	5.3.2 Results	of Trial Run	and Perforn	nance Test	
_					
	estina appropria				

			CONTENTS	
1. Intr	oduction ····		******************************	1
2. Res	ults of perfor	mance Test of N	MSF Test	

List of Tables

Table	Description	e per an elektronick en besteken besteken. En 1898 gag dan 18 🏲	age
Table 1	Heat Balance of MSF Test Plant .		2
Table 2	Overall Heat Transfer Coefficient		3
Table 3	LOG Sheet(1)	***************************************	4
•	LOG Sheet(2)		5
*	LOG Sheet(3)	***************************************	6
	LOG Sheet(4)		7

List of Figures

Figure	Description Page	ge
Fig. 1	The Appearance of the MSF Test Plant that is in Operation	8
Fig. 2	The Status of the Control Board when the Plant is in Operation	9

1. Introduction

The installation of the MSF Test Plant has started on June 31, 1993. On the 10th week, the commissioning of the parts and units, such as pumps, has started. On the 14th week, November 1, the completion ceremony had been held. Each stage of the installation work is shown in 5.3.1 summarized in week period.

In this section, the results of the performance tests and the trial run are reported.

2. Results of performance test of MSF Test Plant

Prior to the ceremony for the completion of the work on November 1, a trial run and a performance test of the equipment were carried out.

Table 1 shows the results of the heat balance check which was conducted during the performance test.

The amount of water produced at a top brine temperature of 112°C was 0.80ton/h, which was about 1.07 times as large as the designed value of 0.75ton/h. Thus, it was proved that the design value was satisfied sufficiently.

Following this, the overall heat transfer coefficient of each heat transfer tube was measured as a part of the performance test. The result of this measurement is shown in Table 2. According to this results, variations in the value of the overall heat transfer coefficient are recognized at each evaporation stage.

It is considered, however, that this problem can be solved by the adjustment of the venting system. This overall heat transfer coefficient is a reference on which the calculation of the fouling factor is based. Thus, it is the most important value in the test of MSF-1.

Therefore, it was decided that a re-adjustment would be made when this test is resumed. Table 3 shows a recording form in which records are to be entered by operation personnel in order to monitor the operation state. It also shows an example of entry.

In addition, Figs.1 and 2 shows the appearance of the plant and the state of the control board when the test plant is in operation.

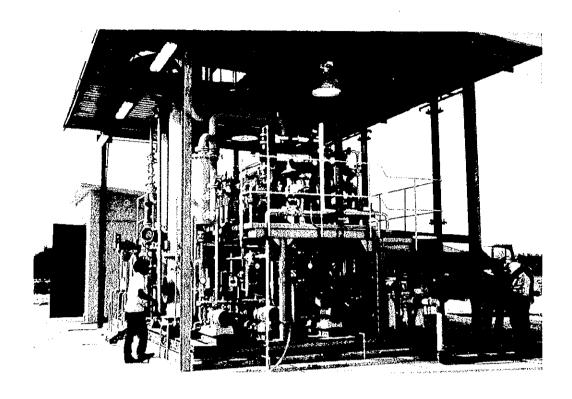
Table 1 Heat Balance of MSF Test Plant

A STATE OF THE STA																			4.			Alomospheric Temperalure	Phenomena	**************************************	SIGNATURE 41. Instrumed to	
Total Ope. Time hrs	Condens. (FRGOI) IR je SW (FR101)	260	Bil Out B. (P1303) Deaeraler (P1)	/, 0 kg/cm²G torr	Condens. (CR601)				Meal Rejection Section	58 68	106 105	38 25 30	505 508	42 37		•	Product	% see	CAIENDRAMOUAD						10年 10年 10日	
8 Date 29 -027 - 43 14 44.	1) Product	\$ 6.53 1060-360-800	P1605) BH Shell(P1603) Elect. S. (P1604)	/cm3 0, 6 kg/cm36 & kg/cm36) Recir. B. () Product (CRA401)	ppm ppm	ce R. Concentration R.	(7.4)	Heat Recovery Section	15 25 35 45	308 307 306 305 304	90 74 62 51 37 0	501 502 503 504	94 84 68 56			109	Condensate	Starting Time of Cleaning	Finishing Time of Cleaning.	Cleaning Time per an Inning	laniag	alg Time.	Mumbers of Ball Thrown	Mumbers of Ball Recovered	
Run No. — Measuring Dale	Flow Rate Feed SW (F	3.25	Supply S. (P1605)	P. 1 × 8/cm²6	Concentration Feed SW (Performance R.	3.08	Docision Gaine 1170	tostrucial principle and	11 309	₹// a,	- F. Chamb. TI 778-602	G. Phase C // 4	- F. Chamb. 71	L. Phase C	Ciean II Mealing		Starting Ti	Finishing	Condilion Cleaning Ti	Of Numbers of Inning	Ball Cleaning Total Cleanig Time	Numbers of	Numbers of	

Table 2 Overall Heat Transfer Coefficient

								•		AUR NO.	1
	Operation Date, Time	Calculation ilem	ıllem	Brine Heater	No. I. Stage	No. 2 Stage .	No. 3 Stage	No. 4. 513ge	No.5 Stage	Ho. G Stage	NOTE
	o) rg.	Flow Rale W	kg/h	0839	6530	6530	6430	6530	20061	00001	
	29. Oct 92	29, oct 93 Specific heal Co	2 kJ/(kg K)	3.966	3.94.3	3.929	3.9/1	3.905	3.896	1.893	
	Time	M. E. Quilei Temp. To	Ç	112	90	24	63	1-5	30	4,5	
7.5	14.47	II. E. Iniel Temp. T	<u>.</u>	9.6	7.2	79	<i>\-</i> -\`	37	3.5	30	
i.	1011	Rising Temp. AT	<u>ر</u>	7.7	9/	۲/	11	71	9	ላ	
	Ope. Time	Il. Trans. Rate Q	kJ/s	158.265	128.74	25.52	75 155	99,765	110.387	36.767	
		H. Trans. Area S	141	67.33	1,937	1,937	1,937	1.937	4.9.6.6	4.25.46	
d		F. Chamb. Temp.	ဌ	71/17	76	77.	38	15	77	37	
٠.	B. Cleaning	B. Cleaning L. M. T. D	1. X	8.8535	10.559	44.51	10.562	10.487	875.9	5.944	
٠.	Frequency	U Yalue U	kW/(m1 K)	3.8995	4.2912	2.8914	3.77.8	4.8793	1. 400	1.2475	
		Clean-U Yalue U	, kW/(m1 K)								
		Fouling Factor	, (m, K)/k#								
•	MENDRANDUL	HENORANDUM: $-1.1 \times 2.38809 \times 10^{-1} \text{kca} 1 \times 2.77778 \times 10^{-1} \text{km}$	kcal-2, 77770×10	1-1kW - h-0. 101972kgf - m	2kgl · m			_	Δ1, «(-1, Δ1, «(-1, Δ	112-01/10(01,/01,)	(3)
		1kW=860kcal/h=3, 500kJ/h	500kJ/h	•		Calculation rormula	Ormula Q.YCPAT			('n/t)-(n/t)•	

53	Ta	b 1	e	3-	1	L	o G	51	hee	∍t	(P	ar	t	1)				T		1		T	Ī	T	Gran.	1-	29/10/193	T	1	1	<u>H</u>	\	The state of the s	3	
101162			-			1																			3					7 7 7	1	•	Dece //wet		1
Data 29							1			+															3 60			-		10	1	1	1		
.		411.111	300	9 (1,7	1				, ,	7 5	3 5	\ \ \ \	2	20%	17,7			<u>,</u>		7 63	230	30.5	1	0 5	100	30	10		1		+		10 60	000
0 Z	1 m 6	1	2 0	1:	1,		 			ÍÓ	0 0	3 5	 -	**/	7.7	1	1 2 0	324			2	-	7.60	2 %	7.9	2/0	3.9	6,0	7///	1				10/0/	
Unite	7																																		
																	1																		
et(1)		11:45 13:45		-		-				+	-	7	լ	0	~		1				3633	1 1	500	_		-	-		 `					0601 00	←
LOG Sheet(1)		10:45 11:	9€ . 9€	्र	20 26		1	1	i	24 70	50 40		- '	62 6	6	// 7//	2.0	3.25 3.5			6.25 625	230 230	215 200	00		38 38	1							1030 1030	0716
rable 3 L	Unit		ρ	Q	¥¥H⇔			ppp	qdd	B/01	D/01	-3 / Pr	1/hr	13 / hr	Q	p	kg/c3G	*3 / hr	×	×	1/br			bz/zd	q	۵	p	Q	ر د						
L	Tag No.		TR - 102	TR - 303	PR - 506	PHR - 201	PHR - 101	DOR - 201	DOR - 101	C2 - 601	CR - 401	FB - 101	FR - 201	FR - 301	TIC - 102	TIC - 103	P1C - 606	FIC - 201	Fr - 201	Fr - 202	FIC - 301	LIC - 201	LIC - 507	PI - 605	TR - 101	TR - 201	TR - 301	TR - 102	TR - 602					TR-401	101-97
	I t e u		Seavater reject.out temp	Top brine teap.	Last stage vaccus	Decarbonator out PM	Recirc brine PH	Make up DO2	Brine DO2	Condensate conductivity	Product conductivity	Sezvaler to reject. flov	Kake up flov	Recirc. brine flow	Seavater reject, out teap.	Top brine temp.	Heating steam press.	Hate up flow	Ratio control for sold inject.	Railo control for anti scate inject	Recirc bring flow	Deserator level	Last stage brine level.	Supply steam press.	Seavater temp, .	Hake up teap. (Deaerator)	Recirc, brine teap,	Brine heater inlet brine teap.	Brine heater shell teap.	Antl scale Inject, purp speed	Acid inject, pusp speed	Sodium inject, pump speed	Antifoan Inject, pusp speed	Distillate water - 110w	Condensate flow


		able 3 L	LUG Sheet(2)	eet(Z			Un 1 t	, Z			Da t	20	Date 29/10/ 93	3	Tab
u S + l	Tag No.	Unit					T	1 0	9						l e
	- 1		19 45	11 45	7×17		2		3 45	W/7/					3
Heating steam temp.	TI - 601	.	12.57	<u> </u>	74		1	7	57	150					- 2
Brine heater shell press:	PI 803		9.0	0.6	9.0	- - - - -			0.6	90					I
Brise heater condensate level	LIC - 601	Zallia	257	037	150				150	150			7		.00
Brine heater outlet brine tesp.	11 - 369	a.	(//	7/7	イ//				_	イバ	•				}
Brine heater outlet brine press.	PI - 303	9F3/31	01	01	07	1			9,	0.7					She
Brine heuter latet brine temp.	Ti - 301	2	16	16	16		1	-	06	06					eet
Brine heater laiet brine press.	P1 - 302	leg / cd G	8.	61	6',			•		7.7	1				; -(
Yapour tenp. 1st st.	105 - 11	2	76	63	93	_			716	776					Рa
Yapour teap. 2st st.	. 11 - 502	2	82	78	78		_			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					rt
Yapour teep. 3st st.	11 - 503	.	69	8.9	88	1			189	89					2
Yapour teap. 4st st.	10 - 11	ı	95	56	5-5		-		H	9-5	1.			2 F) .
Yapour tesp. 5st st.	11 - 505	2	17	17	4/				47	44					٠
Yapour temp, last st.	905 - 11	2	38	36	1.96					37					
Lat st.press.	PI - 501	MY HA	051	<i>مدا</i>	120				00,	001					
Recirc. brine tenp ST 1/2	T1 - 301	n 2	27	78	18		_	,	180	16	•				
Recirc. brine tesp ST 2/3	11 - 306	ပ္	79	719	779	-			159	62					
Recirc. brine temp ST 3/4	T1 - 365	သ	51	1-1-5	14			. :	7-5	1-1	:				
Recirc, brine teap ST 4 Inlet	11 - 304	t	38	38	38				38	37					
Seavater tesp ST 5 outlet	T1 - 106	t)	39	39	38				07	38.			1.		
Seavater temp ST-5/8	Ti = 105	þ	35	33	33	_	:		176	32		7	,	1	ę
Seavater lesp ST-6 Inlet	T1 - 104	þ	29	30	30			·	30	30		10/11	L.		
Ejector steam press.	Pj - 604	kg/cdc	0,0	8.0	8.0				0,8	8.0				191	10/93
E/C Inlet S.Y. press	P1 -102	Ng ∕ c2C	7.7	7.7	1.7			•	1.5-1	1.5		•			١
E/C outlet S.Y. temp.	T1 - 103	٥	34	34	シ⊄	-		:	35	74					
Decarbonator level	LIC - 201		۱ ۰		-				-		-				
Flash tank level	LIC - 401		165	091	160				091	160					
Flash tank press.	. PI - 401	Y S H ss	206	006	100			-	200	200					
			,								(,	(0)		٠
								1			79.	Oct	/		
											/	,		7	
									:		7	lin.	Ann	de	
•										J	1	1			
	-			-							L	5			

Acid flov

LOG Sheet (Part 4) Table 3-4 13 KT 14 W T/641/0491 25.53 88 3 1527 E Unit No. Ή (Boller) 1,6870 16153 1457 1482 1506 98 7 86 10 407 16451 Table 3 LOG Sheet(4) ٤, Unit kg/cdC kg/cdC kg/cdC kg/c±G kg/cat Tag No. E Yater boost pump press. ø Softner Inlet press. ۲ Boiler pressure Heated of 1 temp. Feed vater flow Blow vater flow Oil pump press. Oil press. Oll temp 0i1 flov

(5.3.2)

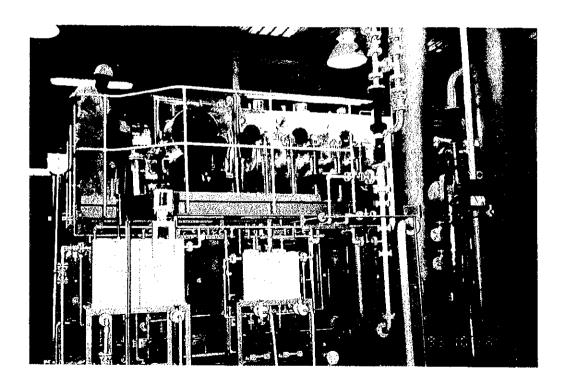
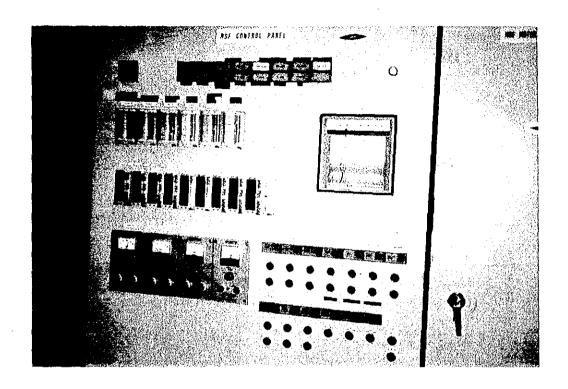



Fig. 1 The Appearance of the MSF Test Plant that is in Operation

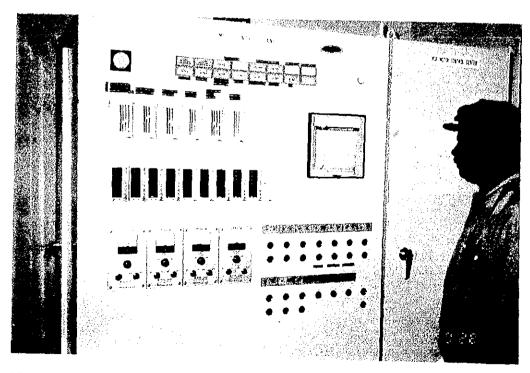


Fig. 2 The Status of the Control Board when the Plant is in Operation

	5.3.3 T	est with a S	ingle Scale	Inhibitor	
•					

CONTENTS

l. Ir	ntroduction ·····	1
2. T	est Plan	2
2.1	Basic concept of the test ······	2
2.2	Method of calculation of fouling factor	-2
2.3	Test conditions ·····	3
: i .	ali di antara di Argania antara di Arangan antara di Arangan di Arangan di Arangan di Arangan di Arangan di Ar	:
3. E	xperimental Method	6
Mary 1		
4. R	lesults ·····	12
4.1	Results of fouling factor measurement	12
4.2	Analysis of water constituent	13
4.3	Determination of heat transfer coefficient (U) at the start	
	of the operation ·····	41
5. D	Discussions ·····	42
5.1	The effect of ball cleaning on the fouling factor	
5.2	The effect of concentration factor on the fouling factor	43
5.3	Time dependency of the fouling factor	43
· ·		44

List of Tables

Table	Description Programme Pr	age
Table 1	Operation Conditions of MSF Test Plant for MSF-1, MSF-2	4
Table 2	Design Specification of the Test Plant (Mass Balance)	
Table 3	Design Specification of the Test Plant (Heat Balance)	,
Table 4	Instruments Name for Calculation of Fouling Factor	
Table 5	Formation of Operation Conditions	
Table 6-1	Calculation of Overall Heat Transfer Coefficient (U) and	
	Fouling Factor at Start of RUN-3	18
Table 6-2	The state of the s	
	Fouling Factor after 224hrs of RUN-3	19
Table 6-3	Calculation of Overall Heat Transfer Coefficient (U) and	
	Fouling Factor after 452hrs of RUN-3	20
Table 7–1	Calculation of Overall Heat Transfer Coefficient (U) and	
	Fouling Factor at Start of RUN-4	25
Table 7-2	Calculation of Overall Heat Transfer Coefficient (U) and	:
est to the second	Fouling Factor after 164hrs of RUN-4	26
Table 7-3	Calculation of Overall Heat Transfer Coefficient (U) and	
	Fouling Factor after 320hrs of RUN-4	27
Table 8–1	Calculation of Overall Heat Transfer Coefficient (U) and	
	Fouling Factor at Start of RUN-8	32
Table 8-2	Calculation of Overall Heat Transfer Coefficient (U) and	
•	Fouling Factor after 236hrs of RUN-8	33
Table 8-3	Calculation of Overall Heat Transfer Coefficient (U) and	
	Flouling Factor after 472hrs of RUN-8	34

List of Figures

Figure	Description	Page
Fig. 1	Operation Progress of Test Plant for MSF-1, MSF-2	. 5
Fig. 2	Flow Diagram of the Test Plant	
Fig. 3	Time Dependency of Fouling Factor of Brine Heater in RUN-3	• 14
Fig. 4-1	Heat Cycle at Start of RUN-3	. 15
Fig. 4-2	Heat Cycle after 240hrs of RUN-3	. 16
Fig. 4-3	Heat Cycle after 450hrs of RUN-3	• 17
Fig. 5	Time Dependency of Fouling Factor of Brine Heater in RUN-4	- 21
Fig. 6-1	Heat Cycle at Start of RUN-4	. 22
Fig. 6-2	Heat Cycle after 164hrs of RUN-4	. 23
Fig. 6-3	Heat Cycle after 320hrs of RUN-4	- 24
Fig. 7	Time Dependency of Fouling Factor of Brine Heater in RUN-8	
Fig. 8-1	Heat Cycle at Start of RUN-8	. 29
Fig. 8-2	Heat Cycle after 240hrs of RUN-8 ·····	. 30
Fig. 8-3	Heat Cycle after 472hrs of RUN-8	. 31
Fig. 9-1	Water Constituent of the Make-up, Recirculation and Blow	
	Down during RUN-3 (Part 1) ······	35
Fig. 9-2	Water Constituent of the Make-up, Recirculation and Blow	
•	Down during RUN-3 (Part 2) ······	. 36
Fig. 10-1	Water Constituent of the Make-up, Recirculation and Blow	
	Down during RUN-4 (Part 1) ······	37
Fig. 10-2	Water Constituent of the Make-up, Recirculation and Blow	
	Down during RUN-4 (Part 2) ······	38
Fig. 11-1	Water Constituent of the Make-up, Recirculation and Blow	
	Down during RUN-8 (Part 1)	39
Fig. 11-2	Water Constituent of the Make-up, Recirculation and Blow	
	Down during DIIN_8 (Part 2)	41

1. Introduction

The purpose of MSF-1 is to establish procedure for the selection of best scale inhibitors out of those in the commercial market for the normal temperature and the high temperature application and then apply them to the MSF Test Plant experiment to demonstrate their scale prevention effect under operation conditions similar to that of the actual plants. Furthermore, to prove the enhanced effect of the scale prevention by acid dosing together with the scale inhibitor.

The threshold effect, which is one of the criteria for the evaluation of performance of scale inhibitors, has been measured for eight different kinds of scale inhibitors and the results are reported in 5.1.2. The scale prevention effect under the thermal flux has been reported in 5.2, taking the crystal distortion effect, another criteria for the evaluation of performance, into consideration.

The conclusion of those results is that PPN(M) shows the best performance both at the maximum brine temperature of 90°C and 112°C. Therefore, PPN(M) has been selected as the scale inhibitor to be further tested by the MSF Test Plant under the condition of single inhibitor dosing. The first experiment, RUN-1, has been started in February, 1994.

However, several unexpected problems have happened such as the malfunctioning of the boiler which had to be replaced by a new one¹⁾, installation of a new boiler and connections with MSF test plant and the congestion at the level control valve of the condensate in the brine heater system of the Test Plant during the period of second experiment, RUN-2, and considerable time was consumed for solving those problems. On 25th of July, the operation of the MSF Test Plant has been restarted for RUN-3.

Since then, stable and smooth operation had been established and experiments were carried out for the test of varied concentration factors and of ball cleaning.

This section reports the results of those tests.

¹⁾ The new boiler: A fire tube boiler type with a maximum capacity of 1ton/hour at maximum operating pressure of 11 bar.

2. Test Plan

2.1 Basic concept of the test and a many of parameters, and the extra a star of the less than the same of the same

The most direct method for evaluating the scale adhering to inner surface of the heat transfer tube is to take out one from the tube bundle of the plant and measure the amount of scale. However, the performance ratio, which is the main interest for the task, will remain uncertain.

ra radi kan digitah salah Beres, deraka dan berdan basar hadi. Tengi pakebang bibi basak beres, salah ber dan dapah

Thus the heat transfer fouling factor, which directly relates to the increase of heat transfer resistance by scaling, had been measured to evaluate the effect of a single inhibitor dosing. The time dependency of the fouling factor of the heat transfer tube has been traced with PPN(M) dosing.

the tradition of the board of the state of t

and the first the color of the first state of the color o

想得到我们还没有感情,但我们还要看到我们的最后,我就能

2.2 Method of calculation of fouling factor

The fouling factor is defined by the following equations.

$$\Delta T = T_2 - T_1$$
 which we have the entropy of the transfer $T_1 = T_2 - T_1$ (2.1)

$$\Delta T_1 = T - T_1 \tag{2.2}$$

$$\Delta T_2 = T - T_2$$

Using the equations 2.1, 2.2 and 2.3, and the second are second as a second area and the second area.

$$\Delta \text{Tm} = (\Delta T_2 - \Delta T_1)/\ln(\Delta T_2/\Delta T_1)$$

On the other hand,

$$Q = WCp \Delta T (2.5)$$

Using the equations 2.4 and 2.5

$$U = Q/(S \Delta Tm)$$
 (2.6)

The fouling factor F_a is defined as

$$F_o = (1/U - 1/U_c) (2.7)$$

Where

T_1 :	Temperature of seawater/brine at the inlet of the	•
	heat-transfer tube	${\mathfrak C}$
T_2 :	Temperature of seawater/brine at the outlet of the	
. * :	heat-transfer tube	℃
T :	Steam/vapor temperature outside the heat-transfer tube	℃
ΔTm	: Logarithmic mean temperature difference (LMTD)	K
W	: Flow rate of seawater/brine	kg/h
S	: Area of heat-transfer surface	m ²
Cp	: Specific heat of seawater/brine	kJ/(kg K)
Q	: Quantity of heat transfer across the tubes	kJ/h
U	: Overall heat transfer coefficient	$kW/(m^2 K)$
Uc	: Overall heat transfer coefficient at the initial condition	$kW/(m^2 K)$
Fo	: Fouling factor	$(m^2 K)/kW$

2.3 Test conditions

The operation conditions planned in May, 1994 and conducted are shown in Table 1. The details of the test plant operation progress are shown in Fig. 1.

Table 1 Operation Conditions of MSF Test Plant for MSF-1, MSF-2

					_																		5				
	0.1100	KEMAKKS																								В. Н.	Brine Heater
		ဘ	MSF-2	Dec. 06	Dec. 07	24	Chemi.	Once.	None		112		6.40	1	6.0	3.5		8.25	128	23, 350	1.0		<u></u>	None	1	25	After B. H
	٠	x o	MSF-1	Nov. 16	Dec. 06	472	Chemi.	Recir.	As ×3	needed	112	100	2.42	6 .5	6.0	1.52		8.52	180	33, 100	1. 40	(4) (4)	~	None			
	t	· .	MSF-2	Nov. 14	Nov. 15	30	Chemi.	Once.	None		112	3 . T S	6. 40		6.0	5, 55		8. 24	128	23, 360	1.00		~	None		9	After B. H
	9	6 - 2	MSF-2	Nov. 06	Nov. 12	142	Chemi.	Recir.	As *3	needed	112		2.3	6.5	0.86	1.44		8.52	180	33, 320	1.40		~	None	2.75		Brfore Dea.
200	9	6-1	MSF-2	0ct. 30	Nov. 05	114	Hybrid	Recir.	As ×3	needed	112	47. Š	2. 45	6.5	0.81	1.64		8.0	55-60	32, 730	1.40		-	72	0.5		After B.H
		5 - 2	MSF-1	0ct. 24	Nov. 07	230	Hybrid	Recir.	As *3	needed	112	. : ·	2.45	6.5	0.79	1.66			55-60	 -	1.39			- 21			
	2	5 - 1	MSF-1	0ct. 15	0ct. 23	143	Hybrid	Recir.	None*2		112		3.25	6.5	0.79	2.46		8.01	45-50	28, 290	1. 22			12			
. **	•	4	MSF-1	Sep. 24	0ct. 07	320	Chemi.	Recir.	None*2		112		3.75	6 . 5	0. 76	2.99		8. 52	143	26, 770	1. 15		~	None			
	ç	0	MSF-1	July25	Aug. 13	456	Chemi.	Recir.	Once/	8hours_	112	-	3.6	6.5	0. 70	2.9		8.43	144	25, 600	1.12		~	None			1
	· ·		MSF-1	July10	July18	180	Chemi.	Recir.	Once/	Bhours.	100-112		3.6	5. 9-6. 5	0.55	3.1		-			ĺ		~	None		1	1
	-	1	MSF-1	Feb. 03 Ju	Feb. 17	324	Chemi.	Recir.	Ouce/	Shours.	100-112		3.6	5-6.5							1.	***************************************	2	None			
	TIMIL	UN11				hour					ပူ		m³/h	m ³ /h	1 3	¶3∕h		1	mg/L	mg/L	ľ		mg/L	mg/L	mg/L	mg/L	
	RUN NO	ITEMS	1. Objective	2. Operation period (from)	(to)		4. Scale control method *1	5. Operation mode	6. Ball cleaning		7. Top brine temperature	8. Flow rate	-Make up seawater	-Recirculation brine	-Product water	-Blow down brine	9. Chemical consituents of brine	-pli at 25°C	as CaOO3	-Chloride ion	-Concentration factor as Cl-	10. Dosing rate of chemicals	= PPN(M)			-0il = Light Diesel Oil #2	11. Injection point of chemicals
																		٠.		1.							

(Note) #1:Chemicals = PPN(M). Hybrid = PPN(M) + H₂SO₄ #2:Re carried out only at start

#2:Be carried out only at start. #3:Be carried out only in the case of arriving at fouling factor in the brine heater of o. 34-0.36 m²K/kW

Chemical: PPN(M) PPN(M)+H+ llybrid: NOTE c Operation Progress of Test Plant for MSF-1, MSF-2 1994 ဗ ເລ Fig. 1 1993 Run 6-1 (Hybr1d, 112°C, CF: 1. 40) Rinsing of each stage in the MSF Adjustments of boiler/Test Plant Run 6-2 (Chemical, 112°C, CF:1.40) (Chemical, 112°C, CF:1.01) (Chemical, 112°C, CF:1.40) (Chemical, TBT:100-112°C) (Chomicai, TBT:110-112°C) (Chemical, 112°C, CF:1, 12) (Chemical, 112°C, CF:1.15) (Hybrid, 112°C, CF: 1. 22) 112°C, CF: 1. 40) (Chemical, 112°C, CF:1. 40) Modification of Scarater Intake Building of a New Boiler House Installation of the New Boller 2-1 Modification of MSF Test Plant YEAR / WONTH Trial & roliability Runs (llybrid, 1-1 Connissioning RUN NUMBER ETC. Test Plant 1-11 Run 5-1 1-12 Run 5-2 Run 1 Aun 7 Run 9 1-13 Run 8 Run 2 Run 3 1-10 Run 4 2. MSF-2 1 MSF-1 7-7 2-3 9-2 9-1 1-8 7-7 7-1 ĭ 1-1 -13

3. Experimental Method

The flow diagram, the sheet of mass balance and the sheet of heat balance of the MSF test plant, capacity of 20ton/day, is shown in Fig.2, Table 2 and Table 3. The instrument designations used for the calculation of fouling factors are listed in Table 4.

The fouling factors were calculated automatically by the personal computer, IBM compatibles, 486. The variation of the operation conditions during the experiments had been recorded by the operators in the prescribed format.

The operation data sheets used for the calculation of the fouling factor are shown in Table 5.

Fig. 2 Flow Diagram of the Test Plant

Table 2 Design Specification of the Test Plant (Mass Balance)

	OPE. MODE		RE	CIRCULATIO	N OPERATI	מס	ONCE
L I NE Na	METHOD OF SCALE PREVEN.	TINU		CHEMICALS		CHEMICAL /H2SO4	CHEMICAL
	MAXIMUM TEMP.	c	90.5	112	120	112	112
1	SW to Supply	kg/h	23,300	23.300	23,300	23.300	23, 300
2	SW to Rejec.	kg/h	18.300	18.300	18.300	18.300	18, 300
4	Feed Sea W.	kg/h	2,650	3, 250	3,620	3.250	6,430
5	Recycle Brine	kg/h	7.450	6,530	6.580	6,530	-
6	Blow Down	kg/h	2,000	2,500	2.790	2.500	5,680
7	Distillate	kg/h	605	750	830	750	750
13	Steam to Eje.	kg/h	50	50	50	50	50
14	Desuper H.W.	kg/h	10	10	10	10	10
12	Steam to B.H.	kg/h	10+260	10+303	10+323	10+303	10+303
15	Condensate	kg/h	270	313	333	313	313
16	H ₂ SO₄ (98 %)	kg/lı	<u>-</u>		.	0.52	
17	Scale Inhi.*1	kg/h	0.18	0. 22	0.22	0.22	0. 22
18	Anti Foam °2	kg/h	0.06	0.07	0.07	0.07	0.07
19	Na ₂ SO ₃ S. * 3	kg/h	0.06	0.07	0.07	0.07	0.07
20	Heavy Oil ⁻⁴	l/h	41	45	45	45	45

(Note) \$1:15 %. \$2:0.5%. \$3:0.5%. \$4:Less than 190cSt at 50°C

Table 3 Design Specification of the Test Plant (Heat Balance)

	OPE. MODE		REC	ONCE			
LINE Na	METHOD OF SCALE PREVEN.	TINU		CHEMICALS		CHEMICAL /H2SO4	CHEMICAL
	MAXIMUM TEMP.	*C	90.5	112	120	112	112
1	SW to Supply	·c	30	30	30	30	30
2	SW to Rejec.	r	30	30	30	30	30
4	Feed Sea W.	°C	39.5	39.5	40	39. 5	39.5
5	Recycle Brine	°C	39.5	39.5	40	39.5	39.5
6	Blow Down	°C	39.5	39.5	40	39.5	39.5
7	Distillate	° C	37.2	37.2	37,7	37. 2	37. 4
13	Steam to Eje.	℃	175	175	175	175	175
14	Desuper II. W.	Ç	100	120	127	120	120
12	Steam to B. II.	ů	100	120	127	120	120
15	Condensate	C	100	120	127	120	120
16	H ₂ SO. (98 %)	c		-	_	-	_
17	Scale Inhi 1	°C	35	35	35	35	35
18	Anti Foam °2	*C	35	. 35	35	35	35
19	Na ₂ SO ₃ S. 3	℃	35	35	35	35	35
20	Meavy Oil-4	°C	_		-	-	 .

(Note) \$1:15%, \$2:0.5%, \$3:0.5%, \$4:Less than 190cSt at 50°C

Table 4 Instrument Name for Calculation of Fouling Factor

NO.		Measurements Item	Instru. Name
1	Flow	Seawater in Heat Rej. Section	FR101
2	(₩)	Recirculation Brine	FR301
3		Inlet Temp. of No. 6 H.T. Tubes	T1104
4		Inlet Temp. of No. 5 H.T. Tubes	T 105
5	S. Water	Outlet Temp. of No. 5 H.T. Tubes	T I 1 0 6
6	k	Inlet Temp. of No.4 H.T. Tubes	T1304
7	Brine	Inlet Temp. of No.3 H.T.Tubes	T1305
8	Temp.	Inlet Temp. of No.2 H.T. Tubes	T I 3 O 6
9	(T)	Inlet Temp. of No.1 H.T. Tubes	T1307
12		Inlet Temp. of Brine Heater	T1308
13		Outlet Temp. of Brine Heater	T1309
		Steam Temp. of Brine Heater	T 1602
14		No. 1 Evaporator Steam	T1501
15	Chamber	No. 2 Evaporator Steam	T1502
16	Temp.	No. 3 Evaporator Steam	T1503
17	(t)	No. 4 Evaporator Steam	T1504
16		No. 5 Evaporator Steam	T1505
17		No. 6 Evaporator Steam	T1506

HEAT CYCLE				011				08	0) a	70		S	01		u e	01		В. П. В. Rco П. В.			- 1	ו מוויים מוויים מ	rnenunena	SGILTINOLO	SIGNATURE
hrs	HRJE SW (FR101)		Deaerater(PI)	torr	1. ex				on Section	89	5 104		506						<memorandum></memorandum>						
Total Ope. Time	Condens. (FR601)		BH Out B. (P1303)	kg/cm²G	Condens. (CR601)				Heat Rejection	\$9	106 105	-	505	,		····-	Product	Water	(MEM	:					
	r. B. (PR301) Product W(FR401)		BH Shell (P1603) Eject. S. (P1604)	kg/cm²G kg/cm²G	r. 8. () Product (CRA401)	u,dd .	Concentration R.		Heat Recovery Section	25 35 4.5	306 305 304	-	502 503 504				Condencate	י פיוויסטווסט	gu!	aning	an Inning	-			red
Measuring Date	Feed SW (FR201) Recir. B.		Supply S. (P1605) BH Sh	kg/cm²G	Peed SW () Recir. B.	mợd	Performance R. Conce			IS I	309 308 307		602 501			-	Heating 601	Steam	Starting Time of Cleaning	Finishing Time of Cleaning	Cleaning Time per an li	Numbers of Inning	Total Cleanig Time	Numbers of Ball Thrown	Numbers of Ball Recovered
Run No.	Flow Rate	(t/h)		rressure		CONCERT 141 ON		FITCIENCY	37:00	10311001	2 1 8	و الله الله الله	F. Chamb. TI	at G. Phase C	- P. Chamb. 71	L. Phase C	Ci esam	သ			Condition	Ö	Ball Cleaning		

Table 5 Formation of Operation Conditions

4. Results

The continuous operation has been conducted from RUN 1 to RUN 9, as shown in Table 1.

Data obtained during the RUN 1 before installation of the new boiler is shown in Appendix 5.3.3-1.

Data obtained during the RUN 2 is shown in Appendix 5.3.3-2. The flow of seawater feed was out of order and air was present in the sensor of thermometer installed in the vapor zone during the RUN 2.

The RUN 5 and RUN 6-1 are for the hybrid operation. The RUN 6, RUN 7 and RUN 9 are for the task MSF-2. The RUN 3, 4 and 8 are the operation for the 5.3.3.

The RUN 3 was operated under concentration factor of 1.12 with chemical dosing. The ball cleaning was done every 8hr.

The RUN 4 was operated under concentration factor of 1.15 with chemical dosing but without any ball cleaning.

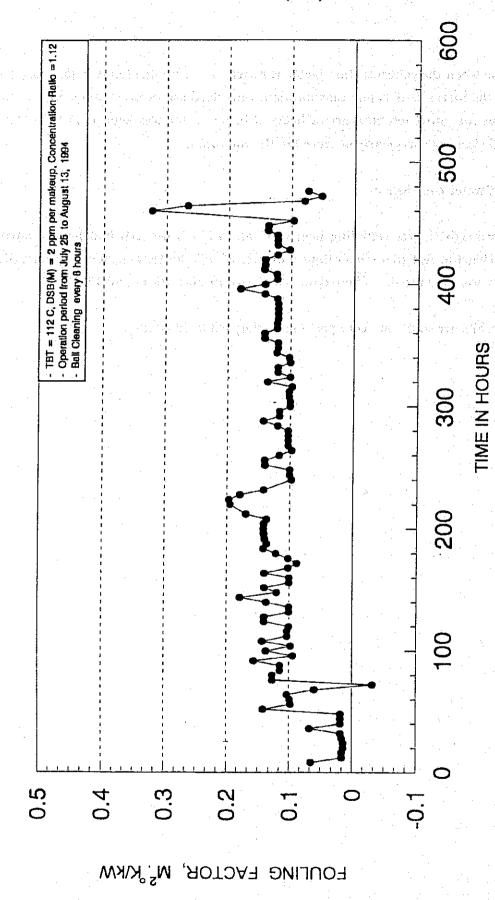
The RUN 8 was operated under concentration factor of 1.4 with chemical dosing without ball cleaning.

4.1 Results of fouling factor measurement

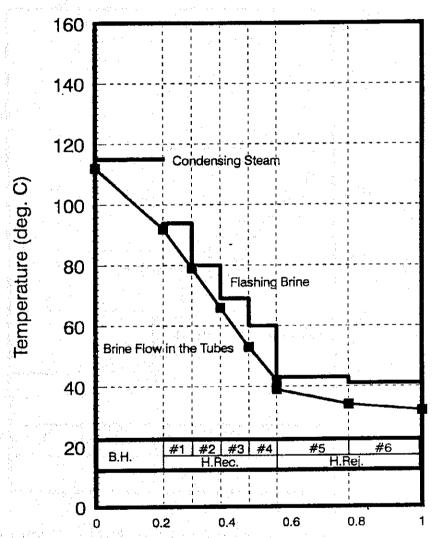
The time dependency of fouling factor (Overall heat transfer coefficient) during RUN 3, 4 and 8 is shown in Fig. 3, 5 and 7.

The heat balance corresponding to each Uvalue at the start, middle and end of the operation, is shown in Fig. 4, 6 and 8.

The measured data together with calculated LMTD, Uvalues are shown in Table 7, 8, and 9.

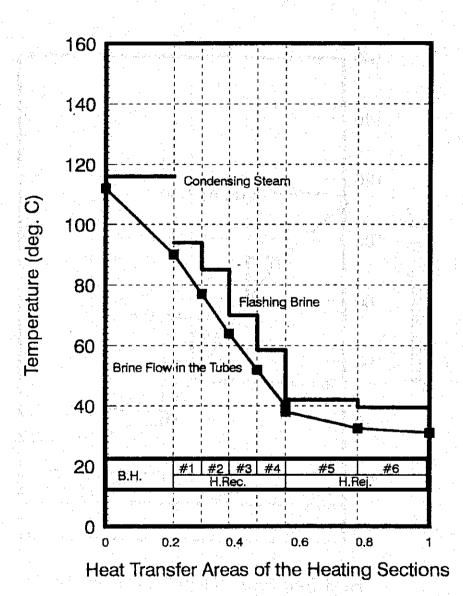

The data show that there is no significant change of Uvalue in case the concentration factor is less than 1.2, up to 300 hours, consequently no effect of ball cleaning.

However, in case when the concentration factor is raised to 1.4, Uvalue tends to decrease due to scaling, and the increase of vapor consumption, thus decrease in performance ratio, has been observed as the outlet temperature of brine at brine heater was kept at 112°C. Also, the effect of ball cleaning was clearly observed in the condition.


4.2 Analysis of water constituent

The make-up water(MU), recirculating brine(BR) and blow brine(BD) had been sampled periodically during the test plant operation and pH, M-alkalinity, chloride concentration and conductivity were analyzed. Those data are plotted in Figs. 10, 11 and 12.

The analyzed results are stable at every position during 300 to 500 hours.



g. 3 Time Dependency of Fouling Factor of Brine Heater in RUN-3

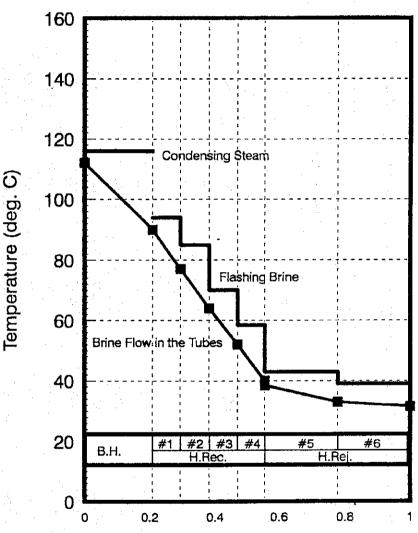

Run No. 3 Date: July 25, 94 Time: 20:00

Fig. 4-1 Heat Cycle at Start of RUN-3

Run No. 3 Date: August 4, 94 Time: 12:00

Fig. 4-2 Heat Cycle after 240hrs of RUN-3

Heat Transfer Areas of the Heating Sections

Run No. 3 Date: August 13, 94 Time: 08:00

Fig. 4-3 Heat Cycle after 450hrs of RUN-3

(5.3.3)

Table 6-1 Calculation of Overall Heat Transfer Coefficient (U) and Fouling Factor at Start of RUN-3

Run No. 3	Date: Ju	Date: July 25, 94			Time: 20:00		.	Total Operation Time: 8 hr.	Time: 8 hr.	
Variables	Brine Heater	4eater				Evaporator Stages	lages		te der	
		* 124 12		*1	19 1€. *	## ##	. 1.	*	9	*
Flowrate (kg/h)		6450		6450	6450	6450	W. 1.	6450	18100	18100
Specific Heat (kj/kg/K)		3.989		3.970	3.956	3.943		3.933	3.969	3.967
Inlet Temp. (deg. C)		82	ar en la Talla de Ve	79	99	23		42	34	32
Outlet Temp. Ideg. C)		112		92	79	99	-1. -1.,-41	53	39	34
Temp. Rise (deg. C)	Y, Aj	22		13	£	13		F	ທ	7
Flashing Temp. (deg. C)		115		94	80	69		9	43	F
Heat Transfer Rate (kJ/S)		142.955		92,468	92.144	91.850		77.512	99.773	39.888
Heat Transfer Area (Sq.m)	. Sig . 13	4.6723		1.937	1.937	1.937		1.937	4.9556	4.9556
L.M.T.D. (deg. K)		9.819		6.452	4.926	7.766		11.647	6.166	7.958
U (kW/sq.m/k)		3,116	\$ • .	7.399	9.657	6.106		3.436	3.265	1.011
Clean-U Value (kW/sq.m/k)		3.9		6.6	5.1	5.1		5.1	5.1	5.1
f Gq.m K/kW)		0.0645		-0.0164	-0.0925	-0.0323		0.0950	0 1100	300L U

			*				
Run No. 3	Date: August 03, 94		Time: 20:00		Total Operation Time: 224 hr.	i Time: 224 hr.	
Variables	Brine Heater			Evaporator Stages			
		**	# 2	€0 ##	*	kr)	*
Flowrate (kg/h)	6450	6450	6450	6450	6450	18500	18500
Specific Heat (k)/kg/10	3.989	3.969	3.955	3.943	3.932	3.968	3.966
inlet Temp. (deg. C)	₽.	77.5	65	53	40	33	31
Outlet Temp. (deg. C)	112	· 6	77.5	65	53	38	33
Temp. Rise (deg. C)	. 5	13.5	12.5	12	m		7
Flashing Temp. (deg. C)	118.5	96	98	70	28	42	38.5
Heat Transfer Rate (kJ/S)	150.079	95.991	88.572	84.775	91.586	101.962	40.764
Heat Transfer Area (Sq.m)	4.6723	1.937	1.937	1.937	1.937	4.9556	4.9556
L.M.T.D. (deg. 10	14.559	10.318	13.820	9.806	10.149	6.166	6.448
U (kW/sq.m/k)	2.206	4.803	3.309	4.463	4,659	3.337	1.276
Clean-U Value (kW/sq.m/k)	3.9	9.9	5.1	Č.	Š.	5.1	5.1
f (sq.m K/kW)	0.1969	0.0567	0.1062	0.0280	0.0186	0.1036	0.5878

Calculation of Heat Transfer Coefficient (U) and Fouling Factor after 452hrs of RUN-3

Run No. 3	Date: August 13, 94		Time: 08:00		Total Operation Time: 452 hr.	Time: 452 hr.	
Variables	Brine Heater			Evaporator Stages			
		**	#2	C #	***	#0 *#	*
Flowrate (kg/h)	6450	6450	6450	6450	6450	18800	18800
Specific Heat (k/kg/K)	3.989	3.968	3.954	3.942	3.932	3.968	3.966
inlet Temp. (deg. C)	90.5	u	64	52	40	.	31.5
Outlet Temp. (deg. C)	112	30.5	72	64	52	38.5	33
Temp. Rise (deg. C)	21.5	13.5	13	12	12	5.5	1.5
Flashing Temp. (deg. C)	116	94	85	70	58.5	43	38
Heat Transfer Rate (kJ/S)	153.641	95.977	92.097	84.755	84.532	113.982	31.070
Heat Transfer Area (Sq.m)	4.6723	1,937	. 1.937	1.937	1.937	4,9556	4.9556
L.M.T.D. (deg. 10	11.607	8.542	13.470	10.923	11.473	6.838	5.717
U (KW/sq.m/K)	2.833	5.801	3.530	4.006	3.804	-3.339	1.097
Clean-U Value (kW/sq.m/K)	8.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	9.9	2.3	5.1	2.1	5.1	5.
f (sq.m K/kW)	0.0966	0.0209	0.0872	0.0536	0.0668	0.1034	0.2458

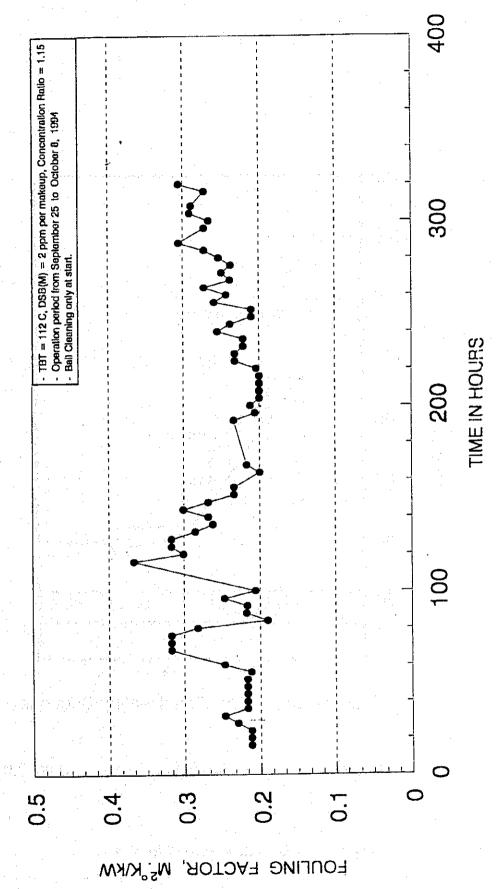
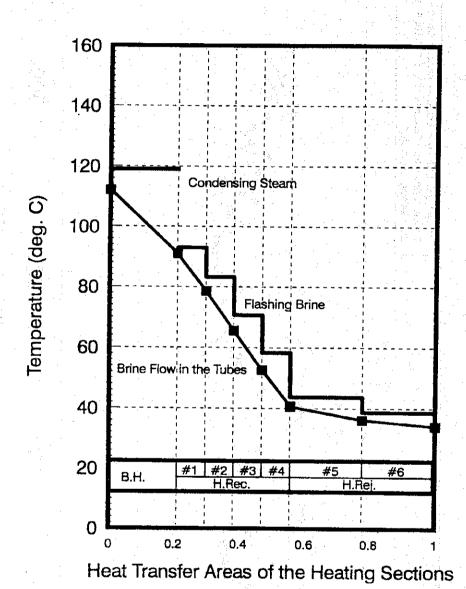
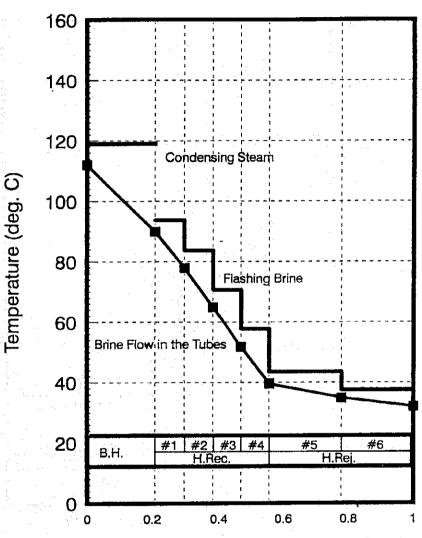




Fig. 5 Time Dependency of Fouling Factor of Brine Heater in RUN-4

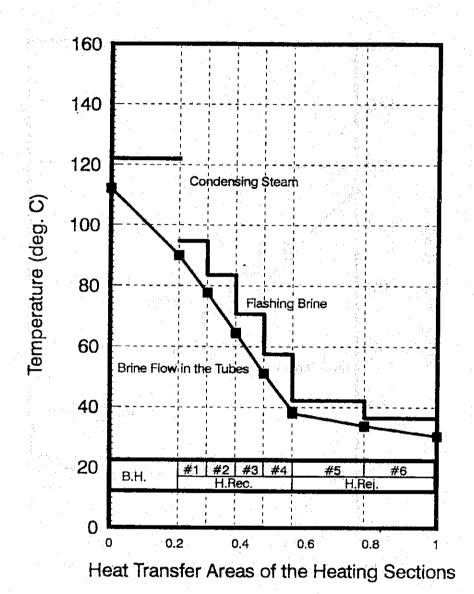

Run No. 4 Date: September 25, 94 Time: 8:0

Fig. 6-1 Heat Cycle at Start of RUN-4

Run No. 4 Date: October 1, 94 Time: 12:00

Fig. 6-2 Heat Cycle after 164hrs of RUN-4

Date: October 8, 94

Fig. 6-3 Heat Cycle afttr 320hrs of RU-4

Run No. 4

(5.3.3)

Run No. 4	Date: September 25, 94		Time: 8:00		Total Operation Time: 16 hr.	Time: 16 hr.	
Variables	Brine Heater			Evaporator Stages			
		*	# 2	#3	*	47 78:	#c
Flowrate (kg/h)	6500	6500	0059	6500	0059	18500	18500
Specific Heat (kJ/kg//0	3,989	3,969	3.956	3.943	3.932	3.970	3.968
Inlet Temp. (deg. C)	8	78.6	65.5	52.6	40.8	36.1	34
Outlet Temp. (deg. C)	112	9	78.6	65.5	52.6	40.5	36.1
Temp. Rise (deg. C)	21	12.4	13.1	12.9	11.8	4,4	2.1
Flashing Temp. (deg. C	119	93	83,2	70.6	58.3	43.7	38.7
Heat Transfer Rate (kJ/S)	151.243	88.866	93.562	91.841	83.779	89.766	42.821
Heat Transfer Area (Sq.m)	4.6723	1.937	, 1.937	1.937	1.937	4.9556	4.9556
L.M.T.D. (deg. K)	15,148	6.281	9.722	10.229	10.519	5.087	3.547
U (kW/sq.m/k)	2,137	7,304	4.969	4.635	4.112	3,561	2,436
Clean-U Value (kW/sq.m/k)	3.9	9.9	5.1	5.1	5.1	5.1	5.1
f (sq.m K/kw)	0.212	-0.015	0.005	0.020	0.047	0.085	0.214

Calculation of Overall Heat Transfer Coefficient (U) and Fouling Factor at Start of RUN-4

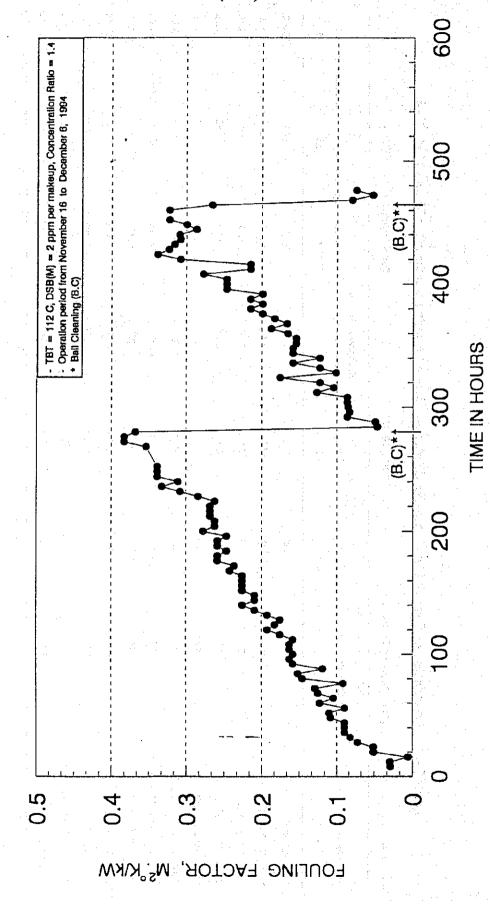
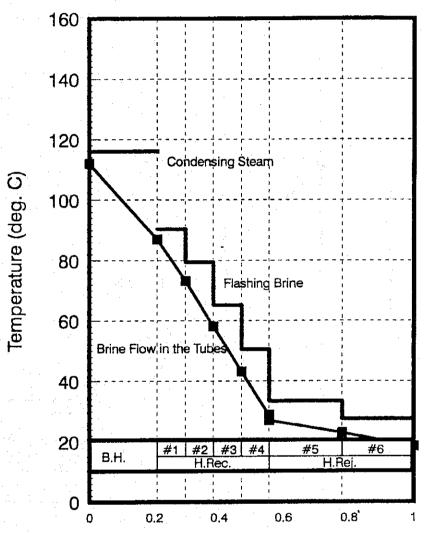
(5.3.3)

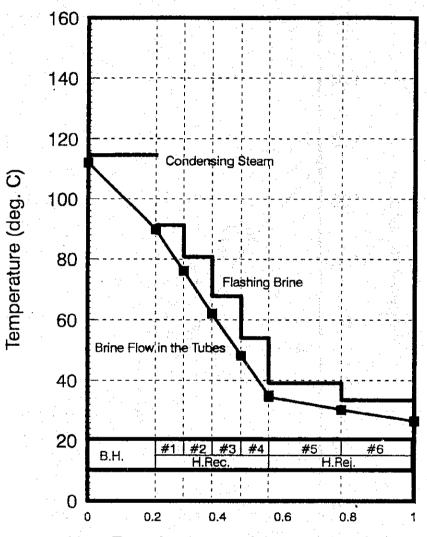
Calculation of Overall Heat Transfer Coefficient (U) and Fouling Factor after 164hrs of RUN-4 Table 7–2

Run No. 4	Date: October 01, 94		Time: 12:00		Total Operation Time: 164 hr.	n Time: 164 hr.	
Variables	Brine Heater			Evaporator Stages			
		#1	#2	£#3	*	60	*
Flowrate (kg/h)	9200	6500	6500	0059	6500	18500	18500
Specific Heat (kj/kg/K)	3.988	3.968	3.955	3.942	3.932	3.969	3.967
inlet Temp. (deg. C)	06	77.9	64.9	51.8	39.7	34.9	32
Outlet Temp. (deg. C)	112	6	9.77	64.9	51.8	39.5	34.9
Temp. Rise (deg. C)	22	12.1	13	13.1	12.1	9.4	2.9
Flashing Temp. (deg. C)		93.8	83.7	70.6	57.8	43.5	37.5
Heat Transfer Rate (kj/5)	158.420	86.696	92.832	93.249	85.892	93.830	59.120
Heat Transfer Area (Sc.m)	4.6723	1.937	, 1.937	1.937	1.937	4.9556	4.9556
L.M.T.D. (deg. K)	15.478	8.454	11.054	10.977	10.959	6.009	3.871
U (KW/sq.m/k)	2.191	5.294	4.335	4.386	4.046	3.151	3.082
Clean-U Value (kW/sq.m/k)	3.9	6.6	5.	5.7	5.1	5.1	5.1
f (sq.m K/kW)	0.200	0.037	0.035	0.032	0.051	0.121	0.128

(5.3.3)

Run No. 4	Date: October 08, 94		Time: 60:00		Total Operation Time: 320 hr.	ı Time: 320 hr.	
Variahibe	Brine Heater			Evaporator Stages			
		#1	#2	₩ ₩	**	to 集	*
Flowrate (kg/h)	6450	6450	6450	6450	6450	18400	18400
Specific Heat (kj/kg/lo	3.988	3.968	3.955	3.942	3.931	3.969	3,966
Inlet Temp. (deg. C)	06	7.77	64.5	51.1	38.7	33.8	30.5
Outlet Temp. (deg. C)	112	06	7.77	64.5	51.1	38	33.8
Temp, Rise (deg. C)	22	12.3	13.2	13.4	12.4	4.2	3.3
Flashing Temp. (deg. C	122	94.7	83.5	70.8	57.6	42.3	36.5
Heat Transfer Rate (kj/S)	157.202	87,448	93.528	94.639	87.329	85.191	868.99
Heat Transfer Area (Sq.m)	4.6723	1.937	1.937	1.937	1.937	4.9556	4.9556
L.M.T.D. (deg. K)	18.914	9.567	11,124	11.754	11.617	6.163	4.133
U (kW/sq.m/K)	1.779	4,719	4.340	4.157	3.881	2,789	3.266
Clean-U Value IKW/sq.m/l0	3.9	6.6	5.1	5.1	5.1	5,1	5.1
f (sq m K/kw)	0.306	0.060	0.034	0.044	0.062	0.162	0.110


Fig. 7 Time Dependency of Fouling Factor of Brine Heater in RUN-8

Heat Transfer Areas of the Heating Sections

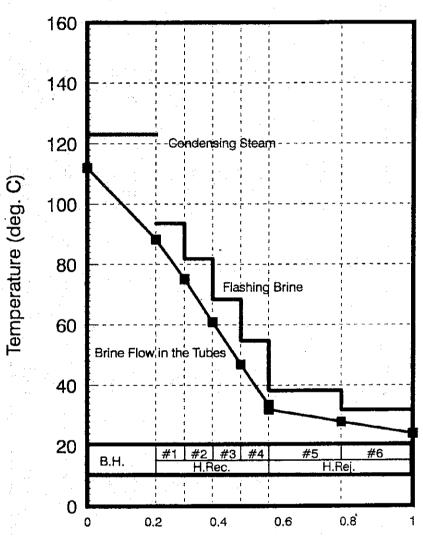

Run No. 8 Date: December 6, 94 Time: 4:00

Fig. 8-1 Heat Cycle at Start of RUN-8

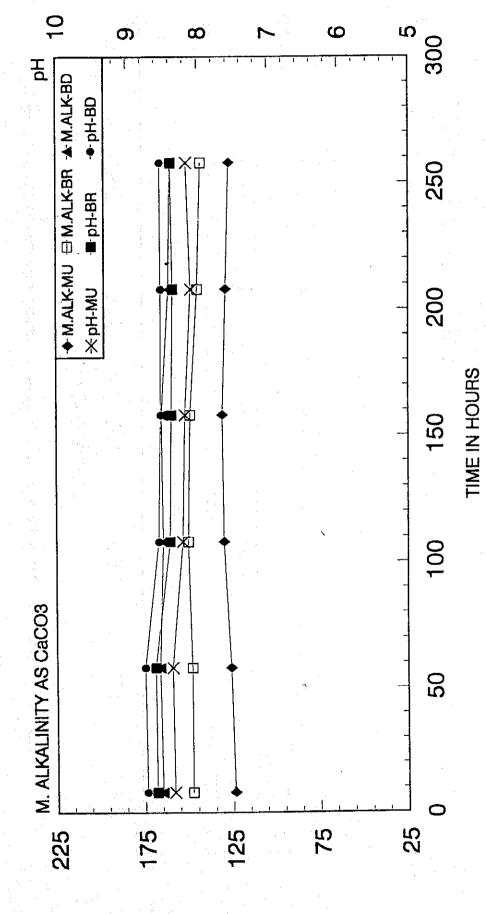
Run No. 8 Date: November 16, 94 Time: 20:00

Fig. 8-2 Heat Cycle after 240hrs of RUN-8

Run No. 8 Date: November 26, 94 Time: 12:00

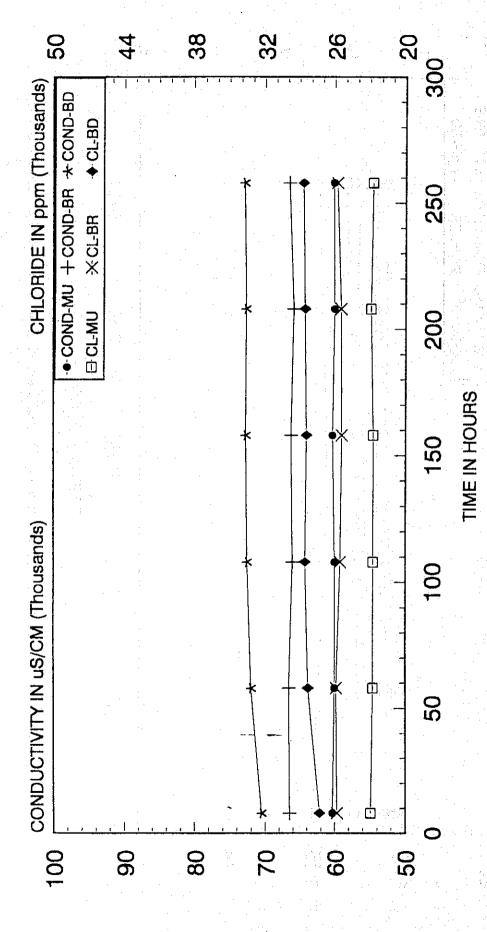
Fig. 8-3 Heat Cycle after 472hrs of RUN-8

Table 8-1 Calculation of Overall Heat Transfer Coefficient (U) and Fouling Factor at Start of RUN-8


Run No. 8	Date: November 16, 94		Time: 20:00		Total Operation Time: 8 hr.	n Time: 8 hr.	
Variables	Brine Heater			Evaporator Stages			
		74	₹ *	#3	**	\$G \$k	6 0 7 6
Flowrate (kg/h)	0059	0259	6500	. 0059	0059	18500	18500
Specific Heat (kj/kg/K)	3.962	3.940	3.925	3.911	3.898	3.966	3.964
Inlet Temp. (deg. C)	8.68	76.1	62	48.2	35	30.2	26.5
Outlet Temp. (deg. C)	112	89.8	76.1	62	48.2	34.5	30.2
Temp. Rise (deg. C)	22.2	13.7	14.1	13.8	13.2	4.3	3.7
Flashing Temp. (deg. C)	114.5	91.3	80.8	67.6	54.1	39.1	33.4
Heat Transfer Rate (kJ/S)	158.794	97.460	99,916	97.440	92,908	87.646	75.374
Heat Transfer Area (Sq.m)	4.6723	1.937	1.937	1.937	1.937	4.9556	4.9556
LM.T.D. (deg. K)	9.692	5.916	10,171	11.107	11.237	6.515	4.815
U (KW/sq.m/K)	3.507	8.505	5.072	4.529	4,269	2.715	3.159
Clean-U Value (kW/sq.m/K)	3.9	6.6	5.1	5.1	5.1	5.1	5.1
f (sq.m K/kW)	0.0288	-0.0339	0.0011	0.0247	0.0382	0.1723	0.1205

Run No. 8	Date: November 26, 94		Time: 08:00	***	Total Operation	total Operation Time: 236 hr.	
	Arina Hastar			Evaporator Stages			•
		7	# 2	# 3	*	in M	*
Flowrate (kg/h)	0059	029	0059	9200	9200	18500	18500
Specific Heat (KJ/kg/K)	3.960	3.938	3.923	3.909	3.897	3.965	3,963
Inlet Temp. (deg. C)	88	75	60.8	46.7	33.3	28	25
Outlet Temp. (deg. C)	112	88	7.5	8.09	46.7	32	28
Temp. Rise (deg. C)	24	13	14.2	14.1	13.4	4	· K 1
Flashing Temp. (deg. C)	123.8	92.1	80.4	68.1	54	37.9	31.8
Heat Transfer Rate (kJ/S)	171,620	92.441	100.594	99.525	94,282	81.504	61.098
Heat Transfer Area (Sq.m)	4.6723	1.937	1.937	1.937	1.937	4.9556	4.9556
L.M.T.D. (deg. 10	21,625	9.103	11.015	13.110	12.857	7.728	5.155
U (kW/sq.m/k)	1.699	5.243	4.715	3.919	3.786	2,128	2.392
Clean-U Value (kW/sq.m/K)	3.9	6.6	r,	5.1	5.1	5.1	r.
f (sq.m K/kW)	0.3323	0.0392	0,0160	0.0591	0.0681	0.2738	0,2221

Table 8-3 Calculation of Overall Heat Transfer Coefficient (U) and Fouling Factor after 472hrs of RUN-8


Run No. 8	Date: December 06, 94		Time: 04:00		Total Operatio	Total Operation Time: 472 hr.	
Variables	Brine Heater			Evaporator Stages			
		# #	#2	(C)	7	40 **	**
Flowrate (kg/h)	9200	0059	9200	. 0059	6500	18500	1850
Specific Heat (KJ/kg/K)	3.960	3.937	3.921	3,906	3.893	3.962	3.96
inlet Temp. (deg. C)	48	73.2	58.1	43,1	28.8	22.9	18.
Outlet Temp. (deg. C)	112	87	73.2	58.1	43.1	27	22.
Temp. Rise (deg. C)	25	13.8	15.1	15	14.3	4.1	र्ष
Flashing Temp. (deg. C)	116	90.4	79.4	65.2	50.5	33.4	27.
Heat Transfer Rate (kJ/S)	178.743	060'86	106.906	105.797	100.526	83,484	89.54
Heat Transfer Area (Sq.m)	4.6723	1.937	1.937	1.937	1.937	4.9556	4.955
L.M.T.D. (deg. 10	12.620	8.513	12.235	13.210	13,292	8.282	6.24
U (kW/sq.m/k)	3.031	5.949	4.511	4.135	3,904	2.034	2.89
Clean-U Value (kW/sq.m/k)	9.8	6.6	r.i.	5.7	Ę,	5.1	'n
f isq.m K/KW)	0.0735	0.0166	0.0256	0.0458	0.0600	0.2955	0.149

Water Constituent of the Make-up, Recirculation and Blow Down during RUN-3 (Part 1) Fig. 9-1

Water Constituent of the Make-up, Recirculation and Blow Down during RUN-3 (Part 2) Fig. 9-2

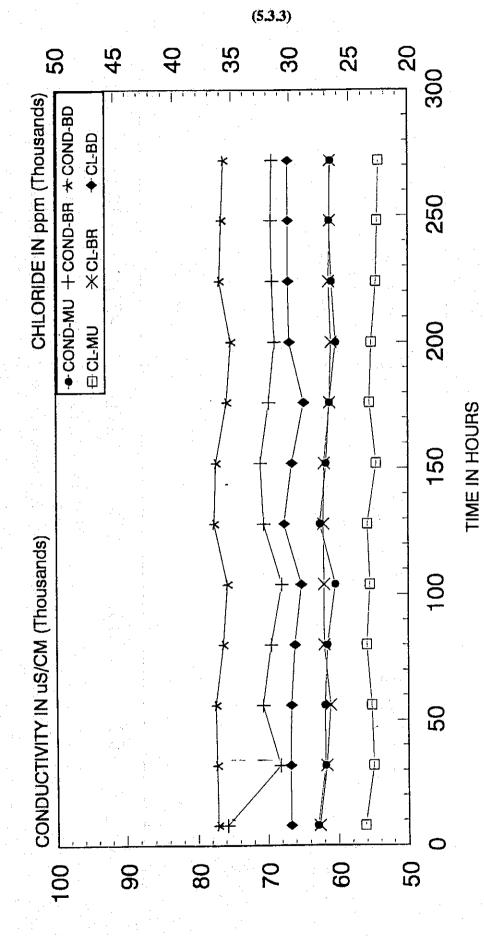
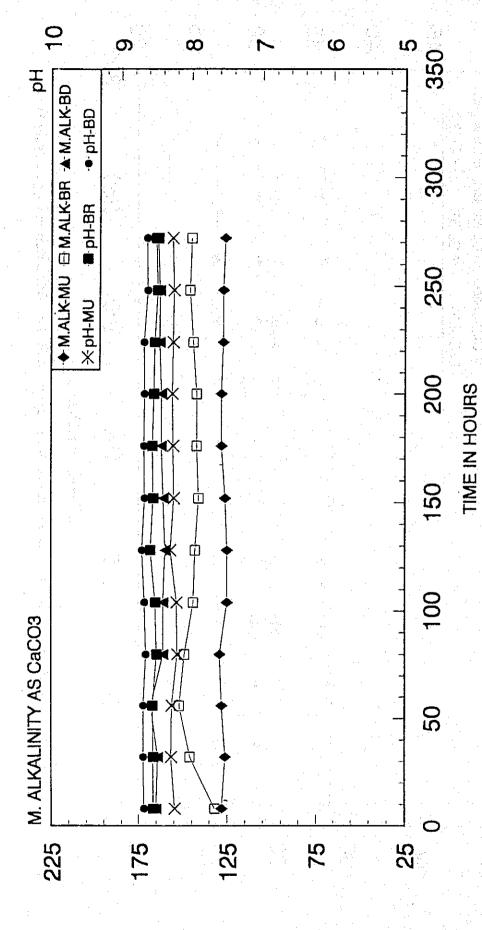
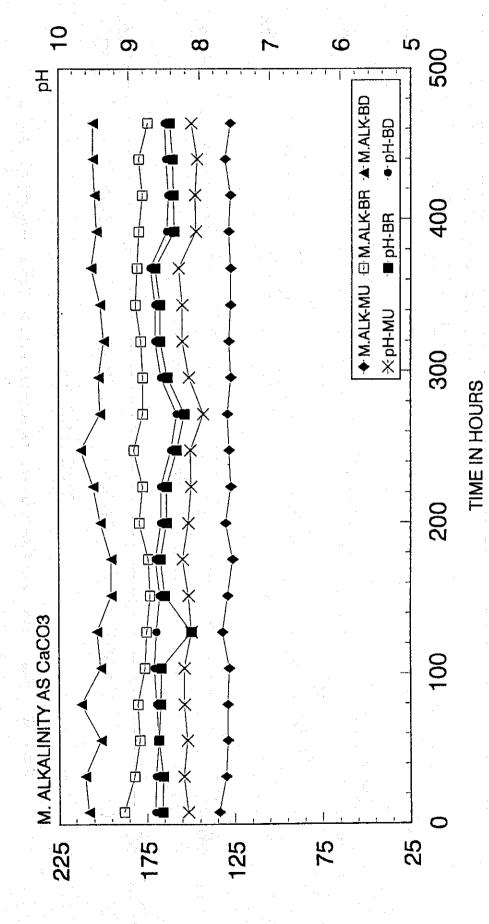




Fig. 10-1 Water Constituent of the Make-up, Recirculation and Blow Down during RUN-4 (Part 1)

Water Constituent of the Make-up, Recirculation and Blow Down during RUN-4 (Part 2) Fig. 10-2

Water Constituent of the Make-up, Recirculation and Blow Down during RUN-8 (Part 1) Fig. 11-1

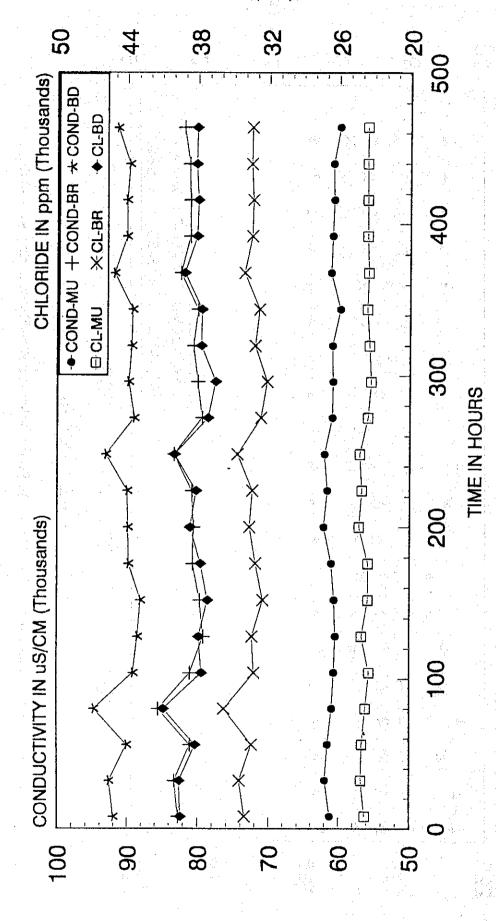


Fig. 11-2 Water Constituent of the Make-up, Recirculation and Blow Down during RUN-8 (Part 2)

4.3 Determination of Heat Transfer Coefficient (U) at the Start of the Operation

In order to calculate the Fouling Factor based on the formula (2.7), a reference value for the heat transfer coefficient at the initial stage known as the clean value (Uc) should be determined.

Overall heat transfer coefficients were calculated for the brine heater and heat recovery stages of the MSF test plant using the physical dimensions as per the drawings and transport properties of steam and liquid water at the prevailing temperatures. The calculated values were found to be in very good agreement with design values provided by the manufacturer. Comparisons between these theoretical values with values obtained from the first performance tests during commissioning show good agreement only for stages 2, 3 and 4 in the heat recovery section. The experimental value of the overall heat transfer coefficient for the brine heater was found to be significantly lower than the theoretical values. On the other hand, the experimental value for the first stage in the heat recovery section was higher than the theoretical values.

Experimental data of Runs 1-5 and 8 were reviewed to examine the consistency of these theoretical and experimental values as clean values for the overall heat transfer coefficient. It was concluded from this review that the following values obtained experimentally during commissioning tests are to be used as clean overall heat transfer coefficient Uc:

Brine Heater : 3.9 kW/m²K

Stage #1 : 6.6 kW/m²K

Stage #2, 3 & 4 : 5.1 kW/m²K

最后的 医原性性神经 经有效 医皮肤

5. Discussions

The obtained data of RUN 3, 4, 5 & 8 have been compared as follows.

					1.0	
RUN	r November	3	i ga g daga	47521	5_0	die g er Sind Heins de
		· f	4 - 1 - 1 - 1 - 1			
Ball	CIDANINC					ng sa ta ta ta nan Mga ta ta ta ta na
	Chemical		•	1	and the second s	er berig bil enkin kepinan i 19 <mark>35 Mei</mark> Breitzig berincij 19 Geberation in destat end
		<u> </u>	4 Alexander	genous si s	e in in Elemente i	
	CF ≤ 1.2	S. 1877 (1988)	•	•		<u>Dien ei</u> ndingslife Til 1900 bil 1900 bil 1900 eer neg 2
M-alk	CF = 1.4				The ARA Mar	n filozofia (h. 1926) 1864 - Harriston Francisco 186 2 - Francisco
. <u> </u>	Action of the	- 1 the second	i kapangan	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e de la cie	general appropriate processing

5.1 The effect of ball cleaning on the fouling factor

The effect of the ball cleaning operated under the concentration factor of 1.12-1.15 have been examined by comparing the data of RUN 3 and RUN 4, the former applying the ball cleaning every eight hours and the latter without ball cleaning.

The fouling factor of RUN 3 maintained around 0.1-0.15m²K/kW during whole test period, while that of RUN 4 increased to 0.3m²K/kW because ball cleaning was not applied.

In the case of concentration factor 1.4, RUN 8, fouling factor increases linearly with time due to scaling. The ball cleaning has been conducted when the U value reached 3.70kW/m²K,

and the results are shown in Fig.7. The recovery of Uvalue is not complete and still fouling factor of $0.05 \text{m}^2 \text{K/kW}$ remained after ball cleaning. This is the characteristics of the single scale inhibitor dosing which is different from the case of hybrid method. During the hybrid operation, 100% recovery of Uvalue had been observed. The frequency of ball cleaning was three times a day and 30 minutes cleaning was applied.

5.2 The effect of concentration factor on the fouling factor

In case of the concentration factor of 1.15, M-alkalinity of 140mg/L as CaCO₃, RUN 4, little increase in fouling factor was observed. However, when the concentration factor has been raised to 1.4, M-alkalinity of 180mg/L as CaCO₃, RUN 8, the fouling factor showed apparent increase.

Despite the decrease of the M-alkalinity to less than half of the above value, the fouling factor increased as the concentration factor was increased, as shown in RUN 5.

The effect of M-alkalinity on scaling will be discussed in 5.3.4.

5.3 Time dependency of the fouling factor

The increasing rate of fouling factor was calculated from the data obtained from RUN 8, which concentration factor was 1.4 and M-alkalinity was 180mg/L as CaCO₃.

The fouling factor of #5 and #6 stage has been omitted from the calculation since raw seawater without scale inhibitor was used in the heat rejection section.

As shown in the table below, the scaling at brine heater is one order larger than that of following stages. Thus, the deterioration of the performance ratio of MSF plant should be controlled by the scaling at brine heater.

The fouling factor increases linearly after 30 hours and the increasing rate after ball cleaning become larger than the initial stage. Furthermore, the fouling factor recovery after ball cleaning is only 85.7%. Consequently, the ball cleaning should be applied before the significant increase of fouling factor. Every eight hours of ball cleaning, like this test, would be appropriate.

Heat Transfer Tube	Increasing Rat	e of F.F.(FF/hr)	-	rature (°C)
Position	Initial State	After #1 B.C.	Inlet	Outlet
Brine Heater	0.0013	0.0018	88	112
#1 Stage	0.0003	0.00035	75	90
#2 Stage	0.00015	0.00015	61	76
#3 Stage	0.00015	0.00015	46	62
#4 Stage	0.00012	0.00012	33	48

Note: \bullet (FF/hr) is $\{(m^2 K/kW)/hr\}$

6. Conclusions

For the purpose of the evaluation of the scale inhibitor, PPN(M), in case of top brine temperature of 112°C, the MSF test plant has been operated for total 2350 hrs and following results has been obtained.

- (1) The scaling is little when the concentration factor is less than 1.2, but scalings become apparent when concentration factor is increased to 1.4.
- (2) The increasing rate of fouling factor of the brine heater in case of concentration factor of 1.4 is 0.0013m²K/kW/hr. However, the fouling factor decreases to 0.05m²K/kW when ball cleaning is conducted.
- (3) Ball cleaning does not remove scale completely, and the increase of fouling factor after ball cleaning is observed as the operation continues.
- (4) Ball cleaning should be applied before obvious increase of fouling factor is observed. This is in good agreement with the understanding obtained from the experience of the actual plant operation.

[•]Increasing Rate is average of 30 to 300 hrs.

5.3.4 Test with the Simultaneous Use a Single Inhibitor and Acid

CONTENTS

1. I	ntroduction ·····	1	
2. I	Preparative survey on the Hybrid Method ······	1	
J.	er production de la company de la compan La company de la company d		
3. T	Test Program ·····	4	
3.1	Basic principle ·····	4	
3.2	Operation Conditions	4	
4. I	Experiments	6	
5. I	Results ·····	6	
	Time Dependency of Fouling factor		
5.2	Determination of Uc	18	
	The quality of the feed seawater and circulating brine		
6.]	Discussions ·····	21	
6.1	Effect of Concentration Factor on Fouling Factor	21	
	The Influence of M-Alkalinity on Fouling Factor		
	Hybrid Operation in Saudi Arabia		
7	Conducion	23	

List of Tables

Table	Description	Page
Table 1	Water Constituent of Qurayyah Power Plant P	hase-1
	Desalination Plant Unit B	
Table 2	Operation Conditions of MSF Test Plant for R	UN 5 , and the description of the
	Fouling Factor at Start of RUN 5-1	5
Table 3-1	Calculation of Heat Transfer Coefficient(U) and	d Parthetische, Radiobate der
	Fouling Factor at Start of RUN 5-1	14
Table 3-2	Calculation of Heat Transfer Coefficient(U) and	d i si garan a shegarayak i k
	Fouling Factor after 180hrs of RUN 5-1 ······	
Table 4-1	Calculation of Heat Transfer Coefficient(U) and	d a jaja da karang da daga da ya
	Fouling Factor at Start of RUN 5-2	
Table 4-2	Calculation of Heat Transfer Coefficient(U) and	d sur squadraph and have been also been a
	Fouling Factor after 324hrs of RUN 5-1	

List of Figures

Figure	Description	Page
Fig. 1	Time Dependency of Fouling Factor in RUN 5-1	8
Fig. 2	Time Dependency of Fouling Factor in RUN 5-2	. 9
Fig. 3-1	Heat Cycle at Start of RUN 5-1	10
Fig. 3-2	Heat Cycle after 180hrs of RUN 5-1	- 11
Fig. 4-1	Heat Cycle at Start of RUN 5-2	12
Fig. 4-2	Heat Cycle after 324hrs of RUN 5-2	· 13
Fig. 5	Water Constituent of the make-up, recirculation and	
	blow down during RUN 5-2	. 19
Fig. 6	Water Constituent of the make-up, recirculation and	
-	blow down during RUN 5-2 (Cont.)	20

	e e .

1. Introduction

The single inhibitor dosing test to investigate the effect of concentration factor and ball cleaning on fouling factor using PPN(M) has been conducted in 5.3.3.

Following the single dosing test, the effect of combined dosing of scale inhibitor and acid, so called hybrid method, on fouling factor has been investigated from October 15 to 30, 1994. This section reports the results of the hybrid method test.

2. Preparative survey on the Hybrid Method

The "Hybrid Method" mentioned in this section is explained as follows.

When the seawater is concentrated and/or the temperature elevated, CaCO₃ deposits. This is because the concentration of CaCO₃ exceeds that of its solubility in seawater. However, scale deposition can be suppressed when the supersaturation can be maintained. The scale inhibitor has the effect to prolong the state of supersaturation. The detail about the effect of scale inhibitor is mentioned in 5.1.2.

"Hybrid Method" is to reduce the bicarbonate ion concentration, M-alkalinity, which is the source of CaCO₃ deposition, by dosing acid and to enhance the effect of the scale inhibitor, and thus reduce the amount of scale inhibitor dosing. The lower pH results in the reduction in the M-alkalinity and thus the scaling, however, arouse the more rigorous condition for the corrosion problem of the plant. Consequently, the M-alkalinity has to be optimized to compromise the scaling and the corrosion¹⁾. The control of the M-alkalinity will be the most crucial point for the hybrid operation.

The operation record of the MSF plant of QURAYYAH POWER PLANT, 4,000x3ton/day, SAUDI CONSOLIDATED ELECTRIC COMPANY (SCECO), which has the experience in actual hybrid operation, has been surveyed for the information on the M-alkalinity.

¹⁾ Chemical Engineering Hand Book: p 422 (Fifth Edition)

The brine analysis results sampled from various stages of the plant during the hybrid operation is shown in Table 1. In this plant, the brine quality is controlled as follows.

*pH of brine : 7.8 = 8.3

•M-alkalinity as CaCo3 : 24 - 43ppm

•Concentration factor(as Cl⁻) : 1.2 – 1.3

Table 1 Water Constituent of Qurayyah Power Plant Phase-1

Desalination Plant Unit B DATE: 19 MAY '94 TIME ITEM UNIT LIMIT 1,400 H 1, 100 H 1,600 H 1.750 H DISTILATE FLOW RATE kg/ Q 30 30 47 47 TOP BRINE TEMPERATURE °C 92 92 108 108 BRINE RECIRCULATION FLOW RATE kg/s 325 325 420 420 MAKE-UP FLOW RATE 105 kg/s 105 161 161 0.0135 0.014 0.021 0.022 ACID DOSING RATE AUTO/MAN kg/s ~ 0.0085 ~0.005 ~ 0.013 ~ 0.015 AUTO AUTO AUTO AUTO В ACID DOSING PUMP STROKE A/B % 37 37 55 56 BEFORE ACID INJECTION mg/Q 130 130 DECARBONATOR OUTLET mg/Q 34 41. 20~35 ALKALINITY DEAERATOR OUTLET mg/Q 26 33 (as CaCO₂) RECYCLE BRINE. mg/ 2 46 45. 24~43 BEFORE ACID INJECTION 8.03 (Lab) 8.02 7. 2 CONTROL/LOCAL (Inst) 7.25 7. 22 5.72 6.7~7.0 DECARBONATOR OUTLET Ж AT-506 (Lab) 7.45 7.25 8.02 7.9 CONTROL/LOCAL (Inst) 7.85 7.91 8.02 7.8~8.3 RECYCLE BRINE AT-507 (Lab) 8.12 BEFORE ACID INJECTION mg/ Q 31.018 31.018 CHLORIDE RECYCLE BRINE mg/ ⅓ 41.122 41, 122 BLOW DOWN mg∕ 🎗 45, 780 46, 440 BRINE RECYCLE CONCENTRATION FACTOR 1.32 1.32 1.2~1.3 BRINE BLOW DOWN CONCENTRATION FACTOR 1.47 1.49 1.4~1.5 CO2 CONCENTRATION AT THE mg/Q 8.0 5.0 DECARBONATOR OUTLET as CaCO₂ CO2 CONCENTRATION AT THE DEAERATOR mg/ 🎗 1.0 OUTLET

Note) Concentration of sulfuric acid to be dosed is 80 %.

3. Test Program

3.1 Basic principle

The feature of the hybrid method is to prevent scaling by acid dosing, which is highly effective in scale depression, and scale inhibitor dosing, which is advantageous to avoid corrosion problem of the metallic installations. The critical point for the hybrid operation will be the accurate control of the pH and the M-alkalinity of the brine in order to attain the benefit of both measures.

In this test, the avoidance of corrosion are assumed as the first priority, and thus the pH of the brine is controlled at 8.0. The experiment RUN-5 was conducted under such condition.

The scale prevention effect was evaluated by the fouling factor, the same to that of the test for single inhibitor, mentioned in 5.3.3.

3.2 Operation Conditions

The feature of this test is low M-alkalinity of the feed seawater, normally 180mg/L as CaCO₃, which is altered by the following process.

When sulfuric acid is dosed into seawater, M-alkalinity decrease identical to the equivalent concentration of sulfuric acid by freeing carbondioxide and thus pH decreases. When the feed seawater including free carbondioxide decarbonated by the decarbonator, the free carbondioxide degases and pH increases. The decarbonated seawater is mixed with the circulating brine.

The operation conditions of the test RUN-5, based on the scheme of May, 1994, are shown in Table 2. The operation records of the test RUN are shown in Fig. 1 of 5.3.3.

The concentration of the scale inhibitor, PPN(M), was reduced to the half of the single inhibitor dosing (1mg/L).

Table 2 Operation Conditions of MS Test Plant for RUN 5

ITEMS	UNIT	5-1	5 – 2
1. Top Brine Temperature	°C	112	112
2. Plow Rate -Make up Seawater	m³/h	3.25	2, 45
-Recirculation Brine	m³/h	6.50	6. 5
-Product Water	m³/h	0.76	0.79
-Blow Down Brine	m³/h	2.99	1.66
3. Chemical Constituents of Make	a, a		
up seawater			•
-pH at 25°C		7	6.5~7.0
-M-alkalinity as CaCO ₃	mg/L	3 9	3 9
-Chloride Ion	mg/L	23,190	23,190
-Concentration Factor as C1-		1.0	1.0
4. Chemical Constituents of Brin	e e		
-pH at 25℃		8.01	8.12
-M-alkalinity as CaCO ₃	mg/L	45-50	55-60
-Chloride Ion	mg/L	28, 290	32,730
-Concentration Factor as C1-		1. 22	1.40
5. Dosing Rate of Chemicals			* * .
-Scale Inhibitor = PPN(M)	mg/L	1	1)
-Acid = 98% H ₂ SO ₄	mg/L	80	80

4. Experiments

The flow diagram, the sheet of mass balance, the sheet of heat balance of the MSF Test Plant, capacity of 20 ton/day, are shown in Fig.2, Table 2 and 3 of 5.3.3. The instrument designations used for the calculation of fouling factor are listed in Table 4 of 5.3.3.

The fouling factors were calculated automatically by the personal computer, IBM compatibles, 486. The change in the operation conditions during the experiments had been recorded by the operators in the prescribed format.

The operation data sheets used for the calculation of the fouling factor are shown in Table 5 of 5.3.3.

The shift of operators contributed for the continuous operation are shown in Table 6.1 6.5 of 5.3.3.

5. Results

The operation of the MSF Test Plant for the hybrid method had been conducted twice as shown in Table 1.

The M-alkalinity of the circulating brine for both tests had been reduced to 1/3 of the single inhibitor dosing tests. The pH of the circulating brine had been controlled above 8. The ball cleaning had been applied only when the fouling factor of the heat transfer tube exceeded 0.34-0.36 (m 2 K)/kW.

The deference between RUN 5-1 and the RUN 5-2 is the concentration factor, which was controlled by the amount of the make up feed seawater.

5.1 Time Dependency of Fouling Factor

The time dependency of the Uvalue of each RUN are shown in Fig.1 and 2. The heat balance corresponding to the Uvalue at the start and the end of the operation are shown in Fig.3 and 4. The measured data and the calculation process, including logarithmic mean temperature difference and quantity of heat exchange, are shown in Table 3 and Table 4, in accordance with the heat balance shown in Fig.3 and Fig.4.

As is shown in the RUN 5-1, the fouling factor of brine heater was 0.2m²K/kW under concentration factor of 1.22 up to 143hrs.

In the case where the concentration factor has been raised to 1.4, RUN 5-2, the Uvalue showed decrease due to the scaling. Consequently, the increase of steam consumption, and thus reduction in performance ratio occurred in order to hold the outlet temperature of brine at the brine heater outlet at 112° C.

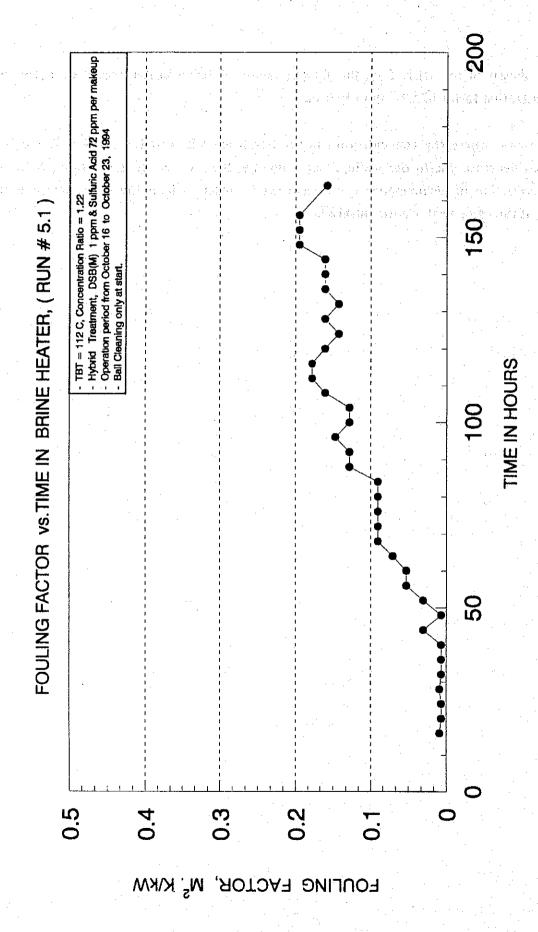
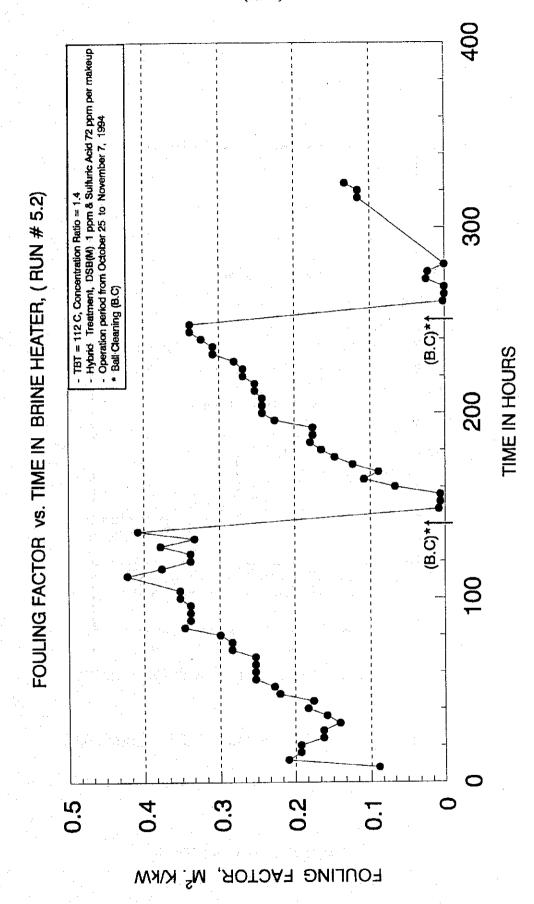
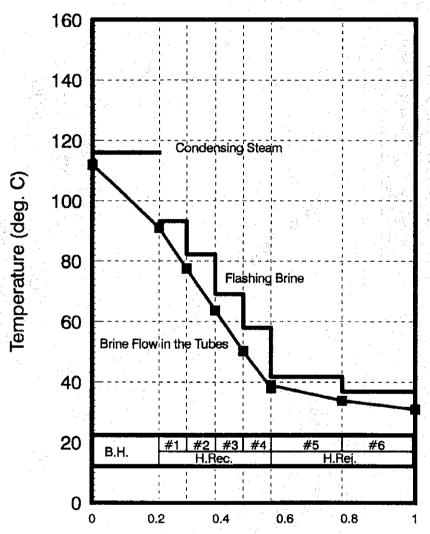
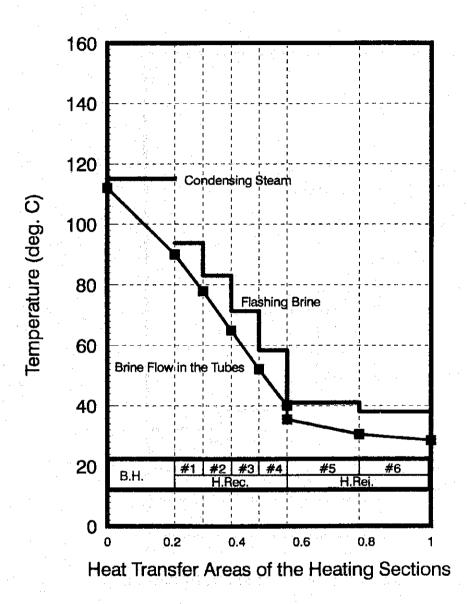




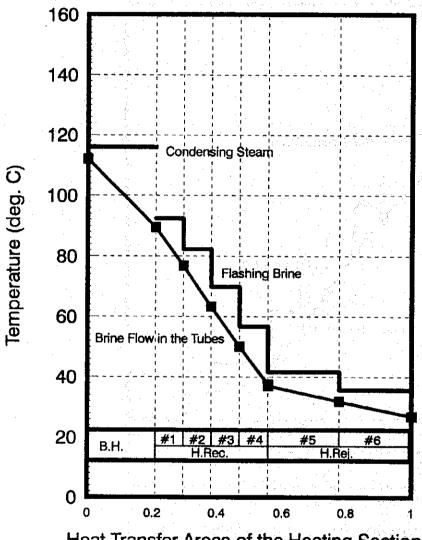
Fig. 1 Time Dependency of Fouling Factor in RUN 5-1



Heat Transfer Areas of the Heating Sections

Run No. 5.1 Date: October 16, 94 Time: 8:00

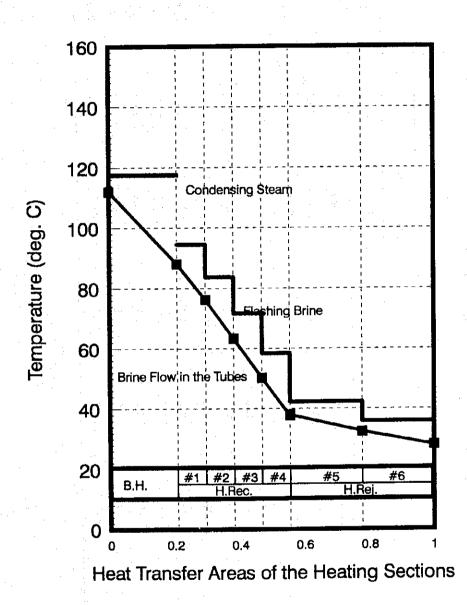
Fig. 3-1 Heat Cycle at Start of RUN 5-1



Date: October 23, 94

Time: 8:00

Run No. 5.1


Fig. 3-2 Heat Cycle after 180hrs of RUN 5-1

Heat Transfer Areas of the Heating Sections

Run No. 5.2 Date: October 25, 94 Time: 0:00

Fig. 4-1 Heat Cycle at Start of RUN 5-2

Run No. 5.2 Date: November 7, 94 Time: 4:00

Fig. 4-2 Heat Cycle after 324hrs of RUN 5-2

Table 3-1 Calculation of Heat Transfer Coefficient(U) and Fouling Factor at Start of RUN 5-1

CALCULATIONS OF OVERALL HEAT TRANSFER COEFFICIENT AND FOULING FACTOR

tun No. 5-1	Date:	Date: October 16, 94	16, 94		Time: 08:00	8		Total Operation Time: 12 hr.	ion Time	e: 12 hr.	
Variables	Brin	Brine Heater				Evapora	Evaporator Stages		uni esta		
				**	# 2	17 #k		7	. n 12.5	り乗	9 1
Flowrate (kg/h)	٠,	6500		6500	9200	65	6500	6500		18500	18500
Specific Heat (KJ/kg/K)	· ·	3.989		3.969	3.954	5.941	14	3.930		3.969	3.966
Inlet Temp. (deg. C)		<u>.</u>		77.5	63.7	ጜ	50.3	38	575 - R	33.9	31
Outlet Temp. (deg. C)		112	ye. Ven	ድ	77.5	æ	63.7	50.3		39	33.9
Temp. Rise (deg. C)	. :	2		13.5	13.8	₹	13.4	12.3		5.7	2.9
Flashing Temp. (deg. C)		116		93.2	82.2	39	69.1	95	w . * * . *	41.8	36.9
Heat Transfer Rate (kj/S)	- :	151.243		96.735	98.525	95.355	55	87.283		104.017	59.111
Heat Transfer Area (Sq.m)	::35	4.6723		1.937	1.937	1.937	37	1.937		4.9556	4.9556
L.M.T.D. (deg. 10		11,459	, di	6.870	10.071	10.742	1 2	10.697	, .	4.917	4.288
U (kW/sq.m/k)	9 E . N	2.825		7.270	5.050	4.583	83	4.213	2	4.269	2.782
Clean-U Value (kW/sq.m/K)		3.9		9.9	5.1	47	5.1	5.		5.1	5.1
f (sa.m K/kW)		0.0976		-0.0140	0.0019	0.0221	2	0.0413		0.0382	0.1634

Table 3-2 Calculation of Heat Transfer Coefficient(U) and Fouling Factor after 180hrs of RUN 5-1

0.972 0.8328 3.965 28.5 30.5 40.749 4.9556 8.461 18500 'n. 9# Total Operation Time: 180 hr. 4.9556 2.660 5.1 0.1799 30.5 35.5 101.924 7.732 18500 3.967 * 3.908 0.0598 3.932 52.1 58.4 85,189 1.937 11.253 6500 40.1 5. * Evaporator Stages 0.0540 4.000 64.9 3.943 52.1 12.8 71.4 91 117 1.937 11.761 6500 (C) CALCULATIONS OF OVERALL HEAT TRANSFER COEFFICIENT AND FOULING FACTOR Time: 08:00 4.670 3.955 64.9 92.832 10.263 0.0181 6500 1.937 83 *2 5.370 0.0347 3.968 77.9 969'98 1.937 8.335 6500 12.1 93.7 8 * Date: October 23, 94 4.6723 10.376 3.268 0.0496 6500 3.988 8 Z 73 158.420 Brine Heater Clean-U Value (kW/sq.m/lo Heat Transfer Area (Sq.m) Heat Transfer Rate (kj/S) Flashing Temp. (deg. C) Outlet Temp. (deg. C) Specific Heat (kj/kg/K) Temp. Rise (deg. C) Inlet Temp. (deg. C) L.M.T.D. (deg. 10 Flowrate (kg/h) U (kW/sq.m/lo f (sq.m K/kW) Run No. 5-1 Variables

Table 4-1 Calculation of Heat Transfer Coefficient(U) and Fouling Factor at Start of RUN 5-2

CALCULATIONS OF OVERALL HEAT TRANSFER COEFFICIENT AND FOULING FACTOR

Run No. 5-2	Date: October 25, 94		Time: 00:00		Total Operation Time: 8.0 hr.	1 Time: 8.0 hr.	
Variables	Brine Heater			Evaporator Stages			
		*	# 5	(°)	*	in Ma	*
Flowrate (kg/h)	6500	6500	0059	0059	6500	15500	15500
Specific Heat (KJ/kg/10	3.961	3.940	3.926	3.912	3.900	3.968	3.965
inlet Temp. (deg. C)	89.5	76.8	63.3	50.1	37.5	31.9	22
Outlet Temp. (deg. C)	112	89.5	76.8	63.3	50.1	37	31.9
Temp. Rise (deg. C)	22.5	12.7	13.5	13.2	12.6	5.1	4.9
Flashing Temp. (deg. C)	116	92.4	82.3	8.69	56.7	41.6	35.7
Heat Transfer Rate (kj/S)	160.932	90.351	95.690	93.240	88.729	87.122	83.645
Heat Transfer Area (Sq.m)	4.6723	1.937	1.937	1.937	1.937	4.9556	4.9556
L.M.T.D. (deg. K)	11.899	7.548	10.890	11.905	11.800	6.836	5.916
U (KW/sq.m/x)	2.895	6.180	4.536	4.044	3.882	2.572	2.853
Clean-U Value (kW/sq.m/l0	6. 6. 6.	9.9	9.7	5.7	5.1	5.1	5.1
f (sq.m K/kW)	0.0891	0.0103	0.0244	0.0512	0.0615	0.1927	0.1544

17200

17200

¥.

3.968

32.4

5.6 12.3 3.112

3.367

3.427

3.661 5.7

3.804

2.571

4.9556 5.405

83,356

106.168 4.9556 6.715 3.190 0.1252

0.1174

0,1010

0.0957

0.0770

0.1116

0.1326

Clean-U Value (kW/sq.m/l0

f (sq.m K/kW)

U (kW/sq.m/ld

5.

Table 4-2 Calculation of Heat Transfer Coefficient(U) and Fouling Factor after 324hrs of RUN 5-2

Total Operation Time: 324 hr. 6500 3.900 58.4 13,499 37.7 50.2 1.937 88.028 * Evaporator Stages 92.535 13,939 6500 3.912 1.937 50.2 63.3 13.1 71.7 (T) CALCULATIONS OF OVERALL HEAT TRANSFER COEFFICIENT AND FOULING FACTOR Time: 04:00 12.892 6500 3.925 91.430 1.937 63.3 12.9 83.7 **₹** 11.8 94.5 11.400 6500 3.939 76.2 83.923 1.937 * Date: November 07, 94 6500 3.960 117.5 4.6723 14.289 171.620 Brine Heater Heat Transfer Area (Sq.m) Heat Transfer Rate (KJ/S) Flashing Temp. (deg. C) Specific Heat (k()/kg/K) outlet Temp. (deg. C) inlet Temp. (deg. C) Temp. Rise (deg. C) L.M.T.D. (deg. 10 Flowrate (kg/h) Run No. 5-2 Variables

5.2 Determination of Uc

The overall heat transfer coefficient at the start of the operation, Uc, had been determined by the same method described in 5.3.3, as follows.

Brine Heater

: 3.70kW/m²K

Stage #1

: 6.29kW/m²K

Stage #2, 3 and 4

: 4.88kW/m2K

5.3 The quality of the feed seawater and circulating brine

The typical data of the water constituent of the make-up, recirculation and product during RUN 5-1 and 5-2 are shown in Fig. 5 and Fig. 6.

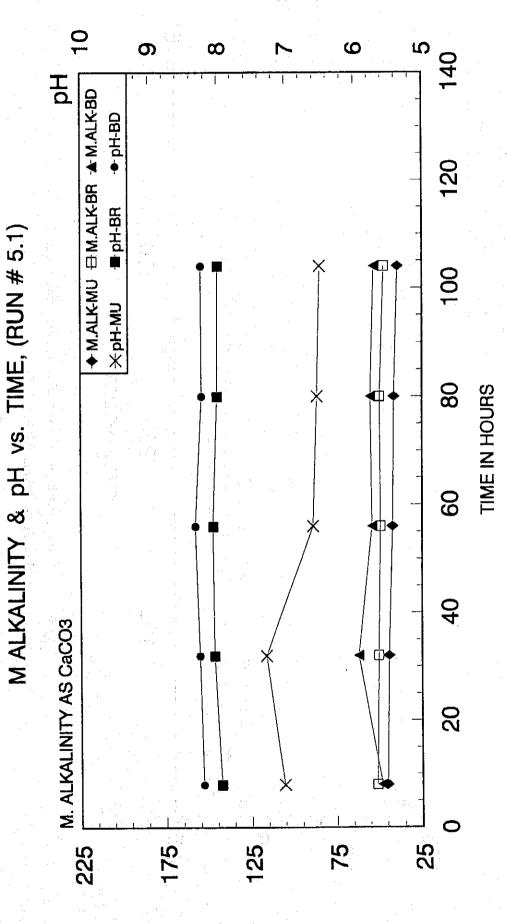
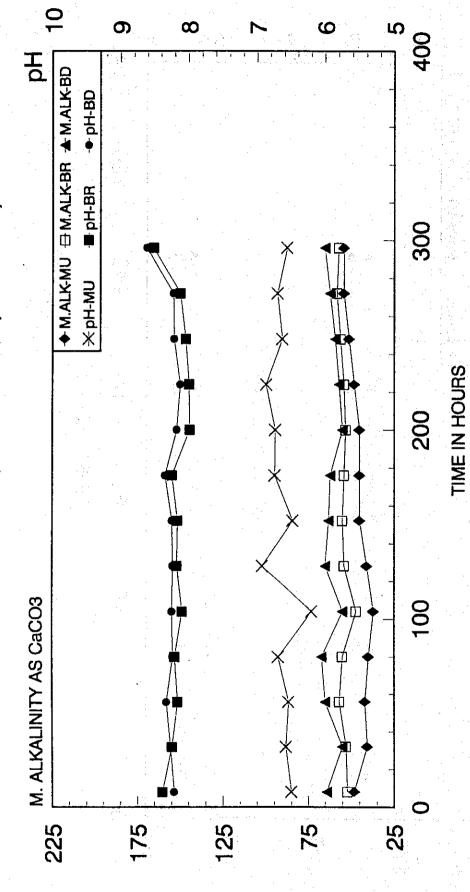



Fig. 5 Water Constituent of the make-up, recirculation and blow down during RUN 5-1

(5.3.4)

ig. 6 Water Constituent of the make-up, recirculation and blow down during RUN 5-2

6. Discussions

The data obtained from RUN 4, 5 and 8 have been compared for the discussion as shown below.

					,
RUN	NO. 11.	. i	5-1	5-2	8
00,00	Chemical	•			•
CONC.	Hybrid		•	•	
	CF≦ 1.2		•		
M-alk	CF = 1.4			•	•

6.1 Effect of Concentration Factor on Fouling Factor

There is little change in fouling factor when the concentration factor is 1.22 (M-alkalinity = 140 mg/L as $CaCO_3$), as shown in the case of RUN 5-1.

On the other hand, the fouling factor showed apparent increase when the concentration is raised to 1.4 (M-alkalinity = 60 mg/L as CaCO_3) in RUN 5-2. However, the increasing rate of the fouling factor is more than that of RUN 8.

6.2 The influence of M-alkalinity on Fouling Factor

To explain the effect of M-alkalinity, the time dependency of fouling factor of RUN 5-2 and RUN 8 have been studied.

The fouling factor increases abruptly up to 30 hours. After the initial increase, the fouling

factor increases linearly with less increasing rate. The linear portion of the fouling factor at brine heater will be expressed by the following formula.

RUN No.	M-alkalinity	Initial Stage	After #1 BC	Recovery by #1BC
5-2 8	60mg/L as CaCO ₃ 180mg/L as CaCO ₄	Fo=1.80*10 ⁻³ t Fo=1.31*10 ⁻³ t	Fo=2.77*10 ⁻³ t Fo=1.80*10 ⁻³ t	100% 85.7%
				33.7 76
where:	BC: Ball Cleaning Fo: Fouling Factor	after t hours (m²K/kW)	
	t : Time (>30 h)	(h)	

The tangent slope of the RUN 5-2 is larger than that of RUN 8, and the superiority of hybrid method was not recognized. However, the recovery ratio by ball cleaning showed some difference. The heat transfer coefficient of hybrid method recovered 100% by ball cleaning while that of single dosing method recovered only 85.7%.

No conclusion can be reached at this stage with such short tests. Further tests are needed to confirm the above observation.

6.3 Hybrid Operation in Saudi Arabia

The hybrid operation had been conducted at SCECO Qurayyah in Saudi Arabia and it is assessed as follow;

The Qurayyah plant is designed to be capable of operating by either of (1)Chemical dosing method(Belgard Ev), (2)Hybrid method and (3)Acid dosing method. The performance ratio of chemical dosing method and hybrid method are 9.5-9.6 and 10.0, respectively, showing the superiority of the hybrid method.

However, the hybrid method is not recommended in the normal operation of the plant since the cost of the sulfuric acid is more expensive than Belgard Ev and the cost of steam is relatively low.

7. Conclusion

The performance of the hybrid method for the scale prevention has been tested and the results obtained are as follows;

- (1) The M-alkalinity has been lowered to 1/3 by dosing acid and the amount of dosing scale inhibitor, PPN(M), has been halved to 1ppm. The effect of hybrid method was not apparent up to 300 hours.
- (2) Longer testing period is necessary to confirm the effect of hybrid method.
- (3) In order to adopt the hybrid method in Saudi Arabia, stable and low cost supply of acid, sulfuric acid for example, is necessary since the amount of acid required is 30 times more than that of scale inhibitor.

4				
5.	4 Trans	fer of Tech	nology	
	(2)			
		· 教育文書/新聞書/李文		

CONTENTS

1.	Objective ·····	••••••••••••	· 1
Ż.	Procedure of Technology Transfer		1
3.	Results ·····	***************************************	1

List of Tables

Table	is the first of the constraint ${f D}_0$	escription		Page
				J
Table 1	Transfer of Technology	for MSF-1	**********	3

1. Objective

The technology transfer is aimed especially for the young researchers in SWCC to deepen their knowledge and understanding on the scaling of the heat exchanger tubes, which is one of the main causes for the MSF plant performance, through the cooperative research between SWCC and JICA.

2. Procedure of technology transfer

Conduct the cooperative research on the establishment of the evaluation method of scale inhibitor by laboratory test, and then proceed the experiment by MSF test plant for the confirmation of the laboratory test results.

Those results would be prepared to a full paper together with the analysis of the MSF plant operation conditions and the calculation method of the fouling factor.

Subjects for the cooperative research work

- 1) Evaluation and analysis of the performance of the MSF plant.
- 2) Evaluation method for the scale inhibitor
- 3) Evaluation technology of fouling factor (Short term test by MSF test plant)
- 4) Evaluation technology of fouling factor (Long term test by MSF test plant)
- 5) Evaluation method of fouling factor (Test with the simultaneous use of scale inhibitor and acid)

3. Results

- Evaluation and analysis of the deterioration of the MSF plant Visited several actual plants and the conditions has been studied. The cause of the plant deterioration has been analyzed.
- 2) Evaluation method for the scale inhibitor

The laboratory test has been conducted and sophisticated method had been established for the evaluation of the effect of scale inhibitor.

The results had been presented at the Second Gulf Water Conference.

The test by heat transfer equipment has been conducted and the evaluation method of the scale inhibitor under heat flux has been established. 3) Evaluation technology of fouling factor (Short term test by MSF test plant)

The data obtained from the experiments by MSF test plant had been analyzed. The cause of scaling and countermeasures for the plant deterioration have been studied with evaluation technology of fouling factor.

- 4) Evaluation technology of fouling factor (Long term test by MSF test plant) Long term test by MSF test plant had been conducted and relationship between heat exchanger tube and fouling factor was studied. Mastering the operation of the MSF test plant was accomplished as well.
- 5) Evaluation method of fouling factor (Test with the simultaneous use of scale inhibitor and acid: "Hybrid Method") Combined dosing tests by MSF test plant have been conducted and the obtained data have been analyzed. The effect of hybrid method on scaling has been evaluated.

The target, procedure and results of the transfer of technologies are listed in Table 1 according to the subjects.

Table 1 Transfer of Technology for MSF-1

SUBJECT	TARGET	PROCEDURE	RESULTS
Evaluation technology of performance deterioration for actual MSF plants	To master the evaluation technology of causes and countermeasures against deterioration in MSF plants	i) Visit plants and hold discussions with engineers 2) Collect operational data and make analysis	The trainee became capable of understanding operational data, making analysis, judging performance and identifying causes of performance deterioration in actual plants.
Evaluation technology scale inhibitor	To master the evaluation technology on some of the evaluation methods for scale inhibitors	1)Assemble equipment 2)Plan and conduct experiments 3)Analyze results and make conclusion	The trainees have prepared a paper on the method of parformance evaluation of scale inhibitors and presented it at the "Second Gulf Water Conference"
	To master the evaluation technology on some of the evaluation methods for scale inhibitors in the presence of heat flux	1) Assemble equipment 2) Plan and conduct experiments 3) Collect data and perform calculations 4) Analyze results and make conclusions	The trainee has performed heat transfer calculations and prepared tables and figures to present the results obtained. Also be prepared section 5.2 of this report
Evaluation technology of fouling factor [Shoft term test using the Test Plant	To master the evaluation technology on causes of scaling and their countermeasures against performance deterioration in the MSF plants	1)Collect data and perform calculations 2)Analyze results and make conclusions	The trainees have performed heat transfer calculations and prepared tables and figures presented in section 5.3.3
Evaluation technology of fouling factor [Long term test using the MSF Test Plant]	To master the evaluation technology on the behavior of fouling factor in the MSF plants	i) Follow up the operation of test plant 2) Collect data and perform calculations 3) Analyze results and make conclusions	The trainers have pre- pared a manual for the operational procedure and were trained on the operation of the MSF test plant. Also, the trainers have performed heat transfer calculations and prepared tables and figure presented in section 5.3.3
Evaluation technology of fouling factor [Test with simul-taneous use of scale inhibitor and acid]	To master the evaluation technology on the effectiveness of scale prevention methods	1) Collect data and perform calculations 2) Analyze resits and make conclusions	The trainees have performed heat transfer caiculations and prepare tables and figuires presented in section 5.3.4. Also, the trainees have understood the behavior of Makalinity in hybrid operation as compared to the case of additives