWCC Jubai	Jubail-		dr. Mi)	Mr. Miyamoto leaves	eaves	SWCC Jubail	ubail			
2-2 U. T. Separatur, runp unit 101 U. T. 2-2 Distilate water and brine sampling	u.".u pling					•			· • · · • • • • • • • • • • • • • • • •			• At center work show	r work a	
dund					<u> </u>	· •								d'or
3. Set-up the structures							· ·					• Plumber	: 2	2 persons
3-1 for recirculation brine 3-7 for product mater								 •.•	··· - .			• Welder		1 person
TATATA HOLDEN HOLDEN		÷												
4. Installation of the equipment										.<				
5. Piping for equipments									†			• Plumber	: 2	2 persons
5-1 Distilate water sampling			Ī				Т					· .		•
5-2 OFIDE SAMPLING										1.4	_	-		
5-4 0il injection line			T						·					
6. Electrical & Instrument							<u> </u>					· Civil work		2 persons
6-1 Piping of the conduct pipe 6-2 Connection between test plant and	hura						T		••••			• Electrician	ian:2	2 persons
panel/electric supply etc.,				•		1,2						AND A THEFT ADDRESS ADDRES		C WOLK)
7. Inspection			<u> </u>											
7-1 Piping and equipment										2 - 7] 			• .	
1-2 FIGURIC AND TUSTIMENT					-		_	J	Γ					
8. Test run 8-1 Vacimim test and test run	• <u>•</u> ••	· .		•		1994 1995 1997						· Operator		
8-2 Performance Test	• .				 					2 . 				
9. Preparation for starting up Run 2.	2.			· .										
ITEM	DAY 1	11 13	18		25		01		8		15		22	

.

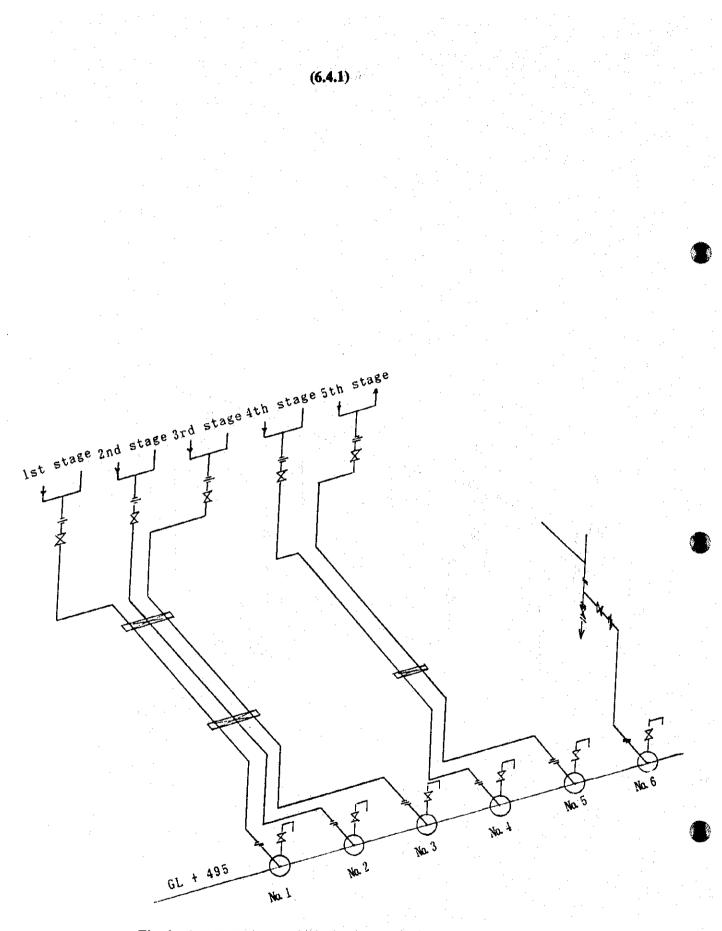


Fig. 2 PIPING OF DISTILATE WATER SAMPLING

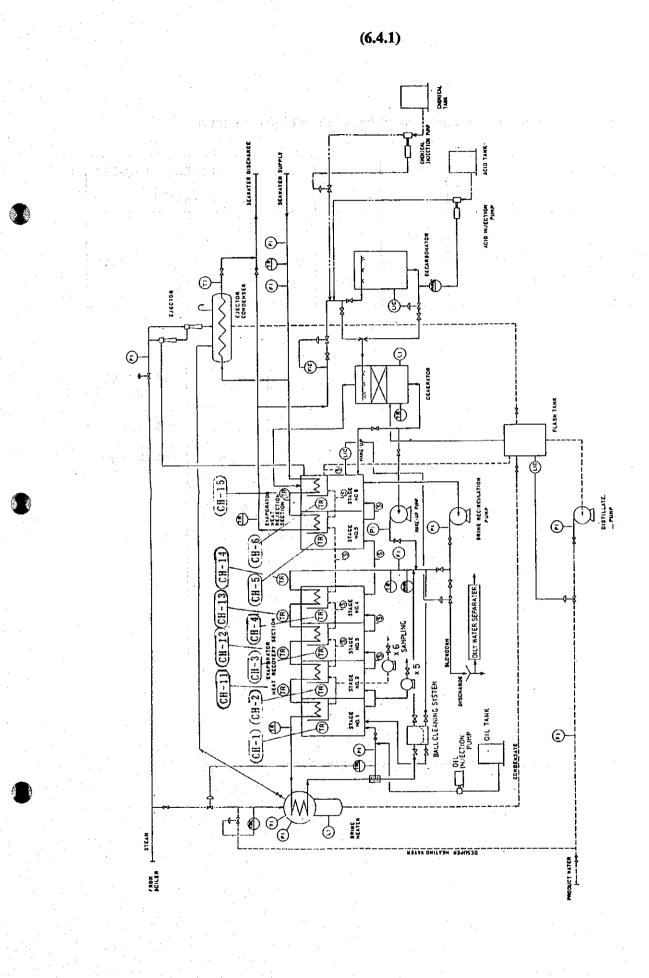


Fig. 3 THE RELATION BETWEEN RECORDER NUMBER AND SENSOR

STROI (%)	ζE	2 5	50	75	100	DELIVERY PRESSURE (kg/cml)
DISCHARGE	SITE	20.5	44	68	86	0
(mL/min)	MAKER	11.2	36.2	53.0	76.2	10

Table 2	Results of	the	performance	test of (the oil	injection _l	oump
---------	------------	-----	-------------	-----------	---------	------------------------	------

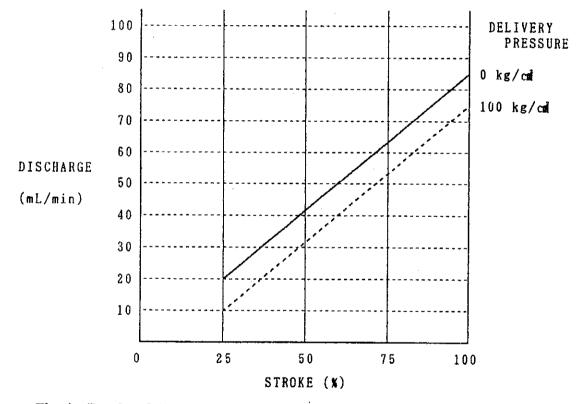


Fig. 4 Results of the performance test of the oil injection pump

Fig. 5 SUCTION PIPING & INSTALLATION OF BRINE SAMPLING PUMPS

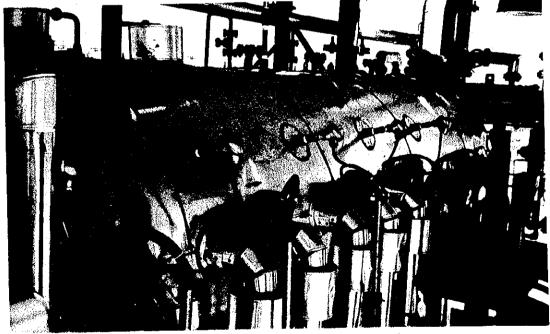


Fig. 6 INSTALLATION OF RESISTANCE THERMOMETER BULB (VAPOR STAGE SIDE)

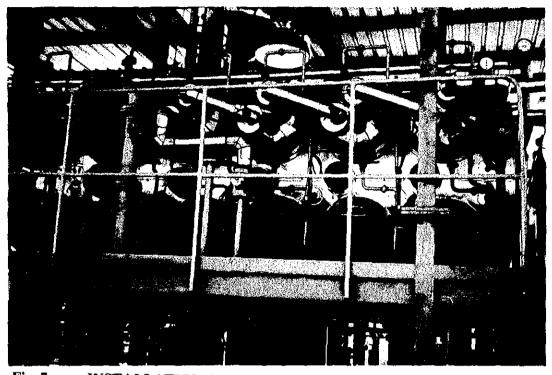


Fig. 7 INSTALLATION OF RESISTANCE THERMOMETER BULB (BRINE INLET SIDE)

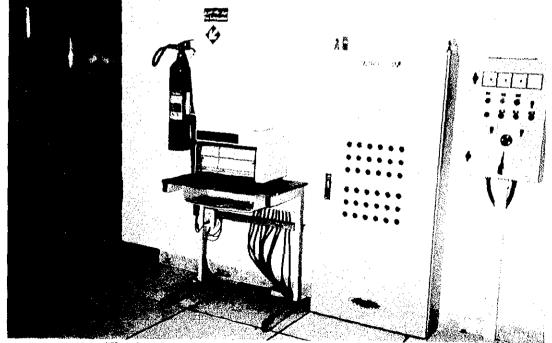


Fig. 8 CONTROL PANEL & RECORDER

6.4.2 Mixture of Bromoform and Product Water

(6.4.2)

CONTENTS

1. Introduction ·····	1
2. Test Plan ·····	
2.1 Test Condition	
2.2 Test Procedure	2.
2.2.1 Preparation of Bromoform Solution	2
2.2.2 Measured Items	2
2.2.3 Sampling Position for Bromoform Analysis	2
2.2.4 Instrument Used for Bromoform Analysis	3
3. Test Results ·····	5
3.1 RUN 6-1	5
3.2 RUN 6-2	5
4. Discussion ·····	10
4.1 Mass Balance of Bromoform	10
4.2 Material Balance from Computer Calculation	11
4.3 Dispersion of Bromoform by Deaerator	26
5 Canchusian	27

List of Tables

Table	Description Page
Table 1	Test Conditions
Table 2	Results of Bromoform Carryover Test at RUN 6-1
Table 3	Results of Bromoform Carryover Test at RUN 6-2
Table 4	Summary of Computer Output 24
•	

List of Figures

1. Introduction

In the previous section, the computer program for predicting the behavior of organic contaminants in MSF plant based on the volatility mechanisms discussed in 6.1 and 6.2 has been introduced. The flow chart, used formula and the structure of the program has been shown in 6.3.

In this section, the behavior of bromoform has been investigated by charging it to the MSF test plant. The experimental results has been compared with the computer prediction.

2. Test Plan

The carryover experiment of bromoform has been conducted as RUN 6 in the series of MSF test plant experiments which are listed in 5.3.3.

The loss of bromoform from the ejector has been observed during the test. Thus two different location for charging bromoform has been tested. One experiment is at the outlet of the brine heater, and the other experiment at the inlet of the deaerator. The former is named RUN 6-1 and the latter is named RUN 6-2.

The operation conditions of RUN 6-1 is kept identical to that of RUN 5-2.

2.1 Test Condition

The carryover test conditions of bromoform are shown in Table 1 together with that of oil carryover test.

The concentration of charged bromoform of RUN 6-1 was 0.5mg/L, and that of RUN 6-2 was 2.75mg/L. The latter is five times more than the former since large amount of loss has been expected at deaerator for RUN 6-2.

2.2 Test Procedure

2.2.1 Preparation of Bromoform Solution

The feed rate of make up water was 2.45m³/h. Thus, bromoform feed of 1.2g/h was required for 0.5mg/L concentration. However, the minimum charging rate of the pump was 600mL/h. So, the concentration of charging solution was set to 2000mg/L. It was confirmed by preliminary test that the solubility of bromoform in pure water is more than 2000mg/L.

Wald Barbara (Barbara)

2.2.2 Measured Items

The measured items during the experiments are shown below.

1)	Feed Rate	:	make up seawater,
			recirculating brine
- 2)	Seawater/brine Temperature	:	inlet and outlet of deaerator(RUN5-2),
			outlet of brine heater
3)			every stage
4)	and the second sec		make up water
5)			recirculating brine at every stage

The sampling of water was started after bromoform has been detected in blow down brine which means the whole system has been filled with bromoform contaminated brine.

2.2.3 Sampling position for bromoform analysis

Seawater/Brine	Product Water
Deaerator outlet(RUN 5-2 only)	
No.1 Stage outlet	No.1 Stage
No.2 Stage outlet	No.2 Stage
No.3 Stage outlet	No.3 Stage
No.4 Stage outlet	No.4 Stage
No.5 Stage outlet	No.5 Stage
No.6 Stage outlet(Blow Brine)	No.6 Stage

3

2.2.4 Instrument used for bromoform analysis

Type: GC-ECD by purge & trap methodDetect limit: 0.1×10^{-3} mg/L

Table 1 TEST CONDITIONS

				lan la shea S	
RUN NO.		6-1	6-2	7	9
.Operation Mode	······	Recir.	Recir.	Once	Once
.Scale Control Method		Hybrid	Chemi.	Chemi.	Chemi.
.Top Brine Temperature .Flow Rate	°C	112	112	112	112
-Make up Seawater	m ³ /h	2.45	2.30	6.40	6.40
-Recirculation Brine	m³/h	6.50	6.50	6.40	6.40
-Product Water	°m ³ ∕h.	0.81	0.86	0.90	0.90
.Chemical Constituents of Br	ine			-	
-pH at 25C		8.04	8.52	8.24	8.24
-M-alkalinity as CaCO3	mg/L	55-60	180	128	128
-Chloride ion	mg/L	32,730	33,320	23,360	23,360
-Concentration Factor	mg/L	1.39	1.40	1.01	1.01
.Dosing Rate of Chemicals					
-Scale Inhibitor(PPN(M))	mg/L	1	2	2	2
-Acid(98% H2SO4)	mg/L	72	None	None	None
-Trihalomethene(CHBr3)	mg/L	0.5	<u>2.75</u>	None	None
-Oil(Light Diesel Oil #2)	mg/l	None	None	_10	2.5
.Injection Point of Contamin	nants	After	Before	After	After
		B.H	Dea.	B.H	B.H

3. Test Results

3.1 RUN 6-1

Five samplings have been conducted from 1 to 5 of November. The results are shown in Table 2.

The concentration of bromoform in brine at No.1 stage outlet reduced to 2ppb from initial concentration of 500ppb. The concentration of bromoform in product water is little. Thus, most of bromoform should have been dispersed from the ejector as vapor. The behavior will be discussed later.

3.2 RUN 6-2

Four samplings have been done from 8 to 11 of November. Those results are shown in Table 3.

High amount of bromoform, 2,750ppb, was charged at the inlet of deaerator. However, more than 95% of them had been dispersed out through deaerator as expected. The concentration of bromoform in brine charged to No.1 stage was very little. This phenomena will be discussed later.

1. Operation Type	:Recircula	tion	
2. Date of taking samples	:Oct. 30th	5 t h,	1994 - Alexandre Alex
3. Brine Exit Data -Temperature -Flow Rate	112	⇒. C	(TBLO)
-Electric Conductivity	:79,700	μS/cm	(SBL0)
4. Make up Data			en al construction de la construction nomen de la construction de la construction de la c
-Temperature	: 34	Ċ.	(TBLM)
-Flow Rate	:2,450	kg/h	(FBLM)
-TDS Concentration	· 20 0F-	3 40/40	(0894)

5. Steam Temperature(C) and Electric Conductivity(μ S/cm)in Each Stage

Stage	Dea.	1	2	3	4	5	6
Steam Temp.		94.1	83.4	71.4	57.7	41.7	36.8
Electric C.		81.2E3	82.8E3	84.1E3	85.6E3	87.6E3	89.4E3

6

(NOTE) Ex:10*

		-				
			 (0.4	1, 2)		
in the second	· .				the	Evaporator

	Sa	mpling d	ate : N	lov, 1st,	1994			nit:ppb)
	Stage	Dea.	1	2	3	4	5	6
	Product W.	· · · · · · · ·	44.51	34.02	17.35	19.28	7.74	7.35
	Brine		1.76	0.34	0.1	< 0.1	¹ < 0.1	0.67
· · · · ·	Sa	mpling d	ate : N	lov, 2nd,	1994		(U	nit:ppb)
	Stage	Dea.	1	2	3	4	5	6
	Product ₩.		37.67	24.45	16.45	16.82	11.85	7.07
	Brine	······	1.35	0.29	< 0.1	< 0.1	< 0.1	0.64
na Artista Artista	Sa	mpling d	ate : N	lov, 3rd,	1994		(U	nit:ppb)
	Stage	Dea.	1	2	3	4	5	6
	Product W.		39.85	25.30	17.80	19.98	10.63	8.12
	Brine	······································	1.41	0.33	< 0.1	< 0.1	< 0.1	0.05
	Sa	mpling d	ate : N	lov, 4th,	1994		(U	nit:ppb)
	Stage	Dea.	ан стория 1	2 ¹¹	3	4	5	6
	Product W.		41.60	44.39	28.95	28.49	12.85	16.12
	Brine		2.02	0.41	0.11	< 0.1	< 0.1	< 0.1
-	Sa	mpling d	ate : N	ov, 5th,	1994		(U	nit:ppb)
	Stage	Dea.	1.	2	3	4	5	6
	Product W.		46.37	50.63	32.75	30.77	15.94	23.32
	Brine		2.05	0.51	0.15	< 0.1	< 0.1	< 0.1

Carryover Test	at RUN N	0.:6-2
:Recirculat	ion	
:Nov. 7th,-	11th, 1	994
	a stational and a station of the state of the s and the state of the s	
: 112	C	(TBLO)
: 6,500	kg∕h	(FBLO)
:79,700	µ S∕cm	(SBLO)
e de la constante de la constan La constante de la constante de	an an gruada a ar gruada	n en transmeren på Kommen Artinen av
: 37.3	C	(TBLD)
: 34.0	Ċ	(TBLG)
:2,450	kg/h	(FBLM)
: 39.9 E-	3 kg/kg	(CBSM)
or: 2,75E-	6 kg/kg	(COMD)
	: Recirculat : Nov. 7th, - : 112 : 6,500 : 79,700 : 37.3 : 34.0 : 2,450 : 39.9 E-	: 6,500 kg/h :79,700 μ S/cm : 37.3 C

5. Steam Temperature(C) and Electric Conductivity(μ S/cm)in Each Stage

		·					
Stage	Dea.	1	2	3	4	5	6
Steam Temp.	34.0	94.1	83.4	71.4	57.7	41.7	36.8
Electric C.		81.2E3	82.8E3	84.1E3	85.6E3	87.6E3	89.4E3

8

(NOTE) Ex:10*

Sa	mpling d	late : N	ov, 8th,	1994	n States and	(U	nit:pp
Stage	Dea.	1	2	3	4	5	6
Product W.		138.28	147.69	139.06	64.59	24.46	78.2
Brine	97.48	5.48	0.95	0.30	< 0.1	< 0.1	< 0.1
Sa	mpling d	late : N	ov, 10th	i, 1994		(U	nit:ppl
Stage	Dea.	1 .1	2	3	4	5	6
Product W.		257.9	238.2	72.5	83.8	163.1	166.28
Brine	97.2	17.34	1.36	0.42	0.13	< 0.1	< 0.1
Sa		late : N	ov, 10th	1, 1994		(1	nit:ppl
Stage	Dea.	1	2	. 3	4	5	6
Product W.		252.3	237.5	65.0	159.9	48.6	102.1
Brine	99.8	13.81	1.70	0.42	0.12	< 0.1	< 0.1
Sa	mpling d	late : N	ov, 11th	1, 1994	· · · · · · · · · · · · · · · · · · ·	(U	nit:pp
Stage	Dea.	1	2	3 · ·	4	5	: · 6 · · ·
Product W.		393.2	266.5	129.6	168.0	92.9	193.0
and the second		1 (Q. 19	1	e de la destruction			

4. Discussion

4.1 Mass balance of bromoform

Mass balance of bromoform of RUN 6-1 and 6-2 has been investigated. The flow rate of make up water, product water and blow brine are as follows.

 Make up seawater 			2,450 kg/h
Product water	•••		780 kg/h
Blow Brine	: 2	2,450 - 780	= 1,670 kg/h

The amount of bromoform dosed in RUN 6-1 and 6-2 are 0.5mg/L and 2.75mg/L, respectively.

The concentration of product water and blow brine used for the mass balance calculation are as follows. They are average value of the sample analysis excluding the initial sample.

RUN No.	Feed	Product Water	Blow down brine
and the second).5 mg/L 2.75 mg/L	0.0137mg/L 0.1538mg/L	0.0001mg/L 0.0001mg/L
RUN 6-1			
 Feed rate Outlet by blow brine 		1 x 0.5mg/L x 0.97L/kg 1 x 0.0001mg/L x 0.97L/k	= 1188.25 mg/h g = 0.161 mg/h
 Outlet by product water Outlet from ejector 	and the second	x 0.0137mg/L x 0.97L/kg (0.161 + 10.36)	= 10.36 mg/h = 1177.72 mg/h

• Percent ejection : (1177.72/1188.25) x 100 =

RUN 6-2

• Feed rate	: 2450kg/h x 2.75mg/L x 0.97L/kg	= 6535.38 mg/h
• Outlet by blow brine	: 1670kg/h x 0.0001mg/L x 0.97L/kg	= 0.161 mg/h
• Outlet by product water	: 780kg/h x 0.1538mg/L x 0.97L/kg	= 116.4 mg/h
 Outlet from ejector 	: 6535.38 - (0.161 + 116.4)	= 6418.81 mg/h
 Percent ejection 	: (6418.81/6535.38) x 100	= 98.2%

From this analysis, it came clear that most of bromoform has been dispersed out of the system from ejector.

4.2 Material balance from computer calculation

Comparison of calculated and experimental results

The calculated results based on the condition in 4.1 are shown in Fig. 1 and Fig.2. The results can be summarized as Table 4.

The mass balance of bromoform of RUN 6-1 by computer calculation will be as follows.

• Feed rate	: 2450kg/h x 0.5mg/L x 0.97L/kg	.=	1188.25 mg/L
• Outlet as blow brine	: 1670kg/h x 0.0895mg/L x 0.97L/kg	=	144.98 mg/h
• Outlet as product water	: 780kg/h x 1.321mg/L x 0.97L/kg	=	999.46 mg/h
 Calculation error 	: 1188.25 - (144.98 + 999.46)	=	43.81 mg/h

The comparison of calculated and experimental results are shown below.

 Bromoform concentration
 Production rate of water

 Method
 Product water
 Blow brine

 Experiment(RUN 6-1)
 0.0137 mg/L
 < 10⁻⁴ mg/L
 810 kg/h

 Calculation
 1.321 mg/L
 0.0895 mg/L
 779 kg/h

The production rate of product water is in good agreement between two figures. Thus, it can be concluded that the behavior of water in MSF plant can be predicted by this computer program.

However, the concentration of bromoform was completely different between experiment and calculation.

In order to adjust the concentration of blow brine, the Henry's constant (mol./L•atm) should be reduced to 1/3.4 of the measured value. The calculated results by reducing Henry's constant to 1/3.4 of the measured value are as follows.

Bromoform concentration

(6.4.2)

Method

Product water and Blow Brine and and an anter and

Production rate of water

Calculation 1.526mg/L 0.74×10⁻⁴mg/L 779.5kg/h (Henry's C. : 1/3.4)

승규는 아들은 것 같은 것을 같은 것을 수 있는 것을 것을 수 있다.

By the above calculation, the concentration of blow brine has been adjusted, however, that of product water remain unadjusted. This indicates that the difference is not due to the volatility behavior of bromoform.

In the computer calculation, it was assumed that all the evaporated bromoform will condensate with water. This assumption should be the main reason for the discrepancy.

The possible explanation for the discrepancy is the difference in condensation rate between bromoform and water. The condensation rate of bromoform should be far less than that of water.

In order to accomplish the computer program, the condensation behavior of bromoform and the factors affecting the behavior should be investigated. By clarifying those subjects, the countermeasures for preventing transference of bromoform in product water would be resolved. One of the possible countermeasures we can assume from the above discussion is the change of vent system to enhance the dispersion of bromoform through ejector.

INPUT DATA

COMPUTER PROGRAMMING FOR CARRYOVER 1994 VERSION

RUN NO: 6-1

HFACTOR: 1

DATE: 1-5/11/94

OPERATOR: AHMAD

MAX BRINE TEMP: 112

CONTAMINANT TYPE: 2

CALCULATION TYPE: 2

DEAERATOR: 1

HEAT & MASS BALANCE INPUT DATA

 FBL (0):
 6500
 TWE (1):
 94.1
 TWE (4):
 57.7

 TBL (0):
 112
 TWE (2):
 83.4
 TWE (5):
 41.7

 SBL (0):
 79700D-6
 TWE (3):
 71.0
 TWE (6):
 36.8

 SBL (1):
 81200D-6
 SBL (4):
 85600D-6
 SBL (2):
 82800D-6
 SBL (5):
 87600D-6

 SBL (3):
 84100D-6
 SBL (6):
 89400D-6
 SBL (6):
 89400D-6

HOMOGENEOUS/RECIRCULATION INPUT DATA BROME: 5.0D-7 FBLM: 2450 TBLM: 34 CBSM: 39901.5D-6

Fig. 1 Cauculation Results of Bromoform Carryover by Computer (RUN 6-1)

OUTPUT-1

RUN NO: 6-1

OPERATOR: AHMAD MAX BRINE TEMP: 112

DATE: 1-5/11/94

2

1

HEAT/MASS BALANCE

GIVEN CONDITIONS

	1	2	3	4	5	6
TWE	9.4100E+01	8.3400E+01	7.1000E+01	5.7700E+01	4.1700E+01	3.6800E+01
SBL	8.1200E-02	8.2800E-02	8.4100E-02	8.5600E-02	8.7600E-02	8.9400E-02

7.7959E+02

FWLT

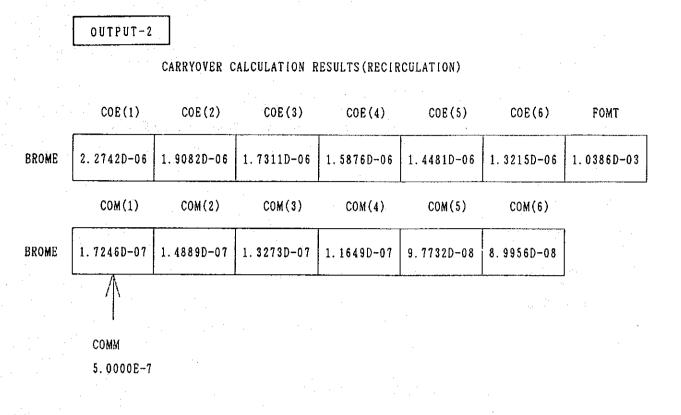
6

RESULTS

3

. 1	5		-	J	O O
1.8886E+02	1.2711E+02	1.0047E+02	1.1123E+02	1.4189E+02	1.1003E+02
8.1744E+04 9.4100E+01	5.4258E+04 8.3400E+01			8.0408E+03 4.1700E+01	6.1939E+03 3.6800E+01
9.5400E+01	8.3700E+01	7.4100E+01	6.3100E+01	4.8500E+01	3.6800E+01
5.4989E-02 6.3111E+03	5.6600E-02 6.1840E+03	5.7897E-02 6.0836E+03	5.9373E-02 5.9723E+03	6.1306E-02 5.8304E+03	6.2976E-02 5.7204E+03
	8.1744E+04 9.4100E+01 9.5400E+01 5.4989E-02	8.1744E+04 5.4258E+04 9.4100E+01 8.3400E+01 9.5400E+01 8.3700E+01 5.4989E-02 5.6600E-02	8.1744E+04 5.4258E+04 3.2549E+04 9.4100E+01 8.3400E+01 7.1000E+01 9.5400E+01 8.3700E+01 7.4100E+01 5.4989E-02 5.6600E-02 5.7897E-02	8.1744E+04 5.4258E+04 3.2549E+04 1.7904E+04 9.4100E+01 8.3400E+01 7.1000E+01 5.7700E+01 9.5400E+01 8.3700E+01 7.4100E+01 6.3100E+01 5.4989E-02 5.6600E-02 5.7897E-02 5.9373E-02	9. 4100E+01 8. 3400E+01 7. 1000E+01 5. 7700E+01 4. 1700E+01 9. 5400E+01 8. 3700E+01 7. 4100E+01 6. 3100E+01 4. 8500E+01 5. 4989E-02 5. 6600E-02 5. 7897E-02 5. 9373E-02 6. 1306E-02

FBL0


FBLM 2.4500E+03

14

TBL 1.1200E+02

CBS 5.3232E-02(SBL=7.9700E-02)

FBL 6.5000E+03

INPUT DATA

COMPUTER PROGRAMMING FOR CARRYOVER 1994 VERSION

	1.1		11 N 1			1.1.1.1.11
RUN NO: 6-1	х 2	HFACTOR:	3 4	(Henry's	Const. :	1/3.4)

(6.4.2)

DATE: 1-5/11/94

OPERATOR: AHMAD

MAX BRINE TEMP: 112

CONTAMINANT TYPE: 2

CALCULATION TYPE: 2

DEAERATOR: 1

HEAT & MASS BALANCE INPUT DATA

FBL(0)	: 6500	TWE(1):	94.1	TWE(4):	57.7
TBL(0)	: 112	TWE(2):	83.4	TWE(5):	41.7
SBL(0)	: 79700D-6	TWE(3):	71.0	TWE(6):	36.8
· ·					
SBL (1)	: 81200D-6	SBL(4):	85600D-6		$\mathbb{P}^{(1)}(\mathbb{P})$
SBL(2)	: 82800D-6	SBL(5):	87600D-6		1.1
SBL(3):	: 84100D-6	SBL(6):	89400D-6		

HOMOGENEOUS/RECIRCULATION INPUT DATA

BROME: 5.0D-7 FBLM: 2450 TBLM: 34 CBSM: 39901.5D-6

OUTPUT-1

RUN NO: 6-1

DATE: 1-5/11/94

OPERATOR: AHMAD

(6.4.2)

MAX BRINE TEMP: 112

HEAT/MASS BALANCE

1997) N						
	1	2	3	4	5	6
TWE	9.4100E+01	8.3400E+01	7.1000E+01	5.7700E+01	4.1700E+01	3.6800E+01
SBL	8.1200E-02	8.2800E-02	8.4100E-02	8.5600E-02	8.7600E-02	8.9400E-02

7.7959E+02

FWLT

RESULTS

	1	2	· 3	4	5	6	,
FWL	1.8886E+02	1. 2711E+02	1.0047E+02	1.1123E+02	1.4189E+02	1.1003E+02	
PWE	8.1744E+04	5.4258E+04	3.2549E+04	1.7904E+04	8.0408E+03	6.1939E+03	
TWE	9.4100E+01	8.3400E+01	7.1000E+01	5.7700E+01	4.1700E+01	3.6800E+01	
TBL	9.5400E+01	8.3700E+01	7.4100E+01	6.3100E+01	4.8500E+01	3.6800E+01	
CBS	5.4989E-02	5.6600E-02	5.7897E-02	5.9373E-02	6.1306E-02	6.2976E-02	
FBL	6.3111E+03	6.1840E+03	6.0836E+03	5.9723E+03	5.8304E+03	5.7204E+03	
	Λ	<u>.</u>	J	<u>i</u>	L	<u> </u>	

FBL0 -----

TBL 1.1200E+02

CBS 5.3232E-02(SBL=7.9700E-02)

FBL 6.5000E+03

FBLM 2.4500E+03

OUTPUT-2

CARRYOVER CALCULATION RESULTS (RECIRCULATION)

	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE(6)	FOMT
BROME	6.0418D-06	3.6617D-06	2.8005D-06	2.2265D-06	1.7685D-06	1.5264D-06	1.1996D-03
	COM(1)	COM(2)	СОМ(3)	COM(4)	COM(5)	COM(6)	•
BROME	2.1099D-09	9.8145D-10	5.6508D-10	2.9544D-10	1.1069D-10	7.4102D-11	
	$\overline{\Lambda}$	1	F	I <u></u>	1	<u>↓</u>	1

18

COMM

5.0000E-7

INPUT DATA

COMPUTER PROGRAMMING FOR CARRYOVER 1994 VERSION

RUN NO: 6-2 HFACTOR: 1

DATE: 7-11/11/94

OPERATOR: AHMAD

MAX BRINE TEMP: 112

CONTAMINANT TYPE: 2

CALCULATION TYPE: 2

DEAERATOR: 2

HEAT & MASS BALANCE INPUT DATA

 FBL (0):
 6500
 TWE (1):
 94.1
 TWE (4):
 57.7

 TBL (0):
 112
 TWE (2):
 83.4
 TWE (5):
 41.7

 SBL (0):
 79700D-6
 TWE (3):
 71.0
 TWE (6):
 36.8

 SBL (1):
 81200D-6
 SBL (4):
 85600D-6
 SBL (2):
 82800D-6
 SBL (5):
 87600D-6

 SBL (3):
 84100D-6
 SBL (6):
 89400D-6
 SBL (6):
 89400D-6

DEAERATOR INPUT DATA

TBLD: 37.3

HOMOGENEOUS/RECIRCULATION INPUT DATA BROME: 2.75D-6 FBLM: 2450 TBLM: 34 CBSM: 39901.5D-6

Fig. 2 Calculation Results of Bromoform Carryover by Computer (RUN 6-2)

OUTPUT-1

2

RUN NO: 6-2

DATE: 7-11/11/94

OPERATOR: AHMAD

MAX BRINE TEMP: 112

HEAT/MASS BALANCE

GIVEN CONDITIONS

9

			J	4	0	0	
TWE	9. 4100E+01	8.3400E+01	7.1000E+01	5.7700E+01	4.1700E+01	3.6800E+01	лу.
SBL	8.1200E-02	8.2800E-02	8.4100E-02	8.5600E-02	8.7600E-02	8.9400E-02	

TBLD 3.7300E+01

FBLM 2.4500E+03

	1 · · ·		RESULTS						
		1	2	3	4	5	6		
FWL	1.3309E+01	1.8886E+02	1.2711E+02	1.0047E+02	1.1123E+02	1.4189E+02	1.1003E+02		
P₩E Twe	5.2260E+03 3.3612E+01	8.1744E+04 9.4100E+01	5.4258E+04 8.3400E+01	3.2549E+04 7.1000E+01	1. 7904E+04 5. 7700E+01	8.0408E+03 4.1700E+01	6.1939E+03 3.6800E+01		
TBL CBS FBL	3.4000E+01 3.9902E-02 2.4367E+03	9.5400E+01 5.4989E-02 6.3111E+03	8.3700E+01 5.6600E-02 6.1840E+03	7.4100E+01 5.7897E-02 6.0836E+03	6.3100E+01 5.9373E-02 5.9723E+03	4.8500E+01 6.1306E-02 5.8304E+03	3.6800E+01 6.2976E-02 5.7204E+03		

20

DEAERATOR

FBLO -

TBL 1.1200E+02

CBS 5.3232E-02(SBL=7.9700E-02)

FBL 6.5000E+03

7.7959E+02

OUTPUT-2

• •				· . · ·			
BROME	2.6682D-06	9.1614D-07	7.9092D-07	7.0508D-07	6.1880D-07	5.1917D-07	4.7786D-07
	COMG	COM(1)	COM(2)	COM(3)	COM(4)	COM(5)	COM(6)
BROME	1.4565D-05	1.2081D-05	1.0137D-05	9.1960D-06	8.4338D-06	7.6928D-06	7.0202D-06
·	COEG	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE (6)

CARRYOVER CALCULATION RESULTS (RECIRCULATION)

COMM 2.7500E-06

OUTPUT-1

(Henry's Const. : 1/3.4)

RUN NO: 6-2 DATE: 7-11/11/94 OPERATOR: AHMAD MAX BRINE TEMP: 112

HEAT/MASS BALANCE

GIVEN CONDITIONS

	1 1 1	2	3	4	5	6
TWE	9.4100E+01	8.3400E+01	7.1000E+01	5.7700E+01	4.1700E+01	3.6800E+01
SBL	8.1200E-02	8.2800E-02	8.4100E-02	8.5500E-02	8.7600E-02	8.9400E-02

TBLD 3.7300E+01

FBLM 2.4500E+03

	1		R	ESULTS			
	\downarrow	1	2	3	4	5	6
FWL	1.3309E+01	1.8886E+02	1.2711E+02	1.0047E+02	1.1123E+02	1.4189E+02	1.1003E+02
PWE	5 2260E+03	8.1744E+04	5.4258E+04	3.2549E+04	1.7904E+04	8.0408E+03	6.1939E+03
T₩E	3.3612E+01	9.4100E+01	8.3400E+01	7.1000E+01	5.7700E+01	4.1700E+01	3.6800E+01
TBL	3.4000E+01	9.5400E+01	8.3700E+01	7.4100E+01	6.3100E+01	4.8500E+01	3.6800E+01
CBS	3.9902E-02	5.4989E-02	5.6500E-02	5.7897E-02	5.9373E-02	6.1306E-02	6,2976E-02
FBL	2.4367E+03	6.3111E+03	6.1840E+03	6.0836E+03	5.9723E+03	5.8304E+03	5.7204E+03

22

DEAERATOR

FBL0 -----

TBL 1.1200E+02

CBS 5.3232E-02(SBL=7.9700E-02)

FBL 6.5000E+03

7.7959E+02

OUTPUT-2

CARRYOVER CALCULATION RESULTS (RECIRCULATION)

· · · · · · · · · · · · · · · · · · ·	COEG	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE(6)
BROME	4.9522D-05	2.9707D-05	1.8004D-05	1.3770D-05	1.0948D-05	8.6956D-06	7.5052D-06
	COMG	COM(1)	COM(2)	COM(3)	COM(4)	COM(5)	COM(6)
BROME	2.4719D-06	1.0374D-08	4.8257D-09	2.7785D-09	1.4527D-09	5.4426D-10	3.6435D-10
	\wedge		l <u></u>	ant and	<u> </u>	L	<u> </u>

23

COMM

2.7500E-06

Table 4 Summary of Computer Output

RUN 6-1 COMM = 0.5 mg/L, Henry's Constant:Log H = 0.24-0.024T

Stage	Dea.	1	2 	3	4	5	6
Product W.		2.2742	1.9082	1.7311	1.5867	1.4481	1.3215
Brine		0.1724	0.1488	0.1327	1.1649	0.0977	0.0089

RUN 6-1 COMM = 0.5 mg/L, Henry's Constant: H' = H/3.4

Stage	Dea.	1	2	3	4	5	6
Product W.		6.0418	3.6617	2.8005	2.2265	1.7685	1.5264
Brine		0.0021	0.0009	0.0005	0.0002	0.0001	0.0000

RUN 6-2 COMM = 2.75 mg/L, Henry's Constant:Log H = 0.24-0.024T

Stage	Dea.	1	2	3	4	5	6
Product W.	14.565	12.081	10.137	9.1960	8.4338	7.6928	7.0202
Brine	2.6682	0.9161	0.7909	0.7050	0.6188	0.5191	0.4778

	 		ana an			ang at sina sa
Stage	1. 1. 1. 1.	1917 - 2 . 1917 - 19 1929 - 1929 - 1939	······································	4	5	6
Product W.			13.770	10.948	8.6956	7.5052
Brine	0.0103	0.0048	0.0027	0.0014	0.0005	0.0003

RUN 6-2 COMM = 2.75 mg/L, Henry's Constant: H' = H/3.4

. .

4.3 Dispersion of bromoform by deaerator

The bromoform removal effect by deaerator has been tested in RUN 6-2. The test results are shown in Table 3 and the computer calculation results are as Fig. 2. Those results are summarized in following table. The states of #1 stage are listed in the table for reference.

		Deaer	ator		#1 Stage
Item	Unit	Cal.	Given Cond.	Measured	(Cal.) Measured
Make up water	kg/h		2,450.0		6,500
Amount evaporated	kg/h	13.3			(188.8)
Evaporation ratio		5.42x10 ⁻³			(29x10 ⁻³)
Inlet Temp.	C	· .	37.3		112
Outlet Temp.	°C ··· ·		34,3		(95.4)
Temp. Difference	C		3.3		(16.6)
Inlet Conc.	mg/L		2.75		99.9
· .					-123.4
Outlet Conc.	mg/L	2.6682		0.097	10.1
			:	70.123	~13.8
Removal Ratio	%	2.9	: •	96.3	(90)

Evaporation Ratio = (Amount Evaporated)/(Make up water)

The test result of the removal ratio is 96.3%, however, the calculated result is 2.9%, when assuming that the bromoform removal ratio is proportional to evaporation ratio. There in no doubt that the removal ratio will increase as the evaporation ratio increases, according to the study of #1 stage.

Consequently, those factors other than the evaporation ratio should be taken into account for the prediction of the bromoform removal ratio.

One of those factors which should be taken into consideration should be the condensation rate. Since the condensation rate of bromoform seems to be very stagnant, according to the

previous discussion, large portion of the bromoform should have been dispersed out through the ejector. The non-equilibrium flow of bromoform might be existing in the system, which would enhance the evaporation of bromoform from brine.

The quantitative investigation of the condensation kinetics and the dispersion rate out of the system should be necessary for the further analysis.

5. Conclusion

The behavior of bromoform, a kind of trihalomethane, in MSF plant has been calculated by the computer program and the results have been compared with the experiments. The conclusions obtained are as follows:

- (1) The prediction of quantity of the product water by the computer program is in good accordance with the test results.
- (2) In order to predict the behavior of bromoform in MSF plant, not only the vapor liquid equilibrium but also the kinetics of condensation should be taken into consideration.
- (3) One of the possible countermeasure for the prevention of bromoform transferring to the product water would be the increase of the capability of the vent system, including the deaerator, by dispersing out bromoform as vapor.

6.4.3 Mixture of Crude Oil Components into Product Water

(6.4.3)

CONTENTS

1. Introduction ······	-1-
	-
2. Test Plan ·····	1
2.1 Test Condition	1
2.2 Test Procedure	1
2.2.1 Measurement	1
2.2.2 Sampling position for oil analysis	5
2.2.3 Instrument used for the oil analysis	5
with most unche aged for the of unusysts	ΰ.
3. Test Results	5
	5
3.2 RUN 9	9
4. Discussion ·····	13
4.1 Mass balance of oil	13
4.2 Mass balance of oil by computer calculation	14
4.2.1 RUN 7 (oil concentration 10mg/L)	14
4.2.2 RUN 9 (oil concentration 2.5mg/L)	29
5. Conclusion ·····	36
n an an an an an an an an an ann an an a	1
na 1997. Na matematika na manana na manana na manana na mangana katika na manana na mata na mata na mata na manana na ma	
	· · · ·
n en ser en fan it de leiste en de fan de En ser ekste ser en de fan d	
na ang ang ang ang ang ang ang ang ang a	
n an the second state of the second secon Alternative second se	

(6.4.3)

List of Figures

Figures	Description
Fig.1	Calculation Results by Computer(Run7) 16
Fig.2	Calculation Results for RUN 9 by Computer (RUN 7, POE:1.0) 17
Fig.3	Calculation Results for RUN 9 by Computer(RUN 7, POE:1/3)
Fig.4	Calculation Results for RUN 9 by Computer(RUN 7, POE:1/6)
Fig.5	Calculation Results for RUN 9 by Computer(RUN 7, POE:1/8)
	Calculation Results for RUN 9 by Computer(RUN 9)

List of Tables

Table	Description	age
	and the second of the second	
Table 1	Test Conditions	3
Table 2	Components of Injecting Light Diesel Oil #2	4
Table 3	Results of Oil Carryover Test at RUN No.7	
Table 4	Results of Oil Carryover Test at RUN No.9	10
Table 5	Summary of both Experimental & Calculated Results (COMM=10mg/L)	
Table 6	Summary of both Experimental & Calculated Results	33
	(COMM=2.5mg/L)	33

1. Introduction

In the previous section, details of the computer program with flow chart and used formula have been introduced based on the evaporation mechanisms of the bromoform in brine discussed in 6.1 and 6.2, in order to analyze the behavior of the homogeneous organic contaminants in brine.

In this section, oil¹⁾ was added to the MSF test plant to analyze the behavior of oil, heterogeneous organic contaminants, in the plant. The computer analysis was compared with the experimental results.

2. Test Plan

The oil carryover tests with different oil concentration were conducted as RUN 7 and RUN 9 in the series of MSF Test Plant experiments shown in Table 1 of 5.3.3. In order to prevent the oil contamination of deaerator and heat transfer tubes, the operation mode has been changed from recirculation mode to once through mode and oil was charged at the outlet of brine heater.

2.1 Test Condition

The oil carryover tests conditions are shown in Table 1 together with that of bromoform carryover test. The amount of oil used is 10mg/L for RUN 7 and 2.5mg/L for RUN 9.

2.2 Test Procedure

2.2.1 Measurement

Those items measured in each RUN are as follows.

- 1) Flow rate : feed seawater(brine)
- 2) Seawater/Brine Temperature : brine heater outlet
- 3) Steam Temperature
- : each stage
- rature :
- 4) TDS concentration : feed seawater(brine)

1) Light Diesel Oil #2, instead of crude oil, was used for the consistency to RO experiments.

5) Electric Conductivity: each stage6) Composition of Oil: (shown in Table 2)

The sampling of brine for oil concentration analysis was started when the oil has been detected at blow brine since the oil distribution in the system should be taken into account.

(6.4.3)

RUN NO.		6-1	6 - 2	7	9
1.Operation Mode		Recir.	Recir.	Once	Once
2. Scale Control Method		Hybrid	Chemi.	Chemi.	Chemi.
3. Top Brine Temperature	°C	112	112	112	112
4.Flow Rate					на на селото на селот Селото на селото на с Селото на селото на с
-Make up Seawater m	³ /h	2.45	2.30	6.40	6.40
-Recirculation Brine m	³ /h	6.50	6.50	6.40	6.40
-Product Water m	³ /h	0.81	0.86	0.90	0.90
5. Chemical Constituents of Brin	e				
-pH at 25C		8.04	8.52	8.24	8.24
-M-alkalinity as CaCO3 m	g/L	55-60	180	128	128
-Chloride ion m	g/L	32,730	33,320	23,360	23,360
-Concentration Factor m	g/L	1.39	1.40	1.01	1.01
6.Dosing Rate of Chemicals	•				
-Scale Inhibitor(PPN(M)) m	g/L	1	2	2	2
-Acid(98% H2SO4) m	g/L	72	None	None	None
-Trihalomethene(CHBr3) m	ıg∕L	0.5	2.75	None	None
-Oil(Light Diesel Oil #2) m	ng∕L	None	None	10	2.5
7. Injection Point of Contaminan	ts	After	Before	After	After
		B.H	Dea.	В.Н	B.H

Table 1 TEST CONDITIONS

		onents of Injecting I	Light Diesei Oli #2
Conponents	Ratio in Oil	Concent.in Oil	Concent.in 1L of Make up
(C No.s)	(%)	(kg/L)*	(kg/L)
C10	2.46	0.0199	0.246E-6
C11	4.18	0.0338	0.418E-6
C12	5.13	0.0415	0.513E-6
C13	6.46	0.0523	0.646E-6
C14	7.67	0.0621	0.767E-6
C15	9.2	0.0745	0.92 E-6
C16	9.76	0.0790	0.976E-6
C17	11.01	0.0892	1.101E-6
C18	11.18	0.0905	1.118E-6
C19	10.9	0.0883	1.09 E-6
C 2 0	8.9	0.0721	0.89 E-6
C 2 1	6.84	0.0554	0.684E-6
C 2 2	4.42	0.0358	0.442E-6
C 2 3	1.9	0.0153	0.19 E-6
C 2 4	-		
C 2 5	_		
C 2 6			
C 2 7		* . 	
C 2 8	-		
C 2 9	· · · · · · · · · · · · · · · · · · ·		
C 3 0	-		

Components of Injecting Light Diesel Oil #2 Table 2

* : Specific Gravity of injecting oil : 0.81 kg/L

2.2.2 Sampling position for oil analysis

Brine	Product Water
No.1 stage outlet	No.1 stage
No.2 stage outlet	No.2 stage
No.3 stage outlet	No.3 stage
No.4 stage outlet	No.4 stage
No.5 stage outlet	No.5 stage
No.6 stage outlet(Blow brine)	No.6 stage

2.2.3 Instrument used for the oil analysis

Туре		:	GC-MS
Detecting limit	÷.	1	1×10 ⁻³ mg/L

3. Test Results

3.1 RUN 7

The measurement of RUN 7, oil concentration of 10mg/L, has been conducted from 14 to 15 of November. The test conditions and the results are shown in Table 3.

The oil concentration in brine decreased to $1/2^{-1}/3$ of the initial value at stage #1, then gradually decreased at the following stages and end up with 1/10 at the final stage #6.

The decrease rate of oil is far less than that of bromoform which showed decrease to 1/250 at stage #1.

Table 3 Results of Oil Car	ryover Test at R	UN No.7		
1. Operation Type	:Once throu	ıgh		. † .
2. Date of taking samples	:Nov. 14th	& 15th &	15th, 19	194
			a shainn Bhiaganna	
3. Brine Exit Data				
-Temperature	: 112	C	(TBLO)	
-Flow Rate	: 6,400	kg/h	(FBLO)	
-Electric Conductivity	:60,200	μS/cm	(SBLO)	
			······································	•
4. Make up Data				
-Temperature in Deaerator Inlet	:	C	(TBLD)	đ
-Temperature in Deaerator Outlet	• • •	C	(TBLG)	-
-Flow Rate	: 6,400	kg/h	(FBLM)	-
-TDS Concentration	:	kg/kg	(CBSM)	
-Oil Concentration after Brine H.	: 10.00E-6	kg/kg	(COMG)	
-Kind of Injecting Oil	:Light Dies	el 0il #:	2	: .

5. Steam Temperature(C) and Electric Conductivity(μ S/cm)in Each Stage

-								a an
	Stage	Dea.	1	2	3	4 14 14 14 14 14 14 14 14 14 14 14 14 14	S	6
-								
	Steam Temp.		94.8	83.9	71.5	57.4	40.1	34.0
-					<u>at tas subs</u>	tega suta en en entre E		an a tea y and.
_	Electric C.		61,500	62,900	64,000	65,200	67,000	67,800

б

(NOTE) Ex:10×

6. Oil Concentration in Each Stage of the Evaporator(Cont.)

Sampling date : 7am, Nov,15th, 1994

(23hrs after start of oil injection)

(Unit:ppm)

.

(6.4.3)

6. Oil Concentration in Each Stage of the Evaporator

Sampling date : 1pm, Nov, 14th, 1994

(5hrs after start of oil injection)

(Unit:ppm)

Sum of 0il Concent. 9.32 17.1 7.9 8.33 6.95 6.62 Brine C10 0.16 ND ND ND ND ND Brine C10 0.16 ND 0.012 0.01 0.01 0.009 0.009 C11 0.22 0.10 0.012 0.01 0.015 0.009 C12 0.18 0.05 0.031 0.015 0.009 0.015 C14 0.27 0.10 0.021 0.16 0.023 0.011 C15 0.32 0.11 0.019 0.02 0.034 0.013 C16 0.30 0.10 0.019 0.02 0.034 0.017 C18 0.45 0.15 0.27 0.049 0.017 C18 0.45 0.17 0.08 0.04 0.06 0.02 C20 0.37 0.13 0.043 0.025 0.025 0.017 C21 0.40 0.11	Stage	C No.s	1	2	3	$\frac{1}{2} = \frac{1}{4} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right)$	5	6
Brine C10 0.16 ND <	Product W.	C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29	0.07 0.101 0.21 0.48 0.68 1.0 1.35 1.47 1.36 1.22 0.84 0.35 0.12	0.05 0.09 0.32 0.75 1.30 1.93 2.60 2.62 1.93 1.87 1.57 0.62 0.30	ND 0.073 0.27 0.58 0.78 0.81 1.05 1.03 1.16 0.80 0.72 0.32 0.18	ND 0.08 0.20 0.66 0.95 1.0 1.1 1.01 1.2 0.85 0.55 0.41 0.2	ND 0.033 0.17 0.4 0.66 0/72 0.97 0.98 1.0 0.74 0.70 0.36 0.21	ND 0.39 0.54 0.65 0.72 0.73 0.88 0.79 0.74 0.52 0.37 0.14
C11 0.22 0.10 0.012 0.01 0.01 0.01 C12 0.18 0.05 0.031 0.009 0.009 0.009 0.006 C13 0.23 0.09 0.012 0.013 0.015 0.009 C14 0.27 0.10 0.021 0.16 0.023 0.011 C15 0.32 0.11 0.019 0.02 0.034 0.013 C16 0.30 0.10 0.019 0.02 0.034 0.013 C17 0.41 0.16 0.25 0.027 0.049 0.017 C18 0.45 0.15 0.27 0.015 0.053 0.014 C19 0.54 0.17 0.08 0.04 0.06 0.02 C20 0.37 0.13 0.043 0.025 0.025 0.015 C21 0.40 0.11 0.042 0.026 0.028 0.01 C22 0.23 0.05 0.12	Sum of Oil Co	ncent.	9.32	17.1	7.9	8.33	6.95	6.62
C 2 8 C 2 9 C 3 0	Brine	C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29	0.22 0.18 0.23 0.27 0.32 0.30 0.41 0.45 0.54 0.37 0.40 0.23 0.16	0.10 0.05 0.09 0.10 0.11 0.10 0.16 0.15 0.17 0.13 0.11 0.05 0.03	$\begin{array}{c} 0. \ 0 \ 1 \ 2 \\ 0. \ 0 \ 3 \ 1 \\ 0. \ 0 \ 1 \ 2 \\ 0. \ 0 \ 2 \ 1 \\ 0. \ 0 \ 1 \ 9 \\ 0. \ 0 \ 1 \ 9 \\ 0. \ 2 \ 5 \\ 0. \ 2 \ 7 \\ 0. \ 0 \ 8 \\ 0. \ 0 \ 4 \ 3 \\ 0. \ 0 \ 4 \ 3 \\ 0. \ 0 \ 4 \ 2 \\ 0. \ 1 \ 2 \\ 0. \ 1 \ 8 \end{array}$	$\begin{array}{c} 0. \ 0 \ 1 \\ 0. \ 0 \ 0 \ 9 \\ 0. \ 0 \ 1 \ 3 \\ 0. \ 1 \ 6 \\ 0. \ 0 \ 2 \\ 0. \ 0 \ 2 \\ 0. \ 0 \ 2 \ 7 \\ 0. \ 0 \ 2 \ 7 \\ 0. \ 0 \ 1 \ 5 \\ 0. \ 0 \ 4 \\ 0. \ 0 \ 2 \ 5 \\ 0. \ 0 \ 4 \\ 0. \ 0 \ 4 \\ 0. \ 0 \ 1 \ 4 \end{array}$	$\begin{array}{c} 0. \ 01 \\ 0. \ 009 \\ 0. \ 015 \\ 0. \ 023 \\ 0. \ 03 \\ 0. \ 034 \\ 0. \ 049 \\ 0. \ 053 \\ 0. \ 06 \\ 0. \ 025 \\ 0. \ 028 \\ 0. \ 024 \\ 0. \ 021 \end{array}$	$\begin{array}{c} 0. \ 0 \ 0 \ 0 \\ 0. \ 0 \ 0 \ 0 \\ 0. \ 0 \ 0 \ 0 \\ 0. \ 0 \ 1 \ 1 \\ 0. \ 0 \ 1 \ 1 \\ 0. \ 0 \ 1 \ 1 \\ 0. \ 0 \ 1 \ 3 \\ 0. \ 0 \ 1 \ 7 \\ 0. \ 0 \ 1 \ 4 \\ 0. \ 0 \ 2 \\ 0. \ 0 \ 1 \ 5 \\ 0. \ 0 \ 1 \\ 0. \ 0 \ 7 \\ 0. \ 0 \ 9 \end{array}$

3.2 RUN 9

The measurement of RUN 9, oil concentration of 2.5mg/L, has been conducted from 6 to 7 of December. The test conditions and the results are shown in Table 4.

No oil was detected in brine for both sample but only in product water.

1. Operation Type	:Once through	
	:Dec. 4th & 5th, 1994	
	an a	
3. Brine Exit Data		•
-Temperature	: 112 C (TBLO)	
-Flow Rate	: 6,400 kg/h (FBLO)	
-Electric Conductivity	:60,200 μS/cm (SBL0)	
4. Make up Data		
-Temperature in Deaerator Inlet	: C (TBLD)	
-Temperature in Deaerator Outlet	: C (TBLG)	· · ·
-Flow Rate	: 6,400 kg/h (FBLM)	
-TDS Concentration	: kg/kg (CBSM)	
-Oil Concentration after Brine H.	: 10.00E-6 kg/kg (COMG)	•••
-Kind of Injecting Oil	:Light Diesel Oil #2	
5. Steam Temperature(C) and Electric	Conductivity(μ S/cm)in Each S	tage
······································		

Stage	Dea.	1	2	3	4	5	6
Steam Temp.	·	94.8	83.9	71.5	57.4	40.1	34.0
Electric C.		61,500	62,900	64,000	65,200	67,000	67,800

(NOTE) Ex:10*

Table 4 Results of Oil Carryover Test at RUN No.9

6. Oil Concentration in Each Stage of the Evaporator

Sampling date : 8:00 Dec, 7th, 1994 (Unit:ppm)

Stage	C No.s	1	2	3	4	5	6
Product W.	C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30	N D N D N D N D N D N D 0.003 0.003 0.005 0.005 0.005 0.005 0.005 N D N D	ND ND ND ND ND 0.004 0.006 0.007 0.006 0.009 0.003 ND ND	ND ND 0.009 0.004 0.181 0.34 0.59 0.49 0.21 0.10 0.08 0.04 0.04 0.09	ND ND 0.006 0.041 0.17 0.64 0.53 0.32 0.23 0.101 0.074 0.054 0.04 0.007	ND 0.003 0.007 0.021 0.053 0.023 0.122 0.05 0.07 0.05 0.07 0.05 0.017 0.003 ND	N D N D N D N D 0.002 0.005 0.005 0.005 0.005 0.005 0.008 0.007 N D N D N D
Sum of Oil Co	ncent.	0.021	0.035	2.17	2.21	0.42	0.036
Brine	$\begin{array}{c} C10\\ C11\\ C12\\ C13\\ C14\\ C15\\ C16\\ C17\\ C18\\ C19\\ C20\\ C21\\ C22\\ C23\\ C24\\ C25\\ C26\\ C27\\ C28\\ C29\\ C30\\ \end{array}$	ND ND ND ND ND ND ND ND ND ND ND ND ND	N D N D N D N D N D N D N D N D N D N D	ND ND ND ND ND ND ND ND ND ND ND ND ND	N D N D N D N D N D N D N D N D N D N D	N D N D N D N D N D N D N D N D N D N D	N D N D N D N D N D N D N D N D N D N D
Sum of Oil Co	ncent.	ND	ND	ND	ND	ND	ND

(6.4.3)	
(/	

Stage	C No.s	1	2	3	4	5	6
Product ¥	$\begin{array}{c} C \ 1 \ 0 \\ C \ 1 \ 1 \\ C \ 1 \ 2 \\ C \ 1 \ 3 \\ C \ 1 \ 4 \\ C \ 1 \ 5 \\ C \ 1 \ 6 \\ C \ 1 \ 7 \\ C \ 1 \ 8 \\ C \ 1 \ 9 \\ C \ 2 \ 0 \\ C \ 2 \ 1 \\ C \ 2 \ 2 \\ C \ 2 \ 3 \\ C \ 2 \ 4 \\ C \ 2 \ 5 \\ C \ 2 \ 6 \\ C \ 2 \ 7 \\ C \ 2 \ 8 \\ C \ 2 \ 9 \\ C \ 3 \ 0 \end{array}$	ND ND 0.009 0.008 0.012 0.018 0.023 0.029 0.029 0.029 0.022 0.016 0.012 ND ND	N D N D N D N D N D N D N D 0.01 0.013 0.011 0.012 0.006 0.004 N D N D	ND ND 0.007 0.015 0.028 0.04 0.04 0.04 10.030 0.033 0.007 0.010 ND ND	ND ND 0.021 0.08 0.24 0.22 0.17 0.055 0.019 0.023 0.017 0.015 ND	ND ND 0.007 0.013 0.018 0.013 0.021 0.019 0.012 0.019 0.012 0.009 ND ND ND ND	N D ND 0.003 0.005 0.006 0.008 0.008 0.007 0.004 0.002 ND ND ND
Sum of Oil Co	ncent.	0.17	0/064	0.26	1.11	0.122	0.043
Brine	$\begin{array}{c} C \ 1 \ 0 \\ C \ 1 \ 1 \\ C \ 1 \ 2 \\ C \ 1 \ 3 \\ C \ 1 \ 4 \\ C \ 1 \ 5 \\ C \ 1 \ 6 \\ C \ 1 \ 7 \\ C \ 1 \ 6 \\ C \ 1 \ 7 \\ C \ 1 \ 8 \\ C \ 1 \ 9 \\ C \ 2 \ 0 \\ C \ 2 \ 1 \\ C \ 2 \ 2 \\ C \ 2 \ 3 \\ C \ 2 \ 4 \\ C \ 2 \ 5 \\ C \ 2 \ 6 \\ C \ 2 \ 7 \\ C \ 2 \ 8 \\ C \ 2 \ 9 \\ C \ 3 \ 0 \\ \end{array}$	ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	N D N D N D N D N D N D N D N D N D N D	ND ND ND ND ND ND ND ND ND ND ND ND ND N	N D N D N D N D N D N D N D N D N D N D	N D N D N D N D N D N D N D N D N D N D

6. Oil Concentration in Each Stage of the Evaporator (Cont.)

(6.4.3)

4. Discussion

4.1 Mass balance of oil

The mass balance of RUN 7 and RUN 9 has been analyzed from those carryover test results. The flow rates of feed seawater, product water and brine are as follows.

• Feed seawater(brine)	:	6,400kg/h
Product water	:	900kg/h
• Blow brine	:	6,400 - 900 = 5,500kg/h

The initial oil concentration of RUN 7 and RUN 9 are 10mg/L and 2.5mg/L, respectively. The amount of oil discharged out from the system has been calculated from the second sampling results. They are as follows.

RUN No.	Dosing Conc.	Product Water	#1 Stage	Blow Down Brine
7	10 mg/L	18.4 mg/L	3.13mg/L	0.93mg/L
9 ²¹⁶⁴²⁴	2.5mg/L	0.043mg/L	Not Detected	Not Detected
a Belten an			e Alexandre en estas	

RUN 7

• Oil feed rate	: 6400kg/h x 10mg/L x 0.97L/kg	= 62080 mg/h
• Outlet as blow brine	: 5500kg/h x 0.93mg/L x 0.97L/kg	= 4961 mg/h
• Outlet as product water	: 900kh/h x 18.4mg/L x 0.97L/kg	= 16063 mg/h
• Ejection out of system	: 62080 - (4961 + 16063)	= 41056 mg/h
• Ejection ratio	: (41056/62080) x 100	= 66.13 %

RUN 9

• Oil feed rate :	6400kg/h x 2.5mg/L x 0.97L/kg	= 15520 mg/h
• Outlet as blow brine :	Not Detected	
• Outlet as product water :	900kg/h x 0.043mg/L x 0.97L/kg	= 37 mg/h
• Ejection out of system :	15520 - (37 + 0)	= 15483 mg/h
• Ejection rate :	(15483/15520) x 100	= 99.7 %

In case of RUN 7 with 10mg/L oil concentration, about 66% of total oil has discharged from

the system through ejector.

On the other hand, in RUN 9 with oil concentration of 2.5mg/L, about 99% of total oil has discharged from the system through ejector.

(6.4.3)

4.2 Mass balance of oil by computer calculation

The results of computer calculation based on the test condition described in 4.1 are shown in Fig.1 and Fig.2. The summary of the results are listed in Table 5 and 6 with comparison to the test results.

4.2.1 RUN 7 (oil concentration 10mg/L)

The mass balance of RUN 7 according to Fig.1 is as follows.

 Total oil addition 	: 6400kg/h x 10mg/L x 0.97L/kg	= 62080 mg/h
• Outlet as blow brine	: 5500kg/h x 0.0mg/L x 0.97L/kg	= 0.0 mg/h
• Outlet as product water	: 806kg/h x 80.64mg/L x 1.00	= 64995 mg/h
 Calculation error 	: 62080 - (64995 + 0.0)	= -2915 mg/h

As is seen in Table 5, there are significant difference between calculated value and test results. The discrepancy in product water is due to the difference in condensation rate of oil and water as discussed in 6.4.2.

As for brine, the calculated value of oil concentration at stage #1 is 0.8042mg/L while that of measured value is 3.13mg/L. In other words, oil evaporates less than calculation. Thus, the partial pressure of oil has been lowered to 1/3, 1/6 and 1/8 of the value calculated by Antoine's formula and calculated again to compare with the test results.

The calculated results are shown in the following Table. The calculated value will be in good agreement with the test results of stage #1 when the partial pressure of oil has been decreased to 1/8. On the other hand, oil concentration of blow brine will be in good agreement when the partial pressure is lowered to 1/3.

The calculated value can be adjusted to the test results by changing the partial pressure of the hydrocarbons. Thus, the improvement of Antoine's formula should be considered.

Total Oil Concentration				
Item			Dose Conc.	
	Product Water	#1 Stage	Blow Down Brine	
Cal.(POE:1/3)	76.86 mg/L	1.76 mg/L	0.56 mg/L	10 mg/L
Cal.(POE:1/6)	70.56 mg/L	2.6 mg/L	1.4 mg/L	10 mg/L
Cal.(POE:1/8)	67.47 mg/L	3.06 mg/L	1.86 mg/L	10 mg/L

(6.4.3)

Rational Marcine and Science of Sciences

15

.

(6.4.3)

INPUT DATA

COMPUTER PROGRAMMING FOR CARRYOVER 1994 VERSION

RUN NO: 7

HFACTOR: 1

DATE: 14/11/94

OPERATOR: AHMAD

MAX BRINE TEMP: 112

CONTAMINANT TYPE: 1

CALCULATION TYPE: 1

DEAERATOR: 1

HEAT & MASS BALANCE INPUT DATA

FBL(0): 6400	TWE(1): 94.1	TWE(4): 57.4
TBL(0): 112	TWE(2): 83.9	TWE(5): 40.1
SBL(0): 60200D-6	TWE(3): 71.5	TWE(6): 34.0
SBL(1): 61500D-6	SBL(4): 65200D-6	
SBL(2): 62900D-6	SBL(5): 67000D-6	• • •
SBL(3): 64000D-6	SBL(6): 67800D-6	1

HOMOGENEOUS/RECIRCULATION INPUT DATA COMM: 10.0D-6

· •		
COMP(1): 0	COMP(11): 4.18D-2	COMP(21): 6.84D-2
COMP(2): 0	COMP(12): 5.13D-2	COMP(22): 4.42D-2
COMP (3): 0	COMP(13): 6.46D-2	COMP(23): 1.90D-2
COMP(4): 0	COMP(14): 7.57D-2	COMP(24): 0
COMP(5): 0	COMP(15): 9.20D-2	COMP(25): 0
COMP (6): 0	COMP(16): 9.76D-2	COMP(26): 0
COMP (7) : 0	COMP(17): 11.01D-2	COMP (27): 0
COMP(8): 0	COMP(18): 11.18D-2	COMP(28): 0
COMP(9): 0	COMP (19): 10.9D-2	
COMP(10): 2.46D-2	COMP(20): 8.90D-2	COMP(30): 0
COM(0,1): 0	COM(0,11): 0	COM(0,21): 0
COM(0.2): 0	COM(0,12): 0	COM(0,22): 0
COM(0,3): 0	COM(0,13): 0	COM(0, 23): 0
COM(0,4): 0	COM(0,14): 0	COM(0,24): 0
COM(0,5): 0	COM(0,15): 0	COM(0,25): 0
COM(0,6): 0	COM(0,16): 0	COM(0,26): 0
COM(0,7): 0	COM(0,17): 0	COM(0,27): 0
COM(0,8): 0	COM(0,18): 0	COM(0,28): 0
COM(0,9): 0	COM(0,19): 0	COM(0,29): 0
COM(0,10): 0	COM(0, 20): 0	COM(0, 30): 0

Fig. 1 Calculation Results by Computer(RUN 7)

OUTPUT-1

RUN NO: 7 DATE: 14/11/94 OPERATOR: AHMAD

MAX BRINE TEMP: 112

HEAT/MASS BALANCE

GIVEN CONDITIONS

			4	N	-		
4		1	*			C	~
			<		a	3	D
L	4		¥		-	v	*

TWE	9.4800E+01	8.3900E+01	7.1500E+01	5.7400E+01	4.0100E+01	3.4000E+01
SBL	6.1500E-02	6.2900E-02	6.4000E-02	6.5200E-02	6.7000E-02	6.7800E-02

8.0667E+02

FWLT

RESULTS

	1	2	3	4	5	6	/
₽₩L	1.9548E+02	1.1815E+02	1. 2958E+02	1.3452E+02	1.6603E+02	6.2908E+01	
PWE	8.3886E+04	5. 5341E+04	3. 3253E+04	1.7653E+04	7.3873E+03	5.3347E+03	
TWE	9.4800E+01	8.3900E+01	7.1500E+01	5.7400E+01	4.0100E+01	3.4000E+01	
TBL	9.4800E+01	8.3900E+01	7.1500E+01	5.8100E+01	4.0800E+01	3.4000E+01	
CBS	4.0530E-02	4.1941E-02	4.3057E-02	4.4248E-02	4.5932E-02	4.6651E-02	
FBL	5.2045E+03	6.0864E+03	5.9568E+03	5.8223E+03	5.6562E+03	5.5933E+03	

FBL0 -----

TBL 1.1200E+02

CBS 3.9193E-02(SBL=6.0200E-02)

FBL 6.4000E+03

Fig. 2 Calculation Results for RUN 9 by Computer(RUN 7, POE:1.0)

CARRYOVER	CALCULATION	RESULTS (ONCE	THROUGH

	UTDUT O	CARRYOV	ER CALCULATI	ON RESULTS (O	NCE THROUGH)		
	UTPUT-2			•	n di di site Secondo di Secondo		
C≑	COE(1)	COE(2)	COE (3)	COE(4)	COE(S)	COE(6)	FOMT
	<u></u>						
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00
<u>,</u> 4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
. 7	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
10	7.9301E-06	4.9783E-06	3.5488E-06	2.7417E-06	2.1459E-06	1.9836E-06	1.6114E-03
11	1.3475E-05	8.4590E-06	6.0301E-06	4.6586E-06	3.6463E-06	3.3706E-06	2.7381E-03
12	1.6537E-05	1.0382E-05	7.4006E-06	5.7173E-06	4.4750E-06	4.1366E-06	3.3604E-03
13	2.0825E-05	1.3073E-05	9.3192E-06_	7.1996E-06	5.6352E-06	5.2090E-06	4.2316E-03
.14	2.4725E-05	1.5522E-05	1.1065E-05	8.5482E-06	6.6907E-06	5.1847E-06	5.0242E-03
15	2.9657E-05	1.8618E-05	1.3272E-05	1.0253E-05	8.0253E-06	7.4184E-06	6.0264E-03
16	3.1462E-05	1.9751E-05	1.4080E-05	1.0877E-05	8.5138E-06	7.8700E-05	6.3933E-03
17	3.5492E-05	2.2281E-05	1.5883E-05	1.2271E-05	9.6042E-06	8.8779E-05	7.2121E-03
18	3.6040E-05	2.2625E-05	1.6128E-05	1.24608-05	9.7525E-05	9.0150E-06	7.3234E-03
. i9	3.5137E-05	2.2058E-05	1.5724E-05	1.2148E-05	9.5083E-06	8.78922-05	7.1400E-03
20	2.8690E-05	1.8011E-05	1.2839E-05	9.9190E-06	7.7636E-06	7.1765E-06	5.8299E-03
21	1.2871E-05	1.3842E-05	9.8674E-06	7.6231E-06	5.9667E-06	5.5154E-06	4.4805E-03
22	3.8850E-06	8.9447E-06	8.3763E-06	4.9261E-06	3.8557E-06	3.5641E-06	2.8953E-03
. 23	8.5319E-07	2.7666E-06	2.7410E-06	2.1175E-06	1.6574E-06	1.5321E-06	1.2445E-03
24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00
23	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.7000TE+00	0.00002+00	0.0000E+00	0.0000E+00
	·			L	<u> </u>	at a set of a	

(6.4.3)

(UTPUT-3					
C≑	COM(1)	COM(2)	COM(3)	COM(4)	COM(5)	COM(6)
1	0.0000E+00	0.0000E+00	0.0000E+00	- 0.0000E+00	0.0000E+00	0.0000E÷00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000£+00
. 4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8.	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
10	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
11	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
13	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00	0.00002+00	0.0000E+00
14	0.0000E+00	0.0000E+00	0,0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
15	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0,0000E+00	0.0000E+00
16	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
17	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00
18	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0,0000E+00	0.0000E+00
19	0.0000E+00	0.0000E+00	0.0000E+00	0.000E+00	0.0000E+00	0.0000E+00
20	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00
21	2.9762E-07	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
22	3.3604E-07	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
23	1.7094E-07	5.7228E-08	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0:0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.00002+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
		l	<u> </u>	L	<u>!</u>	<u> </u>

.

OUTPUT-1

RUN NO: 7

DATE: 14/11/94 OPERATOR: AHMAD

•

MAX BRINE TEMP: 112

HEAT/MASS BALANCE

GIVEN CONDITIONS

1 2 3 4 4 5 6

TWE	9.4800E+01	8.3900E+01	7.1500E+01	5.7400E+01	4.0100E+01	3. 4000E+01
SBL	6.1500E-02	6.2900E-02	6.4000E-02	6.5200£-02	6.7000E-02	6.7800E-02

8.0667E+02

FWLT

RESULTS

	· 1 ·	2	3	4	5	8
FWL	1.9548E+02	1.1815E+02	1. 2958E+02	1.3452E+02	1.6603E+02	6.2908E+01
PWE	8.3886E+04	5.5341E+04	3.3253E+04	1.7653E+04	7.3873E+03	5.3347E+03
TWE	9.4800E+01	8.3900E+01	7.1500E±01	5.7400E+01	4.0100E+01	3.4000E+01
TBL	9. 4800E+01	8.3900E+01	7.1500E+01	5.8100E+01	4.0800E+01	3.4000E+01
CBS	4.0630E-02	4.19416-02	4.3057E-02	4.4248E-02	4.5932E-02	4.66512-02
FBL	8.2045E+03	6.0864E+03	5.9568E+03	5.8223E+03	S. 6562E+03	5.5933E+03
	A T					

FBL0 ----

TBL 1.1200E+02

CBS 3.9193E-02(SBL=6.0200E-02)

FBL 6.4000E+03

Fig. 3 Calculation Results for RUN 9 by Computer (RUN 7, POE:1/3)

OUTPUT-2

CARRYOVER CALCULATION RESULTS (ONCE THROUGH)

C≑	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE(6)	FOMT
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
10	7.9301E-06	4.9783E-06	3.5488E-06	2.74178-06	2.1459E-06	1.9836E-06	1.6114E-03
11	1.3475E-05	8.45908-06	6.0301E-06	4.6586E-06	3.6463E-06	3.3706E-06	2.7381E-03
12	1.6537E-05	1.0382E-05	7.4006E-06	5.7173E-06	4.4750E-06	4.1366E-06	3.3604Ė-03
13	2.0825E-05	1.3073E-05	9.3192E-06	7.1996E-06	5.6352E-06	5.2090E-06	4.2316E-03
14	2.4725E-05	1.5522E-05	1.1065E-05	8,5482E-06	6.6907E-06	6.1847E-06	5.0242E-03
15	2.9657E-05	1.8618E-05	1.3272E-05	1.0253E-05	8.0253E-06	7.4184E-06	6.02648-03
15	3.1462E-05	1.9751E-05	1.4080E-05	1.0877E-05	8.5138E-06	7.8700E-08	6.3933E-03
17	3.5492E-05	2.2281E-05	1.5883E-05	1.22718-05	9.60428-06	8.8779E-06	7.2121E-03
18	3.6040E-05	2.2625E-05	1.6128E-05	1.2460E-05	9.7525E-06	9.0150E-06	7.3234E-03
19	3.4258E-05	2.2058E-05	1.5724E-05	1.2148E-05	9.5083E-06	8.7892E-06	7.1400E-03
20	1.1995E-05	1.8011E-05	1.2839E-05	9.9190E-06	7.7636E-06	7.1765E-06	5.8299E-03
21	4.2903E-06	7 9719E-06	7.7604E-06	6.4115E-06	5.0811E-06	4.7061E-05	3.8230E-03
22	1.2950E-06	2.4935E-08	2.6881E-06	2.3351E-06	1.8670E-06	1.7313E-06	1.4065E-03
23	2.8440E-07	5.4332E-07	5.9453E-07	5.1973E-07	4.1500E-07	3.8469E-07	3.1251E-04
24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0,0000E+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00.	0.00002+00	0.0000E+00
30	0.00006+00	0.0000E+00	0.00002+00	0.000E+00	0.0000E+00	0.0000E+00	0.0000E+00
	1.			L ·	1	L	<u></u>

OUTPUT-3

C≇	COM(1)	CO₩(2)	CO₩(3)	CO M (4)	COM(5)	COM(6)
1	0.0000E+00	0.00002+00	0.0000E+00	- 0.0000E+00	0.0000£+00	0.0000E+00
2	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
4	0.00002+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
ġ	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
10	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0,0000E+00	0.0000E+00
-11	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
13.	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
14	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
15	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
16	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
17	0.00008+00	0.00005+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
18	0.0000E+00	0.0000E+00	0,0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
19	2.8515E-08	0.0000E+00	0,0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
20	5.4134E-07	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
21	5.7585E-07	3.1152E-07	1.6153E-07	1.2395E-07	1.2016E-07	1.2050E-07
22	4. 2002E-07	3.4236E-07	2.8275E-07	2.6505E-07	2.6984E-07	2.7285E-07
23	1.8938E+07	1.7522E-07	1.6455E-07	1.6346E-07	1.6858E-07	1.7082E-07
24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.5000E+00
- 27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0,0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00

(UTPUT-1	
· · · · ·		
	the second se	

DATE: 14/11/94 OPERATOR: AHMAD MAX BRINE TEMP: 112 RUN NO: 7

HEAT/MASS BALANCE _____

GIVEN CONDITIONS

	1	2	3	4	s, 1 .5 – J.	ô
TWE	9.4800E+01	8.3900E+01	7.1500E+01	5.7400E+01	4.0100E+01	3.4000E+01
SBL	6.1500E-02	6.2900E-02	6.4000E-02	6.5200E-02	6.7000E-02	6.7800E-02

8.0667E+02

FWLT

	i	2	RESULTS 3		5	6	
FWL	1.9548E+02	1.1815E+02	.1. 2958E+02	1.3452E+02	1.6603E+02	6.2908E+01	
PWE TWE		5.5341E+04 8.3900E+01	3. 8253E+04 7. 1500E+01		7.3873E÷03 4.0100E+01	5.3347E+03 3.4000E+01	
TBL CBS FBL	9.4800E+01 4.0630E-02 6.2045E+03	8.3900E+01 4.1941E-02 6.0864E+03	7.1500E+01 4.3057E-02 5.9568E+03	5.8100E+01 4.4248E-02 5.8223E+03	4.0800E+01 4.5932E-02 5.6562E+03	3.4000E+01 4.6651E-02 5.5933E+03	

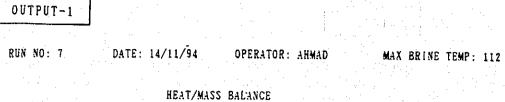
FBLO -

TBL 1.1200E+02

CBS 3.9193E-02(SBL=6.0200E-02)

FBL 6.4000E+03

Fig. 4 Calculation Results for RUN 9 by Computer (RUN7, POE:1/6)


OUTPUT-2

CARRYOVER CALCULATION RESULTS (ONCE THROUGH)

	A	(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2		and the second			1
C≑	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE(6)	FOMT
- 1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
- 4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
10	7.9301E-06	4.9783E-06	3.5488E-06	2.7417E-06	2.1459E-06	1.9836E-08	1.5114E-03
11	1.3475E-05	8.4590E-06	6.0301E-06	4.6586E-06	3.6463E-06	3.3706E-06	2.7381E-03
12	1.6537E-05	1.0382E-05	7.4006E-06	5.7173E-06	4.4750E-06	4.1366E-06	3.3604E-03
13	2.0825E-05	1.3073E-05	9.3192E-06	7.1996E-06	5.6352E-06	5.2090E-06	4.2316E-03
14	2.4725E-05	1.5522E-05	1.1055E-05	8.54828-06	6.6907E-06	6 1847E-06	5.0242E-03
15	2.9657E-05	1.8618E-05	1.3272E-05	1.0253E-05	8.0253E-06	7.4184E-06	6.0264E-03
15	3.14628-05	1.9751E-05	1.40808-05	1.0877E-05	8.5138E-06	7.8700E-06	6.3933E-03
. 17	3.5492E-05	2.2281E-05	1.58832-05	1.2271E-05	9.6042E-06	8.8779E-06	7.2121E-03
18	3.6040E-05	2.2625E-05	1.6128E-05	1.2460E-05	9.75252-06	9.0150E-06	7.3234E-03
19	1:71298-05	2.0848E-05	1.5543E-05	1.2059E-05	9.4559E-06	8.7423E-06	7.1019E-03
20	5.9977E-06	8.8448E-06	8.1815E-06	6.8255E-06	5.4407E-05	5.0452E-06	4.0985E-03
21	2.14528-06	3.2916E-06	3.2128E-06	2.7415E-06	2.1925E-06	2.0339E-06	1.6522E-03
22	6.4750E-07	9.8656E-07	9.6391E-07	8.1951E-07	6.5295E-07	6.0519E-07	4.9163E-04
23	1.4220E-07	2.1211E-07	2.0413E-07	1.7178E-07	1.3630E-07	1.2623E-07	1.0255E-04
24	0.0000E÷00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.00002+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E÷00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.00000000000	0.0000E+00	0.0000E+00	0.0000E+00
٠L						l	

OUTPUT-3

C=	COM(1)	COM(2)	COM(3)	COM(4)	COM(5)	COM(6)
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
. 4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	Q. 0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.00008+00
10	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
- 11	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00	0.0000E+00
12	0.00002+00	0.0000E+00	0.0000E+00	0,00008+00	0.0000E+00	0.0000E+00
13	0.00002+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00
14	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
15	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00
16	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
17	0.0000E+00	0.0000E+00	0.00008+00	0.0000E+00	0.0000E+00	0.0000E+00
18	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
19	5.8393E-07	6.4231E-08	1.3887E-08	8.0809E-09	7.1028E-09	6.9832E-09
20	7.3582E-07	4.8643E-07	3.5708E-07	3.1647E-07	3.1520E-07	3.1732E-07
21	6.4541E-07	5.5990E-07	5.1018E-07	4.9940E-07	5.1211E-07	5.1834E-07
22	4.4102E-07	4.2233E-07	4.1494E-07	4.2010E-07	4.3457E-07	4.4052E-07
23	1.9399E-07	1.9279E-07	1.9448E-07	1.9905E-07	2.0640E-07	2.0930E-07
24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.00002+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000£+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000£+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00	0.0000E+00	0.0000E+00

S

(6.4.3)

GIVEN CONDITIONS

2

TWE	9 4800E+01	8 39002+01	7 1500F+01	5 74005+01	4.01000.01	3.4000E+01
				0.14005.01	4. 01005+01	3.40002+01
SBL	6.1500E-02	6.2900E-02	6.4000E-02	6.5200E-02	6.7000E-02	6.7800E-02

8.0667E+02

FWLT

6

RESULTS 3

	<u> </u>				•	•
FWL	1.9548E÷02	1.1815E+02	 -1.2958E+02	1.3452E+02	1.6603E+02	6.2908E+01
PWE	8.3886E+04	5.5341E+04	3.3253E+04	1.7653E+04	7.3873E+03	5.3347E+03
TWE	9.4800E+01	8.3900E+01	7.1500E+01	5.7400E+01	4.0100E+01	3.4000E+01
TBL	9.4800E+01	8.3900E+01	7.1500E+01	5.8100E+01	4.0800E+01	3.4000E+01
CBS	4.0630E-02	4.1941E-02	4.3057E-02	4.4248E-02	4.5932E-02	4.6651E-02
FBL	6.2045E+03	6.0864E+03	5.9568E+03	5.8223E+03	5.6562E+03	5.5933E+03

FBL0 ______ TBL 1.1200E+02 CBS 3.9193E-02(SBL=6.0200E-02) FBL 6.4000E+03

Fig. 5 Calculation Results for RUN 9 by Computer (RUN 7, POE:1/8)

0 U T P U T - 2

CARRYOVER CALCULATION RESULTS (ONCE THROUGH)

			1	1	1		
C≓	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE(6)	FOMT
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E÷00	0.0CC0E+00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00
4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.000000000	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E÷00	0.0000E+00	0.0000E+00
	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0:0000E+00	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
10	7.9301E-05	4.9783E-06	3,5488E-06	2.74178-06	2.1459E-08	1.9836E-06	1.6114E-03
11	1.3475E-05	8.4590E-06	6.0301E-06	4.6586E-06	3.64638-05	3.3706E-05	2.7381E-03
12	1.6537E-05	1.0382E-05	7.4006E-06	5:7173E-06	4.47508-06	4.1366E-06	3.3604E-03
13	2.0825E-05	1.3073E-05	9.3192E-06	7.1996E-06	5.6352E-08	5.2090E-06	4.2316E-03
14	2.47252-05	1.5522E-05	1.1065E-05	8.5482E-06	8.6907E-05	6.1847E-06	5.0242E-03
15	2.9657E-05	1,8618E-05	1.3272E-05	1:0253E-05	8.0253E-06	7.4184E-06	6.0264E-03
16	3.1462E-05	1.9751E-05	1.4080E-05	1.0877E-05	8.5138E-03	7.8700E-06	6.3933E-03
17	3.5492E-05	2.2281E-05	1.5883E-05	1:2271E-05	9.6042E-06	8.8779E-06	7.2121E-03
18	2.8486E-05	2.2625E-05	1.6128E-05	1.2460E-05	9.7525E-08	9.0150E-05	7.3234E-03
19	1.2847E-05	1.5921E-05	1.3351E-05	1.0765E-05	8.5194E-06	7.8909E-06	6:4102E-03
20	4.4982E-06	6.2286E-06	5:8368E-06	4.9378E-06	3.9539E-06	3.6696E-06	2.9810E-03
21	1.60892-06	2.2658E-06	2.1656E-06	1.8426E-06	1.4734E-05	1.3667E-05	1.1103E-03
22	4.8563E-07	6.7391E-07	6.3725E-07	5.3713E-07	4.2733E-07	3.9599E-07	3.2169E-04
23	1.0665E-07	1.4464E-07	1.3433E-07	1.1194E-07	8.8690E-03	8.2122E-08	6.6713E-05
24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00.	0.0000E+00	0.0000E+00	0.0000E+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E÷00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
		ł					<u> </u>

OUTPUT-3

		and the second sec				
C≑	COM(1)	COM(2)	COM(3)	COM(4)	COM(5)	COM(6)
· .		<u> </u>				
I.	0.0000E+00	0.0000E÷00	0.0000£+00	0.0000E+00	0.00002+00	0.00002+00
2	0.0000E+00	0.00002+00	0.0000E÷00	0.00002+00	0.0000E÷00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
4	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000£+00	0.0000£+00
5	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
. 8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E÷00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0,0000E+00
10	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
11	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
13	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
14	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00	0.0000E+00
15	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
16	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
17	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00
18	2.44936-07	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
19	7.2279E-07	3.2570E-07	1.8197E-07	1.4145E-07	1.3418E-07	1.3375E-07
20	7.8444E-07	6.2527E-07	5.3684E-07	5.0957E-07	5.1693E-07	S. 2212E-07
21	6.6280E-07	6.1433E-07	5.9046E-07	5.9135E-07	6.0969E-07	6.1767E-07
22	4.4627E-07	4.3892E-07	4.3998E-07	4.4899E-07	4.6518E-07.	4.7167E-07
23	1.9514E-07	1.9637E-07	1.9984E-07	2.05178-07	2.1285E-07	2.1587E-07
24	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000£+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
26	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+25	0.00002+00
30	0.00002+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
· [1			

Ż8

4.2.2 RUN 9 (oil concentration 2.5mg/L)

RUN 9 was planned to survey the effect of initial oil concentration by comparing the results to that of RUN 7. Under the condition of RUN 9, which oil concentration is 1/4 of RUN 7, most of the oil in brine will carryover and propelled out of the system through ejector and only little goes to product water.(4.1) Calculated results are shown in Fig. 2, and the comparison to the test results are shown in Table 6.

In case of heterogeneous state like oil, the amount of carryover do not depend on the concentration but depends on the total amount of water evaporated, according to the water distillation theory.

Consequently, in case of 2.5mg/L oil concentration, it is no wonder that all the oil will evaporate at stage #1 and no oil in brine will be detected in the following stages. However, if we assume that the partial pressure of hydrocarbon is 1/8 of Antoine's formula, according to 4.2.1, oil should remain in brine.

Anyhow, the elaborated experiments for accurate measurement and enough data for analysis as well as the improvement of Antoine's formula is required for further investigation.

OUTPUT-1

1

RUN NO: 9 DATE: 12/4/94 OPERATOR: AHMAD MAX BRINE TEMP: 112

HEAT/MASS BALANCE

GIVEN CONDITIONS

TWE	8.8400E+01	7.7500E+01	6.3100E+01	4.8100E+01	3.1000E+01	2.5200E+01
SBL	6.2700E-02	6.3700E-02	8.5300E-02	\$. 6800E-02	6.8800E-02	5.9100E-02

8.2475E+02 FWLT

Æ

444

RESULTS - Control of the second of the second s

WL	2.3057E+02	1.0201E+02	 1.5403E+02	1.3844E+02	1.7474E+02	2. 4956E+0
ΨE	6.5934E+04	4.27646+04	22978E+04	1.1200E+04	4.5602E+03	3.6181E+0
ΨE	8.8400E+01	7.7500E+01	5.3100E+01	4.8100E+01	3.1000E+01	2.6200E+0
-					1	
BL	9.1200E+01	8.1500E+01	6.6300E+01	5.2000E+01	3.3100E+01	3.0300E+01
BS	4.1599E-02	4.2587E-02	4.4138E-02	4.5565E-02	4.7418E-02	4.7590E-02
BL,	6.0694E+03	5.9674E+03	5.8134E+03	5.6750E+03	5.5002E+03	5.4753E+03

FBLO ----

TBL 1.1200E+02

CBS 3.9835E-02(SBL=6.1100E-02)

FBL 6.3000E+03

Fig. 6 Calculation Results for RUN 9 by Computer (RUN 9)

OUTPUT-2

.

CARRYOVER CALCULATION RESULTS (ONCE THROUGH)

C‡	COE(1)	COE(2)	COE(3)	COE(4)	COE(5)	COE(6)	FOMT
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.0000E+00	0.0000E+00
2	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
3	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00	0.0000E+00	0.0000E+00	0.0000E+00
4	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00	0.00008+00	0.0000E+00
ô	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0:0000E+00	0.0000E+00	0.0000E+00
1	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00
10	1.6578E-06	1.1565E-06	7.9735E-07	6.2514E-07	4.9229E-07	4.7786E-07	3.9585E-04
11	2.8169E-06	1.9651E-06	1.3548E-06	1.0622E-06	8.3650E-07	8.1197E-07	6.7262E-04
12	3.4571E-06	2.4117E-06	1.6528E-06	1.3036E-06	1.02662-06	9.9651E-07	8.2549E-04
13	4.3534E-06	3.0370E-05	2.0939E-06	1.64168-06	1.2928E-06	I.2549E-06	1.0395E-03
14	5.1688E-05	3.6059E-06	2.4861E-06.	.1.9491E-06	1.5349E-05	1.4899E-06	1.2342E-03
15	6.1999E-06	4.3251E-06	2.9820E-06	2.3379E-06	1.8411E-06	1.7871E-06	1.48042-03
15	6.5773E-06	4.5884E-06	3.1635E-06	2.4802E-06	1.9532E-06	1.8959E-06	1. 5705E-03
17	7.4197E-06	5.17618-06	3.5686E-06	2.7979E-06	2.2033E-06	2.1387E-06	1.7717E-03
18	7.5342E-06	5.2560E-06	3.6237E-06	2.8411E-06	2.2373E-06	2.1717E-06	1.7990E-03
19	7.3456E-06	5.1244E-06	3.5330E-06	2.7699E-06	2.1813E-06	2.1174E-06	1.75408-03
20	4.1532E-06	4.1841E-06	2.8847E-06	2.2617E-06	1.7811E-06	1.7288E-06	1.4321E-03.
21	1.4558E-06	2.8231E-06	2.2170E-06	1.7382E-05	1.3688E-06	1.3287E-06	1.1006E-03
22	4.3013E-07	9.2733E-07	9.8761E-07	8.4340E-07	5.7018E-07	6.5113E-07	5.3938E-04
23	9.2714E-08	2.0342E-07	2.2970E-07	2.0288E-07	1.6162E-07	1.5706E-07	1.3011E-04
-24	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00008+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0,0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
25	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
27	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00002+00
28	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
29	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
30	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00

OUTPUT-3

C₹ COM(1) COM(2) COM(3) COM(4) COM(5) COM(5) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 6 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0:0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 11 0.0000E+00 0.0000E+00 12 0.00002+00 0.0000E+00 0.00002+00 0.0000E+00 0.0000E+00 0.0000E+00 13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 14 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 15 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 16 0.0000E+00 0.0000E+00 0.0000E+00 0.00002+00 0.0000E+00 0.0000E+00 17 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 18 0.0000E+00 19 0.0000E+00 7.2160E-08 0.0000E+00 0.0000E+00 20 0.0000E+00 0.0000E+00 0.0000E+00 1.2338E-07 21 2.2538E-08 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.9702E-08 5.6068E-08 3.8407E-08 22 3.1798E-08 3.2192E-08 3.2283E-08 23 4.6455E-08 3.9609E-08 3.3325E-08 3.1814E-08 3.2832E-08 3.2991E-08 24 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 25 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00002+00 26 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 27 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 28 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 29 0.0000E+00 0.0000E+00 0.00002+00 0.0000E+00 0.0000E+00 0.0000E+00 30 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Eva. Position	Dea.	. 1	2	3	4	· 5·	. 6 :
Product W.		20.0	24.7	20.3	20.4	43.4	18.4
Brine		3.13	3.02	0.27	1.15	0.83	0.93
< Calcu	lated Re	sults>			(mg∕L)	
Eva. Position	Dea.	1	2	3	4	5	6
Product W.		302.54	187.80	144.27	123.37	87.24	75.64
Brine	1	0.8042	0.0572	0.0	0.0	0.0	0.0

Table 5 Summary of Experimental & Calculated Results(COMM=10mg/L)

 Table 6
 Summary of Experimental & calculated Results (COMM=2.5mg/L)

<Experimental Results>

(mg/L)

va. Position	Dea.	1	2	3	4	5	6
Product W.		0.17	0.054	0.26	1.111	0.122	0.043
Brine		N D	N D	ND	ND	ND	N D

Eva. Positio	Dea.	1	2	3	4	5	6
Product W.		65.93	40.98	32.48	25.34	19.95	19.37
Brine		0.0	0.0	0.0	0.0	0.0	0.0

5. Conclusion

One of the serious seawater contaminants which can happen in Arabian Gulf is oil. For the purpose of understanding the behavior of oil when oil contaminated seawater has been fed into MSF plant, computer prediction and the experiments by MSF test plant has been conducted. Those results are as follows.

- (1) The behavior of water in MSF plant can be well predicted by computer program, however, the behavior of oil as well as bromoform cannot be predicted without knowing the condensation rate which is slower than water.
- (2) The vapor pressure of each hydrocarbon in oil needs to be evaluated.
- (3) The sampling of low oil concentration brine needs special care.
- (4) The countermeasure for oil contamination cannot be made without solving the above mentioned problems, and it will differ according to the composition and the total concentration of oil.
- (5) The computer simulation will be powerful tool to predict the behavior of various composition and various concentration of oil. The method constructed in this study should be able to apply to other contaminants.

6.5 Transfer of Technology

CONTENTS

	1.	Objective ·····	• 1
	•		
14 C 1	2.	Procedure of Technology Transfer	• 1
	3.	Results	• 1
and and an and a second se Second second			
	al e an Airtí		
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	÷		
:			
:			
an dia si ta			
- 			
	· .		
	•		
	· .	n en	
an a			
a tanàna amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o Ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'	1. T. F.		
			. •

List of Tables

		· · · ·	-	· · ·	- 1	1		
Table		the second second	Description	$ _{X_{n}} = \sum_{i=1}^{n} _{X_{n}} = \sum_{i=1$			t. Antonio de la composición de la composi Composición de la composición de la comp	Page
	· · · ·					1. N. A.		8-
	200			1.1				

3

 Table 1
 Transfer of Technology for MSF-2

1. Objective

The technology transfer is aimed especially for the young researchers in SWCC for their improved understandings on the carryover behavior of oil contaminants in seawater fed into MSF plant by conducting cooperative research work between JICA and SWCC.

2. Procedure of technology transfer

The oil contamination of seawater is becoming crucial problem for the Gulf countries. The quantitative analysis of carryover behavior of oil contaminants to product water when contaminated seawater had been fed into MSF plant was conducted. The basic experiments of laboratory scale and bench scale test by MSF test plant had been conducted as cooperative research work. The results would be prepared to a full paper by applying the chemical engineering technology approach for the potential upgrading of the research capability of young researchers.

Subjects for the cooperative research work.

- 1) Evaluation technology of MSF plant oil contamination (Preparative work)
- 2) Evaluation technology by Vapor/Liquid equilibrium apparatus (Simulation)
- 3) Evaluation technology by simulation and prediction (Computer simulation)
- 4) Evaluation technology of contaminants carryover by MSF test plant (Confirmation)

3. Results

- Evaluation technology of MSF plant oil contamination (Preparative work) The sophisticated data analysis procedure and water analysis method had been established for the evaluation of the oil contaminants in MSF plant. The results was prepared to a full paper for publication.
- 2) Evaluation technology by Vapor/Liquid equilibrium apparatus The vapor/liquid equilibrium apparatus had been instrumented and basic research was conducted. The better understanding of mass balance of the phenomena was achieved and the operation manual of the apparatus has been accomplished.

- 3) Evaluation technology by simulation and prediction The computer program for the simulation and prediction of the behavior of oil contaminants in MSF plant had been established by applying those related formula.
- 4) Evaluation technology of contaminants carryover by MSF test plant The test with oil contaminants had been conducted by MSF test plant. The obtained test data had been analyzed and compared with computer calculation. The effect of various parameters had been studied. The understanding of the seawater contamination has been deepened through the evaluation.

The target, procedure and results of the transfer of technologies are listed in Table 1 according to the subjects.

Table 1. Transfer of Technology for MSF-2

SUBJECT	TARGET	PROCEDURE	RESULTS
Evaluation technology contaminants in plants [Preparative experiment]	To master the evaluation technology on behavior of oil contaminants in MSF plants	1)To apply analytical techniques	The trainees applied water analytical techniques and have obtained sophisticated analytical method which was published in the Journal of Desalination
Evaluation technology of vapor/liquid equilibrium measurement (Vapor/liquid equilibrium)	To master the evaluation technology on the equilibrium between (1) seawater and Hydrocarabon or bromoform (2) seawater and Hydrocarbon + bromoform	1)Assemble equipment 2)Conduct experiments 3)Develop formulas	The trainees have gained knowledge about mass balance in vapor/liquid equili- brium. They have prepared section 6.2 in this report as well as an operational procedures guide to the vapor/liquid apparatus
Evaluation technology of Simulation and prediction [Simulation]	To master the evaluation technology on the development of relational expressions that simulate a behavior of oil contaminants in an MSF plants	 1) Identify all expressions and variables 2) Develop the logic flow diagram 3) Develop the computer source codes 	The trainees became able to understand the logic of the computer program and propose further improvements
Evaluation technology carry over of contaminants in MSF Test Plant [Confirmation]	To master the evaluation technology on the confirmation method for carry over of contaminants in MSF plants	 Set up experimental conditions and carry out experiments Collect samples and make chemical analysis Compare results to computer results 	The trainee became able to understand the crucial points for the dosing of constaminants in the MSF test plant during the experiments and its impact on the results. Also, they were able to discuss and relate different parameters affecting the compariso between experimental an predicted results

7. Study on Selection of RO Membrane for Hybrid System (RO-1)

7.1 Investigation and Preparative Experiment